Powered by Deep Web Technologies
Note: This page contains sample records for the topic "fossil steam generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Repowering Fossil Steam Plants with Gas Turbines and Heat Recovery Steam Generators: Design Considerations, Economics, and Lessons L earned  

Science Conference Proceedings (OSTI)

This report describes repowering fossil steam plants using gas turbines (GTs) and heat recovery steam generators (HRSGs) in combined-cycle mode. Design considerations and guidance, comparative economics, and lessons learned in the development of such projects are included. Various other methods of fossil plant repowering with GTs are also briefly discussed. The detailed results and comparisons that are provided relate specifically to a generic GT/HRSG repowering. Design parameters, limitations, schedulin...

2012-08-08T23:59:59.000Z

2

Air Pollution Control Regulations: No. 13- Particulate Emissions from Fossil Fuel Fired Steam or Hot Water Generating Units (Rhode Island)  

Energy.gov (U.S. Department of Energy (DOE))

The purpose of this regulation is to limit emissions of particulate matter from fossil fuel fired and wood-fired steam or hot water generating units.

3

Productivity Improvement Handbook for Fossil Steam Power Plants  

Science Conference Proceedings (OSTI)

This handbook discusses how to inspect, maintain, and repair major equipment in fossil-fired generating plants. It provides guidance for those involved in renovating and preparing fossil steam plants for operating in a competitive generation market.

1998-10-29T23:59:59.000Z

4

Table 11.6 Installed Nameplate Capacity of Fossil-Fuel Steam-Electric Generators With Environmental Equipment, 1985-2010 (Megawatts)  

U.S. Energy Information Administration (EIA) Indexed Site

Installed Nameplate Capacity of Fossil-Fuel Steam-Electric Generators With Environmental Equipment," Installed Nameplate Capacity of Fossil-Fuel Steam-Electric Generators With Environmental Equipment," " 1985-2010 (Megawatts)" "Year","Coal",,,,"Petroleum and Natural Gas",,,,"Total 1" ,,,"Flue Gas","Total 2",,,"Flue Gas","Total 2",,,"Flue Gas","Total 2" ,"Particulate","Cooling","Desulfurization",,"Particulate","Cooling","Desulfurization",,"Particulate","Cooling","Desulfurization" ,"Collectors","Towers","(Scrubbers)",,"Collectors","Towers","(Scrubbers)",,"Collectors","Towers","(Scrubbers)"

5

Productivity Improvement Handbook for Fossil Steam Power Plants: Third Edition  

Science Conference Proceedings (OSTI)

This handbook discusses how to inspect, maintain, and repair major equipment in fossil-fired generating plants. It provides guidance for those involved in renovating and preparing fossil steam plants for operation in a competitive generation market. The first two editions of this handbook in 1998 and 2000 quickly found application in fossil plants, and were broadly distributed within generating companies worldwide. Since then, the book and its regular updates have been available through an epri.com websi...

2002-11-12T23:59:59.000Z

6

Proceedings: Ninth International Conference on Cycle Chemistry in Fossil and Combined Cycle Plants with Heat Recovery Steam Generators  

Science Conference Proceedings (OSTI)

Proper selection, application, and optimization of cycle chemistry have long been recognized as integral to ensuring the highest possible levels of component availability and reliability in fossil-fired generating plant units. These proceedings of the Ninth EPRI International Conference on Cycle Chemistry in Fossil Plants address state-of-the-art practices in conventional and combined-cycle plants. The content provides a worldwide perspective on cycle chemistry practices and insight on industry issues an...

2010-01-22T23:59:59.000Z

7

Table 11.6 Installed Nameplate Capacity of Fossil-Fuel Steam ...  

U.S. Energy Information Administration (EIA)

Table 11.6 Installed Nameplate Capacity of Fossil-Fuel Steam-Electric Generators With Environmental Equipment, 1985-2010 (Megawatts)

8

Productivity Improvement for Fossil Steam Power Plants, 2008  

Science Conference Proceedings (OSTI)

EPRI's Productivity Improvement Handbook for Fossil Steam Plants (1006315), now in its third edition, has included many descriptions of advanced techniques and products successfully applied and tested. Many of these have been described in the other EPRI publications: Productivity Improvement for Fossil Steam Power Plants 2005: 100 Hundred Case Studies (1012098), Productivity Improvement for Fossil Steam Power Plants, 2006, (1014598), and Productivity Improvement for Fossil Steam Power Plants, 2007 (10154...

2008-12-24T23:59:59.000Z

9

Steam Generator Management Program: Steam Generator Progress Report  

Science Conference Proceedings (OSTI)

Since 1985, EPRI has published the Steam Generator Progress Report (SGPR), which provides historical information on worldwide steam generator activities.

2009-10-19T23:59:59.000Z

10

Productivity Improvement for Fossil Steam Power Plants, 2010  

Science Conference Proceedings (OSTI)

The Productivity Improvement Handbook for Fossil Steam Plants (1006315), now in its third edition, has included many descriptions of advanced techniques and products, successfully applied and tested. Many of these have been described in the 2005 publication Productivity Improvement for Fossil Steam Plants 2005: 100 Hundred Case Studies (1012098), Productivity Improvement for Fosiil Steam Power Plants 2006, (101459), Productivity Improvement for Fossil Steam Power Plants 2007 (1015445), Productivity Impro...

2011-01-31T23:59:59.000Z

11

Steam generator support system  

SciTech Connect

A support system for connection to an outer surface of a J-shaped steam generator for use with a nuclear reactor or other liquid metal cooled power source. The J-shaped steam generator is mounted with the bent portion at the bottom. An arrangement of elongated rod members provides both horizontal and vertical support for the steam generator. The rod members are interconnected to the steam generator assembly and a support structure in a manner which provides for thermal distortion of the steam generator without the transfer of bending moments to the support structure and in a like manner substantially minimizes forces being transferred between the support structure and the steam generator as a result of seismic disturbances.

Moldenhauer, James E. (Simi Valley, CA)

1987-01-01T23:59:59.000Z

12

Steam generator support system  

DOE Patents (OSTI)

A support system for connection to an outer surface of a J-shaped steam generator for use with a nuclear reactor or other liquid metal cooled power source is disclosed. The J-shaped steam generator is mounted with the bent portion at the bottom. An arrangement of elongated rod members provides both horizontal and vertical support for the steam generator. The rod members are interconnected to the steam generator assembly and a support structure in a manner which provides for thermal distortion of the steam generator without the transfer of bending moments to the support structure and in a like manner substantially minimizes forces being transferred between the support structure and the steam generator as a result of seismic disturbances. 4 figs.

Moldenhauer, J.E.

1987-08-25T23:59:59.000Z

13

Steam Generator Management Program  

Science Conference Proceedings (OSTI)

The 24th EPRI Steam Generator NDE Workshop took place in San Diego, California, July 1113, 2005. It covered one full day and two half days of presentations. Attendees included representatives from domestic and overseas nuclear utilities, nuclear steam supply system (NSSS) vendors, nondestructive evaluation (NDE) service and equipment organizations, research laboratories, and regulatory bodies. This annual workshop serves as a forum for NDE specialists to gather and discuss current steam generator NDE iss...

2005-12-08T23:59:59.000Z

14

Productivity Improvement for Fossil Steam Power Plants, 2007  

Science Conference Proceedings (OSTI)

The Productivity Improvement Handbook for Fossil Steam Plants (1006315), now in its third edition, has included descriptions of advanced techniques and products, successfully applied and tested. Many of these have been described in the 2005 publication Productivity Improvement for Fossil Steam Plants 2005: 100 Hundred Case Studies (1012098) and in Productivity Improvement for Fossil Steam Power Plants 2006 (1014598). Since then, further productivity improvement case studies have been reviewed on the Prod...

2007-12-21T23:59:59.000Z

15

Steam generator designs  

SciTech Connect

A combined cycle is any one of combinations of gas turbines, steam generators or heat recovery equipment, and steam turbines assembled for the reduction in plant cost or improvement of cycle efficiency in the utility power generation process. The variety of combined cycles discussed for the possibilities for industrial applications include gas turbine plus unfired steam generator; gas turbine plus supplementary fired steam generator; gas turbine plus furnace-fired steam generator; and supercharged furnace-fired system generator plus gas turbine. These units are large enough to meet the demands for the utility applications and with the advent of economical coal gasification processes to provide clean fuel, the combined-cycle applications are solicited. (MCW)

Clayton, W.H.; Singer, J.G.

1973-07-01T23:59:59.000Z

16

Steam generator replacement overview  

Science Conference Proceedings (OSTI)

Since nuclear power began to be widely used for commercial purposes in the 1960s, unit operators have experienced a variety of problems with major components. Although many of the problems have diminished considerably, those associated with pressurized water reactor (PWR) steam generators persist. Steam generator problems rank second, behind refueling outages, as the most significant contributor to lost electricity generation. As of December 31, 1995, 38 steam generators had been replaced in 13 of the 72 operating PWRs, and three units had been shut down prematurely, due primarily (or partially) to degradation of their steam generators: Portland General Electric`s Trojan unit, located in Prescott, OR, in 1992; Southern California Edison`s San Onofre 1, located in San Clemente, CA, in 1992; and Sacramento Municipal Utility District`s Rancho Seco unit in 1989. In the coming years, operators of PWRs in the US with degraded steam generators will have to decide whether to make annual repairs (with eventual derating likely), replace the generators or shut the plants down prematurely. To understand the issues and decisions utility managers face, this article examines problems encountered at steam generators over the past few decades and identifies some of the remedies that utility operators and the nuclear community have employed, including operational changes, maintenance, repairs and steam generator replacement.

Chernoff, H. [Science Applications International Corp., McLean, VA (United States); Wade, K.C. [USDOE Energy Information Administration, Washington, DC (United States)

1996-01-01T23:59:59.000Z

17

METHODOLOGIES FOR REVIEW OF THE HEALTH AND SAFETY ASPECTS OF PROPOSED NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL SITES AND FACILITIES. VOLUME 9 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network (OSTI)

Fossil-Fuel-Fired Steam Generators," U.S. Environmentalbasin Boiler or PWR Steam Generator Blowdown Transmissionreactor coolant pumps, steam generators, piping, main stream

Nero, A.V.

2010-01-01T23:59:59.000Z

18

Steam generator tube failures  

SciTech Connect

A review and summary of the available information on steam generator tubing failures and the impact of these failures on plant safety is presented. The following topics are covered: pressurized water reactor (PWR), Canadian deuterium uranium (CANDU) reactor, and Russian water moderated, water cooled energy reactor (VVER) steam generator degradation, PWR steam generator tube ruptures, the thermal-hydraulic response of a PWR plant with a faulted steam generator, the risk significance of steam generator tube rupture accidents, tubing inspection requirements and fitness-for-service criteria in various countries, and defect detection reliability and sizing accuracy. A significant number of steam generator tubes are defective and are removed from service or repaired each year. This wide spread damage has been caused by many diverse degradation mechanisms, some of which are difficult to detect and predict. In addition, spontaneous tube ruptures have occurred at the rate of about one every 2 years over the last 20 years, and incipient tube ruptures (tube failures usually identified with leak detection monitors just before rupture) have been occurring at the rate of about one per year. These ruptures have caused complex plant transients which have not always been easy for the reactor operators to control. Our analysis shows that if more than 15 tubes rupture during a main steam line break, the system response could lead to core melting. Although spontaneous and induced steam generator tube ruptures are small contributors to the total core damage frequency calculated in probabilistic risk assessments, they are risk significant because the radionuclides are likely to bypass the reactor containment building. The frequency of steam generator tube ruptures can be significantly reduced through appropriate and timely inspections and repairs or removal from service.

MacDonald, P.E.; Shah, V.N.; Ward, L.W.; Ellison, P.G.

1996-04-01T23:59:59.000Z

19

STEAM GENERATOR FOR NUCLEAR REACTOR  

DOE Patents (OSTI)

The steam generator described for use in reactor powergenerating systems employs a series of concentric tubes providing annular passage of steam and water and includes a unique arrangement for separating the steam from the water. (AEC)

Kinyon, B.W.; Whitman, G.D.

1963-07-16T23:59:59.000Z

20

Proceedings: Eighth International Conference on Cycle Chemistry in Fossil and Combined Cycle Plants with Heat Recovery Steam Generators, June 20-22, 2006, Calgary, Alberta Canada  

Science Conference Proceedings (OSTI)

Proper selection, application, and optimization of the cycle chemistry have long been recognized as integral to ensuring the highest possible levels of component availability and reliability in fossil-fired generating plant units. These proceedings of the Eighth EPRI International Conference on Cycle Chemistry in Fossil Plants address state-of-the-art practices in conventional and combined cycle plants. The content provides a worldwide perspective on cycle chemistry practices, and insight as to industry ...

2007-03-20T23:59:59.000Z

Note: This page contains sample records for the topic "fossil steam generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Productivity Improvement for Fossil Steam Power Plants, 2006  

Science Conference Proceedings (OSTI)

The Productivity Improvement Handbook for Fossil Steam Plants (EPRI report 1006315), now in its third edition, includes many descriptions of advanced techniques and products successfully applied and tested. Many of these were described in the 2005 publication Productivity Improvement for Fossil Steam Plants 2005: 100 Hundred Case Studies (1012098). Since then, many productivity improvement case studies have been reviewed on the website of the Productivity Improvement User Group. These improvements have b...

2006-12-18T23:59:59.000Z

22

STEAM GENERATOR PRELIMINARY DESIGN  

SciTech Connect

A conceptual study on design of sodium-cooled reactor steam generators was conducted. Included is a detailed description of the preliminary design and analysis, based on the use of known materials and existing methods of fabrication. (See also APAE-41 Vols. I and III.) (J.R.D.)

1959-02-28T23:59:59.000Z

23

Steam Generator Management Program: Steam Generator Engineering Training Course 1  

Science Conference Proceedings (OSTI)

This technical update provides training material that was prepared for the first of three Steam Generator Engineer Training Program courses. The Steam Generator Engineer Training Program is a comprehensive training program of the Steam Generator Management Program. The content of this course is based on an industry-developed job analysis for a steam generator engineer. The job analysis resulted in eight high-level tasks; therefore, eight training modules will be developed over a three-year period beginni...

2009-03-25T23:59:59.000Z

24

Fossil Generating Station Case Histories  

Science Conference Proceedings (OSTI)

This annual EPRI Technical Update is a compilation of several case histories of events and activities that occurred at member fossil generating stations in 2007. The purpose of this report is to share this operating experience with other member utilities so that lessons can be learned and an opportunity provided to improve overall performance across the generation fleet.

2008-03-27T23:59:59.000Z

25

Steam generator tube rupture study  

E-Print Network (OSTI)

This report describes our investigation of steam generator behavior during a postulated tube rupture accident. Our study was performed using the steam generator, thermal-hydraulic analysis code THERMIT-UTSG. The purpose ...

Free, Scott Thomas

1986-01-01T23:59:59.000Z

26

Options for Generating Steam Efficiently  

E-Print Network (OSTI)

This paper describes how plant engineers can efficiently generate steam when there are steam generators and Heat Recovery Steam Generators in their plant. The process consists of understanding the performance characteristics of the various equipment as a function of load and operating them close to the maximum efficiency point.

Ganapathy, V.

1996-04-01T23:59:59.000Z

27

ADVANCED STEAM GENERATORS  

SciTech Connect

Concerns about climate change have encouraged significant interest in concepts for ultra-low or ''zero''-emissions power generation systems. In some proposed concepts, nitrogen is removed from the combustion air and replaced with another diluent such as carbon dioxide or steam. In this way, formation of nitrogen oxides is prevented, and the exhaust stream can be separated into concentrated CO{sub 2} and steam or water streams. The concentrated CO{sub 2} stream could then serve as input to a CO{sub 2} sequestration process or utilized in some other way. Some of these concepts are illustrated in Figure 1. This project is an investigation of one approach to ''zero'' emission power generation. Oxy-fuel combustion is used with steam as diluent in a power cycle proposed by Clean Energy Systems, Inc. (CES) [1,2]. In oxy-fuel combustion, air separation is used to produce nearly pure oxygen for combustion. In this particular concept, the combustion temperatures are moderated by steam as a diluent. An advantage of this technique is that water in the product stream can be condensed with relative ease, leaving a pure CO{sub 2} stream suitable for sequestration. Because most of the atmospheric nitrogen has been separated from the oxidant, the potential to form any NOx pollutant is very small. Trace quantities of any minor pollutants species that do form are captured with the CO{sub 2} or can be readily removed from the condensate. The result is a nearly zero-emission power plant. A sketch of the turbine system proposed by CES is shown in Figure 2. NETL is working with CES to develop a reheat combustor for this application. The reheat combustion application is unusual even among oxy-fuel combustion applications. Most often, oxy-fuel combustion is carried out with the intent of producing very high temperatures for heat transfer to a product. In the reheat case, incoming steam is mixed with the oxygen and natural gas fuel to control the temperature of the output stream to about 1480 K. A potential concern is the possibility of quenching non-equilibrium levels of CO or unburned fuel in the mixing process. Inadequate residence times in the combustor and/or slow kinetics could possibly result in unacceptably high emissions. Thus, the reheat combustor design must balance the need for minimal excess oxygen with the need to oxidize the CO. This paper will describe the progress made to date in the design, fabrication, and simulation of a reheat combustor for an advanced steam generator system, and discuss planned experimental testing to be conducted in conjunction with NASA Glenn Research Center-Plumb Brook Station.

Richards, Geo. A.; Casleton, Kent H.; Lewis, Robie E.; Rogers, William A. (U.S. DOE National Energy Technology Laboratory); Woike, Mark R.; Willis; Brian P. (NASA Glenn Research Center)

2001-11-06T23:59:59.000Z

28

Fossil Generating Station Case Histories  

Science Conference Proceedings (OSTI)

During 2005, EPRI Operations and Management Program managers and contractors have collected information on events that have occurred in fossil generating stations. These events represent only a small sample of those being experienced by the power generation industry, but provide a basis for understanding where actions to improve operations are necessary. Sufficient details have been included for analyzing the events without divulging sources. Recognizing that these reports represent actual events and not...

2006-03-30T23:59:59.000Z

29

Fossil Generating Station Case Histories  

Science Conference Proceedings (OSTI)

During 2006, EPRI Operations and Management Program managers have collected information on events that have occurred in fossil generating stations. These events represent only a small sample of those being experienced by the power generation industry, but provide a basis for understanding where actions to improve operations are necessary. Sufficient details have been included for analyzing the events without divulging sources. Recognizing that these reports represent actual events and not discounting the...

2007-03-27T23:59:59.000Z

30

Fossil Generating Case Histories 2008  

Science Conference Proceedings (OSTI)

This annual Electric Power Research Institute (EPRI) report is a compilation of events and activities that occurred at member fossil generating stations in 2008. The purpose of this report is to share these operating experiences (OEs) with other member utilities so that lessons can be learned and an opportunity provided to improve overall performance across the generation fleet. The report also includes an appendix that contains four assessments that took place at plants during 2008. The focus of these a...

2009-03-31T23:59:59.000Z

31

Productivity Improvement for Fossil Steam Power Plants: Industry Case Studies  

Science Conference Proceedings (OSTI)

The "Productivity Improvement Handbook for Fossil Steam Plants," now in its third edition, has included many descriptions of successfully applied advanced techniques and products. In the last few years, an increasingly diverse set of plant case studies have been described in some detail on the website of the Productivity Improvement User Group. This report assembles more than sixty of these case studies on subjects spanning the power plant from the boiler and the steam turbine, through plant auxiliaries ...

2003-11-17T23:59:59.000Z

32

Steam Generator Management Program: Alloy 800 Steam Generator Tubing Experience  

Science Conference Proceedings (OSTI)

Nuclear grade (NG) Alloy 800 has been used for steam generator tubing since 1972 in over 50 nuclear power plants worldwide. The operational performance of this alloy has been very good, although some degradation modes have recently been observed. This report describes worldwide operating experience for Alloy 800 steam generator tubing along with differences in tubing material, plant design, and operating conditions that can affect tube degradation. The various types of plants with Alloy 800 steam generat...

2012-06-26T23:59:59.000Z

33

Degradation of Steam Generator Internals  

Science Conference Proceedings (OSTI)

Aug 1, 1999 ... Regulatory Perspective on Industry's Response to Generic Letter 97-06, " Degradation of Steam Generator Internals" by S. Coffin, M. Subudhi, ...

34

Steam Generator Management Program: Assessment of Steam Generator Tube Plugs  

Science Conference Proceedings (OSTI)

EPRI Steam Generator Management Program guidelines require that utilities perform integrity assessments of all steam generator (SG) components, including tube plugs. SG inspection outages should specifically include monitoring of degradation in tube hardware such as plugs. This report provides guidance for utility engineers to use in determining tube plug inspection requirements, including scope, technique, and periodicity.BackgroundGenerally, utilities perform ...

2013-08-28T23:59:59.000Z

35

Turbine-Generator Auxiliary Systems, Volume 2: Turbine Steam Seal System Maintenance Guide  

Science Conference Proceedings (OSTI)

The Turbine-Generator Auxiliary Systems, Volume 2: Turbine Steam Seal System Maintenance Guide provides nuclear and fossil plant personnel with operation and maintenance guidance on the turbine steam seal system components.

2006-12-14T23:59:59.000Z

36

Steam generators, turbines, and condensers. Volume six  

SciTech Connect

Volume six covers steam generators (How steam is generated, steam generation in a PWR, vertical U-tube steam generators, once-through steam generators, how much steam do steam generators make.), turbines (basic turbine principles, impulse turbines, reaction turbines, turbine stages, turbine arrangements, turbine steam flow, steam admission to turbines, turbine seals and supports, turbine oil system, generators), and condensers (need for condensers, basic condenser principles, condenser arrangements, heat transfer in condensers, air removal from condensers, circulating water system, heat loss to the circulating water system, factors affecting condenser performance, condenser auxiliaries).

1986-01-01T23:59:59.000Z

37

Productivity Improvement for Fossil Steam Power Plants, 2009  

Science Conference Proceedings (OSTI)

This report assembles case studies on productivity improvement taken from the webside of Productivity Improvement Expert Reviews (PIER) on subjects spanning the power plant from the boiler to the steam turbine, and including the plant auxiliaries and the environmental control equipment. These studies have been critically assessed by technical experts who have discussed the improvements with the power plant staff and judged their potential for future use in the fossil industry. This 2009 report also looks...

2010-01-15T23:59:59.000Z

38

GCFR steam generator conceptual design  

SciTech Connect

The gas-cooled fast reactor (GCFR) steam generators are large once-through heat exchangers with helically coiled tube bundles. In the GCFR demonstration plant, hot helium from the reactor core is passed through these units to produce superheated steam, which is used by the turbine generators to produce electrical power. The paper describes the conceptual design of the steam generator. The major components and functions of the design are addressed. The topics discussed are the configuration, operating conditions, design criteria, and the design verification and support programs.

Holm, R.A.; Elliott, J.P.

1980-01-01T23:59:59.000Z

39

Steam Generator Management Program: Steam Generator Integrity Assessment Guidelines  

Science Conference Proceedings (OSTI)

This report provides guidance for evaluating the condition of steam generator (SG) tubes based on nondestructive examination (NDE) or in situ pressure testing. The integrity assessments are normally performed during a reactor refueling outage. Nuclear power plant licensees who follow the guidance in this report will have satisfied the requirements for degradation assessments, condition monitoring, and operational assessment as defined in the Nuclear Energy Institute (NEI) Steam Generator Program Guidelin...

2009-11-19T23:59:59.000Z

40

Steam Generator Management Program: Steam Generator Progress Report: Revision 18  

Science Conference Proceedings (OSTI)

BackgroundSince 1985, the Electric Power Research Institute (EPRI) has published the Steam Generator Progress Report (SGPR), which provides historical information on worldwide steam generator activities. This document was published once a year and distributed via hardcopy. Until 1998, the method of acquiring data for this report had been to issue annual survey forms to all PWR and pressurized heavy water reactor nuclear utilities worldwide. The information included in ...

2013-11-20T23:59:59.000Z

Note: This page contains sample records for the topic "fossil steam generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Heat Recovery Steam Generator (HRSG) Chemical Cleaning Guidelines  

Science Conference Proceedings (OSTI)

Combined cycle units with heat recovery steam generators (HRSGs) represent a substantial fraction of the new fossil generating capacity installed around the world since the 1990s. One of the goals of the EPRI HRSG Dependability Program is to make availability losses due to tube failures very low, no more than one per year. An earlier guideline, "Interim Cycle Chemistry Guidelines for Combined Cycle Heat Recovery Steam Generators" (EPRI Report TR-110051), shows organizations how to set up chemistry progra...

2003-12-03T23:59:59.000Z

42

Combustion gas turbine/steam generator plant  

SciTech Connect

A fired steam generator is described that is interconnected with a gas turbine/steam generator plant having at least one gas turbine group followed by an exhaust-gas steam generator. The exhaust-gas steam generator has a preheater and an evaporator. The inlet of the preheater is connected to a feedwater distribution line which also feeds a preheater in the fired steam generator. The outlet of the preheater is connected to the evaporator of the fired steam generator. The evaporator outlet of the exhaust-gas steam generator is connected to the input of a superheater in the fired steam generator.

Aguet, E.

1975-11-18T23:59:59.000Z

43

Steam Generator Integrity Assessment Guidelines  

Science Conference Proceedings (OSTI)

This report provides guidance for evaluating the condition of steam generator (SG) tubes based on nondestructive examination (NDE) or in situ pressure testing. This integrity assessment is normally performed during a reactor refueling outage. Nuclear power plant licensees who follow this document's guidelines will have satisfied their requirements for condition monitoring and operational assessment as defined in the Nuclear Energy Institute (NEI) initiative, Steam Generator Program Guidelines, NEI 97-06.

2006-07-25T23:59:59.000Z

44

Turbocompressor downhole steam-generating system  

SciTech Connect

This patent describes a downhole steam-generating system comprising: an air compressor; a steam generating unit, including: a combustor for combusting fuel with the compressed air from the compressor producing combustor exhaust products; and steam conversion means, in indirect heat-exchange relationship with the combustor, for converting water which is fed into the steam-conversion means into steam; a turbine which is rotated by the combustor exhaust products and steam from the steam-generating unit, the rotational motion of the turbine is mechanically coupled to the air compressor to drive the air compressor; and control bypass means associated with the steam generating unit and turbine for regulating the relative amounts of the combustor exhaust product and steam delivered to the turbine from the steam generating unit. The air compressor and turbine form an integral turbocompressor unit. The turbocompressor unit, steam-generating unit and control bypass means are located downhole during operation of the steam-generating system.

Wagner, W.R.

1987-07-28T23:59:59.000Z

45

Steam Generator Management Program: Flaw Handbook Calculator  

Science Conference Proceedings (OSTI)

The EPRI Steam Generator Management Program: Steam Generator Degradation Specific Flaw Handbook v1.0 defines burst pressure equations for steam generator tubes with various degradation morphologies, and the EPRI Steam Generator Management Program: Steam Generator Integrity Assessment Guidelines (1019038) describes a probabilistic evaluation process which can be used to account for key input parameter uncertainties. The Flaw Handbook Calculator software is an automated Microsoft Excelspreadsheet which cal...

