Powered by Deep Web Technologies
Note: This page contains sample records for the topic "fossil steam steam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Steam Oxidation of Fossil Power Plant Materials: Collaborative Research to Enable Advanced Steam Power Cycles  

Research into improved materials systems and associated manufacturing and reliability issues is a major part of initiatives to produce cleaner and cheaper energy systems in the UK and the USA. Under the auspices of a Memorandum of Understanding on Energy R&D, a work programme concerned with steam oxidation has been conducted. The focus was on the generation of definitive information regarding the oxidation behaviour in steam of current and developmental ferritic steels, austenitic steels, and nickelbased alloys required to enable advanced steam power cycles. The results were intended to provide a basis for quantifying the rate of metal loss expected under advanced steam cycle conditions, as well as understanding of the evolution of oxide scale morphologies with time and temperature to identify features that could influence scale exfoliation characteristics. This understanding and acquired data were used to develop and validate models of oxide growth and loss by exfoliation. This paper provides an overview of the activity and highlights a selection of the results coming from the programme.

A. T. Fry; I. G Wright; N. J Simms; B. McGhee; G. R. Holcomb

2013-11-19T23:59:59.000Z

2

Air Pollution Control Regulations: No. 13- Particulate Emissions from Fossil Fuel Fired Steam or Hot Water Generating Units (Rhode Island)  

Energy.gov (U.S. Department of Energy (DOE))

The purpose of this regulation is to limit emissions of particulate matter from fossil fuel fired and wood-fired steam or hot water generating units.

3

Superheated steam power plant with steam to steam reheater. [LMFBR  

SciTech Connect

A desuperheater is disposed in a steam supply line supplying superheated steam to a shell and tube reheater.

Silvestri, G.J.

1981-06-23T23:59:59.000Z

4

Improving steam turbine efficiency  

SciTech Connect

This paper describes the condition of a significant number of fossil steam turbines operating in the United States and the maintenance practices used to improve their performance. Through the use of steam path audits conducted by the authors` company and by several utilities, a large data base of information on turbine heat rate, casing efficiency, and maintenance practices is available to help the power generation industry understand how different maintenance practices and steam path damage impact turbine performance. The data base reveals that turbine cycle heat rate is typically 5.23% poorer than design just prior to major outages. The degraded condition of steam turbines presents an opportunity for utilities to improve heat rate and reduce emissions without increasing fuel costs. The paper describes what losses typically contribute to the 5.23% heat rate degradation and how utilities can recover steam turbine performance through maintenance actions aimed at improving steam path efficiency.

Cioffi, D.H.; Mitchell, D.R.; Whitecar, S.C. [Encotech, Inc., Schenectady, NY (United States)

1995-06-01T23:59:59.000Z

5

Geothermal Steam Power Plant | Open Energy Information  

Open Energy Info (EERE)

(Redirected from Dry Steam) (Redirected from Dry Steam) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home General List of Dry Steam Plants List of Flash Steam Plants Steam Power Plants Dry Steam Power Plants Simple Dry Steam Powerplant process description - DOE EERE 2012 Dry steam plants use hydrothermal fluids that are primarily steam. The steam travels directly to a turbine, which drives a generator that produces electricity. The steam eliminates the need to burn fossil fuels to run the turbine (also eliminating the need to transport and store fuels). These plants emit only excess steam and very minor amounts of gases.[1] Dry steam power plants systems were the first type of geothermal power generation plants built (they were first used at Lardarello in Italy in 1904). Steam technology is still effective today at currently in use at The

6

Steam Turbine Cogeneration  

E-Print Network (OSTI)

Steam turbines are widely used in most industrial facilities because steam is readily available and steam turbine is easy to operate and maintain. If designed properly, a steam turbine co-generation (producing heat and power simultaneously) system...

Quach, K.; Robb, A. G.

2008-01-01T23:59:59.000Z

7

Achieve Steam System Excellence- Steam Overview  

Energy.gov (U.S. Department of Energy (DOE))

This fact sheet describes a steam systems approach to help companies operate and maintain their industrial steam plants and thermal manufacturing processes more efficiently.

8

HP Steam Trap Monitoring  

E-Print Network (OSTI)

Consumption Peak Demand Mgt Peak Demand Mgt Similar Weather Day Analysis Metering and Verafication Steam Meter Monitoring ? Peak Demand Management ? Steam Consumption Management ? Steam Bill Verification ? Measurement and Verification ... Consumption Peak Demand Mgt Peak Demand Mgt Similar Weather Day Analysis Metering and Verafication Steam Meter Monitoring ? Peak Demand Management ? Steam Consumption Management ? Steam Bill Verification ? Measurement and Verification ...

Pascone, S.

2011-01-01T23:59:59.000Z

9

Steam System Survey Guide  

Energy.gov (U.S. Department of Energy (DOE))

This guide provides technical information for steam system operational personnel and plant energy managers on some of the major opportunities available to improve the energy efficiency and productivity of industrial steam systems. The guide covers five main areas of investigation: (1) profiling a steam system, (2) identifying steam properties for the steam system, (3) improving boiler operations, (4) improving resource utilization in the steam system, and (5) investigating energy losses in the steam distribution system.

10

Steam Path Audits on Industrial Steam Turbines  

E-Print Network (OSTI)

steam Path Audits on Industrial steam Turbines DOUGLAS R. MITCHELL. ENGINEER. ENCOTECH, INC., SCHENECTADY, NEW YORK ABSTRACT The electric utility industry has benefitted from steam path audits on steam turbines for several years. Benefits... not extend the turbine outage. To assure that all of the turbine audit data are available, the audit engineer must be at the turbine site the day the steam path is first exposed. A report of the opening audit findings is generated to describe the as...

Mitchell, D. R.

11

Geothermal Steam Power Plant | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home General List of Dry Steam Plants List of Flash Steam Plants Steam Power Plants Dry Steam Power Plants Simple Dry Steam Powerplant process description - DOE EERE 2012 Dry steam plants use hydrothermal fluids that are primarily steam. The steam travels directly to a turbine, which drives a generator that produces electricity. The steam eliminates the need to burn fossil fuels to run the turbine (also eliminating the need to transport and store fuels). These plants emit only excess steam and very minor amounts of gases.[1] Dry steam power plants systems were the first type of geothermal power generation plants built (they were first used at Lardarello in Italy in 1904). Steam technology is still effective today at currently in use at The

12

Thomas Reddinger Director, Steam  

E-Print Network (OSTI)

Thomas Reddinger Director, Steam Operations Steven Richards Assistant Manager of Maintenance Supervisor (Distribution) Deborah Moorhead Office Coordinator III Martin Bower Steam Plant Operator Richard Redfield Steam Plant Operator SU Steam Station/Chilled Water Plant Bohdan Sawa Steam Plant Operator Robert

McConnell, Terry

13

Table 11.6 Installed Nameplate Capacity of Fossil-Fuel Steam-Electric Generators With Environmental Equipment, 1985-2010 (Megawatts)  

U.S. Energy Information Administration (EIA) Indexed Site

Installed Nameplate Capacity of Fossil-Fuel Steam-Electric Generators With Environmental Equipment," Installed Nameplate Capacity of Fossil-Fuel Steam-Electric Generators With Environmental Equipment," " 1985-2010 (Megawatts)" "Year","Coal",,,,"Petroleum and Natural Gas",,,,"Total 1" ,,,"Flue Gas","Total 2",,,"Flue Gas","Total 2",,,"Flue Gas","Total 2" ,"Particulate","Cooling","Desulfurization",,"Particulate","Cooling","Desulfurization",,"Particulate","Cooling","Desulfurization" ,"Collectors","Towers","(Scrubbers)",,"Collectors","Towers","(Scrubbers)",,"Collectors","Towers","(Scrubbers)"

14

SteamMaster: Steam System Analysis Software  

E-Print Network (OSTI)

STEAMMASTER: STEAM SYSTEM ANALYSIS SOFTW ARE Greg Wheeler Associate Professor Oregon State University Corvallis, OR 9733 I ABSTRACT As director of Oregon's ]ndustrial Assessment Center, [ have encountered many industrial steam systems during... plant visits. We analyze steam systems and make recommendations to improve system efficiency. [n nearly 400 industrial assessments, we have recommended 210 steam system improvements, excluding heat recovery, that would save $1.5 million/year with a...

Wheeler, G.

15

Methane-steam reforming  

SciTech Connect

A discussion covers steam reforming developments to the 1950's; the kinetics of methane-steam reforming, of the water-gas shift during methane-steam reforming, and of the carbon formation during methane-steam reforming, as approached by Akers and Camp.

Van Hook, J.P.

1980-01-01T23:59:59.000Z

16

Steam Systems | Department of Energy  

Office of Environmental Management (EM)

Reduction: Opportunities and Issues How to Calculate the True Cost of Steam Industrial Heat Pumps for Steam and Fuel Savings Industrial Steam System Heat-Transfer Solutions...

17

Boiler and steam generator corrosion: Fossil fuel power plants. (Latest citations from the NTIS Bibliographic database). Published Search  

SciTech Connect

The bibliography contains citations concerning corrosion effects, mechanisms, detection, and inhibition in fossil fuel fired boilers. Fluidized bed combustors and coal gasification are included in the applications. The citations examine hot corrosion, thermal mechanical degradation, and intergranular oxidation corrosion studies performed on the water side and hot gas side of heat exchanger tubes and support structures. Coatings and treatment of material to inhibit corrosion are discussed. Corrosion affecting nuclear powered steam generators is examined in a separate bibliography. (Contains a minimum of 119 citations and includes a subject term index and title list.)

Not Available

1994-11-01T23:59:59.000Z

18

Steam Oxidation of Advanced Steam Turbine Alloys  

SciTech Connect

Power generation from coal using ultra supercritical steam results in improved fuel efficiency and decreased greenhouse gas emissions. Results of ongoing research into the oxidation of candidate nickel-base alloys for ultra supercritical steam turbines are presented. Exposure conditions range from moist air at atmospheric pressure (650°C to 800°C) to steam at 34.5 MPa (650°C to 760°C). Parabolic scale growth coupled with internal oxidation and reactive evaporation of chromia are the primary corrosion mechanisms.

Holcomb, Gordon R.

2008-01-01T23:59:59.000Z

19

Steam atmosphere drying exhaust steam recompression system  

DOE Patents (OSTI)

This invention relates to a heated steam atmosphere drying system comprising dryer in combination with an exhaust recompression system which is extremely energy efficient and eliminates dangers known to air dryers. The system uses superheated steam as the drying medium, which recirculates through the system where its heat of evaporation and heat of compression is recovered, thereby providing a constant source of heat to the drying chamber. The dryer has inlets whereby feedstock and superheated steam are fed therein. High heat transfer and drying rates are achieved by intimate contact of the superheated steam with the particles being dried. The dryer comprises a vessel which enables the feedstock and steam to enter and recirculate together. When the feedstock becomes dry it will exit the dryer with the steam and become separated from the steam through the use of a curvilinear louver separator (CLS). The CLS enables removal of fine and ultrafine particles from the dryer. Water vapor separated from the particles in the CLS as superheated steam, may then be recovered and recirculated as steam through the use of a compressor to either directly or indirectly heat the dryer, and a heat exchanger or a heater to directly provide heat to the dryer. This system not only provides a very efficient heat transfer system but results in a minimum carry-over of ultrafine particles thereby eliminating any explosive hazard. 17 figures.

Becker, F.E.; Smolensky, L.A.; Doyle, E.F.; DiBella, F.A.

1994-03-08T23:59:59.000Z

20

Quantitative description of steam channels after steam flooding  

Science Journals Connector (OSTI)

Steam channeling is one of the main barriers for EOR after steam flooding. In order to enhance the oil recovery in steam flooded reservoirs, steam channel volumes should be precisely known. In ... methods has bee...

Qiang Zheng; HuiQing Liu; Fang Li; Qing Wang…

2013-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "fossil steam steam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Waste Steam Recovery  

E-Print Network (OSTI)

An examination has been made of the recovery of waste steam by three techniques: direct heat exchange to process, mechanical compression, and thermocompression. Near atmospheric steam sources were considered, but the techniques developed are equally...

Kleinfeld, J. M.

1979-01-01T23:59:59.000Z

22

Downhole steam quality measurement  

DOE Patents (OSTI)

The present invention relates to an empirical electrical method for remote sensing of steam quality utilizing flow-through grids which allow measurement of the electrical properties of a flowing two-phase mixture. The measurement of steam quality in the oil field is important to the efficient application of steam assisted recovery of oil. Because of the increased energy content in higher quality steam it is important to maintain the highest possible steam quality at the injection sandface. The effectiveness of a steaming operation without a measure of steam quality downhole close to the point of injection would be difficult to determine. Therefore, a need exists for the remote sensing of steam quality.

Lee, D.O.; Montoya, P.C.; Muir, J.F.; Wayland, J.R. Jr.

1985-06-19T23:59:59.000Z

23

Steam Digest 2001  

SciTech Connect

Steam Digest 2001 chronicles BestPractices Program's contributions to the industrial trade press for 2001, and presents articles that cover technical, financial and managerial aspects of steam optimization.

Not Available

2002-01-01T23:59:59.000Z

24

Sequential steam; An engineered cyclic steaming method  

SciTech Connect

Cyclic steam injection has been the most widely used EOR method in areas of the Potter sand in the Midway-Sunset field, Kern County, CA. This paper discusses the field pilot and the statistical and theoretical studies leading to the design of a sequential steaming process,plus the implementation of this process on three leases.

Jones, J. (Santa Fe Energy Resources Inc., Bakersfield, CA (US)); Cawthon, J. (Groundwater Resources Inc. (US))

1990-07-01T23:59:59.000Z

25

Hydrocarbon steam reforming using series steam superheaters  

SciTech Connect

In a process for steam reforming of a hydrocarbon gas feedstream wherein: the hydrocarbon gas feedstream is partially reformed at elevated temperatures in indirect heat exchange with hot combustion gases in a direct fired primary reforming furnace provided with a convection section for recovery of excess heat from said combustion gases; and the partially reformed feedstream is then further reformed in the presence of an oxygen-containing gas and steam in a secondary reformer to form a secondary reformer gaseous effluent; the improvement which comprises recovering waste heat from said secondary reformer effluent gas and from said primary reforming combustion products by heating a high pressure saturated steam in a first steam superheating zone by indirect heat exchange with at least a portion of said secondary reformer effluent gas to form a first superheated steam stream; and further heating said first superheated steam in a second steam superheating zone by indirect heat exchange with at least a portion of said primary reformer hot combustion gases for form a second superheated steam stream.

Osman, R. M.

1985-10-08T23:59:59.000Z

26

ULTRA-SUPERCRITICAL STEAM CORROSION  

SciTech Connect

Efficiency increases in fossil energy boilers and steam turbines are being achieved by increasing the temperature and pressure at the turbine inlets well beyond the critical point of water. To allow these increases, advanced materials are needed that are able to withstand the higher temperatures and pressures in terms of strength, creep, and oxidation resistance. As part of a larger collaborative effort, the Albany Research Center (ARC) is examining the steam-side oxidation behavior for ultrasupercritical (USC) steam turbine applications. Initial tests are being done on six alloys identified as candidates for USC steam boiler applications: ferritic alloy SAVE12, austenitic alloy Super 304H, the high Cr-high Ni alloy HR6W, and the nickel-base superalloys Inconel 617, Haynes 230, and Inconel 740. Each of these alloys has very high strength for its alloy type. Three types of experiments are planned: cyclic oxidation in air plus steam at atmospheric pressure, thermogravimetric ana lysis (TGA) in steam at atmospheric pressure, and exposure tests in supercritical steam up to 650 C (1202 F) and 34.5 MPa (5000 psi). The atmospheric pressure tests, combined with supercritical exposures at 13.8, 20.7, 24.6, and 34.5 MPa (2000, 3000, 4000, and 5000 psi) should allow the determination of the effect of pressure on the oxidation process.

Holcomb, G.R.; Alman, D.E.; Bullard, S.B.; Covino, B.S., Jr.; Cramer, S.D.; Ziomek-Moroz, M.

2003-04-22T23:59:59.000Z

27

Geothermal steam quality testing  

SciTech Connect

Geothermal steam quality and purity have a significant effect on the operational efficiency and life of geothermal steam turbines and accessory equipment. Poor steam processing can result in scaled nozzles/blades, erosion, corrosion, reduced utilization efficiency, and early fatigue failures accelerated by stress corrosion cracking (SCC). Upsets formed by undetected slugs of liquid entering the turbine can cause catastrophic failure. The accurate monitoring and determination of geothermal steam quality/purity is intrinsically complex which often results in substantial errors. This paper will review steam quality and purity relationships, address some of the errors, complexities, calibration and focus on: thermodynamic techniques for evaluating and monitoring steam quality by use of the modified throttling calorimeters.

Jung, D.B. [Two-Phase Engineering & Research, Inc., Santa Rosa, CA (United States)

1995-12-31T23:59:59.000Z

28

Steam generator support system  

DOE Patents (OSTI)

A support system for connection to an outer surface of a J-shaped steam generator for use with a nuclear reactor or other liquid metal cooled power source. The J-shaped steam generator is mounted with the bent portion at the bottom. An arrangement of elongated rod members provides both horizontal and vertical support for the steam generator. The rod members are interconnected to the steam generator assembly and a support structure in a manner which provides for thermal distortion of the steam generator without the transfer of bending moments to the support structure and in a like manner substantially minimizes forces being transferred between the support structure and the steam generator as a result of seismic disturbances.

Moldenhauer, James E. (Simi Valley, CA)

1987-01-01T23:59:59.000Z

29

Steam generator support system  

DOE Patents (OSTI)

A support system for connection to an outer surface of a J-shaped steam generator for use with a nuclear reactor or other liquid metal cooled power source is disclosed. The J-shaped steam generator is mounted with the bent portion at the bottom. An arrangement of elongated rod members provides both horizontal and vertical support for the steam generator. The rod members are interconnected to the steam generator assembly and a support structure in a manner which provides for thermal distortion of the steam generator without the transfer of bending moments to the support structure and in a like manner substantially minimizes forces being transferred between the support structure and the steam generator as a result of seismic disturbances. 4 figs.

Moldenhauer, J.E.

1987-08-25T23:59:59.000Z

30

The Invisibility of Steam  

Science Journals Connector (OSTI)

Almost everyone “knows” that steam is visible. After all one can see the cloud of white issuing from the spout of a boiling tea kettle. In reality steam is the gaseous phase of water and is invisible. What you see is light scattered from the tiny droplets of water that are the result of the condensation of the steam as its temperature falls below 100 °C (under standard conditions).

Thomas B. Greenslade Jr.

2014-01-01T23:59:59.000Z

31

Steam reforming analyzed  

SciTech Connect

This paper reports that maximum steam reformer operation without excessive coking reactions requires careful control of thermodynamic and kinetic conditions. Regardless of the syngas-based feedstock composition, carbon formation problems can be avoided while increasing reformer CO or H{sub 2} production. Steam reforming technology is best understood via: Primary steam reformer developments, Kinetics of methane steam reforming, Simulation of an industrial steam/CO{sub 2} reformer, Example conditions (steam/CO{sub 2} reforming), Thermodynamic approach (minimum to steam ratio). Hydrogen and carbon monoxide are two of the most important building blocks in the chemical industry. Hydrogen is mainly used in ammonia and methanol synthesis and petroleum refining. Carbon monoxide is used to produce pains, plastics, foams, pesticides and insecticides, to name a few. Production of H{sub 2} and CO is usually carried out by the following processes: Steam reforming (primary and secondary) of hydrocarbons, Partial oxidation of hydrocarbons, Coal gasification. Coal gasification and partial oxidation do not use catalysts and depend on partial combustion of the feedstock to internally supply reaction heat. Secondary (autothermal) reforming is a type of steam reforming that also uses the heat of partial combustion but afterwards uses a catalyst of promote the production of hydrogen and CO.

Wagner, E.S. (KTI Corp., San Dimas, CA (US)); Froment, G.F. (Ghent Rijksuniversiteit (Belgium))

1992-07-01T23:59:59.000Z

32

Catalytic steam gasification of coals  

Science Journals Connector (OSTI)

Catalytic steam gasification of coals ... Steam–Coal Gasification Using CaO and KOH for in Situ Carbon and Sulfur Capture ... Steam–Coal Gasification Using CaO and KOH for in Situ Carbon and Sulfur Capture ...

P. Pereira; G. A. Somorjai; H. Heinemann

1992-07-01T23:59:59.000Z

33

Options for Generating Steam Efficiently  

E-Print Network (OSTI)

This paper describes how plant engineers can efficiently generate steam when there are steam generators and Heat Recovery Steam Generators in their plant. The process consists of understanding the performance characteristics of the various equipment...

Ganapathy, V.

34

Solar Steam Nanobubbles  

Science Journals Connector (OSTI)

Solar Steam Nanobubbles ... The generated steam may also be used to drive a turbine directly for electricity generation. ... Furthermore, sputtering at gas–solid and gas–liquid interfaces may occur, and thermal desorption at the metal–water interface may affect the heat transfer as well. ...

Albert Polman

2013-01-02T23:59:59.000Z

35

Inspect and Repair Steam Traps  

Energy.gov (U.S. Department of Energy (DOE))

This tip sheet on inspecting and repairing steam traps provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

36

Streams of Steam The Steam Boiler Specification Case Study  

E-Print Network (OSTI)

Streams of Steam ­ The Steam Boiler Specification Case Study Manfred Broy, Franz Regensburger-tuned con- cepts of FOCUS by its application of the requirements specification of a steam boiler, see [Abr96-studies. In this context, applying FOCUS to the steam boiler case study ([Abr96]) led us to a couple of questions re- #12

37

Refurbishing steam turbines  

SciTech Connect

Power-plant operators are reducing maintenance costs of their aging steam turbines by using wire-arc spray coating and shot peening to prolong the service life of components, and by replacing outmoded bearings and seals with newer designs. Steam-turbine operators are pressed with the challenge of keeping their aging machines functioning in the face of wear problems that are exacerbated by the demand for higher efficiencies. These problems include intense thermal cycling during both start-up and shutdown, water particles in steam and solid particles in the air that pit smooth surfaces, and load changes that cause metal fatigue.

Valenti, M.

1997-12-01T23:59:59.000Z

38

Evaluating Steam Trap Performance  

E-Print Network (OSTI)

~LmT " TRIf' 1 TRIf' 2 Figure 2 It has become common practice for engineers to oversize steam traps and place more emphasis on first cost than on maintenance cost and operating 766 3 4 ESL-IE-86-06-126 Proceedings from the Eighth Annual Industrial...EVALUATING STEAM TRAP PERFORMANCE Noel Y Fuller, P.E. Holston Defense Corporation Kingsport, Tennessee ABSTRACT Laboratory tests were conducted on several types of steam traps at Holston Defense Corporation in Kingsport, Tennessee. Data...

Fuller, N. Y.

39

Steam Champions in Manufacturing  

E-Print Network (OSTI)

into equivalent corporate rewards, such as increased profitability, reliability, workplace safety, and other benefits. The prerequisites for becoming a true steam champion will include engineering, business, and management skills....

Russell, C.

40

Steam Trap Application  

E-Print Network (OSTI)

characteristics. 2. Understand advantages and limitations of various checking methods. 3. Use more than one checking method. 4. Understand flash condensate. 5. Condensate makes more noise than steam. 6. Trouble shoot the system. 7. Review trap... or failed steam and condensate flow~' H closed to be undetected -Not always insensitive to back ground or ambient noise -Noise in electrical system if volume too high -Head set quality important -Location of probe on trap, contact force, pressure drop...

Murphy, J. J.

1982-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fossil steam steam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

DOE's BestPractices Steam End User Training Steam End User Training  

E-Print Network (OSTI)

DOE's BestPractices Steam End User Training Steam End User Training Steam Distribution Losses Module 1 June 29, 2010 Steam EndUser Training Steam Distribution System Losses Module Slide 1 pressure. #12;DOE's BestPractices Steam End User Training Steam End User Training Steam Distribution

Oak Ridge National Laboratory

42

Methane-steam reforming  

SciTech Connect

The literature relating to the kinetics of methane-steam reforming involving integral and differential reactor data, porous nickel catalysts and nickel foil, and data over large ranges of temperature (500 to 1700/sup 0/F), pressure (0.01 to 50 atm), and intrinsic catalyst activities (200,000-fold) was reviewed. A simple reversible first-order kinetic expression for the steam-methane reaction appears to be applicable throughout the operable region of steam-to-carbon ratios. Internal pore diffusion limitation on the conversion rate, due to catalyst size and/or intrinsic catalyst activity and total operating pressure was underlined. S-shaped Arrhenium plots (changing activation energy) are obtained when steam reforming is conducted over a temperature range sufficient to produce intrinsic kinetics (low temperature, inactive catalyst, or small catalyst size), pore diffusional limitations, and reaction on the outside surface. Homogeneous gas-phase kinetics appear to contribute only at relatively high temperature (1400/sup 0/F). In steam reforming, the water-gas shift reaction departs from its equilibrium position, especially at low methane conversion level. A general correlation of approach to water-gas shift equilibration as a function of conversion level only was indicated. (DP) 18 figures, 6 tables.

Van Hook, J.P.

1980-01-01T23:59:59.000Z

43

Steam Basics: Use Available Data to Lower Steam System Cost  

E-Print Network (OSTI)

Industrial steam users recognize the need to reduce system cost in order to remain internationally competitive. Steam systems are a key utility that influence cost significantly, and represent a high value opportunity target. However, the quality...

Risko, J. R.

2011-01-01T23:59:59.000Z

44

Steam System Improvements at a Manufacturing Plant  

E-Print Network (OSTI)

BWX Technologies, Naval Nuclear Fuel Division (NNFD) is a manufacturing company with a steam system consisting of two Babcock & Wilcox boilers and approximately 350 steam traps. The steam system is used to produce and distribute steam for space...

Compher, J.; Morcom, B.

45

Steam Power Partnership: Improving Steam System Efficiency Through Marketplace Partnerships  

E-Print Network (OSTI)

to support the steam efficiency program. Today, the Steam Team includes, the North American Insulation Manufacturers Association (NAIMA), the American Gas Association (AGA), the Council of Industrial Boiler Owners (ClBO), Armstrong International... pinch technology, and high performance steam. ? Armstrong International - Three worldwide factory seminar facilities, 13 North American sales representative facilities, 4 international sales representative facilities, 8 co-sponsored facilities, 2...

Jones, T.

46

Reduction in Unit Steam Production  

E-Print Network (OSTI)

In 2001 the company's Arch-Brandenburg facility faced increased steam costs due to high natural gas prices and decreased production due to shutdown of a process. The facility was challenged to reduce unit steam consumption to minimize the effects...

Gombos, R.

2004-01-01T23:59:59.000Z

47

Belgrade Lot Steam Plant Lot  

E-Print Network (OSTI)

2 2A 2A Belgrade Lot Steam Plant Lot Alfond Lot Satellite Lot North Gym Lot Corbett Lot Dunn Lot Hamlin Steam Plant Crosby Machine Tool Lab Children's Center Rogers N S Estabrooke Memorial Gym Stevens

Thomas, Andrew

48

Heat Recovery Steam Generator Simulation  

E-Print Network (OSTI)

The paper discusses the applications of Heat Recovery Steam Generator Simulation. Consultants, plant engineers and plant developers can evaluate the steam side performance of HRSGs and arrive at the optimum system which matches the needs...

Ganapathy, V.

49

Consider Steam Turbine Drives for Rotating Equipment  

Energy.gov (U.S. Department of Energy (DOE))

This tip sheet outlines the benefits of steam turbine drives for rotating equipment as part of optimized steam systems.

50

Boiler and steam generator corrosion: Fossil-fuel power plants. March 1977-December 1989 (A Bibliography from the NTIS data base). Report for March 1977-December 1989  

SciTech Connect

This bibliography contains citations concerning corrosion effects, mechanisms, detection, and inhibition in fossil fuel fired boilers. Fluidized bed combustors and coal gasification are included in the applications. Hot corrosion, thermal mechanical degradation, and intergranular oxidation corrosion studies performed on the water side and hot gas side of heat exchanger tubes and support structures are presented. Coatings and treatment of material to inhibit corrosion are discussed. Corrosion affecting nuclear powered steam generators is examined in a separate bibliography. (Contains 88 citations fully indexed and including a title list.)

Not Available

1990-05-01T23:59:59.000Z

51

Watt steam governor  

Science Journals Connector (OSTI)

The physics of the fly-ball governor, introduced to regulate the speed of steam engines, is here analysed anew. The original analysis is generalized to arbitrary governor geometry. The well-known stability criterion for the linearized system breaks down for large excursions from equilibrium; we show approximately how this criterion changes.

Mark Denny

2002-01-01T23:59:59.000Z

52

Steamed dinosaur eggs  

Science Journals Connector (OSTI)

... a Cretaceous hatchery shows that some dinosaurs liked their nesting sites steam-heated — by geothermal vents. A paper in Nature Communications today says that certain dinosaurs regularly returned to ... vents. A paper in Nature Communications today says that certain dinosaurs regularly returned to geothermal fields to shape nests and deposit eggs more than 100 million years ago. ...

Rex Dalton

2010-06-29T23:59:59.000Z

53

Steam management in composite mature steam floods, Midway Sunset field  

SciTech Connect

Vogel noted that oil production rates in many steam floods are not predictable from steam injection rates and must be estimated on some other basis. He presented a conservative method, based on simple models assuming instantaneous steam overlay, to calculate heat requirements once the oil rate is known. By more accurately describing the reservoir being flooded and the steam flood process, Vogel`s method was refined resulting in significant steam savings for SWEPI`s leasehold in the northern part of the Midway Sunset field. Analytical expressions are presented for (1) the heat required to support a steam chest descending into an oil column, (2) the heating of a cap or base rock already partially heated by an adjacent steam flood and (3) the heating of a cap or base rock which is exposed to a uniformly growing steam zone. A method is also described to operate a mature steam flood at a constant oil steam ratio while scavenging some heat stored in the steam zone.

Dorp, J.J. van; Roach, R.H.

1995-12-31T23:59:59.000Z

54

Steam System Balancing and Tuning  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Steam System Balancing and Steam System Balancing and Tuning Building America Stakeholder Meeting Austin, TX Jayne Choi, Energy Analyst, CNT Energy March 2, 2012 PARR Current collaboration with GTI as a part of the PARR Building America team - Steam Systems Balancing and Tuning Study - Heating season 2011-2012 Background In Chicago, heating is the focus of residential energy use Of the 470,000 multifamily units in the Chicago region, at least 70,000 of those are steam heated Old steam systems invariably suffer from imbalance - Tenants must use supplemental heat or open their windows to cool their apartments during the heating season Buildings are often overheated Problem Statement (CNT Energy) Steam Heating Steam heat was the best option for buildings constructed between 1900 and 1930

55

dist_steam.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

District Steam Usage Form District Steam Usage Form 1999 Commercial Buildings Energy Consumption Survey (CBECS) 1. Timely submission of this report is mandatory under Public Law 93-275, as amended. 2. This completed questionnaire is due by 3. Data reported on this questionnaire are for the entire building identified in the label to the right. 4. Data may be submitted directly on this questionnaire or in any other format, such as a computer-generated listing, which provides the same i nformation and is conve nient for y our company. a. You may submit a single report for the entire building, or if it i s easier, a separate report for each of several accounts in the building. These will then be aggregated by the survey contractor. b. If you are concerned about your individual account information, you may c

56

Air-cooled vacuum steam condenser  

SciTech Connect

This patent describes a steam powered system. It comprises: a turbine for converting steam energy into mechanical energy upon expansion of steam therein, a boiler for generating steam to be fed to the turbine, and a conduit arrangement coupling the boiler to the turbine and then recoupling the turbine exhaust to the boiler through steam condensing mechanisms.

Larinoff, M.W.

1990-02-27T23:59:59.000Z

57

Steam Pressure Reduction: Opportunities and Issues; A BestPractices Steam Technical Brief  

SciTech Connect

A BestPractices Technical Brief describing industrial steam generation systems and opportunities for reducing steam system operating pressure.

Not Available

2005-11-01T23:59:59.000Z

58

Steam Cracker Furnace Energy Improvements  

E-Print Network (OSTI)

Channel, ~ 25 mi. east of Houston ? Includes 4 manufacturing sites, 2 technology/engineering offices ?Significant community involvement Baytown Refinery Page 4 Steam Cracking to Olefins ? Process 60+ years old; ExxonMobil one of pioneers... Steam Cracker Furnace Energy Improvements Tim Gandler Energy Coordinator Baytown Olefins Plant, Baytown Tx 2010 Industrial Energy Technology Conference May, 2010 Page 2 ? Baytown Complex ? Steam Cracking to Olefins ? Furnace overview...

Gandler, T.

59

Steam System Forecasting and Management  

E-Print Network (OSTI)

by manipulation of operating schedules to avoid steam balances that result in steam venting, off gas-flaring, excessive condensing on extraction/condensing turbines, and ineffective use of extraction turbines. For example, during the fourth quarter of 1981... minimum turndown levels. Several boilers would have oeen shut down; by-product fuel gas would have been flared; and surplus low level steam would have been vented to the atmosphere. Several scenarios were studied with SFC and evaluated based...

Mongrue, D. M.; Wittke, D. O.

1982-01-01T23:59:59.000Z

60

Deaerators in Industrial Steam Systems  

Energy.gov (U.S. Department of Energy (DOE))

This tip sheet on deaerators provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

Note: This page contains sample records for the topic "fossil steam steam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Steam System Improvement: A Case Study  

E-Print Network (OSTI)

. For industries, this will result in the reduction of production cost. In industry where steam is utilized, the steam production and distribution system consumes a significant portion of energy. Therefore, optimization of steam system is among the biggest energy...

Venkatesan, V. V.; Leigh, N.

62

23rd steam-station cost survey  

SciTech Connect

The results of the 23rd Steam Station Cost Survey covering the year 1982 are summarized. The major categories of the survey are as follows: general data; output data, 1982; fuel consumption, 1982; operation 1982 (mills/net kWh); investment ($/net kWh); energy cost, 1982 (mills/net kWh); and station performance, 1982. Thirty-one fossil-fuel steam plants and four nuclear stations were included in the survey. Fuel and operating cost increases are felt to be responsible for the moderate rise in total busbar-enery costs. 11 figures, 1 table.

Friedlander, G.D.; Going, M.C.

1983-11-01T23:59:59.000Z

63

Training: Steam Systems | Department of Energy  

Office of Environmental Management (EM)

required to register. Steam End User - 1 day workshop Availability: Onsite instructor-led and online self-paced workshop This course covers the operation of typical steam...

64

Benchmark the Fuel Cost of Steam Generation  

Energy.gov (U.S. Department of Energy (DOE))

This tip sheet on benchmarking the fuel cost of steam provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

65

Steam System Modeler | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Efficiency (%) Isentropic Efficiency (%) Blowdown Rate (%) Deaerator Vent Rate (%) Heat Loss (%) Condensate Return (%) Steam Mass Flow Feedwater Mass Flow Initial HP Steam...

66

Reducing emissions by addressing steam turbine inefficiencies  

SciTech Connect

This paper reports that inefficient steam turbines increase fossil plant emissions because additional fuel must be burned to meet the power output requirements. During a turbine outage, plant performance and maintenance staff make and prioritize repair decisions within tight time and budget constraints. This paper describes how Georgia Power identifies performance losses of degraded components in the steam path and determines their impact on heat rate. Turbine performance is assessed by a steam path audit program that Encotech has developed and make available to utilities. Georgia Power has conducted several operating tests that give good correlation with audit results. Georgia Power uses the audit information to make the most cost-effective repairs to maintain a low heat rate and to reduce emissions. The Clean Air Act presents electric utilities with the challenge of reducing emissions from fossil plants in the most cost-effective way possible. Meeting the stack emissions limitations often translates to large capital expenditures and increased cycle heat rate. One resource the electric utilities have to reduce the costly impact of compliance with the Clean Air Act is control over the efficiency of their steam turbines.

Harris, J.C. (Georgia Power Co., Atlanta, GA (United States)); Cioffi, D.H. (Encotech, Inc., Schenectady, NY (United States))

1992-01-01T23:59:59.000Z

67

GCFR steam generator conceptual design  

SciTech Connect

The gas-cooled fast reactor (GCFR) steam generators are large once-through heat exchangers with helically coiled tube bundles. In the GCFR demonstration plant, hot helium from the reactor core is passed through these units to produce superheated steam, which is used by the turbine generators to produce electrical power. The paper describes the conceptual design of the steam generator. The major components and functions of the design are addressed. The topics discussed are the configuration, operating conditions, design criteria, and the design verification and support programs.

Holm, R.A.; Elliott, J.P.

1980-01-01T23:59:59.000Z

68

Combined Heat and Power Plant Steam Turbine  

E-Print Network (OSTI)

Combined Heat and Power Plant Steam Turbine Steam Turbine Chiller Campus Heat Load Steam (recovered waste heat) Gas Turbine University Substation High Pressure Natural Gas Campus Electric Load Southern Generator Heat Recovery Alternative Uses: 1. Campus heating load 2. Steam turbine chiller to campus cooling

Rose, Michael R.

69

Steam System Tool Suite Introduction Guide  

E-Print Network (OSTI)

)........................................................................................8 Steam System Assessment Tool (SSAT Tool, the Steam System Assessment Tool, and the 3E Plus Insulation Tool. Each one of these trainings.S.DOE Steam Tools are designed to aid in assessing steam systems by identifying areas to investigate

Oak Ridge National Laboratory

70

Wet-steam erosion of steam turbine disks and shafts  

SciTech Connect

A study of wet-steam erosion of the disks and the rotor bosses or housings of turbines in thermal and nuclear power plants shows that the rate of wear does not depend on the diagrammed degree of moisture, but is determined by moisture condensing on the surfaces of the diaphragms and steam inlet components. Renovating the diaphragm seals as an assembly with condensate removal provides a manifold reduction in the erosion.

Averkina, N. V. [JSC 'NPO TsKTI' (Russian Federation); Zheleznyak, I. V. [Leningradskaya AES branch of JSC 'Kontsern Rosenergoatom' (Russian Federation); Kachuriner, Yu. Ya.; Nosovitskii, I. A.; Orlik, V. G., E-mail: orlikvg@mail.ru [JSC 'NPO TsKTI' (Russian Federation); Shishkin, V. I. [Leningradskaya AES branch of JSC 'Kontsern Rosenergoatom' (Russian Federation)

2011-01-15T23:59:59.000Z

71

DOE's BestPractices Steam End User Training Steam End User Training  

E-Print Network (OSTI)

DOE's BestPractices Steam End User Training Steam End User Training Welcome Module - 1 8/27/2010 Steam End User Training Welcome Module Slide 1 ­ Steam End User Training Welcome to the Department of Energy's Industrial Technologies Program BestPractices Steam End-User Training. The Department of Energy

Oak Ridge National Laboratory

72

The Steam System Scoping Tool: Benchmarking Your Steam Operations Through Best Practices  

E-Print Network (OSTI)

system efficiency. The BestPractices Steam effort, a part of the DOE-OIT effort, has developed a new tool that steam energy managers and operations personnel can use to assess their steam operations and improve their steam energy usage -the Steam System...

Wright, A.; Hahn, G.

73

Steam Field | Open Energy Information  

Open Energy Info (EERE)

Field Field Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Sanyal Temperature Classification: Steam Field Dictionary.png Steam Field: No definition has been provided for this term. Add a Definition Sanyal Temp Classification This temperature scheme was developed by Sanyal in 2005 at the request of DOE and GEA, as reported in Classification of Geothermal Systems: A Possible Scheme. Extremely Low Temperature Very Low Temperature Low Temperature Moderate Temperature High Temperature Ultra High Temperature Steam Field Steam field reservoirs are special cases where the fluid is predominantly found in a gas phase between 230°C to 240°C. "This special class of resource needs to be recognized, its uniqueness being the remarkably consistent initial temperature and pressure

74

Steam in the Ring Discharge  

Science Journals Connector (OSTI)

The behaviour of steam and its decomposition products in the ring discharge has been examined. Dry hydrogen is not dissociated. The production of atomic hydrogen is dependent upon the presence of steam which dissociates into hydroxyl and atomic hydrogen. A secondary source of atomic hydrogen is then afforded by the interaction of hydroxyl with molecular hydrogen. The escape from the discharge of atomic hydrogen, a long-lived species, favours the dissociation of steam. Mercury vapour, on the other hand, inhibits the formation of atomic hydrogen and thus leads to a high equilibrium steam concentration. Unlike dry hydrogen, dry oxygen is dissociated into atoms, but these have a short life as such and recombine in the discharge to form molecular oxygen and ozone. The reaction mechanisms occurring in the discharge are discussed in the light of spectrographic results.

