Powered by Deep Web Technologies
Note: This page contains sample records for the topic "fostering efficiency improvements" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Managing Energy Efficiency Improvement  

E-Print Network (OSTI)

In 1991, the World Business Council for Sustainable Development (WBCSD) introduced Eco- Efficiency as a management strategy to link financial and environmental performance to create more value with less ecological impact. Based on this strategy, CETAC-WEST (Canadian Environmental Technology Advancement Corporation - West), in mid-2000, introduced a practical approach to eco-efficiency to Western Canada's upstream oil and gas sector. The CETAC-WEST Eco-Efficiency Program, focused primarily on sour gas processing facilities, has developed methods and programs to identify opportunities for energy conservation and GHG reductions. The program outlined in this paper consists of four interrelated phases that are used to identify and track efficiency opportunities as well as promote the use of energy efficient methodologies and technologies. If, as program results suggest, 15% to 20% of the gas that is now consumed at by plant operations can be saved through efficiencies, it would save $500 to $700 million worth of gas for sale on the market. Although this small Pilot Program in the gas processing sector has surfaced major opportunities, there are significantly greater opportunities in other sectors with high GHG emissions intensity, such as sweet gas processing, conventional oil, heavy oil and oil sands. Capturing these opportunities will require a carefully considered strategy. This strategy should include, in addition to commitments for expanding the scope of the current Program, sustained leadership by industry champions and by governments - all aimed at changing the operating mode and improving the culture in the oil and gas industry.

Almaguer, J.

2006-01-01T23:59:59.000Z

2

Membranes Improve Insulation Efficiency  

E-Print Network (OSTI)

It has been determined from extensive tests involving test models and home attics that loose fill and fiber batt insulation does not function as expected by the industry. The reason for this deficiency is current test methods do not accurately predict the magnitude of air infiltration into fiber insulation as used in home attics, radiant heat infiltration into the insulation during summer, or radiant heat loss through the insulation during winter conditions. The use of (1) moisture permeable membranes over the insulation, and (2) layered membranes between fiber batts to form closed cells in the insulation both dramatically improve the efficiency of the fiber insulation. The efficiency of this insulation will be improved to an even greater degree if these membranes reflect radiant heat as well as reduce convection air currents. Extensive tests have also been conducted which show that if moisture permeable membranes are used over fiber insulation, the moisture content of the insulation will be reduced.

Bullock, C. A.

1986-01-01T23:59:59.000Z

3

NETL: Turbine Projects - Efficiency Improvement  

NLE Websites -- All DOE Office Websites (Extended Search)

Efficiency Improvemenet Turbine Projects Efficiency Improvemenet Advanced Hot Section Materials and Coatings Test Rig DataFact Sheets System Study for Improved Gas Turbine...

4

Refines Efficiency Improvement  

Science Conference Proceedings (OSTI)

Refinery processes that convert heavy oils to lighter distillate fuels require heating for distillation, hydrogen addition or carbon rejection (coking). Efficiency is limited by the formation of insoluble carbon-rich coke deposits. Heat exchangers and other refinery units must be shut down for mechanical coke removal, resulting in a significant loss of output and revenue. When a residuum is heated above the temperature at which pyrolysis occurs (340 C, 650 F), there is typically an induction period before coke formation begins (Magaril and Aksenova 1968, Wiehe 1993). To avoid fouling, refiners often stop heating a residuum before coke formation begins, using arbitrary criteria. In many cases, this heating is stopped sooner than need be, resulting in less than maximum product yield. Western Research Institute (WRI) has developed innovative Coking Index concepts (patent pending) which can be used for process control by refiners to heat residua to the threshold, but not beyond the point at which coke formation begins when petroleum residua materials are heated at pyrolysis temperatures (Schabron et al. 2001). The development of this universal predictor solves a long standing problem in petroleum refining. These Coking Indexes have great potential value in improving the efficiency of distillation processes. The Coking Indexes were found to apply to residua in a universal manner, and the theoretical basis for the indexes has been established (Schabron et al. 2001a, 2001b, 2001c). For the first time, a few simple measurements indicates how close undesired coke formation is on the coke formation induction time line. The Coking Indexes can lead to new process controls that can improve refinery distillation efficiency by several percentage points. Petroleum residua consist of an ordered continuum of solvated polar materials usually referred to as asphaltenes dispersed in a lower polarity solvent phase held together by intermediate polarity materials usually referred to as resins. The Coking Indexes focus on the amount of these intermediate polarity species since coke formation begins when these are depleted. Currently the Coking Indexes are determined by either titration or solubility measurements which must be performed in a laboratory. In the current work, various spectral, microscopic, and thermal techniques possibly leading to on-line analysis were explored for measuring the Coking Indexes.

WRI

2002-05-15T23:59:59.000Z

5

Bayer Process Efficiency Improvement  

Science Conference Proceedings (OSTI)

Abstract Scope, The process efficiency has a great influence on the production yield, energy consumption, investment and operation cost in Bayer process.

6

Electronic ballast improves efficiency  

SciTech Connect

As part of a DOE program, the performance of various electronic ballasts for fluorescent lamps have been evaluated relative to high quality core-coil ballasts under similar ambient conditions. The results of this investigation are reported. Real energy savings can exceed 40% while comfort and quality of illumination are improved. A detailed comparison of two types of ballast is presented. Voltage effects and temperature effects as well as dimming features are discussed. Light levels, power energy consumption, and daylighting are also treated. It is concluded that, with the electronic ballast, an annual payback of $8.20/yr is possible as compared to the core-coil ballasted fluorescent lamp. Further, much greater flexibility in use is possible with the electronic ballast equipped lamp. (MJJ)

Verderber, R.R.

1980-11-01T23:59:59.000Z

7

Butler Rural Electric Cooperative - Energy Efficiency Improvement...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Efficiency Improvement Loan Program Butler Rural Electric Cooperative - Energy Efficiency Improvement Loan Program Eligibility Residential Savings For Home Weatherization...

8

Efficiency Improvement Opportunities for Personal Computer Monitors...  

NLE Websites -- All DOE Office Websites (Extended Search)

Efficiency Improvement Opportunities for Personal Computer Monitors: Implications for Market Transformation Programs Title Efficiency Improvement Opportunities for Personal...

9

Improving Gas Flooding Efficiency  

SciTech Connect

This study focuses on laboratory studies with related analytical and numerical models, as well as work with operators for field tests to enhance our understanding of and capabilities for more efficient enhanced oil recovery (EOR). Much of the work has been performed at reservoir conditions. This includes a bubble chamber and several core flood apparatus developed or modified to measure interfacial tension (IFT), critical micelle concentration (CMC), foam durability, surfactant sorption at reservoir conditions, and pressure and temperature effects on foam systems.Carbon dioxide and N{sub 2} systems have been considered, under both miscible and immiscible conditions. The injection of CO2 into brine-saturated sandstone and carbonate core results in brine saturation reduction in the range of 62 to 82% brine in the tests presented in this paper. In each test, over 90% of the reduction occurred with less than 0.5 PV of CO{sub 2} injected, with very little additional brine production after 0.5 PV of CO{sub 2} injected. Adsorption of all considered surfactant is a significant problem. Most of the effect is reversible, but the amount required for foaming is large in terms of volume and cost for all considered surfactants. Some foams increase resistance to the value beyond what is practical in the reservoir. Sandstone, limestone, and dolomite core samples were tested. Dissolution of reservoir rock and/or cement, especially carbonates, under acid conditions of CO2 injection is a potential problem in CO2 injection into geological formations. Another potential change in reservoir injectivity and productivity will be the precipitation of dissolved carbonates as the brine flows and pressure decreases. The results of this report provide methods for determining surfactant sorption and can be used to aid in the determination of surfactant requirements for reservoir use in a CO{sub 2}-foam flood for mobility control. It also provides data to be used to determine rock permeability changes during CO{sub 2} flooding due to saturation changes, dissolution, and precipitation.

Reid Grigg; Robert Svec; Zheng Zeng; Alexander Mikhalin; Yi Lin; Guoqiang Yin; Solomon Ampir; Rashid Kassim

2008-03-31T23:59:59.000Z

10

Green Cooling: Improving Chiller Efficiency  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 Green Cooling: Improving Chiller Efficiency This new chiller simulation module being developed by Building Performance Assurance Project members will help building managers compare optimal and actual chiller efficiency. Chillers are the single largest energy consumers in commercial buildings. These machines create peaks in electric power consumption, typically during summer afternoons. In fact, 23% of electricity generation is associated with powering chillers that use CFCs and HCFCs, ozone-depleting refrigerants. Satisfying the peak demand caused by chillers forces utilities to build new power plants. However, because chiller plants run the most when the weather is hot and very little at other times, their load factors - and hence the utilities' load factors (the percentage of time the

11

Sustainable Energy by Improved Energy Efficiency - Programmaster ...  

Science Conference Proceedings (OSTI)

By reducing the losses inherent to these activities, energy efficiency will be improved, adding to the overall energy sustainability. A main factor for efficiency is...

12

Operational Efficiency Improvements Resulting from Monitoring and ...  

Science Conference Proceedings (OSTI)

In heat treatment facilities, the customer would find potential efficiency improvements on generators, radiant tubes, furnaces, ovens, heaters, and boilers

13

Significant Improvement of Energy Efficiency at Alunorte's ...  

Science Conference Proceedings (OSTI)

Presentation Title, Significant Improvement of Energy Efficiency at Alunorte's Calcination Facility. Author(s), Michael Missalla, Hans-Werner Schmidt, Joaquim ...

14

Available Technologies: Improving the Efficiency of Nanoscale ...  

Alex Zettl, Jeffrey Grossman, and colleagues at Berkeley Lab have developed several approaches for improving the conversion efficiency of nanoscale photovoltaic devices.

15

Improved Engine Design Through More Efficient Combustion ...  

Improved Engine Design Through More Efficient Combustion Simulations The Multi-Zone Combustion Model (MCM) is a software tool that enables ...

16

Building Technologies Office: Improving the Energy Efficiency...  

NLE Websites -- All DOE Office Websites (Extended Search)

Share this resource Send a link to Building Technologies Office: Improving the Energy Efficiency of Commercial Buildings to someone by E-mail Share Building Technologies Office:...

17

Microelectronics Plant Water Efficiency Improvements at Sandia...  

NLE Websites -- All DOE Office Websites (Extended Search)

Sandia National Laboratories has developed extensive water efficiency improvements at its Microsystems and Engineering Sciences Applications (MESA) complex in Albuquerque, New...

18

Enhanced Power Grid Efficiency through Improved Phasor ...  

Enhanced Power Grid Efficiency through Improved Phasor Measurement Cleaning ... existing power grids, but they are expected to play an even larger ...

19

Technologies and Policies to Improve Energy Efficiency in Industry  

E-Print Network (OSTI)

of Policy Instruments for Energy-Efficiency Improvements inand Graus, W. , 2007. Energy Efficiency Improvement and CostWorrell, E. , 2003. Energy Efficiency Improvement and Cost

Price, Lynn

2008-01-01T23:59:59.000Z

20

Cogeneration improves thermal EOR efficiency  

SciTech Connect

This paper reports that the successful completion and operation of a cogeneration plant is a prime example of the multi-faceted use of cogeneration. Through high-efficiency operation, significant energy is saved by combining the two process of steam and electrical production. The 225-megawatt (mw) cogeneration plant provides 1,215 million lb/hr of steam for thermally enhanced oil recovery (TEOR) at the Midway-Sunset oil field in south-central California. Overall pollutant emissions as well as total electric and steam production costs have been reduced. The area's biological resources also have been protected.

Western, E.R. (Oryx Energy Co., Fellows, CA (US)); Nass, D.W. (Chas. T. Main Inc., Pasadena, CA (US))

1990-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "fostering efficiency improvements" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Improving Energy Efficiency of Auxiliaries  

DOE Green Energy (OSTI)

The summaries of this report are: Economics Ultimately Dictates Direction; Electric Auxiliaries Provide Solid Benefits. The Impact on Vehicle Architecture Will be Important; Integrated Generators With Combined With Turbo Generators Can Meet the Electrical Demands of Electric Auxiliaries; Implementation Will Follow Automotive 42V Transition; Availability of Low Cost Hardware Will Slow Implementation; Industry Leadership and Cooperation Needed; Standards and Safety Protocols Will be Important. Government Can Play an Important Role in Expediting: Funding Technical Development; Incentives for Improving Fuel Economy; Developing Standards, Allowing Economy of Scale; and Providing Safety Guidelines.

Carl T. Vuk

2001-12-12T23:59:59.000Z

22

Better Buildings Challenge is Expanding, Improving Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Better Buildings Challenge is Expanding, Improving Energy Efficiency Throughout America Better Buildings Challenge is Expanding, Improving Energy Efficiency Throughout America...

23

Prescription to Improve Thermoelectric Efficiency  

E-Print Network (OSTI)

In this work, patterns in the behavior of different classes and types of thermoelectric materials are observed, and an alchemy that could help engineer a highly efficient thermoelectric is proposed. A method based on cross-correlation of Seebeck waveforms is also presented in order to capture physics of magnetic transition. The method is used to compute Curie temperature of LaCoO3 with an accuracy of 10K. In total, over 26 systems are analyzed, and 19 presented: Chalcogenides (PbSe, PbTe, Sb2Te3, Ag2Se), Skutterudites and Clathrates (CoSb3, SrFe4Sb12, Cd (CN)2, CdC, Ba8Ga16Si30*), Perovskites (SrTiO3, BaTiO3, LaCoO3, CaSiO3, Ce3InN*, YCoO3*), Half-Heuslers (ZrNiSn, NbFeSb, LiAlSi, CoSbTi, ScPtSb*, CaMgSi*), and an assorted class of thermoelectric materials (FeSi, FeSi2, ZnO, Ag QDSL*). Relaxation time is estimated from experimental conductance curve fits. A maximum upper bound of zT is evaluated for systems that have no experimental backing. In general, thermoelectric parameters (power factor, Seebeck coefficient and zT) are estimated for the aforementioned crystal structures. Strongly correlated systems are treated using LDAU and GGAU approximations. LDA/GGA/L(S)DA+U/GGA+U approach specific errors have also been highlighted. Densities of experimental results are estimated.

Meka, Shiv Akarsh

2010-05-01T23:59:59.000Z

24

Empirical Methodologies for Improving HVAC Efficiency  

NLE Websites -- All DOE Office Websites (Extended Search)

Empirical Methodologies for Improving HVAC Efficiency Empirical Methodologies for Improving HVAC Efficiency Speaker(s): Anil Aswani Date: September 21, 2012 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Michael Wetter This talk describes the use of empirical methodologies that we have developed for the purpose of improving heating, ventilation, and air-conditioning (HVAC) efficiency through better control algorithms and configuration. We show that semiparametric regression can both identify simplified models of thermal HVAC dynamics while also estimating time-varying heating loads using only real-time temperature measurements from thermostats. These models can be used with our learning-based model predictive control (LBMPC) method in order to improve the energy-efficiency of HVAC. Experiments on testbeds with different types of HVAC show the

25

Technologies and Policies to Improve Energy Efficiency in Industry  

E-Print Network (OSTI)

implementation of cost-effective energy efficiency measuresW. , 2007. Energy Efficiency Improvement and Cost SavingE. , 2003. Energy Efficiency Improvement and Cost Saving

Price, Lynn

2008-01-01T23:59:59.000Z

26

Technologies and Policies to Improve Energy Efficiency in Industry  

E-Print Network (OSTI)

of Policy Instruments for Energy-Efficiency Improvements inand Graus, W. , 2007. Energy Efficiency Improvement and Costimplementation of energy-efficiency and greenhouse gas

Price, Lynn

2008-01-01T23:59:59.000Z

27

Improving Industrial Refrigeration System Efficiency - Actual Applications  

E-Print Network (OSTI)

This paper discusses actual design and modifications for increased system efficiency and includes reduced chilled liquid flow during part load operation, reduced condensing and increased evaporator temperatures for reduced system head, thermosiphon cycle cooling during winter operation, compressor intercooling, direct refrigeration vs. brine cooling, insulation of cold piping to reduce heat gain, multiple screw compressors for improved part load operation, evaporative condensers for reduced system head and pumping energy, and using high efficiency motors.

White, T. L.

1980-01-01T23:59:59.000Z

28

Blueprint for Improving Energy Efficiency in India  

NLE Websites -- All DOE Office Websites (Extended Search)

Blueprint for Improving Energy Efficiency in India Blueprint for Improving Energy Efficiency in India Speaker(s): V. Raghuraman Date: June 16, 2006 - 12:00pm Location: 90-4133 Indian economic growth is averaging 8%, and is projected to reach double-digit growth rates. The Indian energy requirements are likely to grow at 6% vis-a-vis the world growth rate of 2%. India has limited energy reserves, and seeks to increase its energy efficiency with contemporary technologies. The higher economic growth has been achieved with limited electricity supply implying higher productivity, which needs to be investigated carefully. The country seeks carbon finance through CDM projects. It has launched an Energy Dialogue in close collaboration with the US DOE and is participating in the Asia Pacific Partnership (APP) with

29

High Performance Healthcare Buildings: A Roadmap to Improved Energy Efficiency  

E-Print Network (OSTI)

Roadmap to Improved Energy Efficiency iii 11-Sept-2009 ListA Roadmap to Improved Energy Efficiency 11-Sept-2009 Topic /A Roadmap to Improved Energy Efficiency 11-Sept-2009 Topic /

Singer, Brett C.

2010-01-01T23:59:59.000Z

30

DOE Requests Information to Improve Energy Efficiency Enforcement...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Requests Information to Improve Energy Efficiency Enforcement Process DOE Requests Information to Improve Energy Efficiency Enforcement Process May 4, 2010 - 12:33pm Addthis Today,...

31

Energy Efficiency Improvement and Cost Saving Opportunities for...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency Improvement and Cost Saving Opportunities for the Baking Industry Title Energy Efficiency Improvement and Cost Saving Opportunities for the Baking Industry...

32

Secretary Chu Announces $47 Million to Improve Efficiency in...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7 Million to Improve Efficiency in Information Technology and Communications Sectors Secretary Chu Announces 47 Million to Improve Efficiency in Information Technology and...

33

Idaho Waste Treatment Facility Improves Worker Safety and Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Waste Treatment Facility Improves Worker Safety and Efficiency, Saves Taxpayer Dollars Idaho Waste Treatment Facility Improves Worker Safety and Efficiency, Saves Taxpayer Dollars...

34

Energy Efficiency Improvement and Cost Saving Opportunities for...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency Improvement and Cost Saving Opportunities for the Glass Industry Title Energy Efficiency Improvement and Cost Saving Opportunities for the Glass Industry...

35

Energy Efficiency Improvement and Cost Saving Opportunities for...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency Improvement and Cost Saving Opportunities for the Dairy Processing Industry Title Energy Efficiency Improvement and Cost Saving Opportunities for the Dairy...

36

Pee Dee Electric Cooperative - Energy Efficient Home Improvement...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Efficient Home Improvement Loan Program Pee Dee Electric Cooperative - Energy Efficient Home Improvement Loan Program Eligibility Residential Savings For Home Weatherization...

37

Potential Global Benefits of Improved Ceiling Fan Energy Efficiency  

NLE Websites -- All DOE Office Websites (Extended Search)

Global Benefits of Improved Ceiling Fan Energy Efficiency Title Potential Global Benefits of Improved Ceiling Fan Energy Efficiency Publication Type Report LBNL Report Number...

38

TV Energy Consumption Trends and Energy-Efficiency Improvement...  

NLE Websites -- All DOE Office Websites (Extended Search)

TV Energy Consumption Trends and Energy-Efficiency Improvement Options Title TV Energy Consumption Trends and Energy-Efficiency Improvement Options Publication Type Report LBNL...

39

Energy efficiency improvements in Chinese compressed air systems  

E-Print Network (OSTI)

Air Systems, Paper #071 Energy efficiency improvements into increase industrial energy efficiency. As a result, morein use. Over time, energy efficiency decreases and the cost

McKane, Aimee; Li, Li; Li, Yuqi; Taranto, T.

2008-01-01T23:59:59.000Z

40

Energy efficiency improvement and cost saving opportunities for petroleum refineries  

E-Print Network (OSTI)

to Improve FCCU Energy Efficiency. Petroleum TechnicalACEEE Summer Study on Energy Efficiency in Industry, ACEEE,ACEEE Summer Study on Energy Efficiency in Industry Volume

Worrell, Ernst; Galitsky, Christina

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fostering efficiency improvements" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Energy-Efficiency Improvement Opportunities for the Textile Industry  

E-Print Network (OSTI)

Finishing Stenters, ADB Energy-efficiency Support Project.After Treatment Dryer. ? Energy-efficiency Bulletin (No.40).E. and Galitsky, C. , 2004. Energy-efficiency improvement

Hasanbeigi, Ali

2010-01-01T23:59:59.000Z

42

Energy Efficiency Improvement Techniques For Data Centers  

Science Conference Proceedings (OSTI)

The data center industry is experiencing tremendous growth, and with that growth also comes increasing power consumption. The 2007 EPA report to Congress estimated that power consumption in the industry had doubled from 2001 to 2006 and would double again by 2011 if allowed to continue unabated. While efficiency of power supplies used in data center equipment has improved over time, power used by this equipment has increased, and the quantity of equipment being installed in data centers also is increasin...

2010-12-23T23:59:59.000Z

43

Improving air handler efficiency in houses  

SciTech Connect

Although furnaces, air conditioners and heat pumps have become significantly more efficient over the last couple of decades, residential air handlers have typical efficiencies of only 10% to 15% due to poor electric motor performance and aerodynamically poor fans and fan housings. Substantial increases in performance could be obtained through improved air handler design and construction. A prototype residential air handler intended to address these issues has recently been developed. The prototype and a standard production fan were tested in a full-scale duct system and test chamber at LBNL specifically designed for testing heating, ventilation, and air conditioning systems. The laboratory tests compared efficiency, total airflow, sensitivity to duct system flow resistance, and the effects of installation in a smaller cabinet. The test results showed that the prototype air handler had about twice the efficiency of the standard air handler (averaged over a wide range of operating conditions) and was less sensitive to duct system flow resistance changes. The performance of both air handlers was significantly reduced by reducing the clearance between the air handler and cabinet it was placed in. These test results showed that in addition to the large scope for performance improvement, air handler fans need to be tested in the cabinets they operate in.

Walker, Iain S.

2004-05-01T23:59:59.000Z

44

Compressor & Steam Turbine Efficiency Improvements & Revamping Opportunities  

E-Print Network (OSTI)

Fossil fuels remain the dominant source for primary energy production worldwide. In relation to this trend, energy consumption in turbomachinery has been increasing due to the scale up of both the machinery itself as well as the processing plants in which they operate. This energy growth requires high efficiency improvements for machine design and operation to minimize life cycle cost. This paper will focus on the mechanical drive steam turbines which power the main process equipment in the heart of the plant and introduce the history of efficiency improvements for compressors and steam turbines in the Petrochemical Industry. Since heat balance configurations affect the plant's steam consumption, the authors will explain several cases of heat balance configurations and applications / selections of steam turbines. According to the change in output demand, in some cases the original plants are modified by increasing capacity and consequently the turbines and compressors are revamped internally or replaced totally. The authors will introduce several case studies on revamping to increase efficiency and reliability as per the following cases: a) Replacement of High Pressure Section Internals b) Replacement of Low Pressure Section Internals c) Replacement of All Internals d) Internals and Casing Replacement e) Efficiency Recovery Technique Modification Finally, life cycle cost (LCC) evaluation and sensitivity due to turbomachinery performance are explained as a case study of a mega ethylene plant.

Hata, S.; Horiba, J.; Sicker, M.

2011-01-01T23:59:59.000Z

45

Energy Efficiency Improvements: Do they Pay?  

E-Print Network (OSTI)

The authors acknowledge and appreciate the comments and suggestions as provided by mentors Martha The past decade has seen a marked increase in our awareness of the effect of climate change on the global environment. Real estate is directly responsible for 43 % of all annual carbon emissions related to energy consumption. Yet in the commercial real estate markets our attention has been primarily focused on new construction and green buildings as the solution to improve our carbon footprint. In this study we attempt to quantify the economic gains associated with investment in energy efficiency improvements (EEI) for commercial real estate. We discuss reasons and challenges associated with taking on this endeavor. Benchmarking the performance of these improvements is discussed through an explanation of the Leadership in Energy and Environmental Design (LEED) program. A series of projects for which investment in EEI has been conducted are reviewed and suggest that economic gains can be significant for these improvements. While data limitations preclude the ability to generalize our results, we believe they demonstrate an area of real estate investment that should not be overlooked. Results of the study will appeal to owners and operators of commercial real estate, as well as tenants who occupy space in these buildings. 2

Brian A. Ciochetti; Mark D. Mcgowan

2009-01-01T23:59:59.000Z

46

Industrial energy-efficiency-improvement program  

SciTech Connect

Progress made by industry toward attaining the voluntary 1980 energy efficiency improvement targets is reported. The mandatory reporting population has been expanded from ten original industries to include ten additional non-targeted industries and all corporations using over one trillion Btu's annually in any manufacturing industry. The ten most energy intensive industries have been involved in the reporting program since the signing of the Energy Policy and Conservation Act and as industrial energy efficiency improvement overview, based primarily on information from these industries (chemicals and allied products; primary metal industry; petroleum and coal products; stone, clay, and glass products; paper and allied products; food and kindred products; fabricated metal products; transportation equipment; machinery, except electrical; and textile mill products), is presented. Reports from industries, now required to report, are included for rubber and miscellaneous plastics; electrical and electronic equipment; lumber and wood; and tobacco products. Additional data from voluntary submissions are included for American Gas Association; American Hotel and Motel Association; General Telephone and Electronics Corporation; and American Telephone and Telegraph Company. (MCW)

1980-12-01T23:59:59.000Z

47

Improved Furnace Efficiency through the Use of Refractory Materials  

Science Conference Proceedings (OSTI)

... refractory users, and academic institutions, to improve energy efficiency of U.S. industry through increased furnace efficiency brought about by the employment...

48

Energy Efficiency Improvement and Cost Saving Opportunities for...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency Improvement and Cost Saving Opportunities for the U.S. Iron and Steel Industry: An ENERGY STAR Guide for Energy and Plant Managers Title Energy Efficiency...

49

Improvement of Sweep Efficiency in Gasflooding  

Science Conference Proceedings (OSTI)

Miscible and near-miscible gasflooding has proven to be one of the few cost effective enhance oil recovery techniques in the past twenty years. As the scope of gas flooding is being expanded to medium viscosity oils in shallow sands in Alaska and shallower reservoirs in the lower 48, there are questions about sweep efficiency in near-miscible regions. The goal of this research is to evaluate sweep efficiency of various gas flooding processes in a laboratory model and develop numerical tools to estimate their effectiveness in the field-scale. Quarter 5-spot experiments were conducted at reservoir pressure to evaluate the sweep efficiency of gas, WAG and foam floods. The quarter 5-spot model was used to model vapor extraction (VAPEX) experiments at the lab scale. A streamline-based compositional simulator and a commercial simulator (GEM) were used to model laboratory scale miscible floods and field-scale pattern floods. An equimolar mixture of NGL and lean gas is multicontact miscible with oil A at 1500 psi; ethane is a multicontact miscible solvent for oil B at pressures higher than 607 psi. WAG improves the microscopic displacement efficiency over continuous gas injection followed by waterflood in corefloods. WAG improves the oil recovery in the quarter 5-spot over the continuous gas injection followed by waterflood. As the WAG ratio increases from 1:2 to 2:1, the sweep efficiency in the 5-spot increases, from 39.6% to 65.9%. A decrease in the solvent amount lowers the oil recovery in WAG floods, but significantly higher amount of oil can be recovered with just 0.1 PV solvent injection over just waterflood. Use of a horizontal production well lowers the oil recovery over the vertical production well during WAG injection phase in this homogeneous 5-spot model. Estimated sweep efficiency decreases from 61.5% to 50.5%. In foam floods, as surfactant to gas slug size ratio increases from 1:10 to 1:1, oil recovery increases. In continuous gasflood VAPEX processes, as the distance between the injection well and production well decreases, the oil recovery and rate decreases in continuous gasflood VAPEX processes. Gravity override is observed for gas injection simulations in vertical (X-Z) cross-sections and 3-D quarter five spot patterns. Breakthrough recovery efficiency increases with the viscous-to-gravity ratio in the range of 1-100. The speed up for the streamline calculations alone is almost linear with the number of processors. The overall speed up factor is sub-linear because of the overhead time spent on the finite-difference calculation, inter-processor communication, and non-uniform processor load. Field-scale pattern simulations showed that recovery from gas and WAG floods depends on the vertical position of high permeability regions and k{sub v}/k{sub h} ratio. As the location of high permeability region moves down and k{sub v}/k{sub h} ratio decreases, oil recovery increases. There is less gravity override. The recovery from the field model is lower than that from the lab 5-spot model, but the effect of WAG ratio is similar.

Kishore Mohanty

2008-12-31T23:59:59.000Z

50

Air control can improve field heater efficiency  

SciTech Connect

Independent field tests have demonstrated that the proper selection of primary and secondary air controls for wellhead gas dehydrators can reduce their burner fuel gas consumption by at least 30%. The tests were conducted by G.A. Baca and Associates Ltd., an engineering consulting firm located in Santa Fe, N.M. The new thermostat, venturi burner, and automatic secondary air control combination used in the tests were developed by Weatherford International as part of its Engineered Controls and Instruments (ECI) product line. The principle innovation of Weatherford's ECI burner/control combination is the Automatic Secondary Air Shutter, a device which limits the supply of secondary air surrounding the venturi burner. This air-flow control provides significant improvements in combustion efficiency compared to burners without such controls. Patents for the shutter and burner equipment are pending.

Zygmunt, S.J.; Giovanini, B.

1984-03-26T23:59:59.000Z

51

Energy Efficiency Improvement and Cost Saving Opportunities for...  

NLE Websites -- All DOE Office Websites (Extended Search)

Improvement and Cost Saving Opportunities for the Pulp and Paper Industry Title Energy Efficiency Improvement and Cost Saving Opportunities for the Pulp and Paper Industry...

52

Final Guidance on Improving the Process for Preparing Efficient...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

on Improving the Process for Preparing Efficient and Timely Environmental Reviews Under the National Environmental Policy Act Final Guidance on Improving the Process for Preparing...

53

Electricity and Natural Gas Efficiency Improvements for Residential...  

NLE Websites -- All DOE Office Websites (Extended Search)

Natural Gas Efficiency Improvements for Residential Gas Furnaces in the U.S. Title Electricity and Natural Gas Efficiency Improvements for Residential Gas Furnaces in the U.S....

54

Improved Energy Efficiency and Environmental Benefits for Calcium ...  

Science Conference Proceedings (OSTI)

... Green Engineering and Environmental Stewardship. Presentation Title, Improved Energy Efficiency and Environmental Benefits for Calcium Treatment in Steel.

55

Improving Real World Efficiency of High Performance Buildings  

E-Print Network (OSTI)

Improving Real World Efficiency of High Performance Buildings Buildings End-Use Energy Efficiency Research www.energy.ca.gov/research/buildings February 2012 The Issue Highperformance buildings efficiency in highperformance buildings, however, are not always realized in practice. Addressing

56

Wireless Sensors Improve Data Center Efficiency  

NLE Websites -- All DOE Office Websites (Extended Search)

foot, increase, energy savings for cooling can be realized by applying wireless sensor network (WSN) technology and using the gathered information to efficiently manage the data...

57

Georgia Power - Energy Efficiency Home Improvement Rebates | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Georgia Power - Energy Efficiency Home Improvement Rebates Georgia Power - Energy Efficiency Home Improvement Rebates Georgia Power - Energy Efficiency Home Improvement Rebates < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Construction Design & Remodeling Sealing Your Home Ventilation Manufacturing Heat Pumps Appliances & Electronics Commercial Lighting Lighting Water Heating Maximum Rebate All Incentives: 50% of cost Whole House Improvements: $2,200 Individual Improvements: $700 Program Info Start Date 1/1/2011 Expiration Date 12/31/2012 State Georgia Program Type Utility Rebate Program Rebate Amount Programmable Thermostat: $100 BPI Assessment: $200 Whole House Improvements: 50% Air Sealing: $400 Attic Insulation: $300

58

Amy Foster Parish  

Energy.gov (U.S. Department of Energy (DOE))

Amy Foster Parish is on staff with the Washington State University Extension Energy Program and answers inquiries through the EERE Information Center.

59

Substrate CdTe Efficiency Improvements  

Thin film solar cells have been the focus of many research facilities in recent years that are working to decrease manufacturing costs and increase cell efficiency. Cadmium telluride (CdTe) has been well recognized as a promising photovoltaic material ...

60

Energy Efficient Home Improvements Loan Program (Kentucky) |...  

Open Energy Info (EERE)

to evaluate homes and allow owners to decide which improvements should be made. Homeowners can also receive rebates instead of loans. First, participants fill out the free...

Note: This page contains sample records for the topic "fostering efficiency improvements" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Improve Your Boiler's Combustion Efficiency  

SciTech Connect

This revised ITP tip sheet on boiler combustion efficiency provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

2006-01-01T23:59:59.000Z

62

Boiler Tune-ups: Improve efficiency, reduce pollution, and save...  

NLE Websites -- All DOE Office Websites (Extended Search)

Boiler Tune-ups: Improve efficiency, reduce pollution, and save money Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing...

63

Energy Efficiency Improvement and Cost Saving Opportunities for...  

NLE Websites -- All DOE Office Websites (Extended Search)

LBNL-54036-Revision Energy Efficiency Improvement ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY and Cost Saving Opportunities for Cement Making An ENERGY STAR Guide for...

64

CEQ Releases Two Handbooks on Improving Efficiency of Federal...  

NLE Websites -- All DOE Office Websites (Extended Search)

of Federal Environmental Reviews CEQ Releases Two Handbooks on Improving Efficiency of Federal Environmental Reviews March 5, 2013 - 4:43pm Addthis The Council on Environmental...

65

Energy efficiency improvement and cost saving opportunities for petroleum refineries  

E-Print Network (OSTI)

N. Nath. 2000. Improve Steam Turbine Efficiency. Hydrocarbonas well as selection of steam turbines or electric motors toand minimizing losses in the steam turbines) can result in

Worrell, Ernst; Galitsky, Christina

2005-01-01T23:59:59.000Z

66

Increase energy efficiency in systems and buildings and improve...  

NLE Websites -- All DOE Office Websites (Extended Search)

Increase energy efficiency in systems and buildings and improve indoor environment: How to validate comfort and energy reduction Speaker(s): Wouter Borsboom Date: December 8, 2009...

67

Innovative Office Buildings for Improved Energy Efficiency and...  

NLE Websites -- All DOE Office Websites (Extended Search)

Innovative Office Buildings for Improved Energy Efficiency and User Comfort: Lessons from Germany Speaker(s): Oliver Baumann Robert Himmler Stefan Plesser Date: October 20, 2005 -...

68

TV Energy Consumption Trends and Energy-Efficiency Improvement Options  

E-Print Network (OSTI)

television sets. Austrian Energy Agency, June. Chen, H.F.of Options for Improving Energy Efficiency Test Proceduresfor Displays, March. Energy Conservation Center, Japan (

Park, Won Young

2011-01-01T23:59:59.000Z

69

Energy Efficiency Improvement and Cost Saving Opportunities for...  

NLE Websites -- All DOE Office Websites (Extended Search)

268E ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY Energy Efficiency Improvement and Cost Saving Opportunities for the Pulp and Paper Industry An ENERGY STAR Guide for...

70

Energy-Efficiency Improvement Opportunities for the Textile Industry  

NLE Websites -- All DOE Office Websites (Extended Search)

3970E Energy-Efficiency Improvement Opportunities for the Textile Industry Ali Hasanbeigi China Energy Group Energy Analysis Department Environmental Energy Technologies Division...

71

Energy Efficiency Improvement and Cost Saving Opportunities for...  

NLE Websites -- All DOE Office Websites (Extended Search)

i LBNL-5342E ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY Energy Efficiency Improvement and Cost Saving Opportunities for the Concrete Industry An ENERGY STAR Guide for...

72

Energy Efficiency Improvement and Cost Saving Opportunities for...  

NLE Websites -- All DOE Office Websites (Extended Search)

12E ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY Energy Efficiency Improvement and Cost Saving Opportunities for the Baking Industry An ENERGY STAR Guide for Plant and...

73

Energy Efficiency Improvement and Cost Saving Opportunities for...  

NLE Websites -- All DOE Office Websites (Extended Search)

289-Revision ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY Energy Efficiency Improvement and Cost Saving Opportunities for the Fruit and Vegetable Processing Industry An...

74

Energy Efficiency Improvement and Cost Saving Opportunities for...  

NLE Websites -- All DOE Office Websites (Extended Search)

9-Revision ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY Energy Efficiency Improvement and Cost Saving Opportunities for the Vehicle Assembly Industry An ENERGY STAR ...

75

Assessment of Energy Efficiency Improvement and CO2 Emission...  

NLE Websites -- All DOE Office Websites (Extended Search)

India's Iron and Steel Industry Title Assessment of Energy Efficiency Improvement and CO2 Emission Reduction Potentials in India's Iron and Steel Industry Publication Type Report...

76

Assessment of Energy Efficiency Improvement and CO2 Emission...  

NLE Websites -- All DOE Office Websites (Extended Search)

Iron and Steel Industry in China Title Assessment of Energy Efficiency Improvement and CO2 Emission Reduction Potentials in the Iron and Steel Industry in China Publication Type...

77

DOE Adopts Rules to Improve Energy Efficiency Enforcement | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

adopted final rules to improve the enforcement of DOE's efficiency requirements for appliances, lighting and other products. Overhauling the certification and enforcement process,...

78

Local Option - Improvement Districts for Energy Efficiency and Renewable  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Local Option - Improvement Districts for Energy Efficiency and Local Option - Improvement Districts for Energy Efficiency and Renewable Energy Improvements Local Option - Improvement Districts for Energy Efficiency and Renewable Energy Improvements < Back Eligibility Agricultural Commercial Industrial Institutional Low-Income Residential Multi-Family Residential Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Heating & Cooling Commercial Heating & Cooling Cooling Design & Remodeling Windows, Doors, & Skylights Construction Heat Pumps Heating Appliances & Electronics Commercial Lighting Lighting Biofuels Alternative Fuel Vehicles Bioenergy Solar Hydrogen & Fuel Cells Buying & Making Electricity Water Water Heating Wind Program Info State Colorado Program Type PACE Financing

79

Have You Seen Energy Efficiency Improvements in Your Neighborhood? |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Efficiency Improvements in Your Neighborhood? Energy Efficiency Improvements in Your Neighborhood? Have You Seen Energy Efficiency Improvements in Your Neighborhood? August 25, 2011 - 8:47am Addthis This week, Erin shared the results of a major energy efficiency retrofit at her local library. Efficiency improvements over several years include installing 250 solar panels on the roof, upgrading to energy-efficient lighting, and others. The library has been saving over $57,000 per year in electricity costs, and expects to save even more in the future. After discovering a renewable energy project in our blogger's own community, we're curious: What energy-saving, innovative projects have you come across in your neighborhood? Each week, you have the chance to share your thoughts on a question about energy efficiency or renewable energy for consumers. E-mail your responses

80

CEQ Issues Guidance on Improving NEPA Process Efficiency | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CEQ Issues Guidance on Improving NEPA Process Efficiency CEQ Issues Guidance on Improving NEPA Process Efficiency CEQ Issues Guidance on Improving NEPA Process Efficiency March 12, 2012 - 3:26pm Addthis The Council on Environmental Quality (CEQ) has issued new guidance titled "Improving the Process for Preparing Efficient and Timely Environmental Reviews Under the National Environmental Policy Act" (NEPA Efficiency Guidance) that encourages federal agencies to "provide the best use of agency resources in ensuring a timely, effective, and efficient NEPA review." The NEPA Efficiency Guidance highlights existing provisions under the CEQ regulations implementing NEPA (40 CFR Parts 1500-1508) that help meet this objective. These provisions are available for the preparation of EAs, as well as EISs, and the Guidance encourages their use

Note: This page contains sample records for the topic "fostering efficiency improvements" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

CEQ Issues Guidance on Improving NEPA Process Efficiency | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CEQ Issues Guidance on Improving NEPA Process Efficiency CEQ Issues Guidance on Improving NEPA Process Efficiency CEQ Issues Guidance on Improving NEPA Process Efficiency March 12, 2012 - 3:26pm Addthis The Council on Environmental Quality (CEQ) has issued new guidance titled "Improving the Process for Preparing Efficient and Timely Environmental Reviews Under the National Environmental Policy Act" (NEPA Efficiency Guidance) that encourages federal agencies to "provide the best use of agency resources in ensuring a timely, effective, and efficient NEPA review." The NEPA Efficiency Guidance highlights existing provisions under the CEQ regulations implementing NEPA (40 CFR Parts 1500-1508) that help meet this objective. These provisions are available for the preparation of EAs, as well as EISs, and the Guidance encourages their use

82

Energy Efficiency and Improved Indoor Environmental Quality:...  

NLE Websites -- All DOE Office Websites (Extended Search)

and Improved Indoor Environmental Quality: No-Regrets Climate Change Insurance for the Insurance Industry Speaker(s): Evan Mills Date: December 19, 1996 - 12:00pm Location: 90-3148...

83

Energy Efficient Home Improvements Rebate Program (Kentucky)...  

Open Energy Info (EERE)

Programs. The program allows owners to decide which improvements should be made. Homeowners can receive either 2,000 in rebates or 3.99% interest financing up to 20,000....

84

Capital and Maintenance Projects for Efficiency Improvements  

Science Conference Proceedings (OSTI)

This Electric Power Research Institute (EPRI) project developed a methodology to assess the costs and benefits of potential maintenance improvements to coal-fired power plants, refined the methodology developed in 2008 to assess the net annual benefit of potential capital improvements to these plants, and applied the methodologies to a hypothetical plant. The calculations are captured in two spreadsheets8212one for capital projects and the other for maintenance projects8212that are included in the report...

2009-10-13T23:59:59.000Z

85

Improving the efficiency of binary cycles  

SciTech Connect

The performance of binary geothermal power plants can be improved through the proper choice of a working fluid, and optimization of component designs and operating conditions. This paper summarizes the investigations at the Idaho National Engineering Laboratory (INEL) which are examining binary cycle performance improvements for moderate temperature (350 to 400 F) resources. These investigations examine performance improvements resulting from the supercritical vaporization and countercurrent integral condensation of mixed hydrocarbon working fluids, as well as the modification of the turbine inlet state points to achieve supersaturated turbine vapor expansions. For resources, with the brine outlet temperature restricted, the use of turbine exhaust recuperators is examined. The reference plant used to determine improvements in plant performance in these studies operates at conditions similar to the 45 MW Heber binary plant. The brine effectiveness (watt-hours per pound of brine) is used as an indicator for improvements in performance. The performance of the binary cycle can be improved by 25 to 30% relative to the reference plant through the selection of the optimum working fluids and operating conditions, achieving countercurrent integral condensation, and allowing supersaturated vapor expansions in the turbine. 9 refs., 5 figs.

Mines, G.L.; Bliem, C.J.

1988-01-01T23:59:59.000Z

86

Efficiency Improvements in Electronic Power Conversion Devices  

Science Conference Proceedings (OSTI)

This project studied the energy savings potential for six technologies that are currently unregulated. These technologies include kiosk and multimedia computers, home audio devices, induction cooking, power factor correction, adjustable-speed drives, and high-efficiency televisions. This report describes the advantages of each technology.BackgroundResidential plug loads continue to multiply across the country. As they do, these devices introduce new concerns ...

2013-12-23T23:59:59.000Z

87

Rural Business Energy Efficiency Improvement Loan Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rural Business Energy Efficiency Improvement Loan Program Rural Business Energy Efficiency Improvement Loan Program Rural Business Energy Efficiency Improvement Loan Program < Back Eligibility Agricultural Savings Category Other Maximum Rebate Maximum Loan: $30,000 Program Info State Maryland Program Type State Loan Program Rebate Amount Loan amount: varies Grant: 10% of loan amount Provider Maryland Agricultural and Resource Based Industry Development Corporation The Maryland Agricultural and Resource Based Industry Development Corporation (MARBIDCO) offers low interest loans for energy efficiency improvements to farms and rural businesses through the Rural Business Energy Efficiency Improvement Loan Program. The program is designed to facilitate the purchase of equipment or technology that lowers business energy consumption. Applicants must have a credit score of at least 650

88

Petroleum Reduction Strategies to Improve Vehicle Fuel Efficiency |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Improve Vehicle Fuel Efficiency Improve Vehicle Fuel Efficiency Petroleum Reduction Strategies to Improve Vehicle Fuel Efficiency October 7, 2013 - 11:53am Addthis YOU ARE HERE: Step 3 For reducing greenhouse gas emissions, the table below describes petroleum reduction strategies to improve vehicle fuel efficiency, as well as guidance and best practices for each strategy. Table 1. Determining When and How to Promote the Use of Strategies to Improve Fuel Efficiency Strategy When Applicable Best Practices Acquiring higher fuel economy vehicles Applicable to all types of vehicles, regardless of ownership or vehicle and fuel type Mission and geographical (e.g., terrain, climate) constraints should be evaluated when acquiring new vehicles Use a VAM to ensure vehicles are right-sized to their intended mission.