2010-04-20T23:59:59.000Z

46

Heat Recovery Steam Generator Simulation  

E-Print Network (OSTI)

The paper discusses the applications of Heat Recovery Steam Generator Simulation. Consultants, plant engineers and plant developers can evaluate the steam side performance of HRSGs and arrive at the optimum system which matches the needs of the process plant, cogeneration or combined cycle plant. There is no need to design the HRSG per se and hence simulation is a valuable tool for anyone interested in evaluating the HRSG performance even before it is designed. It can also save a lot of time for specification writers as they need not guess how the steam side performance will vary with different gas/steam parameters. A few examples are given to show how simulation methods can be applied to real life problems.

Ganapathy, V.

1993-03-01T23:59:59.000Z

47

NUCLEAR FLASH TYPE STEAM GENERATOR  

DOE Patents (OSTI)

A nuclear steam generating apparatus is designed so that steam may be generated from water heated directly by the nuclear heat source. The apparatus comprises a pair of pressure vessels mounted one within the other, the inner vessel containing a nuclear reactor heat source in the lower portion thereof to which water is pumped. A series of small ports are disposed in the upper portion of the inner vessel for jetting heated water under pressure outwardly into the atmosphere within the interior of the outer vessel, at which time part of the jetted water flashes into steam. The invention eliminates the necessity of any intermediate heat transfer medium and components ordinarily required for handling that medium. (AEC)

Johns, F.L.; Gronemeyer, E.C.; Dusbabek, M.R.

1962-09-01T23:59:59.000Z

48

Hybrid solar-fossil fuel power generation  

E-Print Network (OSTI)

In this thesis, a literature review of hybrid solar-fossil fuel power generation is first given with an emphasis on system integration and evaluation. Hybrid systems are defined as those which use solar energy and fuel ...

Sheu, Elysia J. (Elysia Ja-Zeng)

2012-01-01T23:59:59.000Z

49

Fast fluidized bed steam generator  

DOE Patents (OSTI)

A steam generator in which a high-velocity, combustion-supporting gas is passed through a bed of particulate material to provide a fluidized bed having a dense-phase portion and an entrained-phase portion for the combustion of fuel material. A first set of heat transfer elements connected to a steam drum is vertically disposed above the dense-phase fluidized bed to form a first flow circuit for heat transfer fluid which is heated primarily by the entrained-phase fluidized bed. A second set of heat transfer elements connected to the steam drum and forming the wall structure of the furnace provides a second flow circuit for the heat transfer fluid, the lower portion of which is heated by the dense-phase fluidized bed and the upper portion by the entrained-phase fluidized bed.

Bryers, Richard W. (Flemington, NJ); Taylor, Thomas E. (Bergenfield, NJ)

1980-01-01T23:59:59.000Z

50

Steam Generator Tube Integrity Program [Corrosion and Mechanics of  

NLE Websites -- All DOE Office Websites (Extended Search)

Steam Generator Tube Steam Generator Tube Integrity Program Capabilities Materials Testing Environmentally Assisted Cracking (EAC) of Reactor Materials Corrosion Performance/Metal Dusting Overview Light Water Reactors Fatigue Testing of Carbon Steels and Low-Alloy Steels Environmentally Assisted Cracking of Ni-Base Alloys Irradiation-Induced Stress Corrosion Cracking of Austenitic Stainless Steels Steam Generator Tube Integrity Program Air Oxidation Kinetics for Zr-based Alloys Fossil Energy Fusion Energy Metal Dusting Publications List Irradiated Materials Steam Generator Tube Integrity Other Facilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Corrosion and Mechanics of Materials Light Water Reactors Bookmark and Share

51

Steam Generator Vibration and Wear Protection  

Science Conference Proceedings (OSTI)

This project developed and validated a steam generator flow-induced tube vibration and wear prediction methodology.

1998-03-27T23:59:59.000Z

52

Simplify heat recovery steam generator evaluation  

SciTech Connect

Heat recovery steam generators (HRSGs) are widely used in process and power plants, refineries and in several cogeneration/combined cycle systems. They are usually designed for a set of gas and steam conditions but often operate under different parameters due to plant constraints, steam demand, different ambient conditions (which affect the gas flow and exhaust gas temperature in a gas turbine plant), etc. As a result, the gas and steam temperature profiles in the HRSG, steam production and the steam temperature differ from the design conditions, affecting the entire plant performance and economics. Also, consultants and process engineers who are involved in evaluating the performance of the steam system as a whole, often would like to simulate the performance of an HRSG under different gas flows, inlet gas temperature and analysis, steam pressure and feed water temperature to optimize the entire steam system and select proper auxiliaries such as steam turbines, condensers, deaerators, etc.

Ganapathy, V. (ABCO Industries, Abilene, TX (US))

1990-03-01T23:59:59.000Z

53

Emergency Management Guideline for Fossil Generating Stations  

Science Conference Proceedings (OSTI)

This EPRI guideline builds on industry experience, including lessons learned during the severe U.S. hurricane seasons of 2004 and 2005, to present a framework for the development of an emergency management program at a generating station. The guideline is specifically intended for fossil plants, although much of the information is relevant to other types of facilities.

2008-03-20T23:59:59.000Z

54

Fossil Generating Station Case Histories 2010  

Science Conference Proceedings (OSTI)

During 2010, EPRI Operations and Management Program managers and contractors collected information on events that have occurred in fossil generating stations. These events represent only a small sample of those being experienced by the power generation industry, but they provide a basis for understanding where actions to improve operations are necessary. Sufficient details have been included for analyzing the events without divulging sources. Recognizing that these reports represent actual events and not...

2010-12-23T23:59:59.000Z

55

Fossil Generating Station Case Histories 2009  

Science Conference Proceedings (OSTI)

In this report, the Electric Power Research Institute (EPRI) has compiled the events and activities that occurred at member fossil generating stations in 2009. The purpose of this report is to share this operating experience with other member utilities so that lessons can be learned and applied to improve overall performance across the generation fleet. The report also includes a summary of findings from plant operations and maintenance assessments that were conducted in 2008–2009. The focus of these ass...

2009-12-21T23:59:59.000Z

56

Productivity Improvement for Fossil Steam Power Plants 2005: One Hundred Case Studies  

Science Conference Proceedings (OSTI)

The "Productivity Improvement Handbook for Fossil Steam Plants" (EPRI report 1006315), now in its third edition, has included many descriptions of advanced techniques and products successfully applied and tested. Many of these were described in the 2003 publication "Productivity Improvement for Fossil Steam Plants: Industry Case Studies" (1009239). Since 2001, more than one hundred productivity improvement case studies have been described in some detail on the website of the Productivity Improvement User...

2005-08-01T23:59:59.000Z

57

Ultrasupercritical Steam Turbines: Design and Materials Issues for the Next Generation  

Science Conference Proceedings (OSTI)

The ultrasupercritical fossil power plant is one option for high-efficiency and low-emissions electricity generation. It is based on significant increases in steam temperature and pressure, beyond those traditionally employed for supercritical plants. Such steam conditions put new demands on the steam turbine design, particularly where the new unit has to operate in a business climate that demands flexible, reliable operation of generating plants. This report reviews demands on the ultrasupercritical ste...

2002-03-14T23:59:59.000Z

58

IMPROVEMENTS IN STEAM GENERATING PLANT AND AN IMPROVED METHOD OF GENERATING STEAM  

SciTech Connect

A steam generating plant, designed for heat transfer from a liquid metal (potassium, sodium, or their alloy) with reduced danger of explosion, is based on the fact that, if steam (especially superheated) rather than water contacts the liquid metal, the risk of explosion is much reduced. In this plant steam is superheated by heat transfer from liquid metal, the steam bsing generated by heat transfer between the superheated steam and water. Diagrams are given for the plant, which comprises a series of heat exchangers in which steam is superheated; part of the superheated steam is recycled to convert water into steam. Apart from the danger of a steam--liquid metal contact, the main danger is that the superheated steam might cool, coming to the saturated condition; this danger can be averted by setting up mceans for detecting low steam temperatures. (D.L.C.)

Zoller, R.E.

1960-09-01T23:59:59.000Z

59

Efficiently generate steam from cogeneration plants  

SciTech Connect

As cogeneration gets more popular, some plants have two choices of equipment for generating steam. Plant engineers need to have a decision chart to split the duty efficiently between (oil-fired or gas-fired) steam generators (SGs) and heat recovery steam generators (HRSGs) using the exhaust from gas turbines. Underlying the dilemma is that the load-versus-efficiency characteristics of both types of equipment are different. When the limitations of each type of equipment and its capability are considered, analysis can come up with several selection possibilities. It is almost always more efficient to generate steam in an HRSG (designed for firing) as compared with conventional steam generators. However, other aspects, such as maintenance, availability of personnel, equipment limitations and operating costs, should also be considered before making a final decision. Loading each type of equipment differently also affects the overall efficiency or the fuel consumption. This article describes the performance aspects of representative steam generators and gas turbine HRSGs and suggests how plant engineers can generate steam efficiently. It also illustrates how to construct a decision chart for a typical installation. The equipment was picked arbitrarily to show the method. The natural gas fired steam generator has a maximum capacity of 100,000 lb/h, 400-psig saturated steam, and the gas-turbine-exhaust HRSG has the same capacity. It is designed for supplementary firing with natural gas.

Ganapathy, V. [ABCO Industries, Abilene, TX (United States)

1997-05-01T23:59:59.000Z

60

Steam Generator Management Program: Steam Generator Engineering Training Course 2 Handbook  

Science Conference Proceedings (OSTI)

This Technical Update provides training material that was prepared for the second Steam Generator Engineering Training class. The Steam Generator Engineering Training is a comprehensive training program for steam generator program managers. The content of the training is based on an industry-developed job analysis for a steam generator engineer. The job analysis resulted in eight high-level tasks; consequently, eight training modules were planned to be developed over a three-year period beginning in 2008...

2010-04-26T23:59:59.000Z

Note: This page contains sample records for the topic "fossil steam generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

LMR steam generator blowdown with RETRAN  

SciTech Connect

One of the transients being considered in the FSAR Chapter 15 analyses of anticipated LMR transients is the fast blowdown of a steam generator upon inadvertent actuation of the liquid metal/water reaction mitigation system. For the blowdown analysis, a stand-alone steam generator model for the IFR plant was constructed using RETRAN.

Wei, T.Y.C.

1985-01-01T23:59:59.000Z

62

Hockey-stick steam generator for LMFBR  

SciTech Connect

This paper presents the criteria and evaluation leading to the selection of the Hockey Stick Steam Generator Concept and subsequent development of that concept for LMFBR application. The selection process and development of the Modular Steam Generator (MSG) is discussed, including the extensive test programs that culminated in the manufacture and test of a 35 MW(t) Steam Generator. The design of the CRBRP Steam Generator is described, emphasizing the current status and a review of the critical structural areas. CRBRP steam generator development tests are evaluated, with a discussion of test objectives and rating of the usefulness of test results to the CRBRP prototype design. Manufacturing experience and status of the CRBRP prototype and plant units is covered. The scaleup of the Hockey Stick concept to large commercial plant application is presented, with an evaluation of scaleup limitations, transient effects, and system design implications.

Hallinan, G.J.; Svedlund, P.E.

1981-01-01T23:59:59.000Z

63

Circumferential cracking of steam generator tubes  

SciTech Connect

On April 28, 1995, the U.S. Nuclear Regulatory Commission (NRC) issued Generic Letter (GL) 95-03, {open_quote}Circumferential Cracking of Steam Generator Tubes.{close_quote} GL 95-03 was issued to obtain information needed to verify licensee compliance with existing regulatory requirements regarding the integrity of steam generator tubes in domestic pressurized-water reactors (PWRs). This report briefly describes the design and function of domestic steam generators and summarizes the staff`s assessment of the responses to GL 95-03. The report concludes with several observations related to steam generator operating experience. This report is intended to be representative of significant operating experience pertaining to circumferential cracking of steam generator tubes from April 1995 through December 1996. Operating experience prior to April 1995 is discussed throughout the report, as necessary, for completeness.

Karwoski, K.J.

1997-04-01T23:59:59.000Z

64

Steam Generator Management Program: Dynamic Analysis of a Steam Generator: Part 2 – Stability Analysis of Representative Steam Gener ators  

Science Conference Proceedings (OSTI)

This report summarizes the results of a project that examined the effect of tube support plate blockage in recirculating steam generators on water level stability. This report builds upon Electric Power Research Institute (EPRI) report 1025134.BackgroundWater level oscillations in recirculating steam generators occur due to hydrodynamic instabilities in the natural circulation system. Utilities have reported water level oscillations in operating steam ...

2013-12-18T23:59:59.000Z

65

Control system for fluid heated steam generator  

DOE Patents (OSTI)

A control system for controlling the location of the nucleate-boiling region in a fluid heated steam generator comprises means for measuring the temperature gradient (change in temperature per unit length) of the heating fluid along the steam generator; means for determining a control variable in accordance with a predetermined function of temperature gradients and for generating a control signal in response thereto; and means for adjusting the feedwater flow rate in accordance with the control signal.

Boland, James F. (Bonneville County, ID); Koenig, John F. (Idaho Falls, ID)

1985-01-01T23:59:59.000Z

66

Control system for fluid heated steam generator  

DOE Patents (OSTI)

A control system for controlling the location of the nucleate-boiling region in a fluid heated steam generator comprises means for measuring the temperature gradient (change in temperature per unit length) of the heating fluid along the steam generator; means for determining a control variable in accordance with a predetermined function of temperature gradients and for generating a control signal in response thereto; and means for adjusting the feedwater flow rate in accordance with the control signal.

Boland, J.F.; Koenig, J.F.

1984-05-29T23:59:59.000Z

67

Solid fuel fired oil field steam generators  

Science Conference Proceedings (OSTI)

The increased shortages being experienced in the domestic crude oil supply have forced attention on the production of heavy crude oils from proven reserves to supplement requirements for petroleum products. Since most heavy crudes require heat to facilitate their extraction, oil field steam generators appear to represent a key component in any heavy crude oil production program. Typical oil field steam generator experience in California indicates that approx. one out of every 3 bbl of crude oil produced by steam stimulation must be consumed as fuel in the steam generators to produce the injection steam. The scarcity and price of crude oil makes it desirable to substitute more readily available and less expensive solid fuels for the crude oil which is presently serving as the primary steam generator fuel. Solid fuel firing capability also is of importance because of the substantial amounts of high heating value and low cost petroleum coke available from the processing of heavy crude oil and suitable for use as a steam generator fuel.

Young, W.W.

1982-01-01T23:59:59.000Z

68

Generating Steam by Waste Incineration  

E-Print Network (OSTI)

Combustible waste is a significant source of steam at the new John Deere Tractor Works assembly plant in Waterloo, Iowa. The incinerators, each rated to consume two tons of solid waste per hour, are expected to provide up to 100 percent of the full production process steam requirements. The waste incineration system consists of a wood dunnage shredder, two Skid-Steer Loaders for incinerator charging, two incinerators, and a wet ash conveyor. The equipment is housed in a building with floor space to accommodate loads of combustible waste delivered for incineration. Incombustible material is segregated at the source. A review of operational experience and the results of a study on actual steam production costs will be presented with the intent that others will be able to use the information to advance the state of the art of high volume controlled air waste incineration.

Williams, D. R.; Darrow, L. A.

1981-01-01T23:59:59.000Z

69

Heat Recovery Steam Generator Materials Selection Guideline  

Science Conference Proceedings (OSTI)

A considerable number of failures have occurred over the past decade in heat recovery steam generators (HRSGs). Many of these failures are attributed to poor design, improper operation, poor fabrication, or poor installation practices, but a number of them are attributed directly to improper material selection. In March 2004, the Electric Power Research Institute (EPRI) published the first heat recovery steam generator materials selection and repair guidelines (HRSG Material Selection and Repair Guidelin...

2010-12-19T23:59:59.000Z

70

Natural circulation steam generator model for optimal steam generator water level control  

SciTech Connect

Several authors have cited the control of steam generator water level as an important problem in the operation of pressurized water reactor plants. In this paper problems associated with steam generator water level control are identified, and advantages of modern estimation and control theory in dealing with these problems are discussed. A new state variable steam generator model and preliminary verification results using data from the loss of fluid test (LOFT) plant are also presented.

Feeley, J.J.

1979-06-01T23:59:59.000Z

71

Steam Generator Management Program: Flaw Tolerance Evaluation of the Steam Generator Channel Head  

Science Conference Proceedings (OSTI)

 Indications have previously been reported in the steam generator divider plate at operating plants outside the United States. The function of the divider plate in most steam generators is to separate the cold and hot legs of the channel head as the primary water enters the steam generator so that the primary coolant flows up into the tubes. As such, the divider plate is not considered a primary pressure ...

2013-04-25T23:59:59.000Z

72

Steam Generator Management Program: Steam Generator In Situ Pressure Test Guidelines, Revision 4  

Science Conference Proceedings (OSTI)

Information in this document provides guidance for the performance of in situ pressure testing of steam generator tubes. In situ pressure testing refers to hydrostatic pressure tests performed on installed tubing in the field. Such testing is considered a direct means of evaluating tube structural and leakage integrity. In situ pressure testing can be used to support condition monitoring of steam generator tube integrity.This is a required document for a steam generator program developed ...

2012-10-02T23:59:59.000Z

73

POWER PLANT RELIABILITY-AVAILABILITY AND STATE REGULATION. VOLUME 7 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network (OSTI)

which steam is raised. nuclear fuel generates heat that isattention to nuclear and fossil-fuel plants, and these areFor all the fossil-fuel and nuclear (However, categories,

Nero, A.V.

2010-01-01T23:59:59.000Z

74

Monitoring and Controlling Carryover in Heat Recovery Steam Generators  

Science Conference Proceedings (OSTI)

Optimization of the cycle chemistry in the steam generating system of combined-cycle/heat recovery steam generator (HRSG) plants is vital to ensuring the efficient and reliable operation of the equipment. Monitoring of steam purity and drum carryover are core parameters for HRSG chemistry programs. Carryover is any solid, liquid, or vaporous contaminant that leaves the HRSG steam drum along with the steam. Carryover might be the result of the limited separation of the steam/water mixture in the steam dru...

2010-10-27T23:59:59.000Z

75

Chapter 3. Fossil-Fuel Stocks for Electricity Generation  

U.S. Energy Information Administration (EIA)

U.S. Energy Information Administration/Electric Power Monthly June 2012 69 Chapter 3. Fossil-Fuel Stocks for Electricity Generation

76

Design and Performance Aspects of Steam Generators  

E-Print Network (OSTI)

Packaged steam generators are widely used in process and power plants. They are also used as standby boilers in cogeneration/combined cycle plants. The general feeling among consultants, plant engineers and end users is that packaged steam generators are "standard" or "off-the-shelf items", that there exists a model number for a given steam capacity and one has to live with whatever performance is offered by the boiler vendor. Unfortunately, boiler suppliers also encourage specifying of steam generators based on standard, pre-packaged designs. A "standard" boiler has several limitations such as pre-determined furnace dimensions, tube length, surface area, tube spacings etc, which may or may not be the optimum choice for a given steam demand, particularly when today's emission levels have to be met. Also, operating costs, which form a significant portion of overall costs, are ignored by consultants when evaluating various designs for possible purchase. This paper highlights the importance of custom designing packaged steam generators and the resulting benefits from boiler performance viewpoint.

Ganapathy, V.

1994-04-01T23:59:59.000Z

77

Steam Generator Management Program: Proceedings of the 26th Steam Generator NDE Workshop  

Science Conference Proceedings (OSTI)

This year's Steam Generator nondestructive evaluation (NDE) Workshop took place in Big Sky, Montana, on July 1618, 2007, and included one full day and two half days of presentations. Attendees included representatives from domestic and international nuclear utilities, nuclear steam supply system (NSSS) vendors, NDE service and equipment organizations, research laboratories, and regulatory bodies. This annual workshop serves as a forum for NDE specialists to gather and discuss current steam generator NDE ...

2007-08-29T23:59:59.000Z

78

Heat Recovery Steam Generator Cycle Chemistry Instrumentation  

Science Conference Proceedings (OSTI)

Effective monitoring of the purity of water and steam is an integral part of any productive cycle chemistry monitoring program. The Electric Power Research Institute's (EPRI's) heat recovery steam generator (HRSG) cycle chemistry guidelines identified a group of core monitoring parameters that are considered the minimum requirements. Meeting these requirements is part of EPRI's cycle chemistry benchmarking criteria for HRSGs. In addition to the core parameters, many chemistry parameters might need to be ...

2010-11-19T23:59:59.000Z

79

Design with Constructal Theory: Steam Generators, Turbines and Heat Exchangers.  

E-Print Network (OSTI)

?? This dissertation shows that the architecture of steam generators, steam turbines and heat exchangers for power plants can be predicted on the basis of… (more)

Kim, Yong Sung

2010-01-01T23:59:59.000Z

80

Procedural and administrative techniques to improve steam generator layup  

Science Conference Proceedings (OSTI)

A number of utilities have been working to improve layup techniques for steam generators; especially once-through steam generators. There are two main elements to successful layup of steam generators: (a) starting with and maintaining high-quality layup water and (b) minimizing the exposure of steam generator internals to air. Specific procedural and administrative techniques have been developed to ensure these two elements are achieved. These appear to be applicable to most steam generators.

Carrick, B.J.

1985-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fossil steam generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Downhole steam generator at Kern River  

SciTech Connect

Testing of a prototype down-hole steam generator for use in enhanced oil recovery (EOR) operations has begun at a heavy oil reservoir in the Kern River oil field in California. Steam and combustion gases are directed into an 800-ft-deep reservoir through a standard surface steam delivery system, although the system is designed to function at depths to 4500 ft. Present steam injection techniques require one-third of the oil recovered to be used to fuel the injection system, and the boilers require scrubbers to control emissions to specifications. The down-hole system is expected to use only 2/3 as much fuel as the conventional systems and to have less impact on air quality.

Rintoul, B.

1980-05-01T23:59:59.000Z

82

Design of a heat recovery steam generator  

SciTech Connect

A gas turbine in the size range of 20,000 hp (14.9 MW) was retrofitted with a heat recovery steam generator (HRSG). The HRSG produces high pressure superheated steam for use in a steam turbine. Supplementary firing is used to more than double the steam production over the unfired case. Because of many unusual constraints, an innovative design of the HRSG was formulated. These design constraints included: a wide range of operating conditions was to be accommodated; very limited space in the existing plant; and a desire to limit the field construction work necessary in order to provide a short turnaround time. This paper discusses the design used to satisfy these conditions.

Logeais, D.R.

1984-06-01T23:59:59.000Z

83

Advances in steam turbine technology for power generation  

SciTech Connect

This book contains articles presented at the 1990 International Joint Power Generation Conference. It is organized under the following headings: Solid particle erosion in steam turbines, Steam turbine failure analysis, Steam turbine upgrades, steam turbine blading development, Boiler feed pumps and auxiliary steam turbine drives.

Bellanca, C.P. (Dayton Power and Light Company (US))

1990-01-01T23:59:59.000Z

84

The steam generator changeout at Beznau-1  

Science Conference Proceedings (OSTI)

At the Beznau-1 nuclear power plant in Switzerland, the unit's two steam generators were replaced in the second quarter of 1993. The steam generator replacement portion of the outage - the period from when contractors were given access to the containment to when the steam generators were ready for hydrostatic pressure testing - was 44 days (April 12- May 26, 1993), shorter than the 46 days gained. Total length of the outage was 99 days (April 2 - July 9). Collective radiation dose received by project personnel was 110 person-rem, much less than the planned 250 person-rem. Project cost was about $50 million, including the new SGs and the replacement work, according to Nordostschweizerische Kraftwerke AG (NOK), plant owner and operator.

Not Available

1993-11-01T23:59:59.000Z

85

Steam generation in compound parabolic concentrator collectors  

SciTech Connect

This report describes the advantages of generating steam directly in a nonimaging compound parabolic concentrator (CPC) collector rather than using a heat-transfer fluid and a secondary heat exchanger. The predicted performance advantages from generating steam directly in CPC collectors are significant, and that performance has ben verified using a collector built and tested at Argonne National Laboratory. The collector and the method used to test its operation in a steam-generating mode are described. Test results are included for a 6.4-m/sup 2/ array of evacuated tube collectors with an advanced absorber coating, silver reflectors, and tubes oriented in a north-south configuration. Also described are the test methods and results for indoor testing for heat loss by the collectors and outdoor testing of their instantaneous optical efficiency.

Allen, J.W.; Schertz, W.W.; Wantroba, A.S.

1985-08-01T23:59:59.000Z

86

Calibration of Instrumented Steam Separators to Determine Quality and Flow Distribution in an Operating Steam Generator  

Science Conference Proceedings (OSTI)

This study examined the feasibility of instrumenting steam separators on a steam generator as two-phase flowmeters to measure flow distributions and steam quality near the separator deck plate. Instrumented prototypical separators were tested in a laboratory under steam generator conditions, and test data correlations were developed. The usefulness of such data in the qualification of thermal-hydraulic computer codes was addressed.

1983-01-01T23:59:59.000Z

87

Steam Generator Management Program: Investigation of Steam Generator Secondary-Side Degradation  

Science Conference Proceedings (OSTI)

This document reviews and discusses age-related degradation that has occurred in the carbon steel internal components in the steam drums of Westinghouse steam generators (SGs), especially in original and early replacement SGs. The degradation is characterized by gradual thinning (loss of material) that is generally localized in the components as a result of exposure to high-velocity steam-water mixtures. Material loss from internal components has been noted during secondary-side visual inspections of ori...

2011-09-20T23:59:59.000Z

88

Steam Generator Management Program: Production of Steam Generator Tubing Flaws by Laboratory Autoclave Exposures  

Science Conference Proceedings (OSTI)

Qualification of a technique for the examination of steam generator tubing requires realistic flaws that are either pulled from service or produced in the laboratory. Due to the scarcity of pulled tube specimens, an effort was undertaken to produce realistic flaws in a laboratory environment. The ability to produce cracks in the laboratory was explored in doped steam, acidic, and caustic environments. These ...

2013-09-24T23:59:59.000Z

89

Proceedings: Steam Generator Management Program 2012 Steam Generator Secondary Side Management Conference  

Science Conference Proceedings (OSTI)

This report contains the work presented at the EPRI Steam Generator Management Program (SGMP) 2012 Steam Generator Secondary Side Management Conference. Over eighty attendees, representing both domestic and international utilities, vendors, and academia, participated in the conference. It included twenty-one papers on current issues, research and utility experiences involving corrosion product generation and transport, deposit control and mitigation, deposit consolidation and removal, and short- and ...

2012-12-21T23:59:59.000Z

90

Workshop Proceedings: Pitting in Steam Generator Tubing  

Science Conference Proceedings (OSTI)

A two-day workshop focused on the probable causes of steam generator pitting at two nuclear plants and on whether pitting is a low-temperature or a high-temperature phenomenon. Participants also heard descriptions of various pit-resistant metals that are suitable for tube sleeving.

1984-10-01T23:59:59.000Z

91

Applicability of Nanotechnology to Fossil Plant Water-Steam Cycles: Literature Review  

Science Conference Proceedings (OSTI)

The control of water purity, even to part per billion (ppb) levels, is vital to the energy efficiency and economic performance of fossil power stations. Failure to control levels of potentially aggressive impurities in the water-steam cycle can cause corrosion and even catastrophic failures. There is also a need to find and explore filtration technologies for power plants to improve reduction in metal oxides transport to vulnerable components. This report presents the findings of an investigation of the ...