G I Finch

1949-01-01T23:59:59.000Z

75

Managing the Steam Trap Population  

E-Print Network (OSTI)

hundred steam traps installed only 58 were working effectively -- 42% needed attention! These programs had associated cost benefits of at least 100% return on investment, a maximum six month breakeven on cash flow, and an energy cost reduction amounting...

Atlas, R. D.

1983-01-01T23:59:59.000Z

76

Foam Cleaning of Steam Turbines  

E-Print Network (OSTI)

The efficiency and power output of a steam turbine can be dramatically reduced when deposits form on the turbine blades. Disassembly and mechanical cleaning of the turbine is very time consuming and costly. Deposits can be removed from the turbine...

Foster, C.; Curtis, G.; Horvath, J. W.

77

The steam engine and industrialization  

E-Print Network (OSTI)

Simon Schaffer in York Rail Museum talks to the camera about the relationship between the steam engine and industrialization and whatsteam meant; a regular supply of moving power for workshops and factories....

Dugan, David

2004-08-17T23:59:59.000Z

78

Capturing Energy Savings with Steam Traps  

E-Print Network (OSTI)

Capturing Energy Savings with Steam Traps Richard C; Bockwinkel General Manager Armstrong Service? A Division of Armstrong International, Inc. Orlando, Florida ABSTRACT This paper will discuss the energy savings potential of steam... Engineer Steam Traps Armstrong International, Inc. Three Rivers, Michigan basis. Finally, it's important to recognize that a steam trap program will reduce steam waste> which will reduce the amount of fuel burned> which will reduce pollutants...

Bockwinkel, R. G.; French, S. A.

79

Review of Orifice Plate Steam Traps  

Energy.gov (U.S. Department of Energy (DOE))

This guide was prepared to serve as a foundation for making informed decisions about when orifice plate steam traps should be considered for use in new or existing steam systems. It presents background information about different types of steam traps and defines their unique functional and operational characteristics. The advantages and disadvantages associated with using orifice plate steam traps are provided to highlight their capabilities and limitations. Finally, recommendations for using orifice plate steam traps are presented, and possible applications are identified.

80

The Elimination of Steam Traps  

E-Print Network (OSTI)

claims and misinformation gener ated by over thirty-six steam trap manufacturers in the United States alone. A PARTIAL LIST OF STEAM TRAP MANUFACTURERS AAF GESTRA ANDERSON HIROSS ARMSTRONG HOFFMAN BARNES &JONES HONEYWELL BRAUKMANN BESTOBELL... removal had been devised and these same methods, with minor variations, are employed today. The inverted bucket trap was in vented in 1910 by Otto Arner, a friend of Adam Armstrong. Armstrong began his business career by making bicycle spokes...

Dickman, F.

Note: This page contains sample records for the topic "fossil steam steam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Development and Application of Advanced Models for Steam Hydrogasification: Process Design and Economic Evaluation  

E-Print Network (OSTI)

to make additional steam for the steam turbine cycle. Thein multi-pressure-level steam turbines to produce additionalthe superheated steam to the steam turbine cycle. The most

Lu, Xiaoming

2012-01-01T23:59:59.000Z

82

Best Management Practice #8: Boiler and Steam Systems | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

implement a routine inspection and maintenance program to check steam traps and steam lines for leaks. Repair leaks and replace faulty steam traps as soon as possible. Develop...

83

Use Steam Jet Ejectors or Thermocompressors to Reduce Venting of Low-Pressure Steam  

Energy.gov (U.S. Department of Energy (DOE))

This tip sheet on steam jet ejectors and thermocompressors provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

84

Systematic Errors in Measuring the Energy of Wet Steam with Dry-Steam Meters  

Science Journals Connector (OSTI)

Systematic errors are considered in measuring mass flow rate, specific enthalpy, thermal power, and energy for wet steam by means of meters intended for dry saturated steam.

E. G. Abarinov; K. S. Sarelo

2002-03-01T23:59:59.000Z

85

Some Comments on James Watt's Published Account of His Work on Steam and Steam Engines  

Science Journals Connector (OSTI)

1 June 1971 research-article Some Comments on James Watt's Published Account of His Work on Steam and Steam Engines W. A. Smeaton

1971-01-01T23:59:59.000Z

86

Use Steam Jet Ejectors or Thermocompressors to Reduce Venting of Low-Pressure Steam  

SciTech Connect

Industrial Technologies Program's BestPractices tip sheet on improving efficiency of industrial steam systems by recovery latent heat from low-pressure steam.

Not Available

2005-09-01T23:59:59.000Z

87

Steam Pressure Reduction, Opportunities, and Issues  

SciTech Connect

Steam pressure reduction has the potential to reduce fuel consumption for a minimum capital investment. When the pressure at the boiler is reduced, fuel and steam are saved as a result of changes in the high-pressure side of the steam system from the boiler through the condensate return system. In the boiler plant, losses from combustion, boiler blowdown, radiation, and steam venting from condensate receivers would be reduced by reducing steam pressure. Similarly, in the steam distribution system, losses from radiation, flash steam vented from condensate receivers, and component and steam trap leakage would also be reduced. There are potential problems associated with steam pressure reduction, however. These may include increased boiler carryover, boiler water circulation problems in watertube boilers, increased steam velocity in piping, loss of power in steam turbines, and issues with pressure reducing valves. This paper is based a Steam Technical Brief sponsored by the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy and Enbridge Gas Distribution, Inc. (5). An example illustrates the use of DOE BestPractices Steam System Assessment Tool to model changes in steam, fuel, electricity generation, and makeup water and to estimate resulting economic benefits.

Berry, Jan [ORNL; Griffin, Mr. Bob [Enbridge Gas Distribution, Inc.; Wright, Anthony L [ORNL

2006-01-01T23:59:59.000Z

88

Catalytic steam reforming of hydrocarbons  

SciTech Connect

The hot effluent from the catalytic steam reforming of a major portion of a fluid hydrocarbon feed stream in the reformer tubes of a primary reformer, or said effluent after secondary reforming thereof, is mixed with the hot effluent from the catalytic steam reforming of the remaining portion of the feed discharged from the reformer tubes of a primary reformer-exchanger. The combined gas steam is passed on the shell side of the reformer-exchanger countercurrently to the passage of feed in the reformer tubes thereof, thus supplying the heat for the reforming of the portion of the feed passed through the reformer tubes of the reformerexchanger. At least about 2/3 of the hydrocarbon feed stream is passed to the reformer tubes of said primary reformer, heated by radiant heat transfer and/or by contact with combustion gases, at a steam/hydrocarbon mole ratio of about 2-4/1. The remainder of said feed stream is passed to the reformer tubes of said reformer -exchanger at a steam/hydrocarbon mole ratio of about 3-6/1. The reformer shell of the reformer-exchanger is internally insulated by a refractory lining or by use of a double shell with passage of water or a portion of the feed material between the inner and outer shells. There is no significant difference between the pressure inside and outside of the reformer tubes of said primary reformer-exchanger.

Fuderer, A.

1982-06-29T23:59:59.000Z

89

Evaluation of steam path audits  

SciTech Connect

Tri-State Generation and Transmission association is the operating agent for the 1350 megawatt Craig Generating Station, located in northwestern Colorado. Tri-State has recently incorporated turbine steam path audits into their aggressive performance improvement program. The intent of the audits are to quantify and attain the most cost effective increase in turbine performance as a result of a major outage. Valuable information about performance losses in the turbine has been obtained from steam path audits conducted on the three Craig Units. However, accurate audit results often depend on the quality of measurements and the experience of the auditor. Without a second method to verify the results of a steam path audit, repairs might be performed on a non-cost effective basis, or significant performance degradations might be overlooked. In addition, an inaccurate audit may lead to erroneous expectations for performance improvements resulting from the maintenance performed during the outage.

Caudill, M.B. [Tri-State Generation and Transmission Association, Inc., Montrose, CO (United States); Griebenow, R.D. [SAIC, Huntersville, NC (United States)

1995-06-01T23:59:59.000Z

90

Lowest Pressure Steam Saves More BTU's Than You Think  

E-Print Network (OSTI)

ABSTRACT Steam is the most transferring heat from But most steam systems LOWEST PRESSURE STEAM SAVES MORE BTU'S THAN YOU THINK Stafford J. Vallery Armstrong Machine Works Three Rivers, Michigan steam to do the process heating rather than...

Vallery, S. J.

91

The steam engine and what it needs  

E-Print Network (OSTI)

Simon Schaffer explains that to produce an effective steam engine you do not just need specific inventions, such as the separate condenser of James Watt, but also skills from clockworking, distillation, metal working and so on. Then the steam power...

Dugan, David

2004-08-18T23:59:59.000Z

92

Insulate Steam Distribution and Condensate Return Lines  

Energy.gov (U.S. Department of Energy (DOE))

This tip sheet on insulating steam distribution and condensate return lines provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

93

The Future of Steam: A Preliminary Discussion  

E-Print Network (OSTI)

Steam production represents a significant proportion of today's industrial energy demand. But the evolution of process technologies, as well as turbulence in energy markets, suggests that steam's role may be subject to change in the next decade...

Russell, C.; Harrell, G.; Moore, J.; French, S.

94

Benchmark the Fuel Cost of Steam Generation  

SciTech Connect

This revised ITP tip sheet on benchmarking the fuel cost of steam provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

Not Available

2006-01-01T23:59:59.000Z

95

Insulate Steam Distribution and Condensate Return Lines  

SciTech Connect

This revised ITP tip sheet on insulating steam distribution and condensate return lines provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

Not Available

2006-01-01T23:59:59.000Z

96

Steam System Assessment Tool (CD-ROM)  

SciTech Connect

The tool will help users determine the potential energy cost and emission savings of key steam-system improvements. The tool is designed for energy operations, production, project managers, and engineers who are responsible for steam systems.

Not Available

2002-12-01T23:59:59.000Z

97

FEMP-FTA--Steam Trap Performance Assessment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Steam Trap Function Steam Trap Function Steam traps are automatic valves used in every steam system to remove conden- sate, air, and other non-condensable gases while preventing or minimizing the passing of steam. If condensate is allowed to collect, it reduces the flow capacity of steam lines and the thermal capacity of heat transfer equipment. In addition, excess condensate can lead to "water hammer," with potentially destructive and dangerous results. Air that remains after system startup reduces steam pressure and temperature and may also reduce the thermal capacity of heat transfer equipment. Non-condensable gases, such as oxygen and carbon dioxide, cause corrosion. Steam that passes through the trap provides no heating ser- vice. This effectively reduces the heating capacity

98

Warm or Steaming Ground | Open Energy Information  

Open Energy Info (EERE)

Warm or Steaming Ground Warm or Steaming Ground Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Warm or Steaming Ground Dictionary.png Warm or Steaming Ground: An area where geothermal heat is conducted to the earth's surface, warming the ground and sometimes causing steam to form when water is present. Other definitions:Wikipedia Reegle Modern Geothermal Features Typical list of modern geothermal features Hot Springs Fumaroles Warm or Steaming Ground Mudpots, Mud Pools, or Mud Volcanoes Geysers Blind Geothermal System Steam rising from the ground at Eldvorp, a 10 km row of craters, in Southwestern Iceland. http://www.visiticeland.com/SearchResults/Attraction/eldvorp Warm or steaming ground is often an indicator of a geothermal system beneath the surface. In some cases a geothermal system may not show any

99

Improving Steam System Performance: A Sourcebook for Industry...  

Energy Savers (EERE)

in Industrial Steam Systems Insulate Steam Distribution and Condensate Return Lines Advanced Manufacturing Home Key Activities Research & Development Projects Facilities...

100

"Greening" Industrial Steam Generation via On-demand Steam Systems  

E-Print Network (OSTI)

boiler technology currently in service in the U.S., it is critical to raise awareness and examine the role of emerging new technologies to address the energy and environmental challenges inherent with steam generation. In the same way that tank...

Smith, J. P.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fossil steam steam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

The Increased Expansion of Steam Attainable in Steam Trubines1  

Science Journals Connector (OSTI)

... of steam discovered by James Watt, and to endeavour to trace their application in the engines constructed by him and by the firm of Bolton and Watt, then in the ... and Watt, then in the more highly developed forms of compound, triple, and quadruple reciprocating ...

1909-02-25T23:59:59.000Z

102

DOE's BestPractices Steam End User Training Steam End User Training  

E-Print Network (OSTI)

DOE's BestPractices Steam End User Training Steam End User Training Navigational Tutorial - 1 8/27/2010 Steam End User Training Navigational Tutorial Module Slide 1 ­ Introduction Hello, and welcome to the Steam End User Training. I would like to take a few minutes to show you how to navigate through

Oak Ridge National Laboratory

103

DOE's BestPractices Steam End User Training Steam End User Training  

E-Print Network (OSTI)

DOE's BestPractices Steam End User Training Steam End User Training Introduction Module - 1 8/27/2010 Steam End User Training Introduction Module Slide 1 - Introduction Title Page Hello, and welcome to the Steam System End User training. In this training, we will investigate how to assess, evaluate

Oak Ridge National Laboratory

104

Low pressure combustor for generating steam downhole  

SciTech Connect

A compact catalytic combustor for generating steam downhole in an oil reservoir has steam generating tubes that are attached to a metal catalyst support. The metal support comprises sheets of metal that are spaced apart and transverse to the tubes. Heat from combustion is generated on the metal sheets and is conducted to the steam generating tubes. The steam is injected into the oil reservoir. The combustion gas is vented to ground level.

Retallick, W.B.

1983-03-22T23:59:59.000Z

105

Save Energy Now in Your Steam Systems  

Energy.gov (U.S. Department of Energy (DOE))

This brief outlines typical ways to increase steam system efficiency through changes in distribution, generation, and recovery.

106

Plant View On Reducing Steam Trap Energy Loss  

E-Print Network (OSTI)

of the steam traps are passing excess steam. This is caused by neglect of aged steam traps which have worn out and misapplication of steam traps by oversizing or using the 'wrong' type trap. Elimination of steam wastes by an effective well engineered steam trap...

Vallery, S. J.

1982-01-01T23:59:59.000Z

107

Steam reformer study proposed by Battelle  

Science Journals Connector (OSTI)

Steam reformer study proposed by Battelle ... At a meeting held at Battelle's Columbus, Ohio, laboratories, D. B. Roach told representatives of 24 firms involved in various aspects of steam reforming that, though production of hydrogen through steam reforming has been a highly successful process, "increased plant size and more severe operating conditions have given rise to serious problems." ...

1969-01-13T23:59:59.000Z

108

Steam System Improvement: A Case Study  

E-Print Network (OSTI)

usage) where steam generation accounts for 85% of the total energy used. Therefore, optimization of the steam system has the biggest energy saving potential. This paper mill produces 40,000 pounds of steam at 600 psig and distributes it to the paper...

Leigh, N.; Venkatesan, V. V.

109

Materials Performance in USC Steam  

SciTech Connect

The proposed steam inlet temperature in the Advanced Ultra Supercritical (A-USC) steam turbine is high enough (760 °C) that traditional turbine casing and valve body materials such as ferritic/martensitic steels will not suffice due to temperature limitations of this class of materials. Cast versions of several traditionally wrought Ni-based superalloys were evaluated for use as casing or valve components for the next generation of industrial steam turbines. The full size castings are substantial: 2-5,000 kg each half and on the order of 100 cm thick. Experimental castings were quite a bit smaller, but section size was retained and cooling rate controlled to produce equivalent microstructures. A multi-step homogenization heat treatment was developed to better deploy the alloy constituents. The most successful of these cast alloys in terms of creep strength (Haynes 263, Haynes 282, and Nimonic 105) were subsequently evaluated by characterizing their microstructure as well as their steam oxidation resistance (at 760 and 800 °C).

G. R. Holcomb, P. Wang, P. D. Jablonski, and J. A. Hawk

2010-05-01T23:59:59.000Z

110

Recover heat from steam reforming  

SciTech Connect

Steam reforming is one of the most important chemical processes--it is used in the manufacture of ammonia, hydrogen, methanol, and many chemicals made from hydrogen and carbon monoxide. Furthermore, many current trends will increase its importance. For example, methanol for addition to gasoline is likely to be produced by steam reforming. Because steam reforming occurs at high temperatures--typically 750 C--900 C--it generates a large amount of waste heat. Clearly, heat recovery is crucial to process economics. A typical 50,000 Nm[sup 3]/h hydrogen plant using natural gas feed has a radiant heat duty of about 50 MW. At a radiant efficiency of 50% and fuel cost of $3/GJ, this means that the reformer fires $9 million worth of fuel per year. Obviously, this amount of fuel justifies a close loot at ways to reduce costs. This article first provides a brief overview of steam reforming. It then outlines the available heat-recovery options and explains how to select the best method.

Fleshman, J.D. (Foster Wheeler USA Corp., Livingston, NJ (United States))

1993-10-01T23:59:59.000Z

111

Generating Steam by Waste Incineration  

E-Print Network (OSTI)

Combustible waste is a significant source of steam at the new John Deere Tractor Works assembly plant in Waterloo, Iowa. The incinerators, each rated to consume two tons of solid waste per hour, are expected to provide up to 100 percent of the full...

Williams, D. R.; Darrow, L. A.

1981-01-01T23:59:59.000Z

112

Flash Steam Power Plant | Open Energy Information  

Open Energy Info (EERE)

Flash Steam Power Plant Flash Steam Power Plant (Redirected from Flash Steam Power Plants) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Flash Steam Power Plants General List of Flash Steam Plants Flash Steam power plant process diagram - DOE EERE 2012 Flash steam plants are the most common type of geothermal power generation plants in operation in the world today. Fluid at temperatures greater than 360°F (182°C) is pumped under high pressure into a tank at the surface held at a much lower pressure, causing some of the fluid to rapidly vaporize, or "flash." The vapor then drives a turbine, which drives a generator. If any liquid remains in the tank, it can be flashed again in a second tank to extract even more energy.[1] Facility Name Owner Capacity (MW) Facility

113

Air-cooled vacuum steam condenser  

SciTech Connect

This patent describes a steam powered system. It comprises: a turbine for converting steam energy into mechanical energy upon expansion of steam therein, a boiler for generating steam to be fed to the turbine, and a conduit arrangement coupling the boiler to the turbine and then recoupling the turbine exhaust to the boiler through steam condensing mechanisms. The condensing mechanisms including: a plurality of finned tubes through which the expanded exhaust steam flows and is condensed; a plurality of bundle from headers at the lower ends of the condensing tubes for receiving exhaust steam from the turbine; a plurality of bundle divided rear headers, one for each tube row in the bundle, at the higher ends of the condensing tubes for receiving non-condensible gases; and means in the rear and last headers to remove non-condensible gasses from the rear headers along their full length.

Larinoff, M.W.

1990-03-06T23:59:59.000Z

114

Steam Generator Tube Integrity Program [Corrosion and Mechanics of  

NLE Websites -- All DOE Office Websites (Extended Search)

Steam Generator Tube Steam Generator Tube Integrity Program Capabilities Materials Testing Environmentally Assisted Cracking (EAC) of Reactor Materials Corrosion Performance/Metal Dusting Overview Light Water Reactors Fatigue Testing of Carbon Steels and Low-Alloy Steels Environmentally Assisted Cracking of Ni-Base Alloys Irradiation-Induced Stress Corrosion Cracking of Austenitic Stainless Steels Steam Generator Tube Integrity Program Air Oxidation Kinetics for Zr-based Alloys Fossil Energy Fusion Energy Metal Dusting Publications List Irradiated Materials Steam Generator Tube Integrity Other Facilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Corrosion and Mechanics of Materials Light Water Reactors Bookmark and Share

115

Steam Turbine Materials and Corrosion  

SciTech Connect

Ultra-supercritical (USC) power plants offer the promise of higher efficiencies and lower emissions. Current goals of the U.S. Department of Energy’s Advanced Power Systems Initiatives include coal generation at 60% efficiency, which would require steam temperatures of up to 760 °C. In prior years this project examined the steamside oxidation of alloys for use in high- and intermediate-pressure USC turbines. This steamside oxidation research is continuing and progress is presented, with emphasis on chromia evaporation.

Holcomb, G.H.; Hsu, D.H.

2008-07-01T23:59:59.000Z

116

Flash Steam Power Plant | Open Energy Information  

Open Energy Info (EERE)

Flash Steam Power Plant Flash Steam Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Flash Steam Power Plants General List of Flash Steam Plants Flash Steam power plant process diagram - DOE EERE 2012 Flash steam plants are the most common type of geothermal power generation plants in operation in the world today. Fluid at temperatures greater than 360°F (182°C) is pumped under high pressure into a tank at the surface held at a much lower pressure, causing some of the fluid to rapidly vaporize, or "flash." The vapor then drives a turbine, which drives a generator. If any liquid remains in the tank, it can be flashed again in a second tank to extract even more energy.[1] Facility Name Owner Capacity (MW) Facility Type Commercial Online Date Geothermal Area

117

Proceedings of design, repair, and refurbishment of steam turbines  

SciTech Connect

This book reports on the proceedings of design, repair and refurbishment of steam engines. Topics covered include: Advisor/Expert Systems for Steam Turbines; Moisture Effects on the Operating and Performance of Steam Turbines; Turbine Steam Path Development; Repair and Refurbishment of the Electric Generator Components; and Advanced Steam Turbine Designs.

Warnock, A.S. (Lehigh Univ., PA (United States))

1991-01-01T23:59:59.000Z

118

The Steam System Assessment Tool (SSAT): Estimating Steam System Energy, Cost, and Emission Savings  

E-Print Network (OSTI)

The U. S. Department of Energy's (DOE) Industrial Technology Program BestPractices Steam effort is developing a number of software tools to assist industrial energy users to improve the efficiency of their steam system. A major new Best...

Wright, A.; Bealing, C.; Eastwood, A.; Tainsh, R.; Hahn, G.; Harrell, G.

119

Numerical study of primary steam superheating effects on steam ejector flow and its pumping performance  

Science Journals Connector (OSTI)

Abstract The effects of primary steam superheating on steam condensation in nozzle and the performance of steam ejector were investigated using CFD (computational fluid dynamics) method. Using a wet steam model being proposed in our previous study, simulations based on the primary steam with five superheated levels were performed, and the results demonstrate the superheating operation of the primary steam weakens the spontaneous condensation intensity and postpones its occurrence within the nozzle vicinity. Due to the droplets nucleation refinement for the condensation of superheated steam, the mixing process between the primary and the secondary fluids is improved. Consequently, a higher entrainment ratio is achieved. However, the superheating operation may not exceed 20 K, as its contribution on entrainment ratio improvement is not as significant as 0 K–20 K superheating, and too much superheating will requires more energy as input, which is not a practical solution to further improve the steam ejector pumping performance.

Xiaodong Wang; Jingliang Dong; Ao Li; Hongjian Lei; Jiyuan Tu

2014-01-01T23:59:59.000Z

120

Use Steam Jet Ejectors or Thermocompressors to Reduce Venting of Low-Pressure Steam  

SciTech Connect

This revised ITP tip sheet on steam jet ejectors and thermocompressors provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

Not Available

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fossil steam steam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Operating experience of single cylinder steam turbine with 40 inch last blade applied for combined cycle plant  

SciTech Connect

Inquiries and orders for combined cycle plant have increased recently because of the better efficiency of combined cycle plant in comparison with the usual fossil fuel power plant. The typical features of the steam turbine for combined cycle plant are the lower inlet steam conditions and the more driving steam flow quantity compared with the steam turbine for usual fossil fuel plants. This paper introduces the design and results of operation about 122 MW single cylinder steam turbine. Furthermore, the results of periodical overhaul inspection carried out after one year`s commercial operation is also presented.

Kishimoto, Masaru; Yamamoto, Tetsuya [Mitsubishi Heavy Industries, Ltd., Yokohama (Japan); Yokota, Hiroshi [Mitsubishi Heavy Industries, Ltd., Nagasaki (Northern Mariana Islands); Umaya, Masahide [Mitsubishi Heavy Industries, Ltd., Takasago (Japan)

1994-12-31T23:59:59.000Z

122

Energy Savings Through Steam Trap Management  

E-Print Network (OSTI)

Energy Savings through Steam Trap Management Chris Gibbs, Account Manager, Armstrong International, Inc., Three Rivers, MI ESL-IE-08-05-08 Proceedings from theThirtieth Industrial Energy Technology Conference...-based steam trap management application developed by Armstrong International. The application calculates steam loss, fuel loss, dollar loss and CO 2 emission generation. The database allows for trend analysis, automatic energy report generation...

Gibbs, C.

2008-01-01T23:59:59.000Z

123

Steam reforming utilizing high activity catalyst  

SciTech Connect

High activity, sulfur tolerant steam reforming catalysts are described comprising rhodium or nickel supported on lanthanum stabilized alumina or magnesium promoted lanthanum stabilized alumina. The catalysts have improved activity over conventionally used catalysts in the presence of sulfur containing hydrocarbon fuel (such as No. 2 fuel oil) in a steam reforming environment. The material has particular utility in autothermal, tubular, cyclic and adiabatic steam reforming processes.

Setzer, H. J.

1985-03-05T23:59:59.000Z

124

Electrical Cost Reduction Via Steam Turbine Cogeneration  

E-Print Network (OSTI)

ELECTRICAL COST REDUCTION VIA STEAM TURBINE COGENERATION LYNN B. DI TULLIO, P.E. Project Engineer Ewing Power Systems, Inc. South Deerfield, Mass. ABSTRACT Steam turbine cogeneration is a well established technology which is widely used... mature technology. Steam turbines and engines have been used by industry to cogen erate power since before there were electric utilities. While the technology for turbines, generators and controls has continued to develop there is very little about...

Ewing, T. S.; Di Tullio, L. B.

125

Reduce Steam Trap Failures at Chambers Works  

E-Print Network (OSTI)

Ultrasonic Inspection At least 2 times per year Steam Trap Surveyor Submit reports to area management, energy team, and reliability engineers for each area every month Steam Trap Team Leader Control Plan ? Process Owner agrees...Reduce Steam Trap Failures at Chambers Works GB/BB Name: Cyndi Kouba Mentor/MBB: Andrew Degraff Team Members Michael Crowley(Site Energy Lead), (Charlie) Flanigan (Aramids-maintenance), Ben Snyder (Aramids-ATO), Michael Scruggs (Central...

Kouba, C.

126

Steam Conservation and Boiler Plant Efficiency Advancements  

E-Print Network (OSTI)

leakage is controlled by daily monitoring of make-up water volume. All recent heating water distribution projects have utilized above-ground, fiberglass insulated piping on elevated pipe support structures in order to avoid the potential corrosion...-insulated piping on elevated pipe support structures in order to avoid the potential corrosion and leakage issues associated with underground steam distribution. STEAM COST The remaining challenge was to minimize annual steam costs in order to enhance...

Fiorino, D. P.

127

Final Environmental Assessment for the Y-12 Steam Plant Life Extenstion Project - Steam Plant Replacement Subproject  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

93 93 Final Environmental Assessment for the Y-12 Steam Plant Life Extension Project - Steam Plant Replacement Subproject U.S. Department of Energy National Nuclear Security Administration August 2007 Final Y-12 Steam Plant Life Extension Project - Steam Plant Replacement Subproject - August 2007 i TABLE OF CONTENTS List of Acronyms and Abbreviations............................................................................................. vi Chemicals and Units of Measure ................................................................................................. ix Conversion Chart ......................................................................................................................... xi Metric Prefixes .............................................................................................................................xii

128

Efficiently generate steam from cogeneration plants  

SciTech Connect

As cogeneration gets more popular, some plants have two choices of equipment for generating steam. Plant engineers need to have a decision chart to split the duty efficiently between (oil-fired or gas-fired) steam generators (SGs) and heat recovery steam generators (HRSGs) using the exhaust from gas turbines. Underlying the dilemma is that the load-versus-efficiency characteristics of both types of equipment are different. When the limitations of each type of equipment and its capability are considered, analysis can come up with several selection possibilities. It is almost always more efficient to generate steam in an HRSG (designed for firing) as compared with conventional steam generators. However, other aspects, such as maintenance, availability of personnel, equipment limitations and operating costs, should also be considered before making a final decision. Loading each type of equipment differently also affects the overall efficiency or the fuel consumption. This article describes the performance aspects of representative steam generators and gas turbine HRSGs and suggests how plant engineers can generate steam efficiently. It also illustrates how to construct a decision chart for a typical installation. The equipment was picked arbitrarily to show the method. The natural gas fired steam generator has a maximum capacity of 100,000 lb/h, 400-psig saturated steam, and the gas-turbine-exhaust HRSG has the same capacity. It is designed for supplementary firing with natural gas.

Ganapathy, V. [ABCO Industries, Abilene, TX (United States)

1997-05-01T23:59:59.000Z

129

The Bending of Wood With Steam.  

E-Print Network (OSTI)

??Based on experimentation with the steam bending of wood to curved shapes, this thesis describes my involvement with three basic aspects of the process. First… (more)

Cottey Jr., James H.

2008-01-01T23:59:59.000Z

130

Coreflood experimental study of steam displacement.  

E-Print Network (OSTI)

??The main objective of this study was to verify experimentally whether or not a Buckley-Leverett shock front exists when steam displaces oil in a porous… (more)

Cerutti, Andres Enrique

2012-01-01T23:59:59.000Z

131

Covered Product Category: Commercial Steam Cookers | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

energy cost with an average commercial electric steam cooker life of 12 years. Future electricity price trends and a 3% discount rate are based on Federal guidelines (NISTIR...

132

Covered Product Category: Commercial Steam Cookers  

Energy.gov (U.S. Department of Energy (DOE))

The Federal Energy Management Program (FEMP) provides acquisition guidance for commercial steam cookers, which are covered by the ENERGY STAR program.

133

Industrial Steam System Heat-Transfer Solutions  

Energy.gov (U.S. Department of Energy (DOE))

This brief provides an overview of considerations for selecting the best heat-transfer equipment for various steam systems and applications.

134

Advances in steam turbine technology for the power generation industry. PWR-Volume 26  

SciTech Connect

This is a collection of the papers on advances in steam turbine technology for the power generation industry presented at the 1994 International Joint Power Generation Conference. The topics include advances in steam turbine design, application of computational fluid dynamics to turbine aerodynamic design, life extension of fossil and nuclear powered steam turbine generators, solid particle erosion control technologies, and artificial intelligence, monitoring and diagnostics.

Moore, W.G. [ed.

1994-12-31T23:59:59.000Z

135

NPO Turboatom steam turbine design features and modifications  

SciTech Connect

Since its foundation in 1934, the Kharkov Turbine Works, parent of Turboatom has developed, manufactured, adjusted and operated steam turbine plants for thermal and nuclear power stations. More than 300 steam turbines for thermal power stations with a total capacity over 100,000 MW have been manufactured. Steam turbines rated 25 to 500 MW for pressures of 2.9 to 23.5 MPa for stations operating on fossil fuel and turbines rated 30 to 1100 MW for nuclear power stations (NPS) have been produced. unique experience was gained during building and operation of the SKR-100 turbine rated 100 MW for initial steam conditions of 29.4 MPa, 650{sup o}C with steam cooling and minimum use of high-temperature materials. In addition to the turbine plants made for the power stations of the former USSR, Turboatom has manufactured 95 steam turbines for export. These are installed at 7 nuclear and 16 thermal power stations throughout the world, including Bulgaria, China, Cuba, Finland, Germany, Hungary, Korea and Rumania. Turboatom produces turbines operating at 25; 50 or 60 l/s speed of rotation.

Levchenko, E.V. [NPO Turboatom, Kharkov (Ukraine)

1995-06-01T23:59:59.000Z

136

DOE's BestPractices Steam End User Training Steam End User Training  

E-Print Network (OSTI)

DOE's BestPractices Steam End User Training Steam End User Training Conclusion Module 1 June 28, 2010 Steam EndUser Training Conclusion Module Slide 1 Conclusions Let's briefly examine the major items we have covered in this training. [Slide Visual ­ Contents of Module Sections

Oak Ridge National Laboratory

137

Designing an ultrasupercritical steam turbine  

SciTech Connect

Carbon emissions produced by the combustion of coal may be collected and stored in the future, but a better approach is to reduce the carbon produced through efficient combustion technologies. Increasing the efficiency of new plants using ultrasupercritical (USC) technology will net less carbon released per megawatt-hour using the world's abundant coal reserves while producing electricity at the lowest possible cost. The article shows how increasing the steam turbine operating conditions for a new USC project in the USA and quantify the potential CO{sub 2} reduction this advanced design makes possible. 7 figs., 3 tabs.

Klotz, H.; Davis, K.; Pickering, E. [Alstom (Germany)

2009-07-15T23:59:59.000Z

138

Geismar TDI Plant Steam Optimization  

E-Print Network (OSTI)

BASF North America 7 ESL-IE-13-05-19 Proceedings of the Thrity-Fifth Industrial Energy Technology Conference New Orleans, LA. May 21-24, 2013 BASF?s strategic principles A conscientious commitment to our investors, customers, employees...Geismar TDI Plant Steam Optimization May 23rd, 2013 IET Conference Meredith Bailey, PDP Engineer BASF Corporation (734) 324-5047 meredith.bailey@basf.com ESL-IE-13-05-19 Proceedings of the Thrity-Fifth Industrial Energy Technology...

Baily, M.

2013-01-01T23:59:59.000Z

139

Steam Plant Replaces Outdated Coal-Fired System | Department...  

Office of Environmental Management (EM)

Steam Plant Replaces Outdated Coal-Fired System September 1, 2012 - 12:00pm Addthis A new natural gas-fired steam plant will replace an older coal-fired steam plant shown here. The...

140

Effective Steam Trap Selection/Maintenance - Its Payback  

E-Print Network (OSTI)

In oil refineries and petrochemical plants large number of steam traps are used to discharge condensate from steam mains, tracers and process equipment. Early efforts on steam traps focused almost exclusively on their selection and sizing...

Garcia, E.

1984-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fossil steam steam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Steam turbine materials and corrosion  

SciTech Connect

Ultra supercritical (USC) power plants offer the promise of higher efficiencies and lower emissions. Current goals of the U.S. Department of Energy’s Advanced Power Systems Initiatives include coal generation at 60% efficiency, which would require steam temperatures of up to 760°C. This research examines the steamside oxidation of alloys for use in USC systems, with emphasis placed on applications in high- and intermediate-pressure turbines. The list of alloys being examined is discussed, including the addition of new alloys to the study. These include alloy 625, selected because of its use as one of the two alloys used for turbine rotors, valves, casings, blading and bolts in the European AD700 full-scale demonstration plant (Scholven Unit F). The other alloy, alloy 617, is already one of the alloys currently being examined by this project. Other new alloys to the study are the three round robin alloys in the UK-US collaboration: alloys 740, TP347HFG, and T92. Progress on the project is presented on cyclic oxidation in 50% air – 50% water vapor, furnace exposures in moist air, and thermogravimetric analysis in argon with oxygen saturated steam. An update on the progress towards obtaining an apparatus for high pressure exposures is given.

Holcomb, G.R.; Ziomek-Moroz, M.

2007-01-01T23:59:59.000Z

142

Steam Turbine Control Valve Noise  

Science Journals Connector (OSTI)

Although noise problems with steam turbine control valves have existed before they have become more prominent with nuclear turbines whose valves range to 20 in. in diameter. Our first?generation nuclear control valves were unacceptably noisy when operating under chocked conditions. These noise levels have been ameliorated by incorporation of a valve cage with numerous small holes. Rational design rules for this “dispersive muffler” have been developed from published multiple?jet noise data and improved through our own tests. However we are also evaluating other low?noise valve configurations which are consistent with turbine requirements. The approach we are developing is to investigate the internal aerodynamic noisegeneration in small air model tests and to combine this with measurements of pipe?wall transmission characteristics (being reported separately) to predict externally radiated noise. These predictions will be checked in a new steam test facility for complete scale?model valves. The small air tests show that acoustic efficiencies of throttling valve flows tend to vary with third power of Mach number when exhausting into space and with a lesser power when enclosed in a downstream pipe. At some pressure ratios narrow?band spikes appear in the spectrum and for some configurations step changes in sound power are associated with transitions in flow regimes.

Frank J. Heymann; Michael A. Staiano

1973-01-01T23:59:59.000Z

143

Steam engines on a microscopic scale  

SciTech Connect

This article describes the operation of a miniature steam engine that can develop 100 times more power than existing microsystems actuated by electrostatic forces. The topics of the article include current uses for electrostatic actuators and possible applications of the miniature steam engine, the design and operation of the engine, and problems associated with increasing the operating frequency of the engine.

O'Connor, L.

1994-01-01T23:59:59.000Z

144

Steam Plant Conversion Eliminating Campus Coal Use  

E-Print Network (OSTI)

high-efficiency NG/fuel oil boilers · Slight reduction in steam production capacity · Requires: Building heating Domestic hot water Lab sterilization UT's Steam Plant #12;· Powered by 5 boilers: 2 emissions standard (Boiler MACT): · For existing boilers w/ heat input capacity of 10 MMBtu/hr or greater

Dai, Pengcheng

145

Steam reforming utilizing sulfur tolerant catalyst  

SciTech Connect

This patent describes a steam reforming process for converting hydrocarbon material to hydrogen gas in the presence of sulfur which consists of: adding steam to the hydrocarbon material and passing the steam and hydrocarbon material over catalyst material at elevated temperatures. The improvement comprises utilizing as a catalyst material high activity, sulfur tolerant catalyst of platinum supported on lanthanum stabilized alumina or magnesium promoted lanthanum stabilized alumina. It also describes a steam process for converting hydrocarbon material to hydrogen gas in the presence of sulfur which consists of steam to the hydrocarbon material over catalyst material at elevated temperatures. The improvement comprises utilizing as a catalyst material high activity, sulfur tolerant catalysts consisting essentially of iridium supported on lanthanum stabilized alumina or magnesium promoted lanthanum stabilized alumina. In addition a steam reforming process is described for converting hydrocarbon material to hydrogen gas in the presence of sulfur comprising adding steam to the hydrocarbon material and passing the steam and hydrocarbon material over catalyst material at elevated temperatures. The improvement comprises utilizing as a catalyst material high activity sulfur tolerant catalysts consisting essentially of palladium supported on lanthanum stabilized alumina or magnesium promoted lanthanum stabilized alumina.

Setzer, H.J.; Karavolis, S.; Bett, J.A.S.

1987-09-15T23:59:59.000Z

146

Steam System Optimization: A Case Study  

E-Print Network (OSTI)

This paper highlights the study findings in a steam system in a plant from a multinational Petrochemical giant in an European country. The steam system operates with an annual budget of $8.9 million (local currency was converted to US Dollars...

Iordanova, N.; Venkatesan, V. V.

147

The Progress of the Steam Turbine  

Science Journals Connector (OSTI)

... in pressure, and the steam expands gradually by small increments. In a moderate-sized turbo-motor there may be from thirty to eighty successive rings, and when the steam ... and relieve end pressure on the thrust bearing. Fig. 3 shows a 350 kilowatt turbo-alternator, thirteen of which size are now at work in the London stations.

1897-09-30T23:59:59.000Z

148

Program assists steam drive design project  

SciTech Connect

A new program for the HP-41CV programmable calculator will compute all parameters required for a steam drive project design. The Marx and Langenheim model assumptions are used to solve a more advanced version of the Myhill and Stegemeier model. Also, the Mandl and Volek model assuptions are used to compute the size of the steam zone.

Mendez, A.A.

1984-08-27T23:59:59.000Z

149

Use Vapor Recompression to Recover Low-Pressure Waste Steam  

Energy.gov (U.S. Department of Energy (DOE))

This tip sheet on recovering low-pressure waste steam provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

150

An in-line microwave steam quality sensor.  