89

Wireless Sensors Improve Data Center Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wireless Sensor Wireless Sensor Technology Overview In most buildings, space conditions are controlled and coordinated by a building automation system (BAS). A BAS can provide temperature visualization information with dashboard displays through a person-machine interface (PMI). However, in most data centers, space conditioning is achieved with multiple, independently-operating cooling units located within the space. Unfortunately, these data centers do not have adequate auto- mation systems or visualization tools to monitor or manage these cooling units efficiently. In 2001, an emerging technology was demonstrated at University of California, Davis by Dr. Raju Pandey that "meshed" temperature sensors into a network using wireless fidelity (Wi-Fi

90

The Challenge: Improving the Energy Efficiency of Buildings Across the  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Challenge: Improving the Energy Efficiency of Buildings Across The Challenge: Improving the Energy Efficiency of Buildings Across the Nation The Challenge: Improving the Energy Efficiency of Buildings Across the Nation June 20, 2012 - 1:49pm Addthis Eric Barendsen Energy Technology Program Specialist, Office of Energy Efficiency and Renewable Energy On the Energy Savers Blog, we talk a lot about what people can do at home to save money on their energy bills so they can use it on other things that enrich their lives. But businesses across the country are also taking steps to improve their energy efficiency -- steps that reduce costs for American companies, saving millions of dollars and making the U.S. economy more competitive. The Energy Department announced last week that six new major companies have joined the Better Buildings Challenge, which encourages leaders across the

91

The Challenge: Improving the Energy Efficiency of Buildings Across the  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Challenge: Improving the Energy Efficiency of Buildings Across The Challenge: Improving the Energy Efficiency of Buildings Across the Nation The Challenge: Improving the Energy Efficiency of Buildings Across the Nation June 20, 2012 - 1:49pm Addthis Eric Barendsen Energy Technology Program Specialist, Office of Energy Efficiency and Renewable Energy On the Energy Savers Blog, we talk a lot about what people can do at home to save money on their energy bills so they can use it on other things that enrich their lives. But businesses across the country are also taking steps to improve their energy efficiency -- steps that reduce costs for American companies, saving millions of dollars and making the U.S. economy more competitive. The Energy Department announced last week that six new major companies have joined the Better Buildings Challenge, which encourages leaders across the

92

Improving Energy Efficiency and Creating Jobs Through Weatherization |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Improving Energy Efficiency and Creating Jobs Through Improving Energy Efficiency and Creating Jobs Through Weatherization Improving Energy Efficiency and Creating Jobs Through Weatherization December 9, 2013 - 9:37am Addthis Improving Energy Efficiency and Creating Jobs Through Weatherization David Danielson David Danielson Assistant Secretary for Energy Efficiency and Renewable Energy KEY FACTS Since 2009, more than 1.1 million homes throughout the country have been weatherized More than 15,000 additional workers were hired to support this work Watch live coverage of today's weatherization event at the White House starting at 2 p.m. EST Since 2009, when the Energy Department seized a major opportunity to invest $5 billion through our Weatherization Assistance Program (WAP) to stimulate job growth and help families affected by the economic recession, we have

93

Energy Efficient Home Improvements Loan Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Efficient Home Improvements Loan Program Energy Efficient Home Improvements Loan Program Energy Efficient Home Improvements Loan Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Cooling Other Ventilation Heat Pumps Appliances & Electronics Water Heating Maximum Rebate Loans: Up to $20,000 for 100% of cost as long as 85% of work is for qualifying home improvements Homeowner Energy Efficient Rebates (in lieu of loans): 20% of qualifying improvements up to $2,000 Program Info State Kentucky Program Type State Loan Program Rebate Amount 100% of costs up to $20,000 '''''Note: This program is currently unavailable. Check the program web site for more information regarding future funding.'''''

94

Secretary Chu Announces $47 Million to Improve Efficiency in Information  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Secretary Chu Announces $47 Million to Improve Efficiency in Secretary Chu Announces $47 Million to Improve Efficiency in Information Technology and Communications Sectors Secretary Chu Announces $47 Million to Improve Efficiency in Information Technology and Communications Sectors January 6, 2010 - 12:00am Addthis WASHINGTON, DC - Energy Secretary Steven Chu announced today that the Department of Energy is awarding $47 million for 14 projects across the country to support the development of new technologies that can improve energy efficiency in the information technology (IT) and communication technology sectors. The data processing, data storage, and telecommunications industries are a crucial part of the American information economy. The rapid growth of these industries has led to an increase in electricity use, but improvements in the sector's energy

95

Secretary Chu Announces $47 Million to Improve Efficiency in Information  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7 Million to Improve Efficiency in 7 Million to Improve Efficiency in Information Technology and Communications Sectors Secretary Chu Announces $47 Million to Improve Efficiency in Information Technology and Communications Sectors January 6, 2010 - 12:00am Addthis WASHINGTON, DC - Energy Secretary Steven Chu announced today that the Department of Energy is awarding $47 million for 14 projects across the country to support the development of new technologies that can improve energy efficiency in the information technology (IT) and communication technology sectors. The data processing, data storage, and telecommunications industries are a crucial part of the American information economy. The rapid growth of these industries has led to an increase in electricity use, but improvements in the sector's energy

96

Improving the Energy Efficiency of Residential Buildings | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Buildings Residential Buildings Improving the Energy Efficiency of Residential Buildings Visitors Tour Solar Decathlon Homes Featuring the Latest in Energy Efficient Building Technology. Learn More Visitors Tour Solar Decathlon Homes Featuring the Latest in Energy Efficient Building Technology. Learn More The Building Technologies Office (BTO) collaborates with the residential building industry to improve the energy efficiency of both new and existing homes. By developing, demonstrating, and deploying cost-effective solutions, BTO strives to reduce energy consumption across the residential building sector by at least 50%. Research and Development Conduct research that focuses on engineering solutions to design, test, and

97

CEQ Releases Two Handbooks on Improving Efficiency of Federal Environmental  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CEQ Releases Two Handbooks on Improving Efficiency of Federal CEQ Releases Two Handbooks on Improving Efficiency of Federal Environmental Reviews CEQ Releases Two Handbooks on Improving Efficiency of Federal Environmental Reviews March 5, 2013 - 4:43pm Addthis The Council on Environmental Quality (CEQ) today released two new handbooks that encourage more efficient environmental reviews under the National Environmental Policy Act (NEPA). The first handbook, created by CEQ and the Advisory Council on Historic Preservation (ACHP), provides advice to Federal agencies, applicants, project sponsors, and consultants on how to take advantage of existing regulatory provisions to align the NEPA process and the National Historic Preservation Act (NHPA) Section 106 review process. The handbook explains how to align NEPA and NHPA Section 106 processes for maximum efficiency and

98

CEQ Releases Two Handbooks on Improving Efficiency of Federal Environmental  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CEQ Releases Two Handbooks on Improving Efficiency of Federal CEQ Releases Two Handbooks on Improving Efficiency of Federal Environmental Reviews CEQ Releases Two Handbooks on Improving Efficiency of Federal Environmental Reviews March 5, 2013 - 4:43pm Addthis The Council on Environmental Quality (CEQ) today released two new handbooks that encourage more efficient environmental reviews under the National Environmental Policy Act (NEPA). The first handbook, created by CEQ and the Advisory Council on Historic Preservation (ACHP), provides advice to Federal agencies, applicants, project sponsors, and consultants on how to take advantage of existing regulatory provisions to align the NEPA process and the National Historic Preservation Act (NHPA) Section 106 review process. The handbook explains how to align NEPA and NHPA Section 106 processes for maximum efficiency and

99

Could TEG Improve Your Car's Efficiency? | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Could TEG Improve Your Car's Efficiency? Could TEG Improve Your Car's Efficiency? Could TEG Improve Your Car's Efficiency? August 16, 2010 - 10:00am Addthis This image shows how a thermoelectric generator would be placed in a passenger car. | Photo courtesy of BMW This image shows how a thermoelectric generator would be placed in a passenger car. | Photo courtesy of BMW Lorelei Laird Writer, Energy Empowers What are the key facts? A Thermoelectric Generator (TEG) recaptures lost vehicle heat for better efficiency. This project is funded in part with $7.15 million federal Vehicle Technologies Program grant. This is targeted for the U.S. market in 2018 models. More than half of the gas we buy -- and the money we spend on it -- is wasted. Even the most efficient drivers are at the mercy of their vehicles'

100

Could TEG Improve Your Car's Efficiency? | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Could TEG Improve Your Car's Efficiency? Could TEG Improve Your Car's Efficiency? Could TEG Improve Your Car's Efficiency? August 16, 2010 - 10:00am Addthis This image shows how a thermoelectric generator would be placed in a passenger car. | Photo courtesy of BMW This image shows how a thermoelectric generator would be placed in a passenger car. | Photo courtesy of BMW Lorelei Laird Writer, Energy Empowers What are the key facts? A Thermoelectric Generator (TEG) recaptures lost vehicle heat for better efficiency. This project is funded in part with $7.15 million federal Vehicle Technologies Program grant. This is targeted for the U.S. market in 2018 models. More than half of the gas we buy -- and the money we spend on it -- is wasted. Even the most efficient drivers are at the mercy of their vehicles'

Note: This page contains sample records for the topic "fostering efficiency improvements" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Tax Deduction for Home Energy Audits and Energy Efficiency Improvements |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tax Deduction for Home Energy Audits and Energy Efficiency Tax Deduction for Home Energy Audits and Energy Efficiency Improvements Tax Deduction for Home Energy Audits and Energy Efficiency Improvements < Back Eligibility Residential Savings Category Other Maximum Rebate $1,000 per return per year; $2,000 cumulatively per taxpayer Program Info Start Date 01/01/2009 State Missouri Program Type Personal Deduction Rebate Amount 100% of the cost of eligible improvements In July 2008, Missouri enacted legislation allowing homeowners to take an income tax deduction of the cost of home energy audits and associated energy efficiency improvements. The tax deduction is valid for expenses incurred on or after January 1, 2009. Any deduction shall be claimed for the tax year in which the qualified home energy audit was conducted or in

102

Butler Rural Electric Cooperative - Energy Efficiency Improvement Loan  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Butler Rural Electric Cooperative - Energy Efficiency Improvement Butler Rural Electric Cooperative - Energy Efficiency Improvement Loan Program Butler Rural Electric Cooperative - Energy Efficiency Improvement Loan Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Heating & Cooling Commercial Heating & Cooling Cooling Design & Remodeling Windows, Doors, & Skylights Ventilation Heat Pumps Appliances & Electronics Water Heating Maximum Rebate $25,000 Program Info State Ohio Program Type Utility Loan Program Rebate Amount up to $25,000 Provider Butler Rural Electric Cooperative, Inc. Butler Rural Electric Cooperative, Inc. provides low interest loans (3%) for members to make energy efficiency improvements in eligible homes. There is a $15 application fee for all loans plus additional closing costs

103

Secretary Chu Announces $187 Million to Improve Vehicle Efficiency for  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Secretary Chu Announces $187 Million to Improve Vehicle Efficiency Secretary Chu Announces $187 Million to Improve Vehicle Efficiency for Heavy-Duty Trucks and Passenger Vehicles Secretary Chu Announces $187 Million to Improve Vehicle Efficiency for Heavy-Duty Trucks and Passenger Vehicles January 11, 2010 - 12:00am Addthis Columbus, Ind. - At an event today in Columbus, Indiana, Secretary Chu announced the selection of nine projects totaling more than $187 million to improve fuel efficiency for heavy-duty trucks and passenger vehicles. The funding includes more than $100 million from the American Recovery and Reinvestment Act, and with a private cost share of 50 percent, will support nearly $375 million in total research, development and demonstration projects across the country. The nine winners have stated their projects

104

Secretary Chu Announces $187 Million to Improve Vehicle Efficiency for  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Secretary Chu Announces $187 Million to Improve Vehicle Efficiency Secretary Chu Announces $187 Million to Improve Vehicle Efficiency for Heavy-Duty Trucks and Passenger Vehicles Secretary Chu Announces $187 Million to Improve Vehicle Efficiency for Heavy-Duty Trucks and Passenger Vehicles January 11, 2010 - 12:00am Addthis Columbus, Ind. - At an event today in Columbus, Indiana, Secretary Chu announced the selection of nine projects totaling more than $187 million to improve fuel efficiency for heavy-duty trucks and passenger vehicles. The funding includes more than $100 million from the American Recovery and Reinvestment Act, and with a private cost share of 50 percent, will support nearly $375 million in total research, development and demonstration projects across the country. The nine winners have stated their projects

105

Energy Efficient Home Improvements Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Efficient Home Improvements Program Energy Efficient Home Improvements Program Energy Efficient Home Improvements Program < Back Eligibility Installer/Contractor Low-Income Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Cooling Other Ventilation Heat Pumps Appliances & Electronics Water Heating Program Info State Kentucky Program Type State Rebate Program Rebate Amount Homeowner energy efficient improvements (in lieu of loans): 20% of qualifying costs up to $2,000 Whole-house evaluation: $150 for the first 1000 customers '''''Note: This program is currently unavailable. Check the program web site for more information regarding future funding.''''' Kentucky offers ENERGY STAR Home Performance rebates and loans for

106

Pee Dee Electric Cooperative- Energy Efficient Home Improvement Loan Program  

Energy.gov (U.S. Department of Energy (DOE))

Pee Dee Electric Cooperative offers financing for members through the Energy Efficient Home Improvement Loan Program. Loans of up to $5,000, with repayment periods up to 72 months, can be used for...

107

Memorandum of Understanding on Improving the Energy Efficiency...  

NLE Websites -- All DOE Office Websites (Extended Search)

on Improving the Energy Efficiency of Products and Buildings Between The U.S. Environmental Protection Agency and The U.S. Department of Energy I. Overview and Purpose * Purpose:...

108

Energy Efficiency Improvement and Cost Saving Opportunities for...  

NLE Websites -- All DOE Office Websites (Extended Search)

Cost Saving Opportunities for Breweries Energy consumption is equal to 3-8 percent of the production costs of beer, making energy efficiency improvement an important way to reduce...

109

TY JOUR T1 Efficiency Improvement Opportunities in TVs Implications...  

NLE Websites -- All DOE Office Websites (Extended Search)

Efficiency Improvement Opportunities in TVs Implications for Market Transformation Programs JF Energy Policy A1 Won Young Park A1 Amol Phadke A1 Nihar Shah A1 Virginie E Letschert...

110

Energy Efficiency Improvement and Cost Saving Opportunities for the Dairy Processing Industry  

E-Print Network (OSTI)

energy costs by implementing energy efficiency measures can2005a). Energy Efficiency Improvement and Cost SavingL ABORATORY Energy Efficiency Improvement and Cost Saving

Brush, Adrian

2012-01-01T23:59:59.000Z

111

New Resin Improves Efficiency, Reduces Costs in Hanford Site Groundwater  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Resin Improves Efficiency, Reduces Costs in Hanford Site Resin Improves Efficiency, Reduces Costs in Hanford Site Groundwater Treatment New Resin Improves Efficiency, Reduces Costs in Hanford Site Groundwater Treatment March 1, 2012 - 12:00pm Addthis RICHLAND, Wash. - A new resin EM, the Richland Operations Office, and contractor CH2M HILL Plateau Remediation Company are using in contaminated groundwater treatment is expected to increase efficiency and reduce costs in the operation of pump-and-treat facilities along the Columbia River at the Hanford site. The higher performance resin, SIR-700, is expected to reduce DOE's estimated operation and maintenance costs over the lifetime of the 100-DX Groundwater Treatment Facility by approximately $20 million. In comparison to this expected cost savings, the construction cost for the treatment

112

Costs and benefits of energy efficiency improvements in ceiling fans  

SciTech Connect

Ceiling fans contribute significantly to residential electricity consumption, especially in developing countries with warm climates. The paper provides analysis of costs and benefits of several options to improve the efficiency of ceiling fans to assess the global potential for electricity savings and green house gas (GHG) emission reductions. Ceiling fan efficiency can be cost-effectively improved by at least 50% using commercially available technology. If these efficiency improvements are implemented in all ceiling fans sold by 2020, 70 terawatt hours per year could be saved and 25 million metric tons of carbon dioxide equivalent (CO2-e) emissions per year could be avoided, globally. We assess how policies and programs such as standards, labels, and financial incentives can be used to accelerate the adoption of efficient ceiling fans in order to realize potential savings.

Shah, Nihar; Sathaye, Nakul; Phadke, Amol; Letschert, Virginie [Lawrence Berkeley National Lab., CA (United States). Environmental Energy Technology Division] [Lawrence Berkeley National Lab., CA (United States). Environmental Energy Technology Division

2013-10-15T23:59:59.000Z

113

Opportunities and prospects for demand-side efficiency improvements  

SciTech Connect

Substantial progress has been made over the last 20 years in improving energy efficiency in all sectors of the US economy. Although there remains a large potential for further efficiency gains, progress in improving energy efficiency has slowed recently. A combination of low energy prices, environmental challenges, and life-style changes have caused energy consumption to resume rising. Both new policies and technologies will be necessary to achieve cost-effective levels of energy efficiency. This paper describes some of the promising new demand-side technologies that are currently being implemented, nearing commercialization, or in advanced stages of development. The topics discussed include finding replacements for chlorofluorocarbons (CFCs), new building equipment and envelope technologies, lessons learned about conservation program implementation, and the role of utilities in promoting the efficient use of energy.

Kuliasha, M.A.

1993-12-31T23:59:59.000Z

114

Natural Gas Compression Technology Improves Transport and Efficiencies,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Natural Gas Compression Technology Improves Transport and Natural Gas Compression Technology Improves Transport and Efficiencies, Lowers Operating Costs Natural Gas Compression Technology Improves Transport and Efficiencies, Lowers Operating Costs May 10, 2012 - 1:00pm Addthis Washington, DC - An award-winning compressor design that decreases the energy required to compress and transport natural gas, lowers operating costs, improves efficiencies and reduces the environmental footprint of well site operations has been developed by a Massachusetts-based company with support from the U.S. Department of Energy (DOE). OsComp Systems designed and tested the novel compressor design with funding from the DOE-supported Stripper Well Consortium, an industry-driven organization whose members include natural gas and petroleum producers,

115

Local Option - Energy-Efficiency Improvement Loans | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy-Efficiency Improvement Loans Energy-Efficiency Improvement Loans Local Option - Energy-Efficiency Improvement Loans < Back Eligibility Commercial Industrial Residential Program Info State Wisconsin Program Type PACE Financing '''''Note: The Federal Housing Financing Agency (FHFA) issued a [http://www.fhfa.gov/webfiles/15884/PACESTMT7610.pdf statement] in July 2010 concerning the senior lien status associated with most PACE programs. In response to the FHFA statement, most local PACE programs have been suspended until further clarification is provided. ''''' Property-Assessed Clean Energy (PACE) financing effectively allows property owners to borrow money to pay for energy improvements. The amount borrowed is typically repaid via a special assessment on the property over a period of years. Wisconsin has authorized certain local governments to establish

116

Potentials and policy implications of energy and material efficiency improvement  

SciTech Connect

There is a growing awareness of the serious problems associated with the provision of sufficient energy to meet human needs and to fuel economic growth world-wide. This has pointed to the need for energy and material efficiency, which would reduce air, water and thermal pollution, as well as waste production. Increasing energy and material efficiency also have the benefits of increased employment, improved balance of imports and exports, increased security of energy supply, and adopting environmentally advantageous energy supply. A large potential exists for energy savings through energy and material efficiency improvements. Technologies are not now, nor will they be, in the foreseeable future, the limiting factors with regard to continuing energy efficiency improvements. There are serious barriers to energy efficiency improvement, including unwillingness to invest, lack of available and accessible information, economic disincentives and organizational barriers. A wide range of policy instruments, as well as innovative approaches have been tried in some countries in order to achieve the desired energy efficiency approaches. These include: regulation and guidelines; economic instruments and incentives; voluntary agreements and actions, information, education and training; and research, development and demonstration. An area that requires particular attention is that of improved international co-operation to develop policy instruments and technologies to meet the needs of developing countries. Material efficiency has not received the attention that it deserves. Consequently, there is a dearth of data on the qualities and quantities for final consumption, thus, making it difficult to formulate policies. Available data, however, suggest that there is a large potential for improved use of many materials in industrialized countries.

Worrell, Ernst; Levine, Mark; Price, Lynn; Martin, Nathan; van den Broek, Richard; Block, Kornelis

1997-01-01T23:59:59.000Z

117

Improving efficiency of high-concentrator photovoltaics by cooling with  

NLE Websites -- All DOE Office Websites (Extended Search)

Improving efficiency of high-concentrator photovoltaics by cooling with Improving efficiency of high-concentrator photovoltaics by cooling with two-phase forced convection Title Improving efficiency of high-concentrator photovoltaics by cooling with two-phase forced convection Publication Type Journal Article Year of Publication 2010 Authors Ho, Tony, Samuel S. Mao, and Ralph Greif Journal International Journal of Energy Research Volume 34 Start Page 1257 Issue 14 Pagination 1257-1271 Date Published 11/2010 Keywords high-concentrator photovoltaic efficiency, two-phase flow cooling applications Abstract The potential of increasing high-concentrator photovoltaic cell efficiency by cooling with two-phase flow is analyzed. The governing energy equations were used to predict cell temperature distributions and cell efficiencies for a photovoltaic cell under 100 suns' concentration. Several design conditions were taken into consideration in the analysis, including cooling channel height, working fluid type (between water and R134a), working fluid inlet temperature, pressure, and mass flow rate. It was observed that the dominant parameter for increasing cell efficiency was the working fluid saturation temperature, which itself is affected by a number of the aforementioned design parameters. The results show R134a at low inlet pressures to be highly effective in this two-phase cooling design.

118

Improving the Energy Efficiency of Existing Windows | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Improving the Energy Efficiency of Existing Windows Improving the Energy Efficiency of Existing Windows Improving the Energy Efficiency of Existing Windows October 15, 2008 - 10:56am Addthis Jen Carter What does this mean for me? There are several solutions to energy inefficient windows whether you're starting from scratch or simply making upgrades. But, soft! What light through yonder window breaks? It is the east, and Juliet is the sun. - William Shakespeare, Romeo and Juliet No one would dispute the undeniable beauty of soft, dappled light shining through a window in the early morning. Unless, of course, you happen to be one of the many Americans whose windows are letting in more than just light. Poorly fitted or sealed windows can be a major frustration during the winter months, letting in cold drafts that blur the lines between

119

Local Option - Contractual Assessments for Energy Efficient Improvements |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Contractual Assessments for Energy Efficient Contractual Assessments for Energy Efficient Improvements Local Option - Contractual Assessments for Energy Efficient Improvements < Back Eligibility Agricultural Commercial Industrial Multi-Family Residential Residential Program Info State Texas Program Type PACE Financing '''''Note: The Federal Housing Financing Agency (FHFA) issued a [http://www.fhfa.gov/webfiles/15884/PACESTMT7610.pdf statement] in July 2010 concerning the senior lien status associated with most PACE programs. In response to the FHFA statement, most local PACE programs have been suspended until further clarification is provided. ''''' Property-Assessed Clean Energy (PACE) financing effectively allows property owners to borrow money to pay for energy improvements. The amount borrowed is typically repaid via a special assessment on the property over a period

120

Energy Department Revises NEPA Regulations to Improve Efficiency |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Revises NEPA Regulations to Improve Efficiency Revises NEPA Regulations to Improve Efficiency Energy Department Revises NEPA Regulations to Improve Efficiency October 3, 2011 - 12:39pm Addthis Washington, D.C. -- The U.S. Department of Energy will save time and money in its environmental reviews of many proposed energy projects under revised regulations approved September 27, 2011, to implement the National Environmental Policy Act (NEPA). The revisions focus on the Department's categorical exclusion provisions, and reflect the first update to these provisions in 15 years. A categorical exclusion applies to a class of actions that an agency has determined normally do not individually or cumulatively have a significant impact on the human environment. "Updating our NEPA rule allows us to accomplish our environmental reviews

Note: This page contains sample records for the topic "fostering efficiency improvements" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Energy Department Employees Strive to Cut Costs, Improve Efficiency |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Department Employees Strive to Cut Costs, Improve Efficiency Department Employees Strive to Cut Costs, Improve Efficiency Energy Department Employees Strive to Cut Costs, Improve Efficiency November 28, 2011 - 2:00pm Addthis Thanks to Camille Beben of the Office of Management, approvals for Department directives that used to take 14 months now take less than 6 months. | DOE photo, credit Hantz Leger. Thanks to Camille Beben of the Office of Management, approvals for Department directives that used to take 14 months now take less than 6 months. | DOE photo, credit Hantz Leger. Melvin G. Williams, Jr. Melvin G. Williams, Jr. Former Associate Deputy Secretary "We are working every day to help develop a clean energy economy, create good jobs, and make sure America is competitive on the global stage." Mel Williams, Associate Deputy Secretary of Energy

122

Energy Department Employees Strive to Cut Costs, Improve Efficiency |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Employees Strive to Cut Costs, Improve Efficiency Employees Strive to Cut Costs, Improve Efficiency Energy Department Employees Strive to Cut Costs, Improve Efficiency November 28, 2011 - 2:00pm Addthis Thanks to Camille Beben of the Office of Management, approvals for Department directives that used to take 14 months now take less than 6 months. | DOE photo, credit Hantz Leger. Thanks to Camille Beben of the Office of Management, approvals for Department directives that used to take 14 months now take less than 6 months. | DOE photo, credit Hantz Leger. Melvin G. Williams, Jr. Melvin G. Williams, Jr. Former Associate Deputy Secretary "We are working every day to help develop a clean energy economy, create good jobs, and make sure America is competitive on the global stage." Mel Williams, Associate Deputy Secretary of Energy

123

Improving the Energy Efficiency of Existing Windows | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Improving the Energy Efficiency of Existing Windows Improving the Energy Efficiency of Existing Windows Improving the Energy Efficiency of Existing Windows October 15, 2008 - 10:56am Addthis Jen Carter What does this mean for me? There are several solutions to energy inefficient windows whether you're starting from scratch or simply making upgrades. But, soft! What light through yonder window breaks? It is the east, and Juliet is the sun. - William Shakespeare, Romeo and Juliet No one would dispute the undeniable beauty of soft, dappled light shining through a window in the early morning. Unless, of course, you happen to be one of the many Americans whose windows are letting in more than just light. Poorly fitted or sealed windows can be a major frustration during the winter months, letting in cold drafts that blur the lines between

124

Linking quality improvement and energy efficiency/waste reduction  

SciTech Connect

For some time industry has recognized the importance of both energy efficiency/waste reduction (ee/wr) and quality/manufacturing improvement. However, industry has not particularly recognized that manufacturing efficiency is, in part, the result of a more efficient use of energy. For that reason, the energy efficiency efforts of most companies have involved admonishing employees to save energy. Few organizations have invested resources in training programs aimed at increasing energy efficiency and reducing waste. This describes a program to demonstrate how existing utility and government training and incentive programs can be leveraged to increase ee/wr and benefit both industry and consumers. Fortunately, there are a variety of training tools and resources that can be applied to educating workers on the benefits of energy efficiency and waste reduction. What is lacking is a method of integrating ee/wr training with other important organizational needs. The key, therefore, is to leverage ee/wr investments with other organizational improvement programs. There are significant strides to be made by training industry to recognize fully the contribution that energy efficiency gains make to the bottom line. The federal government stands in the unique position of being able to leverage the investments already made by states, utilities, and manufacturing associations by coordinating training programs and defining the contribution of energy-efficiency practices. These aims can be accomplished by: developing better measures of energy efficiency and waste reduction; promoting methods of leveraging manufacturing efficiency programs with energy efficiency concepts; helping industry understand how ee/wr investments can increase profits; promoting research on the needs of, and most effective ways to, reach the small and medium-sized businesses that so often lack the time, information, and finances to effectively use the hardware and training technologies available.

Lewis, R.E.; Moore, N.L.

1995-04-01T23:59:59.000Z

125

Improving MapReduce energy efficiency for computation intensive workloads  

Science Conference Proceedings (OSTI)

MapReduce is a programming model for data intensive computing on large-scale distributed systems. With its wide acceptance and deployment, improving the energy efficiency of MapReduce will lead to significant energy savings for data centers and computational ... Keywords: intelligent DVFS scheduling, MapReduce energy efficiency, computation intensive workloads, data intensive computing, large-scale distributed systems, data centers, computational grids, energy savings, Hadoop, energy-proportional computing, resource allocation, dynamic voltage and frequency scaling, processor frequency

Thomas Wirtz; Rong Ge

2011-07-01T23:59:59.000Z

126

An Analysis of Efficiency Improvements in Residential Sized Heat Pumps  

E-Print Network (OSTI)

The objectives of this study included: (1) development of classes of heat pumps, (2) evaluation and selection of a suitable heat pump design model, (3) characterization of suitable baseline heat pump designs, (4) selection of design options that can be used to improve heat pump efficiency, and (5) development of heat pump designs to cover the whole spectrum of efficiencies available today and those that may be technologically feasible in the next few years.

O'Neal, D. L.; Boecker, C. L.; Murphy, W. E.; Notman, J. R.

1986-01-01T23:59:59.000Z

127

Determining Benefits and Costs of Improved Water Heater Efficiencies  

NLE Websites -- All DOE Office Websites (Extended Search)

Determining Benefits and Costs of Improved Water Heater Efficiencies Determining Benefits and Costs of Improved Water Heater Efficiencies Title Determining Benefits and Costs of Improved Water Heater Efficiencies Publication Type Report LBNL Report Number LBNL-45618 Year of Publication 2000 Authors Lekov, Alexander B., James D. Lutz, Xiaomin Liu, Camilla Dunham Whitehead, and James E. McMahon Document Number LBNL-45618 Date Published May 4 Abstract Economic impacts on individual consumers from possible revisions to U.S. residential water heater energy-efficiency standards are examined using a life-cycle cost (LCC) analysis. LCC is the consumer's cost of purchasing and installing a water heater and operating it over its lifetime. This approach makes it possible to evaluate the economic impacts on individual consumers from the revised standards. The methodology allows an examination of groups of the population which benefit or lose from suggested efficiency standards. The results show that the economic benefits to consumers are significant. At the efficiency level examined in this paper, 35% of households with electric water heaters experience LCC savings, with an average savings of $106, while 4% show LCC losses, with an average loss of $40 compared to a pre-standard LCC average of $2,565. The remainder of the population (61%) are largely unaffected.

128

Electric motor systems in developing countries: Opportunities for efficiency improvement  

SciTech Connect

This report presents an overview of the current status and efficiency improvement potential of industrial motor systems in developing countries. Better management of electric motor systems is of particular relevance in developing countries, where improved efficiency can lead to increased productivity and slower growth in electricity demand. Motor systems currently consume some 65--80% of the industrial electricity in developing countries. Drawing on studies from Thailand, India, Brazil, China, Pakistan, and Costa Rica, we describe potential efficiency gains in various parts of the motor system, from the electricity delivery system through the motor to the point where useful work is performed. We report evidence of a significant electricity conservation potential. Most of the efficiency improvement methods we examine are very cost-effective from a societal viewpoint, but are generally not implemented due to various barriers that deter their adoption. Drawing on experiences in North America, we discuss a range of policies to overcome these barriers, including education, training, minimum efficiency standards, motor efficiency testing protocols, technical assistance programs, and financial incentives.

Meyers, S.; Monahan, P.; Lewis, P.; Greenberg, S. [Lawrence Berkeley Lab., CA (United States); Nadel, S. [American Council for an Energy-Efficient Economy, Washington, DC (United States)

1993-08-01T23:59:59.000Z

129

Electricity and Natural Gas Efficiency Improvements for Residential Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

and Natural Gas Efficiency Improvements for Residential Gas and Natural Gas Efficiency Improvements for Residential Gas Furnaces in the U.S. Title Electricity and Natural Gas Efficiency Improvements for Residential Gas Furnaces in the U.S. Publication Type Report LBNL Report Number LBNL-59745 Year of Publication 2006 Authors Lekov, Alexander B., Victor H. Franco, Stephen Meyers, James E. McMahon, Michael A. McNeil, and James D. Lutz Document Number LBNL-59745 Publisher Lawrence Berkeley National Laboratory City Berkeley Abstract This paper presents analysis of the life-cycle costs for individual households and the aggregate energy and economic impacts from potential energy efficiency improvements in U.S. residential furnaces. Most homes in the US are heated by a central furnace attached to ducts for distributing heated air and fueled by natural gas. Electricity consumption by a furnace blower is significant, comparable to the annual electricity consumption of a major appliance. Since the same blower unit is also used during the summer to circulate cooled air in centrally air conditioned homes, electricity savings occur year round. Estimates are provided of the potential electricity savings from more efficient fans and motors. Current regulations require new residential gas-fired furnaces (not including mobile home furnaces) to meet or exceed 78% annual fuel utilization efficiency (AFUE), but in fact nearly all furnaces sold are at 80% AFUE or higher. The possibilities for higher fuel efficiency fall into two groups: more efficient non-condensing furnaces (81% AFUE) and condensing furnaces (90-96% AFUE). There are also options to increase the efficiency of the furnace blower. This paper reports the projected national energy and economic impacts of requiring higher efficiency furnaces in the future. Energy savings vary with climate, with the result that condensing furnaces offer larger energy savings in colder climates. The range of impacts for a statistical sample of households and the percent of households with net savings in life cycle cost are shown. Gas furnaces are somewhat unusual in that the technology does not easily permit incremental change to the AFUE above 80%. Achieving significant energy savings requires use of condensing technology, which yields a large efficiency gain (to 90% or higher AFUE), but has a higher cost. With respect to electricity efficiency design options, the ECM has a negative effect on the average LCC. The current extra cost of this technology more than offsets the sizable electricity savings.

130

Fostering a Renewable Energy Technology Industry  

E-Print Network (OSTI)

LBNL-59116 Fostering a Renewable Energy Technology Industry: An International Comparison of Wind and Renewable Energy, Wind & Hydropower Technologies Program, of the U.S. Department of Energy under Contract No by the Assistant Secretary of Energy Efficiency and Renewable Energy, Wind & Hydropower Technologies Program

131

TV Energy Consumption Trends and Energy-Efficiency Improvement Options  

Science Conference Proceedings (OSTI)

The SEAD initiative aims to transform the global market by increasing the penetration of highly efficient equipment and appliances. SEAD is a government initiative whose activities and projects engage the private sector to realize the large global energy savings potential from improved appliance and equipment efficiency. SEAD seeks to enable high-level global action by informing the Clean Energy Ministerial dialogue as one of the initiatives in the Global Energy Efficiency Challenge. In keeping with its goal of achieving global energy savings through efficiency, SEAD was approved as a task within the International Partnership for Energy Efficiency Cooperation (IPEEC) in January 2010. SEAD partners work together in voluntary activities to: (1) ?raise the efficiency ceiling? by pulling super-efficient appliances and equipment into the market through cooperation on measures like incentives, procurement, awards, and research and development (R&D) investments; (2) ?raise the efficiency floor? by working together to bolster national or regional policies like minimum efficiency standards; and (3) ?strengthen the efficiency foundations? of programs by coordinating technical work to support these activities. Although not all SEAD partners may decide to participate in every SEAD activity, SEAD partners have agreed to engage actively in their particular areas of interest through commitment of financing, staff, consultant experts, and other resources. In addition, all SEAD partners are committed to share information, e.g., on implementation schedules for and the technical detail of minimum efficiency standards and other efficiency programs. Information collected and created through SEAD activities will be shared among all SEAD partners and, to the extent appropriate, with the global public.As of April 2011, the governments participating in SEAD are: Australia, Brazil, Canada, the European Commission, France, Germany, India, Japan, Korea, Mexico, Russia, South Africa, Sweden, the United Arab Emirates, the United Kingdom, and the United States. More information on SEAD is available from its website at http://www.superefficient.org/.

Park, Won Young; Phadke, Amol; Shah, Nihar; Letschert, Virginie

2011-07-01T23:59:59.000Z

132

Improving the Efficiency of Your Process Cooling System  

E-Print Network (OSTI)

Many industries require process cooling to achieve desired outcomes of specific processes. This cooling may come from cooling towers, once-through water, mechanical refrigeration, or cryogenic sources such as liquid nitrogen or dry ice. This paper deals primarily with mechanically-based process cooling. Based on the author's experiences, this category provides the greatest opportunity for energy efficiency improvement.

Baker, R.

2005-01-01T23:59:59.000Z

133

Impact of improved building thermal efficiency on residential energy demand  

SciTech Connect

The impact of improved building shell thermal efficiency on residential energy demand is explored in a theoretical framework. The important economic literature on estimating the price elasticity of residential energy demand is reviewed. The specification of the residential energy demand model is presented. The data used are described. The empirical estimation of the residential energy demand model is described. (MHR)

Adams, R.C.; Rockwood, A.D.

1983-04-01T23:59:59.000Z

134

Best Practices Implementation for Hydropower Efficiency and Utilization Improvement  

SciTech Connect

By using best practices to manage unit and plant efficiency, hydro owner/operators can achieve significant improvements in overall plant performance, resulting in increased generation and profitability and, frequently, reduced maintenance costs. The Hydropower Advancement Project (HAP) was initiated by the Wind and Hydropower Technologies Program within the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy to develop and implement a systematic process with standard methodology, based on the best practices of operations, maintenance and upgrades; to identify the improvement opportunities at existing hydropower facilities; and to predict and trend the overall condition and improvement opportunity within the U.S. hydropower fleet. The HAP facility assessment includes both quantitative condition ratings and data-based performance analyses. However, this paper, as an overview document for the HAP, addresses the general concepts, project scope and objectives, best practices for unit and plant efficiency, and process and methodology for best practices implementation for hydropower efficiency and utilization improvement.

Smith, Brennan T [ORNL; Zhang, Qin Fen [ORNL; March, Patrick [Hydro Performance Processes, Inc.; Cones, Marvin [Mesa Associates, Inc.; Dham, Rajesh [U.S. Department of Energy; Spray, Michael [New West Technologies, LLC.

2012-01-01T23:59:59.000Z

135

Boiler System Efficiency Improves with Effective Water Treatment  

E-Print Network (OSTI)

Water treatment is an important aspect of boiler operation which can affect efficiency or result in damage if neglected. Without effective water treatment, scale can form on boiler tubes, reducing heat transfer, and causing a loss of boiler efficiency and availability. Proper control of boiler blowdown is also important to assure clean boiler surfaces without wasting water, heat, and chemicals. Recovering hot condensate for reuse as boiler feedwater is another means of improving system efficiency. Condensate which is contaminated with corrosion products or process chemicals, however, is ill fit for reuse; and steam which leaks from piping, valves, traps and connections cannot be recovered. Effective chemical treatment, in conjunction with mechanical system improvements, can assure that condensate can be safely returned and valuable energy recovered.

Bloom, D.

1999-05-01T23:59:59.000Z

136

Better Buildings Challenge is Expanding, Improving Energy Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Better Buildings Challenge is Expanding, Improving Energy Better Buildings Challenge is Expanding, Improving Energy Efficiency Throughout America Better Buildings Challenge is Expanding, Improving Energy Efficiency Throughout America December 5, 2013 - 4:36pm Addthis Industry and government officials discuss the Better Buildings Challenge expansion at the White House earlier this week. | Photo courtesy of Department of Housing and Urban Development Industry and government officials discuss the Better Buildings Challenge expansion at the White House earlier this week. | Photo courtesy of Department of Housing and Urban Development Maria Tikoff Vargas Director, Department of Energy Better Buildings Challenge MORE RESOURCES Read the press release about the Better Buildings expansion Learn more about Better Buildings Accelerators

137

Idaho Waste Treatment Facility Improves Worker Safety and Efficiency, Saves  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Waste Treatment Facility Improves Worker Safety and Waste Treatment Facility Improves Worker Safety and Efficiency, Saves Taxpayer Dollars Idaho Waste Treatment Facility Improves Worker Safety and Efficiency, Saves Taxpayer Dollars August 27, 2013 - 12:00pm Addthis The box retrieval forklift carriage is used to lift a degraded box as retrieval personnel monitor progress. The box retrieval forklift carriage is used to lift a degraded box as retrieval personnel monitor progress. The new soft-sided overpack is placed for shipment for treatment and repackaging. The new soft-sided overpack is placed for shipment for treatment and repackaging. The box retrieval forklift carriage is used to lift a degraded box as retrieval personnel monitor progress. The new soft-sided overpack is placed for shipment for treatment and repackaging.

138

A Bottom-Up Model to Estimate the Energy Efficiency Improvement...  

NLE Websites -- All DOE Office Websites (Extended Search)

Efficiency Improvement and CO2 Emission Reduction Potentials in the Chinese Iron and Steel Industry Title A Bottom-Up Model to Estimate the Energy Efficiency Improvement and...

139

Energy Efficiency Improvement and Cost Saving Oportunities for the Concrete Industry  

E-Print Network (OSTI)

Look beyond first cost With energy efficiency, you get what2008. Energy Efficiency Improvement and Cost Savingincreasing energy efficiency, companies can reduce costs and

Kermeli, Katerina

2013-01-01T23:59:59.000Z

140

Improving the Energy Efficiency of Commercial Buildings | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Buildings Commercial Buildings Improving the Energy Efficiency of Commercial Buildings Engaging Industry Leaders to Deploy Energy Saving Tools, Technologies and Best Practices Learn More Engaging Industry Leaders to Deploy Energy Saving Tools, Technologies and Best Practices Learn More The Building Technologies Office (BTO) works with the commercial building industry to accelerate the uptake of energy efficiency technologies and techniques in both existing and new commercial buildings. By developing, demonstrating, and deploying cost-effective solutions, BTO strives to reduce energy consumption across the commercial building sector by at least 1,600 TBtu. Key Tools and Resources Use the guides, case studies, and other tools developed by the DOE

Note: This page contains sample records for the topic "fostering efficiency improvements" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Insulation of Pipe Bends Improves Efficiency of Hot Oil Furnaces  

E-Print Network (OSTI)

Thermodynamic analyses of processes indicated low furnace efficiencies on certain hot oil furnaces. Further investigation, which included Infrared (IR) thermography testing of several furnaces, identified extremely hot surfaces on the outside of the convective sections. Consultation with the furnace manufacturer then revealed that furnaces made in the 1960's tended to not insulate the pipe bends in the convective section. When insulation was added within the covers of the pipe bends on one furnace, the energy efficiency improved by approximately 11%. The total savings are approximately 14,000 Million Btu/yr on one furnace. Insulation will be applied to several other furnaces at the site.

Haseltine, D. M.; Laffitte, R. D.

1999-05-01T23:59:59.000Z

142

Estimated Farm Level Benefits of Improved Irrigation Efficiency  

E-Print Network (OSTI)

There are about 15 million acres of cropland in the U.S. that are irrigated from aquifers which are incurring declining water levels (sloggett). This is primarily in the Great Plains Region where irrigation water is pumped from the Ogallala Aquifer. Mining from the aquifer is estimated at 14 million acre feet per year (Frederick and Hanson). The declining groundwater supply increases pumping lift and reduces well yields. Concurrently, there has been a dramatic increase in the cost of energy for pumping since 1973. For example, in the Trans Pecos Region of Texas, natural gas prices increased 450% from 1972 to 1975. Energy has become one of the most important factors in irrigated crop production. A 1975 study showed that 53% of the total variable costs of producing corn in the Great Plains was energy related (Skold). The sensitivity of irrigated agriculture to increased fuel costs and declining groundwater levels has provided incentives for irrigated farmers to investigate alternative crop rotations and opportunities to improve irrigation water pumping and distributional efficiencies. The emphasis of this report is to estimate the value to an irrigated farmer on the Texas High Plains of improving irrigation water distribution efficiency. One means of improving the water use efficiency is to implement water conserving techniques. The main purpose of these techniques is to maximize crop production by minimizing the amount of water lost through the production systems. The major sources of water loss in a crop production system are runoff, percolation, and evaporation. Examples of water conserving techniques include terracing, furrow dams, reduced tillage, and crop rotations. In addition, improved irrigation application techniques can enhance the efficiency of water used for irrigation in the region. On-farm irrigation efficiency statewide for Texas has been estimated between 60 and 708 (Wyatt,1981). The implementation of advanced irrigation application techniques could potentially increase this efficiency up to 98% (Lyle & Bordovsky,1980). Furrow irrigation and sprinkler irrigation are the two major irrigation systems currently in use. Techniques designed to improve furrow efficiency include alternate furrow irrigation, furrow diking, and surge flow. Alternate furrow irrigation improves the timeliness of irrigation applications and increases lateral water movement thereby reducing deep percolation losses. Alternate furrow irrigation can be used with furrow diking or row dams on non-irrigated furrows to reduce rainfall runoff and soil erosion. The surge flow technique delivers large surges of water into the furrow on an intermittent cycle to reduce percolation losses at the upper end of the field. Sprinkler irrigation is the second major distribution system used for crop production primarily on mixed and sandy soils in the region. The use of these systems have increased tremendously over the past 25 years. This growth in the use of sprinkler irrigation systems is reflected in the increase for Texas from 668 thousand acres in 1958 to 2.2 million acres in 1979 (Texas Department of Water Resources). With the rapid rise in the relative price of energy during the 1970's, the emphasis of improving sprinkler efficiency has focused on both reducing their energy requirements and decreasing the amount of water lost through evaporation. One system which has been developed to meet these needs is the LEPA system or Low Energy Precision Application system (Lyle and Bordovsky,1980). This system operates by distributing water through drop tubes and low pressure emitters directly into the furrow as opposed to high pressure systems which utilize overhead sprinklers to distribute the water. In field trials of the LEPA system, measured application and distribution efficiencies averaged 98% and 96% respectively (Lyle et al., 1981).