2009-04-30T23:59:59.000Z

92

IMPROVEMENTS IN OR RELATING TO STEAM GENERATING PLANT  

SciTech Connect

A steam generating plant for marine vessels includes a steam superheater (nuclear reactor, perhaps) from which steam is ducted to the point of use (heat exchanger, etc.). A steam generator receiving the condensed steam from the point of use uses steam from the superheater to evaporate the condensate. The superheated steam used in the evaporation is compressed by a turbo-compressor and directed into the superheater. The condensate evaporated in the generator is used to drive the turbo-compressor. (D.C.W.)

Kendon, M.H.

1963-07-03T23:59:59.000Z

93

Proceedings: Steam Generator Sludge Management Workshop  

Science Conference Proceedings (OSTI)

A total of 151 individuals attended the Steam Generator Sludge Management Workshop. They represented domestic and foreign utilities, vendors, individuals from government laboratories, university members, EPRI employees. Presentations from utilities and vendors focused on overall control and management of generator sludge which covered several topics. A poster session included presentations on minimizing and characterizing sludge as well as a demonstration of a thermal hydraulic and fouling analysis works...

1995-12-08T23:59:59.000Z

94

Heat Recovery Steam Generator Procurement Specification  

Science Conference Proceedings (OSTI)

Many heat recovery steam generators (HRSGs), particularly those equipped with advanced gas turbines that are subjected to periods of frequent cyclic operation, have experienced premature pressure part failures resulting from excessive thermal mechanical fatigue damage. The very competitive power generation marketplace has resulted in the lowest installed cost often taking precedence over medium- and long-term durability and operating costs. The procurement of engineer, procure, and construct ...

2013-12-20T23:59:59.000Z

95

A SIMULATION OF THE EGCR STEAM GENERATOR  

SciTech Connect

An analog model of the EGCR steam generator was developed and operated on the ORNL analog computer as part of a program to simulate the operation and control of the EGCR reactor plant. Equilibrium operation and the transient response of the steam generator unit to system perturbations were studied. A simultaneous solution of the basic heat transfer equations representing the performance of the unit was obtained. The model was operated initially at steady- state conditions, and then perturbations were made to gas flow, gas inlet temperature, and steam throttle valve position. The response characteristics of the model during the transients were recorded. The steam generator gas outlet temperature showed a marked degree of insensitivity to changes in gas inlet temperature. The effect of gas flow changes on gas exit temperature was slightly more pronounced. The transient behavio-r of the unit was reasonable, and the model developed indicated satisfactory operation within the design range of 20 to l00% of full power. (auth)

Yarosh, M.M.; Ball, S.J.

1961-10-01T23:59:59.000Z

96

Steam Generator Management Program: Pressurized Water Reactor Steam Generator Examination Guidelines: Revision 7  

Science Conference Proceedings (OSTI)

This report provides requirements for examination plans and processes that are necessary to meet the performance criteria set forth in the Nuclear Energy Institute (NEI) 97-06, Steam Generator Program.

2007-10-10T23:59:59.000Z

97

Steam Generator Management Program: PWR Steam Generator Top-of-Tubesheet Denting  

Science Conference Proceedings (OSTI)

Denting of steam generator tubing is the reduction in tube diameter due to the forces exerted by corrosion products on the outer diameter surfaces. This deformation can increase the risk of stress corrosion cracking due to the high stresses, strains, and cold work developed in the tube. Historically, denting at carbon steel tube support plate locations was a significant factor necessitating the early replacement of several steam generators. Currently, denting and stress corrosion cracking are being exper...

2012-06-06T23:59:59.000Z

98

Steam Generator Management Program: Effect of Eddy Current Noise on Sizing Steam Generator Tube Degradation  

Science Conference Proceedings (OSTI)

The Electric Power Research Institute’s (EPRI’s) Steam Generator Management Program (SGMP) has developed procedures and tools to assist utility engineers in understanding the probability of detection (POD) in steam generator eddy current data in the presence of noise. Under some circumstances, eddy current noise can mask flaws that should be detected and assessed for tube integrity. This project focused on the ability to accurately size crack-like indications in the presence of eddy ...

2013-11-11T23:59:59.000Z

99

Steam Generator Management Program: Steam Generator Foreign Object Task Force Review Material  

Science Conference Proceedings (OSTI)

Foreign objects entering a steam generator (SG) can result in significant damage to tubing. Foreign objects have caused utilities to plug tubes, extend inspections, and, in some cases, shut down due to primary-to-secondary leakage.BackgroundTo gain a better understanding of the significance of the foreign object problem relative to SGs, the Electric Power Research Institute (EPRI) Steam Generator Management Program (SGMP) assembled a task force in 2005 made ...

2013-08-09T23:59:59.000Z

100

Steam Generator Management Program: Evaluation of Steam Generator Eddy Current Analysis Algorithms  

Science Conference Proceedings (OSTI)

As part of the U.S. Nuclear Regulatory Commissions (NRCs) International Steam Generator Tube Integrity Program, Argonne National Laboratory (ANL) evaluated algorithms for computer-aided analysis of rotating probe eddy current data. The algorithms were designed for both flaw detection and flaw sizing. Rotating probe data collected on the flawed tubes in the NRCs steam generator (SG) mockup were used to document performance of the algorithms for both detection and sizing. In the NRC program, the results of...

2011-06-30T23:59:59.000Z

Note: This page contains sample records for the topic "fossil steam generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Structural changes between models of fossil-fuel demand by steam-electric power plants  

SciTech Connect

A consumption function for multi-fuel steam-electric power plants is used to investigate fossil-fuel demand behavior. The input consumption equations for a plant's primary and alternate fossil fuels are derived by Shepard's lemma from a generalized Cobb-Douglas cost function reflecting average variable cost minimization constrained by technology and the demand for electricity. These equations are estimated by primary and alternate fuel subsets with ordinary least squares and seemingly unrelated regression techniques for 1974, 1977, and 1980. The results of the regression analysis show the importance of consumer demand in the fossil fuel consumption decision; it has the only significant parameter in all of the estimated equations. The estimated own- and cross-price elasticities are small, when they are statistically significant. The results for the primary fuel equations are better than those for the alternate fuel equations in all of the fuel pair subsets.

Gerring, L.F.

1984-01-01T23:59:59.000Z

102

Steam Generator Group Project. Annual report, 1982  

SciTech Connect

The Steam Generator Group Project (SGGP) is an NRC program joined by additional sponsors. The SGGP utilizes a steam generator removed from service at a nuclear plant (Surry 2) as a vehicle for research on a variety of safety and reliability issues. This report is an annual summary of progress of the program for 1982. Information is presented on the Steam Generator Examination Facility (SGEF), especially designed and constructed for this research. Loading of the generator into the SGEF is then discussed. The report then presents radiological field mapping results and personnel exposure monitoring. This is followed by information on field reduction achieved by channel head decontaminations. The report then presents results of a secondary side examination through shell penetrations placed prior to transport, confirming no change in generator condition due to transport. Decontamination of the channel head is discussed followed by plans for eddy current testing and removal of the plugs placed during service. Results of a preliminary profilometry examination are then provided.

Clark, R.A.; Lewis, M.

1984-02-01T23:59:59.000Z

103

Steam Generator Reference Book, Revision 1: Volume 1  

Science Conference Proceedings (OSTI)

The Steam Generator Reference Book documents the state of the art in PWR steam generator technology, providing a comprehensive source for operators, owners, and designers of PWR nuclear power plants. The book summarizes pertinent steam generator operating issues and provides recommendations to improve operational efficiency. Information in the book represents 15 years of research and development activity over the course of several hundred research projects involving PWR steam generator issues.

1994-12-31T23:59:59.000Z

104

Failure probabilities of steam generator tubes. Annual report  

SciTech Connect

BNL's efforts focused on the following specific items; the probabilities of failure for perfect steam generator tubes, the probabilities of failure for steam generator tubes containing long axisymmetrically thinned sections, and the probabilities of failure for steam generator tubes containing finite length (relatively short) axisymmetric wastages. (auth)

Reich, M.

1975-08-01T23:59:59.000Z

105

Artificial Intelligence Techniques for Steam Generator Modelling  

E-Print Network (OSTI)

This paper investigates the use of different Artificial Intelligence methods to predict the values of several continuous variables from a Steam Generator. The objective was to determine how the different artificial intelligence methods performed in making predictions on the given dataset. The artificial intelligence methods evaluated were Neural Networks, Support Vector Machines, and Adaptive Neuro-Fuzzy Inference Systems. The types of neural networks investigated were Multi-Layer Perceptions, and Radial Basis Function. Bayesian and committee techniques were applied to these neural networks. Each of the AI methods considered was simulated in Matlab. The results of the simulations showed that all the AI methods were capable of predicting the Steam Generator data reasonably accurately. However, the Adaptive Neuro-Fuzzy Inference system out performed the other methods in terms of accuracy and ease of implementation, while still achieving a fast execution time as well as a reasonable training time.

Wright, Sarah

2008-01-01T23:59:59.000Z

106

Laser removal of sludge from steam generators  

SciTech Connect

A method of removing unwanted chemical deposits known as sludge from the metal surfaces of steam generators with laser energy is provided. Laser energy of a certain power density, of a critical wavelength and frequency, is intermittently focused on the sludge deposits to vaporize them so that the surfaces are cleaned without affecting the metal surface (sludge substrate). Fiberoptic tubes are utilized for laser beam transmission and beam direction. Fiberoptics are also utilized to monitor laser operation and sludge removal.

Nachbar, Henry D. (Ballston Lake, NY)

1990-01-01T23:59:59.000Z

107

Heat Recovery Steam Generator (HRSG) Deposits  

Science Conference Proceedings (OSTI)

Under-deposit corrosion represents the second leading mechanism of chemistry-influenced heat recovery steam generator (HRSG) tube failures (HTFs) and third leading cause of major availability losses. This report was prepared, in recognition of the lack of information, to assemble the state of knowledge on deposition in HRSG high-pressure (HP) evaporator tubing and to identify the major deficiencies in that knowledge. Findings of this effort can be used to establish immediate remediation and correction of...

2009-11-11T23:59:59.000Z

108

Remote Inspection Device - Heat Recovery Steam Generators  

Science Conference Proceedings (OSTI)

As heat recovery steam generators (HRSGs) have become more complex over the last 15 years, operating with multiple pressures and temperatures, operators have experienced more types of HRSG tube failures (HTFs). This report provides information on how nondestructive evaluation (NDE) can be combined with newly developed HRSG repair tooling so that operators can detect damaged tubes and verify that repaired tubes do not contain welding defects that might be detrimental to the life of the component.

2009-03-25T23:59:59.000Z

109

Steam Generator Management Program: Proceedings of the 25th Steam Generator NDE Workshop  

Science Conference Proceedings (OSTI)

This year8217s workshop took place in Marco Island, Florida, on July 24 26, 2006, and included one full-day and two half-days of presentations. Attendees included representatives from domestic and international nuclear utilities, nuclear steam supply system (NSSS) vendors, nondestructive evaluation (NDE) service and equipment organizations, research laboratories, and regulatory bodies. This annual workshop serves as a forum for NDE specialists to gather and discuss current steam generator NDE issues and ...

2006-11-21T23:59:59.000Z

110

Method and apparatus for powering engine with exhaust generated steam  

SciTech Connect

An apparatus for installation in an automobile to generate steam with heat from the exhaust of an engine is provided. The steam is generated at a sufficient pressure for entry into the combustion chambers of the engine to increase the power output of the engine. The apparatus includes a water storage unit and a steam generator for generating steam with the water from the unit through transfer of heat from combusted gases in the exhaust system. The steam travels through steam inlet manifolds for entry into the combustion chambers. The entry is controlled by a cylinder injection timing valve assembly timed to the operation of the engine to enter the steam during the power stroke. A steam throttling control valve assembly is provided to throttle the steam input to the combustion chambers. A throttle proportioning control unit proportions the carburetor throttle and steam throttle assembly to the operator throttle input to provide the greatest efficiency in engine operation. The throttle proportioning control unit operates in response to the steam temperature and pressure within the steam generator. The apparatus may be adapted for use on an engine design for solely air fuel combustion with the cylinder adapter. A throttle linkage interchange unit may be provided to initiate operation of steam input only upon reaching a minimum engine temperature. An intake manifold vacuum control valve may be provided for selectively entering exhaust gases into the intake manifold of the engine to compensate for the vacuum variation due to the steam input to the combustion chamber.

Gill, P.A.

1983-10-18T23:59:59.000Z

111

LMFBR steam generator development: duplex bayonet tube steam generator. Volume II  

SciTech Connect

This report represents the culmination of work performed in fulfillment of ERDA Contract AT(11-1)-2426, Task Agreement 2, in which alternate steam generator designs were developed and studied. The basic bayonet tube generator design previously developed by C-E under AEC Contract AT(11-1)-3031 was expanded by incorporating duplex heat transfer tubes to enhance the unit's overall safety and reliability. The effort consisted of providing and evaluating conceptual designs of the evaporator, superheater and reheater components for a large plant LMFBR steam generator (950 MWt per heat transport loop). (auth)

DeFur, D.D.

1975-04-01T23:59:59.000Z

112

Project Recap Humanitarian Engineering Biodiesel Boiler System for Steam Generator  

E-Print Network (OSTI)

Project Recap Humanitarian Engineering ­ Biodiesel Boiler System for Steam Generator Currently 70 biodiesel boiler system to drive a steam engine generator. This system is to provide electricity the customer needs, a boiler fueled by biodiesel and outputting to a steam engine was decided upon. The system

Demirel, Melik C.

113

"Greening" Industrial Steam Generation via On-demand Steam Systems  

E-Print Network (OSTI)

Both recent economic and environmental conditions in the U.S. have converged to bring about unprecedented attention to energy efficiency and sustainability in the country's industrial sector. Historically, energy costs in the U.S. have been low in comparison to global averages in some measure do to an extended tolerance for externalized costs related to environmental degradation. Consequently, awareness, innovation & implementation of technologies focused on energy efficiency and reduced environmental impact have not kept pace with other industrialized nations. The U.S. is confronted with looming tipping points with respect to energy supply and GHG emissions that represent very tangible constraints on future economic growth and quality of life. A recent 2008 article in Forbes Magazine highlights the top ten most energy efficient economies in the world. The U.S. is conspicuously absent from the list. The U.S. economy, with an estimated energy intensity of 9,000 Btu's/$GDP, is only half as energy efficient as Japan (holding the top spot on the list with an EI of 4,500 Btu's / US$ GDP). The U.S. Department of Energy has initiated the Save Energy Now program to address this by supporting reductions in U.S. industrial energy intensity by 25% by 2020. A recent 2005 survey conducted by Energy & Environmental Analysis, Inc. (EEA) for Oak Ridge National Laboratory indicates that the current U.S. inventory of commercial/industrial boilers stands at around 163,000 units and 2.7 million MMBtu/hr. total fuel input capacity. These boilers consume nearly 8,100 Tbtu per year, representing about 40% of all energy consumed in the commercial/industrial sectors. Moreover, this same survey indicates that 47% of all commercial/industrial boilers in the U.S. are 40+ years old while as many as 76% are 30+ years old. Boilers account for nearly half of commercial / industrial energy consumption and represent some of the most energy intensive systems comprising these sectors. Given the preponderance of aged, obsolete boiler technology currently in service in the U.S., it is critical to raise awareness and examine the role of emerging new technologies to address the energy and environmental challenges inherent with steam generation. In the same way that tank-less / instantaneous water heating systems are eschewing a new era in energy efficiency in the residential sector, compact modular on-demand steam generation systems are poised to support the same kind of transformation in the commercial / industrial sector. This paper will illustrate how emerging on-demand steam generation technologies will play a part in addressing the energy and environmental challenges facing the country's commercial/ industrial sectors and in doing so help to transform the U.S. economy.

Smith, J. P.

2010-01-01T23:59:59.000Z

114

Benchmark the Fuel Cost of Steam Generation  

DOE Green Energy (OSTI)

BestPractices Steam tip sheet regarding ways to assess steam system efficiency. To determine the effective cost of steam, use a combined heat and power simulation model that includes all the significant effects.

Papar, R. [U.S. Department of Energy (US)

2000-12-04T23:59:59.000Z

115

Proceedings: 2003 Steam Generator Secondary Side Management Conference  

Science Conference Proceedings (OSTI)

With more utilities replacing steam generators and applying for (and receiving) license renewal and uprates, it is imperative that we coordinate our efforts for improved steam generator management. This report contains the work presented at EPRI's 2003 Steam Generator Secondary Side Management Conference, where 35 papers were presented on current issues, research, and utility experiences involving corrosion product generation and transport, deposit control and mitigation, deposit consolidation and remova...

2003-06-25T23:59:59.000Z

116

Steam turbine for geothermal power generation  

SciTech Connect

A steam turbine comprises a casing; turbine vanes rotatably set in the casing; a plurality of partition walls which extend along radial directions from the rotation center of the turbine vanes to define a plurality of steam valve chambers in the casing; steam supply pipes respectively connected to the corresponding steam valve chambers; and regulating valves which are fitted to the respective steam supply pipes to regulate respectively the flow rate of steam streams supplied to the respective steam valve chambers. At least one partition wall for dividing the interior space of the steam turbine into adjacent steam valve chambers is provided with at least one penetrating hole for causing the steam valve chambers to communicate with each other.

Tsujimura, K.; Hadano, Y.

1984-04-10T23:59:59.000Z

117

Comparative evaluation of surface and downhole steam-generation techniques  

Science Conference Proceedings (OSTI)

It has long been recognized that the application of heat to reservoirs containing high API gravity oils can substantially improve recovery. Although steam injection is currently the principal thermal recovery method, heat transmission losses associated with delivery of the steam from the surface generators to the oil-bearing formation has limited conventional steam injection to shallow reservoirs. The objective of the Department of Energy's Project DEEP STEAM is to develop the technology required to economically produce heavy oil from deep reservoirs. The tasks included in this effort are the development and evaluation of thermally efficient delivery systems and downhole steam generation systems. This paper compares the technical and economic performance of conventional surface steam drives, which are strongly influenced by heat losses, with (a) thermally efficient delivery (through insulated strings) of surface generated steam, (b) low pressure combustion downhole steam generation, (c) high pressure combustion downhole steam generation using air as the oxygen source, and (d) high pressure combustion downhole steam generation substituting pure oxygen for air. The selection of a preferred technology based upon either total efficiency or cost is found to be strongly influenced by reservoir depth, steam mass flow rate, and sandface steam quality. Therefore, a parametric analysis has been performed which examines varying depths, injection rates and steam qualities. Results indicate that the technologies are not readily distinguishable for low injectivity reservoirs in which conventional steam drives are feasible. However, high injection rates produce a notable cost difference between high pressure combustion systems and the other technologies. Issues that must be addressed before gaining further insight into the economic viability of downhole steam generation are discussed.

Hart, C.

1982-01-01T23:59:59.000Z

118

Steam Generator Management Program: Steam Generator Channel Head Degradation Failure Modes and Effects Analysis  

Science Conference Proceedings (OSTI)

 During a fall 2011 refueling outage, visual inspection of a steam generator (SG) at a non-U.S. Westinghouse-designed plant identified defects in the channel head cladding of one of the three SGs. The inspection identified degradation in the cladding that apparently resulted in exposure and wastage of the channel ...

2013-04-26T23:59:59.000Z

119

Nuclear steam-generator transplant total rises  

Science Conference Proceedings (OSTI)

Several utilities with pressurized water reactors (PWRs) are replacing leaking and corroded steam generators. Over half the PWRs face corrosion problems that will cost $50 million to $100 million per unit to correct. An alternative approach of installing new tube sleeves has only had one application. Corrosion prevention still eludes utilities, whose problems differ. Westinghouse units were the first to experience corrosion problems because they have almost all operated for a decade or more. Some advances in condenser and steam-generator technology should extend the component life of younger units, and some leaking PWR tubes can be plugged. Operating differences may explain why PWRs have operated for over 20 years on submarines using phosphate water chemistry, while the use of de-aerators in the secondary-systems of foreign PWRs may explain their better performance. Among the corrective steps recommended by Stone and Webster are tighter chemistry control, better plant layup practices, revamping secondary-system hardware, condensate polishing, and de-aerators. Research continues to find the long-term preventative. 2 tables. (DCK)

Smock, R.

1982-09-01T23:59:59.000Z

120

Steam electric plant factors, 1978. [48 states  

SciTech Connect

Fossil-fuel steam electric generation increased 5.8% in 1977 to 1,612.2 million MWh as compared to 1976. Thirty-four new fossil-fuel steam electric units and 7 new nuclear units became operational in 1977. Detailed data are reported for 748 plants, accounting for more than 99% of the total steam generation capacity, in the contiguous US.

1978-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fossil steam generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Steam generator for liquid metal fast breeder reactor  

DOE Patents (OSTI)

Improvements in the design of internal components of J-shaped steam generators for liquid metal fast breeder reactors. Complex design improvements have been made to the internals of J-shaped steam generators which improvements are intended to reduce tube vibration, tube jamming, flow problems in the upper portion of the steam generator, manufacturing complexities in tube spacer attachments, thermal stripping potentials and difficulties in the weld fabrication of certain components.

Gillett, James E. (Greensburg, PA); Garner, Daniel C. (Murrysville, PA); Wineman, Arthur L. (Greensburg, PA); Robey, Robert M. (North Huntingdon, PA)

1985-01-01T23:59:59.000Z

122

Guidelines on Optimizing Heat Recovery Steam Generator Drains  

Science Conference Proceedings (OSTI)

Severe thermal-mechanical fatigue damage to the superheaters (SHs), reheaters (RHs), and steam piping of horizontal-gas-path heat recovery steam generators due primarily to ineffective drainage of the condensate that is generated in superheaters and reheaters at every startup continues to be a significant industry problem that results in avoidable deterioration of unit reliability and significant unnecessary maintenance costs. This report will assist operators in guiding heat recovery steam generator (HR...

2007-12-21T23:59:59.000Z

123

Examination of Heat Recovery Steam Generator (HRSG) Plants  

Science Conference Proceedings (OSTI)

Previous EPRI reports have documented problems associated with operation and maintenance of complex heat recovery steam generators (HRSGs). The EPRI report Heat Recovery Steam Generator Tube Failure Manual (1004503) provides information about known HRSG tube failures and necessary steps that can be taken to diagnose and prevent similar problems. The EPRI report Delivering High Reliability Heat Recovery Steam Generators (1004240) provides guidance for continued and reliable operation of HRSGs from initial...

2005-11-30T23:59:59.000Z

124

Energy Tips: Benchmark the Fuel Cost of Steam Generation | ENERGY...  

NLE Websites -- All DOE Office Websites (Extended Search)

You are here Home Buildings & Plants Energy Tips: Benchmark the Fuel Cost of Steam Generation Secondary menu About us Press room Contact Us Portfolio Manager Login...

125

Secondary Side Corrosion of French PWR Steam Generator ... - TMS  

Science Conference Proceedings (OSTI)

Aug 1, 1999 ... Secondary Side Corrosion of French PWR Steam Generator Tubing: Contribution of Surface Analyses to the Understanding of the Degradation ...

126

Reactor Loose Part Damage Assessments on Steam Generator Tube Sheets.  

E-Print Network (OSTI)

??PROCTOR, WILLIAM CYRUS. Reactor Loose Part Damage Assessments on Steam Generator Tube Sheets. (Under the direction of Joseph Michael Doster). Damage from loose parts inside… (more)

Proctor, William Cyrus

2010-01-01T23:59:59.000Z

127

Bayesian Modeling of Pitting Corrosion in Steam Generators.  

E-Print Network (OSTI)

??Steam generators in nuclear power plants experienced varying degrees of under-deposit pitting corrosion. A probabilistic model to accurately predict pitting corrosion is necessary for effective… (more)

Mao, Dan

2007-01-01T23:59:59.000Z

128

The use of dispersants in pressurised water reactor steam generators.  

E-Print Network (OSTI)

??Environmental degradation promoted by the presence of sludge piles in the steam generators of Pressurised Water Reactors (PWR) can pose a threat to their safe… (more)

Tulloch, Sam

2011-01-01T23:59:59.000Z

129

Benchmark the Fuel Cost of Steam Generation  

SciTech Connect

This revised ITP tip sheet on benchmarking the fuel cost of steam provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

2006-01-01T23:59:59.000Z

130

Vapor generator steam drum spray head  

DOE Patents (OSTI)

A typical embodiment of the invention provides a combination feedwater and "cooldown" water spray head that is centrally disposed in the lower portion of a nuclear power plant steam drum. This structure not only discharges the feedwater in the hottest part of the steam drum, but also increases the time required for the feedwater to reach the steam drum shell, thereby further increasing the feedwater temperature before it contacts the shell surface, thus reducing thermal shock to the steam drum structure.

Fasnacht, Jr., Floyd A. (Massillon, OH)

1978-07-18T23:59:59.000Z

131

EPRI Ergonomics Handbook for the Electric Power Industry: Ergonomic Interventions for Plant Operators and Mechanics in Fossil-Fueled Generating Stations  

Science Conference Proceedings (OSTI)

The EPRI Occupational Health and Safety (OHS) Committee Research Program has provided ergonomic information to the electric energy industry workforce since 1999. This is the sixth EPRI ergonomics handbook; it specifically focuses on tasks performed by plant operators and mechanics working in fossil-fueled generating stations and also addresses some tasks performed by steam services technicians. Fossil-fueled generating station operational and mechanical work is physically strenuous and can expose workers...

2008-12-15T23:59:59.000Z

132

Comments on US LMFBR steam generator base technology  

SciTech Connect

The development of steam generators for the LMFBR was recognized from the onset by the AEC, now DOE, as a difficult, challenging, and high-priority task. The highly reactive nature of sodium with water/steam requires that the sodium-water/steam boundaries of LMFBR steam generators possess a degree of leak-tightness reliability not normally attempted on a commercial scale. In addition, the LMFBR steam generator is subjected to high fluid temperatures and severe thermal transients. These requirements place great demand on materials, fabrication processes, and inspection methods; and even greater demands on the designer to provide steam generators that can meet these demanding requirements, be fabricated without unreasonable shop requirements, and tolerate off-normal effects.

Simmons, W.R.

1984-01-01T23:59:59.000Z

133

Shift Turnover and Log Keeping for Fossil Generating Stations  

Science Conference Proceedings (OSTI)

Decreases in staff productivity, lost generation, and adverse events are occurring in the industry as a result of less-than-effective communication during shift turnovers and log-keeping practices that do not provide sufficient information on plant and equipment status. The shift turnover and log-keeping practices observed at numerous fossil generating stations vary between best in the industry to ineffective, and most stations have had equipment failures and lost efficiencies as a result of less-than-ef...

2010-12-19T23:59:59.000Z

134

Heat Recovery Steam Generator (HRSG) Chemical Cleaning Guidelines Case Studies  

Science Conference Proceedings (OSTI)

A considerable number of combined cycle units with heat recovery steam generators (HRSGs) were installed over the past two decades worldwide, and the design complexity and operating pressures of these units increased significantly during this period. One of the goals of EPRI's Heat Recovery Steam Generator (HRSG) Dependability Program 88 is to minimize availability losses associated with HRSG tube failures. To support its members operating combined cycle units, EPRI published Heat Recovery Steam Generato...