E-Print Network (OSTI)

??Saturated steam is a widely used industrial medium for the efficient transfer of energy. The proportion of saturated vapor steam to saturated condensate of the… (more)

Faulkner, Christopher D.

2014-01-01T23:59:59.000Z

151

Savannah River's Biomass Steam Plant Success with Clean and Renewable...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Savannah River's Biomass Steam Plant Success with Clean and Renewable Energy Savannah River's Biomass Steam Plant Success with Clean and Renewable Energy In order to meet the...

152

Use Low-Grade Waste Steam to Power Absorption Chillers  

Energy.gov (U.S. Department of Energy (DOE))

This tip sheet on waste steam to power absorption chillers provides how-to advice for improving steam systems using low-cost, proven practices and technologies.

153

Industrial Steam System Process-Control Schemes | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Steam System Process-Control Schemes (July 2003) More Documents & Publications Compressed Air Storage Strategies Save Energy Now in Your Steam Systems CIBO Energy Efficiency...

154

Experimental study on steam plume and temperature distribution for sonic steam jet  

Science Journals Connector (OSTI)

The sonic steam jet in subcooled water was investigated experimentally over a wide range of steam mass flux and water temperature conditions. Four different steam plume shapes were observed in present test conditions, and the condensation form was mainly controlled by the steam mass flux and water temperature. Moreover, the unstable jet was observed on the condition of low steam mass flux and high water temperature. The transition criterion of unstable-stable jet was also given. The temperature fields in the steam plume and in the surrounding water were measured. Axial temperature distributions represented the four typical steam plumes, and the fluctuation of axial temperature confirmed the existence of expansion and compression waves. Additionally, the radial temperature distributions were independent of water temperature for small radial distance at nozzle exit, and further the axial location was apart from the nozzle exit, longer the radial distance affected by the momentum diffusion.

Xinzhuang Wu; Junjie Yan; Wenjun Li; Dongdong Pan; Ying Li

2009-01-01T23:59:59.000Z

155

Effect of steam injection location on syngas obtained from an air–steam gasifier  

Science Journals Connector (OSTI)

Abstract For a fluidized-bed gasifier, reaction conditions vary along the height of the reactor. Hence, the steam injection location may have a considerable effect on the syngas quality. The objective of this study was to investigate the effects of steam injection location and steam-to-biomass ratio (SBR) on the syngas quality generated from an air–steam gasification of switchgrass in a 2–5 kg/h autothermal fluidized-bed gasifier. Steam injection locations of 51, 152, and 254 mm above the distributor plate and \\{SBRs\\} of 0.1, 0.2, and 0.3 were selected. Results showed that the syngas H2 and CO yields were significantly influenced by the steam injection location (p gasifier efficiencies (cold gas efficiency of 67%, hot gas efficiency of 72%, and carbon conversion efficiency of 96%) were at the steam injection location of 254 mm and SBR of 0.2.

Ashokkumar M. Sharma; Ajay Kumar; Raymond L. Huhnke

2014-01-01T23:59:59.000Z

156

Life assessment product catalog for boilers, steam pipes, and steam turbines  

SciTech Connect

Aging fossil power plants, escalating costs of new plant construction, and load growth rate uncertainties are motivating utilities to make the most effective use of critical components in existing power plants. To help meet this need, EPRI has refined existing methods and developed new methods of predicting the remaining life of key fossil plant components with greater accuracy and confidence. This report describes 16 EPRI products (guidelines, computer programs, and other tools) that apply these techniques to boiler tubes, boiler headers, steam lines, and turbine rotors, blades, and casings. Utility personnel, including plant engineers, maintenance supervisor, engineering department staff, plant operating staff, and performance engineers, can use these products to assess remaining component life, as well as to set cost-effective maintenance procedures, inspection schedules, and operating procedures.

Hoffman, S. (Hoffman (S.), Santa Clara, CA (United States))

1992-07-01T23:59:59.000Z

157

Diagnostics based on thermodynamic analysis of performance of steam turbines: case histories  

SciTech Connect

The purpose of this paper is to describe some types of failures which have occurred with the ENEL stock of fossil-fuel steam turbines over the last 5--7 years. This paper also presents the corresponding thermodynamic analysis of turbine parameters which permitted failure diagnosis and pre-scheduled opening of the turbine. The examined failures concern: in-service rupture of the bell seal retainer nut between the SH steam inlet sleeves and the inner HP/IP cylinder, on turbines with a main steam inlet system with bell seals; incorrect assembly of pressure seal rings between steam inlet sleeves and the inner cylinder on turbines with a main steam inlet system with pressure seal rings during a scheduled outage; and steam flow path restriction in IP turbine inlet. Thermodynamic failure analysis and the subsequent analysis of turbine damage (mechanical and financial) enabled condition-based maintenance operations to be carried out.

Tirone, G.; Arrighi, L.; Bonifacino, L.

1996-12-31T23:59:59.000Z

158

Advanced steam parameters for pulverized coal fired boilers  

SciTech Connect

After the enormous efforts made in the eighties towards minimization of pollutant concentration in flue gases from power stations, public attention today has turned increasingly toward CO{sub 2} emissions from fossil fuel fired plants. This interest has, in turn, renewed interest in increasing the efficiency of thermal power plants, as this approach is by far the most practical means of reducing the specific CO{sub 2} emission rate. The Rankine steam cycle is the workhorse of the power industry. However, the steam power cycle is often regarded as having reached a maximum practical efficiency, and development effort has shifted to indirect fired cycles. In reality, Rankine cycle efficiencies equivalent to the combined Brayton/Rankine cycles are possible, and may be economically practical. The development work which would allow such steam cycle efficiencies to be realized has been limited in recent years, due to low growth rates, falling energy prices, and tying up of investment funds in environmental control equipment. This paper presents a short survey of the application for advanced steam parameters in power generation and discusses critical areas in more detail. A program undertaken by a consortium of European manufacturers and EC governments for the advancement of steam cycle efficiency is described.

Heiermann, G.; Husemann, R.U.; Kather, A.; Knizia, M.; Hougaard, P.

1996-12-31T23:59:59.000Z

159

Steam Coal Import Costs - EIA  

Gasoline and Diesel Fuel Update (EIA)

Steam Coal Import Costs for Selected Countries Steam Coal Import Costs for Selected Countries U.S. Dollars per Metric Ton1 (Average Unit Value, CIF2) Country 2001 2002 2003 2004 2005 2006 2007 2008 2009 Belgium 46.96 39.34 39.76 66.29 70.83 70.95 82.81 150.58 NA Denmark 40.78 31.65 50.27 56.29 61.84 59.15 75.20 113.34 NA Finland 40.83 37.08 39.99 58.45 62.80 67.65 72.64 134.21 NA France 45.36 42.59 42.63 64.08 75.23 72.92 84.49 135.53 NA Germany 41.46 36.80 39.00 61.22 72.48 70.12 81.49 138.84 NA Ireland3 45.25 47.88 50.08 80.90 74.91 101.78 125.15 143.08 NA Italy 44.83 41.25 42.45 63.54 73.20 69.16 86.00 143.68 NA Japan 37.95 36.95 34.93 51.48 62.73 63.33 70.92 125.42 NA Netherlands 40.09 35.81 37.27 55.09 68.86 68.57 79.12 133.50 NA

160

Steam turbine upgrades: A utility based approach  

SciTech Connect

In the increasingly competitive power generation markets utilities must strive towards lower electricity generation costs, whilst relying on an aging steam turbine fleet. By the year 2000 more than 25% of the global steam turbine capacity will be older than 30 years. The heat rate of such units is generally considerably higher than that of equivalent new plant, and such equipment can be further disadvantaged by increased maintenance costs and forced outage rates. Over the past decade steam turbine conversion, modification, and upgrade packages have become an increasingly important part of the European steam turbine market. Furthermore, many utilities now realize that enhanced cost-effectiveness can often be obtained by moving away from the original equipment manufacturer (OEM), and the upgrading of other manufacturers' plant is now routine within the steam turbine industry. By working closely with customers, GE has developed a comprehensive range of steam turbine upgrade packages, including advanced design steampaths which can increase the performance of existing turbine installations to levels comparable with new plant. Such packages are tailor-made to the requirements of each customer, to ensure that the most cost-effective engineering solution is identified. This paper presents an overview of GE's state-of-the-art steam turbine technology, and continues to describe typical economic models for turbine upgrades.

Wakeley, G.R.

1998-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "fossil steam steam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Steam reforming utilizing iron oxide catalyst  

SciTech Connect

High activity steam reforming iron oxide catalysts are described. Such catalysts can be unsupported utilizing at least 90% by weight iron oxide and various modifiers (Ai/sub 2/O/sub 3/, K/sub 2/O, CaO, SiO/sub 2/) or unmodified and supported on such things as alumina, CaO impregnated alumina, and lanthanum stabilized alumina. When used in steam reformers such as autothermal and tubular steam reformers, these catalysts demonstrate much improved resistance to carbon plugging.

Setzer, H. T.; Bett, J. A. S.

1985-06-11T23:59:59.000Z

162

Baton Rouge Complex Steam Real Time Optimization  

E-Print Network (OSTI)

Baton Rouge Complex Steam Real Time Optimization IETC 2014 New Orleans, Louisiana Tope Iyun ExxonMobil Chemical Company May 22, 2014 ESL-IE-14-05-32 Proceedings of the Thrity-Sixth Industrial Energy Technology Conference New Orleans, LA. May 20...-23, 2014 Proprietary 2 Agenda • Baton Rouge Complex • Steam System Overview • Energy Efficiency Improvement Strategy • Site-Wide Steam System Optimization • Results • Benefits/Wrap-Up ESL-IE-14-05-32 Proceedings of the Thrity-Sixth Industrial Energy...

Iyun, T.

2014-01-01T23:59:59.000Z

163

Economic Analysis of "Steam-Shock" and "Pasteurization"  

E-Print Network (OSTI)

Economic Analysis of "Steam-Shock" and "Pasteurization" Processes for Oyster Shucking JOHN W. BROWN Introduction "Steam-shock" is an oyster shucking process that uses steam to relax the oyster's adductor muscle of the shucking process as in integral part of the operation of an existing oyster-shucking house. The term "steam

164

Synthesis and Optimization of Steam System Networks. 2. Multiple Steam Levels  

Science Journals Connector (OSTI)

Tim Price † and Thokozani Majozi *†‡ ... (6) In its simplest form, it represents the ratio of the energy content of the steam to the energy content of the fuel. ...

Tim Price; Thokozani Majozi

2010-08-20T23:59:59.000Z

165

Standard Steam Trust LLC | Open Energy Information  

Open Energy Info (EERE)

Steam Trust LLC Steam Trust LLC (Redirected from Standard Steam Trust) Jump to: navigation, search Name Standard Steam Trust LLC Place Denver, Colorado Sector Geothermal energy Product Subsidiary of Denver-based geothermal project developer, Terra Caliente. Coordinates 39.74001°, -104.992259° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.74001,"lon":-104.992259,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

166

LNG Vaporizer Utilizing Vacuum Steam Condensing  

Science Journals Connector (OSTI)

This report concerns the field test results of a new type of peak-shaving LNG vaporizer (VSV) whose heat source is ... heat of vacuum steam to vaporize and superheat LNG within heat transfer tubes. Prior to the.....

Y. Miyata; M. Hanamure; H. Kujirai; Y. Sato…

1991-01-01T23:59:59.000Z

167

Cash Flow Impacts of Industrial Steam Efficiency  

E-Print Network (OSTI)

Steam efficiency is a major opportunity for manufacturers to boost financial performance in an increasingly competitive environment. An immediate policy challenge is to raise manufacturers' awareness of these opportunities. A major barrier...

Russell, C.

168

Energy & Environmental Benefits from Steam & Electricity Cogeneration  

E-Print Network (OSTI)

the electricity required by TEX and sells excess power to wholesale customers in the region. It provides a large portion of TEX steam requirements, with sufficient reliability such that TEX decommissioned its coal-fired powerhouse and reduced operations...

Ratheal, R.

2004-01-01T23:59:59.000Z

169

Extraction Steam Controls at EPLA-W  

E-Print Network (OSTI)

ExxonMobil's Baton Rouge site encompasses a world-scale refinery, chemical plant and third party power station. Historically, inflexible and unreliable control systems on two high-pressure, extracting/condensing steam turbines prevented the site...

Brinker, J. L.

2004-01-01T23:59:59.000Z

170

A Multistage Steam Reformer Utilizing Solar Heat  

Science Journals Connector (OSTI)

Today a large amount of the required hydrogen or synthesis gas (mixture of hydrogen and carbonmonoxide) is won by steam reforming of low hydrocarbons, especially methane. Hereby the mixture of hydrocarbons and...

W. Jäger; U. Leuchs; W. Siebert

1987-01-01T23:59:59.000Z

171

The revolutionary impact of the steam engine  

E-Print Network (OSTI)

Sitting with a model of Stephenson’s Rocket, Simon Schaffer reflects on the steam revolution and how it changed the world in the nineteenth century in so many different ways....

Dugan, David

2004-08-18T23:59:59.000Z

172

How did the Rocket steam engine work?  

E-Print Network (OSTI)

Simon Schaffer talks to a museum curator at the York railway museum about the way in which steam engines worked and the imagination and technical ability of George Stephenson....

Dugan, David

2004-08-17T23:59:59.000Z

173

Optimizing Steam & Condensate System: A Case Study  

E-Print Network (OSTI)

Optimization of Steam & Condensate systems in any process plant results in substantial reduction of purchased energy cost. During periods of natural gas price hikes, this would benefit the plant in controlling their fuel budget significantly...

Venkatesan, V. V.; Norris, C.

2011-01-01T23:59:59.000Z

174

Steam System Optimization : A Case Study  

E-Print Network (OSTI)

The steam system optimization (generation, distribution, use and condensate return) offers a large opportunity for action to comply with the new levels of energy efficiency standards. Superior design and improved maintenance practices are the two...

Iordanova, N.; Venkatesan, V. V.; Calogero, M.

175

Steam turbine upgrading: low-hanging fruit  

SciTech Connect

The thermodynamic performance of the steam turbine, more than any other plant component, determines overall plant efficiency. Upgrading steam path components and using computerized design tools and manufacturing techniques to minimise internal leaks are two ways to give tired steam turbines a new lease on life. The article presents three case studies that illustrate how to do that. These are at Unit 1 of Dairyland's J.P. Madgett Station in Alma, WI, a coal-fired subcritical steam plant; the four units at AmerenUE's 600 MW coal-fired Labadie plant west of St. Louis; and Unit 3 of KeyPlan Corp's Northport Power Station on Long Island. 8 figs.

Peltier, R.

2006-04-15T23:59:59.000Z

176

Greenville Steam Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Greenville Steam Biomass Facility Greenville Steam Biomass Facility Jump to: navigation, search Name Greenville Steam Biomass Facility Facility Greenville Steam Sector Biomass Location Piscataquis County, Maine Coordinates 45.7049857°, -69.3375071° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.7049857,"lon":-69.3375071,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

177

Apparatus and methods of reheating gas turbine cooling steam and high pressure steam turbine exhaust in a combined cycle power generating system  

DOE Patents (OSTI)

In a combined cycle system having a multi-pressure heat recovery steam generator, a gas turbine and steam turbine, steam for cooling gas turbine components is supplied from the intermediate pressure section of the heat recovery steam generator supplemented by a portion of the steam exhausting from the HP section of the steam turbine, steam from the gas turbine cooling cycle and the exhaust from the HP section of the steam turbine are combined for flow through a reheat section of the HRSG. The reheated steam is supplied to the IP section inlet of the steam turbine. Thus, where gas turbine cooling steam temperature is lower than optimum, a net improvement in performance is achieved by flowing the cooling steam exhausting from the gas turbine and the exhaust steam from the high pressure section of the steam turbine in series through the reheater of the HRSG for applying steam at optimum temperature to the IP section of the steam turbine.

Tomlinson, Leroy Omar (Niskayuna, NY); Smith, Raub Warfield (Ballston Lake, NY)

2002-01-01T23:59:59.000Z

178

Oxidation of advanced steam turbine alloys  

SciTech Connect

Advanced or ultra supercritical (USC) steam power plants offer the promise of higher efficiencies and lower emissions. Current goals of the U.S. Department of Energy’s Advanced Power Systems Initiatives include coal generation at 60% efficiency, which would require steam temperatures of up to 760°C. This research examines the steamside oxidation of advanced alloys for use in USC systems, with emphasis placed on alloys for high- and intermediate-pressure turbine sections.

Holcomb, G.R.; Covino, B.S., Jr.; Bullard, S.J.; Ziomek-Moroz, M.

2006-03-01T23:59:59.000Z

179

Savings in Steam Systems (A Case Study)  

E-Print Network (OSTI)

Savings in Steam Systems (A Case Study) Rich DeBat Steam Systems Engineer Armstrong Service, Inc. Three Rivers, MI ABSTRACT Armstrong Service Inc. (ASI) conducted an engineered evaluation at an Ammonium Nitrate Manufacturing facility during... existing burner system after refractory repair and continue with normal operation of the existing boiler. Annstrong Service cannot guarantee any aspect of this option. Option 2. Armstrong Service, Inc. proposes to evaluate, select and install a...

DeBat, R.

180

World Class Boilers and Steam Distribution System  

E-Print Network (OSTI)

WORLD CLASS BOILERS AND STEAM DISTRIBUTION SYSTEM Vernon P. Portell, Ph.D. Manager Armstrong Service, Inc. ABSTRACT categorizing, measuring, and comparing subjects which are of interest to us is the way we identify the "World class" is a... of information can also be obtained through an independent firm that provides third-party assessment of steam systems. One of these third parties, Armstrong Energy Certification, Inc., has used data gleaned from decades of industrial experience...

Portell, V. P.

Note: This page contains sample records for the topic "fossil steam steam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Cheng Cycle Brings Flexibility to Steam Plant  

E-Print Network (OSTI)

. Based upon an estimated steam load between 5,000 and 50,000 Ibjhr and an electrical load of approximately 1500 KW, the Engineering Department examined several energy optimization systems for this site. It was determined that a modified gas turbine... within the borders allows exact tracking of desired electrical and thermal outputs. The Allison engine used in the Cheng Cycle system was selected for its proved performance and its ample surge margin which permits stable steam injection...

Keller, D. C.; Bynum, D.; Kosla, L.

182

Control system for fluid heated steam generator  

DOE Patents (OSTI)

A control system for controlling the location of the nucleate-boiling region in a fluid heated steam generator comprises means for measuring the temperature gradient (change in temperature per unit length) of the heating fluid along the steam generator; means for determining a control variable in accordance with a predetermined function of temperature gradients and for generating a control signal in response thereto; and means for adjusting the feedwater flow rate in accordance with the control signal.

Boland, J.F.; Koenig, J.F.

1984-05-29T23:59:59.000Z

183

Flow Characteristics Analysis of Widows' Creek Type Control Valve for Steam Turbine Control  

SciTech Connect

The steam turbine converts the kinetic energy of steam to mechanical energy of rotor blades in the power conversion system of fossil and nuclear power plants. The electric output from the generator of which the rotor is coupled with that of the steam turbine depends on the rotation velocity of the steam turbine bucket. The rotation velocity is proportional to the mass flow rate of steam entering the steam turbine through valves and nozzles. Thus, it is very important to control the steam mass flow rate for the load following operation of power plants. Among various valves that control the steam turbine, the control valve is most significant. The steam flow rate is determined by the area formed by the stem disk and the seat of the control valve. While the ideal control valve linearly controls the steam mass flow rate with its stem lift, the real control valve has various flow characteristic curves pursuant to the stem lift type. Thus, flow characteristic curves are needed to precisely design the control valves manufactured for the operating conditions of nuclear power plants. OMEGA (Optimized Multidimensional Experiment Geometric Apparatus) was built to experimentally study the flow characteristics of steam flowing inside the control valve. The Widows' Creek type control valve was selected for reference. Air was selected as the working fluid in the OMEGA loop to exclude the condensation effect in this simplified approach. Flow characteristic curves were plotted by calculating the ratio of the measured mass flow rate versus the theoretical mass flow rate of the air. The flow characteristic curves are expected to be utilized to accurately design and operate the control valve for fossil as well as nuclear plants. (authors)

Yoo, Yong H.; Sohn, Myoung S.; Suh, Kune Y. [PHILOSOPHIA, Inc., Seoul National University, San 56-1 Sillim-dong, Gwanak-gu, Seoul, 151-742 (Korea, Republic of)

2006-07-01T23:59:59.000Z

184

Development and Application of Advanced Models for Steam Hydrogasification: Process Design and Economic Evaluation  

E-Print Network (OSTI)

+ H 2 -41 MJ/kmol Steam methane reforming reaction CH 4 + Htechnologies such as steam methane reforming, gas shiftingand preparation, steam methane reforming and FT synthesis,

Lu, Xiaoming

2012-01-01T23:59:59.000Z

185

Development of Steam Turbine Inlet Control Valve for Supercritical Pressure at Siemens Industrial Turbomachinery AB.  

E-Print Network (OSTI)

?? The development in the steam turbine business is heading for applications with much higher steam parameters since this enables a raised efficiency. Steam parameters… (more)

Sors, Felix

2010-01-01T23:59:59.000Z

186

A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System  

E-Print Network (OSTI)

A Better Steam Engine: Designing a Distributed Concentrating2011 Abstract A Better Steam Engine: Designing a Distributedprovided for a steam Rankine cycle heat engine achieving 50%

Norwood, Zachary Mills

2011-01-01T23:59:59.000Z

187

E-Print Network 3.0 - acoustical steam silencers Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

seasonal steam demand loads... convective steam gen erating tubes, then through an economizer, and finally through a two field electrostatic... psi, 520F. superheated steam at...

188

Boiler Efficiency vs. Steam Quality- The Challenge of Creating Quality Steam Using Existing Boiler Efficiencies  

E-Print Network (OSTI)

A boiler works under pressure and it is not possible to see what is happening inside of it. The terms "wet steam" and "carry over" are every day idioms in the steam industry, yet very few people have ever seen these phenomena and the actual water...

Hahn, G.

189

Best Management Practice: Boiler/Steam Systems | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Best Management Practice: Boiler/Steam Systems Best Management Practice: Boiler/Steam Systems Best Management Practice: Boiler/Steam Systems October 7, 2013 - 3:17pm Addthis Boilers and steam generators are commonly used in large heating systems, institutional kitchens, or in facilities where large amounts of process steam are used. This equipment consumes varying amounts of water depending on system size, the amount of steam used, and the amount of condensate returned. Operation and Maintenance Options To maintain water efficiency in operations and maintenance, Federal agencies should: Develop and implement a routine inspection and maintenance program to check steam traps and steam lines for leaks. Repair leaks and replace faulty steam traps as soon as possible. Develop and implement a boiler tuning program to be completed a minimum of

190

US DOE Industrial Steam BestPractices Software Tools  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOW RESTRICTED For internal DOW RESTRICTED For internal use only US DOE Industrial Steam BestPractices Software Tools Riyaz Papar, PE, CEM Hudson Technologies Company Phone: (281) 298 0975 Email: rpapar@hudsontech.com - Agenda * Introduction * Steam System BP Tools Suite - SSST - SSAT - 3EPlus * Q & A 1 Steam System Management Objective: Minimize Steam Use, Energy Losses And Most Importantly STEAM COST!! Steam Market Assessment Takeaways * Fuel savings estimates - individual projects - ranged from 0.6 percent to 5.2 percent * Estimated payback periods generally very attractive - Ranged from 2 to 34 months - Most less than 2 years * Potential steam savings in target industries - over 12 percent of fuel use 2 Promising Areas To Achieve Steam Energy and Cost Savings? Use Steam System Scoping Tool (SSST) For

191

Solving chemical and mechanical problems of PWR steam generators  

SciTech Connect

Steam generators in power plants, based on pressurized water reactors (PWRs), transfer heat from a primary coolant system (pressurized water) to a secondary coolant system. Primary coolant water is heated in the core and passes through the steam generator that transfers heat to the secondary coolant water to make steam. The steam then drives a turbine that turns an electric generator. Steam is condensed and returned to the steam generator as feedwater. Two types of PWR steam generators are in use: recirculating steam generators (RSGs) and once-through steam generators (OTSGs). Since most of the units are vertical, only vertical units are discussed in this article. Some vertical units have operated with a minimum of problems, while others have experienced a variety of corrosion and mechanically-induced problems that have caused unscheduled outages and expensive repairs.

Green, S.J.

1987-07-01T23:59:59.000Z

192

Energy Savings with Computerized Steam Trap Maintenance Program  

E-Print Network (OSTI)

by Armstrong International, Inc. Five other manufacturers each have about a 5% share of the tmp population, and about 5 more account for the remaining steam traps. 6,430 STEAM TRAPS COLl3Il~) FIGURE 3 - Steam trap population by application. 8,430 STEAM... standardized using the inverted bucket steam trap made by Armstrong International, Inc. "or equal", with approval, wherever applicable and sensible. I believe the inverted bucket steam trap is the best one for this. The selection of a good manufacturer...

Klidzejs, A. M.

193

Simulation of Steam Reformers for Methane  

Science Journals Connector (OSTI)

Abstract A model is developed for industrial steam reformers for both top fired and side fired furnaces. The catalyst tube model is a one-dimensional heterogeneous model with intra-particle diffusional resistances. The two point boundary value differential equations of the catalyst pellets are solved using a modified novel orthogonal collocation technique to obtain the effectiveness factor variation along the length of the reactor. The side fired furnace equations are algebraic equations, the top fired furnace equations are two-point boundary value differential equations which are solved using the orthogonal collocation technique. A recently developed more general rate expression is used. The model performance is checked against industrial steam reformers. The model is used to investigate the effect of various parameters on the behaviour of the catalyst tubes and the furnace. The effectiveness factor variation along the length of the catalyst tube is also analysed. Keywords: Steam Reforming, Reactor modeling, Digital Simulation, effectiveness factor

M.A. Soliman; S.S.E.H. El-Nashaie; A.S. Al-Ubaid; A. Adris

1988-01-01T23:59:59.000Z

194

Ultra supercritical turbines--steam oxidation  

SciTech Connect

Ultra supercritical (USC) power plants offer the promise of higher efficiencies and lower emissions, which are goals of the U.S. Department of Energy?s Advanced Power Systems Initiatives. Most current coal power plants in the U.S. operate at a maximum steam temperature of 538?C. However, new supercritical plants worldwide are being brought into service with steam temperatures of up to 620?C. Current Advanced Power Systems goals include coal generation at 60% efficiency, which would require steam temperatures of up to 760?C. This research examines the steamside oxidation of advanced alloys for use in USC systems, with emphasis placed on alloys for high- and intermediate-pressure turbine sections. Initial results of this research are presented.

Holcomb, Gordon R.; Covino, Bernard S., Jr.; Bullard, Sophie J.; Cramer, Stephen D.; Ziomek-Moroz, Margaret; Alman, David E.

2004-01-01T23:59:59.000Z

195

Feasibility of Steam Hydrogasification of Microalgae for Production of Synthetic Fuels  

E-Print Network (OSTI)

and is followed by steam methane reforming ( SMR). The finalReaction: Steam Methane Reforming: Fischer–Tropsch Reaction:methane and steam in steam methane reforming generates the

Suemanotham, Amornrat

2014-01-01T23:59:59.000Z

196

E-Print Network 3.0 - advanced steam generators Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

THEORY AND IN PRACTICE. BY R... OF A HISTORY OF THE STEAM-EN- GINE, A MANUAL OF THE STEAM-ENGINE, A MANUAL OF STEAM-BOILERS, ETC., ETC., ETC... treatise on Steam-Boiler Explosions...

197

Thermodynamics and Transport Phenomena in High Temperature Steam Electrolysis Cells  

SciTech Connect

Hydrogen can be produced from water splitting with relatively high efficiency using high temperature electrolysis. This technology makes use of solid-oxide cells, running in the electrolysis mode to produce hydrogen from steam, while consuming electricity and high temperature process heat. The overall thermal-to-hydrogen efficiency for high temperature electrolysis can be as high as 50%, which is about double the overall efficiency of conventional low-temperature electrolysis. Current large-scale hydrogen production is based almost exclusively on steam reforming of methane, a method that consumes a precious fossil fuel while emitting carbon dioxide to the atmosphere. An overview of high temperature electrolysis technology will be presented, including basic thermodynamics, experimental methods, heat and mass transfer phenomena, and computational fluid dynamics modeling.

James E. O'Brien

2012-03-01T23:59:59.000Z

198

Diagnostics based on thermodynamic analysis of performance of steam turbines: Case histories  

SciTech Connect

The purpose of this paper is to describe some types of failures which have occurred with the ENEL stock of fossil-fuel steam turbines over the last 5--7 years. This paper also presents the corresponding thermodynamic analysis of turbine parameters which permitted failure diagnosis and pre-scheduled opening of the turbine. The examined failures concern: (1) in-service rupture of the bell seal retainer nut between a SH steam inlet sleeve and the inner HP/IP cylinder, on turbines with a main steam inlet system with bell seals; (2) incorrect assembly of pressure seal rings between steam inlet sleeves and the inner cylinder on turbines with a main steam inlet system with pressure seal rings during a scheduled outage; (3) steam flow path restriction in IP turbine inlet; (4) steam flow path restriction in 1st HP turbine stage nozzles; and (5) steam flow path restriction in 2nd HP turbine stage vanes. Thermodynamic failure analysis and the subsequent analysis of turbine damage (mechanical and financial) enabled condition-based maintenance operations to be carried out.

Tirone, G.; Arrighi, L.; Bonifacino, L.

1998-07-01T23:59:59.000Z

199

On water, steam, and string theory  

Science Journals Connector (OSTI)

At a pressure of 220 atm and a temperature of 374?°C there is a second-order phase transition between water and steam. Understanding it requires a key concept of both condensed matter and elementary particle physics: the renormalization group. Its basic ideas are explained with images from computer simulations of the lattice gas model. Then I briefly review how the renormalization group is used to compute critical coefficients for the water–steam phase transition. The results of this calculation are in good agreement with experiment. Finally some applications in particle physics and string theory are mentioned.

Christof Schmidhuber

1997-01-01T23:59:59.000Z

200

Steam Trap Maintenance as a Profit Center  

E-Print Network (OSTI)

the Eighteenth Industrial Energy Technology Conference, Houston, TX, April 17-18, 1996 EXCUSES Everybody thinks his or her steam trap maintenance is good. Surveysl have shown the following are the most popular excuses encountered when managers are confronted... for steam traps. 192 ESL-IE-96-04-28 Proceedings from the Eighteenth Industrial Energy Technology Conference, Houston, TX, April 17-18, 1996 5. Set up a trap maintenance program C. Prepare and present a report to that will: management on the results...

Bouchillon, J. L.

Note: This page contains sample records for the topic "fossil steam steam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Improved plant performance through evaporative steam condensing  

SciTech Connect

Combining an open cooling tower and a steam condenser into one common unit is a proven technology with many advantages in power generation application, including reduced first cost of equipment, reduced parasitic energy consumption, simplified design, reduced maintenance, and simplified water treatment, Performance of the steam turbine benefits from the direct approach to wet bulb temperature, and operating flexibility and reliability improve compared to a system with a cooling tower and surface condenser. System comparisons and case histories will be presented to substantiate improved systems economies.

Hutton, D.

1998-07-01T23:59:59.000Z

202

Finding Benefits by Modeling and Optimizing Steam and Power Systems  

E-Print Network (OSTI)

A site-wide steam modeling and optimization program (Visual MESA) was implemented at the INEOS Chocolate Bayou site. This program optimizes steam production, compressor turbine extraction, pump operation (turbine/motor) operation, as well...

Jones, B.; Nelson, D.

2007-01-01T23:59:59.000Z

203

CIBO's Energy Efficiency Handbook for Steam Power Systems  

E-Print Network (OSTI)

The Council of Industrial Boiler Owners (CIBO) has developed a handbook to help boiler operators get the best performance from their industrial steam systems. This energy efficiency handbook takes a comprehensive look at the boiler and steam system...

Bessette, R. D.

204

Case Study- Steam System Improvements at Dupont Automotive Marshall Laboratory  

E-Print Network (OSTI)

and implement small scale cogeneration. These recommendations included reducing the medium pressure steam distribution to low pressure, eliminating the medium pressure to low pressure reducing stations, installing a back pressure steam turbine generator...

Larkin, A.

205

Energy Conservation Thru Steam Trap Surveys and Preventive Maintenance Programs  

E-Print Network (OSTI)

ENERGY CONSERVATION THRU STEAM TRAP SURVEYS AND PREVENTIVE MAINTENANCE PROGRAMS Terry Boynton, Armstrong, Three Rivers, Mich. Bob Dewhirst, Armstrong, New Braunfels, Texas. This paper will deal with steam trap surveys and preventive maintenance...

Boynton, T.; Dewhirst, B.

1980-01-01T23:59:59.000Z

206

Use a Vent Condenser to Recover Flash Steam Energy  

Energy.gov (U.S. Department of Energy (DOE))

This tip sheet on using vent condensers to recover flash steam energy provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

207

Pafnuty Chebyshev, Steam Engines, and Polynomials by John Albert  

E-Print Network (OSTI)

Pafnuty Chebyshev, Steam Engines, and Polynomials by John Albert OU Mathfest, January 2009 1 professorship at age 61, but continued to work on mathematics right up to his death at age 73. 2. Steam Engines

Albert, John

208

Following Where the Steam Goes: Industry's Business Opportunity  

E-Print Network (OSTI)

Many associated benefits accrue from plant projects which comprehensively address steam systems. The DOE-Alliance to Save Energy Steam Challenge program was initiated shortly after last year's IETC on April 30, 1998 to promote awareness...

Jaber, D.; Jones, T.

209

Optimization of Steam Network in Tehran Oil Refinery  

E-Print Network (OSTI)

case study and its steam network is analyzed. At the first step, using STAR software, the steam network is simulated and then optimized, which determines the optimum conditions. In this regard, energy saving potential was identified and total operating...

Khodaie, H.; Nasr, M. R. J.

2008-01-01T23:59:59.000Z

210

The Analysis and Development of Large Industrial Steam Systems  

E-Print Network (OSTI)

Chemicals, petroleum, pulp and paper, and many other industries depend heavily on extensive complex steam systems for thermal and mechanical energy delivery. Steam's versatility and desirable characteristics as both a heat transfer medium and a...

Waterland, A. F.

1980-01-01T23:59:59.000Z

211

Use a Vent Condenser to Recover Flash Steam Energy (Revised)  

SciTech Connect

This revised ITP tip sheet on vent condenser to recover flash steam energy provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

Not Available

2006-05-01T23:59:59.000Z

212

Materials for Ultra-Supercritical Steam Power Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

for Advanced Ultra-Supercritical for Advanced Ultra-Supercritical Steam Power Plants Background The first ultra-supercritical (USC) steam plants in the U.S. were designed, constructed, and operated in the late 1950s. The higher operating temperatures and pressures in USC plants were designed to increase the efficiency of steam plants. However, materials performance problems forced the reduction of steam temperatures in these plants, and discouraged further developmental efforts on low heat-rate units.

213

An Object-Oriented Algebraic Steam-Boiler Control Specification  

E-Print Network (OSTI)

An Object-Oriented Algebraic Steam-Boiler Control Specification Peter Csaba ()lveczky, Poland Abstract. In this paper an object-oriented algebraic solution of the steam-boiler specification Introduction The steam-boiler control specification problem has been proposed as a challenge for different

Ă?lveczky, Peter Csaba

214

Steam boiler control speci cation problem: A TLA solution  

E-Print Network (OSTI)

Steam boiler control speci cation problem: A TLA solution Frank Le ke and Stephan Merz Institut fur of the state of the steam boiler, detect failures, and model message transmission. We give a more detailed between the physi- cal state of the steam boiler and the model maintained by the controller and discuss

215

Steam boiler control specification problem: A TLA solution  

E-Print Network (OSTI)

Steam boiler control specification problem: A TLA solution Frank Le�ke and Stephan Merz Institut f of the state of the steam boiler, detect failures, and model message transmission. We give a more detailed between the physi­ cal state of the steam boiler and the model maintained by the controller and discuss

Merz, Stephan

216

An Object-Oriented Algebraic Steam-Boiler Control Specification  

E-Print Network (OSTI)

An Object-Oriented Algebraic Steam-Boiler Control Specification.In this paper an object-oriented algebraic solution of the steam-boiler specification problem is presented computations cannot happen. 1 Introduction The steam-boiler control specification problem has been

Ă?lveczky, Peter Csaba

217

Supported metal catalysts for alcohol/sugar alcohol steam reforming  

SciTech Connect

Despite extensive studies on hydrogen production via steam reforming of alcohols and sugar alcohols, catalysts typically suffer a variety of issues from poor hydrogen selectivity to rapid deactivation. Here, we summarize recent advances in fundamental understanding of functionality and structure of catalysts for alcohol/sugar alcohol steam reforming, and provide perspectives on further development required to design highly efficient steam reforming catalysts.

Davidson, Stephen; Zhang, He; Sun, Junming; Wang, Yong

2014-08-21T23:59:59.000Z

218

Numerical Simulation of a Natural Circulation Steam Generator  

E-Print Network (OSTI)

Numerical Simulation of a Natural Circulation Steam Generator W. Linzer \\Lambda , K. Ponweiser circulation steam generator. We focus on a model with a simple geometry consisting of two vertical pipes properties of water and steam. We present a numerical algorithm based on an explicit upwind discretization

WeinmĂĽller, Ewa B.

219

The Catalysis of the Carbon Monoxide-Steam Reaction  

Science Journals Connector (OSTI)

...The Catalysis of the Carbon Monoxide-Steam Reaction F. J. Long K. W. Sykes The kinetics of the carbon monoxide-steam reaction occurring heterogeneously at...nearly unity, while that with respect to steam is correspondingly lowered; a slight...

1952-01-01T23:59:59.000Z

220

COMPUTATION OF TWO-PHASE FLOW IN STEAM GENERATOR  

E-Print Network (OSTI)

COMPUTATION OF TWO-PHASE FLOW IN STEAM GENERATOR USING DOMAIN DECOMPOSITION AND LOCAL ZOOM METHODS Abstract We present ow simulations in the Steam Generator of a pressurized water nuclear reactor using coherence between the zoom and the full domain. Key words: Steam Generator, Zoom, Domain Decomposition

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "fossil steam steam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

GLC Analysis of Organic Chelating Agents in Steam Propulsion Systems  

Science Journals Connector (OSTI)

......Chelating Agents in Steam Propulsion Systems by Paul J. Sniegoski...iminodi- acetic acid) in steam propulsion systems. For chromatogra...as an addi- tive to steam propulsion systems to prevent build-up...Fourth Internaval Conference on Marine Cor- rosion, Naval Research......

Paul J. Sniegoski; David L. Venezky

1974-06-01T23:59:59.000Z

222

Best Management Practice #8: Boiler and Steam Systems  

Energy.gov (U.S. Department of Energy (DOE))

Boilers and steam generators are commonly used in large heating systems, institutional kitchens, or in facilities where large amounts of process steam are used. This equipment consumes varying amounts of water depending on system size, the amount of steam used, and the amount of condensate returned.

223

Project Recap Humanitarian Engineering Biodiesel Boiler System for Steam Generator  

E-Print Network (OSTI)

Project Recap Humanitarian Engineering ­ Biodiesel Boiler System for Steam Generator Currently 70 biodiesel boiler system to drive a steam engine generator. This system is to provide electricity the customer needs, a boiler fueled by biodiesel and outputting to a steam engine was decided upon. The system

Demirel, Melik C.

224

Improving Steam System Performance: A Sourcebook for Industry, Second Edition  

Energy.gov (U.S. Department of Energy (DOE))

This sourcebook is designed to provide steam system users with a reference that describes the basic steam system components, outlines opportunities for energy and performance improvements, and discusses the benefits of a systems approach in identifying and implementing these improvement opportunities. The sourcebook is divided into three main sections: steam system basics, performance improvement opportunities, and where to find help.

