Sample records for fostering efficiency improvements

  1. Improving steam turbine efficiency

    SciTech Connect (OSTI)

    Cioffi, D.H.; Mitchell, D.R.; Whitecar, S.C. [Encotech, Inc., Schenectady, NY (United States)

    1995-06-01T23:59:59.000Z

    This paper describes the condition of a significant number of fossil steam turbines operating in the United States and the maintenance practices used to improve their performance. Through the use of steam path audits conducted by the authors` company and by several utilities, a large data base of information on turbine heat rate, casing efficiency, and maintenance practices is available to help the power generation industry understand how different maintenance practices and steam path damage impact turbine performance. The data base reveals that turbine cycle heat rate is typically 5.23% poorer than design just prior to major outages. The degraded condition of steam turbines presents an opportunity for utilities to improve heat rate and reduce emissions without increasing fuel costs. The paper describes what losses typically contribute to the 5.23% heat rate degradation and how utilities can recover steam turbine performance through maintenance actions aimed at improving steam path efficiency.

  2. Refines Efficiency Improvement

    SciTech Connect (OSTI)

    WRI

    2002-05-15T23:59:59.000Z

    Refinery processes that convert heavy oils to lighter distillate fuels require heating for distillation, hydrogen addition or carbon rejection (coking). Efficiency is limited by the formation of insoluble carbon-rich coke deposits. Heat exchangers and other refinery units must be shut down for mechanical coke removal, resulting in a significant loss of output and revenue. When a residuum is heated above the temperature at which pyrolysis occurs (340 C, 650 F), there is typically an induction period before coke formation begins (Magaril and Aksenova 1968, Wiehe 1993). To avoid fouling, refiners often stop heating a residuum before coke formation begins, using arbitrary criteria. In many cases, this heating is stopped sooner than need be, resulting in less than maximum product yield. Western Research Institute (WRI) has developed innovative Coking Index concepts (patent pending) which can be used for process control by refiners to heat residua to the threshold, but not beyond the point at which coke formation begins when petroleum residua materials are heated at pyrolysis temperatures (Schabron et al. 2001). The development of this universal predictor solves a long standing problem in petroleum refining. These Coking Indexes have great potential value in improving the efficiency of distillation processes. The Coking Indexes were found to apply to residua in a universal manner, and the theoretical basis for the indexes has been established (Schabron et al. 2001a, 2001b, 2001c). For the first time, a few simple measurements indicates how close undesired coke formation is on the coke formation induction time line. The Coking Indexes can lead to new process controls that can improve refinery distillation efficiency by several percentage points. Petroleum residua consist of an ordered continuum of solvated polar materials usually referred to as asphaltenes dispersed in a lower polarity solvent phase held together by intermediate polarity materials usually referred to as resins. The Coking Indexes focus on the amount of these intermediate polarity species since coke formation begins when these are depleted. Currently the Coking Indexes are determined by either titration or solubility measurements which must be performed in a laboratory. In the current work, various spectral, microscopic, and thermal techniques possibly leading to on-line analysis were explored for measuring the Coking Indexes.

  3. Water Efficiency Improvements at Various Environmental Protection...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Water Efficiency Improvements at Various Environmental Protection Agency Sites Water Efficiency Improvements at Various Environmental Protection Agency Sites Water Efficiency...

  4. Managing Energy Efficiency Improvement

    E-Print Network [OSTI]

    Almaguer, J.

    2006-01-01T23:59:59.000Z

    efficiency opportunities as well as promote the use of energy efficient methodologies and technologies. If, as program results suggest, 15% to 20% of the gas that is now consumed at by plant operations can be saved through efficiencies, it would save $500...

  5. Improve Your Boiler's Combustion Efficiency

    SciTech Connect (OSTI)

    Not Available

    2006-01-01T23:59:59.000Z

    This revised ITP tip sheet on boiler combustion efficiency provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  6. Improving Gas Flooding Efficiency

    SciTech Connect (OSTI)

    Reid Grigg; Robert Svec; Zheng Zeng; Alexander Mikhalin; Yi Lin; Guoqiang Yin; Solomon Ampir; Rashid Kassim

    2008-03-31T23:59:59.000Z

    This study focuses on laboratory studies with related analytical and numerical models, as well as work with operators for field tests to enhance our understanding of and capabilities for more efficient enhanced oil recovery (EOR). Much of the work has been performed at reservoir conditions. This includes a bubble chamber and several core flood apparatus developed or modified to measure interfacial tension (IFT), critical micelle concentration (CMC), foam durability, surfactant sorption at reservoir conditions, and pressure and temperature effects on foam systems.Carbon dioxide and N{sub 2} systems have been considered, under both miscible and immiscible conditions. The injection of CO2 into brine-saturated sandstone and carbonate core results in brine saturation reduction in the range of 62 to 82% brine in the tests presented in this paper. In each test, over 90% of the reduction occurred with less than 0.5 PV of CO{sub 2} injected, with very little additional brine production after 0.5 PV of CO{sub 2} injected. Adsorption of all considered surfactant is a significant problem. Most of the effect is reversible, but the amount required for foaming is large in terms of volume and cost for all considered surfactants. Some foams increase resistance to the value beyond what is practical in the reservoir. Sandstone, limestone, and dolomite core samples were tested. Dissolution of reservoir rock and/or cement, especially carbonates, under acid conditions of CO2 injection is a potential problem in CO2 injection into geological formations. Another potential change in reservoir injectivity and productivity will be the precipitation of dissolved carbonates as the brine flows and pressure decreases. The results of this report provide methods for determining surfactant sorption and can be used to aid in the determination of surfactant requirements for reservoir use in a CO{sub 2}-foam flood for mobility control. It also provides data to be used to determine rock permeability changes during CO{sub 2} flooding due to saturation changes, dissolution, and precipitation.

  7. Industrial Energy Efficiency Projects Improve Competitiveness...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industrial Energy Efficiency Projects Improve Competitiveness and Protect Jobs Industrial Energy Efficiency Projects Improve Competitiveness and Protect Jobs U.S. Department of...

  8. Water Efficiency Improvements at Various Environmental Protection...

    Broader source: Energy.gov (indexed) [DOE]

    Water Efficiency Improvements at Various Environmental Protection Agency Sites: Best Management Practices Case Study 12-LaboratoryMedical Equipment Water Efficiency Improvements...

  9. Efficiency improved turboprop. Technical memo

    SciTech Connect (OSTI)

    Gearhart, W.S.

    1982-06-10T23:59:59.000Z

    Renewed attention has been focused on the efficiency of aircraft propulsion as the cost of fuel has risen. Studies conducted by NASA (1) to obtain fuel efficient aircraft have considered relatively highly-loaded turbo-prop systems. The disc loadings of these propellers are as much as four times higher than those on present turboprop aircraft. The higher disc loadings result in greater slipstream swirl and higher energy losses. Of primary importance is the radial distribution of the energy losses across the slipstream due to the tangential and axial velocities. This study presents the results of analysis defining the various sources of energy loss resulting from a swirling slipstream downstream of a propeller. Experimental data are presented demonstrating the presence of such losses and a propeller configuration discussed which offers improved propulsive performance when relatively highly-loaded propellers are employed.

  10. Ris Energy Report 4 Efficiency improvements Introduction

    E-Print Network [OSTI]

    END ULTIMATE MEANS END-USE TRADE LINE Figure 9: The energy chain with the three levels of potential, to South Africa where the coal is mined. The further up the chain that efficiency is improved, the greaterRisø Energy Report 4 Efficiency improvements 6 Introduction Energy efficiency can be improved

  11. Anne Le Mouel, paper ID# 4-054-12 Fostering Energy Efficiency in manufacturing plants

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    economical breakthroughs in power and flow rate measurement Anne Le Mouel, EDF R&D Eco-Efficiency Cédex, FRANCE Email: anne.le-mouel@edf.fr Gilbert Schmitt, EDF R&D Eco-Efficiency & Industrial Process: gilbert-m.schmitt@edf.fr Maxime Dupont, EDF R&D Eco-Efficiency & Industrial Process Department Site des

  12. Supertruck - Improving Transportation Efficiency through Integrated...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research Supertruck - Improving Transportation Efficiency through Integrated Vehicle, Engine and Powertrain Research 2012 DOE Hydrogen and Fuel Cells Program and Vehicle...

  13. Rural Business Energy Efficiency Improvement Loan Program

    Broader source: Energy.gov [DOE]

    The Maryland Agricultural and Resource Based Industry Development Corporation (MARBIDCO) offers low interest loans for energy efficiency improvements to farms and rural businesses through the Rural...

  14. Prescription to Improve Thermoelectric Efficiency

    E-Print Network [OSTI]

    Meka, Shiv Akarsh

    2012-07-16T23:59:59.000Z

    In this work, patterns in the behavior of different classes and types of thermoelectric materials are observed, and an alchemy that could help engineer a highly efficient thermoelectric is proposed. A method based on cross-correlation of Seebeck...

  15. Improving Solar-Cell Efficiency

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinementEtching.348 270 300 219Improvements toProjectsImprovingHow to

  16. Improving Energy Efficiency of Auxiliaries

    SciTech Connect (OSTI)

    Carl T. Vuk

    2001-12-12T23:59:59.000Z

    The summaries of this report are: Economics Ultimately Dictates Direction; Electric Auxiliaries Provide Solid Benefits. The Impact on Vehicle Architecture Will be Important; Integrated Generators With Combined With Turbo Generators Can Meet the Electrical Demands of Electric Auxiliaries; Implementation Will Follow Automotive 42V Transition; Availability of Low Cost Hardware Will Slow Implementation; Industry Leadership and Cooperation Needed; Standards and Safety Protocols Will be Important. Government Can Play an Important Role in Expediting: Funding Technical Development; Incentives for Improving Fuel Economy; Developing Standards, Allowing Economy of Scale; and Providing Safety Guidelines.

  17. Design Enhancements To Improve Flare Efficiency

    E-Print Network [OSTI]

    Dooley, K. A.; McLeod, G. M.; Lorenz, M. D.

    Two flare systems used at separate units within a larger chemical complex were modified to improve overall performance and efficiency. One system was a standard enclosed ground flare; the other was a less-conventional horizontal ground flare system...

  18. Compressor & Steam Turbine Efficiency Improvements & Revamping Opportunities

    E-Print Network [OSTI]

    Hata, S.; Horiba, J.; Sicker, M.

    2011-01-01T23:59:59.000Z

    in which they operate. This energy growth requires high efficiency improvements for machine design and operation to minimize life cycle cost. This paper will focus on the mechanical drive steam turbines which power the main process equipment in the heart...

  19. General service incandescent lamp with improved efficiency

    SciTech Connect (OSTI)

    Berlec, I.

    1985-06-18T23:59:59.000Z

    A high efficiency general service incandescent lamp is disclosed. The disclosed improved general service incandescent lamp has an outer and an inner envelope. The inner envelope has a relatively small housing containing a halogen gas and a relatively high pressure efficient fill-gas and in which a low voltage filament is spatially disposed therein.

  20. Evaluating Energy Efficiency Improvements in Manufacturing Processes

    E-Print Network [OSTI]

    Boyer, Edmond

    and increasing awareness of "green" customers have brought energy efficient manufacturing on top of the agendaEvaluating Energy Efficiency Improvements in Manufacturing Processes Katharina Bunse1 , Julia Sachs kbunse@ethz.ch, sachsj@student.ethz.ch, mvodicka@ethz.ch Abstract. Global warming, rising energy prices

  1. High Performance Healthcare Buildings: A Roadmap to Improved Energy Efficiency

    E-Print Network [OSTI]

    Singer, Brett C.

    2010-01-01T23:59:59.000Z

    Roadmap to Improved Energy Efficiency iii 11-Sept-2009 ListA Roadmap to Improved Energy Efficiency 11-Sept-2009 Topic /A Roadmap to Improved Energy Efficiency 11-Sept-2009 Topic /

  2. Water Efficiency Improvements at Various U.S. Environmental Protection...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Water Efficiency Improvements at Various U.S. Environmental Protection Agency Sites Water Efficiency Improvements at Various U.S. Environmental Protection Agency Sites Water...

  3. Thermal Efficiency Improvement While Meeting Emissions of 2007...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficiency Improvement While Meeting Emissions of 2007, 2010 and Beyond Thermal Efficiency Improvement While Meeting Emissions of 2007, 2010 and Beyond 2005 Diesel Engine Emissions...

  4. Off-Highway Heavy Vehicle Diesel Efficiency Improvement and Emissions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Off-Highway Heavy Vehicle Diesel Efficiency Improvement and Emissions Reduction Off-Highway Heavy Vehicle Diesel Efficiency Improvement and Emissions Reduction 2005 Diesel Engine...

  5. Idaho Waste Treatment Facility Improves Worker Safety and Efficiency...

    Office of Environmental Management (EM)

    Idaho Waste Treatment Facility Improves Worker Safety and Efficiency, Saves Taxpayer Dollars Idaho Waste Treatment Facility Improves Worker Safety and Efficiency, Saves Taxpayer...

  6. Better Buildings Challenge is Expanding, Improving Energy Efficiency...

    Energy Savers [EERE]

    is Expanding, Improving Energy Efficiency Throughout America Better Buildings Challenge is Expanding, Improving Energy Efficiency Throughout America December 5, 2013 - 4:36pm...

  7. Erosion-Resistant Nanocoatings for Improved Energy Efficiency...

    Broader source: Energy.gov (indexed) [DOE]

    Erosion-Resistant Nanocoatings for Improved Energy Efficiency in Gas Turbine Engines Erosion-Resistant Nanocoatings for Improved Energy Efficiency in Gas Turbine Engines...

  8. University of Wisconsin-Madison Improves Fuel Efficiency in Advanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    University of Wisconsin-Madison Improves Fuel Efficiency in Advanced Diesel Engines University of Wisconsin-Madison Improves Fuel Efficiency in Advanced Diesel Engines April 15,...

  9. Catalyst for Improving the Combustion Efficiency of Petroleum...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Improving the Combustion Efficiency of Petroleum Fuels in Diesel Engines Catalyst for Improving the Combustion Efficiency of Petroleum Fuels in Diesel Engines 2005 Diesel...

  10. Future Diesel Engine Thermal Efficiency Improvement andn Emissions...

    Broader source: Energy.gov (indexed) [DOE]

    Future Diesel Engine Thermal Efficiency Improvement andn Emissions Control Technology Future Diesel Engine Thermal Efficiency Improvement andn Emissions Control Technology 2005...

  11. Center for Diesel Research Potential Efficiency Improvement

    E-Print Network [OSTI]

    Minnesota, University of

    Speed Histogram #12;Center for Diesel Research Results ­ Power Data Wasted power · Engine Hydraulic FanW Fan Power Histogram Fan Power Scatter Plot #12;Center for Diesel Research Results ­ Average AccessoryCenter for Diesel Research Potential Efficiency Improvement by Accessory Load Reduction on Hybrid

  12. AbstractAbstract Improving efficiency of thermoelectric

    E-Print Network [OSTI]

    Walker, D. Greg

    -classical transport models used to predict ZT can effectively predict thermoelectric performance of bulk materials Material PerformanceThermoelectric Material Performance 0 0.5 1 1.5 2 2.5 3 1950 1960 1970 1980 1990 2000AbstractAbstract · Improving efficiency of thermoelectric energy conversion devices is a major

  13. High Performance Healthcare Buildings: A Roadmap to Improved Energy Efficiency

    E-Print Network [OSTI]

    Singer, Brett C.

    2010-01-01T23:59:59.000Z

    operation with energy efficiency in building systems. X X Xoperation with energy efficiency in building systems. 10.3.energy efficiency improvements in healthcare buildings. A

  14. A Retrofit Tool for Improving Energy Efficiency of Commercial Buildings

    E-Print Network [OSTI]

    Levine, Mark

    2014-01-01T23:59:59.000Z

    For Energy Efficiency of Public Building -- GB 50189.communication on building energy efficiency policy in China.Improving energy efficiency in existing buildings. ASHRAE

  15. Energy efficiency improvements in Chinese compressed air systems

    E-Print Network [OSTI]

    McKane, Aimee; Li, Li; Li, Yuqi; Taranto, T.

    2008-01-01T23:59:59.000Z

    Air Systems, Paper #071 Energy efficiency improvements into increase industrial energy efficiency. As a result, morein use. Over time, energy efficiency decreases and the cost

  16. Energy-Efficiency Improvement Opportunities for the Textile Industry

    E-Print Network [OSTI]

    Hasanbeigi, Ali

    2010-01-01T23:59:59.000Z

    Finishing Stenters, ADB Energy-efficiency Support Project.After Treatment Dryer. ? Energy-efficiency Bulletin (No.40).E. and Galitsky, C. , 2004. Energy-efficiency improvement

  17. Energy-Efficiency Improvement Opportunities for the Textile Industry

    E-Print Network [OSTI]

    Hasanbeigi, Ali

    2010-01-01T23:59:59.000Z

    consumption. Improving boiler efficiency and capturingrule of thumb is that boiler efficiency can be increased byrecovery. Generally, boiler efficiency can be increased by

  18. Energy-Efficiency Improvement Opportunities for the Textile Industry

    E-Print Network [OSTI]

    Hasanbeigi, Ali

    2010-01-01T23:59:59.000Z

    efficiency improvement opportunities in electric motors in electric motors 31 When considering energy-efficiencyefficiency improvement opportunities in electric motors

  19. Idaho Chemical Processing Plant Process Efficiency improvements

    SciTech Connect (OSTI)

    Griebenow, B.

    1996-03-01T23:59:59.000Z

    In response to decreasing funding levels available to support activities at the Idaho Chemical Processing Plant (ICPP) and a desire to be cost competitive, the Department of Energy Idaho Operations Office (DOE-ID) and Lockheed Idaho Technologies Company have increased their emphasis on cost-saving measures. The ICPP Effectiveness Improvement Initiative involves many activities to improve cost effectiveness and competitiveness. This report documents the methodology and results of one of those cost cutting measures, the Process Efficiency Improvement Activity. The Process Efficiency Improvement Activity performed a systematic review of major work processes at the ICPP to increase productivity and to identify nonvalue-added requirements. A two-phase approach was selected for the activity to allow for near-term implementation of relatively easy process modifications in the first phase while obtaining long-term continuous improvement in the second phase and beyond. Phase I of the initiative included a concentrated review of processes that had a high potential for cost savings with the intent of realizing savings in Fiscal Year 1996 (FY-96.) Phase II consists of implementing long-term strategies too complex for Phase I implementation and evaluation of processes not targeted for Phase I review. The Phase II effort is targeted for realizing cost savings in FY-97 and beyond.

  20. David Foster

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phasesData Files Data Files 1 EIA Best EstimateProductionDavidDavidFoster

  1. Energy efficiency improvements in Chinese compressed airsystems

    SciTech Connect (OSTI)

    McKane, Aimee; Li, Li; Li, Yuqi; Taranto, T.

    2007-06-01T23:59:59.000Z

    Industrial compressed air systems use more than 9 percent ofall electricity used in China. Experience in China and elsewhere hasshown that these systems can be much more energy efficient when viewed asa whole system and rather than as isolated components.This paper presentsa summary and analysis of several compressed air system assessments.Through these assessments, typical compressed air management practices inChina are analyzed. Recommendations are made concerning immediate actionsthat China s enterprises can make to improve compressed air systemefficiency using best available technology and managementstrategies.

  2. Improving Vehicle Fuel Efficiency Through Tire Design, Materials...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Fuel Efficiency Through Tire Design, Materials, and Reduced Weight Improving Vehicle Fuel Efficiency Through Tire Design, Materials, and Reduced Weight 2012 DOE Hydrogen...

  3. Have You Seen Energy Efficiency Improvements in Your Neighborhood...

    Broader source: Energy.gov (indexed) [DOE]

    This week, Erin shared the results of a major energy efficiency retrofit at her local library. Efficiency improvements over several years include installing 250 solar panels on...

  4. Improving efficiency of a vehicle HVAC system with comfort modeling...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    efficiency of a vehicle HVAC system with comfort modeling, zonal design, and thermoelectric devices Improving efficiency of a vehicle HVAC system with comfort modeling, zonal...

  5. Determining benefits and costs of improved central air conditioner efficiencies

    E-Print Network [OSTI]

    Rosenquist, G.

    2010-01-01T23:59:59.000Z

    Products: Central Air Conditioners and Heat Pumps Energyof Improved Central Air Conditioner Efficiencies Authorsresidential-type central air conditioner energy-efficiency

  6. Industrial energy-efficiency-improvement program

    SciTech Connect (OSTI)

    Not Available

    1980-12-01T23:59:59.000Z

    Progress made by industry toward attaining the voluntary 1980 energy efficiency improvement targets is reported. The mandatory reporting population has been expanded from ten original industries to include ten additional non-targeted industries and all corporations using over one trillion Btu's annually in any manufacturing industry. The ten most energy intensive industries have been involved in the reporting program since the signing of the Energy Policy and Conservation Act and as industrial energy efficiency improvement overview, based primarily on information from these industries (chemicals and allied products; primary metal industry; petroleum and coal products; stone, clay, and glass products; paper and allied products; food and kindred products; fabricated metal products; transportation equipment; machinery, except electrical; and textile mill products), is presented. Reports from industries, now required to report, are included for rubber and miscellaneous plastics; electrical and electronic equipment; lumber and wood; and tobacco products. Additional data from voluntary submissions are included for American Gas Association; American Hotel and Motel Association; General Telephone and Electronics Corporation; and American Telephone and Telegraph Company. (MCW)

  7. On-Bill Financing for Energy Efficiency Improvements: A Review...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Improvements: A Review of Current Program Challenges, Opportunities, and Best Practices On-Bill Financing for Energy Efficiency Improvements: A Review of Current Program...

  8. California: TetraCell Silicon Solar Cell Improves Efficiency...

    Energy Savers [EERE]

    California: TetraCell Silicon Solar Cell Improves Efficiency, Wins R&D 100 Award California: TetraCell Silicon Solar Cell Improves Efficiency, Wins R&D 100 Award August 16, 2013 -...

  9. Notice of Intent: Deploying Solutions to Improve the Energy Efficiency...

    Broader source: Energy.gov (indexed) [DOE]

    Deploying Solutions to Improve the Energy Efficiency of U.S. Commercial Buildings (FOA-0001168) Notice of Intent: Deploying Solutions to Improve the Energy Efficiency of U.S....

  10. Improvement of Sweep Efficiency in Gasflooding

    SciTech Connect (OSTI)

    Kishore Mohanty

    2008-12-31T23:59:59.000Z

    Miscible and near-miscible gasflooding has proven to be one of the few cost effective enhance oil recovery techniques in the past twenty years. As the scope of gas flooding is being expanded to medium viscosity oils in shallow sands in Alaska and shallower reservoirs in the lower 48, there are questions about sweep efficiency in near-miscible regions. The goal of this research is to evaluate sweep efficiency of various gas flooding processes in a laboratory model and develop numerical tools to estimate their effectiveness in the field-scale. Quarter 5-spot experiments were conducted at reservoir pressure to evaluate the sweep efficiency of gas, WAG and foam floods. The quarter 5-spot model was used to model vapor extraction (VAPEX) experiments at the lab scale. A streamline-based compositional simulator and a commercial simulator (GEM) were used to model laboratory scale miscible floods and field-scale pattern floods. An equimolar mixture of NGL and lean gas is multicontact miscible with oil A at 1500 psi; ethane is a multicontact miscible solvent for oil B at pressures higher than 607 psi. WAG improves the microscopic displacement efficiency over continuous gas injection followed by waterflood in corefloods. WAG improves the oil recovery in the quarter 5-spot over the continuous gas injection followed by waterflood. As the WAG ratio increases from 1:2 to 2:1, the sweep efficiency in the 5-spot increases, from 39.6% to 65.9%. A decrease in the solvent amount lowers the oil recovery in WAG floods, but significantly higher amount of oil can be recovered with just 0.1 PV solvent injection over just waterflood. Use of a horizontal production well lowers the oil recovery over the vertical production well during WAG injection phase in this homogeneous 5-spot model. Estimated sweep efficiency decreases from 61.5% to 50.5%. In foam floods, as surfactant to gas slug size ratio increases from 1:10 to 1:1, oil recovery increases. In continuous gasflood VAPEX processes, as the distance between the injection well and production well decreases, the oil recovery and rate decreases in continuous gasflood VAPEX processes. Gravity override is observed for gas injection simulations in vertical (X-Z) cross-sections and 3-D quarter five spot patterns. Breakthrough recovery efficiency increases with the viscous-to-gravity ratio in the range of 1-100. The speed up for the streamline calculations alone is almost linear with the number of processors. The overall speed up factor is sub-linear because of the overhead time spent on the finite-difference calculation, inter-processor communication, and non-uniform processor load. Field-scale pattern simulations showed that recovery from gas and WAG floods depends on the vertical position of high permeability regions and k{sub v}/k{sub h} ratio. As the location of high permeability region moves down and k{sub v}/k{sub h} ratio decreases, oil recovery increases. There is less gravity override. The recovery from the field model is lower than that from the lab 5-spot model, but the effect of WAG ratio is similar.

  11. Improving pumping system efficiency at coal plants

    SciTech Connect (OSTI)

    Livoti, W.C.; McCandless, S.; Poltorak, R. [Baldor Electric Co. (United States)

    2009-03-15T23:59:59.000Z

    The industry must employ ultramodern technologies when building or upgrading power plant pumping systems thereby using fuels more efficiently. The article discusses the uses and efficiencies of positive displacement pumps, centrifugal pumps and multiple screw pumps. 1 ref., 4 figs.

  12. Kitchen Appliance Upgrades Improve Water Efficiency at DOD Exchange Facilities

    Broader source: Energy.gov [DOE]

    Case study details the Exchange (formerly the Army and Air Force Exchange Service), which took a leadership role in kitchen appliance upgrades to improve water efficiency by integrating water efficiency concepts into the organization's overall sustainability plan and objectives.

  13. High Performance Healthcare Buildings: A Roadmap to Improved Energy Efficiency

    E-Print Network [OSTI]

    Singer, Brett C.

    2010-01-01T23:59:59.000Z

    Efficiency 11-Sept-2009 9. Economic and Organizationaland Organizational Issues 9.1. Strategies to overcome structural challenges to energy efficiencyorganizational scheme to facilitate discussion of challenges to improving energy efficiency

  14. Improving Energy and Process Efficiencies: A Case Study

    E-Print Network [OSTI]

    Spriggs, H. D.; Smith, W. R.

    IMPROVING ENERGY AND PROCESS EFFICIENCIES A CASE STUDY H. D. Spriggs, Ph.D., President, Matrix 2000, Leesburg, VA 22075 ABSTRACT Industrial companies and their energy suppliers have an opportunity to work together in new ways... process and energy efficiency improvements. The payoff for industry is substantially reduced costs, improved process designs, increased energy efficiencies, and a reduction in emissions. The energy suppliers establish new relationship...

  15. Ames Lab 101: Improving Solar Cell Efficiency

    SciTech Connect (OSTI)

    Biswas, Rana

    2011-01-01T23:59:59.000Z

    Rana Biswas, a scientist with the Ames Laboratory, discusses his team's research in creating more efficient solar cells and working with Iowa Thin Film to produce these cells.

  16. Ames Lab 101: Improving Solar Cell Efficiency

    ScienceCinema (OSTI)

    Biswas, Rana

    2012-08-29T23:59:59.000Z

    Rana Biswas, a scientist with the Ames Laboratory, discusses his team's research in creating more efficient solar cells and working with Iowa Thin Film to produce these cells.

  17. Kitchen Appliance Upgrades Improve Water Efficiency at DOD Exchange...

    Broader source: Energy.gov (indexed) [DOE]

    Kitchen Appliance Upgrades Improve Water Efficiency at DOD Exchange Facilities Case study details the U.S. Department of Defense (DOD) Exchange (formerly the Army and Air Force...

  18. Improving Energy Efficiency by Developing Components for Distributed...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Modeling Thermoelectric (TE) HVAC Improving Energy Efficiency by Developing Components for Distributed Cooling and Heating Based on Thermal Comfort Modeling Thermoelectric (TE)...

  19. Improving Energy Efficiency by Developing Components for Distributed...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    by at least one-third. deer09yang1.pdf More Documents & Publications Improving Energy Efficiency by Developing Components for Distributed Cooling and Heating Based on Thermal...

  20. Improving Energy Efficiency by Developing Components for Distributed...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermoelectric (TE) HVAC Improving Energy Efficiency by Developing Components for Distributed Cooling and Heating Based on Thermal Comfort Modeling Thermoelectric (TE) HVAC...

  1. Improving the Efficiency of Spark Ignited, Stoichiometric Natural...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Spark Ignited, Stoichiometric Natural Gas Engines Improving the Efficiency of Spark Ignited, Stoichiometric Natural Gas Engines This work focused on using camless engine technology...

  2. Waste Heat Reduction and Recovery for Improving Furnace Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heat Reduction and Recovery for Improving Furnace Efficiency, Productivity and Emissions Performance: A BestPractices Process Heating Technical Brief Waste Heat Reduction and...

  3. Kitchen Appliance Upgrades Improve Water Efficiency at DOD Exchange...

    Broader source: Energy.gov (indexed) [DOE]

    Kitchen Appliance Upgrades Improve Water Efficiency at DOD Exchange Facilities: Best Management Practice Case Study 11: Commercial Kitchen Equipment (Brochure), Federal Energy...

  4. Petroleum Reduction Strategies to Improve Vehicle Fuel Efficiency

    Broader source: Energy.gov [DOE]

    For reducing greenhouse gas emissions, the table below describes petroleum reduction strategies to improve vehicle fuel efficiency, as well as guidance and best practices for each strategy.

  5. New Compressor Concept Improves Efficiency and Operation Range...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    design provided improved performance and efficiency over the base turbocharger deer12sun.pdf More Documents & Publications Advanced Boost System Development for Diesel HCCILTC...

  6. Efficiency Improvement of an IPMSM using Maximum Efficiency Operating Strategy

    E-Print Network [OSTI]

    Paderborn, Universität

    synchronous machines PMSM. Both current components id and iq have to be chosen dependent upon the actual components. Reference [2] investigated the optimum efficiency operation of a PMSM, which shows that the performance can be increased by field weakening. A loss minimization control of PMSM was investigated in [3

  7. Improving the Energy Efficiency of the MANTIS Kernel

    E-Print Network [OSTI]

    Sreenan, Cormac J.

    Improving the Energy Efficiency of the MANTIS Kernel Cormac Duffy1 , Utz Roedig2 , John Herbert1. The event-based TinyOS is more energy efficient than the multi-threaded MANTIS system. However, MANTIS, timeliness can be traded for energy efficiency by choosing the appropriate operating system. In this paper we

  8. CSEM WP 135 Has Restructuring Improved Operating Efficiency

    E-Print Network [OSTI]

    California at Berkeley. University of

    CSEM WP 135 Has Restructuring Improved Operating Efficiency at US Electricity Generating Plants Operating Efficiency at US Electricity Generating Plants? Kira Markiewicz UC Berkeley, Haas School the smallest efficiency gains while investor-owned utility plants in restructured environments had the largest

  9. Improving Industrial Refrigeration System Efficiency - Actual Applications

    E-Print Network [OSTI]

    White, T. L.

    1980-01-01T23:59:59.000Z

    cycle cooling during winter operation, compressor intercooling, direct refrigeration vs. brine cooling, insulation of cold piping to reduce heat gain, multiple screw compressors for improved part load operation, evaporative condensers for reduced system...

  10. Sandia National Laboratories: improving fuel efficiency

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1developmentturbine blade manufacturing the viability offuel efficiency CRF

  11. Superefficient Refrigerators: Opportunities and Challenges for Efficiency Improvement Globally

    SciTech Connect (OSTI)

    Shah, Nihar; Park, Won Young; Bojda, Nicholas; McNeil, Michael A.

    2014-08-01T23:59:59.000Z

    As an energy-intensive mainstream product, residential refrigerators present a significant opportunity to reduce electricity consumption through energy efficiency improvements. Refrigerators expend a considerable amount of electricity during normal use, typically consuming between 100 to 1,000 kWh of electricity per annum. This paper presents the results of a technical analysis done for refrigerators in support of the Super-efficient Equipment and Appliance Deployment (SEAD) initiative. Beginning from a base case representative of the average unit sold in India, we analyze efficiency improvement options and their corresponding costs to build a cost-versus-efficiency relationship. We then consider design improvement options that are known to be the most cost effective and that can improve efficiency given current design configurations. We also analyze and present additional super-efficient options, such as vacuum-insulated panels. We estimate the cost of conserved electricity for the various options, allowing flexible program design for market transformation programs toward higher efficiency. We estimate ~;;160TWh/year of energy savings are cost effective in 2030, indicating significant potential for efficiency improvement in refrigerators in SEAD economies and China.

  12. Memorandum of Understanding on Improving the Energy Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Memorandum of Understanding on Improving the Energy Efficiency of Products and Buildings between the U.S. Environmental Protection Agency and the U.S. Department of Energy, dated...

  13. Outphasing Energy Recovery Amplifier With Resistance Compression for Improved Efficiency

    E-Print Network [OSTI]

    Godoy, Philip Andrew

    We describe a new outphasing energy recovery amplifier (OPERA) which replaces the isolation resistor in the conventional matched combiner with a resistance-compressed rectifier for improved efficiency. The rectifier recovers ...

  14. Tax Deduction for Home Energy Audits and Energy Efficiency Improvements

    Broader source: Energy.gov [DOE]

    In July 2008, Missouri enacted legislation allowing homeowners to take an income tax deduction of the cost of home energy audits and associated energy efficiency improvements. The tax deduction is...

  15. Butler Rural Electric Cooperative- Energy Efficiency Improvement Loan Program

    Broader source: Energy.gov [DOE]

    Butler Rural Electric Cooperative, Inc. provides low interest loans (3.5%) for members to make energy efficiency improvements in eligible homes. There is a $15 application fee for all loans plus...

  16. How to Improve Productivity with Energy-Efficient Motors

    E-Print Network [OSTI]

    Curley, J. P.

    1983-01-01T23:59:59.000Z

    productivity is to reduce costs, particularly those which are rising faster than others such as electricity. Today's new energy efficient motors reduce the kilowatts consumed, thus reducing electric bills and improving productivity. This paper will discuss...

  17. Pee Dee Electric Cooperative- Energy Efficient Home Improvement Loan Program

    Broader source: Energy.gov [DOE]

    Pee Dee Electric Cooperative offers financing for members through the Energy Efficient Home Improvement Loan Program. Loans of up to $5,000, with repayment periods up to 72 months, can be used for...

  18. Microcomputer-based information feedback system for improving tractor efficiency

    E-Print Network [OSTI]

    Grogan, Joseph

    1985-01-01T23:59:59.000Z

    ) used a gear oontrol system based on a customized version of the Motorola 6800 microprocessor. When used with heavy duty automatic transmissions in trucks and off highway equipment, improvements were seen in fuel efficiency, performanoe, reliability... in oil prices over the past deoade sparked more interest in determining tractor efficiency and in exploring ways to improve fuel economy. During the same time period, explosive growth in the eleotronics industry has made available very compact...

  19. Application of Industrial Heat Improving energy efficiency of

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    compared with Residential Heat Pumps High energy efficiency = high coefficient of performance (COP) (eApplication of Industrial Heat Pumps Improving energy ­ efficiency of industrial processes . H.J. Laue Information Centre on Heat Pumps and Refrigeration IZW e.V. #12;2 Welcome Achema Congress 2012

  20. Efficient Materialization of Dynamic Web Data to Improve Web Performance

    E-Print Network [OSTI]

    Bouras, Christos

    Efficient Materialization of Dynamic Web Data to Improve Web Performance Christos Bouras, Agisilaos of performance, response efficiency and data consistency are among the most important ones for data intensive Web a materialization policy that may be applied to data intensive Web sites. Our research relies on the performance

  1. Energy Efficient Implementation of Parallel CMOS Multipliers with Improved Compressors

    E-Print Network [OSTI]

    California at Davis, University of

    Energy Efficient Implementation of Parallel CMOS Multipliers with Improved Compressors Dursun Baran constraints. It is shown that Non-Booth mul- tipliers start to become more energy efficient for strict delay targets. In addition, novel 3:2 and 4:2 compressors are pre- sented to save energy at the same target

  2. Audit Procedures for Improving Residential Building Energy Efficiency

    E-Print Network [OSTI]

    Efficiency April 2013 HAWAI`I NATURAL ENERGY INSTITUTE School of Ocean & Earth Science & TechnologyAudit Procedures for Improving Residential Building Energy Efficiency This report analyses in thermal envelopes. The report was submitted by HNEI to the U.S. Department of Energy Office of Electricity

  3. Costs and benefits of energy efficiency improvements in ceiling fans

    SciTech Connect (OSTI)

    Shah, Nihar; Sathaye, Nakul; Phadke, Amol; Letschert, Virginie [Lawrence Berkeley National Lab., CA (United States). Environmental Energy Technology Division] [Lawrence Berkeley National Lab., CA (United States). Environmental Energy Technology Division

    2013-10-15T23:59:59.000Z

    Ceiling fans contribute significantly to residential electricity consumption, especially in developing countries with warm climates. The paper provides analysis of costs and benefits of several options to improve the efficiency of ceiling fans to assess the global potential for electricity savings and green house gas (GHG) emission reductions. Ceiling fan efficiency can be cost-effectively improved by at least 50% using commercially available technology. If these efficiency improvements are implemented in all ceiling fans sold by 2020, 70 terawatt hours per year could be saved and 25 million metric tons of carbon dioxide equivalent (CO2-e) emissions per year could be avoided, globally. We assess how policies and programs such as standards, labels, and financial incentives can be used to accelerate the adoption of efficient ceiling fans in order to realize potential savings.

  4. Opportunities and prospects for demand-side efficiency improvements

    SciTech Connect (OSTI)

    Kuliasha, M.A.

    1993-12-31T23:59:59.000Z

    Substantial progress has been made over the last 20 years in improving energy efficiency in all sectors of the US economy. Although there remains a large potential for further efficiency gains, progress in improving energy efficiency has slowed recently. A combination of low energy prices, environmental challenges, and life-style changes have caused energy consumption to resume rising. Both new policies and technologies will be necessary to achieve cost-effective levels of energy efficiency. This paper describes some of the promising new demand-side technologies that are currently being implemented, nearing commercialization, or in advanced stages of development. The topics discussed include finding replacements for chlorofluorocarbons (CFCs), new building equipment and envelope technologies, lessons learned about conservation program implementation, and the role of utilities in promoting the efficient use of energy.

  5. Potentials and policy implications of energy and material efficiency improvement

    SciTech Connect (OSTI)

    Worrell, Ernst; Levine, Mark; Price, Lynn; Martin, Nathan; van den Broek, Richard; Block, Kornelis

    1997-01-01T23:59:59.000Z

    There is a growing awareness of the serious problems associated with the provision of sufficient energy to meet human needs and to fuel economic growth world-wide. This has pointed to the need for energy and material efficiency, which would reduce air, water and thermal pollution, as well as waste production. Increasing energy and material efficiency also have the benefits of increased employment, improved balance of imports and exports, increased security of energy supply, and adopting environmentally advantageous energy supply. A large potential exists for energy savings through energy and material efficiency improvements. Technologies are not now, nor will they be, in the foreseeable future, the limiting factors with regard to continuing energy efficiency improvements. There are serious barriers to energy efficiency improvement, including unwillingness to invest, lack of available and accessible information, economic disincentives and organizational barriers. A wide range of policy instruments, as well as innovative approaches have been tried in some countries in order to achieve the desired energy efficiency approaches. These include: regulation and guidelines; economic instruments and incentives; voluntary agreements and actions, information, education and training; and research, development and demonstration. An area that requires particular attention is that of improved international co-operation to develop policy instruments and technologies to meet the needs of developing countries. Material efficiency has not received the attention that it deserves. Consequently, there is a dearth of data on the qualities and quantities for final consumption, thus, making it difficult to formulate policies. Available data, however, suggest that there is a large potential for improved use of many materials in industrialized countries.

  6. High Efficiency Burners by Retrofit - A Simple Inexpensive Way to Improve Combustion Efficiency

    E-Print Network [OSTI]

    Rogers, W. T.

    1980-01-01T23:59:59.000Z

    Existing direct fired process heaters and steam boilers can have their efficiencies remarkably improved, and thus cut the fuel bill, by conversion from conventional type natural draft burners to high intensity, "forced draft" type burners...

  7. Electric motor systems in developing countries: Opportunities for efficiency improvement

    SciTech Connect (OSTI)

    Meyers, S.; Monahan, P.; Lewis, P.; Greenberg, S. [Lawrence Berkeley Lab., CA (United States); Nadel, S. [American Council for an Energy-Efficient Economy, Washington, DC (United States)

    1993-08-01T23:59:59.000Z

    This report presents an overview of the current status and efficiency improvement potential of industrial motor systems in developing countries. Better management of electric motor systems is of particular relevance in developing countries, where improved efficiency can lead to increased productivity and slower growth in electricity demand. Motor systems currently consume some 65--80% of the industrial electricity in developing countries. Drawing on studies from Thailand, India, Brazil, China, Pakistan, and Costa Rica, we describe potential efficiency gains in various parts of the motor system, from the electricity delivery system through the motor to the point where useful work is performed. We report evidence of a significant electricity conservation potential. Most of the efficiency improvement methods we examine are very cost-effective from a societal viewpoint, but are generally not implemented due to various barriers that deter their adoption. Drawing on experiences in North America, we discuss a range of policies to overcome these barriers, including education, training, minimum efficiency standards, motor efficiency testing protocols, technical assistance programs, and financial incentives.

  8. TV Energy Consumption Trends and Energy-Efficiency Improvement Options

    SciTech Connect (OSTI)

    Park, Won Young; Phadke, Amol; Shah, Nihar; Letschert, Virginie

    2011-07-01T23:59:59.000Z

    The SEAD initiative aims to transform the global market by increasing the penetration of highly efficient equipment and appliances. SEAD is a government initiative whose activities and projects engage the private sector to realize the large global energy savings potential from improved appliance and equipment efficiency. SEAD seeks to enable high-level global action by informing the Clean Energy Ministerial dialogue as one of the initiatives in the Global Energy Efficiency Challenge. In keeping with its goal of achieving global energy savings through efficiency, SEAD was approved as a task within the International Partnership for Energy Efficiency Cooperation (IPEEC) in January 2010. SEAD partners work together in voluntary activities to: (1) ?raise the efficiency ceiling? by pulling super-efficient appliances and equipment into the market through cooperation on measures like incentives, procurement, awards, and research and development (R&D) investments; (2) ?raise the efficiency floor? by working together to bolster national or regional policies like minimum efficiency standards; and (3) ?strengthen the efficiency foundations? of programs by coordinating technical work to support these activities. Although not all SEAD partners may decide to participate in every SEAD activity, SEAD partners have agreed to engage actively in their particular areas of interest through commitment of financing, staff, consultant experts, and other resources. In addition, all SEAD partners are committed to share information, e.g., on implementation schedules for and the technical detail of minimum efficiency standards and other efficiency programs. Information collected and created through SEAD activities will be shared among all SEAD partners and, to the extent appropriate, with the global public.As of April 2011, the governments participating in SEAD are: Australia, Brazil, Canada, the European Commission, France, Germany, India, Japan, Korea, Mexico, Russia, South Africa, Sweden, the United Arab Emirates, the United Kingdom, and the United States. More information on SEAD is available from its website at http://www.superefficient.org/.