2006-11-13T23:59:59.000Z

135

Steam Generator Management Program: Foreign Object Prioritization Strategy for Triangular Pitch Steam Generators  

Science Conference Proceedings (OSTI)

Utilities typically perform foreign object search and retrieval (FOSAR) on the secondary side of steam generators (SGs) during refueling outages. Depending on the SG design and operating conditions, a FOSAR can identify from a few to a substantial number of foreign objects. Characterizing and removing the foreign objects requires substantial effort, as measured in both time and dose, and in many cases, the foreign objects are small or are located in a region of the tube bundle in which little or no tube ...

2010-07-08T23:59:59.000Z

136

Steam Generator Management Program: Onset of Fatigue Cracking in Steam Generator Tubes With Through Wall Flaws  

Science Conference Proceedings (OSTI)

Leak rate tests of steam generator tubing with stress corrosion cracks and electrodischarge machining notches were conducted at Argonne National Laboratory (ANL) under the sponsorship of the U.S. Nuclear Regulatory Commission. Some test specimens displayed a significant leak rate increase under constant pressure hold. It was suspected that fatigue caused by jet–structure interaction was responsible for the increased leak rate. EPRI Reports 1015123 and 1016560 investigated the ANL test results in terms of...

2011-11-10T23:59:59.000Z

137

Steam Generator Management Program: Simulation Model for Eddy Current Steam Generator Inspection  

Science Conference Proceedings (OSTI)

BackgroundEddy current techniques are used widely to evaluate the integrity of steam generator (SG) tubes in nuclear power plants. A variety of commercial probes have been used by industry; it is well known that eddy current probe responses change as the tube condition changes. Other factors that influence the eddy current signal include deposits, loose parts, and denting. Postulated SG conditions have been mocked up in the laboratory; however, capabilities are limited ...

2013-12-19T23:59:59.000Z

138

Energy Tips: Benchmark the Fuel Cost of Steam Generation  

NLE Websites -- All DOE Office Websites (Extended Search)

Type (sales unit) Type (sales unit) Energy Content Combustion (Btu/sales unit) Efficiency (%) Natural Gas (therm) 100,000 81.7 Natural Gas (cubic foot) 1,030 81.7 Distillate/No. 2 Oil (gallon) 138,700 84.6 Residual/No. 6 Oil (gallon) 149,700 86.1 Coal (ton) 27,000,000 87.6 Benchmark the Fuel Cost of Steam Generation Benchmarking the fuel cost of steam generation ($/1000 lbs of steam) is an effective way to assess the efficiency of your steam system. This cost is dependent upon fuel type, unit fuel cost, boiler efficiency, feedwater temperature, and steam pressure. This calculation provides a good first approximation for the cost of generating steam and serves as a tracking device to allow for boiler performance monitoring. Table 1 shows the heat input required to produce one pound of saturated

139

Development of Raman Spectroscopy for a Steam Generator Heated Crevice  

Science Conference Proceedings (OSTI)

The crevice formed by the tube / tube support plate (tube/TSP) intersection in a pressurized water reactor (PWR) steam generator (SG) is a concentration site for nonvolatile impurities from steam generator water (referred to as hideout). This report describes development of a Raman spectroscopy device to investigate this chemical concentration process in situ in a simulated heated crevice.

2003-11-11T23:59:59.000Z

140

EVALUATION OF KANIGEN, ELECTROLESS NICKEL PLATING FOR STEAM SIDE OF A SODIUM COMPONENT STEAM GENERATOR  

SciTech Connect

The evaluation of Kanigen electroless nickel plating for surfaces in contact with water and steam in a sodium-heated Type 316 stainless steel steam generator is reported. The purpose of the coating is to afford protection from stress corrosion cracking originating on the water-steam side of the unit. It is concluded that the Kanigen coating does not afford adequate protection for the service conditions. (D.L.C.)

1961-02-15T23:59:59.000Z

Note: This page contains sample records for the topic "fossil steam generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Proceedings: International Conference on Boiler Tube Failures and Heat Recovery Steam Generator (HRSG) Tube Failures and Inspections  

SciTech Connect

Tube failures remain the leading cause of availability loss in conventional fossil plants and combined cycle/heat recovery steam generator (HRSG) plants. These conference proceedings address state-of-the-art practices and techniques worldwide for understanding and reducing tube failures.

None

2002-10-01T23:59:59.000Z

142

Operational Surveillance Testing Program for Fossil Generating Stations  

Science Conference Proceedings (OSTI)

The operational surveillance test OST guideline can be used to develop a comprehensive surveillance testing program that enhances the testing performed by operations personnel. The OST programs observed at fossil generating stations contain inconsistencies in the content and in the effectiveness of operational testing. Some industry equipment failures can be attributed to the lack of effective surveillance testing. The bases for OSTs are similar to the bases for the plants preventive maintenance PM progr...

2009-12-23T23:59:59.000Z

143

Clearance and Tagging Guideline for Fossil Electric Generating Stations  

Science Conference Proceedings (OSTI)

In their trips to more than a dozen plants in the past three years, Electric Power Research Institute (EPRI) teams observed that clearance and tagging processes have ranged from comprehensive to less than adequate. In plants with detailed procedures and plants with less than adequate procedures, activities have been observed that were not as safe as they should have been. EPRI and fossil generating advisors determined that a clearance and tagging guideline was needed. EPRI and the industry advisors decid...

2008-03-26T23:59:59.000Z

144

Preoperational practices for steam generators and secondary-system components  

Science Conference Proceedings (OSTI)

PWR operating experience has shown that proper control of steam generator and secondary plant cleanliness during construction will prevent corrosion of critical components, minimize impurity transport to the steam generators, and minimize startup delays. This volume contains the following guidelines which address preoperational practices: Preoperational Flushing, Cleaning, and Layup of PWR Steam/Feedwater/Condensate Systems, Revision 1; and Guidelines to Minimize Contamination of PWR Steam Generators during Plant Construction, Revision 1. The guidelines provide specific recommendations and associated justifications for maintaining steam generator cleanliness during shipment, storage, and installation; and secondary plant cleanliness during construction. Recommendations for preoperational cleaning and flushing of secondary systems are also provided. 1 ref., 9 figs., 2 tabs.

Not Available

1991-09-01T23:59:59.000Z

145

Nondestructive Evaluation: 27th Annual EPRI Steam Generator NDE Workshop  

Science Conference Proceedings (OSTI)

This years Steam Generator Nondestructive Evaluation (NDE) Workshop took place in Palm Desert, California, on July 2123, 2008, and included one full day and two half days of presentations. Attendees included representatives from domestic and international nuclear utilities, nuclear steam supply system (NSSS) vendors, NDE service and equipment organizations, research laboratories, and regulatory bodies. This annual workshop serves as a forum for NDE specialists to gather and discuss current steam generato...

2008-09-15T23:59:59.000Z

146

23rd EPRI Steam Generator NDE Workshop Proceedings  

Science Conference Proceedings (OSTI)

The 23rd EPRI Steam Generator NDE Workshop took place in Chicago, Illinois, July 12–14, 2004, and was made up of one full day and two half days of presentations. Attendees included representatives from domestic and overseas nuclear utilities, nuclear steam supply system (NSSS) vendors, nondestructive evaluation (NDE) service and equipment organizations, research laboratories, and regulatory bodies. This annual workshop serves as a forum for NDE specialists to gather and discuss current steam genera...

2004-11-08T23:59:59.000Z

147

Steam generator tube rupture effects on a LOCA  

SciTech Connect

A problem currently experienced in commercial operating pressurized water reactors (PWR) in the United States is the degradation of steam generator tubes. Safety questions have arisen concerning the effect of these degraded tubes rupturing during a postulated loss-of-coolant accident (LOCA). To determine the effect of a small number of tube ruptures on the behavior of a large PWR during a postulated LOCA, a series of computer simulations was performed. The primary concern of the study was to determine whether a small number (10 or less of steam generator tubes rupturing at the beginning surface temperatures. Additional reflood analyses were performed to determine the system behavior when from 10 to 60 tubes rupture at the beginning of core reflood. The FLOOD4 code was selected as being the most applicable code for use in this study after an extensive analysis of the capabilities of existing codes to perform simulations of a LOCA with concurrent steam generator tube ruptures. The results of the study indicate that the rupturing of 10 or less steam generator tubes in any of the steam generators during a 200% cold leg break will not result in a significant increase in the peak cladding temperature. However, because of the vaporization of the steam generator secondary water in the primary side of the steam generator, a significant increase in the core pressure occurs which retards the reflooding process.

LaChance, J.L.

1979-01-01T23:59:59.000Z

148

Field Guide: Heat Recovery Steam Generator Tube Failure  

Science Conference Proceedings (OSTI)

In conventional and combined-cycle plants, boiler and heat recovery steam generator (HRSG) tube failures have been the main availability problem for as long as reliable statistics have been kept for each generating source. The three volumes of the Electric Power Research Institute (EPRI) report Boiler and Heat Recovery Steam Generator Tube Failures: Theory and Practice (1012757) present an in-depth description of the various HRSG and degradation mechanisms, providing plant owners and operators with the t...

2010-12-15T23:59:59.000Z

149

Steam Generator Management Program: Empirical Model for Predicting Recirculating PWR Steam Generator Broached-Hole Blockage  

Science Conference Proceedings (OSTI)

Since their initial use in commercial plants in the 1960s, the steam generators (SGs) in pressurized water reactors (PWRs) have exhibited a number of reliability problems. Even though many of these are related to the integrity of the heat-transfer tubing and other internal components or to decreases in heat-transfer efficiency, some SG designs have been subject to a different issue—deposit-induced blockage of the broached flow holes in the tube support plates (TSPs) located within the SG ...

2012-12-12T23:59:59.000Z

150

Steam Generator Management Program: Empirical Model for Predicting Recirculating PWR Steam Generator Broached-Hole Blockage  

Science Conference Proceedings (OSTI)

Since their initial use in commercial plants in the 1960s, the steam generators (SGs) in pressurized water reactors (PWRs) have exhibited a number of reliability problems. Even though many of these are related to the integrity of the heat-transfer tubing and other internal components or to decreases in heat-transfer efficiency, some SG designs have been subject to a different issuedeposit-induced blockage of the broached flow holes in the tube support plates (TSPs) located within the SG shell. This study...

2011-04-29T23:59:59.000Z

151

ADVANCED ONCE-THROUGH STEAM GENERATOR FOR SODIUM APPLICATION  

SciTech Connect

Preliminary design calculations were performed for a once-through type steam generator and reheater for advanced sodium power plants in the 300-Mwe range. Parameters and performance data are presented. (D.L.C.)

Terpe, G.R.

1960-09-19T23:59:59.000Z

152

Thermohydraulic analysis of U-tube steam generators  

E-Print Network (OSTI)

Recent trends in plant safety analysis reveal a need for benchmark analytical representations of the steam generators to aid in the improvement of system codes and of fast codes for operator assistance. A model for such ...

da Silva, Hugo Cardoso

1984-01-01T23:59:59.000Z

153

SODIUM-HEATED STEAM GENERATOR DEVELOPMENT. Interim Status Report  

SciTech Connect

Design and development of a once -through sodiumheated steam generator are discussed. Research proposals are discussed for evaluating: carbon transfer and mass transfer effects in the steam generator, effect on heat transfer and two- phase flow of coiling tubes, corrosion of Croloy 21/4 in products of sodium-water reactions, procedure for welding tube to back side of the tube sheet, radiographic inspection of back side tube welds, and chemical simulation of sodium environment for leak testing. (N.W.R.)

1964-01-22T23:59:59.000Z

154

MINET validation study using steam generator test data  

SciTech Connect

Three steam generator transient test cases that were simulated using the MINET computer code are described, with computed results compared against experimental data. The MINET calculations closely agreed with the experiment for both the once-through and the U-tube steam generator test cases. The effort is part of an ongoing effort to validate the MINET computer code for thermal-hydraulic plant systems transient analysis, and strongly supports the validity of the MINET models.

Van Tuyle, G.J.; Guppy, J.G.

1984-01-01T23:59:59.000Z

155

Pressurized Water Reactor Steam Generator Layup: Corrosion Evaluation  

Science Conference Proceedings (OSTI)

This final report summarizes work completed on a project to evaluate the current PWR steam generator layup guidance based on corrosion mitigation of steam generator components. It was performed in three phases. Phase 1 of this project included an extensive literature review of the corrosion test data, and development of a gap analysis to determine additional data needed to update the current guideline recommendations. Phase 2 was a corrosion test measurement program to evaluate the general corrosion rate...

2007-12-14T23:59:59.000Z

156

Steam Generator Management Program: Administrative Procedures, Revision 3  

Science Conference Proceedings (OSTI)

The Nuclear Energy Institute's "Guideline for the Management of Materials Issues" (NEI 03-08) is the industry's guideline for management of materials issues, and "Steam Generator Program Guidelines" (NEI 97-06) describes the fundamental elements that are included in a utility's steam generator program. With nuclear safety as the priority, these elements incorporate a balance of prevention, inspection, evaluation, repair, and leakage monitoring measures. NEI 97 06 establishes these measures with reference...

2010-12-13T23:59:59.000Z

157

Steam Generator Management Program Administrative Procedures, Revision 1  

Science Conference Proceedings (OSTI)

The Steam Generator Management Program (SGMP) developed many of the guidelines that implement NEI 97-06, Steam Generator Program Guidelines, including a 2001 document that defined and formalized the programmatic elements of SGMP itself. This revision of SGMP Administrative Procedures aligns SGMP with the May 2003 guideline NEI 03-08, which addressed several recent issues involving materials degradation. The revision defines how guidelines are to be revised and approved and presents the SGMP charter, whic...

2004-12-09T23:59:59.000Z

158

Proceedings: Support-Structure Corrosion in Steam Generators  

Science Conference Proceedings (OSTI)

This report documents an EPRI workshop held in Boston in May 1982 to discuss support structure corrosion in steam generators. Designed to present information on available materials and designs for support structures and to determine utility needs, the workshop covered crevice corrosion rates for alloy steels and carbon steel, results from examinations of support plate segments removed from steam generators, and models for corrosion and salt hideout in crevices.

1982-12-01T23:59:59.000Z

159

Field Guide: Heat Recovery Steam Generator Outage Inspection Pocket Manual  

Science Conference Proceedings (OSTI)

Heat recovery steam generators (HRSGs) pose a unique set of operational challenges, due in part to their rapid startup capabilities and high operating efficiencies. Among these challenges are the difficulty of inspection and repair, which are complicated by limited access as well as the complexity of the equipment. To help members address these challenges, the Electric Power Research Institute's (EPRI's) Heat Recovery Steam Generator Dependability program has added this field guide to its comprehensive s...

2010-12-23T23:59:59.000Z

160

IMPROVEMENTS IN STEAM GENERATING AND SUPERHEATING PLANT AND AN IMPROVED METHOD OF PRODUCING LOW PRESSURE SUPERHEATED STEAM  

SciTech Connect

A steam supply arrangement is described which generates high-pressure steam and superheats steam from a low-pressure source. Inus, in operations cteam at 350 to 600 psi from a nuciear reactor is superheated in a heat exehanger anu later in gas-heated equipment to 1100 F and passed to a stage of a pluralstage steam turbine. When the reactor ls shut downs steam generated in the steam generator section may be passed directly to the gas-fired superheater. (T.R.H.)

1959-02-18T23:59:59.000Z

Note: This page contains sample records for the topic "fossil steam generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Low chemical concentrating steam generating cycle  

DOE Patents (OSTI)

A steam cycle for a nuclear power plant having two optional modes of operation. A once-through mode of operation uses direct feed of coolant water to an evaporator avoiding excessive chemical concentration buildup. A recirculation mode of operation uses a recirculation loop to direct a portion of flow from the evaporator back through the evaporator to effectively increase evaporator flow.

Mangus, James D. (Greensburg, PA)

1983-01-01T23:59:59.000Z

162

Economic Study of Geothermal Steam Production and Power Generation  

SciTech Connect

This report presents the results of the study to determine the required selling price of geothermal flash steam in order for Phillips Petroleum Company to obtain a rate of return on investment of 10, 15 or 20% on its discovery in Nevada. The economic evaluations are based on an order-of-magnitude type of estimate of capital costs for the flash steam production, steam gathering and brine reinjection system to supply steam to a 55 MW (Gross) geothermal power generating plant, using mixed pressure (double flash steam) and turbine design. Geothermal well costs, brine quality and well productivity data were provided by Phillips Petroleum Company and are based on the discovery wells in Nevada. Power plant costs are based on current technology and available hardware, under construction at the present time. Costs have been escalated to 1977.

1977-02-01T23:59:59.000Z

163

Steam Generator Management Program: Thermal-Hydraulic Analysis of a Recirculating Steam Generator Using Commercial Computational Fluid Dynamics Software  

Science Conference Proceedings (OSTI)

The objective of this research was to demonstrate that a commercial computational fluid dynamics code can be set up to model the thermal-hydraulic physics that occur during the operation of a steam generator. Specific complexities in steam-generator thermal-hydraulic modeling include: phase change and two-phase fluid mechanics, hydrodynamic representation of the tube bundle, and thermal coupling between the primary and secondary sides. A commercial computational fluid dynamics code was used without any s...

2012-02-21T23:59:59.000Z

164

Steam Generator Management Program: Conditions Causing Lead Stress Corrosion Cracking of Steam Generator Tubing, Alloy 690TT  

Science Conference Proceedings (OSTI)

Tube damage by intergranular attack/stress corrosion cracking (IGA/SCC) continues to result in steam generator tubing degradation, plugging of tubes, and eventual replacement of steam generators.  The present strategy for mitigating IGA/SCC is based on the assumption that crack initiation and propagation rates depend on the at-temperature pH (pHT), the electrochemical potential, and the development of crevice areas.  Accordingly, all plants have adopted the practice of ...

2013-12-18T23:59:59.000Z

165

Steam Generator Engineering Computer Based Training (SGE CBT) Version 1.0  

Science Conference Proceedings (OSTI)

This computer based training course provides a comprehensive training for steam generator engineers. The following topics are included as separate training modules. NEI Initiatives and EPRI Steam Generator Management Program Guidelines Steam Generator Components Steam Generator Tube Alloys Thermal Hydraulic Characteristics Strategic Planning Operating Experience PWR Primary to Secondary Leak Guidelines Integrity Assessments Examination Guidelines Water Chemistry Guidelines Basic Statistics WindowsXP, V...

2011-12-08T23:59:59.000Z

166

Steam Generator Group Project. Task 6. Channel head decontamination  

SciTech Connect

The Steam Generator Group Project utilizes a retired-from-service pressurized-water-reactor steam generator as a test bed and source of specimens for research. An important preparatory step to primary side research activities was reduction of the radiation field in the steam generator channel head. This task report describes the channel head decontamination activities. Though not a programmatic research objective it was judged beneficial to explore the use of dilute reagent chemical decontamination techniques. These techniques presented potential for reduced personnel exposure and reduced secondary radwaste generation, over currently used abrasive blasting techniques. Two techniques with extensive laboratory research and vendors prepared to offer commercial application were tested, one on either side of the channel head. As indicated in the report, both techniques accomplished similar decontamination objectives. Neither technique damaged the generator channel head or tubing materials, as applied. This report provides details of the decontamination operations. Application system and operating conditions are described.

Allen, R.P.; Clark, R.L.; Reece, W.D.

1984-08-01T23:59:59.000Z

167

Steam as turbine blade coolant: Experimental data generation  

DOE Green Energy (OSTI)

Steam as a coolant is a possible option to cool blades in high temperature gas turbines; however there is practically no experimental data. This work deals with an attempt to generate such data and with the design of an experimental setup used for the purpose. Initially, in order to guide the direction of experiments, a preliminary theoretical and empirical prediction of the expected experimental data is performed and is presented here. This initial analysis also compares the coolant properties of steam and air.

Wilmsen, B.; Engeda, A.; Lloyd, J.R. [Michigan State Univ., East Lansing, MI (United States). Dept. of Mechanical Engineering

1995-12-31T23:59:59.000Z

168

Heat-recovery steam generators: Understand the basics  

Science Conference Proceedings (OSTI)

Gas turbines with heat-recovery steam generators (HRSGs) can be found in virtually every chemical process industries (CPI) plant. They can be operated in either the cogeneration mode or the combined-cycle mode. In the cogeneration mode, steam produced from the HRSG is mainly used for process applications, whereas in the combined-cycle mode, power is generated via a steam turbine generator. Recent trends in HRSG design include multiple-pressure units for maximum energy recovery, the use of high-temperature superheaters or reheaters in combined-cycle plants, and auxiliary firing for efficient steam generation. In addition, furnace firing is often employed in small capacity units when the exhaust gas is raised to temperatures of 2,400--3,000 F to maximize steam generation and thus improve fuel utilization. This article highlights some of the basic facts about gas turbine HRSGs. This information can help plant engineers, consultants, and those planning cogeneration projects make important decisions about the system and performance related aspects.

Ganapathy, V.

1996-08-01T23:59:59.000Z

169

DIFFERING PROFESSIONAL OPINION ON STEAM GENERATOR TUBE ISSUES  

E-Print Network (OSTI)

whether immediate actions are needed, other than those already taken by the staff, to deal with steam generator tube issues. In February 2001, we submitted to the Executive Director for Operations (EDO) NUREG-1740 on a differing professional opinion (DPO) concerning alternative repair criteria for steam generator tubes. In that report, we concluded that alternative repair criteria were needed. The alternative repair criteria and the condition monitoring program for steam generator tubes that the staff has endorsed can provide adequate protection of the public health and safety. We did make recommendations to the EDO directed particularly at improving the technical bases of the alternative repair criteria and the reliability of the condition monitoring program. The more important of these recommendations are: # Evaluate the potential for progression of damage to steam generator tubes during rapid depressurization caused by a main steamline rupture. # Monitor performance to search for systematic deviations from the linear bound on the nonlinear processes of crack initiation and growth through steam generator tube walls.

unknown authors

2001-01-01T23:59:59.000Z

170

Boiler Water Deposition Model for Fossil-Fueled Power Plants  

Science Conference Proceedings (OSTI)

Since the beginning of the commercial steam and power generation industry, deposits on heat transfer surfaces of the steam-water cycle equipment in fossil plant units have been a challenge. Deposits form at nearly all locations within the steam-water cycle, particularly in boiler tubes where failures can have substantial negative impacts on unit availability and reliability. Accumulation of internal deposits can adversely affect the performance and availability of boilers and turbines in fossil steam-wat...

2012-01-23T23:59:59.000Z

171

Geothermal Steam Power Plant | Open Energy Information  

Open Energy Info (EERE)

(Redirected from Dry Steam) (Redirected from Dry Steam) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home General List of Dry Steam Plants List of Flash Steam Plants Steam Power Plants Dry Steam Power Plants Simple Dry Steam Powerplant process description - DOE EERE 2012 Dry steam plants use hydrothermal fluids that are primarily steam. The steam travels directly to a turbine, which drives a generator that produces electricity. The steam eliminates the need to burn fossil fuels to run the turbine (also eliminating the need to transport and store fuels). These plants emit only excess steam and very minor amounts of gases.[1] Dry steam power plants systems were the first type of geothermal power generation plants built (they were first used at Lardarello in Italy in 1904). Steam technology is still effective today at currently in use at The

172

Estimating Water Needs to Meet 2025 Electricity Generating Capacity...  

NLE Websites -- All DOE Office Websites (Extended Search)

(fossil, nuclear, or biomass) to heat water to steam that is used to drive a turbine-generator. Steam exhausted from the turbine is condensed and recycled to a steam generator or...

173

Steam Generator Management Program: Benchmark Study of EPRI and EDF Steam Generator Thermal-Hydraulic and Flow Induced Vibration Cod es  

Science Conference Proceedings (OSTI)

Steam generator thermal-hydraulics software codes and flow induced vibration software codes are used for steam generator design, root cause investigations, and assessment of operational changes. Organizations within the steam generator industry develop and maintain such software codes. Capabilities of existing codes are being challenged by current demands for more comprehensive results to troubleshoot ...

2012-12-12T23:59:59.000Z

174

Downhole steam generator using low pressure fuel and air supply  

DOE Patents (OSTI)

An apparatus for generation of steam in a borehole for penetration into an earth formation wherein a spiral, tubular heat exchanger is used in the combustion chamber to isolate the combustion process from the water being superheated for conversion into steam. The isolation allows combustion of a relatively low pressure oxidant and fuel mixture for generating high enthalpy steam. The fuel is preheated by feedback of combustion gases from the top of the combustion chamber through a fuel preheater chamber. The hot exhaust gases of combustion at the bottom of the combustion chamber, after flowing over the heat exchanger enter an exhaust passage and pipe. The exhaust pipe is mounted inside the water supply line heating the water flowing into the heat exchanger. After being superheated in the heat exchanger, the water is ejected through an expansion nozzle and converts into steam prior to penetration into the earth formation. Pressure responsive doors are provided at a steam outlet downstream of the nozzle and close when the steam pressure is lost due to flameout.

Fox, Ronald L. (Albuquerque, NM)

1983-01-01T23:59:59.000Z

175

STEAM GENERATORS FOR HIGH-TEMPERATURE GAS-COOLED REACTORS  

SciTech Connect

An analytical approach and an IBM machine code were prepared for the design of gas-cooled reactor once-through steam generators for both axial-flow and cross-flow tube matrices. The codes were applied to investigate the effects of steam generator configuration, tube diameter, extended surface, type of cooling gas, steam and gas temperature and pressure conditions, and the pumping power-to-heat removal ratio on the size, weight, and cost of steam generators. The results indicate that the least expensive and most promising unit for high- temperature high-pressure gascooled reactor plants employs axial-gas flow over 0.5-in.dia bare U-tubes arranged with their axes parallel to that of the shell. The proposed design is readily adaptable to the installation of a reheater and is suited to conventional fabrication techniques. Charts are presented to facilitate tlie design of both axial-flow and cross-flow steam generators for gas- cooled reactor applications. (auth)

Fraas, A.P.; Ozisik, M.N.

1963-04-23T23:59:59.000Z

176

Once-through testing of the CRBRP prototype steam generator  

Science Conference Proceedings (OSTI)

The prototype steam generator for the Clinch River Breeder Reactor Plant (CRBRP) was designed, built, and tested by Rockwell International. A portion of these tests, performed by the Energy Technology Engineering Center during early 1983, had the specific objective of supporting the design of a hockey-stick-type steam generator for use in the once-through cycle mode, including demonstration of steady-state operation, startup and shutdown in a once-through mode, and stable operation at low power. Eighteen steady-state performance tests were performed at power levels from 33 to 70 MWt, which represented 20 to 42 percent full power per tube of a commercial design. Pretest predictions are compared with test results. Startup and shutdown operations under a full-liquid condition in the steam generator are described. Steam generator tube inlet orifices, removed during the CRBRP test program, were not replaced for these tests. Therefore, dynamic instability was encountered during certain tests, and the results are compared with the DYNAM code for predicting flow instability conditions. Sodium and steam temperature maldistributions cause by testing at off-design conditions for this unit are also discussed.

Kim, K.; Gabler, M.J.; Carlson, R.D.

1987-01-01T23:59:59.000Z

177

Apparatus and methods of reheating gas turbine cooling steam and high pressure steam turbine exhaust in a combined cycle power generating system  

DOE Patents (OSTI)

In a combined cycle system having a multi-pressure heat recovery steam generator, a gas turbine and steam turbine, steam for cooling gas turbine components is supplied from the intermediate pressure section of the heat recovery steam generator supplemented by a portion of the steam exhausting from the HP section of the steam turbine, steam from the gas turbine cooling cycle and the exhaust from the HP section of the steam turbine are combined for flow through a reheat section of the HRSG. The reheated steam is supplied to the IP section inlet of the steam turbine. Thus, where gas turbine cooling steam temperature is lower than optimum, a net improvement in performance is achieved by flowing the cooling steam exhausting from the gas turbine and the exhaust steam from the high pressure section of the steam turbine in series through the reheater of the HRSG for applying steam at optimum temperature to the IP section of the steam turbine.