Lee, John G.; Lacewell, Ronald D.; Ellis, John R.; Reneau, Duane R.

1984-06-10T23:59:59.000Z

143

Potential Benefits from Improved Energy Efficiency of Key Electrical Products:  

NLE Websites -- All DOE Office Websites (Extended Search)

8254 8254 Potential Benefits from Improved Energy Efficiency of Key Electrical Products: The Case of India Michael McNeil, Maithili Iyer, Stephen Meyers, Virginie Letschert, James E. McMahon Environmental Energy Technologies Division Lawrence Berkeley National Laboratory University of California, Berkeley Berkeley, CA December 2005 This work was supported by the International Copper Association through the U.S. Department of Energy under Contract No. DE-AC03-76SF00098. 2 ABSTRACT The goal of this project was to estimate the net benefits that cost-effective improvements in energy efficiency can bring to developing countries. The study focused on four major electrical products in the world's second largest developing country, India. These

144

New Light on Improving Engine Efficiencies | Advanced Photon Source  

NLE Websites -- All DOE Office Websites (Extended Search)

The Crystal Structure of a Meta-stable Intermediate Particle in Virus The Crystal Structure of a Meta-stable Intermediate Particle in Virus Assembly Increasing Magnetic Response of Ferromagnetic Semiconductors under High Pressure Better Switching Through Chemistry in Thin Ferroelectrics First Molecular-Level Enzyme Images Could Improve Breast-Cancer Therapy Science Highlights Archives: 2013 | 2012 | 2011 | 2010 2009 | 2008 | 2007 | 2006 2005 | 2004 | 2003 | 2002 2001 | 2000 | 1998 | Subscribe to APS Science Highlights rss feed New Light on Improving Engine Efficiencies MARCH 3, 2009 Bookmark and Share The DOE, as part of its Clean Coal & Natural Gas Power Systems initiative, has a "Turbines of Tomorrow" program with the Program Performance Goal to: "By 2010, develop turbine technology that is capable of efficiently

145

Increase energy efficiency in systems and buildings and improve indoor  

NLE Websites -- All DOE Office Websites (Extended Search)

Increase energy efficiency in systems and buildings and improve indoor Increase energy efficiency in systems and buildings and improve indoor environment: How to validate comfort and energy reduction Speaker(s): Wouter Borsboom Date: December 8, 2009 - 12:00pm Location: 90-3122 TNO is a research institute which is active in the energy saving and indoor environment. We like to present our research, our goals and discuss the challenges and the opportunities for cooperation. Therefore we like to give a presentation about the following topic and we are also interested in a presentation of LBL and UC Berkeley. An important topic in the building industry is near zero energy buildings. Most countries in Europe implemented programs to advance this goal in one way or another. In near-zero energy buildings, the interaction between building and systems

146

Improving the efficiency of decoding quantum error correction code  

E-Print Network (OSTI)

To improve the efficiency of the encoding and the decoding is the important problem in the quantum error correction. In a preceding work, a general algorithm for decoding the stabilizer code is shown. This paper will show an decoding which is more efficient for some codes. The proposed decoding as well as the conventional decoding consists of the eigenvalue output step and the entanglement dissolution step. The proposed decoding outputs a part of the eigenvalues into a part of the code qubits in contrast to the conventional method's outputting into the ancilla. Besides, the proposed decoding dissolves a part of the entanglement in the eigenvalue output step in contrast to the conventional method which does not dissolve in the eigenvalue output step. With these improvements, the number of gates was reduced for some codes.

Kenichiro Furuta

2006-08-21T23:59:59.000Z

147

Improving the efficiency of decoding quantum error correction code  

E-Print Network (OSTI)

To improve the efficiency of the encoding and the decoding is the important problem in the quantum error correction. In a preceding work, a general algorithm for decoding the stabilizer code is shown. This paper will show an decoding which is more efficient for some codes. The proposed decoding as well as the conventional decoding consists of the eigenvalue output step and the entanglement dissolution step. The proposed decoding outputs a part of the eigenvalues into a part of the code qubits in contrast to the conventional method's outputting into the ancilla. Besides, the proposed decoding dissolves a part of the entanglement in the eigenvalue output step in contrast to the conventional method which does not dissolve in the eigenvalue output step. With these improvements, the number of gates was reduced for some codes.

Furuta, K

2006-01-01T23:59:59.000Z

148

Development of a pressure gain combustor for improved cycle efficiency  

SciTech Connect

This paper presents results from an experimental research program attempting to improve the thermodynamic efficiencies of gas-turbine combustors. An elementary thermodynamic analysis shows that the thermodynamic cycle efficiencies of gas turbines can be significantly improved by using unsteady combustion that achieves quasi-constant-volume combustion. The ability to produce the so-called pressure gain via this process has already been demonstrated by others for pressures less than 3 atmospheres. This paper presents experimental results for pressures up to 11 atmospheres, compares certain process parameters to a numerical simulation, and briefly examines the problem of scale-up. Results of pollutant measurements over the 2--11 atmospheric range of operation are also included.

Gemmen, R.S.; Richards, G.A.; Janus, M.C.

1994-09-01T23:59:59.000Z

149

Improved conversion efficiency workshop. Volume I. Working papers  

SciTech Connect

This pre-Workshop brief deals with the energy situation in the United States and the ERDA Division of Conservation Research and Technology activities. Chapter 1 provides an overview of the national energy situation and the National Energy Plan for achieving a transition from scarce oil and gas to more-abundant, renewable sources of energy. Chapter 2 describes CONRT's role in the transition and the technology options for improving energy conversion efficiency in the four energy-using sectors. Chapter 3 provides some essential information on the discussion topics: the projects constituting CONRT's Improved Conversion Efficiency Subprogram for fiscal year 1978; CONRT's project appraisal methodology; and CONRT's annual planning cycle and the role of the workshop series in the planning process. (MCW)

none,

1977-01-01T23:59:59.000Z

150

Energy-Efficiency Improvement Opportunities for the Textile Industry  

SciTech Connect

The textile industry is one of the most complicated manufacturing industries because it is a fragmented and heterogeneous sector dominated by small and medium enterprises (SMEs). Energy is one of the main cost factors in the textile industry. Especially in times of high energy price volatility, improving energy efficiency should be a primary concern for textile plants. There are various energy-efficiency opportunities that exist in every textile plant, many of which are cost-effective. However, even cost-effective options often are not implemented in textile plants mostly because of limited information on how to implement energy-efficiency measures, especially given the fact that a majority of textile plants are categorized as SMEs and hence they have limited resources to acquire this information. Know-how on energy-efficiency technologies and practices should, therefore, be prepared and disseminated to textile plants. This guidebook provides information on energy-efficiency technologies and measures applicable to the textile industry. The guidebook includes case studies from textile plants around the world and includes energy savings and cost information when available. First, the guidebook gives a brief overview of the textile industry around the world, with an explanation of major textile processes. An analysis of the type and the share of energy used in different textile processes is also included in the guidebook. Subsequently, energy-efficiency improvement opportunities available within some of the major textile sub-sectors are given with a brief explanation of each measure. The conclusion includes a short section dedicated to highlighting a few emerging technologies in the textile industry as well as the potential for the use of renewable energy in the textile industry.

China Energy Group; Hasanbeigi, Ali

2010-09-29T23:59:59.000Z

151

High Performance Healthcare Buildings: A Roadmap to Improved Energy Efficiency  

SciTech Connect

This document presents a road map for improving the energy efficiency of hospitals and other healthcare facilities. The report compiles input from a broad array of experts in healthcare facility design and operations. The initial section lists challenges and barriers to efficiency improvements in healthcare. Opportunities are organized around the following ten themes: understanding and benchmarking energy use; best practices and training; codes and standards; improved utilization of existing HVAC designs and technology; innovation in HVAC design and technology; electrical system design; lighting; medical equipment and process loads; economic and organizational issues; and the design of next generation sustainable hospitals. Achieving energy efficiency will require a broad set of activities including research, development, deployment, demonstration, training, etc., organized around 48 specific objectives. Specific activities are prioritized in consideration of potential impact, likelihood of near- or mid-term feasibility and anticipated cost-effectiveness. This document is intended to be broad in consideration though not exhaustive. Opportunities and needs are identified and described with the goal of focusing efforts and resources.

Singer, Brett C.; Tschudi, William F.

2009-09-08T23:59:59.000Z

152

Implementing and Sustaining Operator Led Energy Efficiency Improvements  

E-Print Network (OSTI)

The continuing high price of energy, difficult trading conditions and corporate commitments to meet emissions targets means that industry faces tough challenges to improve energy efficiency and reduce operating costs. The challenge is how to maximize energy savings with optimal capital investment. During the past few years, many operating companies have made good strides towards improving the energy performance of their assets by implementing energy efficiency programs. In general, these programs and initiatives have focused on relatively easy 'low hanging fruit' energy efficiency improvements - such as reducing furnace O2 levels and implementing steam trap maintenance programs. These initiatives are an important first step. However, to significantly reduce energy consumption, the site must focus on a strategic approach which involves developing, implementing and sustaining a client specific program of energy optimization. We discuss ways of sustaining energy performance through operator led initiatives as part of the structured KBC energy management process, ENgage. We present case studies from the oil refining industry, demonstrating energy savings of up to 20 percent, in which capital expenditure were kept to the bare minimum.

Hoyle, A.; Knight, N.; Rutkowski, M.

2011-01-01T23:59:59.000Z

153

Improving Vehicle Efficiency, Reducing Dependence on Foreign Oil (Fact Sheet)  

DOE Green Energy (OSTI)

This fact sheet provides an overview of the U.S. Department of Energy's Vehicle Technologies Program. Today, the United States spends about $400 billion each year on imported oil. To realize a secure energy future, America must break its dependence on imported oil and its volatile costs. The transportation sector accounts for about 70% of U.S. oil demand and holds tremendous opportunity to increase America's energy security by reducing oil consumption. That's why the U.S. Department of Energy (DOE) conducts research and development (R and D) on vehicle technologies which can stem America's dependence on oil, strengthen the economy, and protect the environment. Hybrid-electric and plug-in hybrid-electric vehicles can significantly improve fuel economy, displacing petroleum. Researchers are making batteries more affordable and recyclable, while enhancing battery range, performance, and life. This research supports President Obama's goal of putting 1 million electric vehicles on the road by 2015. The program is also working with businesses to develop domestic battery and electric-drive component plants to improve America's economic competitiveness globally. The program facilitates deployment of alternative fuels (ethanol, biodiesel, hydrogen, electricity, propane, and natural gas) and fuel infrastructures by partnering with state and local governments, universities, and industry. Reducing vehicle weight directly improves vehicle efficiency and fuel economy, and can potentially reduce vehicle operating costs. Cost-effective, lightweight, high-strength materials can significantly reduce vehicle weight without compromising safety. Improved combustion technologies and optimized fuel systems can improve near-and mid-term fuel economy by 25% for passenger vehicles and 20% for commercial vehicles by 2015, compared to 2009 vehicles. Reducing the use of oil-based fuels and lubricants in vehicles has more potential to improve the nation's energy security than any other action; even a 1% improvement in vehicle fuel efficiency would save consumers more than $4 billion annually.

Not Available

2012-03-01T23:59:59.000Z

154

Measuring Energy Efficiency Improvements in Industrial Battery Chargers  

E-Print Network (OSTI)

Industrial battery chargers have provided the energy requirements for motive power in industrial facilities for decades. Their reliable and durable performance, combined with their low energy consumption relative to other industrial processes, has left the core charger technology unchanged since its introduction to the market. Recent improvements in charger technology have led to a new generation of high frequency chargers on the market that can provide energy efficiency improvements over existing Silicon Controlled Rectifier (SCR) and Ferroresonant charger technologies. We estimate there are approximately 32,000 three phase chargers in use within Pacific Gas & Electric Companys service area, using roughly 750 to 1,000 GWh per year. A 10 percent efficiency improvement on every charger would save about 75 to 100 GWh per year. There are three areas of energy losses in the battery and charger system: Power Conversion Efficiency (energy out of charger vs. energy into charger) Charge Return (energy out of battery vs. energy into battery): some amount of overcharge is necessary for battery health, but chargers vary in the degree which they overcharge Standby losses when no battery is connected. PG&E and Southern California Edison (SCE) are testing industrial battery chargers according to a California Energy Commission (CEC) approved test procedure. This test procedure, developed with charger manufacturer input as part of the CECs Codes and Standards process, specifies test conditions during active charge, maintenance charge and standby modes. The results from this testing are expected to provide independent confirmation of vendor claims of energy efficiency improvements during all modes of charger operation, and will form the foundation of data for utility energy efficiency programs. Initial test results of one battery charger from each technology type show the Hybrid and High Frequency technology as the top performers when compared to the SCR and Ferroresonant chargers. Multiple chargers from each technology group will be tested in the first half of 2009 to determine an average performance for each technology type. The full set of results will be available in summer 2009.

Matley, R.

2009-05-01T23:59:59.000Z

155

Fostering Technology Transfer and Entrepreneurship  

Science Conference Proceedings (OSTI)

... agencies to take steps to enhance successful technology innovation networks ... is one of the partners working with NIST to foster tech transfer and its ...

2013-08-16T23:59:59.000Z

156

Energy Efficiency Improvement in the Petroleum RefiningIndustry  

Science Conference Proceedings (OSTI)

Information has proven to be an important barrier inindustrial energy efficiency improvement. Voluntary government programsaim to assist industry to improve energy efficiency by supplyinginformation on opportunities. ENERGY STAR(R) supports the development ofstrong strategic corporate energy management programs, by providingenergy management information tools and strategies. This paper summarizesENERGY STAR research conducted to develop an Energy Guide for thePetroleum Refining industry. Petroleum refining in the United States isthe largest in the world, providing inputs to virtually every economicsector, including the transport sector and the chemical industry.Refineries spend typically 50 percent of the cash operating costs (e.g.,excluding capital costs and depreciation) on energy, making energy amajor cost factor and also an important opportunity for cost reduction.The petroleum refining industry consumes about 3.1 Quads of primaryenergy, making it the single largest industrial energy user in the UnitedStates. Typically, refineries can economically improve energy efficiencyby 20 percent. The findings suggest that given available resources andtechnology, there are substantial opportunities to reduce energyconsumption cost-effectively in the petroleum refining industry whilemaintaining the quality of the products manufactured.

Worrell, Ernst; Galitsky, Christina

2005-05-01T23:59:59.000Z

157

Improving EM&V for Energy Efficiency Programs (Fact Sheet)  

SciTech Connect

This fact sheet describes the objectives of the U.S. Department of Energy Uniform Methods Project to bring consistency to energy savings calculations in U.S. energy efficiency programs. The U.S. Department of Energy (DOE) is developing a framework and a set of protocols for determining gross energy savings from energy efficiency measures and programs. The protocols represent a refinement of the body of knowledge supporting energy efficiency evaluation, measurement, and verification (EM&V) activities. They have been written by technical experts within the field and reviewed by industry experts. Current EM&V practice allows for multiple methods for calculating energy savings. These methods were developed to meet the needs of energy efficiency program administrators and regulators. Although they served their original objectives well, they have resulted in inconsistent and incomparable savings results - even for identical measures. The goal of the Uniform Methods Project is to strengthen the credibility of energy savings determinations by improving EM&V, increasing the consistency and transparency of how energy savings are determined.

Not Available

2012-07-01T23:59:59.000Z

158

Technologies and Policies to Improve Energy Efficiency in Industry  

SciTech Connect

The industrial sector consumes nearly 40% of annual global primary energy use and is responsible for a similar share of global energy-related carbon dioxide (CO2) emissions. Many studies and actual experience indicate that there is considerable potential to reduce the amount of energy used to manufacture most commodities, concurrently reducing CO2 emissions. With the support of strong policies and programs, energy-efficient technologies and measures can be implemented that will reduce global CO2 emissions. A number of countries, including the Netherlands, the UK, and China, have experience implementing aggressive programs to improve energy efficiency and reduce related CO2 emissions from industry. Even so, there is no silver bullet and all options must be pursued if greenhouse gas emissions are to be constrained to the level required to avoid significant negative impacts from global climate change.

Price, Lynn; Price, Lynn

2008-03-01T23:59:59.000Z

159

Pumping systems efficiency improvements flow straight to thebottom line  

SciTech Connect

Industrial electrical motors account for two-thirds of theUS industrial electricity usage. Pumping systems account for an estimated25 percent of this electrical motor consumption, while pumping systems inuse in US chemical facilities consume over 37,000 GWh/year, based on USDepartment of Energy (DOE) data. A study funded by DOE estimatespotential energy savings within the chemical industry alone ofapproximately 20 percent, representing an energy savings of over 7,500GWh/year, through industrial pumping systems optimization using existing,proven techniques and technologies. This energy savings potentialrepresents significant cost savings potential for industrial facilities.Additionally, it has been shown that energy efficiency improvements toindustrial systems usually provide improved reliability, improvedproductivity, and reduced environmental costs.

Tutterow, Vestal; Casada, Don; McKane, Aimee

2002-07-08T23:59:59.000Z

160

Energy efficiency improvement and cost saving opportunities forpetroleum refineries  

Science Conference Proceedings (OSTI)

The petroleum refining industry in the United States is the largest in the world, providing inputs to virtually any economic sector,including the transport sector and the chemical industry. The industry operates 146 refineries (as of January 2004) around the country,employing over 65,000 employees. The refining industry produces a mix of products with a total value exceeding $151 billion. Refineries spend typically 50 percent of cash operating costs (i.e., excluding capital costs and depreciation) on energy, making energy a major cost factor and also an important opportunity for cost reduction. Energy use is also a major source of emissions in the refinery industry making energy efficiency improvement an attractive opportunity to reduce emissions and operating costs. Voluntary government programs aim to assist industry to improve competitiveness through increased energy efficiency and reduced environmental impact. ENERGY STAR (R), a voluntary program managed by the U.S. Environmental Protection Agency, stresses the need for strong and strategic corporate energy management programs. ENERGY STAR provides energy management tools and strategies for successful corporate energy management programs. This Energy Guide describes research conducted to support ENERGY STAR and its work with the petroleum refining industry.This research provides information on potential energy efficiency opportunities for petroleum refineries. This Energy Guide introduces energy efficiency opportunities available for petroleum refineries. It begins with descriptions of the trends, structure, and production of the refining industry and the energy used in the refining and conversion processes. Specific energy savings for each energy efficiency measure based on case studies of plants and references to technical literature are provided. If available, typical payback periods are also listed. The Energy Guide draws upon the experiences with energy efficiency measures of petroleum refineries worldwide. The findings suggest that given available resources and technology, there are opportunities to reduce energy consumption cost-effectively in the petroleum refining industry while maintaining the quality of the products manufactured. Further research on the economics of the measures, as well as the applicability of these to individual refineries, is needed to assess the feasibility of implementation of selected technologies at individual plants.

Worrell, Ernst; Galitsky, Christina

2005-02-15T23:59:59.000Z

Note: This page contains sample records for the topic "fostering efficiency improvements" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Assessment of Energy Efficiency Improvement in the United States Petroleum  

NLE Websites -- All DOE Office Websites (Extended Search)

in the United States Petroleum in the United States Petroleum Refining Industry Title Assessment of Energy Efficiency Improvement in the United States Petroleum Refining Industry Publication Type Report Refereed Designation Unknown LBNL Report Number LBNL-6292E Year of Publication 2013 Authors Morrow, William R., John Marano, Jayant A. Sathaye, Ali Hasanbeigi, and Tengfang T. Xu Date Published 06/2013 Publisher Lawrence Berkeley National Laboratory City Berkeley Keywords industrial energy efficiency Abstract Adoption of efficient process technologies is an important approach to reducing CO2 emissions, in particular those associated with combustion. In many cases, implementing energy efficiency measures is among the most cost-effective approaches that any refiner can take, improving productivity while reducing emissions. Therefore, careful analysis of the options and costs associated with efficiency measures is required to establish sound carbon policies addressing global climate change, and is the primary focus of LBNL's current petroleum refining sector analysis for the U.S. Environmental Protection Agency. The analysis is aimed at identifying energy efficiency-related measures and developing energy abatement supply curves and CO2 emissions reduction potential for the U.S. refining industry. A refinery model has been developed for this purpose that is a notional aggregation of the U.S. petroleum refining sector. It consists of twelve processing units and accounts for the additional energy requirements from steam generation, hydrogen production and water utilities required by each of the twelve processing units. The model is carbon and energy balanced such that crude oil inputs and major refinery sector outputs (fuels) are benchmarked to 2010 data. Estimates of the current penetration for the identified energy efficiency measures benchmark the energy requirements to those reported in U.S. DOE 2010 data. The remaining energy efficiency potential for each of the measures is estimated and compared to U.S. DOE fuel prices resulting in estimates of cost-effective energy efficiency opportunities for each of the twelve major processes. A combined cost of conserved energy supply curve is also presented along with the CO2 emissions abatement opportunities that exist in the U.S. petroleum refinery sector. Roughly 1,200 PJ per year of primary fuels savings and close to 500 GWh per year of electricity savings are potentially cost-effective given U.S. DOE fuel price forecasts. This represents roughly 70 million metric tonnes of CO2 emission reductions assuming 2010 emissions factor for grid electricity. Energy efficiency measures resulting in an additional 400 PJ per year of primary fuels savings and close to 1,700 GWh per year of electricity savings, and an associated 24 million metric tonnes of CO2 emission reductions are not cost-effective given the same assumption with respect to fuel prices and electricity emissions factors. Compared to the modeled energy requirements for the U.S. petroleum refining sector, the cost effective potential represents a 40% reduction in fuel consumption and a 2% reduction in electricity consumption. The non-cost-effective potential represents an additional 13% reduction in fuel consumption and an additional 7% reduction in electricity consumption. The relative energy reduction potentials are much higher for fuel consumption than electricity consumption largely in part because fuel is the primary energy consumption type in the refineries. Moreover, many cost effective fuel savings measures would increase electricity consumption.

162

Energy Efficiency Improvement Opportunities for the Cement Industry  

E-Print Network (OSTI)

Lime Institute. 2001. Energy Efficiency Opportunity Guide inIndustry, Office of Energy Efficiency, Natural Resourcesof a Cement Kiln, Energy Efficiency Demonstration Scheme,

Worrell, Ernst

2008-01-01T23:59:59.000Z

163

A Dual Supply Buck Converter with Improved Light Load Efficiency  

E-Print Network (OSTI)

Power consumption is the primary concern in battery-operated portable applications. Buck converters have gained popularity in powering portable devices due to their compact size, good current delivery capability and high efficiency. However, portable devices are operating under light load condition for the most of the time. Conventional buck converters suffer from low light-load efficiency which severely limits battery lifetime. In this project, a novel technique for buck converter is proposed to reduce the switching loss by reducing the effective input supply voltage at light load. This is achieved by switching between two different input voltages (3.3V and 1.65V) depending on the output current value. Experimental results show that this technique improves the efficiency at light loads by 18.07%. The buck voltage possesses an output voltage of 0.9V and provides a maximum output current of 400mA. The buck converter operates at a switching frequency of 1MHz. The prototype was fabricated using 0.18m CMOS technology, and occupies a total active area of 0.6039mm^2.

Chen, Hui

2013-05-01T23:59:59.000Z

164

Assessment of Energy Efficiency Improvement and CO2 Emission...  

NLE Websites -- All DOE Office Websites (Extended Search)

industry, Cost Analyst, Energy Efficiency Technologies, industrial energy efficiency, Steel Industry URL https:isswprod.lbl.govlibraryview-docsprivateoutputrpt82351.PDF...

165

Energy Efficiency Improvement in the Petroleum Refining Industry  

E-Print Network (OSTI)

boiler improvements, steam distribution, heat exchangers,pinch analysis Steam Distribution Improved insulation

Worrell, Ernst; Galitsky, Christina

2005-01-01T23:59:59.000Z

166

Microelectronics Plant Water Efficiency Improvements at Sandia National Laboratories  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sandia National Laboratories has developed extensive Sandia National Laboratories has developed extensive water efficiency improvements at its Microsystems and Engineering Sciences Applications (MESA) complex in Albuquerque, New Mexico. Since 1949, Sandia has developed science-based technologies that support national security: nuclear weapons, energy and infrastruc- ture assurance, nonproliferation, defense systems and assessments, and homeland security. The laboratory sits on 8,699 acres of land and employs more than 10,000 employees and contractors. Altogether, it owns 871 buildings encompassing more than 5.8 million square feet. The MESA complex houses research in microelectronics, including designing and prototyping microsystem-based components. The complex consumes about 28% of the total water used at Sandia. The processes used to create

167

Assessment of Energy Efficiency Improvement and CO2 Emission Reduction Potentials in the Iron and Steel Industry in China  

E-Print Network (OSTI)

potential and costs of energy- efficiency improvements bypotentials and the cost of energy-efficiency measures andand Cost Assessment of Energy Efficiency Improvement and

Hasanbeigi, Ali

2013-01-01T23:59:59.000Z

168

Improving the energy efficiency of refrigerators in India  

Science Conference Proceedings (OSTI)

Five state-of-the-art, production refrigerators from different manufacturers in India were subjected to a variety of appliance rating and performance evaluation test procedures in an engineering laboratory. Cabinet heat loss, compressor calorimeter, high-ambient pull-down, and closed-door energy consumption tests were performed on each unit to assess the current status of commercially available Indian refrigerators and refrigerator component efficiencies. Daily energy consumption tests were performed at nominal line voltages and at 85% and 115% of nominal voltage to assess the effect of grid voltage variations. These test results were also used to indicate opportunities for effective improvements in energy efficiency. A widely distributed ``generic`` computer model capable of simulating single-door refrigerators with a small interior freezer section was used to estimate cabinet heat loss rates and closed door energy consumption values from basic cabinet and refrigeration circuit inputs. This work helped verify the model`s accuracy and potential value as a tool for evaluating the energy impact of proposed design options. Significant differences ranging from 30 to 90% were seen in the measured performance criterion for these ``comparable`` refrigerators suggesting opportunities for improvements in individual product designs. Modeled cabinet heat loadings differed from experimentally extrapolated values in a range from 2--29%, and daily energy consumption values estimated by the model differed from laboratory data by as little as 3% or as much as 25%, which indicates that refinement of the model may be needed for this single-door refrigerator type. Additional comparisons of experimentally measured performance criteria such as % compressor run times and compressor cycling rates to modeled results are given. The computer model is used to evaluate the energy saving impact of several modest changes to the basic Indian refrigerator design.

Sand, J.R.; Vineyard, E.A. [Oak Ridge National Lab., TN (United States); Bohman, R.H. [Consulting Engineer, Cedar Rapids, IA (United States)

1995-04-01T23:59:59.000Z

169

Wireless Sensor Network for Improving the Energy Efficiency of...  

NLE Websites -- All DOE Office Websites (Extended Search)

032012 Publisher Lawrence Berkeley National Laboratory City Berkeley Keywords data center, energy efficiency, energy efficiency of data, Wireless sensor, Wireless sensor...

170

TV Energy Consumption Trends and Energy-Efficiency Improvement Options  

E-Print Network (OSTI)

and Low Power Mode Energy Consumption, Energy Efficiency inEnergy Consumption ..26 3.1.3. 3D TV Energy Consumption and Efficiency

Park, Won Young

2011-01-01T23:59:59.000Z

171

Method and apparatus for improved efficiency in a pulse-width ...  

Method and apparatus for improved efficiency in a pulse-width-modulated alternating current motor drive United States Patent

172

Improving Energy Efficiency of Compressed Air System Based on System Audit  

E-Print Network (OSTI)

plan, formulate energy efficiency goals and adopt energyGO-102004-1926 [3] Energy Efficiency and Market Potential ofImproving Energy Efficiency of Compressed Air System Based

Shanghai, Hongbo Qin; McKane, Aimee

2008-01-01T23:59:59.000Z

173

Potentials and policy implications of energy and material efficiency improvement  

E-Print Network (OSTI)

steam reforming of natural gas. Ammonia production technology has significantly improved in the last three decades, improving economies

Worrell, Ernst; Levine, Mark; Price, Lynn; Martin, Nathan; van den Broek, Richard; Block, Kornelis

1997-01-01T23:59:59.000Z

174

COOLING FAN AND SYSTEM PERFORMANCE AND EFFICIENCY IMPROVEMENTS  

Science Conference Proceedings (OSTI)

Upcoming emissions regulations (Tiers 3, 4a and 4b) are imposing significantly higher heat loads on the cooling system than lesser regulated machines. This work was a suite of tasks aimed at reducing the parasitic losses of the cooling system, or improving the design process through six distinct tasks: 1. Develop an axial fan that will provide more airflow, with less input power and less noise. The initial plan was to use Genetic Algorithms to do an automated fan design, incorporating forward sweep for low noise. First and second generation concepts could not meet either performance or sound goals. An experienced turbomachinery designer, using a specialized CFD analysis program has taken over the design and has been able to demonstrate a 5% flow improvement (vs 10% goal) and 10% efficiency improvement (vs 10% goal) using blade twist only. 2. Fan shroud developments, using an 'aeroshroud' concept developed at Michigan State University. Performance testing at Michigan State University showed the design is capable of meeting the goal of a 10% increase in flow, but over a very narrow operating range of fan performance. The goal of 10% increase in fan efficiency was not met. Fan noise was reduced from 0 to 2dB, vs. a goal of 5dB at constant airflow. The narrow range of fan operating conditions affected by the aeroshroud makes this concept unattractive for further development at this time 3. Improved axial fan system modeling is needed to accommodate the numbers of cooling systems to be redesigned to meet lower emissions requirements. A CFD fan system modeling guide has been completed and transferred to design engineers. Current, uncontrolled modeling practices produce flow estimates in some cases within 5% of measured values, and in some cases within 25% of measured values. The techniques in the modeling guide reduced variability to the goal of + 5% for the case under study. 4. Demonstrate the performance and design versatility of a high performance fan. A 'swept blade mixed flow' fan was rapid prototyped from cast aluminum for a performance demonstration on a small construction machine. The fan was mounted directly in place of the conventional fan (relatively close to the engine). The goal was to provide equal airflow at constant fan speed, with 75% of the input power and 5 dB quieter than the conventional fan. The result was a significant loss in flow with the prototype due to its sensitivity to downstream blockage. This sensitivity to downstream blockage affects flow, efficiency, and noise all negatively, and further development was terminated. 5. Develop a high efficiency variable speed fan drive to replace existing slipping clutch style fan drives. The goal for this task was to provide a continuously variable speed fan drive with an efficiency of 95%+ at max speed, and losses no greater than at max speed as the fan speed would vary throughout its entire speed range. The process developed to quantify the fuel savings potential of a variable speed fan drive has produced a simple tool to predict the fuel savings of a variable speed drive, and has sparked significant interest in the use of variable speed fan drive for Tier 3 emissions compliant machines. The proposed dual ratio slipping clutch variable speed fan drive can provide a more efficient system than a conventional single ratio slipping clutch fan drive, but could not meet the established performance goals of this task, so this task was halted in a gate review prior to the start of detailed design. 6. Develop a cooling system air filtration device to allow the use of automotive style high performance heat exchangers currently in off road machines. The goal of this task was to provide a radiator air filtration system that could allow high fin density, louvered radiators to operate in a find dust application with the same resistance to fouling as a current production off-road radiator design. Initial sensitivity testing demonstrated that fan speed has a significant impact on the fouling of radiator cores due to fine dusts, so machines equipped with continuously variabl

Ronald Dupree

2005-07-31T23:59:59.000Z

175

IMPROVING CO2 EFFICIENCY FOR RECOVERING OIL IN HETEROGENEOUS RESERVOIRS  

SciTech Connect

This document is the First Annual Report for the U.S. Department of Energy under contract No., a three-year contract entitled: ''Improving CO{sub 2} Efficiency for Recovering Oil in Heterogeneous Reservoirs.'' The research improved our knowledge and understanding of CO{sub 2} flooding and includes work in the areas of injectivity and mobility control. The bulk of this work has been performed by the New Mexico Petroleum Recovery Research Center, a research division of New Mexico Institute of Mining and Technology. This report covers the reporting period of September 28, 2001 and September 27, 2002. Injectivity continues to be a concern to the industry. During this period we have contacted most of the CO{sub 2} operators in the Permian Basin and talked again about their problems in this area. This report has a summary of what we found. It is a given that carbonate mineral dissolution and deposition occur in a formation in geologic time and are expected to some degree in carbon dioxide (CO{sub 2}) floods. Water-alternating-gas (WAG) core flood experiments conducted on limestone and dolomite core plugs confirm that these processes can occur over relatively short time periods (hours to days) and in close proximity to each other. Results from laboratory CO{sub 2}-brine flow experiments performed in rock core were used to calibrate a reactive transport simulator. The calibrated model is being used to estimate in situ effects of a range of possible sequestration options in depleted oil/gas reservoirs. The code applied in this study is a combination of the well known TOUGH2 simulator, for coupled groundwater/brine and heat flow, with the chemistry code TRANS for chemically reactive transport. Variability in response among rock types suggests that CO{sub 2} injection will induce ranges of transient and spatially dependent changes in intrinsic rock permeability and porosity. Determining the effect of matrix changes on CO{sub 2} mobility is crucial in evaluating the efficacy and potential environmental implications of storing CO{sub 2} in the subsurface. Chemical cost reductions are identified that are derived from the synergistic effects of cosurfactant systems using a good foaming agent and a less expensive poor foaming agent. The required good foaming agent is reduced by at least 75%. Also the effect on injectivity is reduced by as much as 50% using the cosurfactant system, compared to a previously used surfactant system. Mobility control of injected CO{sub 2} for improved oil recovery can be achieved with significant reduction in the chemical cost of SAG, improved injectivity of SAG, and improved economics of CO{sub 2} injection project when compared to reported systems. Our past work has identified a number of mobility control agents to use for CO{sub 2}-foam flooding. In particular the combination of the good foaming agent CD 1045 and a sacrificial agent and cosurfactant lignosulfonate. This work scrutinizes the methods that we are using to determine the efficiency of the sacrificial agents and cosurfactant systems. These have required concentration determinations and reusing core samples. Here, we report some of the problems that have been found and some interesting effects that must be considered.

Reid B. Grigg; Robert K. Svec

2002-12-20T23:59:59.000Z

176

How Have You Improved the Efficiency of Your Windows? | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Have You Improved the Efficiency of Your Windows? Have You Improved the Efficiency of Your Windows? How Have You Improved the Efficiency of Your Windows? March 18, 2010 - 7:57pm Addthis This week, John told you about his experience with window shades that improve the energy efficiency of his windows. There are several things you can do to improve the efficiency of existing windows, including adding storm windows, caulking or weatherstripping, or using window treatments. How have you improved the efficiency of your windows? Each Thursday, you have the chance to share your thoughts on a question about energy efficiency or renewable energy for consumers. Please comment with your answers, and also feel free to respond to other comments. Addthis Related Articles How Have You Improved the Efficiency of Your Windows?

177

Berkeley Lab Sheds Light on Improving Solar Cell Efficiency  

DOE Green Energy (OSTI)

Typical manufacturing methods produce solar cells with an efficiency of 12-15%; and 14% efficiency is the bare minimum for achieving a profit. In work performed at the Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley, CA, 5 10-486-577 1)--a US Department of Energy national laboratory that conducts unclassified scientific research and is managed by the University of California--scientist Scott McHugo has obtained keen insights into the impaired performance of solar cells manufactured from polycrystalline silicon. The solar cell market is potentially vast, according to Berkeley Lab. Lightweight solar panels are highly beneficial for providing electrical power to remote locations in developing nations, since there is no need to build transmission lines or truck-in generator fuel. Moreover, industrial nations confronted with diminishing resources have active programs aimed at producing improved, less expensive solar cells. 'In a solar cell, there is a junction between p-type silicon and an n-type layer, such as diffused-in phosphorous', explained McHugo, who is now with Berkeley Lab's Accelerator and Fusion Research Division. 'When sunlight is absorbed, it frees electrons, which start migrating in a random-walk fashion toward that junction. If the electrons make it to the junction; they contribute to the cell's output of electric current. Often, however, before they reach the junction, they recombine at specific sites in the crystal' (and, therefore, cannot contribute to current output). McHugo scrutinized a map of a silicon wafer in which sites of high recombination appeared as dark regions. Previously, researchers had shown that such phenomena occurred not primarily at grain boundaries in the polycrystalline material, as might be expected, but more often at dislocations in the crystal. However, the dislocations themselves were not the problem. Using a unique heat treatment technique, McHugo performed electrical measurements to investigate the material at the dislocations. He was purportedly the first to show that they were 'decorated' with iron.

Lawrence Berkeley National Laboratory

2007-07-20T23:59:59.000Z

178

CERAMIC MEMBRANE ENABLING TECHNOLOGY FOR IMPROVED IGCC EFFICIENCY  

SciTech Connect

The objective of this program is to conduct a technology development program to advance the state-of-the-art in ceramic Oxygen Transport Membranes (OTM) to the level required to produce step change improvements in process economics, efficiency, and environmental benefits for commercial IGCC systems and other applications. The IGCC program is focused on addressing key issues in materials, processing, manufacturing, engineering and system development that will make the OTM a commercial reality. The objective of the OTM materials development task is to identify a suitable material that can be formed into a thin film to produce the target oxygen flux. This requires that the material have an adequate permeation rate, and thermo-mechanical and thermo-chemical properties such that the material is able to be supported on the desired substrate and sufficient mechanical strength to survive the stresses involved in operation. The objective of the composite OTM development task is to develop the architecture and fabrication techniques necessary to construct stable, high performance, thin film OTMs supported on suitable porous, load bearing substrates. The objective of the process development task of this program to demonstrate the program objectives on a single OTM tube under test conditions simulating those of the optimum process cycle for the power plant. Good progress has been made towards achieving the DOE-IGCC program objectives. Two promising candidates for OTM materials have been identified and extensive characterization will continue. New compositions are being produced and tested which will determine if the material can be further improved in terms of flux, thermo-mechanical and thermo-chemical properties. Process protocols for the composite OTM development of high quality films on porous supports continues to be optimized. Dense and uniform PSO1 films were successfully applied on porous disc and tubular substrates with good bonding between the films and substrates, and no damage to the substrates or films.

Ravi Prasad

2000-04-01T23:59:59.000Z

179

Modeling of Glass Making Processes for Improved Efficiency  

SciTech Connect

The overall goal of this project was to develop a high-temperature melt properties database with sufficient reliability to allow mathematical modeling of glass melting and forming processes for improved product quality, improved efficiency and lessened environmental impact. It was initiated by the United States glass industry through the NSF Industry/University Center for Glass Research (CGR) at Alfred University [1]. Because of their important commercial value, six different types/families of glass were studied: container, float, fiberglass (E- and wool-types), low-expansion borosilicate, and color TV panel glasses. CGR member companies supplied production-quality glass from all six families upon which we measured, as a function of temperature in the molten state, density, surface tension, viscosity, electrical resistivity, infrared transmittance (to determine high temperature radiative conductivity), non-Newtonian flow behavior, and oxygen partial pres sure. With CGR cost sharing, we also studied gas solubility and diffusivity in each of these glasses. Because knowledge of the compositional dependencies of melt viscosity and electrical resistivity are extremely important for glass melting furnace design and operation, these properties were studied more fully. Composition variations were statistically designed for all six types/families of glass. About 140 different glasses were then melted on a laboratory scale and their viscosity and electrical resistivity measured as a function of temperature. The measurements were completed in February 2003 and are reported on here. The next steps will be (1) to statistically analyze the compositional dependencies of viscosity and electrical resistivity and develop composition-property response surfaces, (2) submit all the data to CGR member companies to evaluate the usefulness in their models, and (3) publish the results in technical journals and most likely in book form.

Thomas P. Seward III

2003-03-31T23:59:59.000Z

180

CERAMIC MEMBRANE ENABLING TECHNOLOGY FOR IMPROVED IGCC EFFICIENCY  

SciTech Connect

The objective of this program is to conduct a technology development program to advance the state-of-the-art in ceramic Oxygen Transport Membranes (OTM) to the level required to produce step change improvements in process economics, efficiency, and environmental benefits for commercial IGCC systems and other applications. The IGCC program is focused on addressing key issues in materials, processing, manufacturing, engineering and system development that will make the OTM a commercial reality. The objective of the OTM materials development task is to identify a suitable material that can be formed into a thin film to produce the target oxygen flux. This requires that the material have an adequate permeation rate, and thermo-mechanical and thermo-chemical properties such that the material is able to be supported on the desired substrate and sufficient mechanical strength to survive the stresses involved in operation. The objective of the composite OTM development task is to develop the architecture and fabrication techniques necessary to construct stable, high performance, thin film OTMs supported on suitable porous, load bearing substrates. The objective of the process development task of this program to demonstrate the program objectives on a single OTM tube under test conditions simulating those of the optimum process cycle for the power plant.

Ravi Prasad

2000-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "fostering efficiency improvements" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

IMPROVING CO2 EFFICIENCY FOR RECOVERING OIL IN HETEROGENEOUS RESERVOIRS  

Science Conference Proceedings (OSTI)

The second annual report of ''Improving CO{sub 2} Efficiency for Recovery Oil in Heterogeneous Reservoirs'' presents results of laboratory studies with related analytical models for improved oil recovery. All studies have been undertaken with the intention to optimize utilization and extend the practice of CO{sub 2} flooding to a wider range of reservoirs. Many items presented in this report are applicable to other interest areas: e.g. gas injection and production, greenhouse gas sequestration, chemical flooding, reservoir damage, etc. Major areas of studies include reduction of CO{sub 2} mobility to improve conformance, determining and understanding injectivity changes in particular injectivity loses, and modeling process mechanisms determined in the first two areas. Interfacial tension (IFT) between a high-pressure, high-temperature CO{sub 2} and brine/surfactant and foam stability are used to assess and screen surfactant systems. In this work the effects of salinity, pressure, temperature, surfactant concentration, and the presence of oil on IFT and CO{sub 2} foam stability were determined on the surfactant (CD1045{trademark}). Temperature, pressure, and surfactant concentration effected both IFT and foam stability while oil destabilized the foam, but did not destroy it. Calcium lignosulfonate (CLS) can be used as a sacrificial and an enhancing agent. This work indicates that on Berea sandstone CLS concentration, brine salinity, and temperature are dominant affects on both adsorption and desorption and that adsorption is not totally reversible. Additionally, CLS adsorption was tested on five minerals common to oil reservoirs; it was found that CLS concentration, salinity, temperature, and mineral type had significant effects on adsorption. The adsorption density from most to least was: bentonite > kaolinite > dolomite > calcite > silica. This work demonstrates the extent of dissolution and precipitation from co-injection of CO{sub 2} and brine in limestone core. Metal tracers in the brine were used as markers to identify precipitation location and extent. This indicated possible causes of permanent permeability changes in the core and thus in a reservoir. Core segment porosity, permeability, chemical and back-scattered electron imaging, and chemical titrations were all used for qualitative and quantitative determination of compositional and injectivity changes. Also, injectivity effects of high flow rate near a wellbore and stress changes were shown on five different cores (two Berea sandstones, two Indiana limestones, and one Dakota sandstone).

Reid B. Grigg

2003-10-31T23:59:59.000Z

182

How Have You Improved the Efficiency of Your Windows? | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

How Have You Improved the Efficiency of Your Windows? How Have You Improved the Efficiency of Your Windows? How Have You Improved the Efficiency of Your Windows? March 18, 2010 - 7:57pm Addthis This week, John told you about his experience with window shades that improve the energy efficiency of his windows. There are several things you can do to improve the efficiency of existing windows, including adding storm windows, caulking or weatherstripping, or using window treatments. How have you improved the efficiency of your windows? Each Thursday, you have the chance to share your thoughts on a question about energy efficiency or renewable energy for consumers. Please comment with your answers, and also feel free to respond to other comments. Addthis Related Articles Energy-efficient windows provide space heating and lighting to this sunny kitchen. | Photo courtesy of Emily Minton-Redfield for Jim Logan Architects.

183

Energy Efficiency Improvement and Cost Saving Opportunities for...  

NLE Websites -- All DOE Office Websites (Extended Search)

providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors...

184

Microwave-Assisted Ignition for Improved Internal Combustion Engine Efficiency  

E-Print Network (OSTI)

thermal efficiency for electricity generation from combustible sources ( , or as a fraction of energy converted in the case of solar

DeFilippo, Anthony Cesar

2013-01-01T23:59:59.000Z

185

Energy Efficiency Improvement Opportunities for the Cement Industry  

E-Print Network (OSTI)

An ENERGY STAR Guide for Energy and Plant Managers.Institute. 2001. Energy Efficiency Opportunity Guide in the

Worrell, Ernst

2008-01-01T23:59:59.000Z

186

SOEC efficiency and cost improvement Part 1 and 2.  