  9. 2014-05-08 Issuance: Energy Efficiency Improvements in ANSI/ASHRAE...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    05-08 Issuance: Energy Efficiency Improvements in ANSIASHRAEIES Standard 90.1-2013; Preliminary Determination 2014-05-08 Issuance: Energy Efficiency Improvements in ANSIASHRAE...

  10. Novel Spark Plugs Improve Energy Efficiency of Compressed Natural

    E-Print Network [OSTI]

    Novel Spark Plugs Improve Energy Efficiency of Compressed Natural Gas Engines Energy Innovations use affects climate change. Vehicles operating on compressed natural gas reduce petroleum fuel use, the vast majority of compressed natural gas (CNG) engines are used in transit buses serving the public

  11. Improving efficiency of thermoelectric energy conversion devices is a major

    E-Print Network [OSTI]

    Walker, D. Greg

    Abstract · Improving efficiency of thermoelectric energy conversion devices is a major challenge Interdisciplinary Program in Material Science Thermal Physics Lab Vanderbilt University, Nashville, TN 2 S T ZT dominates over increase in Seebeck coefficient leading to poor device performance. Thermoelectric figure

  12. Proposed Renovations for Lansing Chapman Rink Energy Efficiency Improvements

    E-Print Network [OSTI]

    Aalberts, Daniel P.

    Benson 1 Proposed Renovations for Lansing Chapman Rink Energy Efficiency Improvements A Luce.3%, energy used by 21.9%, and CO2 emissions by 29.3%. The full renovation project has a net present value, it is this design that also creates unnecessary and wasteful energy use and carbon emissions. With these two

  13. Improving Energy Efficiency for Energy Harvesting Embedded Systems*

    E-Print Network [OSTI]

    Qiu, Qinru

    of solar energy. The main control knobs in these problems are the voltage of charge transfer interconnect of charge migration problem [6] is to transfer energy internally from one EES bank to another, whileImproving Energy Efficiency for Energy Harvesting Embedded Systems* Yang Ge, Yukan Zhang and Qinru

  14. Improving energy efficiency at the Phelps Dodge Hidalgo smelter

    SciTech Connect (OSTI)

    Chen, W.J.; Partelpoeg, E.H.; Davenport, W.G. (Phelps Dodge Univ. of Arizona, AZ (US))

    1988-09-01T23:59:59.000Z

    With the objective of increasing energy efficiencies in a flash furnace, an Arizona-based 500 ton-per-day oxygen plant was disassembled and relocated to the Phelps Dodge Hidalgo smelter in New Mexico. As projected by computer modeling, the expected effects of oxygen enrichment on the furnace heat balance were realized and improvements to boiler operation attained.

  15. Best Practices Implementation for Hydropower Efficiency and Utilization Improvement

    SciTech Connect (OSTI)

    Smith, Brennan T [ORNL] [ORNL; Zhang, Qin Fen [ORNL] [ORNL; March, Patrick [Hydro Performance Processes, Inc.] [Hydro Performance Processes, Inc.; Cones, Marvin [Mesa Associates, Inc.] [Mesa Associates, Inc.; Dham, Rajesh [U.S. Department of Energy] [U.S. Department of Energy; Spray, Michael [New West Technologies, LLC.] [New West Technologies, LLC.

    2012-01-01T23:59:59.000Z

    By using best practices to manage unit and plant efficiency, hydro owner/operators can achieve significant improvements in overall plant performance, resulting in increased generation and profitability and, frequently, reduced maintenance costs. The Hydropower Advancement Project (HAP) was initiated by the Wind and Hydropower Technologies Program within the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy to develop and implement a systematic process with standard methodology, based on the best practices of operations, maintenance and upgrades; to identify the improvement opportunities at existing hydropower facilities; and to predict and trend the overall condition and improvement opportunity within the U.S. hydropower fleet. The HAP facility assessment includes both quantitative condition ratings and data-based performance analyses. However, this paper, as an overview document for the HAP, addresses the general concepts, project scope and objectives, best practices for unit and plant efficiency, and process and methodology for best practices implementation for hydropower efficiency and utilization improvement.

  16. Improved Efficiency of Oil Well Drilling through Case Based Reasoning

    E-Print Network [OSTI]

    Aamodt, Agnar

    to give the operator valuable advise on how to go about solving the new case. Introduction Drilling of oil1 Improved Efficiency of Oil Well Drilling through Case Based Reasoning Paal Skalle Norwegian University of Science and Technology, Dept. of Petroleum Technology, N-7491, Trondheim, Norway (pskalle

  17. Assessment of Energy Efficiency Improvement in the United States Petroleum Refining Industry

    E-Print Network [OSTI]

    Morrow III, William R.

    2014-01-01T23:59:59.000Z

    offsites (e.g. , boiler efficiency improvements) have beenEfficiencyMeasures/ Technologies ReduceStand?ByBoilerEfficiencyMeasures/ Technologies ReduceStand?ByBoiler

  18. Efficient airflow design for cleanrooms improves business bottom lines

    SciTech Connect (OSTI)

    Xu, Tengfang

    2003-01-05T23:59:59.000Z

    Based on a review of airflow design factors and in-situ energy measurements in ISO Cleanliness Class-5 cleanrooms, this paper addresses the importance of energy efficiency in airflow design and opportunities of cost savings in cleanroom practices. The paper discusses design factors that can long lastingly affect cleanroom system performance, and demonstrates benefits of energy efficient cleanroom design from viewpoints of environmental control and business operations. The paper suggests that a high performance cleanroom should not only be effective in contamination control, but also be efficient in energy and environmental performance. The paper also suggests that energy efficient design practice stands to bring in immediate capital cost savings and operation cost savings, and should be regarded by management as a strategy to improve business bottom lines.

  19. Strategies to improve energy efficiency in semiconductor manufacturing

    SciTech Connect (OSTI)

    Robertson, C.; Stein, J; Harris, J.; Cherniack, M.

    1997-07-01T23:59:59.000Z

    The global semiconductor industry is growing at an astounding rate. In the next few years, the industry is expected to invest some $169 billion to build more than 36 million square feet of clean room floor space. Electric loads in these new plants are expected to total more than 5,000 MW and 40,000 GWH per year. This paper summarizes the results of studies to identify opportunities for improved energy efficiency in the semiconductor industry. The genesis of this work came about as the authors observed the rapid growth of the semiconductor industry in the Pacific Northwest. Industry observers report that some $20 billion in new facilities could be build in the Northwest in the nest few years, with a combined electric load in excess of 500 to 600 MW. The research results reported in this paper have been supported in part by the Bonneville Power Administration, the Northwest Power Planning Council, the Oregon Office of Energy, New England Electric System and the Conservation Law Foundation of New England. With their support the authors interviewed numerous industry participants, reviewed key literature, and met extensively with industry engineering firms. manufacturers, vendors and suppliers of manufacturing equipment and materials, and others with interests in this industry. Significant opportunities to improve energy efficiency in the semiconductor industry have been reported to us; perhaps 50 percent or greater aggregate improvement appears possible. Equally significant market barriers constrain the industry from achieving these savings. Yet, because of his industry's concentration, competitiveness, and existing research consortia such as SEMATECH, the authors believe the substantial market barriers to energy efficiency can be addressed with carefully formulated strategies to demonstrate, document and communicate the business and technical case for advanced energy efficiency, including potential benefits in finance, manufacturing and corporate environmental performance. This paper describes how the industry plans research and development investments, examines energy use intensities, summarizes key market barriers which constrain energy efficient design, identifies interests in the industry that may be changing energy efficiency perceptions, lists activities to move energy efficiency to a higher priority, gives examples of energy efficiency opportunities, and reviews activities planned by a coalition of Northwest interests to accelerate the adoption of energy efficient design strategies.

  20. Increase of unit efficiency by improved waste heat recovery

    SciTech Connect (OSTI)

    Bauer, G.; Lankes, F.

    1998-07-01T23:59:59.000Z

    For coal-fired power plants with flue gas desulfurization by wet scrubbing and desulfurized exhaust gas discharge via cooling tower, a further improvement of new power plant efficiency is possible by exhaust gas heat recovery. The waste heat of exhaust gas is extracted in a flue gas cooler before the wet scrubber and recovered for combustion air and/or feedwater heating by either direct or indirect coupling of heat transfer. Different process configurations for heat recovery system are described and evaluated with regard to net unit improvement. For unite firing bituminous coal an increase of net unit efficiency of 0.25 to 0.7 percentage points and for lignite 0.7 to 1.6 percentage points can be realized depending on the process configurations of the heat recovery systems.

  1. Steam Partnerships: Case Study of Improved Energy Efficiency

    E-Print Network [OSTI]

    Calogero, M. V.; Hess, R. E.; Leigh, N.

    Steam Partnerships: Case Study of Improved Energy Efficiency Michael V. Calogero, P.E., CEM Robert E. Hess Novi Leigh Director, Northeast Operations Sr. Energy Systems Engineer Energy Systems Engineer Armstrong Service, Inc ABSTRACT Effective.... 1998-2001 operating data from client's laundry processing facility. 3. Turner, Wayne C., Energy Management Handbook, 2 nd edition, 1993. 4. Armstrong International, Inc., Steam Conservation Guidelines for Condensate Drainage, Handbook N-1 01, 1997...

  2. Energy-Efficiency Improvement Opportunities for the Textile Industry

    SciTech Connect (OSTI)

    China Energy Group; Hasanbeigi, Ali

    2010-09-29T23:59:59.000Z

    The textile industry is one of the most complicated manufacturing industries because it is a fragmented and heterogeneous sector dominated by small and medium enterprises (SMEs). Energy is one of the main cost factors in the textile industry. Especially in times of high energy price volatility, improving energy efficiency should be a primary concern for textile plants. There are various energy-efficiency opportunities that exist in every textile plant, many of which are cost-effective. However, even cost-effective options often are not implemented in textile plants mostly because of limited information on how to implement energy-efficiency measures, especially given the fact that a majority of textile plants are categorized as SMEs and hence they have limited resources to acquire this information. Know-how on energy-efficiency technologies and practices should, therefore, be prepared and disseminated to textile plants. This guidebook provides information on energy-efficiency technologies and measures applicable to the textile industry. The guidebook includes case studies from textile plants around the world and includes energy savings and cost information when available. First, the guidebook gives a brief overview of the textile industry around the world, with an explanation of major textile processes. An analysis of the type and the share of energy used in different textile processes is also included in the guidebook. Subsequently, energy-efficiency improvement opportunities available within some of the major textile sub-sectors are given with a brief explanation of each measure. The conclusion includes a short section dedicated to highlighting a few emerging technologies in the textile industry as well as the potential for the use of renewable energy in the textile industry.

  3. Improving Vehicle Efficiency, Reducing Dependence on Foreign Oil (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-03-01T23:59:59.000Z

    This fact sheet provides an overview of the U.S. Department of Energy's Vehicle Technologies Program. Today, the United States spends about $400 billion each year on imported oil. To realize a secure energy future, America must break its dependence on imported oil and its volatile costs. The transportation sector accounts for about 70% of U.S. oil demand and holds tremendous opportunity to increase America's energy security by reducing oil consumption. That's why the U.S. Department of Energy (DOE) conducts research and development (R and D) on vehicle technologies which can stem America's dependence on oil, strengthen the economy, and protect the environment. Hybrid-electric and plug-in hybrid-electric vehicles can significantly improve fuel economy, displacing petroleum. Researchers are making batteries more affordable and recyclable, while enhancing battery range, performance, and life. This research supports President Obama's goal of putting 1 million electric vehicles on the road by 2015. The program is also working with businesses to develop domestic battery and electric-drive component plants to improve America's economic competitiveness globally. The program facilitates deployment of alternative fuels (ethanol, biodiesel, hydrogen, electricity, propane, and natural gas) and fuel infrastructures by partnering with state and local governments, universities, and industry. Reducing vehicle weight directly improves vehicle efficiency and fuel economy, and can potentially reduce vehicle operating costs. Cost-effective, lightweight, high-strength materials can significantly reduce vehicle weight without compromising safety. Improved combustion technologies and optimized fuel systems can improve near-and mid-term fuel economy by 25% for passenger vehicles and 20% for commercial vehicles by 2015, compared to 2009 vehicles. Reducing the use of oil-based fuels and lubricants in vehicles has more potential to improve the nation's energy security than any other action; even a 1% improvement in vehicle fuel efficiency would save consumers more than $4 billion annually.

  4. Condensing economizers for thermal efficiency improvements and emissions control

    SciTech Connect (OSTI)

    Heaphy, J.P.; Carbonara, J. [Consolidated Edison Co. of New York, Inc., New York, NY (United States); Litzke, W.; Butcher, T.A. [Brookhaven National Lab., Upton, NY (United States)

    1993-12-31T23:59:59.000Z

    Flue gas condensing economizers improve the thermal efficiency of boilers by recovering sensible heat and water vapor latent heat from flue gas exhaust. In addition to improving thermal efficiency, condensing economizers also have the potential to act as control devices for emissions of particulates, SO{sub x}, and air toxics. Both Consolidated Edison of New York and Brookhaven National LaborAtory are currently working on condensing economizer technology with an emphasis on developing their potential for emissions control. Con Edison is currently conducting a condensing economizer demonstration at their oil-fired 74th Street Station in New York. Since installing this equipment in February of 1992 a heat rate improvement of 800 Btu/kWh has been seen. At another location, Ravenswood Station, a two stage condensing economizer has been installed in a pilot test. In this advanced configuration -the ``Integrated Flue Gas Treatment or IFGT system- two heat exchanger sections are installed and sprays of water with and without SO{sub 2} sorbents are included. Detailed studies of the removal of particulates, SO{sub 2}, SO{sub 3}, and selected air toxics have been done for a variety of operating conditions. Removal efficiencies for SO{sub 2} have been over 98% and for SO{sub 3} over 65%. Brookhaven National Laboratory`s studies involve predicting and enhancing particulate capture in condensing economizers with an emphasis on small, coal-fired applications. This work is funded by the Pittsburgh Energy Technology Center of the Department of Energy. Flyash capture efficiencies as high as 97% have been achieved to date with a single stage economizer.

  5. Energy Efficiency Improvement in the Petroleum RefiningIndustry

    SciTech Connect (OSTI)

    Worrell, Ernst; Galitsky, Christina

    2005-05-01T23:59:59.000Z

    Information has proven to be an important barrier inindustrial energy efficiency improvement. Voluntary government programsaim to assist industry to improve energy efficiency by supplyinginformation on opportunities. ENERGY STAR(R) supports the development ofstrong strategic corporate energy management programs, by providingenergy management information tools and strategies. This paper summarizesENERGY STAR research conducted to develop an Energy Guide for thePetroleum Refining industry. Petroleum refining in the United States isthe largest in the world, providing inputs to virtually every economicsector, including the transport sector and the chemical industry.Refineries spend typically 50 percent of the cash operating costs (e.g.,excluding capital costs and depreciation) on energy, making energy amajor cost factor and also an important opportunity for cost reduction.The petroleum refining industry consumes about 3.1 Quads of primaryenergy, making it the single largest industrial energy user in the UnitedStates. Typically, refineries can economically improve energy efficiencyby 20 percent. The findings suggest that given available resources andtechnology, there are substantial opportunities to reduce energyconsumption cost-effectively in the petroleum refining industry whilemaintaining the quality of the products manufactured.

  6. IMPROVING CO2 EFFICIENCY FOR RECOVERING OIL IN HETEROGENEOUS RESERVOIRS

    SciTech Connect (OSTI)

    Reid B. Grigg; Robert K. Svec; Zheng-Wen Zeng; Liu Yi; Baojun Bai

    2003-05-01T23:59:59.000Z

    A three-year contract for the project, DOE Contract No. DE-FG26-01BC15364, ''Improving CO{sub 2} Efficiency for Recovering Oil in Heterogeneous Reservoirs,'' was awarded and started on September 28, 2001. This project examines three major areas in which CO2 flooding can be improved: fluid and matrix interactions, conformance control/sweep efficiency, and reservoir simulation for improved oil recovery. This report discusses the activity during the six-month period covering October 1, 2002 through March 31, 2003 that covers the first and second fiscal quarters of the project's second year. During these two quarters of the project we have been working in several areas: reservoir fluid/rock interactions and their relationships to changing injectivity, and surfactant adsorption on quarried core and pure component granules, foam stability, and high flow rate effects. We also had a very productive project review in Midland, Texas. A paper on CO{sub 2}-brine-reservoir rock interaction was presented and included in the proceedings of the SPE International Symposium on Oilfield Chemistry, Houston, 5-8 February, 2003. Papers have been accepted for the Second Annual Conference on Carbon Sequestration in Alexandria, VA in May, the Society of Core Analysis meeting in Pau, France in September, and two papers for the SPE Annual Meeting in Denver, CO in October.

  7. Improving EM&V for Energy Efficiency Programs (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-07-01T23:59:59.000Z

    This fact sheet describes the objectives of the U.S. Department of Energy Uniform Methods Project to bring consistency to energy savings calculations in U.S. energy efficiency programs. The U.S. Department of Energy (DOE) is developing a framework and a set of protocols for determining gross energy savings from energy efficiency measures and programs. The protocols represent a refinement of the body of knowledge supporting energy efficiency evaluation, measurement, and verification (EM&V) activities. They have been written by technical experts within the field and reviewed by industry experts. Current EM&V practice allows for multiple methods for calculating energy savings. These methods were developed to meet the needs of energy efficiency program administrators and regulators. Although they served their original objectives well, they have resulted in inconsistent and incomparable savings results - even for identical measures. The goal of the Uniform Methods Project is to strengthen the credibility of energy savings determinations by improving EM&V, increasing the consistency and transparency of how energy savings are determined.

  8. USING SEQUENCING TO IMPROVE OPERATIONAL EFFICIENCY AND RELIABILITY

    SciTech Connect (OSTI)

    D OTTAVIO,T.; NIEDZIELA, J.

    2007-10-15T23:59:59.000Z

    Operation of an accelerator requires the efficient and reproducible execution of many different types of procedures. Some procedures, like beam acceleration, magnet quench recovery, and species switching can be quite complex. To improve accelerator reliability and efficiency, automated execution of procedures is required. Creation of a single robust sequencing application permits the streamlining of this process and offers many benefits in sequence creation, editing, and control. In this paper, we present key features of a sequencer application commissioned at the Collider-Accelerator Department of Brookhaven National Laboratory during the 2007 run. Included is a categorization of the different types of sequences in use, a discussion of the features considered desirable in a good sequencer, and a description of the tools created to aid in sequence construction and diagnosis. Finally, highlights from our operational experience are presented, with emphasis on Operations control of the sequencer, and the alignment of sequence construction with existing operational paradigms.

  9. Technologies and Policies to Improve Energy Efficiency in Industry

    SciTech Connect (OSTI)

    Price, Lynn; Price, Lynn

    2008-03-01T23:59:59.000Z

    The industrial sector consumes nearly 40% of annual global primary energy use and is responsible for a similar share of global energy-related carbon dioxide (CO2) emissions. Many studies and actual experience indicate that there is considerable potential to reduce the amount of energy used to manufacture most commodities, concurrently reducing CO2 emissions. With the support of strong policies and programs, energy-efficient technologies and measures can be implemented that will reduce global CO2 emissions. A number of countries, including the Netherlands, the UK, and China, have experience implementing aggressive programs to improve energy efficiency and reduce related CO2 emissions from industry. Even so, there is no silver bullet and all options must be pursued if greenhouse gas emissions are to be constrained to the level required to avoid significant negative impacts from global climate change.

  10. Improving the Efficient of Ernie Turner Center. Final Progress Report

    SciTech Connect (OSTI)

    Fredeen, Amy

    2011-03-21T23:59:59.000Z

    The objective of this project was to complete the specifications and drawings for a variable speed kitchen exhaust system and the boiler heating system which when implemented will improve the heating efficiency of the building. The design work was focused in two key areas: kitchen ventilation and heating for the Ernie Turner Center building (ETC). RSA completed design work and issued a set of 100% drawings. RSA also worked with a cost estimator to put together a detailed cost estimate for the project. The design components are summarized.

  11. Efficient incorporation of silver to improve superconducting fibers

    DOE Patents [OSTI]

    Gleixner, Richard A. (North Canton, OH); LaCount, Dale F. (Alliance, OH); Finnemore, Douglas K. (Ames, IA)

    1994-04-26T23:59:59.000Z

    An improved method for the efficient incorporation of a metal such as silver in a superconducting material includes blending the metal with a high temperature superconductor or precursor powder and consolidating the same into pellets. The pellets are charged directly into a heating assembly where it is melted and heated sufficiently to a uniform temperature prior to fiberization. Droplets of the melted blend fall through a collar into a nozzle where they are subjected to a high velocity gas to break the melted material into ligaments which solidify into improved flexible fibers having the metal homogeneously dis This invention was made with Government support under a contract with the Department of Energy (DOE) and Ames Laboratory, Contract No. SC-91-225, our reference No. CRD-1272. The Government has certain rights in this invention.

  12. Energy efficiency improvement and cost saving opportunities forpetroleum refineries

    SciTech Connect (OSTI)

    Worrell, Ernst; Galitsky, Christina

    2005-02-15T23:59:59.000Z

    The petroleum refining industry in the United States is the largest in the world, providing inputs to virtually any economic sector,including the transport sector and the chemical industry. The industry operates 146 refineries (as of January 2004) around the country,employing over 65,000 employees. The refining industry produces a mix of products with a total value exceeding $151 billion. Refineries spend typically 50 percent of cash operating costs (i.e., excluding capital costs and depreciation) on energy, making energy a major cost factor and also an important opportunity for cost reduction. Energy use is also a major source of emissions in the refinery industry making energy efficiency improvement an attractive opportunity to reduce emissions and operating costs. Voluntary government programs aim to assist industry to improve competitiveness through increased energy efficiency and reduced environmental impact. ENERGY STAR (R), a voluntary program managed by the U.S. Environmental Protection Agency, stresses the need for strong and strategic corporate energy management programs. ENERGY STAR provides energy management tools and strategies for successful corporate energy management programs. This Energy Guide describes research conducted to support ENERGY STAR and its work with the petroleum refining industry.This research provides information on potential energy efficiency opportunities for petroleum refineries. This Energy Guide introduces energy efficiency opportunities available for petroleum refineries. It begins with descriptions of the trends, structure, and production of the refining industry and the energy used in the refining and conversion processes. Specific energy savings for each energy efficiency measure based on case studies of plants and references to technical literature are provided. If available, typical payback periods are also listed. The Energy Guide draws upon the experiences with energy efficiency measures of petroleum refineries worldwide. The findings suggest that given available resources and technology, there are opportunities to reduce energy consumption cost-effectively in the petroleum refining industry while maintaining the quality of the products manufactured. Further research on the economics of the measures, as well as the applicability of these to individual refineries, is needed to assess the feasibility of implementation of selected technologies at individual plants.

  13. Energy Efficiency Improvement and Cost Saving Oportunities for the Concrete Industry

    E-Print Network [OSTI]

    Kermeli, Katerina

    2013-01-01T23:59:59.000Z

    are realized when the boiler efficiency is improved, and the43 5.6.1 Boiler energy efficiencysystems. 5.6.1 Boiler energy efficiency measures The boiler

  14. High Performance Healthcare Buildings: A Roadmap to Improved Energy Efficiency

    E-Print Network [OSTI]

    Singer, Brett C.

    2010-01-01T23:59:59.000Z

    consensus on energy efficient designs by climate and inestimates for an energy efficient alternative design can behighly energy efficient hospitals while the design community

  15. Energy Efficiency Improvement Opportunities for the Cement Industry

    E-Print Network [OSTI]

    Worrell, Ernst

    2008-01-01T23:59:59.000Z

    Lime Institute. 2001. Energy Efficiency Opportunity Guide inIndustry, Office of Energy Efficiency, Natural Resourcesof a Cement Kiln, Energy Efficiency Demonstration Scheme,

  16. Determining benefits and costs of improved central air conditioner efficiencies

    E-Print Network [OSTI]

    Rosenquist, G.

    2010-01-01T23:59:59.000Z

    Engineers, Inc. , Energy Efficient Design of New BuildingsStandard 90.1, Energy Efficient Design of New Buildings

  17. Improving Services, Effectiveness, and Efficiency at The University of North Carolina at Greensboro

    E-Print Network [OSTI]

    Saidak, Filip

    1 Improving Services, Effectiveness, and Efficiency at The University of North Carolina of people across the campus) #12;2 Improving Services, Effectiveness, and Efficiency at UNCG Table ......................................................................................................................... 28 C. Organizational Structure

  18. Improving Energy Efficiency of Compressed Air System Based on System Audit

    E-Print Network [OSTI]

    Shanghai, Hongbo Qin; McKane, Aimee

    2008-01-01T23:59:59.000Z

    plan, formulate energy efficiency goals and adopt energyGO-102004-1926 [3] Energy Efficiency and Market Potential ofImproving Energy Efficiency of Compressed Air System Based

  19. Improving Energy Efficiency of GPU based General-Purpose Scientific Computing through

    E-Print Network [OSTI]

    Deng, Zhigang

    Improving Energy Efficiency of GPU based General-Purpose Scientific Computing through Automated challenge. In this paper, we propose a novel framework to improve the energy efficiency of GPU-based General configurations to improve the energy efficiency of any given GPGPU program. Through preliminary empirical

  20. Improving the energy efficiency of refrigerators in India

    SciTech Connect (OSTI)

    Sand, J.R.; Vineyard, E.A. [Oak Ridge National Lab., TN (United States); Bohman, R.H. [Consulting Engineer, Cedar Rapids, IA (United States)

    1995-04-01T23:59:59.000Z

    Five state-of-the-art, production refrigerators from different manufacturers in India were subjected to a variety of appliance rating and performance evaluation test procedures in an engineering laboratory. Cabinet heat loss, compressor calorimeter, high-ambient pull-down, and closed-door energy consumption tests were performed on each unit to assess the current status of commercially available Indian refrigerators and refrigerator component efficiencies. Daily energy consumption tests were performed at nominal line voltages and at 85% and 115% of nominal voltage to assess the effect of grid voltage variations. These test results were also used to indicate opportunities for effective improvements in energy efficiency. A widely distributed ``generic`` computer model capable of simulating single-door refrigerators with a small interior freezer section was used to estimate cabinet heat loss rates and closed door energy consumption values from basic cabinet and refrigeration circuit inputs. This work helped verify the model`s accuracy and potential value as a tool for evaluating the energy impact of proposed design options. Significant differences ranging from 30 to 90% were seen in the measured performance criterion for these ``comparable`` refrigerators suggesting opportunities for improvements in individual product designs. Modeled cabinet heat loadings differed from experimentally extrapolated values in a range from 2--29%, and daily energy consumption values estimated by the model differed from laboratory data by as little as 3% or as much as 25%, which indicates that refinement of the model may be needed for this single-door refrigerator type. Additional comparisons of experimentally measured performance criteria such as % compressor run times and compressor cycling rates to modeled results are given. The computer model is used to evaluate the energy saving impact of several modest changes to the basic Indian refrigerator design.

  1. Energy-Efficiency Improvement Opportunities for the Textile Industry

    E-Print Network [OSTI]

    Hasanbeigi, Ali

    2010-01-01T23:59:59.000Z

    A. T. de Almeida, 2002. Energy- efficient Motor Systems: Ain the current age, as energy-efficient technologies oftenCouncil for an Energy-Efficient Economy, Washington, D.C.

  2. TV Energy Consumption Trends and Energy-Efficiency Improvement Options

    E-Print Network [OSTI]

    Park, Won Young

    2011-01-01T23:59:59.000Z

    and Low Power Mode Energy Consumption, Energy Efficiency inEnergy Consumption ..26 3.1.3. 3D TV Energy Consumption and Efficiency

  3. Case Study: Opportunities to Improve Energy Efficiency in Three...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Energy Efficiency Opportunities in Federal High Performance Computing Data Centers Case Study: Innovative Energy Efficiency Approaches in NOAA's...

  4. Fact Sheet: Improving Energy Efficiency for Server Rooms and Closets

    E-Print Network [OSTI]

    Cheung, Hoi Ying Iris

    2014-01-01T23:59:59.000Z

    energy-efficiency awareness classes offered by utility companies, ASHRAE, and other efficiency advocates, to take full advantage of best practices

  5. COOLING FAN AND SYSTEM PERFORMANCE AND EFFICIENCY IMPROVEMENTS

    SciTech Connect (OSTI)

    Ronald Dupree

    2005-07-31T23:59:59.000Z

    Upcoming emissions regulations (Tiers 3, 4a and 4b) are imposing significantly higher heat loads on the cooling system than lesser regulated machines. This work was a suite of tasks aimed at reducing the parasitic losses of the cooling system, or improving the design process through six distinct tasks: 1. Develop an axial fan that will provide more airflow, with less input power and less noise. The initial plan was to use Genetic Algorithms to do an automated fan design, incorporating forward sweep for low noise. First and second generation concepts could not meet either performance or sound goals. An experienced turbomachinery designer, using a specialized CFD analysis program has taken over the design and has been able to demonstrate a 5% flow improvement (vs 10% goal) and 10% efficiency improvement (vs 10% goal) using blade twist only. 2. Fan shroud developments, using an 'aeroshroud' concept developed at Michigan State University. Performance testing at Michigan State University showed the design is capable of meeting the goal of a 10% increase in flow, but over a very narrow operating range of fan performance. The goal of 10% increase in fan efficiency was not met. Fan noise was reduced from 0 to 2dB, vs. a goal of 5dB at constant airflow. The narrow range of fan operating conditions affected by the aeroshroud makes this concept unattractive for further development at this time 3. Improved axial fan system modeling is needed to accommodate the numbers of cooling systems to be redesigned to meet lower emissions requirements. A CFD fan system modeling guide has been completed and transferred to design engineers. Current, uncontrolled modeling practices produce flow estimates in some cases within 5% of measured values, and in some cases within 25% of measured values. The techniques in the modeling guide reduced variability to the goal of + 5% for the case under study. 4. Demonstrate the performance and design versatility of a high performance fan. A 'swept blade mixed flow' fan was rapid prototyped from cast aluminum for a performance demonstration on a small construction machine. The fan was mounted directly in place of the conventional fan (relatively close to the engine). The goal was to provide equal airflow at constant fan speed, with 75% of the input power and 5 dB quieter than the conventional fan. The result was a significant loss in flow with the prototype due to its sensitivity to downstream blockage. This sensitivity to downstream blockage affects flow, efficiency, and noise all negatively, and further development was terminated. 5. Develop a high efficiency variable speed fan drive to replace existing slipping clutch style fan drives. The goal for this task was to provide a continuously variable speed fan drive with an efficiency of 95%+ at max speed, and losses no greater than at max speed as the fan speed would vary throughout its entire speed range. The process developed to quantify the fuel savings potential of a variable speed fan drive has produced a simple tool to predict the fuel savings of a variable speed drive, and has sparked significant interest in the use of variable speed fan drive for Tier 3 emissions compliant machines. The proposed dual ratio slipping clutch variable speed fan drive can provide a more efficient system than a conventional single ratio slipping clutch fan drive, but could not meet the established performance goals of this task, so this task was halted in a gate review prior to the start of detailed design. 6. Develop a cooling system air filtration device to allow the use of automotive style high performance heat exchangers currently in off road machines. The goal of this task was to provide a radiator air filtration system that could allow high fin density, louvered radiators to operate in a find dust application with the same resistance to fouling as a current production off-road radiator design. Initial sensitivity testing demonstrated that fan speed has a significant impact on the fouling of radiator cores due to fine dusts, so machines equipped with continuously variabl

  6. IMPROVING CO2 EFFICIENCY FOR RECOVERING OIL IN HETEROGENEOUS RESERVOIRS

    SciTech Connect (OSTI)

    Reid B. Grigg; Robert K. Svec

    2002-12-20T23:59:59.000Z

    This document is the First Annual Report for the U.S. Department of Energy under contract No., a three-year contract entitled: ''Improving CO{sub 2} Efficiency for Recovering Oil in Heterogeneous Reservoirs.'' The research improved our knowledge and understanding of CO{sub 2} flooding and includes work in the areas of injectivity and mobility control. The bulk of this work has been performed by the New Mexico Petroleum Recovery Research Center, a research division of New Mexico Institute of Mining and Technology. This report covers the reporting period of September 28, 2001 and September 27, 2002. Injectivity continues to be a concern to the industry. During this period we have contacted most of the CO{sub 2} operators in the Permian Basin and talked again about their problems in this area. This report has a summary of what we found. It is a given that carbonate mineral dissolution and deposition occur in a formation in geologic time and are expected to some degree in carbon dioxide (CO{sub 2}) floods. Water-alternating-gas (WAG) core flood experiments conducted on limestone and dolomite core plugs confirm that these processes can occur over relatively short time periods (hours to days) and in close proximity to each other. Results from laboratory CO{sub 2}-brine flow experiments performed in rock core were used to calibrate a reactive transport simulator. The calibrated model is being used to estimate in situ effects of a range of possible sequestration options in depleted oil/gas reservoirs. The code applied in this study is a combination of the well known TOUGH2 simulator, for coupled groundwater/brine and heat flow, with the chemistry code TRANS for chemically reactive transport. Variability in response among rock types suggests that CO{sub 2} injection will induce ranges of transient and spatially dependent changes in intrinsic rock permeability and porosity. Determining the effect of matrix changes on CO{sub 2} mobility is crucial in evaluating the efficacy and potential environmental implications of storing CO{sub 2} in the subsurface. Chemical cost reductions are identified that are derived from the synergistic effects of cosurfactant systems using a good foaming agent and a less expensive poor foaming agent. The required good foaming agent is reduced by at least 75%. Also the effect on injectivity is reduced by as much as 50% using the cosurfactant system, compared to a previously used surfactant system. Mobility control of injected CO{sub 2} for improved oil recovery can be achieved with significant reduction in the chemical cost of SAG, improved injectivity of SAG, and improved economics of CO{sub 2} injection project when compared to reported systems. Our past work has identified a number of mobility control agents to use for CO{sub 2}-foam flooding. In particular the combination of the good foaming agent CD 1045 and a sacrificial agent and cosurfactant lignosulfonate. This work scrutinizes the methods that we are using to determine the efficiency of the sacrificial agents and cosurfactant systems. These have required concentration determinations and reusing core samples. Here, we report some of the problems that have been found and some interesting effects that must be considered.

  7. Potentials and policy implications of energy and material efficiency improvement

    E-Print Network [OSTI]

    Worrell, Ernst; Levine, Mark; Price, Lynn; Martin, Nathan; van den Broek, Richard; Block, Kornelis

    1997-01-01T23:59:59.000Z

    energy efficiency - Initial results," Ministry of Economic Affairs, The Hague, The Netherlands. Modern Plastics (

  8. Energy-Efficiency Improvement Opportunities for the Textile Industry

    E-Print Network [OSTI]

    Hasanbeigi, Ali

    2010-01-01T23:59:59.000Z

    Cold Storage Facilities. ? Proceedings of the 2005 ACEEE Summer Study on Energy efficiency in Industry,

  9. Microwave-Assisted Ignition for Improved Internal Combustion Engine Efficiency

    E-Print Network [OSTI]

    DeFilippo, Anthony Cesar

    2013-01-01T23:59:59.000Z

    internal combustion engine applications. Advanced engines can achieve higher efficiencies and reduced emissions

  10. CERAMIC MEMBRANE ENABLING TECHNOLOGY FOR IMPROVED IGCC EFFICIENCY

    SciTech Connect (OSTI)

    Ravi Prasad

    2000-04-01T23:59:59.000Z

    The objective of this program is to conduct a technology development program to advance the state-of-the-art in ceramic Oxygen Transport Membranes (OTM) to the level required to produce step change improvements in process economics, efficiency, and environmental benefits for commercial IGCC systems and other applications. The IGCC program is focused on addressing key issues in materials, processing, manufacturing, engineering and system development that will make the OTM a commercial reality. The objective of the OTM materials development task is to identify a suitable material that can be formed into a thin film to produce the target oxygen flux. This requires that the material have an adequate permeation rate, and thermo-mechanical and thermo-chemical properties such that the material is able to be supported on the desired substrate and sufficient mechanical strength to survive the stresses involved in operation. The objective of the composite OTM development task is to develop the architecture and fabrication techniques necessary to construct stable, high performance, thin film OTMs supported on suitable porous, load bearing substrates. The objective of the process development task of this program to demonstrate the program objectives on a single OTM tube under test conditions simulating those of the optimum process cycle for the power plant. Good progress has been made towards achieving the DOE-IGCC program objectives. Two promising candidates for OTM materials have been identified and extensive characterization will continue. New compositions are being produced and tested which will determine if the material can be further improved in terms of flux, thermo-mechanical and thermo-chemical properties. Process protocols for the composite OTM development of high quality films on porous supports continues to be optimized. Dense and uniform PSO1 films were successfully applied on porous disc and tubular substrates with good bonding between the films and substrates, and no damage to the substrates or films.

  11. IMPROVING CO2 EFFICIENCY FOR RECOVERING OIL IN HETEROGENEOUS RESERVOIRS

    SciTech Connect (OSTI)

    Reid B. Grigg

    2003-10-31T23:59:59.000Z

    The second annual report of ''Improving CO{sub 2} Efficiency for Recovery Oil in Heterogeneous Reservoirs'' presents results of laboratory studies with related analytical models for improved oil recovery. All studies have been undertaken with the intention to optimize utilization and extend the practice of CO{sub 2} flooding to a wider range of reservoirs. Many items presented in this report are applicable to other interest areas: e.g. gas injection and production, greenhouse gas sequestration, chemical flooding, reservoir damage, etc. Major areas of studies include reduction of CO{sub 2} mobility to improve conformance, determining and understanding injectivity changes in particular injectivity loses, and modeling process mechanisms determined in the first two areas. Interfacial tension (IFT) between a high-pressure, high-temperature CO{sub 2} and brine/surfactant and foam stability are used to assess and screen surfactant systems. In this work the effects of salinity, pressure, temperature, surfactant concentration, and the presence of oil on IFT and CO{sub 2} foam stability were determined on the surfactant (CD1045{trademark}). Temperature, pressure, and surfactant concentration effected both IFT and foam stability while oil destabilized the foam, but did not destroy it. Calcium lignosulfonate (CLS) can be used as a sacrificial and an enhancing agent. This work indicates that on Berea sandstone CLS concentration, brine salinity, and temperature are dominant affects on both adsorption and desorption and that adsorption is not totally reversible. Additionally, CLS adsorption was tested on five minerals common to oil reservoirs; it was found that CLS concentration, salinity, temperature, and mineral type had significant effects on adsorption. The adsorption density from most to least was: bentonite > kaolinite > dolomite > calcite > silica. This work demonstrates the extent of dissolution and precipitation from co-injection of CO{sub 2} and brine in limestone core. Metal tracers in the brine were used as markers to identify precipitation location and extent. This indicated possible causes of permanent permeability changes in the core and thus in a reservoir. Core segment porosity, permeability, chemical and back-scattered electron imaging, and chemical titrations were all used for qualitative and quantitative determination of compositional and injectivity changes. Also, injectivity effects of high flow rate near a wellbore and stress changes were shown on five different cores (two Berea sandstones, two Indiana limestones, and one Dakota sandstone).

  12. CERAMIC MEMBRANE ENABLING TECHNOLOGY FOR IMPROVED IGCC EFFICIENCY

    SciTech Connect (OSTI)

    Ravi Prasad

    2000-04-01T23:59:59.000Z

    The objective of this program is to conduct a technology development program to advance the state-of-the-art in ceramic Oxygen Transport Membranes (OTM) to the level required to produce step change improvements in process economics, efficiency, and environmental benefits for commercial IGCC systems and other applications. The IGCC program is focused on addressing key issues in materials, processing, manufacturing, engineering and system development that will make the OTM a commercial reality. The objective of the OTM materials development task is to identify a suitable material that can be formed into a thin film to produce the target oxygen flux. This requires that the material have an adequate permeation rate, and thermo-mechanical and thermo-chemical properties such that the material is able to be supported on the desired substrate and sufficient mechanical strength to survive the stresses involved in operation. The objective of the composite OTM development task is to develop the architecture and fabrication techniques necessary to construct stable, high performance, thin film OTMs supported on suitable porous, load bearing substrates. The objective of the process development task of this program to demonstrate the program objectives on a single OTM tube under test conditions simulating those of the optimum process cycle for the power plant.

  13. A Retrofit Tool for Improving Energy Efficiency of Commercial Buildings

    SciTech Connect (OSTI)

    Levine, Mark; Feng, Wei; Ke, Jing; Hong, Tianzhen; Zhou, Nan

    2013-06-06T23:59:59.000Z

    Existing buildings will dominate energy use in commercial buildings in the United States for three decades or longer and even in China for the about two decades. Retrofitting these buildings to improve energy efficiency and reduce energy use is thus critical to achieving the target of reducing energy use in the buildings sector. However there are few evaluation tools that can quickly identify and evaluate energy savings and cost effectiveness of energy conservation measures (ECMs) for retrofits, especially for buildings in China. This paper discusses methods used to develop such a tool and demonstrates an application of the tool for a retrofit analysis. The tool builds on a building performance database with pre-calculated energy consumption of ECMs for selected commercial prototype buildings using the EnergyPlus program. The tool allows users to evaluate individual ECMs or a package of ECMs. It covers building envelope, lighting and daylighting, HVAC, plug loads, service hot water, and renewable energy. The prototype building can be customized to represent an actual building with some limitations. Energy consumption from utility bills can be entered into the tool to compare and calibrate the energy use of the prototype building. The tool currently can evaluate energy savings and payback of ECMs for shopping malls in China. We have used the tool to assess energy and cost savings for retrofit of the prototype shopping mall in Shanghai. Future work on the tool will simplify its use and expand it to cover other commercial building types and other countries.

  14. Efficiency improvement of a ground coupled heat pump system from energy management

    E-Print Network [OSTI]

    Fernández de Córdoba, Pedro

    Efficiency improvement of a ground coupled heat pump system from energy management N. Pardo a,*, Á coupled heat pump Energy efficiency Numerical simulation a b s t r a c t The installed capacity of an air to improve the efficiency of a ground coupled heat pump air conditioning system by adapting its produced

  15. Can We Improve Energy Efficiency of Secure Disk Systems without Modifying Security Mechanisms?

    E-Print Network [OSTI]

    Qin, Xiao

    Can We Improve Energy Efficiency of Secure Disk Systems without Modifying Security Mechanisms--Improving energy efficiency of security-aware storage systems is challenging, because security and energy security and energy efficiency is to profile encryption algorithms to decide if storage systems would

  16. Assessment of Energy Efficiency Improvement and CO2 Emission Reduction Potentials in the Cement Industry in China

    E-Print Network [OSTI]

    Hasanbeigi, Ali

    2013-01-01T23:59:59.000Z

    for Improving Energy Efficiency, Reducing Pollution andSummer Study on Energy Efficiency in Industry. Washington,R. N. , 1994, The energy-efficiency gap: What does it

  17. Energy Efficiency Improvement and Cost Saving Opportunities for the Glass Industry. An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Worrell, Ernst

    2008-01-01T23:59:59.000Z

    Energy efficiency integrated into organizational culture.use and organizational goals for energy efficiency. Stafforganizational commitment to continuous improvement of energy efficiency.