225

Experience, Engagement and Social Interaction at a Steam Locomotive  

E-Print Network (OSTI)

of two interactive stations (figure 2) where visitors can add coal and water to the steam engine at station 1 and regulate the steam pressure in the engine at station 2, as well as a number of visualExperience, Engagement and Social Interaction at a Steam Locomotive Multimodal Interactive Museum

Hornecker, Eva

226

Steam Traps-The Oft Forgotten Energy Conservation Treasure  

E-Print Network (OSTI)

In these days of high technology, the steam trap is often treated as a commodity item, forgotten by many and respected by a relative few. Yet, in many facilities, widespread undetected failure of steam traps has wasted 5-15% of a plant's total steam...

Pychewicz, F. S.

227

Industrial Steam Power Cycles Final End-Use Classification  

E-Print Network (OSTI)

Final end uses of steam include two major classifications: those uses that condense the steam against heat transfer surfaces to provide heat to an item of process or service equipment; and those that require a mass flow of steam for stripping...

Waterland, A. F.

1983-01-01T23:59:59.000Z

228

Optimization of industrial steam supply and steam-and-condensate farming of machine building enterprise  

Science Journals Connector (OSTI)

The article studies efficient control methods of steam condensing economy of the machine building enterprise. There are recommendations about development of complex decisions based on indicators of energy, technical and economic efficiency.

I A Konahina; N F Kashapov; I R Gil'manshin; R R Ganiev

2014-01-01T23:59:59.000Z

229

Steam Challenge: Developing A New DOE Program to Help Industry be Steam Smart  

E-Print Network (OSTI)

Last year, the Alliance to Save Energy, the Department of Energy's Office of Industrial Technologies, and a cadre of private companies and associations formed an innovative "Steam Partnership" with the goal of developing a new, DOE technical...

Jones, T.; Hart, F.

230

The Utilisation of Volcanic Steam in Italy  

Science Journals Connector (OSTI)

... exploitation of natural resources; and the welkin is still ringing with cries of “increase production,”“back to the land,” and “keep the home-fires burning.” Examples ... definite and successful effort been made in this direction, namely, by utilising the natural steam which emerges from the earth in volcanic districts. The jets of ...

1924-01-12T23:59:59.000Z

231

Task 1—Steam Oxidation (NETL-US)  

SciTech Connect

The proposed steam in let temperature in the Advanced Ultra Supercritical (A·USC) steam turbine is high enough (760°C) Ihat traditional turbine casing and valve body materials such as ferr;tic/manensitic steels will not suffice due to temperature lim itations of this class of materials. Cast versions of three traditionally wrought Ni-based superalloys (Haynes 263. Haynes 282, and Nimonic 105) were evaluated for use as casing or valve components for the next generation of industrial steam turbines. The full size castings are substantia l: 2-5,000 kg each half and on the order of 100 nun thick. Experimental castings were quite a bit smaller, but section size was retained and cooling rate controlled to produce equi valem microslruclUre •. A multi_step homogenization heat treatment was d~ve loped to better disperse the al loy constituents. These castings were subsequently evaluated by characterizing their microstructure as well as their steam oxidation resistance (al 760 and 800 "C).

G. R. Holcomb

2010-05-01T23:59:59.000Z

232

Natural Steam Power Developments at Larderello  

Science Journals Connector (OSTI)

... utilised since 1818 for the extraction of boric acid, the presence FIG. 2.-The turbine room at Larderello; three turbo-alternators of 2500 kw. each. The ... room at Larderello; three turbo-alternators of 2500 kw. each. The turbines are fed with volcanic steam which has been stripped of about 90 per cent, ...

1928-01-14T23:59:59.000Z

233

Carbon deposition in steam reforming and methanation  

SciTech Connect

The purpose of this review is to survey recent studies of carbon deposition on metals used as catalysts in steam reforming and methanation, emphasizing research where significant progress has been made. Where possible, an attempt is made to treat the fundamental nature of carbon formation and deactivation by carbon and the relationships between these two phenomena. Steam reforming and methanation are emphasized in this review because (1) deactivation of catalysts by carbon deposits is a serious concern in both processes, (2) much of the previous research with carbon formation on metals involved one or the other of these two reactions, and (3) there are interesting differences and similarities between these two reactions; for example, methanation is typically carried out at moderate reaction temperatures (200-450/sup 0/C) while steam reforming is typically carried out at significantly higher reaction temperatures (600-900/sup 0/C). Yet the two reactions are very closely related, since methane steam reforming is the reverse of methanation of CO. Moreover, there is evidence that some of the carbons formed in these two different processes are similar in their morphology.

Bartholomew, C.H.

1982-01-01T23:59:59.000Z

234

Fuel cell integrated with steam reformer  

SciTech Connect

A H.sub.2 -air fuel cell integrated with a steam reformer is disclosed wherein a superheated water/methanol mixture is fed to a catalytic reformer to provide a continuous supply of hydrogen to the fuel cell, the gases exhausted from the anode of the fuel cell providing the thermal energy, via combustion, for superheating the water/methanol mixture.

Beshty, Bahjat S. (Lower Makefield, PA); Whelan, James A. (Bricktown, NJ)

1987-01-01T23:59:59.000Z

235

Natural gas-assisted steam electrolyzer  

DOE Patents (OSTI)

An efficient method of producing hydrogen by high temperature steam electrolysis that will lower the electricity consumption to an estimated 65 percent lower than has been achievable with previous steam electrolyzer systems. This is accomplished with a natural gas-assisted steam electrolyzer, which significantly reduces the electricity consumption. Since this natural gas-assisted steam electrolyzer replaces one unit of electrical energy by one unit of energy content in natural gas at one-quarter the cost, the hydrogen production cost will be significantly reduced. Also, it is possible to vary the ratio between the electricity and the natural gas supplied to the system in response to fluctuations in relative prices for these two energy sources. In one approach an appropriate catalyst on the anode side of the electrolyzer will promote the partial oxidation of natural gas to CO and hydrogen, called Syn-Gas, and the CO can also be shifted to CO.sub.2 to give additional hydrogen. In another approach the natural gas is used in the anode side of the electrolyzer to burn out the oxygen resulting from electrolysis, thus reducing or eliminating the potential difference across the electrolyzer membrane.

Pham, Ai-Quoc (San Jose, CA); Wallman, P. Henrik (Berkeley, CA); Glass, Robert S. (Livermore, CA)

2000-01-01T23:59:59.000Z

236

Consider Steam Turbine Drives for Rotating Equipment: Office of Industrial Technologies (OIT) Steam Tip Fact Sheet No.21  

SciTech Connect

Steam turbines are well suited as prime movers for driving boiler feedwater pumps, forced or induced-draft fans, blowers, air compressors, and other rotating equipment. This service generally calls for a backpressure non-condensing steam turbine. The low-pressure steam turbine exhaust is available for feedwater heating, preheating of deaerator makeup water, and/or process requirements.

Not Available

2002-01-01T23:59:59.000Z

237

A parametric study of steam injected gas turbine with steam injector  

SciTech Connect

The interest in the STIG concept has arisen from the fact that the application shows high flexibility in power output, and therefore can serve well as a peak load unit. A new addition to the STIG-cycle is proposed and investigated in this paper. The introduction of steam injectors at the injection point of the steam is proposed to lightly raise the pressure of the gas flow entering the expander. The injector reduces the thermodynamic irreversibilities associated with the throttling nature of injecting a high pressure steam into a lower pressure region. A thermodynamic study has been conducted on the STIG with steam injectors for power generation. Steam pressure and superheating temperature are the main parameters for the system. The impact and usefulness of supplementary firing before the HRSG has also been investigated. The results are compared with a STIG with throttling valves instead of injectors. The efficiency and power output proves to increase somewhat upon introducing the steam injectors. This modification can be of commercial interest since the injectors are of low installation cost and need virtually no maintenance.

Aagren, N.D.; Svedberg, G. [Royal Inst. of Technology, Stockholm (Sweden); Frutschi, H.U. [ABB Power Generation Ltd., Baden (Switzerland)

1994-12-31T23:59:59.000Z

238

Measurement of steam quality in two-phase critical flow  

E-Print Network (OSTI)

through a venturi for subczitical flow of steam-water 45 13 Steam quality as a function of vapor-phase Reynolds number for subczitical flow of steam-water 46 14 Steam quality as a function of Collins and Gacesa parameter for subcritical flow of steam... high degree of accuracy. He suggested that the following correlation may be used to calculate two-phase flow rates through orifices to within an error of 1. 5 percent 339 K 3 9 9' J 9 v v a v w f + [ 1. 26 (1-f ) K Y /K ] ~p p where V and L...

Sinclair, John William

2012-06-07T23:59:59.000Z

239

Thermochemically recuperated and steam cooled gas turbine system  

DOE Patents (OSTI)

A gas turbine system in which the expanded gas from the turbine section is used to generate the steam in a heat recovery steam generator and to heat a mixture of gaseous hydrocarbon fuel and the steam in a reformer. The reformer converts the hydrocarbon gas to hydrogen and carbon monoxide for combustion in a combustor. A portion of the steam from the heat recovery steam generator is used to cool components, such as the stationary vanes, in the turbine section, thereby superheating the steam. The superheated steam is mixed into the hydrocarbon gas upstream of the reformer, thereby eliminating the need to raise the temperature of the expanded gas discharged from the turbine section in order to achieve effective conversion of the hydrocarbon gas.

Viscovich, Paul W. (Longwood, FL); Bannister, Ronald L. (Winter Springs, FL)

1995-01-01T23:59:59.000Z

240

Thermochemically recuperated and steam cooled gas turbine system  

DOE Patents (OSTI)

A gas turbine system is described in which the expanded gas from the turbine section is used to generate the steam in a heat recovery steam generator and to heat a mixture of gaseous hydrocarbon fuel and the steam in a reformer. The reformer converts the hydrocarbon gas to hydrogen and carbon monoxide for combustion in a combustor. A portion of the steam from the heat recovery steam generator is used to cool components, such as the stationary vanes, in the turbine section, thereby superheating the steam. The superheated steam is mixed into the hydrocarbon gas upstream of the reformer, thereby eliminating the need to raise the temperature of the expanded gas discharged from the turbine section in order to achieve effective conversion of the hydrocarbon gas. 4 figs.

Viscovich, P.W.; Bannister, R.L.

1995-07-11T23:59:59.000Z

Note: This page contains sample records for the topic "fossil steam steam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Operating experience of large ultra super critical steam turbine with latest technology  

SciTech Connect

In Japan, the main large capacity fossil-fuel power plant larger than 500 MW are supercritical units and the steam condition of 24.2 MPa, 538/566 C has been adopted. Through extensive development work, design and material technologies for steam turbines with a 593 C steam temperature have been established, and the steam condition of 24.2 MPa, 583/593 C was applied to the 700 MW steam turbine of Hekinan No.3 Unit, Chubu Electric Power Co., Inc. for the first time in Japan. This is also the world`s largest unit with a steam condition of 593 C. The Hekinan No. 3 Unit was designed and manufactured applying the latest technologies established for 593 C application. The unit was first rolled with steam in July 1992 and after successful trial operation and tests, the No. 3 Unit started commercial operation in April 1993. This paper introduces the latest technologies and the overhaul inspection results after about one year`s commercial operation.

Kishimoto, Masaru; Minami, Yoshihiro [Mitsubishi Heavy Industries, Ltd., Yokohama (Japan); Takayanagi, Kiyoshi; Umaya, Masahide [Mitsubishi Heavy Industries, Ltd., Takasago (Japan)

1994-12-31T23:59:59.000Z

242

A three-dimensional laboratory steam injection model allowing in situ saturation measurements. [Comparing steam injection and steam foam injection with nitrogen and without nitrogen  

SciTech Connect

The CT imaging technique together with temperature and pressure measurements were used to follow the steam propagation during steam and steam foam injection experiments in a three dimensional laboratory steam injection model. The advantages and disadvantages of different geometries were examined to find out which could best represent radial and gravity override flows and also fit the dimensions of the scanning field of the CT scanner. During experiments, steam was injected continuously at a constant rate into the water saturated model and CT scans were taken at six different cross sections of the model. Pressure and temperature data were collected with time at three different levels in the model. During steam injection experiments, the saturations obtained by CT matched well with the temperature data. That is, the steam override as observed by temperature data was also clearly seen on the CT pictures. During the runs where foam was present, the saturation distributions obtained from CT pictures showed a piston like displacement. However, the temperature distributions were different depending on the type of steam foam process used. The results clearly show that the pressure/temperature data alone are not sufficient to study steam foam in the presence of non-condensible gas.

Demiral, B.M.R.; Pettit, P.A.; Castanier, L.M.; Brigham, W.E.

1992-08-01T23:59:59.000Z

243

Waste biomass from production process co-firing with coal in a steam boiler to reduce fossil fuel consumption: A case study  

Science Journals Connector (OSTI)

Abstract Waste biomass is always generated during the production process in industries. The ordinary way to get rid of the waste biomass is to send them to landfill or burn it in the open field. The waste may potentially be used for co-firing with coal to save fossil fuel consumption and also reduce net carbon emissions. In this case study, the bio-waste from a Nicotiana Tabacum (NT) pre-treatment plant is used as the biomass to co-fire with coal. The samples of NT wastes were analysed. It was found that the wastes were of the relatively high energy content which were suitable for co-firing with coal. To investigate the potential and benefits for adding NT wastes to a Fluidised Bed Combustion (FBC) boiler in the plant, detailed modelling and simulation are carried out using the European Coal Liquefaction Process Simulation and Evaluation (ECLIPSE) process simulation package. The feedstock blending ratios of NT waste to coal studied in this work are varied from 0% to 30%. The results show that the addition of NT wastes may decrease the emissions of CO2 and \\{SOx\\} without reducing the boiler performance.

Hongyan Gu; Kai Zhang; Yaodong Wang; Ye Huang; Neil Hewitt; Anthony P Roskilly

2013-01-01T23:59:59.000Z

244

Large steam turbine repair: A survey  

SciTech Connect

This report covers a survey taken to document the current state-of-the-art in repairs to large steam turbines. One objective was to provide information to assist utilities in making repair or replacement decisions. The survey revealed that a large number of repairs have been successfully repaired involving both mechanical and welding repair techniques. Repair techniques have been improving in recent years and are being used more frequently. No guidelines or codes exist for the repair of steam turbine components so each repair is primarily controlled by agreement between the utility, contractor and insurer. Types of repairs are reviewed in this report and in addition, the capabilities of various contractors who are currently active in providing repair service. 40 refs., 10 figs., 4 tabs.

Findlan, S.J.; Lube, B. (EPRI Nondestructive Evaluation Center, Charlotte, NC (United States))

1991-07-01T23:59:59.000Z

245

Steam turbine/generator NDE workshop  

SciTech Connect

On September 12--15, 1989, EPRI sponsored a workshop in Charlotte, North Carolina on steam turbine/generator rotating components. The approximate 185 attendees represented a broad spectrum of utilities, equipment manufactures, forging suppliers, service organizations, universities, insurance carriers, and consultants from the United States and abroad. Canada, England, Finland, France, Germany, Japan, Korea, Italy, Spain, and Sweden were represented at the workshop, and 81 of the attendees represented 44 domestic utilities. Nondestructive examination equipment demonstrations by 16 vendors and 2 utilities at the EPRI NDE Center complemented the technical presentation. In addition to 23 formal, technical presentations of prepared papers of specific topics, 8 tutorial presentations, plus various opening and closing remarks and addresses, were given at the workshop. Presentations were organized under the following general topics: bucket blades and/or attachment regions; retaining rings; wheels/disks; steam turbine/generator testing and evaluation; and tutorials. Each individual paper has been cataloged separately.

Nottingham, L.D.; Sabourin, P.F. (Jones (J.A.) Applied Research Co., Charlotte, NC (USA))

1990-11-01T23:59:59.000Z

246

Simulation of steam reformers for methane  

Science Journals Connector (OSTI)

A model is developed for industrial steam reformers for both top fired and side fired furnaces. The catalyst tube model is a one-dimensional heterogeneous model with intra-particle diffusional resistances. The two point boundary value differential equations of the catalyst pellets are solved using a modified novel orthogonal collocation technique to obtain the effectiveness factor variation along the length of the reactor. The side fired furnace equations are algebraic equations, the top fired furnace equations are two-point boundary value differential equations which are solved using the orthogonal collocation technique. A recently developed more general rate expression is used. The model performance is checked against industrial steam reformers. The model is used to investigate the effect of various parameters on the behaviour of the catalyst tubes and the furnace. The effectiveness factor variation along the length of the catalyst tube is also analysed.

M.A. Soliman; S.S.E.H. El-Nashaie; A.S. Al-Ubaid; A. Adris

1988-01-01T23:59:59.000Z

247

Effect of steam on supported metal catalysts  

SciTech Connect

In order to examine the effect of steam on supported metal catalysts, model supported metal catalysts of Ni, Co, or Fe on alumina have been heated in steam at 700/sup 0/C. The transmission electron micrographs show that for all these metals, patches of film extend from the crystallites. Prolonged heating results in the disappearance of the patches which probably spread as a contiguous film over the entire surface of the substrate. The degree of spreading is in the order: C0 > Ni > Fe. On subsequent heating in H/sub 2/, small crystallites were generated, probably via the rupture of the contiguous film. The contraction of the patches of film bridging two or several particles caused the coalescence of the latter. This subsequent heating in H/sub 2/ favors redispersion only when the heating time is sufficiently short. Prolonged heating in H/sub 2/ leads to the disappearance of the small particles.

Ruckenstein, E.; Hu, X.D.

1986-07-01T23:59:59.000Z

248

Laser removal of sludge from steam generators  

DOE Patents (OSTI)

A method of removing unwanted chemical deposits known as sludge from the metal surfaces of steam generators with laser energy is provided. Laser energy of a certain power density, of a critical wavelength and frequency, is intermittently focused on the sludge deposits to vaporize them so that the surfaces are cleaned without affecting the metal surface (sludge substrate). Fiberoptic tubes are utilized for laser beam transmission and beam direction. Fiberoptics are also utilized to monitor laser operation and sludge removal.

Nachbar, Henry D. (Ballston Lake, NY)

1990-01-01T23:59:59.000Z

249

Materials Performance in USC Steam Portland  

SciTech Connect

Goals of the U.S. Department of Energy's Advanced Power Systems Initiatives include power generation from coal at 60% efficiency, which requires steam conditions of up to 760 C and 340 atm, co-called advanced ultrasupercritical (A-USC) steam conditions. A limitation to achieving the goal is a lack of cost-effective metallic materials that can perform at these temperatures and pressures. Some of the more important performance limitations are high-temperature creep strength, fire-side corrosion resistance, and steam-side oxidation resistance. Nickel-base superalloys are expected to be the materials best suited for steam boiler and turbine applications above about 675 C. Specific alloys of interest include Haynes 230 and 282, Inconel 617, 625 and 740, and Nimonic 263. Further validation of a previously developed chromia evaporation model is shown by examining the reactive evaporation effects resulting from exposure of Haynes 230 and Haynes 282 to moist air environments as a function of flow rate and water content. These two alloys differ in Ti and Mn contents, which may form outer layers of TiO{sub 2} or Cr-Mn spinels. This would in theory decrease the evaporation of Cr{sub 2}O{sub 3} from the scale by decreasing the activity of chromia at the scale surface, and be somewhat self-correcting as chromia evaporation concentrates the Ti and Mn phases. The apparent approximate chromia activity was found for each condition and alloy that showed chromia evaporation kinetics. As expected, it was found that increasing the gas flow rate led to increased chromia evaporation and decreased chromia activity. However, increasing the water content in moist air increased the evaporation, but results were mixed with its effect on chromia activity.

G.R. Holcomb; J. Tylczak; R. Hu

2011-04-26T23:59:59.000Z

250

The Economics of Steam Electric Generation  

E-Print Network (OSTI)

by manufacturers, data available from past installations and recent installations. 7) Labor costs were based on labor rates in ~he Lansing, Michigan area. 8) Power plant labor and supervision costs were based on manning data supplied by the Board of Water...-service. No other figures, including labor, fuel cost, outside services and other costs have been escalated. 12) Operating costs were established, based on steam generation. Credit has been allotted to any program for the electric power generated during...

Ophaug, R. A.; Birget, C. D.

1980-01-01T23:59:59.000Z

251

Underground coal gasification using oxygen and steam  

SciTech Connect

In this paper, through model experiment of the underground coal gasification, the effects of pure oxygen gasification, oxygen-steam gasification, and moving-point gasification methods on the underground gasification process and gas quality were studied. Experiments showed that H{sub 2} and CO volume fraction in product gas during the pure oxygen gasification was 23.63-30.24% and 35.22-46.32%, respectively, with the gas heating value exceeding 11.00 MJ/m{sup 3}; under the oxygen-steam gasification, when the steam/oxygen ratio stood at 2: 1, gas compositions remained virtually stable and CO + H{sub 2} was basically between 61.66 and 71.29%. Moving-point gasification could effectively improve the changes in the cavity in the coal seams or the effects of roof inbreak on gas quality; the ratio of gas flowing quantity to oxygen supplying quantity was between 3.1:1 and 3.5:1 and took on the linear changes; on the basis of the test data, the reasons for gas quality changes under different gasification conditions were analyzed.

Yang, L.H.; Zhang, X.; Liu, S. [China University of Mining & Technology, Xuzhou (China)

2009-07-01T23:59:59.000Z

252

Measuring non-condensable gases in steam  

SciTech Connect

In surgery, medical devices that are used should be sterilized. To obtain surface steam sterilization conditions, not only in the sterilizer chamber itself but also in the loads to be sterilized, the amount of non-condensable gases (NCGs), for instance air, should be very low. Even rather small fractions of NCGs (below 1 %) seriously hamper steam penetration in porous materials or devices with hollow channels (e.g., endoscopes). A recently developed instrument which might detect the presence of residual NCGs in a reliable and reproducible way is the 3M{sup TM} Electronic Test System (ETS). In this paper, a physical model is presented that describes the behavior of this instrument. This model has been validated by experiments in which known fractions of NCGs were introduced in a sterilizer chamber in which an ETS was placed. Despite several approximations made in the model, a good agreement is found between the model predictions and the experimental results. The basic principle of the ETS, measuring the heat transfer by condensation on a cooled surface, permits a very sensitive detection of NCGs in harsh environments like water vapor at high temperatures and pressures. Our model may serve to develop adapted and optimized versions of this instrument for use outside the field of sterilization, e.g., in heat exchangers based on steam condensation.

Doornmalen, J. P. C. M. van; Kopinga, K., E-mail: k.kopinga@tue.nl [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands)

2013-11-15T23:59:59.000Z

253

Energy Tips: Benchmark the Fuel Cost of Steam Generation  

NLE Websites -- All DOE Office Websites (Extended Search)

Type (sales unit) Type (sales unit) Energy Content Combustion (Btu/sales unit) Efficiency (%) Natural Gas (therm) 100,000 81.7 Natural Gas (cubic foot) 1,030 81.7 Distillate/No. 2 Oil (gallon) 138,700 84.6 Residual/No. 6 Oil (gallon) 149,700 86.1 Coal (ton) 27,000,000 87.6 Benchmark the Fuel Cost of Steam Generation Benchmarking the fuel cost of steam generation ($/1000 lbs of steam) is an effective way to assess the efficiency of your steam system. This cost is dependent upon fuel type, unit fuel cost, boiler efficiency, feedwater temperature, and steam pressure. This calculation provides a good first approximation for the cost of generating steam and serves as a tracking device to allow for boiler performance monitoring. Table 1 shows the heat input required to produce one pound of saturated

254

Review of High Temperature Water and Steam Cooled Reactor Concepts  

SciTech Connect

This review summarizes design concepts of supercritical-pressure water cooled reactors (SCR), nuclear superheaters and steam cooled fast reactors from 1950's to the present time. It includes water moderated supercritical steam cooled reactor, SCOTT-R and SC-PWR of Westinghouse, heavy water moderated light water cooled SCR of GE, SCLWR and SCFR of the University of Tokyo, B-500SKDI of Kurchatov Institute, CANDU -X of AECL, nuclear superheaters of GE, subcritical-pressure steam cooled FBR of KFK and B and W, Supercritical-pressure steam cooled FBR of B and W, subcritical-pressure steam cooled high converter by Edlund and Schultz and subcritical-pressure water-steam cooled FBR by Alekseev. This paper is prepared based on the previous review of SCR2000 symposium, and some author's comments are added. (author)

Oka, Yoshiaki [Nuclear Engineering Research Laboratory, The University of Tokyo, 3-1, Hongo 7-Chome, Bunkyo-ku (Japan)

2002-07-01T23:59:59.000Z

255

Comments on US LMFBR steam generator base technology  

SciTech Connect

The development of steam generators for the LMFBR was recognized from the onset by the AEC, now DOE, as a difficult, challenging, and high-priority task. The highly reactive nature of sodium with water/steam requires that the sodium-water/steam boundaries of LMFBR steam generators possess a degree of leak-tightness reliability not normally attempted on a commercial scale. In addition, the LMFBR steam generator is subjected to high fluid temperatures and severe thermal transients. These requirements place great demand on materials, fabrication processes, and inspection methods; and even greater demands on the designer to provide steam generators that can meet these demanding requirements, be fabricated without unreasonable shop requirements, and tolerate off-normal effects.

Simmons, W.R.

1984-01-01T23:59:59.000Z

256

Why Condensing Steam Turbines are More Efficient than Gas Turbines  

E-Print Network (OSTI)

.80 is used. POWER PRODUCED: :13.000 KW STEAM PRODUCED: 250,000 Ib/hr 250 psig steam :100,000 Ib/hr 30 psig steam :33,000 KW U.0) = 33,000 KW 41 '70 250.000 Ib/hr 10.1325 KWH/lbHO.80) = 26,500 KW :33'70 I 300.000 Ib/hr 10.0888 KWH/lbHO.80) = 21,300 KW....80 is used. POWER PRODUCED: :13.000 KW STEAM PRODUCED: 250,000 Ib/hr 250 psig steam :100,000 Ib/hr 30 psig steam :33,000 KW U.0) = 33,000 KW 41 '70 250.000 Ib/hr 10.1325 KWH/lbHO.80) = 26,500 KW :33'70 I 300.000 Ib/hr 10.0888 KWH/lbHO.80) = 21,300 KW...

Nelson, K. E.

257

The Development of Warm Gas Cleanup Technologies for the Removal of Sulfur Containing Species from Steam Hydrogasification  

E-Print Network (OSTI)

steam methane reforming .H 2 O ? CO 2 + H 2 Steam methane reforming reaction: CH 4 +by the SMR (Steam Methane Reforming) step and a final step

Luo, Qian

2012-01-01T23:59:59.000Z

258

Latest advances in steam turbine design, blading, repairs, condition assessment, and condenser interaction  

SciTech Connect

This book contains papers presented at a conference on power generation. Topics covered include: a life extension approach for steam turbine blading in Electricite de France fossil plants, and on site 430 MW high pressure reheat turbine shell cracking and distortion repairs.

Rasmussen, D.M. (Turbine Consultants, Inc., Milwaukee, WI (US))

1989-01-01T23:59:59.000Z

259

Table A44. Average Prices of Purchased Electricity and Steam  

U.S. Energy Information Administration (EIA) Indexed Site

4. Average Prices of Purchased Electricity and Steam" 4. Average Prices of Purchased Electricity and Steam" " by Type of Supplier, Census Region, Census Division, and" " Economic Characteristics of the Establishment, 1994" " (Estimates in Dollars per Physical Units)" ," Electricity",," Steam" ," (kWh)",," (million Btu)" ,,,,,"RSE" ,"Utility","Nonutility","Utility","Nonutility","Row" "Economic Characteristics(a)","Supplier(b)","Supplier(c)","Supplier(b)","Supplier(c)","Factors"

260

Table A39. Total Expenditures for Purchased Electricity and Steam  

U.S. Energy Information Administration (EIA) Indexed Site

9. Total Expenditures for Purchased Electricity and Steam" 9. Total Expenditures for Purchased Electricity and Steam" " by Type of Supplier, Census Region, Census Division, and" " Economic Characteristics of the Establishment, 1994" " (Estimates in Million Dollars)" ," Electricity",," Steam" ,,,,,"RSE" ,"Utility","Nonutility","Utility","Nonutility","Row" "Economic Characteristics(a)","Supplier(b)","Supplier(c)","Supplier(b)","Supplier(c)","Factors" ,"Total United States" "RSE Column Factors:",0.3,2,1.6,1.2

Note: This page contains sample records for the topic "fossil steam steam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

The Engineered Approach to Energy and Maintenance Effective Steam Trapping  

E-Print Network (OSTI)

., Chemical Engineering 9/1/75. 4. Maintenance Engineering, May 1976. 5. "How Much Does Lost Steam Cost",Armstrong Machine works, Hydrocarbon Processing, p.129, Jan. 1976. 6. "Setter Steam Trapping Cuts Energy Waste", wesley Yates, Yarway Corp..., Georgia Tech Industrial Energy Extension Service, Chemical Engineering, 2/11/80. 10. ''Basic Facts & Enerqv Saving Tips" ,Lawrence R. O'Dell, Armstrong Machine Works, Heating/Piping/ Air Conditioning, May 1977. 11. Steam Trap Report - Energy Loss...

Krueger, R. G.; Wilt, G. W.

1980-01-01T23:59:59.000Z

262

Steam generator for liquid metal fast breeder reactor  

DOE Patents (OSTI)

Improvements in the design of internal components of J-shaped steam generators for liquid metal fast breeder reactors. Complex design improvements have been made to the internals of J-shaped steam generators which improvements are intended to reduce tube vibration, tube jamming, flow problems in the upper portion of the steam generator, manufacturing complexities in tube spacer attachments, thermal stripping potentials and difficulties in the weld fabrication of certain components.

Gillett, James E. (Greensburg, PA); Garner, Daniel C. (Murrysville, PA); Wineman, Arthur L. (Greensburg, PA); Robey, Robert M. (North Huntingdon, PA)

1985-01-01T23:59:59.000Z

263

Steam System Opportunity Assessment for the Pulp and Paper, Chemical...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

System Opportunity Assessment for the Pulp and Paper, Chemical Manufacturing, and Petroleum Refining Industries Steam System Opportunity Assessment for the Pulp and Paper,...

264

Computational Modeling of Combined Steam Pyrolysis and Hydrogasification of Ethanol  

E-Print Network (OSTI)

JL, Kinetics of Coal Gasification, New York, John Wiley &applications to technical gasification processes- A review.kinetics of steam gasification for a transport gasifier.

Singh, S; Park, C S; Norbeck, J N

2005-01-01T23:59:59.000Z

265

Computational Modeling of Combined Steam Pyrolysis and Hydrogasification of Ethanol  

E-Print Network (OSTI)

Model for High Temperature Ethanol Oxidation" Int. J. Chem.and Hydro- gasification of Ethanol Surinder P. Singh*, Chanand steam) steps to convert ethanol to methane. Ethanol was

Singh, S; Park, C S; Norbeck, J N

2005-01-01T23:59:59.000Z

266

Solar Steam Reforming of Methane (SSRM) Program Proposals  

Science Journals Connector (OSTI)

Within the intended development work to supply solar HT process heat to industrial processes, especially chemical processes, the steam reforming process is considered suitable in particular.

A. Kalt

1987-01-01T23:59:59.000Z

267

Droplet Characterization in the Wake of Steam Turbine Cascades.  

E-Print Network (OSTI)

?? In low-pressure steam turbines, water droplet formation on the surfaces of stationary stator blades can lead to erosion on downstream turbine blades and other… (more)

Plondke, Adam Charles

2012-01-01T23:59:59.000Z

268

Energy Savings By Recovery of Condensate From Steam Heating System  

E-Print Network (OSTI)

and reduces steam supply, saving 4061 tons of industrial water per year. The total saved steam amounts to 25.~ of the total amount of steM supply. The total saved cost is 39616 yuan per year; the total saved amount of coal is 329.9 tons per year... and reduces steam supply, saving 4061 tons of industrial water per year. The total saved steam amounts to 25.~ of the total amount of steM supply. The total saved cost is 39616 yuan per year; the total saved amount of coal is 329.9 tons per year...

Cheng, W. S.; Zhi, C. S.

269

Solid oxide steam electrolysis for high temperature hydrogen production .  

E-Print Network (OSTI)

??This study has focused on solid oxide electrolyser cells for high temperature steam electrolysis. Solid oxide electrolysis is the reverse operation of solid oxide fuel… (more)

Eccleston, Kelcey L.

2007-01-01T23:59:59.000Z

270

DOE's BestPractices Steam End User Training Steam End User Training  

E-Print Network (OSTI)

generation efficiency and the primary factors that affect it. . The general concepts of boiler efficiency. As a result, water-tube boilers were developed. These boilers contain hundreds of tubes that hold the high the exhaust gases. The pressure vessel holds all of the stress of the high-pressure steam. Water-tube boilers

Oak Ridge National Laboratory

271

Influence of steam on the flammability limits of premixed natural gas/oxygen/steam mixtures  

Science Journals Connector (OSTI)

Synthesis gas (Syngas) is an intermediate in a variety of industrial processes. Its production is energy and capital intensive and any improvement of existing technologies allowing simpler and economic production is of great interest. Recently, a new method known as short contact time-catalytic partial oxidation (SCT-CPO) has been developed into a commercial technology [1–4]. SCT-CPO is an entirely heterogeneous catalytic process converting premixed flammable feedstocks inside a very small reactor. In order to ensure safety and a high selectivity towards CO and H2 it has been important to determine and understand flammability properties of the gaseous reactant mixtures. Here we report on the results obtained within a windowed tube reactor equipped with multiple photodetectors and pressure transducers that has allowed the study of ignition, flame propagation, and explosion characteristics of gas mixtures similar to those used as reactants in the SCT-CPO reactor. The tests were conducted at various pressures with different amounts of steam and two different compositions of natural gas (NG). A flammability boundary for each mixture, based on normalized pressure and mole fraction of steam, was determined. The results conclude that these mixtures’ flammability could be suppressed in two very different ways. Depending on the adiabatic flame temperature of the mixture, suppression could be caused by steam's chemical influence increasing chain-termination or by a large amount of steam decreasing the reaction zone temperature.

Matthew J. Degges; J. Eric Boyer; Kenneth K. Kuo; Luca Basini

2010-01-01T23:59:59.000Z

272

The value of steam turbine upgrades  

SciTech Connect

Technological advances in mechanical and aerodynamic design of the turbine steam path are resulting in higher reliability and efficiency. A recent study conducted on a 390 MW pulverized coal-fired unit revealed just how much these new technological advancements can improve efficiency and output. The empirical study showed that the turbine upgrade raised high pressure (HP) turbine efficiency by 5%, intermediate pressure (IP) turbine efficiency by 4%, and low pressure (LP) turbine efficiency by 2.5%. In addition, the unit's highest achievable gross generation increased from 360 MW to 371 MW. 3 figs.

Potter, K.; Olear, D.; [General Physics Corp. (United States)

2005-11-01T23:59:59.000Z

273

EVALUATION OF A SULFUR OXIDE CHEMICAL HEAT STORAGE PROCESS FOR A STEAM SOLAR ELECTRIC PLANT  

E-Print Network (OSTI)

IOUT *MEBP *STC(QAAN. R )-STEAM TURBINE CALC. ~ETFQMIN~5 ST~KJ/S) 1JC. /(GROSS STEAM TURBINE POWER PRODUCTION) STEA~ GENprogram then prints the steam turbine results. All flows in

Dayan, J.

2011-01-01T23:59:59.000Z

274

Effect of Steam Sterilization and Gamma Irradiation of Peat on Quality of Rhizobium Inoculants  

Science Journals Connector (OSTI)

...and Industrial Microbiology Effect of Steam Sterilization and Gamma Irradiation of...Inoculants for M. sativa manufactured with steam-sterilized peat were similar in quality...higher gamma irradiation dosage. Effect of steam sterilization and gamma irradiation of...

Barend W. Strijdom; Henri Jansen van Rensburg

1981-06-01T23:59:59.000Z

275

COAGULATION AND STERILIZATION OF LOEFFLER'S BLOOD SERUM MEDIA UNDER STEAM PRESSURE  

Science Journals Connector (OSTI)

...OF LOEFFLER'S BLOOD SERUM MEDIA UNDER STEAM PRESSURE A. J. Hinkleman Oklahoma City...of Loeffler's Blood Serum Media under Steam Pressure. | Journal Article COAGULATION...OF LOEFFLER'S BLOOD SERUM MEDIA UNDER STEAM PRESSURE A. J. HINKLENIAN Oklahoma City...

A. J. Hinkleman

1923-07-01T23:59:59.000Z

276

Table N11.4. Expenditures for Purchased Electricity, Natural Gas, and Steam, 19  

U.S. Energy Information Administration (EIA) Indexed Site

4. Expenditures for Purchased Electricity, Natural Gas, and Steam, 1998;" 4. Expenditures for Purchased Electricity, Natural Gas, and Steam, 1998;" " Level: National Data and Regional Totals; " " Row: NAICS Codes;" " Column: Supplier Sources of Purchased Electricity, Natural Gas, and Steam;" " Unit: Million U.S. Dollars." ,,,"Electricity","Components",,"Natural Gas","Components",,"Steam","Components" " "," ",,,"Electricity",,,"Natural Gas",,,"Steam"," ",," " " "," ",,"Electricity","from Sources",,"Natural Gas","from Sources",,"Steam","from Sources","RSE"

277

Table 7.7 Quantity of Purchased Electricity, Natural Gas, and Steam, 2002  

U.S. Energy Information Administration (EIA) Indexed Site

7 Quantity of Purchased Electricity, Natural Gas, and Steam, 2002;" 7 Quantity of Purchased Electricity, Natural Gas, and Steam, 2002;" " Level: National and Regional Data;" " Row: NAICS Codes;" " Column: Supplier Sources of Purchased Electricity, Natural Gas, and Steam;" " Unit: Physical Units or Btu." ,,,"Electricity","Components",,"Natural Gas","Components",,"Steam","Components" " "," ",,,"Electricity",,,"Natural Gas",,,"Steam"," ",," " " "," ",,"Electricity","from Sources",,"Natural Gas","from Sources",,"Steam","from Sources"

278

Table 7.10 Expenditures for Purchased Electricity, Natural Gas, and Steam, 2002  

U.S. Energy Information Administration (EIA) Indexed Site

0 Expenditures for Purchased Electricity, Natural Gas, and Steam, 2002;" 0 Expenditures for Purchased Electricity, Natural Gas, and Steam, 2002;" " Level: National and Regional Data; " " Row: NAICS Codes;" " Column: Supplier Sources of Purchased Electricity, Natural Gas, and Steam;" " Unit: Million U.S. Dollars." ,,,"Electricity","Components",,"Natural Gas","Components",,"Steam","Components" " "," ",,,"Electricity",,,"Natural Gas",,,"Steam"," ",," " " "," ",,"Electricity","from Sources",,"Natural Gas","from Sources",,"Steam","from Sources","RSE"

279

Table 7.3 Average Prices of Purchased Electricity, Natural Gas, and Steam, 20  

U.S. Energy Information Administration (EIA) Indexed Site

3 Average Prices of Purchased Electricity, Natural Gas, and Steam, 2002;" 3 Average Prices of Purchased Electricity, Natural Gas, and Steam, 2002;" " Level: National and Regional Data; " " Row: NAICS Codes;" " Column: Supplier Sources of Purchased Electricity, Natural Gas, and Steam;" " Unit: U.S. Dollars per Physical Units." ,,,"Electricity","Components",,"Natural Gas","Components",,"Steam","Components" " "," ",,,"Electricity",,,"Natural Gas",,,"Steam"," ",," " " "," ",,"Electricity","from Sources",,"Natural Gas","from Sources",,"Steam","from Sources"

280

Development of knowledge bases for large steam turbine transients  

SciTech Connect

At this time, a number of high-qualified expert teams in different countries have accumulated significant experience in working up and introducing proficient algorithms of automated control, diagnostics, monitoring, on-line informative support, and off-line analysis for large steam turbines of fossil-fired and nuclear power plant units at their transients. In particular, such works were carried out at All-Russia Thermal Engineering Research Institute in Moscow. When put into effect, these developments do improve plant unit operation and maintenance. The creation of these algorithms is based on deep technological research of turbine transients with the use of their mathematical modeling. Currently, the central problem becomes a reiteration and adaptation of these developments to other objects which differ in design, scheme, and operation features. This problem is to be solved at the least cost. For certain complex tasks, it seems to be expedient to use expert system methodology with special knowledge bases. Along with the selection of such tasks, the creation of more or less general knowledge bases requires us to stratify the potential objects according to their principle features. The proposed forms of a knowledge presentation, including the mathematical models and logical rules, should correspond to the considered tasks and objects, as well as to the program tools to be applied. Such developments have been carried out for some tasks of the operating informative support and post-operating analysis of large steam turbine transients as well as their mathematical modeling.