Tomlinson, Leroy Omar (Niskayuna, NY); Smith, Raub Warfield (Ballston Lake, NY)

2002-01-01T23:59:59.000Z

178

Pressurized Water Reactor Steam Generator Lay-up: Corrosion Evaluation  

Science Conference Proceedings (OSTI)

This interim report summarizes work completed to date for a project to develop improved lay-up guidance for PWR Steam Generators (SG). Phase 1 of this project included a detailed literature review and a gap analysis of additional work needed to quantify the corrosion behavior of SG materials under wet lay-up conditions. As a result of the gap analysis, EPRI designed a corrosion test program (Phase 2) to measure general corrosion rates of steam generator materials under lay-up conditions. This report summ...

2005-12-16T23:59:59.000Z

179

Compilation of Results and Feedback Regarding Turbine Upgrades at Nuclear and Fossil Power Plants  

Science Conference Proceedings (OSTI)

This report compiles results and feedback and draws a number of conclusions and lessons learned regarding steam turbine generator upgrades at nuclear and fossil power plants.

2008-11-24T23:59:59.000Z

180

POWER PLANT RELIABILITY-AVAILABILITY AND STATE REGULATION. VOLUME 7 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network (OSTI)

without steam gen. ) Steam generator Control Rods Refuelingcooling system, steam generator, and auxiliary coolingcooling system and steam generator. A brief look at tables

Nero, A.V.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fossil steam generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Steam Generator Management Program: Thermal-Hydraulic Analysis of Representative Steam Generators with Various Tube Support Plate B lockages  

Science Conference Proceedings (OSTI)

Three primary-to-secondary leaks recently occurred at Cruas in France. The steam generators at Cruas were designed with a chimney region near the centerline, where 12 tubes were omitted but broach holes were still present in the tube support plates (TSPs). Sludge deposits accumulated in broached holes of the upper TSPs of the Cruas units. All three leaks were located near the chimney region and just above the top TSP. NRC Information Notice 2007-37, Buildup of Deposits in Steam Generators, was issued to ...

2008-12-22T23:59:59.000Z

182

Downhole steam generator with improved preheating, combustion and protection features  

DOE Patents (OSTI)

An apparatus for generation of steam in a borehole for penetration into an earth formation wherein feedback preheater means are provided for the fuel and water before entering the combustor assembly. First, combustion gases are conducted from the combustion chamber to locations in proximity to the water and fuel supplies. Secondly, both hot combustion gases and steam are conducted from the borehole back to the water and fuel supply. The water used for conversion to steam is passed in a countercurrent manner through a plurality of annular water flow channels surrounding the combustion chamber. In this manner, the water is preheated, and the combustion chamber is cooled simultaneously, thereby minimizing thermal stresses and deterioration of the walls of the combustion chamber. The water is injected through slotted inlets along the combustion chamber wall to provide an unstable boundary layer and stripping of the water from the wall for efficient steam generation. Pressure responsive doors are provided at the steam outlet of the combustor assembly. The outlet doors and fluid flow functions may be controlled by a diagnostic/control module. The module is positioned in the water flow channel to maintain a relatively constant, controlled temperature.

Fox, Ronald L. (Albuquerque, NM)

1983-01-01T23:59:59.000Z

183

Modeling a Helical-coil Steam Generator in RELAP5-3D for the Next Generation Nuclear Plant  

SciTech Connect

Options for the primary heat transport loop heat exchangers for the Next Generation Nuclear Plant are currently being evaluated. A helical-coil steam generator is one heat exchanger design under consideration. Safety is an integral part of the helical-coil steam generator evaluation. Transient analysis plays a key role in evaluation of the steam generators safety. Using RELAP5-3D to model the helical-coil steam generator, a loss of pressure in the primary side of the steam generator is simulated. This report details the development of the steam generator model, the loss of pressure transient, and the response of the steam generator primary and secondary systems to the loss of primary pressure. Back ground on High Temperature Gas-cooled reactors, steam generators, the Next Generation Nuclear Plant is provided to increase the readers understanding of the material presented.

Nathan V. Hoffer; Piyush Sabharwall; Nolan A. Anderson

2011-01-01T23:59:59.000Z

184

Steam Generator Automated Eddy Current Data Analysis: A Benchmarking Study  

Science Conference Proceedings (OSTI)

This benchmarking study informs utility nondestructive evaluation (NDE) engineers of the status of automating analysis of data from steam generator tube eddy current testing. Study results will contribute to a detailed plan for continuing development of automated data analysis system processes. One day, automated data analysis will provide utilities with a consistent, accurate, and cost-effective method of analyzing eddy current inspection data.

1998-12-16T23:59:59.000Z

185

Gamma-Ray Exposure Rate Distribution in a Steam Generator  

Science Conference Proceedings (OSTI)

Gamma-ray exposure rate measurements were made with thermoluminescent dosimeters to determine the relative contribution of various surface areas in a steam generator to the overall radiation levels. The measurements were compared with analytic predictions based on discrete ordinates and point kernel techniques, and assessments of the radiation source inventory of the various surfaces were developed.

1983-05-01T23:59:59.000Z

186

Guidelines for the Nondestructive Examination of Heat Recovery Steam Generators  

Science Conference Proceedings (OSTI)

As heat recovery steam generators (HRSGs) have become more complex over the last 15 years, operating with multiple pressures and temperatures, operators have experienced an increasing suite of HRSG tube failures (HTFs). This report provides guidance on the performance of nondestructive evaluation (NDE) of HRSGs so that operators will know what types of NDE to perform and where to perform them.

2007-02-27T23:59:59.000Z

187

Examination of Kewaunee Cold Leg Steam Generator Tubes  

Science Conference Proceedings (OSTI)

Destructive and non-destructive examination of three cold leg tubes removed from Kewaunee steam generator B in 1993 revealed 18 percent-29 percent throughwall intergranular degradation in tube support crevice regions, but burst pressures were nearly the same as for non-degraded tubes. Deposit and oxide film analyses suggest that alkaline conditions existed in tube support crevice regions.

1994-07-15T23:59:59.000Z

188

Automatic Identification of Shaft Orbits for Steam Turbine Generator Sets  

Science Conference Proceedings (OSTI)

The shaft orbits and dynamic characteristics of the shaft centre orbit contain abundant information for the fault diagnosis of rotating machinery and reflect different faults of rotating machine. Therefore the shaft orbits recognition plays an important ... Keywords: shaft orbit, steam turbine generator sets, morphological filter, invariant moment, BP neural network

Changfeng Yan; Hao Zhang; Hui Li; Li Yang; Wen Huang

2009-05-01T23:59:59.000Z

189

Examination of Trojan Steam Generator Tubes: Volumes 1-3  

Science Conference Proceedings (OSTI)

Examination of 10 tubes removed from Trojan steam generators characterized the depth and type of defects associated with eddy-current signals originating at the tube support plate (TSP) locations. The TSP indications were associated with 49-89% through-wall secondary-side intergranular degradation confined within the support. Burst pressures of these degraded TSP locations exceeded regulatory requirements.

1992-12-01T23:59:59.000Z

190

Steam generator and circulator model for the HELAP code  

SciTech Connect

An outline is presented of the work carried out in the 1974 fiscal year on the GCFBR safety research project consisting of the development of improved steam generator and circulator (steam turbine driven helium compressor) models which will eventually be inserted in the HELAP (1) code. Furthermore, a code was developed which will be used to generate steady state input for the primary and secondary sides of the steam generator. The following conclusions and suggestions for further work are made: (1) The steam-generator and circulator model are consistent with the volume and junction layout used in HELAP, (2) with minor changes these models, when incorporated in HELAP, could be used to simulate a direct cycle plant, (3) an explicit control valve model is still to be developed and would be very desirable to control the flow to the turbine during a transient (initially this flow will be controlled by using the existing check valve model); (4) the friction factor in the laminar flow region is computed inaccurately, this might cause significant errors in loss-of-flow accidents; and (5) it is felt that HELAP will still use a large amount of computer time and will thus be limited to design basis accidents without scram or loss of flow transients with and without scram. Finally it may also be used as a test bed for the development of prototype component models which would be incorporated in a more sophisticated system code, developed specifically for GCFBR's. (auth)

Ludewig, H.

1975-07-01T23:59:59.000Z

191

Downhole steam generator with improved preheating, combustion, and protection features  

DOE Patents (OSTI)

For tertiary oil recovery, a downhole steam generator is designed which provides for efficient counterflow cooling of the combustion chamber walls and preheating of the fuel and water. Pressure-responsive doors are provided for closing and opening the outlet in response to flameout, thereby preventing flooding of the combustion chamber. (DLC)

Fox, R.L.

1981-01-07T23:59:59.000Z

192

Combined cycle electric power plant and heat recovery steam generator having improved multi-loop temperature control of the steam generated  

SciTech Connect

A combined cycle electric power plant is described that includes gas and steam turbines and a steam generator for recovering the heat in the exhaust gases exited from the gas turbine and for using the recovered heat to produce and supply steam to the steam turbine. The steam generator includes a superheater tube and a steam drum from which heated steam is directed through the superheater to be additionally heated into superheated steam by the exhaust gas turbine gases. An afterburner serves to further heat the exhaust gas turbine gases passed to the superheater tube and a bypass conduit is disposed about the superheater tube whereby a variable steam flow determined by a bypass valve disposed in the bypass conduit may be directed about the superheater tube to be mixed with the superheated steam therefrom, whereby the temperature of the superheated steam supplied to the steam turbine may be accurately controlled. Steam temperature control means includes a first control loop responsive to the superheated steam temperature for regulating the position of the bypass valve with respect to a first setpoint, and a second control loop responsive to the superheated steam temperature for controlling the fuel supply to the afterburner with respect to a second setpoint varying in accordance with the bypass valve position. In particular, as the bypass valve position increases, the second setpoint, originally higher, is lowered toward a value substantially equal to that of the first setpoint.

Martz, L.F.; Plotnick, R.J.

1976-08-17T23:59:59.000Z

193

Proceedings: Sixth International Conference on Fossil Plant Cycle Chemistry  

Science Conference Proceedings (OSTI)

The purity of boiler water, feedwater, and steam is central to ensuring component availability and reliability in fossil-fired plants. These conference proceedings address the state of the art in fossil plant and combined cycle/heat recovery steam generator (HRSG) cycle chemistry as well as international practices for control of corrosion and water preparation and purification.

None

2001-04-01T23:59:59.000Z

194

Proceedings: Sixth International Conference on Fossil Plant Cycle Chemistry  

Science Conference Proceedings (OSTI)

The purity of boiler water, feedwater, and steam is central to ensuring component availability and reliability in fossil-fired plants. These conference proceedings address the state of the art in fossil plant and combined cycle/heat recovery steam generator (HRSG) cycle chemistry as well as international practices for control of corrosion and water preparation and purification.

2001-03-30T23:59:59.000Z

195

Pre-SW - Steam Generator Management Program: Flaw Handbook Calculator for Excel 2010, Version 2.0  

Science Conference Proceedings (OSTI)

The EPRI Steam Generator Management Program:  Steam Generator Degradation Specific Flaw Handbook (1019037) defines burst pressure equations for steam generator tubes with various degradation morphologies, and the EPRI Steam Generator Management Program:  Steam Generator Integrity Assessment Guidelines (1019038) describes a probabilistic evaluation process which can be used to account for key input parameter uncertainties.  The Flaw Handbook Calculator software is an automated ...

2013-11-20T23:59:59.000Z

196

Hydrogen generation utilizing integrated CO2 removal with steam reforming  

DOE Patents (OSTI)

A steam reformer may comprise fluid inlet and outlet connections and have a substantially cylindrical geometry divided into reforming segments and reforming compartments extending longitudinally within the reformer, each being in fluid communication. With the fluid inlets and outlets. Further, methods for generating hydrogen may comprise steam reformation and material adsorption in one operation followed by regeneration of adsorbers in another operation. Cathode off-gas from a fuel cell may be used to regenerate and sweep the adsorbers, and the operations may cycle among a plurality of adsorption enhanced reformers to provide a continuous flow of hydrogen.

Duraiswamy, Kandaswamy; Chellappa, Anand S

2013-07-23T23:59:59.000Z

197

Field Guide: Visual Inspection of Steam Turbine Generators  

Science Conference Proceedings (OSTI)

Mechanical failures of generator rotors and stators in fossil and nuclear power plants represent a loss of availability for power generation suppliers worldwide. Underlying condition issues and related problems can result in efficiency losses that restrict operation, cause reduction of maximum capacity, and create significant economic disadvantage. This field guide, part of a series of EPRI guides intended for practical use at power plants and in transmission ...

2012-12-14T23:59:59.000Z

198

Steam generator tube integrity program: Phase II, Final report  

SciTech Connect

The Steam Generator Tube Integrity Program (SGTIP) was a three phase program conducted for the US Nuclear Regulatory Commission (NRC) by Pacific Northwest Laboratory (PNL). The first phase involved burst and collapse testing of typical steam generator tubing with machined defects. The second phase of the SGTIP continued the integrity testing work of Phase I, but tube specimens were degraded by chemical means rather than machining methods. The third phase of the program used a removed-from-service steam generator as a test bed for investigating the reliability and effectiveness of in-service nondestructive eddy-current inspection methods and as a source of service degraded tubes for validating the Phase I and Phase II data on tube integrity. This report describes the results of Phase II of the SGTIP. The object of this effort included burst and collapse testing of chemically defected pressurized water reactor (PWR) steam generator tubing to validate empirical equations of remaining tube integrity developed during Phase I. Three types of defect geometries were investigated: stress corrosion cracking (SCC), uniform thinning and elliptical wastage. In addition, a review of the publicly available leak rate data for steam generator tubes with axial and circumferential SCC and a comparison with an analytical leak rate model is presented. Lastly, nondestructive eddy-current (EC) measurements to determine accuracy of defect depth sizing using conventional and alternate standards is described. To supplement the laboratory EC data and obtain an estimate of EC capability to detect and size SCC, a mini-round robin test utilizing several firms that routinely perform in-service inspections was conducted.

Kurtz, R.J.; Bickford, R.L.; Clark, R.A.; Morris, C.J.; Simonen, F.A.; Wheeler, K.R.

1988-08-01T23:59:59.000Z

199

Compilation of EPRI Heat Recovery Steam Generator (HRSG) Guidelines  

Science Conference Proceedings (OSTI)

Combined-cycle units with heat recovery steam generators (HRSGs) represent a substantial portion of new installed generation worldwide since the 1990s. Despite being relative new, these units have experienced a significant loss of availability and reliability due to tubing failures. Many of these failures are attributed to poor design, improper operation, weaknesses in fabrication, and poor installation practices. This product is a compilation of nine (9) key individual guidelines developed to address re...

2007-12-20T23:59:59.000Z

200

Steam Generator Management Program: Long-Term Data Storage  

Science Conference Proceedings (OSTI)

Over the years, steam generator inspections have generated a large amount of historical inspection data, stored on many different types of media. There have been issues accessing the data because of media degradation or the reader no longer being available. With the constant changes in media technology, a review of current types of media was needed to determine what may be accessible in 20 to 30 years. This report documents a literature search conducted of all storage devices and provides an assessment o...

2012-07-30T23:59:59.000Z

Note: This page contains sample records for the topic "fossil steam generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Downhole steam generator having a downhole oxidant compressor  

SciTech Connect

Apparatus and method for generation of steam in a borehole for penetration into an earth formation wherein a downhole oxidant compressor is used to compress relatively low pressure (atmospheric) oxidant, such as air, to a relatively high pressure prior to mixing with fuel for combustion. The multi-stage compressor receives motive power through a shaft driven by a gas turbine powered by the hot expanding combustion gases. The main flow of compressed oxidant passes through a velocity increasing nozzle formed by a reduced central section of the compressor housing. An oxidant bypass feedpipe leading to peripheral oxidant injection nozzles of the combustion chamber are also provided. The downhole compressor allows effective steam generation in deep wells without need for high pressure surface compressors. Feedback preheater means are provided for preheating fuel in a preheat chamber. Preheating of the water occurs in both a water feed line running from aboveground and in a countercurrent water flow channel surrounding the combustor assembly. The countercurrent water flow channels advantageously serve to cool the combustion chamber wall. The water is injected through slotted inlets along the combustion chamber wall to provide an unstable boundary layer and stripping of the water from the wall for efficient steam generation. Pressure responsive doors are provided at the steam outlet for closing and sealing the combustion chamber from entry of reservoir fluids in the event of a flameout.

Fox, Ronald L. (Albuquerque, NM)

1983-01-01T23:59:59.000Z

202

Project Management Guidance when Upgrading Steam Turbines at Nuclear and Fossil Power Plants  

Science Conference Proceedings (OSTI)

Many power producers upgrade steam turbines to gain megawatts (MW) instead of installing new capacity for a variety of reasons. The engineering challenges encounteredwhen managing procurement and adequately analyzing plant support systems affected by this upgradeare becoming more pronounced.

2007-01-15T23:59:59.000Z

203

Reliability Improvement Programs in Steam Distribution and Power Generation Systems  

E-Print Network (OSTI)

This paper will present alternatives to costly corrective maintenance of the steam trap and condensate return system, and the paybacks associated with instituting a program of planned maintenance management of that system. Energy costs can be reduced by 10% and maintenance costs by 20%, while achieving other tangible improvements in the reliability and efficiency of the system. Recent studies have shown that more than 40% of all installed steam traps and 20% of certain types of valves need some form of corrective action. The majority of all high backpressure problems in condensate return systems are due to poor design criteria. in expandlng or retrofitting existing return systems. By instituting a maintenance management program, a 95% reliability can be gained within two to four annual maintenance cycles. The associated operational problems can be greatly reduced. The maintenance management concept involves: 1) centralized project management; 2) diagnostic and inspection expertise; 3) system troubleshooting; 4) data analysis, reporting and recommendations; 5) maintenance repairs and follow-up; and 6) software and data base management. Several case studies, in which the concept has been successfully applied, will be presented. Energy costs, which have been on the rise for the past ten years, have now leveled off due to global supply and demand issues. But that is not true of the costs to maintain capital equipment such as steam distribution and power generation systems. Those costs continue to rise. If the basic principles of maintenance management are applied, when upgrading poorly maintained steam systems, those upgraded systems can be a fast payback of savings in energy, manpower and inventory. Three major areas where the savings can be gained are the steam traps, valve and condensate return systems. Such systems can be found in power generation, steam distribution, and in all types of durable and non-durable industrial productions.

Petto, S.

1987-09-01T23:59:59.000Z

204

Japan’s fossil-fueled generation remains high because of ...  

U.S. Energy Information Administration (EIA)

Japan's use of fossil-fueled generation—the combined amount of electricity generated from natural gas, oil, and coal—was up 21% in 2012, compared to the level in ...

205

Identification and Testing of Amines for Steam Generator Chemistry and Deposit Control  

Science Conference Proceedings (OSTI)

This report summarizes an investigation on optimization of water chemistry to reduce steam generator (SG) fouling. Researchers sought to identify amine additives that can minimize fouling in pressurized water reactor (PWR) steam generators.

2002-12-09T23:59:59.000Z

206

Safety and availabili of steam generator tubes affected by secondary side corrosion  

E-Print Network (OSTI)

ELSEVIER Nuclear Engimering andDesign Safety and availabili of steam generator tubes affected the dominatingageingme&mism is. steam generator tubes made 61Iw0d 600.A variety of maiuttnanGe approacheswre developadand

Cizelj, Leon

207

Generating Electricity with your Steam System: Keys to Long Term Savings  

E-Print Network (OSTI)

The application of combined heat and power principals to existing plant steam systems can help produce electricity at more than twice efficiency of grid generated electricity. In this way, steam plant managers can realize substantial savings with relatively quick payback of capital. Carefully planned and executed projects are the key to unlocking the maximum value of generating electricity from an existing steam system. This paper illustrates the key concepts of generating onsite power with backpressure steam turbine generators along with practical considerations.

Bullock, B.; Downing, A.

2010-01-01T23:59:59.000Z

208

Risks From Severe Accidents Involving Steam Generator Tube Leaks or Ruptures  

Science Conference Proceedings (OSTI)

The various types of corrosion observed in PWR steam generator tubes prompted the nuclear industry to initiate a program of Steam Generator Degradation Specific Management (SGDSM). This program's objective is to develop a cost-effective means to maintain plant safety while improving steam generator reliability. Critical to this program is an assessment of the impact of steam generator tube leakage or rupture during severe accidents. This study determined the contributions of these types of severe acciden...

1998-01-02T23:59:59.000Z

209

Next Generation Engineered Materials for Ultra Supercritical Steam Turbines  

SciTech Connect

To reduce the effect of global warming on our climate, the levels of CO{sub 2} emissions should be reduced. One way to do this is to increase the efficiency of electricity production from fossil fuels. This will in turn reduce the amount of CO{sub 2} emissions for a given power output. Using US practice for efficiency calculations, then a move from a typical US plant running at 37% efficiency to a 760 C /38.5 MPa (1400 F/5580 psi) plant running at 48% efficiency would reduce CO2 emissions by 170kg/MW.hr or 25%. This report presents a literature review and roadmap for the materials development required to produce a 760 C (1400 F) / 38.5MPa (5580 psi) steam turbine without use of cooling steam to reduce the material temperature. The report reviews the materials solutions available for operation in components exposed to temperatures in the range of 600 to 760 C, i.e. above the current range of operating conditions for today's turbines. A roadmap of the timescale and approximate cost for carrying out the required development is also included. The nano-structured austenitic alloy CF8C+ was investigated during the program, and the mechanical behavior of this alloy is presented and discussed as an illustration of the potential benefits available from nano-control of the material structure.

Douglas Arrell

2006-05-31T23:59:59.000Z

210

Geothermal Steam Power Plant | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home General List of Dry Steam Plants List of Flash Steam Plants Steam Power Plants Dry Steam Power Plants Simple Dry Steam Powerplant process description - DOE EERE 2012 Dry steam plants use hydrothermal fluids that are primarily steam. The steam travels directly to a turbine, which drives a generator that produces electricity. The steam eliminates the need to burn fossil fuels to run the turbine (also eliminating the need to transport and store fuels). These plants emit only excess steam and very minor amounts of gases.[1] Dry steam power plants systems were the first type of geothermal power generation plants built (they were first used at Lardarello in Italy in 1904). Steam technology is still effective today at currently in use at The

211

Nuclear plant design and modification guidelines for PWR steam generator reliability  

Science Conference Proceedings (OSTI)

Operating experience gathered from PWR plant operation during the 1960's and 1970's has been incorporated into a series of design guidelines for secondary plant systems and steam generators. Specific guidelines included in this volume are: plant design for PWR steam generator inspection and nondestructive testing, revision 1; guidelines for design of steam generator blowdown systems, revision 1; plant design guidelines for layup and cleanup of steam, feedwater, and condensate systems, revision 1; design guidelines for plant secondary systems, revision 1 and plant design for steam generator replaceability, revision 1. The guidelines are intended to address those aspects of new plant design which will minimize corrosion damage to steam generators by controlling impurity ingress, facilitate steam generator nondestructive testing and provide for eventual replacement of steam generator if necessary. The guidelines, last revised in 1986, are primarily applicable to new plant construction, however, some of the guidelines may also be applicable to major backfits to existing plants.

Not Available

1991-09-01T23:59:59.000Z

212

Electric power generating plant having direct-coupled steam and compressed-air cycles  

DOE Patents (OSTI)

An electric power generating plant is provided with a Compressed Air Energy Storage (CAES) system which is directly coupled to the steam cycle of the generating plant. The CAES system is charged by the steam boiler during off peak hours, and drives a separate generator during peak load hours. The steam boiler load is thereby levelized throughout an operating day.

Drost, M.K.

1981-01-07T23:59:59.000Z

213

Electric power generating plant having direct coupled steam and compressed air cycles  

DOE Patents (OSTI)

An electric power generating plant is provided with a Compressed Air Energy Storage (CAES) system which is directly coupled to the steam cycle of the generating plant. The CAES system is charged by the steam boiler during off peak hours, and drives a separate generator during peak load hours. The steam boiler load is thereby levelized throughout an operating day.

Drost, Monte K. (Richland, WA)

1982-01-01T23:59:59.000Z

214

Steam Generator Management Program: PWR Steam Generator Tube Wear - Alloy 690/Foreign Objects, Alloy 600/Carbon Steel, Alloy 690/Car bon Steel Support  

Science Conference Proceedings (OSTI)

Wear at tube support plates and wear resulting from foreign objects (FOs) can damage tubes in replacement steam generators. To date, however, limited data have been available on wear rates for Alloy 690 tubing. Under the Steam Generator Management Program, the Electric Power Research Institute (EPRI) has sponsored a series of experiments to determine the wear coefficients between combinations of Alloy 690 steam generator tube material and relevant support and FO materials. This report describes the test ...

2008-12-22T23:59:59.000Z

215

Simulation of a main steam line break with steam generator tube rupture using trace  

Science Conference Proceedings (OSTI)

A simulation of the OECD/NEA ROSA-2 Project Test 5 was made with the thermal-hydraulic code TRACE5. Test 5 performed in the Large Scale Test Facility (LSTF) reproduced a Main Steam Line Break (MSLB) with a Steam Generator Tube Rupture (SGTR) in a Pressurized Water Reactor (PWR). The result of these simultaneous breaks is a depressurization in the secondary and primary system in loop B because both systems are connected through the SGTR. Good approximation was obtained between TRACE5 results and experimental data. TRACE5 reproduces qualitatively the phenomena that occur in this transient: primary pressure falls after the break, stagnation of the pressure after the opening of the relief valve of the intact steam generator, the pressure falls after the two openings of the PORV and the recovery of the liquid level in the pressurizer after each closure of the PORV. Furthermore, a sensitivity analysis has been performed to know the effect of varying the High Pressure Injection (HPI) flow rate in both loops on the system pressures evolution. (authors)

Gallardo, S.; Querol, A.; Verdu, G. [Departamento de Ingenieria Quimica Y Nuclear, Universitat Politecnica de Valencia, Camino de Vera s/n, 46022, Valencia (Spain)

2012-07-01T23:59:59.000Z

216

Maine Yankee steam generator tube modification from a radiobiological prospective  

SciTech Connect

Maine Yankee installed permanent sleeving in the primary secondary interface tubing of their steam generators. This repair was necessary because of numerous defects approaching or exceeding technical specification requirements. This project was accomplished under budget, and for a radiation exposure of 141.974 person-rem. This paper addresses the ALARA considerations, temporary lead shielding, mockup training, radiation worker training, radiological initiatives, and lessons learned.

Heath, E.; Granados, B. [Maine Yankee, Wiscasset, MA (United States)

1996-06-01T23:59:59.000Z

217

Repair Welding Technologies For Heat Recovery Steam Generators  

Science Conference Proceedings (OSTI)

Tube failures that occur in heat recovery steam generators (HRSGs) are often caused by thermal stress or thermal shock associated with cyclic plant operation or by flow-accelerated corrosion. Many premature failures occur along the length of finned tubes or at attachment locations where tubes are joined to the upper or lower header. Because of current tube repair practices and limited access for welding, reoccurring failures are common.