DOE Green Energy (OSTI)

Part I: Electrochemical and X-ray Characterization of Solid-Oxide Electrolysis Cell Oxygen Electrodes on Electrolyte Substrates--The governing reaction mechanisms, and the electrode and electrolyte material compositions and structures, that controls the efficiency and durability of the solid oxide electrolysis cells (SOEC) need to be identified and well-understood for a significant improvement in nuclear hydrogen production using high temperature steam electrolysis. ANL conducted experimental analysis of SOEC electrolyte and electrodes to progress in this objective. Our study on the oxygen electrode focused on specifically the effect of electrode crystal structure on its electrochemical performance, and the evolution of the electronic and structural properties of the electrodes while under electrochemical conditions and high temperature. We found through electrochemical impedance spectroscopy experiments that, while different crystal orientations in La{sub 0.8}Sr{sub 0.2}MnO{sub 3+d} (LSM) show different initial performance and different electrochemical activation under SOEC conditions, a good mixed ionic electronic conductor La{sub 0.8}Sr{sub 0.2}CoO{sub 3+d} (LSC) does not seem to exhibit similar variations. Our in-situ x-ray and electrochemical measurements at the Advanced Photon Source of ANL have identified the chemical states of the A-site elements of the doped lanthanum manganite electrodes. We found that the changes in the concentration and in the electronic state of the La and Sr (the A-site elements of the perovskite) occurring only at the top airelectrode film interface can be responsible from the electrochemical improvement of the SOEC anode under DC current. Our observation related to the La chemical state change is unexpected and probably unique to the electrochemical current-conditioning. Part II: Progress Towards the Atomic Layer Deposition of Lanthanum Strontium Manganate--Lanthanum strontium manganate (LSM) is the most commonly used cathode material for solid oxide fuel cells (SOFC) and also solid oxide electrolysis cells (SOEC) for hydrogen production through steam electrolysis. The ability to deposit LSM in the form of thin, conformal films onto high surface area support materials will enable the development of more efficient SOFC and SOEC devices. Moreover, thin, uniform LSM films prepared on flat surfaces are ideal for performing synchrotron X-ray experiments aimed at understanding the materials issues that control SOEC performance. Atomic layer deposition (ALD) is a very effective technology for fabricating thin, conformal films on flat surfaces as well as high surface area supports. In this study, we describe our work developing ALD methods for depositing La{sub 2}O{sub 3}, MnO{sub 2}, and mixtures of these oxides using cyclopentadienyl precursors. We have utilized in situ quartz crystal microbalance (QCM) measurements to explore the range of conditions for growth of these materials as well as to determine the appropriate oxygen sources. In addition, thin films of La{sub 2}O{sub 3} and MnO{sub 2} were deposited on Si(100) substrates and analyzed using spectroscopic ellipsometry to determine the refractive index and growth rates of these materials. Finally, mixed-oxide films La{sub 2}O{sub 3} and MnO{sub 2} were prepared and analyzed with X-ray fluorescence to determine the composition of the films.

Yildiz, B.; Chang, K.-C.; Meyers, D. J.; You, H.; Carter, J. D.; Elam, J. W.; Honegger, D. A.; Libera, J. A.; Pellin, M. J.

2007-06-20T23:59:59.000Z

187

Continuing Efforts for Efficiency Improvements in Electronic Power Conversion Devices  

Science Conference Proceedings (OSTI)

Substantial progress has been made by several agencies between 2002 and 2004 in measuring and comparing the efficiencies of single-voltage, AC-to-DC external power supplies. After considering a dataset of measured efficiency values for more than 800 external power supplies, the U.S. EPAs ENERGY STAR program and the China Center for Energy Conserving Products (CECP) have established joint energy-efficiency specifications and labeling programs for external power supplies. The California Energy ...

2012-12-31T23:59:59.000Z

188

KIVA: Increases engine efficiency while improving fuel economy  

NLE Websites -- All DOE Office Websites (Extended Search)

in automotive catalytic converters Design of fire suppression systems Pulsed detonation propulsion systems design Benefits: Increases engine efficiency while reducing harmful...

189

New Fabrication Method Improves the Efficiency and Economics...  

NLE Websites -- All DOE Office Websites (Extended Search)

properties, which, in turn, affect the pho- tocurrent density, photovoltage, and solar energy conversion efficiency. Researchers also examined the effects of NT film...

190

Technologies and Policies to Improve Energy Efficiency in Industry  

E-Print Network (OSTI)

Efficiency and Clean Energy Technologies, 2000. ScenariosProgram, 2007. Energy Technology Solutions: Public-PrivatePrice Environmental Energy Technologies Division March 2008

Price, Lynn

2008-01-01T23:59:59.000Z

191

TV Energy Consumption Trends and Energy-Efficiency Improvement Options  

E-Print Network (OSTI)

2008 Standby Power Consumption Report, March. http://of measurement for the power consumption of audio, video andand Low Power Mode Energy Consumption, Energy Efficiency in

Park, Won Young

2011-01-01T23:59:59.000Z

192

High Performance Healthcare Buildings: A Roadmap to Improved Energy Efficiency  

E-Print Network (OSTI)

tools to evaluate cost and energy implications of efficiencytools to evaluate cost and energy implications of efficiencyand low first cost, not energy efficiency. Utilization of

Singer, Brett C.

2010-01-01T23:59:59.000Z

193

Energy-Efficiency Improvement Opportunities for the Textile Industry  

E-Print Network (OSTI)

P. , 2002. SITRA Energy Audit Implementation Strategy inof Indian Industry (CII), 2006. Energy Bulletin onFinishing Stenters, ADB Energy-efficiency Support Project.

Hasanbeigi, Ali

2010-01-01T23:59:59.000Z

194

High Performance Healthcare Buildings: A Roadmap to Improved Energy Efficiency  

E-Print Network (OSTI)

for efficient and meaningful sub-metering. Develop&architecture to facilitate sub-metering Include sub-metersintermingled, making sub-metering expensive and complicated.

Singer, Brett C.

2010-01-01T23:59:59.000Z

195

Energy efficiency improvement and cost saving opportunities for petroleum refineries  

E-Print Network (OSTI)

Aspropyrgos Refinery Combined Cycle Cogeneration System.refineries operate combined cycles with higher efficiencies.in an Integrated Gasifier Combined Cycle (IGCC). In this

Worrell, Ernst; Galitsky, Christina

2005-01-01T23:59:59.000Z

196

(ITO) Nanoparticles for Improvement of Light Extraction Efficiency  

Science Conference Proceedings (OSTI)

For making the most enhancement of light extraction efficiency and applying into ... of Powder-based Metals via Current Activated Tip-Based Sintering (CATS).

197

IMPROVING CO2 EFFICIENCY FOR RECOVERING OIL IN HETEROGENEOUS RESERVOIRS  

SciTech Connect

The third annual report of ''Improving CO{sub 2} Efficiency for Recovery Oil in Heterogeneous Reservoirs'' presents results of laboratory studies with related analytical models for improved oil recovery. All studies were designed to optimize utilization and extend the practice of CO{sub 2} flooding to a wider range of reservoirs. Chapter 1 describes the behavior at low concentrations of the surfactant Chaser International CD1045{trademark} (CD) versus different salinity, pressure and temperature. Results of studies on the effects of pH and polymer (hydrolyzed polyacrylamide?HPAM) and CO{sub 2} foam stability after adsorption in the core are also reported. Calcium lignosulfonate (CLS) transport mechanisms through sandstone, description of the adsorption of CD and CD/CLS onto three porous media (sandstone, limestone and dolomite) and five minerals, and the effect of adsorption on foam stability are also reported. In Chapter 2, the adsorption kinetics of CLS in porous Berea sandstone and non-porous minerals are compared by monitoring adsorption density change with time. Results show that adsorption requires a much longer time for the porous versus non-porous medium. CLS adsorption onto sandstone can be divided into three regions: adsorption controlled by dispersion, adsorption controlled by diffusion and adsorption equilibrium. NaI tracer used to characterize the sandstone had similar trends to earlier results for the CLS desorption process, suggesting a dual porosity model to simulate flow through Berea sandstone. The kinetics and equilibrium test for CD adsorption onto five non-porous minerals and three porous media are reported in Chapter 3. CD adsorption and desorption onto non-porous minerals can be established in less than one hour with adsorption densities ranging from 0.4 to 1.2 mg of CD per g of mineral in decreasing order of montmorillonite, dolomite, kaolinite, silica and calcite. The surfactant adsorption onto three porous media takes much longer than one hour, with Berea sandstone requiring the longest time. In Chapter 4, comparisons of static adsorption of CLS, CD, and CLS/CD mixtures onto five pure minerals showed that the presence of CLS decreased the adsorption of CD onto the five minerals by 20 to 70%. Dynamic CLS/CD mixture adsorption tests onto Berea sandstone and Indian limestone cores showed that competitive adsorption between CD and CLS generally takes several days to reach equilibrium. Foam stability and interfacial tension tests on both injected and effluent samples were performed which showed that both foam stability and IFT decreased due to adsorption. Also it appears that there is a chromatographic effect on the surfactants in flow through porous media. Progress was realized in developing general equations for stress sensitivity on non-Darcy parameters (permeability and non-Darcy coefficient), and the multiphase flow induced by a high flow rate was confirmed as a mechanism for injectivity loss in CO{sub 2} flooding. In Chapter 5, a general equation is defined based on 60 general equations of permeability stress sensitivity and non-Darcy coefficient stress sensitivity and definitions of nominal permeability, nominal non-Darcy coefficient, permeability stress sensitivity, and non-Darcy coefficient stress sensitivity. The equations of stress sensitivity are independent of pressure, temperature, and rock properties and existing empirical correlations of the nominal permeability and nominal non-Darcy coefficient can be used when laboratory data are not available. This provides a tool to quantify the change of permeability and non-Darcy coefficient due to change of effective stress resulted from reservoir injection and/or production.

Reid B. Grigg; Robert K. Svec; Zhengwen Zeng; Baojun Bai; Yi Liu

2004-09-27T23:59:59.000Z

198

What Improvements Have You Made for an Energy Efficiency Tax Credit? |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Improvements Have You Made for an Energy Efficiency Tax Improvements Have You Made for an Energy Efficiency Tax Credit? What Improvements Have You Made for an Energy Efficiency Tax Credit? December 2, 2010 - 6:30am Addthis On Tuesday when Andrea highlighted the November happenings on Energy Savers, she mentioned that the federal energy efficiency tax credits are set to expire at the end of this year. This is really important to remember if you are planning to make energy-saving improvements, because they need to be "placed in service" by December 31, 2010. That means that you have fewer than 30 days to make your purchases and improvements! Learn more about the federal tax credits for energy efficiency. What improvements have you made for an energy efficiency tax credit? Each Thursday, you have the chance to share your thoughts on a question

199

Energy efficiency improvement and cost saving opportunities for petroleum refineries  

E-Print Network (OSTI)

Energy Efficiency of Crude Oil Distillation. Heat TransferMitigation of Fouling in Crude Oil Pre-Heat Trains. Proc. 24Mitigation of Fouling in Crude Oil Preheat Trains. Proc. 24

Worrell, Ernst; Galitsky, Christina

2005-01-01T23:59:59.000Z

200

Improving energy efficiency in a pharmaceutical manufacturing environment -- production facility  

E-Print Network (OSTI)

The manufacturing plant of a pharmaceutical company in Singapore had low energy efficiency in both its office buildings and production facilities. Heating, Ventilation and Air-Conditioning (HVAC) system was identified to ...

Zhang, Endong, M. Eng. Massachusetts Institute of Technology

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fostering efficiency improvements" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Energy efficiency improvement and cost saving opportunities for petroleum refineries  

E-Print Network (OSTI)

and G.E. Handwerk. 1994. Petroleum Refining: Technology andFCCU Energy Efficiency. Petroleum Technical Quarterly,Profile of the U.S. Petroleum Refining Industry, Office of

Worrell, Ernst; Galitsky, Christina

2005-01-01T23:59:59.000Z

202

Potentials and policy implications of energy and material efficiency improvement  

E-Print Network (OSTI)

energy use. In other countries, such as Thailand and Mexico,energy efficient technologies (for example the ILUMEX project between Mexico,63% in Mexico in the late 1980s [Bates, 1993]. Energy prices

Worrell, Ernst; Levine, Mark; Price, Lynn; Martin, Nathan; van den Broek, Richard; Block, Kornelis

1997-01-01T23:59:59.000Z

203

Energy efficiency improvement and cost saving opportunities for petroleum refineries  

E-Print Network (OSTI)

Council of Industrial Boiler Owners (CIBO). 1998. PersonalBorras, T. 1998. "Improving Boilers and Furnaces." ChemicalAnalysis of the Industrial Boiler Population Prepared by

Worrell, Ernst; Galitsky, Christina

2005-01-01T23:59:59.000Z

204

Enhanced Power Grid Efficiency through Improved Phasor Measurement ...  

Patent Information U. S. provisional patent pending Foreign rights available ... The smart grid market is projected to reach $9.6 billion by 2015, and improved

205

Improvement of Energy Conversion Efficiency on Pulsed Wire ...  

Science Conference Proceedings (OSTI)

Recently, several studies were carried out to the improvement of the energy ... Geopolymer Products from Jordan for Sustainability of the Environment.

206

Energy Efficiency Improvement in the Petroleum Refining Industry  

E-Print Network (OSTI)

Opportunities for Petroleum Refineries. An ENERGY STARand the chemical industry. Refineries spend typically 50% ofStates. Typically, refineries can economically improve

Worrell, Ernst; Galitsky, Christina

2005-01-01T23:59:59.000Z

207

Energy Efficiency Improvement and Cost Saving Opportunities for Breweries: An ENERGY STAR(R) Guide for Energy and Plant Managers  

E-Print Network (OSTI)

to Improve Energy Efficiency and Reduce Greenhouse GasIn: Energy Guide. Energy Efficiency Opportunities in theS. (2000). Barriers to Energy Efficiency in the UK Brewing

Galitsky, Christina; Martin, Nathan; Worrell, Ernst; Lehman, Bryan

2003-01-01T23:59:59.000Z

208

Assessment of Energy Efficiency Improvement and CO2 Emission Reduction Potentials in the Cement Industry in China  

E-Print Network (OSTI)

of cost-effective, energy- efficiency technologies andhigh investment costs of energy efficiency measures: Evenpotential and costs of energy-efficiency improvements by

Hasanbeigi, Ali

2013-01-01T23:59:59.000Z

209

Energy Efficiency Improvement and Cost Saving Opportunities for the Glass Industry. An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network (OSTI)

these costs and increase energy efficiency. This Energyoperating costs and to improve energy efficiency to maintainUpgrades related to energy efficiency cost approximately $

Worrell, Ernst

2008-01-01T23:59:59.000Z

210

Energy Efficiency Improvement and Cost Saving Oportunities for the Concrete Industry  

E-Print Network (OSTI)

Council of Industrial Boiler Owners, Burke, Virginia. 9.Conservation (CIPEC). 2001b. Boilers and Heaters, Improving43 5.6.1 Boiler energy efficiency

Kermeli, Katerina

2013-01-01T23:59:59.000Z

211

Electricity and Natural Gas Efficiency Improvements for Residential Gas Furnaces in the U.S.  

E-Print Network (OSTI)

offsets the sizable electricity savings. References TitleElectricity and Natural Gas Efficiency Improvements forfueled by natural gas. Electricity consumption by a furnace

Lekov, Alex; Franco, Victor; Meyers, Steve; McMahon, James E.; McNeil, Michael; Lutz, Jim

2006-01-01T23:59:59.000Z

212

A homogenous combustion catalyst for fuel efficiency improvements in diesel engines fuelled with diesel and biodiesel.  

E-Print Network (OSTI)

??[Truncated abstract] The ferrous picrate based homogeneous combustion catalyst has been claimed to promote diesel combustion and improve fuel efficiency in diesel engines. However, the (more)

Zhu, Mingming

2012-01-01T23:59:59.000Z

213

Mitigating Carbon Emissions: the Potential of Improving Efficiency of Household Appliances in China  

E-Print Network (OSTI)

or by electric thermos. Table 6: Annual Energy Usage of Gasusage, which assumes no further efficiency improvement after 2009. Further, annual electric

Lin, Jiang

2006-01-01T23:59:59.000Z

214

How to Make Appliance Standards Work: Improving Energy and Water Efficiency Test Procedures  

E-Print Network (OSTI)

test procedures for appliances. Energy and BuildingsEnergy Efficiency In Domestic Appliances And Lighting 4thLBNL # How to Make Appliance Standards Work: Improving

Lutz, Jim

2012-01-01T23:59:59.000Z

215

Reduce NOx and Improve Energy Efficiency, Software Tools for Industry, Industrial Technologies Program (ITP) (Fact Sheet)  

SciTech Connect

This fact sheet describes how the Industrial Technologies Program NOx and Energy Assessment Tool (NxEAT) can help petroleum refining and chemical plants improve energy efficiency.

2008-12-01T23:59:59.000Z

216

Ian Foster at TEDxCERN | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

by Nobel Laureate George Smoot, geneticist George Church, physicist Gian Giudice, animations, live music and much more. Ian Foster Ian Foster Related People Ian T. Foster Next...

217

Steam Power Partnership: Improving Steam System Efficiency Through Marketplace Partnerships  

E-Print Network (OSTI)

The Alliance to Save Energy, a national nonprofit organization based in Washington DC, and the U.S. Department of Energy are working with energy efficiency suppliers to promote the comprehensive upgrade of industrial steam systems. Like EPA's Green Lights and DOE's Motor Challenge, the Steam Power Partnership program will encourage industrial energy consumers to retrofit their steam plants wherever profitable. The Alliance has organized a "Steam Team" of trade associations, consulting engineering firms, and energy efficiency companies to help develop this public- private initiative.

Jones, T.

1997-04-01T23:59:59.000Z

218

Improving Boiler Efficiency Modeling Based on Ambient Air Temperature  

E-Print Network (OSTI)

Optimum economic operation in a large power plant can cut operating costs substantially. Individual plant equipment should be operated under conditions that are most favorable for maximizing its efficiency. It is widely accepted that boiler load significantly effects boiler efficiency. In the study reported here, the measured performance of a 300,000 lb/h steam boiler was found to show more dependence on ambient air temperature than on boiler load. It also showed an unexplained dependence on the month of the year that is comparable to the load dependence.

Zhou, J.; Deng, S.; Claridge, D. E.; Haberl, J. S.; Turner, W. D.

2002-05-01T23:59:59.000Z

219

Improving Boiler Efficiency Modeling Based On Ambient Air Temperature  

E-Print Network (OSTI)

Optimum economic operation in a large power plant can cut operating costs substantially. Individual plant equipment should be operated under conditions that are most favorable for maximizing its efficiency. It is widely accepted that boiler load significantly effects boiler efficiency. In the study reported here, the measured performance of a 300,000 lb/h steam boiler was found to show more dependence on ambient air temperature than on boiler load. It also showed an unexplained dependence on the month of the year that is comparable to the load dependence.

Zhou, J.; Deng, S.; Turner, W. D.; Claridge, D. E.; Haberl, J. S.

2002-01-01T23:59:59.000Z

220

Energy-Efficiency Improvement Opportunities for the Textile Industry  

E-Print Network (OSTI)

US Department of Energy (US) Energy Conservation Center (States Department of Energy (U.S. DOE), 1996. Reducing PowerStates Department of Energy (U.S. DOE), 1998. Improving

Hasanbeigi, Ali

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fostering efficiency improvements" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Improving CO2 Efficiency for Recovering Oil in Heterogeneous Reservoirs  

Science Conference Proceedings (OSTI)

The work strived to improve industry understanding of CO2 flooding mechanisms with the ultimate goal of economically recovering more of the U.S. oil reserves. The principle interests are in the related fields of mobility control and injectivity.

Grigg, Reid B.; Svec, Robert K.

2003-03-10T23:59:59.000Z

222

Operational efficiency through resource planning optimization and work process improvement  

E-Print Network (OSTI)

This thesis covers work done at National Grid to improve resource planning and the execution of pipeline construction and maintenance work carried out at the yards. Resource Planning, the art of picking the right jobs for ...

Balwani, Siddharth (Siddharth Vashdev)

2012-01-01T23:59:59.000Z

223

CERAMIC MEMBRANE ENABLING TECHNOLGOY FOR IMPROVED IGCC EFFICIENCY  

SciTech Connect

This quarterly technical progress report will summarize work accomplished for Phase 2 Program during the quarter April to June 2003. In task 1 OTM development has led to improved flux and strength performance. In task 2, robust PSO1d elements have been fabricated for testing in the pilot reactor. In task 3, the lab-scale pilot reactor has been operated for 1000 hours with improved success. In task 7, economic models substantial benefit of OTM IGCC over CRYO based oxygen production.

Ravi Prasad

2003-07-01T23:59:59.000Z

224

Innovative financing for energy-efficiency improvements. Phase I report  

Science Conference Proceedings (OSTI)

The use of utility-assisted financing, tax-exempt financing, bank financing, leasing, and joint venture financing to promote energy efficiency investments for each of three different categories of buildings (multifamily, commercial, and industrial) is discussed in separate chapters. (MCW)

Klepper, M.; Schwartz, H.K.; Feder, J.M.; Smith, D.C.; Green, R.H.; Williams, J.; Sherman, J.L.; Carroll, M.

1982-01-01T23:59:59.000Z

225

Improving broadcast efficiency in wireless sensor network time synchronization protocols  

Science Conference Proceedings (OSTI)

In this work we proposed an algorithm to allow nodes in a wireless sensor network to interconnect in a way such that time stamp information can be efficiently distributed for network wide synchronization. The algorithm works by first establishing a level ... Keywords: broadcast optimization, sensor networks, time synchronization

Wenxun Huang; Yujuan Quan; Deming Chen

2012-06-01T23:59:59.000Z

226

Determining benefits and costs of improved central air conditioner efficiencies  

SciTech Connect

Economic impacts on individual consumers from possible revisions to U.S. residential-type central air conditioner energy-efficiency standards are examined using a life-cycle cost (LCC) analysis. LCC is the consumer's cost of purchasing and installing a central air conditioner and operating it over its lifetime. This approach makes it possible to evaluate the economic impacts on individual consumers from the revised standards. The methodology allows an examination of groups of the population which benefit or lose from suggested efficiency standards. The results show that the economic benefits to consumers due to modest increases in efficiency are significant. For an efficiency increase of 20percent over the existing minimum standard (i.e., 12 SEER), 35percent of households with central air conditioners experience significant LCC savings, with an average savings of $453, while 25percent show significant LCC losses, with an average loss of $158 compared to apre-standard LCC average of $5,170. The remainder of the population (40percent) are largely unaffected.

Rosenquist, G.; Levok, A.; Chan, P.; McMahon, J.

2001-01-12T23:59:59.000Z

227

Improving air handler efficiency in residential HVAC applications  

SciTech Connect

In continuing the development of energy efficiency standards, consideration has turned to air handlers used for heating and air conditioning of consumer residences. These air handlers have typical efficiencies of about 10% to 15% due to poor electric motor performance and aerodynamically poor fans and fan housings. This study was undertaken to examine some of these performance issues, under carefully controlled laboratory conditions, to support potential regulatory changes. In addition, this study examined the performance of a prototype air handler fan assembly that offers the potential for substantial increases in performance. This prototype and a standard production fan were tested in a full-scale duct system and test chamber at LBNL which was specifically designed for testing heating, ventilation, and air conditioning systems. The laboratory tests compared efficiency, total airflow, sensitivity to duct system flow resistance, and the effects of installation in a smaller cabinet. The test results showed that, averaged over a wide range of operating conditions, the prototype air handler had about twice the efficiency of the standard air handler and was less sensitive to duct system flow resistance changes. The performance of both air handlers was significantly reduced by reducing the space between the air handler and the cabinet it was installed in. Therefore any fan rating needs to be performed using the actual cabinet it will be used in.

Walker, Iain S.; Mingee, Michael D.; Brenner, Douglas E.

2003-08-01T23:59:59.000Z

228

Determining benefits and costs of improved central air conditioner efficiencies  

SciTech Connect

Economic impacts on individual consumers from possible revisions to U.S. residential-type central air conditioner energy-efficiency standards are examined using a life-cycle cost (LCC) analysis. LCC is the consumer's cost of purchasing and installing a central air conditioner and operating it over its lifetime. This approach makes it possible to evaluate the economic impacts on individual consumers from the revised standards. The methodology allows an examination of groups of the population which benefit or lose from suggested efficiency standards. The results show that the economic benefits to consumers due to modest increases in efficiency are significant. For an efficiency increase of 20percent over the existing minimum standard (i.e., 12 SEER), 35percent of households with central air conditioners experience significant LCC savings, with an average savings of $453, while 25percent show significant LCC losses, with an average loss of $158 compared to apre-standard LCC average of $5,170. The remainder of the population (40percent) are largely unaffected.

Rosenquist, G.; Levok, A.; Chan, P.; McMahon, J.

2001-01-12T23:59:59.000Z

229

Energy Efficiency Improvement and Cost Saving Opportunities for the Fruit and Vegetable Processing Industry. An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network (OSTI)

2005a). Energy Efficiency Improvement and Cost Saving59289-Revision Energy Efficiency Improvement and Cost Saving05CH11231. Energy Efficiency Improvement and Cost Saving

Masanet, Eric

2008-01-01T23:59:59.000Z

230

Improving the Contribution of Economic Models in Evaluating Industrial Energy Efficiency Improvements  

E-Print Network (OSTI)

Traditional representation of improved end-use efficiency in the manufacturing sector has tended to assume a net cost perspective. In other words, the assumption for many models is that any change within the energy end-use patterns must imply a cost without concomitant energy bill savings. This tends to significantly overstate the cost of new energy policies. Yes, the range of technologies available to satisfy end-use service demands does require (admittedly) a significant level of capital. But more often than not, there is a return on that investment; and that return on investment is typically overlooked in many of the standard economic policy models. This paper describes the differences between many of the conventional energy models now used for energy policy assessments compared to those which more properly reflect a trade-off between new capital investment and end-use energy savings as both capital and energy are used to satisfy a specific industrial service demand. The paper builds on a discussion provided by Neal Elliott for approximating service demands within food products manufacturing (NAICS 311). It then shows how the proper treatment of investment flows may provide a different outcome for policy assessments than might be provided by the standard policy models.

Laitner, J. A.

2007-01-01T23:59:59.000Z

231

CERAMIC MEMBRANE ENABLING TECHNOLOGY FOR IMPROVED IGCC EFFICIENCY  

SciTech Connect

This quarterly technical progress report will summarize work accomplished for Phase 2 Program during the quarter January to March 2004. In task 1 OTM development has led to improved strength and composite design for lower temperatures. In task 2, the measurement system of OTM element dimensions was improved. In task 3, a 10-cycle test of a three-tube submodule was reproduced successfully. In task 5, sizing of several potential heat recovery systems was initiated. In task 7, advanced OTM and cryogenic IGCC cases for near-term integration were developed.

Ravi Prasad

2004-03-31T23:59:59.000Z

232

Online Toolkit Fosters Bioenergy Innovation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Toolkit Fosters Bioenergy Innovation Toolkit Fosters Bioenergy Innovation Online Toolkit Fosters Bioenergy Innovation January 21, 2011 - 2:27pm Addthis Learn more about the Bioenergy Knowledge Discovery Framework, an online data sharing and mapping toolkit. Paul Bryan Biomass Program Manager, Office of Energy Efficiency & Renewable Energy What will the project do? The $241 million loan guarantee for Diamond Green Diesel, funding which will support the construction of a facility that will nearly triple the amount of renewable diesel produced domestically. The online data sharing and mapping toolkit provides the extensive data, analysis, and visualization tools to monitor the bioenergy industry. Yesterday, Secretary Chu announced a $241 million loan guarantee for Diamond Green Diesel, funding which will support the construction of a

233

improving energy efficiency in the built environment is now seen as a growing  

E-Print Network (OSTI)

improving energy efficiency in the built environment is now seen as a growing policy priority the 1973 oil embargo. Codes by state but they generally establish a minimum energy efficiency stan- dard.S. Department of Energy to establish building code energy efficiency targets by January 1, 2014. it also

Kotchen, Matthew J.

234

Energy Efficiency Improvement and Cost Saving Opportunities for the  

NLE Websites -- All DOE Office Websites (Extended Search)

Pharmaceutical Industry Pharmaceutical Industry Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories Target Finder

235

Energy Efficiency Improvement and Cost Saving Opportunities for Breweries |  

NLE Websites -- All DOE Office Websites (Extended Search)

Breweries Breweries Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories Target Finder Technical documentation

236

CERAMIC MEMBRANE ENABLING TECHNOLOGY FOR IMPROVED IGCC EFFICIENCY  

SciTech Connect

This quarterly technical progress report will summarize work accomplished for Phase 1 Program during the quarter January to March 2002. In task 1 improvements to the membrane material have shown increased flux, and high temperature mechanical properties are being measured. In task 2, composite development has shown that alternative fabrication routes of the substrate can improve membrane performance under certain conditions. In task 3, scale-up issues associated with manufacturing large tubes have been identified and are being addressed. The work in task 4 has demonstrated that composite OTM elements can produce oxygen at greater than 95% purity for more than 1000 hours of the target flux under simulated IGCC operating conditions. In task 5 the multi-tube OTM reactor has been operated and produced oxygen.

Ravi Prasad

2002-05-01T23:59:59.000Z

237

CERAMIC MEMBRANE ENABLING TECHNOLOGY FOR IMPROVED IGCC EFFICIENCY  

SciTech Connect

This quarterly technical progress report will summarize work accomplished for Phase 2 Program during the quarter July to September 2003. In task 1 OTM development has led to improved strength and composite design. In task 2, the manufacture of robust PSO1d elements has been scaled up. In task 3, operational improvements in the lab-scale pilot reactor have reduced turn-around time and increased product purity. In task 7, economic models show substantial benefit of OTM IGCC over CRYO based oxygen production. The objectives of the first year of phase 2 of the program are to construct and operate an engineering pilot reactor for OTM oxygen. Work to support this objective is being undertaken in the following areas in this quarter: Element reliability; Element fabrication; Systems technology; Power recovery; and IGCC process analysis and economics. The major accomplishments this quarter were Element production at Praxair's manufacturing facility is being scaled up and Substantial improvements to the OTM high temperature strength have been made.

Ravi Prasad

2003-11-01T23:59:59.000Z

238

New Resin Improves Efficiency, Reduces Costs in Hanford Site Groundwater  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The new resin was installed at the 100-DX Groundwater Treatment Facility, where it operated over one year without a single resin change. The new resin was installed at the 100-DX Groundwater Treatment Facility, where it operated over one year without a single resin change. The new resin was installed at the 100-DX Groundwater Treatment Facility, where it operated over one year without a single resin change. An operator tests the resin at a 100K Area pump-andtreat system to determine how much hexavelent chromium contamination it has gathered from the groundwater. An operator tests the resin at a 100K Area pump-andtreat system to determine how much hexavelent chromium contamination it has gathered from the groundwater. ResinTech SIR-700 is being implemented at groundwater treatment systems along the Columbia River to increase efficiency and reduce costs. ResinTech SIR-700 is being implemented at groundwater treatment systems

239

The Quantum Energy Density: Improved Efficiency for Quantum Monte Carlo  

E-Print Network (OSTI)

We establish a physically meaningful representation of a quantum energy density for use in Quantum Monte Carlo calculations. The energy density operator, defined in terms of Hamiltonian components and density operators, returns the correct Hamiltonian when integrated over a volume containing a cluster of particles. This property is demonstrated for a helium-neon "gas," showing that atomic energies obtained from the energy density correspond to eigenvalues of isolated systems. The formation energies of defects or interfaces are typically calculated as total energy differences. Using a model of delta-doped silicon (where dopant atoms form a thin plane) we show how interfacial energies can be calculated more efficiently with the energy density, since the region of interest is small. We also demonstrate how the energy density correctly transitions to the bulk limit away from the interface where the correct energy is obtainable from a separate total energy calculation.

Krogel, Jaron T; Kim, Jeongnim; Ceperley, David M

2013-01-01T23:59:59.000Z

240

CERAMIC MEMBRANE ENABLING TECHNOLOGY FOR IMPROVED IGCC EFFICIENCY  

SciTech Connect

This quarterly technical progress report will summarize work accomplished for Phase 1 Program during the quarter April to June 2002. In task 1 improvements to the membrane material have shown increased flux, stability and strength. In task 2, composite development has demonstrated the ability to cycle membranes. In task 3, scale-up issues associated with manufacturing large elements have been identified and are being addressed. The work in task 4 has demonstrated that composite OTM elements can produce oxygen at greater than 95% purity after 10 thermal and pressure cycles. In task 5 the multi-tube OTM reactor has been operated and produced oxygen.

Ravi Prasad

2002-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "fostering efficiency improvements" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

FORSCOM installation characterization and ranking for water efficiency improvement  

SciTech Connect

On March 11, 1994, President Clinton signed Executive Order 12902-Energy Efficiency and Water Conservation at Federal Facilities. Section 302 of the Executive Order calls for energy and water prioritization surveys of federal facilities to be conducted. The surveys will be used to establish priorities for conducting comprehensive facility audits. In response to the requirements of the Executive Order, the U.S. Army Forces Command (FORSCOM) has tasked Pacific Northwest Laboratory (PNL) to initiate a broad study of the water savings potential at each of its major installations. This report provides an assessment of the water, sewer, energy (for hot water production and pumping), and associated cost savings potential at ten of the major FORSCOM installations. This assessment is meant to be a {open_quotes}first pass{close_quotes} estimate of the water savings potential, to assist FORSCOM in prioritizing installations for detailed water audits and potential water efficient retrofits. In addition, the end uses (toilets, sinks, showerheads, irrigation, etc.) with the greatest water savings potential are identified at each installation. This report is organized in the following manner. Following this Introduction, Section 2 provides important background information pertaining to the water analysis. Section 3 describes the methodology employed in the analysis, and Section 4 summarizes the study results. Section 5 prioritizes the installations based on both water/sewer savings and cost associated with water, sewer, and energy savings. Section 6 provides recommendations on where to start detailed water audits, as well as other recommendations. References are listed in Section 7. The appendices provide specific information on the analysis results and methodology, along with a discussion of special issues.

Fitzpatrick, Q.K.; McMordie, K.L.; Di Massa, F.V. [and others

1995-05-01T23:59:59.000Z

242

CERAMIC MEMBRANE ENABLING TECHNOLOGY FOR IMPROVED IGCC EFFICIENCY  

SciTech Connect

This quarterly technical progress report will summarize work accomplished for Phase 1 Program during the quarter October to December 2000. In task 1 careful modification of the processing conditions of the OTM has improved the properties of the final element. In addition, finite element modeling has been used to predict the mechanical behavior of OTM tubes and to identify strategies for improving OTM robustness. In task 2, composite elements of PSO1d have been prepared and tested for over 800 hours without degradation in oxygen flux. Alternative materials for composite OTM and architectures have been examined with success. In task 3, modification of fabrication routes has resulted in a substantial increase in the yield of PSO1d composite elements. The work in task 4 has demonstrated that composite OTM elements can produce oxygen at atmospheric pressure of greater than 95% purity from a high-pressure air feed gas. The work in task 5 to construct a multi-tube OTM reactor has begun.

Ravi Prasad

2001-01-01T23:59:59.000Z

243

CERAMIC MEMBRANE ENABLING TECHNOLOGY FOR IMPROVED IGCC EFFICIENCY  

SciTech Connect

The objectives of the first year of phase 2 of the program are to construct and operate an engineering pilot reactor for OTM oxygen. Work to support this objective is being undertaken in the following areas in this quarter: Element reliability; Element fabrication; Systems technology; Power recovery; and IGCC process analysis and economics. The major accomplishments this quarter were: (1) Methods to improve the strength and stability of PSO1x were identified. (2) The O1 reactor was operated at target flux and target purity for 1000 hours. This quarterly technical progress report will summarize work accomplished for Phase 2 Program during the quarter October to December 2002. In task 1 improvements to PSO1x have shown increased performance in strength and stability. In task 2, PSO1d and PSO1x elements have been fabricated for testing in the pilot reactor. In task 3, the lab-scale pilot reactor has been operated for 1000 hours. In task 6 initial power recovery simulation has begun. In task 7, HYSIS models have been developed to optimize the process for a future demonstration unit.

Ravi Prasad

2003-03-01T23:59:59.000Z

244

Final Guidance on Improving the Process for Preparing Efficient and Timely  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

on Improving the Process for Preparing Efficient and on Improving the Process for Preparing Efficient and Timely Environmental Reviews Under the National Environmental Policy Act Final Guidance on Improving the Process for Preparing Efficient and Timely Environmental Reviews Under the National Environmental Policy Act The Council on Environmental Quality is issuing its final guidance on Improving the Process for Preparing Efficient and Timely Environmental Reviews under the National Environmental Policy Act. The National Environmental Policy Act (NEPA) and CEQ Regulations implementing NEPA provide numerous techniques for preparing efficient and timely environmental reviews. CEQ is issuing this guidance for Federal departments and agencies to emphasize and clarify that these techniques are available for all NEPA Environmental Assessments and Environmental Impact Statements.

245

CERAMIC MEMBRANE ENABLING TECHNOLOGY FOR IMPROVED IGCC EFFICIENCY  

SciTech Connect

This yearly technical progress report will summarize work accomplished for Phase 1 Program during the program year 2000/2001. In task 1, the lead material composition was modified to enable superior fluxes and its mechanical properties improved. In task 2, composite OTM elements were fabricated that enable oxygen production at the commercial target purity and 75% of the target flux. In task 3, manufacturing development demonstrated the technology to fabricate an OTM tube of the size required for the multi-tube tester. The work in task 4 has enabled a preferred composite architecture and process conditions to be predicted. In task 5, the multi-tube reactor is designed and fabrication almost complete.

Ravi Prasad

2001-10-01T23:59:59.000Z

246

CERAMIC MEMBRANE ENABLING TECHNOLOGY FOR IMPROVED IGCC EFFICIENCY  

SciTech Connect

This quarterly technical progress report will summarize work accomplished for Phase 1 Program during the quarter January to March 2001. In task 1 careful modification of the composition and processing conditions of the OTM has enabled manufacture of high quality OTM elements. In addition, finite element modeling has been used to identify a suitable composition and geometry for successful pilot plant operation. In task 2, composite elements of materials with improved mechanical properties have been developed. In task 3, development of preferred fabrication methods has resulted in production of pilot plant scale composite elements. The work in task 4 has demonstrated that composite OTM elements can produce oxygen at atmospheric pressure of greater than 95% purity from a high-pressure air feed gas. The work in task 5 to construct a multi-tube OTM reactor is ongoing.

Ravi Prasad

2001-04-01T23:59:59.000Z

247

CERAMIC MEMBRANE ENABLING TECHNOLOGY FOR IMPROVED IGCC EFFICIENCY  

SciTech Connect

This quarterly technical progress report will summarize work accomplished for Phase 1 Program during the quarter October to December 2001. In task 1 optimization of the substrate material has yielded substantial improvements to membrane life. In task 2, composite development has enabled 50% of the target flux under Type 1B process conditions. In task 3, manufacturing development has demonstrated that 36 inch long tubes can be produced. The work in task 4 has demonstrated that composite OTM elements can produce oxygen at greater than 95% purity for more than 500 hours of the target flux. In task 5 construction of the multi-tube OTM reactor is completed and initial startup testing was carried out.

Ravi Prasad

2002-02-01T23:59:59.000Z

248

Improving chemical flood efficiency with micellar/alkaline/polymer processes  

SciTech Connect

A laboratory study was undertaken to find more efficient, lower-cost chemical systems for the recovery of waterflood residual oil. The authors' investigation emphasized alkaline-augmented processes because alkali is much less expensive than surfactant. The strategy was to replace some of or all the high-cost surfactants in a micellar formulation with lower-cost alkali and still maintain the high tertiary oil recoveries obtained with micellar flooding. Baseline oil recoveries in Berea corefloods were determined for two interfacially active crude oils with micellar/polymer (MP) and alkaline/polymer (AP) systems. A combination process was then developed in which a small micellar slug is injected first, followed by a larger AP slug. This process is referred to as a micellar/alkaline/polymer (MAP) flood. Phase-behavior studies guided the design and optimization of all three chemical processes in the coreflood experiments. Detailed effluent analyses and in-situ mobility measurements provided information about possible oil recovery mechanisms.

Shuler, P.J.; Kuehne, D.L.; Lerner, R.M.

1989-01-01T23:59:59.000Z

249

Energy Efficiency Improvement Opportunities for the Cement Industry  

Science Conference Proceedings (OSTI)

This report provides information on the energy savings, costs, and carbon dioxide emissions reductions associated with implementation of a number of technologies and measures applicable to the cement industry. The technologies and measures include both state-of-the-art measures that are currently in use in cement enterprises worldwide as well as advanced measures that are either only in limited use or are near commercialization. This report focuses mainly on retrofit measures using commercially available technologies, but many of these technologies are applicable for new plants as well. Where possible, for each technology or measure, costs and energy savings per tonne of cement produced are estimated and then carbon dioxide emissions reductions are calculated based on the fuels used at the process step to which the technology or measure is applied. The analysis of cement kiln energy-efficiency opportunities is divided into technologies and measures that are applicable to the different stages of production and various kiln types used in China: raw materials (and fuel) preparation; clinker making (applicable to all kilns, rotary kilns only, vertical shaft kilns only); and finish grinding; as well as plant wide measures and product and feedstock changes that will reduce energy consumption for clinker making. Table 1 lists all measures in this report by process to which they apply, including plant wide measures and product or feedstock changes. Tables 2 through 8 provide the following information for each technology: fuel and electricity savings per tonne of cement; annual operating and capital costs per tonne of cement or estimated payback period; and, carbon dioxide emissions reductions for each measure applied to the production of cement. This information was originally collected for a report on the U.S. cement industry (Worrell and Galitsky, 2004) and a report on opportunities for China's cement kilns (Price and Galitsky, in press). The information provided in this report is based on publicly-available reports, journal articles, and case studies from applications of technologies around the world.

Price, Lynn; Worrell, Ernst; Galitsky, Christina; Price, Lynn

2008-01-31T23:59:59.000Z

250

Mechanistic Understanding of Microbial Plugging for Improved Sweep Efficiency  

DOE Green Energy (OSTI)

Microbial plugging has been proposed as an effective low cost method of permeability reduction. Yet there is a dearth of information on the fundamental processes of microbial growth in porous media, and there are no suitable data to model the process of microbial plugging as it relates to sweep efficiency. To optimize the field implementation, better mechanistic and volumetric understanding of biofilm growth within a porous medium is needed. In particular, the engineering design hinges upon a quantitative relationship between amount of nutrient consumption, amount of growth, and degree of permeability reduction. In this project experiments were conducted to obtain new data to elucidate this relationship. Experiments in heterogeneous (layered) beadpacks showed that microbes could grow preferentially in the high permeability layer. Ultimately this caused flow to be equally divided between high and low permeability layers, precisely the behavior needed for MEOR. Remarkably, classical models of microbial nutrient uptake in batch experiments do not explain the nutrient consumption by the same microbes in flow experiments. We propose a simple extension of classical kinetics to account for the self-limiting consumption of nutrient observed in our experiments, and we outline a modeling approach based on architecture and behavior of biofilms. Such a model would account for the changing trend of nutrient consumption by bacteria with the increasing biomass and the onset of biofilm formation. However no existing model can explain the microbial preference for growth in high permeability regions, nor is there any obvious extension of the model for this observation. An attractive conjecture is that quorum sensing is involved in the heterogeneous bead packs.

Steven Bryant; Larry Britton

2008-09-30T23:59:59.000Z

251

Final Scientific Report - "Improved Fuel Efficiency from Nanocomposite Tire Tread"  

Science Conference Proceedings (OSTI)

Rolling resistance, a measure of the energy lost as a tire rotates while moving, is a significant source of power and fuel loss. Recently, low rolling resistant tires have been formulated by adding silica to tire tread. These "Green Tires" (so named from the environmental advantages of lower emissions and improved fuel economy) have seen some commercial success in Europe, where high fuel prices and performance drive tire selection. Unfortunately, the higher costs of the silica and a more complicated manufacturing process have prevented significant commercialization - and the resulting fuel savings - in the U.S. In this project, TDA Research, Inc. (TDA) prepared an inexpensive alternative to silica that leads to tire components with lower rolling resistance. These new tire composite materials were processed with traditional rubber processing equipment. We prepared specially designed nanoparticle additives, based on a high purity, inorganic mineral whose surface can be easily modified for compatibility with tire tread formulations. Our nanocomposites decreased energy losses to hysteresis, the loss of energy from the compression and relaxation of an elastic material, by nearly 20% compared to a blank SBR sample. We also demonstrated better performance than a leading silica product, with easier production of our final rubber nanocomposite.

Dr. Andrew Myers

2005-12-30T23:59:59.000Z

252

Improving Dryer and Press Efficiencies Through Combustion of Hydrocarbon Emissions  

SciTech Connect

Emission control devices on dryers and presses have been legislated into the industry, and are now an integral part of the drying system. These devices consume large quantities of natural gas and electricity and down-sizing or eliminating them will provide major energy savings. The principal strategy taken here focuses on developing process changes that should minimize (and in some cases eliminate) the need for controls. A second approach is to develop lower-cost control options. It has been shown in laboratory and full-scale work that Hazardous Air Pollutants (HAPs) emerge mainly at the end of the press cycle for particleboard, and, by extension, to other prod-ucts. Hence, only the air associated with this point of the cycle need be captured and treated. A model for estimating terpene emissions in the various zones of veneer dryers has been developed. This should allow the emissions to be concentrated in some zones and minimized in others, so that some of the air could be directly released without controls. Low-cost catalysts have been developed for controlling HAPs from dryers and presses. Catalysts conventionally used for regenerative catalytic oxidizers can be used at much lower temperatures for treating press emissions. Fluidized wood ash is an especially inexpensive mate-rial for efficiently reducing formaldehyde in dryer emissions. A heat transfer model for estimating pinene emissions from hot-pressing strand for the manufacture of flakeboard has been constructed from first principles and validated. The model shows that most of the emissions originate from the 1-mm layer of wood adjoining the platen surface. Hence, a simple control option is to surface a softwood mat with a layer of hardwood prior to pressing. Fines release a disproportionate large quantity of HAPs, and it has been shown both theo-retically and in full-scale work that particles smaller than 400 ???µm are principally responsible. Georgia-Pacific is considering green-screening their furnish at several of their mills in order to remove these particles and reduce their treatment costs.