  18. Energy Efficiency Improvement and Cost Saving Opportunities for Cement Making. An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Worrell, Ernst

    2008-01-01T23:59:59.000Z

    Energy efficiency integrated into organizational culture.organizational commitment to continuous improvement of energy efficiency.efficiency project, limited finances, poor accountability for measures, or organizational

  19. Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Galitsky, Christina

    2008-01-01T23:59:59.000Z

    use and organizational goals for energy efficiency. Stafforganizational commitment to continuous improvement of energy efficiency.efficiency project, limited finances, poor accountability for measures, or organizational

  20. Transition metal oxide improves overall efficiency and maintains performance with inexpensive metals.

    E-Print Network [OSTI]

    metals. A research team at the National Renewable Energy Laboratory (NREL) has demonstrated Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. 1617 Cole BoulevardTransition metal oxide improves overall efficiency and maintains performance with inexpensive

  1. Secretary Chu Announces $47 Million to Improve Efficiency in...

    Office of Environmental Management (EM)

    The energy efficiency projects announced today will reduce energy use and carbon pollution, while helping to develop a strong, competitive domestic industry. "These Recovery...

  2. Efficiency Improvement in an Over the Road Diesel Powered Engine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and potential efficiency enhancement deer08schock.pdf More Documents & Publications Thermoelectric Conversion of Waste Heat to Electricity in an IC Engine Powered Vehicle...

  3. Thermal Efficiency Improvement While Meeting Emissions of 2007...

    Broader source: Energy.gov (indexed) [DOE]

    Thermal Efficiency Reaching 50% at 2010 Emissions Time Optimized Combustion; Increased FIS Flexibility; Premium EGR System; Turbocharger Matching; Diesel Particulate Filter NOx:...

  4. Improving Energy Efficiency by Developing Components for Distributed...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Distributed Cooling and Heating Based on Thermal Comfort Modeling Thermoelectric (TE) HVAC Energy Efficient HVAC System for Distributed CoolingHeating with Thermoelectric...

  5. Impact of Vehicle Efficiency Improvements on Powertrain Design

    Broader source: Energy.gov (indexed) [DOE]

    19M) Volvo Group Truck Technology High Efficiency Combustion - Waste Heat Recovery - Turbo-Compound - Downspeeding - ... Advanced Driver Aids Rolling Resistance Reduction...

  6. Volvo SuperTruck - Powertrain Technologies for Efficiency Improvement

    Broader source: Energy.gov (indexed) [DOE]

    efficient highway transportation technologies to reduce petroleum consumption, operating cost, fuel consumption, environmental impact, and time to market for high risk high...

  7. assistance improve efficiency: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Abstract. Global warming, rising energy prices and increasing awareness of "green" customers have brought energy efficient manufacturing on top of the agenda Boyer,...

  8. Final Guidance on Improving the Process for Preparing Efficient...

    Broader source: Energy.gov (indexed) [DOE]

    the Process for Preparing Efficient and Timely Environmental Reviews under the National Environmental Policy Act. The National Environmental Policy Act (NEPA) and CEQ Regulations...

  9. CEQ Releases Two Handbooks on Improving Efficiency of Federal...

    Broader source: Energy.gov (indexed) [DOE]

    two new handbooks that encourage more efficient environmental reviews under the National Environmental Policy Act (NEPA). The first handbook, created by CEQ and the Advisory...

  10. Technologies and Policies to Improve Energy Efficiency in Industry

    E-Print Network [OSTI]

    Price, Lynn

    2008-01-01T23:59:59.000Z

    Energy Efficiency and CO2 Emissions. Paris: IEA. KEMA, withrelated carbon dioxide (CO2) emissions. Many studies andconcurrently reducing CO2 emissions. With the support of

  11. High Performance Healthcare Buildings: A Roadmap to Improved Energy Efficiency

    E-Print Network [OSTI]

    Singer, Brett C.

    2010-01-01T23:59:59.000Z

    source heat pumps (newer designs are greatly improved), condensing boilers, advanced control sequences to allow utilization of variable air

  12. Reduce NOx and Improve Energy Efficiency, Software Tools for Industry, Industrial Technologies Program (ITP) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2008-12-01T23:59:59.000Z

    This fact sheet describes how the Industrial Technologies Program NOx and Energy Assessment Tool (NxEAT) can help petroleum refining and chemical plants improve energy efficiency.

  13. Improving the Efficiency of Light-Duty Vehicle HVAC Systems using...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Light-Duty Vehicle HVAC Systems using Zonal Thermoelectric Devices and Comfort Modeling Improving the Efficiency of Light-Duty Vehicle HVAC Systems using Zonal Thermoelectric...

  14. Electricity and Natural Gas Efficiency Improvements for Residential Gas Furnaces in the U.S.

    E-Print Network [OSTI]

    Lekov, Alex; Franco, Victor; Meyers, Steve; McMahon, James E.; McNeil, Michael; Lutz, Jim

    2006-01-01T23:59:59.000Z

    offsets the sizable electricity savings. References TitleElectricity and Natural Gas Efficiency Improvements forfueled by natural gas. Electricity consumption by a furnace

  15. IMPROVING CO2 EFFICIENCY FOR RECOVERING OIL IN HETEROGENEOUS RESERVOIRS

    SciTech Connect (OSTI)

    Reid B. Grigg; Robert K. Svec; Zhengwen Zeng; Baojun Bai; Yi Liu

    2004-09-27T23:59:59.000Z

    The third annual report of ''Improving CO{sub 2} Efficiency for Recovery Oil in Heterogeneous Reservoirs'' presents results of laboratory studies with related analytical models for improved oil recovery. All studies were designed to optimize utilization and extend the practice of CO{sub 2} flooding to a wider range of reservoirs. Chapter 1 describes the behavior at low concentrations of the surfactant Chaser International CD1045{trademark} (CD) versus different salinity, pressure and temperature. Results of studies on the effects of pH and polymer (hydrolyzed polyacrylamide?HPAM) and CO{sub 2} foam stability after adsorption in the core are also reported. Calcium lignosulfonate (CLS) transport mechanisms through sandstone, description of the adsorption of CD and CD/CLS onto three porous media (sandstone, limestone and dolomite) and five minerals, and the effect of adsorption on foam stability are also reported. In Chapter 2, the adsorption kinetics of CLS in porous Berea sandstone and non-porous minerals are compared by monitoring adsorption density change with time. Results show that adsorption requires a much longer time for the porous versus non-porous medium. CLS adsorption onto sandstone can be divided into three regions: adsorption controlled by dispersion, adsorption controlled by diffusion and adsorption equilibrium. NaI tracer used to characterize the sandstone had similar trends to earlier results for the CLS desorption process, suggesting a dual porosity model to simulate flow through Berea sandstone. The kinetics and equilibrium test for CD adsorption onto five non-porous minerals and three porous media are reported in Chapter 3. CD adsorption and desorption onto non-porous minerals can be established in less than one hour with adsorption densities ranging from 0.4 to 1.2 mg of CD per g of mineral in decreasing order of montmorillonite, dolomite, kaolinite, silica and calcite. The surfactant adsorption onto three porous media takes much longer than one hour, with Berea sandstone requiring the longest time. In Chapter 4, comparisons of static adsorption of CLS, CD, and CLS/CD mixtures onto five pure minerals showed that the presence of CLS decreased the adsorption of CD onto the five minerals by 20 to 70%. Dynamic CLS/CD mixture adsorption tests onto Berea sandstone and Indian limestone cores showed that competitive adsorption between CD and CLS generally takes several days to reach equilibrium. Foam stability and interfacial tension tests on both injected and effluent samples were performed which showed that both foam stability and IFT decreased due to adsorption. Also it appears that there is a chromatographic effect on the surfactants in flow through porous media. Progress was realized in developing general equations for stress sensitivity on non-Darcy parameters (permeability and non-Darcy coefficient), and the multiphase flow induced by a high flow rate was confirmed as a mechanism for injectivity loss in CO{sub 2} flooding. In Chapter 5, a general equation is defined based on 60 general equations of permeability stress sensitivity and non-Darcy coefficient stress sensitivity and definitions of nominal permeability, nominal non-Darcy coefficient, permeability stress sensitivity, and non-Darcy coefficient stress sensitivity. The equations of stress sensitivity are independent of pressure, temperature, and rock properties and existing empirical correlations of the nominal permeability and nominal non-Darcy coefficient can be used when laboratory data are not available. This provides a tool to quantify the change of permeability and non-Darcy coefficient due to change of effective stress resulted from reservoir injection and/or production.

  16. Institutional Change Principles for Fostering Sustainability...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Principles for Fostering Sustainability Institutional Change Principles for Fostering Sustainability The following eight principles serve as the foundational building blocks for...

  17. Improving machining efficiency | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformation for planning experimental workImprovingImprovingImproving

  18. Future Diesel Engine Thermal Efficiency Improvement andn Emissions...

    Broader source: Energy.gov (indexed) [DOE]

    release, December, 2004 11th DEER Conference, Chicago IL, August, 2005 2005 Detroit Diesel Corporation. All Rights Reserved. 3 Near-term Powertrain Evolution Improved Thermal...

  19. Secretary Chu Announces $187 Million to Improve Vehicle Efficiency...

    Office of Environmental Management (EM)

    including engine downsizing, electrification of auxiliary systems such as oil and water pumps, waste heat recovery, improved aerodynamics and hybridization. Navistar, Inc. -...

  20. TV Energy Consumption Trends and Energy-Efficiency Improvement Options

    E-Print Network [OSTI]

    Park, Won Young

    2011-01-01T23:59:59.000Z

    and Low Power Mode Energy Consumption, Energy Efficiency inTV Shipments on Energy Consumption.. 22 Figure 3-1.Estimates of Annual Energy Consumption in 3D mode of 3D TVs

  1. Improving Diesel Engine Sweet-spot Efficiency and Adapting it...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010. p-18yan.pdf More Documents & Publications D-Cycle -...

  2. Insulation of Pipe Bends Improves Efficiency of Hot Oil Furnaces

    E-Print Network [OSTI]

    Haseltine, D. M.; Laffitte, R. D.

    Thermodynamic analyses of processes indicated low furnace efficiencies on certain hot oil furnaces. Further investigation, which included Infrared (IR) thermography testing of several furnaces, identified extremely hot surfaces on the outside...

  3. Improving energy efficiency in a pharmaceutical manufacturing environment -- production facility

    E-Print Network [OSTI]

    Zhang, Endong, M. Eng. Massachusetts Institute of Technology

    2009-01-01T23:59:59.000Z

    The manufacturing plant of a pharmaceutical company in Singapore had low energy efficiency in both its office buildings and production facilities. Heating, Ventilation and Air-Conditioning (HVAC) system was identified to ...

  4. SuperTruck Team Achieves 115% Freight Efficiency Improvement...

    Energy Savers [EERE]

    per gallon (MPG). Increasing the efficiency of Class 8 trucks is essential because they haul 80 percent of the goods in the U.S. and use about 20 percent of the fuel consumed in...

  5. Boiler System Efficiency Improves with Effective Water Treatment

    E-Print Network [OSTI]

    Bloom, D.

    Water treatment is an important aspect of boiler operation which can affect efficiency or result in damage if neglected. Without effective water treatment, scale can form on boiler tubes, reducing heat transfer, and causing a loss of boiler...

  6. Improving Boiler Efficiency Modeling Based on Ambient Air Temperature

    E-Print Network [OSTI]

    Zhou, J.; Deng, S.; Claridge, D. E.; Haberl, J. S.; Turner, W. D.

    Optimum economic operation in a large power plant can cut operating costs substantially. Individual plant equipment should be operated under conditions that are most favorable for maximizing its efficiency. It is widely accepted that boiler load...

  7. IMPROVING THE EFFICIENCY OF AN EXISTING GROUNDWATER REMEDIATION SYSTEM

    E-Print Network [OSTI]

    Illinois at Urbana-Champaign, University of

    .9 kilowatt total) 14 #12;ENERGY IMPROVEMENT BENEFITS 15 #12;RETURN ON INVESTMENT: SOLAR PANELS 16 #12 of grid energy with solar panel arrays Long-term operations and maintenance costs were significantly.7 kilowatt total) 13 #12;GROUNDWATER SYSTEM ENERGY IMPROVEMENTS ­ Northern Solar Array: 56 panel system (10

  8. improving energy efficiency in the built environment is now seen as a growing

    E-Print Network [OSTI]

    Kotchen, Matthew J.

    improving energy efficiency in the built environment is now seen as a growing policy priority the 1973 oil embargo. Codes by state but they generally establish a minimum energy efficiency stan- dard.S. Department of Energy to establish building code energy efficiency targets by January 1, 2014. it also

  9. Antennas in the optical range will improve the efficiency of light-emitting devices.

    E-Print Network [OSTI]

    Novotny, Lukas

    absorption cross-sections and quan- tum yields in photovoltaics, releasing energy efficiently from nanoscaleAntennas in the optical range will improve the efficiency of light-emitting devices. The purpose frequencies. It is hoped that optical antennas can increase the efficiency of light-matter interactions

  10. Energy Efficiency Improvement and Cost Saving Opportunities for the Baking Industry

    E-Print Network [OSTI]

    Masanet, Eric

    2014-01-01T23:59:59.000Z

    DITR). 2003. Energy Efficiency Best Practice Case Study:Energy efficiency opportunities identified. BUILDING CAPACITY Tracking and Monitoring Systems established for tracking energy performance and best practicesenergy efficiency improvements. As part of the facility assessment, the energy team should also look for best practices

  11. 1. Introduction The efficiency of steam turbines can be improved by in-

    E-Print Network [OSTI]

    Cambridge, University of

    1. Introduction The efficiency of steam turbines can be improved by in- creasing the maximum-efficiency power plant. 2. Turbines, Steam, Efficiency and Power Plant A power plant has a steam generator which the operating pressure is below about 22 MPa, in which case the steam is separated and passed on to the turbine

  12. Quantum effects improve the energy efficiency of feedback control

    E-Print Network [OSTI]

    Jordan M. Horowitz; Kurt Jacobs

    2014-04-15T23:59:59.000Z

    The laws of thermodynamics apply equally well to quantum systems as to classical systems, and because of this quantum effects do not change the fundamental thermodynamic efficiency of isothermal refrigerators or engines. We show that, despite this fact, quantum mechanics permits measurement-based feedback control protocols that are more thermodynamically efficient than their classical counterparts. As part of our analysis we perform a detailed accounting of the thermodynamics of unitary feedback control, and elucidate the sources of inefficiency in measurement-based and coherent feedback.

  13. Operational efficiency through resource planning optimization and work process improvement

    E-Print Network [OSTI]

    Balwani, Siddharth (Siddharth Vashdev)

    2012-01-01T23:59:59.000Z

    This thesis covers work done at National Grid to improve resource planning and the execution of pipeline construction and maintenance work carried out at the yards. Resource Planning, the art of picking the right jobs for ...

  14. High Performance Healthcare Buildings: A Roadmap to Improved Energy Efficiency

    E-Print Network [OSTI]

    Singer, Brett C.

    2010-01-01T23:59:59.000Z

    Integrated design, incorporation of models from other advanced buildingsand building operators. Communication with users through integrated designintegrated design process has great potential to advance cost-effective reductions in energy intensity often while improving building

  15. Improving CO2 Efficiency for Recovering Oil in Heterogeneous Reservoirs

    SciTech Connect (OSTI)

    Grigg, Reid B.; Svec, Robert K.

    2003-03-10T23:59:59.000Z

    The work strived to improve industry understanding of CO2 flooding mechanisms with the ultimate goal of economically recovering more of the U.S. oil reserves. The principle interests are in the related fields of mobility control and injectivity.

  16. CERAMIC MEMBRANE ENABLING TECHNOLGOY FOR IMPROVED IGCC EFFICIENCY

    SciTech Connect (OSTI)

    Ravi Prasad

    2003-07-01T23:59:59.000Z

    This quarterly technical progress report will summarize work accomplished for Phase 2 Program during the quarter April to June 2003. In task 1 OTM development has led to improved flux and strength performance. In task 2, robust PSO1d elements have been fabricated for testing in the pilot reactor. In task 3, the lab-scale pilot reactor has been operated for 1000 hours with improved success. In task 7, economic models substantial benefit of OTM IGCC over CRYO based oxygen production.

  17. Steam Power Partnership: Improving Steam System Efficiency Through Marketplace Partnerships

    E-Print Network [OSTI]

    Jones, T.

    to support the steam efficiency program. Today, the Steam Team includes, the North American Insulation Manufacturers Association (NAIMA), the American Gas Association (AGA), the Council of Industrial Boiler Owners (ClBO), Armstrong International... pinch technology, and high performance steam. ? Armstrong International - Three worldwide factory seminar facilities, 13 North American sales representative facilities, 4 international sales representative facilities, 8 co-sponsored facilities, 2...

  18. Improving air handler efficiency in residential HVAC applications

    SciTech Connect (OSTI)

    Walker, Iain S.; Mingee, Michael D.; Brenner, Douglas E.

    2003-08-01T23:59:59.000Z

    In continuing the development of energy efficiency standards, consideration has turned to air handlers used for heating and air conditioning of consumer residences. These air handlers have typical efficiencies of about 10% to 15% due to poor electric motor performance and aerodynamically poor fans and fan housings. This study was undertaken to examine some of these performance issues, under carefully controlled laboratory conditions, to support potential regulatory changes. In addition, this study examined the performance of a prototype air handler fan assembly that offers the potential for substantial increases in performance. This prototype and a standard production fan were tested in a full-scale duct system and test chamber at LBNL which was specifically designed for testing heating, ventilation, and air conditioning systems. The laboratory tests compared efficiency, total airflow, sensitivity to duct system flow resistance, and the effects of installation in a smaller cabinet. The test results showed that, averaged over a wide range of operating conditions, the prototype air handler had about twice the efficiency of the standard air handler and was less sensitive to duct system flow resistance changes. The performance of both air handlers was significantly reduced by reducing the space between the air handler and the cabinet it was installed in. Therefore any fan rating needs to be performed using the actual cabinet it will be used in.

  19. Improving Energy Efficiency and Security for Disk Systems

    E-Print Network [OSTI]

    Qin, Xiao

    optimization with security services to enhance the security of energy-efficient large- scale storage systems, to conserve energy in secure storage systems. In this study we develop two ways of integrating confidentiality power consumption are crucial for large-scale data storage systems. Although a handful of studies have

  20. Optical design and efficiency improvement for organic luminescent solar concentrators

    E-Print Network [OSTI]

    Hirst, Linda

    and hybrid photovoltaic/thermal solar conversation systems1 . Generally, an organic LSC is a piece of highly solar energy. We designed, fabricated organic LSCs at different sizes and characterized their optical and electrical properties. The output efficiency enhancement methods for LSCs photovoltaics (PVs) are explored

  1. Determining benefits and costs of improved central air conditioner efficiencies

    SciTech Connect (OSTI)

    Rosenquist, G.; Levok, A.; Chan, P.; McMahon, J.

    2001-01-12T23:59:59.000Z

    Economic impacts on individual consumers from possible revisions to U.S. residential-type central air conditioner energy-efficiency standards are examined using a life-cycle cost (LCC) analysis. LCC is the consumer's cost of purchasing and installing a central air conditioner and operating it over its lifetime. This approach makes it possible to evaluate the economic impacts on individual consumers from the revised standards. The methodology allows an examination of groups of the population which benefit or lose from suggested efficiency standards. The results show that the economic benefits to consumers due to modest increases in efficiency are significant. For an efficiency increase of 20percent over the existing minimum standard (i.e., 12 SEER), 35percent of households with central air conditioners experience significant LCC savings, with an average savings of $453, while 25percent show significant LCC losses, with an average loss of $158 compared to apre-standard LCC average of $5,170. The remainder of the population (40percent) are largely unaffected.

  2. Cryptanalysis and Improvement of an Efficient CCA Secure PKE Scheme

    E-Print Network [OSTI]

    that it is more efficient in the public/private keys than the famous CS98 and BMW05 CCA secure public key-time signature based on the BMW05 paradigm [2]. The third way owns to the concept of lossy trapdoor function than the famous CS98 and BMW05 CCA secure public key encryption scheme. However we will show

  3. DEAN PHILLIPS FOSTER The Wharton School

    E-Print Network [OSTI]

    Foster, Dean P.

    international school," with David Foster, to appear Reading Psychol- ogy, 2013. "Stochastic convex optimization

  4. CERAMIC MEMBRANE ENABLING TECHNOLOGY FOR IMPROVED IGCC EFFICIENCY

    SciTech Connect (OSTI)

    Ravi Prasad

    2004-03-31T23:59:59.000Z

    This quarterly technical progress report will summarize work accomplished for Phase 2 Program during the quarter January to March 2004. In task 1 OTM development has led to improved strength and composite design for lower temperatures. In task 2, the measurement system of OTM element dimensions was improved. In task 3, a 10-cycle test of a three-tube submodule was reproduced successfully. In task 5, sizing of several potential heat recovery systems was initiated. In task 7, advanced OTM and cryogenic IGCC cases for near-term integration were developed.

  5. Optical fiber technique as a tool to improve combustion efficiency

    SciTech Connect (OSTI)

    Spicher, U.; Krebs, R.

    1990-01-01T23:59:59.000Z

    A multi-optical fiber technique is presented, which enables one to detect the flame propagation during non-knocking and knocking conditions in real production engines. The measurement technique is appropriate to detect knock onset locations and to describe the propagation of knocking reaction fronts. With this knowledge, the combustion chamber shape can be optimized, leading to a better knock resistance and higher combustion efficiencies. Results of flame propagation under non-knocking and knocking engine operating conditions are presented. In addition, correlations between knock onset locations and areas in which knock damage occurs are shown for different engines. Presented are the effects of combustion chamber modifications on the combustion efficiency, based on the analysis of the optical fiber measurements.

  6. Improving Energy Efficiency by Developing Components for Distributed

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe U.S. Department-2023DepartmentResultsEfficiency and

  7. Improving Energy Efficiency by Developing Components for Distributed

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe U.S. Department-2023DepartmentResultsEfficiency

  8. Improving Energy Efficiency by Developing Components for Distributed

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe U.S. Department-2023DepartmentResultsEfficiencyCooling

  9. Measuring Energy Efficiency Improvements in Industrial Battery Chargers

    E-Print Network [OSTI]

    Matley, R.

    &E is sponsoring this test work as a direct result of the energy saving opportunity that is available in the installed base of forklift battery chargers in our service territory. It is estimated that 32,000 three phase chargers and 12,500 single phase chargers...) website in summer 2009: ESL-IE-09-05-32 Proceedings of the Thirty-First Industrial Energy Technology Conference, New Orleans, LA, May 12-15, 2009 www.etcc-ca.com There are a number of elements that make up battery charger energy efficiency...

  10. Off-Highway Heavy Vehicle Diesel Efficiency Improvement and Emissions

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F SSales LLC OrderEfficiencyOceanOctober XX, 2009Aggressive

  11. On-Bill Financing for Energy Efficiency Improvements Toolkit | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F SSales LLC OrderEfficiencyOceanOctober0HighandCombustion |Onof

  12. Improving Energy Efficiency and Creating Jobs Through Weatherization |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe U.S. Department-2023DepartmentResultsEfficiency and Load

  13. Improving Energy Efficiency by Developing Components for Distributed

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe U.S. Department-2023DepartmentResultsEfficiency andCooling and

  14. Improving Energy Efficiency by Developing Components for Distributed

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe U.S. Department-2023DepartmentResultsEfficiency andCooling

  15. Improving Energy Efficiency by Developing Components for Distributed

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe U.S. Department-2023DepartmentResultsEfficiencyCooling and

  16. Industrial Energy Efficiency Projects Improve Competitiveness and Protect Jobs

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe U.S.Indiana College Provides TrainingEnergy EfficiencyRecovery

  17. Substrate CdTe Efficiency Improvements - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystalline Gallium Oxide ThinIon CoolingSubstrate CdTe Efficiency

  18. CERAMIC MEMBRANE ENABLING TECHNOLOGY FOR IMPROVED IGCC EFFICIENCY

    SciTech Connect (OSTI)

    Ravi Prasad

    2002-05-01T23:59:59.000Z

    This quarterly technical progress report will summarize work accomplished for Phase 1 Program during the quarter January to March 2002. In task 1 improvements to the membrane material have shown increased flux, and high temperature mechanical properties are being measured. In task 2, composite development has shown that alternative fabrication routes of the substrate can improve membrane performance under certain conditions. In task 3, scale-up issues associated with manufacturing large tubes have been identified and are being addressed. The work in task 4 has demonstrated that composite OTM elements can produce oxygen at greater than 95% purity for more than 1000 hours of the target flux under simulated IGCC operating conditions. In task 5 the multi-tube OTM reactor has been operated and produced oxygen.

  19. CERAMIC MEMBRANE ENABLING TECHNOLOGY FOR IMPROVED IGCC EFFICIENCY

    SciTech Connect (OSTI)

    Ravi Prasad

    2003-11-01T23:59:59.000Z

    This quarterly technical progress report will summarize work accomplished for Phase 2 Program during the quarter July to September 2003. In task 1 OTM development has led to improved strength and composite design. In task 2, the manufacture of robust PSO1d elements has been scaled up. In task 3, operational improvements in the lab-scale pilot reactor have reduced turn-around time and increased product purity. In task 7, economic models show substantial benefit of OTM IGCC over CRYO based oxygen production. The objectives of the first year of phase 2 of the program are to construct and operate an engineering pilot reactor for OTM oxygen. Work to support this objective is being undertaken in the following areas in this quarter: Element reliability; Element fabrication; Systems technology; Power recovery; and IGCC process analysis and economics. The major accomplishments this quarter were Element production at Praxair's manufacturing facility is being scaled up and Substantial improvements to the OTM high temperature strength have been made.

  20. Energy Efficiency Improvement and Cost Saving Opportunities for the Glass Industry. An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Worrell, Ernst

    2008-01-01T23:59:59.000Z

    Raising Awareness Awareness of energy efficiency createdExternal Recognition Awareness of energy efficiency createdout energy audits, improving motivation and awareness in all

  1. CERAMIC MEMBRANE ENABLING TECHNOLOGY FOR IMPROVED IGCC EFFICIENCY

    SciTech Connect (OSTI)

    Ravi Prasad

    2002-08-01T23:59:59.000Z

    This quarterly technical progress report will summarize work accomplished for Phase 1 Program during the quarter April to June 2002. In task 1 improvements to the membrane material have shown increased flux, stability and strength. In task 2, composite development has demonstrated the ability to cycle membranes. In task 3, scale-up issues associated with manufacturing large elements have been identified and are being addressed. The work in task 4 has demonstrated that composite OTM elements can produce oxygen at greater than 95% purity after 10 thermal and pressure cycles. In task 5 the multi-tube OTM reactor has been operated and produced oxygen.

  2. Wireless Sensors Improve Data Center Efficiency | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOf TheViolations | Department ofEnergyWireless Sensors Improve

  3. Improving Vehicle Fuel Efficiency Through Tire Design, Materials, and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe U.S. Improving Fan System Performance a PumpingReduced Weight

  4. Improving the Efficiency of Spark Ignited, Stoichiometric Natural Gas

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe U.S. Improving Fan System Performance aEngines | Department of

  5. FORSCOM installation characterization and ranking for water efficiency improvement

    SciTech Connect (OSTI)

    Fitzpatrick, Q.K.; McMordie, K.L.; Di Massa, F.V. [and others

    1995-05-01T23:59:59.000Z

    On March 11, 1994, President Clinton signed Executive Order 12902-Energy Efficiency and Water Conservation at Federal Facilities. Section 302 of the Executive Order calls for energy and water prioritization surveys of federal facilities to be conducted. The surveys will be used to establish priorities for conducting comprehensive facility audits. In response to the requirements of the Executive Order, the U.S. Army Forces Command (FORSCOM) has tasked Pacific Northwest Laboratory (PNL) to initiate a broad study of the water savings potential at each of its major installations. This report provides an assessment of the water, sewer, energy (for hot water production and pumping), and associated cost savings potential at ten of the major FORSCOM installations. This assessment is meant to be a {open_quotes}first pass{close_quotes} estimate of the water savings potential, to assist FORSCOM in prioritizing installations for detailed water audits and potential water efficient retrofits. In addition, the end uses (toilets, sinks, showerheads, irrigation, etc.) with the greatest water savings potential are identified at each installation. This report is organized in the following manner. Following this Introduction, Section 2 provides important background information pertaining to the water analysis. Section 3 describes the methodology employed in the analysis, and Section 4 summarizes the study results. Section 5 prioritizes the installations based on both water/sewer savings and cost associated with water, sewer, and energy savings. Section 6 provides recommendations on where to start detailed water audits, as well as other recommendations. References are listed in Section 7. The appendices provide specific information on the analysis results and methodology, along with a discussion of special issues.

  6. CERAMIC MEMBRANE ENABLING TECHNOLOGY FOR IMPROVED IGCC EFFICIENCY

    SciTech Connect (OSTI)

    Ravi Prasad

    2003-03-01T23:59:59.000Z

    The objectives of the first year of phase 2 of the program are to construct and operate an engineering pilot reactor for OTM oxygen. Work to support this objective is being undertaken in the following areas in this quarter: Element reliability; Element fabrication; Systems technology; Power recovery; and IGCC process analysis and economics. The major accomplishments this quarter were: (1) Methods to improve the strength and stability of PSO1x were identified. (2) The O1 reactor was operated at target flux and target purity for 1000 hours. This quarterly technical progress report will summarize work accomplished for Phase 2 Program during the quarter October to December 2002. In task 1 improvements to PSO1x have shown increased performance in strength and stability. In task 2, PSO1d and PSO1x elements have been fabricated for testing in the pilot reactor. In task 3, the lab-scale pilot reactor has been operated for 1000 hours. In task 6 initial power recovery simulation has begun. In task 7, HYSIS models have been developed to optimize the process for a future demonstration unit.

  7. CERAMIC MEMBRANE ENABLING TECHNOLOGY FOR IMPROVED IGCC EFFICIENCY

    SciTech Connect (OSTI)

    Ravi Prasad

    2001-01-01T23:59:59.000Z

    This quarterly technical progress report will summarize work accomplished for Phase 1 Program during the quarter October to December 2000. In task 1 careful modification of the processing conditions of the OTM has improved the properties of the final element. In addition, finite element modeling has been used to predict the mechanical behavior of OTM tubes and to identify strategies for improving OTM robustness. In task 2, composite elements of PSO1d have been prepared and tested for over 800 hours without degradation in oxygen flux. Alternative materials for composite OTM and architectures have been examined with success. In task 3, modification of fabrication routes has resulted in a substantial increase in the yield of PSO1d composite elements. The work in task 4 has demonstrated that composite OTM elements can produce oxygen at atmospheric pressure of greater than 95% purity from a high-pressure air feed gas. The work in task 5 to construct a multi-tube OTM reactor has begun.

  8. Improving energy efficiency: Strategies for supporting sustained market evolution in developing and transitioning countries

    SciTech Connect (OSTI)

    Meyers, S.

    1998-02-01T23:59:59.000Z

    This report presents a framework for considering market-oriented strategies for improving energy efficiency that recognize the conditions of developing and transitioning countries, and the need to strengthen the effectiveness of market forces in delivering greater energy efficiency. It discusses policies that build markets in general, such as economic and energy pricing reforms that encourage competition and increase incentives for market actors to improve the efficiency of their energy use, and measures that reduce the barriers to energy efficiency in specific markets such that improvement evolves in a dynamic, lasting manner. The report emphasizes how different policies and measures support one another and can create a synergy in which the whole is greater than the sum of the parts. In addressing this topic, it draws on the experience with market transformation energy efficiency programs in the US and other industrialized countries.

  9. Advancing Solutions to Improve the Energy Efficiency of Commercial Buildings FOA Webinar (Text Version)

    Broader source: Energy.gov [DOE]

    Below is the text version of the webinar, Advancing Solutions to Improve the Energy Efficiency of Commercial Buildings FOA, presented by Kristen Taddonio of the Commercial Buildings program in...

  10. Analyzing capital allocation for energy efficiency improvements by commercial real estate investment managers

    E-Print Network [OSTI]

    Peterson, Kristian A

    2009-01-01T23:59:59.000Z

    Numerous studies have shown that retrofitting an office building with energy efficiency improvements can significantly reduce operating costs, yet many existing office buildings have not been retrofitted. The objective of ...

  11. Economic and Policy Factors Affecting Energy Efficiency Improvements in the U. S. Paper Industry

    E-Print Network [OSTI]

    Freund, S. H.

    1984-01-01T23:59:59.000Z

    The U.S. pulp, paper and paperboard industry has made significant improvements over the past eleven years in the energy efficiency of its operations. The industry is firmly committed to: increased utilization of important renewable domestic energy...

  12. Building Operator Certification: Improving Commercial Building Energy Efficiency Through Operator Training and Certification

    E-Print Network [OSTI]

    Putnam, C.; Mulak, A.

    2001-01-01T23:59:59.000Z

    Building Operator Certification (BOC) is a competency-based certification for building operators designed to improve the energy efficiency of commercial buildings. Operators earn certification by attending training sessions and completing project...

  13. CERAMIC MEMBRANE ENABLING TECHNOLOGY FOR IMPROVED IGCC EFFICIENCY

    SciTech Connect (OSTI)

    Ravi Prasad

    2002-02-01T23:59:59.000Z

    This quarterly technical progress report will summarize work accomplished for Phase 1 Program during the quarter October to December 2001. In task 1 optimization of the substrate material has yielded substantial improvements to membrane life. In task 2, composite development has enabled 50% of the target flux under Type 1B process conditions. In task 3, manufacturing development has demonstrated that 36 inch long tubes can be produced. The work in task 4 has demonstrated that composite OTM elements can produce oxygen at greater than 95% purity for more than 500 hours of the target flux. In task 5 construction of the multi-tube OTM reactor is completed and initial startup testing was carried out.

  14. CERAMIC MEMBRANE ENABLING TECHNOLOGY FOR IMPROVED IGCC EFFICIENCY

    SciTech Connect (OSTI)

    Ravi Prasad

    2001-04-01T23:59:59.000Z

    This quarterly technical progress report will summarize work accomplished for Phase 1 Program during the quarter January to March 2001. In task 1 careful modification of the composition and processing conditions of the OTM has enabled manufacture of high quality OTM elements. In addition, finite element modeling has been used to identify a suitable composition and geometry for successful pilot plant operation. In task 2, composite elements of materials with improved mechanical properties have been developed. In task 3, development of preferred fabrication methods has resulted in production of pilot plant scale composite elements. The work in task 4 has demonstrated that composite OTM elements can produce oxygen at atmospheric pressure of greater than 95% purity from a high-pressure air feed gas. The work in task 5 to construct a multi-tube OTM reactor is ongoing.

  15. CERAMIC MEMBRANE ENABLING TECHNOLOGY FOR IMPROVED IGCC EFFICIENCY

    SciTech Connect (OSTI)

    Ravi Prasad

    2001-10-01T23:59:59.000Z

    This yearly technical progress report will summarize work accomplished for Phase 1 Program during the program year 2000/2001. In task 1, the lead material composition was modified to enable superior fluxes and its mechanical properties improved. In task 2, composite OTM elements were fabricated that enable oxygen production at the commercial target purity and 75% of the target flux. In task 3, manufacturing development demonstrated the technology to fabricate an OTM tube of the size required for the multi-tube tester. The work in task 4 has enabled a preferred composite architecture and process conditions to be predicted. In task 5, the multi-tube reactor is designed and fabrication almost complete.

  16. Improved Efficiency of Miscible CO2 Floods and Enhanced Prospects for CO2 Flooding Heterogeneous Reservoirs

    SciTech Connect (OSTI)

    Grigg, Reid B.; Schechter, David S.

    1999-10-15T23:59:59.000Z

    The goal of this project is to improve the efficiency of miscible CO2 floods and enhance the prospects for flooding heterogeneous reservoirs. This report provides results of the second year of the three-year project that will be exploring three principles: (1) Fluid and matrix interactions (understanding the problems). (2) Conformance control/sweep efficiency (solving the problems. 3) Reservoir simulation for improved oil recovery (predicting results).

  17. Underwater nuclear power plants: improved safety, environmental compatibility and efficiency

    SciTech Connect (OSTI)

    Galustov, K.Z.; Abadjyan, K.A.; Pavlov, A.B.

    1991-01-01T23:59:59.000Z

    The further development of nuclear power engineering depends on the creation of a new generation of nuclear power plant (NPP) projects that have a high degree of safety. Decisions ensuring secure NPP exploitation must be based on the possibility of eliminating or localizing accidents. Using environmental properties to achieve secure NPP exploitation and accident elimination leads to suggest the construction of NPPs in water. An efficient way to provide energy to remote coastal areas is through use of floatable construction of prefabricated units. Floatable construction raises the quality of works, reduces expenditures on industrial facilities, and facilities building conditions in districts with extreme climatic conditions. A type of NPP that is situated on a shelf with the reactor compartment placed at the sea bottom is proposed. The underwater location of the reactor compartment on the fixed depth allows the natural water environment conditions of natural hydrostatic pressure, heat transfer and circulation to provide NPP safety. An example of new concept for power units with under-water localization of the reactor compartment is provided by the double-block NPP in a VVER reactor.

  18. Improving the Production Efficiency of Beef Cows through Mathematical Modeling and Genomics

    E-Print Network [OSTI]

    Improving the Production Efficiency of Beef Cows through Mathematical Modeling and Genomics that integrating recent advances in genomics, the identification of intrinsic genetic factors that determine and evaluate the individual-based model for production efficiency· of beef cows using genomic and biomarker

  19. IMPROVING THE EFFICIENCY OF THERMOELECTRIC GENERATORS BY USING SOLAR HEAT CONCENTRATORS

    E-Print Network [OSTI]

    IMPROVING THE EFFICIENCY OF THERMOELECTRIC GENERATORS BY USING SOLAR HEAT CONCENTRATORS M. T. de : Thermoelectric generator, Solar heat concentrator, Carnot efficiency I - Introduction The global energy crisis the junctions of two different materials. For a TEG to supply a significant amount of power, several thermo

  20. Improving Data Access Efficiency by Using a Tagless Access Buffer (TAB)

    E-Print Network [OSTI]

    Whalley, David

    of the processor's energy expenditure. We describe the implemen- tation and use of a tagless access buffer (TAB University of Technology [perla/mckee/pers]@chalmers.se Abstract The need for energy efficiency continues) that greatly improves data access energy efficiency while slightly im- proving performance. The compiler

  1. Funding Opportunity Webinar- Advancing Solutions To Improve the Energy Efficiency of US Commercial Buildings

    Broader source: Energy.gov [DOE]

    This webinar provides an overview of the DOE Funding Opportunity Announcement DE-FOA-0001168, "Advancing Solutions to Improve the Energy Efficiency of U.S. Commercial Buildings," which seeks to fund the scale-up of promising solutions to the market barriers that hinder the growth of energy efficiency in the commercial building sector.

  2. IEEE TRANSACTIONS ON ROBOTICS / SHORT PAPER 1 Improving Motion Planning Algorithms by Efficient

    E-Print Network [OSTI]

    LaValle, Steven M.

    IEEE TRANSACTIONS ON ROBOTICS / SHORT PAPER 1 Improving Motion Planning Algorithms by Efficient-neighbor queries in Cartesian products of R, S1 and RP3 , the most common topological spaces in the context), which are designed for efficient nearest-neighbor generation in Rd . These techniques, however

  3. DESIGN AND DEVELOPMENT TESTING OF AN IMPROVED (1 HIGH-EFFICIENCY WATER HEATER

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    #12;DESIGN AND DEVELOPMENT TESTING OF AN IMPROVED (1 HIGH-EFFICIENCY WATER HEATER (2} (3) (21 icense in and to any copyright covering the drticle. This paper describes a high-efficiency water heater which uses a design approach quite different from the conventional center-flue water heater. While high

  4. Lafayette Lumpkin Foster: a biography.

    E-Print Network [OSTI]

    Byrns, Robert Eugene

    2012-06-07T23:59:59.000Z

    ;e Station, Texas January, 1964 LAFAYET E LD1%'KIN FDS?ER: A BIGG" AFHY AFFRCV D: )t'ai. (. Gy 1 Chairman Gr duate Hchccl Fepreeentative ERRATA (s/1) The name of Mrs. T. D. McNei 11, of Dallas, cited throughout the biography as a primary source... through 1837 end then later as a United States Senator from 1837 to 1841. 4 Interview of Robert E. Byrns with Mrs. T. D. McNeil, the former May Alma Foster, daughter of L. L. Foster, Dallas, Texas, May 28, 1963. Four years after the birth of Lafayette...

  5. The Development of Improved Energy Efficient Housing for Thailand Utilizing Renewable Energy Technology

    E-Print Network [OSTI]

    Rasisuttha, S.; Haberl, J.

    SimBuild 2004, IBPSA-USA National Conference, Boulder, CO, August 4-6th, 2004, p. 1 THE DEVELOPMENT OF IMPROVED ENERGY EFFICIENT 1 HOUSING FOR THAILAND UTILIZING RENEWABLE ENERGY TECHNOLOGY 2 3... The paper reports on the results of research to reduce energy consumption in residential buildings in a hot and humid climate region (Thailand) using efficient architectural building components, energy efficient building systems, and renewable energy...

  6. Energy Efficiency Improvement Opportunities for the Cement Industry

    SciTech Connect (OSTI)

    Price, Lynn; Worrell, Ernst; Galitsky, Christina; Price, Lynn

    2008-01-31T23:59:59.000Z

    This report provides information on the energy savings, costs, and carbon dioxide emissions reductions associated with implementation of a number of technologies and measures applicable to the cement industry. The technologies and measures include both state-of-the-art measures that are currently in use in cement enterprises worldwide as well as advanced measures that are either only in limited use or are near commercialization. This report focuses mainly on retrofit measures using commercially available technologies, but many of these technologies are applicable for new plants as well. Where possible, for each technology or measure, costs and energy savings per tonne of cement produced are estimated and then carbon dioxide emissions reductions are calculated based on the fuels used at the process step to which the technology or measure is applied. The analysis of cement kiln energy-efficiency opportunities is divided into technologies and measures that are applicable to the different stages of production and various kiln types used in China: raw materials (and fuel) preparation; clinker making (applicable to all kilns, rotary kilns only, vertical shaft kilns only); and finish grinding; as well as plant wide measures and product and feedstock changes that will reduce energy consumption for clinker making. Table 1 lists all measures in this report by process to which they apply, including plant wide measures and product or feedstock changes. Tables 2 through 8 provide the following information for each technology: fuel and electricity savings per tonne of cement; annual operating and capital costs per tonne of cement or estimated payback period; and, carbon dioxide emissions reductions for each measure applied to the production of cement. This information was originally collected for a report on the U.S. cement industry (Worrell and Galitsky, 2004) and a report on opportunities for China's cement kilns (Price and Galitsky, in press). The information provided in this report is based on publicly-available reports, journal articles, and case studies from applications of technologies around the world.

  7. Mechanistic Understanding of Microbial Plugging for Improved Sweep Efficiency

    SciTech Connect (OSTI)

    Steven Bryant; Larry Britton

    2008-09-30T23:59:59.000Z

    Microbial plugging has been proposed as an effective low cost method of permeability reduction. Yet there is a dearth of information on the fundamental processes of microbial growth in porous media, and there are no suitable data to model the process of microbial plugging as it relates to sweep efficiency. To optimize the field implementation, better mechanistic and volumetric understanding of biofilm growth within a porous medium is needed. In particular, the engineering design hinges upon a quantitative relationship between amount of nutrient consumption, amount of growth, and degree of permeability reduction. In this project experiments were conducted to obtain new data to elucidate this relationship. Experiments in heterogeneous (layered) beadpacks showed that microbes could grow preferentially in the high permeability layer. Ultimately this caused flow to be equally divided between high and low permeability layers, precisely the behavior needed for MEOR. Remarkably, classical models of microbial nutrient uptake in batch experiments do not explain the nutrient consumption by the same microbes in flow experiments. We propose a simple extension of classical kinetics to account for the self-limiting consumption of nutrient observed in our experiments, and we outline a modeling approach based on architecture and behavior of biofilms. Such a model would account for the changing trend of nutrient consumption by bacteria with the increasing biomass and the onset of biofilm formation. However no existing model can explain the microbial preference for growth in high permeability regions, nor is there any obvious extension of the model for this observation. An attractive conjecture is that quorum sensing is involved in the heterogeneous bead packs.