2005-12-21T23:59:59.000Z

218

Fundamental Assessment of Steam Generator Line Contact Tube Support Fouling  

Science Conference Proceedings (OSTI)

This report describes the current progress of a project to predict the tendency for fouling and dryout at the line contact point between steam generator tubes and tube support plates. This first phase of the project is focused on evaluating the susceptibility of specific support designs (concave, flat, convex broached lands, and eggcrates) to fouling. This report describes the first modeling task aimed at development of a simple thermal hydraulic model that describes the local mass velocity in the tube s...

2004-05-18T23:59:59.000Z

219

Stress Relief Treatment of Alloy 600 Steam Generator Tubing  

Science Conference Proceedings (OSTI)

Various time-temperature combinations may hold potential for improving the resistance of tubesheet transition regions to intergranular stress corrosion cracking (IGSCC). EPRI has discovered that the most significant enhancement in IGSCC of Alloy 600 steam generator tubing occurs with stress relief heat treatments administered in the range of 550-610 degrees Celsius for an average of nine hours. Treatments administered for shorter times at temperatures greater than 700 degrees Celsius also proved effective.

1994-03-05T23:59:59.000Z

220

Investigation of thermal storage and steam generator issues  

Science Conference Proceedings (OSTI)

A review and evaluation of steam generator and thermal storage tank designs for commercial nitrate salt technology showed that the potential exists to procure both on a competitive basis from a number of qualified vendors. The report outlines the criteria for review and the results of the review, which was intended only to assess the feasibility of each design, not to make a comparison or select the best concept.

Not Available

1993-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "fossil steam generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Examination of Crystal River Unit 3 Steam Generator Tube Sections  

Science Conference Proceedings (OSTI)

An examination of seven tubes removed from the Crystal River unit 3 steam generator characterized tube degradation associated with low-voltage eddy-current indications in the free span region above the lower tubesheet. The defects responsible for the low-voltage eddy-current signals consisted of small, relatively shallow, isolated, pit-like spots of outside-diameter-initiated intergranular attack, which had almost no effect on the burst strength of the tubing.

1994-05-31T23:59:59.000Z

222

Delivering High Reliability in Heat Recovery Steam Generators  

Science Conference Proceedings (OSTI)

Despite being relatively new, the worldwide fleet of combined-cycle units with heat recovery steam generators (HRSGs) has exhibited a disappointing record with respect to reliability and availability in terms of HRSG tube failures (HTFs). This report identifies actions that—if implemented prior to commercial operation—should greatly improve the operational HRSG reliability.BackgroundWhen contemplating new combined-cycle units, the choices that can ...

2012-12-12T23:59:59.000Z

223

Emission Factors Handbook: Guidelines for Estimating Trace Substance Emissions from Fossil Fuel Steam Electric Plants  

Science Conference Proceedings (OSTI)

The "Emission Factors Handbook" provides a tool for estimating trace substances emissions from fossil-fuel-fired power plants. The suggested emission factors are based on EPRI and Department of Energy (DOE) field measurements conducted at over 50 power plants using generally consistent sampling and analytical protocols. This information will help utility personnel estimate air toxic emissions for permitting purposes.

2002-04-10T23:59:59.000Z

224

COMMIX analysis of the sodium heated helical coil steam generator  

SciTech Connect

This paper describes the COMMIX-HCSG computer program and compares predictions to data obtained from performance tests on a 76 MWt Helical Coil Steam Generator (HCSG) test unit. COMMIX-HCSG is a multi-dimensional thermal/hydraulic code that models both steady state and transient operation of an HCSG. The code solves a system of Navier-Stokes continuum equations that have been modified with a combination of volume and directional surface porosities and distributed resistances. This formulation properly accounts for the presence of tube bundle, supports, and baffles on the shell side of the steam generator. Turbulence models and heat transfer and pressure drop equations are used as applicable for the different regions including the upper plenum, the tube bundle, and the lower plenum of the HCSG. The data was obtained from performance tests conducted in early 1987 on the 76 MWt HCSG test unit at the Energy Technology Engineering Center (ETEC). The test unit contains over 700 instruments. HCSG development and tests are carried out as part of the Department of Energy program to develop reliable and economical liquid metal heated steam generators.

Kakarala, C.R.; Burge, S.W.; Sha, W.T.

1987-01-01T23:59:59.000Z

225

Large Steam Generating Units for the Combustion of Refuse  

E-Print Network (OSTI)

Many by-products of our economy are considered 'waste' and are disposed of as landfill or by incineration. A shortage of landfill sites and increasingly higher fuel prices have stimulated interests in the conversion of burnable waste products into heat for process and the generation of power. Interest in the combustion of the most widely distributed waste products, household and industrial municipal refuse, is rapidly escalating. The assembly of a large complex for power and steam production by the combustion of municipal refuse, however, is a very complex process requiring the cooperation of many governmental, private, industrial, environmental and financial entities. A number of refuse burning plants have been and are being built. Many projects are in the planning stage. This paper reviews the background available in the combustion for steam generation of municipal refuse in shredded form on spreader stokers. This paper also provides up-to-date information regarding the design, construction, and operational status of the two large steam generating units for the combustion of municipal refuse presently being completed at the Hooker Chemical installation in Niagara Falls, New York.

Adams, P. J.; Robinson, C. C.

1981-01-01T23:59:59.000Z

226

Revised Industry Steam Generator Program Generic License Change Package  

E-Print Network (OSTI)

License Change Package for NRC review and endorsement. Industry events during the subsequent months have delayed the NRC review and presented an opportunity for the industry to improve the submittal. A summary of the major changes from the February submittal is provided in Enclosure 1. The resulting package (Enclosures 2 through 8), which supercedes the earlier version in its entirety, is enclosed for your endorsement. Although the events of the last ten months have resulted in some changes to the industry steam generator program guidance, the fundamental principles remain sound. Equally as important, the program has demonstrated its resiliency. The steam generator program guidance is designed to accommodate new knowledge and experience, and that is precisely what is occurring. The enclosed Generic License Change Package includes changes that reflect recent experience. In addition, the appropriate underlying technical documents are currently being revised or supplemental guidance is being developed as necessary to reflect new information. The industry and the NRC worked diligently to address the technical and licensing issues that ultimately resulted in the February 2000 version of the Steam Generator Program Generic License Change Package. Although these documents have been revised since the previous submittal, the differences do not represent a change in our position on the issues.

David J. Modeen; Mr. Samuel; J. Collins; U. S. Nuclear; Regulatory Commission; Xuo Mr; Samuel J. Collins

2000-01-01T23:59:59.000Z

227

Large Steam Generating Units for the Combustion of Refuse  

E-Print Network (OSTI)

"Many by-products of our economy are considered ""waste"" and are disposed of as landfill or by incineration. A shortage of landfill sites and increasingly higher fuel prices have stimulated interests in the conversion of burnable waste products into heat for process and the generation of power. Interest in the combustion of the most widely distributed waste products, household and industrial municipal refuse, is rapidly escalating. The assembly of a large complex for power and steam production by the combustion of municipal refuse, however, is a very complex process requiring the cooperation of many governmental, private, industrial, environmental and financial entities. A number of refuse burning plants have been and are being built. Many projects are in the planning stage. This paper reviews the background available in the combustion for steam generation of municipal refuse in shredded form on spreader stokers. This paper also provides up-to-date information regarding the design, construction, and operational status of the two large steam generating units for the combustion of municipal refuse presently being completed at the Hooker Chemical installation in Niagara Falls, New York."

Adams, P. J.; Robinson, C. C.

1981-04-01T23:59:59.000Z

228

Heat recovery steam generator outlet temperature control system for a combined cycle power plant  

Science Conference Proceedings (OSTI)

This patent describes a command cycle electrical power plant including: a steam turbine and at least one set comprising a gas turbine, an afterburner and a heat recovery steam generator having an attemperator for supplying from an outlet thereof to the steam turbine superheated steam under steam turbine operating conditions requiring predetermined superheated steam temperature, flow and pressure; with the gas turbine and steam turbine each generating megawatts in accordance with a plant load demand; master control means being provided for controlling the steam turbine and the heat recovery steam generator so as to establish the steam operating conditions; the combination of: first control means responsive to the gas inlet temperature of the heat recovery steam generator and to the plant load demand for controlling the firing of the afterburner; second control means responsive to the superheated steam predetermined temperature and to superheated steam temperature from the outlet for controlling the attemperator between a closed and an open position; the first and second control means being operated concurrently to maintain the superheated steam outlet temperature while controlling the load of the gas turbine independently of the steam turbine operating conditions.

Martens, A.; Myers, G.A.; McCarty, W.L.; Wescott, K.R.

1986-04-01T23:59:59.000Z

229

IMPROVEMENTS IN OR RELATING TO STEAM GENERATING PLANT  

SciTech Connect

A nuclear power plant is designed using a heavy-watermoderated, steam- cooled reactor. In this plant, feed water is heated by the moderator and reactor steam to form feed steam, which is then superheated by superheated reactor steam and expanded through a nozzle. The feed steam issuing from the nozzie has added to it the superheated reactor steam, and the resulting steam is compressed, heated further in the reactor, and part of it passed to the turbine. (D.L.C.)

Bauer, S.G.; Jubb, D.H.

1962-10-10T23:59:59.000Z

230

Steam Generator Management Program: Generic Plant Qualification and Application Plan for Dispersant Use During Steam Generator Wet L ayup  

Science Conference Proceedings (OSTI)

This report summarizes the results of an Electric Power Research Institute (EPRI) effort to develop dispersant application during steam generator (SG) wet layup as an additional deposit management strategy. Based on the results of this study, the addition of dispersant during wet layup is likely to modestly increase the amount of iron removed from the SGs of nuclear PWRs prior to power ascension, benefitting the utilities by reducing the corrosion product inventory within the SGs upon startup. The inform...

2011-06-30T23:59:59.000Z

231

Impacts of Wind and Solar on Fossil-Fueled Generators: Preprint  

NLE Websites -- All DOE Office Websites (Extended Search)

Impacts of Wind and Solar on Fossil-Fueled Generators Preprint D. Lew and G. Brinkman National Renewable Energy Laboratory N. Kumar, P. Besuner, D. Agan, and S. Lefton Intertek...

232

Computational Research Challenges and Opportunities for the Optimization of Fossil Energy Power Generation System  

Science Conference Proceedings (OSTI)

Emerging fossil energy power generation systems must operate with unprecedented efficiency and near-zero emissions, while optimizing profitably amid cost fluctuations for raw materials, finished products, and energy. To help address these challenges, the fossil energy industry will have to rely increasingly on the use advanced computational tools for modeling and simulating complex process systems. In this paper, we present the computational research challenges and opportunities for the optimization of fossil energy power generation systems across the plant lifecycle from process synthesis and design to plant operations. We also look beyond the plant gates to discuss research challenges and opportunities for enterprise-wide optimization, including planning, scheduling, and supply chain technologies.

Zitney, S.E.

2007-06-01T23:59:59.000Z

233

The Evaluation of Steam Generator Level Measurement Model for OPR1000 Using RETRAN-3D  

Science Conference Proceedings (OSTI)

Steam generator level measurement is important factor for plant transient analyses using best estimate thermal hydraulic computer codes since the value of steam generator level is used for steam generator level control system and plant protection system. Because steam generator is in the saturation condition which includes steam and liquid together and is the place that heat exchange occurs from primary side to secondary side, computer codes are hard to calculate steam generator level realistically without appropriate level measurement model. In this paper, we prepare the steam generator models using RETRAN-3D that include geometry models, full range feedwater control system and five types of steam generator level measurement model. Five types of steam generator level measurement model consist of level measurement model using elevation difference in downcomer, 1D level measurement model using fluid mass, 1D level measurement model using fluid volume, 2D level measurement model using power and fluid mass, and 2D level measurement model using power and fluid volume. And we perform the evaluation of the capability of each steam generator level measurement model by simulating the real plant transient condition, the title is 'Reactor Trip by The Failure of The Deaerator Level Control Card of Ulchin Unit 3'. The comparison results between real plant data and RETRAN-3D analyses for each steam generator level measurement model show that 2D level measurement model using power and fluid mass or fluid volume has more realistic prediction capability compared with other level measurement models. (authors)

Doo Yong Lee; Soon Joon Hong; Byung Chul Lee [FNC Technology Co., SNU Research Park Innovation Center 516, San4-2, Bongchun-7 dong, Kwanak-Gu, Seoul (Korea, Republic of); Heok Soon Lim [KHNP Nuclear Environment Technology Institute, Munji-dong 103-16, Yusung-Gu, Daejeon (Korea, Republic of)

2006-07-01T23:59:59.000Z

234

High Efficiency Direct Carbon and Hydrogen Fuel Cells for Fossil Fuel Power Generation  

SciTech Connect

Hydrogen he1 cells have been under development for a number of years and are now nearing commercial applications. Direct carbon fuel cells, heretofore, have not reached practical stages of development because of problems in fuel reactivity and cell configuration. The carbon/air fuel cell reaction (C + O{sub 2} = CO{sub 2}) has the advantage of having a nearly zero entropy change. This allows a theoretical efficiency of 100 % at 700-800 C. The activities of the C fuel and CO{sub 2} product do not change during consumption of the fuel. Consequently, the EMF is invariant; this raises the possibility of 100% fuel utilization in a single pass. (In contrast, the high-temperature hydrogen fuel cell has a theoretical efficiency of and changes in fuel activity limit practical utilizations to 75-85%.) A direct carbon fuel cell is currently being developed that utilizes reactive carbon particulates wetted by a molten carbonate electrolyte. Pure COZ is evolved at the anode and oxygen from air is consumed at the cathode. Electrochemical data is reported here for the carbon/air cell utilizing carbons derived from he1 oil pyrolysis, purified coal, purified bio-char and petroleum coke. At 800 O C, a voltage efficiency of 80% was measured at power densities of 0.5-1 kW/m2. Carbon and hydrogen fuels may be produced simultaneously at lugh efficiency from: (1) natural gas, by thermal decomposition, (2) petroleum, by coking or pyrolysis of distillates, (3) coal, by sequential hydrogasification to methane and thermal pyrolysis of the methane, with recycle of the hydrogen, and (4) biomass, similarly by sequential hydrogenation and thermal pyrolysis. Fuel production data may be combined with direct C and H2 fuel cell operating data for power cycle estimates. Thermal to electric efficiencies indicate 80% HHV [85% LHV] for petroleum, 75.5% HHV [83.4% LHV] for natural gas and 68.3% HHV [70.8% LHV] for lignite coal. Possible benefits of integrated carbon and hydrogen fuel cell power generation cycles are: (1) increased efficiency by a factor of up to 2 over many conventional fossil fuel steam plants, (2) reduced power generation cost, especially for increasing fossil fuel cost, (3) reduced CO2 emission per kWh, and (4) direct sequestration or reuse (e.g., in enhanced oil or NG recovery) of the CO{sub 2} product.

Steinberg, M; Cooper, J F; Cherepy, N

2002-01-02T23:59:59.000Z

235

Analysis of Steam Generator Tubing from Crystal River, Unit 3  

Science Conference Proceedings (OSTI)

Four tubes were removed from Crystal River Unit 3 steam generator B during the 1994 refueling outage (RFO 9). The tubes were examined to characterize any tube degradation associated with eddy current (EC) indications occurring at the 7th and 9th tube support plate (TSP) intersections, which were identified during RFO 8. Mechanical wear observed at the 7th and 9th TSP lands had almost no effect on the tubing's burst strength. Small patches of intergranular attack (IGA) were observed in the first freespan ...

1997-10-08T23:59:59.000Z

236

RADIOLOGICAL HEALTH AND RELATED STANDARDS FOR NUCLEAR POWER PLANTS. VOLUME 2 OF HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network (OSTI)

MISCELLAN £OUS LlOUID STEAM GENERATOR ORAIH OE .. ,N[PALIZEAon the steam system and turbine generator units, as d~fined

Nero, A.V.

2010-01-01T23:59:59.000Z

237

DYNAMIC SIMULATION OF MONO-TUBE CAVITY RECEIVERS FOR DIRECT STEAM GENERATION  

E-Print Network (OSTI)

-tracing study of the heat flux distribution inside the steam receiver is used to spatially refine the modelDYNAMIC SIMULATION OF MONO-TUBE CAVITY RECEIVERS FOR DIRECT STEAM GENERATION José Zapata 1 , John dish has been in operation since 2010 with a mono-tube steam cavity receiver, the SG4 system

238

Revisiting the Steam-Boiler Case Study with LUTESS : Modeling for Automatic Test Generation  

E-Print Network (OSTI)

Revisiting the Steam-Boiler Case Study with LUTESS : Modeling for Automatic Test Generation. In this paper, we apply this modeling principle to a well known case study, the steam boiler problem which has model and to assess the difficulty of such a process in a realistic case study. The steam boiler case

Paris-Sud XI, Université de

239

Steam Generator Management Program: Applicability of EDF's Steam Generator Blockage Ratio Estimation Method to Plant Shutdown Transients  

Science Conference Proceedings (OSTI)

Electricité de France (EDF) has developed a technique that it uses to estimate the level of deposit buildup on steam generator tube support plates at its pressurized water reactor (PWR) units in France. The technique could potentially be of use to other PWR operators, but it needs to be carefully evaluated to determine what adaptations would be necessary to enable it to be used accurately at other plants. This report documents work undertaken by the Electric Power Research Institute (EPRI) and EDF to det...

2012-02-16T23:59:59.000Z

240

New treatment concept for steam generators technical aspects  

Science Conference Proceedings (OSTI)

The project that will be described is a co-operation development project (SAGA) between Studsvik and the Ringhals NPP. The objective for this development project was, to show that it is possible to perform effective waste treatment of a Steam Generator(SG), to minimize the volume that in the end will have to be finally disposed of and to recycle as much of the metals as possible. Another objective for the project was to do this in a safe way and without a large dose load to the personnel. The treatment concept contains the whole chain of activities from loading of the steam generator at Ringhals NPP onto the special vessel M/S Sigyn, and the transportation of the SG from Ringhals NPP on the west coast of Sweden to Studsvik on the east coast, to the recycling of the metals and the packing of waste in final packages suitable for disposal. The volume for a final repository before treatment was about 400 m3 for the SG and after treatment the volume for final disposal is 1000 m{sup 2}, planned to be operational in April 2007. - Investments in a larger band saw. - Improvements of the blasting equipment. - Improvements of the method of segmentation of the tube bundle. - Improvements of the method of volume reduction for the tube bundle. (authors)

Lindstrom, A.; Wirendal, B.O.; Lindberg, M. [Studsvik Nuclear AB, Dept. RadWaste, Nykoping (Sweden)

2007-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "fossil steam generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Induced draft fan innovation for heat recovery steam generators  

SciTech Connect

A first of its kind, induced draft (ID) heat recovery steam generators (HRSG) have been in service at a cogeneration facility since 1991. A preliminary engineering study considered a forced draft (FD) fan to supply combustion air to the HRSG duct burners (when the combustion turbine (CT) is out of service) as a traditional design; however, the study indicated that the FD fan may require the HRSG duct burner to be shut off following a CT trip and re-ignited after the FD fan was in service. Although the induced draft HRSG design cost more than the FD fan design, the induced draft design has improved the cogeneration facility's steam generation reliability by enabling the HRSG to remain in service following a CT trip. This paper briefly summarizes the preliminary engineering study that supported the decision to select the ID fan design. The paper also discusses the control system that operates the fresh-air louvers, duct burners, HRSG, and ID fan during a CT trip. Startup and operating experiences are presented that demonstrate the effectiveness of the design. Lessons learned are also summarized for input into future induced draft HRSG designs.

Beasley, O.W.; Hutchins, E.C. (Oklahoma Gas and Electric Co., Oklahoma City, OK (United States)); Predick, P.R.; Vavrek, J.M. (Sargent and Lundy, Chicago, IL (United States))

1994-04-01T23:59:59.000Z

242

Guidelines for PWR Steam Generator Tubing Specifications and Repair: Volume 2, Revision 1: Guidelines for Procurement of Alloy 690 S team Generator Tubing  

Science Conference Proceedings (OSTI)

This revised document provides guidelines for procuring Alloy 690 steam generator tubing and sleeve material.

1999-04-14T23:59:59.000Z

243

Development and Transient Analysis of a Helical-coil Steam Generator for High Temperature Reactors  

DOE Green Energy (OSTI)

A high temperature gas-cooled reactor (HTGR) is under development by the Next Generation Nuclear Plant (NGNP) Project at the Idaho National Laboratory (INL). Its design emphasizes electrical power production which may potentially be coupled with process heat for hydrogen production and other industrial applications. NGNP is considering a helical-coil steam generator for the primary heat transport loop heat exchanger based on its increased heat transfer and compactness when compared to other steam generators. The safety and reliability of the helical-coil steam generator is currently under evaluation as part of the development of NGNP. Transients, such as loss of coolant accidents (LOCA), are of interest in evaluating the safety of steam generators. In this study, a complete steam generator inlet pipe break (double ended pipe break) LOCA was simulated by an exponential loss of primary side pressure. For this analysis, a model of the helical-coil steam generator was developed using RELAP5-3D, an INL inhouse systems analysis code. The steam generator model behaved normally during the transient simulating the complete steam generator inlet pipe break LOCA. Further analysis is required to comprehensively evaluate the safety and reliability of the helical-coil steam generator design in the NGNP setting.

Nathan V. Hoffer; Nolan A. Anderson; Piyush Sabharwall

2011-08-01T23:59:59.000Z

244

Steam Generator Management Program: Assessment of Channel Head Susceptibility to Primary Water Stress Corrosion Cracking  

Science Conference Proceedings (OSTI)

There have been several documented cases of primary water stress corrosion cracking (PWSCC) indications in the divider plate assembly in Westinghouse model steam generators in operation outside the United States. These indications were observed in plants that operated with proper primary water chemistry. The function of the divider plate in most steam generators is to separate the cold and hot legs of the channel head as the primary water enters the steam generator so that the primary coolant flows up in...

2012-06-19T23:59:59.000Z

245

Steam Generator Management Program: Site Specific Performance Demonstration (SSPD) Version 3.0  

Science Conference Proceedings (OSTI)

The  Site Specific Performance Demonstration (SSPD) software assists in training and testing of SG eddy current personnel for the upcoming outage.  The software will help ensure that analysts have read the outage guidelines and are knowledge about the typical degradations found in the steam generator.Benefits & Value:The Pressurized Water Reactor Steam Generator Examination Guidelines, 1013706, requires steam generator analysts to pass an exam ...

2013-09-10T23:59:59.000Z

246

Flow-induced vibration in LMFBR steam generators: a state-of-the-art review  

SciTech Connect

This state-of-the-art review identifies and discusses existing methods of flow-induced vibration analysis applicable to steam generators, their limitations, and base-technology needs. Also included are discussions of five different LMFBR steam-generator configurations and important design considerations, failure experiences, possible flow-induced excitation mechanisms, vibration testing, and available methods of vibration analysis. The objectives are to aid LMFBR steam-generator designers in making the best possible evaluation of potential vibration in steam-generator internals, and to provide the basis for development of design guidelines to avoid detrimental flow-induced vibration. (auth)

Shin, Y.S.; Wambsganss, M.W.

1975-05-01T23:59:59.000Z

247

Performance Calculations and Optimization of a Fresnel Direct Steam Generation CSP Plant with Heat Storage.  

E-Print Network (OSTI)

?? This master thesis deals with the performance calculations of a 9MW linear Fresnel CSP plant withdirect steam generation built by the Solar Division of… (more)

Schlaifer, Perrine

2013-01-01T23:59:59.000Z

248

Generation Maintenance Application Center: Combustion Turbine Combined-Cycle Heat Recovery Steam Generator Maintenance Guide  

Science Conference Proceedings (OSTI)

This guide provides information to assist personnel involved with the maintenance of the heat recovery steam generator at a combustion gas turbine combined cycle facility, including good maintenance practices, preventive maintenance techniques and troubleshooting guidance. BackgroundCombustion turbine combined cycle (CTCC) facilities utilize various components that can be unique to this particular type of power plant. As such, owners and ...

2013-05-15T23:59:59.000Z

249

Data Quality Evaluation of Hazardous Air Pollutants Measurements for the US Environmental Protection Agency's Electric Utility Steam Generating Units Information Collection Request  

Science Conference Proceedings (OSTI)

In December 2009, the U.S. Environmental Protection Agency (EPA) issued an Information Collection Request (ICR) to owners of fossil fuel-fired, electric steam generating units. Part III of the ICR required that almost 500 selected power plant stacks be tested for emissions of four groups of substances classified as hazardous air pollutants under the Clean Air Act: acid gases and hydrogen cyanide; metals; volatile and semivolatile organics; and polychlorinated dibenzodioxins, dibenzofurans, and polychlori...

2010-12-18T23:59:59.000Z

250

Water chemistry of breeder reactor steam generators. [LMFBR  

Science Conference Proceedings (OSTI)

The water quality requirements will be described for breeder reactor steam generators, as well as specifications for balance of plant protection. Water chemistry details will be discussed for the following power plant conditions: feedwater and recirculation water at above and below 5% plant power, refueling or standby, makeup water, and wet layup. Experimental data will be presented from tests which included a departure from nucleate boiling experiment, the Few Tube Test, with a seven tube evaporator and three tube superheater, and a verification of control and on-line measurement of sodium ion in the ppB range. Sampling and instrumentation requirements to insure adherence to the specified water quality will be described. Evaporator cleaning criteria and data from laboratory testing of chemical cleaning solutions with emphasis on flow, chemical composition, and temperature will be discussed.

Simpson, J.L.; Robles, M.N.; Spalaris, C.N.; Moss, S.A.

1980-08-01T23:59:59.000Z

251

Steam Generator Management Program: Pressurized Water Reactor Generic Tube Degradation Predictions: Recirculating Steam Generators with Alloy 600TT, Alloy 690TT, and Alloy 800NG Tubing  

Science Conference Proceedings (OSTI)

Mill-annealed Alloy 600 heat transfer tubing in pressurized water reactor (PWR) steam generators (SGs) has experienced numerous modes of degradation. This report describes predictive models for determining expected tube degradation in recirculating steam generators with Alloy 600TT, Alloy 690TT, and Alloy 800NG tubing. Predictions are based on operating experience with similar designs and use improvement factors to characterize benefits resulting from SG design and material ...

2013-12-17T23:59:59.000Z

252

Steam Generator Management Program: Dynamic Analysis of a Steam Generator--Part 1: Method Development, Steady-State Verification, an d Steady-State Validation  

Science Conference Proceedings (OSTI)

This report is the first of a two-part set that details the development and application of a new software model for steam generator dynamic analysis. This report contains the background and development of the steam generator dynamic analysis model and the steady-state verification and validation results. The second report (to be published in early 2013) is expected to contain results from simulations that illustrate the effect of tube support plate clogging levels on the onset of water level instability ...