Sujit Banerjee

2005-10-31T23:59:59.000Z

253

Improving energy efficiency: Strategies for supporting sustained market evolution in developing and transitioning countries  

SciTech Connect

This report presents a framework for considering market-oriented strategies for improving energy efficiency that recognize the conditions of developing and transitioning countries, and the need to strengthen the effectiveness of market forces in delivering greater energy efficiency. It discusses policies that build markets in general, such as economic and energy pricing reforms that encourage competition and increase incentives for market actors to improve the efficiency of their energy use, and measures that reduce the barriers to energy efficiency in specific markets such that improvement evolves in a dynamic, lasting manner. The report emphasizes how different policies and measures support one another and can create a synergy in which the whole is greater than the sum of the parts. In addressing this topic, it draws on the experience with market transformation energy efficiency programs in the US and other industrialized countries.

Meyers, S.

1998-02-01T23:59:59.000Z

254

Analyzing capital allocation for energy efficiency improvements by commercial real estate investment managers  

E-Print Network (OSTI)

Numerous studies have shown that retrofitting an office building with energy efficiency improvements can significantly reduce operating costs, yet many existing office buildings have not been retrofitted. The objective of ...

Peterson, Kristian A

2009-01-01T23:59:59.000Z

255

Improving PbS Quantum Dot Solar Cell Power Conversion Efficiency...  

NLE Websites -- All DOE Office Websites (Extended Search)

research team developed a new process that improves the efficiency of PbS quantum dot solar power conversion. Key Result By using a transition metal oxide in the quantum dot...

256

Improved Efficiency of Miscible CO2 Floods and Enhanced Prospects for CO2 Flooding Heterogeneous Reservoirs  

SciTech Connect

The goal of this project is to improve the efficiency of miscible CO2 floods and enhance the prospects for flooding heterogeneous reservoirs. This report provides results of the second year of the three-year project that will be exploring three principles: (1) Fluid and matrix interactions (understanding the problems). (2) Conformance control/sweep efficiency (solving the problems. 3) Reservoir simulation for improved oil recovery (predicting results).

Grigg, Reid B.; Schechter, David S.

1999-10-15T23:59:59.000Z

257

Estimates of achievable potential for electricity efficiency improvements in U.S. residences  

E-Print Network (OSTI)

baseline electricity consumption forecast for the year 2010.Electricity-Efficiency Improvements in 2010 Discount Rate: 7% Forecast Year: 2010 Start Year: 1990 Baseline Energy Consumption for yearelectricity savings in the year 2010, which is 18% of the frozen efficiency baseline consumption forecast for that year.

Brown, Richard

1993-01-01T23:59:59.000Z

258

Improvement of output coupling efficiency of organic light-emitting diodes by backside substrate modification  

E-Print Network (OSTI)

Improvement of output coupling efficiency of organic light-emitting diodes by backside substrate in determining the power efficiency of organic light emitting diodes OLEDs is the coupling effi- ciency ( cp 1999; accepted for publication 1 February 2000 The emission intensity of an organic light-emitting

259

Ian T. Foster | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Ian T. Foster Ian T. Foster Director of the Computation Institute & Argonne Distinguished Fellow Ian Foster is Director of the Computation Institute, a joint institute of the University of Chicago and Argonne National Laboratory. He is also an Argonne Senior Scientist and Distinguished Fellow and the Arthur Holly Compton Distinguished Service Professor of Computer Science. Methods and software developed under his leadership underpin many large national and international cyberinfrastructures. Foster's awards include the Global Information Infrastructure (GII) Next Generation award, the British Computer Society's Lovelace Medal, R&D Magazine's Innovator of the Year, and an honorary doctorate from the University of Canterbury, New Zealand. He is a Fellow of the American

260

Boiler Tune-ups: Improve efficiency, reduce pollution, and save money! |  

NLE Websites -- All DOE Office Websites (Extended Search)

Boiler Tune-ups: Improve efficiency, reduce pollution, and save Boiler Tune-ups: Improve efficiency, reduce pollution, and save money! Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources

Note: This page contains sample records for the topic "fostering efficiency improvements" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Distributed Battery Control to Improve Peak Power Shaving Efficiency in Data Centers  

E-Print Network (OSTI)

Distributed Battery Control to Improve Peak Power Shaving Efficiency in Data Centers Baris Aksanli, Eddie Pettis and Tajana S. Rosing UCSD, Google Stored energy in batteries can be used to cap peak power.8% 99% 91.5% 84% Battery Configuration StudyBattery Configuration Study Goal: Improve the overall

Simunic, Tajana

262

Steam Pressure-Reducing Station Safety and Energy Efficiency Improvement Project  

SciTech Connect

The Facilities and Operations (F&O) Directorate is sponsoring a continuous process improvement (CPI) program. Its purpose is to stimulate, promote, and sustain a culture of improvement throughout all levels of the organization. The CPI program ensures that a scientific and repeatable process exists for improving the delivery of F&O products and services in support of Oak Ridge National Laboratory (ORNL) Management Systems. Strategic objectives of the CPI program include achieving excellence in laboratory operations in the areas of safety, health, and the environment. Identifying and promoting opportunities for achieving the following critical outcomes are important business goals of the CPI program: improved safety performance; process focused on consumer needs; modern and secure campus; flexibility to respond to changing laboratory needs; bench strength for the future; and elimination of legacy issues. The Steam Pressure-Reducing Station (SPRS) Safety and Energy Efficiency Improvement Project, which is under the CPI program, focuses on maintaining and upgrading SPRSs that are part of the ORNL steam distribution network. This steam pipe network transports steam produced at the ORNL steam plant to many buildings in the main campus site. The SPRS Safety and Energy Efficiency Improvement Project promotes excellence in laboratory operations by (1) improving personnel safety, (2) decreasing fuel consumption through improved steam system energy efficiency, and (3) achieving compliance with applicable worker health and safety requirements. The SPRS Safety and Energy Efficiency Improvement Project being performed by F&O is helping ORNL improve both energy efficiency and worker safety by modifying, maintaining, and repairing SPRSs. Since work began in 2006, numerous energy-wasting steam leaks have been eliminated, heat losses from uninsulated steam pipe surfaces have been reduced, and deficient pressure retaining components have been replaced. These improvements helped ORNL reduce its overall utility costs by decreasing the amount of fuel used to generate steam. Reduced fuel consumption also decreased air emissions. These improvements also helped lower the risk of burn injuries to workers and helped prevent shrapnel injuries resulting from missiles produced by pressurized component failures. In most cases, the economic benefit and cost effectiveness of the SPRS Safety and Energy Efficiency Improvement Project is reflected in payback periods of 1 year or less.

Lower, Mark D [ORNL; Christopher, Timothy W [ORNL; Oland, C Barry [ORNL

2011-06-01T23:59:59.000Z

263

600 New Lights Bulbs to Improve Energy Efficiency at DOE | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

600 New Lights Bulbs to Improve Energy Efficiency at DOE 600 New Lights Bulbs to Improve Energy Efficiency at DOE 600 New Lights Bulbs to Improve Energy Efficiency at DOE November 18, 2010 - 10:30am Addthis Ingrid Kolb Director of the Office of Management Starting in September, the Department of Energy has been steadily replacing all 600 light fixtures under our Washington, D.C., Forrestal North Building canopy with state of the art Light Emitting Diode (LED) fixtures. Every new bulb now uses just 23 watts instead of 205 watts. That translates into almost half a million kilowatts hours saved every year. and will cut annual energy consumption at the Department of Energy Headquarters by about 1%. The final new LED fixture under the canopy was installed on October 28, but these lights are just part of a full program to reduce energy consumption

264

Earth Day Recap: Sharing Tips for Improving Your Home's Energy Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Earth Day Recap: Sharing Tips for Improving Your Home's Energy Earth Day Recap: Sharing Tips for Improving Your Home's Energy Efficiency Earth Day Recap: Sharing Tips for Improving Your Home's Energy Efficiency April 24, 2013 - 12:30pm Addthis Miss our Earth Day Hangout? View it now. Rebecca Matulka Rebecca Matulka Digital Communications Specialist, Office of Public Affairs Want more info? Check out Energy Saver for tips and advice on ways to reduce your energy use. This week, more than 1 billion people in more than 190 countries celebrated Earth Day, demonstrating their support for environmental protection. First started in 1970 to encourage environmental reform, Earth Day is now an opportunity to take individual actions to protect the environment and use our resources -- like energy -- more efficiently. To celebrate Earth Day, we hosted a live Q&A to share tips and advice that

265

CNG in OKC: Improving Efficiency at the Pump and on the Road | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CNG in OKC: Improving Efficiency at the Pump and on the Road CNG in OKC: Improving Efficiency at the Pump and on the Road CNG in OKC: Improving Efficiency at the Pump and on the Road March 8, 2012 - 4:02pm Addthis Andy Mitchell, Public Works Project Manager for the City of Oklahoma City, refills a vehicle at the new fast-fill CNG fueling station located at the city's main maintenance facility. | Courtesy of the City of Oklahoma City. Andy Mitchell, Public Works Project Manager for the City of Oklahoma City, refills a vehicle at the new fast-fill CNG fueling station located at the city's main maintenance facility. | Courtesy of the City of Oklahoma City. Jennifer Holman Project Officer, Golden Field Office What does this mean for me? Switching from gasoline and diesel fuels to compressed natural gas (CNG) can mean significantly lower amounts of carbon dioxide and air

266

Earth Day Recap: Sharing Tips for Improving Your Home's Energy Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Earth Day Recap: Sharing Tips for Improving Your Home's Energy Earth Day Recap: Sharing Tips for Improving Your Home's Energy Efficiency Earth Day Recap: Sharing Tips for Improving Your Home's Energy Efficiency April 24, 2013 - 12:30pm Addthis Miss our Earth Day Hangout? View it now. Rebecca Matulka Rebecca Matulka Digital Communications Specialist, Office of Public Affairs Want more info? Check out Energy Saver for tips and advice on ways to reduce your energy use. This week, more than 1 billion people in more than 190 countries celebrated Earth Day, demonstrating their support for environmental protection. First started in 1970 to encourage environmental reform, Earth Day is now an opportunity to take individual actions to protect the environment and use our resources -- like energy -- more efficiently. To celebrate Earth Day, we hosted a live Q&A to share tips and advice that

267

Top U.S. Automakers Collaborate to Improve Heavy-Duty Freight Efficiency |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Top U.S. Automakers Collaborate to Improve Heavy-Duty Freight Top U.S. Automakers Collaborate to Improve Heavy-Duty Freight Efficiency Top U.S. Automakers Collaborate to Improve Heavy-Duty Freight Efficiency November 22, 2013 - 5:37pm Addthis As part of the 21st Century Truck Partnership, the Army will demonstrate technology that converts waste heat from an exhaust system to electricity used in its Stryker vehicle. | Photo courtesy of courtesy of U.S. Army As part of the 21st Century Truck Partnership, the Army will demonstrate technology that converts waste heat from an exhaust system to electricity used in its Stryker vehicle. | Photo courtesy of courtesy of U.S. Army Natalie Committee Communications Specialist, Office of Energy Efficiency and Renewable Energy Detroit, the hub of America's automotive industry hosted a gathering of

268

Economic and Policy Factors Affecting Energy Efficiency Improvements in the U. S. Paper Industry  

E-Print Network (OSTI)

The U.S. pulp, paper and paperboard industry has made significant improvements over the past eleven years in the energy efficiency of its operations. The industry is firmly committed to: increased utilization of important renewable domestic energy sources such as wood residues, pulping liquors, and hydropower; improved energy efficiency through cogeneration, product and process improvements; and reduced national dependence on foreign energy. The achievements are substantial and will be reviewed. The potential exists to expand the industry's energy self-sufficiency, use of more energy efficient technologies, and development of hydropower and cogeneration; however, national policies play a crucial role in allowing the industry to realize this potential. These national policies include issues associated with cogeneration, licensing and relicensing of private small scale hydroelectric projects, acid rain, and federal funding of energy technology research and development. The paper industry's actions and accomplishments arising from participation in the formulation and implementation of national policy will be addressed.

Freund, S. H.

1984-01-01T23:59:59.000Z

269

Potential Benefits from Improved Energy Efficiency of KeyElectrical Products: The Case of India  

Science Conference Proceedings (OSTI)

The goal of this project was to estimate the net benefits that cost-effective improvements in energy efficiency can bring to developing countries. The study focused on four major electrical products in the world's second largest developing country, India. These products--refrigerators, room air conditioners, electric motors, and distribution transformers--are important targets for efficiency improvement in India and in other developing countries. India is an interesting subject of study because of it's size and rapid economic growth. Implementation of efficient technologies in India would save billions in energy costs, and avoid hundreds of megatons of greenhouse gas emissions. India also serves as an example of the kinds of improvement opportunities that could be pursued in other developing countries.

McNeil, Michael; Iyer, Maithili; Meyers, Stephen; Letschert,Virginie; McMahon, James E.

2005-12-20T23:59:59.000Z

270

An Analysis of Efficiency Improvements in Residential Sized Heat Pumps, Final Report, May 1986  

E-Print Network (OSTI)

The objectives of this study included: (1) development of classes of heat pumps, (2) evaluation and selection of a suitable heat pump design model, (3) characterization of suitable baseline heat pump designs, (4) selection of design options that can be used to improve heat pump efficiency, and (5) development of heat pump designs to cover the whole spectrum of efficiencies available today and those that may be technologically feasible in the next few years.

O'Neal, D. L.; Murphy, W. E.

1985-01-01T23:59:59.000Z

271

Federal Task Force Sends Recommendations to President on Fostering...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Task Force Sends Recommendations to President on Fostering Clean Coal Technology Federal Task Force Sends Recommendations to President on Fostering Clean Coal Technology August 12,...

272

Policy Options Workshop Accelerating Energy Efficiency Improvements In Commercial Buildings November 29, 2011  

E-Print Network (OSTI)

Policy Options Workshop ­ Accelerating Energy Efficiency Improvements In Commercial Buildings of Energy Marilyn Brown Georgia Institute of Technology Lindsay Brumbelow Department of Energy Lane Burt U Department of Energy Charlotte Franchuk Oak Ridge National Laboratory Jeff Harris Alliance to Save Energy

Oak Ridge National Laboratory

273

Improving Battery-Efficiency of Embedded Devices by Favorably Discharging only towards  

E-Print Network (OSTI)

Improving Battery-Efficiency of Embedded Devices by Favorably Discharging only towards End always been a major issue for battery- powered mobile or embedded devices such as smart-phones or wireless sensor nodes. Interestingly enough the amount of energy which can be drawn out of a given battery

Wichmann, Felix

274

Significant Improvement in Energy Efficiency in Manufacturing at Rohm and Haas Kankakee, Illinois, Plant  

E-Print Network (OSTI)

Significant improvement in energy efficiency was achieved at Rohm and Haas Kankakee, Illinois facility last year through the combined efforts of all plant personnel. In total, a 24% reduction in energy requirements per pound of product produced was reached compared to 2004. That amounts to $270,000 in savings in 2005 with 1000 fewer tons of CO2 emitted to the environment.

Brinkley, T.

2007-01-01T23:59:59.000Z

275

Structural collapse simulation under consideration of uncertainty - Improvement of numerical efficiency  

Science Conference Proceedings (OSTI)

The focus in this paper is set on the improvement of the numerical efficiency of a fuzzy stochastic structural collapse simulation. The deterministic computation is performed with an FE-model taking into account large deformations, contact phenomena ... Keywords: Finite element simulation, Fuzzy randomness, Neural network, Response surface methodology, Structural collapse, Uncertainty

Bernd Mller; Martin Liebscher; Karl Schweizerhof; Steffen Mattern; Gunther Blankenhorn

2008-10-01T23:59:59.000Z

276

Transportation Energy Futures Series: Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehilce Sector  

NLE Websites -- All DOE Office Websites (Extended Search)

COMMERCIAL TRUCKS COMMERCIAL TRUCKS AVIATION MARINE MODES RAILROADS PIPELINES OFF-ROAD EQUIPMENT Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehicle Sector TRANSPORTATION ENERGY FUTURES SERIES: Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehicle Sector A Study Sponsored by U.S. Department of Energy Office of Energy Efficiency and Renewable Energy February 2013 Prepared by ARGONNE NATIONAL LABORATORY Argonne, IL 60439 managed by U Chicago Argonne, LLC for the U.S. DEPARTMENT OF ENERGY under contract DE-AC02-06CH11357 This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or

277

SunShot Initiative: Fostering Growth  

NLE Websites -- All DOE Office Websites (Extended Search)

Fostering Growth The solar energy industry in the United States is growing rapidly as the price of solar panels has decreased over the past decade. U.S. solar installations doubled...

278

Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers  

E-Print Network (OSTI)

such an important cost factor, energy efficiency is a verythe cost-effectiveness of energy efficiency opportunities2005). Energy Efficiency Improvement and Cost Saving

Neelis, Maarten

2008-01-01T23:59:59.000Z

279

Assessment of Energy Efficiency Improvement and CO2 Emission Reduction Potentials in the Iron and Steel Industry in China  

E-Print Network (OSTI)

electricity and fuel prices differ between industries andelectricity and fuel efficiency improvements in the iron and steel industryprice of electricity paid by the iron and steel industry in

Hasanbeigi, Ali

2013-01-01T23:59:59.000Z

280

Assessment of Energy Efficiency Improvement and CO2 Emission Reduction Potentials in the Cement Industry in China  

E-Print Network (OSTI)

electricity and fuel efficiency improvements in the cement industryprice of electricity paid by the cement industry in 2009 isElectricity Conservation Supply Curve for the Cement Industry .

Hasanbeigi, Ali

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fostering efficiency improvements" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Improving Energy Efficiency and Reducing Greenhouse Gas Emissions in BPs PTA Manufacturing Plants  

E-Print Network (OSTI)

BP is the worlds leading producer of purified terephthalic acid, or PTA, a commodity chemical used in the production of polyester. Through both self-help initiatives and innovations in our state-of-art process technology, the energy efficiency of our PTA manufacturing process has significantly improved over the past several years, which has translated into substantial decreases in greenhouse gas emissions across our global sites. The talk will provide a general overview of the PTA business and manufacturing process, as well as the enabling technology evolutions leading to this improved performance.

Clark, F.

2008-01-01T23:59:59.000Z

282

A Trick to Improve the Efficiency of Generating Unweighted $B_c$ Events from BCVEGPY  

Science Conference Proceedings (OSTI)

In the present paper, we provide an addendum to improve the efficiency of generating unweighted events within PYTHIA environment for the generator BCVEGPY2.1 [C.H. Chang, J.X. Wang, X.G. Wu, Comput. Phys. Commun. 174 (2006) 241]. This trick is helpful for experimental simulation. Moreover, the BCVEGPY output has also been improved, i.e. one Les Houches Event common block has been added so as to generate a standard Les Houches Event file that contains the information of the generated Bc meson and the accompanying partons, which can be more conveniently used for further simulation.

Wang, Xian-You; /Chongqing U.; Wu, Xing-Gang; /Chongqing U. /SLAC

2012-09-14T23:59:59.000Z

283

Industrial Energy-Efficiency Improvement Program. Annual report to the Congress and the President 1979  

SciTech Connect

The industrial energy efficiency improvement program to accelerate market penetration of new and emerging industrial technologies and practices which will improve energy efficiency; encourage substitution of more plentiful domestic fuels; and enhance recovery of energy and materials from industrial waste streams is described. The role of research, development, and demonstration; technology implementation; the reporting program; and progress are covered. Specific reports from the chemicals and allied products; primary metals; petroleum and coal products; stone, clay, and glass, paper and allied products; food and kindred products; fabricated metals; transportation equipment; machinery (except electrical); textile mill products; rubber and miscellaneous plastics; electrical and electronic equipment; lumber and wood; and tobacco products are discussed. Additional data from voluntary submissions, a summary on progress in the utilization of recovered materials, and an analysis of industrial fuel mix are briefly presented. (MCW)

1980-12-01T23:59:59.000Z

284

Cooling Towers: Understanding Key Components of Cooling Towers and How to Improve Water Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Paul Johnston-Knight Introduction Federal laws and regulations require Federal agencies to reduce water use and improve water efficiency. Namely, Executive Order 13514 Federal Leadership in Environmental, Energy, and Economic Performance, requires an annual two percent reduction of water use intensity (water use per square foot of building space) for agency potable water consumption as well as a two percent reduction of water use for industrial, landscaping, and agricultural applica- tions. Cooling towers can be a significant

285

Method and apparatus for improving the quality and efficiency of ultrashort-pulse laser machining  

DOE Patents (OSTI)

A method and apparatus for improving the quality and efficiency of machining of materials with laser pulse durations shorter than 100 picoseconds by orienting and maintaining the polarization of the laser light such that the electric field vector is perpendicular relative to the edges of the material being processed. Its use is any machining operation requiring remote delivery and/or high precision with minimal collateral dames.

Stuart, Brent C. (Fremont, CA); Nguyen, Hoang T. (Livermore, CA); Perry, Michael D. (Livermore, CA)

2001-01-01T23:59:59.000Z

286

Transportation Energy Futures Series: Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehicle Sector  

Science Conference Proceedings (OSTI)

Considerable research has focused on energy efficiency and fuel substitution options for light-duty vehicles, while much less attention has been given to medium- and heavy-duty trucks, buses, aircraft, marine vessels, trains, pipeline, and off-road equipment. This report brings together the salient findings from an extensive review of literature on future energy efficiency options for these non-light-duty modes. Projected activity increases to 2050 are combined with forecasts of overall fuel efficiency improvement potential to estimate the future total petroleum and greenhouse gas (GHG) emissions relative to current levels. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

Vyas, A. D.; Patel, D. M.; Bertram, K. M.

2013-03-01T23:59:59.000Z

287

Improving laundry plant energy efficiency. A study done for the department of defense. Final report  

SciTech Connect

To comply with Presidential Executive Order 12759, which requires federal facilities to increase industrial/process energy efficiency 20 percent by the fiscal year 2000 (FYOO) in comparison with FY85, the Department of Defense must improve the efficiency of its laundry facilities. Army laundry managers presently reduce utility consumption by using setback timers on equipment and lights, disconnecting or disabling unused equipment, installing occupancy sensors in seldom-used areas, and replacing worn out conventional equipment with more efficient models. This study surveyed Army laundry facilities to determine and characterize their current condition and utility consumption. Those facilities were compared with commercial facilities of similar size, and alternative facility designs using advanced technologies were developed. This study concluded that it is still in the government`s interests to own and operate military laundry facilities. However, to isolate waste and inefficiency, Army laundries must supplement current practices by consistently monitoring their energy and utility consumption. It was also concluded that Army laundry facilities can significantly improve efficiency by adding advanced technologies to increase utility savings by further reducing energy and water consumption, and to decrease production costs by reducing the amount of labor required to process laundry.

Savoie, M.J.; Durbin, T.E.; Deligiannis, S.J.; Scholten, W.B.; Williamson, G.A.

1995-09-01T23:59:59.000Z

288

Improving the efficiency of residential air-distribution systems in California, Phase 1  

Science Conference Proceedings (OSTI)

This report describes the results of the first phase of a multiyear research project. The project`s goal is to investigate ways to improve the efficiency of air-distribution systems in detached, single-family residences in California. First-year efforts included: A survey of heating, ventilating, and air conditioning (HVAC) contractors in California. A 31-house field study of distribution-system performance based on diagnostic measurements. Development of an integrated air-flow and thermal-simulation tool for investigating residential air-distribution system performance. Highlights of the field results include the following: Building envelopes for houses built after 1979 appear to be approximately 30% tighter. Duct-system tightness showed no apparent improvement in post-1979 houses. Distribution-fan operation added an average of 0.45 air changes per hour (ACH) to the average measured rate of 0.24 ACH. The simulation tool developed is based on DOE-2 for the thermal simulations and on MOVECOMP, an air-flow network simulation model, for the duct/house leakage and flow interactions. The first complete set of simulations performed (for a ranch house in Sacramento) indicated that the overall heating-season efficiency of the duct systems was approximately 65% to 70% and that the overall cooling-season efficiency was between 60% and 75%. The wide range in cooling-season efficiency reflects the difference between systems with attic return ducts and those with crawl-space return ducts, the former being less efficient. The simulations also indicated that the building envelope`s UA-value, a measurement of thermoconductivity, did not have a significant impact on the overall efficiency of the air-distribution system.

Modera, M.; Dickerhoff, D.; Jansky, R.; Smith, B.

1992-06-01T23:59:59.000Z

289

A submission to the Australian Greenhouse Office draft document: Analysis of the Potential Policy Options for Energy Efficiency Improvements to Televisions The Energy Efficiency and Conservation Authority  

E-Print Network (OSTI)

1. This submission is in response to the draft Analysis of the Potential Policy Options for Energy Efficiency Improvements to Televisions, produced by Energy Consult Pty Ltd for the Australian Greenhouse Office in August 2004.

unknown authors

2004-01-01T23:59:59.000Z

290

Improving Energy Efficiency and Enabling Water Recycle in Biorefineries Using Bioelectrochemical Cells.  

SciTech Connect

Improving biofuel yield and water reuse are two important issues in further development of biorefineries. The total energy content of liquid fuels (including ethanol and hydrocarbon) produced from cellulosic biomass via biochemical or hybrid bio-thermochemical routes can vary from 49% to 70% of the biomass entering the biorefinery, on an energy basis. Use of boiler for combustion of residual organics and lignin results in significant energy and water losses. An alternate process to improve energy recovery from the residual organic streams is via use of bioelectrochemical systems such as microbial fuel cells (MFCs) microbial electrolysis cells (MECs). The potential advantages of this alternative scheme in a biorefinery include minimization of heat loss and generation of a higher value product, hydrogen. The need for 5-15 gallons of water per gallon of ethanol can be reduced significantly via recycle of water after MEC treatment. Removal of inhibitory byproducts such as furans, phenolics and acetate in MFC/MECs to generate energy, thus, has dual advantages including improvements in energy efficiency and ability to recycle water. Conversion of the sugar- and lignin- degradation products to hydrogen is synergistic with biorefinery hydrogen requirements for upgrading F-T liquids and other byproducts to high-octane fuels and/or high value products. Some of these products include sorbitol, succinic acid, furan and levulinate derivatives, glycols, polyols, 1,4-butenadiol, phenolics polymers, etc. Potential process alternatives utilizing MECs in biorefineries capable of improving energy efficiency by up to 30% are discussed.

Borole, Abhijeet P [ORNL

2010-01-01T23:59:59.000Z

291

Estimates of achievable potential for electricity efficiency improvements in U.S. residences  

SciTech Connect

This paper investigates the potential for public policies to achieve electricity efficiency improvements in US residences. This estimate of achievable potential builds upon a database of energy-efficient technologies developed for a previous study estimating the technical potential for electricity savings. The savings potential and cost for each efficiency measure in the database is modified to reflect the expected results of policies implemented between 1990 and 2010. Factors included in these modifications are: the market penetration of efficiency measures, the costs of administering policies, and adjustments to the technical potential measures to reflect the actual energy savings and cost experienced in the past. When all adjustment factors are considered, this study estimates that policies can achieve approximately 45% of the technical potential savings during the period from 1990 to 2010. Thus, policies can potentially avoid 18% of the annual frozen-efficiency baseline electricity consumption forecast for the year 2010. This study also investigates the uncertainty in best estimate of achievable potential by estimating two alternative scenarios -- a

Brown, Richard

1993-05-01T23:59:59.000Z

292

Design of Zinc Oxide Based Solid-State Excitonic Solar Cell with Improved Efficiency  

E-Print Network (OSTI)

Excitonic photovoltaic devices, including organic, hybrid organic/inorganic, and dye-sensitized solar cells, are attractive alternatives to conventional inorganic solar cells due to their potential for low cost and low temperature solution-based processing on flexible substrates in large scale. Though encouraging, they are currently limited by the efficiency from not yet optimized structural and material parameters and poor overall knowledge regarding the fundamental details. This dissertation aims to achieve improved performance of hybrid solar cells by enhancing material property and designing new device architecture. The study begins with the addition of XD-grade single-walled carbon nanotube (XDSWNT) into poly(3-hexylthiophene) (P3HT) to improve the current density. By having a weight ratio of XDSWNT and P3HT equaled to 0.1:1, short-circuit current was quadrupled from 0.12 mA cm-2 to 0.48 mA cm-2 and solar cell efficiency was tripled from 0.023% to 0.07%, compared to devices with pure P3HT as a hole transport material. Secondly, a significant improvement in device efficiency with 250 nm long ZnO nanorod arrays as photoanodes has been achieved by filling the interstitial voids of the nanorod arrays with ZnO nanoparticles. The overall power conversion efficiency increased from 0.13% for a nanorod-only device to 0.34% for a device with combined nanoparticles and nanorod arrays. The higher device efficiency in solid-state DSSCs with hybrid nanorod/nanoparticle photoanodes is originated from both large surface area provided by nanoparticles for dye adsorption and efficient charge transport provided by the nanorod arrays to reduce the recombinations of photogenerated carriers. Followed by the novel layer-by-layer self-assembly deposition process, the hybrid photoanode study was extended to the longer ZnO nanorod arrays. The best performance, 0.64%, was achieved when the thickness of the photoanodes equaled to 1.2 ?m. Finally, the photovoltaic devices were modified by adding ZnO nanoarpticles into P3HT to increase interfacial area between ZnO and P3HT. The efficiency was enhanced from 0.18% to 0.45% when the ZnO nanorod arrays were 625 nm in length. Our successful design of the device morphology significantly contributes to the performance of solid-state hybrid solar cells.

Lee, Tao Hua

2011-12-01T23:59:59.000Z

293

Institutional Change Principles for Fostering Sustainability | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Institutional Change Principles for Fostering Sustainability Institutional Change Principles for Fostering Sustainability Institutional Change Principles for Fostering Sustainability October 8, 2013 - 10:57am Addthis The following eight principles serve as the foundational building blocks for developing strategies to achieve institutional change-but they are not the strategies themselves. They are derived from academic literature and inform the framework for achieving institutional change in a Federal organization. Each statement is followed by a general strategy for how the principle can be translated into action. Social Network and Communications: Institutions and people change because they see or hear of others (individuals, groups, institutions, firms) behaving differently, so make sure staff see or hear about others who have

294

Improving Compressed Air Energy Efficiency in Automotive Plants - Practical Examples and Implementation  

SciTech Connect

The automotive industry is the largest industry in the United States in terms of the dollar value of production [1]. U.S. automakers face tremendous pressure from foreign competitors, which have an increasing manufacturing presence in this country. The Big Three North American Original Equipment Manufacturers (OEMs) General Motors, Ford, and Chrysler are reacting to declining sales figures and economic strain by working more efficiently and seeking out opportunities to reduce production costs without negatively affecting the production volume or the quality of the product. Successful, cost-effective investment and implementation of the energy efficiency technologies and practices meet the challenge of maintaining the output of high quality product with reduced production costs. Automotive stamping and assembly plants are typically large users of compressed air with annual compressed air utility bills in the range of $2M per year per plant. This paper focuses on practical methods that the authors have researched, analyzed and implemented to improve compressed air system efficiency in automobile manufacturing facilities. It describes typical compressed air systems in automotive stamping and assembly plants, and compares these systems to best practices. The paper then presents a series of examples, organized using the method of inside-out approach, which strategically identifies the energy savings in the compressed air system by first minimizing end-use demand, then minimizing distribution losses, and finally making improvements to primary energy conversion equipment, the air compressor plant.

Alkadi, Nasr E [ORNL; Kissock, Professor Kelly [University of Dayton, Ohio

2011-01-01T23:59:59.000Z

295

Efficiency Improvement through Reduction in Friction and Wear in Powertrain Systems  

DOE Green Energy (OSTI)

The objective of this project is to improve the efficiency of truck drivelines through reduction of friction and parasitic losses in transmission and drive axles. Known efficiencies for these products exceeded 97 percent, so the task was not trivial. The project relied on a working relationship between modeling and hardware testing. Modeling was to shorten the development cycle by guiding the selection of materials, processes and strategies. Bench top and fixture tests were to validate the models. Modeling was performed at a world class, high academic level, but in the end, modeling did not impact the hardware development as much as intended. Insights leading to the most significant accomplishments came from bench top and fixture tests and full scale dynamometer tests. A key development in the project was the formulation of the implementation strategy. Five technical elements with potential to minimize friction and parasitic losses were identified. These elements included churning, lubrication, surface roughness, coatings and textures. An interesting fact is that both Caterpillar and Eaton independently converged on the same set of technical elements in formulating their implementation strategies. Exploiting technical elements of the implementation strategy had a positive impact on transmission and drive axle efficiencies. During one dynamometer test of an Eaton Best Tech 1 transmission, all three gear ranges tested: Under drive, direct drive and over drive, showed efficiencies greater than 99 percent. Technology boosts to efficiency for transmissions reached 1 percent, while efficiency improvements to drive axle pushed 2 percent. These advancements seem small, but the accomplishment is large considering that these products normally run at greater than 97 percent efficiency. Barriers and risks to implementing these technology elements are clear. Schemes using a low fill sump and spray tubes endanger the gears and bearings by lubricant starvation. Gear coatings have exhibited durability issues, stripping away under conditions less demanding than 750,000 miles in service on the road. Failed coatings compound the problem by contaminating the lubricant with hard particles. Under the most severe conditions, super finished surfaces may polish further, reaching a surface roughness unable to support the critical oil film thickness. Low viscosity and low friction lubricants may not protect the gears and bearings adequately leading to excessive pitting, wear and noise. Additives in low friction oils may not stay in solution or suspended thus settling to the bottom and unavailable when they are needed most. Technical barriers and risks can be overcome through engineering, but two barriers remain formidable: (1) cost of the technology and (2) convincing fleet owners that the technology provides a tangible benefit. Dry sumps lower lubricant operating temperatures so the removal of heat exchangers and hoses and reduced demand on engine cooling systems justify their use. The benefits of surface texturing are varied and remain unproven. Lubricant costs seem manageable, but the cost of super finishing and gear coating are high. These are issues of scale and processing technology. Going across the board with gear super finishing and coating will reduce costs. Pushing the envelope to applications with higher torque and higher power density should drive the adoption of these technologies. Fleet owners are an educated and seasoned lot. Only technology measureable in dollars returned is used on truck fleets. To convince fleet owners of the benefit of these technologies, new precision in measuring fuel efficiency must be introduced. Legislation for a minimum standard in truck miles per gallon would also enable the use of these technologies. Improving the efficiency of truck transmissions and axle will make a noticeable impact on the fuel consumption by heavy vehicles in the United States. However, the greatest benefit will come when all the individual efficiency technologies like hybrid power, aerodynamic fairings, auxiliary power units, super

Michael Killian

2009-09-30T23:59:59.000Z

296

Improving Energy Efficiency in Pharmaceutical ManufacturingOperations -- Part I: Motors, Drives and Compressed Air Systems  

Science Conference Proceedings (OSTI)

In Part I of this two-part series, we focus on efficient use of motors, drives and pumps, both for process equipment and compressed air systems. Pharmaceutical manufacturing plants in the U.S. spend nearly $1 billion each year for the fuel and electricity they need to keep their facilities running (Figure 1, below). That total that can increase dramatically when fuel supplies tighten and oil prices rise, as they did last year. Improving energy efficiency should be a strategic goal for any plant manager or manufacturing professional working in the drug industry today. Not only can energy efficiency reduce overall manufacturing costs, it usually reduces environmental emissions, establishing a strong foundation for a corporate greenhouse-gas-management program. For most pharmaceutical manufacturing plants, Heating, Ventilation and Air Conditioning (HVAC) is typically the largest consumer of energy, as shown in Table 1 below. This two-part series will examine energy use within pharmaceutical facilities, summarize best practices and examine potential savings and return on investment. In this first article, we will focus on efficient use of motors, drives and pumps, both for process equipment and compressed air systems. Part 2, to be published in May, will focus on overall HVAC systems, building management and boilers.

Galitsky, Christina; Chang, Sheng-chien; Worrell, Ernst; Masanet,Eric

2006-04-01T23:59:59.000Z

297

A Dual-Supply Buck Converter with Improved Light-Load Efficiency  

E-Print Network (OSTI)

Power consumption and device size have been placed at the primary concerns for battery-operated portable applications. Switching converters gain popularity in powering portable devices due to their high efficiency, compact sizes and high current delivery capability. However portable devices usually operate at light loads most of the time and are only required to deliver high current in very short periods, while conventional buck converter suffers from low efficiency at light load due to the switching losses that do not scale with load current. In this research, a novel technique for buck converter is proposed to reduce the switching loss by reducing the effective voltage supply at light load. This buck converter, implemented in TSMC 0.18 micrometers CMOS technology, operates with a input voltage of 3.3V and generates an output voltage of 0.9V, delivers a load current from 1mA to 400mA, and achieves 54 percent ~ 91 percent power efficiency. It is designed to work with a constant switching frequency of 3MHz. Without sacrificing output frequency spectrum or output ripple, an efficiency improvement of up to 20 percent is obtained at light load.

Zhang, Chao

2011-05-01T23:59:59.000Z

298

Investigation of an improved relativistic backward wave oscillator in efficiency and power capacity  

SciTech Connect

Investigation of relativistic backward wave oscillator with high efficiency and power capacity is presented in this paper. To obtain high power and high efficiency, a TM{sub 021} mode resonant reflector is used to reduce the pulse shortening and increase power capacity to about 1.7 times. Meanwhile, an extraction cavity at the end of slow wave structure is employed to improve the efficiency from less than 30% to over 40%, through the beam-wave interaction intensification and better energy conversion from modulated electron beam to the electromagnetic field. Consistent with the numerical results, microwave with a power of 3.2 GW, a frequency of 9.75 GHz, and a pulse width of 27 ns was obtained in the high power microwave generation experiment, where the electron beam energy was configured to be {approx}910 kV and its current to be {approx}8.6 kA. The efficiency of the RBWO exceeds 40% at a voltage range of 870 kV-1000 kV.

Song, W.; Chen, C. H.; Sun, J.; Zhang, X. W.; Shao, H.; Song, Z. M.; Huo, S. F.; Shi, Y. C.; Li, X. Z. [Science and Technology on High Power Microwave Laboratory, Northwest Institute of Nuclear Technology, Xi'an, Shaanxi 710024 (China)

2012-10-15T23:59:59.000Z

299

Energy Efficiency Improvements and Cost Saving Opportunities in the Corn Wet Milling Industry  

E-Print Network (OSTI)

Corn wet milling is the most energy intensive industry in the food and kindred products group (SIC 20). Plants typically spend approximately $15 to 25 million per year on energy, one of its largest operating costs, making energy efficiency improvement an important way to reduce costs and increase predictable earnings, especially in times of high energy-price volatility. After describing the industry's trends, structure and production and the process's energy use, we examine energy-efficiency opportunities for corn wet millers. Where available, we provide energy savings and typical payback periods for each measure based on case studies of plants that have implemented it. Given available resources and technology, there are opportunities to reduce energy consumption cost-effectively in the industry while maintaining the quality of the products produced. Further research on the economics of the measures and their applicability to different wet milling practices is needed to assess implementation of selected technologies at individual plants.

Galitsky, C.; Worrell, E.

2003-05-01T23:59:59.000Z

300

Overview: EPRI's Program for Process Industry Energy Efficiency and Environmental Improvement  

E-Print Network (OSTI)

Faced with increased energy and labor costs and the expense of complying with stricter environmental regulations, many U.S industries have been unable to compete effectively with lower-cost foreign imports. As these industries lose market shares and produce fewer goods, they also use less electricity. And, as the industrial load erodes, the industrial customers are then faced with higher electricity costs and become even less competitive than before. The overall result is an insidious downward spiral --one that is now recognized seriously. Electrotechnologies offer a means of breaking this spiral. Electricity is unique in the flexibility and efficiency of its use, and when applied to industrial processes it can improve productivity, quality, and value in ways that are not possible with other energy forms. This overview presents electrotechnologies selected by EPRI to impact energy efficiency and environment relating to process industry.

Amarnath, A.

1994-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "fostering efficiency improvements" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Method for improving dissolution efficiency in gas-absorption and liquid extraction processes. [Patent application  

DOE Patents (OSTI)

A method is described for improving dissolution efficiency in processes in which a feed fluid is introduced to a zone where it is contacted with a liquid solvent for preferentially removing a component of the feed and where part of the solvent so contacted undergoes transfer into the feed fluid to saturate the same. It has been found that such transfer significantly impairs dissolution efficiency. In accordance with the invention, an amount of the above-mentioned solvent is added to the feed fluid being introduced to the contact zone, the solvent being added in an amount sufficient to effect reduction or elimination of the above-mentioned transfer. Preferably, the solvent is added to the feed fluid in an amount saturating or supersaturating the feed fluid under the conditions prevailing in the contact zone.

Kanak, B.E.; Stephenson, M.J.

1980-01-11T23:59:59.000Z

302

INVESTIGATION OF EFFICIENCY IMPROVEMENTS DURING CO2 INJECTION IN HYDRAULICALLY AND NATURALLY FRACTURED RESERVOIRS  

SciTech Connect

This report describes the work performed during the second year of the project, ''Investigating of Efficiency Improvements during CO{sub 2} Injection in Hydraulically and Naturally Fractured Reservoirs.'' The objective of this project is to perform unique laboratory experiments with artificial fractured cores (AFCs) and X-ray CT to examine the physical mechanisms of bypassing in HFR and NFR that eventually result in less efficient CO{sub 2} flooding in heterogeneous or fracture-dominated reservoirs. To achieve this objective, in this period we concentrated our effort on investigating the effect of CO{sub 2} injection rates in homogeneous and fractured cores on oil recovery and a strategy to mitigate CO{sub 2} bypassing in a fractured core.

David S. Schechter

2004-04-26T23:59:59.000Z

303

INVESTIGATION OF EFFICIENCY IMPROVEMENTS DURING CO2 INJECTION IN HYDRAULICALLY AND NATURALLY FRACTURED RESERVOIRS  

Science Conference Proceedings (OSTI)

This report describes the work performed during the fourth year of the project, ''Investigating of Efficiency Improvements during CO{sub 2} Injection in Hydraulically and Naturally Fractured Reservoirs.'' The objective of this project is to perform unique laboratory experiments with artificially fractured cores (AFCs) and X-ray CT scanner to examine the physical mechanisms of bypassing in hydraulically fractured reservoirs (HFR) and naturally fractured reservoirs (NFR) that eventually result in more efficient CO{sub 2} flooding in heterogeneous or fracture-dominated reservoirs. In Chapter 1, we worked with DOE-RMOTC to investigate fracture properties in the Tensleep Formation at Teapot Dome Naval Reserve as part of their CO{sub 2} sequestration project. In Chapter 2, we continue our investigation to determine the primary oil recovery mechanism in a short vertically fractured core. Finally in Chapter 3, we report our numerical modeling efforts to develop compositional simulator with irregular grid blocks.

David S. Schechter

2005-04-27T23:59:59.000Z

304

Improved efficiency in the sulfur dioxide-iodine hydrogen cycle through the use of magnesium oxide  

DOE Green Energy (OSTI)

The reaction of iodine with dry magnesium oxide and magnesium sulfite hexahydrate was studied experimentally as a possible means of improving the efficiency of the sulfur dioxide-iodine cycle. When no extra water was introduced, the maximum product yield was 67% obtained at 423 K. With excess water vapor, a nonporous plug was formed which prevented complete reaction. In the second case, maximum yield was 62% measured at 433 K showing that added water does not increase reaction products. This reaction gives an alternate route for producing hydrogen from water via the sulfur dioxide-iodine process.

Mason, C.F.V.; Bowman, M.G.

1981-01-01T23:59:59.000Z

305

FOR ENVIRONMENTAL POLICY SOLUTIONSAssessing Improvement in the Energy Efficiency of U.S. Auto Assembly Plants  

E-Print Network (OSTI)

The U.S. Environmental Protection Agencys (EPA) ENERGY STAR program promotes energy efficiency as a strategy to reduce greenhouse gas emissions in the industrial sector. To achieve the this objective and to provide a measure of a manufacturing plants energy efficiency, ENERGY STAR developed a statistical benchmarking approach. This approach, embodied in the ENERGY STAR Energy Performance Indicator (EPI), estimates the energy use of best in class plants and the range of performance across the industry. The first EPI was developed for automobile assembly plants using data from the year 2000, and was updated in a second EPI with 2005 as the base year. In addition to providing the industry with a tool to benchmark its plant energy performance, the process of updating the tool has allowed EPA to document improvement in the industrys overall energy performance for 20002005. We find that electricity use per vehicle in the best plants improved by 2%, while the fuel use per vehicle improved a dramatic 12%. These changes resulted in a reduction of 696 million pounds of carbon dioxide (CO2) emissions at the plants used for this study. The range of performance in fuel use has also narrowed over time, implying that other plants have been catching up to the best-in-class plants. This catching up contributes a reduction of another 766 million pounds of CO2, for a total reduction of nearly 1.5 billion pounds of CO2. This paper describes the voluntary ENERGY STAR program policy approach selected to engage and motivate the automobile manufacturing industry to improve its energy performance, and the results of the industrys efforts to advance energy management as measured by the updated EPI.