Leyzerovich, A. [Washington Univ., St. Louis, MO (United States)

1995-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "fossil steam steam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Some problems of steam turbine lifetime assessment and extension  

SciTech Connect

The problems of lifetime assessment and extension in reference to power equipment (including high-temperature rotors and casings of power steam turbines) and theoretical and normative grounds for these procedures, as well as some specific measures to prolong the turbine service time and diagnose the turbine components` conditions in the operation process, were covered in many published works, including the authors` ones. The present paper is to consider in more details some aspects of these problems that have not been sufficiently considered in known publications. In particular, it seems important to dwell on experimental verification of some mathematical models for calculating temperatures, stresses, and strains in the turbine casings on the basis of direct measurements at turbines in service. Another item to be discussed ia an approach to choosing the system of interrelated criteria and safety factors referring to the upper admissible values of stresses, strains, cycles, and accumulated damage, as well as crack resistance, as applied to an adopted conception of the limiting states for the rotors and casings with taking into consideration their loads and resulted stress-strain states. In this connection, it is important to arrange and use properly the continuous monitoring of temperatures, stresses, and accumulated metal damage to assess the residual lifetime of the rotors and casings more accurately. Certain design, technology, and repair measures are briefly described. They have successfully been employed at fossil power plants of the former Soviet Union to raise the steam turbine reliability and durability.

Berlyand, V.; Pozhidaev, A.; Glyadya, A. [Kharkov Central Designers Bureau (Ukraine); Plotkin, E.; Avrutsky, G. [All-Russia Thermal Engineering Research Inst., Moscow (Russian Federation); Leyzerovich, A. [Actinium Corp., Mountain View, CA (United States)

1999-11-01T23:59:59.000Z

282

Next Generation Engineered Materials for Ultra Supercritical Steam Turbines  

SciTech Connect

To reduce the effect of global warming on our climate, the levels of CO{sub 2} emissions should be reduced. One way to do this is to increase the efficiency of electricity production from fossil fuels. This will in turn reduce the amount of CO{sub 2} emissions for a given power output. Using US practice for efficiency calculations, then a move from a typical US plant running at 37% efficiency to a 760 C /38.5 MPa (1400 F/5580 psi) plant running at 48% efficiency would reduce CO2 emissions by 170kg/MW.hr or 25%. This report presents a literature review and roadmap for the materials development required to produce a 760 C (1400 F) / 38.5MPa (5580 psi) steam turbine without use of cooling steam to reduce the material temperature. The report reviews the materials solutions available for operation in components exposed to temperatures in the range of 600 to 760 C, i.e. above the current range of operating conditions for today's turbines. A roadmap of the timescale and approximate cost for carrying out the required development is also included. The nano-structured austenitic alloy CF8C+ was investigated during the program, and the mechanical behavior of this alloy is presented and discussed as an illustration of the potential benefits available from nano-control of the material structure.

Douglas Arrell

2006-05-31T23:59:59.000Z

283

Alternative technologies to steam-methane reforming  

SciTech Connect

Steam-methane reforming (SMR) has been the conventional route for hydrogen and carbon monoxide production from natural gas feedstocks. However, several alternative technologies are currently finding favor for an increasing number of applications. The competing technologies include: steam-methane reforming combined with oxygen secondary reforming (SMR/O2R); autothermal reforming (ATR); thermal partial oxidation (POX). Each of these alternative technologies uses oxygen as a feedstock. Accordingly, if low-cost oxygen is available, they can be an attractive alternate to SMR with natural gas feedstocks. These technologies are composed technically and economically. The following conclusions can be drawn: (1) the SMR/O2R, ATR and POX technologies can be attractive if low-cost oxygen is available; (2) for competing technologies, the H{sub 2}/CO product ratio is typically the most important process parameter; (3) for low methane slip, the SMR/O2R, ATR and POX technologies are favored; (4) for full CO{sub 2} recycle, POX is usually better than ATR; (5) relative to POX, the ATR is a nonlicensed technology that avoids third-party involvement; (6) economics of each technology are dependent on the conditions and requirements for each project and must be evaluated on a case-by-case basis.

Tindall, B.M.; Crews, M.A. [Howe-Baker Engineers, Inc., Tyler, TX (United States)

1995-11-01T23:59:59.000Z

284

Low severity hydrocarbon steam reforming process  

SciTech Connect

A process is described for producing ammonia which comprises: (a) primary catalytically reforming at super atmospheric pressure in a direct-fired primary reforming zone, a hydrocarbon feedstock with steam to produce a gas containing carbon oxides, hydrogen and methane; (b) secondary catalytically reforming the gas from step (a) by introducing air and bringing the mixture towards equilibrium thereby producing a secondary reformer effluent gas containing nitrogen, carbon oxides, hydrogen and a decreased quantity of methane; (c) converting carbon monoxide catalytically with steam to carbon dioxide and hydrogen; (d) removing carbon oxides to give an ammonia synthesis gas comprising nitrogen and hydrogen and compressing the gas to ammonia synthesis pressure; (e) reacting the synthesis gas in an ammonia synthesis zone to produce ammonia and recovering ammonia from the reacted gas to produce an ammonia-depleted gas stream; (f) recycling at least a portion of the ammonia-depleted gas stream to the ammonia synthesis zone; and (g) treating a sidestream of the ammonia-depleted gas to separate a stream enriched in hydrogen and an inerts-enriched gas stream, and returning the enriched hydrogen stream to the ammonia synthesis zone.

Osman, R.M.; Byington, R.G.

1986-06-03T23:59:59.000Z

285

Using HYTECH to Synthesize Control Parameters for a Steam Boiler ?;??  

E-Print Network (OSTI)

Using HYTECH to Synthesize Control Parameters for a Steam Boiler ?;?? Thomas A. Henzinger 1 Howard model a steam­boiler control system using hybrid au­ tomata. We provide two abstracted linear models of the nonlinear be­ havior of the boiler. For each model, we define and verify a controller that maintains

Henzinger, Thomas A.

286

Using HYTECH to Synthesize Control Parameters for a Steam Boiler? ??  

E-Print Network (OSTI)

Using HYTECH to Synthesize Control Parameters for a Steam Boiler? ?? Thomas A. Henzinger1 Howard model a steam-boiler control system using hybrid au- tomata. We provide two abstracted linear models of the nonlinear be- havior of the boiler. For each model, we de ne and verify a controller that maintains the safe

Henzinger, Thomas A.

287

Finding Benefits by Modeling and Optimizing Steam and Power Systems  

E-Print Network (OSTI)

A site-wide steam modeling and optimization program (Visual Mesa) was implemented at the Bayou Cogen plant in Bayport, Texas in 1997 and has been in use continuously since that time. This program optimizes steam production among four cogen units...

Harper, C.; Nelson, D. A.

2008-01-01T23:59:59.000Z

288

ExxonMobile Beaumont Chemical Plant Steam Integration Project  

E-Print Network (OSTI)

and petrochemical manufacturing facility. ? Energy optimization across the Complex requires flexibility to accommodate variations in operations, seasonality, maintenance outages, etc. ? The steam system spans the Complex and is generated from various sources... and petrochemical manufacturing facility. ? Energy optimization across the Complex requires flexibility to accommodate variations in operations, seasonality, maintenance outages, etc. ? The steam system spans the Complex and is generated from various sources...

Long, T.

289

How to Calculate the True Cost of Steam  

Energy.gov (U.S. Department of Energy (DOE))

This brief details how to calculate the true cost of steam, which is important for monitoring and managing energy use in a plant, evaluating proposed design changes to the generation or distribution infrastructure and the process itself, and for continuing to identify competitive advantages through steam system and plant efficiency improvements.

290

STeam Injected Piston Engine Troels Hrding Pedersen Bjrn Kjellstrm  

E-Print Network (OSTI)

STIPE STeam Injected Piston Engine Troels Hørding Pedersen Björn Kjellström Thomas Koch Erik Balck stempelmotor med dampindsprøjtning". English title: "Steam injected piston engine, a feasibility study ......................................................................................12 Stationary engines for decentralised CHP or industrial CHP

291

Development and Application of Advanced Models for Steam Hydrogasification: Process Design and Economic Evaluation  

E-Print Network (OSTI)

HHV) Capital Costs Feed Handling & Preparation Gasification Warm Gas Cleanup Steam MethaneHHV) Capital Costs Feed Handling & Preperation Gasification Warm Gas Cleanup Steam Methane

Lu, Xiaoming

2012-01-01T23:59:59.000Z

292

Flash High-Pressure Condensate to Regenerate Low-Pressure Steam  

Energy.gov (U.S. Department of Energy (DOE))

This tip sheet outlines optimal conditions for flashing high-pressure condensate to regenerate low-pressure steam in steam systems.

293

Bullet trains and steam engines: Exogenous attention zips but endogenous attention chugs along  

E-Print Network (OSTI)

Bullet trains and steam engines: Exogenous attention zips but endogenous attention chugs along: Chakravarthi, R., & VanRullen, R. (2011). Bullet trains and steam engines: Exogenous attention zips

VanRullen, Rufin

294

Feasibility of Steam Hydrogasification of Microalgae for Production of Synthetic Fuels  

E-Print Network (OSTI)

Figure 2.2. Biomass Air Steam Oxygen Hydrogen Gasifier typeAir GasifierSteam Gasifier Oxygen Gasifier Hydrogen Gasifier

Suemanotham, Amornrat

2014-01-01T23:59:59.000Z

295

Technology Maturation Plan (TMP) Fluidized Bed Steam Reforming (FBSR)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Maturation Plan (TMP) Fluidized Bed Steam Reforming Maturation Plan (TMP) Fluidized Bed Steam Reforming (FBSR) Technology for Tank 48H Treatment Project (TTP) Technology Maturation Plan (TMP) Fluidized Bed Steam Reforming (FBSR) Technology for Tank 48H Treatment Project (TTP) This assessment determines the technology maturity level of the candidate Tank 48H treatment technologies that are being considered for implementation at DOE's SRS - specifically Fluidized Bed Steam Reformer System. Technology Maturation Plan (TMP) Fluidized Bed Steam Reforming (FBSR) Technology for Tank 48H Treatment Project (TTP) More Documents & Publications Technology Maturation Plan (TMP) Wet Air Oxidation (WAO) Technology for Tank 48H Treatment Project (TTP) SRS Tank 48H Waste Treatment Project Technology Readiness Assessment

296

Issues in the selection of the LMFBR steam cycle  

SciTech Connect

Unlike the light-water reactor, the liquid-metal fast breeder reactor (LMFBR) allows the designer considerable latitude in the selection of the steam cycle. This latitude in selection has been exercised by both foreign and domestic designers, and thus, despite the fact that over 25 LMFBR's have been built or are under construction, a consensus steam cycle has not yet evolved. This paper discusses the LMFBR steam cycles of interest to the LMFBR designer, reviews which of these cycles have been employed to date, discusses steam-cycle selection factors, discusses why a consensus has not evolved, and finally, concludes that the LMFBR steam-cycle selection is primarily one of technical philosophy with several options available.

Buschman, H.W.; McConnell, R.J.

1983-01-01T23:59:59.000Z

297

Issues in the selection of the LMFBR steam cycle  

SciTech Connect

Unlike the light water reactor, the liquid metal fast breeder reactor (LMFBR) allows the designer considerable latitude in the selection of the steam cycle. This latitude in selection has been exercised by both foreign and domestic designers, and thus, despite the fact that over 25 LMFBR's have been built or are under construction, a consensus steam cycle has not yet evolved. This paper discusses the LMFBR steam cycles of interest to the LMFBR designer, reviews which of these cycles have been employed to date, discusses steam-cycle selection factors, discusses why a consensus has not evolved, and finally, concludes that the LMFBR steam-cycle selection is primarily one of technical philosophy with several options available.

Buschchman, H.W.; McConnell, R.J.

1983-08-01T23:59:59.000Z

298

Experience in the repair of steam generator auxiliary feedwater nozzle  

SciTech Connect

The auxiliary feedwater nozzle is quite often subjected to more thermal stress cycles and other loading mechanisms during their service life than the material was designed and fabricated for at the nozzle of the earlier steam generators in many nuclear plants. During plant operation, the auxiliary feedwater nozzle outlet is exposed to the hot steam from the generator side, while the auxiliary feedwater piping which contains subcooled water from the inlet often induces water hammer as a result of the steam-water mixing phenomena. The thermal cycles and the steam bubble collapse at the nozzle may cause cracking in the nozzle liner and interior surface of the nozzle, and subsequently results in structural damage to the steam generator. This presentation is intended to share the lessons learned from the evaluation of the nozzle condition and the subsequent modification and repair made to the auxiliary feedwater nozzle at the Palisades Nuclear Plant. Other nuclear plant owners may benefit from this experience.

Chao, K.K.N. [Consumers Power Co., Jackson, MI (United States)

1996-12-01T23:59:59.000Z

299

Flammability Limits of Binary Mixtures of 1,2-Ethanediol + Steam and 1,2-Propanediol + Steam  

Science Journals Connector (OSTI)

Flammability Limits of Binary Mixtures of 1,2-Ethanediol + Steam and 1,2-Propanediol + Steam ... In addition, the experimental results were compared with the estimated values based on the adiabatic flame temperature method. ... Shortly before ignition, the stirrer was turned off, and the mixture was left for 1 min to eliminate turbulence. ...

Ke Zhang; Xianyang Meng; Jiangtao Wu

2013-08-13T23:59:59.000Z

300

Steam Oxidation and Chromia Evaporation in Ultra-Supercritical Steam Boilers and Turbines  

SciTech Connect

U.S. Department of Energy’s goals include power generation from coal at 60% efficiency, which requires steam conditions of up to 760 °C and 340 atm, so-called ultra-supercritical (USC) conditions. Evaporation of protective chromia scales is expected to be a primary corrosion mechanism. A methodology to calculate Cr evaporation rates from chromia scales was developed and combined with Cr diffusion calculations within the alloy (with a constant flux of Cr leaving the alloy from evaporation) to predict Cr concentration profiles and to predict the time until breakaway oxidation. At the highest temperatures and pressures, the time until breakaway oxidation was predicted to be quite short for the turbine blade, and of concern within the steam pipe and the higher temperature portions of the superheater tube. Alloy additions such as Ti may allow for a reduction in evaporation rate with time, mitigating the deleterious effects of chromia evaporation.

Gordon H. Holcomb

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fossil steam steam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Steam oxidation and chromia evaporation in ultrasupercritical steam boilers and turbines  

SciTech Connect

The U.S. Department of Energy's goals include power generation from coal at 60% efficiency, which requires steam conditions of up to 760 {sup o}C and 340 atm, so-called ultrasupercritical conditions. Evaporation of protective chromia scales is a primary corrosion mechanism. A methodology to calculate Cr evaporation rates from chromia scales was developed and combined with Cr diffusion calculations within the alloy (with a constant flux of Cr leaving the alloy from evaporation) to predict Cr concentration profiles and to predict the time until breakaway oxidation. At the highest temperatures and pressures, the time until breakaway oxidation was quite short for the turbine blade, and of concern within the steam pipe and the higher temperature portions of the superheater tube. Alloy additions such as Ti may allow for a reduction in evaporation rate with time, mitigating the deleterious effects of chromia evaporation.

Holcomb, G.R. [US DOE, Albany, OR (United States)

2009-07-01T23:59:59.000Z

302

Standard Steam Trust LLC | Open Energy Information  

Open Energy Info (EERE)

Trust LLC Trust LLC Jump to: navigation, search Name Standard Steam Trust LLC Place Denver, Colorado Sector Geothermal energy Product Subsidiary of Denver-based geothermal project developer, Terra Caliente. Coordinates 39.74001°, -104.992259° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.74001,"lon":-104.992259,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

303

Microsoft Word - Steam System Energy.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

LBNL---6288E LBNL---6288E ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY Implementation a nd Rejection o f I ndustrial Steam S ystem E nergy Efficiency M easures Peter T herkelsen a nd A imee M cKane Environmental E nergy T echnologies D ivision Lawrence B erkeley N ational L aboratory Reprint version of journal article published in " Energy P olicy", p lease c ite a s: Peter T herkelsen, A imee M cKane, Implementation a nd r ejection o f i ndustrial s team system e nergy e fficiency m easures, E nergy Policy, V olume 5 7, J une 2 013, P ages 3 18---328 May 2 013 2 Disclaimer This d ocument w as p repared a s a n a ccount o f w ork s ponsored b y t he U nited States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof,

304

SUPERCRITICAL STEAM CYCLE FOR NUCLEAR POWER PLANT  

SciTech Connect

Revolutionary improvement of the nuclear plant safety and economy with light water reactors can be reached with the application of micro-fuel elements (MFE) directly cooled by a supercritical pressure light-water coolant-moderator. There are considerable advantages of the MFE as compared with the traditional fuel rods, such as: Using supercritical and superheated steam considerably increases the thermal efficiency of the Rankine cycle up to 44-45%. Strong negative coolant and void reactivity coefficients with a very short thermal delay time allow the reactor to shutdown quickly in the event of a reactivity or power excursion. Core melting and the creation of corium during severe accidents are impossible. The heat transfer surface area is larger by several orders of magnitude due to the small spherical dimensions of the MFE. The larger heat exchange surface significantly simplifies residual heat removal by natural convection and radiation from the core to a subsequent passive system of heat removal.

Tsiklauri, Georgi V.; Talbert, Robert J.; Schmitt, Bruce E.; Filippov, Gennady A.; Bogojavlensky, Roald G.; Grishanin, Evgeny I.

2005-07-01T23:59:59.000Z

305

Catalyst for steam reforming of hydrocarbons  

SciTech Connect

A catalyst's resistance to deactivation by polymer formation is vital to the successful gasification of heavy feedstocks such as kerosene and gas oil. The improved polymer-resistance performance of this steam-reforming catalyst is directly relate to the distribution of the pore sizes in its calcined (but unreduced) precursor form and to a certain pore-size ratio: 1) At least 55% of the pore volume of pores having a radius of between 12 and 120 A(2000A) is in the range of 12-30 A(2000A) and 2) the ratio of the pore volume contained in pores of 10-50 A(2000A) to the volume contained in pores of 50-300 A(2000A) is at least 5:1. The catalyst-preparation method involves coprecipitation with a minimum of heat treatment (at temperatures not greater than 140/sup 0/F or 60/sup 0/C).

Banks, R.G.S.; Williams, A.

1980-08-05T23:59:59.000Z

306

Performance tests for steam methane reformers  

SciTech Connect

Most of the synthesis gas plants in operation in the United States for production of hydrogen, carbon monoxide, methanol, and ammonia use steam methane reforming (SMR). Economic projections indicate that the SMR plant may continue to be the most favorable process choice through the 1980s or until partial oxidation or coal gasification processes are technically proven. The complexity of an efficiently designed SMR plant for production of these chemicals requires a thorough understanding of many unit operations to correctly evaluate the performance of an operating plant. Air Products and Chemicals, Inc. (APCI) owns and operates various types of SMR plants for production of hydrogen and carbon monoxide gases for pipe line sales, liquid hydrogen for merchant sale, methanol and ammonia. Over the past few years, APCI has developed guidelines and procedures for plant performance tests done at its major SMR plants. This article documents the plant test procedure used in conducting onsite SMR plant performance tests.

Wang, S.I.; DiMartino, S.P.; Patel, N.M.; Smith, D.D.

1982-08-01T23:59:59.000Z

307

Process for steam reforming of hydrocarbons  

SciTech Connect

A process is provided for the steam reforming of normally liquid hydrocarbons to produce carbon monoxide and hydrogen, which does not promote the deposition of carbonacious materials upon catalytic surfaces. The catalyst consists of nickel promoted with the oxides of iron and manganese within a specific manganese to iron ratio, said metal and metal oxides being supported upon a refractory support. The support is preferably aluminum oxide in its alpha phase having a surface area of more than 0.5 m2/gm but no more than 10 m2/gm. The metallic constituents are impregnated onto said refractory low surface area support as salts and are calcined at sufficiently high temperature to convert the salts to the oxide but at a sufficiently low temperature that they do not chemically react with the support.

Broughton, D.R.; Russ, K.J.

1980-11-11T23:59:59.000Z

308

Steam systems in industry: Energy use and energy efficiency improvement potentials  

SciTech Connect

Steam systems are a part of almost every major industrial process today. Thirty-seven percent of the fossil fuel burned in US industry is burned to produce steam. In this paper we will establish baseline energy consumption for steam systems. Based on a detailed analysis of boiler energy use we estimate current energy use in boilers in U.S. industry at 6.1 Quads (6.4 EJ), emitting almost 66 MtC in CO{sub 2} emissions. We will discuss fuels used and boiler size distribution. We also describe potential savings measures, and estimate the economic energy savings potential in U.S. industry (i.e. having payback period of 3 years or less). We estimate the nationwide economic potential, based on the evaluation of 16 individual measures in steam generation and distribution. The analysis excludes the efficient use of steam and increased heat recovery. Based on the analysis we estimate the economic potential at 18-20% of total boiler energy use, resulting in energy savings approximately 1120-1190 TBtu ( 1180-1260 PJ). This results in a reduction of CO{sub 2} emissions equivalent to 12-13 MtC.

Einstein, Dan; Worrell, Ernst; Khrushch, Marta

2001-07-22T23:59:59.000Z

309

Steam turbine path evaluation during maintenance  

SciTech Connect

The deterioration of a turbine (Steam & Gas) flow path affects the efficiency of the turbine. The most critical factors which affect the efficiency of turbines are: wearing out of the trailing edges of the blades by solid particle erosion, deposits, material loss due to corrosion (also sand blast) which increases the flow area, increases in blade surface roughness, etc. Wearing out of the seals caused by shaft vibrations or rapid start-up leads to significant leakage losses. Some of these effects can be estimated with some precision during operation of the turbine, but an exact evaluation can be carried out during a maintenance applying a special fluid flow analysis program. Such a program has been developed and then adapted to achieve this goal. During maintenance the complete geometry of the steam path is measured (blades lengths, widths, angles, clearances, etc.) in the condition encountered before any corrections. Then the similar measurement is undertaken after, for example, clearance corrections, blade replacements, cleaning of the blades, etc. Using the program first of all the design data is calculated. Then the actual data is fed into the program and compared to the design data. Thus the effect of the blade surface roughness, increased seal clearances, flow area increase, solid particle damage to the trailing edge and so on for each particular stage is calculated. The effect is expressed in [kW] as a deviation from the design points. This data can be helpful during online evaluation of the turbine performance. This evaluation helps the management of the plant in undertaking the correct decision concerning the date of the next major maintenance and replacement part procurement. Many turbines in the Mexican utility have been evaluated in such a manner. Some examples are presented.

Kubiak, J.; Angel, F. del; Carnero, A.; Campos, A. [Instituto de Investigaciones Electricas, Temixo, Morelos (Mexico)] [and others

1996-07-01T23:59:59.000Z

310

FLUIDIZED BED STEAM REFORMER MONOLITH FORMATION  

SciTech Connect

Fluidized Bed Steam Reforming (FBSR) is being considered as an alternative technology for the immobilization of a wide variety of aqueous high sodium containing radioactive wastes at various DOE facilities in the United States. The addition of clay, charcoal, and a catalyst as co-reactants converts aqueous Low Activity Wastes (LAW) to a granular or ''mineralized'' waste form while converting organic components to CO{sub 2} and steam, and nitrate/nitrite components, if any, to N{sub 2}. The waste form produced is a multiphase mineral assemblage of Na-Al-Si (NAS) feldspathoid minerals with cage-like structures that atomically bond radionuclides like Tc-99 and anions such as SO{sub 4}, I, F, and Cl. The granular product has been shown to be as durable as LAW glass. Shallow land burial requires that the mineralized waste form be able to sustain the weight of soil overburden and potential intrusion by future generations. The strength requirement necessitates binding the granular product into a monolith. FBSR mineral products were formulated into a variety of monoliths including various cements, Ceramicrete, and hydroceramics. All but one of the nine monoliths tested met the <2g/m{sup 2} durability specification for Na and Re (simulant for Tc-99) when tested using the Product Consistency Test (PCT; ASTM C1285). Of the nine monoliths tested the cements produced with 80-87 wt% FBSR product, the Ceramicrete, and the hydroceramic produced with 83.3 wt% FBSR product, met the compressive strength and durability requirements for an LAW waste form.

Jantzen, C

2006-12-22T23:59:59.000Z

311

Field measurement of solid particle erosion in utility steam turbines  

SciTech Connect

For the first time, extensive field testing has characterized solid particle erosion (SPE) in terms of size and frequency. This is particularly important because SPE damage to large steam turbine components can degrade plant efficiency, increasing operating costs by up to $3 million/yr per unit for a total of $150 million nationwide. The objective was to characterize under various operating conditions the level and distribution of magnetite particles in turbine steam and the resulting SPE. The project team developed a field test program to characterize the solid particles in turbine steam and measure the erosion resistance of various coatings. At Dayton Power Light, a 600-MW turbine generator unit with a coal-fired once-through supercritical boiler was fitted with two steam sampling systems, the first for isokinetic sampling and the second for erosion evaluation. The team took roughly 300 isokinetic steam samples from the main steam line during both startup and full-load operation. They condensed and filtered each steam sample, then determined the level and distribution of magnetite particles.

Duncan, D.; Vohr, J.H.; Shalvoy, R.S. (General Electric Co., Schenectady, NY (United States). Turbine Technology Dept.)

1992-01-01T23:59:59.000Z

312

NOx formation by steam injection using detailed chemical kinetics  

Science Journals Connector (OSTI)

In order to improve thermal efficiency of gas turbine system and better control NOx emission, the injection of steam into a gas turbine combustor has been employed. This study has used both chemical equilibrium calculations and the counterflow diffusion flame calculations of methane-air flame aiming at the elucidation of the NOx reduction mechanism due to the steam injection. The influence of the equivalence ratios, the amount of steam and method of injection, the influence of the temperature of the preheated air and fuel has been also investigated. In this study, the GRI-Mech was employed for modelling the chemical reactions.

H. Yamashita; D. Zhao; S.N. Danov; T. Furuhata; N. Arai

2001-01-01T23:59:59.000Z

313

Extending the useful life of industrial steam turbines  

SciTech Connect

This paper reports that technology, uprating, and steam-path degradation reversal can extend the life and boost the efficiency of aging turbines. With the advent of modern machine tool technology, plus extensive R and D efforts, designers could apply improved bucket designs like the laminar flow design. Today's technology is represented by the Schlict design, which minimizes flow separations and boundary layer losses. Schlict buckets can be retrofitted in most designs as long as the diaphragm is also replaced. Adoption of steam-path design advance developed for new units and degradation reversal are the two areas of greatest opportunity in efficiency improvement of aging steam turbine-generators.

O'Connor, M.F.; Timmerman, D.C. (GE Power Generation, Schenectady, NY (US))

1990-05-01T23:59:59.000Z

314

Production and mitigation of acid chlorides in geothermal steam  

SciTech Connect

Measurements of the equilibrium distribution of relatively nonvolatile solutes between aqueous liquid and vapor phases have been made at temperatures to 350{degrees}C for HCl(aq) and chloride salts. These data are directly applicable to problems of corrosive-steam production in geothermal steam systems. Compositions of high-temperature brines which could produce steam having given concentrations of chlorides may be estimated at various boiling temperatures. Effects of mitigation methods (e.g., desuperheating) can be calculated based on liquid-vapor equilibrium constants and solute mass balances under vapor-saturation conditions.

Simonson, J.M.; Palmer, D.A.

1995-06-01T23:59:59.000Z

315

Investigation of the Effect of In-Situ Catalyst on the Steam Hydrogasification of Biomass  

E-Print Network (OSTI)

H 2 Equation (1.8) Steam methane reforming CH 4 + H 2 O ? 3HH 2 +CO) by the Steam Methane Reforming (SMR). The steam2 Equation (1.10) Steam Methane Reforming: CH 4 + H 2 O ? 3H

FAN, XIN

2012-01-01T23:59:59.000Z

316

The economics of the use of cermet seals in steam turbines  

Science Journals Connector (OSTI)

The use of cermet sealing materials in steam turbines improves their reliability and produces considerable savings...

Z. P. Dorf; É. T. Denisenko

1965-04-01T23:59:59.000Z

317

Graphical Procedure for Comparing Thermal Death of Bacillus stearothermophilus Spores in Saturated and Superheated Steam  

Science Journals Connector (OSTI)

...stearothermophilus Spores in Saturated and Superheated Steam James J. Shull 1 Robert R. Ernst Wilmot...Bacillus stearothermophilus in saturated steam was characterized by three phases: (i...death curve of the spores in saturated steam. A jacketed steam sterilizer, equipped...

James J. Shull; Robert R. Ernst

1962-09-01T23:59:59.000Z

318

1 6/11/2003 Progress in Microchannel SteamProgress in  

E-Print Network (OSTI)

1 6/11/2003 Progress in Microchannel SteamProgress in Reformation of Hydrocarbon Fuels Progress in MicrochannelMicrochannel SteamSteam Reformation of HydrocarbonReformation of Hydrocarbon FuelsFuels 2003 steam reformer at higher temperature. Productivity for benchmark fuel increased 3X between 650°C and 850

319

Enviro-Friendly Hydrogen Generation From Steel Mill-Scale via Metal-Steam Reforming  

E-Print Network (OSTI)

Enviro-Friendly Hydrogen Generation From Steel Mill-Scale via Metal-Steam Reforming Abdul of certain metals with steam, called metal- steam reforming (MSR). This technique does not gen- erate any: hydrogen generation; metal-steam reform- ing; mill-scale; nanoscale iron; electron microscopy Hydrogen

Azad, Abdul-Majeed

320

DYNAMIC SIMULATION OF MONO-TUBE CAVITY RECEIVERS FOR DIRECT STEAM GENERATION  

E-Print Network (OSTI)

that includes a 4 cylinder steam engine coupled with a 3 phase generator. This paper describes ongoing research cavity receiver [2] mounted to the 500 m2 dish receiver supports, a modified steam engine coupled transports superheated steam via rotary joints to the ground and then to a 4 cylinder steam engine

Note: This page contains sample records for the topic "fossil steam steam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

SSST Module Slide 1: Hello, and welcome to this introduction on the Steam System Tool Suite.  

E-Print Network (OSTI)

the Steam System Scoping Tool, the Steam System Assessment Tool, and the 3E Plus Insulation Tool: When assessing the condition of your steam system the first tool you should use is the scoping toolSSST Module 9/30/2009 Slide 1: Hello, and welcome to this introduction on the Steam System Tool

Oak Ridge National Laboratory

322

The 700°C steam turbine power plant â?? status of development and outlook  

Science Journals Connector (OSTI)

This paper appraises the current development status of the 700°C steam power plant under consideration of process optimisation as well as design aspects of the steam turbine and steam generator. The results for a compact arrangement of the steam turbine and steam generator are also presented. Based on a cycle analysis, a net efficiency between 49.3% and 51.4% can be achieved with the 700°C steam power plant â?? depending on the implementation and based on an inland plant site. No competing development activities for the 700°C steam power plant are known from the USA or Japan.

Heiner Edelmann; Martin Effert; Kai Wieghardt; Holger Kirchner

2007-01-01T23:59:59.000Z

323

Performance Assessment of Flashed Steam Geothermal Power Plant  

SciTech Connect

Five years of operating experience at the Comision Federal de Electricidad (CFE) Cerro Prieto flashed steam geothermal power plant are evaluated from the perspective of U. S. utility operations. We focus on the design and maintenance of the power plant that led to the achievement of high plant capacity factors for Units No. 1 and 2 since commercial operation began in 1973. For this study, plant capacity factor is the ratio of the average load on the machines or equipment for the period of time considered to the capacity rating of the machines or equipment. The plant capacity factor is the annual gross output in GWh compared to 657 GWh (2 x 37.5 MW x 8760 h). The CFE operates Cerro Prieto at base load consistent with the system connected electrical demand of the Baja California Division. The plant output was curtailed during the winter months of 1973-1975 when the system electric demand was less than the combined output capability of Cerro Prieto and the fossil fuel plant near Tijuana. Each year the system electric demand has increased and the Cerro Prieto units now operate at full load all the time. The CFE added Units 3 and 4 to Cerro Prieto in 1979 which increased the plant name plate capacity to 150 MW. Part of this additional capacity will supply power to San Diego Gas and Electric Company through an interconnection across the border. The achievement of a high capacity factor over an extensive operating period was influenced by operation, design, and maintenance of the geothermal flash steam power plant.

Alt, Theodore E.

1980-12-01T23:59:59.000Z

324

Coyote Canyon Steam Plant Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Steam Plant Biomass Facility Steam Plant Biomass Facility Jump to: navigation, search Name Coyote Canyon Steam Plant Biomass Facility Facility Coyote Canyon Steam Plant Sector Biomass Facility Type Landfill Gas Location Orange County, California Coordinates 33.7174708°, -117.8311428° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.7174708,"lon":-117.8311428,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

325

A Compact and Efficient Steam Methane Reformer for Hydrogen Production.  

E-Print Network (OSTI)

??A small-scale steam-methane reforming system for localized, distributed production of hydrogen offers improved performance and lower cost by integrating the following technologies developed at the… (more)

Quon, Willard

2012-01-01T23:59:59.000Z

326

Selectivity of the steam reforming of methane over metallic catalysts  

Science Journals Connector (OSTI)

The activity and selectivity of the methane-steam reaction has been studied in a gradientless reactor at atmospheric pressure and 700–850 °C. Differences were found in the course of the reaction on Pd relative...

T. Borowiecki; J. Barcicki

1979-01-01T23:59:59.000Z

327

Halophilic Archaea determined from geothermal steam vent aerosols  

E-Print Network (OSTI)

the leaching of salts and minerals through the highly porous volcanic rock, creating a chemically complex differentials to condense steam into gamma-irradiated polypropylene centrifuge tubes (Fig. 1B), collected up

Kelley, Scott

328

Motive Power. Steam Turbines. High Speed Navigation1  

Science Journals Connector (OSTI)

... ancient Egyptian civilisation that we find the first records of the early history of the steam-engine. In Alexandria, the home of Euclid, and possibly contemporary with Archimedes, Hero ... contrivances.

1900-03-01T23:59:59.000Z

329

Steam turbine restart temperature maintenance system and method  

SciTech Connect

A restart temperature maintenance system is described for a steam turbine system; the steam turbine system comprising a steam turbine, the turbine including a rotation shaft, an outer metal shell means. The restart temperature maintenance system consists of: (a) fastener means affixed to the outer surface of the shell means at predetermined positions; (b) air gap spacer means affixed to the outer surface of the shell means, the air gap spacer means substantially covering the shell means; (c) a plurality of electric heating blanket means of predetermined size and shape positioned in insulative relationship over the air gap spacer means and the heating blanket means maintained in predetermined position by the fastener means; (d) heat sensor means affixed to the outer metal shell means of the steam turbine in predetermined position; (e) power supply means for supplying power to the heating blanket means; (f) heat sensor monitor and controller means connected in circuit between the power supply means and the heat sensor means.

McClelland, T.R.

1986-04-29T23:59:59.000Z

330

Efficient steam turbines produced by the “Ural Turbine Plant” company  

Science Journals Connector (OSTI)

Design features and efficiency of some steam turbines produced at present by a plant formed as a result of division of the “Turbine Motor Plant” Company into several enterprises are...

G. D. Barinberg; A. E. Valamin

331

Calculation of the Limiting CESSAR Steam Line Break Transients  

Science Journals Connector (OSTI)

Argonne National Laboratory (ANL), under contract to the Nuclear Regulatory Commission, performed audit calculations of the limiting and Steam Line Break (SLB) [1] transient presented in the CESSAR FSAR. The r...

G. B. Peeler; D. L. Caraher; J. Guttmann

1984-01-01T23:59:59.000Z

332

Thermohydraulic analysis of U-tube steam generators  

E-Print Network (OSTI)

Recent trends in plant safety analysis reveal a need for benchmark analytical representations of the steam generators to aid in the improvement of system codes and of fast codes for operator assistance. A model for such ...

da Silva, Hugo Cardoso

1984-01-01T23:59:59.000Z

333

Suez SNC-Lavalin Nuclear to replace US steam generator  

Science Journals Connector (OSTI)

SNC-Lavalin Nuclear (USA) has signed a contract with Xcel Energy to replace the Unit #2 steam generators at the Prairie Island Nuclear Generating Plant (PINGP) in Welch, Minnesota.

2010-01-01T23:59:59.000Z

334

Modelling, simulation and sensitivity analysis of steam-methane reformers  

Science Journals Connector (OSTI)

A mathematical model to calculate temperature, conversion and pressure profiles for static operations in steam-methane reformers was simulated. A rigorous kinetic model describing steam-methane reactions was compared to a first order one and an empirical heat distribution model was fitted to describe heat absorbed along the reactor length. A control interface was simulated to allow sensitivity analysis with different control schemes. The kinetic models were tested with data from industrial steam-gas reformers. Simulation results agreed with actual plant data for conversion, temperature and pressure. Nevertheless, the first order kinetic model gave unrealistic sensitivity results to pressure and steam-to-carbon ratio variations. The rigorous model could confidently be used for design analysis, control, and economic evaluation purposes.

I.M. Alatiqi; A.M. Meziou; G.A. Gasmelseed

1989-01-01T23:59:59.000Z

335

Experiences of niobium-containing alloys for steam reformers  

SciTech Connect

Destructive testing of niobium alloys was made in steam reformer as well as the study of the effects of the chemical compositions on the creep rupture and tensile properties.

Shibasaki, T.; Takemura, K.; Kawai, T.; Mohri, T.

1987-01-01T23:59:59.000Z

336

Process for generating steam in a fuel cell powerplant  

SciTech Connect

The steam for a steam reforming reactor of a fuel cell powerplant is generated by humidifying the reactor feed gas in a saturator by evaporating a small portion of a mass of liquid water which circulates in a loop passing through the saturator. The water is reheated in each pass through the loop by waste heat from the fuel cell, but is not boiled. In the saturator the relatively dry feed gas passes in direct contact with the liquid water over and through a bed a high surface area material to cause evaporation of some of the water in the loop. All the steam requirements for the reactor can be generated in this manner without the need for a boiler; and steam can be raised at a higher total pressure than in a boiler heated by the same source.

Sederquist, R. A.

1985-09-03T23:59:59.000Z

337

Steam Turbines for Critical Applications and Emergency or Standby Drives  

E-Print Network (OSTI)

Steam turbines are frequently preferred over electric motors where operational continuity is important. This often imposes extreme premiums in operating cost. The parameters affecting relative economics are explored and a range of alternatives...

Waterland, A. F.

338

Industrial Heat Pumps for Steam and Fuel Savings  

Energy.gov (U.S. Department of Energy (DOE))

This brief introduces heat-pump technology and its application in industrial processes as part of steam systems. The focus is on the most common applications, with guidelines for initial identification and evaluation of the opportunities being provided.

339

Clock mechanisms and their effects, leads into steam engine  

E-Print Network (OSTI)

In a clock-maker’s shop, Simon Schaffer explains the great precision needed to make clocks, and the development of standardized parts. The feed-back mechanisms or governors are absolutely essential in the first stationary steam engines....

Dugan, David

2004-08-17T23:59:59.000Z

340

An Analysis of Steam Process Heater Condensate Drainage Options  

E-Print Network (OSTI)

The production and reliability performance of Steam Process Heaters can be significantly affected by the condensate drainage design that is employed. There are currently a variety of drainage options which can be confusing to a system designer who...

Risko, J. R.