  8. Haruvy, Katok and Pavlov: Efficiency of Coordinating Contracts Can Coordinating Contracts Improve Channel Efficiency?

    E-Print Network [OSTI]

    . Specifically, we look at three contract formats--wholesale price, two-part-tariff and minimum order quantity and extracting surplus through a lump sum payment (two part tariff) or through announcing a minimum order quantity treatment are far more efficient than two-part-tariff proposals in terms of the overall surplus

  9. Home Buyer's Energy Efficiency Checklist Have any energy efficiency improvements been made?

    E-Print Network [OSTI]

    that help shade the wall and windows? WATER SYSTEM: Is the water heater energy efficient? Look pipes wrapped with insulation? Is the hot water heater wrapped with an insulating blanket? Note: Newer models of hot water heaters do not require an insulation blanket. Are the showerheads low-flow to save

  10. Final Scientific Report - "Improved Fuel Efficiency from Nanocomposite Tire Tread"

    SciTech Connect (OSTI)

    Dr. Andrew Myers

    2005-12-30T23:59:59.000Z

    Rolling resistance, a measure of the energy lost as a tire rotates while moving, is a significant source of power and fuel loss. Recently, low rolling resistant tires have been formulated by adding silica to tire tread. These "Green Tires" (so named from the environmental advantages of lower emissions and improved fuel economy) have seen some commercial success in Europe, where high fuel prices and performance drive tire selection. Unfortunately, the higher costs of the silica and a more complicated manufacturing process have prevented significant commercialization - and the resulting fuel savings - in the U.S. In this project, TDA Research, Inc. (TDA) prepared an inexpensive alternative to silica that leads to tire components with lower rolling resistance. These new tire composite materials were processed with traditional rubber processing equipment. We prepared specially designed nanoparticle additives, based on a high purity, inorganic mineral whose surface can be easily modified for compatibility with tire tread formulations. Our nanocomposites decreased energy losses to hysteresis, the loss of energy from the compression and relaxation of an elastic material, by nearly 20% compared to a blank SBR sample. We also demonstrated better performance than a leading silica product, with easier production of our final rubber nanocomposite.

  11. Improving Dryer and Press Efficiencies Through Combustion of Hydrocarbon Emissions

    SciTech Connect (OSTI)

    Sujit Banerjee

    2005-10-31T23:59:59.000Z

    Emission control devices on dryers and presses have been legislated into the industry, and are now an integral part of the drying system. These devices consume large quantities of natural gas and electricity and down-sizing or eliminating them will provide major energy savings. The principal strategy taken here focuses on developing process changes that should minimize (and in some cases eliminate) the need for controls. A second approach is to develop lower-cost control options. It has been shown in laboratory and full-scale work that Hazardous Air Pollutants (HAPs) emerge mainly at the end of the press cycle for particleboard, and, by extension, to other prod-ucts. Hence, only the air associated with this point of the cycle need be captured and treated. A model for estimating terpene emissions in the various zones of veneer dryers has been developed. This should allow the emissions to be concentrated in some zones and minimized in others, so that some of the air could be directly released without controls. Low-cost catalysts have been developed for controlling HAPs from dryers and presses. Catalysts conventionally used for regenerative catalytic oxidizers can be used at much lower temperatures for treating press emissions. Fluidized wood ash is an especially inexpensive mate-rial for efficiently reducing formaldehyde in dryer emissions. A heat transfer model for estimating pinene emissions from hot-pressing strand for the manufacture of flakeboard has been constructed from first principles and validated. The model shows that most of the emissions originate from the 1-mm layer of wood adjoining the platen surface. Hence, a simple control option is to surface a softwood mat with a layer of hardwood prior to pressing. Fines release a disproportionate large quantity of HAPs, and it has been shown both theo-retically and in full-scale work that particles smaller than 400 ???µm are principally responsible. Georgia-Pacific is considering green-screening their furnish at several of their mills in order to remove these particles and reduce their treatment costs.

  12. Energy Efficiency Improvement and Cost Saving Opportunities for the Glass Industry. An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Worrell, Ernst

    2008-01-01T23:59:59.000Z

    often used is that boiler efficiency can be increased by 1%gas by 1% increases boiler efficiency by 2.5%, although this2001a). Boilers and Heaters, Improving Energy Efficiency.

  13. Steam Pressure-Reducing Station Safety and Energy Efficiency Improvement Project

    SciTech Connect (OSTI)

    Lower, Mark D [ORNL; Christopher, Timothy W [ORNL; Oland, C Barry [ORNL

    2011-06-01T23:59:59.000Z

    The Facilities and Operations (F&O) Directorate is sponsoring a continuous process improvement (CPI) program. Its purpose is to stimulate, promote, and sustain a culture of improvement throughout all levels of the organization. The CPI program ensures that a scientific and repeatable process exists for improving the delivery of F&O products and services in support of Oak Ridge National Laboratory (ORNL) Management Systems. Strategic objectives of the CPI program include achieving excellence in laboratory operations in the areas of safety, health, and the environment. Identifying and promoting opportunities for achieving the following critical outcomes are important business goals of the CPI program: improved safety performance; process focused on consumer needs; modern and secure campus; flexibility to respond to changing laboratory needs; bench strength for the future; and elimination of legacy issues. The Steam Pressure-Reducing Station (SPRS) Safety and Energy Efficiency Improvement Project, which is under the CPI program, focuses on maintaining and upgrading SPRSs that are part of the ORNL steam distribution network. This steam pipe network transports steam produced at the ORNL steam plant to many buildings in the main campus site. The SPRS Safety and Energy Efficiency Improvement Project promotes excellence in laboratory operations by (1) improving personnel safety, (2) decreasing fuel consumption through improved steam system energy efficiency, and (3) achieving compliance with applicable worker health and safety requirements. The SPRS Safety and Energy Efficiency Improvement Project being performed by F&O is helping ORNL improve both energy efficiency and worker safety by modifying, maintaining, and repairing SPRSs. Since work began in 2006, numerous energy-wasting steam leaks have been eliminated, heat losses from uninsulated steam pipe surfaces have been reduced, and deficient pressure retaining components have been replaced. These improvements helped ORNL reduce its overall utility costs by decreasing the amount of fuel used to generate steam. Reduced fuel consumption also decreased air emissions. These improvements also helped lower the risk of burn injuries to workers and helped prevent shrapnel injuries resulting from missiles produced by pressurized component failures. In most cases, the economic benefit and cost effectiveness of the SPRS Safety and Energy Efficiency Improvement Project is reflected in payback periods of 1 year or less.

  14. Efficiency Improvements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area. TheEPSCI Home It is the missionEducationmembranes

  15. Fostering a Spatially Literate Generation: Explicit Instruction in Spatial Thinking for Preservice Teachers

    E-Print Network [OSTI]

    Jo, Injeong

    2012-02-14T23:59:59.000Z

    This research proposes that the explicit incorporation of spatial thinking into teacher preparation programs is an effective and efficient way to foster and develop a spatially literate populace. The major objective of this study was to examine...

  16. Potential Benefits from Improved Energy Efficiency of KeyElectrical Products: The Case of India

    SciTech Connect (OSTI)

    McNeil, Michael; Iyer, Maithili; Meyers, Stephen; Letschert,Virginie; McMahon, James E.

    2005-12-20T23:59:59.000Z

    The goal of this project was to estimate the net benefits that cost-effective improvements in energy efficiency can bring to developing countries. The study focused on four major electrical products in the world's second largest developing country, India. These products--refrigerators, room air conditioners, electric motors, and distribution transformers--are important targets for efficiency improvement in India and in other developing countries. India is an interesting subject of study because of it's size and rapid economic growth. Implementation of efficient technologies in India would save billions in energy costs, and avoid hundreds of megatons of greenhouse gas emissions. India also serves as an example of the kinds of improvement opportunities that could be pursued in other developing countries.

  17. INL receives GreenGov Presidential Award for fleet fuel efficiency improvements

    ScienceCinema (OSTI)

    None

    2013-05-28T23:59:59.000Z

    Idaho National Laboratory has received a 2010 GreenGov Presidential Award for outstanding achievement in fuel efficiency in its bus and automotive fleets. The award was presented today in Washington, D.C., as part of a three-day symposium on improving sustainability and energy efficiency across the federal government. Lots more content like this is available at INL's facebook page http://www.facebook.com/idahonationallaboratory.

  18. INL receives GreenGov Presidential Award for fleet fuel efficiency improvements

    SciTech Connect (OSTI)

    None

    2010-01-01T23:59:59.000Z

    Idaho National Laboratory has received a 2010 GreenGov Presidential Award for outstanding achievement in fuel efficiency in its bus and automotive fleets. The award was presented today in Washington, D.C., as part of a three-day symposium on improving sustainability and energy efficiency across the federal government. Lots more content like this is available at INL's facebook page http://www.facebook.com/idahonationallaboratory.

  19. A Survey of Methods for Analyzing and Improving GPU Energy Efficiency

    SciTech Connect (OSTI)

    Mittal, Sparsh [ORNL; Vetter, Jeffrey S [ORNL

    2014-01-01T23:59:59.000Z

    Recent years have witnessed a phenomenal growth in the computational capabilities and applications of GPUs. However, this trend has also led to dramatic increase in their power consumption. This paper surveys research works on analyzing and improving energy efficiency of GPUs. It also provides a classification of these techniques on the basis of their main research idea. Further, it attempts to synthesize research works which compare energy efficiency of GPUs with other computing systems, e.g. FPGAs and CPUs. The aim of this survey is to provide researchers with knowledge of state-of-the-art in GPU power management and motivate them to architect highly energy-efficient GPUs of tomorrow.

  20. Financing Energy Upgrades for K-12 School Districts: A Guide to Tapping into Funding for Energy Efficiency and Renewable Energy Improvements

    E-Print Network [OSTI]

    Borgeson, Merrian

    2014-01-01T23:59:59.000Z

    Efficiency an d Renewable Energy Improvements Environmentalfunded by the National Renewable Energy Laboratory (NREL)energy efficiency and renewable energy improvements can

  1. Distributed Battery Control to Improve Peak Power Shaving Efficiency in Data Centers

    E-Print Network [OSTI]

    Simunic, Tajana

    Rack PDU BackupMain Bus-type power network Utility Diesel Generator ATS PDU Server Rack Server RackDistributed Battery Control to Improve Peak Power Shaving Efficiency in Data Centers Baris Aksanli, Eddie Pettis and Tajana S. Rosing UCSD, Google Stored energy in batteries can be used to cap peak power

  2. Renewable Energy Prediction for Improved Utilization and Efficiency in Datacenters and

    E-Print Network [OSTI]

    Simunic, Tajana

    Renewable Energy Prediction for Improved Utilization and Efficiency in Datacenters and Backbone requirements prevent easy integration with highly variable renewable energy sources. Short-term green energy of 11%. Their energy needs are supplied mainly by non-renewable, or brown energy sources, which

  3. Designing a Practical Data Filter Cache to Improve Both Energy Efficiency and Performance

    E-Print Network [OSTI]

    Whalley, David

    A Designing a Practical Data Filter Cache to Improve Both Energy Efficiency and Performance Alen Bardizbanyan, Chalmers University of Technology Magnus Sj¨alander, Florida State University David Whalley, Florida State University Per Larsson-Edefors, Chalmers University of Technology Conventional data filter

  4. Improving energy efficiency via probabilistic rate combination in 802.11 multi-rate wireless networks

    E-Print Network [OSTI]

    Lui, John C.S.

    transmission. An alternative way to conserve energy is to apply power control [1­4]. A wireless node is allowedImproving energy efficiency via probabilistic rate combination in 802.11 multi-rate wireless in revised form 20 January 2009 Accepted 27 January 2009 Available online 6 February 2009 Keywords: Energy

  5. Improving Charging Efficiency with Workload Scheduling in Energy Harvesting Embedded Systems

    E-Print Network [OSTI]

    Qiu, Qinru

    University Syracuse, New York, 13244, USA {yzhan158, yage, qiqiu}@syr.edu ABSTRACT In energy harvestingImproving Charging Efficiency with Workload Scheduling in Energy Harvesting Embedded Systems Yukan in the electrical energy storage (EES) bank. How much energy can be stored is affected by many factors including

  6. Improving the efficiency of water splitting in dye-sensitized solar cells by using a biomimetic

    E-Print Network [OSTI]

    Improving the efficiency of water splitting in dye-sensitized solar cells by using a biomimetic studied this problem in dye-sensitized solar cells where a molecular dye and a porous TiO2 electrode act been demonstrated using dye-sensitized electrodes. The quantum yield for water splitting in these dye

  7. Air-Stable High-Efficiency Solar Cells Using Improved Single-Walled Carbon Nanotube Films

    E-Print Network [OSTI]

    Maruyama, Shigeo

    1 Air-Stable High-Efficiency Solar Cells Using Improved Single-Walled Carbon Nanotube Films Kehang-3-5800-6983. #12;2 ABSTRACT We present the single-walled carbon nanotube/silicon (SWNT/Si) solar cells approaching, the PCEs of the fabricated solar cells slightly increased after six-month exposure in air without any

  8. Improved Power Grid Stability and Efficiency with a Building-Energy Cyber-Physical System

    E-Print Network [OSTI]

    , or for sporadic reasons, for example a power plant goes offline unexpectedly (e.g., due to an earthquake or stagnant winds to propel wind turbines). Dur- ing an episode, the power grid operators must contend1 Improved Power Grid Stability and Efficiency with a Building-Energy Cyber-Physical System Mary

  9. Materials Development for Improved Efficiency of Hydrogen Production by Steam Electrolysis and Thermochemical-Electrochemical Processes

    E-Print Network [OSTI]

    Yildiz, Bilge

    as potential sources of hydrogen for the "hydrogen economy". One of these hydrogen production processesMaterials Development for Improved Efficiency of Hydrogen Production by Steam Electrolysis-electrochemical hydrogen production cycle that produces hydrogen from water, also using heat from a nuclear reactor

  10. Apply: Funding Opportunity- Advancing Solutions to Improve Energy Efficiency of Commercial Buildings

    Broader source: Energy.gov [DOE]

    Closed Application Deadline: January 20, 2015 The Building Technologies Office (BTO) Commercial Buildings Integration Program has announced the availability of nearly $9 million for Funding Opportunity Announcement (FOA) DE-FOA-0001168, Advancing Solutions to Improve the Energy Efficiency of U.S. Commercial Buildings.

  11. UC Davis Research Supports Energy-Efficiency Improvements to California's Title 24 Codes

    E-Print Network [OSTI]

    California at Davis, University of

    for buildings. The new code improves upon the 2008 standards currently in place, increasing the energy efficiency of residential buildings by 25 percent and boosting energy savings in non-residential buildings sources with "smart" controls that automatically lower light levels when spaces are vacant or when enough

  12. Improving Efficiency of Data Assimilation Procedure for a Biomechanical Heart Model by

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Improving Efficiency of Data Assimilation Procedure for a Biomechanical Heart Model by Representing to perform parameter estimation in a biomechanical model of the heart using synthetic observations [1, 3, 7, 8, 12, 15, 16] as an es- sential tool in heart modeling in order to personalize from

  13. Natural Gas Compression Technology Improves Transport and Efficiencies, Lowers Operating Costs

    Broader source: Energy.gov [DOE]

    An award-winning compressor design that decreases the energy required to compress and transport natural gas, lowers operating costs, improves efficiencies and reduces the environmental footprint of well site operations has been developed by a Massachusetts-based company with support from the U.S. Department of Energy

  14. Automating Internal Control at a Coffee Cooperative using Mobile Phones Improves Efficiency and Accountability

    E-Print Network [OSTI]

    Parikh, Tapan S.

    by capitalizing their quality advantage, sustainable growing practices and social impact. Many of these rely cooperatives monitor the growing practices of their members through internal control systems, ensuring for internal control at a coffee co- operative. Our goals were to improve the efficiency of this process

  15. Mining Call and Mobility Data to Improve Paging Efficiency in Cellular Networks

    E-Print Network [OSTI]

    , Data Mining, CDMA 1. INTRODUCTION Location management is a key component in the operation of cellularMining Call and Mobility Data to Improve Paging Efficiency in Cellular Networks Hui Zang Sprint a different, data-driven approach in how we design and evaluate our solution. Specifically, we mine more than

  16. Energy Efficiency Improvement and Cost Saving Opportunities for the U.S. Iron and Steel Industry An ENERGY STAR(R) Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Worrell, Ernst

    2011-01-01T23:59:59.000Z

    The NEMA Premium Efficiency Electric Motor specification wasEnergy Efficiency Improvements in Electric Motors andRewinding on Motor Efficiency. Electric Apparatus Service

  17. Energy Efficiency Improvement and Cost Saving Opportunities for the U.S. Iron and Steel Industry An ENERGY STAR(R) Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Worrell, Ernst

    2011-01-01T23:59:59.000Z

    rule of thumb is that boiler efficiency can be increased bytemperature, and boiler efficiency. They are a recommendedresult is improved boiler efficiency. Turbulator installers

  18. Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Neelis, Maarten

    2008-01-01T23:59:59.000Z

    7.1 summarizes the boiler efficiency measures, while Tablerule of thumb is that boiler efficiency can be increased by2001). Boilers and Heaters, Improving Energy Efficiency.

  19. Energy Efficiency Improvement and Cost Saving Opportunities for the Vehicle Assembly Industry: An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Galitsky, Christina

    2008-01-01T23:59:59.000Z

    Energy efficiency integrated into organizational culture.use and organizational goals for energy efficiency. Stafforganizational commitment to continuous improvement of energy efficiency.

  20. IMPROVING ENERGY EFFICIENCY AND REDUCING COSTS IN THE DRINKING WATER SUPPLY INDUSTRY: An ENERGY STAR Resource Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Brown, Moya Melody, Camilla Dunham Whitehead, Rich

    2011-01-01T23:59:59.000Z

    Energy efficiency integrated into organizational culture.use and organizational goals for energy efficiency. Stafforganizational commitment to continuous improvement of energy efficiency.

  1. T:\\013.ffentlichkeitsarbeit\\05.Vortrge\\32.NAWTEC 11 Florida 2003\\A_Ways to Improve the Efficiency of Waste to Energy Plants.doc Ways to Improve the Efficiency of Waste to Energy Plants

    E-Print Network [OSTI]

    Columbia University

    of Waste to Energy Plants.doc Ways to Improve the Efficiency of Waste to Energy Plants for the Production@mvr-hh.de Abstract Up to now the emissions of waste-to-energy plants have been of major concern for the operators about CO2 reductions the efficiency of today's Waste to Energy (WTE) plants should be improved, even

  2. Industrial Energy-Efficiency Improvement Program. Annual report to the Congress and the President 1979

    SciTech Connect (OSTI)

    Not Available

    1980-12-01T23:59:59.000Z

    The industrial energy efficiency improvement program to accelerate market penetration of new and emerging industrial technologies and practices which will improve energy efficiency; encourage substitution of more plentiful domestic fuels; and enhance recovery of energy and materials from industrial waste streams is described. The role of research, development, and demonstration; technology implementation; the reporting program; and progress are covered. Specific reports from the chemicals and allied products; primary metals; petroleum and coal products; stone, clay, and glass, paper and allied products; food and kindred products; fabricated metals; transportation equipment; machinery (except electrical); textile mill products; rubber and miscellaneous plastics; electrical and electronic equipment; lumber and wood; and tobacco products are discussed. Additional data from voluntary submissions, a summary on progress in the utilization of recovered materials, and an analysis of industrial fuel mix are briefly presented. (MCW)

  3. Industrial Energy Auditing: An Opportunity for Improving Energy Efficiency and Industrial Competitiveness

    E-Print Network [OSTI]

    Glaser, C.

    INDUSTRIAL ENERGY AUDITING: AN OPPORTUNITY FOR IMPROVING ENERGY EFFICIENCY AND INDUSTRIAL COMPETITIVENESS CHARLES GLASER, PROGRAM MANAGER, IMPLEMENTATION AND DEPLOYMENT DIVISION OFFICE OF INDUSTRIAL TECHNOLOGIES, U.S. DEPARTMENT OF ENERGY..., WASHINGTON, D.C. ABSTRACT This paper describes the Department of Energy's industrial energy auditing program, its achievements to date, and future plans. The Energy Analysis and Diagnostic Center (EADC) Program provides no-cost energy audits to small...

  4. Do Mergers Improve Efficiency? Evidence from Restructuring the U.S. Electric Power Sector

    E-Print Network [OSTI]

    Kwoka, John; Pollitt, Michael G.

    -performing companies that apparently search out and acquire better performers and that selling firms efficiency declines rather than improves after merger. We comment on some possible explanations for this result, as well as its implications, at the end... regulation appears to transfer most of the gains to consumers. Leggio and Liens (2000) study of share prices for 76 electric 4 mergers in 1983-96 finds qualitatively similar effects. Berry (2000) examines 21 electric-electric and electric...

  5. The Role of Emerging Technologies in Improving Energy Efficiency: Examples from the Food Processing Industry

    E-Print Network [OSTI]

    Lung, R. B.; Masanet, E.; McKane, A.

    2006-01-01T23:59:59.000Z

    technologies Conventional ammonia-based refrigeration systems Production growth through 2020 1%/year Specific energy consumption of base technologies (delivered) 0.008 kWh/lb. (electricity) Regional weighted average fossil fuel intensity of electricity... consumption and improve productivity by increasing the energy efficiency of industrial processes and systems. Therefore, the adoption of such technologies is important because they enable manufacturing plants to become both more competitive and productive...

  6. Transportation Energy Futures Series: Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehicle Sector

    SciTech Connect (OSTI)

    Vyas, A. D.; Patel, D. M.; Bertram, K. M.

    2013-03-01T23:59:59.000Z

    Considerable research has focused on energy efficiency and fuel substitution options for light-duty vehicles, while much less attention has been given to medium- and heavy-duty trucks, buses, aircraft, marine vessels, trains, pipeline, and off-road equipment. This report brings together the salient findings from an extensive review of literature on future energy efficiency options for these non-light-duty modes. Projected activity increases to 2050 are combined with forecasts of overall fuel efficiency improvement potential to estimate the future total petroleum and greenhouse gas (GHG) emissions relative to current levels. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  7. Improving Best Air Conditioner Efficiency by 20-30% through a High Efficiency Fan and Diffuser Stage Coupled with an Evaporative Condenser Pre-Cooler

    SciTech Connect (OSTI)

    Parker, Danny S; Sherwin, John R; Raustad, Richard

    2014-04-10T23:59:59.000Z

    The Florida Solar Energy Center (FSEC) conducted a research project to improve the best residential air conditioner condenser technology currently available on the market by retrofitting a commercially-available unit with both a high efficiency fan system and an evaporative pre-cooler. The objective was to integrate these two concepts to achieve an ultra-efficient residential air conditioner design. The project produced a working prototype that was 30% more efficient compared to the best currently-available technologies; the peak the energy efficiency ratio (EER) was improved by 41%. Efficiency at the Air-Conditioning and Refrigeration Institute (ARI) standard B-condition which is used to estimate seasonal energy efficiency ratio (SEER), was raised from a nominal 21 Btu/Wh to 32 Btu/Wh.

  8. Investigation of design options for improving the energy efficiency of conventionally designed refrigerator-freezers

    SciTech Connect (OSTI)

    Sand, J.R.; Vineyard, E.A. [Oak Ridge National Lab., TN (United States); Bohman, R.H. [Consulting Engineer, Cedar Rapids, IA (United States)

    1993-11-01T23:59:59.000Z

    Several design options for improving the energy efficiency of conventionally-designed, domestic refrigerator freezers (RFs) were incorporated into two 1990 production RF cabinets and refrigeration systems. The baseline performance of the original units and unit components were extensively documented to provide a firm basis for experimentally measured energy savings. A detailed refrigerator system computer model which could simulate cycling behavior was used to evaluate the daily energy use impacts for each modification, and modeled versus experimental results are compared. The model was shown to track measured RF performance improvement sufficiently well that it was used with some confidence to investigate additional options that could not be experimentally investigated. Substantial improvements in RF efficiency were demonstrated with relatively minor changes in system components and refrigeration circuit design. However, each improvement exacts a penalty in terms of increased cost or system complexity/reliability. For RF sizes typically sold in the United States (18-22 ft{sup 3} [510--620 1]), alternative, more-elaborate, refrigeration cycles may be required to achieve the program goal (1.00 Kilowatt-hour per day for a 560 l, top mount RF.

  9. Estimates of achievable potential for electricity efficiency improvements in U.S. residences

    SciTech Connect (OSTI)

    Brown, Richard

    1993-05-01T23:59:59.000Z

    This paper investigates the potential for public policies to achieve electricity efficiency improvements in US residences. This estimate of achievable potential builds upon a database of energy-efficient technologies developed for a previous study estimating the technical potential for electricity savings. The savings potential and cost for each efficiency measure in the database is modified to reflect the expected results of policies implemented between 1990 and 2010. Factors included in these modifications are: the market penetration of efficiency measures, the costs of administering policies, and adjustments to the technical potential measures to reflect the actual energy savings and cost experienced in the past. When all adjustment factors are considered, this study estimates that policies can achieve approximately 45% of the technical potential savings during the period from 1990 to 2010. Thus, policies can potentially avoid 18% of the annual frozen-efficiency baseline electricity consumption forecast for the year 2010. This study also investigates the uncertainty in best estimate of achievable potential by estimating two alternative scenarios -- a

  10. The Design of Organic Polymers and Small Molecules to Improve the Efficiency of Excitonic Solar Cells

    E-Print Network [OSTI]

    Armstrong, Paul Barber

    2010-01-01T23:59:59.000Z

    of High Efficiency Polymer Photovoltaics7 Futureof High Efficiency Polymer Photovoltaics Although the Tangthe Efficiency of Organic Photovoltaics..7 Development

  11. Energy Efficiency Improvement and Cost Saving Opportunities for the Dairy Processing Industry

    E-Print Network [OSTI]

    Brush, Adrian

    2012-01-01T23:59:59.000Z

    11) HVAC systems Energy-efficient system design EfficientHVAC Systems Energy-efficient system design. The greatestdesign teams for energy-efficient building design. Financial

  12. Efficiency Improvement through Reduction in Friction and Wear in Powertrain Systems

    SciTech Connect (OSTI)

    Michael Killian

    2009-09-30T23:59:59.000Z

    The objective of this project is to improve the efficiency of truck drivelines through reduction of friction and parasitic losses in transmission and drive axles. Known efficiencies for these products exceeded 97 percent, so the task was not trivial. The project relied on a working relationship between modeling and hardware testing. Modeling was to shorten the development cycle by guiding the selection of materials, processes and strategies. Bench top and fixture tests were to validate the models. Modeling was performed at a world class, high academic level, but in the end, modeling did not impact the hardware development as much as intended. Insights leading to the most significant accomplishments came from bench top and fixture tests and full scale dynamometer tests. A key development in the project was the formulation of the implementation strategy. Five technical elements with potential to minimize friction and parasitic losses were identified. These elements included churning, lubrication, surface roughness, coatings and textures. An interesting fact is that both Caterpillar and Eaton independently converged on the same set of technical elements in formulating their implementation strategies. Exploiting technical elements of the implementation strategy had a positive impact on transmission and drive axle efficiencies. During one dynamometer test of an Eaton Best Tech 1 transmission, all three gear ranges tested: Under drive, direct drive and over drive, showed efficiencies greater than 99 percent. Technology boosts to efficiency for transmissions reached 1 percent, while efficiency improvements to drive axle pushed 2 percent. These advancements seem small, but the accomplishment is large considering that these products normally run at greater than 97 percent efficiency. Barriers and risks to implementing these technology elements are clear. Schemes using a low fill sump and spray tubes endanger the gears and bearings by lubricant starvation. Gear coatings have exhibited durability issues, stripping away under conditions less demanding than 750,000 miles in service on the road. Failed coatings compound the problem by contaminating the lubricant with hard particles. Under the most severe conditions, super finished surfaces may polish further, reaching a surface roughness unable to support the critical oil film thickness. Low viscosity and low friction lubricants may not protect the gears and bearings adequately leading to excessive pitting, wear and noise. Additives in low friction oils may not stay in solution or suspended thus settling to the bottom and unavailable when they are needed most. Technical barriers and risks can be overcome through engineering, but two barriers remain formidable: (1) cost of the technology and (2) convincing fleet owners that the technology provides a tangible benefit. Dry sumps lower lubricant operating temperatures so the removal of heat exchangers and hoses and reduced demand on engine cooling systems justify their use. The benefits of surface texturing are varied and remain unproven. Lubricant costs seem manageable, but the cost of super finishing and gear coating are high. These are issues of scale and processing technology. Going across the board with gear super finishing and coating will reduce costs. Pushing the envelope to applications with higher torque and higher power density should drive the adoption of these technologies. Fleet owners are an educated and seasoned lot. Only technology measureable in dollars returned is used on truck fleets. To convince fleet owners of the benefit of these technologies, new precision in measuring fuel efficiency must be introduced. Legislation for a minimum standard in truck miles per gallon would also enable the use of these technologies. Improving the efficiency of truck transmissions and axle will make a noticeable impact on the fuel consumption by heavy vehicles in the United States. However, the greatest benefit will come when all the individual efficiency technologies like hybrid power, aerodynamic fairings, auxiliary power units, super

  13. Improving Energy Efficiency in Pharmaceutical ManufacturingOperations -- Part I: Motors, Drives and Compressed Air Systems

    SciTech Connect (OSTI)

    Galitsky, Christina; Chang, Sheng-chien; Worrell, Ernst; Masanet,Eric

    2006-04-01T23:59:59.000Z

    In Part I of this two-part series, we focus on efficient use of motors, drives and pumps, both for process equipment and compressed air systems. Pharmaceutical manufacturing plants in the U.S. spend nearly $1 billion each year for the fuel and electricity they need to keep their facilities running (Figure 1, below). That total that can increase dramatically when fuel supplies tighten and oil prices rise, as they did last year. Improving energy efficiency should be a strategic goal for any plant manager or manufacturing professional working in the drug industry today. Not only can energy efficiency reduce overall manufacturing costs, it usually reduces environmental emissions, establishing a strong foundation for a corporate greenhouse-gas-management program. For most pharmaceutical manufacturing plants, Heating, Ventilation and Air Conditioning (HVAC) is typically the largest consumer of energy, as shown in Table 1 below. This two-part series will examine energy use within pharmaceutical facilities, summarize best practices and examine potential savings and return on investment. In this first article, we will focus on efficient use of motors, drives and pumps, both for process equipment and compressed air systems. Part 2, to be published in May, will focus on overall HVAC systems, building management and boilers.

  14. STATEMENT OF CONSIDERATIONS REQUEST BY FOSTER WHEELER FOR ADVANCE...

    Broader source: Energy.gov (indexed) [DOE]

    and technological input to the CFB technology. Foster Wheeler USA Corporation: design, engineering and construction services. 1 O * Foster Wheeler Environmental Corporation:...

  15. Federal Task Force Sends Recommendations to President on Fostering...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Task Force Sends Recommendations to President on Fostering Clean Coal Technology Federal Task Force Sends Recommendations to President on Fostering Clean Coal Technology August 12,...

  16. Energy Efficiency Improvement and Cost Saving Oportunities for the Concrete Industry

    E-Print Network [OSTI]

    Kermeli, Katerina

    2013-01-01T23:59:59.000Z

    the NEMA Premium Efficiency Electric Motor specification wason Motor Efficiency. St. Louis, Missouri. Electric Apparatus

  17. Energy Efficiency Improvement and Cost Saving Oportunities for the Concrete Industry

    E-Print Network [OSTI]

    Kermeli, Katerina

    2013-01-01T23:59:59.000Z

    Energy efficiency integrated into organizational culture. ofuse and organizational goals for energy efficiency. Staff

  18. INVESTIGATION OF EFFICIENCY IMPROVEMENTS DURING CO2 INJECTION IN HYDRAULICALLY AND NATURALLY FRACTURED RESERVOIRS

    SciTech Connect (OSTI)

    David S. Schechter

    2004-04-26T23:59:59.000Z

    This report describes the work performed during the second year of the project, ''Investigating of Efficiency Improvements during CO{sub 2} Injection in Hydraulically and Naturally Fractured Reservoirs.'' The objective of this project is to perform unique laboratory experiments with artificial fractured cores (AFCs) and X-ray CT to examine the physical mechanisms of bypassing in HFR and NFR that eventually result in less efficient CO{sub 2} flooding in heterogeneous or fracture-dominated reservoirs. To achieve this objective, in this period we concentrated our effort on investigating the effect of CO{sub 2} injection rates in homogeneous and fractured cores on oil recovery and a strategy to mitigate CO{sub 2} bypassing in a fractured core.

  19. Customer System Efficiency Improvement Assessment: Description and examination of system characterization data

    SciTech Connect (OSTI)

    Callaway, J.W.; DeSteese, J.G.

    1986-12-01T23:59:59.000Z

    This report describes three data bases that were developed in the Customer System Efficiency Improvement (CSEI) Assessment project to help characterize transmission and distribution (T and D) system losses experienced by utility customers in the Pacific Northwest. A principal objective of this project is to assess the potential for electric energy conservation in the T and D systems of BPA's utility customers. The three data bases provide essential input on the number and operating characteristics of T and D component stocks that was used in another task of the CSEI Project to estimate the conservation supply functions that result from replacing existing stocks with more efficient components (Tepel et al. 1986). This document describes the three data bases, provides a guide to their use, and presents a summary characterization of the principal loss-generating components (lines and transformers) of the region's T and D systems.

  20. INVESTIGATION OF EFFICIENCY IMPROVEMENTS DURING CO2 INJECTION IN HYDRAULICALLY AND NATURALLY FRACTURED RESERVOIRS

    SciTech Connect (OSTI)

    David S. Schechter

    2003-10-01T23:59:59.000Z

    This report describes the work performed during the second year of the project, ''Investigating of Efficiency Improvements during CO{sub 2} Injection in Hydraulically and Naturally Fractured Reservoirs.'' The objective of this project is to perform unique laboratory experiments with artificial fractured cores (AFCs) and X-ray CT to examine the physical mechanisms of bypassing in HFR and NFR that eventually result in less efficient CO{sub 2} flooding in heterogeneous or fracture-dominated reservoirs. To achieve this objective, in this period we concentrated our effort on modeling the fluid flow in fracture surface, examining the fluid transfer mechanisms and describing the fracture aperture distribution under different overburden pressure using X-ray CT scanner.

  1. Improved Efficiency of Miscible CO(2) Floods and Enhanced Prospects for CO(2) Flooding Heterogeneous Reservoirs.

    SciTech Connect (OSTI)

    Grigg, R.B.; Schechter, D.S.

    1997-08-01T23:59:59.000Z

    The overall goal of this project was to improve the efficiency of miscible C0{sub 2} floods and enhance the prospects for flooding heterogeneous reservoirs. This objective was accomplished through experimental and modeling research in three task areas: (1) foams for selective mobility control in heterogeneous reservoirs,( 2) reduction of the amount of C0{sub 2} required in C0{sub 2} floods, and (3) low IFT processe and the possibility of C0{sub 2} flooding in fractured reservoirs. This report provides results from the three-year project for each of the three task areas.

  2. Financing Energy Upgrades for K-12 School Districts: A Guide to Tapping into Funding for Energy Efficiency and Renewable Energy Improvements

    E-Print Network [OSTI]

    Borgeson, Merrian

    2014-01-01T23:59:59.000Z

    for Energy Efficiency an d Renewable Energy Improvementsfunded by the National Renewable Energy Laboratory (NREL)energy efficiency and renewable energy improvements can

  3. Department of Energy Issues Draft Renewable Energy and Efficient...

    Office of Environmental Management (EM)

    Renewable Energy and Efficient Energy Projects Solicitation to Foster Clean Energy Innovation Department of Energy Issues Draft Renewable Energy and Efficient Energy Projects...

  4. Foster Care Independent Living Services: Youth Perspectives

    E-Print Network [OSTI]

    Petr, Christopher G.

    2008-01-01T23:59:59.000Z

    Emerging adulthood is a phase in the life course recently identified by developmental theorists. For youth in foster care, recent federal legislation in the United States has engendered new programs, typically called ...

  5. How ambient intelligence will improve habitability and energy efficiency in buildings

    E-Print Network [OSTI]

    Arens, Edward A; Federspiel, C.; Wang, D.; Huizenga, C.

    2005-01-01T23:59:59.000Z

    Habitability and Energy Efficiency in Buildings. PublishedHabitability and Energy Efficiency in Buildings. PublishedHabitability and Energy Efficiency in Buildings. Published

  6. Energy Efficiency Improvement and Cost Saving Oportunities for the Concrete Industry

    E-Print Network [OSTI]

    Kermeli, Katerina

    2013-01-01T23:59:59.000Z

    Employ an energy-efficient system design. For HVAC systemsHVAC Systems Energy-efficient system design Recommissioningdesign teams for energy-efficient building design. Financial

  7. Energy Efficiency Improvement and Cost Saving Opportunities for the Dairy Processing Industry

    E-Print Network [OSTI]

    Brush, Adrian

    2012-01-01T23:59:59.000Z

    Raising Awareness Awareness of energy efficiency createdCommunications Awareness of energy efficiency createdbasis Raise awareness No promotion of energy efficiency

  8. Energy Efficiency Improvement and Cost Saving Opportunities for the Dairy Processing Industry

    E-Print Network [OSTI]

    Brush, Adrian

    2012-01-01T23:59:59.000Z

    Summer Study on Energy Efficiency in Industry. AmericanSummer Study on Energy Efficiency in Industry. AmericanCanada, Office of Energy Efficiency, Ottawa, Ontario. Carbon

  9. Energy Efficiency Improvement and Cost Saving Opportunities for the Dairy Processing Industry

    E-Print Network [OSTI]

    Brush, Adrian

    2012-01-01T23:59:59.000Z

    in flue gas oxygen, boiler efficiency is increased by 2.5% (40 Boiler Energy EfficiencyChapter 13. 7.1 Boiler Energy Efficiency Measures The boiler

  10. Energy Efficiency Improvement and Cost Saving Opportunities for the Dairy Processing Industry

    E-Print Network [OSTI]

    Brush, Adrian

    2012-01-01T23:59:59.000Z

    use and organizational goals for energy efficiency. StaffEnergy efficiency integrated into organizational culture.efficiency typically only occur when a strong organizational

  11. Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Galitsky, Christina

    2008-01-01T23:59:59.000Z

    for its cooling tower water. Solar air heating. Solar airSolar air heating Building insulation Restriction of sash openings Variable-air-volume hoods Improved filtration quality and efficiency Cooling towers

  12. Vehicle Technologies Office Merit Review 2014: Improving Vehicle Fuel Efficiency Through Tire Design, Materials, and Reduced Weight

    Broader source: Energy.gov [DOE]

    Presentation given by Cooper Tire at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about improving vehicle fuel efficiency...

  13. Assessment of Energy Efficiency Improvement and CO2 Emission Reduction Potentials in the Iron and Steel Industry in China

    E-Print Network [OSTI]

    Hasanbeigi, Ali

    2013-01-01T23:59:59.000Z

    Efficiency Improvement and CO2 Emission Reduction Potentialsand Its Impact on CO2 Emission," Iron & Steel, 2010, 45(5):Emissions Factors CO2 Emission factor for grid electricity (

  14. Assessment of Energy Efficiency Improvement and CO2 Emission Reduction Potentials in India's Iron and Steel Industry

    E-Print Network [OSTI]

    Morrow III, William R.

    2014-01-01T23:59:59.000Z

    Efficiency Improvement and CO2 Emission Reduction PotentialsModelInputs EmissionsFactors CO2Emissionfactorforgridelectricity(tonneCO2/MWh) CO2Emissionfactorforfuel(

  15. Energy Efficiency Improvement and Cost Saving Oportunities for the Concrete Industry

    SciTech Connect (OSTI)

    Kermeli, Katerina; Worrell, Ernst; Masanet, Eric

    2011-12-01T23:59:59.000Z

    The U.S. concrete industry is the main consumer of U.S.-produced cement. The manufacturing of ready mixed concrete accounts for more than 75% of the U.S. concrete production following the manufacturing of precast concrete and masonry units. The most significant expenditure is the cost of materials accounting for more than 50% of total concrete production costs - cement only accounts for nearly 24%. In 2009, energy costs of the U.S. concrete industry were over $610 million. Hence, energy efficiency improvements along with efficient use of materials without negatively affecting product quality and yield, especially in times of increased fuel and material costs, can significantly reduce production costs and increase competitiveness. The Energy Guide starts with an overview of the U.S. concrete industrys structure and energy use, a description of the various manufacturing processes, and identification of the major energy consuming areas in the different industry segments. This is followed by a description of general and process related energy- and cost-efficiency measures applicable to the concrete industry. Specific energy and cost savings and a typical payback period are included based on literature and case studies, when available. The Energy Guide intends to provide information on cost reduction opportunities to energy and plant managers in the U.S. concrete industry. Every cost saving opportunity should be assessed carefully prior to implementation in individual plants, as the economics and the potential energy and material savings may differ.

  16. Opportunities to improve energy efficiency in the U.S. pulp and paper industry

    SciTech Connect (OSTI)

    Worrell, Ernst; Martin, Nathan; Anglani, Norma; Einstein, Dan; Krushch, Marta; Price, Lynn

    2001-02-02T23:59:59.000Z

    This paper analyzes the energy efficiency and carbon dioxide emissions reductions potential of the U.S. pulp and paper industry, one of the largest energy users in the U.S. manufacturing sector. We examined over 45 commercially available state-of-the-art technologies and measures. The measures were characterized, and then ordered on the basis of cost-effectiveness. The report indicates that there still exists significant potential for energy savings and carbon dioxide emissions reduction in this industry. The cost-effective potential for energy efficiency improvement is defined as having a simple pay-back period of three years or less. Not including increased recycling the study identifies a cost-effective savings potential of 16% of the primary energy use in 1994. Including increased recycling leads to a higher potential for energy savings, i.e. a range of cost-effective savings between 16% and 24% of primary energy use. Future work is needed to further elaborate on key energy efficiency measures identified in the report including barriers and opportunities for increased recycling of waste paper.