Organized The; Gale Boyd; Gale A. Boyd

2010-01-01T23:59:59.000Z

306

Energy Efficiency Improvement and Cost Saving Opportunities for the Dairy Processing Industry  

E-Print Network (OSTI)

Summer Study on Energy Efficiency in Industry. AmericanSummer Study on Energy Efficiency in Industry. AmericanCanada, Office of Energy Efficiency, Ottawa, Ontario. Carbon

Brush, Adrian

2012-01-01T23:59:59.000Z

307

Energy Efficiency Improvement and Cost Saving Oportunities for the Concrete Industry  

E-Print Network (OSTI)

of Energy Efficiency and Renewable Energy, Washington, D.C.of Energy, Energy Efficiency and Renewable Energy. Chopin,Office of Energy Efficiency and Renewable Energy, Industrial

Kermeli, Katerina

2013-01-01T23:59:59.000Z

308

Recovery Act: Low-Cost, Highly Lambertian Reflector Composite For Improved LED Fixture Efficiency and Lifetime  

SciTech Connect

The overall objective of the program was to demonstrate a 98% or greater reflective, highly diffuse, low-cost composite material that significantly improves luminaire efficiency, is able to withstand 50,000 hours or greater luminaire operation under expected LED system thermal and environmental operating extremes and meets the cost targets required to be an effective commercial solution for the Solid State Lighting industry. This project met most of the goals defined and contributed to the understanding of high reflectance, white coatings. Research under this program increased the understanding of coatings development using particle size reduction techniques and preparation of coating solutions with a broad range of particle types. The research explored scale-up of coating systems and generated understanding of processing required for high volume manufacturing applications. The work demonstrated how coating formulation and application technique can translate to material durability and LED system lifetime. The research also demonstrated improvements in lighting efficiency to be gained using high reflectance white coatings.

Teather, Eric

2013-02-15T23:59:59.000Z

309

Development of a Supercritical Carbon Dioxide Brayton Cycle: Improving PBR Efficiency and Testing  

E-Print Network (OSTI)

Generation IV reactors will need to be intrinsically safe, having a proliferation-resistant fuel cycle and several advantages relative to existing light water reactor (LWR). They, however, must still overcome certain technical issues and the cost barrier before it can be built in the U.S. The establishment of a nuclear power cost goal of 3.3 cents/kWh is desirable in order to compete with fossil combined-cycle, gas turbine power generation. This goal requires approximately a 30 percent reduction in power cost for stateof-the-art nuclear plants. It has been demonstrated that this large cost differential can be overcome only by technology improvements that lead to a combination of better efficiency and more compatible reactor materials. The objectives of this research are (1) to develop a supercritical carbon dioxide Brayton cycle in the secondary power conversion side that can be applied to the Very-High-Temperature Gas-Cooled Reactor (VHTR), (2) to improve the plant net efficiency by using the carbon dioxide Brayton cycle, and (3) to test material compatibility at high temperatures and pressures. The reduced volumetric flow rate of carbon dioxide due to higher density compared to helium will reduce compression work, which

Chang H. Oh; Thomas Lillo; William Windes; Terry Totemeier; Bradley Ward; Richard Moore; Robert Barner; Chang H. Oh; Thomas Lillo; William Windes; Terry Totemeier; Bradley Ward; Richard Moore; Robert Barner

2002-01-01T23:59:59.000Z

310

Energy Efficiency Improvement and Cost Saving Oportunities for the Concrete Industry  

SciTech Connect

The U.S. concrete industry is the main consumer of U.S.-produced cement. The manufacturing of ready mixed concrete accounts for more than 75% of the U.S. concrete production following the manufacturing of precast concrete and masonry units. The most significant expenditure is the cost of materials accounting for more than 50% of total concrete production costs - cement only accounts for nearly 24%. In 2009, energy costs of the U.S. concrete industry were over $610 million. Hence, energy efficiency improvements along with efficient use of materials without negatively affecting product quality and yield, especially in times of increased fuel and material costs, can significantly reduce production costs and increase competitiveness. The Energy Guide starts with an overview of the U.S. concrete industrys structure and energy use, a description of the various manufacturing processes, and identification of the major energy consuming areas in the different industry segments. This is followed by a description of general and process related energy- and cost-efficiency measures applicable to the concrete industry. Specific energy and cost savings and a typical payback period are included based on literature and case studies, when available. The Energy Guide intends to provide information on cost reduction opportunities to energy and plant managers in the U.S. concrete industry. Every cost saving opportunity should be assessed carefully prior to implementation in individual plants, as the economics and the potential energy and material savings may differ.

Kermeli, Katerina; Worrell, Ernst; Masanet, Eric

2011-12-01T23:59:59.000Z

311

Polymers for Improving the In Vivo Transduction Efficiency of AAV2 Vectors  

E-Print Network (OSTI)

Background: Adeno-associated virus has attracted great attention as vehicle for body-wide gene delivery. However, for the successful treatment of a disease such as Duchenne muscular dystrophy infusion of very large amounts of vectors is required. This not only raises questions about the technical feasibility of the large scale production but also about the overall safety of the approach. One way to overcome these problems would be to find strategies able to increase the in vivo efficiency. Methodology: Here, we investigated whether polymers can act as adjuvants to increase the in vivo efficiency of AAV2. Our strategy consisted in the pre-injection of polymers before intravenous administration of mice with AAV2 encoding a murine secreted alkaline phosphatase (mSeAP). The transgene expression, vector biodistribution and tissue transduction were studied by quantification of the mSeAP protein and real time PCR. The injection of polyinosinic acid and polylysine resulted in an increase of plasmatic mSeAP of 2- and 12-fold, respectively. Interestingly, polyinosinic acid pre-injection significantly reduced the neutralizing antibody titer raised against AAV2. Conclusions: Our results show that the pre-injection of polymers can improve the overall transduction efficiency of systemically administered AAV2 and reduce the humoral response against the capsid proteins.

Gilles Moulay; Sylvie Boutin; Carole Masurier; Daniel Scherman; Antoine Kichler

2010-01-01T23:59:59.000Z

312

Opportunities to improve energy efficiency in the U.S. pulp and paper industry  

SciTech Connect

This paper analyzes the energy efficiency and carbon dioxide emissions reductions potential of the U.S. pulp and paper industry, one of the largest energy users in the U.S. manufacturing sector. We examined over 45 commercially available state-of-the-art technologies and measures. The measures were characterized, and then ordered on the basis of cost-effectiveness. The report indicates that there still exists significant potential for energy savings and carbon dioxide emissions reduction in this industry. The cost-effective potential for energy efficiency improvement is defined as having a simple pay-back period of three years or less. Not including increased recycling the study identifies a cost-effective savings potential of 16% of the primary energy use in 1994. Including increased recycling leads to a higher potential for energy savings, i.e. a range of cost-effective savings between 16% and 24% of primary energy use. Future work is needed to further elaborate on key energy efficiency measures identified in the report including barriers and opportunities for increased recycling of waste paper.

Worrell, Ernst; Martin, Nathan; Anglani, Norma; Einstein, Dan; Krushch, Marta; Price, Lynn

2001-02-02T23:59:59.000Z

313

Building Operator Certification: Improving Commercial Building Energy Efficiency Through Operator Training and Certification  

E-Print Network (OSTI)

Building Operator Certification (BOC) is a competency-based certification for building operators designed to improve the energy efficiency of commercial buildings. Operators earn certification by attending training sessions and completing project assignments in their facilities. The certification provides a credential for their professional development while also offering employers a way to identify skilled operators. Developed as a market transformation venture with funding from the Northwest Energy Efficiency Alliance, evaluation research has shown BOC participants are saving money and energy in their facilities, and awareness among major employers is growing. BOC is now expanding to serve other regions of the country including the Northeast, California and Wisconsin. It is being offered as a turnkey program to interested organizations and utilities and can be operationalized within a year to serve customers quickly. It also serves as a platform for other energy efficiency initiatives such as building commissioning, EnergyStar benchmarking, and resource conservation manager. This paper will discuss the development and implementation of the Building Operator Certification, market response to BOC in the Northwest and Northeast, and energy saving and customer service benefits.

Putnam, C.; Mulak, A.

2001-01-01T23:59:59.000Z

314

Estimating the impacts of federal efforts to improve energy efficiency: The case of buildings  

Science Conference Proceedings (OSTI)

The US Department of Energy`s Office of Energy Efficiency and Renewable Energy (EE) has for more than a decade focused its efforts on research to develop new technologies for improving the efficiency of energy use and increasing the role of renewable energy; success has usually been measured in term of energy saved or displaced. Estimates of future energy savings remain an important factor in program planning and prioritization. A variety of internal and external factors are now radically changing the planning process, and in turn the composition and thrust of the EE program. The Energy Policy Act of 1992, the Framework Convention on Climate Change (and the Administration`s Climate Change Action Plan), and concerns for the future of the economy (especially employment and international competitiveness) are increasing emphasis on technology deployment and near-term results. The Reinventing Government Initiative, the Government Performance and Results Act, and the Executive Order on Environmental Justice are all forcing Federal programs to demonstrate that they are producing desired results in a cost-effective manner. The application of Total Quality management principles has increased the scope and importance of producing quantified measures of benefit. EE has established a process for estimating the benefits of DOE`s energy efficiency and renewable energy programs called ``Quality Metrics`` (QM). The ``metrics`` are: energy, employment, equity, environment, risk, economics. This paper describes the approach taken by EE`s Office of Building Technologies to prepare estimates of program benefits in terms of these metrics, presents the estimates, discusses their implications, and explores possible improvements to the QM process as it is currently configured.

LaMontagne, J; Jones, R; Nicholls, A; Shankle, S [Brookhaven National Lab., Upton, NY (United States). Energy Efficiency and Conservation Div.

1994-09-01T23:59:59.000Z

315

Truck Essential Power Systems Efficiency Improvements for Medium-Duty Trucks  

DOE Green Energy (OSTI)

With a variety of hybrid vehicles available in the passenger car market, electric technologies and components of that scale are becoming readily available. Commercial vehicle segments have lagged behind passenger car markets, leaving opportunities for component and system development. Escalating fuel prices impact all markets and provide motivation for OEMs, suppliers, customers, and end-users to seek new techniques and technologies to deliver reduced fuel consumption. The research presented here specifically targets the medium-duty (MD), Class 4-7, truck market with technologies aimed at reducing fuel consumption. These technologies could facilitate not only idle, but also parasitic load reductions. The development efforts here build upon the success of the More Electric Truck (MET) demonstration program at Caterpillar Inc. Employing a variety of electric accessories, the MET demonstrated the improvement seen with such technologies on a Class 8 truck. The Truck Essential Power Systems Efficiency Improvements for Medium-Duty Trucks (TEPS) team scaled the concepts and successes of MET to a MD chassis. The team designed an integrated starter/generator (ISG) package and energy storage system (ESS), explored ways to replace belt and gear-driven accessory systems, and developed supervisory control algorithms to direct the usage of the generated electricity and system behavior on the vehicle. All of these systems needed to fit within the footprint of a MD vehicle and be compatible with the existing conventional systems to the largest extent possible. The overall goal of this effort was to demonstrate a reduction in fuel consumption across the drive cycle, including during idle periods, through truck electrification. Furthermore, the team sought to evaluate the benefits of charging the energy storage system during vehicle braking. The vehicle features an array of electric accessories facilitating on-demand, variable actuation. Removal of these accessories from the belt or geartrain of the engine yields efficiency improvements for the engine while freeing those accessories to perform at their individual peak efficiencies to meet instantaneous demand. The net result is a systems approach to fuel usage optimization. Unique control algorithms were specifically developed to capitalize on the flexibility afforded by the TEPS architecture. Moreover, the TEPS truck technology mixture exhibits a means to supplant current accessory power sources such as on-board or trailer-mounted gasoline-powered generators or air compressors. Such functionality further enhances the value of the electric systems beyond the fuel savings alone. To demonstrate the fuel economy improvement wrought via the TEPS components, vehicle fuel economy testing was performed on the nearly stock (baseline) truck and the TEPS truck. Table 1 illustrates the fuel economy gains produced by the TEPS truck electrification. While the fuel economy results shown in Table 1 do reflect specific test conditions, they show that electrification of accessory hardware can yield significant fuel savings. In this case, the savings equated to a 15 percent reduction in fuel consumption during controlled on-road testing. Truck electrification allows engine shutdown during idle conditions as well as independent on-demand actuation of accessory systems. In some cases, independent actuation may even include lack of operation, a feature not always present in mechanically driven components. This combination of attributes allows significant improvements in system efficiency and the fuel economy improvements demonstrated by the TEPS team.

Larry Slone; Jeffery Birkel

2007-12-31T23:59:59.000Z

316

Efficiency Improvement of Nitride-Based Solid State Light Emitting Materials -- CRADA Final Report  

SciTech Connect

The development of In{sub x}Ga{sub 1-x} N/GaN thin film growth by Molecular Beam Epitaxy has opened a new route towards energy efficient solid-state lighting. Blue and green LED's became available that can be used to match the whole color spectrum of visible light with the potential to match the eye response curve. Moreover, the efficiency of such devices largely exceeds that of incandescent light sources (tungsten filaments) and even competes favorably with lighting by fluorescent lamps. It is, however, also seen in Figure 1 that it is essential to improve on the luminous performance of green LED's in order to mimic the eye response curve. This lack of sufficiently efficient green LED's relates to particularities of the In{sub x}Ga{sub 1-x}N materials system. This ternary alloy system is polar and large strain is generated during a lattice mismatched thin film growth because of the significantly different lattice parameters between GaN and InN and common substrates such as sapphire. Moreover, it is challenging to incorporate indium into GaN at typical growth temperatures because a miscibility gap exists that can be modified by strain effects. As a result a large parameter space needs exploration to optimize the growth of In{sub x}Ga{sub 1-x}N and to date it is unclear what the detailed physical processes are that affect device efficiencies. In particular, an inhomogeneous distribution indium in GaN modifies the device performance in an unpredictable manner. As a result technology is pushed forward on a trial and error basis in particular in Asian countries such as Japan and Korea, which dominate the market and it is desirable to strengthen the competitiveness of the US industry. This CRADA was initiated to help Lumileds Lighting/USA boosting the performance of their green LED's. The tasks address the distribution of the indium atoms in the active area of their blue and green LED's and its relation to internal and external quantum efficiencies. Procedures to measure the indium distribution with near atomic resolution were developed and applied to test samples and devices that were provided by Lumilids. Further, the optical performance of the device materials was probed by photoluminescence, electroluminescence and time resolved optical measurements. Overall, the programs objective is to provide a physical basis for the development of a simulation program that helps making predictions to improve the growth processes such that the device efficiency can be increased to about 20%. Our study addresses all proposed aspects successfully. Carrier localization, lifetime and recombination as well as the strain-induced generation of electric fields were characterized and modeled. Band gap parameters and their relation to the indium distribution were characterized and modeled. Electron microscopy was developed as a unique tool to measure the formation of indium clusters on a nanometer length scale and it was demonstrated that strain induced atom column displacements can reliably be determined in any materials system with a precision that approaches 2 pm. The relation between the local indium composition x and the strain induced lattice constant c(x) in fully strained In{sub x}Ga{sub 1-x}N quantum wells was found to be: c(x) = 0.5185 + {alpha}x with {alpha} = 0.111 nm. It was concluded that the local indium concentration in the final product can be modulated by growth procedures in a predictable manner to favorably affect external quantum efficiencies that approached target values and that internal quantum efficiencies exceeded them.

Kisielowski, Christian; Weber, Eicke

2010-05-13T23:59:59.000Z

317

Mitigating Carbon Emissions: the Potential of Improving Efficiency of Household Appliances in China  

E-Print Network (OSTI)

Efficiency of Household Appliances in China Jiang Lin8 Appliance Market inEfficiency of Household Appliances in China Executive

Lin, Jiang

2006-01-01T23:59:59.000Z

318

A Measurement Management Technology for Improving Energy Efficiency in Data Centers and Telecommunication Facilities  

SciTech Connect

Data center (DC) electricity use is increasing at an annual rate of over 20% and presents a concern for the Information Technology (IT) industry, governments, and the society. A large fraction of the energy use is consumed by the compressor cooling to maintain the recommended operating conditions for IT equipment. The most common way to improve the DC efficiency is achieved by optimally provisioning the cooling power to match the global heat dissipation in the DC. However, at a more granular level, the large range of heat densities of today's IT equipment makes the task of provisioning cooling power optimized to the level of individual computer room air conditioning (CRAC) units much more challenging. Distributed sensing within a DC enables the development of new strategies to improve energy efficiency, such as hot spot elimination through targeted cooling, matching power consumption at rack level with workload schedule, and minimizing power losses. The scope of Measurement and Management Technologies (MMT) is to develop a software tool and the underlying sensing technology to provide critical decision support and control for DC and telecommunication facilities (TF) operations. A key aspect of MMT technology is integration of modeling tools to understand how changes in one operational parameter affect the overall DC response. It is demonstrated that reduced ordered models for DC can generate, in less than 2 seconds computational time, a three dimensional thermal model in a 50 kft{sup 2} DC. This rapid modeling enables real time visualization of the DC conditions and enables 'what if' scenarios simulations to characterize response to 'disturbances'. One such example is thermal zone modeling that matches the cooling power to the heat generated at a local level by identifying DC zones cooled by a specific CRAC. Turning off a CRAC unit can be simulated to understand how the other CRAC utilization changes and how server temperature responds. Several new sensing technologies were added to the existing MMT platform: (1) air contamination (corrosion) sensors, (2) power monitoring, and (3) a wireless environmental sensing network. All three technologies are built on cost effective sensing solutions that increase the density of sensing points and enable high resolution mapping of DCs. The wireless sensing solution enables Air Conditioning Unit (ACU) control while the corrosion sensor enables air side economization and can quantify the risk of IT equipment failure due to air contamination. Validation data for six test sites demonstrate that leveraging MMT energy efficiency solutions combined with industry best practices results in an average of 20% reduction in cooling energy, without major infrastructure upgrades. As an illustration of the unique MMT capabilities, a data center infrastructure efficiency (DCIE) of 87% (industry best operation) was achieved. The technology is commercialized through IBM System and Technology Lab Services that offers MMT as a solution to improve DC energy efficiency. Estimation indicates that deploying MMT in existing DCs can results in an 8 billion kWh savings and projection indicates that constant adoption of MMT can results in obtainable savings of 44 billion kWh in 2035. Negotiations are under way with business partners to commercialize/license the ACU control technology and the new sensor solutions (corrosion and power sensing) to enable third party vendors and developers to leverage the energy efficiency solutions.

Hendrik Hamann, Levente Klein

2012-06-28T23:59:59.000Z

319

Male Fertility and Lipid MetabolismChapter 6 Docosahexaenoic Acid-Rich Marine Oils and Improved Reproductive Efficiency in Pigs  

Science Conference Proceedings (OSTI)

Male Fertility and Lipid Metabolism Chapter 6 Docosahexaenoic Acid-Rich Marine Oils and Improved Reproductive Efficiency in Pigs Health Nutrition Biochemistry eChapters Health - Nutrition - Biochemistry Press Downloadabl

320

Energy Efficiency in Small and Medium-Sized Manufacturing Firms: Order Effects and the Adoption of Process Improvement Recommendations  

Science Conference Proceedings (OSTI)

In many manufacturing operations, profitable energy efficiency opportunities remain unexploited. Although previous studies have tried to explain the underinvestment, we focus on how the way in which a portfolio of opportunities is presented in a list ... Keywords: behavioral operations, econometric analysis, empirical research, energy efficiency, energy-related operations, environmental operations, order effects, process improvement

Suresh Muthulingam, Charles J. Corbett, Shlomo Benartzi, Bohdan Oppenheim

2013-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "fostering efficiency improvements" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

An algorithm designed for improving diagnostic efficiency by setting multi-cutoff values of multiple tumor markers  

Science Conference Proceedings (OSTI)

Currently, tumor markers have been effectively applied for colorectal cancer (CRC) diagnosis. In order to decrease the information loss caused by single cutoff value and improve diagnosis efficiency (DE), we explore the integrative application of multiple ... Keywords: Colorectal cancer (CRC), Cutoff values, Diagnostic efficiency (DE), Genetic algorithm (GA), Rough set theory (RST), Tumor markers

Qiang Su; Jinghua Shi; Ping Gu; Gang Huang; Yan Zhu

2012-04-01T23:59:59.000Z

322

Kitchen Appliance Upgrades Improve Water Efficiency at DOD Exchange Facilities: Best Management Practice Case Study #11: Commercial Kitchen Equipment (Brochure)  

SciTech Connect

The Exchange, formerly the Army and Air Force Exchange Service (AAFES), is a joint military activity and the U.S. Department of Defense?s (DOD) oldest and largest retailer. The Exchange is taking a leadership role in water efficiency improvements in their commercial kitchens by integrating water efficiency concepts into the organization?s overall sustainability plan and objectives.

Not Available

2011-09-01T23:59:59.000Z

323

New Fabrication Method Improves the Efficiency and Economics of Solar Cells (Fact Sheet)  

DOE Green Energy (OSTI)

Synthetic fabrication strategy optimizes the illumination geometry and transport properties of dye-sensitized solar cells. Using oriented titanium oxide (TiO{sub 2}) nanotube (NT) arrays has shown promise for dye-sensitized solar cells (DSSCs). High solar conversion efficiency requires that the incident light enters the cell from the photoelectrode side. However, for NT-based DSSCs, the light normally enters the cell through the counter electrode because a nontransparent titanium foil is typically used as the substrate for forming the aligned NTs and for making electrical contact with them. It has been synthetically challenging to prepare transparent TiO{sub 2} NT electrodes by directly anodizing Ti metal films on transparent conducting oxide (TCO) substrates because it is difficult to control the synthetic conditions. National Renewable Energy Laboratory (NREL) researchers have developed a general synthetic strategy for fabricating transparent TiO{sub 2} NT films on TCO substrates. With the aid of a conducting Nb-doped TiO{sub 2} (NTO) layer between the Ti film and TCO substrate, the Ti film can be anodized completely without degrading the TCO. The NTO layer protects the TCO from degradation through a self-terminating mechanism by arresting the electric field-assisted dissolution process at the NT-NTO interface. NREL researchers found that the illumination direction and wavelength of the light incident on the DSSCs strongly influenced the incident photon-to-current conversion efficiency, light-harvesting, and charge-collection properties, which, in turn, affect the photocurrent density, photovoltage, and solar energy conversion efficiency. Researchers also examined the effects of NT film thickness on the properties and performance of DSSCs and found that illuminating the cell from the photoelectrode side substantially increased the conversion efficiency compared with illuminating it from the counter-electrode side. This method solves a key challenge in fabricating NT-based DSSCs and determines an optimal illumination direction to use in these cells. The synthetic fabrication strategy will improve the economics and conversion efficiency of DSSCs.

Not Available

2012-07-01T23:59:59.000Z

324

Boiler Tune-ups: Improve efficiency, reduce pollution, and save money!  

NLE Websites -- All DOE Office Websites (Extended Search)

Tune-ups: Tune-ups: Improve efficiency, reduce pollution, and save money! ____________________________________________________ Did you know . . . * Inefficient industrial, commercial, and institutional (ICI) boilers waste money and pollute? * There are over 1.5 million ICI boilers in the United States? * Boilers burning coal, oil, biomass, and other solid fuels and liquid are a major source of toxic air pollution? * New federal Clean Air Act rules require certain boilers to get regular tune-ups? * Keeping your boilers tuned-up can reduce hazardous air pollution? Energy Management, Tune-ups and Energy Assessment Reducing the amount of fuel used by boilers is one of the most cost effective ways to control hazardous air pollution. Tuning-up a boiler optimizes the air-fuel mixture for the operating range of the boiler

325

Energy Efficiency Improvement and Cost Saving Opportunities for the Glass Industry, March 2008  

NLE Websites -- All DOE Office Websites (Extended Search)

7335-Revision 7335-Revision ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY Energy Efficiency Improvement and Cost Saving Opportunities for the Glass Industry ® An ENERGY STAR Guide for Energy and Plant Managers Ernst Worrell, Christina Galitsky, Eric Masanet, and Wina Graus Environmental Energy Technologies Division Sponsored by the U.S. Environmental Protection Agency March 2008 Disclaimer This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or

326

Background information for programs to improve the energy efficiency of Northwest residential rental property  

SciTech Connect

This report was prepared for the Office of Conservation, Bonneville Power Administration. The report will be used by the Office as background information to support future analysis and implementation of electricity conservation programs for owners of residential rental housing in the Northwest. The principal objective of the study was to review market research information relating to attitudes and actions of Northwest rental housing owners and, to a lesser extent, tenants toward energy conservation and energy-efficiency improvements. Available market research data on these subjects were found to be quite limited. The most useful data were two surveys of Seattle rental housing owners conducted in late 1984 for Seattle City Light. Several other surveys provided supplemental market research information in selected areas. In addition to market research information, the report also includes background information on rental housing characteristics in the Northwest.

Hendrickson, P.L.

1986-02-01T23:59:59.000Z

327

Energy Saving Melting and Revert Reduction Technology (E-SMARRT): Melting Efficiency Improvement  

SciTech Connect

Steel foundries melt recycled scrap in electric furnaces and typically consume 35-100% excess energy from the theoretical energy requirement required to pour metal castings. This excess melting energy is multiplied by yield losses during casting and finishing operations resulting in the embodied energy in a cast product typically being three to six times the theoretical energy requirement. The purpose of this research project was to study steel foundry melting operations to understand energy use and requirements for casting operations, define variations in energy consumption, determine technologies and practices that are successful in reducing melting energy and develop new melting techniques and tools to improve the energy efficiency of melting in steel foundry operations.

Principal Investigator Kent Peaslee; Co-PIƒ ƒ ‚ ¢ƒ ‚ ‚ € ƒ ‚ ‚ ™ s: Von Richards, Jeffrey Smith

2012-07-31T23:59:59.000Z

328

Practice Energy Conservation, and Explore for Improving Technical Standards of Energy Efficiency Management  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

极实践节能减排, 极实践节能减排, 探索能效管理技术标准的建立和完善 Practice Energy Conservation, and Explore for Improving Technical Standards of Energy Efficiency Management 中节能咨询有限公司 CECEP Consulting Co., Ltd. 第二届中美能效论坛 · 旧金山 2nd China-US Energy Efficiency Forum · San Francisco 中国节能环保集团公司 1 --Energy Conservation and Emission Reduction Service Provider --节能减排的实践者 CECEP  城市节能环保基础设施 Urban infrastructure of EE and environmental protection  工业节能减排和资源综合利用 EE and circular economy in industry  新能源和清洁技术 New energy technology and clean production technology

329

Energy Conservation and Efficiency Improvement for the Electric Motors Operating in U.S. Oil Fields  

E-Print Network (OSTI)

Because of its versatility, electricity consumption continues to grow all over the world more rapidly than any other energy form. The portion of the United States' primary energy supply used as electricity has expanded from near zero at the turn of the century to 38 percent in 1987. Electric motors use as input about 64% of all electricity in the U.S. and many other countries. The cost of powering motors in the U.S. is estimated to be roughly $90 billion a year. In terms of primary energy input, motor energy use in the U.S. is comparable to all auto energy use. Electric motors are the largest users of energy in all mineral extraction activities. In oil fields, electric motors drive the pumping units used for lifting the oil and water to the surface. To find out actual efficiencies of operating motors in the oil fields, the University of Wyoming and the U.S. Department of Energy -Denver Support Office have been working for the last twelve months on two Naval Petroleum Reserve oil fields -one each in California and Wyoming. So far, actual motor loading of all operating oil fields motors has been determined by actual field measurements. We have also completed the analysis of economy of operation of existing motors and evaluating the candidate replacement motors. In this paper, we will present these results along with the methodologies and protocol developed for motor energy efficiency improvement in oil field applications.

Ula, S.; Cain, W.; Nichols, T.

1993-03-01T23:59:59.000Z

330

CONTROL OF INTERFACIAL DUST CAKE TO IMPROVE EFFICIENCY OF MOVING BED GRANULAR FILTERS  

Science Conference Proceedings (OSTI)

The goal of this research is to improve the performance of moving bed granular filters for gas cleaning at high temperatures and pressures. A second objective is to better understand dust capture interfacial phenomena and cake formation in moving bed filters. The experimental bed tested in the present study has several unique design features configured as cold flow, axially symmetric, counter-current flow to simulate a filter operating at high temperatures (1088 K) and elevated pressures (10 atmospheres). The granular filter is evaluated in two separate performance studies: (1) optimization of particle collection efficiency and bed pressure drop in a factorial study at near-atmospheric operating pressures through appropriate use of granular bed materials, particle sizes, and feed rates; and (2) high temperature and high pressure model simulation conducted at above-atmospheric pressures and room temperature utilizing dust and granular flow rates, granular size, system pressure, and superficial velocity. The factorial study involves a composite design of 16 near-atmospheric tests, while the model simulation study is comprised of 7 above-atmospheric tests. Similarity rules were validated in tests at four different mass dust ratios and showed nearly constant collection efficiencies ({approx} 99.5 {+-} 0.3%) for operating pressures of 160 kPa gage (23.2 psig) at room temperature (20 C), which simulates the hydrodynamic conditions expected for typical gasification streams (1088 K, 10 atmospheres). An important outcome from the near-atmospheric pressure studies are relationships developed using central composite design between the independent variables, superficial velocity (0.16-0.22 m/s), dust feed rate (0.08-0.74 kg/hr), and granular flow rate (3.32-15.4 kg/hr). These operating equations were optimized in contour plots for bed conditions that simultaneously satisfy low-pressure drop and high particle collection efficiency.

Robert C. Brown; Gerald M. Colver

2002-10-31T23:59:59.000Z

331

Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems  

E-Print Network (OSTI)

in thermal energy conversion efficiency over present solarsolar thermal- photovoltaic co-generation scheme could have potentially very high solar-to-electric efficiency.solar-to-electric conversion efficiencies are attained and no thermal

Ho, Tony

2012-01-01T23:59:59.000Z

332

The residential energy map : catalyzing energy efficiency through remote energy assessments and improved data access  

E-Print Network (OSTI)

Although energy efficiency has potential to be a significant energy resource in the United States, many energy efficiency projects continue to go unrealized. This is especially true in the residential sector, where efficiency ...

Howland, Alexis (Alexis Blair)

2013-01-01T23:59:59.000Z

333

Energy Efficiency Improvement and Cost Saving Oportunities for the Concrete Industry  

E-Print Network (OSTI)

States Department of Energy, Energy Efficiency and Renewable Energy (States Department of Energy, Energy Efficiency and Renewable Energy (environmental, and renewable energy projects in the state of

Kermeli, Katerina

2013-01-01T23:59:59.000Z

334

Energy Efficiency Improvement and Cost Saving Opportunities for the Dairy Processing Industry  

E-Print Network (OSTI)

Efficiency (D-CREE) (2009). Case Study - Solar ThermalSolar thermal water preheating Backpressure turbines Table 5.4 Summary of efficiency

Brush, Adrian

2012-01-01T23:59:59.000Z

335

Energy Efficiency Improvement and Cost Saving Oportunities for the Concrete Industry  

E-Print Network (OSTI)

CEE Consortium for Energy Efficiency CFL Compact fluorescentEfficiency Measures Lighting Turning off lights in unoccupied areas Lighting level standards Lighting controls Daylighting Replace incandescent with CFL

Kermeli, Katerina

2013-01-01T23:59:59.000Z

336

Investigation of energy efficient approaches for the energy performance improvement of commercial buildings.  

E-Print Network (OSTI)

??Energy efficiency of buildings is attracting significant attention from the research community as the world is moving towards sustainable buildings design. Energy efficient approaches are (more)

Hasan, M. Mahmudul

2013-01-01T23:59:59.000Z

337

Energy Efficiency Improvement and Cost Saving Oportunities for the Concrete Industry  

E-Print Network (OSTI)

an efficient daylighting system may provide evenly dispersedrefitted with these systems. Daylighting technologies

Kermeli, Katerina

2013-01-01T23:59:59.000Z

338

Improved Efficiency of Miscible C02 Floods and Enhanced Prospects for C02 Flooding Heterogeneous Reservoirs  

SciTech Connect

The PRRC-modified DOE pseudomiscible reservoir simulator MASTER was used to conduct a systematic investigation of CO2 flooding using horizontal wells in conjunction with foam. We evaluated the effects of horizontal well radius, length, and location on oil recovery through our testing. This work is necessary to provide field predictions for the use of foam and/or horizontal wells. A number of coreflood tests were performed to examine the effect of foam on oil recovery in heterogeneous porous media. Two coaxial composite cores were used to simulate layered formation systems. The first, an isolated coaxial composite core, was used to simulate a layered formation system of which the layers were not in communication. The second, in capillary contact, simulated layers in communication. Preliminary results suggest that oil displacement is more efficient when surfactant solution is used with CO2 to form CO2-foam. Results from both systems indicate the potential of using foam for improving oil recovery in heterogeneous porous media. Since injectivity loss is a problem in a number of gas injection projects, a preliminary investigation of injectivity loss in WAG was performed. A number of tests were carried out to investigate injectivity loss, indicating that for a given rock the injectivity loss depends on oil saturation in the core during WAG flooding. Higher loss was found in cores with high in-situ oil saturations. No injectivity loss was observed with the naturally fractured carbonate core.

Boyun (Gordon) Guo; David S. Schechter; Jyun-Syung Tsau; Reid B. Grigg; Shih-Hsien (Eric) Chang

1997-04-06T23:59:59.000Z

339

Operating strategy for a hydrogen engine for improved drive-cycle efficiency and emissions behavior.  

DOE Green Energy (OSTI)

Due to their advanced state of development and almost immediate availability, hydrogen internal combustion engines could act as a bridging technology toward a wide-spread hydrogen infrastructure. Extensive research, development and steady-state testing of hydrogen internal combustion engines has been conducted to improve efficiency, emissions behavior and performance. This paper summarizes the steady-state test results of the supercharged hydrogen-powered four-cylinder engine operated on an engine dynamometer. Based on these results a shift strategy for optimized fuel economy is established and engine control strategies for various levels of hybridization are being discussed. The strategies are evaluated on the Urban drive cycle, differences in engine behavior are investigated and the estimated fuel economy and NO{sub x} emissions are calculated. Future work will include dynamic testing of these strategies and powertrain configurations as well as individual powertrain components on a vehicle platform, called Mobile Advanced Technology Testbed (MATT), that was developed and built at Argonne National Laboratory.

Wallner, T.; Lohse-Busch, H.; Shidore, N.; Energy Systems

2009-05-01T23:59:59.000Z

340

Fiber optic probe having fibers with endfaces formed for improved coupling efficiency and method using same  

DOE Patents (OSTI)

A fiber optic probe is disclosed for detecting scattered light, with transmitting and receiving fibers having slanted ends and bundled together to form a bevel within the tip of the probe. The probe comprises a housing with a transparent window across its tip for protecting the transmitting and receiving fibers held therein. The endfaces of the fibers are slanted, by cutting, polishing and the like, so that they lie in a plane that is not perpendicular to the longitudinal axis of the respective fiber. The fibers are held in the tip of the probe using an epoxy and oriented so that lines normal to the slanted endfaces are divergent with respect to one another. The epoxy, which is positioned substantially between the transmitting and receiving fibers, is tapered so that the transmitting fiber, the epoxy and the receiving fiber form a bevel of not more than 20 degrees. The angled fiber endfaces cause directing of the light cones toward each other, resulting in improved light coupling efficiency. A light absorber, such as carbon black, is contained in the epoxy to reduce crosstalk between the transmitting and receiving fibers. 3 figures.

O`Rourke, P.E.; Livingston, R.R.

1995-03-28T23:59:59.000Z

Note: This page contains sample records for the topic "fostering efficiency improvements" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Fiber optic probe having fibers with endfaces formed for improved coupling efficiency and method using same  

DOE Patents (OSTI)

A fiber optic probe for detecting scattered light, with transmitting and receiving fibers having slanted ends and bundled together to form a bevel within the tip of the probe. The probe comprises a housing with a transparent window across its tip for protecting the transmitting and receiving fibers held therein. The endfaces of the fibers are slanted, by cutting, polishing and the like, so that they lie in a plane that is not perpendicular to the longitudinal axis of the respective fiber. The fibers are held in the tip of the probe using an epoxy and oriented so that lines normal to the slanted endfaces are divergent with respect to one another. The epoxy, which is positioned substantially between the transmitting and receiving fibers, is tapered so that the transmitting fiber, the epoxy and the receiving fiber form a bevel of not more than 20 degrees. The angled fiber endfaces cause directing of the light cones toward each other, resulting in improved light coupling efficiency. A light absorber, such as carbon black, is contained in the epoxy to reduce crosstalk between the transmitting and receiving fibers.

O' Rourke, Patrick E. (Martinez, GA); Livingston, Ronald R. (Aiken, SC)

1995-01-01T23:59:59.000Z

342

Energy Efficiency Improvements to Wundar Hall, a Historic Building on the Concordia Campus, Milwaukee, Wisconsin  

Science Conference Proceedings (OSTI)

The Forest County Potawatomi Community (??FCPC? or ??Community?) implemented energy efficiency improvements to revitalize Wundar Hall, a 34,000 square foot (??SF?) building that was formerly used as a dormitory and is listed on the National Registry of Historic Places, into an office building. Wundar Hall is the first of many architecturally and historically significant buildings that the Community hopes to renovate at the former Concordia College campus, property on the near west side of Milwaukee that was taken into trust for the Community by the United States on July 10, 1990 (collectively, the ??Concordia Trust Property?). As part of this project, which was conducted with assistance from the Department of Energy??s Tribal Energy Program (??TEP?), the Community updated and/or replaced the building envelope, mechanical systems, the plumbing system, the electrical infrastructure, and building control systems. The project is expected to reduce the building??s natural gas consumption by 58% and the electricity consumption by 55%. In addition, the project was designed to act as a catalyst to further renovation of the Concordia Trust Property and the neighborhood. The City of Milwaukee has identified redevelopment of the Concordia Trust Property as a ??Catalytic Project? for revitalizing the near west side. The Tribe envisions a revitalized, mixed-use campus of community services, education, and economic development??providing services to the Indian community and jobs to the neighborhood.

Karman, Nathan

2012-11-29T23:59:59.000Z

343

Improving the Efficiency of Die Casting Machine Hydraulic Systems with the Retrofit of Adjustable Frequency Drives  

E-Print Network (OSTI)

Die casting is a common method of light metal processing which is used to produce accurately dimensioned, sharply defined metal parts. Most die casting machines in use today utilize a complex hydraulic system to perform the necessary work required for the process. The pressure and flow rate demands on the hydraulic system vary significantly throughout the cycle. Many older systems are greatly oversized so that they are able to meet the peak hydraulic demand at any point. These systems operate inefficiently because there is typically no way to limit the hydraulic capacity during periods of low demand. As a result, fluid is throttled to lower pressures and excess fluid flow is routed directly back to the system reservoir, wasting motor energy and increasing the thermal load on the cooling system. One option for improving the efficiency of older die casting machines currently in use is the retrofit of an adjustable frequency drive, or AFD. An AFD allows the speed of the pump motor to be varied, changing the pump output to suit the cycle demands. This minimizes the amount of wasted energy without affecting other process parameters. This paper will discuss the die casting process and examine the energy savings potential of retrofitting die casting machines with adjustable frequency drives.

Ambs, L.; Kosanovic, D.; Edberg, C.

1999-05-01T23:59:59.000Z

344

Improving the Fermilab Booster Notching Efficiency, Beam Losses and Radiation Levels  

Science Conference Proceedings (OSTI)

A fast vertical 1.08-m long kicker (notcher) located in the Fermilab Booster Long-05 straight section is currently used to remove 3 out of 84 circulating bunches after injection to generate an abort gap. With the maximum magnetic field of 72.5 Gauss, it removes only 87% of the 3-bunch intensity at 400 MeV, with 75% loss on pole tips of the focusing Booster magnets, 11% on the Long-06 collimators, and 1% in the rest of the ring. We propose to improve the notching efficiency and reduce beam loss in the Booster by using three horizontal kickers in the Long-12 section. STRUCT calculations show that using horizontal notchers, one can remove up to 96% of the 3-bunch intensity at 400-700 MeV, directing 95% of it to a new beam dump at the Long-13 section. This fully decouples notching and collimation. The beam dump absorbs most of the impinging proton energy in its jaws. The latter are encapsulated into an appropriate radiation shielding that reduces impact on the machine components, personnel and environment to the tolerable levels. MARS simulations show that corresponding prompt and residual radiation levels can be reduced ten times compared to the current ones.