2012-06-28T23:59:59.000Z

253

Impacts of Wind and Solar on Fossil-Fueled Generators: Preprint  

DOE Green Energy (OSTI)

High penetrations of wind and solar power will impact the operations of the remaining generators on the power system. Regional integration studies have shown that wind and solar may cause fossil-fueled generators to cycle on and off and ramp down to part load more frequently and potentially more rapidly. Increased cycling, deeper load following, and rapid ramping may result in wear-and-tear impacts on fossil-fueled generators that lead to increased capital and maintenance costs, increased equivalent forced outage rates, and degraded performance over time. Heat rates and emissions from fossil-fueled generators may be higher during cycling and ramping than during steady-state operation. Many wind and solar integration studies have not taken these increased cost and emissions impacts into account because data have not been available. This analysis considers the cost and emissions impacts of cycling and ramping of fossil-fueled generation to refine assessments of wind and solar impacts on the power system.

Lew, D.; Brinkman, G.; Kumar, N.; Besuner, P.; Agan, D.; Lefton, S.

2012-08-01T23:59:59.000Z

254

SUBJECT: Insights and Implications of Steam Generator Operating, Inspecting and Maintenance Experience  

E-Print Network (OSTI)

The steam generator tube failure event at Indian Point Unit 2 and the potential issues surrounding the in-situ pressure testing of selected tubes and test specimens at Arkansas Nuclear One Unit 2, prompted industry to evaluate its generic steam generator guidelines, plant experiences, and insights gained from the periodic steam generator program review visits conducted by the Institute of Nuclear Power Operations (INPO). The purpose of this letter is to share with the NRC staff the industry conclusions and actions taken. As the NRC staff is well aware, the operation, inspection, and maintenance of steam generators are a high industry priority. Given the critical role of the steam generator in providing safe, reliable, and economic power production, steam generator performance has received broad industry attention for years. Generic industry activities, managed by EPRI, have been underway continuously since 1978. NRC staff is familiar with those efforts based on past briefings on the activities of the EPRI Steam Generator Management Program (SGMP) and attendance at selected SGMP workshops. More recently, other industry support organizations, such as NEI, INPO, and NSSS Owners Groups, have played important roles as well. Industry data indicates continual improvement in steam generator performance since the initiation of these efforts.

David J. Modeen; Dr. Brian; W. Sheron

2000-01-01T23:59:59.000Z

255

A Simplified Lumped Parameter Model for U-Tube Steam Generator  

Science Conference Proceedings (OSTI)

A simplified lumped parameter model for U-tube steam generator (UTSG) is presented, according to its working principle and the mass and energy conservation theory as well as the principle of thermal system dynamics. A three-element controller of water ... Keywords: Steam generator, Lumped parameter, Dynamic, Simplified

Zhang Yongsheng; Ma Yunyi

2010-06-01T23:59:59.000Z

256

An Evaluation of Time Dependent Leak Rates in Degraded Steam Generator Tubing  

Science Conference Proceedings (OSTI)

Argonne National Laboratory (ANL) has performed leak rate testing of degraded steam generator tubing for a number of years as part of the Steam Generator Tube Integrity Program, under the sponsorship of the Office of Nuclear Regulatory Research of the U.S. Nuclear Regulatory Commission. This document describes the results of a review and evaluation of ANL time-dependent leak rate information.

2007-12-13T23:59:59.000Z

257

The New Environmental Drivers: Challenges to Fossil Generation Planning and Investment  

Science Conference Proceedings (OSTI)

The electric power industry faces emission requirements of unprecedented scope and stringency over the next decade. This report introduces and summarizes different existing and potential requirements collectively and describes the special challenges they pose, in combination, for fossil generation planning and investment. The report also examines Phase 1 compliance experience, a sharp contrast from possible developments during Phase 2.

1998-04-15T23:59:59.000Z

258

Worldwide assessment of steam-generator problems in pressurized-water-reactor nuclear power plants  

Science Conference Proceedings (OSTI)

Objective is to assess the reliability of steam generators of pressurized water reactor (PWR) power plants in the United States and abroad. The assessment is based on operation experience of both domestic and foreign PWR plants. The approach taken is to collect and review papers and reports available from the literature as well as information obtained by contacting research institutes both here and abroad. This report presents the results of the assessment. It contains a general background of PWR plant operations, plant types, and materials used in PWR plants. A review of the worldwide distribution of PWR plants is also given. The report describes in detail the degradation problems discovered in PWR steam generators: their causes, their impacts on the performance of steam generators, and the actions to mitigate and avoid them. One chapter is devoted to operating experience of PWR steam generators in foreign countries. Another discusses the improvements in future steam generator design.

Woo, H.H.; Lu, S.C.

1981-09-15T23:59:59.000Z

259

Implications of Steam Generator Fouling on the Degradation of ...  

Science Conference Proceedings (OSTI)

Corrosion products that originate from various components in the steam cycle of a nuclear power plant get pumped forward with the feed water where they ...

260

Locating hot and cold-legs in a nuclear powered steam generation system  

DOE Patents (OSTI)

A nuclear reactor steam generator includes a reactor vessel for heating water and a steam generator with a pump casing at the lowest point on the steam generator. A cold-leg pipe extends horizontally between the steam generator and the reactor vessel to return water from the steam generator to the reactor vessel. The bottom of the cold-leg pipe is at a first height above the bottom of the reactor vessel. A hot-leg pipe with one end connected to the steam generator and a second end connected to the reactor vessel has a first pipe region extending downwardly from the steam generator to a location between the steam generator and the reactor vessel at which a bottom of the hot-leg pipe is at a second height above the bottom of the reactor vessel. A second region extends from that location in a horizontal direction at the second height to the point at which the hot-leg pipe connects to the reactor vessel. A pump is attached to the casing at a location below the first and second heights and returns water from the steam generator to the reactor vessel over the cold-leg. The first height is greater than the second height and the bottom of the steam generator is at a height above the bottom of the reactor vessel that is greater than the first and second heights. A residual heat recovery pump is below the hot-leg and has an inlet line from the hot-leg that slopes down continuously to the pump inlet. 2 figures.

Ekeroth, D.E.; Corletti, M.M.

1993-11-16T23:59:59.000Z

Note: This page contains sample records for the topic "fossil steam generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Locating hot and cold-legs in a nuclear powered steam generation system  

SciTech Connect

A nuclear reactor steam generator includes a reactor vessel for heating water and a steam generator with a pump casing at the lowest point on the steam generator. A cold-leg pipe extends horizontally between the steam generator and the reactor vessel to return water from the steam generator to the reactor vessel. The bottom of the cold-leg pipe is at a first height above the bottom of the reactor vessel. A hot-leg pipe with one end connected to the steam generator and a second end connected to the reactor vessel has a first pipe region extending downwardly from the steam generator to a location between the steam generator and the reactor vessel at which a bottom of the hot-leg pipe is at a second height above the bottom of the reactor vessel. A second region extends from that location in a horizontal direction at the second height to the point at which the hot-leg pipe connects to the reactor vessel. A pump is attached to the casing at a location below the first and second heights and returns water from the steam generator to the reactor vessel over the cold-leg. The first height is greater than the second height and the bottom of the steam generator is at a height above the bottom of the reactor vessel that is greater than the first and second heights. A residual heat recovery pump is below the hot-leg and has an inlet line from the hot-leg that slopes down continuously to the pump inlet.

Ekeroth, Douglas E. (Delmont, PA); Corletti, Michael M. (New Kensington, PA)

1993-01-01T23:59:59.000Z

262

Method and apparatus for set point control for steam temperatures for start-up of the turbine and steam generator in unit power plants  

SciTech Connect

A method and apparatus are described for controlling the set point for steam temperatures for cold start-up of a steam generator-turbine unit wherein inlet steam temperature and turbine load absorption are steadily and substantially simultaneously increased in accordance with a predetermined relationship so as to reach their final values substantially synchronously.

Bloch, H.; Salm, M.

1978-05-23T23:59:59.000Z

263

Proceedings: 7th International Conference on Cycle Chemistry in Fossil Plants  

SciTech Connect

The purity of boiler water, feedwater, and steam is central to ensuring component availability and reliability in fossil-fired plants. These proceedings of EPRI's Seventh International Conference on Cycle Chemistry in Fossil Plants address the state of the art in fossil plant and combined cycle/heat recovery steam generator (HRSG) cycle chemistry as well as international practices for corrosion control and water preparation and purification.

None

2004-02-01T23:59:59.000Z

264

Regional comparison of nuclear and fossil electric power generation costs  

SciTech Connect

Nuclear's main disadvantages are its high capital investment cost and uncertainty in schedule compared with alternatives. Nuclear plant costs continue to rise whereas coal plant investment costs are staying relative steady. Based on average experience, nuclear capital investment costs are nearly double those of coal-fired generation plants. The capital investment cost disadvantage of nuclear is balanced by its fuel cost advantages. New base load nuclear power plants were projected to be competitive with coal-fired plants in most regions of the country. Nuclear power costs wre projected to be significantly less (10% or more) than coal-fired power costs in the South Atlantic region. Coal-fired plants were projected to have a significant economic advantage over nuclear plants in the Central and North Central regions. In the remaining seven regions, the levelized cost of power from either option was projected to be within 10%. Uncertainties in future costs of materials, services, and financing affect the relative economics of the nuclear and coal options significantly. 10 figures.

Bowers, H.I.

1984-01-01T23:59:59.000Z

265

Mitigation of steam generator tube rupture in a pressurized water reactor with passive safety systems  

DOE Patents (OSTI)

The effects of steam generator tube ruptures in a pressurized water reactor are mitigated by reducing the pressure in the primary loop by diverting reactor coolant through the heat exchanger of a passive heat removal system immersed in the in containment refueling water storage tank in response to a high feed water level in the steam generator. Reactor coolant inventory is maintained by also in response to high steam generator level introducing coolant into the primary loop from core make-up tanks at the pressure in the reactor coolant system pressurizer. The high steam generator level is also used to isolate the start-up feed water system and the chemical and volume control system to prevent flooding into the steam header. 2 figures.

McDermott, Daniel J. (Export, PA); Schrader, Kenneth J. (Penn Hills, PA); Schulz, Terry L. (Murrysville Boro, PA)

1994-01-01T23:59:59.000Z

266

Mitigation of steam generator tube rupture in a pressurized water reactor with passive safety systems  

DOE Patents (OSTI)

The effects of steam generator tube ruptures in a pressurized water reactor are mitigated by reducing the pressure in the primary loop by diverting reactor coolant through the heat exchanger of a passive heat removal system immersed in the in containment refueling water storage tank in response to a high feed water level in the steam generator. Reactor coolant inventory is maintained by also in response to high steam generator level introducing coolant into the primary loop from core make-up tanks at the pressure in the reactor coolant system pressurizer. The high steam generator level is also used to isolate the start-up feed water system and the chemical and volume control system to prevent flooding into the steam header. 2 figures.

McDermott, D.J.; Schrader, K.J.; Schulz, T.L.

1994-05-03T23:59:59.000Z

267

Destructive Examination of Tube R31C66 From the Ginna Nuclear Plant Steam Generator  

Science Conference Proceedings (OSTI)

Like some other PWR steam generators, the Ginna plant has experienced loss of steam pressure for several years. Deposits of up to 8 mils thick have been found and may explain the steam pressure loss. In addition, destructive and nondestructive examinations found a through-wall crack in the roll transition of a hot leg tube removed from this plant as well as shallow intergranular attack (IGA) in the tubesheet crevice region.

1991-07-01T23:59:59.000Z

268

Conceptual Design of a Lead-Bismuth Cooled Fast Reactor with In-Vessel Direct-Contact Steam Generation  

E-Print Network (OSTI)

The feasibility of a lead-bismuth (Pb-Bi) cooled fast reactor that eliminates the need for steam generators and coolant pumps was explored. The working steam is generated by direct contact vaporization of water and liquid ...

Buongiorno, J.

269

Conceptual design of a lead-bismuth cooled fast reactor with in-vessel direct-contact steam generation  

E-Print Network (OSTI)

The feasibility of a lead-bismuth (Pb-Bi) cooled fast reactor that eliminates the need for steam generators and coolant pumps was explored. The working steam is generated by direct contact vaporization of water and liquid ...

Buongiorno, Jacopo, 1971-

2001-01-01T23:59:59.000Z

270

Neural Network Based Modeling of a Large Steam Turbine-Generator Rotor Body Parameters from On-Line Disturbance Data  

E-Print Network (OSTI)

Neural Network Based Modeling of a Large Steam Turbine-Generator Rotor Body Parameters from On technique to estimate and model rotor- body parameters of a large steam turbine-generator from real time

271

A real-time self-tuning fuzzy controller through scaling factor adjustment for the steam generator of NPP  

Science Conference Proceedings (OSTI)

Keywords: fuzzy controller, instantaneous system performance, real-time, scaling factor, self-tuning, steam generator, variable reference tuning index

Chul-Hwan Jung; Chang-Shik Ham; Kuhn-Il Lee

1995-08-01T23:59:59.000Z

272

Modeling of a horizontal steam generator for the submerged nuclear power station concept  

SciTech Connect

A submerged nuclear power station has been proposed as an alternative power station with a relatively low environmental impact for use by both industrialized and developing countries. The station would be placed 10 m above the seabed at a depth of 30--100 m and a distance of 10--30 km from shore. The submerged nuclear power station would be manufactured and refueled in a central facility, thus gaining the economies of factoryfabrication and the flexibility of short-lead-time deployment. To minimize the size of the submerged hull, horizontal steam generators are proposed for the primary-to-secondary heat transfer, instead of the more traditional vertical steam generators. The horizontal steam generators for SNPS would be similar in design to the horizontal steam generators used in the N-Reactors except the tube orientation is horizontal (the tube`s inlet and outlet connection points on the tubesheet are at the same elevation). Previous RELAP5 input decks for horizontal steam generators have been either very simplistic (Loviisa PWR) or used a vertical tube orientation (N-Reactor). This paper will present the development and testing of a RELAP5 horizontal steam generator model, complete with a simple secondary water level control system, that accounts for the dynamic flow conditions which exist inside horizontal steam generators.

Palmrose, D.E.; Herring, J.S.

1993-05-01T23:59:59.000Z

273

Steam generator materials performance in high temperature gas-cooled reactors  

SciTech Connect

This paper reviews the materials technology aspects of steam generators for HTGRs which feature a graphite-moderated, uranium-thorium, all-ceramic core and utilizes high-pressure helium as the primary coolant. The steam generators are exposed to gas-side temperatures approaching 760/sup 0/C and produce superheated steam at 538/sup 0/C and 16.5 MPa (2400 psi). The prototype Peach Bottom I 40-MW(e) HTGR was operated for 1349 EFPD over 7 years. Examination after decommissioning of the U-tube steam generators and other components showed the steam generators to be in very satisfactory condition. The 330-MW(e) Fort St. Vrain HTGR, now in the final stages of startup, has achieved 70% power and generated more than 1.5 x 10/sup 6/ MWh of electricity. The steam generators in this reactor are once-through units of helical configuration, requiring a number of new materials factors including creep-fatigue and water chemistry control. Current designs of larger HTGRs also feature steam generators of helical once-through design. Materials issues that are important in these designs include detailed consideration of time-dependent behavior of both base metals and welds, as required by current American Society of Mechanical Engineers (ASME) Code rules, evaluation of bimetallic weld behavior, evaluation of the properties of large forgings, etc.

Chafey, J.E.; Roberts, D.I.

1980-11-01T23:59:59.000Z

274

Modeling of a horizontal steam generator for the submerged nuclear power station concept  

Science Conference Proceedings (OSTI)

A submerged nuclear power station has been proposed as an alternative power station with a relatively low environmental impact for use by both industrialized and developing countries. The station would be placed 10 m above the seabed at a depth of 30--100 m and a distance of 10--30 km from shore. The submerged nuclear power station would be manufactured and refueled in a central facility, thus gaining the economies of factoryfabrication and the flexibility of short-lead-time deployment. To minimize the size of the submerged hull, horizontal steam generators are proposed for the primary-to-secondary heat transfer, instead of the more traditional vertical steam generators. The horizontal steam generators for SNPS would be similar in design to the horizontal steam generators used in the N-Reactors except the tube orientation is horizontal (the tube's inlet and outlet connection points on the tubesheet are at the same elevation). Previous RELAP5 input decks for horizontal steam generators have been either very simplistic (Loviisa PWR) or used a vertical tube orientation (N-Reactor). This paper will present the development and testing of a RELAP5 horizontal steam generator model, complete with a simple secondary water level control system, that accounts for the dynamic flow conditions which exist inside horizontal steam generators.

Palmrose, D.E.; Herring, J.S.

1993-01-01T23:59:59.000Z

275

The Streaming Potential Generated by Flow of Wet Steam in Capillary Tubes  

SciTech Connect

For a constant pressure differential, the flow of wet steam generated electric potentials which increased with time and did not reach equilibrium values. These potentials were found to increase to values greater than 100 volts. The reason for this kind of potential build-up behavior was the presence of tiny flowing water slugs which were interspersed with electrically nonconductive steam vapor slugs. The measured electric potential for wet steam increased with pressure differential, but the relationship was not linear. The increase in potential with pressure drop was attributed both to an increase in fluid flow rate and changes in the wet steam quality.

Marsden, S.S. Jr.; Tyran, Craig K.

1986-01-21T23:59:59.000Z

276

Heat Recovery Steam Generators for Combined Cycle Applications: HRSG Procurement, Design, Construction, and Operation Update  

Science Conference Proceedings (OSTI)

Design alternatives and procurement approaches for heat recovery steam generators, supplemental firing duct burners, and ancillary steam systems are addressed in this report. Power engineers and project developers will find an up-to-date, comprehensive resource for planning, specification and preliminary design in support of combined cycle plant development.

2005-03-29T23:59:59.000Z

277

Report covering examination of parts from downhole steam generators. [Combustor head and sleeve parts  

Science Conference Proceedings (OSTI)

Combustor head and sleeve parts were examined by using optical and scanning electron metallography after use in oxygen/diesel and air/diesel downhole steam generators. The degradation of the different alloy components is described in terms of reactions with oxygen, sulfur and carbon in the presence of cyclic stresses, all generated by the combustion process. Recommendations are presented for component materials (alloys and coatings) to extend component lives in the downhole steam generators. 9 references, 22 figures, 3 tables.

Pettit, F. S.; Meier, G. H.

1983-08-01T23:59:59.000Z

278

POWER PLANT RELIABILITY-AVAILABILITY AND STATE REGULATION. VOLUME 7 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network (OSTI)

generate steam to drive a steam turbine, giving rise to theValves and Pi~ing STEAM TURBINE COMPONENT OUTAGE CAUSESbasically of a steam-driven turbine, an electric generator

Nero, A.V.

2010-01-01T23:59:59.000Z

279

Downhole steam generator having a downhole oxidant compressor  

DOE Patents (OSTI)

Am improved apparatus is described for the downhole injection of steam into boreholes, for tertiary oil recovery. It includes an oxidant supply, a fuel supply, an igniter, a water supply, an oxidant compressor, and a combustor assembly. The apparatus is designed for efficiency, preheating of the water, and cooling of the combustion chamber walls. The steam outlet to the borehole is provided with pressure-responsive doors for closing the outlet in response to flameout. (DLC)

Fox, R.L.

1981-01-07T23:59:59.000Z

280

Fossil Power Plant Cost and Performance Trends  

Science Conference Proceedings (OSTI)

This report is one of two companion studies that describe trends in operating costs and reliability of fossil steam plants since 1970. The studies are a foundation for more sophisticated statistical studies aimed at modeling and predicting the impacts of cycling. This report summarizes results for coal-fired steam generating units, contrasting performance across 112 baseload plants, 68 load-following/cycling plants, and 118 plants that varied their operations for at least three years. Annual trends are p...

2006-08-31T23:59:59.000Z

Note: This page contains sample records for the topic "fossil steam generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Assessment of Amines for Fossil Plant Applications  

Science Conference Proceedings (OSTI)

The purity and proper chemical treatment of water and steam are central to ensuring fossil and heat recovery steam generator (HRSG) plant component availability and reliability, which are critical to the overall economic performance and profitability of plant unit operations. This report provides a technical assessment of neutralizing amines for application in plant cycles to improve the pH conditions in the low pressure (LP) evaporators and economizers of HRSGs, the phase transition zone (PTZ) of the LP...

2010-03-31T23:59:59.000Z

282

Mathematical model of steam generator feed system at power unit of nuclear plant  

Science Conference Proceedings (OSTI)

A mathematical model of a steam generator feed system at a power unit of a nuclear plant with variable values of transfer function coefficients is presented. The model is realized in the MATLAB/Simulink/Stateflow event-driven simulation.

E. M. Raskin; L. A. Denisova; V. P. Sinitsyn; Yu. V. Nesterov

2011-05-01T23:59:59.000Z

283

A Passive Film Formed on Alloy 600 as a Steam Generator Tubing ...  

Science Conference Proceedings (OSTI)

Sep 16, 2007 ... A Passive Film Formed on Alloy 600 as a Steam Generator Tubing Material by Dong-Jin Kim, Hyuk Chul Kwon, Seong Sik Hwang and Hong ...

284

The design and testing of a molten salt steam generator for solar application  

SciTech Connect

This paper describes the design and testing of the Steam Generator Subsystem (SGS) for the Molten Salt Electric Experiment at Sandia Laboratories in Albuquerque, New Mexico. The Molten Salt Electric Experiment (MSEE) has been established to demonstrate the feasibility of the molten salt central receiver concept. The experiment is capable of generating 0.75 megawatts of electric power from solar energy, with the capability of storing seven megawatt-hours of thermal energy. The steam generator subsystem transfers sensible heat from the solar-heated molten nitrate salt to produce steam to drive a conventional turbine. This paper discusses the design requirements dictated by the steam generator application and also reviews the process conditions. Details of each of the SGS components are given, featuring the aspects of the design and performance unique to the solar application. The paper concludes with a summary of the test results confirming the overall design of the subsystem.

Allman, W.A.; Smith, D.C.; Kakarala, C.R.

1988-02-01T23:59:59.000Z

285

Prototype steam generator test at SCTI/ETEC. Acoustic program test plan. [LMFBR  

SciTech Connect

This document is an integrated test plan covering programs at General Electric (ARSD), Rockwell International (RI) and Argonne National Laboratory (CT). It provides an overview of the acoustic leak detection test program which will be completed in conjunction with the prototype LMFBR steam generator at the Energy Technology Engineering Laboratory. The steam generator is installed in the Sodium Components Test Installation (SCTI). Two acoustic detection systems will be used during the test program, a low frequency system developed by GE-ARSD (GAAD system) and a high frequency system developed by RI-AI (HALD system). These systems will be used to acquire data on background noise during the thermal-hydraulic test program. Injection devices were installed during fabrication of the prototype steam generator to provide localized noise sources in the active region of the tube bundle. These injectors will be operated during the steam generator test program, and it will be shown that they are detected by the acoustic systems.

Greene, D.A.; Thiele, A.; Claytor, T.N.

1981-10-01T23:59:59.000Z

286

Nuclear Plant Design and Modification Guidelines for PWR Steam Generator Reliability  

Science Conference Proceedings (OSTI)

Operating and maintenance experience relative to PWR steam generator reliability has produced a variety of "lessons learned." This information has been incorporated in a series of guidelines to aid utilities in major plant modifications and new plant construction.

1991-09-25T23:59:59.000Z

287

Horizontal Steam Generator Thermal-Hydraulics at Various Steady-State Power Levels  

Science Conference Proceedings (OSTI)

Three-dimensional computer simulation and analyses of the horizontal steam generator thermal-hydraulics of the WWER 1000 nuclear power plant have been performed for 50% and 75% partial loads, 100% nominal load and 110% over-load. Presented results show water and steam mass flow rate vectors, steam void fraction spatial distribution, recirculation zones, swell level position, water mass inventory on the shell side, and other important thermal-hydraulic parameters. The simulations have been performed with the computer code 3D ANA, based on the 'two-fluid' model approach. Steam-water interface transport processes, as well as tube bundle flow resistance, energy transfer, and steam generation within tube bundles are modelled with {sup c}losure laws{sup .} Applied approach implies non-equilibrium thermal and flow conditions. The model is solved by the control volume procedure, which has been extended in order to take into account the 3D flow of liquid and gas phase. The methodology is validated by comparing numerical and experimental results of real steam generator operational conditions at various power levels of the WWER Novovoronezh, Unit 5. One-dimensional model of the horizontal steam generator has been built with the RELAP 5 standard code on the basis of the multidimensional two-phase flow structure obtained with the 3D ANA code. RELAP 5 and 3D ANA code results are compared, showing acceptable agreement. (authors)

Stevanovic, Vladimir D. [University of Belgrade, Kraljice Marije 16, 11000 Belgrade, Serbia and Montenegro (Yugoslavia); Stosic, Zoran V.; Kiera, Michael; Stoll, Uwe [Framatome ANP GmbH, P.O. Box 3220, 91050 Erlangen (Germany)

2002-07-01T23:59:59.000Z

288

PWR Steam Generator Secondary-Side IGA/SCC: Correlations with Deposit Lead and Phosphate History  

Science Conference Proceedings (OSTI)

This report covers an investigation into possible correlations between steam generator deposit lead concentrations and rates of intergranular attack/stress corrosion cracking (IGA/SCC). It also considers the relationship between prior phosphate injection and the rate of IGA/SCC. Prompting the study is recent identification by analytical transmission electron microscopy (ATEM) of large concentrations of lead in oxides in secondary-side cracks in tube samples from steam generators where significant involve...

2005-07-05T23:59:59.000Z

289

Steam Generator Tube Integrity Risk Assessment: Volume 2: Application to Diablo Canyon Power Plant  

Science Conference Proceedings (OSTI)

Damage to steam generator tubing can impair its ability to adequately perform the required safety functions in terms of structural stability and leakage. This report describes the Diablo Canyon Power Plant application of a method for calculating risk for severe accidents involving steam generator tube failure. The method helps utilities determine risks associated with application of alternate repair criteria and/or operation with degraded tubing.

2000-08-08T23:59:59.000Z

290

Steam Turbine and Generator Designs for Combined-Cycle Applications: Durability, Reliability, and Procurement Considerations  

Science Conference Proceedings (OSTI)

Combined-cycle power plants are currently preferred for new power generation capacity in much of the world, particularly in the United States. Steam turbines and electrical generators are vital components affecting plant performance and reliability. Over 90 percent of the world's combined-cycle steam turbines are provided by six major manufacturers: Alstom, General Electric, Siemens-Westinghouse, Mitsubishi, Toshiba, and Hitachi. This report provides information on their model offerings and consideration...

2003-03-18T23:59:59.000Z

291

Steam Generator Management Program: Evaluation of Eddy Current Data Analysis Algorithms  

Science Conference Proceedings (OSTI)

As part of the U.S. Nuclear Regulatory Commission’s (NRC’s) International Steam Generator Tube Integrity Program, Argonne National Laboratory (ANL) was contracted to develop algorithms to assist in the analysis of rotating probe eddy current data. The algorithms were designed for both flaw detection and sizing. Rotating probe data collected on the flawed tubes in the NRC’s steam generator (SG) mockup were used to document the performance of the algorithms for both detection and ...

2012-09-28T23:59:59.000Z

292

Oxidation and Reduction of Copper in Steam Generator Deposits: Under Shutdown, Layup, and Startup Conditions  

Science Conference Proceedings (OSTI)

This project was initiated to address recent experience suggesting that the oxidation of secondary-side tube scale during shutdown, layup, and startup (SLS) is a major factor in the corrosion degradation of pressurized water reactor (PWR) steam generators (SGs). The objective of this project was to evaluate the potential for oxidation and reduction of SG deposits under prototypical SLS conditions. Steam generator deposits contain a variety of compounds or metals that could potentially be oxidized or redu...