Note: This page contains sample records for the topic "fossil steam steam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Optimizing Steam and Condensate System: A Case Study  

E-Print Network (OSTI)

Optimization of Steam & Condensate systems in any process plant results in substantial reduction in purchased energy cost. During periods of natural gas price hikes, this would benefit the plant in controlling their fuel budget significantly...

Venkatesan, V. V.; Merritt, B.; Tully, R. C.

342

Steam Efficiency: Impacts from Boilers to the Boardroom  

E-Print Network (OSTI)

to the corporate bottom-line. The challenge is to present efficiency investments in the financial "language" that permits comparison to other corporate investment opportunities. This paper presents a framework for linking steam efficiency to financial goals. A...

Russell, C.

343

Highly Active Steam Reforming Catalyst for Hydrogen and Syngas Production  

Science Journals Connector (OSTI)

Toyo Engineering Corporation developed a steam reforming catalyst, which is four times as active as conventional catalysts, for hydrogen and syngas production from light natural gas. The catalyst has...3 plant. B...

Toru Numaguchi

2001-11-01T23:59:59.000Z

344

C++ Implementation of IAPWS Water/Steam Properties  

SciTech Connect

For the calculations of water-involved systems, such as safety analysis of light water reactors, it is essential to provide accurate water properties. The International Association for the Properties of Water and Steam is an international non-profit association of national organizations concerned with the properties of water and steam. It provides internationally accepted formulations of water/steam properties for scientific and industrial applications. The purpose of this work is to provide a stand-alone software package in C++ programming language to provide accurate and efficient water/steam properties evaluation, based on the latest IAPWS releases. The discussion on related IAPWS releases, code implementations and verifications are provided in details.

Ling Zou; Haihua Zhao; Hongbin Zhang; Qiyue Lu

2014-02-01T23:59:59.000Z

345

The Global Steam Coal Market and Supply Curve  

Science Journals Connector (OSTI)

The modern steam coal trade is only about three decades old. ... market difficulties. In order to understand the coal market one needs to understand the global ... . In the chapter the author considers the economic

Dr. Lars Schernikau

2010-01-01T23:59:59.000Z

346

Steam System Management Program Yields Fuel Savings for Refinery  

E-Print Network (OSTI)

The Phillips refinery at Borger, Texas, determined the need to develop a utility monitoring system. Shortly after this commitment was made, the refinery was introduced to a flowsheet modeling program that could be used to model and optimize steam...

Gaines, L. D.; Hagan, K. J.

1983-01-01T23:59:59.000Z

347

Dongfang Steam Turbine Works DFSTW | Open Energy Information  

Open Energy Info (EERE)

Dongfang Steam Turbine Works DFSTW Dongfang Steam Turbine Works DFSTW Jump to: navigation, search Name Dongfang Steam Turbine Works (DFSTW) Place Deyang, Sichuan Province, China Zip 618000 Sector Wind energy Product Manufacturer of several kinds of steam turbines and accessory equipment. Manufactures wind turbines under licence from REpower. Coordinates 31.147209°, 104.375023° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.147209,"lon":104.375023,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

348

Covered Product Category: Commercial Steam Cookers | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Steam Cookers Steam Cookers Covered Product Category: Commercial Steam Cookers October 7, 2013 - 11:15am Addthis ENERGY STAR Qualified Products FEMP provides acquisition guidance across a variety of product categories, including commercial steam cookers, which are an ENERGY STAR®-qualified product category. Federal laws and executive orders mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law. Most manufacturers display the ENERGY STAR label on complying models. For a model not displaying this label, check the Energy Efficiency Requirements for Federal Purchases For the most up-to-date efficiency levels required by ENERGY STAR, look for the ENERGY STAR label or visit the ENERGY STAR Product Specifications

349

Boiler and steam generator corrosion. (Latest citations from the NTIS Bibliographic database). Published Search  

SciTech Connect

The bibliography contains citations concerning corrosion effects, mechanisms, detection, and inhibition in fossil fuel fired boilers and nuclear powered steam generators. Corrosion studies performed on the water side and hot gas side of heat exchanger tubes and support structures are presented. Water treatment, chemical cleaning, and descaling methods are considered. Although emphasis is placed on large-scale power generation systems, residential and commercial heating systems are also discussed. (Contains 250 citations and includes a subject term index and title list.)

Not Available

1994-11-01T23:59:59.000Z

350

Boiler and steam generator corrosion. (Latest citations from the NTIS bibliographic database). Published Search  

SciTech Connect

The bibliography contains citations concerning corrosion effects, mechanisms, detection, and inhibition in fossil fuel fired boilers and nuclear powered steam generators. Corrosion studies performed on the water side and hot gas side of heat exchanger tubes and support structures are presented. Water treatment, chemical cleaning, and descaling methods are considered. Although emphasis is placed on large-scale power generation systems, residential and commercial heating systems are also discussed. (Contains 250 citations and includes a subject term index and title list.)

Not Available

1994-01-01T23:59:59.000Z

351

The Use of Electrochemical Techniques to Characterize Wet Steam Environments  

SciTech Connect

The composition of a steam phase in equilibrium with a water phase at high temperature is remarkably affected by the varying capabilities of the water phase constituents to partition into the steam. Ionic impurities (sodium, chloride, sulfate, etc.) tend to remain in the water phase, while weakly ionic or gaseous species (oxygen) partition into the steam. Analysis of the water phase can provide misleading results concerning the steam phase composition or environment. This paper describes efforts that were made to use novel electrochemical probes and sampling techniques to directly characterize a wet steam phase environment in equilibrium with high temperature water. Probes were designed to make electrochemical measurements in the thin film of water existing on exposed surfaces in steam over a water phase. Some of these probes were referenced against a conventional high temperature electrode located in the water phase. Others used two different materials (typically tungsten and platinum) to make measurements without a true reference electrode. The novel probes were also deployed in a steam space removed from the water phase. It was necessary to construct a reservoir and an external, air-cooled condenser to automatically keep the reservoir full of condensed steam. Conventional reference and working electrodes were placed in the water phase of the reservoir and the novel probes protruded into the vapor space above it. Finally, water phase probes (both reference and working electrodes) were added to the hot condensed steam in the external condenser. Since the condensing action collapsed the volatiles back into the water phase, these electrodes proved to be extremely sensitive at detecting oxygen, which is one of the species of highest concern in high temperature power systems. Although the novel steam phase probes provided encouraging initial results, the tendency for tungsten to completely corrode away in the steam phase limited their usefulness. However, the conventional water phase electrodes, installed both in the reservoir and in the external condensing coil, provided useful data showing the adverse impact of oxygen and carbon dioxide on the REDOX potential and high temperature pH, respectively.

Bruce W. Bussert; John A. Crowley; Kenneth J. Kimball; Brian J. Lashway

2003-04-30T23:59:59.000Z

352

Implementation and Rejection of Industrial Steam System Energy Efficiency  

NLE Websites -- All DOE Office Websites (Extended Search)

Implementation and Rejection of Industrial Steam System Energy Efficiency Implementation and Rejection of Industrial Steam System Energy Efficiency Measures Title Implementation and Rejection of Industrial Steam System Energy Efficiency Measures Publication Type Journal Article Refereed Designation Unknown LBNL Report Number LBNL-6288E Year of Publication 2013 Authors Therkelsen, Peter L., and Aimee T. McKane Journal Energy Policy Volume 57 Start Page 318 Date Published 06/2013 Publisher Lawrence Berkeley National Laboratory Keywords industrial energy efficiency, industrial energy efficiency barriers, steam system efficiency Abstract Steam systems consume approximately one third of energy applied at U.S. industrial facilities. To reduce energy consumption, steam system energy assessments have been conducted on a wide range of industry types over the course of five years through the Energy Savings Assessment (ESA) program administered by the U.S. Department of Energy (U.S. DOE). ESA energy assessments result in energy efficiency measure recommendations that are given potential energy and energy cost savings and potential implementation cost values. Saving and cost metrics that measure the impact recommended measures will have at facilities, described as percentages of facility baseline energy and energy cost, are developed from ESA data and used in analyses. Developed savings and cost metrics are examined along with implementation and rejection rates of recommended steam system energy efficiency measures. Based on analyses, implementation of steam system energy efficiency measures is driven primarily by cost metrics: payback period and measure implementation cost as a percentage of facility baseline energy cost (implementation cost percentage). Stated reasons for rejecting recommended measures are primarily based upon economic concerns. Additionally, implementation rates of measures are not only functions of savings and cost metrics, but time as well.

353

Method for increasing steam decomposition in a coal gasification process  

DOE Patents (OSTI)

The gasification of coal in the presence of steam and oxygen is significantly enhanced by introducing a thermochemical water-splitting agent such as sulfuric acid, into the gasifier for decomposing the steam to provide additional oxygen and hydrogen usable in the gasification process for the combustion of the coal and enrichment of the gaseous gasification products. The addition of the water-splitting agent into the gasifier also allows for the operation of the reactor at a lower temperature.

Wilson, Marvin W. (Fairview, WV)

1988-01-01T23:59:59.000Z

354

Estimate steam-turbine losses to justify maintenance funds  

SciTech Connect

A procedure to estimate steam-turbine losses is described. The estimates are based on analytical calculations and field inspections of turbines with known performance deterioration resulting from their environment, not their construction. They are, therefore, applicable to many types of steam turbines. Common causes of deterioration are the following: solid particle erosion, deposits, increased clearances, and peening or damage from foreign material. Performance losses due to these factors are analyzed. An example of application is given.

Not Available

1982-05-01T23:59:59.000Z

355

Steam Partnerships: Case Study of Improved Energy Efficiency  

E-Print Network (OSTI)

Steam Partnerships: Case Study of Improved Energy Efficiency Michael V. Calogero, P.E., CEM Robert E. Hess Novi Leigh Director, Northeast Operations Sr. Energy Systems Engineer Energy Systems Engineer Armstrong Service, Inc ABSTRACT Effective.... 1998-2001 operating data from client's laundry processing facility. 3. Turner, Wayne C., Energy Management Handbook, 2 nd edition, 1993. 4. Armstrong International, Inc., Steam Conservation Guidelines for Condensate Drainage, Handbook N-1 01, 1997...

Calogero, M. V.; Hess, R. E.; Leigh, N.

356

Method for increasing steam decomposition in a coal gasification process  

DOE Patents (OSTI)

The gasification of coal in the presence of steam and oxygen is significantly enhanced by introducing a thermochemical water- splitting agent such as sulfuric acid, into the gasifier for decomposing the steam to provide additional oxygen and hydrogen usable in the gasification process for the combustion of the coal and enrichment of the gaseous gasification products. The addition of the water-splitting agent into the gasifier also allows for the operation of the reactor at a lower temperature.

Wilson, M.W.

1987-03-23T23:59:59.000Z

357

Influences of energy economy on steam turbine design  

SciTech Connect

The pulp and paper industry uses condensing, backpressure, and automatic extraction types of steam turbines. Small drive turbines have better efficiency with multiple stages. The author presents a summary of some alternate steam turbine designs and shows the impact on operating energy costs. There is a summary of operating parameters for various cogeneration design options with illustration of the relative energy cost of each of the various designs.

Garner, J.W. (BE and K Engineering, Morrisville, NC (United States))

1993-11-01T23:59:59.000Z

358

The Bakerian Lecture: Experimental Researches to Determine the Density of Steam at Different Temperatures, and to Determine the Law of Expansion of Superheated Steam  

Science Journals Connector (OSTI)

...research-article The Bakerian Lecture: Experimental Researches to Determine the Density of Steam at Different Temperatures, and to Determine the Law of Expansion of Superheated Steam William Fairbairn Thomas Tate The Royal Society is collaborating with JSTOR...

1860-01-01T23:59:59.000Z

359

An Experimental Investigation of the Thermodynamical Properties of Super-Heated Steam. On the Cooling of Saturated Steam by Free Expansion  

Science Journals Connector (OSTI)

...research-article An Experimental Investigation of the Thermodynamical Properties of Super-Heated Steam. On the Cooling of Saturated Steam by Free Expansion John H. Grindley The Royal Society is collaborating with JSTOR to digitize, preserve...

1900-01-01T23:59:59.000Z

360

Single pressure steam bottoming cycle for gas turbines combined cycle  

SciTech Connect

This patent describes a process for recapturing waste heat from the exhaust of a gas turbine to drive a high pressure-high temperature steam turbine and a low pressure steam turbine. It comprises: delivering the exhaust of the gas turbine to the hot side of an economizer-reheater apparatus; delivering a heated stream of feedwater and recycled condensate through the cold side of the economizer-reheater apparatus in an indirect heat exchange relationship with the gas turbine exhaust on the hot side of the economizer-reheater apparatus to elevate the temperature below the pinch point of the boiler; delivering the discharge from the high pressure-high temperature steam turbine through the economizer-reheater apparatus in an indirect heat exchange relationship with the gas turbine exhaust on the hot side of the economizer-reheater apparatus; driving the high pressure-high temperature steam turbine with the discharge stream of feedwater and recycled condensate which is heated to a temperature below the pinch point of the boiler by the economizer-reheater apparatus; and driving the low pressure steam turbine with the discharged stream of the high pressure-high temperature steam turbine reheated below the pinch point of the boiler by the economizer-reheater apparatus.

Zervos, N.

1990-01-30T23:59:59.000Z

Note: This page contains sample records for the topic "fossil steam steam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

A theoretical and numerical investigation of turbulent steam jets in BWR steam blowdown.  

SciTech Connect

The preliminary results of PHOENICS and RELAP5 show that the current numerical models are adequate in predicting steam flow and stratification patterns in the upper Drywell of a BWR containment subsequent to a blow-down event. However, additional modeling is required in order to study detailed local phenomena such as condensation with non-condensables, natural convection, and stratification effects. Analytically, the intermittence modified similarity solutions show great promise. Once {gamma} is accounted for, the jet's turbulent shear stress can be determined with excellent accuracy.

NguyenLe, Q.

1998-06-26T23:59:59.000Z

362

The Ringhals 2 steam generator replacement  

SciTech Connect

Righals 2, located on the west coast of Sweden and operated by Vattenfall (Swedish State Power), is a Westinghouse 800-MW three-loop pressurized water reactor that started commercial operation in 1975. In 1983, a task force was assigned to make a study of the steam generator (SG) tube corrosion problems, mainly stress corrosion cracking in the tubesheet area, which caused between two and three unscheduled outages each year. The task force study concluded that replacement was clearly the best of the three alternatives considered. Late in 1984, a decision was made to replace the SG in the summer of 1989. It was also decided to take advantage of existing margins in the plant by increasing the heat transfer area of the new SG. A power increase of 9% would then be possible by fairly moderate modifications of the turbine plant. The SG replacement project was on time, below budget, and much below dose budget. As a consequence of the 9% uprating, the cost of the SG replacement will be recovered after 3 to 4 yr.

Looft, H.

1990-06-01T23:59:59.000Z

363

Numerical analysis of nanoaluminum combustion in steam  

Science Journals Connector (OSTI)

Abstract The comprehensive analysis of chain mechanism development in the Al–H2O system is performed on the base of novel reaction mechanism taking into account quantum chemistry studies of potential energy surfaces of the elementary reactions with Al-containing species and estimations of rate constants of corresponding reaction channels. As well the physical properties of Al-containing species involved in the reaction mechanism and needed for the calculation of their transport coefficients are reported. The developed reaction mechanism makes it possible to describe with reasonable accuracy the experimental data on ignition temperature in Al–O2–Ar and Al–H2O systems and obtain the qualitative agreement with measured value of laminar flame speed. The two-stage regime of ignition in the Al–H2O reacting system was revealed both when the aluminum is in the liquid phase and when it comes into steam environment in the gas phase. It was shown that decreasing the ignition temperature one can increase the hydrogen yield in the combustion exhaust.

Alexander M. Starik; Pavel S. Kuleshov; Alexander S. Sharipov; Nataliya S. Titova; Chuen-Jinn Tsai

2014-01-01T23:59:59.000Z

364

Sizing sliding gate valves for steam service  

SciTech Connect

Sliding gate valves have been used in thousands of applications during the past 40 yr. While steam control is a common application for these valves, thy are also used to control other gases and liquids. The sliding gate design provides straight-through flow, which minimizes turbulence, vibration, and noise. Seats are self-cleaning and self-lapping to provide a tight, long-lasting shutoff. A correctly sized valve is essential for accurate control. Valve size should be determined by service and system requirements, not by the size of the existing pipeline. Sizing a valve on the basis of pipeline size usually results in an oversized valve and poor control. Generally, regulator size is smaller than pipe size. Whenever complete information is known (inlet pressure, outlet pressure, or pressure drop, and required flow), determine the valve flow coefficient (C{sub v}) using the equations in ANSI/ISA S75.01 or a flow sizing chart. Tables of values for various types of valves are available from manufacturers. However, when complete system requirements are not known, valve oversizing is prevented by determining the design capacity of piping downstream from the valve. The valve should not be sized to pass more flow than the maximum amount the pipe can handle at a reasonable velocity. An example calculation is given.

Bollinger, R. [Jordan Value, Cincinnati, OH (United States)

1995-11-06T23:59:59.000Z

365

Finding of No Significant Impact and Final Environmental Assessment for the Y-12 Steam Plant Life Extenstion Project - Steam Plant Replacement Subproject  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

93 93 Finding of No Significant Impact and Final Environmental Assessment for the Y-12 Steam Plant Life Extension Project - Steam Plant Replacement Subproject U.S. Department of Energy Oak Ridge Y-12 Site Office National Nuclear Security Administration August 2007 DOE/EA-1593 Finding of No Significant Impact and Final Environmental Assessment for the Y-12 Steam Plant Life Extension Project - Steam Plant Replacement Subproject U.S. Department of Energy National Nuclear Security Administration

366

Hydrogen From MillHydrogen From Mill--Scale Waste Via MetalScale Waste Via Metal--Steam ReformingSteam Reforming INTRODUCTIONINTRODUCTION  

E-Print Network (OSTI)

1 Hydrogen From MillHydrogen From Mill--Scale Waste Via MetalScale Waste Via Metal--Steam ReformingSteam Reforming INTRODUCTIONINTRODUCTION Hydrogen is considered to be the ideal energy carrying medium for fuel and supplying hydrogen to the end user in more reversible, much simpler and far safer ways. Metal-steam

Azad, Abdul-Majeed

367

Clean Firetube Boiler Waterside Heat Transfer Surfaces, Energy Tips: STEAM, Steam Tip Sheet #7 (Fact Sheet)  

SciTech Connect

A steam energy tip sheet for the Advanced Manufacturing Office (AMO). The prevention of scale formation in firetube boilers can result in substantial energy savings. Scale deposits occur when calcium, magnesium, and silica, commonly found in most water supplies, react to form a continuous layer of material on the waterside of the boiler heat exchange tubes. Scale creates a problem because it typically possesses a thermal conductivity, an order of magnitude less than the corresponding value for bare steel. Even thin layers of scale serve as an effective insulator and retard heat transfer. The result is overheating of boiler tube metal, tube failures, and loss of energy efficiency. Fuel consumption may increase by up to 5% in firetube boilers because of scale. The boilers steam production may be reduced if the firing rate cannot be increased to compensate for the decrease in combustion efficiency. Energy losses as a function of scale thickness and composition are given. Any scale in a boiler is undesirable. The best way to deal with scale is not to let it form in the first place. Prevent scale formation by: (1) Pretreating of boiler makeup water (using water softeners, demineralizers, and reverse osmosis to remove scale-forming minerals); (2) Injecting chemicals into the boiler feedwater; and (3) Adopting proper boiler blowdown practices.

Not Available

2012-04-01T23:59:59.000Z

368

Reliable steam: To cogenerate or not to cogenerate?  

SciTech Connect

Leading industrial companies and institutions are forever seeking new and better ways to reduce their expenses, reduce waste, meet environmental standards, and, in general, improve their bottom-line. One approach to achieving all of these goals is a 100 year-old concept, cogeneration. Many industrial and institutional plants need thermal energy, generally as steam, for manufacturing processes and heating. They also need electric power for motors, lighting, compressed air and air conditioning. Traditionally, these fundamental needs are met separately. Steam is produced with industrial boilers and electricity is purchased from a local utility company. However, these needs can be met at the same time with cogeneration, using the same heat source. Cogeneration is the concurrent production of electrical power and thermal energy from the same heat source. Large steam users commonly take advantage of cogeneration by using high pressure steam with a back pressure turbine to generate electricity, and extract lower pressure steam from the turbine exhaust for their process needs. This approach reduces their electric utility bills while still providing thermal energy for industrial processes. The result is also a more efficient process that uses less total heat and discharges less smoke up the stack. Newer technologies are making cogeneration opportunities available to smaller-sized thermal plants, and electric utility deregulation opportunities are causing many CEOs to seriously consider cogeneration in their manufacturing plants. Whether steam is created through cogeneration or separate generation, many opportunities exist to improve productivity in the distribution system, operation, and maintenance. These opportunities are captured by taking a systems approach, which is promoted by programs such as the Department of Energy's Steam Challenge.

Jaber, D.; Jones, T.; D'Anna, L.; Vetterick, R.

1999-07-01T23:59:59.000Z

369

Optimization of steam explosion pretreatment. Final report  

SciTech Connect

Different operating conditions are required to optimize the yield from each of the various fractions in the substrate. Xylose recovery is maximized at short cooking times whereas maximum lignin recovery requires much longer cooking times. Peak glucose yield and rumen digestibility occur at intermediate times. If process conditions are set for maximum glucose yield we have achieved a yield of 68% of the theoretical, based on an average of a dozen substrates tested. Individual results ranged from 46 to 87%. If the process is optimized for maximum total sugars (i.e. glucose plus xylose) we have obtained an average yield of 60%, with a range of 31 to 75%. With rumen microflora, the average value of the in-vitro cellulose digestibility was 82%, with a range of 41 to 90%. The optimum operating conditions for total sugars are a pressure of 500 to 550 psig with a cooking time of 40 to 50 seconds and 35% starting moisture content. Particle size is not a significant factor, nor is pre-steaming or use of a constricting die in the gun nozzle. High quality lignin can be extracted with 80% yield. The Iotech lignin is very soluble, has a low molecular weight and is reactive. The unique properties of the lignin derive from the explosion at the end of the pretreatment. A lignin formaldehyde resin has been successfully formulated and tested. It represents a high value utilization of the lignin byproduct with immediate market potential. A detailed engineering design of the process gives an estimated operating cost of $7.50/OD ton of biomass. At this low cost, the Iotech process achieves many important pretreatment goals in a single step. The substrate has been sterilized; it has been pulverized into a powder; the cellulose has been accessible; and a highly reactive lignin fraction can be recovered and utilized.

Foody, P.

1980-04-01T23:59:59.000Z

370

Air–steam gasification of biomass in fluidized bed with CO2 absorption: A kinetic model for performance prediction  

Science Journals Connector (OSTI)

Abstract Significance of decarbonized energy production in the context of a foreseeable hydrogen economy has called for the need of extensive research in biomass gasification-carbon dioxide capture technique. The feasibility of calcium oxide as a sorbent for CO2 in syngas is studied for air–steam fluidized bed (FB) gasification through a reaction kinetic modeling approach. Arrhenius rate equations are employed for primary and secondary pyrolysis, gasification and carbonation reactions. Devolatilization product yields are predicted using available correlations for FB gasification and cracking of tar is incorporated. Parametric performance analysis is carried out highlighting the significance of equivalence ratio (ER), gasification temperature, steam to biomass ratio (SBR) and sorbent to biomass ratio (SOBR). The effects of various gasifying media on H2 concentration and performance indicators such as heating value and efficiencies are analyzed. The simulation results are validated with the reported experimental results. The kinetic study reveals that air–steam gasification significantly reduces the unreacted steam but at a lower H2 concentration than steam gasification. A maximum of 53% hydrogen rich gas mixture is predicted at ER = 0.25, SBR = 1.5, SOBR = 2.7 and 1000 K. Against fossil fuel expended steam gasification, pure oxygen gasification is suggested by the study.

C.C. Sreejith; C. Muraleedharan; P. Arun

2015-01-01T23:59:59.000Z

371

Advanced method for turbine steam path deterioration and performance analysis  

SciTech Connect

The deterioration of a Steam Path affects the efficiency of a turbine. The most critical factors which affect the efficiency of steam and gas turbines are: seals wearing out, deposits, corrosion which causes material losses, solid particle erosion which leads to severe blade trailing edge material losses and others. Computer programs for design analysis of steam and gas turbines were developed. The input data are the steam or gas parameters before and after the turbine, mass flow and the blade path geometry (length, width, diameter, metal angles and clearances). The program calculates steam and gas parameters and their deviation from the design data. The blade path deterioration changes the dimensions such as blade throat, and in extreme cases also the angles. Putting the actual geometry into the program, the deviations from the design points are calculated exactly. The deviations expressed in kW as losses per stage are determined and listed. The paper briefly describes the program algorithm, sensitivity to geometry measurement errors and overall exactitude. Also, examples from field evaluations of some turbines are presented and illustrated. These tools are very helpful to the management the power plants in undertaking a correct decision concerning the date of the next major maintenance and replacement part procurement. The data gathered can be utilized for a more precise performance diagnostic during operation of the turbine.

Kubiak, J.; Angel, F. del; Carnero, A.; Campos, A.; Urquiza, G.; Marino, C.; Villegas, M. [Inst. de Investigaciones Electricas, Temixco, Morelos (Mexico). Div. Sistemas Mecanicos

1996-12-31T23:59:59.000Z

372

Downhole steam generator with improved preheating, combustion and protection features  

DOE Patents (OSTI)

An apparatus for generation of steam in a borehole for penetration into an earth formation wherein feedback preheater means are provided for the fuel and water before entering the combustor assembly. First, combustion gases are conducted from the combustion chamber to locations in proximity to the water and fuel supplies. Secondly, both hot combustion gases and steam are conducted from the borehole back to the water and fuel supply. The water used for conversion to steam is passed in a countercurrent manner through a plurality of annular water flow channels surrounding the combustion chamber. In this manner, the water is preheated, and the combustion chamber is cooled simultaneously, thereby minimizing thermal stresses and deterioration of the walls of the combustion chamber. The water is injected through slotted inlets along the combustion chamber wall to provide an unstable boundary layer and stripping of the water from the wall for efficient steam generation. Pressure responsive doors are provided at the steam outlet of the combustor assembly. The outlet doors and fluid flow functions may be controlled by a diagnostic/control module. The module is positioned in the water flow channel to maintain a relatively constant, controlled temperature.

Fox, Ronald L. (Albuquerque, NM)

1983-01-01T23:59:59.000Z

373

Effect of steam partial pressure on gasification rate and gas composition of product gas from catalytic steam gasification of HyperCoal  

SciTech Connect

HyperCoal was produced from coal by a solvent extraction method. The effect of the partial pressure of steam on the gasification rate and gas composition at temperatures of 600, 650, 700, and 750{sup o}C was examined. The gasification rate decreased with decreasing steam partial pressure. The reaction order with respect to steam partial pressure was between 0.2 and 0.5. The activation energy for the K{sub 2}CO{sub 3}-catalyzed HyperCoal gasification was independent of the steam partial pressure and was about 108 kJ/mol. The gas composition changed with steam partial pressure and H{sub 2} and CO{sub 2} decreased and CO increased with decreasing steam partial pressure. By changing the partial pressure of the steam, the H{sub 2}/CO ratio of the synthesis gas can be controlled. 18 refs., 7 figs., 2 tabs.

Atul Sharma; Ikuo Saito; Toshimasa Takanohashi [National Institute of Advanced Industrial Science and Technology, Ibaraki (Japan). Advanced Fuel Group

2009-09-15T23:59:59.000Z

374

A new profile control design based on quantitative identification of steam breakthrough channel in heavy oil reservoirs  

Science Journals Connector (OSTI)

Steam breakthrough has a great negative influence on the development of steam flooding in heavy oil reservoirs. In this article, a new profile control design based on quantitative identification of steam break...

Chuan Lu; Huiqing Liu; Zhanxi Pang…

2014-03-01T23:59:59.000Z

375

Industrialization and Urbanization: Did the Steam Engine Contribute to the Growth of Cities in the United States?  

E-Print Network (OSTI)

in the Century of the Steam Engine, Vol. 1. University Pressat Work: The Corliss Steam Engine in the Late-Nineteenth-and Adoption of the Steam Engine in American Manufacturing,”

Kim, Sukkoo

2004-01-01T23:59:59.000Z

376

Energy Savings Accomplished by Replacing Steam Ejectors with Electric Driven Vacuum Pumps in Crude Distillation Vacuum Towers  

E-Print Network (OSTI)

The low cost of steam combined with the maintenance free operation of steam ejectors has assured their unquestioned use in providing the necessary vacuum for crude distillation vacuum towers. However, the cost of steam production has risen...

Nelson, R. E.

1982-01-01T23:59:59.000Z

377

Steam reforming of carbo-metallic oils  

SciTech Connect

A process is disclosed for economically converting carbo-metallic oils to liquid fuel products by bringing a converter feed containing 650/sup 0/ F. + material characterized by a carbon residue on pyrolysis of at least about 1 and by containing at least about 4 ppm of nickel equivalents of heavy metals, including nickel, into contact with a particulate cracking catalyst in a progressive flow type reactor having an elongated conversion zone. The suspension of catalyst and feed in the reactor has a vapor residence time in the range of about 0.5 to about 10 seconds, a temperature of about 900/sup 0/ F. to about 1400/sup 0/ F. and a pressure of about 10 to about 50 pounds per square inch absolute for causing a conversion per pass in the range of about 50 to about 90 percent while depositing nickel on the catalyst and coke on the catalyst in amounts in the range of about 0.3 to about 3 percent by weight. The coke-laden catalyst is separated from the resulting stream of hydrocarbons and regenerated by combustion of the coke with oxygen, the regenerated catalyst being characterized by deposited nickel in at least a partially oxidized state and a level of carbon on catalyst of about 0.25 percent by weight or less. The regenerated catalyst is contacted with a reducing gas under reducing conditions sufficient to reduce at least a portion of the oxidized nickel deposits to a reduced state and the regenerated catalyst with reduced nickel deposits is recycled to the conversion zone for contact with fresh feed. Water is also introduced into the reactor conversion zone and the amount of water and the amount of reduced nickel on the recycled catalyst are sufficient to provide a steam reforming reaction so that hydrogen deficient components of the feed are converted to products having higher hydrogen to carbon ratios and the amount of feed converted to coke is reduced. The amount of deposited nickel on catalyst is preferably in the range from about 2,000 to about 20,000 ppm.

Myers, G.D.; Hettinger, W.P. Jr.; Kovach, S.M.; Zandona, O.J.

1984-02-21T23:59:59.000Z

378

EA-1178: 300 Area Steam Plant Replacement, Hanford Site, Richland,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

78: 300 Area Steam Plant Replacement, Hanford Site, Richland, 78: 300 Area Steam Plant Replacement, Hanford Site, Richland, Washington EA-1178: 300 Area Steam Plant Replacement, Hanford Site, Richland, Washington SUMMARY This EA evaluates the environmental impacts for a proposed energy conservation measure for a number of buildings in the 300 Area of the U.S. Department of Energy Hanford Site. The proposed action includes replacing the centralized heating system with heating units for individual buildings or groups of buildings, constructing new natural gas pipelines to provide a source for many of these units and constructing a central control building to operate and maintain the system. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD March 12, 1997 EA-1178: Finding of No Significant Impact

379

Graphite dust resuspension in an HTR-10 steam generator  

Science Journals Connector (OSTI)

Abstract Graphite dust has an important effect on the safety of high-temperature gas-cooled reactors (HTR). The flow field in the steam generator was studied by the computational fluid dynamics (CFD) method, with the results indicating that the friction velocity in the windward and the leeward of the heat transfer tubes is relatively low and is higher at the sides. Further analysis of the resuspension of graphite dust indicates that the resuspension fraction reaches nearly zero for particles with a diameter less than 1 ?m, whereas it will increases as the helium velocity in the steam generator increases for particle size larger than 1 ?m. Moreover, the resuspension fraction increases as the particle size increases. The results also indicate that resuspension of the particles with sizes larger than 1 ?m exhibited obvious differences in different parts of the steam generator.

Wei Peng; Tianqi Zhang; Yanan Zhen; Suyuan Yu

2014-01-01T23:59:59.000Z

380

Warming systems prolong steam-turbine life, accelerate startup  

SciTech Connect

Cycling capability is one of the top challenges in the design, operation, and maintenance of today's powerplants. This article describes how permanent warming systems can be a powerful ally in meeting this challenge, particularly for aging steam turbines. The warming system is typically used to hold steam-turbine shell temperatures during short shutdowns (up to about three days), or to pre-warm shells after longer shut-downs. Permanent warming systems elevate metal temperature above 500 F, distinguishing them from heat tracing systems that operate at much lower temperatures for freeze protection or viscosity control. Permanent warming systems can reduced steam-turbine damage during both startup heating and off-line cooling, and can reduce plant startup time.

Swanekamp, R.

1994-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "fossil steam steam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Steam driven centrifugal pump for low cost boiler feed service  

SciTech Connect

This article describes a steam driven centrifugal pump for boiler feed-water and other high pressure water applications, which was awarded Top Honors in the special pumps category of the 1982 Chemical processing Vaaler competition, because the simple design with turbine, pump and controls combined in an integral unit provides high operating efficiency and reliable performance with minimal maintenance. Single source responsibility for all components when the pump may have to be serviced is another advantage. These features meet the requirements for boiler feed pumps that are critical to maintaining a consistent steam supply in a process plant where downtime can be extremely expensive. The annual cost to operate the pump for 8000 hours is about $100,000, if electricity costs 5 cents/kwh. These pumps can be run for about $30,000 on steam, if natural gas costs $4.00/mcf. Cost savings are $70,000 annually.

Not Available

1982-11-01T23:59:59.000Z

382

Steam injection method and apparatus for recovery of oil  

SciTech Connect

A method and apparatus for recovering oil from an oil bearing formation utilizing steam injected into the formation. A working fluid is heated at the surface to produce a reversible, chemical reaction, particularly a reforming reaction in a reforming/methanation reaction cycle. The products of the reforming reaction are transported at near ambient temperatures to a downhole heat exchanger through which water is circulated. There a catalyst triggers the methanation reaction, liberating heat energy to convert the water to steam. The products of the methanation reaction are recirculated to the surface to repeat the cycle. In one embodiment the products of the methanation reaction are injected into the formation along with the steam. Various catalysts, and various systems for heating the working fluid are disclosed.

Meeks, T.; Rhoades, C.A.

1983-02-08T23:59:59.000Z

383

Geothermal Steam Act of 1970 | Open Energy Information  

Open Energy Info (EERE)

Steam Act of 1970 Steam Act of 1970 Jump to: navigation, search To encourage the development of geothermal energy, the United States government passed the Geothermal Steam Act in 1970 allowing the leasing of land containing geothermal resources; however, Congress excluded any lands within the National Park System, U.S. Fish and Wildlife Service lands, and any other lands prohibited from leasing by the Mineral Leasing Act of 1920. The Bureau of Land Management (BLM) administrates the Act, issuing distinct authorizations for the exploration, development, production, and closeout of a geothermal resource. When a lessee first receives a lease, they have ten years to reach a certain level of development with the land; upon demonstrating such development, BLM extends their lease to 40 years, after

384

Superalloys for ultra supercritical steam turbines--oxidation behavior  

SciTech Connect

Goals of the U.S. Department of Energy’s Advanced Power Systems Initiatives include power generation from coal at 60% efficiency, which requires steam conditions of up to 760 °C and 340 atm, so called ultra-supercritical (USC) steam conditions. One of the important materials performance considerations is steam-side oxidation resistance. Evaporation of protective chromia scales is expected to be a primary corrosion mechanism under USC conditions. A methodology to calculate Cr evaporation rates from chromia scales with cylindrical geometries was developed that allows for the effects of CrO2(OH)2 saturation within the gas phase. This approach was combined with Cr diffusion calculations within the alloy (with a constant flux of Cr leaving the alloy from evaporation) to predict Cr concentration profiles as a function of exposure time and to predict the time until the alloy surface concentration of Cr reaches zero. This time is a rough prediction of the time until breakaway oxidation. A hypothetical superheater tube, steam pipe, and high pressure turbine steam path was examined. At the highest temperatures and pressures, the time until breakaway oxidation was predicted to be quite short for the turbine blade, and of concern within the steam pipe and the higher temperature portions of the superheater tube. The predicted time until breakaway oxidation increases dramatically with decreases in temperature and total pressure. Possible mitigation techniques were discussed, including those used in solid oxide fuel cell metallic interconnects (lowering the activity of Cr in the oxide scale by adding Mn to the alloy), and thermal barrier coating use on high pressure turbine blades for both erosion and chromia evaporation protection.

Holcomb, G.R.

2008-09-01T23:59:59.000Z

385

A simplified model of decontamination by BWR steam suppression pools  

SciTech Connect

Phenomena that can decontaminate aerosol-laden gases sparging through steam suppression pools of boiling water reactors during reactor accidents are described. Uncertainties in aerosol properties, aerosol behavior within gas bubbles, and bubble behavior in plumes affect predictions of decontamination by steam suppression pools. Uncertainties in the boundary and initial conditions that are dictated by the progression of severe reactor accidents and that will affect predictions of decontamination by steam suppression pools are discussed. Ten parameters that characterize boundary and initial condition uncertainties, nine parameters that characterize aerosol property and behavior uncertainties, and eleven parameters that characterize uncertainties in the behavior of bubbles in steam suppression pools are identified. Ranges for the values of these parameters and subjective probability distributions for parametric values within the ranges are defined. These uncertain parameters are used in Monte Carlo uncertainty analyses to develop uncertainty distributions for the decontamination that can be achieved by steam suppression pools and the size distribution of aerosols that do emerge from such pools. A simplified model of decontamination by steam suppression pools is developed by correlating features of the uncertainty distributions for total decontamination factor, DF(total), mean size of emerging aerosol particles, d{sub p}, and the standard deviation of the emerging aerosol size distribution, {sigma}, with pool depth, H. Correlations of the median values of the uncertainty distributions are suggested as the best estimate of decontamination by suppression pools. Correlations of the 10 percentile and 90 percentile values of the uncertainty distributions characterize the uncertainty in the best estimates. 295 refs., 121 figs., 113 tabs.

Powers, D.A.

1997-05-01T23:59:59.000Z

386

List of Steam-system upgrades Incentives | Open Energy Information  

Open Energy Info (EERE)

upgrades Incentives upgrades Incentives Jump to: navigation, search The following contains the list of 100 Steam-system upgrades Incentives. CSV (rows 1 - 100) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active AlabamaSAVES Revolving Loan Program (Alabama) State Loan Program Alabama Commercial Industrial Institutional Building Insulation Doors Energy Mgmt. Systems/Building Controls Lighting Lighting Controls/Sensors Steam-system upgrades Water Heaters Windows Biodiesel Biomass CHP/Cogeneration Ethanol Fuel Cells using Renewable Fuels Geothermal Electric Hydroelectric energy Landfill Gas Photovoltaics Renewable Fuels Solar Water Heat Commercial Refrigeration Equipment Natural Gas Yes Ameren Missouri (Gas) - Business Energy Efficiency Program (Missouri) Utility Rebate Program Missouri Commercial

387

The nuclear heated steam reformer — Design and semitechnical operating experiences  

Science Journals Connector (OSTI)

Good operating experiences of the EVA I- and EVA II-plant have been described. Therin the comparison of the different catalyst concepts has been given. Further the behaviour of the bundle of EVA II plant by isolation of individual reformer tubes as well as the performance of the bundle under transient conditions have been explained. Different design concepts for a nuclear heated steam reformer based on the concentric tubes and baffles have been given. Main points of studies are constructional details, thermohydraulic of the bundle and stress analysis. It can be shown that the present standard of knowledge allows the application of the steam reformer for coal refinement with nuclear heat.