Rakhno, I.L.; Drozhdin, A.I.; Mokhov, N.V.; Sidorov, V.I.; Tropin, I.S.; /Fermilab

2012-05-14T23:59:59.000Z

345

Magnetism reflectometer study shows LiF layers improve efficiency in spin valve devices  

Science Conference Proceedings (OSTI)

New, more efficient materials for spin valves - a device used in magnetic sensors, random access memories, and hard disk drives - may be on the way based on research using the magnetism reflectometer at Oak Ridge National Laboratory (ORNL). Spin valve devices work by means of two or more conducting magnetic material layers that alternate their electrical resistance depending on the layers alignment. Giant magnetoresistance is a quantum mechanical effect first observed in thin film structures about 20 years ago. The effect is observed as a significant change in electrical resistance, depending on whether the magnetization of adjacent ferromagnetic layers is in a parallel or an antiparallel magnetic alignment. 'What we are doing here is developing new materials. The search for new materials suitable for injecting and transferring carriers with a preferential spin orientation is most important for the development of spintronics,' said Valeria Lauter, lead instrument scientist on the magnetism reflectometer at the Spallation Neutron Source (SNS), who collaborated on the experiment. The researchers discovered that the conductivity of such materials is improved when an organic polymer semiconductor layer is placed between the magnetic materials. Organic semiconductors are now the material of choice for future spin valve devices because they preserve spin coherence over longer times and distances than conventional semiconductors. While research into spin valves has been ongoing, research into organic semiconductors is recent. Previous research has shown that a 'conductivity mismatch' exists in spin valve systems in which ferromagnetic metal electrodes interface with such organic semiconductors as Alq3 ({pi}-conjugated molecule tris(8-hydroxy-quinoline) aluminium). This mismatch limits the efficient injection of the electrons from the electrodes at the interface with the semiconductor material. However, lithium fluoride (LiF), commonly used in light-emitting diodes, has been found to enhance the injection of electrons through the semiconductor. Researchers from the University of Alabama and ORNL used polarized neutrons at the magnetism reflectometer at SNS to investigate the electronic, magnetic, and structural properties of the electrodes in a novel system. In this system, the magnetic layers cobalt and Ni{sub 80}Fe{sub 20} are interfaced with spacer layers composed of the organic semiconductor Alq3. A coupling layer of LiF is inserted to separate the magnetized layers from the semiconductor. 'ALQ3 is an organic semiconductor material,' said Lauter. 'Normally in these systems a first magnetic layer is grown on a hard substrate so that one can get the controlled magnetic parameters. Then you grow the organic semiconductor layer, followed by another magnetic material layer, such as cobalt.' In addition to determining the effect of the LiF layers on the efficiency of the electron injection, the researchers wanted to determine the magnetic properties of the cobalt and Ni{sub 80}Fe{sub 20} as well as the interfacial properties: whether there is interdiffusion of cobalt through the LiF layer to the semiconductor, for example. The researchers used polarized neutrons at beam line 4A to probe the entire, layer-by-layer assembly of the system. 'Reflectometry with polarized neutrons is a perfect method to study thin magnetic films,' Lauter said. 'These thin films - if you put one on a substrate, you see it just like a mirror. However, this mirror has a very complicated internal multilayer structure. The neutrons look inside this complicated structure and characterize each and every interface. Due to the depth sensitivity of the method, we measure the structural and magnetic properties of each layer with the resolution of 0.5 nm. The neutron scattering results found that inserting LiF as a barrier significantly improves the quality of the interface, increasing the injection of electrons from the magnetic layer through the organic semiconductor in the spin valve and enhancing the overall properties of the system. In related work the magneti

Bardoel, Agatha A [ORNL; Lauter, Valeria [ORNL; Szulczewski, Greg J [ORNL

2012-01-01T23:59:59.000Z

346

Advanced Electric Systems and Aerodynamics for Efficiency Improvements in Heavy Duty Trucks  

DOE Green Energy (OSTI)

The Advanced Electric Systems and Aerodynamics for Efficiency Improvements in Heavy Duty Trucks program (DE-FC26-04NT42189), commonly referred to as the AES program, focused on areas that will primarily benefit fuel economy and improve heat rejection while driving over the road. The AES program objectives were to: (1) Analyze, design, build, and test a cooling system that provided a minimum of 10 percent greater heat rejection in the same frontal area with no increase in parasitic fan load. (2) Realize fuel savings with advanced power management and acceleration assist by utilizing an integrated starter/generator (ISG) and energy storage devices. (3) Quantify the effect of aerodynamic drag due to the frontal shape mandated by the area required for the cooling system. The program effort consisted of modeling and designing components for optimum fuel efficiency, completing fabrication of necessary components, integrating these components into the chassis test bed, completing controls programming, and performance testing the system both on a chassis dynamometer and on the road. Emission control measures for heavy-duty engines have resulted in increased engine heat loads, thus introducing added parasitic engine cooling loads. Truck electrification, in the form of thermal management, offers technological solutions to mitigate or even neutralize the effects of this trend. Thermal control offers opportunities to avoid increases in cooling system frontal area and forestall reduced fuel economy brought about by additional aerodynamic vehicle drag. This project explored such thermal concepts by installing a 2007 engine that is compliant with current regulations and bears additional heat rejection associated with meeting these regulations. This newer engine replaced the 2002 engine from a previous project that generated less heat rejection. Advanced power management, utilizing a continuously optimized and controlled power flow between electric components, can offer additional fuel economy benefits to the heavy-duty trucking industry. Control software for power management brings added value to the power distribution and energy storage architecture on board a truck with electric accessories and an ISG. The research team has built upon a previous truck electrification project, formally, 'Parasitic Energy Loss Reduction and Enabling Technologies for Class 7/8 Trucks', DE-FC04-2000AL6701, where the fundamental concept of electrically-driven accessories replacing belt/gear-driven accessories was demonstrated on a Kenworth T2000 truck chassis. The electrical accessories, shown in Figure 1, were controlled to provide 'flow on demand' variable-speed operation and reduced parasitic engine loads for increased fuel economy. These accessories also provided solutions for main engine idle reduction in long haul trucks. The components and systems of the current project have been integrated into the same Kenworth T2000 truck platform. Reducing parasitic engine loading by decoupling accessory loads from the engine and driving them electrically has been a central concept of this project. Belt or gear-driven engine accessories, such as water pump, air conditioning compressor, or air compressor, are necessarily tied to the engine speed dictated by the current vehicle operating conditions. These conventional accessory pumps are sized to provide adequate flow or pressure at low idle or peak torque speeds, resulting in excess flow or pressure at cruising or rated speeds. The excess flow is diverted through a pressure-minimizing device such as a relief valve thereby expending energy to drive unnecessary and inefficient pump operation. This inefficiency causes an increased parasitic load to the engine, which leads to a loss of usable output power and decreased fuel economy. Controlling variable-speed electric motors to provide only the required flow or pressure of a particular accessory system can yield significant increases in fuel economy for a commercial vehicle. Motor loads at relatively high power levels (1-5 kW, or higher) can be efficiently provided

Larry Slone; Jeffrey Birkel

2007-10-31T23:59:59.000Z

347

Advanced Electric Systems and Aerodynamics for Efficiency Improvements in Heavy Duty Trucks  

Science Conference Proceedings (OSTI)

The Advanced Electric Systems and Aerodynamics for Efficiency Improvements in Heavy Duty Trucks program (DE-FC26-04NT42189), commonly referred to as the AES program, focused on areas that will primarily benefit fuel economy and improve heat rejection while driving over the road. The AES program objectives were to: (1) Analyze, design, build, and test a cooling system that provided a minimum of 10 percent greater heat rejection in the same frontal area with no increase in parasitic fan load. (2) Realize fuel savings with advanced power management and acceleration assist by utilizing an integrated starter/generator (ISG) and energy storage devices. (3) Quantify the effect of aerodynamic drag due to the frontal shape mandated by the area required for the cooling system. The program effort consisted of modeling and designing components for optimum fuel efficiency, completing fabrication of necessary components, integrating these components into the chassis test bed, completing controls programming, and performance testing the system both on a chassis dynamometer and on the road. Emission control measures for heavy-duty engines have resulted in increased engine heat loads, thus introducing added parasitic engine cooling loads. Truck electrification, in the form of thermal management, offers technological solutions to mitigate or even neutralize the effects of this trend. Thermal control offers opportunities to avoid increases in cooling system frontal area and forestall reduced fuel economy brought about by additional aerodynamic vehicle drag. This project explored such thermal concepts by installing a 2007 engine that is compliant with current regulations and bears additional heat rejection associated with meeting these regulations. This newer engine replaced the 2002 engine from a previous project that generated less heat rejection. Advanced power management, utilizing a continuously optimized and controlled power flow between electric components, can offer additional fuel economy benefits to the heavy-duty trucking industry. Control software for power management brings added value to the power distribution and energy storage architecture on board a truck with electric accessories and an ISG. The research team has built upon a previous truck electrification project, formally, 'Parasitic Energy Loss Reduction and Enabling Technologies for Class 7/8 Trucks', DE-FC04-2000AL6701, where the fundamental concept of electrically-driven accessories replacing belt/gear-driven accessories was demonstrated on a Kenworth T2000 truck chassis. The electrical accessories, shown in Figure 1, were controlled to provide 'flow on demand' variable-speed operation and reduced parasitic engine loads for increased fuel economy. These accessories also provided solutions for main engine idle reduction in long haul trucks. The components and systems of the current project have been integrated into the same Kenworth T2000 truck platform. Reducing parasitic engine loading by decoupling accessory loads from the engine and driving them electrically has been a central concept of this project. Belt or gear-driven engine accessories, such as water pump, air conditioning compressor, or air compressor, are necessarily tied to the engine speed dictated by the current vehicle operating conditions. These conventional accessory pumps are sized to provide adequate flow or pressure at low idle or peak torque speeds, resulting in excess flow or pressure at cruising or rated speeds. The excess flow is diverted through a pressure-minimizing device such as a relief valve thereby expending energy to drive unnecessary and inefficient pump operation. This inefficiency causes an increased parasitic load to the engine, which leads to a loss of usable output power and decreased fuel economy. Controlling variable-speed electric motors to provide only the required flow or pressure of a particular accessory system can yield significant increases in fuel economy for a commercial vehicle. Motor loads at relatively high power levels (1-5 kW, or higher) can be efficiently provided

Larry Slone; Jeffrey Birkel

2007-10-31T23:59:59.000Z

348

Energy Efficiency Improvement and Cost Saving Opportunities for the Dairy Processing Industry  

E-Print Network (OSTI)

panels Tri-generation Solar thermal water preheating Backpressure turbines Table 5.4 Summary of efficiency

Brush, Adrian

2012-01-01T23:59:59.000Z

349

Continous Improvement, 3/21/95  

Energy.gov (U.S. Department of Energy (DOE))

The objective of this surveillance is to verify that contractor personnel are effectively managing environment, safety, and health issues in a manner that fosters continuous improvement. The...

350

Improvement of conversion efficiency of atom-molecule Bose-Einstein condensate  

E-Print Network (OSTI)

We investigate the stimulated Raman adiabatic passage in two-color photoassociation for a atom-molecule Bose-Einstein condensate. By applying two time-varying Guassian laser pulses that fulfill generalized two-photon resonance condition, we obtain highly efficient atom-molecule conversion. The efficiency depends on the free-bound detuning and the delay time between the two pulses. By adjusting the parameters optimally, we achieve 92% conversion efficiency.

Guang-Ri Jin; Sang Wook Kim

2007-09-30T23:59:59.000Z

351

Solar Energy Materials & Solar Cells 91 (2007) 15991610 Improving solar cell efficiency using photonic band-gap materials  

E-Print Network (OSTI)

Solar Energy Materials & Solar Cells 91 (2007) 1599­1610 Improving solar cell efficiency using Propulsion Laboratory, California Institute of Technology, Mail Stop T1714 106, 4800 Oak Grove Drive and reliable solar-cell devices is presented. We show that due their ability to modify the spectral and angular

Dowling, Jonathan P.

352

Efficiency improvement of solar cells by importing microdome-shaped anti-reflective structures as a surface protection layer  

Science Conference Proceedings (OSTI)

A novel dome-shaped and anti-reflective microdome array (MDA) was developed for a solar cell surface protection layer with the aim to improve the cell efficiency. Uniform microdomes in the array were obtained by isotropic wet-etching of quartz. The microdome ... Keywords: Anti-reflective coating, Isotropic etching, Microdome array (MDA), Polymer replica molding, Solar cell, Surface protection layer

Minwoo Nam; Jaejin Lee; Kee-Keun Lee

2011-08-01T23:59:59.000Z

353

Use of the Dryer Off-gas Latent Heat for Improved Energy Efficiency ...  

Science Conference Proceedings (OSTI)

... resulting in further reduction in energy consumption by additional 20-30 %. Energy efficiency and technology of this new innovation is discussed in the paper

354

Improving Energy Efficiency at Albras. A Case Study in the Rodding ...  

Science Conference Proceedings (OSTI)

Electrical power accounts for the biggest part of the aluminum production cost; consequently there is a drive for increased energy efficiency in the smelters.

355

The Role of Emerging Technologies in Improving Energy Efficiency: Examples from the Food Processing Industry  

E-Print Network (OSTI)

of Demonstrated Energy Technologies, Newsletter No. 3.over 160 new, energy efficient technologies (42). Many oftargeted towards energy saving technologies and practices

Lung, Robert Bruce; Masanet, Eric; McKane, Aimee

2006-01-01T23:59:59.000Z

356

Efficiency Improvement Opportunities for Personal Computer Monitors: Implications for Market Transformation Programs  

E-Print Network (OSTI)

EU-ENERGY STAR (2007). ENERGY STAR Market http://www.eu-2010). ENERGY STAR Unit Shipment and Market Penetrationtwo implications for energy efficiency market transformation

Park, Won Young

2013-01-01T23:59:59.000Z

357

Energy Efficiency Improvement and Cost Saving Opportunities for the Dairy Processing Industry  

E-Print Network (OSTI)

Characterization: Steam Turbines. Arlington, Virginia.scale CHP systems use steam turbines. Switching to naturalsystem efficiency of a steam turbine-based CHP system (80%

Brush, Adrian

2012-01-01T23:59:59.000Z

358

Continuous Measurement of Carbon Monoxide Improves Combustion Efficiency of CO Boilers  

E-Print Network (OSTI)

The paper describes the application of in-situ flue gas CO measurement in the operation of CO Boilers and details the steps needed to optimize combustion efficiency.

Gilmour, W. A.; Pregler, D. N.; Branham, R. L.; Prichard, J. J.

1981-01-01T23:59:59.000Z

359

Efficiency Improvement Opportunities for Personal Computer Monitors: Implications for Market Transformation Programs  

E-Print Network (OSTI)

We assess the market trends in the energy efficiency of PCmonitor market, technology trends, and energy consumption.similar trends of market compliance of ENERGY STAR PC C

Park, Won Young

2013-01-01T23:59:59.000Z

360

Energy Efficiency Improvement and Cost Saving Oportunities for the Concrete Industry  

E-Print Network (OSTI)

air pollutant emissions. Steam distribution system energyimprovements to steam distribution systems primarily focusenergy in industrial steam distribution systems. Improve

Kermeli, Katerina

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fostering efficiency improvements" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

CFD-based operational thermal efficiency improvement of a production data center  

Science Conference Proceedings (OSTI)

Effective cooling of data centers presents a dual challenge: increased cooling power to meet the ever increasing device heat loads, and the need for energy efficient cooling. Detailed analysis of the thermal and flow conditions within a data center are ... Keywords: computational fluid dynamics, energy efficiency, production data center, thermal management

Umesh Singh; Amarendra K. Singh; S. Parvez; Anand Sivasubramaniam

2010-02-01T23:59:59.000Z

362

Materials physics and device development for improved efficiency of GaN HEMT high power amplifiers.  

SciTech Connect

GaN-based microwave power amplifiers have been identified as critical components in Sandia's next generation micro-Synthetic-Aperture-Radar (SAR) operating at X-band and Ku-band (10-18 GHz). To miniaturize SAR, GaN-based amplifiers are necessary to replace bulky traveling wave tubes. Specifically, for micro-SAR development, highly reliable GaN high electron mobility transistors (HEMTs), which have delivered a factor of 10 times improvement in power performance compared to GaAs, need to be developed. Despite the great promise of GaN HEMTs, problems associated with nitride materials growth currently limit gain, linearity, power-added-efficiency, reproducibility, and reliability. These material quality issues are primarily due to heteroepitaxial growth of GaN on lattice mismatched substrates. Because SiC provides the best lattice match and thermal conductivity, SiC is currently the substrate of choice for GaN-based microwave amplifiers. Obviously for GaN-based HEMTs to fully realize their tremendous promise, several challenges related to GaN heteroepitaxy on SiC must be solved. For this LDRD, we conducted a concerted effort to resolve materials issues through in-depth research on GaN/AlGaN growth on SiC. Repeatable growth processes were developed which enabled basic studies of these device layers as well as full fabrication of microwave amplifiers. Detailed studies of the GaN and AlGaN growth of SiC were conducted and techniques to measure the structural and electrical properties of the layers were developed. Problems that limit device performance were investigated, including electron traps, dislocations, the quality of semi-insulating GaN, the GaN/AlGaN interface roughness, and surface pinning of the AlGaN gate. Surface charge was reduced by developing silicon nitride passivation. Constant feedback between material properties, physical understanding, and device performance enabled rapid progress which eventually led to the successful fabrication of state of the art HEMT transistors and amplifiers.

Kurtz, Steven Ross; Follstaedt, David Martin; Wright, Alan Francis; Baca, Albert G.; Briggs, Ronald D.; Provencio, Paula Polyak; Missert, Nancy A.; Allerman, Andrew Alan; Marsh, Phil F.; Koleske, Daniel David; Lee, Stephen Roger; Shul, Randy John; Seager, Carleton Hoover; Tigges, Christopher P.

2005-12-01T23:59:59.000Z

363

Investigating potential light-duty efficiency improvements through simulation of turbo-compounding and waste-heat recovery systems  

Science Conference Proceedings (OSTI)

Modern diesel engines used in light-duty transportation applications have peak brake thermal efficiencies in the range of 40-42% for high-load operation with substantially lower efficiencies at realistic road-load conditions. Thermodynamic energy and exergy analysis reveals that the largest losses from these engines are due to combustion irreversibility and heat loss to the coolant, through the exhaust, and by direct convection and radiation to the environment. Substantial improvement in overall engine efficiency requires reducing or recovering these losses. Unfortunately, much of the heat transfer either occurs at relatively low temperatures resulting in large entropy generation (such as in the air-charge cooler), is transferred to low-exergy flow streams (such as the oil and engine coolant), or is radiated or convected directly to the environment. While there are significant opportunities for recovery from the exhaust and EGR cooler for heavy-duty applications, achieving similar benefits for light-duty applications is complicated by transient, low-load operation at typical driving conditions and competition with the turbocharger and aftertreatment system for the limited thermal resources. We have developed an organic Rankine cycle model using GT-Suite to investigate the potential for efficiency improvement through waste-heat recovery from the exhaust and EGR cooler of a light-duty diesel engine. The model is used to examine the effects of efficiency-improvement strategies such as cylinder deactivation, use of advanced materials and improved insulation to limit ambient heat loss, and turbo-compounding on the steady-state performance of the ORC system and the availability of thermal energy for downstream aftertreatment systems. Results from transient drive-cycle simulations are also presented, and we discuss strategies to address operational difficulties associated with transient drive cycles and balancing the thermal requirements of waste-heat recovery, turbocharging or turbo-compounding, and exhaust aftertreatment.

Edwards, Kevin Dean [ORNL; Wagner, Robert M [ORNL; Briggs, Thomas E [ORNL

2010-01-01T23:59:59.000Z

364

Turbocharged engine operations using knock resistant fuel blends for engine efficiency improvements  

E-Print Network (OSTI)

Engine downsizing with a turbocharger has become popular these days in automotive industries. Downsizing the engine lets the engine operate in a more efficient region, and the engine boosting compensates for the power loss ...

Jo, Young Suk

2013-01-01T23:59:59.000Z

365

Energy Efficiency Improvement and Cost Saving Opportunities for the Dairy Processing Industry  

E-Print Network (OSTI)

Characterization: Gas Turbines. Arlington, Virginia.is higher than that of a gas turbine-based CHP system (74%electrical efficiency of a gas turbine-based CHP system is

Brush, Adrian

2012-01-01T23:59:59.000Z

366

Energy Efficiency Improvement and Cost Saving Opportunities for the Dairy Processing Industry  

E-Print Network (OSTI)

heat recovery wheels, heat pipes, and run-around loops.The efficiency of heat pipes is in the 45% to 65% range (pipe diameters Turning off unnecessary compressed air Heat

Brush, Adrian

2012-01-01T23:59:59.000Z

367

Reduced Worker Exposure and Improved Energy Efficiency in Industrial Fume-Hoods  

E-Print Network (OSTI)

on the two successful designs: a fan powered airvest with anhose. The fan powered airvest design with an electricalwith an improved design and appropriate fan selection. An

Gadgil, A.J.

2008-01-01T23:59:59.000Z

368

Evaluating Strategies for Separating Latent and Sensible Cooling for Energy Efficiency Improvement  

Science Conference Proceedings (OSTI)

Space conditioning is a primary driver of load shape and seasonal peak for electric utilities. One substantial but often overlooked factor in building energy consumption is the impact of fresh air ventilation requirements on overall building loads. Investigators theorized that if air at outside conditions could be pretreated with dedicated, efficient equipment, the main building HVAC system could potentially operate more efficiently, resulting in a net system benefit. To this end, a variable refrigerant ...

2011-12-21T23:59:59.000Z

369

Transmission System Efficiency and Utilization Improvement: Summary of R&D Activity and Demonstration Projects  

Science Conference Proceedings (OSTI)

This report compiles and summarizes the activities, findings, and main conclusions derived from the development of EPRI R&D Program 172 - Efficient Transmission Systems for a Carbon-Constrained World.BackgroundEPRI R&D Program 172, Efficient Transmission Systems for a Carbon-Constrained World, was initiated in 2008 and finalized in 2012. The main objective of the program was to assist utilities to prepare for operating a power-delivery system ...

2012-12-31T23:59:59.000Z

370

Improvement of efficiency in generating random $U(1)$ variables with Boltzmann distribution  

E-Print Network (OSTI)

A method for generating random $U(1)$ variables with Boltzmann distribution is presented. It is based on the rejection method with transformation of variables. High efficiency is achieved for all range of temparatures or coupling parameters, which makes the present method especially suitable for parallel and pipeline vector processing machines. Results of computer runs are presented to illustrate the efficiency. An idea to find such algorithms is also presented, which may be applicable to other distributions of interest in Monte Carlo simulations.

Tetsuya Hattori; Hideo Nakajima

1992-10-10T23:59:59.000Z

371

Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers  

E-Print Network (OSTI)

Nath (2000). Improve Steam Turbine Efficiency. HydrocarbonOIT (2000c). New steam turbine saves chemical manufacturer $demand. Back-pressure steam turbines which may be used to

Neelis, Maarten

2008-01-01T23:59:59.000Z

372

Energy Efficiency Improvement and Cost Saving Opportunities for the U.S. Iron and Steel Industry An ENERGY STAR(R) Guide for Energy and Plant Managers  

E-Print Network (OSTI)

Nath (2000). Improve Steam Turbine Efficiency. HydrocarbonOIT (1999). Rebuilding steam turbine generator reduces costscan be driven by a steam turbine or an electric motor. Hot

Worrell, Ernst

2011-01-01T23:59:59.000Z

373

Bilayer Polymer Solar Cells with Improved Power Conversion Efficiency and Enhanced Spectrum Coverage  

SciTech Connect

We demonstrate the construction of an efficient bilayer polymer solar cell comprising of Poly(3-hexylthiophene)(P3HT) as a p-type semiconductor and asymmetric fullerene (C{sub 70}) as n-type counterparts. The bilayer configuration was very efficient compared to the individual layer performance and it behaved like a regular p-n junction device. The photovoltaic characteristic of the bilayers were studied under AM 1.5 solar radiation and the optimized device parameters are the following: Voc = 0.5V, Jsc = 10.1 mA/cm{sup 2}, FF = 0.60 and power conversion efficiency of 3.6 %. A high fill factor of {approx}0.6 was achieved, which is only slightly reduced at very intense illumination. Balanced mobility between p-and n-layers is achieved which is essential for achieving high device performance. Correlation between the crystallinity, morphology and the transport properties of the active layers is established. The External quantum efficiency (EQE) spectral distribution of the bilayer devices with different processing solvents correlates well with the trends of short circuit current densities (J{sub sc}) measured under illumination. Efficiency of the bilayer devices with rough P3HT layer was found to be about 3 times higher than those with a planar P3HT surface. Hence it is desirable to have a larger grains with a rough surface of P3HT layer for providing larger interfacial area for the exciton dissociation.

Kekuda, Dhananjaya [Department of Physics, Manipal Institute of Technology, Manipal University, Manipal, India 576 104 (India); Chu, Chih-Wei [Research Center for Applied Science, Academia Sinica, Taipei, Taiwan 300 13 (China)

2011-10-20T23:59:59.000Z

374

Industrial Insulation: Protects the Environment, Improves Efficiency and Saves More Money Than You Can Imagine!  

E-Print Network (OSTI)

Stabilizing greenhouse gas emissions to stem the impact of global climate change is becoming one of the hottest topics heading into the new century. Regardless of which side of the issue you are on, there is no debate that increasing energy efficiency is important to environmental preservation. One of the most effective energy efficient technologies available is mineral fiber insulation. The examples presented will give energy management professionals the evidence they need to consider industrial insulation a time-tested, off-the-shelf technology for achieving major reductions in operating costs and CO2 emissions.

Brayman, W. J.

1998-04-01T23:59:59.000Z

375

Energy Efficiency Improvement and Cost Saving Opportunities for Cement Making. An ENERGY STAR Guide for Energy and Plant Managers  

Science Conference Proceedings (OSTI)

The cost of energy as part of the total production costs in the cement industry is significant, warranting attention for energy efficiency to improve the bottom line. Historically, energy intensity has declined, although more recently energy intensity seems to have stabilized with the gains. Coal and coke are currently the primary fuels for the sector, supplanting the dominance of natural gas in the 1970s. Most recently, there is a slight increase in the use of waste fuels, including tires. Between 1970 and 1999, primary physical energy intensity for cement production dropped 1 percent/year from 7.3 MBtu/short ton to 5.3 MBtu/short ton. Carbon dioxide intensity due to fuel consumption and raw material calcination dropped 16 percent, from 609 lb. C/ton of cement (0.31 tC/tonne) to 510 lb. C/ton cement (0.26 tC/tonne). Despite the historic progress, there is ample room for energy efficiency improvement. The relatively high share of wet-process plants (25 percent of clinker production in 1999 in the U.S.) suggests the existence of a considerable potential, when compared to other industrialized countries. We examined over 40 energy efficient technologies and measures and estimated energy savings, carbon dioxide savings, investment costs, and operation and maintenance costs for each of the measures. The report describes the measures and experiences of cement plants around the wold with these practices and technologies. Substantial potential for energy efficiency improvement exists in the cement industry and in individual plants. A portion of this potential will be achieved as part of (natural) modernization and expansion of existing facilities, as well as construction of new plants in particular regions. Still, a relatively large potential for improved energy management practices exists.

Galitsky, Christina; Worrell, Ernst; Galitsky, Christina

2008-01-01T23:59:59.000Z

376

Improved Energy Conversion Efficiency in Wide-Bandgap Cu(In,Ga)Se2 Solar Cells: Preprint  

DOE Green Energy (OSTI)

This report outlines improvements to the energy conversion efficiency in wide bandgap (Eg>1.2 eV) solar cells based on CuIn1-xGaxSe2. Using (a) alkaline containing high temperature glass substrates, (b) elevated substrate temperatures 600?C-650?C and (c) high vacuum evaporation from elemental sources following NREL's three-stage process, we have been able to improve the performance of wider bandgap solar cells with 1.2efficiencies >18% for absorber bandgaps ~1.30 eV and efficiencies ~16% for bandgaps up to ~1.45 eV. In comparing J-V parameters in similar materials, we establish gains in the open-circuit voltage and, to a lesser degree, the fill factor value, as the reason for the improved performance. The higher voltages seen in these wide gap materials grown at high substrate temperatures may be due to reduced recombination at the grain boundary of such absorber films. Solar cell results, absorber materials characterization, and experimental details are reported.

Contreras, M.; Mansfield, L.; Egaas, B.; Li, J.; Romero, M.; Noufi, R.; Rudiger-Voigt, E.; Mannstadt, W.

2011-07-01T23:59:59.000Z

377

Method and apparatus for improved efficiency in a pulse-width-modulated alternating current motor drive  

DOE Patents (OSTI)

A scheme for optimizing the efficiency of an AC motor drive operated in a pulse-width-modulated mode provides that the modulation frequency of the power furnished to the motor is a function of commanded motor torque and is higher at lower torque requirements than at higher torque requirements.

Konrad, Charles E. (Roanoke, VA); Boothe, Richard W. (Roanoke, VA)

1994-01-01T23:59:59.000Z

378

Method and apparatus for improved efficiency in a pulse-width-modulated alternating current motor drive  

DOE Patents (OSTI)

A scheme for optimizing the efficiency of an AC motor drive operated in a pulse-width-modulated mode provides that the modulation frequency of the power furnished to the motor is a function of commanded motor torque and is higher at lower torque requirements than at higher torque requirements.

Konrad, Charles E. (Roanoke, VA); Boothe, Richard W. (Roanoke, VA)

1996-01-01T23:59:59.000Z

379

Improving fairness, efficiency, and stability in HTTP-based adaptive video streaming with FESTIVE  

Science Conference Proceedings (OSTI)

Many commercial video players rely on bitrate adaptation logic to adapt the bitrate in response to changing network conditions. Past measurement studies have identified issues with today's commercial players with respect to three key metrics---efficiency, ... Keywords: DASH, HTTP, adaptation, video

Junchen Jiang; Vyas Sekar; Hui Zhang

2012-12-01T23:59:59.000Z

380

Solar Energy Materials & Solar Cells 83 (2004) 263271 Improving power efficiencies in  

E-Print Network (OSTI)

blend device, made with indium-tin oxide and Ca electrodes, gives a power conversion efficiency Zp=1 indium tin oxide (ITO) and gold electrodes in a sandwich structure. The TiO2 solgel precursor, prepared.orholdc a National Renewable Energy Laboratory, Golden, CO 80401, USA b Physics Department, University of California

Carter, Sue

Note: This page contains sample records for the topic "fostering efficiency improvements" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Using information systems to improve energy efficiency: Do smart meters make a difference?  

Science Conference Proceedings (OSTI)

The large-scale generation of electricity is a major contributor to increasing levels of greenhouse gas emissions, putting pressure on the industry to reduce its environmental impacts. Electricity utility companies are looking to two strategies to help ... Keywords: Demand-side management, Energy efficiency, Energy informatics, Green IS, Information processing, Information waste, Smart grid, Sustainability

Jacqueline Corbett

2013-11-01T23:59:59.000Z

382

Method and apparatus for improved efficiency in a pulse-width-modulated alternating current motor drive  

DOE Patents (OSTI)

A scheme for optimizing the efficiency of an AC motor drive operated in a pulse-width-modulated mode provides that the modulation frequency of the power furnished to the motor is a function of commanded motor torque and is higher at lower torque requirements than at higher torque requirements. 6 figs.

Konrad, C.E.; Boothe, R.W.

1996-01-23T23:59:59.000Z

383

Method and apparatus for improved efficiency in a pulse-width-modulated alternating current motor drive  

DOE Patents (OSTI)

A scheme for optimizing the efficiency of an AC motor drive operated in a pulse-width-modulated mode provides that the modulation frequency of the power furnished to the motor is a function of commanded motor torque and is higher at lower torque requirements than at higher torque requirements. 6 figures.

Konrad, C.E.; Boothe, R.W.

1994-02-15T23:59:59.000Z

384

Improving energy efficiency based on behavioral model in a swarm of cooperative foraging robots  

Science Conference Proceedings (OSTI)

We can efficiently collect crops or minerals by operating multi-robot foraging. As foraging spaces become wider, control algorithms demand scalability and reliability. Swarm robotics is a state-of-the-art algorithm on wide foraging spaces due to its ... Keywords: swarm intelligence, swarm robotics

Jong-Hyun Lee; Chang Wook Ahn

2011-07-01T23:59:59.000Z

385

North American Overview - Heat Pumps Role in Buildings Energy Efficiency Improvement  

Science Conference Proceedings (OSTI)

A brief overview of the situation in North America regarding buildings energy use and the current and projected heat pump market is presented. R&D and deployment strategies for heat pumps, and the impacts of the housing market and efficiency regulations on the heating and cooling equipment market are summarized as well.

Baxter, Van D [ORNL; Bouza, Antonio [U.S. Department of Energy; Gigure, Daniel [Natural Resources Canada; Hosatte, Sophie [Natural Resources Canada

2011-01-01T23:59:59.000Z

386

Evaluating and improving the effectiveness and efficiency of design process communication  

Science Conference Proceedings (OSTI)

Project information management research enables the efficient exchange of information, but does not effectively communicate process. Design process management research effectively communicates processes, but with methods too inefficient to be adopted ... Keywords: Collaboration, Communication, Design process, Information management, Knowledge management, Validation method

Reid R. Senescu, John R. Haymaker

2013-04-01T23:59:59.000Z

387

Evaluation of design options for improving the energy efficiency of an environmentally safe domestic refrigerator-freezer  

SciTech Connect

In order to reduce greenhouse emissions from power plants and respond to regulatory actions arising from the National Appliance Energy Conservation Act (NAECA), several design options were investigated for improving the energy efficiency of a conventionally designed, domestic refrigerator-freezer. The options, such as improved cabinet insulation and high-efficiency compressor and fans, were incorporated into a prototype refrigerator-freezer cabinet and refrigeration system to produce a unit that is superior from an environmental viewpoint due to its lower energy consumption and the use of refrigerant HFC-134a as a replacement for CFC-12. Baseline energy performance of the original 1993 production refrigerator-freezer, along with cabinet heat load and compressor calorimeter test results, were extensively documented to provide a firm basis for experimentally measured energy savings. A detailed refrigerator system computer model was used to evaluate the energy savings for several design modifications that, collectively, could achieve a targeted energy consumption of 1.00 kWh/d for a 20 ft{sup 3} (570 l) top-mount, automatic-defrost, refrigerator-freezer. The energy consumption goal represents a 50% reduction in the 1993 NAECA standard for units of this size. Following the modeling simulation, laboratory prototypes were fabricated and tested to experimentally verify the analytical results and aid in improving the model in those areas where discrepancies occurred. While the 1.00 kWh/d goal was not achieved with the modifications, a substantial energy efficiency improvement of 22% (1.41 kWh/d) was demonstrated using near-term technologies. It is noted that each improvement exacts a penalty in terms of increased cost or system complexity/reliability. Further work on this project will analyze cost-effectiveness of the design changes and investigate alternative, more-elaborate, refrigeration system changes to further reduce energy consumption.

Vineyard, E.A.; Sand, J.R. [Oak Ridge National Lab., TN (United States); Bohman, R.H.

1995-03-01T23:59:59.000Z

388

Development of Foster Wheeler's Vision 21 Partial Gasification Module  

DOE Green Energy (OSTI)

The US Department of Energy (DOE) has awarded Foster Wheeler Development Corporation a contract to develop a partial gasification module (PGM) that represents a critical element of several potential coal-fired Vision 21 plants. When utilized for electrical power generation, these plants will operate with efficiencies greater than 60% while producing near zero emissions of traditional stack gas pollutants. The new process partially gasifies coal at elevated pressure producing a coal derived syngas and a char residue. The syngas can be used to fuel the most advanced power producing equipment such as solid oxide fuel cells or gas turbines or processed to produce clean liquid fuels or chemicals for industrial users. The char residue is not wasted; it can also be used to generate electricity by fueling boilers that drive the most advanced ultra-supercritical pressure steam turbines. The unique aspect of the process is that it utilizes a pressurized circulating fluidized bed partial gasifier and does not attempt to consume the coal in a single step. To convert all the coal to syngas in a single step requires extremely high temperatures ({approx} 2500 to 2800F) that melt and vaporize the coal and essentially drive all coal ash contaminants into the syngas. Since these contaminants can be corrosive to power generating equipment, the syngas must be cooled to near room temperature to enable a series of chemical processes to clean the syngas. Foster Wheeler's process operates at much lower temperatures that control/minimize the release of contaminants; this eliminates/minimizes the need for the expensive, complicated syngas heat exchangers and chemical cleanup systems typical of high temperature gasification. By performing the gasification in a circulating bed, a significant amount of syngas can still be produced despite the reduced temperature and the circulating bed allows easy scale up to large size plants. Rather than air, it can also operate with oxygen to facilitate sequestration of stack gas carbon dioxide gases for a 100% reduction in greenhouse gas emissions. The amount of syngas and char produced by the PGM can be tailored to fit the production objectives of the overall plant, i.e., power generation, clean liquid fuel production, chemicals production, etc. Hence, PGM is a robust building block that offers all the advantages of coal gasification but in a more user friendly form; it is also fuel flexible in that it can use alternative fuels such as biomass, sewerage sludge, etc. This paper describes the test program and pilot plant that will be used to develop the PGM.

Robertson, A.

2001-11-06T23:59:59.000Z

389

Improving computational efficiency of Monte-Carlo simulations with variance reduction  

E-Print Network (OSTI)

CCFE perform Monte-Carlo transport simulations on large and complex tokamak models such as ITER. Such simulations are challenging since streaming and deep penetration effects are equally important. In order to make such simulations tractable, both variance reduction (VR) techniques and parallel computing are used. It has been found that the application of VR techniques in such models significantly reduces the efficiency of parallel computation due to 'long histories'. VR in MCNP can be accomplished using energy-dependent weight windows. The weight window represents an 'average behaviour' of particles, and large deviations in the arriving weight of a particle give rise to extreme amounts of splitting being performed and a long history. When running on parallel clusters, a long history can have a detrimental effect on the parallel efficiency - if one process is computing the long history, the other CPUs complete their batch of histories and wait idle. Furthermore some long histories have been found to be effect...

Turner, A

2013-01-01T23:59:59.000Z

390

The Development of Improved Energy Efficient Housing for Thailand Utilizing Renewable Energy Technology  

E-Print Network (OSTI)

The paper reports on the results of research to reduce energy consumption in residential buildings in a hot and humid climate region (Thailand) using efficient architectural building components, energy efficient building systems, and renewable energy systems (solar energy) to produce electricity and heat domestic hot water. The solar energy system used in the analysis of the supplemental energy was a hybrid photovoltaicthermal (PV-T2) collector system, which is a combination photovoltaic (for producing electricity) and solar thermal collector (for producing hot water), and night-time radiator for radiating unwanted heat to the night sky. The research methods used in this work included instrumentation of a case study house, experimental data collected from an experimental PV-T2 collector system (Rasisuttha 2004), and calibrated building thermal simulation using DOE-2 (LBNL, 1982; 2000).

Rasisuttha, S.; Haberl, J.

2004-08-01T23:59:59.000Z

391

Energy Department Announces New Projects to Improve Energy Efficiency in Buildings  

Energy.gov (U.S. Department of Energy (DOE))

As part of the Obama Administration's efforts to reduce energy bills for American families and businesses and reduce greenhouse gas emissions, the Energy Department today announced 12 projects to develop innovative heating, cooling, and insulation technologies as well as open source energy efficiency software to help homes and commercial buildings save energy and money. These projects will receive an approximately $11 million Energy Department investment, matched by about $1 million in private sector funding.

392

Improved charge breeding efficiency of light ions with an electron cyclotron resonance ion source  

SciTech Connect

The Californium Rare Isotope Breeder Upgrade is a new radioactive beam facility for the Argonne Tandem Linac Accelerator System (ATLAS). The facility utilizes a {sup 252}Cf fission source coupled with an electron cyclotron resonance ion source to provide radioactive beam species for the ATLAS experimental program. The californium fission fragment distribution provides nuclei in the mid-mass range which are difficult to extract from production targets using the isotope separation on line technique and are not well populated by low-energy fission of uranium. To date the charge breeding program has focused on optimizing these mid-mass beams, achieving high charge breeding efficiencies of both gaseous and solid species including 14.7% for the radioactive species {sup 143}Ba{sup 27+}. In an effort to better understand the charge breeding mechanism, we have recently focused on the low-mass species sodium and potassium which up to present have been difficult to charge breed efficiently. Unprecedented charge breeding efficiencies of 10.1% for {sup 23}Na{sup 7+} and 17.9% for {sup 39}K{sup 10+} were obtained injecting stable Na{sup +} and K{sup +} beams from a surface ionization source.

Vondrasek, R.; Kutsaev, Sergey [Argonne National Laboratory, Argonne, Illinois 60439 (United States); Delahaye, P.; Maunoury, L. [Grand Accelerateur National d'Ions Lourds (GANIL), CEA/DSM-CNRS/IN2P3, Blvd Henri Becquerel, 14076 Caen (France)

2012-11-15T23:59:59.000Z

393

Use of a Conversational Computer Program in Operator Training for Improved Energy Efficiency  

E-Print Network (OSTI)

Energy efficient operation of process equipment requires attentive operation by well-trained personnel. Use of a computer simulation model together with a conversational computer program, which provides dynamic game playing opportunities for the trainee, has proven a very effective training tool. The programs have been used in plants and refineries, and they demonstrate the ability to develop rapidly within the Operator Trainee a real understanding of the variables affecting process performance. Experience with a furnace firing computer training program is described. Using a time-share computer terminal, the Operator participates in a conversational training experience in which he is taught startup, routine operation, and to cope with operating problems on a gas and/or oil fired process furnace. Specific operator-oriented problems are encountered and solved by making control adjustments in the simulator program which has been developed. In using the program, the trainee is challenged to achieve or exceed firing efficiency goals set for the furnace. A variety of operating conditions are presented. As an extension of the success experienced with the furnace program, a new program has been developed simulating a crude oil distillation unit. The Distillation Column Operator training program is designed to facilitate an understanding of distillation principles and the effect on energy efficiency for the various product quality and yields achieved. The results of Operator acceptance of these programs is that a wider application of the principle's computer simulator training to other industry processes is warranted.

Brickman, S. W.; Mergens, E. H.

1980-01-01T23:59:59.000Z

394

Improving schedulability and energy efficiency for real-time systems with (m,k)-guarantee  

Science Conference Proceedings (OSTI)

In this paper, we explore improving the schedulability and energy performance for real-time systems with (m, k)-constraints, which require that at least m out of any k consecutive jobs of a task meet their deadlines. The preliminary ...

Linwei Niu, Kuai Xu

2013-07-01T23:59:59.000Z

395

OECD-Fostering Innovation for Green Growth | Open Energy Information  

Open Energy Info (EERE)

OECD-Fostering Innovation for Green Growth OECD-Fostering Innovation for Green Growth Jump to: navigation, search Tool Summary LAUNCH TOOL Name: OECD-Fostering Innovation for Green Growth Agency/Company /Organization: Organisation for Economic Co-Operation and Development (OECD) Sector: Climate, Energy Focus Area: Renewable Energy, Non-renewable Energy Topics: Low emission development planning, Technology characterizations Resource Type: Publications, Technical report Website: www.oecd.org/document/3/0,3746,en_2649_37465_48593219_1_1_1_37465,00.h Cost: Free Language: English "This book draws on work from across several parts of the OECD and explores policy actions for the deployment of new technologies and innovations as they emerge: investment in research and development, support for commercialisation, strengthening markets and fostering technology

396

Inaugural C3E Symposium Fosters Collaborative Discussions and Celebrates  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Inaugural C3E Symposium Fosters Collaborative Discussions and Inaugural C3E Symposium Fosters Collaborative Discussions and Celebrates Achievements Inaugural C3E Symposium Fosters Collaborative Discussions and Celebrates Achievements November 20, 2012 - 12:57pm Addthis Inaugural C3E Symposium Fosters Collaborative Discussions and Celebrates Achievements Caroline McGregor Policy Analyst, Office of Policy and International Affairs Editor's note: This was originally posted in the Clean Energy MInisterial's Fall 2012 newsletter. In September, the U.S. Department of Energy and the Massachusetts Institute of Technology (MIT) Energy Initiative co-hosted the inaugural Women in Clean Energy Symposium. Convened in support of U.S. efforts under the Clean Energy Education & Empowerment (C3E) initiative, the event brought together

397

Sandia collects gifts for foster children | National Nuclear Security  

National Nuclear Security Administration (NNSA)

collects gifts for foster children | National Nuclear Security collects gifts for foster children | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > Sandia collects gifts for foster children Sandia collects gifts for foster children Posted By Office of Public Affairs Employees at Sandia National Laboratories collected enough gifts for more

398

iHarmonizer: improving the disk efficiency of I/O-intensive multithreaded codes  

SciTech Connect

Challenged by serious power and thermal constraints, and limited by available instruction-level parallelism, processor designs have evolved to multi-core architectures. These architectures, many augmented with native simultaneous multithreading, are driving software developers to use multithreaded programs to exploit thread-level parallelism. While multithreading is well-known to introduce concerns of data dependency and CPU load balance, less known is that the uncertainty of relative progress of thread execution can cause patterns of I/O requests, issued by different threads, to be effectively random and so significantly degrade hard-disk efficiency. This effect can severely offset the performance gains from parallel execution, especially for I/O-intensive programs. Retaining the benefits of multithreading while not reducing I/O efficiency is an urgent and challenging problem. We propose a user-level scheme, iHarmonizer, to streamline the servicing of I/O requests from multiple threads in OpenMP programs. Specifically, we use the compiler to insert code into OpenMP programs so that data usage can be transmitted at run time to a supporting run-time library; this library in turn prefetches data in a disk-friendly way and coordinates threads execution according to the availability of their requested data. Transparently to the programmer, iHarmonizer makes a multithreaded program I/O efficient while maintaining the benefits of parallelism. Our experiments show that iHarmonizer can significantly speed up the execution of a representative set of I/O-intensive scientific benchmarks.

Davis, Marion Kei [Los Alamos National Laboratory; Wang, Yizhe [WAYNE STATE UNIV.; Jiang, Song [WAYNE STATE UNIV.

2010-01-01T23:59:59.000Z

399

Centralized and Modular Architectures for Photovoltaic Panels with Improved Efficiency: Preprint  

DOE Green Energy (OSTI)

The most common type of photovoltaic installation in residential applications is the centralized architecture, but the performance of a centralized architecture is adversely affected when it is subject to partial shading effects due to clouds or surrounding obstacles, such as trees. An alternative modular approach can be implemented using several power converters with partial throughput power processing capability. This paper presents a detailed study of these two architectures for the same throughput power level and compares the overall efficiencies using a set of rapidly changing real solar irradiance data collected by the Solar Radiation Research Laboratory at the National Renewable Energy Laboratory.

Dhakal, B.; Mancilla-David, F.; Muljadi, E.

2012-07-01T23:59:59.000Z

400

Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers  

SciTech Connect

The U.S. pharmaceutical industry consumes almost $1 billion in energy annually. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. pharmaceutical industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy efficient technologies that can be implemented at the component, process, system, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the U.S. pharmaceutical industry is provided along with a description of the major process steps in the pharmaceutical manufacturing process. Expected savings in energy and energy-related costs are given for many energy efficiency measures, based on case study data from real-world applications in pharmaceutical and related facilities worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. The information in this Energy Guide is intended to help energy and plant managers reduce energy consumption in a cost-effective manner while meeting regulatory requirements and maintaining the quality of products manufactured. At individual plants, further research on the economics of the measures?as well as their applicability to different production practices?is needed to assess potential implementation of selected technologies.

Galitsky, Christina; Galitsky, Christina; Chang, Sheng-chieh; Worrell, Ernst; Masanet, Eric

2008-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "fostering efficiency improvements" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Progress on Enabling an Interactive Conversation Between Commercial Building Occupants and Their Building To Improve Comfort and Energy Efficiency: Preprint  

NLE Websites -- All DOE Office Websites (Extended Search)

Progress on Enabling an Progress on Enabling an Interactive Conversation Between Commercial Building Occupants and Their Building To Improve Comfort and Energy Efficiency Preprint M. Schott, N. Long, J. Scheib, K. Fleming, K. Benne, and L. Brackney National Renewable Energy Laboratory To be presented at ACEEE Summer Study on Energy Efficiency in Buildings Pacific Grove, California August 12-17, 2012 Conference Paper NREL/CP-5500-55197 June 2012 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (Alliance), a contractor of the US Government under Contract No. DE-AC36-08GO28308. Accordingly, the US Government and Alliance retain a nonexclusive royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes.

402

Improving Efficiency of a Counter-Current Flow Moving Bed Granular Filter  

DOE Green Energy (OSTI)

The goal of this research is to improve the performance of moving bed granular filters for gas cleaning at high temperatures and pressures. A second goal of the research is to optimize the performances of both solids and gas filtering processes through appropriate use of granular bed materials, particle sizes, feed rates etc. in a factorial study. These goals are directed toward applications of advanced coal-fired power cycles under development by the U.S. Department of Energy including pressurized fluidized bed combustion and integrated gasification/combined cycles based on gas turbines and fuel cells. Only results for particulate gas cleaning are reported here.

Colver, G.M.; Brown, R.C.; Shi, H.; Soo, D.S-C.