  17. Truck Essential Power Systems Efficiency Improvements for Medium-Duty Trucks

    SciTech Connect (OSTI)

    Larry Slone; Jeffery Birkel

    2007-12-31T23:59:59.000Z

    With a variety of hybrid vehicles available in the passenger car market, electric technologies and components of that scale are becoming readily available. Commercial vehicle segments have lagged behind passenger car markets, leaving opportunities for component and system development. Escalating fuel prices impact all markets and provide motivation for OEMs, suppliers, customers, and end-users to seek new techniques and technologies to deliver reduced fuel consumption. The research presented here specifically targets the medium-duty (MD), Class 4-7, truck market with technologies aimed at reducing fuel consumption. These technologies could facilitate not only idle, but also parasitic load reductions. The development efforts here build upon the success of the More Electric Truck (MET) demonstration program at Caterpillar Inc. Employing a variety of electric accessories, the MET demonstrated the improvement seen with such technologies on a Class 8 truck. The Truck Essential Power Systems Efficiency Improvements for Medium-Duty Trucks (TEPS) team scaled the concepts and successes of MET to a MD chassis. The team designed an integrated starter/generator (ISG) package and energy storage system (ESS), explored ways to replace belt and gear-driven accessory systems, and developed supervisory control algorithms to direct the usage of the generated electricity and system behavior on the vehicle. All of these systems needed to fit within the footprint of a MD vehicle and be compatible with the existing conventional systems to the largest extent possible. The overall goal of this effort was to demonstrate a reduction in fuel consumption across the drive cycle, including during idle periods, through truck electrification. Furthermore, the team sought to evaluate the benefits of charging the energy storage system during vehicle braking. The vehicle features an array of electric accessories facilitating on-demand, variable actuation. Removal of these accessories from the belt or geartrain of the engine yields efficiency improvements for the engine while freeing those accessories to perform at their individual peak efficiencies to meet instantaneous demand. The net result is a systems approach to fuel usage optimization. Unique control algorithms were specifically developed to capitalize on the flexibility afforded by the TEPS architecture. Moreover, the TEPS truck technology mixture exhibits a means to supplant current accessory power sources such as on-board or trailer-mounted gasoline-powered generators or air compressors. Such functionality further enhances the value of the electric systems beyond the fuel savings alone. To demonstrate the fuel economy improvement wrought via the TEPS components, vehicle fuel economy testing was performed on the nearly stock (baseline) truck and the TEPS truck. Table 1 illustrates the fuel economy gains produced by the TEPS truck electrification. While the fuel economy results shown in Table 1 do reflect specific test conditions, they show that electrification of accessory hardware can yield significant fuel savings. In this case, the savings equated to a 15 percent reduction in fuel consumption during controlled on-road testing. Truck electrification allows engine shutdown during idle conditions as well as independent on-demand actuation of accessory systems. In some cases, independent actuation may even include lack of operation, a feature not always present in mechanically driven components. This combination of attributes allows significant improvements in system efficiency and the fuel economy improvements demonstrated by the TEPS team.

  18. Efficiency Improvement of Nitride-Based Solid State Light Emitting Materials -- CRADA Final Report

    SciTech Connect (OSTI)

    Kisielowski, Christian; Weber, Eicke

    2010-05-13T23:59:59.000Z

    The development of In{sub x}Ga{sub 1-x} N/GaN thin film growth by Molecular Beam Epitaxy has opened a new route towards energy efficient solid-state lighting. Blue and green LED's became available that can be used to match the whole color spectrum of visible light with the potential to match the eye response curve. Moreover, the efficiency of such devices largely exceeds that of incandescent light sources (tungsten filaments) and even competes favorably with lighting by fluorescent lamps. It is, however, also seen in Figure 1 that it is essential to improve on the luminous performance of green LED's in order to mimic the eye response curve. This lack of sufficiently efficient green LED's relates to particularities of the In{sub x}Ga{sub 1-x}N materials system. This ternary alloy system is polar and large strain is generated during a lattice mismatched thin film growth because of the significantly different lattice parameters between GaN and InN and common substrates such as sapphire. Moreover, it is challenging to incorporate indium into GaN at typical growth temperatures because a miscibility gap exists that can be modified by strain effects. As a result a large parameter space needs exploration to optimize the growth of In{sub x}Ga{sub 1-x}N and to date it is unclear what the detailed physical processes are that affect device efficiencies. In particular, an inhomogeneous distribution indium in GaN modifies the device performance in an unpredictable manner. As a result technology is pushed forward on a trial and error basis in particular in Asian countries such as Japan and Korea, which dominate the market and it is desirable to strengthen the competitiveness of the US industry. This CRADA was initiated to help Lumileds Lighting/USA boosting the performance of their green LED's. The tasks address the distribution of the indium atoms in the active area of their blue and green LED's and its relation to internal and external quantum efficiencies. Procedures to measure the indium distribution with near atomic resolution were developed and applied to test samples and devices that were provided by Lumilids. Further, the optical performance of the device materials was probed by photoluminescence, electroluminescence and time resolved optical measurements. Overall, the programs objective is to provide a physical basis for the development of a simulation program that helps making predictions to improve the growth processes such that the device efficiency can be increased to about 20%. Our study addresses all proposed aspects successfully. Carrier localization, lifetime and recombination as well as the strain-induced generation of electric fields were characterized and modeled. Band gap parameters and their relation to the indium distribution were characterized and modeled. Electron microscopy was developed as a unique tool to measure the formation of indium clusters on a nanometer length scale and it was demonstrated that strain induced atom column displacements can reliably be determined in any materials system with a precision that approaches 2 pm. The relation between the local indium composition x and the strain induced lattice constant c(x) in fully strained In{sub x}Ga{sub 1-x}N quantum wells was found to be: c(x) = 0.5185 + {alpha}x with {alpha} = 0.111 nm. It was concluded that the local indium concentration in the final product can be modulated by growth procedures in a predictable manner to favorably affect external quantum efficiencies that approached target values and that internal quantum efficiencies exceeded them.

  19. Kitchen Appliance Upgrades Improve Water Efficiency at DOD Exchange Facilities: Best Management Practice Case Study #11: Commercial Kitchen Equipment (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-09-01T23:59:59.000Z

    The Exchange, formerly the Army and Air Force Exchange Service (AAFES), is a joint military activity and the U.S. Department of Defense?s (DOD) oldest and largest retailer. The Exchange is taking a leadership role in water efficiency improvements in their commercial kitchens by integrating water efficiency concepts into the organization?s overall sustainability plan and objectives.

  20. Improving the Power Conversion Efficiency of Ultrathin Organic Solar Cells by Incorporating Plasmonic Effects of Spheroidal Metallic Nanoparticles

    E-Print Network [OSTI]

    Park, Namkyoo

    Improving the Power Conversion Efficiency of Ultrathin Organic Solar Cells by Incorporating be exploited to achieve efficient harvesting of solar energy. Notably, the incorporation of plasmonic effects can allow the light harvesting capability of a solar cell to be maintained even as the thickness

  1. A Measurement Management Technology for Improving Energy Efficiency in Data Centers and Telecommunication Facilities

    SciTech Connect (OSTI)

    Hendrik Hamann, Levente Klein

    2012-06-28T23:59:59.000Z

    Data center (DC) electricity use is increasing at an annual rate of over 20% and presents a concern for the Information Technology (IT) industry, governments, and the society. A large fraction of the energy use is consumed by the compressor cooling to maintain the recommended operating conditions for IT equipment. The most common way to improve the DC efficiency is achieved by optimally provisioning the cooling power to match the global heat dissipation in the DC. However, at a more granular level, the large range of heat densities of today's IT equipment makes the task of provisioning cooling power optimized to the level of individual computer room air conditioning (CRAC) units much more challenging. Distributed sensing within a DC enables the development of new strategies to improve energy efficiency, such as hot spot elimination through targeted cooling, matching power consumption at rack level with workload schedule, and minimizing power losses. The scope of Measurement and Management Technologies (MMT) is to develop a software tool and the underlying sensing technology to provide critical decision support and control for DC and telecommunication facilities (TF) operations. A key aspect of MMT technology is integration of modeling tools to understand how changes in one operational parameter affect the overall DC response. It is demonstrated that reduced ordered models for DC can generate, in less than 2 seconds computational time, a three dimensional thermal model in a 50 kft{sup 2} DC. This rapid modeling enables real time visualization of the DC conditions and enables 'what if' scenarios simulations to characterize response to 'disturbances'. One such example is thermal zone modeling that matches the cooling power to the heat generated at a local level by identifying DC zones cooled by a specific CRAC. Turning off a CRAC unit can be simulated to understand how the other CRAC utilization changes and how server temperature responds. Several new sensing technologies were added to the existing MMT platform: (1) air contamination (corrosion) sensors, (2) power monitoring, and (3) a wireless environmental sensing network. All three technologies are built on cost effective sensing solutions that increase the density of sensing points and enable high resolution mapping of DCs. The wireless sensing solution enables Air Conditioning Unit (ACU) control while the corrosion sensor enables air side economization and can quantify the risk of IT equipment failure due to air contamination. Validation data for six test sites demonstrate that leveraging MMT energy efficiency solutions combined with industry best practices results in an average of 20% reduction in cooling energy, without major infrastructure upgrades. As an illustration of the unique MMT capabilities, a data center infrastructure efficiency (DCIE) of 87% (industry best operation) was achieved. The technology is commercialized through IBM System and Technology Lab Services that offers MMT as a solution to improve DC energy efficiency. Estimation indicates that deploying MMT in existing DCs can results in an 8 billion kWh savings and projection indicates that constant adoption of MMT can results in obtainable savings of 44 billion kWh in 2035. Negotiations are under way with business partners to commercialize/license the ACU control technology and the new sensor solutions (corrosion and power sensing) to enable third party vendors and developers to leverage the energy efficiency solutions.

  2. Energy Saving Melting and Revert Reduction Technology (E-SMARRT): Melting Efficiency Improvement

    SciTech Connect (OSTI)

    Principal Investigator Kent Peaslee; Co-PIƒ ƒ ‚ ¢ƒ ‚ ‚ € ƒ ‚ ‚ ™ s: Von Richards, Jeffrey Smith

    2012-07-31T23:59:59.000Z

    Steel foundries melt recycled scrap in electric furnaces and typically consume 35-100% excess energy from the theoretical energy requirement required to pour metal castings. This excess melting energy is multiplied by yield losses during casting and finishing operations resulting in the embodied energy in a cast product typically being three to six times the theoretical energy requirement. The purpose of this research project was to study steel foundry melting operations to understand energy use and requirements for casting operations, define variations in energy consumption, determine technologies and practices that are successful in reducing melting energy and develop new melting techniques and tools to improve the energy efficiency of melting in steel foundry operations.

  3. INVESTIGATION OF EFFICIENCY IMPROVEMENTS DURING CO2 INJECTION IN HYDRAULICALLY AND NATURALLY FRACTURED RESERVOIRS

    SciTech Connect (OSTI)

    David S. Schechter

    2004-10-10T23:59:59.000Z

    This report describes the work performed during the third year of the project, ''Investigating of Efficiency Improvements during CO{sub 2} Injection in Hydraulically and Naturally Fractured Reservoirs.'' The objective of this project is to perform unique laboratory experiments with artificial fractured cores (AFCs) and X-ray CT to examine the physical mechanisms of bypassing in HFR and NFR that eventually result in more efficient CO{sub 2} flooding in heterogeneous or fracture-dominated reservoirs. To achieve this objective, in this period we concentrated our effort on modeling fluid flow through rough fractures and investigating the grid orientation effect in rectangular grid blocks particularly at high mobility ratio as our precursor to use a compositional simulator. We are developing a robust simulator using Voronoi grids to accurately represent natural and induced fractures. We are also verifying the accuracy of the simulation using scaled laboratory experiments to provide a benchmark for our simulation technique. No such simulator currently exists so this capability will represent a major breakthrough in simulation of gas injection in fractured systems. The following sections outline the results that appear in this report.

  4. Energy Efficiency Improvement and Cost Saving Opportunities for the Dairy Processing Industry

    E-Print Network [OSTI]

    Brush, Adrian

    2012-01-01T23:59:59.000Z

    NEMA Premium Efficiency Electric Motor specification wasUnderloaded Electric Motor. Office of Energy Efficiency andElectric Apparatus Service Association (EASA) (2003). The Effect of Repair/Rewinding on Motor Efficiency.

  5. The residential energy map : catalyzing energy efficiency through remote energy assessments and improved data access

    E-Print Network [OSTI]

    Howland, Alexis (Alexis Blair)

    2013-01-01T23:59:59.000Z

    Although energy efficiency has potential to be a significant energy resource in the United States, many energy efficiency projects continue to go unrealized. This is especially true in the residential sector, where efficiency ...

  6. Energy Efficiency Improvement and Cost Saving Opportunities for the Dairy Processing Industry

    E-Print Network [OSTI]

    Brush, Adrian

    2012-01-01T23:59:59.000Z

    Council for an Energy-Efficient Economy, Washington, D.C. BCCouncil for an Energy-Efficient Economy, Washington, D.C.Council for an Energy-Efficient Economy, Washington, D.C.

  7. How to Make Appliance Standards Work: Improving Energy and Water Efficiency Test Procedures

    E-Print Network [OSTI]

    Lutz, Jim

    2012-01-01T23:59:59.000Z

    Hill. 1996. Energy test procedures for appliances. EnergyWater Efficiency Test Procedures Jim Lutz, Peter Biermayer,Water Efficiency Test Procedures Jim Lutz, Peter Biermayer,

  8. Assessment of Energy Efficiency Improvement and CO2 Emission Reduction Potentials in India's Cement Industry

    E-Print Network [OSTI]

    Morrow III, William R.

    2014-01-01T23:59:59.000Z

    Energy Efficiency Technologies in Integrated AssessmentEnergy Efficiency Technologies in Integrated Assessmentto Look Ahead (CSI/ECRA-Technology Papers). Ghosh, S. N. (

  9. Energy Efficiency Improvement and Cost Saving Oportunities for the Concrete Industry

    E-Print Network [OSTI]

    Kermeli, Katerina

    2013-01-01T23:59:59.000Z

    Best Practices, Case Study. Office of Energy Efficiency andBest Practices, A guide to Achieving Operational Efficiency, release 3.0. Office of Energy EfficiencyEnergy efficiency opportunities identified. BUILDING CAPACITY Tracking Monitoring and Systems established for tracking energy performance and best practices

  10. A Total Quality Management (TQM) Approach for Energy Savings Through Employee Awareness and Building Upgrades to Improve Energy Efficiency

    E-Print Network [OSTI]

    Stewart, D. H.

    A TOTAL QUALIn' MANAGEMENT (TQM) APPROACH FOR ENERGY SAVINGS THROUGH EMPLOYEE AWARENESS AND BUILDING UPGRADES TO IMPROVE ENERGY EFFICIENCY Daniel H. Stewart, Principal Engineer, Facilities Department, Rh6oe-Poulenc. Inc., Cranbury, NJ...) approach depends on the input from the end-users, clients, employees, power companies, various consultants and site operation management. This paper discusses the energy efficiency projects that are currently in progress at Rhone Poulenc's Corporate...

  11. Efficiency Maine Multifamily Efficiency Program

    Broader source: Energy.gov [DOE]

    Efficiency Maine's Multifamily Efficiency Program offers incentives to multifamily residency building owners for improving energy efficiency. Residencies must have 5 to 20 apartment units to...

  12. Fiber optic probe having fibers with endfaces formed for improved coupling efficiency and method using same

    DOE Patents [OSTI]

    O'Rourke, Patrick E. (Martinez, GA); Livingston, Ronald R. (Aiken, SC)

    1995-01-01T23:59:59.000Z

    A fiber optic probe for detecting scattered light, with transmitting and receiving fibers having slanted ends and bundled together to form a bevel within the tip of the probe. The probe comprises a housing with a transparent window across its tip for protecting the transmitting and receiving fibers held therein. The endfaces of the fibers are slanted, by cutting, polishing and the like, so that they lie in a plane that is not perpendicular to the longitudinal axis of the respective fiber. The fibers are held in the tip of the probe using an epoxy and oriented so that lines normal to the slanted endfaces are divergent with respect to one another. The epoxy, which is positioned substantially between the transmitting and receiving fibers, is tapered so that the transmitting fiber, the epoxy and the receiving fiber form a bevel of not more than 20 degrees. The angled fiber endfaces cause directing of the light cones toward each other, resulting in improved light coupling efficiency. A light absorber, such as carbon black, is contained in the epoxy to reduce crosstalk between the transmitting and receiving fibers.

  13. Fiber optic probe having fibers with endfaces formed for improved coupling efficiency and method using same

    DOE Patents [OSTI]

    O`Rourke, P.E.; Livingston, R.R.

    1995-03-28T23:59:59.000Z

    A fiber optic probe is disclosed for detecting scattered light, with transmitting and receiving fibers having slanted ends and bundled together to form a bevel within the tip of the probe. The probe comprises a housing with a transparent window across its tip for protecting the transmitting and receiving fibers held therein. The endfaces of the fibers are slanted, by cutting, polishing and the like, so that they lie in a plane that is not perpendicular to the longitudinal axis of the respective fiber. The fibers are held in the tip of the probe using an epoxy and oriented so that lines normal to the slanted endfaces are divergent with respect to one another. The epoxy, which is positioned substantially between the transmitting and receiving fibers, is tapered so that the transmitting fiber, the epoxy and the receiving fiber form a bevel of not more than 20 degrees. The angled fiber endfaces cause directing of the light cones toward each other, resulting in improved light coupling efficiency. A light absorber, such as carbon black, is contained in the epoxy to reduce crosstalk between the transmitting and receiving fibers. 3 figures.

  14. Improving energy efficiency of Embedded DRAM Caches for High-end Computing Systems

    SciTech Connect (OSTI)

    Mittal, Sparsh [ORNL] [ORNL; Vetter, Jeffrey S [ORNL] [ORNL; Li, Dong [ORNL] [ORNL

    2014-01-01T23:59:59.000Z

    With increasing system core-count, the size of last level cache (LLC) has increased and since SRAM consumes high leakage power, power consumption of LLCs is becoming a significant fraction of processor power consumption. To address this, researchers have used embedded DRAM (eDRAM) LLCs which consume low-leakage power. However, eDRAM caches consume a significant amount of energy in the form of refresh energy. In this paper, we propose ESTEEM, an energy saving technique for embedded DRAM caches. ESTEEM uses dynamic cache reconfiguration to turn-off a portion of the cache to save both leakage and refresh energy. It logically divides the cache sets into multiple modules and turns-off possibly different number of ways in each module. Microarchitectural simulations confirm that ESTEEM is effective in improving performance and energy efficiency and provides better results compared to a recently-proposed eDRAM cache energy saving technique, namely Refrint. For single and dual-core simulations, the average saving in memory subsystem (LLC+main memory) on using ESTEEM is 25.8% and 32.6%, respectively and average weighted speedup are 1.09X and 1.22X, respectively. Additional experiments confirm that ESTEEM works well for a wide-range of system parameters.

  15. Energy Efficiency Improvements to Wundar Hall, a Historic Building on the Concordia Campus, Milwaukee, Wisconsin

    SciTech Connect (OSTI)

    Karman, Nathan

    2012-11-29T23:59:59.000Z

    The Forest County Potawatomi Community (??FCPC? or ??Community?) implemented energy efficiency improvements to revitalize Wundar Hall, a 34,000 square foot (??SF?) building that was formerly used as a dormitory and is listed on the National Registry of Historic Places, into an office building. Wundar Hall is the first of many architecturally and historically significant buildings that the Community hopes to renovate at the former Concordia College campus, property on the near west side of Milwaukee that was taken into trust for the Community by the United States on July 10, 1990 (collectively, the ??Concordia Trust Property?). As part of this project, which was conducted with assistance from the Department of Energy??s Tribal Energy Program (??TEP?), the Community updated and/or replaced the building envelope, mechanical systems, the plumbing system, the electrical infrastructure, and building control systems. The project is expected to reduce the building??s natural gas consumption by 58% and the electricity consumption by 55%. In addition, the project was designed to act as a catalyst to further renovation of the Concordia Trust Property and the neighborhood. The City of Milwaukee has identified redevelopment of the Concordia Trust Property as a ??Catalytic Project? for revitalizing the near west side. The Tribe envisions a revitalized, mixed-use campus of community services, education, and economic development??providing services to the Indian community and jobs to the neighborhood.

  16. Improving Energy Efficiency of Compressed Air System Based onSystem Audit

    SciTech Connect (OSTI)

    Shanghai, Hongbo Qin; McKane, Aimee

    2007-06-01T23:59:59.000Z

    Industrial electric motor systems consume more than 600billion kWh annually, accounting for more than 50 percent of China selectricity use. The International Energy Agency estimates thatoptimizing motor systems results in an improvement of 20-25 percent,which is well-supported by experience in both the U.S. and China.Compressed air systems in China use 9.4 percent of all electricity.Compressed air use in China is growing rapidly, as new industrial plantsare built and the production processes of existing plants expand andchange. Most of these systems, whether existing or new, are not optimizedfor energy efficiency. This paper will present a practitioner'sperspective on theemergence of compressed air auditing services inChina, specifically as it pertains to Shanghai and surrounding areas.Both the methodology used and the market development of these compressedair system services will be addressed. Finally, the potential for energysaving opportunities will be described based on highlights from over 50compressed air system energy audits completed by Shanghai EnergyConservation Service Center, both during the United Nations IndustrialDevelopment Organization (UNIDO) China Motor System Energy ConservationProgram, and after this training program was completed.

  17. Improving the Fermilab Booster Notching Efficiency, Beam Losses and Radiation Levels

    SciTech Connect (OSTI)

    Rakhno, I.L.; Drozhdin, A.I.; Mokhov, N.V.; Sidorov, V.I.; Tropin, I.S.; /Fermilab

    2012-05-14T23:59:59.000Z

    A fast vertical 1.08-m long kicker (notcher) located in the Fermilab Booster Long-05 straight section is currently used to remove 3 out of 84 circulating bunches after injection to generate an abort gap. With the maximum magnetic field of 72.5 Gauss, it removes only 87% of the 3-bunch intensity at 400 MeV, with 75% loss on pole tips of the focusing Booster magnets, 11% on the Long-06 collimators, and 1% in the rest of the ring. We propose to improve the notching efficiency and reduce beam loss in the Booster by using three horizontal kickers in the Long-12 section. STRUCT calculations show that using horizontal notchers, one can remove up to 96% of the 3-bunch intensity at 400-700 MeV, directing 95% of it to a new beam dump at the Long-13 section. This fully decouples notching and collimation. The beam dump absorbs most of the impinging proton energy in its jaws. The latter are encapsulated into an appropriate radiation shielding that reduces impact on the machine components, personnel and environment to the tolerable levels. MARS simulations show that corresponding prompt and residual radiation levels can be reduced ten times compared to the current ones.

  18. Magnetism reflectometer study shows LiF layers improve efficiency in spin valve devices

    SciTech Connect (OSTI)

    Bardoel, Agatha A [ORNL; Lauter, Valeria [ORNL; Szulczewski, Greg J [ORNL

    2012-01-01T23:59:59.000Z

    New, more efficient materials for spin valves - a device used in magnetic sensors, random access memories, and hard disk drives - may be on the way based on research using the magnetism reflectometer at Oak Ridge National Laboratory (ORNL). Spin valve devices work by means of two or more conducting magnetic material layers that alternate their electrical resistance depending on the layers alignment. Giant magnetoresistance is a quantum mechanical effect first observed in thin film structures about 20 years ago. The effect is observed as a significant change in electrical resistance, depending on whether the magnetization of adjacent ferromagnetic layers is in a parallel or an antiparallel magnetic alignment. 'What we are doing here is developing new materials. The search for new materials suitable for injecting and transferring carriers with a preferential spin orientation is most important for the development of spintronics,' said Valeria Lauter, lead instrument scientist on the magnetism reflectometer at the Spallation Neutron Source (SNS), who collaborated on the experiment. The researchers discovered that the conductivity of such materials is improved when an organic polymer semiconductor layer is placed between the magnetic materials. Organic semiconductors are now the material of choice for future spin valve devices because they preserve spin coherence over longer times and distances than conventional semiconductors. While research into spin valves has been ongoing, research into organic semiconductors is recent. Previous research has shown that a 'conductivity mismatch' exists in spin valve systems in which ferromagnetic metal electrodes interface with such organic semiconductors as Alq3 ({pi}-conjugated molecule tris(8-hydroxy-quinoline) aluminium). This mismatch limits the efficient injection of the electrons from the electrodes at the interface with the semiconductor material. However, lithium fluoride (LiF), commonly used in light-emitting diodes, has been found to enhance the injection of electrons through the semiconductor. Researchers from the University of Alabama and ORNL used polarized neutrons at the magnetism reflectometer at SNS to investigate the electronic, magnetic, and structural properties of the electrodes in a novel system. In this system, the magnetic layers cobalt and Ni{sub 80}Fe{sub 20} are interfaced with spacer layers composed of the organic semiconductor Alq3. A coupling layer of LiF is inserted to separate the magnetized layers from the semiconductor. 'ALQ3 is an organic semiconductor material,' said Lauter. 'Normally in these systems a first magnetic layer is grown on a hard substrate so that one can get the controlled magnetic parameters. Then you grow the organic semiconductor layer, followed by another magnetic material layer, such as cobalt.' In addition to determining the effect of the LiF layers on the efficiency of the electron injection, the researchers wanted to determine the magnetic properties of the cobalt and Ni{sub 80}Fe{sub 20} as well as the interfacial properties: whether there is interdiffusion of cobalt through the LiF layer to the semiconductor, for example. The researchers used polarized neutrons at beam line 4A to probe the entire, layer-by-layer assembly of the system. 'Reflectometry with polarized neutrons is a perfect method to study thin magnetic films,' Lauter said. 'These thin films - if you put one on a substrate, you see it just like a mirror. However, this mirror has a very complicated internal multilayer structure. The neutrons look inside this complicated structure and characterize each and every interface. Due to the depth sensitivity of the method, we measure the structural and magnetic properties of each layer with the resolution of 0.5 nm. The neutron scattering results found that inserting LiF as a barrier significantly improves the quality of the interface, increasing the injection of electrons from the magnetic layer through the organic semiconductor in the spin valve and enhancing the overall properties of the system. In related work the magneti

  19. Advanced Electric Systems and Aerodynamics for Efficiency Improvements in Heavy Duty Trucks

    SciTech Connect (OSTI)

    Larry Slone; Jeffrey Birkel

    2007-10-31T23:59:59.000Z

    The Advanced Electric Systems and Aerodynamics for Efficiency Improvements in Heavy Duty Trucks program (DE-FC26-04NT42189), commonly referred to as the AES program, focused on areas that will primarily benefit fuel economy and improve heat rejection while driving over the road. The AES program objectives were to: (1) Analyze, design, build, and test a cooling system that provided a minimum of 10 percent greater heat rejection in the same frontal area with no increase in parasitic fan load. (2) Realize fuel savings with advanced power management and acceleration assist by utilizing an integrated starter/generator (ISG) and energy storage devices. (3) Quantify the effect of aerodynamic drag due to the frontal shape mandated by the area required for the cooling system. The program effort consisted of modeling and designing components for optimum fuel efficiency, completing fabrication of necessary components, integrating these components into the chassis test bed, completing controls programming, and performance testing the system both on a chassis dynamometer and on the road. Emission control measures for heavy-duty engines have resulted in increased engine heat loads, thus introducing added parasitic engine cooling loads. Truck electrification, in the form of thermal management, offers technological solutions to mitigate or even neutralize the effects of this trend. Thermal control offers opportunities to avoid increases in cooling system frontal area and forestall reduced fuel economy brought about by additional aerodynamic vehicle drag. This project explored such thermal concepts by installing a 2007 engine that is compliant with current regulations and bears additional heat rejection associated with meeting these regulations. This newer engine replaced the 2002 engine from a previous project that generated less heat rejection. Advanced power management, utilizing a continuously optimized and controlled power flow between electric components, can offer additional fuel economy benefits to the heavy-duty trucking industry. Control software for power management brings added value to the power distribution and energy storage architecture on board a truck with electric accessories and an ISG. The research team has built upon a previous truck electrification project, formally, 'Parasitic Energy Loss Reduction and Enabling Technologies for Class 7/8 Trucks', DE-FC04-2000AL6701, where the fundamental concept of electrically-driven accessories replacing belt/gear-driven accessories was demonstrated on a Kenworth T2000 truck chassis. The electrical accessories, shown in Figure 1, were controlled to provide 'flow on demand' variable-speed operation and reduced parasitic engine loads for increased fuel economy. These accessories also provided solutions for main engine idle reduction in long haul trucks. The components and systems of the current project have been integrated into the same Kenworth T2000 truck platform. Reducing parasitic engine loading by decoupling accessory loads from the engine and driving them electrically has been a central concept of this project. Belt or gear-driven engine accessories, such as water pump, air conditioning compressor, or air compressor, are necessarily tied to the engine speed dictated by the current vehicle operating conditions. These conventional accessory pumps are sized to provide adequate flow or pressure at low idle or peak torque speeds, resulting in excess flow or pressure at cruising or rated speeds. The excess flow is diverted through a pressure-minimizing device such as a relief valve thereby expending energy to drive unnecessary and inefficient pump operation. This inefficiency causes an increased parasitic load to the engine, which leads to a loss of usable output power and decreased fuel economy. Controlling variable-speed electric motors to provide only the required flow or pressure of a particular accessory system can yield significant increases in fuel economy for a commercial vehicle. Motor loads at relatively high power levels (1-5 kW, or higher) can be efficiently provided

  20. Improving Energy Efficiency of Compressed Air System Based on System Audit

    E-Print Network [OSTI]

    Shanghai, Hongbo Qin; McKane, Aimee

    2008-01-01T23:59:59.000Z

    energy efficiency goals and adopt energy conservation measures. Application of the types of compressed air best practicesEnergy Efficiency and Market Potential of Electric Motor System in China. China Machine Pressu re, [4] Best Practices

  1. Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems

    E-Print Network [OSTI]

    Ho, Tony

    2012-01-01T23:59:59.000Z

    condenser, and low thermal efficiencies caused by low boiler pressures that are required for superheating the steam and

  2. Energy efficient data centers

    E-Print Network [OSTI]

    Tschudi, William; Xu, Tengfang; Sartor, Dale; Koomey, Jon; Nordman, Bruce; Sezgen, Osman

    2004-01-01T23:59:59.000Z

    wit h energy efficiency Improving Best Practices Linkwit h energy efficiency Improving Best Practices Linkwit h energy efficiency Improving Best Practices Link

  3. Fostering a New Generation of Geothermal Workers | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Fostering a New Generation of Geothermal Workers Fostering a New Generation of Geothermal Workers October 5, 2010 - 4:31pm Addthis Andy Oare Andy Oare Former New Media Strategist,...

  4. Solar Energy Materials & Solar Cells 91 (2007) 15991610 Improving solar cell efficiency using photonic band-gap materials

    E-Print Network [OSTI]

    Dowling, Jonathan P.

    Solar Energy Materials & Solar Cells 91 (2007) 1599­1610 Improving solar cell efficiency using) solar energy conversion systems (or solar cells) are the most widely used power systems. However and reliable solar-cell devices is presented. We show that due their ability to modify the spectral and angular

  5. Improvement of Power-Performance Efficiency for High-End Computing Rong Ge, Xizhou Feng, Kirk W. Cameron

    E-Print Network [OSTI]

    Freeh, Vincent

    . Earth Simulator requires 18 megawatts of power. Petaflop systems may require 100 megawatts of power[2], nearly the output of a small power plant (300 megawatts). At $100 per megawatt ($.10 per kilowatt), peakImprovement of Power-Performance Efficiency for High-End Computing Rong Ge, Xizhou Feng, Kirk W

  6. Improving the lifetime performance of ceramic fuel cells Fuel cells generate electricity from fuels more efficiently and with

    E-Print Network [OSTI]

    Rollins, Andrew M.

    to the development of low-cost, modular and fuel-flexible solid oxide fuel cell technology. #12;2014 Improving the lifetime performance of ceramic fuel cells Fuel cells generate electricity from fuels more efficiently and with fewer emissions per watt than burning fossil fuels. But as fuel cells

  7. The use of cotton blue stain to improve the efficiency of picking and identifying chironomid head capsules

    E-Print Network [OSTI]

    Bern, Universität

    NOTE The use of cotton blue stain to improve the efficiency of picking and identifying chironomid Cotton blue was added to sediment sam- ples at least 2 h before chironomid head capsules were picked during the picking process. Cotton blue has been used previously to stain chitin in fungal cell walls

  8. Department of Mechanical Engineering Spring 2013 Improving the Efficiency of a Non-Pressurized Thermal Storage Tank

    E-Print Network [OSTI]

    Demirel, Melik C.

    -Pressurized Thermal Storage Tank Overview Hydroflex had provided the team with a tank and the heat exchanger coil that was to be used to heat the tank. While attempting to improve the tank's efficiency, the team was required to keep certain parameters of the tank the same, such as it insulation and the type of coil that was used

  9. The Value of PORTS to the Nation How Real-time Observations Improve Safety and Economic Efficiency of Maritime Commerce

    E-Print Network [OSTI]

    The Value of PORTS® to the Nation How Real-time Observations Improve Safety and Economic Efficiency. Credit: Steve O'Malley, Ocean Tech Services, LLC #12;Our lives depend on maritime commerce http://tidesandcurrents.noaa.gov/ports in accidents on the nation's waterways and major seaports. Real-time observations from PORTS®, or the Physical

  10. Continuous Measurement of Carbon Monoxide Improves Combustion Efficiency of CO Boilers

    E-Print Network [OSTI]

    Gilmour, W. A.; Pregler, D. N.; Branham, R. L.; Prichard, J. J.

    1981-01-01T23:59:59.000Z

    The paper describes the application of in-situ flue gas CO measurement in the operation of CO Boilers and details the steps needed to optimize combustion efficiency....

  11. Mitigating Carbon Emissions: the Potential of Improving Efficiency of Household Appliances in China

    E-Print Network [OSTI]

    Lin, Jiang

    2006-01-01T23:59:59.000Z

    efficiency standards. Total energy consumption (TEC) is thusarrived as follows, Total Energy Consumption = ? Stock(i) *Retirement) And total energy consumption for a particular

  12. Efficiency Improvement Opportunities for Personal Computer Monitors: Implications for Market Transformation Programs

    E-Print Network [OSTI]

    Park, Won Young

    2013-01-01T23:59:59.000Z

    EU-ENERGY STAR (2007). ENERGY STAR Market http://www.eu-2010). ENERGY STAR Unit Shipment and Market Penetrationtwo implications for energy efficiency market transformation

  13. Mitigating Carbon Emissions: the Potential of Improving Efficiency of Household Appliances in China

    E-Print Network [OSTI]

    Lin, Jiang

    2006-01-01T23:59:59.000Z

    Water Heaters .air-conditioners, and water heaters are growing rapidly duedue to more efficient water heater technologies are large as

  14. Energy Efficiency Improvement and Cost Saving Opportunities for the Dairy Processing Industry

    E-Print Network [OSTI]

    Brush, Adrian

    2012-01-01T23:59:59.000Z

    Characterization: Steam Turbines. Arlington, Virginia.scale CHP systems use steam turbines. Switching to naturalsystem efficiency of a steam turbine-based CHP system (80%

  15. Fostering Behavior Change in the Energy Efficiency Market Peer Exchange

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: AlternativeEnvironment, Safety and HealthDepartmentFindings of NoFleetFoodFossil Energy RSSCall |

  16. Energy Efficiency Improvement and Cost Saving Opportunities for the U.S. Iron and Steel Industry An ENERGY STAR(R) Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Worrell, Ernst

    2011-01-01T23:59:59.000Z

    Nath (2000). Improve Steam Turbine Efficiency. HydrocarbonOIT (1999). Rebuilding steam turbine generator reduces costscan be driven by a steam turbine or an electric motor. Hot

  17. Investigating potential light-duty efficiency improvements through simulation of turbo-compounding and waste-heat recovery systems

    SciTech Connect (OSTI)

    Edwards, Kevin Dean [ORNL; Wagner, Robert M [ORNL; Briggs, Thomas E [ORNL

    2010-01-01T23:59:59.000Z

    Modern diesel engines used in light-duty transportation applications have peak brake thermal efficiencies in the range of 40-42% for high-load operation with substantially lower efficiencies at realistic road-load conditions. Thermodynamic energy and exergy analysis reveals that the largest losses from these engines are due to combustion irreversibility and heat loss to the coolant, through the exhaust, and by direct convection and radiation to the environment. Substantial improvement in overall engine efficiency requires reducing or recovering these losses. Unfortunately, much of the heat transfer either occurs at relatively low temperatures resulting in large entropy generation (such as in the air-charge cooler), is transferred to low-exergy flow streams (such as the oil and engine coolant), or is radiated or convected directly to the environment. While there are significant opportunities for recovery from the exhaust and EGR cooler for heavy-duty applications, achieving similar benefits for light-duty applications is complicated by transient, low-load operation at typical driving conditions and competition with the turbocharger and aftertreatment system for the limited thermal resources. We have developed an organic Rankine cycle model using GT-Suite to investigate the potential for efficiency improvement through waste-heat recovery from the exhaust and EGR cooler of a light-duty diesel engine. The model is used to examine the effects of efficiency-improvement strategies such as cylinder deactivation, use of advanced materials and improved insulation to limit ambient heat loss, and turbo-compounding on the steady-state performance of the ORC system and the availability of thermal energy for downstream aftertreatment systems. Results from transient drive-cycle simulations are also presented, and we discuss strategies to address operational difficulties associated with transient drive cycles and balancing the thermal requirements of waste-heat recovery, turbocharging or turbo-compounding, and exhaust aftertreatment.

  18. Department of Energy Issues Draft Renewable Energy and Efficient...

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy Issues Draft Renewable Energy and Efficient Energy Projects Solicitation to Foster Clean Energy Innovation Department of Energy Issues Draft Renewable Energy...

  19. Materials physics and device development for improved efficiency of GaN HEMT high power amplifiers.

    SciTech Connect (OSTI)

    Kurtz, Steven Ross; Follstaedt, David Martin; Wright, Alan Francis; Baca, Albert G.; Briggs, Ronald D.; Provencio, Paula Polyak; Missert, Nancy A.; Allerman, Andrew Alan; Marsh, Phil F.; Koleske, Daniel David; Lee, Stephen Roger; Shul, Randy John; Seager, Carleton Hoover; Tigges, Christopher P.

    2005-12-01T23:59:59.000Z

    GaN-based microwave power amplifiers have been identified as critical components in Sandia's next generation micro-Synthetic-Aperture-Radar (SAR) operating at X-band and Ku-band (10-18 GHz). To miniaturize SAR, GaN-based amplifiers are necessary to replace bulky traveling wave tubes. Specifically, for micro-SAR development, highly reliable GaN high electron mobility transistors (HEMTs), which have delivered a factor of 10 times improvement in power performance compared to GaAs, need to be developed. Despite the great promise of GaN HEMTs, problems associated with nitride materials growth currently limit gain, linearity, power-added-efficiency, reproducibility, and reliability. These material quality issues are primarily due to heteroepitaxial growth of GaN on lattice mismatched substrates. Because SiC provides the best lattice match and thermal conductivity, SiC is currently the substrate of choice for GaN-based microwave amplifiers. Obviously for GaN-based HEMTs to fully realize their tremendous promise, several challenges related to GaN heteroepitaxy on SiC must be solved. For this LDRD, we conducted a concerted effort to resolve materials issues through in-depth research on GaN/AlGaN growth on SiC. Repeatable growth processes were developed which enabled basic studies of these device layers as well as full fabrication of microwave amplifiers. Detailed studies of the GaN and AlGaN growth of SiC were conducted and techniques to measure the structural and electrical properties of the layers were developed. Problems that limit device performance were investigated, including electron traps, dislocations, the quality of semi-insulating GaN, the GaN/AlGaN interface roughness, and surface pinning of the AlGaN gate. Surface charge was reduced by developing silicon nitride passivation. Constant feedback between material properties, physical understanding, and device performance enabled rapid progress which eventually led to the successful fabrication of state of the art HEMT transistors and amplifiers.

  20. Theoretical Limits of Photovoltaics Efficiency and Possible Improvements by Intuitive Approaches Learned from Photosynthesis and Quantum Coherence

    E-Print Network [OSTI]

    Fahhad H Alharbi; Sabre Kais

    2014-02-09T23:59:59.000Z

    In this review, we present and discussed the main trends in photovoltaics with emphasize on the conversion efficiency limits. The theoretical limits of various photovoltaics device concepts are presented and analyzed using a flexible detailed balance model where more discussion emphasize is toward the losses. Also, few lessons from nature and other fields to improve the conversion efficiency in photovoltaics are presented and discussed as well. From photosynthesis, the perfect exciton transport in photosynthetic complexes can be utilized for PVs. Also, we present some lessons learned from other fields like recombination suppression by quantum coherence. For example, the coupling in photosynthetic reaction centers is used to suppress recombination in photocells.

  1. Energy Efficiency Improvement and Cost Saving Oportunities for the Concrete Industry

    E-Print Network [OSTI]

    Kermeli, Katerina

    2013-01-01T23:59:59.000Z

    a predictive and preventive maintenance program. The Motor1,700 tons of CO 2 per year. Preventive maintenance.A well structured preventive maintenance program can improve

  2. Cummins Improving Pick-Up Truck Engine Efficiency with DOE and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    better fuel economy. | Photo courtesy of Cummins. Road to Fuel Savings: Clean Diesel Trucks Gain Momentum with Nissan and Cummins Collaboration Cummins Improving Pick-Up Truck...

  3. The potential and challenges of monitoring-supported energy efficiency improvement strategies in existing buildings

    E-Print Network [OSTI]

    Schub, M.; Mahdavi, A.; Simonis, H.; Menzel, K.; Browne, D.

    2012-01-01T23:59:59.000Z

    The ongoing EU-supported CAMPUS 21 explores the energy efficiency potential of integrated security, control, and building management software. The main objective of the project is to compare the energy and indoor-environmental performance...

  4. Energy Efficiency Improvements and Cost Saving Opportunities in the Corn Wet Milling Industry

    E-Print Network [OSTI]

    Galitsky, C.; Worrell, E.

    Corn wet milling is the most energy intensive industry in the food and kindred products group (SIC 20). Plants typically spend approximately $15 to 25 million per year on energy, one of its largest operating costs, making energy efficiency...

  5. Energy Efficiency Improvement and Cost Saving Opportunities for the Dairy Processing Industry

    E-Print Network [OSTI]

    Brush, Adrian

    2012-01-01T23:59:59.000Z

    industry is for process cooling, freezing, and cold storage.Cold Storage Facilities. Proceedings of the 2005 ACEEE Summer Study on Energy Efficiency in Industry,industry. Unit processes such as pasteurization, homogenization, and cold storage

  6. Understanding Loss Mechanisms and Efficiency Improvement Options for HCCI Engines Using Detailed Exergy Analysis

    E-Print Network [OSTI]

    Saxena, Samveg

    2013-01-01T23:59:59.000Z

    T.J. , 2011, Defining Engine Efficiency Limits, 17th DEERof a Wet Ethanol Fuelled HCCI Engine Combined With Organica wet ethanol operated HCCI engine based on first and second

  7. How to Make Appliance Standards Work: Improving Energy and Water Efficiency Test Procedures

    E-Print Network [OSTI]

    Lutz, Jim

    2012-01-01T23:59:59.000Z

    efficiency of commercial water heaters and hot water supplyheat pump water heaters). http://edocket.access.gpo.gov/2004/CSA 4.3- 2004 Gas Water Heaters - Volume III, Storage

  8. Energy Efficiency Improvement and Cost Saving Opportunities for the Dairy Processing Industry

    E-Print Network [OSTI]

    Brush, Adrian

    2012-01-01T23:59:59.000Z

    Characterization: Gas Turbines. Arlington, Virginia.is higher than that of a gas turbine-based CHP system (74%electrical efficiency of a gas turbine-based CHP system is

  9. Use of a Conversational Computer Program in Operator Training for Improved Energy Efficiency

    E-Print Network [OSTI]

    Brickman, S. W.; Mergens, E. H.

    1980-01-01T23:59:59.000Z

    Energy efficient operation of process equipment requires attentive operation by well-trained personnel. Use of a computer simulation model together with a conversational computer program, which provides dynamic game playing opportunities...

  10. The FEMP Awards Program: Fostering Institutional Change and Energy Management Excellence

    SciTech Connect (OSTI)

    McDermott, Christa; Malone, Elizabeth L.