J. Singh; H.F. Niessen; R. Harth; H. Fedders; H. Reutler; W. Panknin; W.D. Müller; H.G. Harms

1984-01-01T23:59:59.000Z

388

High temperature gas cooled reactor steam-methane reformer design  

SciTech Connect

The concept of the long distance transportation of process heat energy from a High Temperature Gas Cooled Reactor (HTGR) heat source, based on the steam-methane reforming reaction, is being evaluated by the Department of Energy as an energy source/application for use early in the 21st century. This paper summaries the design of a helium heated steam reformer utilized in conjunction with an intermediate loop, 850/degree/C reactor outlet temperature, HTGR process heat plant concept. This paper also discusses various design considerations leading to the mechanical design features, the thermochemical performance, the materials selection and the structural design analysis. 12 refs.

Impellezzeri, J.R.; Drendel, D.B.; Odegaard, T.K.

1981-01-01T23:59:59.000Z

389

A Comparative Study between Co and Rh for Steam Reforming of...  

NLE Websites -- All DOE Office Websites (Extended Search)

between Co and Rh for Steam Reforming of Ethanol. A Comparative Study between Co and Rh for Steam Reforming of Ethanol. Abstract: Rh and Co-based catalyst performance was compared...

390

Catalytic roles of Co0 and Co2+ during steam reforming of ethanol...  

NLE Websites -- All DOE Office Websites (Extended Search)

roles of Co0 and Co2+ during steam reforming of ethanol on CoMgO catalysts . Catalytic roles of Co0 and Co2+ during steam reforming of ethanol on CoMgO catalysts . Abstract:...

391

Microsoft Word - Seattle Steam Draft EA for concurrence-6-16...  

NLE Websites -- All DOE Office Websites (Extended Search)

The exhaust gas from the turbine would be routed to a once-through (heat recovery) steam generator, which would be equipped with natural gas-fired duct burners to increase steam...

392

FLUIDIZABLE CATALYSTS FOR PRODUCING HYDROGEN BY STEAM REFORMING BIOMASS PYROLYSIS LIQUIDS  

E-Print Network (OSTI)

FLUIDIZABLE CATALYSTS FOR PRODUCING HYDROGEN BY STEAM REFORMING BIOMASS PYROLYSIS LIQUIDS Kimberly established that biomass pyrolysis oil could be steam-reformed to generate hydrogen using non pyrolysis oil could be almost stoichiometrically converted to hydrogen. However, process performance

393

Experimental Research on Low-Temperature Methane Steam Reforming Technology in a Chemically Recuperated Gas Turbine  

Science Journals Connector (OSTI)

Under the operating parameters of a chemically recuperated gas turbine (CRGT), the low-temperature methane steam reforming test bench is designed and built; systematic experimental studies about fuel steam reforming are conducted. Four different reforming ...

Qian Liu; Hongtao Zheng

2014-09-24T23:59:59.000Z

394

Revitalization of a Steam Lab to Meet Energy Challenge and Strengthen Mechanical Engineering Education  

E-Print Network (OSTI)

An 'old' and 'obsolete' boiler system was revitalized and an enhanced Steam Lab was established based on that system. In this project, modifications and improvements were made to the facility, which contains a 150 BHP boiler, condenser, steam...

Kozman, T.; Simon, W. E.; Guidry, J.; Liu, Y.

2011-01-01T23:59:59.000Z

395

E-Print Network 3.0 - analyzing steam generator Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

the early develop- ment of high-pressure steam... A History of the Growth of the Steam Engine (1883) Hero of Alexandria, who lived around 60 AD, con- ducted Source: Leveson,...

396

E-Print Network 3.0 - area steam plants Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Renewables 79 copyright Summary: Figure 1: 50 kW prototype solar power plant using Steam Engine Induction Generator Paraboloid dish... Modelling of a 400m2 steam based...

397

Steam System Opportunity Assessment for the Pulp and Paper, Chemical Manufacturing, and Petroleum Refining Industries  

Energy.gov (U.S. Department of Energy (DOE))

This report assesses steam generation and use in the pulp and paper, chemical manufacturing, and the petroleum refining industries. The report also estimates the energy savings potential available from implementing steam system performance and efficiency improvements.

398

The Passenger Steamboat Phoenix: An Archaeological Study of Early Steam Propulsion in North America  

E-Print Network (OSTI)

The advent of steam contributed heavily to the economic transformation of early America, facilitating trade through the transportation of goods along the country’s lakes, rivers, and canals. Serious experimentation with steam navigation began...

Schwarz, George 1977-

2012-08-31T23:59:59.000Z

399

From Basic Control to Optimized Systems-Applying Digital Control Systems to Steam Boilers  

E-Print Network (OSTI)

This presentation examines the application of Distributed Digital Controls in order to review the application of this recent control technology towards Steam Boilers in a step-by-step manner. The main purpose of a steam generating boiler...

Hockenbury, W. D.

1982-01-01T23:59:59.000Z

400

Energy Comparison Vacuum Producing Equipment - Mechanical Vacuum Pumps vs. Steam Ejectors  

E-Print Network (OSTI)

vacuum on condensers, process reactors, or equipment and processes requiring subatmospheric conditions, has been to utilize steam ejectors. Due to the inherent operating inefficiency and wastefulness of the steam ejector, coupled with the rapidly...

Foisy, E. C.; Munkittrick, M. T.

1982-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fossil steam steam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Flash High-Pressure Condensate to Regenerate Low-Pressure Steam  

SciTech Connect

This revised ITP tip sheet on regenerating low-pressure steam provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

Not Available

2006-01-01T23:59:59.000Z

402

Steam turbines of the Ural Turbine Works for advanced projects of combined-cycle plants  

Science Journals Connector (OSTI)

We describe the design features, basic thermal circuits, and efficiency of steam turbines developed on the basis of serially produced steam turbines of Ural Turbine Works and used as part of combined-cycle plants...

G. D. Barinberg; A. E. Valamin; A. Yu. Kultyshev

2009-09-01T23:59:59.000Z

403

New draft projects of steam turbines for combined-cycle plants  

Science Journals Connector (OSTI)

We describe the design features, basic thermal circuits, and efficiency of steam turbines developed on the basis of serially produced steam turbines at the Ural Turbine Works and intended for use as part of combined

G. D. Barinberg; A. E. Valamin; A. Yu. Kultyshev; A. A. Ivanovskii…

2011-01-01T23:59:59.000Z

404

Modelling of a Coil Steam Generator for Concentrated Solar Power Applications.  

E-Print Network (OSTI)

??The project investigates a new design for a CSP plant steam generation system, the Coil Steam Generator(CSG). This system allows faster start-ups and therefore higher… (more)

PELAGOTTI, LEONARDO

2014-01-01T23:59:59.000Z

405

Energy Management of Steam Distribution Systems Through Energy Audits and Computerized Reporting Programs  

E-Print Network (OSTI)

ENERGY KANAGEKBNT OF STEAM DISTRIBUTION SYSTEMS THROUGH BNKRGY AUDITS AND COItPlTl'ERIZED REPORTING PROGRAtIS NORMAN J. RIVERS and HARTIN MANDZUK Armstrong Machine Works, Inc. Three Rivers, Michigan ABSTRACT This presentation will highlight... the economic losses associated with steam distribution systems and how to establish good energy management programs to reduce energy cost by 15 to 25 percent. Recognizing energy losses in steam systems involves I 1. Steam lost through defective valves...

Rivers, N.; Mandzuk, N.

406

The apparent “super-Carnot” efficiency of hurricanes: Nature’s steam engine versus the steam locomotive  

Science Journals Connector (OSTI)

The thermodynamics of the hurricane—Nature’s steam engine—presents surprising contrasts with that of the steam locomotive. The hurricane rejects not only its waste heat at the lowest available temperature (as all heat engines must do to maximize efficiency) but also its work (that is the kinetic energy of its winds) via frictional dissipation at the highest available temperature. We show how the hurricane’s “super-Carnot” efficiency is consistent with the laws of thermodynamics. We also show that even standard heat engines can achieve “super-Carnot” efficiency albeit via a different mechanism and to a far inferior degree than the hurricane.

Jack Denur

2011-01-01T23:59:59.000Z

407

"Table A49. Average Prices of Purchased Electricity, Steam, and Natural Gas"  

U.S. Energy Information Administration (EIA) Indexed Site

9. Average Prices of Purchased Electricity, Steam, and Natural Gas" 9. Average Prices of Purchased Electricity, Steam, and Natural Gas" " by Type of Supplier, Census Region, and Economic Characteristics of the" " Establishment, 1991" " (Estimates in Dollars per Physical Units)" ," Electricity",," Steam",," Natural Gas" ," (Million kWh)",," (Billion Btu)",," (1000 cu ft)" ,"-","-----------","-","-----------","-","-","-","RSE" " ","Utility","Nonutility","Utility","Nonutility","Utility","Transmission","Other","Row"

408

Table A23. Quantity of Purchased Electricity, Steam, and Natural Gas by Type  

U.S. Energy Information Administration (EIA) Indexed Site

3. Quantity of Purchased Electricity, Steam, and Natural Gas by Type" 3. Quantity of Purchased Electricity, Steam, and Natural Gas by Type" " of Supplier, Census Region, Industry Group, and Selected Industries, 1991" " (Estimates in Btu or Physical Units)" ,," Electricity",," Steam",," Natural Gas" ,," (Million kWh)",," (Billion Btu)",," (Billion cu ft)" ,," -------------------------",," -------------------------",," ---------------------------------------",,,"RSE" "SIC",,"Utility","Nonutility","Utility","Nonutility","Utility","Transmission","Other","Row"

409

Proving Safety Properties of the Steam Boiler Controller G. Leeb, N. Lynch Page 1 of 37  

E-Print Network (OSTI)

Proving Safety Properties of the Steam Boiler Controller G. Leeb, N. Lynch Page 1 of 37 Proving Safety Properties of the Steam Boiler Controller Formal Methods for Industrial Applications: A Case Study system consisting of a continuous steam boiler and a discrete controller. Our model uses the Lynch

Lynch, Nancy

410

An Algebraic Speci cation of the Steam-Boiler Control System  

E-Print Network (OSTI)

An Algebraic Speci#12;cation of the Steam-Boiler Control System Michel Bidoit 1 , Claude Chevenier describe how to derive an algebraic speci#12;cation of the Steam-Boiler Control System starting from to specify the detection of the steam-boiler fail- ures. Finally we discuss validation and veri#12;cation

Bidoit, Michel

411

Proving Safety Properties of the Steam Boiler Controller G. Leeb, N. Lynch Page 1 of 20  

E-Print Network (OSTI)

Proving Safety Properties of the Steam Boiler Controller G. Leeb, N. Lynch Page 1 of 20 Proving Safety Properties of the Steam Boiler Controller Formal Methods for Industrial Applications: A Case Study system consisting of a continuous steam boiler and a discrete controller. Our model uses the Lynch

Lynch, Nancy

412

Assertional Specification and Verification using PVS of the Steam Boiler Control System  

E-Print Network (OSTI)

Assertional Specification and Verification using PVS of the Steam Boiler Control System Jan Vitt 1 of the steam boiler control system has been derived using a formal method based on assumption/commitment pairs Introduction The steam boiler control system, as described in chapter AS of this book, has been designed

Hooman, Jozef

413

Re ning Abstract Machine Speci cations of the Steam Boiler Control to Well Documented  

E-Print Network (OSTI)

Re ning Abstract Machine Speci cations of the Steam Boiler Control to Well Documented Executable the steam boiler control speci cation problem to il- lustrate how the evolving algebra approach to the speci, in June 1995, to control the Karlsruhe steam boiler simulator satisfactorily. The abstract machines

Börger, Egon

414

Bond Graph Model of a Vertical U-Tube Steam Condenser Coupled with a Heat Exchanger  

E-Print Network (OSTI)

level. Steam condensers are integral part of any nuclear and thermal power plant utilising steam A simulation model for a vertical U-tube steam condenser in which the condensate is stored at the bottom well and thus the bottom well acts as a heat exchanger. The storage of hydraulic and thermal energies

Paris-Sud XI, Université de

415

Water Vapor and Mechanical Work: A Comparison of Carnot and Steam Cycles OLIVIER PAULUIS  

E-Print Network (OSTI)

by the corresponding Carnot cycle. The Carnot and steam cycles can be combined into a mixed cycle that is forcedWater Vapor and Mechanical Work: A Comparison of Carnot and Steam Cycles OLIVIER PAULUIS Center in the atmosphere is discussed here by comparing two idealized heat engines: the Carnot cycle and the steam cycle

Pauluis, Olivier M.

416

Experimental investigation of burning velocities of ultra-wet methane-air-steam mixtures  

E-Print Network (OSTI)

Experimental investigation of burning velocities of ultra-wet methane-air-steam mixtures Eric Abstract Global burning velocities of methane-air-steam mixtures are measured on prismatic laminar Bunsen flames and lifted turbulent V-flames for various preheating temperatures, equivalence ratios and steam

Paris-Sud XI, Université de

417

Steam generators two phase flows numerical simulation with liquid and gas momentum equations  

E-Print Network (OSTI)

Steam generators two phase flows numerical simulation with liquid and gas momentum equations M Abstract This work takes place in steam generators flow studies and we consider here steady state three words: Steam Generator, Two-phase Flow, Finite element Email address: Marc.Grandotto@cea.fr (M

Paris-Sud XI, Université de

418

Production of D-lactic acid from sugarcane bagasse using steam-explosion  

Science Journals Connector (OSTI)

This study investigated the production of D-lactic acid from unutilized sugarcane bagasse using steam explosion pretreatment. The optimal steam pressure for a steaming time of 5 min was determined. By enzymatic saccharification using Meicellase, the highest recovery of glucose from raw bagasse, 73.7%, was obtained at a steam pressure of 20 atm. For residue washed with water after steam explosion, the glucose recovery increased up to 94.9% at a steam pressure of 20 atm. These results showed that washing with water is effective in removing enzymatic reaction inhibitors. After steam pretreatment (steam pressure of 20 atm), D-lactic acid was produced by Lactobacillus delbrueckii NBRC 3534 from the enzymatic hydrolyzate of steam-exploded bagasse and washed residue. The conversion rate of D-lactic acid obtained from the initial glucose concentration was 66.6% for the hydrolyzate derived from steam-exploded bagasse and 90.0% for that derived from the washed residue after steam explosion. These results also demonstrated that the hydrolyzate of steam-exploded bagasse (without washing with water) contains fermentation inhibitors and washing with water can remove them.

Chizuru Sasaki; Ryosuke Okumura; Ai Asakawa; Chikako Asada; Yoshitoshi Nakamura

2012-01-01T23:59:59.000Z

419

Steam Explosions, Earthquakes, and Volcanic Eruptions--What's in Yellowstone's Future?  

E-Print Network (OSTI)

Steam Explosions, Earthquakes, and Volcanic Eruptions-- What's in Yellowstone's Future? U. In the background, steam vigorously rises from the hot Each year, millions of visitors come to admire the hot, such as geysers. Steam and hot water carry huge quantities of thermal en- ergy to the surface from the magma cham

Torgersen, Christian

420

Studies on Steam Sterilization and the Effects of Air in the Autoclave  

Science Journals Connector (OSTI)

research-article Articles Studies on Steam Sterilization and the Effects of Air in...Hospital, Los Angeles, Cal. Studies on Steam Sterilization and the Effects of Air in...Angeles, Cal. | Journal Article STUDIES ON STEAM STERILIZATION AND THE EFFECTS OF AIR IN...

Anson Hoyt; Albert L. Chaney; Korine Cavell

1938-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "fossil steam steam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Annual Steam System Maintenance Outage (2014) Beginning on Sunday, June 8th  

E-Print Network (OSTI)

Annual Steam System Maintenance Outage (2014) Beginning on Sunday, June 8th at 12:00pm (Noon), the Central Utility Plant (CUP), which supplies steam service to over 100 buildings on the Newark campus, will be shut down for the annual Steam System Maintenance Outage. This effort is necessary each year to ensure

Firestone, Jeremy

422

A Look At Steam Usage in William's Athletic Facilities Patrick Morrissey  

E-Print Network (OSTI)

A Look At Steam Usage in William's Athletic Facilities Patrick Morrissey Geosciences 206 Final Project Professor Dethier May 18, 2010 #12;Introduction: This paper will examine steam usage trends that Towne FH and Lansing Chapman both draw their steam from an enclosed loop heating system.23

Aalberts, Daniel P.

423

Determination of Steam-Volatile Organic Acids in Fermentation Media by Gas-Liquid Chromatography  

Science Journals Connector (OSTI)

...research-article Articles Determination of Steam-Volatile Organic Acids in Fermentation...utility in the separation and quantitation of steam-volatile organic acids commonly produced...column of Carbowax 20 M + H3PO4 separated steam-volatile organic acids completely. The...

L. V. Packett; R. W. McCune

1965-01-01T23:59:59.000Z

424

Towards model-based control of a steam Rankine process for engine waste heat recovery  

E-Print Network (OSTI)

Towards model-based control of a steam Rankine process for engine waste heat recovery Johan Peralez steam process for exhaust gas heat recovery from a spark-ignition engine, focusing in particular results on a steam process for SI engines, [3] on generic control issues and [4] which provides a comp

Paris-Sud XI, Université de

425

DIRECT STEAM GENERATION USING THE SG4 500m2 PARABOLOIDAL DISH CONCENTRATOR  

E-Print Network (OSTI)

conveyed the steam to our 50 kWe steam turbine; the new dish is oversized for the current engine, so someDIRECT STEAM GENERATION USING THE SG4 500m2 PARABOLOIDAL DISH CONCENTRATOR Greg Burgess 1 , Keith School of Engineering (RSE), Australian National University (ANU), Canberra, ACT, 0200, Australia, Phone

426

Steam BestPractice Resources and Tools: "Old" News is "New" News!  

E-Print Network (OSTI)

system efficiency. The Steam BestPractice effort, a part of the DOE-OIT effort, has identified and documented an extensive group of steam system resources and tools to assist steam system users to improve their systems. This paper describes the "new" news...

Wright, A.; Hart, F.; Russell, C.; Jaber, D.

427

Results From the Industrial Assessment Center (IAC) Steam Tool Benchmarking Support Project  

E-Print Network (OSTI)

developed is the "Steam System Scoping Tool." In the summer of 2001, six of the DOE Industrial Assessment Centers (IACs) completed a project to provide data on the usefulness of the Steam System Scoping Tool. These six IACs performed eighteen plant steam...

Wright, A. L.; Bassett, K.; Eckerlin, H.; Ganji, A.; Hengeveld, D.; Jendrucko, R.; Kosanovic, D.; Turner, W.

428

Further experimental studies of steam-propane injection to enhance recovery of Morichal oil  

E-Print Network (OSTI)

In 1998-1999, experimental research was conducted by Goite at Texas A&M University into steam-propane injection to enhance oil recovery from the Morichal field, Venezuela. Goite's results showed that, compared with steam injection alone, steam-propane...

Ferguson,Mark Anthony

2012-06-07T23:59:59.000Z

429

SSAT Module Slide 1: Hello, and welcome to this introduction to the Steam System Assessment Tool.  

E-Print Network (OSTI)

, and welcome to this introduction to the Steam System Assessment Tool. Slide 2: Technology Delivery, and software tools. This tool, the Steam System Assessment Tool, also known as `the Assessment Tool', or its your energy reduction goals. Slide 3: Now, we will show you the Steam System Assessment Tool

Oak Ridge National Laboratory

430

Opportunities and IssuesBestPractices Technical Brief Steam Pressure Reduction: Opportunities and Issues  

E-Print Network (OSTI)

Steam generation systems are found in industry and in the commercial and institutional sectors. Some of these plants employ large watertube boilers to produce saturated steam at pressures of 250 pounds per square inch (psig) or lower. They distribute steam for use in process applications, building heating, humidification, domestic hot water, sterilization autoclaves, and air makeup coils.

A Bestpractices

431

Electric power generating plant having direct-coupled steam and compressed-air cycles  

DOE Patents (OSTI)

An electric power generating plant is provided with a Compressed Air Energy Storage (CAES) system which is directly coupled to the steam cycle of the generating plant. The CAES system is charged by the steam boiler during off peak hours, and drives a separate generator during peak load hours. The steam boiler load is thereby levelized throughout an operating day.

Drost, M.K.

1981-01-07T23:59:59.000Z

432

Electric power generating plant having direct coupled steam and compressed air cycles  

DOE Patents (OSTI)

An electric power generating plant is provided with a Compressed Air Energy Storage (CAES) system which is directly coupled to the steam cycle of the generating plant. The CAES system is charged by the steam boiler during off peak hours, and drives a separate generator during peak load hours. The steam boiler load is thereby levelized throughout an operating day.

Drost, Monte K. (Richland, WA)

1982-01-01T23:59:59.000Z

433

Table A27. Quantity of Purchased Electricity, Steam, and Natural Gas by Type  

U.S. Energy Information Administration (EIA) Indexed Site

Quantity of Purchased Electricity, Steam, and Natural Gas by Type" Quantity of Purchased Electricity, Steam, and Natural Gas by Type" " of Supplier, Census Region, and Economic Characteristics of the Establishment," 1991 " (Estimates in Btu or Physical Units)" " "," Electricity",," Steam",," Natural Gas" ," (Million (kWh)",," (Billion Btu)",," (Billion cu ft)" ," -----------------------",," -----------------------",," ------------------------------------",,,"RSE" ,"Utility","Nonutility","Utility","Nonutility","Utility","Transmission","Other","Row"

434

Enhanced Oil Recovery through Steam Assisted Gravity Drainage January 22, 2014  

E-Print Network (OSTI)

Enhanced Oil Recovery through Steam Assisted Gravity Drainage January 22, 2014 A Comparative Study Of Continuous And Cyclic Steam Injection With Trapping Of Oil Phase Muhammad Adil Javed Summary of Thesis Enhanced oil recovery (EOR) through steam-assisted gravity drainage (SAGD) has become an important in

Cirpka, Olaf Arie

435

Steam Reforming of Methane Utilizing Solar Heat  

Science Journals Connector (OSTI)

There is a worldwide interest to use solar energy to save or substitute fossil material, which is taken as fuel or chemical feedstock in present technologies. Among the possibilities, which are studied in deta...

W. D. Müller

1987-01-01T23:59:59.000Z

436

Downhole steam generator with improved preheating, combustion, and protection features  

DOE Patents (OSTI)

For tertiary oil recovery, a downhole steam generator is designed which provides for efficient counterflow cooling of the combustion chamber walls and preheating of the fuel and water. Pressure-responsive doors are provided for closing and opening the outlet in response to flameout, thereby preventing flooding of the combustion chamber. (DLC)

Fox, R.L.

1981-01-07T23:59:59.000Z

437

Effect of surface treatments on radiation buildup in steam generators  

SciTech Connect

A study of the effect of surface preparation on the radiation buildup of steam generator materials of construction was conducted. The tests consisted of exposing treated manway seal plates to primary reactor coolant during the second through the fifth fuel cycle of the Chinon B1 pressurized water reactor. The pretreatments included: mechanical polishing, electropolishing (either on the as received surface or on a surface which had been previously mechanically polished), and passivation via the RCT (laboratory) process or the Framatome (in situ) process. Radioactivity buildup was determined at the end of each fuel cycle. A selected number of the seal plates were removed from the steam generators after each exposure cycle for destructive examinations. The electropolished surfaces exhibited a significantly lower radioactive buildup rate; an average factor of five less buildup compared to an as-received surface. Passivation of the electropolished surface, especially via the RCT process, reduced the buildup rate still further by a factor of two over the electropolished-only surface. Examination of the surfaces by profilometry, scanning electron microscopy, etc., after exposure indicated no detrimental effects on the surface characteristics attributable to the surface treatments. A program has now been instituted to electropolish the steam generator channel heads of all new reactors in France, as well as the steam generators intended for replacement in existing plants. 1 ref., 5 figs., 10 tabs.

Not Available

1991-11-01T23:59:59.000Z

438

Downhole steam generator having a downhole oxidant compressor  

DOE Patents (OSTI)

Apparatus and method for generation of steam in a borehole for penetration into an earth formation wherein a downhole oxidant compressor is used to compress relatively low pressure (atmospheric) oxidant, such as air, to a relatively high pressure prior to mixing with fuel for combustion. The multi-stage compressor receives motive power through a shaft driven by a gas turbine powered by the hot expanding combustion gases. The main flow of compressed oxidant passes through a velocity increasing nozzle formed by a reduced central section of the compressor housing. An oxidant bypass feedpipe leading to peripheral oxidant injection nozzles of the combustion chamber are also provided. The downhole compressor allows effective steam generation in deep wells without need for high pressure surface compressors. Feedback preheater means are provided for preheating fuel in a preheat chamber. Preheating of the water occurs in both a water feed line running from aboveground and in a countercurrent water flow channel surrounding the combustor assembly. The countercurrent water flow channels advantageously serve to cool the combustion chamber wall. The water is injected through slotted inlets along the combustion chamber wall to provide an unstable boundary layer and stripping of the water from the wall for efficient steam generation. Pressure responsive doors are provided at the steam outlet for closing and sealing the combustion chamber from entry of reservoir fluids in the event of a flameout.

Fox, Ronald L. (Albuquerque, NM)

1983-01-01T23:59:59.000Z

439

Cast Alloys for Advanced Ultra Supercritical Steam Turbines  

SciTech Connect

The proposed steam inlet temperature in the Advanced Ultra Supercritical (A-USC) steam turbine is high enough (760 °C) that traditional turbine casing and valve body materials such as ferritic/martensitic steels will not suffice due to temperature limitations of this class of materials. Cast versions of several traditionally wrought Ni-based superalloys were evaluated for use as casing or valve components for the next generation of industrial steam turbines. The full size castings are substantial: 2-5,000 kg each half and on the order of 100 cm thick. Experimental castings were quite a bit smaller, but section size was retained and cooling rate controlled to produce equivalent microstructures. A multi-step homogenization heat treatment was developed to better deploy the alloy constituents. The most successful of these cast alloys in terms of creep strength (Haynes 263, Haynes 282, and Nimonic 105) were subsequently evaluated by characterizing their microstructure as well as their steam oxidation resistance (at 760 and 800 °C).

G. R. Holcomb, P. Wang, P. D. Jablonski, and J. A. Hawk,

2010-05-01T23:59:59.000Z

440

Hydrodynamic analysis of direct steam generation solar collectors  

SciTech Connect

Direct steam generation collectors are considered with the aim to improve the performance of a parabolic trough collector leading to a reduction of operating costs of solar electric generation systems. In this study a hydrodynamic steady state model is developed and linked with a thermal model to optimize the performance of once-through direct steam generation solar collectors. The hydrodynamic model includes flow pattern classification and a pressure drop model. Flow pattern maps for typical DSG collectors with horizontal and inclined absorber tubes are generated to investigate the variation of flow conditions with radiation level, tube diameter, tube length and flow rate. Two-phase flow frictional pressure drop correlations for the range of operating conditions in a DSG collector are selected from the wide range of published correlations by comparison with experimental data for typical steam-water flow conditions in a DSG collector. Pressure drop is calculated for different operating conditions for both horizontal and inclined solar absorber tubes. Alternative operational strategies are evaluated to achieve optimum performance of a direct steam generation collector at different radiation levels.

Odeh, S.D.; Behnia, M.; Morrison, G.L.

2000-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "fossil steam steam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

NIST Standard Reference Database 10 NIST/ASME Steam Properties  

E-Print Network (OSTI)

#12;NIST Standard Reference Database 10 NIST/ASME Steam Properties Version 2.22 Users' Guide Allan;________________________ The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy. OPTIONS AND PREFERENCES............................................ 5 5.1 Specifying Units of Measure

Magee, Joseph W.

442

Workshop Proceedings: Life Assessment and Repair of Steam Turbine Casings  

SciTech Connect

With the trend toward operating steam turbines far beyond their design lives, utilities need methods for assessing and extending the lives of the turbine casings. Consolidating and publishing industry experience on this subject will help utilities make run/replace decisions, select appropriate repair techniques, implement operational changes, and select new designs to meet future needs.

None

1986-07-01T23:59:59.000Z

443

Plugging of steam generator tubes and consequences for plant operation  

SciTech Connect

The simulation of pressurized water reactor (SIROP) code was created using the SICLE software developed by the study and research department at Electricite de France. It is the largest computer code with this software (260 tubes, 1800 computation points, 19 water-steam cavities, 9 pumps, 6 turbines, 32 control system elements). It simulates the general operating conditions of a 900-MW(electric) CP2 power plant by computing the main physical parameters from the reactor core to the condenser. The study was performed by the study and research department (Reactor Physics Division) with the help of SEPTEN following an SPT (power operation department) request. It consisted of identifying the change in margins with respect to emergency shutdown protections (especially for ..delta..T protections) as a function of the number of plugged steam generators (1, 2, or 3) and the degree of plugging (10, 20, and 30%) under the following operating conditions: (1) steady state at 100% full power; and (2) main transients: manual load rejection, load rejection induced by grid fault, turbine tripping. The purpose was to assess the effect of a large number of steam generator plugged tubes on the behavior of the plant to secure a long-term prediction for the date of replacement of these steam generators.

Agnoux, D.; Chenal, J.C.

1987-01-01T23:59:59.000Z

444

Guidelines for maintaining steam turbine lubrication systems. Final report  

SciTech Connect

Failures of steam turbine bearings and rotors cost the utility industry an estimated $150 million a year. A third of these failures involve contaminated lubricants or malfunctioning lubricant supply system components. This report, outlining a comprehensive surveillance program, presents guidelines for maintaining major elements in the turbine lubrication system.

Lamping, G.A.; Cuellar, J.P. Jr.; Silvus, H.S.; Barsun, H.F.

1986-07-01T23:59:59.000Z

445

Geometric Modularity in the Thermal Modeling of Solar Steam Turbines  

Science Journals Connector (OSTI)

Abstract To optimize the start-up schedules of steam turbines operating in concentrating solar power plants, accurate predictions of the temperatures within the turbine are required. In previous work by the authors, thermal models of steam turbines have been developed and validated for parabolic trough solar power plant applications. Building on these results, there is an interest to increase the adaptability of the models with respect to different turbine geometries due to the growing trend of having larger steam turbines in parabolic trough and solar tower power plants. In this work, a modular geometric approach has been developed and compared against both the previous modeling approach and 96 h of measured data from an operational parabolic trough power plant. Results show a large degree of agreement with respect to the measured data in spite of the different detail levels. The new model allows for simple and fast prediction of the thermal behavior of different steam turbine sizes and geometries, which is expected to be of significant importance for future concentrating solar power plants.

M. Topel; J. Spelling; M. Jöcker; B. Laumert

2014-01-01T23:59:59.000Z

446

Analysis of Plume Rise Data from Five TVA Steam Plants  

Science Journals Connector (OSTI)

A large data set containing the measurements of the rise of plumes emitted by five TVA steam plants was examined. Particular attention was paid to the problem of the merging of the plumes emitted by adjacent stacks and to the role played by the ...

Domenico Anfossi

1985-11-01T23:59:59.000Z

447

Static and Dynamic Simulation of Steam Methane Reformers  

Science Journals Connector (OSTI)

The steam-methane reaction is an essential step for many processing plants. Hydrogen, ammonia and methanol are mostly produced by means of methane steam reforming. Since hydrogen is essential for any refinery employing hydrotreating, the performance monitoring of the hydrogen plant is highly desirable. The use of models or simulation is now a standard practice in most chemical plants and refineries. However, reliable models are still lacking for speciality reactors like the methane steam reformer. This paper describes steady-state and dynamic models for the reactions involved in reforming methane and higher hydrocarbon gases. The performance of the reformer is then illustrated by sensitivity analysis to various input disturbances like inlet pressure, temperature, feed concentration and rate, fuel rate and density and steam to carbon ratio. The effect of these disturbances on exit temperature and conversion is studied and analyzed. Catalyst deactivation effects are also discussed and it is shown by sample calculations that the simulator can give insight into catalyst performance and assist in monitoring catalyst deactivation. The transient effects are also reported and dynamic elements like gains and response time are discussed. Such information should give insight into controller design and effects of various parameters.

I.M. Alatiqi; A.M. Meziou; G.A. Gasmelseed

1989-01-01T23:59:59.000Z

448

Steam bottoming cycle for an adiabatic diesel engine  

SciTech Connect

A study of steam bottoming cycles using adiabatic diesel engine exhaust heat projected substantial performance and economic benefits for long haul trucks. A parametric analysis of steam cycle and system component variables, system cost, size and performance was conducted. An 811 K/6.90 MPa state-of-the-art reciprocating expander steam system with a monotube boiler and radiator core condenser was selected for preliminary design. When applied to a NASA specified turbo-charged adiabatic diesel the bottoming system increased the diesel output by almost 18%. In a comparison of the costs of the diesel with bottoming system (TC/B) and a NASA specified turbocompound adiabatic diesel with after-cooling with the same total output, the annual fuel savings less the added maintenance cost was determined to cover the increased initial cost of the TC/B system in a payback period of 2.3 years. Also during this program steam bottoming system freeze protection strategies were developed, technological advances required for improved system reliability were considered and the cost and performance of advanced systems were evaluated.

Poulin, E.; Demler, R.; Krepchin, I.; Walker, D.

1984-03-01T23:59:59.000Z

449

Optimizing Steam and Condensate Systems: A Case Study  

E-Print Network (OSTI)

of the process heaters. An optimization study was conducted at this refinery site during Sep – Nov 2006, to identify opportunities to reduce the energy cost, to improve the steam system’s reliability, and to reduce the waste water loading to the treatment plant...

Venkatesan, V. V.; Grillo, R.; Bockwinkel, R. G.

2008-01-01T23:59:59.000Z

450

RELIABILITY OF SAMPLING INSPECTION SCHEMES APPLIED TO REPLACEMENT STEAM GENERATORS  

E-Print Network (OSTI)

RELIABILITY OF SAMPLING INSPECTION SCHEMES APPLIED TO REPLACEMENT STEAM GENERATORS Guy Roussel on the uninspected part of the tubing. 1 INTRODUCTION In Pressurized Water Reactors, a program of periodic in for determining the percentage of tubes sampled is to provide, by means of a statistical analysis, an equation

Cizelj, Leon

451

Steam Reforming of Low-Level Mixed Waste  

SciTech Connect

Under DOE Contract No. DE-AR21-95MC32091, Steam Reforming of Low-Level Mixed Waste, ThermoChem has successfully designed, fabricated and operated a nominal 90 pound per hour Process Development Unit (PDU) on various low-level mixed waste surrogates. The design construction, and testing of the PDU as well as performance and economic projections for a 500- lb/hr demonstration and commercial system are described. The overall system offers an environmentally safe, non-incinerating, cost-effective, and publicly acceptable method of processing LLMW. The steam-reforming technology was ranked the No. 1 non-incineration technology for destruction of hazardous organic wastes in a study commissioned by the Mixed Waste Focus Area published April 1997.1 The ThermoChem steam-reforming system has been developed over the last 13 years culminating in this successful test campaign on LLMW surrogates. Six surrogates were successfidly tested including a 750-hour test on material simulating a PCB- and Uranium- contaminated solid waste found at the Portsmouth Gaseous Diffusion Plant. The test results indicated essentially total (>99.9999oA) destruction of RCRA and TSCA hazardous halogenated organics, significant levels of volume reduction (> 400 to 1), and retention of radlonuclides in the volume-reduced solids. Cost studies have shown the steam-reforming system to be very cost competitive with more conventional and other emerging technologies.

None

1998-01-01T23:59:59.000Z

452

Modeling of UO{sub 2} oxidation in steam atmosphere  

SciTech Connect

Nuclear fuel oxidation is an important phenomenon affecting fission product behavior. As indicated by a number of studies, uranium dioxide shows a very wide range of nonstoichiometric states. In steam, fuel oxidation produces a hyperstoichiometric composition, changing the transport properties. Variation of stoichiometry changes diffusion coefficients for oxygen, noble gases, and fission products substantially, affecting the release of fission products.

Dobrov, B.V.; Likhanskii, V.V. [Triniti Research Center, Triniti, Moscow (Russian Federation); Ozrin, V.D. [Nuclear Safety Institute IBREA, Moscow (Russian Federation)] [and others

1997-12-01T23:59:59.000Z

453

Method for cutting steam heat losses during cyclic steam injection of wells. Second quarterly report  

SciTech Connect

The Midway-Sunset Field (CA) is the largest Heavy Oil field in California and steam injection methods have been successfully used for more than 30 years to produce the Heavy Oil from many of its unconsolidated sand reservoirs. In partnership with another DOE/ERIP grantee, our Company has acquired an 80 ac. lease in the SE part of this field, in order to demonstrate our respective technologies in the Monarch sand, of Miocene Age, which is one of the reservoirs targeted by the DOE Class 3 Oil Program. This reservoir contains a 13 API oil, which has a much higher market value, as a Refinery Feedstock, than the 5 to 8 API Vaca Tar, used only as road paving material. This makes it easier to justify the required investment in a vertical well equipped with two horizontal drainholes. The economic viability of such a project is likely to be enhanced if Congress approves the export to Japan of a portion of the 27 API (1% Sulfur) AK North Slope oil, which currently is landed in California in preference to lighter and sweeter Far East imported crudes. This is a major cause of the depressed prices for California Heavy Oil in local refineries, which have reduced the economic viability of all EOR methods, including steam injection, in California. Two proposals, for a Near-Term (3 y.) and for a Mid-Term (6 y.) project respectively, were jointly submitted to the DOE for Field Demonstration of the Partners` new technologies under the DOE Class 3 Oil Program. The previous design of a special casing joint for the Oxnard field well was reviewed and adapted to the use of existing Downhole Hardware components from three suppliers, instead of one. The cost of drilling and completion of a well equipped with two horizontal drainholes was re-evaluated for the conditions prevailing in the Midway Sunset field, which are more favorable than in the Oxnard field, leading to considerable reductions in drilling rig time and cost.

Not Available

1994-08-01T23:59:59.000Z

454

Practical aspects of steam injection processes: A handbook for independent operators  

SciTech Connect

More than 80% of the total steam injection process operating costs are for the production of steam and the operation of surface and subsurface equipment. The proper design and operation of the surface equipment is of critical importance to the success of any steam injection operation. However, the published monographs on thermal recovery have attached very little importance to this aspect of thermal oil recovery; hence, a definite need exists for a comprehensive manual that places emphasis on steam injection field practices and problems. This handbook is an attempt to fulfill this need. This handbook explores the concept behind steam injection processes and discusses the information required to evaluate, design, and implement these processes in the field. The emphasis is on operational aspects and those factors that affect the technology and economics of oil recovery by steam. The first four chapters describe the screening criteria, engineering, and economics of steam injection operation as well as discussion of the steam injection fundamentals. The next four chapters begin by considering the treatment of the water used to generate steam and discuss in considerable detail the design, operation and problems of steam generations, distribution and steam quality determination. The subsurface aspects of steamflood operations are addressed in chapters 9 through 12. These include thermal well completion and cementing practices, insulated tubulars, and lifting equipment. The next two chapters are devoted to subsurface operational problems encountered with the use of steam. Briefly described in chapters 15 and 16 are the steam injection process surface production facilities, problems and practices. Chapter 17 discusses the importance of monitoring in a steam injection project. The environmental laws and issues of importance to steam injection operation are outlined in chapter 18.

Sarathi, P.S.; Olsen, D.K.

1992-10-01T23:59:59.000Z

455

The case for endurance testing of sodium-heated steam generators  

SciTech Connect

After operating pressurized water reactor (PWR) steam generators in U.S. nuclear plants during the past 33 years and plugging thousands of tubes and replacing numerous steam generators at immense costs, utility and steam generator designers are now confident that they can design, build, and operate PWR steam generators successfully. Deployment of liquid-metal fast breeder reactors (LMFBRs) will likely follow the same scenario if long-term testing is not performed and development completed prior to commercial deployment. A case is made for endurance testing of steam generators to be used in future LMFBRs.