2002-09-18T23:59:59.000Z

403

Analysis of federal policy options for improving US lighting energy efficiency: Commercial and residential buildings  

Science Conference Proceedings (OSTI)

The US Department of Energy (DOE) has recognized the opportunity to achieve energy, economic, and environmental benefits by promoting energy-efficient lighting through federal policies, including lighting standards, financial incentives, and information programs. To assist in this process, the Office of Conservation and Renewable Energy's Office of Codes and Standards invited Lawrence Berkeley Laboratory to assess prospective national impacts for a variety of policy options. Some progress has already been made in developing lighting policies at both the federal and state levels. The US DOE's Office of Building Technologies has evaluated lighting efficiency incentives as part of its analysis for the National Energy Strategy. Fluorescent and incandescent lamp standards are included in the national Energy Policy Act of 1992 (P.L. 102-486, October 24, 1992). A few states have analyzed or implemented lamp and luminaire standards. Many policy-related issues merit further investigation. For example, there is considerable debate over issues such as mandatory or voluntary standards versus component labeling and other education-oriented strategies. Several different technologies are involved that interact with each other-lamps (incandescent, compact fluorescent, and HID), ballasts (for fluorescent and HID lamps), and fixtures with reflectors and lenses. Control systems and operation patterns must also be considered (timers, automated dimming, or occupancy sensors). Lighting applications are diverse, ranging from offices, restaurants, hallways, hospital operating rooms, to exterior lights. Lighting energy use influences heating and cooling requirements in buildings. Successful lighting system design must also address interactions between architectural design elements and daylighting availability. Proper system installation and ongoing operation and maintenance are crucial. The economic aspects of the preceding points must also be considered for policy making.

Atkinson, B.A.; McMahon, J.E.; Mills, E.; Chan, P.; Chan, T.W.; Eto, J.H.; Jennings, J.D.; Koomey, J.G.; Lo, K.W.; Lecar, M.; Price, L.; Rubinstein, F.; Sezgen, O.; Wenzel, T.

1992-12-01T23:59:59.000Z

404

Analysis of federal policy options for improving US lighting energy efficiency: Commercial and residential buildings  

SciTech Connect

The US Department of Energy (DOE) has recognized the opportunity to achieve energy, economic, and environmental benefits by promoting energy-efficient lighting through federal policies, including lighting standards, financial incentives, and information programs. To assist in this process, the Office of Conservation and Renewable Energy`s Office of Codes and Standards invited Lawrence Berkeley Laboratory to assess prospective national impacts for a variety of policy options. Some progress has already been made in developing lighting policies at both the federal and state levels. The US DOE`s Office of Building Technologies has evaluated lighting efficiency incentives as part of its analysis for the National Energy Strategy. Fluorescent and incandescent lamp standards are included in the national Energy Policy Act of 1992 (P.L. 102-486, October 24, 1992). A few states have analyzed or implemented lamp and luminaire standards. Many policy-related issues merit further investigation. For example, there is considerable debate over issues such as mandatory or voluntary standards versus component labeling and other education-oriented strategies. Several different technologies are involved that interact with each other-lamps (incandescent, compact fluorescent, and HID), ballasts (for fluorescent and HID lamps), and fixtures with reflectors and lenses. Control systems and operation patterns must also be considered (timers, automated dimming, or occupancy sensors). Lighting applications are diverse, ranging from offices, restaurants, hallways, hospital operating rooms, to exterior lights. Lighting energy use influences heating and cooling requirements in buildings. Successful lighting system design must also address interactions between architectural design elements and daylighting availability. Proper system installation and ongoing operation and maintenance are crucial. The economic aspects of the preceding points must also be considered for policy making.

Atkinson, B.A.; McMahon, J.E.; Mills, E.; Chan, P.; Chan, T.W.; Eto, J.H.; Jennings, J.D.; Koomey, J.G.; Lo, K.W.; Lecar, M.; Price, L.; Rubinstein, F.; Sezgen, O.; Wenzel, T.

1992-12-01T23:59:59.000Z

405

Creating the Next Generation of Energy Efficient Technology | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Creating the Next Generation of Energy Efficient Technology Creating the Next Generation of Energy Efficient Technology Creating the Next Generation of Energy Efficient Technology Supporting Innovative Research to Help Reduce Energy Use and Advance Manufacturing Supporting Innovative Research to Help Reduce Energy Use and Advance Manufacturing The Emerging Technologies team partners with national laboratories, industry, and universities to advance research, development, and commercialization of energy efficient and cost effective building technologies. These partnerships help foster American ingenuity to develop cutting-edge technologies that have less than 5 years to market readiness, and contribute to the goal to reduce energy consumption by at least 50%. Research and Development Improve the energy efficiency of appliances, including

406

Investigation of Hybrid Steam/Solvent Injection to Improve the Efficiency of the SAGD Process  

E-Print Network (OSTI)

Steam assisted gravity drainage (SAGD) has been demonstrated as a proven technology to unlock heavy oil and bitumen in Canadian reservoirs. Given the large energy requirements and volumes of emitted greenhouse gases from SAGD processes, there is a strong motivation to develop enhanced oil recovery processes with lower energy and emission intensities. In this study, the addition of solvents to steam has been examined to reduce the energy intensity of the SAGD process. Higher oil recovery, accelerated oil production rate, reduced steam-to-oil ratio, and more favorable economics are expected from the addition of suitable hydrocarbon additives to steam. A systematic approach was used to develop an effective hybrid steam/solvent injection to improve the SAGD process. Initially, an extensive parametric simulation study was carried out to find the suitable hydrocarbon additives and injection strategies. Simulation studies aim to narrow down hybrid steam/solvent processes, design suitable solvent type and concentration, and explain the mechanism of solvent addition to steam. In the experimental phase, the most promising solvents (n-hexane and n-heptane) were used with different injection strategies. Steam and hydrocarbon additives were injected in continuous or alternating schemes. The results of the integrated experimental and simulation study were used to better understand the mechanism of hybrid steam/solvent processes. Experimental and simulation results show that solvent co-injection with steam leads to a process with higher oil production, better oil recovery, and less energy intensity with more favorable economy. Solvent choice for hybrid steam/solvent injection is not solely dependent on the mobility improvement capability of the solvents but also reservoir properties and operational conditions such as operating pressure and injection strategy. Pure heated solvent injection requires significant quantities. A vaporized solvent chamber is not sustainable due to low latent heat of the solvents. Alternating steam and solvent injection provides heat for the solvent cycles and increases oil recovery. Co-injection of small volumes (5-15% by volume) of suitable solvents at the early times of the SAGD operation considerably improves the economics of the SAGD process.

Ardali, Mojtaba

2013-05-01T23:59:59.000Z

407

Improving Paper Machine Efficiency/Productivity through On-line Control  

SciTech Connect

This project involves implementing a new technology, microforming, in a headbox to produce an isotropic sheet with significant reductions in the MD/CD stiffness ratio (increasing CD specific STFI) and improved sheet uniformity. Microforming involves generating axial vorticity (i.e., swirl) prior to the converging nozzle of the headbox by retrofitting an existing tube block with swirl generation devices referred to as Vortigen system. The Vortigen system developed in this project is a retrofit technology to a hydraulic headbox tube block. The tubes in the tube block are re-designed to generate axial vorticity (or swirl) in the tubes. This type of flow results in higher intensity small-scale turbulence in the forming jet at the slice. The net effect, as demonstrated in pilot and commercial trials, is improvement in formation and surface smoothness, lower MD/CD tensile ratio, and consequently, higher CD strength properties such as CD STFI, Ring Crush and tensile or breaking length. The objective of this project is to implement microforming by developing the retrofit technology for generation and on-line control of axial vorticity in the tubes to optimize turbulent scale and intensity, and consequently, fiber network structure properties in the sheet. This technology results in significant improvements in the performance and capital effectiveness of the paper machine (PM) for a fraction of the cost to replace a headbox. In this project we have developed and demonstrated the concept of generating axial vorticity to control the fiber orientation in the converging zone of the headbox, and to produce a sheet with isotropic fiber orientation. The technology developed here has been demonstrated in static form on several pilot trials and two series of commercial trials. The economic feasibility of this technology is based primarily on fiber savings in cases where a more isotropic fiber orientation can be used to reduce the basis weight of the product. Even a 5% decrease in basis weight will results in substantial savings covering the cost of a commercial retrofit in 6 months or less in a medium size machine. The project also resulted in significant amount of information on fiber orientation in turbulent flow and in a converging nozzle where the results can be used in other applications, such as formation of composite materials. Several MS and Ph.D. students and postdoctoral associates have been trained as part of this project.

Cyrus K Aidun

2007-08-31T23:59:59.000Z

408

Efficiency Improvement Opportunities for Light-Duty Natural-Gas-Fueled Vehicles  

Science Conference Proceedings (OSTI)

The purpose of this report is to evaluate and make recommendations concerning technologies that promise to improve the efilciency of compressed natural gas (CNG) light-duty vehicles. Technical targets for CNG automotive technology given in the March 1998 OffIce of Advanced Automotive Technologies research and development plan were used as guidance for this effort. The technical target that necessitates this current study is to validate technologies that enable CNG light vehicles to have at least 10% greater - fuel economy (on a miles per gallon equivalent basis) than equivalent gasoline vehicles by 2006. Other tar- gets important to natural gas (NG) automotive technology and this study are to: (1) increase CNG vehicle range to 380 miles, (2) reduce the incremental vehicle cost (CNG vs gasoline) to $1500, and (3) meet the California ultra low-emission vehicle (ULEV) and Federal Tier 2 emission standards expected to be in effect in 2004.

Staunton, R.H.; Thomas, J.F.

1998-12-01T23:59:59.000Z

409

Energy study of railroad freight transportation. Volume 4. Efficiency improvements and industry future  

DOE Green Energy (OSTI)

Railroad equipment and operating practices were largely developed in an era during which the price of fuel was a relatively minor part of the cost of railroad operations; however, fuel has now become a scarce and expensive resource. Although many opportunities exist for installing new equipment and operating practices that will result in fuel conservation, cost and market factors can promote or retard the rate at which changes are adopted, and only limited technology may be available for use in conservation applications. Conservation opportunities are identified and potential technological and operational improvements are described that can be introduced; the process of introducing new technology in the railroad industry is analyzed; the future of the railroad industry is assessed; and research and development that will contribute to the adoption of energy conservation equipment or processes in the industry are identified.

Not Available

1979-08-01T23:59:59.000Z

410

The Role of Emerging Technologies in Improving Energy Efficiency:Examples from the Food Processing Industry  

SciTech Connect

For over 25 years, the U.S. DOE's Industrial Technologies Program (ITP) has championed the application of emerging technologies in industrial plants and monitored these technologies impacts on industrial energy consumption. The cumulative energy savings of more than 160 completed and tracked projects is estimated at approximately 3.99 quadrillion Btu (quad), representing a production cost savings of $20.4 billion. Properly documenting the impacts of such technologies is essential for assessing their effectiveness and for delivering insights about the optimal direction of future technology research. This paper analyzes the impacts that several emerging technologies have had in the food processing industry. The analysis documents energy savings, carbon emissions reductions and production improvements and assesses the market penetration and sector-wide savings potential. Case study data is presented demonstrating the successful implementation of these technologies. The paper's conclusion discusses the effects of these technologies and offers some projections of sector-wide impacts.

Lung, Robert Bruce; Masanet, Eric; McKane, Aimee

2006-05-01T23:59:59.000Z

411

The Role of Emerging Technologies in Improving Energy Efficiency:Examples from the Food Processing Industry  

SciTech Connect

For over 25 years, the U.S. DOE's Industrial Technologies Program (ITP) has championed the application of emerging technologies in industrial plants and monitored these technologies impacts on industrial energy consumption. The cumulative energy savings of more than 160 completed and tracked projects is estimated at approximately 3.99 quadrillion Btu (quad), representing a production cost savings of $20.4 billion. Properly documenting the impacts of such technologies is essential for assessing their effectiveness and for delivering insights about the optimal direction of future technology research. This paper analyzes the impacts that several emerging technologies have had in the food processing industry. The analysis documents energy savings, carbon emissions reductions and production improvements and assesses the market penetration and sector-wide savings potential. Case study data is presented demonstrating the successful implementation of these technologies. The paper's conclusion discusses the effects of these technologies and offers some projections of sector-wide impacts.

Lung, Robert Bruce; Masanet, Eric; McKane, Aimee

2006-05-01T23:59:59.000Z

412

Using Electronic Adjustable Speed Drives for Efficiency Improvement and Cost Reduction  

E-Print Network (OSTI)

U.S. industry and utilities have been using ac adjustable speed drives (ASDs) for more than 50 years. ASDs utilize power electronics technology to control the flow of power to an ac motor, thereby controlling the motors speed and rate of energy consumption while modulating process flow through the fan or pump driven by the motor. Industrial ASD applications have typically been those requiring extremely precise speed control, such as in fiber spinning operations with multiple motors. However, controlling process flow by varying the speed in many systems does not require the fast-responding, precise wide speed range regenerative drives frequently needed for traditional variable speed applications. Often the required speed range is small and there is limited or no requirement for speed of response and speed control precision. Electronic ASDs have come a long way since their introduction some ten years ago. These drives, which match motor speed to the job with the help of semiconductor devices and switching circuits, have become progressively more efficient and versatile. The cost of electronic ASDs has declined rapidly over the last three years. Pending technology advances promise to make the drives even more attractive in the future, both from a performance as well as a cost standpoint.

Friedman, N. R.

1989-09-01T23:59:59.000Z

413

Steam systems in industry: Energy use and energy efficiency improvement potentials  

SciTech Connect

Steam systems are a part of almost every major industrial process today. Thirty-seven percent of the fossil fuel burned in US industry is burned to produce steam. In this paper we will establish baseline energy consumption for steam systems. Based on a detailed analysis of boiler energy use we estimate current energy use in boilers in U.S. industry at 6.1 Quads (6.4 EJ), emitting almost 66 MtC in CO{sub 2} emissions. We will discuss fuels used and boiler size distribution. We also describe potential savings measures, and estimate the economic energy savings potential in U.S. industry (i.e. having payback period of 3 years or less). We estimate the nationwide economic potential, based on the evaluation of 16 individual measures in steam generation and distribution. The analysis excludes the efficient use of steam and increased heat recovery. Based on the analysis we estimate the economic potential at 18-20% of total boiler energy use, resulting in energy savings approximately 1120-1190 TBtu ( 1180-1260 PJ). This results in a reduction of CO{sub 2} emissions equivalent to 12-13 MtC.

Einstein, Dan; Worrell, Ernst; Khrushch, Marta

2001-07-22T23:59:59.000Z

414

Energy Efficiency Improvement and Cost Saving Opportunities for the Glass Industry. An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network (OSTI)

opportunities, recommend energy efficiency actions, developM. Kushler (1997). Energy Efficiency in Automotive and Steelthe ACEEE Summer Study on Energy Efficiency in Industry, Rye

Worrell, Ernst

2008-01-01T23:59:59.000Z

415

Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network (OSTI)

and M. Kushler. (1997). Energy Efficiency in Automotive andSummer Study on Energy Efficiency in Industry. AmericanCalifornia Institute of Energy Efficiency ( CIEE). (2000b).

Galitsky, Christina

2008-01-01T23:59:59.000Z

416

Improved power efficiency for very-high-temperature solar-thermal-cavity receivers  

DOE Patents (OSTI)

This invention is an improved solar energy cavity receiver for exposing materials and components to high temperatures. The receiver includes a housing having an internal reflective surface defining a cavity and having an inlet for admitting solar radiation thereto. A photothermal absorber is positiond in the cavity to receive radiation from the inlet. A reflective baffle is positioned between the absorber and the inlet to severely restrict the re-radiation of energy through the inlet. The front surface of the baffle defines a narrow annulus with the internal reflective surface of the housing. The front surface of the baffle is contoured to reflect incoming radiation onto the internal surface of the housing, from which it is reflected through the annulus and onto the front surface of the absorber. The back surface of the baffle intercepts radiation from the front of the absorber. With this arrangement, a high percentage of the solar power input is retained in the cavity; thus, high internal temperatues are attained.

McDougal, A.R.; Hale, R.R.

1982-04-14T23:59:59.000Z

417

Energy efficiency and the environment: Innovative ways to improve air quality in the Los Angeles Basin  

Science Conference Proceedings (OSTI)

This paper focuses on novel, innovative approaches for reducing or delaying the production of photochemical smog in the Los Angeles Basin. These approaches include modifying the surface characteristics of the basin by increasing surface albedo and an extensive tree-planting program. The changes in surface conditions are designed to reduce the basin air temperatures, especially during the summer months, which will result in two possible effects. First, a decrease in temperature would lead to a reduction in energy use with an associated decline in emissions of nitrogen oxides (NO{sub x}) and a lowering of evaporative emission of reactive organic gases. Reductions in these smog precursors could improve the air quality of the basin without imposing additional emissions regulations. The second effect is associated with the possible causal relationship between air temperature and smog formation (i.e., lower temperatures and lower incidence of smog). Since this approach to mitigating air emissions is broad, the studies to date have concentrated on how changes in surface characteristics affect the meteorological conditions of the basin and on how these meteorological changes subsequently affect smog production. A geographic information system database of key surface characteristics (i.e., vegetative cover, albedo, moisture availability, and roughness) was compiled, and these characteristics were evaluated using prognostic meteorological models. The results of two- and three-dimensional meteorological simulations will be presented and discussed in this paper.

Ritschard, R.

1993-02-01T23:59:59.000Z

418

Policy Drivers for Improving Electricity End-Use Efficiency in the U.S.: An Economic-Engineering Analysis  

E-Print Network (OSTI)

This paper estimates the economically achievable potential for improving electricity end-use efficiency in the U.S. The approach involves identifying a series of energy-efficiency policies aimed at tackling market failures, and then examining their impacts and cost-effectiveness using Georgia Techs version of the National Energy Modeling System (GT-NEMS). By estimating the policy-driven electricity savings and the associated levelized costs, a policy supply curve for electricity efficiency is produced. Each policy is evaluated individually and in an Integrated Policy scenario to examine policy dynamics. The Integrated Policy scenario demonstrates significant achievable potential: 261 TWh (6.5%) of electricity savings in 2020, and 457 TWh (10.2%) in 2035. All eleven policies examined were estimated to have lower levelized costs than average electricity retail prices. Levelized costs range from 0.5 8.0 cent/kWh, with the regulatory and information policies tending to be most cost-effective. Policy impacts on the power sector, carbon dioxide emissions, and energy intensity are also estimated to be significant. *Corresponding author:

Yu Wang; Marilyn A. Brown; Yu Wang

2013-01-01T23:59:59.000Z

419

Energy Efficiency Improvement and Cost Saving Opportunities for Breweries: An ENERGY STAR(R) Guide for Energy and Plant Managers  

Science Conference Proceedings (OSTI)

Annually, breweries in the United States spend over $200 million on energy. Energy consumption is equal to 38 percent of the production costs of beer, making energy efficiency improvement an important way to reduce costs, especially in times of high energy price volatility. After a summary of the beer making process and energy use, we examine energy efficiency opportunities available for breweries. We provide specific primary energy savings for each energy efficiency measure based on case studies that have implemented the measures, as well as references to technical literature. If available, we have also listed typical payback periods. Our findings suggest that given available technology, there are still opportunities to reduce energy consumption cost-effectively in the brewing industry. Brewers value highly the quality, taste and drinkability of their beer. Brewing companies have and are expected to continue to spend capital on cost-effective energy conservation measures that meet these quality, taste and drinkability requirements. For individual plants, further research on the economics of the measures, as well as their applicability to different brewing practices, is needed to assess implementation of selected technologies.

Galitsky, Christina; Martin, Nathan; Worrell, Ernst; Lehman, Bryan

2003-09-01T23:59:59.000Z

420

Improvement of PNP Problem Computational Efficiency For Known Target Geometry of Cubesats  

E-Print Network (OSTI)

This thesis considers the Perspective-N-Point (PNP) problem with orthogonal target geometry, as seen in the problem of cubesat relative navigation. Cubesats are small spacecraft often developed for research purposes and to perform missions in space at low cost. Sensor systems for cubesats have been designed that, by providing vector (equivalently line-of-sight, angle, and image plane) measurements, equate relative navigation to a PNP problem. Much study has been done on this problem, but little of it has considered the case where target geometry is known in advance, as is the case with cooperating cubesats. A typical constraint for cubesats, as well as other PNP applications, is processing resources. Therefore, we considered the ability to reduce processing burden of the PNP solution by taking advantage of the known target geometry. We did this by considering a specific P3P solver and a specific point-cloud correspondence (PCC) solver for disambiguating/improving the estimate, and modifying them both to take into account a known orthogonal geometry. The P3P solver was the Kneip solver, and the point-cloud-correspondence solver was the Optimal Linear Attitude Estimator (OLAE). We were able to achieve over 40% reduction in the computational time of the P3P solver, and around 10% for the PCC solver, vs. the unmodified solvers acting on the same problems. It is possible that the Kneip P3P solver was particularly well suited to this approach. Nevertheless, these findings suggest similar investigation may be worthwhile for other PNP solvers, if (1) processing resources are scarce, and (2) target geometry can be known in advance.

Hafer, William

2012-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "fostering efficiency improvements" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Energy Efficiency Improvement and Cost Saving Opportunities for the Glass Industry. An ENERGY STAR Guide for Energy and Plant Managers  

Science Conference Proceedings (OSTI)

The U.S. glass industry is comprised of four primary industry segments--flat glass, container glass, specialty glass, and fiberglass--which together consume $1.6 billion in energy annually. On average, energy costs in the U.S. glass industry account for around 14 percent of total glass production costs. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There is a variety of opportunities available at individual plants in the U.S. glass industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy-efficient technologies that can be implemented at the component, process, system, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the U.S. glass industry is provided along with a description of the major process steps in glass manufacturing. Expected savings in energy and energy-related costs are given for many energy efficiency measures, based on case study data from real-world applications in glass production facilities and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. The information in this Energy Guide is intended to help energy and plant managers in the U.S. glass industry reduce energy consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of the measures--as well on as their applicability to different production practices--is needed to assess potential implementation of selected technologies at individual plants.

Galitsky, Christina; Worrell, Ernst; Galitsky, Christina; Masanet, Eric; Graus, Wina

2008-03-01T23:59:59.000Z

422

Improving the sampling efficiency of the Grand Canonical Simulated Quenching approach  

SciTech Connect

Most common atomistic simulation techniques, like molecular dynamics or Metropolis Monte Carlo, operate under a constant interatomic Hamiltonian with a fixed number of atoms. Internal (atom positions or velocities) or external (simulation cell size or geometry) variables are then evolved dynamically or stochastically to yield sampling in different ensembles, such as microcanonical (NVE), canonical (NVT), isothermal-isobaric (NPT), etc. Averages are then taken to compute relevant physical properties. At least two limitations of these standard approaches can seriously hamper their application to many important systems: (1) they do not allow for the exchange of particles with a reservoir, and (2) the sampling efficiency is insufficient to allow the obtention of converged results because of the very long intrinsic timescales associated with these quantities. To fix ideas, one might want to identify low (free) energy configurations of grain boundaries (GB). In reality, grain boundaries are in contact the grains which act as reservoirs of defects (e.g., vacancies and interstitials). Since the GB can exchange particles with its environment, the most stable configuration cannot provably be found by sampling from NVE or NVT ensembles alone: one needs to allow the number of atoms in the sample to fluctuate. The first limitation can be circumvented by working in the grand canonical ensemble (TV ) or its derivatives (such as the semi-grand-canonical ensemble useful for the study of substitutional alloys). Monte Carlo methods have been the first to adapt to this kind of system where the number of atoms is allowed to fluctuate. Many of these methods are based on the Widom insertion method [Widom63] where the chemical potential of a given chemical species can be inferred from the potential energy changes upon random insertion of a new particle within the simulation cell. Other techniques, such as the Gibbs ensemble Monte Carlo [Panagiotopoulos87] where exchanges of particles are attempted to equilibrate the chemical potential between two cells and hence allow for the calculation of coexistence curves, exploit the same idea: particle insertion (or exchange) is attempted and accepted with a Metropolis-like rule that depends exponentially on the energy change upon insertion. A well known limitation of this kind of approach is that the probability of accepting such a move decreases extremely rapidly with increasing density, due to the extremely large short-range repulsion between atoms. In response to these difficulties it became apparent that a solution to the problem might be to avoid abrupt insertions but instead to proceed gradually, so as to allow the system to react and make way for the incoming particle. In this view of things, the 'occupation' of a certain atomic site can be viewed as a continuous variable, ranging between 0 and 1, representing 'how much' of the particle is present at any given time. These ideas proved ideal in Molecular Dynamics (MD) settings because equations of motions for these occupation variables can sometimes be obtained. For example, in the case of Grand Canonical Molecular Dynamics [Cagin91], one special particle is allowed to have a fractional occupation. This can lead to either its destruction (occupation = 0) or its complex creation (occupation = 1) so as to enforce a given chemical potential. These approaches proved useful, but mostly in the liquid state where the probability of successfully inserting a new particle is sufficiently high. At higher densities, convergence proved to be hampered by very inefficient sampling. In this work, we explore the use of a related MD-based grand canonical technique, the Grand Canonical Simulated Quenching (GCSQ) of Phillpot and Rickman [Phillpot92,Phillpot94], and explore its application to the grand canonical sampling of solid state systems. We show that, in conjunction with advanced sampling techniques, GCSQ can be a useful tool to sample conformations of complex systems, such as GBs, and assist in the identification of their most stable states and/or most likely d

Perez, Danny [Los Alamos National Laboratory; Vernon, Louis J. [Los Alamos National Laboratory

2012-04-04T23:59:59.000Z

423

Modeling Building Energy Use and HVAC Efficiency Improvements in Extreme Hot and Humid Regions  

E-Print Network (OSTI)

An energy analysis was performed on the Texas A & M University at Qatar building in Doha, Qatar. The building and its HVAC systems were modeled using EnergyPlus. Building chilled water and electrical data were collected to validate the computer simulation. The simulated monthly electricity consumption was within plus/minus 5 percent of the metered building data. Ninety-five percent of simulated hourly electricity data in a day were within plus/minus 10 percent of metered data. Monthly chilled water demand was within plus/minus 18 percent of measurements, and simulated monthly demand was correlated to metered monthly values with an R-squared correlation coefficient of 0.95. Once the simulation was verified with the metered data, an optimization of the building's HVAC systems was performed. Better utilizing the building's variable speed fans at part loads showed potential annual electricity savings of 16 percent over the base case, with another 22 percent savings in chilled water energy. After converting chilled water savings to equivalent chiller electricity savings, the potential utility cost savings over the base case were found to be $90,000/yr at local utility rates. Reducing outdoor air intake to ASHRAE indoor air quality minimums yielded an additional 17 percent in potential chilled water savings and brought total monetary savings over the base case to $110,000/yr. Using a dedicated outside air system to precisely control individual zone ventilation showed potential for an additional 12 percent chilled water savings and $14,000 in yearly utility savings, while also eliminating cases of under-ventilation. A hypothetical retrofit of fan powered terminal units (FPTU's) resulted in energy savings only at very low minimum flow rates, below ventilation standards. Savings were never more than 20 percent over the no-fan case. Series FPTU's showed no savings at any flow setting and negligible difference was found between ECM and SCR motor control. Finally, the dependence on climate of each improvement was studied. Simulations were run in the relatively milder climates of Houston and Phoenix and compared to those found for Doha. It was found that variable speed fan operation is a more cost effective option for milder climates, while outside air control is more cost effective in extreme hot and humid climates such as Doha. Future study is needed to make the FPTU model valid for different climates and flow ranges.

Bible, Mitchell

2011-08-01T23:59:59.000Z

424

Energy Efficiency Improvement by Measurement and Control: A Case Study of Reheating Furnaces in the Steel Industry  

E-Print Network (OSTI)

The aim of this paper is to analyze the possibilities for energy efficiency improvements through utilization of measurement and automatic control; this includes both direct fuel savings and indirect savings due to product quality improvements. Focus is on energy use in steel reheating furnaces for rolling mills. The demands on the reheating process and the operational conditions that are essential for its control are described. An analysis is made of possible reductions in energy use as a result of improved control. A survey is included of furnace control systems in steel plants; such equipment has been designed and implemented in order to optimize the reheating process. Reports of achieved savings are presented, and demands on measurement and control systems for successful implementation are discussed. Economic analyses, in terms of life cycle costs and estimated savings, are made for three levels of measurement and control systems. Reductions in energy use of up to 20 percent can be expected for the type of process studied, as a result of investments in information technology; it is also concluded that such investments are cost-effective.

Martensson, A.

1992-04-01T23:59:59.000Z

425

INVESTIGATION OF EFFICIENCY IMPROVEMENTS DURING CO2 INJECTION IN HYDRAULICALLY AND NATURALLY FRACTURED RESERVOIRS  

Science Conference Proceedings (OSTI)

The objective of this project is to perform unique laboratory experiments with artificial fractured cores (AFCs) and X-ray CT to examine the physical mechanisms of bypassing in HFR and NFR that eventually result in more efficient CO{sub 2} flooding in heterogeneous or fracture-dominated reservoirs. To achieve this objective, we divided the report into two chapters. The first chapter was to image and perform experimental investigation of transfer mechanisms during CO{sub 2} flooding in NFR and HFR using X-ray CT scanner. In this chapter, we emphasized our work on understanding the connection between fracture properties and fundamentals of transfer mechanism from matrix to fractures and fluid flow through fracture systems. We started our work by investigating the effect of different overburden pressures and stress-state conditions on rock properties and fluid flow. Since the fracture aperture is one of important parameter that governs the fluid flow through the fracture systems, the average fracture aperture from the fluid flow experiments and fracture aperture distribution derived from X-ray CT scan were estimated for our modeling purposes. The fracture properties and fluid flow have significant changes in response to different overburden pressures and stress-state conditions. The fracture aperture distribution follows lognormal distribution even at elevated stress conditions. Later, we also investigated the fluid transfers between matrix and fracture that control imbibition process. We evaluated dimensionless time for validating the scheme of upscaling laboratory experiments to field dimensions. In CO{sub 2} injection experiments, the use of X-ray CT has allowed us to understand the mechanisms of CO{sub 2} flooding process in fractured system and to take important steps in reducing oil bypassed. When CO{sub 2} flooding experiments were performed on a short core with a fracture at the center of the core, the gravity plays an important role in the recovery of oil even in a short matrix block. This results are contrary with the previous believes that gravity drainage has always been associated with tall matrix blocks. In order to reduce oil bypassed, we injected water that has been viscosified with a polymer into the fracture to divert CO{sub 2} flow into matrix and delay CO{sub 2} breakthrough. Although the breakthrough time reduced considerably, water ''leak off'' into the matrix was very high. A cross-linked gel was used in the fracture to avoid this problem. The gel was found to overcome ''leak off'' problems and effectively divert CO{sub 2} flow into the matrix. As part of our technology transfer activity, we investigated the natural fracture aperture distribution of Tensleep formation cores. We found that the measured apertures distributions follow log normal distribution as expected. The second chapter deals with analysis and modeling the laboratory experiments and fluid flow through fractured networks. We derived a new equation to determine the average fracture aperture and the amount of each flow through fracture and matrix system. The results of this study were used as the observed data and for validating the simulation model. The idea behind this study is to validate the use of a set of smooth parallel plates that is common in modeling fracture system. The results suggest that fracture apertures need to be distributed to accurately model the experimental results. In order to study the imbibition process in details, we developed imbibition simulator. We validated our model with X-ray CT experimental data from different imbibition experiments. We found that the proper simulation model requires matching both weight gain and CT water saturation simultaneously as oppose to common practices in matching imbibition process with weight gain only because of lack information from CT scan. The work was continued by developing dual porosity simulation using empirical transfer function (ETF) derived from imbibition experiments. This allows reduction of uncertainty parameter in modeling transfer of fluids from matrix to the fra

David S. Schechter

2005-09-28T23:59:59.000Z

426

EM Supports Program that Fosters Region's Safety Culture | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EM Supports Program that Fosters Region's Safety Culture EM Supports Program that Fosters Region's Safety Culture EM Supports Program that Fosters Region's Safety Culture September 10, 2013 - 12:00pm Addthis Participants in Safety Fest Tennessee receive a hands-on demonstration about electrical safety. Participants in Safety Fest Tennessee receive a hands-on demonstration about electrical safety. This year’s event offers 40 safety courses. Participants discuss relevant safety issues and best practices. This year's event offers 40 safety courses. Participants discuss relevant safety issues and best practices. Participants in Safety Fest Tennessee receive a hands-on demonstration about electrical safety. This year's event offers 40 safety courses. Participants discuss relevant safety issues and best practices.

427

Federal Task Force Sends Recommendations to President on Fostering Clean  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Federal Task Force Sends Recommendations to President on Fostering Federal Task Force Sends Recommendations to President on Fostering Clean Coal Technology Federal Task Force Sends Recommendations to President on Fostering Clean Coal Technology August 12, 2010 - 1:00pm Addthis Washington, DC - President Obama's Interagency Task Force on Carbon Capture and Storage (CCS), co-chaired by the U.S. Environmental Protection Agency (EPA) and the Department of Energy (DOE), delivered a series of recommendations to the president today on overcoming the barriers to the widespread, cost-effective deployment of CCS within 10 years. CCS is a group of technologies for capturing, compressing, transporting and permanently storing power plant and industrial source emissions of carbon dioxide. Rapid development and deployment of clean coal technologies,

428

Fostering a New Generation of Geothermal Workers | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fostering a New Generation of Geothermal Workers Fostering a New Generation of Geothermal Workers Fostering a New Generation of Geothermal Workers October 5, 2010 - 4:31pm Addthis Andy Oare Andy Oare Former New Media Strategist, Office of Public Affairs Editor's Note: The Registration Deadline has been extended to November 12th. If there's one thing that absolutely must be in place to build a robust clean energy economy, it's a robust and well-trained clean energy workforce. Think about it - we're doing something here that we've never really done before, at least not to this scale. It's one thing to install solar panels on top of large building complexes and in huge fields - but how about every home in America? And if we're really going to use electric vehicles to the scale that David Sandalow talked about yesterday,

429

Federal Task Force Sends Recommendations to President on Fostering Clean  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Task Force Sends Recommendations to President on Fostering Task Force Sends Recommendations to President on Fostering Clean Coal Technology Federal Task Force Sends Recommendations to President on Fostering Clean Coal Technology August 12, 2010 - 12:00am Addthis WASHINGTON - President Obama's Interagency Task Force on Carbon Capture and Storage (CCS), co-chaired by the U.S. Environmental Protection Agency (EPA) and the Department of Energy (DOE), delivered a series of recommendations to the president today on overcoming the barriers to the widespread, cost-effective deployment of CCS within 10 years. CCS is a group of technologies for capturing, compressing, transporting and permanently storing power plant and industrial source emissions of carbon dioxide. Rapid development and deployment of clean coal technologies, particularly

430

EM Supports Program that Fosters Region's Safety Culture | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EM Supports Program that Fosters Region's Safety Culture EM Supports Program that Fosters Region's Safety Culture EM Supports Program that Fosters Region's Safety Culture September 10, 2013 - 12:00pm Addthis Participants in Safety Fest Tennessee receive a hands-on demonstration about electrical safety. Participants in Safety Fest Tennessee receive a hands-on demonstration about electrical safety. This year’s event offers 40 safety courses. Participants discuss relevant safety issues and best practices. This year's event offers 40 safety courses. Participants discuss relevant safety issues and best practices. Participants in Safety Fest Tennessee receive a hands-on demonstration about electrical safety. This year's event offers 40 safety courses. Participants discuss relevant safety issues and best practices.

431

Development of advanced drilling, completion, and stimulation systems for minimum formation damage and improved efficiency: A program overview  

SciTech Connect

The Department of Energy`s (DOE) Natural Gas Resource and Extraction Program consists of industry/government co-sponsored research, development, and demonstration (RD&D) projects, which focus on gas recovery from both conventional and nonconventional resources. The Drilling, Completion, and Stimulation (DCS) Project focuses on advanced, non-damaging technology systems and equipment for improving gas recovery from conventional and nonconventional reservoirs. As operators move from development of current day economically attractive gas-field development to the lower permeability geologic regions of domestic onshore plays, increasing the emphasis on minimum formation damage DCS will permit economic development of gas reserves. The objective of the Project is to develop and demonstrate cost-effective, advanced technology to accelerate widespread use and acceptance of minimum formation damage DCS systems. The goal of this product development effort is to reduce costs and improve the overall efficiency of vertical, directional, and horizontally drilled wells in gas formations throughout the US. The current focus of the Project is on the development of underbalanced drilling technology and minimum formation damage stimulation technology concurrently with the appropriate completion hardware to improve the economics of domestic natural gas field development. Ongoing drilling technology projects to be discussed include development of an electromagnetic measurement while drilling system for directional and horizontal drilling in underbalanced drilling applications and the development of a steerable air percussion drilling system for hard formation drilling and improved penetration rates. Ongoing stimulation technology projects to be discussed include introduction of carbon dioxide/sand fracturing technology for minimal formation damage.

Layne, A.W.; Yost, A.B. II

1994-07-01T23:59:59.000Z

432

Foster Wheeler Solar Development Corporation modular industrial solar retrofit qualification test results  

DOE Green Energy (OSTI)

Under the Department of Energy's Modular Industrial Solar Retrofit project, industrial process steam systems incorporating line-focus solar thermal collectors were designed and hardware was installed and tested. This report describes the test results for the system designed by Foster Wheeler Solar Development Corporation. The test series included function and safety tests to determine that the system operated as specified, an unattended operations test to demonstrate automatic operation, performance tests to provide a database for predicting system performance, and life cycle tests to evaluate component and maintenance requirements. Component-level modifications to improve system performance and reliability were also evaluated.

Cameron, C.P.; Dudley, V.E.; Lewandoski, A.A.

1986-10-01T23:59:59.000Z

433

Improvement of Laser Damage Resistance and Diffraction Efficiency of Multilayer Dielectric Diffraction Gratings by HF-Etchback Linewidth Tailoring  

Science Conference Proceedings (OSTI)

Multilayer dielectric (MLD) diffraction gratings for Petawatt-class laser systems possess unique laser damage characteristics. Details of the shape of the grating lines and the concentration of absorbing impurities on the surface of the grating structures both have strong effects on laser damage threshold. It is known that electric field enhancement in the solid material comprising the grating lines varies directly with the linewidth and inversely with the line height for equivalent diffraction efficiency. Here, they present an overview of laser damage characteristics of MLD gratings, and describe a process for post-processing ion-beam etched grating lines using very dilute buffered hydrofluoric acid solutions. This process acts simultaneously to reduce grating linewidth and remove surface contaminants, thereby improving laser damage thresholds through two pathways.

Nguyen, H T; Larson, C C; Britten, J A

2010-10-28T23:59:59.000Z

434

TiO2 Nanotubes with a ZnO Thin Energy Barrier for Improved Current Efficiency of CdSe Quantum-Dot-Sensitized Solar Cells  

Science Conference Proceedings (OSTI)

This paper reports the formation of a thin ZnO energy barrier between a CdSe quantum dot (Q dots) sensitizer and TiO{sub 2} nanotubes (TONTs) for improved current efficiency of Q dot-sensitized solar cells. The formation of a ZnO barrier between TONTs and the Q dot sensitizer increased the short-circuit current under illumination and also reduced the dark current in a dark environment. The power conversion efficiency of Q dot-sensitized TONT solar cells increased by 25.9% in the presence of the ZnO thin layer due to improved charge-collecting efficiency and reduced recombination.

Lee, W.; Kang, S. H.; Kim, J. Y.; Kolekar, G. B.; Sung, Y. E.; Han, S. H.

2009-01-01T23:59:59.000Z

435

Petroleum Processing Efficiency Improvement  

Science Conference Proceedings (OSTI)

A series of volatile crude oils was characterized using the Asphaltene Determinator oncolumn precipitation and re-dissolution method developed at Western Research Institute (WRI). Gravimetric asphaltenes and polars fractions from silica gel chromatography separation of the oils were characterized also. A study to define the differences in composition of asphaltenes in refinery desalter rag layer emulsions and the corresponding feed and desalter oils was conducted. Results indicate that the most polar and pericondensed aromatic material in the asphaltenes is enriched in the emulsions. The wax types and carbon number distributions in the two heptaneeluting fractions from the Waxphaltene Determinator separation were characterized by repetitive collection of the fractions followed by high temperature gas chromatography (GC) and Fourier transform infrared spectroscopy (FTIR). High resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICRMS) was conducted by researchers at the Florida State University National High Magnetic Field laboratory in a no-cost collaboration with the study.

John Schabron; Joseph Rovani; Mark Sanderson; Jenny Loveridge

2012-09-01T23:59:59.000Z

436

Brian Foster -DIS01 -Bologna HERA II Physics  

E-Print Network (OSTI)

V2 Q2 = 200 GeV2 Q2 = 2000 GeV2 #12;Brian Foster - DIS01 - Bologna 8 Active Filter Calorimeter ZEUS 6 systematics plus precision electron tagger. "Standard" Pb/scintillator calorimeter plus "active filter" of aerogel. Dipole spectrometer to measure converting e+e- pairs. "6m tagger" W/fibre to measure the energy

437

Improved  

NLE Websites -- All DOE Office Websites (Extended Search)

Improved Improved cache performance in Monte Carlo transport calculations using energy banding A. Siegel a , K. Smith b , K. Felker c,∗ , P . Romano b , B. Forget b , P . Beckman c a Argonne National Laboratory, Theory and Computing Sciences and Nuclear Engineering Division b Massachusetts Institute of Technology, Department of Nuclear Science and Engineering c Argonne National Laboratory, Theory and Computing Sciences Abstract We present an energy banding algorithm for Monte Carlo (MC) neutral parti- cle transport simulations which depend on large cross section lookup tables. In MC codes, read-only cross section data tables are accessed frequently, ex- hibit poor locality, and are typically much too large to fit in fast memory. Thus, performance is often limited by long latencies to RAM, or by off-node communication latencies when the data footprint is very large and must be decomposed on

438

Ian Foster Named One of the Top Three Contributors to Computer...  

NLE Websites -- All DOE Office Websites (Extended Search)

Foster Named One of the Top Three Contributors to Computer Science August 16, 2007 Tweet EmailPrint Argonne researcher Ian Foster has been named one of the top three contributors...

439

Energy efficient data centers  

E-Print Network (OSTI)

Sealing floor openings can improve efficiency by directing airSealing floor openings can improve efficiency by directing airSealing floor openings can improve efficiency by directing air

Tschudi, William; Xu, Tengfang; Sartor, Dale; Koomey, Jon; Nordman, Bruce; Sezgen, Osman

2004-01-01T23:59:59.000Z

440

Resource utilization efficiency improvement of geothermal binary cycles, phase I. Semiannual progress report, June 15, 1975--December 15, 1975  

DOE Green Energy (OSTI)

A summary of the research carried out prior to the start and during the first half of this project is presented. A description of the geothermal binary cycle and procedures for cycle thermodynamic analysis focusing on the question of resource utilization are discussed. General and specific criteria for preliminary selection of working fluids and operating conditions for binary cycles are considered in terms of equipment and working fluid costs and in terms of resource utilization efficiency. Steps are given for preliminary binary cycle design computations. Preliminary evaluations of alternative pure working fluid, ideal thermodynamic cycles are illustrated. The development of the working fluid mixture thermodynamic cycle, GEO 1, using the improved versions of previously developed thermodynamic properties routines was the first of several significant accomplishments during the first half of this project. Documentation of the thermodynamic properties program which can calculate densities, enthalpies, entropies, heat capacities, K-values for vapor and liquid mixtures (limited presently to hydrocarbons), flashes, dew and bubble points, isentropic and isenthalpic state changes, has been completed. Preliminary calculations using GEO 1 have indicated that mixture cycles yield greater net power output than either pure propane, isobutane, or isopentane cycles when equal heat exchanger log mean temperature differences are considered and also when optimized ideal cycles are compared. Steps to upgrade GEO 1 with equipment sizing and economics routines to produce GEO 2 and GEO 3 simulators were begun.

Starling, K.E.; Fish, L.W.; Iqbal, K.Z.; Yieh, D.

1975-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fostering efficiency improvements" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

IMPROVING THE NATION'S ENERGY SECURITY: CAN CARS AND TRUCKS BE MADE MORE FUEL EFFICIENT - Testimony to the U.S. House of Representatives Science Committee, February 9, 2005  

NLE Websites -- All DOE Office Websites (Extended Search)

IMPROVING THE NATION'S ENERGY SECURITY: CAN CARS AND TRUCKS IMPROVING THE NATION'S ENERGY SECURITY: CAN CARS AND TRUCKS BE MADE MORE FUEL EFFICIENT? 2:00 pm, Wednesday, February 9, 2005 Rayburn House Office Building, Room 2318 by Dr. David L. Greene Corporate Fellow Engineering Science and Technology Division Oak Ridge National Laboratory 1. WHAT ARE THE POLICY OPTIONS FOR ENCOURAGING THE ADOPTION OF FUEL EFFICIENT TECHNOLOGIES AND THEIR ADVANTAGES AND DISADVANTAGES? There are many ways to structure policies to achieve significant increases in fuel economy effectively and efficiently. I will focus on five below. It is possible to create policies that are reasonably effective, efficient, and fair. Our own experience with our CAFE standards and difficulties we have had updating the CAFE law indicates that we should also prefer policies that

442

Energy Efficiency Improvement and Cost Saving Opportunities for Cement Making. An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network (OSTI)

1997 ACEEE Summer Study on Energy Efficiency in Industry.American Council for an Energy-Efficient Economy,Park, NC. Birch, E. , 1990. Energy Savings in Cement Kiln

Worrell, Ernst

2008-01-01T23:59:59.000Z

443

Microelectronics Plant Water Efficiency Improvements at Sandia National Laboratories: Best Management Practice, Case Study #13 - Other Water Use (Brochure)  

Science Conference Proceedings (OSTI)

Overview of alternative financing mechanisms avaiable to Federal agencies to fund renewable energy and energy efficiency projects.

Not Available

2009-08-01T23:59:59.000Z