    2014-05-20T23:59:59.000Z

    This report assesses the use of institutional change principles and the institutional impact of award-winning projects through interviews with 22 Department of Energy Federal Energy Management Program (DOE FEMP) award winners. Award winners identified institutional facilitators and barriers in their projects and programs as well as factors in their implementation processes, thus providing information that can guide other efforts. We found that award winners do use strategies based on eight principles of institutional change, most frequently in terms of making changes to infrastructure, engaging leadership, and capitalizing on multiple motivations for making an energy efficiency improvement. The principles drawn on the least often were commitment and social empowerment. Award winners also faced five major types of obstacles that were institutional in nature: lack of resources, constraints of rules, psychological barriers, lack of information, and communication problems. We also used the seven categories of Energy Management Excellence (EME) as a lens to interpret the interview data and assess whether these categories relate to established institutional change principles. We found that the eight principles reflect strategies that have been found to be useful in improving energy efficiency in organizations, whereas the EME categories capture more of a blend of social contextual factors and strategies. The EME categories fill in some of the social context gaps that facilitate institutional change and energy management excellence, for example, personal persistence, a culture that supports creativity and innovation, regular engagement with tenants, contractors, and staff at all levels. Taking together the use of principles, EME criteria, and obstacles faced by interviewees, we make recommendations for how FEMP can better foster institutional change in federal agencies.

  11. Improving the accuracy and efficiency of time-resolved electronic spectra calculations: Cellular dephasing representation with a prefactor

    SciTech Connect (OSTI)

    Zambrano, Eduardo; ulc, Miroslav; Van?ek, Ji? [Laboratory of Theoretical Physical Chemistry, Institut des Sciences et Ingnierie Chimiques, cole Polytechnique Fdrale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland)] [Laboratory of Theoretical Physical Chemistry, Institut des Sciences et Ingnierie Chimiques, cole Polytechnique Fdrale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland)

    2013-08-07T23:59:59.000Z

    Time-resolved electronic spectra can be obtained as the Fourier transform of a special type of time correlation function known as fidelity amplitude, which, in turn, can be evaluated approximately and efficiently with the dephasing representation. Here we improve both the accuracy of this approximationwith an amplitude correction derived from the phase-space propagatorand its efficiencywith an improved cellular scheme employing inverse Weierstrass transform and optimal scaling of the cell size. We demonstrate the advantages of the new methodology by computing dispersed time-resolved stimulated emission spectra in the harmonic potential, pyrazine, and the NCO molecule. In contrast, we show that in strongly chaotic systems such as the quartic oscillator the original dephasing representation is more appropriate than either the cellular or prefactor-corrected methods.

  12. New configurations of a heat recovery absorption heat pump integrated with a natural gas boiler for boiler efficiency improvement

    SciTech Connect (OSTI)

    Qu, Ming [Purdue University, West Lafayette, IN; Abdelaziz, Omar [ORNL; Yin, Hongxi [Southeast University, Nanjing, China

    2014-01-01T23:59:59.000Z

    Conventional natural gas-fired boilers exhaust flue gas direct to the atmosphere at 150 200 C, which, at such temperatures, contains large amount of energy and results in relatively low thermal efficiency ranging from 70% to 80%. Although condensing boilers for recovering the heat in the flue gas have been developed over the past 40 years, their present market share is still less than 25%. The major reason for this relatively slow acceptance is the limited improvement in the thermal efficiency of condensing boilers. In the condensing boiler, the temperature of the hot water return at the range of 50 60 C, which is used to cool the flue gas, is very close to the dew point of the water vapor in the flue gas. Therefore, the latent heat, the majority of the waste heat in the flue gas, which is contained in the water vapor, cannot be recovered. This paper presents a new approach to improve boiler thermal efficiency by integrating absorption heat pumps with natural gas boilers for waste heat recovery (HRAHP). Three configurations of HRAHPs are introduced and discussed. The three configurations are modeled in detail to illustrate the significant thermal efficiency improvement they attain. Further, for conceptual proof and validation, an existing hot water-driven absorption chiller is operated as a heat pump at operating conditions similar to one of the devised configurations. An overall system performance and economic analysis are provided for decision-making and as evidence of the potential benefits. These three configurations of HRAHP provide a pathway to achieving realistic high-efficiency natural gas boilers for applications with process fluid return temperatures higher than or close to the dew point of the water vapor in the flue gas.

  13. Energy Efficiency Improvement and Cost Saving Opportunities for Cement Making. An ENERGY STAR Guide for Energy and Plant Managers

    SciTech Connect (OSTI)

    Galitsky, Christina; Worrell, Ernst; Galitsky, Christina

    2008-01-01T23:59:59.000Z

    The cost of energy as part of the total production costs in the cement industry is significant, warranting attention for energy efficiency to improve the bottom line. Historically, energy intensity has declined, although more recently energy intensity seems to have stabilized with the gains. Coal and coke are currently the primary fuels for the sector, supplanting the dominance of natural gas in the 1970s. Most recently, there is a slight increase in the use of waste fuels, including tires. Between 1970 and 1999, primary physical energy intensity for cement production dropped 1 percent/year from 7.3 MBtu/short ton to 5.3 MBtu/short ton. Carbon dioxide intensity due to fuel consumption and raw material calcination dropped 16 percent, from 609 lb. C/ton of cement (0.31 tC/tonne) to 510 lb. C/ton cement (0.26 tC/tonne). Despite the historic progress, there is ample room for energy efficiency improvement. The relatively high share of wet-process plants (25 percent of clinker production in 1999 in the U.S.) suggests the existence of a considerable potential, when compared to other industrialized countries. We examined over 40 energy efficient technologies and measures and estimated energy savings, carbon dioxide savings, investment costs, and operation and maintenance costs for each of the measures. The report describes the measures and experiences of cement plants around the wold with these practices and technologies. Substantial potential for energy efficiency improvement exists in the cement industry and in individual plants. A portion of this potential will be achieved as part of (natural) modernization and expansion of existing facilities, as well as construction of new plants in particular regions. Still, a relatively large potential for improved energy management practices exists.

  14. Energy Efficiency Improvement by Measurement and Control: A Case Study of Reheating Furnaces in the Steel Industry

    E-Print Network [OSTI]

    Martensson, A.

    ENERGY EFFICIENCY IMPROVEMENT BY MEASUREMENT AND CONTROL A case study of reheating furnaces in the steel industry Anders Mlirtensson Department of Environmental and Energy Systems Studies Lund University S-22362 Lund Sweden ABSTRACT... of process studied, as a result of approach using steel reheating furnaces as a case study. investments in information technology; it is also concluded that The steel industry is a large user of energy: in Sweden it used such investments are cost...

  15. Improved Energy Conversion Efficiency in Wide-Bandgap Cu(In,Ga)Se2 Solar Cells: Preprint

    SciTech Connect (OSTI)

    Contreras, M.; Mansfield, L.; Egaas, B.; Li, J.; Romero, M.; Noufi, R.; Rudiger-Voigt, E.; Mannstadt, W.

    2011-07-01T23:59:59.000Z

    This report outlines improvements to the energy conversion efficiency in wide bandgap (Eg>1.2 eV) solar cells based on CuIn1-xGaxSe2. Using (a) alkaline containing high temperature glass substrates, (b) elevated substrate temperatures 600?C-650?C and (c) high vacuum evaporation from elemental sources following NREL's three-stage process, we have been able to improve the performance of wider bandgap solar cells with 1.2efficiencies >18% for absorber bandgaps ~1.30 eV and efficiencies ~16% for bandgaps up to ~1.45 eV. In comparing J-V parameters in similar materials, we establish gains in the open-circuit voltage and, to a lesser degree, the fill factor value, as the reason for the improved performance. The higher voltages seen in these wide gap materials grown at high substrate temperatures may be due to reduced recombination at the grain boundary of such absorber films. Solar cell results, absorber materials characterization, and experimental details are reported.

  16. Evaluation of design options for improving the energy efficiency of an environmentally safe domestic refrigerator-freezer

    SciTech Connect (OSTI)

    Vineyard, E.A.; Sand, J.R. [Oak Ridge National Lab., TN (United States); Bohman, R.H.

    1995-03-01T23:59:59.000Z

    In order to reduce greenhouse emissions from power plants and respond to regulatory actions arising from the National Appliance Energy Conservation Act (NAECA), several design options were investigated for improving the energy efficiency of a conventionally designed, domestic refrigerator-freezer. The options, such as improved cabinet insulation and high-efficiency compressor and fans, were incorporated into a prototype refrigerator-freezer cabinet and refrigeration system to produce a unit that is superior from an environmental viewpoint due to its lower energy consumption and the use of refrigerant HFC-134a as a replacement for CFC-12. Baseline energy performance of the original 1993 production refrigerator-freezer, along with cabinet heat load and compressor calorimeter test results, were extensively documented to provide a firm basis for experimentally measured energy savings. A detailed refrigerator system computer model was used to evaluate the energy savings for several design modifications that, collectively, could achieve a targeted energy consumption of 1.00 kWh/d for a 20 ft{sup 3} (570 l) top-mount, automatic-defrost, refrigerator-freezer. The energy consumption goal represents a 50% reduction in the 1993 NAECA standard for units of this size. Following the modeling simulation, laboratory prototypes were fabricated and tested to experimentally verify the analytical results and aid in improving the model in those areas where discrepancies occurred. While the 1.00 kWh/d goal was not achieved with the modifications, a substantial energy efficiency improvement of 22% (1.41 kWh/d) was demonstrated using near-term technologies. It is noted that each improvement exacts a penalty in terms of increased cost or system complexity/reliability. Further work on this project will analyze cost-effectiveness of the design changes and investigate alternative, more-elaborate, refrigeration system changes to further reduce energy consumption.

  17. Improved high-efficiency silicon concentrator cells for medium concentration applications

    SciTech Connect (OSTI)

    Sinton, R.A.; Swanson, R.M.

    1989-02-01T23:59:59.000Z

    This report describes efforts toward design simplification of Si concentrator cells capable of efficiencies in the 25-30% range. A discussion is given on the principal issues involved in the design and fabrication of both backside-contact cells and cells with frontside grids. Several proposed designs are detailed. Results include 23% two-sided 1.5625 cm/sup 2/ cells operating at 14 W/cm/sup 2/ of incident power. This simple design requires only one mask alignment and should approach 25% with further development. With an additional alignment, cells that are 27% efficient are feasible. Neither of these designs will require prismatic cover glasses to achieve this performance. In addition, a new backside contact cell design is described that requires only one mask and no alignments. Cells of this type were demonstrated to be 15.4% efficient at 4 W/cm/sup 2/, without AR coatings or texturization. Fundamental studies of the limiting parameters indicate that the design will exceed 25% in efficiency when fully developed. Finally, a new light-trapping scheme is proposed which could have the effect of increasing the attainable efficiencies of silicon concentrator cells to 32-33%. This same scheme might also be utilized in ways which would allow very simple low-cost cell designs to achieve results comparable to the best cells demonstrated to date. Assorted other practically-oriented results on metalization development, cell mounting, and qualification tests are also presented. 26 refs., 31 figs.

  18. IMPROVING ENERGY EFFICIENCY AND REDUCING COSTS IN THE DRINKING WATER SUPPLY INDUSTRY: An ENERGY STAR Resource Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Brown, Moya Melody, Camilla Dunham Whitehead, Rich

    2011-01-01T23:59:59.000Z

    Best Practices. Case StudyThe Challenge: Improving Ventilation System Energy EfficiencyEnergy Efficiency & Renewable Energy (EERE), Office of Industrial Technologies. 2000. Best PracticesEnergy Efficiency Actions for Plant Personnel96 iii Appendix D: Assessing Energy Management Systems for Best Practices .

  19. R and D for improved efficiency, small steam turbines: Phase I. Final technical report

    SciTech Connect (OSTI)

    None

    1980-02-01T23:59:59.000Z

    Results of an investigation of the development of a class of highly efficient steam turbines in the 500 to 5000 horsepower range are presented; these new machines are expected to have efficiences between 70 and 85%. The turbines are based on the concept of one or more high-speed radial inflow turbine modules driving a low-speed bull gear. Each module operates then at optimal specific speed, which yields high efficiency compared to the partial admission Curtiss stages currently used. The project has two phases. Phase 1 includes investigation and interpretation of the market for small steam turbines and definition of the radial inflow turbine (RIT) configurations best suited to penetrate a significant portion of this market. Phase 1 concludes with a recommended configuration. (MCW)

  20. Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems

    E-Print Network [OSTI]

    Ho, Tony

    2012-01-01T23:59:59.000Z

    engineer, improved upon the steam engine then patented theBoulton and Watt steam engine in 1775 [6]. Since then thean atmospheric heat engine that used steam) was developed by

  1. Opportunities for Energy Efficiency Improvements in Oil Production in Kansas: A Case Study

    E-Print Network [OSTI]

    Egbert, R. I.; King, J. E.

    In 1993 investigators from the Center for Energy Studies at Wichita State University (WSU) and Meridian Corporation in Overland Park, Kansas began a study to investigate whether there were any technical modifications and/or improvements that could...

  2. Analysis of improvements in system efficiency and safety at highway-railroad-pedestrian grade crossings

    E-Print Network [OSTI]

    Tydlacka, Jonathan Michael

    2013-02-22T23:59:59.000Z

    The purpose of this project was to perform micro-simulation analyses on intersections near Highway-Railroad Grade Crossings to determine if controlling mean train speed and train speed variability would improve safety and reduce delays. The first...

  3. Assessment of Energy Efficiency Improvement and CO2 Emission Reduction Potentials in India's Cement Industry

    E-Print Network [OSTI]

    Morrow III, William R.

    2014-01-01T23:59:59.000Z

    ModelInputs EmissionsFactors CO2EmissionfactorforgridtonneCO2/MWh) CO2Emissionfactorforfuel (tonneCO2/TJ)Improvements and CO2 Emission Reduction Potentials in the

  4. North American Overview - Heat Pumps Role in Buildings Energy Efficiency Improvement

    SciTech Connect (OSTI)

    Baxter, Van D [ORNL; Bouza, Antonio [U.S. Department of Energy; Gigure, Daniel [Natural Resources Canada; Hosatte, Sophie [Natural Resources Canada

    2011-01-01T23:59:59.000Z

    A brief overview of the situation in North America regarding buildings energy use and the current and projected heat pump market is presented. R&D and deployment strategies for heat pumps, and the impacts of the housing market and efficiency regulations on the heating and cooling equipment market are summarized as well.

  5. Method and apparatus for improved efficiency in a pulse-width-modulated alternating current motor drive

    DOE Patents [OSTI]

    Konrad, Charles E. (Roanoke, VA); Boothe, Richard W. (Roanoke, VA)

    1996-01-01T23:59:59.000Z

    A scheme for optimizing the efficiency of an AC motor drive operated in a pulse-width-modulated mode provides that the modulation frequency of the power furnished to the motor is a function of commanded motor torque and is higher at lower torque requirements than at higher torque requirements.

  6. Method and apparatus for improved efficiency in a pulse-width-modulated alternating current motor drive

    DOE Patents [OSTI]

    Konrad, Charles E. (Roanoke, VA); Boothe, Richard W. (Roanoke, VA)

    1994-01-01T23:59:59.000Z

    A scheme for optimizing the efficiency of an AC motor drive operated in a pulse-width-modulated mode provides that the modulation frequency of the power furnished to the motor is a function of commanded motor torque and is higher at lower torque requirements than at higher torque requirements.

  7. Comparative Analysis of Control Techniques for Efficiency Improvement in Electric Vehicles

    E-Print Network [OSTI]

    -SVM scheme is the best candidate. Keywords--Electric vehicle, induction motor, efficiency, field oriented. In fact, the motor drive, comprising of the electric motor, power converter, and electronic controller by the driver. Many researches [2-3] have demonstrated the induction motor is one of the right electric motor

  8. Significantly improved charge-collection efficiencies result from a general chemical approach to synthesizing photocathodes.

    E-Print Network [OSTI]

    as photocathodes for p-type semiconductor-sensitized solar cells. Compared to dye-sensitized NiO photocathodes for photoelectrochemical solar cells. Key Result Compared to dye-sensitized NiO photocathodes, the CdS-sensitized Ni coupled to a dye-sensitized photoanode, could significantly increase overall solar conversion efficiency

  9. Improving the Efficiency of a Wide-Coverage CCG Parser Bojan Djordjevic and James R. Curran

    E-Print Network [OSTI]

    Curran, James R.

    hardware (Kaplan et al., 2004). The C&C CCG parser (Clark and Curran, 2004b) is an order of magnitude anal- ysis. We present several enhancements to the CKY chart parsing algorithm used by the parser. The first proposal is chart repair, which allows the chart to be efficiently up- dated by adding lexical

  10. EnCache: A Dynamic Profiling Based Reconfiguration Technique for Improving Cache Energy Efficiency

    SciTech Connect (OSTI)

    Mittal, Sparsh [ORNL; Zhang, Zhao [Iowa State University

    2014-01-01T23:59:59.000Z

    With each CMOS technology generation, leakage energy consumption has been dramatically increasing and hence, managing leakage power consumption of large last-level caches (LLCs) has become a critical issue in modern processor design. In this paper, we present EnCache, a novel software-based technique which uses dynamic profiling-based cache reconfiguration for saving cache leakage energy. EnCache uses a simple hardware component called profiling cache, which dynamically predicts energy efficiency of an application for 32 possible cache configurations. Using these estimates, system software reconfigures the cache to the most energy efficient configuration. EnCache uses dynamic cache reconfiguration and hence, it does not require offline profiling or tuning the parameter for each application. Furthermore, EnCache optimizes directly for the overall memory subsystem (LLC and main memory) energy efficiency instead of the LLC energy efficiency alone. The experiments performed with an x86-64 simulator and workloads from SPEC2006 suite confirm that EnCache provides larger energy saving than a conventional energy saving scheme. For single core and dual-core system configurations, the average savings in memory subsystem energy over a shared baseline configuration are 30.0% and 27.3%, respectively.

  11. Improving Energy Efficiency and Reducing Greenhouse Gas Emissions in BPs PTA Manufacturing Plants

    E-Print Network [OSTI]

    Clark, F.

    2008-01-01T23:59:59.000Z

    BP is the worlds leading producer of purified terephthalic acid, or PTA, a commodity chemical used in the production of polyester. Through both self-help initiatives and innovations in our state-of-art process technology, the energy efficiency...

  12. Method and apparatus for improved efficiency in a pulse-width-modulated alternating current motor drive

    DOE Patents [OSTI]

    Konrad, C.E.; Boothe, R.W.

    1996-01-23T23:59:59.000Z

    A scheme for optimizing the efficiency of an AC motor drive operated in a pulse-width-modulated mode provides that the modulation frequency of the power furnished to the motor is a function of commanded motor torque and is higher at lower torque requirements than at higher torque requirements. 6 figs.

  13. CPU Scheduling for Statistically-Assured Real-Time Performance and Improved Energy Efficiency

    E-Print Network [OSTI]

    Ravindran, Binoy

    @mitre.org ABSTRACT We present a CPU scheduling algorithm, called Energy-efficient Utility Accrual Algorithm (or EUA, making it a prime target for energy saving in past efforts. Dynamic voltage scaling (DVS) is a common mechanism em- ployed in the past to trade CPU's energy consumption for per- formance (see [2, 12, 14

  14. Method and apparatus for improved efficiency in a pulse-width-modulated alternating current motor drive

    DOE Patents [OSTI]

    Konrad, C.E.; Boothe, R.W.

    1994-02-15T23:59:59.000Z

    A scheme for optimizing the efficiency of an AC motor drive operated in a pulse-width-modulated mode provides that the modulation frequency of the power furnished to the motor is a function of commanded motor torque and is higher at lower torque requirements than at higher torque requirements. 6 figures.

  15. Mary Ann Fresco receives OPM award for creating, fostering inclusive...

    National Nuclear Security Administration (NNSA)

    receives OPM award for creating, fostering inclusive diversity Mary Ann Fresco, Senior Advisor to NNSA's Management and Business Office (NA-MB), was recently recognized by the...

  16. Energy efficiency improvements for refrigerator/freezers using prototype doors containing gas-filled panel insulating systems

    SciTech Connect (OSTI)

    Griffith, B.; Arasteh, D.; Tuerler, D.

    1995-01-01T23:59:59.000Z

    Energy efficiency improvements in domestic refrigerator/freezers, are directly influenced by the overall thermal performance of the cabinet and doors. An advanced system for reducing heat gain is Gas-Filled Panel thermal insulation technology. Gas-Filled Panels contain a low-conductivity, inert gas at atmospheric pressure and employ a reflective baffle to suppress radiation and convection within the gas. This paper presents energy use test results for a 1993 model 500 liter top mount refrigerator/freezer operated with its original doors and with a series of alternative prototype doors. Gas-Filled Panel technology was used in two types of prototype refrigerator/freezer doors. In one design, panels were used in composite with foam in standard metal door pans; this design yielded no measurable energy savings. In the other design, special polymer door pans were fitted with panels that fill nearly all of the available insulation volume; this design yielded a 6.5% increase in energy efficiency for the entire refrigerator/freezer. The EPA Refrigerator Analysis computer program has been used to predict the change in daily energy consumption with the alternative doors. The computer model also projects a 25% energy efficiency improvement for a refrigerator/freezer that would use Gas-Filled Panel insulation throughout the cabinet as well as the doors.

  17. Development of a Supercritical Carbon Dioxide Brayton Cycle: Improving VHTR Efficiency and Testing Material Compatibility - Final Report

    SciTech Connect (OSTI)

    Chang H. Oh

    2006-06-01T23:59:59.000Z

    Generation IV reactors will need to be intrinsically safe, having a proliferation-resistant fuel cycle and several advantages relative to existing light water reactor (LWR). They, however, must still overcome certain technical issues and the cost barrier before it can be built in the U.S. The establishment of a nuclear power cost goal of 3.3 cents/kWh is desirable in order to compete with fossil combined-cycle, gas turbine power generation. This goal requires approximately a 30 percent reduction in power cost for stateof-the-art nuclear plants. It has been demonstrated that this large cost differential can be overcome only by technology improvements that lead to a combination of better efficiency and more compatible reactor materials. The objectives of this research are (1) to develop a supercritical carbon dioxide Brayton cycle in the secondary power conversion side that can be applied to the Very-High-Temperature Gas-Cooled Reactor (VHTR), (2) to improve the plant net efficiency by using the carbon dioxide Brayton cycle, and (3) to test material compatibility at high temperatures and pressures. The reduced volumetric flow rate of carbon dioxide due to higher density compared to helium will reduce compression work, which eventually increase plant net efficiency.

  18. Residential Energy Efficiency Demonstration: Hawaii and Guam Energy Improvement Technology Demonstration Project

    SciTech Connect (OSTI)

    Earle, L.; Sparn, B.; Rutter, A.; Briggs, D.

    2014-03-01T23:59:59.000Z

    In order to meet its energy goals, the Department of Defense (DOD) has partnered with the Department of Energy (DOE) to rapidly demonstrate and deploy cost-effective renewable energy and energy-efficiency technologies. The scope of this project was to demonstrate tools and technologies to reduce energy use in military housing, with particular emphasis on measuring and reducing loads related to consumer electronics (commonly referred to as 'plug loads'), hot water, and whole-house cooling.

  19. An Analysis of Efficiency Improvements in Residential Sized Heat Pumps and Central Air Conditioners

    E-Print Network [OSTI]

    O'Neal, D. L.; Boecker, C. L.; Penson, S. B.

    1986-01-01T23:59:59.000Z

    LABORATORY NBS NATIONAL BUREAU OF STANDARDS NECPA NATIONAL ENERGY CONSERVATION POLICY ACT OEM ORIGINAL EQUIPMENT MANUFACTURERS ORNL OAK RIDGE NATIONAL LABORATORY PLF PART LOAD FACTOR SAI SCIENCE APPLICATION INCORPORATED SEER SEASONAL ENERGY EFFICIENCY RATIO... of variable speed units is discussed. The methodology includes: (1) making multiple runs of the Oak Ridge National Laboratory (ORNL) steady-state heat pump model, (2) making reasonable assumptions on the degradation factors, and (3) using a draft version...

  20. Investigation of Efficiency Improvements During CO2 Injection in Hydraulically and Naturally Fractured Reservoirs

    SciTech Connect (OSTI)

    Schechter, David S.; Vance, Harold

    2003-03-10T23:59:59.000Z

    The objective of this project was to perform unique laboratory experiments with artificial fractured cores (AFCs) and X-ray CT to examine the physical mechanisms of bypassing in HFR and NFR that eventually result in less efficient CO2 flooding in heterogeneous or fracture-dominated reservoirs. This report provided results of the second semi-annual technical progress report that consists of three different topics.

  1. Role of legacy phosphorus in improving global phosphorus-use efficiency

    E-Print Network [OSTI]

    Bermingham, Eldredge

    in tightening P cycling to maintain productivity in farming systems with reduced P inputs and minimise P, Christchurch, New Zealand b Freshwater Ecology Group, Centre for Ecology and Hydrology, Edinburgh, Bush Estate value in these systems and accumulation of P in depositional zones. Improved utilisation of legacy P

  2. Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers

    SciTech Connect (OSTI)

    Galitsky, Christina; Galitsky, Christina; Chang, Sheng-chieh; Worrell, Ernst; Masanet, Eric

    2008-03-01T23:59:59.000Z

    The U.S. pharmaceutical industry consumes almost $1 billion in energy annually. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. pharmaceutical industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy efficient technologies that can be implemented at the component, process, system, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the U.S. pharmaceutical industry is provided along with a description of the major process steps in the pharmaceutical manufacturing process. Expected savings in energy and energy-related costs are given for many energy efficiency measures, based on case study data from real-world applications in pharmaceutical and related facilities worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. The information in this Energy Guide is intended to help energy and plant managers reduce energy consumption in a cost-effective manner while meeting regulatory requirements and maintaining the quality of products manufactured. At individual plants, further research on the economics of the measures?as well as their applicability to different production practices?is needed to assess potential implementation of selected technologies.

  3. Centralized and Modular Architectures for Photovoltaic Panels with Improved Efficiency: Preprint

    SciTech Connect (OSTI)

    Dhakal, B.; Mancilla-David, F.; Muljadi, E.

    2012-07-01T23:59:59.000Z

    The most common type of photovoltaic installation in residential applications is the centralized architecture, but the performance of a centralized architecture is adversely affected when it is subject to partial shading effects due to clouds or surrounding obstacles, such as trees. An alternative modular approach can be implemented using several power converters with partial throughput power processing capability. This paper presents a detailed study of these two architectures for the same throughput power level and compares the overall efficiencies using a set of rapidly changing real solar irradiance data collected by the Solar Radiation Research Laboratory at the National Renewable Energy Laboratory.

  4. Efficiency improvements in US Office equipment: Expected policy impacts and uncertainties

    SciTech Connect (OSTI)

    Koomey, J.G.; Cramer, M.; Piette, M.A.; Eto, J.H.

    1995-12-01T23:59:59.000Z

    This report describes a detailed end-use forecast of office equipment energy use for the US commercial sector. We explore the likely impacts of the US Environmental Protection Agency`s ENERGY STAR office equipment program and the potential impacts of advanced technologies. The ENERGY STAR program encourages manufacturers to voluntarily incorporate power saving features into personal computers, monitors, printers, copiers, and fax machines in exchange for allowing manufacturers to use the EPA ENERGY STAR logo in their advertising campaigns. The Advanced technology case assumes that the most energy efficient current technologies are implemented regardless of cost.

  5. An Analysis of Efficiency Improvements in Residential Sized Heat Pumps, Final Report, May 1986

    E-Print Network [OSTI]

    O'Neal, D. L.; Murphy, W. E.

    1985-01-01T23:59:59.000Z

    EQUIPMENT MANUFACTURERS ORNL OAK RIDGE NATIONAL LABORATORY PLF PART LOAD FACTOR SAI SCIENCE APPLICATION INCORPORATED SEER SEASONAL ENERGY EFFICIENCY RATIO SF SQUARE FEET SHF SENSIBLE HEATING FACTOR TDB DRY BULB TEMPERATURE TON 12000 BTU/HR TXV THERMAL... Systems 6-13 5 Ton Package Systems 6-22 References 6-22 CONCLUSIONS AND RECOMMENDATIONS 7-1 iii APPENDIX * PAGE A ORNL MODEL OUTPUT A-1 B SEASONAL PERFORMANCE MODEL DESCRIPTION B-1 C OPTIMIZATION PROCEDURE C-1 iv CHAPTER 1 INTRODUCTION The National Energy...

  6. Improvement of Furnace Efficiencies: Evaluation from Operational Data and Case Histories

    E-Print Network [OSTI]

    Crump, J. R.; Prengle, H. W., Jr.

    1979-01-01T23:59:59.000Z

    been given to data in that range. SUMMARY The most important aspects of the study are summarized in Table 1. In this table, the following data is given for seven cases. Column 1) Chapter in DOE Report ORO-5ll2-08 from which data is drawn. 2) and 3... potential efficiency gain of 4.9% while Case 2, with a 17.8% stack loss shows a potential gain of 11.0%. Case 4 (a very large, lignite-fired steam generation unit) is an example of a system which has already been brought to, or close to, the upper limit...

  7. On-Bill Financing for Energy Efficiency Improvements: A Review of Current

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F SSales LLC OrderEfficiencyOceanOctober0HighandCombustion

  8. Case Study: Opportunities to Improve Energy Efficiency in Three Federal Data Centers

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd:June 20154:04-21-2014Innovative Energy Efficiency ApproachesNear

  9. Improving Efficiency and Load Range of Boosted HCCI using Partial Fuel Stratification with Conventional Gasoline

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe U.S. Department-2023DepartmentResultsEfficiency and Load Range

  10. Improving the efficiency of water splitting in dye-sensitized solar cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformation for planning experimentalPetroleum MarketingImproving

  11. Improving the Efficiency of Light-Duty Vehicle HVAC Systems using Zonal

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe U.S. Improving Fan System Performance a

  12. The interrelationship between environmental goals, productivity improvement, and increased energy efficiency in integrated paper and steel plants

    SciTech Connect (OSTI)

    NONE

    1997-06-01T23:59:59.000Z

    This report presents the results of an investigation into the interrelationships between plant-level productivity, energy efficiency, and environmental improvements for integrated pulp and paper mills and integrated steel mills in the US. Integrated paper and steel plants are defined as those facilities that use some form of onsite raw material to produce final products (for example, paper and paperboard or finished steel). Fully integrated pulp and paper mills produce onsite the pulp used to manufacture paper from virgin wood fiber, secondary fiber, or nonwood fiber. Fully integrated steel mills process steel from coal, iron ore, and scrap inputs and have onsite coke oven facilities.

  13. Improving Costs and Efficiency of PEM Fuel Cell Vehicles by Modifying the

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinementEtching.348 270 300 219Improvements to theSurface of Stainless

  14. Improving efficiency of a vehicle HVAC system with comfort modeling, zonal

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe U.S. Improving Fan System Performance a PumpingReduceddesign,

  15. Improving the Operating Efficiency of Microturbine-Based Distributed Generation at an Affordable Price

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe U.S. Improving Fan System Performance aEngines | Department

  16. Ways to improve the efficiency and reliability of radio frequency driven negative ion sources for fusion

    SciTech Connect (OSTI)

    Kraus, W., E-mail: kraus@ipp.mpg.de [Max-Planck-Institut fr Plasmaphysik (IPP), Boltzmannstr. 2, 85748 Garching (Germany); Briefi, S.; Fantz, U. [Max-Planck-Institut fr Plasmaphysik (IPP), Boltzmannstr. 2, 85748 Garching (Germany) [Max-Planck-Institut fr Plasmaphysik (IPP), Boltzmannstr. 2, 85748 Garching (Germany); AG Experimentelle Plasmaphysik, Universitt Augsburg, 86135 Augsburg (Germany); Gutmann, P.; Doerfler, J. [AG Experimentelle Plasmaphysik, Universitt Augsburg, 86135 Augsburg (Germany)] [AG Experimentelle Plasmaphysik, Universitt Augsburg, 86135 Augsburg (Germany)

    2014-02-15T23:59:59.000Z

    Large RF driven negative hydrogen ion sources are being developed at IPP Garching for the future neutral beam injection system of ITER. The overall power efficiency of these sources is low, because for the RF power supply self-excited generators are utilized and the plasma is generated in small cylindrical sources (drivers) and expands into the source main volume. At IPP experiments to reduce the primary power and the RF power required for the plasma production are performed in two ways: The oscillator generator of the prototype source has been replaced by a transistorized RF transmitter and two alternative driver concepts, a spiral coil, in which the field is concentrated by ferrites, which omits the losses by plasma expansion and a helicon source are being tested.

  17. Ten case history studies of energy efficiency improvements in pulp and paper mills. Final report

    SciTech Connect (OSTI)

    Not Available

    1981-01-01T23:59:59.000Z

    The ten technologies chosen for case history development are: sonic sootblowing in boilers, boiler operation on oil-water emulsified fuel, energy efficient motors, computerized control of excess air for boilers, boiler control and load allocation, driving of waste-activated sludge by multiple effect evaporation, pre-drying of hog fuel, lime kiln computerization, heat wheel for process heat recovery, and organic Rankine bottoming cycle for thermomechanical pulping heat recovery. For each case study, there is given: the company name, employee contact, plant summary, a description of the energy consuming process and of the energy-saving action, an assessment of energy savings, and the decision process leading to the adoption of the measure. A data summary for discounted cash flow analysis is tabulated for each case. (LEW)

  18. A revolutionary concept to improve the efficiency of ion cyclotron antennas

    SciTech Connect (OSTI)

    Milanesio, D., E-mail: daniele.milanesio@polito.it; Maggiora, R., E-mail: riccardo.maggiora@polito.it [Politecnico di Torino, Dipartimento di Elettronica e Telecomunicazioni (DET), Torino (Italy)

    2014-06-15T23:59:59.000Z

    The successful design of an ion cyclotron (IC) antenna mainly relies on the capability of coupling high power to the plasma (MW), feature that is currently reached by allowing rather high voltages (tens of kV) on the unavoidable unmatched part of the feeding lines. This requirement is often responsible of arcs along the transmission lines and other unwanted phenomena, such as rectification discharges or hotspots, that considerably limit the usage of IC launchers. In this work, we suggest and describe a revolutionary approach based on high impedance surfaces, which allows to increase the antenna radiation efficiency and, hence, to highly reduce the imposed voltages to couple the same level of power to the plasma. High-impedance surfaces are periodic metallic structures (patches) displaced usually on top of a dielectric substrate and grounded by means of vertical posts usually embedded inside a dielectric, in a mushroom-like shape. In terms of working properties, high impedance surfaces are electrically thin in-phase reflectors, i.e., they present a high impedance, within a given frequency band, such that the image currents are in-phase with the currents of the antenna itself, thus determining a significant efficiency increase. While the usual design of a high impedance surface requires the presence of a dielectric layer, some alternative solutions can be realised in vacuum, taking advantage of double layers of metallic patches. After an introductory part on the properties of high impedance surfaces, this work documents both their design by means of numerical codes and their implementation on a scaled mock-up.

  19. Analysis of federal policy options for improving US lighting energy efficiency: Commercial and residential buildings

    SciTech Connect (OSTI)

    Atkinson, B.A.; McMahon, J.E.; Mills, E.; Chan, P.; Chan, T.W.; Eto, J.H.; Jennings, J.D.; Koomey, J.G.; Lo, K.W.; Lecar, M.; Price, L.; Rubinstein, F.; Sezgen, O.; Wenzel, T.

    1992-12-01T23:59:59.000Z

    The US Department of Energy (DOE) has recognized the opportunity to achieve energy, economic, and environmental benefits by promoting energy-efficient lighting through federal policies, including lighting standards, financial incentives, and information programs. To assist in this process, the Office of Conservation and Renewable Energy`s Office of Codes and Standards invited Lawrence Berkeley Laboratory to assess prospective national impacts for a variety of policy options. Some progress has already been made in developing lighting policies at both the federal and state levels. The US DOE`s Office of Building Technologies has evaluated lighting efficiency incentives as part of its analysis for the National Energy Strategy. Fluorescent and incandescent lamp standards are included in the national Energy Policy Act of 1992 (P.L. 102-486, October 24, 1992). A few states have analyzed or implemented lamp and luminaire standards. Many policy-related issues merit further investigation. For example, there is considerable debate over issues such as mandatory or voluntary standards versus component labeling and other education-oriented strategies. Several different technologies are involved that interact with each other-lamps (incandescent, compact fluorescent, and HID), ballasts (for fluorescent and HID lamps), and fixtures with reflectors and lenses. Control systems and operation patterns must also be considered (timers, automated dimming, or occupancy sensors). Lighting applications are diverse, ranging from offices, restaurants, hallways, hospital operating rooms, to exterior lights. Lighting energy use influences heating and cooling requirements in buildings. Successful lighting system design must also address interactions between architectural design elements and daylighting availability. Proper system installation and ongoing operation and maintenance are crucial. The economic aspects of the preceding points must also be considered for policy making.

  20. Analysis of federal policy options for improving US lighting energy efficiency: Commercial and residential buildings

    SciTech Connect (OSTI)

    Atkinson, B.A.; McMahon, J.E.; Mills, E.; Chan, P.; Chan, T.W.; Eto, J.H.; Jennings, J.D.; Koomey, J.G.; Lo, K.W.; Lecar, M.; Price, L.; Rubinstein, F.; Sezgen, O.; Wenzel, T.

    1992-12-01T23:59:59.000Z

    The US Department of Energy (DOE) has recognized the opportunity to achieve energy, economic, and environmental benefits by promoting energy-efficient lighting through federal policies, including lighting standards, financial incentives, and information programs. To assist in this process, the Office of Conservation and Renewable Energy's Office of Codes and Standards invited Lawrence Berkeley Laboratory to assess prospective national impacts for a variety of policy options. Some progress has already been made in developing lighting policies at both the federal and state levels. The US DOE's Office of Building Technologies has evaluated lighting efficiency incentives as part of its analysis for the National Energy Strategy. Fluorescent and incandescent lamp standards are included in the national Energy Policy Act of 1992 (P.L. 102-486, October 24, 1992). A few states have analyzed or implemented lamp and luminaire standards. Many policy-related issues merit further investigation. For example, there is considerable debate over issues such as mandatory or voluntary standards versus component labeling and other education-oriented strategies. Several different technologies are involved that interact with each other-lamps (incandescent, compact fluorescent, and HID), ballasts (for fluorescent and HID lamps), and fixtures with reflectors and lenses. Control systems and operation patterns must also be considered (timers, automated dimming, or occupancy sensors). Lighting applications are diverse, ranging from offices, restaurants, hallways, hospital operating rooms, to exterior lights. Lighting energy use influences heating and cooling requirements in buildings. Successful lighting system design must also address interactions between architectural design elements and daylighting availability. Proper system installation and ongoing operation and maintenance are crucial. The economic aspects of the preceding points must also be considered for policy making.

  1. Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Galitsky, Christina

    2008-01-01T23:59:59.000Z

    perpetuate less energy efficient designs. When a companytips for the energy efficient design of new labs andEnergy Guide. Energy efficient system design. The greatest

  2. Energy Efficiency Improvement and Cost Saving Opportunities for the Glass Industry. An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Worrell, Ernst

    2008-01-01T23:59:59.000Z

    Council for an Energy-Efficient Economy, Washington, D.C.American Council for Energy Efficient Economy, WashingtonAmerican Council for an Energy Efficient Economy Proceedings

  3. Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Galitsky, Christina

    2008-01-01T23:59:59.000Z

    and M. Kushler. (1997). Energy Efficiency in Automotive andSummer Study on Energy Efficiency in Industry. AmericanCalifornia Institute of Energy Efficiency ( CIEE). (2000b).

  4. Suppression of Tla1 gene expression for improved solar conversion efficiency and photosynthetic productivity in plants and algae

    SciTech Connect (OSTI)

    Melis, Anastasios; Mitra, Mautusi

    2010-06-29T23:59:59.000Z

    The invention provides method and compositions to minimize the chlorophyll antenna size of photosynthesis by decreasing TLA1 gene expression, thereby improving solar conversion efficiencies and photosynthetic productivity in plants, e.g., green microalgae, under bright sunlight conditions.

  5. Energy Efficiency Improvement and Cost Saving Opportunities for Breweries: An ENERGY STAR(R) Guide for Energy and Plant Managers

    SciTech Connect (OSTI)

    Galitsky, Christina; Martin, Nathan; Worrell, Ernst; Lehman, Bryan

    2003-09-01T23:59:59.000Z

    Annually, breweries in the United States spend over $200 million on energy. Energy consumption is equal to 38 percent of the production costs of beer, making energy efficiency improvement an important way to reduce costs, especially in times of high energy price volatility. After a summary of the beer making process and energy use, we examine energy efficiency opportunities available for breweries. We provide specific primary energy savings for each energy efficiency measure based on case studies that have implemented the measures, as well as references to technical literature. If available, we have also listed typical payback periods. Our findings suggest that given available technology, there are still opportunities to reduce energy consumption cost-effectively in the brewing industry. Brewers value highly the quality, taste and drinkability of their beer. Brewing companies have and are expected to continue to spend capital on cost-effective energy conservation measures that meet these quality, taste and drinkability requirements. For individual plants, further research on the economics of the measures, as well as their applicability to different brewing practices, is needed to assess implementation of selected technologies.

  6. A Proposed Algorithm to improve security & Efficiency of SSL-TLS servers using Batch RSA decryption

    E-Print Network [OSTI]

    Pateriya, R K; Shrivastava, S C; Patel, Jaideep

    2009-01-01T23:59:59.000Z

    Today, Internet becomes the essential part of our lives. Over 90 percent of the ecommerce is developed on the Internet. A security algorithm became very necessary for producer client transactions assurance and the financial applications safety. The rsa algorithm applicability derives from algorithm properties like confidentiality, safe authentication, data safety and integrity on the internet. Thus, this kind of networks can have a more easy utilization by practical accessing from short, medium, even long distance and from different public places. Rsa encryption in the client side is relatively cheap, whereas, the corresponding decryption in the server side is expensive because its private exponent is much larger. Thus ssl tls servers become swamped to perform public key decryption operations when the simultaneous requests increase quickly .The batch rsa method is useful for such highly loaded web server .In our proposed algorithm by reducing the response time and clients tolerable waiting time an improvement...

  7. The Role of Emerging Technologies in Improving Energy Efficiency:Examples from the Food Processing Industry

    SciTech Connect (OSTI)

    Lung, Robert Bruce; Masanet, Eric; McKane, Aimee

    2006-05-01T23:59:59.000Z

    For over 25 years, the U.S. DOE's Industrial Technologies Program (ITP) has championed the application of emerging technologies in industrial plants and monitored these technologies impacts on industrial energy consumption. The cumulative energy savings of more than 160 completed and tracked projects is estimated at approximately 3.99 quadrillion Btu (quad), representing a production cost savings of $20.4 billion. Properly documenting the impacts of such technologies is essential for assessing their effectiveness and for delivering insights about the optimal direction of future technology research. This paper analyzes the impacts that several emerging technologies have had in the food processing industry. The analysis documents energy savings, carbon emissions reductions and production improvements and assesses the market penetration and sector-wide savings potential. Case study data is presented demonstrating the successful implementation of these technologies. The paper's conclusion discusses the effects of these technologies and offers some projections of sector-wide impacts.

  8. Efficiency Improvement Opportunities for Light-Duty Natural-Gas-Fueled Vehicles

    SciTech Connect (OSTI)

    Staunton, R.H.; Thomas, J.F.