Onesto, A.T.; Zweig, H.R.; Gibbs, D.C. (Rockwell International Corp., Canoga Park, CA (United States). Rocketdyne Division.); Carlson, R.D. (Argonne National Lab., IL (United States)); Rodwell, E. (Electric Power Research Inst., Palo Alto, CA (United States)); Kakarala, C.R. (Babcock and Wilcox Co., Barberton, OH (United States))

1993-08-01T23:59:59.000Z

456

Direct-Steam Linear Fresnel Performance Model for NREL's System Advisor Model  

SciTech Connect

This paper presents the technical formulation and demonstrated model performance results of a new direct-steam-generation (DSG) model in NREL's System Advisor Model (SAM). The model predicts the annual electricity production of a wide range of system configurations within the DSG Linear Fresnel technology by modeling hourly performance of the plant in detail. The quasi-steady-state formulation allows users to investigate energy and mass flows, operating temperatures, and pressure drops for geometries and solar field configurations of interest. The model includes tools for heat loss calculation using either empirical polynomial heat loss curves as a function of steam temperature, ambient temperature, and wind velocity, or a detailed evacuated tube receiver heat loss model. Thermal losses are evaluated using a computationally efficient nodal approach, where the solar field and headers are discretized into multiple nodes where heat losses, thermal inertia, steam conditions (including pressure, temperature, enthalpy, etc.) are individually evaluated during each time step of the simulation. This paper discusses the mathematical formulation for the solar field model and describes how the solar field is integrated with the other subsystem models, including the power cycle and optional auxiliary fossil system. Model results are also presented to demonstrate plant behavior in the various operating modes.

Wagner, M. J.; Zhu, G.

2012-09-01T23:59:59.000Z

457

Table 7.7 Quantity of Purchased Electricity, Natural Gas, and Steam, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

7 Quantity of Purchased Electricity, Natural Gas, and Steam, 2010; 7 Quantity of Purchased Electricity, Natural Gas, and Steam, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Supplier Sources of Purchased Electricity, Natural Gas, and Steam; Unit: Physical Units or Btu. Electricity Components Natural Gas Components Steam Components Electricity Natural Gas Steam Electricity from Sources Natural Gas from Sources Steam from Sources Electricity from Local Other than Natural Gas from Local Other than Steam from Local Other than NAICS Total Utility(b) Local Utility(c) Total Utility(b) Local Utility(c) Total Utility(b) Local Utility(c) Code(a) Subsector and Industry (million kWh) (million kWh) (million kWh) (billion cu ft) (billion cu ft)

458

Workers Demolish Coal-fired Steam Plant at EM's Portsmouth Site |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Workers Demolish Coal-fired Steam Plant at EM's Portsmouth Site Workers Demolish Coal-fired Steam Plant at EM's Portsmouth Site Workers Demolish Coal-fired Steam Plant at EM's Portsmouth Site September 18, 2013 - 12:00pm Addthis A high-pressure water cannon is used to control dust for the demolition of the X-600 Steam Plant. A high-pressure water cannon is used to control dust for the demolition of the X-600 Steam Plant. One of three large smoke stacks comes down during the demolition. One of three large smoke stacks comes down during the demolition. A high-pressure water cannon is used to control dust for the demolition of the X-600 Steam Plant. One of three large smoke stacks comes down during the demolition. PIKETON, Ohio - Towering above most nearby buildings, the X-600 Coal-fired Steam Plant had been part of the Portsmouth Gaseous Diffusion

459

Workers Demolish Coal-fired Steam Plant at EM's Portsmouth Site |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Workers Demolish Coal-fired Steam Plant at EM's Portsmouth Site Workers Demolish Coal-fired Steam Plant at EM's Portsmouth Site Workers Demolish Coal-fired Steam Plant at EM's Portsmouth Site September 18, 2013 - 12:00pm Addthis A high-pressure water cannon is used to control dust for the demolition of the X-600 Steam Plant. A high-pressure water cannon is used to control dust for the demolition of the X-600 Steam Plant. One of three large smoke stacks comes down during the demolition. One of three large smoke stacks comes down during the demolition. A high-pressure water cannon is used to control dust for the demolition of the X-600 Steam Plant. One of three large smoke stacks comes down during the demolition. PIKETON, Ohio - Towering above most nearby buildings, the X-600 Coal-fired Steam Plant had been part of the Portsmouth Gaseous Diffusion

460

Table 7.3 Average Prices of Purchased Electricity, Natural Gas, and Steam, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

3 Average Prices of Purchased Electricity, Natural Gas, and Steam, 2010; 3 Average Prices of Purchased Electricity, Natural Gas, and Steam, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Supplier Sources of Purchased Electricity, Natural Gas, and Steam; Unit: U.S. Dollars per Physical Units. Electricity Components Natural Gas Components Steam Components Electricity Natural Gas Steam Electricity from Sources Natural Gas from Sources Steam from Sources Electricity from Local Other than Natural Gas from Local Other than Steam from Local Other than NAICS Total Utility(b) Local Utility(c) Total Utility(b) Local Utility(c) Total Utility(b) Local Utility(c) Code(a) Subsector and Industry (kWh) (kWh) (kWh) (1000 cu ft) (1000 cu ft) (1000 cu ft) (million Btu)

Note: This page contains sample records for the topic "fossil steam steam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Modelling of a 400m2 steam based Paraboloidal Dish Siangsukone & Lovegrove ANZSES 2003 Destination Renewables 79 copyright  

E-Print Network (OSTI)

cavity receiver, steam line and steam engine. These component models are based on transient model using dish "BigDish" with a 50 kWe steam engine completed on the ANU campus in 1994. Dish-based Solar ThermalModelling of a 400m2 steam based Paraboloidal Dish Siangsukone & Lovegrove ANZSES 2003 Destination

462

Replace Pressure-Reducing Valves with Backpressure Turbogenerators: Office of Industrial Technologies (OIT) Steam Tip Fact Sheet No. 20  

SciTech Connect

Many industrial facilities produce steam at a higher pressure than is demanded by process requirements. Steam passes through pressure-reducing valves (PRVs, also known as letdown valves) at various locations in the steam distribution system to let down or reduce its pressure. A non-condensing or backpressure steam turbine can perform the same pressure-reducing function as a PRV, while converting steam energy into electrical energy.

Not Available

2002-01-01T23:59:59.000Z

463

Steam methane reforming in molten carbonate salt. Final report  

SciTech Connect

This report documents the work accomplished on the project {open_quotes}Steam Methane Reforming in Molten Carbonate Salt.{close_quotes}. This effort has established the conceptual basis for molten carbonate-based steam reforming of methane. It has not proceeded to prototype verification, because corrosion concerns have led to reluctance on the part of large hydrogen producers to adopt the technology. Therefore the focus was shifted to a less corrosive embodiment of the same technology. After considerable development effort it was discovered that a European company (Catalysts and Chemicals Europe) was developing a similar process ({open_quotes}Regate{close_quotes}). Accordingly the focus was shifted a second time, to develop an improvement which is generic to both types of reforming. That work is still in progress, and shows substantial promise.

Erickson, D.C.

1996-05-01T23:59:59.000Z

464

Oil shale retorting with steam and produced gas  

SciTech Connect

This patent describes a process for retorting oil shale in a vertical retort. It comprises introducing particles of oil shale into the retort, the particles of oil shale having a minimum size such that the particles are retained on a screen having openings 1/4 inch in size; contacting the particles of oil shale with hot gas to heat the particles of oil shale to a state of pyrolysis, thereby producing retort off-gas; removing the off-gas from the retort; cooling the off-gas; removing oil from the cooled off-gas; separating recycle gas from the off-gas, the recycle gas comprising steam and produced gas, the steam being present in amount, by volume, of at least 50% of the recycle gas so as to increase the yield of sand oil; and heating the recycle gas to form the hot gas.

Merrill, L.S. Jr.; Wheaton, L.D.

1991-08-20T23:59:59.000Z

465

Brady Power Plant steam quality and purity enhancement  

SciTech Connect

Brine carry-over from the high pressure and low pressure separators was causing heavy scale build-up on the turbine nozzles and components. This resulted in higher maintenance, reduced power generation and contributed to premature failures of a turbine rotor. Several options to mitigate the impurity laden steam problem, including conventional and experimental methods, were investigated. ESI, seeking cost-effective technology to improve the bottom line, chose a promising but unconventional low-cost, fast track alternative to revamp the facility. This commitment resulted in up to a 25 fold improvement in steam quality and purity; and was engineered and installed in one half (50%) the time, for one third (33%) the cost of a conventional geothermal design.

Hoffman, A. [ESI Energy, West Palm Beach, FL (United States); Jung, D. [Two-Phase Engineering & Research, Inc., Santa Rosa, CA (United States)

1997-12-31T23:59:59.000Z

466

Liquid Fuel Production from Biomass via High Temperature Steam Electrolysis  

SciTech Connect

A process model of syngas production using high temperature electrolysis and biomass gasification is presented. Process heat from the biomass gasifier is used to heat steam for the hydrogen production via the high temperature steam electrolysis process. Hydrogen from electrolysis allows a high utilization of the biomass carbon for syngas production. Oxygen produced form the electrolysis process is used to control the oxidation rate in the oxygen-fed biomass gasifier. Based on the gasifier temperature, 94% to 95% of the carbon in the biomass becomes carbon monoxide in the syngas (carbon monoxide and hydrogen). Assuming the thermal efficiency of the power cycle for electricity generation is 50%, (as expected from GEN IV nuclear reactors), the syngas production efficiency ranges from 70% to 73% as the gasifier temperature decreases from 1900 K to 1500 K. Parametric studies of system pressure, biomass moisture content and low temperature alkaline electrolysis are also presented.

Grant L. Hawkes; Michael G. McKellar

2009-11-01T23:59:59.000Z

467

Steam reformers heated by helium from high temperature reactors  

Science Journals Connector (OSTI)

The manifold possibilities of the application of helium-heated steam reformers combined with high temperature nuclear reactors are elucidated in this article. It is shown that the thermodynamic interpretation of the processes does not cause difficulties because of the good heat transfer in helium at high pressure and that helium peak temperatures of 950°C are sufficient for carrying out the process. The mechanical design of the reformer tube does not lead to problems because the helium and process pressures are so chosen as to be approximately equal. The problems of hydrogen and tritium permeation as well as the contamination of the reformer tube with solid fission products seem to be solvable using the knowledge available at present. Furthermore, the various possibilities for the design arrangements of helium-heated reformer tube furnaces are shown. The status of development attained to date is outlined and in conclusion there is a survey regarding the next steps to be taken in steam reformer technology.

K. Kugeler; M. Kugeler; H.F. Niessen; K.H. Hammelmann

1975-01-01T23:59:59.000Z

468

Integrated catalytic coal devolatilization and steam gasification process  

SciTech Connect

Hydrocarbon liquids and a methane-containing gas are produced from carbonaceous feed solids by contacting the solids with a mixture of gases containing carbon monoxide and hydrogen in a devolatilization zone at a relatively low temperature in the presence of a carbon-alkali metal catalyst. The devolatilization zone effluent is treated to condense out hydrocarbon liquids and at least a portion of the remaining methane-rich gas is steam reformed to produce the carbon monoxide and hydrogen with which the carbonaceous feed solids are contacted in the devolatilization zone. The char produced in the devolatilization zone is reacted with steam in a gasification zone under gasification conditions in the presence of a carbon-alkali metal catalyst and the resultant raw product gas is treated to recover a methane-containing gas.

Ryan, D.F.; Wesselhoft, R.D.

1981-09-29T23:59:59.000Z

469

Produce synthesis gas by steam reforming natural gas  

SciTech Connect

For production of synthesis gas from natural gas the steam reforming process is still the most economical. It generates synthesis gas for ammonia and methanol production as well as hydrogen, oxo gas and town gas. After desulfurization, the natural gas is mixed with steam and fed to the reforming furnace where decomposition of hydrocarbons takes place in the presence of a nickel-containing catalyst. Synthesis gas that must be free of CO and CO/sub 2/ is further treated in a CO shift conversion, a CO/sub 2/ scrubbing unit and a methanation unit. The discussion covers the following topics - reforming furnace; the outlet manifold system; secondary reformer; reformed gas cooling. Many design details of equipment used are given.

Marsch, H.D.; Herbort, H.J.

1982-06-01T23:59:59.000Z

470

Overheating in Hot Water- and Steam-Heated Multifamily Buildings  

SciTech Connect

Apartment temperature data have been collected from the archives of companies that provide energy management systems (EMS) to multifamily buildings in the Northeast U.S. The data have been analyzed from more than 100 apartments in eighteen buildings where EMS systems were already installed to quantify the degree of overheating. This research attempts to answer the question, 'What is the magnitude of apartment overheating in multifamily buildings with central hot water or steam heat?' This report provides valuable information to researchers, utility program managers and building owners interested in controlling heating energy waste and improving resident comfort. Apartment temperature data were analyzed for deviation from a 70 degrees F desired setpoint and for variation by heating system type, apartment floor level and ambient conditions. The data shows that overheating is significant in these multifamily buildings with both hot water and steam heating systems.

Dentz, J.; Varshney, K.; Henderson, H.

2013-10-01T23:59:59.000Z

471

Experimental study of oil yields and properties of light and medium Venezuelan crude oils under steam and steam-propane distillation  

E-Print Network (OSTI)

Six experimental runs were carried out to study the yields for a light crude oil (34.2°API) and an intermediate crude oil (25.1°API) under steam distillation and steam-propane distillation. Yields, were measured at five temperatures, 110, 150, 200...

Plazas Garcia, Joyce Vivia

2002-01-01T23:59:59.000Z

472

Catalyst and process for steam-reforming of hydrocarbons  

SciTech Connect

An improved catalyst and an improved process for use of the catalyst in the steam-hydrocarbon reforming reaction are disclosed. The catalyst comprises a group VIII metal on a cylindrical ceramic support consisting essentially of alpha alumina and having a plurality of gas passages extending axially therethrough. These supported catalysts display a higher geometric surface area and a lower pressure drop than do standard rings.

Atwood, K.; Merriam, J.S.; Wright, J.H.

1980-11-11T23:59:59.000Z

473

Technical evaluation: 300 Area steam line valve accident  

SciTech Connect

On June 7, 1993, a journeyman power operator (JPO) was severely burned and later died as a result of the failure of a 6-in. valve that occurred when he attempted to open main steam supply (MSS) valve MSS-25 in the U-3 valve pit. The pit is located northwest of Building 331 in the 300 Area of the Hanford Site. Figure 1-1 shows a layout of the 300 Area steam piping system including the U-3 steam valve pit. Figure 1-2 shows a cutaway view of the approximately 10- by 13- by 16-ft-high valve pit with its various steam valves and connecting piping. Valve MSS-25, an 8-in. valve, is located at the bottom of the pit. The failed 6-in. valve was located at the top of the pit where it branched from the upper portion of the 8-in. line at the 8- by 8- by 6-in. tee and was then ``blanked off`` with a blind flange. The purpose of this technical evaluation was to determine the cause of the accident that led to the failure of the 6-in. valve. The probable cause for the 6-in. valve failure was determined by visual, nondestructive, and destructive examination of the failed valve and by metallurgical analysis of the fractured region of the valve. The cause of the accident was ultimately identified by correlating the observed failure mode to the most probable physical phenomenon. Thermal-hydraulic analyses, component stress analyses, and tests were performed to verify that the probable physical phenomenon could be reasonably expected to produce the failure in the valve that was observed.

Not Available

1993-08-01T23:59:59.000Z

474

Heat transfer and film cooling with steam injection  

E-Print Network (OSTI)

for both coolants was determined for similar blowing rates and was used as a basis for comparisons. Heat transfer coefficients were calcula- ted from the experimental data using a transient analysis. DEDICATION To my wife and family. ACKNOWLEDGEMENTS... LIST OF TABLES PAGE TABLE 1 Variation in the Blowing Rate ------------ 55 TABLE 2 TABLE 3 Typical Air Film Cooling Effectiveness Data Typical Steam Film Cooling Effectiveness Data 62 62 1X LIST OF FIGURES PAGE Figure 1 Comparison of Heat...

Conklin, Gary Eugene

1982-01-01T23:59:59.000Z

475

Desulfurization of Texas lignite using steam and air  

E-Print Network (OSTI)

in Coal Sulfur Removal From Coal By Pyrolysis EXPERIMENTAL METHOD Experimental Apparatus Experimental Procedure Analyses of the Products RESULTS AND DISCUSSION Temperature Effect Upon Desulfurization Pressure Effect Upon Desulfurization... . Treatment Composition Effect Pyrolysis Conditions vs. Addition of' Air V1 V111 ix 10 15 20 24 31 31 35 39 43 45 49 52 53 V11 TABLE OF CONTENTS (Continued) PAGE Pyrolysis Conditions vs. Addition of Steam and Air . . 53 Sulfur Removal...

Stone, Robert Reginald

1981-01-01T23:59:59.000Z

476

Oxidation of alloys targeted for advanced steam turbines  

SciTech Connect

Ultra supercritical (USC) power plants offer the promise of higher efficiencies and lower emissions. Current goals of the U.S. Department of Energy’s Advanced Power Systems Initiatives include coal generation at 60% efficiency, which would require steam temperatures of up to 760°C. This research examines the steamside oxidation of alloys for use in USC systems, with emphasis placed on applications in high- and intermediate-pressure turbines.

Holcomb, G.R.; Covino, B.S., Jr.; Bullard, S.J.; Ziomek-Moroz, M.; Alman, D.E.

2006-03-12T23:59:59.000Z

477

Investigation of thermal storage and steam generator issues  

SciTech Connect

A review and evaluation of steam generator and thermal storage tank designs for commercial nitrate salt technology showed that the potential exists to procure both on a competitive basis from a number of qualified vendors. The report outlines the criteria for review and the results of the review, which was intended only to assess the feasibility of each design, not to make a comparison or select the best concept.

Not Available

1993-08-01T23:59:59.000Z

478

Table 9. U.S. Steam Coal Exports  

U.S. Energy Information Administration (EIA) Indexed Site

U.S. Steam Coal Exports U.S. Steam Coal Exports (short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Table 9. U.S. Steam Coal Exports (short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Year to Date Continent and Country of Destination April - June 2013 January - March 2013 April - June 2012 2013 2012 Percent Change North America Total 1,619,502 1,246,181 2,153,814 2,865,683 3,065,683 -6.5 Canada* 797,861 599,752 841,061 1,397,613 1,280,803 9.1 Dominican Republic 51,698 160,672 124,720 212,370 312,741 -32.1 Honduras - 41,664 34,161 41,664 68,124 -38.8 Jamaica 25 36,311 - 36,336 33,585 8.2 Mexico 717,687 407,422 1,116,653 1,125,109 1,331,754 -15.5 Other** 52,231 360 37,219 52,591 38,676 36.0 South America Total 853,693 806,347

479

Table 14. Steam Coal Exports by Customs District  

U.S. Energy Information Administration (EIA) Indexed Site

Steam Coal Exports by Customs District Steam Coal Exports by Customs District (short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Table 14. Steam Coal Exports by Customs District (short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Year to Date Customs District April - June 2013 January - March 2013 April - June 2012 2013 2012 Percent Change Eastern Total 4,951,041 5,566,950 6,554,494 10,517,991 11,407,664 -7.8 Baltimore, MD 1,275,530 831,976 1,715,016 2,107,506 2,852,092 -26.1 Boston, MA 7 - 12 7 24 -70.8 Buffalo, NY 1,180 1,516 2,826 2,696 5,257 -48.7 New York City, NY 3,088 2,664 2,168 5,752 6,106 -5.8 Norfolk, VA 3,578,715 4,697,769 4,760,354 8,276,484 8,443,756 -2.0 Ogdensburg, NY 36,894 3,610 3,090 40,504 6,838 492.3 Philadelphia, PA

480

Topping PCFB combustion plant with supercritical steam pressure  

SciTech Connect

Research is being conducted to develop a new type of coal fired plant for electric power generation. This new type of plant, called a second generation or topping pressurized circulating fluidized bed combustion (topping PCFB) plant, offers the promise of efficiencies greater than 46 percent (HHV), with both emissions and a cost of electricity that are significantly lower than conventional pulverized coal fired plants with scrubbers. The topping PCFB plant incorporates the partial gasification of coal in a carbonizer, the combustion of carbonizer char in a pressurized circulating fluidized bed combustor (PCFB), and the combustion of carbonizer fuel gas in a topping combustor to achieve gas turbine inlet temperatures of 2,300 F and higher. After completing pilot plant tests of a carbonizer, a PCFB, and a gas turbine topping combustor, all being developed for this new plant, the authors calculated a higher heating value efficiency of 46.2 percent for the plant. In that analysis, the plant operated with a conventional 2,400 psig steam cycle with 1,000 F superheat and reheat steam and a 2.5 inch mercury condenser back pressure. This paper identifies the efficiency gains that this plant will achieve by using supercritical pressure steam conditions.

Robertson, A. [Foster Wheeler Development Corp., Livingston, NJ (United States); White, J. [Parsons Power Group Inc., Reading, PA (United States)

1997-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "fossil steam steam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Issues in heat recovery steam generator system noise  

Science Journals Connector (OSTI)

A heat recovery steam generator (HRSG) is a fundamental component of all combustion turbine?based combined cycle power plants. While it’s primary purpose is to convert exhaust gas heat to steam an important secondary function is to reduce noise emissions from the combustion turbine exhaust. This source at about 155 dB (overall) re: 1 pW for a 100?MW turbine is the highest noise emission source in any combustion turbine plant. Therefore the residual exhaust noise emissions leaving the HRSG walls and stack exit must be predicted with acceptable accuracy to determine the total plant noise level. The sources involved in this prediction methodology will be discussed. The issues include source power levels wall and duct transmission loss and the noise reduction characteristics through the HRSG flow path. Special measurement techniques required to quantify HRSG noise emissions are described. Whereas the HRSG is mainly a passive device that attenuates combustion turbine exhaust noise two HRSG generated sources steam venting and supplemental duct firing will also be discussed. [See NOISE?CON Proceedings for full paper.

George F. Hessler Jr.

1997-01-01T23:59:59.000Z

482

Sulfur-deactivated steam reforming of gasified biomass  

SciTech Connect

The effect of hydrogen sulfide on the stream reforming of methane has been studied. Methane is the most difficult component to convert by steam reforming in the mixture of hydrocarbons, which is produced in biomass gasification. Two catalysts were subjected to hydrogen sulfide levels up to 300 ppm so as to study the effect of sulfur on their deactivation. These catalysts were the C11-9-061, from United Catalyst Inc., and the HTSR1, from Haldor Topsoee. The activation energy of the sulfur-deactivated steam-reforming reaction was calculated to be 280 and 260 kJ/mol, for each catalyst, respectively. The high values most probably originate from the fact that the degree of sulfur coverage of the nickel surface is close to 1 for these experiments. Even under these severe conditions, steam reforming of methane is possible without any carbon formation. The HTSR1 catalyst exhibits a very high sulfur-free activity, resulting in a performance in the presence of hydrogen sulfide higher than that for the C11-9-061 catalyst. By using the HTSR1 catalyst, the reactor temperature can be lowered by 60 C in order to reach comparable levels of conversion.

Koningen, J.; Sjoestroem, K. [Kungl Tekniska Hoegskolan, Stockholm (Sweden)] [Kungl Tekniska Hoegskolan, Stockholm (Sweden)

1998-02-01T23:59:59.000Z

483

Steam turbine blade reliability seminar and workshop: proceedings  

SciTech Connect

An EPRI workshop to address steam turbine blade reliability improvement was cohosted by Boston Edison Company in Boston, Massachusetts on July 7-9, 1982. The 142 attendees represented a broad spectrum of US utilities, equipment manufacturers, and consultants, as well as representatives from Canada, Europe, and Japan. These proceedings contain the text of the formal presentations as well as summaries of the working group sessions which were devoted to topics of particular interest to the workshop participants. The formal presentations were organized under the following general session titles: utility experience with turbine blades; blade failure mechanisms and causes; blade design for high reliability; problem solutions for operating units; and failure analysis, NDE, and diagnostics. In addition to the technical presentations, working group sessions were held on selected topics relevant to steam turbine blade reliability improvement. Each group provided a forum for engineers to exchange ideas and information in a less formal environment. These discussions focused on key issues in more detail and addressed some subjects not covered in the formal presentations. The subjects of these working groups were: low pressure turbine blade problems; solid particle erosion; steam chemistry; failure analysis, NDE, and diagnostics; effect of boiler and balance-of-plant; and retrofittable fixes for blade problems. Individual papers have been entered into EDB and ERA. (LTN)

Brown, R.G.; Quilliam, J.F. (eds.)

1985-07-01T23:59:59.000Z

484

Solar hybrid steam injection gas turbine (STIG) cycle  

Science Journals Connector (OSTI)

Solar heat at moderate temperatures around 200 °C can be utilized for augmentation of conventional steam-injection gas turbine power plants. Solar concentrating collectors for such an application can be simpler and less expensive than collectors used for current solar power plants. We perform a thermodynamic analysis of this hybrid cycle. High levels of steam-to-air ratio are investigated, leading to high power augmentation compared to the simple cycle and to conventional STIG. The Solar Fraction can reach up to 50% at the highest augmentation levels. The overall conversion efficiency from heat to electricity (average over fuel and solar contributions) can be in the range of 40–55% for typical candidate turbines. The incremental efficiency (corresponding to the added steam beyond conventional STIG) is in the range of 22–37%, corresponding to solar-to-electricity efficiency of about 15–24%, similar to and even exceeding current solar power plants using higher temperature collectors. The injected water can be recovered and recycled leading to very low water consumption of the cycle, but a very low cost condenser is required to make water recovery feasible.

Maya Livshits; Abraham Kribus

2012-01-01T23:59:59.000Z

485

Steam reforming of low-level mixed waste. Final report  

SciTech Connect

ThermoChem has successfully designed, fabricated and operated a nominal 90 pound per hour Process Development Unit (PDU) on various low-level mixed waste surrogates. The design, construction, and testing of the PDU as well as performance and economic projections for a 300-lb/hr demonstration and commercial system are described. The overall system offers an environmentally safe, non-incinerating, cost-effective, and publicly acceptable method of processing LLMW. The steam-reforming technology was ranked the No. 1 non-incineration technology for destruction of hazardous organic wastes in a study commissioned by the Mixed Waste Focus Area and published in April 1997. The ThermoChem steam-reforming system has been developed over the last 13 years culminating in this successful test campaign on LLMW surrogates. Six surrogates were successfully tested including a 750-hour test on material simulating a PCB- and Uranium-contaminated solid waste found at the Portsmouth Gaseous Diffusion Plant. The test results indicated essentially total (> 99.9999%) destruction of RCRA and TSCA hazardous halogenated organics, significant levels of volume reduction (> 400 to 1), and retention of radionuclides in the volume-reduced solids. Economic evaluations have shown the steam-reforming system to be very cost competitive with more conventional and other emerging technologies.

NONE

1998-06-01T23:59:59.000Z

486

Screening reactor steam/water piping systems for water hammer  

SciTech Connect

A steam/water system possessing a certain combination of thermal, hydraulic and operational states, can, in certain geometries, lead to a steam bubble collapse induced water hammer. These states, operations, and geometries are identified. A procedure that can be used for identifying whether an unbuilt reactor system is prone to water hammer is proposed. For the most common water hammer, steam bubble collapse induced water hammer, six conditions must be met in order for one to occur. These are: (1) the pipe must be almost horizontal; (2) the subcooling must be greater than 20 C; (3) the L/D must be greater than 24; (4) the velocity must be low enough so that the pipe does not run full, i.e., the Froude number must be less than one; (5) there should be void nearby; (6) the pressure must be high enough so that significant damage occurs, that is the pressure should be above 10 atmospheres. Recommendations on how to avoid this kind of water hammer in both the design and the operation of the reactor system are made.

Griffith, P. [Massachusetts Inst. of Tech., Cambridge, MA (United States)

1997-09-01T23:59:59.000Z

487

The use of advanced steam reforming technology for hydrogen production  

SciTech Connect

The demand for supplementary hydrogen production in refineries is growing significantly world-wide as environmental legislation concerning cleaner gasoline and diesel fuels is introduced. The main manufacturing method is by steam reforming. The process has been developed both to reduce the capital cost and increase efficiency, reliability and ease of operation. ICI Katalco`s Leading Concept Hydrogen or LCH process continues this process of improvement by replacing the conventional fired steam reformer with a type of heat exchange reformer known as the Gas Heated Reformer or GHR. The GHR was first used in the Leading Concept Ammonia process, LCA at ICI`s manufacturing site at Severnside, England and commissioned in 1988 and later in the Leading Concept Methanol (LCM) process for methanol at Melbourne, Australia and commissioned in 1994. The development of the LCH process follows on from both LCA and LCM processes. This paper describes the development and use of the GHR in steam reforming, and shows how the GHR can be used in LCH. A comparison between the LCH process and a conventional hydrogen plant is given, showing the benefits of the LCH process in certain circumstances.

Abbishaw, J.B.; Cromarty, B.J. [ICI Katalco, Billingham (United Kingdom)

1996-12-01T23:59:59.000Z

488

High performance steam development. Final report, Phase No. 3: 1500{degree}F steam plant for industrial cogeneration prototype development tests  

SciTech Connect

As a key part of DOE`s and industry`s R&D efforts to improve the efficiency, cost, and emissions of power generation, a prototype High Performance Steam System (HPSS) has been designed, built, and demonstrated. The world`s highest temperature ASME Section I coded power plant successfully completed over 100 hours of development tests at 1500{degrees}F and 1500 psig on a 56,000 pound per hour steam generator, control valve and topping turbine at an output power of 5500 hp. This development advances the HPSS to 400{degrees}F higher steam temperature than the current best technology being installed around the world. Higher cycle temperatures produce higher conversion efficiencies and since steam is used to produce the large majority of the world`s power, the authors expect HPSS developments will have a major impact on electric power production and cogeneration in the twenty-first century. Coal fueled steam plants now produce the majority of the United States electric power. Cogeneration and reduced costs and availability of natural gas have now made gas turbines using Heat Recovery Steam Generators (HRSG`s) and combined cycles for cogeneration and power generation the lowest cost producer of electric power in the United States. These gas fueled combined cycles also have major benefits in reducing emissions while reducing the cost of electricity. Development of HPSS technology can significantly improve the efficiency of cogeneration, steam plants, and combined cycles. Figure 2 is a TS diagram that shows the HPSS has twice the energy available from each pound of steam when expanding from 1500{degrees}F and 1500 psia to 165 psia (150 psig, a common cogeneration process steam pressure). This report describes the prototype component and system design, and results of the 100-hour laboratory tests. The next phase of the program consists of building up the steam turbine into a generator set, and installing the power plant at an industrial site for extended operation.

Duffy, T.; Schneider, P.

1996-01-01T23:59:59.000Z

489

Enhanced tubes for steam condensers. Volume 1, Summary of condensation and fouling; Volume 2, Detailed study of steam condensation  

SciTech Connect

Electric utility steam condensers typically use plain tubes made of titanium, stainless steel, or copper alloys. Approximately two-thirds of the total thermal resistance is on the water side of the plain tube. This program seeks to conceive and develop a tube geometry that has special enhancement geometries on the tube (water) side and the steam (shell) side. This ``enhanced`` tube geometry, will provide increased heat transfer coefficients. The enhanced tubes will allow the steam to condense at a lower temperature. The reduced condensing temperature will reduce the turbine heat rate, and increase the plant peak load capability. Water side fouling and fouling control is a very important consideration affecting the choice of the tube side enhancement. Hence, we have consciously considered fouling potential in our selection of the tube side surface geometry. Using appropriate correlations and theoretical models, we have designed condensation and water side surface geometries that will provide high performance and be cleanable using sponge ball cleaning. Commercial tube manufacturers have made the required tube geometries for test purposes. The heat transfer test program includes measurement of the condensation and water side heat transfer coefficients. Fouling tests are being run to measure the waterside fouling resistance, and to the test the ability of the sponge ball cleaning system to clean the tubes.

Webb, R.L.; Chamra, L.; Jaber, H.

1992-02-01T23:59:59.000Z

490

VAPORIZATION OF TUNGSTEN-METAL IN STEAM AT HIGH TEMPERATURES.  

SciTech Connect

The vaporization of tungsten from the APT spallation target dominates the radiological source term for unmitigated target overheating accidents. Chemical reactions of tungsten with steam which persist to tungsten temperatures as low as 800 C result in the formation of a hydrated tungsten-oxide which has a high vapor pressure and is readily convected in a flowing atmosphere. This low-temperature vaporization reaction essentially removes the oxide film that forms on the tungsten-metal surface as soon as it forms, leaving behind a fresh metallic surface for continued oxidation and vaporization. Experiments were conducted to measure the oxidative vaporization rates of tungsten in steam as part of the effort to quantify the MT radiological source term for severe target accidents. Tests were conducted with tungsten rods (1/8 inch diameter, six inches long) heated to temperatures from approximately 700 C to 1350 C in flowing steam which was superheated to 140 C. A total of 19 experiments was conducted. Fifteen tests were conducted by RF induction heating of single tungsten rods held vertical in a quartz glass retort. Four tests were conducted in a vertically-mounted tube furnace for the low temperature range of the test series. The aerosol which was generated and transported downstream from the tungsten rods was collected by passing the discharged steam through a condenser. This procedure insured total collection of the steam along with the aerosol from the vaporization of the rods. The results of these experiments revealed a threshold temperature for tungsten vaporization in steam. For the two tests at the lowest temperatures which were tested, approximately 700 C, the tungsten rods were observed to oxidize without vaporization. The remainder of the tests was conducted over the temperature range of 800 C to 1350 C. In these tests, the rods were found to have lost weight due to vaporization of the tungsten and the missing weight was collected in the downstream condensate system. The aerosol formed a fine white smoke of tungsten-oxide which was visible to the eye as it condensed in the laminar boundary layer of steam which flowed along the surface of the rod. The aerosol continued to flow as a smoke tube downstream of the rod, flowing coaxially along the centerline axis of the quartz glass tube and depositing by impaction along the outside of a bend and at sudden area contractions in the piping. The vaporization rate data from the 17 experiments which exceeded the vaporization threshold temperature are shown in Figure 5 in the form of vaporization rates (g/cm{sup 2} s) vs. inverse temperature (K{sup {minus}1}). Two correlations to the present data are presented and compared to a published correlation by Kilpatrick and Lott. The differences are discussed.

GREENE,G.A.; FINFROCK,C.C.

2000-10-01T23:59:59.000Z

491

GRR/Section 3-UT-e - Geothermal Steam Lease (Utah Trust Lands) | Open  

Open Energy Info (EERE)

3-UT-e - Geothermal Steam Lease (Utah Trust Lands) 3-UT-e - Geothermal Steam Lease (Utah Trust Lands) < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 3-UT-e - Geothermal Steam Lease (Utah Trust Lands) 03UTEGeothermalSteamLeaseUtahTrustLands.pdf Click to View Fullscreen Contact Agencies Utah School and Institutional Trust Lands Administration Utah Division of Water Rights Regulations & Policies UC 53C-4-102 UTLA Lease and Permit Covenants R850-27 UTLA Geothermal Steam Regulations Triggers None specified Click "Edit With Form" above to add content 03UTEGeothermalSteamLeaseUtahTrustLands.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

492

Blow-down tests in a sodium-heated steam generator tube. [LMFBR  

SciTech Connect

The design of steam generators for liquid metal fast breeder reactor (LMFBR) electric power plants is based on both normal load operation and plant transient conditions. Perhaps the most severe transient to which an LMFBR steam generator may be subjected is known as the water-side isolation and dump transient, often called the blow-down transient. LMFBR steam generators must be designed to accommodate a small but finite number of the blow-down transients. The purpose of this investigation was to perform a blow-down experiment in a well instrumented, full scale, single tube model of an LMFBR steam generator. The data may be used directly in steam generator design and as a validation point for steam generator mathematical models in plant transient computer codes.

France, D.M.; Carlson, R.D.; Chiang, T.

1983-01-01T23:59:59.000Z

493

Solar steam reforming of natural gas integrated with a gas turbine power plant  

Science Journals Connector (OSTI)

Abstract This paper shows a hybrid power plant wherein solar steam reforming of natural gas and a steam injected gas turbine power plant are integrated for solar syngas production and use. The gas turbine is fed by a mixture of natural gas and solar syngas (mainly composed of hydrogen and water steam) from mid-low temperature steam reforming reaction whose heat duty is supplied by a parabolic trough Concentrating Solar Power plant. A comparison is made between a traditional steam injected gas turbine and the proposed solution to underline the improvements introduced by the integration with solar steam reforming of the natural gas process. The paper also shows how solar syngas can be considered as an energy vector consequent to solar energy conversion effectiveness and the natural gas pipeline as a storage unit, thus accomplishing the idea of a smart energy grid.

Augusto Bianchini; Marco Pellegrini; Cesare Saccani

2013-01-01T23:59:59.000Z

494

Bagasse-fired steam boiler station for Kenana Sugar in Sudan  

SciTech Connect

The equipment and operation of the bagasse fired steam boiler station of the Kenana Sugar factory in Sudan are described. The station consists of six bagasse-fired, steam boilers with individual capacities of 113 tonnes per hour which provide steam for a 40 MN power station. During the off-season it serves as a regional power station which also operates irrigation facilities to the cane fields. The bagasse handling and feeding system is also described.

Not Available

1981-02-01T23:59:59.000Z

495

"Table A38. Total Expenditures for Purchased Electricity, Steam, and Natural Gas"  

U.S. Energy Information Administration (EIA) Indexed Site

8. Total Expenditures for Purchased Electricity, Steam, and Natural Gas" 8. Total Expenditures for Purchased Electricity, Steam, and Natural Gas" " by Type of Supplier, Census Region, Census Division, Industry Group," " and Selected Industries, 1994" " (Estimates in Million Dollars)" ,," Electricity",," Steam" ,,,,,,"RSE" "SIC",,"Utility","Nonutility","Utility","Nonutility","Row" "Code(a)","Industry Group and Industry","Supplier(b)","Supplier(c)","Supplier(b)","Supplier(c)","Factors" ,,"Total United States"

496

"Table A46. Total Expenditures for Purchased Electricity, Steam, and Natural"  

U.S. Energy Information Administration (EIA) Indexed Site

6. Total Expenditures for Purchased Electricity, Steam, and Natural" 6. Total Expenditures for Purchased Electricity, Steam, and Natural" " Gas by Type of Supplier, Census Region, Industry Group, and Selected Industries," 1991 " (Estimates in Million Dollars)" ,," Electricity",," Steam",," Natural Gas" ,,"-","-----------","-","-----------","-","------------","-","RSE" "SIC",,"Utility","Nonutility","Utility","Nonutility","Utility","Transmission","Other","Row" "Code(a)","Industry Groups and Industry","Supplier(b)","Supplier(c)","Supplier(b)","Supplier(c)","Supplier(b)","Pipelines","Supplier(d)","Factors"

497

"Table A48. Total Expenditures for Purchased Electricity, Steam, and Natural"  

U.S. Energy Information Administration (EIA) Indexed Site

8. Total Expenditures for Purchased Electricity, Steam, and Natural" 8. Total Expenditures for Purchased Electricity, Steam, and Natural" " Gas by Type of Supplier, Census Region, and Economic Characteristics of the" " Establishment, 1991" " (Estimates in Million Dollars)" ," Electricity",," Steam",," Natural Gas" ,"-","-----------","-","-----------","-","------------","-----------","RSE" " ","Utility","Nonutility","Utility","Nonutility","Utility","Transmission","Other","Row" "Economic Characteristics(a)","Supplier(b)","Supplier(c)","Supplier(b)","Supplier(c)","Supplier(b)","Pipelines","Supplier(d)","Factors"," "

498

Operation of a steam hydro-gasifier in a fluidized bed reactor  

E-Print Network (OSTI)

Using Self-Sustained Hydro- Gasification." [0011] In aprocess, using a steam hydro-gasification reactor (SHR) thepyrolysis and hydro-gasification in a single step. This

Park, Chan Seung; Norbeck, Joseph N.

2008-01-01T23:59:59.000Z

499

E-Print Network 3.0 - alloy n06600 steam Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

molten salt... storage system. The use of both supercritical and superheated subcritical steam is proposed, and discussed Source: Australian National University, Department...

500

Modeling of membrane reactor for steam methane reforming: From granular to structured catalysts  

Science Journals Connector (OSTI)

Different types and operating modes of a tubular membrane reactor for steam methane reforming with a production rate of 0.6...

A. B. Shigarov; V. A. Kirillov

2012-04-01T23:59:59.000Z