    1998-12-01T23:59:59.000Z

    The purpose of this report is to evaluate and make recommendations concerning technologies that promise to improve the efilciency of compressed natural gas (CNG) light-duty vehicles. Technical targets for CNG automotive technology given in the March 1998 OffIce of Advanced Automotive Technologies research and development plan were used as guidance for this effort. The technical target that necessitates this current study is to validate technologies that enable CNG light vehicles to have at least 10% greater - fuel economy (on a miles per gallon equivalent basis) than equivalent gasoline vehicles by 2006. Other tar- gets important to natural gas (NG) automotive technology and this study are to: (1) increase CNG vehicle range to 380 miles, (2) reduce the incremental vehicle cost (CNG vs gasoline) to $1500, and (3) meet the California ultra low-emission vehicle (ULEV) and Federal Tier 2 emission standards expected to be in effect in 2004.

  9. The potential for electricity efficiency improvements in the US Residential Sector

    SciTech Connect (OSTI)

    Koomey, J.G.; Atkinson, C.; Meier, A.; McMahon, J.E.; Boghosian, S.; Atkinson, B.; Turiel, I.; Levine, M.D.; Nordman, B.; Chan, P.

    1991-07-01T23:59:59.000Z

    This study represents the most elaborate assessment to date of US residential sector electricity improvements. Previous analyses have estimated the conservation potential for other countries, states, or individual utility service territories. As concern over greenhouse gas emissions has increased, interest has grown in estimates of conservation potential for the US residential sector as a whole. The earliest detailed estimate of US conservation potential is now out of date, while more recent estimates are less detailed than is desirable for engineering-economic estimates of the costs of reducing carbon emissions. In this paper, we first describe the methodology for creating supply curves of conserved energy, and then illustrate the subtleties of assessing the technical conservation potential. Next we present the data and forecasts used in this assessment, including costs, baseline thermal characteristics, energy use, and energy savings. Finally, we present the main results and conclusions from the analysis, and discuss future work. 102 refs., 7 figs., 16 tabs.

  10. Implementing an Energy Management System at TOTAL Prot Arthur Refinery: The process to improving and sustaining energy efficiency performance at a facility.

    E-Print Network [OSTI]

    Hoyle, A.

    2013-01-01T23:59:59.000Z

    PROPRIETARY INFORMATION? 2011 KBC Advanced Technologies plc. All Rights Reserved. Implementing an Energy Management System at TOTAL Port Arthur Refinery: The process to improving and sustaining energy efficiency performance at a facility May... Improvements ? Cost-savings initiatives ? Increasing environmental awareness ? Increasing throughput by debottlenecking processes ? Increasing government mandates 2May 2013 Energy Costs for a 200kBPD Complex refinery Typically, energy efficiency programs...

  11. Steam systems in industry: Energy use and energy efficiency improvement potentials

    SciTech Connect (OSTI)

    Einstein, Dan; Worrell, Ernst; Khrushch, Marta

    2001-07-22T23:59:59.000Z

    Steam systems are a part of almost every major industrial process today. Thirty-seven percent of the fossil fuel burned in US industry is burned to produce steam. In this paper we will establish baseline energy consumption for steam systems. Based on a detailed analysis of boiler energy use we estimate current energy use in boilers in U.S. industry at 6.1 Quads (6.4 EJ), emitting almost 66 MtC in CO{sub 2} emissions. We will discuss fuels used and boiler size distribution. We also describe potential savings measures, and estimate the economic energy savings potential in U.S. industry (i.e. having payback period of 3 years or less). We estimate the nationwide economic potential, based on the evaluation of 16 individual measures in steam generation and distribution. The analysis excludes the efficient use of steam and increased heat recovery. Based on the analysis we estimate the economic potential at 18-20% of total boiler energy use, resulting in energy savings approximately 1120-1190 TBtu ( 1180-1260 PJ). This results in a reduction of CO{sub 2} emissions equivalent to 12-13 MtC.

  12. Energy Efficiency Improvement and Cost Saving Opportunities for the Glass Industry. An ENERGY STAR Guide for Energy and Plant Managers

    SciTech Connect (OSTI)

    Galitsky, Christina; Worrell, Ernst; Galitsky, Christina; Masanet, Eric; Graus, Wina

    2008-03-01T23:59:59.000Z

    The U.S. glass industry is comprised of four primary industry segments--flat glass, container glass, specialty glass, and fiberglass--which together consume $1.6 billion in energy annually. On average, energy costs in the U.S. glass industry account for around 14 percent of total glass production costs. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There is a variety of opportunities available at individual plants in the U.S. glass industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy-efficient technologies that can be implemented at the component, process, system, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the U.S. glass industry is provided along with a description of the major process steps in glass manufacturing. Expected savings in energy and energy-related costs are given for many energy efficiency measures, based on case study data from real-world applications in glass production facilities and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. The information in this Energy Guide is intended to help energy and plant managers in the U.S. glass industry reduce energy consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of the measures--as well on as their applicability to different production practices--is needed to assess potential implementation of selected technologies at individual plants.

  13. Energy efficiency and the environment: Innovative ways to improve air quality in the Los Angeles Basin

    SciTech Connect (OSTI)

    Ritschard, R.

    1993-02-01T23:59:59.000Z

    This paper focuses on novel, innovative approaches for reducing or delaying the production of photochemical smog in the Los Angeles Basin. These approaches include modifying the surface characteristics of the basin by increasing surface albedo and an extensive tree-planting program. The changes in surface conditions are designed to reduce the basin air temperatures, especially during the summer months, which will result in two possible effects. First, a decrease in temperature would lead to a reduction in energy use with an associated decline in emissions of nitrogen oxides (NO{sub x}) and a lowering of evaporative emission of reactive organic gases. Reductions in these smog precursors could improve the air quality of the basin without imposing additional emissions regulations. The second effect is associated with the possible causal relationship between air temperature and smog formation (i.e., lower temperatures and lower incidence of smog). Since this approach to mitigating air emissions is broad, the studies to date have concentrated on how changes in surface characteristics affect the meteorological conditions of the basin and on how these meteorological changes subsequently affect smog production. A geographic information system database of key surface characteristics (i.e., vegetative cover, albedo, moisture availability, and roughness) was compiled, and these characteristics were evaluated using prognostic meteorological models. The results of two- and three-dimensional meteorological simulations will be presented and discussed in this paper.

  14. Energy efficiency and the environment: Innovative ways to improve air quality in the Los Angeles Basin

    SciTech Connect (OSTI)

    Ritschard, R.

    1993-02-01T23:59:59.000Z

    This paper focuses on novel, innovative approaches for reducing or delaying the production of photochemical smog in the Los Angeles Basin. These approaches include modifying the surface characteristics of the basin by increasing surface albedo and an extensive tree-planting program. The changes in surface conditions are designed to reduce the basin air temperatures, especially during the summer months, which will result in two possible effects. First, a decrease in temperature would lead to a reduction in energy use with an associated decline in emissions of nitrogen oxides (NO[sub x]) and a lowering of evaporative emission of reactive organic gases. Reductions in these smog precursors could improve the air quality of the basin without imposing additional emissions regulations. The second effect is associated with the possible causal relationship between air temperature and smog formation (i.e., lower temperatures and lower incidence of smog). Since this approach to mitigating air emissions is broad, the studies to date have concentrated on how changes in surface characteristics affect the meteorological conditions of the basin and on how these meteorological changes subsequently affect smog production. A geographic information system database of key surface characteristics (i.e., vegetative cover, albedo, moisture availability, and roughness) was compiled, and these characteristics were evaluated using prognostic meteorological models. The results of two- and three-dimensional meteorological simulations will be presented and discussed in this paper.

  15. Improved power efficiency for very-high-temperature solar-thermal-cavity receivers

    DOE Patents [OSTI]

    McDougal, A.R.; Hale, R.R.

    1982-04-14T23:59:59.000Z

    This invention is an improved solar energy cavity receiver for exposing materials and components to high temperatures. The receiver includes a housing having an internal reflective surface defining a cavity and having an inlet for admitting solar radiation thereto. A photothermal absorber is positiond in the cavity to receive radiation from the inlet. A reflective baffle is positioned between the absorber and the inlet to severely restrict the re-radiation of energy through the inlet. The front surface of the baffle defines a narrow annulus with the internal reflective surface of the housing. The front surface of the baffle is contoured to reflect incoming radiation onto the internal surface of the housing, from which it is reflected through the annulus and onto the front surface of the absorber. The back surface of the baffle intercepts radiation from the front of the absorber. With this arrangement, a high percentage of the solar power input is retained in the cavity; thus, high internal temperatues are attained.

  16. Modeling new approaches for electric energy efficiency

    SciTech Connect (OSTI)

    Munns, Diane

    2008-03-15T23:59:59.000Z

    To align utilities and consumers' interests, three incentive methods have emerged to foster efficiency: shared savings, bonus return on equity, and energy service company. A fourth incentive method, virtual power plant, is being proposed by Duke Energy. (author)

  17. IMPROVING ENERGY EFFICIENCY VIA OPTIMIZED CHARGE MOTION AND SLURRY FLOW IN PLANT SCALE SAG MILLS

    SciTech Connect (OSTI)

    Raj K. Rajamani; Sanjeeva Latchireddi; Sravan K. Prathy; Trilokyanath Patra

    2005-12-01T23:59:59.000Z

    The U.S. mining industry operates approximately 80 semi-autogenesis grinding mills (SAG) throughout the United States. Depending on the mill size the SAG mills draws between 2 MW and 17 MW. The product from the SAG mill is further reduced in size using pebble crushers and ball mills. Hence, typical gold or copper ore requires between 2.0 and 7.5 kWh per ton of energy to reduce the particle size. Considering a typical mining operation processes 10,000 to 100,000 tons per day the energy expenditure in grinding is 50 percent of the cost of production of the metal. A research team from the University of Utah is working to make inroads into saving energy in these SAG mills. In 2003, Industries of the Future Program of the Department of Energy tasked the University of Utah team to build a partnership between the University and the mining industry for the specific purpose of reducing energy consumption in SAG mills. A partnership was formed with Cortez Gold Mines, Kennecott Utah Copper Corporation, Process Engineering Resources Inc. and others. In the current project, Cortez Gold Mines played a key role in facilitating the 26-ft SAG mill at Cortez as a test mill for this study. According to plant personnel, there were a number of unscheduled shut downs to repair broken liners and the mill throughput fluctuated depending on ore type. The University team had two softwares, Millsoft and FlowMod to tackle the problem. Millsoft is capable of simulating the motion of charge in the mill. FlowMod calculates the slurry flow through the grate and pulp lifters. Based on this data the two models were fine-tuned to fit the Cortez SAG will. In the summer of 2004 a new design of shell lifters were presented to Cortez and in September 2004 these lifters were installed in the SAG mill. By December 2004 Cortez Mines realized that the SAG mill is drawing approximately 236-kW less power than before while maintaining the same level of production. In the first month there was extreme cycling and operators had to learn more. Now the power consumption is 0.3-1.3 kWh/ton lower than before. The actual SAG mill power draw is 230-370 kW lower. Mill runs 1 rpm lesser in speed on the average. The re-circulation to the cone crusher is reduced by 1-10%, which means more efficient grinding of critical size material is taking place in the mill. All of the savings have resulted in reduction of operating cost be about $0.023-$0.048/ ton.

  18. Improved Design of Motors for Increased Efficiency in Residential Commercial Buildings

    SciTech Connect (OSTI)

    Pragasen Pillay

    2008-12-31T23:59:59.000Z

    Research progress on understanding magnetic steel core losses is presented in this report. Three major aspects have been thoroughly investigated: 1, experimental characterization of core losses, 2, fundamental physical understanding of core losses and development of core loss formulas, and 3, design of more efficient machine based on the new formulations. Considerable progress has been achieved during the four years of research and the main achievements are summarized in the following: For the experimental characterization, a specially designed advanced commercial test bench was commissioned in addition to the development of a laboratory system with advanced capabilities. The measured properties are core losses at low and higher frequencies, with sinusoidal and non-sinusoidal excitations, at different temperatures, with different measurement apparatus (Toroids, Epstein etc). An engineering-based core loss formula has been developed which considers skin effect. The formula can predict core losses for both sinusoidal and non-sinusoidal flux densities and frequencies up to 4000 Hz. The formula is further tested in electric machines. The formula error range is 1.1% - 7.6% while the standard formulas can have % errors between -8.5% {-+} 44.7%. Two general core loss formulas, valid for different frequencies and thickness, have been developed by analytically and numerically solving Maxwell's equations based on a physical investigation of the dynamic hysteresis effects of magnetic materials. To our knowledge, they are the first models that can offer accurate core loss prediction over a wide range of operating frequencies and lamination thicknesses without a massive experimental database of core losses. The engineering core loss formula has been used with commercial software. The formula performs better than the modified Steinmetz and Bertotti's model used in Cedrat/Magsoft Flux 2D/3D. The new formula shows good correlation with measured results under both sinusoidal and non-sinusoidal excitations. A permanent magnet synchronous motor has been designed with the use of the engineering formula with Flux2D. There was acceptable agreement between predictions and measurements. This was further tested on an induction motor with toroid results.

  19. Erosion-Resistant Nanocoatings for Improved Energy Efficiency in Gas Turbines

    SciTech Connect (OSTI)

    Alman, David; Marcio, Duffles

    2014-02-05T23:59:59.000Z

    The objective of this Stage Gate IV project was to test and substantiate the viability of an erosion?resistant nanocoating for application on compressor airfoils for gas turbines in both industrial power generation and commercial aviation applications. To effectively complete this project, the National Energy Technology Laboratorys Office of Research & Development teamed with MDS Coating Technologies Inc. (MCT), Delta Air Lines ? Technical Operations Division (Delta Tech Ops), and Calpine Corporation. The coating targeted for this application was MCTs Next Generation Coating, version 4 (NGC?v4 ? with the new registered trademark name of BlackGold). The coating is an erosion and corrosion resistant composite nanostructured coating. This coating is comprised of a proprietary ceramic?metallic nano?composite construction which provides enhanced erosion resistance and also retains the aerodynamic geometry of the airfoils. The objective of the commercial aviation portion of the project was to substantiate the coating properties to allow certification from the FAA to apply an erosion?resistant coating in a commercial aviation engine. The goal of the series of tests was to demonstrate that the durability of the airfoils is not affected negatively with the application of the NGC v4 coating. Tests included erosion, corrosion, vibration and fatigue. The results of the testing demonstrated that the application of the coating did not negatively impact the properties of the blades, especially fatigue performance which is of importance in acceptance for commercial aviation applications. The objective of the industrial gas turbine element of the project was to evaluate the coating as an enabling technology for inlet fogging during the operation of industrial gas turbines. Fluid erosion laboratory scale tests were conducted to simulate inlet fogging conditions. Results of these tests indicated that the application of the erosion resistant NGC?v4 nanocoating improved the resistance to simulated inlet fogging conditions by a factor of 10 times. These results gave confidence for a field trial at Calpines power plant in Corpus Christi, TX, which commenced in April 2012. This test is still on?going as of November 2013, and the nanocoated blades have accumulated over 13,000 operational hours on this specific power plant in approximately 19 months of operation.

  20. INVESTIGATION OF EFFICIENCY IMPROVEMENTS DURING CO2 INJECTION IN HYDRAULICALLY AND NATURALLY FRACTURED RESERVOIRS

    SciTech Connect (OSTI)

    David S. Schechter

    2002-10-30T23:59:59.000Z

    The objective of this project is to perform unique laboratory experiments with artificial fractured cores (AFCs) and X-ray CT to examine the physical mechanisms of bypassing in HFR and NFR that eventually result in less efficient CO{sub 2} flooding in heterogeneous or fracture-dominated reservoirs. This report provides results of the second semi-annual technical progress report that consists of three different topics. In the first topic, laboratory experiments were performed on a Berea core to investigate the changes in rock properties and fluid flow under different stress-state conditions. A comparative study of different stress conditions was also conducted to analyze the effect of the various loading systems. The experimental results show that fracture permeability reduces significantly as the stress increases compared to matrix permeability. The hydrostatic and triaxial stresses have greater impacts on permeability reduction compared to applying stress in the uniaxial stress condition. Fracture flow dominates when the applied stress is less, however, the matrix flow rate increases as applied stress increases and dominates at high stress even if the fracture does not heal completely. In the second topic, the preliminary results of static imbibition experiments are presented as a precursor to image the saturation profiles using X-Ray CT scanner. The static and dynamic imbibition experiments have been done previously (Schechter et al, 2002). The imaging of imbibition experiment is underway to track the saturation profiles using X-ray CT scanner. Hence, no more conclusions are drawn from this study at this time. In the last topic, the modeling of fluid flow through a single fracture incorporating the effect of surface roughness is conducted. Fracture permeability is usually estimated by a cubic law that is based on the theory of hydrodynamics for the laminar flow between flat plates. However, the cubic law is too simple to estimate the fracture permeability correctly, because the surface of real fracture is much more complicated and rougher than the surface of flat plate. Several researchers have shown that the flow characteristics of an actual fracture surface would be quite different due to the effect of tortuosity, impact of surface roughness and contact areas. Nonetheless, to date, these efforts have not converged to form a unified definition on the fracture aperture needed in the cubic law. In this study, therefore, we show that the cubic law could still be used to model small-scale and field-scale data as long as it is modeled effectively, accounting for the effect of surface roughness associated with the fracture surface. The goal of this research is to examine the effect of surface roughness for flow through fractures and to effectively incorporate them into simulations with the aid of geostatistics. Since the research has been supported with experimental results, the consistency of the results enabled us to define a methodology for single fracture simulation. This methodology successfully modeled the slow rate and pressure drop from fractured core experiments, which were earlier not possible through parallel plate approach. Observations suggest that the fracture aperture needs to be distributed to accurately model the experimental results. The effect of friction and tortuosity due to surface roughness needs to be taken into account while modeling.

  1. Olkiluoto 1 and 2 - Plant efficiency improvement and lifetime extension-project (PELE) implemented during outages 2010 and 2011

    SciTech Connect (OSTI)

    Kosonen, M.; Hakola, M. [Teollisuuden Voima Oyj, F- 27160 Eurajoki (Finland)

    2012-07-01T23:59:59.000Z

    Teollisuuden Voima Oyj (TVO) is a non-listed public company founded in 1969 to produce electricity for its stakeholders. TVO is the operator of the Olkiluoto nuclear power plant. TVO follows the principle of continuous improvement in the operation and maintenance of the Olkiluoto plant units. The PELE project (Plant Efficiency Improvement and Lifetime Extension), mainly completed during the annual outages in 2010 and 2011, and forms one part of the systematic development of Olkiluoto units. TVO maintains a long-term development program that aims at systematically modernizing the plant unit systems and equipment based on the latest technology. According to the program, the Olkiluoto 1 and Olkiluoto 2 plant units are constantly renovated with the intention of keeping them safe and reliable, The aim of the modernization projects is to improve the safety, reliability, and performance of the plant units. PELE project at Olkiluoto 1 was done in 2010 and at Olkiluoto 2 in 2011. The outage length of Olkiluoto 1 was 26 d 12 h 4 min and Olkiluoto 2 outage length was 28 d 23 h 46 min. (Normal service-outage is about 14 days including refueling and refueling-outage length is about seven days. See figure 1) The PELE project consisted of several single projects collected into one for coordinated project management. Some of the main projects were as follows: - Low pressure turbines: rotor, stator vane, casing and turbine instrumentation replacement. - Replacement of Condenser Cooling Water (later called seawater pumps) pumps - Replacement of inner isolation valves on the main steam lines. - Generator and the generator cooling system replacement. - Low voltage switchgear replacement. This project will continue during future outages. PELE was a success. 100 TVO employees and 1500 subcontractor employees participated in the project. The execution of the PELE projects went extremely well during the outages. The replacement of the low pressure turbines and seawater pumps improved the efficiency of the plant units, and a power increase of nearly 20 MW was achieved at both plant units. PELE wonderfully manifests one of the strategic goals of our company; developing the competence of our in-house personnel by working in projects. (authors)

  2. Improved sweep efficiency through the application of horizontal well technology in a mature combustion EOR project: Battrum Field, Saskatchewan, Canada

    SciTech Connect (OSTI)

    Ames, B.G.; Grams, R.E.; Pebdani, F.N. [Mobil Oil Canada, Alberta (Canada)

    1995-02-01T23:59:59.000Z

    In-situ combustion has been employed in the Battrum field since 1964. Although the field has responded favorably to combustion, efficiency of the horizontal displacement process appears to be poor in some areas of the field. Injected air and combustion gases accumulate at the top of the reservoir, and injected water moves into a zone of relatively high mobile water saturation, occurring at the base of the reservoir. Rapid breakthrough of the injected fluids increases operating costs due to high gas-oil ratios. Placement of horizontal wells below the combustion gas cap, and conversion to a vertical displacement process is expected to increase oil rate, improve oil recovery, and reduce operating costs.

  3. Improvement of Laser Damage Resistance and Diffraction Efficiency of Multilayer Dielectric Diffraction Gratings by HF-Etchback Linewidth Tailoring

    SciTech Connect (OSTI)

    Nguyen, H T; Larson, C C; Britten, J A

    2010-10-28T23:59:59.000Z

    Multilayer dielectric (MLD) diffraction gratings for Petawatt-class laser systems possess unique laser damage characteristics. Details of the shape of the grating lines and the concentration of absorbing impurities on the surface of the grating structures both have strong effects on laser damage threshold. It is known that electric field enhancement in the solid material comprising the grating lines varies directly with the linewidth and inversely with the line height for equivalent diffraction efficiency. Here, they present an overview of laser damage characteristics of MLD gratings, and describe a process for post-processing ion-beam etched grating lines using very dilute buffered hydrofluoric acid solutions. This process acts simultaneously to reduce grating linewidth and remove surface contaminants, thereby improving laser damage thresholds through two pathways.

  4. Technological developments to improve combustion efficiency and pollution control in coal-fired power stations in Japan

    SciTech Connect (OSTI)

    Miyasaka, Tadahisa

    1993-12-31T23:59:59.000Z

    In 1975, approximately 60 percent of all power generating facilities in Japan were oil fired. The oil crisis in the 1970s, however, led Japanese power utilities to utilize alternatives to oil as energy sources, including nuclear power, coal, LNG, and others. As a result, by 1990, the percentage of oil-fired power generation facilities had declined to approximately 31 percent. On the other hand, coal-fired power generation, which accounted for 5.7 percent of all facilities in 1975, increased its share to 7.5 percent in 1990 and is anticipated to expand further to 13 percent by the year 2000. In order to increase the utilization of coal-fired power generation facilities in Japan, it is necessary to work out thorough measures to protect the environment, mainly to control air pollution. The technologies that are able to do this are already available. The second issue is how to improve efficiency. In this chapter, I would like to introduce technological developments that improve efficiency and that protect the environment which have been implemented in coal-fired power stations in Japan. Examples of the former, include the atmospheric fluidized bed combustion (AFBC) boiler, the pressurized fluidized bed combustion (PFBC) boiler, and the ultra super-critical (USC) steam condition turbine, and an example of the latter is the dry deSOx/deNOx. Although details are not provided in this paper, there are also ongoing projects focusing on the development of technology for integrated gasification combined cycle generation, fuel cells and other systems undertaken by the government, i.e., the Ministry of International Trade and Industry (MITI), which is committed to the New Energy and Industrial Technology Development Organization (NEDO).

  5. INVESTIGATION OF EFFICIENCY IMPROVEMENTS DURING CO2 INJECTION IN HYDRAULICALLY AND NATURALLY FRACTURED RESERVOIRS

    SciTech Connect (OSTI)

    David S. Schechter

    2005-09-28T23:59:59.000Z

    The objective of this project is to perform unique laboratory experiments with artificial fractured cores (AFCs) and X-ray CT to examine the physical mechanisms of bypassing in HFR and NFR that eventually result in more efficient CO{sub 2} flooding in heterogeneous or fracture-dominated reservoirs. To achieve this objective, we divided the report into two chapters. The first chapter was to image and perform experimental investigation of transfer mechanisms during CO{sub 2} flooding in NFR and HFR using X-ray CT scanner. In this chapter, we emphasized our work on understanding the connection between fracture properties and fundamentals of transfer mechanism from matrix to fractures and fluid flow through fracture systems. We started our work by investigating the effect of different overburden pressures and stress-state conditions on rock properties and fluid flow. Since the fracture aperture is one of important parameter that governs the fluid flow through the fracture systems, the average fracture aperture from the fluid flow experiments and fracture aperture distribution derived from X-ray CT scan were estimated for our modeling purposes. The fracture properties and fluid flow have significant changes in response to different overburden pressures and stress-state conditions. The fracture aperture distribution follows lognormal distribution even at elevated stress conditions. Later, we also investigated the fluid transfers between matrix and fracture that control imbibition process. We evaluated dimensionless time for validating the scheme of upscaling laboratory experiments to field dimensions. In CO{sub 2} injection experiments, the use of X-ray CT has allowed us to understand the mechanisms of CO{sub 2} flooding process in fractured system and to take important steps in reducing oil bypassed. When CO{sub 2} flooding experiments were performed on a short core with a fracture at the center of the core, the gravity plays an important role in the recovery of oil even in a short matrix block. This results are contrary with the previous believes that gravity drainage has always been associated with tall matrix blocks. In order to reduce oil bypassed, we injected water that has been viscosified with a polymer into the fracture to divert CO{sub 2} flow into matrix and delay CO{sub 2} breakthrough. Although the breakthrough time reduced considerably, water ''leak off'' into the matrix was very high. A cross-linked gel was used in the fracture to avoid this problem. The gel was found to overcome ''leak off'' problems and effectively divert CO{sub 2} flow into the matrix. As part of our technology transfer activity, we investigated the natural fracture aperture distribution of Tensleep formation cores. We found that the measured apertures distributions follow log normal distribution as expected. The second chapter deals with analysis and modeling the laboratory experiments and fluid flow through fractured networks. We derived a new equation to determine the average fracture aperture and the amount of each flow through fracture and matrix system. The results of this study were used as the observed data and for validating the simulation model. The idea behind this study is to validate the use of a set of smooth parallel plates that is common in modeling fracture system. The results suggest that fracture apertures need to be distributed to accurately model the experimental results. In order to study the imbibition process in details, we developed imbibition simulator. We validated our model with X-ray CT experimental data from different imbibition experiments. We found that the proper simulation model requires matching both weight gain and CT water saturation simultaneously as oppose to common practices in matching imbibition process with weight gain only because of lack information from CT scan. The work was continued by developing dual porosity simulation using empirical transfer function (ETF) derived from imbibition experiments. This allows reduction of uncertainty parameter in modeling transfer of fluids from matrix to the fra

  6. Incentives for Methane Mitigation and Energy-Efficiency Improvements in Case of Ukraines Natural Gas Transmission System

    SciTech Connect (OSTI)

    Roshchanka, Volha; Evans, Meredydd

    2014-06-01T23:59:59.000Z

    Reducing methane losses is a concern for climate change policy and energy policy. The energy sector is the major source of methane emissions into the atmosphere. Reducing methane emissions and avoiding combustion can be very cost-effective, but various barriers prevent such energy-efficiency measures from taking place. To date, few examples of industry-wide improvements exist. One example of substantial investments into upgrading natural gas transmission system comes from Ukraine. The Ukrainian transmission company, Ukrtransgaz, reduced its own systems natural gas consumption by 68 percent in 2011 compared to the level in 2005. Evaluating reductions in methane emissions is challenging because of lack of accurate data and gaps in accounting methodologies. At the same time, Ukraines transmission system has undergone improvements that, at the very least, have contained methane emissions, if not substantially reduced them. In this paper, we describe recent developments in Ukraines natural gas transmission system and analyze the incentives that forced the sector to pay close attention to its methane losses. Ukraine is one of most energy-intensive countries, among the largest natural gas consumers in the world, and a significant emitter of methane. The country is also dependent on imports of natural gas. A combination of steep increases in the price of imported natural gas, and comprehensive domestic environmental and energy policies, regional integration policy, and international environmental agreements has created conditions for successful methane emission and combustion reductions. Learning about such case studies can help us design better policies elsewhere.

  7. Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Galitsky, Christina

    2008-01-01T23:59:59.000Z

    NEMA Premium Efficiency Electric Motor specification wasUnderloaded Electric Motor. Office of Energy Efficiency andElectric Apparatus Service Association (EASA) (2003). The Effect of Repair/Rewinding on Motor Efficiency.

  8. Energy Efficiency Improvement and Cost Saving Opportunities for the Glass Industry. An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Worrell, Ernst

    2008-01-01T23:59:59.000Z

    NEMA Premium Efficiency Electric Motor specification wasUnderloaded Electric Motor. Office of Energy Efficiency andElectric Apparatus Service Association (EASA) (2003). The Effect of Repair/Rewinding on Motor Efficiency.

  9. Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Galitsky, Christina

    2008-01-01T23:59:59.000Z

    O&M Best Practices for Energy-Efficient Buildings. PreparedGenentech, Vacaville: New Energy Efficient Site. Oakland,200,000 per Year with Energy-Efficient Motors. New York, New

  10. Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Galitsky, Christina

    2008-01-01T23:59:59.000Z

    often used is that boiler efficiency can be increased by 1%gas by 1% increases boiler efficiency by 2.5% (CIPEC 2001).Conservation and Boiler Plant Efficiency Advancements. 22 nd

  11. Energy Efficiency Improvement and Cost Saving Opportunities for Cement Making. An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Worrell, Ernst

    2008-01-01T23:59:59.000Z

    the NEMA Premium Efficiency Electric Motor specification wasElectric Apparatus Service Association (EASA) (2003). The Effect of Repair/Rewinding on Motor Efficiency.

  12. Energy Efficiency Improvement and Cost Saving Opportunities for Cement Making. An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Worrell, Ernst

    2008-01-01T23:59:59.000Z

    Awareness of energy efficiency created through posters,External Recognition Awareness of energy efficiency createdsummits and energy fairs, implemented. Raising Awareness

  13. Membranes Improve Insulation Efficiency

    E-Print Network [OSTI]

    Bullock, C. A.

    1986-01-01T23:59:59.000Z

    No Clear White Alum Temp Mem Mem Mem Foil FIGURE 7 Temperature Inside Room and Temperature Next to Top of Sheetrock Under Various insulation Configurations. It should be noted that after this test was completed, the fiber insulation was inspected...

  14. Improving Fired Heater Efficiency

    E-Print Network [OSTI]

    Shriver, J. E.

    1983-01-01T23:59:59.000Z

    gravity, mass energy or volumetric energy can be obtained from AGA Reports #3 and #5. The equations are: energYmass = 20350 + 1970/G ? (H 2 /inert corrections) energYvolumetric = 1571.5G + 144 ? (H2/inert corrections) Where: G specific gravity... 604 ESL-IE-83-04-96 Proceedings from the Fifth Industrial Energy Technology Conference Volume II, Houston, TX, April 17-20, 1983 energYmass = Htu/lb fhese main equations illustrate that when the H.H.V. (high heating value) of a gas can be energ...

  15. Applying Improved Efficiency Transformers

    E-Print Network [OSTI]

    Haggerty, N. K.; Malone, T. P.

    Wh Energy LblMWH Coal 1576 56.3 18.3 Natural Gas 264 9.4 0.0 Petroleum 89 3.2 11.9 Nuclear 619 22.1 Hydro 240 8.6 Geothermal 10 0.4 Avg. NOx Avg. CO 2 Emission Emission LblMWH LblMWH 9.0 2063 4.7 1206 3.8 1569 Avg. S02 Avg. NOx Avg. CO 2...

  16. Petroleum Processing Efficiency Improvement

    SciTech Connect (OSTI)

    John Schabron; Joseph Rovani; Mark Sanderson; Jenny Loveridge

    2012-09-01T23:59:59.000Z

    A series of volatile crude oils was characterized using the Asphaltene Determinator oncolumn precipitation and re-dissolution method developed at Western Research Institute (WRI). Gravimetric asphaltenes and polars fractions from silica gel chromatography separation of the oils were characterized also. A study to define the differences in composition of asphaltenes in refinery desalter rag layer emulsions and the corresponding feed and desalter oils was conducted. Results indicate that the most polar and pericondensed aromatic material in the asphaltenes is enriched in the emulsions. The wax types and carbon number distributions in the two heptaneeluting fractions from the Waxphaltene Determinator separation were characterized by repetitive collection of the fractions followed by high temperature gas chromatography (GC) and Fourier transform infrared spectroscopy (FTIR). High resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICRMS) was conducted by researchers at the Florida State University National High Magnetic Field laboratory in a no-cost collaboration with the study.

  17. Energy Efficiency Loan Program

    Broader source: Energy.gov [DOE]

    The Keystone HELP Energy Efficiency Loan Program is designed to help homeowners improve energy efficiency with special financing for high-efficiency heating, air conditioning, insulation, windows,...

  18. IMPROVING ENERGY EFFICIENCY AND REDUCING COSTS IN THE DRINKING WATER SUPPLY INDUSTRY: An ENERGY STAR Resource Guide for Energy and Plant Managers

    SciTech Connect (OSTI)

    Brown, Moya Melody, Camilla Dunham Whitehead, Rich; Dunham Whitehead, Camilla; Brown, Rich

    2010-09-30T23:59:59.000Z

    As American drinking water agencies face higher production costs, demand, and energy prices, they seek opportunities to reduce costs without negatively affecting the quality of the water they deliver. This guide describes resources for cost-effectively improving the energy efficiency of U.S. public drinking water facilities. The guide (1) describes areas of opportunity for improving energy efficiency in drinking water facilities; (2) provides detailed descriptions of resources to consult for each area of opportunity; (3) offers supplementary suggestions and information for the area; and (4) presents illustrative case studies, including analysis of cost-effectiveness.

  19. Origin of InGaN/GaN light-emitting diode efficiency improvements using tunnel-junction-cascaded active regions

    SciTech Connect (OSTI)

    Piprek, Joachim, E-mail: piprek@nusod.org [NUSOD Institute LLC, P.O. Box 7204, Newark, Delaware 19714 (United States)

    2014-02-03T23:59:59.000Z

    This Letter investigates the efficiency enhancement achieved by tunnel junction insertion into the InGaN/GaN multi-quantum well (MQW) active region of blue light emitting diodes (LEDs). The peak quantum efficiency of such LED exceeds 100%, but the maximum wall-plug efficiency (WPE) hardly changes. However, due to the increased bias, the WPE peaks at much higher input power, i.e., the WPE droop is significantly delayed, and the output power is strongly enhanced. The main physical reason for this improvement lies in the non-uniform vertical carrier distribution typically observed within InGaN MQWs.

  20. Assessing Reservoir Depositional Environments to Develop and Quantify Improvements in CO2 Storage Efficiency: A Reservoir Simulation Approach

    SciTech Connect (OSTI)

    Okwen, Roland; Frailey, Scott; Leetaru, Hannes; Moulton, Sandy

    2014-09-30T23:59:59.000Z

    The storage potential and fluid movement within formations are dependent on the unique hydraulic characteristics of their respective depositional environments. Storage efficiency (E) quantifies the potential for storage in a geologic depositional environment and is used to assess basinal or regional CO2 storage resources. Current estimates of storage resources are calculated using common E ranges by lithology and not by depositional environment. The objectives of this project are to quantify E ranges and identify E enhancement strategies for different depositional environments via reservoir simulation studies. The depositional environments considered include deltaic, shelf clastic, shelf carbonate, fluvial deltaic, strandplain, reef, fluvial and alluvial, and turbidite. Strategies considered for enhancing E include CO2 injection via vertical, horizontal, and deviated wells, selective completions, water production, and multi-well injection. Conceptual geologic and geocellular models of the depositional environments were developed based on data from Illinois Basin oil fields and gas storage sites. The geologic and geocellular models were generalized for use in other US sedimentary basins. An important aspect of this work is the development of conceptual geologic and geocellular models that reflect the uniqueness of each depositional environment. Different injection well completions methods were simulated to investigate methods of enhancing E in the presence of geologic heterogeneity specific to a depositional environment. Modeling scenarios included horizontal wells (length, orientation, and inclination), selective and dynamic completions, water production, and multiwell injection. A Geologic Storage Efficiency Calculator (GSECalc) was developed to calculate E from reservoir simulation output. Estimated E values were normalized to diminish their dependency on fluid relative permeability. Classifying depositional environments according to normalized baseline E ranges ranks fluvial deltaic and turbidite highest and shelf carbonate lowest. The estimated average normalized baseline E of turbidite, and shelf carbonate depositional environments are 42.5% and 13.1%, with corresponding standard deviations of 11.3%, and 3.10%, respectively. Simulations of different plume management techniques suggest that the horizontal well, multi-well injection with brine production from blanket vertical producers are the most efficient E enhancement strategies in seven of eight depositional environments; for the fluvial deltaic depositional environment, vertical well with blanket completions is the most efficient. This study estimates normalized baseline E ranges for eight depositional environments, which can be used to assess the CO2 storage resource of candidate formations. This study also improves the general understanding of depositional environments influence on E. The lessons learned and results obtained from this study can be extrapolated to formations in other US basins with formations of similar depositional environments, which should be used to further refine regional and national storage resource estimates in future editions of the Carbon Utilization and Storage Atlas of the United States. Further study could consider the economic feasibility of the E enhancement strategies identified here.

  1. Microelectronics Plant Water Efficiency Improvements at Sandia National Laboratories: Best Management Practice, Case Study #13 - Other Water Use (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2009-08-01T23:59:59.000Z

    Overview of alternative financing mechanisms avaiable to Federal agencies to fund renewable energy and energy efficiency projects.

  2. Collaboration between Rutgers Business School, private companies and public entities leading to improved efficiencies in end-to-end supply chain management

    E-Print Network [OSTI]

    Lin, Xiaodong

    Michael R. Cooper, PhD. "The new Supply Chain Management and Marketing Sciences department playsCollaboration between Rutgers Business School, private companies and public entities leading to improved efficiencies in end-to-end supply chain management The newly established Department of Supply

  3. Save Energy Now (SEN) Assessment Helps Expand Energy Management Program at Shaw Industries: Flooring Company Saves $872,000 Annually by Improving Steam System Efficiency

    SciTech Connect (OSTI)

    Not Available

    2008-07-01T23:59:59.000Z

    This case study describes how the Shaw Industries plant #20 in Dalton, Georgia, achieved annual savings of $872,000 and 93,000 MMBtu after receiving a DOE Save Energy Now energy assessment and implementing recommendations to improve the efficiency of its steam system.

  4. Appears in Proceedings of the Fourth IEEE International Conference on Peer-to-Peer Computing (IEEE P2P '04). Improving Bandwidth Efficiency

    E-Print Network [OSTI]

    Kubiatowicz, John D.

    P2P '04). Improving Bandwidth Efficiency of Peer-to-Peer Storage Patrick Eaton, Emil Ong, and John: {eaton, emilong, kubi}@cs.berkeley.edu Abstract In this paper, we broaden the applicability of peer with a high-bandwidth, low-latency connection charac- teristic of university, corporate, and laboratory

  5. Module process optimization and device efficiency improvement for stable, low-cost, large-area, cadmium telluride-based photovoltaic module production

    SciTech Connect (OSTI)

    Albright, S.P.; Ackerman, B.; Chamberlin, R.R.; Jordan, J.F. (Photon Energy, Inc., El Paso, TX (United States))

    1992-04-01T23:59:59.000Z

    This report describes work under a three-year phased subcontract to develop CdS/CdTe devices and modules and to further improve the technology base at Photon Energy, Inc. (PEI) to better address the commercialization issues and objectives of the PEI and the US Department of Energy. During this reporting period we (1) achieved efficiencies of 12.7% on small area devices, (2) achieved 1-ft{sup 2} modules with over 8% aperture-area efficiency (and active area efficiencies up to {approximately}10%), (3) tested 4-ft{sup 2} modules at NREL at 23.1 (21.3) watts, normalized (6.3% efficiency), and (4) found no inherent stability problems with CdTe technology during life testing, at both NREL and PEI. 7 refs.

  6. Amy Foster Parish | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustionImprovement3--Logistical Challenges to Smart Grid Implementation |Challenge1Amir Roth About

  7. Assessment of Energy Efficiency Improvement and CO2 Emission Reduction Potentials in the Iron and Steel Industry in China

    E-Print Network [OSTI]

    Hasanbeigi, Ali

    2013-01-01T23:59:59.000Z

    Improvement and CO2 Emission Reduction Potentials in theElectricity Saving and CO2 Emission Reduction in the Iron

  8. can significantly improve the performance of colour-conversion In addition to applications as efficient colour converters, nano-

    E-Print Network [OSTI]

    Pierrehumbert, Raymond

    as efficient colour converters, nano- crystals have been considered promising building blocks for colour in the regime of electrical injection by combining nano- crystals with an electrically driven InGaN quantum well of high-efficiency, electrically driven, hybrid nano- crystal/quantum-well devices. A Received 9 February

  9. Brian Foster -DIS01 -Bologna HERA II Physics

    E-Print Network [OSTI]

    V2 Q2 = 200 GeV2 Q2 = 2000 GeV2 #12;Brian Foster - DIS01 - Bologna 8 Active Filter Calorimeter ZEUS 6 systematics plus precision electron tagger. "Standard" Pb/scintillator calorimeter plus "active filter" of aerogel. Dipole spectrometer to measure converting e+e- pairs. "6m tagger" W/fibre to measure the energy

  10. Optimization of Hydroacoustic Equipment Deployment at Foster Dam, 2013

    SciTech Connect (OSTI)

    Hughes, James S.; Johnson, Gary E.; Ploskey, Gene R.; Hennen, Matthew J.; Fischer, Eric S.; Zimmerman, Shon A.

    2013-03-01T23:59:59.000Z

    The goal of the study was to optimize performance of the fixed-location hydroacoustic systems at Foster Dam (FOS) by determining deployment and data acquisition methods that minimized structural, electrical, and acoustic interference. Optimization of the hydroacoustic systems will establish methodology for sampling by active acoustic methods during this year-long evaluation of juvenile salmonid passage at FOS.

  11. The SEREBRO Project: Fostering Creativity through Collaboration and Rewards

    E-Print Network [OSTI]

    Gamble, R. F.

    creative approaches to Software Engineering, focusing on technolog- ical solutions rather than innovativeThe SEREBRO Project: Fostering Creativity through Collaboration and Rewards Rose Gamble gamble Tucker Drive Tulsa, OK 74104 Jordan Hughes jordan- hughes@utulsa.edu ABSTRACT Software Engineering

  12. Applying a Pragmatics-Based Creativity-Fostering Technique to

    E-Print Network [OSTI]

    Berry, Daniel M.

    Engineering and Creativity: An Innovative Approach Based on a Model of the Pragmatics of 1 #12;Applying EPMcreate (EPM Creative Requirements Engineering TEchnique) that consists of sixteen steps. In each step to foster creativity in requirements engineering are still under-appreciated [7] and under

  13. MANAGING INSECT PESTS OF POTATO Ricky E. Foster, Extension Entomologist

    E-Print Network [OSTI]

    Ginzel, Matthew

    MANAGING INSECT PESTS OF POTATO Ricky E. Foster, Extension Entomologist Department of Entomology Vegetable Insects E-96-W PURDUE EXTENSION Colorado potato beetle (l) larva and (r) adult (Photo Credit: J. Obermeyer) Potatoes can be attacked from the time seed pieces go into the ground until they are harvested

  14. SEPTEMBER 2009 ENERGY EFFICIENCY &

    E-Print Network [OSTI]

    Kammen, Daniel M.

    SEPTEMBER 2009 GUIDE TO ENERGY EFFICIENCY & RENEWABLE ENERGY FINANCING DISTRICTS FOR LOCAL Assessment Districts) DEER Database for Energy Efficient Resources DSIRE Database of State Incentives for Renewables & Efficiency EECBG Energy Efficiency and Conservation Block Grants EIM Energy Improvement Mortgage

  15. Large-scale Manufacturing of Nanoparticulate-based Lubrication Additives for Improved Energy Efficiency and Reduced Emissions

    SciTech Connect (OSTI)

    Erdemir, Ali [Argonne National Laboratory] [Argonne National Laboratory

    2013-09-26T23:59:59.000Z

    This project was funded under the Department of Energy (DOE) Lab Call on Nanomanufacturing for Energy Efficiency and was directed toward the development of novel boron-based nanocolloidal lubrication additives for improving the friction and wear performance of machine components in a wide range of industrial and transportation applications. Argonne?s research team concentrated on the scientific and technical aspects of the project, using a range of state-of-the art analytical and tribological test facilities. Argonne has extensive past experience and expertise in working with boron-based solid and liquid lubrication additives, and has intellectual property ownership of several. There were two industrial collaborators in this project: Ashland Oil (represented by its Valvoline subsidiary) and Primet Precision Materials, Inc. (a leading nanomaterials company). There was also a sub-contract with the University of Arkansas. The major objectives of the project were to develop novel boron-based nanocolloidal lubrication additives and to optimize and verify their performance under boundary-lubricated sliding conditions. The project also tackled problems related to colloidal dispersion, larger-scale manufacturing and blending of nano-additives with base carrier oils. Other important issues dealt with in the project were determination of the optimum size and concentration of the particles and compatibility with various base fluids and/or additives. Boron-based particulate additives considered in this project included boric acid (H{sub 3}BO{sub 3}), hexagonal boron nitride (h-BN), boron oxide, and borax. As part of this project, we also explored a hybrid MoS{sub 2} + boric acid formulation approach for more effective lubrication and reported the results. The major motivation behind this work was to reduce energy losses related to friction and wear in a wide spectrum of mechanical systems and thereby reduce our dependence on imported oil. Growing concern over greenhouse gas emissions was also a major reason. The transportation sector alone consumes about 13 million barrels of crude oil per day (nearly 60% of which is imported) and is responsible for about 30% of the CO{sub 2} emission. When we consider manufacturing and other energy-intensive industrial processes, the amount of petroleum being consumed due to friction and wear reaches more than 20 million barrels per day (from official energy statistics, U.S. Energy Information Administration). Frequent remanufacturing and/or replacement of worn parts due to friction-, wear-, and scuffing-related degradations also consume significant amounts of energy and give rise to additional CO{sub 2} emission. Overall, the total annual cost of friction- and wear-related energy and material losses is estimated to be rather significant (i.e., as much as 5% of the gross national products of highly industrialized nations). It is projected that more than half of the total friction- and wear-related energy losses can be recovered by developing and implementing advanced friction and wear control technologies. In transportation vehicles alone, 10% to 15% of the fuel energy is spent to overcome friction. If we can cut down the friction- and wear-related energy losses by half, then we can potentially save up to 1.5 million barrels of petroleum per day. Also, less friction and wear would mean less energy consumption as well as less carbon emissions and hazardous byproducts being generated and released to the environment. New and more robust anti-friction and -wear control technologies may thus have a significant positive impact on improving the efficiency and environmental cleanliness of the current legacy fleet and future transportation systems. Effective control of friction in other industrial sectors such as manufacturing, power generation, mining and oil exploration, and agricultural and earthmoving machinery may bring more energy savings. Therefore, this project was timely and responsive to the energy and environmental objectives of DOE and our nation. In this project, most of the boron-based mater

  16. A SOMETIMES FUNNY BOOK SUPPOSEDLY ABOUT A review of Everything and More, by David Foster Wallace

    E-Print Network [OSTI]

    Harris, Michael - Institut de Mathématiques de Jussieu, Université Paris 7

    A SOMETIMES FUNNY BOOK SUPPOSEDLY ABOUT INFINITY A review of Everything and More, by David Foster to the title of David Foster Wallace's 1996 novel. On everybody's 10-best list, qualified as "world

  17. Energy Efficiency Improvement and Cost Saving Opportunities for Cement Making. An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Worrell, Ernst

    2008-01-01T23:59:59.000Z

    Technology and Energy Management Zement-Kalk-Gips 47 : 630-and Bezant, K.W. , 1990. Energy Management in the UK Cementpotential for improved energy management practices exists.

  18. Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Galitsky, Christina

    2008-01-01T23:59:59.000Z

    2005). Guidelines for Energy Management. Washington, D.C.Caffal, C. (1995). Energy Management in Industry. Centre forfor improving your energy management practices. Resources

  19. Design and prototype of a partial window replacement to improve the energy efficiency of 90-year-old MIT buildings

    E-Print Network [OSTI]

    Chen, YunJa

    2007-01-01T23:59:59.000Z

    The existing windows of the 90-year-old buildings on the main MIT campus are not energy efficient and compromise comfort levels. The single panes of glass allow too much heat transfer and solar heat gain. In addition, the ...

  20. Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Galitsky, Christina

    2008-01-01T23:59:59.000Z

    Characterization: Gas Turbines. Arlington, VA. February.is higher than that of a gas turbine-based CHP system (74%,electrical efficiency of a gas turbine-based CHP system is

  1. Present Status of the Nanotomography System at BL47XU at SPring-8 and Its Efficiency Improvement Using Double-Condenser Optics

    SciTech Connect (OSTI)

    Takeuchi, A.; Suzuki, Y.; Uesugi, K. [Japan Synchrotron Radiation Research Institute/SPring-8 (Japan)

    2011-09-09T23:59:59.000Z

    Although imaging x-ray nanotomography developed at beamline BL47XU of SPring-8 has reached a spatial resolution less than 200 nm, poor intensity and low signal-to-noise ratio are more serious problems in the system using zone plate optics. Improvement of the diffraction efficiency of Koehler illumination optics is attempted by doubling two condenser zone plates, which have a constant grating pitch of 200 nm. Although a long longitudinal distance between two condensers is possible ({approx}100 mm), efficiency varies periodically as the distance is changed due to the Talbot effect. A maximum efficiency close to 0.3 is obtained with a periodic distance of approximately 500 {mu}m.

  2. Investigating potential efficiency improvement for light-duty transportation applications through simulation of an organic Rankine cycle for waste-heat recovery

    SciTech Connect (OSTI)

    Edwards, Kevin Dean [ORNL; Wagner, Robert M [ORNL

    2010-01-01T23:59:59.000Z

    Modern diesel engines used in light-duty transportation applications have peak brake thermal efficiencies in the range of 40-42% for high-load operation with substantially lower efficiencies at realistic road-load conditions. Thermodynamic energy and exergy analysis reveals that the largest losses from these engines are due to heat loss and combustion irreversibility. Substantial improvement in overall engine efficiency requires reducing or recovering these losses. Unfortunately, much of the heat transfer either occurs at relatively low temperatures resulting in large entropy generation (such as in the air-charge cooler), is transferred to low-exergy flow streams (such as the oil and engine coolant), or is radiated or convected directly to the environment. While there are significant opportunities for recovery from the exhaust and EGR cooler for heavy-duty applications, the potential benefits of such a strategy for light-duty applications are unknown due to transient operation, low-load operation at typical driving conditions, and the added mass of the system. We have developed an organic Rankine cycle model using GT-Suite to investigate the potential for efficiency improvement through waste-heat recovery from the exhaust and EGR cooler of a light-duty diesel engine. Results from steady-state and drive-cycle simulations are presented, and we discuss strategies to address operational difficulties associated with transient drive cycles and competition between waste-heat recovery systems, turbochargers, aftertreatment devices, and other systems for the limited thermal resources.

  3. Sexual and Reproductive Healthy Policies for Foster Youth: An examination of the content and context of practices in California

    E-Print Network [OSTI]

    Bruce, Janine Suzanne

    2013-01-01T23:59:59.000Z

    abuse and neglect, and many of the most vulnerable children are placed in out- of-home care (foster care, kinship care, treatment foster care,

  4. Comparisons of field performance to closed-door test T ABLE 1 ratings indicate the laboratory procedure is a valid indica-Design Options to Improve the Energy Efficiency of a

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    be incorporated into the conventional RF design (a Option 8 High-efficiency fan motor single fan-forced evaporator heat load. Adaptive condensate at the door gaskets were estimated by ..zeroing defrost, efficient fan the laboratory procedure is a valid indica- Design Options to Improve the Energy Efficiency of a tion of energy

  5. What Impedes Efficient Adoption of Products? Evidence from Randomized Variation in Sales Offers for Improved Cookstoves in Uganda

    E-Print Network [OSTI]

    Levine, David I.; Cotterman, Carolyn

    2012-01-01T23:59:59.000Z

    HarperBusiness. Citypopulation.de. 2008. Uganda. http://World Factbook: Africa: Uganda. https://www.cia.gov/library/for Improved Cookstoves in Uganda By D AVID I. L EVINE AND C

  6. Assessment of Energy Efficiency Improvement and CO2 Emission Reduction Potentials in India's Iron and Steel Industry

    E-Print Network [OSTI]

    Morrow III, William R.

    2014-01-01T23:59:59.000Z

    Improvement and CO2 Emission Reduction Potentials in theUS $/GJ- saved) CO2 Emissions Reduction (Mt CO 2 ) CCF RankUS$/GJ- saved) CO2 Emissions Reduction (Mt CO 2 ) * The

  7. Energy efficiency improvement and cost saving opportunities for the Corn Wet Milling Industry: An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Galitsky, Christina; Worrell, Ernst; Ruth, Michael

    2003-01-01T23:59:59.000Z

    for best practices in energy efficiency.. 76for best practices in energy efficiency ORGANIZATIONEnergy Efficiency and Renewable Energy. Best Practices

  8. Improvement of Power-Performance Efficiency for High-End Computing Rong Ge, Xizhou Feng, Kirk W. Cameron

    E-Print Network [OSTI]

    Ge, Rong

    of thousands of power hungry components will lead to intolerable operating costs and failure rates. High to quantify and compare the power-performance efficiency for parallel Fourier transform and matrix transpose numbers of power-hungry commercial components (e.g. Itanium) in clusters of SMPs to achieve high

  9. Improved efficiency of miscible CO{sub 2} floods and enhanced prospects for CO{sub 2} flooding heterogeneous reservoirs. Annual report, April 18, 1995--April 17, 1996

    SciTech Connect (OSTI)

    Grigg, R.B.; Schechter, D.S.

    1996-10-01T23:59:59.000Z

    The overall goal of this project is to improve the efficiency of miscible CO{sub 2} floods and enhance the prospects for flooding heterogeneous reservoirs. This objective is being accomplished by extending experimental and modeling research in three task areas: (1) foams for selective mobility control in heterogeneous reservoirs, (2) reduction of the amount of CO{sub 2} required in CO{sub 2} floods, and (3) low IFT processes and the possibility of CO{sub 2} flooding in fractured reservoirs. This report provides results of the second year of the three-year project for each of the three task areas. In the first task, we are investigating a desirable characteristic of CO{sub 2}-foam called Selective Mobility Reduction (SMR) that results in an improvement in displacement efficiency by reducing the effects of reservoir heterogeneity. Research on SMR of foam during the past year has focused on three subjects: (1) to verify SMR in different rock permeabilities that are in capillary contact; (2) to test additional surfactants for the SMR property; and (3) to develop a modeling approach to assess the oil recovery efficiency of SMR in CO{sub 2}-foam on a reservoir scale. The experimental results from the composite cores suggest that the rock heterogeneity has significant effect on two phase (CO{sub 2}/brine) flow behavior in porous media, and that foam can favorably control CO{sub 2} mobility. The numerical modeling results suggest that foam with SMR can substantially increase the sweep efficiency and therefore improve oil recovery.

  10. Energy-Efficient Mortgages

    Broader source: Energy.gov [DOE]

    Homeowners can take advantage of energy efficient mortgages (EEM) to either finance energy efficiency improvements to existing homes, including renewable energy technologies, or to increase their...

  11. In-Cylinder Fuel Blending of Gasoline/Diesel for Improved Efficiency and Lowest Possible Emissions on a Multi-Cylinder Light-Duty Diesel Engine

    SciTech Connect (OSTI)

    Curran, Scott [ORNL] [ORNL; Prikhodko, Vitaly Y [ORNL] [ORNL; Wagner, Robert M [ORNL] [ORNL; Parks, II, James E [ORNL; Cho, Kukwon [ORNL] [ORNL; Sluder, Scott [ORNL] [ORNL; Kokjohn, Sage [University of Wisconsin, Madison] [University of Wisconsin, Madison; Reitz, Rolf [University of Wisconsin] [University of Wisconsin

    2010-01-01T23:59:59.000Z

    In-cylinder fuel blending of gasoline/diesel fuel is investigated on a multi-cylinder light-duty diesel engine as a potential strategy to control in-cylinder fuel reactivity for improved efficiency and lowest possible emissions. This approach was developed and demonstrated at the University of Wisconsin through modeling and single-cylinder engine experiments. The objective of this study is to better understand the potential and challenges of this method on a multi-cylinder engine. More specifically, the effect of cylinder-to-cylinder imbalances, heat rejection, and in-cylinder charge motion as well as the potential limitations imposed by real-world turbo-machinery were investigated on a 1.9-liter four-cylinder engine. This investigation focused on one engine condition, 2300 rpm, 4.2 bar brake mean effective pressure (BMEP). Gasoline was introduced with a port-fuel-injection system. Parameter sweeps included gasoline-to-diesel fuel ratio, intake air mixture temperature, in-cylinder swirl number, and diesel start-of-injection phasing. In addition, engine parameters were trimmed for each cylinder to balance the combustion process for maximum efficiency and lowest emissions. An important observation was the strong influence of intake charge temperature on cylinder pressure rise rate. Experiments were able to show increased thermal efficiency along with dramatic decreases in oxides of nitrogen (NOX) and particulate matter (PM). However, indicated thermal efficiency for the multi-cylinder experiments were less than expected based on modeling and single-cylinder results. The lower indicated thermal efficiency is believed to be due increased heat transfer as compared to the model predictions and suggest a need for improved cylinder-to-cylinder control and increased heat transfer control.

  12. Energy Efficiency Improvement and Cost Saving Opportunities for the Fruit and Vegetable Processing Industry. An ENERGY STAR Guide for Energy and Plant Managers

    SciTech Connect (OSTI)

    Masanet, Eric; Masanet, Eric; Worrell, Ernst; Graus, Wina; Galitsky, Christina

    2008-01-01T23:59:59.000Z

    The U.S. fruit and vegetable processing industry--defined in this Energy Guide as facilities engaged in the canning, freezing, and drying or dehydrating of fruits and vegetables--consumes over $800 million worth of purchased fuels and electricity per year. Energy efficiency improvement isan important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. fruit and vegetable processing industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy-efficient technologies that can be implemented at the component, process, facility, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the U.S. fruit and vegetable processing industry is provided along with a description of the major process technologies used within the industry. Next, a wide variety of energy efficiency measures applicable to fruit and vegetable processing plants are described. Many measure descriptions include expected savings in energy and energy-related costs, based on case study data from real-world applications in fruit and vegetable processing facilities and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. Given the importance of water in fruit and vegetable processing, a summary of basic, proven measures for improving plant-level water efficiency are also provided. The information in this Energy Guide is intended to help energy and plant managers in the U.S. fruit and vegetable processing industry reduce energy and water consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of all measures--as well as on their applicability to different production practices--is needed to assess their cost effectiveness at individual plants.

  13. Improvement of extraction efficiency from a compact synchrotron for proton beam therapy by applying particle tracking analysis

    SciTech Connect (OSTI)

    Ebina, Futaro; Umezawa, Masumi; Hiramoto, Kazuo [Hitachi Research Laboratory, Hitachi, Ltd. 2-1, Omika-cho 7-chome, Hitachi-shi, Ibaraki-ken, 319-1221 (Japan)

    2013-04-19T23:59:59.000Z

    Various types of synchrotrons are used for particle beam therapy. In particle beam therapy, especially in proton beam therapy, downsizing of the accelerator system is a major concern. A compact synchrotron dedicated for proton beam therapy is presented. The synchrotron is horizontally weakly focusing and consists of 4 H-type zerogradient dipole magnets and 4 quadrupole magnets. The circumference of the ring is a little shorter than 18 m, and the energies are up to 230MeV. Beam extraction from the synchrotron is performed by RF-driven slow extraction technology. Two sextupole magnets set in adjacent straight sections form a horizontal separatrix which is fixed during the beam extraction. Horizontal RF voltage excites betatron oscillation of the circulating beam, and protons exceeding the separatrix are extracted by an electrostatic deflector and a horizontal septum dipole magnet. To achieve adequately high extraction efficiency, the relationship between the extraction efficiency and the horizontal chromaticity of the ring is analyzed by particle tracking simulation. The horizontal chromaticity with maximum extraction efficiency is half of the theoretical value because of the distortion of the horizontal separatrix for the extraction. With this chromaticity, the spiral-step of the extracted particle is independent of the momentum deviation of the particle, and the separatrix across the electrostatic septum electrodes is superpositioned.

  14. Energy Efficiency Improvement and Cost Saving Opportunities for the U.S. Iron and Steel Industry An ENERGY STAR(R) Guide for Energy and Plant Managers

    SciTech Connect (OSTI)

    Worrell, Ernst; Blinde, Paul; Neelis, Maarten; Blomen, Eliane; Masanet, Eric

    2010-10-21T23:59:59.000Z

    Energy is an important cost factor in the U.S iron and steel industry. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. iron and steel industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy-efficient technologies that can be implemented at the component, process, facility, and organizational levels. A discussion of the structure, production trends, energy consumption, and greenhouse gas emissions of the iron and steel industry is provided along with a description of the major process technologies used within the industry. Next, a wide variety of energy efficiency measures are described. Many measure descriptions include expected savings in energy and energy-related costs, based on case study data from real-world applications in the steel and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. The information in this Energy Guide is intended to help energy and plant managers in the U.S. iron and steel industry reduce energy consumption and greenhouse gas emissions in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of all measures?and on their applicability to different production practices?is needed to assess their cost effectiveness at individual plants.

  15. Energy efficiency improvement and cost saving opportunities for the Corn Wet Milling Industry: An ENERGY STAR Guide for Energy and Plant Managers

    SciTech Connect (OSTI)

    Galitsky, Christina; Worrell, Ernst; Ruth, Michael

    2003-07-01T23:59:59.000Z

    Corn wet milling is the most energy intensive industry within the food and kindred products group (SIC 20), using 15 percent of the energy in the entire food industry. After corn, energy is the second largest operating cost for corn wet millers in the United States. A typical corn wet milling plant in the United States spends approximately $20 to $30 million per year on energy, making energy efficiency improvement an important way to reduce costs and increase predictable earnings, especially in times of high energy-price volatility. This report shows energy efficiency opportunities available for wet corn millers. It begins with descriptions of the trends, structure and production of the corn wet milling industry and the energy used in the milling and refining process. Specific primary energy savings for each energy efficiency measure based on case studies of plants and references to technical literature are provided. If available, typical payback periods are also listed. The report draws upon the experiences of corn, wheat and other starch processing plants worldwide for energy efficiency measures. The findings suggest that given available resources and technology, there are opportunities to reduce energy consumption cost-effectively in the corn wet milling industry while maintaining the quality of the products manufactured. Further research on the economics of the measures, as well as the applicability of these to different wet milling practices, is needed to assess the feasibility of implementation of selected technologies at individual plants.

  16. New process modeling [sic], design, and control strategies for energy efficiency, high product quality, and improved productivity in the process industries. Final project report

    SciTech Connect (OSTI)

    Ray, W. Harmon

    2002-06-05T23:59:59.000Z

    This project was concerned with the development of process design and control strategies for improving energy efficiency, product quality, and productivity in the process industries. In particular, (i) the resilient design and control of chemical reactors, and (ii) the operation of complex processing systems, was investigated. Specific topics studied included new process modeling procedures, nonlinear controller designs, and control strategies for multiunit integrated processes. Both fundamental and immediately applicable results were obtained. The new design and operation results from this project were incorporated into computer-aided design software and disseminated to industry. The principles and design procedures have found their way into industrial practice.

  17. FY-05 First Quarter Report on Development of a Supercritical Carbon Dioxide Brayton Cycle: Improving PBR Efficiency and Testing Material Compatibility

    SciTech Connect (OSTI)

    Chang Oh

    2005-01-01T23:59:59.000Z

    The objective of this research is to improve a helium Brayton cycle and to develop a supercritical carbon dioxide Brayton cycle for the Pebble Bed Reactor (PBR) that can also be applied to the Fast Gas-Cooled Reactor (FGR) and the Very-High-Temperature Gas- Cooled Reactor (VHTR). The proposed supercritical carbon dioxide Brayton cycle will be used to improve the PBR, FGR, and VHTR net plant efficiency. Another objective of this research is to test materials to be used in the power conversion side at supercritical carbon dioxide conditions. Generally, the optimized Brayton cycle and balance of plant (BOP) to be developed from this study can be applied to Generation-IV reactor concepts. Particularly, we are interested in VHTR because it has a good chance of being built in the near future.

  18. The impact of environmental constraints on productivity improvement and energy efficiency in integrated paper and steel plants

    SciTech Connect (OSTI)

    Boyd, G.A. [Argonne National Lab., IL (United States). Decision and Information Sciences Div.; McClelland, J. [Maryland Univ., College Park, MD (United States). Dept. of Economics

    1996-12-31T23:59:59.000Z

    This paper presents a methodology and results for assessing the impact of production and energy efficiency, environmental regulation, and abatement capital expenditure constraints (e.g. capital rationing) on the productivity of energy and pollution intensive sectors. Energy is treated like any other production input when examining evidence of inefficiency. We find that capital rationing and environmental regulations do contribute to productivity and energy efficiency losses, but do not explain all of the production and energy inefficiencies observed in the paper industry. A summary of the energy source of production inefficiency found in the paper industry, is presented.. Each source is derived as the incremental contribution., i.e. the first is constraints on capital, the second in environmental regulation not accounted for by the first, and the final component is production inefficiency that is not accounted for my any of the- environmental analysis. While the methods are very data intensive, they reveal much more that analysis of aggregate data, 1835 since the only plant level data can provide the estimates of inefficiency that this methodology employs.

  19. Channeling of electron transport to improve collection efficiency in mesoporous titanium dioxide dye sensitized solar cell stacks

    SciTech Connect (OSTI)

    Fakharuddin, Azhar; Ahmed, Irfan; Yusoff, Mashitah M.; Jose, Rajan, E-mail: rjose@ump.edu.my, E-mail: joserajan@gmail.com [Nanostructured Renewable Energy Materials Laboratory, Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, 26300 Pahang (Malaysia); Khalidin, Zulkeflee [Faculty of Electrical and Electronics Engineering, Universiti Malaysia Pahang, 26300 Pahang (Malaysia)

    2014-02-03T23:59:59.000Z

    Dye-sensitized solar cell (DSC) modules are generally made by interconnecting large photoelectrode strips with optimized thickness (?14??m) and show lower current density (J{sub SC}) compared with their single cells. We found out that the key to achieving higher J{sub SC} in large area devices is optimized photoelectrode volume (V{sub D}), viz., thickness and area which facilitate the electron channeling towards working electrode. By imposing constraints on electronic path in a DSC stack, we achieved >50% increased J{sub SC} and ?60% increment in photoelectric conversion efficiency in photoelectrodes of similar V{sub D} (?3.36??10{sup ?4} cm{sup 3}) without using any metallic grid or a special interconnections.

  20. OECD-Fostering Innovation for Green Growth | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories onFocus AreaDataBusPFAN) |AgnyFostering Innovation for Green Growth

  1. Elaine Chan Fosters ALS/Molecular Foundry Collaboration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series toESnet4: Networking for the FutureEdwardElaine Chan Fosters ALS/Molecular

  2. Elaine Chan Fosters ALS/Molecular Foundry Collaboration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutronEnvironmentZIRKLEEFFECTS OFElaine Chan Fosters ALS/Molecular

  3. Foster City, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublicIDAPowerPlantSitingConstruction.pdfNotify98.pdf JumpFlixMapFile Jump to:ForseoMcKinley,Worth,Foss andFoster

  4. IMPROVING ENERGY EFFICIENCY AND REDUCING COSTS IN THE DRINKING WATER SUPPLY INDUSTRY: An ENERGY STAR Resource Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Brown, Moya Melody, Camilla Dunham Whitehead, Rich

    2011-01-01T23:59:59.000Z

    Determining Electric Motor Load and Efficiency. Among theEnergy Efficiency Alliance, Electric Motor Management. 2001.Energy Efficiency Alliance, Electric Motor Management. 2001.

  5. Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Neelis, Maarten

    2008-01-01T23:59:59.000Z

    V. (2001). Optimize energy efficiency of HRSG. HydrocarbonCEC (2001). 2001 Energy Efficiency Standards for Residential2002. Consortium for Energy Efficiency (CEE), 2007. Motor

  6. IMPROVING ENERGY EFFICIENCY AND REDUCING COSTS IN THE DRINKING WATER SUPPLY INDUSTRY: An ENERGY STAR Resource Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Brown, Moya Melody, Camilla Dunham Whitehead, Rich

    2011-01-01T23:59:59.000Z

    31, 2010. ) U.S. DOE Energy Efficiency & Renewable Energy (3, 2010. ) Northwest Energy Efficiency Alliance, ElectricEPRI. 1997. Quality Energy Efficiency Retrofits for Water

  7. Energy Efficiency Improvement and Cost Saving Opportunities for the U.S. Iron and Steel Industry An ENERGY STAR(R) Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Worrell, Ernst

    2011-01-01T23:59:59.000Z

    opportunities, recommend energy efficiency actions, developSummer Study on Energy efficiency in Industry. AmericanACEEE Summer Study on Energy Efficiency in Industry, ACEEE,

  8. Energy Efficiency Improvement and Cost Saving Opportunities for the Vehicle Assembly Industry: An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Galitsky, Christina

    2008-01-01T23:59:59.000Z

    M. Kushler. (c. 1997). Energy Efficiency in Automotive andSummer Study on Energy Efficiency in Industry, Americanof Industrial Technologies, Energy Efficiency and Renewable

  9. Energy Efficiency Improvement and Cost Saving Opportunities for the Fruit and Vegetable Processing Industry. An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Masanet, Eric

    2008-01-01T23:59:59.000Z

    Georgia. Bureau of Energy Efficiency (BEE) India (2004).CEC) (2001). 2001 Energy Efficiency Standards forCanada, Office of Energy Efficiency, Ottawa, Ontario.

  10. Modifying the organic/electrode interface in Organic Solar Cells (OSCs) and improving the efficiency of solution-processed phosphorescent Organic Light-Emitting Diodes (OLEDs)

    SciTech Connect (OSTI)

    Xiao, Teng

    2012-04-27T23:59:59.000Z

    Organic semiconductors devices, such as, organic solar cells (OSCs), organic light-emitting diodes (OLEDs) and organic field-effect transistors (OFETs) have drawn increasing interest in recent decades. As organic materials are flexible, light weight, and potentially low-cost, organic semiconductor devices are considered to be an alternative to their inorganic counterparts. This dissertation will focus mainly on OSCs and OLEDs. As a clean and renewable energy source, the development of OSCs is very promising. Cells with 9.2% power conversion efficiency (PCE) were reported this year, compared to < 8% two years ago. OSCs belong to the so-called third generation solar cells and are still under development. While OLEDs are a more mature and better studied field, with commercial products already launched in the market, there are still several key issues: (1) the cost of OSCs/OLEDs is still high, largely due to the costly manufacturing processes; (2) the efficiency of OSCs/OLEDs needs to be improved; (3) the lifetime of OSCs/OLEDs is not sufficient compared to their inorganic counterparts; (4) the physics models of the behavior of the devices are not satisfactory. All these limitations invoke the demand for new organic materials, improved device architectures, low-cost fabrication methods, and better understanding of device physics. For OSCs, we attempted to improve the PCE by modifying the interlayer between active layer/metal. We found that ethylene glycol (EG) treated poly(3,4-ethylenedioxythiophene): polystyrenesulfonate (PEDOT: PSS) improves hole collection at the metal/polymer interface, furthermore it also affects the growth of the poly(3- hexylthiophene) (P3HT):phenyl-C61-butyric acid methyl ester (PCBM) blends, making the phase segregation more favorable for charge collection. We then studied organic/inorganic tandem cells. We also investigated the effect of a thin LiF layer on the hole-collection of copper phthalocyanine (CuPc)/C70-based small molecular OSCs. A thin LiF layer serves typically as the electron injection layer in OLEDs and electron collection interlayer in the OSCs. However, several reports showed that it can also assist in holeinjection in OLEDs. Here we first demonstrate that it assists hole-collection in OSCs, which is more obvious after air-plasma treatment, and explore this intriguing dual role. For OLEDs, we focus on solution processing methods to fabricate highly efficient phosphorescent OLEDs. First, we investigated OLEDs with a polymer host matrix, and enhanced charge injection by adding hole- and electron-transport materials into the system. We also applied a hole-blocking and electron-transport material to prevent luminescence quenching by the cathode. Finally, we substituted the polymer host by a small molecule, to achieve more efficient solution processed small molecular OLEDs (SMOLEDs); this approach is cost-effective in comparison to the more common vacuum thermal evaporation. All these studies help us to better understand the underlying relationship between the organic semiconductor materials and the OSCs and OLEDs performance and will subsequently assist in further enhancing the efficiencies of OSCs and OLEDs. With better efficiency and longer lifetime, the OSCs and OLEDs will be competitive with their inorganic counterparts.

  11. USING LIGA BASED MICROFABRICATION TO IMPROVE OVERALL HEAT TRANSFER EFFICIENCY OF PRESSURIZED WATER REACTOR: I. Effects of Different Micro Pattern on Overall Heat Transfer.

    SciTech Connect (OSTI)

    Zhang, M.; Ibekwe, S.; Li, G.; Pang, S.S.; and Lian, K.

    2006-07-01T23:59:59.000Z

    The Pressurized Water Reactors (PWRs in Figure 1) were originally developed for naval propulsion purposes, and then adapted to land-based applications. It has three parts: the reactor coolant system, the steam generator and the condenser. The Steam generator (a yellow area in Figure 1) is a shell and tube heat exchanger with high-pressure primary water passing through the tube side and lower pressure secondary feed water as well as steam passing through the shell side. Therefore, a key issue in increasing the efficiency of heat exchanger is to improve the design of steam generator, which is directly translated into economic benefits. The past research works show that the presence of a pin-fin array in a channel enhances the heat transfer significantly. Hence, using microfabrication techniques, such as LIGA, micro-molding or electroplating, some special microstructures can be fabricated around the tubes in the heat exchanger to increase the heat-exchanging efficiency and reduce the overall size of the heat-exchanger for the given heat transfer rates. In this paper, micro-pin fins of different densities made of SU-8 photoresist are fabricated and studied to evaluate overall heat transfer efficiency. The results show that there is an optimized micro pin-fin configuration that has the best overall heat transfer effects.

  12. Understanding the role of ultra-thin polymeric interlayers in improving efficiency of polymer light emitting diodes

    SciTech Connect (OSTI)

    Bailey, Jim; Wang, Xuhua; Bradley, Donal D. C.; Kim, Ji-Seon, E-mail: ji-seon.kim@imperial.ac.uk [Department of Physics and Centre for Plastic Electronics, South Kensington Campus, Imperial College London, London SW7 2AZ (United Kingdom); Wright, Edward N.; Walker, Alison B. [Department of Physics, University of Bath, Bath BA2 7AY (United Kingdom)

    2014-05-28T23:59:59.000Z

    Insertion of ultra-thin polymeric interlayers (ILs) between the poly(3,4-ethylenedioxythiophene):polystyrene sulphonate hole injection and poly(9,9-dioctylfluorene-alt-benzothiadiazole) (F8BT) light emission layers of polymer light emitting diodes (PLEDs) can significantly increase their efficiency. In this paper, we investigate experimentally a broad range of probable causes of this enhancement with an eye to determining which IL parameters have the most significant effects. The importance of hole injection and electron blocking was studied through varying the IL material (and consequently its electronic energy levels) for both PLED and hole-only diode structures. The role of IL conductivity was examined by introducing a varying level of charge-transfer doping through blending the IL materials with a strong electron-accepting small molecule in concentrations from 1% to 7% by weight. Depositing ILs with thicknesses below the exciton diffusion length of ?15?nm allowed the role of the IL as a physical barrier to exciton quenching to be probed. IL containing PLEDs was also fabricated with Lumation Green Series 1300 (LG 1300) light emission layers. On the other hand, the PLEDs were modeled using a 3D multi-particle Kinetic Monte Carlo simulation coupled with an optical model describing how light is extracted from the PLED. The model describes charge carrier transport and interactions between electrons, holes, singlets, and triplets, with the current density, luminance, and recombination zone (RZ) locations calculated for each PLED. The model shows F8BT PLEDs have a narrow charge RZ adjacent to the anode, while LG 1300 PLEDs have a wide charge RZ that is evenly distributed across the light emitting layer. Varying the light emitting layer from F8BT to Lumation Green Series 1300, we therefore experimentally examine the dependence of the IL function, specifically in regard to anode-side exciton quenching, on the location of the RZ. We found an exponential dependence of F8BT PLED luminance on the difference, ?, in the highest occupied to lowest unoccupied molecular orbital energy gap between the light emitting polymer and a semiconducting polymeric IL, with ? consequently the most important parameter determining efficiency. Understanding the exponential effect that wider energy gap IL materials have on exciton quenching may allow ? to be used to better guide PLED structure design.

  13. 3-Port Single-Stage PV & Battery Converter Improves Efficiency and Cost in Combined PV/Battery Systems

    SciTech Connect (OSTI)

    Bundschuh, Paul [Ideal Power

    2013-03-23T23:59:59.000Z

    Due to impressive cost reductions in recent years, photovoltaic (PV) generation is now able to produce electricity at highly competitive prices, but PVs inherent intermittency reduces the potential value of this energy. The integration of battery storage with PV will be transformational by increasing the value of solar. Utility scale systems will benefit by firming intermittency including PV ramp smoothing, grid support and load shifting, allowing PV to compete directly with conventional generation. For distributed grid-tied PV adding storage will reduce peak demand utility charges, as well as providing backup power during power grid failures. The largest long term impact of combined PV and battery systems may be for delivering reliable off-grid power to the billions of individuals globally without access to conventional power grids, or for billions more that suffer from daily power outages. PV module costs no longer dominate installed PV system costs. Balance-of-System (BOS) costs including the PV inverter and installation now contribute the majority of installed system costs. Battery costs are also dropping faster than installation and battery power converter systems. In each of these separate systems power converters have become a bottleneck for efficiency, cost and reliability. These bottlenecks are compounded in hybrid power conversion systems that combine separate PV and battery converters. Hybrid power conversion systems have required multiple power converters hardware units and multiple power conversion steps adding to efficiency losses, product and installation costs, and reliability issues. Ideal Power Converters has developed and patented a completely new theory of operation for electronic power converters using its indirect EnergyPacket Switching topology. It has established successful power converter products for both PV and battery systems, and its 3-Port Hybrid Converter is the first product to exploit the topologys capability for the industrys first single-stage multi-port hybrid power converter. This unique low cost approach eliminates the hybrid power conversion bottlenecks when integrating batteries into PV systems. As result this product will significantly accelerate market adoption of these systems.

  14. Improved high efficiency third stage separator cyclones for separation of fines from fluid catalytic cracking flue gas

    SciTech Connect (OSTI)

    Chitnis, G.K.; Schatz, K.W. [Mobil Technology Co., Paulsboro, NJ (United States); Bussey, B.K. [M.W. Kellogg Co., Houston, TX (United States)

    1996-12-31T23:59:59.000Z

    Stairmand type small diameter (0.254 m) multicyclones were cold flow tested for fluid catalytic cracking third stage separator application. The gas discharge from the cyclone dust outlet into the common collection hopper was found to far exceed the hopper bleed rate (underflow). The excess gas reentrained dust from the hopper back into cyclones, which lowered collection efficiencies. Vortex {open_quotes}stabilization{close_quotes} using apex cones was unsuccessful whereas a Mobil proprietary cyclone modification was successful in minimizing excess gas discharge and dust reentrainment at the cyclone-hopper boundary. In tests at 700 {degrees}C, the modified cyclones captured all particles above 4 {mu}m. Mobil-Kellogg incorporated the modified cyclones in a new third stage separator design which is targeted for achieving lowest opacity and <50 mg/Nm{sup 3} emissions at the stack. The first such unit will be commercialized in Mobil`s newest catalytic cracker (M.W. Kellogg design) under construction in Altona, Australia in late 1996. 5 refs., 4 figs., 2 tabs.

  15. COMMUNICATION ABOUT SEXUAL HEALTH AND DECISION MAKING WITH ADOLESCENTS IN FOSTER CARE

    E-Print Network [OSTI]

    Pilgrim, Sarah Irene

    2012-08-31T23:59:59.000Z

    , & Steiner, 2001). Legislation for the Health and Well-Being of Foster Youth Extensive research surrounding the health and wellbeing of adolescents in foster care can be found across disciplines. Simms, Dubowitz, and Szilagyi (2000) classify the unique... Accounting Office (USGAO) reports findings which compound the issues reported by Simms, Dubowitz, and Szilagyi (2000) regarding the condition of youth entering foster care. The USGAO found that despite the youths condition the majority of children who...

  16. Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers

    SciTech Connect (OSTI)

    Neelis, Maarten; Worrell, Ernst; Masanet, Eric

    2008-09-01T23:59:59.000Z

    Energy is the most important cost factor in the U.S petrochemical industry, defined in this guide as the chemical industry sectors producing large volume basic and intermediate organic chemicals as well as large volume plastics. The sector spent about $10 billion on fuels and electricity in 2004. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. petrochemical industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy efficient technologies that can be implemented at the component, process, facility, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the petrochemical industry is provided along with a description of the major process technologies used within the industry. Next, a wide variety of energy efficiency measures are described. Many measure descriptions include expected savings in energy and energy-related costs, based on case study data from real-world applications in the petrochemical and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. The information in this Energy Guide is intended to help energy and plant managers in the U.S. petrochemical industry reduce energy consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of all measures--and on their applicability to different production practices--is needed to assess their cost effectiveness at individual plants.

  17. Energy Efficiency Improvement and Cost Saving Opportunities for the Vehicle Assembly Industry: An ENERGY STAR Guide for Energy and Plant Managers

    SciTech Connect (OSTI)

    Galitsky, Christina; Galitsky, Christina; Worrell, Ernst

    2008-01-01T23:59:59.000Z

    The motor vehicle industry in the U.S. spends about $3.6 billion on energy annually. In this report, we focus on auto assembly plants. In the U.S., over 70 assembly plants currently produce 13 million cars and trucks each year. In assembly plants, energy expenditures is a relatively small cost factor in the total production process. Still, as manufacturers face an increasingly competitive environment, energy efficiency improvements can provide a means to reduce costs without negatively affecting the yield or the quality of the product. In addition, reducing energy costs reduces the unpredictability associated with variable energy prices in today?s marketplace, which could negatively affect predictable earnings, an important element for publicly-traded companies such as those in the motor vehicle industry. In this report, we first present a summary of the motor vehicle assembly process and energy use. This is followed by a discussion of energy efficiency opportunities available for assembly plants. Where available, we provide specific primary energy savings for each energy efficiency measure based on case studies, as well as references to technical literature. If available, we have listed costs and typical payback periods. We include experiences of assembly plants worldwide with energy efficiency measures reviewed in the report. Our findings suggest that although most motor vehicle companies in the U.S. have energy management teams or programs, there are still opportunities available at individual plants to reduce energy consumption cost effectively. Further research on the economics of the measures for individual assembly plants, as part of an energy management program, is needed to assess the potential impact of selected technologies at these plants.

  18. Financing Energy Upgrades for K-12 School Districts: A Guide to Tapping into Funding for Energy Efficiency and Renewable Energy Improvements

    E-Print Network [OSTI]

    Borgeson, Merrian

    2014-01-01T23:59:59.000Z

    Education), Carolyn Sarno (Northeast Energy Efficiency Partnerships), Margie Gardner (California Energy Efficiency Industry Council), Carol Schmitt (Sustainable

  19. Low Cost Chemical Feedstocks Using an Improved and Energy Efficient Natural Gas Liquid (NGL) Removal Process, Final Technical Report

    SciTech Connect (OSTI)

    Meyer, Howard, S.; Lu, Yingzhong

    2012-08-10T23:59:59.000Z

    The overall objective of this project is to develop a new low-cost and energy efficient Natural Gas Liquid (NGL) recovery process - through a combination of theoretical, bench-scale and pilot-scale testing - so that it could be offered to the natural gas industry for commercialization. The new process, known as the IROA process, is based on U.S. patent No. 6,553,784, which if commercialized, has the potential of achieving substantial energy savings compared to currently used cryogenic technology. When successfully developed, this technology will benefit the petrochemical industry, which uses NGL as feedstocks, and will also benefit other chemical industries that utilize gas-liquid separation and distillation under similar operating conditions. Specific goals and objectives of the overall program include: (i) collecting relevant physical property and Vapor Liquid Equilibrium (VLE) data for the design and evaluation of the new technology, (ii) solving critical R&D issues including the identification of suitable dehydration and NGL absorbing solvents, inhibiting corrosion, and specifying proper packing structure and materials, (iii) designing, construction and operation of bench and pilot-scale units to verify design performance, (iv) computer simulation of the process using commercial software simulation platforms such as Aspen-Plus and HYSYS, and (v) preparation of a commercialization plan and identification of industrial partners that are interested in utilizing the new technology. NGL is a collective term for C2+ hydrocarbons present in the natural gas. Historically, the commercial value of the separated NGL components has been greater than the thermal value of these liquids in the gas. The revenue derived from extracting NGLs is crucial to ensuring the overall profitability of the domestic natural gas production industry and therefore of ensuring a secure and reliable supply in the 48 contiguous states. However, rising natural gas prices have dramatically reduced the economic incentive to extract NGLs from domestically produced natural gas. Successful gas processors will be those who adopt technologies that are less energy intensive, have lower capital and operating costs and offer the flexibility to tailor the plant performance to maximize product revenue as market conditions change, while maintaining overall system efficiency. Presently, cryogenic turbo-expander technology is the dominant NGL recovery process and it is used throughout the world. This process is known to be highly energy intensive, as substantial energy is required to recompress the processed gas back to pipeline pressure. The purpose of this project is to develop a new NGL separation process that is flexible in terms of ethane rejection and can reduce energy consumption by 20-30% from current levels, particularly for ethane recoveries of less than 70%. The new process integrates the dehydration of the raw natural gas stream and the removal of NGLs in such a way that heat recovery is maximized and pressure losses are minimized so that high-value equipment such as the compressor, turbo-expander, and a separate dehydration unit are not required. GTI completed a techno-economic evaluation of the new process based on an Aspen-HYSYS simulation model. The evaluation incorporated purchased equipment cost estimates obtained from equipment suppliers and two different commercial software packages; namely, Aspen-Icarus and Preliminary Design and Quoting Service (PDQ$). For a 100 MMscfd gas processing plant, the annualized capital cost for the new technology was found to be about 10% lower than that of conventional technology for C2 recovery above 70% and about 40% lower than that of conventional technology for C2 recovery below 50%. It was also found that at around 40-50% C2 recovery (which is economically justifiable at the current natural gas prices), the energy cost to recover NGL using the new technology is about 50% of that of conventional cryogenic technology.

  20. A Model for the Public Sector to Foster Sustainable Business Development .

    E-Print Network [OSTI]

    Becker, Brie

    2011-01-01T23:59:59.000Z

    ??Businesses play an important role in the economic, environmental and social health of our communities. The public sector can foster sustainable business development through economic (more)