2001-09-24T23:59:59.000Z

293

Downhole steam generator using low-pressure fuel and air supply  

DOE Patents (OSTI)

For tertiary oil recovery, an apparatus for downhole steam generation is designed in which water is not injected directly onto the flame in the combustor, the combustion process is isolated from the reservoir pressure, the fuel and oxidant are supplied to the combustor at relatively low pressures, and the hot exhaust gases is prevented from entering the earth formation but is used to preheat the fuel and oxidant and water. The combustion process is isolated from the steam generation process. (DLC)

Fox, R.L.

1981-01-07T23:59:59.000Z

294

Evaluation of an Ultrasonic Search Unit for Examination of Steam Generator Tube U-Bends  

Science Conference Proceedings (OSTI)

Nondestructive examination (NDE) techniques with high flaw detection probability and accurate flaw characterization are essential to perform cost effective structural integrity assessments of steam generator tubes. Such assessments are essential in assuring the integrity of the primary coolant loop. Ultrasonic examination technology has been developed and demonstrated to provide high quality results for examination of steam generator tubes. These ultrasonic techniques have been focused on straight sectio...

2004-12-03T23:59:59.000Z

295

Thermal-hydraulic response and iodine transport during a steam generator tube rupture  

SciTech Connect

Recent reanalyses of the offsite dose consequences following a steam generator tube rupture have identified a possible non-conservatism in original FSAR analyses. Post-trip uncovery of the top of the steam generator U-tubes, in conjunction with a break near the U-tube top, could lead to increased iodine release due to a reduced ''scrubbing'' of the iodine in the primary break fluid by the steam generator secondary liquid. To evaluate this issue, analyses were performed at the Idaho National Engineering Laboratory. The RELAP5 computer code was used to conduct an analysis of the Surry plant to determine whether the post-trip steam generator secondary mixture level was sufficient to maintain continuous coverage of the U-tubes. The results indicated continuous coverage of the U-tubes. The RELAP5 result was supported by a hand calculation. Additional RELAP5 analyses were conducted to determine magnitudes of iodine release for a steam generator tube rupture. Two sensitivity studies were conducted. The amount of iodine released to the atmosphere was strongly dependent on the assumed value of the partition coefficient. The assumption of steam generator U-tube uncovery, on a collapsed liquid level basis, following reactor trip had a minor effect on the amount of released iodine. 17 refs., 28 figs., 5 tabs.

Callow, R.A.

1988-10-01T23:59:59.000Z

296

Identification and Testing of Amines for Steam Generator Chemistry and Deposit Control: Part 3: Qualifications of Dodecylamine as an Amine Additive for Steam Generator Fouling Mitigation  

Science Conference Proceedings (OSTI)

This report summarizes an investigation to qualify an amine additive for a pressurized water reactor (PWR) field trial to reduce steam generator (SG) fouling. While the results to date continue to support a field trial, the apparent incompatibility of the amine additive with ion exchange cation resins will be a significant problem for some stations.

2004-12-01T23:59:59.000Z

297

Direct contact low emission steam generating system and method utilizing a compact, multi-fuel burner  

SciTech Connect

A high output, high pressure direct contact steam generator for producing high quality steam particularly suited for use with low grade, low cost fuel. When used in a system incorporating heat recovery and conversion of carryover water enthalpy into shaft horsepower, the unit disclosed provides high quality, high pressure steam for ''steam drive'' or thermal stimulation of petroleum wells through injection of high pressure steam and combustion gas mixtures. A particular feature of the burner/system disclosed provides compression of a burner oxidant such as atmospheric air, and shaft horesepower for pumping high pressure feedwater, from a lowest cost energy source such as leased crude, or other locally available fuel.

Eisenhawer, S.; Donaldson, A. B.; Fox, R. L.; Mulac, A. J.

1985-02-12T23:59:59.000Z

298

EA-1778: Proposed Rule, 10 CFR 433 and 435, Energy Conservation and Fossil Fuel-Generated Energy  

Energy.gov (U.S. Department of Energy (DOE))

This EA evaluates the environmental impacts of DOE's Proposed Rule, 10 CFR Part 433, “Energy Conservation and Fossil Fuel-Generated Energy Consumption Reduction Standards for the Design and Construction of New Federal Commercial and Multi-Family High-Rise Residential Buildings” and 10 CFR Part 435, “Energy Conservation and Fossil Fuel-Generated Energy Consumption Reduction Standards for the Design and Construction of New Federal Low-Rise Residential Buildings”.

299

The economics of repowering steam turbines  

SciTech Connect

Repowering is defined as displacing steam presently generated in an existing fossil fuel fired boiler with a gas turbine-heat recovery steam generator (HRSG) system. The steam generated in the HRSG is expanded in the existing steam turbine generator. Repowering advantages include a significant increase in power output at an improved heat rate relative to the base value for the existing steam turbine cycle being repowered. In addition, the reduction in emissions can be advantageous in most locations. This paper discusses application and economic considerations associated with repowering. In addition, an illustration will show how repowering coal fired steam turbine systems may prove economic relative to retrofit scrubbers and/or low sulfur coal fuel substitution that may be part of the forthcoming acid rain legislation.

Kovacik, J.M.; Stoll, H.G. (General Electric Co., Schenectady, NY (United States))

1990-01-01T23:59:59.000Z

300

22nd Steam Generator NDE Workshop: June 30 - July 2, 2003, Hilton Head, South Carolina  

Science Conference Proceedings (OSTI)

This year's workshop took place in Hilton Head, South Carolina, from June 30th to July 2nd, 2003. It covered one full day and two half-days of presentations. Attendees included representatives from domestic and overseas nuclear utilities, nuclear steam supply system (NSSS) vendors, nondestructive evaluation (NDE) service and equipment organizations, research laboratories, and regulatory bodies. This annual workshop serves as a forum for NDE specialists to gather and discuss current steam generator NDE is...

2003-12-15T23:59:59.000Z

Note: This page contains sample records for the topic "fossil steam generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Comprehensive Cycle Chemistry Guidelines for Combined Cycle/Heat Recovery Steam Generators (HRSGs)  

Science Conference Proceedings (OSTI)

The purity of water and steam is central to ensuring combined cycle/heat recovery steam generator (HRSG) plant component availability and reliability. These guidelines for combined cycle/HRSG plants provide information on the application of all-volatile treatment (AVT), oxygenated treatment (OT), phosphate treatment (PT), caustic treatment (CT), and amine treatment. The guidelines will help operators reduce corrosion and deposition and thereby achieve significant operation and maintenance cost ...

2013-11-08T23:59:59.000Z

302

Geophysical consequences of carbon dioxide generation by fossil fuels. [Melting of polar icecaps  

SciTech Connect

The recent National Academy of Sciences Report ''Energy and Climate'' asserts that the greenhouse effect of CO/sub 2/ generated by the burning of fossil fuels would increase the temperature of the earth by 11/sup 0/F. It is argued and calculations have been carried out to show that the principal effect is the complete melting of the polar icecaps in a few centuries; the resulting inundation of the populated land areas and the coastal cities of the world is even more disastrous. The calculated increase of temperature is only 1.4/sup 0/C.

Fong, P.

1978-01-01T23:59:59.000Z

303

Emission Factors Handbook Addendum 2: Guidelines for Estimating Trace Substance Emissions from Fossil Fuel Steam Electric Power Plan ts  

Science Conference Proceedings (OSTI)

This handbook provides a tool for estimating trace substances emissions from fossil-fuel-fired power plants. The suggested emission factors are based on EPRI and U.S. Department of Energy (DOE) field measurements conducted at 51 power plants using generally consistent sampling and analytical protocols. This information will help utility personnel estimate air toxic emissions for permitting purposes.

2000-12-22T23:59:59.000Z

304

Solar-powered steam generator heliostat. Final report  

DOE Green Energy (OSTI)

A small-size central-receiver-type solar energy collecting system delivering commercial grade steam is analyzed and a wind avoidance type heliostat designed, built, and successfully tested. The heliostat design effort is described, including reflecting surface materials and measurements, optic considerations and mirror field arrangements, mechanical analysis and fabrication techniques, and economics and cost effectiveness. Measurements of normal incident solar energy at Upton, N.Y., are reported and a method is proposed for estimating this input parameter for other locations proposed.

Cottingham, J G

1978-12-01T23:59:59.000Z

305

Boiler and Heat Recovery Steam Generator Tube Failures: Theory and Practice  

Science Conference Proceedings (OSTI)

Boiler and heat recovery steam generator (HRSG) tube failures have been the primary availability problem for operators of conventional and combined cycle plants for as long as reliable statistics have been kept for each generating source. This book provides owners and operators with the technical basis to address tube failures and create permanent solutions.

2011-12-23T23:59:59.000Z

306

Steam Turbine-Generator Torsional Vibration Interaction With the Electrical Network  

Science Conference Proceedings (OSTI)

This Tutorial Report deals with steam turbine-generator torsional vibration arising from interaction with the electrical systems that connect to the generator. Besides providing background material on torsional vibration and fatigue, it reviews operating experience and machine torsional duty mitigation strategies and provides information on torsional vibration measurement, monitoring, diagnostic procedures, and non-destructive evaluation (NDE).

2005-11-14T23:59:59.000Z

307

Reliability Improvement Programs in Steam Distribution and Power Generation Systems  

E-Print Network (OSTI)

This paper will present alternatives to costly corrective maintenance repairs of the steam trap and condensate return system, and the paybacks associated with instituting a program of planned and systematic maintenance management of that system. Energy costs can be reduced by 10% and maintenance costs by 20%, while achieving other tangible improvements in the reliability and efficiency of the system. Recent studies have shown that more than 40% of all installed steam traps and 20% of certain types of valves need some form of corrective action. The majority of all high backpressure problems in condensate return systems are due to poor design criteria in expanding or retrofitting existing return systems. By instituting a maintenance management program, a 95% reliability can be gained with two to four annual maintenance cycles. The associated operational problems can be greatly reduced. The maintenance management concept involves: 1) centralized project management; 2) diagnostic and inspection expertise; 3) system troubleshooting; 4) data analysis, reporting and recommendations; 5) maintenance repairs and follow-up; and 6)software and data base management. Several case studies, in which the concept has been successfully applied, will be presented.

Atlas, R. D.

1986-06-01T23:59:59.000Z

308

Technical and economic feasibility of solar augmented process steam generation. Final report  

DOE Green Energy (OSTI)

A study of the technical and economic feasibility of solar augmented process steam generation was performed. This approach is analogous to a heat pump that extracts heat from a low temperature reservoir (provided by solar energy) and raises its temperature to a useful level via mechanical work. The shaft power required in the compressor is only one third to one quarter of total steam enthalpy for low pressure process steam (100 psig). This approach permits the use of low cost flat plate collectors. It was concluded that these systems have the potential of yielding payback periods of 5 to 8 years and 10 to 15 years for collector costs of $2/ft/sup 2/ and $5/ft/sup 2/, respectively, depending upon the location. A design study of various components indicated that these components are generally available or need only minor modifications for steam service. The component selection was largely a function of steam generation rate. In general, collector cost was the controlling factor. It was also concluded that additional incentives are probably required for increased utilization of solar energy for industrial process steam.

Not Available

1976-01-01T23:59:59.000Z

309

Documentation of Steam Turbine-Generator Failures—2010  

Science Conference Proceedings (OSTI)

This technical update report presents a review of turbine-generator failures that occurred during 2010.

2011-02-28T23:59:59.000Z

310

Evaluation of steam-generator fluid mixing during layup. Final report. [PWR  

Science Conference Proceedings (OSTI)

The objective of this project was to develop practical methods of achieving an adequately mixed chemical environment on the secondary side of PWR steam generators during periods of shutdown, cold shutdown (layup), and startup. Layup chemicals introduced into the steam generator could then be evenly dispersed to minimize corrosion processes which may occur if the chemical environment was not properly maintained. Systems for chemical feed, mixing, sampling, and removal of contaminant chemicals in the steam generator secondary side were also evaluated and recommendations have been made. Test results from a plexiglass model indicated that forced circulation and turbulent mixing were the most effective methods of achieving a rapid, homogeneous chemical environment. Natural convection and diffusion, on the other hand, were found to be less effective in achieving a thorough mixing.

MacArthur, A.D.

1983-05-01T23:59:59.000Z

311

New technology for purging the steam generators of nuclear power plants  

Science Conference Proceedings (OSTI)

A technology for removal of undissolved impurities from a horizontal steam generator using purge water is developed on the basis of a theoretical analysis. A purge with a maximal flow rate is drawn off from the zone with the highest accumulation of sludge in the lower part of the steam generator after the main circulation pump of the corresponding loop is shut off and the temperatures of the heat transfer medium at the inlet and outlet of the steam generator have equilibrated. An improved purge configuration is used for this technology; it employs shutoff and regulator valves, periodic purge lines separated by a cutoff fixture, and a D{sub y} 100 drain union as a connector for the periodic purge. Field tests show that the efficiency of this technology for sludge removal by purge water is several times that for the standard method.

Budko, I. O.; Kutdjusov, Yu. F.; Gorburov, V. I. [Scientific-Research Center for Energy Technology 'NICE Centrenergo' (Russian Federation); Rjasnyj, S. I. [JSC 'The All-Rissia Nuklear Power Engineering Research and Development Institute' (VNIIAM) (Russian Federation)

2011-07-15T23:59:59.000Z

312

Intermediate leak protection/automatic shutdown for B and W helical coil steam generator  

SciTech Connect

The report summarizes a follow-on study to the multi-tiered Intermediate Leak/Automatic Shutdown System report. It makes the automatic shutdown system specific to the Babcock and Wilcox (B and W) helical coil steam generator and to the Large Development LMFBR Plant. Threshold leak criteria specific to this steam generator design are developed, and performance predictions are presented for a multi-tier intermediate leak, automatic shutdown system applied to this unit. Preliminary performance predictions for application to the helical coil steam generator were given in the referenced report; for the most part, these predictions have been confirmed. The importance of including a cover gas hydrogen meter in this unit is demonstrated by calculation of a response time one-fifth that of an in-sodium meter at hot standby and refueling conditions.

1981-01-01T23:59:59.000Z

313

Steam Generator Management Program: Generic Elements of U-Bend Tube Vibration Induced Fatigue Analysis for Westinghouse Model F Steam Generators  

Science Conference Proceedings (OSTI)

U-bend tube ruptures due to metal fatigue have been experienced by several utilities worldwide. The first fatigue-related tube rupture occurred at North Anna Unit 1 in 1987. The knowledge gained from this event provides the basis for estimating the potential for a fatigue failure in other plants. This report provides the generic information for a Westinghouse Model F steam generator, and defines the information required to complete a plant-specific u-bend analysis to determine susceptibility to ...

2013-12-02T23:59:59.000Z

314

Combined cycle electric power plant having a control system which enables dry steam generator operation during gas turbine operation  

SciTech Connect

A control system for a combined cycle electric power plant is described. It contains: at least one gas turbine including an exit through which heated exhaust gases pass; means for generating steam coupled to said gas turbine exit for transferring heat from the exhaust gases to a fluid passing through the steam generator; a steam turbine coupled to the steam generator and driven by the steam supplied thereby; means for generating electric power by the driving power of the turbines; condenser means for receiving and converting the spent steam from the steam turbine into condensate; and steam generating means comprising a low pressure storage tank, a first heat exchange tube, a boiler feedwater pump for directing fluid from a low pressure storage tank through the first heat exchange tube, a main storage drum, a second heat exchange tube, and a high pressure recirculation pump for directing fluid from the main storage pump through the second heat exchange tube. The control system monitors the temperature of the exhaust gas turbine gases as directed to the steam generator and deactuates the steam turbine when a predetermined temperature is exceeded.

Martz, L.F.; Plotnick, R.J.

1974-08-08T23:59:59.000Z

315

A REVIEW OF LIGHT-WATER REACTOR SAFETY STUDIES. VOLUME 3 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network (OSTI)

a. b. c. Pump Ap S(WDB) OK NT(NC) W(WDB) Steam generatorsuperheat Steam generator tube leaks D. Core thermaland radial models Steam generator tube leaks Critical heat

Nero, A.V.

2010-01-01T23:59:59.000Z

316

CAES (conventional compressed-air energy storage) plant with steam generation: Preliminary design and cost analysis  

Science Conference Proceedings (OSTI)

A study was performed to evaluate the performance and cost characteristics of two alternative CAES-plant concepts which utilize the low-pressure expander's exhaust-gas heat for the generation of steam in a heat recovery steam generator (HRSG). Both concepts result in increased net-power generation relative to a conventional CAES plant with a recuperator. The HRSG-generated steam produces additional power in either a separate steam-turbine bottoming cycle (CAESCC) or by direct injection into and expansion through the CAES-turboexpander train (CAESSI). The HRSG, which is a proven component of combined-cycle and cogeneration plants, replaces the recuperator of a conventional CAES plant, which has demonstrated the potential for engineering and operating related problems and higher costs than were originally estimated. To enhance the credibility of the results, the analyses performed were based on the performance, operational and cost data of the 110-MW CAES plant currently under construction for the Alabama Electric Cooperative (AEC). The results indicate that CAESCC- and CAESSI-plant concepts are attractive alternatives to the conventional CAES plant with recuperator, providing greater power generation, up to 44-MW relative to the AEC CAES plant, with competitive operating and capital costs. 5 refs., 43 figs., 26 tabs.

Nakhamkin, M.; Swensen, E.C.; Abitante, P.A. (Energy Storage and Power Consultants, Mountainside, NJ (USA))

1990-10-01T23:59:59.000Z

317

Generation Maintenance Applications Center: Combined-Cycle Combustion Turbine Steam Bypass Model Maintenance Guide  

Science Conference Proceedings (OSTI)

BackgroundCombustion turbine combined-cycle (CTCC) facilities use various systems and components that are unique to this type of power generation plants and are not typically found in a nuclear or fossil power plant. As such, current CTCC facility owners’ use of the Electric Power ...

2013-12-14T23:59:59.000Z

318

Determination of Applicability of EDF Steam Generator Monitoring Algorithm to Pressurized Water Reactors Worldwide  

Science Conference Proceedings (OSTI)

This report documents work undertaken by the Electric Power Research Institute (EPRI) and Electricité de France (EDF) to determine the applicability of an EDF technique that estimates the level of deposit buildup on the steam generator's (SG's) tube support plates (TSPs) to plants worldwide.

2010-12-23T23:59:59.000Z

319

Steam Generator Tube-Plugging and Tube-Sleeving Criteria: Assessment of Current Practices  

Science Conference Proceedings (OSTI)

This report presents a survey of current utility practices regarding steam generator tube plugging and tube sleeving. It also describes an analytic and experimental evaluation of mechanical strain as a parameter for use in tube-plugging and tube-sleeving criteria.

1983-03-01T23:59:59.000Z

320

Steam generators two phase flows numerical simulation with liquid and gas momentum equations  

E-Print Network (OSTI)

Steam generators two phase flows numerical simulation with liquid and gas momentum equations M dimensional two-phase (liquid and gas) flows. The main goal is to improve the mod- eling of kinetic imbalance between the phases. We present a method that solves the mix- ture (liquid-gas) mass and enthalpy equations

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "fossil steam generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Evaluating and Avoiding Heat Recovery Steam Generator Tube Damage Caused by Duct Burners  

Science Conference Proceedings (OSTI)

In heat recovery steam generators (HRSGs), supplemental firing in duct burners introduces the potential for serious HRSG tube failure and damage. Duct burners that are specified, designed, and operated properly can produce a number of significant benefits. This report will assist operators in accruing these benefits.

2007-03-20T23:59:59.000Z

322

Development of Advanced Nondestructive Evaluation Techniques for Heat Recovery Steam Generators  

Science Conference Proceedings (OSTI)

Contemporary heat recovery steam generators (HRSGs) operate with multiple pressures and temperatures that can result in degradation and failure of key components such as HRSG drains. Periodic nondestructive evaluation (NDE) of HRSGs can mitigate catastrophic component failure as well as facilitate effective maintenance planning through early detection of system damage. This technical update describes HRSG drain damage mechanisms and related NDE techniques.

2009-03-27T23:59:59.000Z

323

Identification and Testing of Amines for Steam Generator Chemistry and Deposit Control, Part 2  

Science Conference Proceedings (OSTI)

This report summarizes a multi-year laboratory investigative program on optimization of water chemistry to reduce steam generator (SG) fouling. This work has demonstrated that surface chemistry significantly affects SG fouling. Furthermore, the investigation identified and demonstrated an amine additive that is a significant SG fouling inhibitor.

2003-11-25T23:59:59.000Z

324

Experimental investment of a pulse combustion steam generator and assessment of its environmental characteristics  

SciTech Connect

The design of a steam generator constructed on the basis of a pulse combustion apparatus equipped with a swirl combustion chamber and an aerodynamic vale is described, and results of its experimenta; investment are presented. The quantity of nitrogen oxide emissions is estimated. A schematic arrangement for practical application of such an apparatus is proposed.

Tereshchenko, M.A.; Bychenok, V.I.; Mozgovoi, N.V. [Voronezh State Technical University, Voronezh (Russian Federation)

2009-07-01T23:59:59.000Z

325

Dynamic simulation model for non-supplementary firing triple-pressure heat recovery steam generator  

Science Conference Proceedings (OSTI)

By using the modular modeling method, a real-time dynamic simulation model for the non-supplementary tri-pressure reheat Heat Recovery Steam Generator (HRSG) is developed. On the basis of mass and energy conservation law, the paper discusses the model ... Keywords: HRSG, dynamic model, modular modelling, simulation

Ning Cui; Bing-Shu Wang; Xiang-Yang Gong; Jian-Qiang Gao

2007-10-01T23:59:59.000Z

326

Cycle Chemistry Guidelines for Combined Cycle/Heat Recovery Steam Generators (HRSGs)  

Science Conference Proceedings (OSTI)

The cycle chemistry in combined cycle plants influences about 70 of the heat recovery steam generator (HRSG) tube failure mechanisms. These guidelines have been assembled to assist operators and chemists in developing an effective overall cycle chemistry program which will prevent HRSG tube failures (HTF).

2006-03-09T23:59:59.000Z

327

Sodium Chloride Hideout In a Simulated Steam Generator Tube and Tube Support Place Crevice  

Science Conference Proceedings (OSTI)

Localized corrosion of steam generator (SG) tubing in PWRs has been a serious problem that limits the life of this component. Preliminary measurements of sodium chloride hideout in simulated PWR SG crevices have shown that hideout rate increases with heat flux and concentration of sodium chloride in the bulk water.

1998-06-30T23:59:59.000Z

328

ROI Detection Using Spatial Kernel Based Filter for Steam Generator Tube Inspection in Eddy Current Nondestructive Evaluation  

Science Conference Proceedings (OSTI)

A combined image processing algorithm for ROI detection is presented for automatic analysis of eddy current data collected during the inspection of steam generator tubes in nuclear power plants. Keywords: steam generator, eddy current inspection, rotating probe coil, noise removal scheme

Jaejoon Kim; Lalita Udpa

2012-04-01T23:59:59.000Z

329

Deaerator pressure control system for a combined cycle steam generator power plant  

Science Conference Proceedings (OSTI)

In a combined cycle steam generation power plant, until steam extraction can be used to reheat the deaerator, the economizer and/or the pegging recirculation are controlled so as to track the pressure upwards of the autocirculation reheater from the low pressure evaporator with a certain lag in pressure, and to establish pressure in the deaerator on the decreasing trend of the autocirculation reheater at a slower rate and without lowering below a minimum pressure so as to prevent the occurrence of bubbling and cavitation effect.

Martens, A.; Myers, G. A.

1985-12-03T23:59:59.000Z

330

Procurement Specification for Horizontal Gas Path Heat Recovery Steam Generator: Avoiding Thermal-Mechanical Fatigue Damage  

Science Conference Proceedings (OSTI)

Many heat recovery steam generators (HRSGs), particularly those equipped with F-class gas turbines that are also subjected to periods of frequent cyclic operation, have experienced premature pressure part failures because of excessive thermal-mechanical fatigue (TMF) damage. The very competitive power generation marketplace has resulted in lowest installed cost often taking precedence over medium- and long-term durability and operating costs.

2009-12-23T23:59:59.000Z

331

CFCC Development Program: commercial plant stacked combustor/steam generator design evaluation (Task 2. 1)  

SciTech Connect

The Coal Fired Combined Cycle (CFCC) is the unique power plant concept developed under the leadership of the General Electric Company to provide a direct coal-burning gas turbine and steam turbine combined cycle power plant. The advantages of the combined cycle for higher efficiency and the potential of the pressurized fluidized bed (PFB) combustor for improvements in emissions could offer a new and attractive option to the electric utility industry after its successful development. The CFCC approach provides cooling of the fluid bed combustor through the use of steam tubes in the bed, which supply a steam turbine-generator. The partially cooled combustion gases exiting from the combustor drive a gas turbine-generator after passing through a hot-gas cleanup train. On the basis of previous studies and confirming work under this contract, General Electric continues to believe that the CFCC approach offers these important advantages over alternate approaches: higher power plant efficiency in the combustor temperature range of interest; reduced combustor/steam generator corrosion potential, due to low fluid-bed tube temperature (as contrasted to the air in tube cycle); reduced hot-gas cleanup flow rate (as contrasted with the uncooled combustor cycle); and increased gas turbine bucket life through use of corrosion resistant material protection systems.

1978-06-01T23:59:59.000Z

332

COMPUTATION OF TWO-PHASE FLOW IN STEAM GENERATOR  

E-Print Network (OSTI)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m/s x vapor mass fraction Greek symbols vapor void fraction vap|eq mass rate of vapor generation of the work- ing fluid in the capillary tube. The presence of liquid­vapor menisci, local void fraction the right or the left arms. Since the overall average void fraction integrated over the loop is fixed, #12

Paris-Sud XI, Université de

333

POWER PLANT RELIABILITY-AVAILABILITY AND STATE REGULATION. VOLUME 7 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network (OSTI)

and Related Standards for Fossil-Fuel and Geo- thermal Powerposed Nuclear, Geothermal, and Fossil-Fuel Sites and Facili-NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN

Nero, A.V.

2010-01-01T23:59:59.000Z

334

Steam Generator Management Program: Effects of Different pH Control Agents on Pressurized Water Reactor Plant Systems and Components  

Science Conference Proceedings (OSTI)

Corrosion of materials in the condensate, feedwater, and drain systems of PWRs generates a significant amount of corrosion products in the secondary cycle. These corrosion products are generally transported into the steam generators and deposit on tubing surfaces, tubesheets, and tube support plates. Increased corrosion results in elevated levels of undesired corrosion products being deposited into the steam generators. To minimize corrosion of the secondary system components, control of pH in the second...

2009-12-04T23:59:59.000Z

335

Generation Maintenance Application Center: Combustion Turbine Combined-Cycle Steam Valves Maintenance Guide  

Science Conference Proceedings (OSTI)

 BackgroundCombustion turbine combined-cycle (CTCC) facilities use various components that are unique to these types of power generation plants. Therefore, use of the Electric Power Research Institute (EPRI) Preventive Maintenance Basis Database (1018758) by owners of CTCC facilities is somewhat limited to only those components that are common to both CTCC facilities and nuclear or fossil power plants. With the projected growth in the number of CTCC facilities, the ...

2013-05-14T23:59:59.000Z

336

Steady-state heat transfer in an inverted U-tube steam generator  

Science Conference Proceedings (OSTI)

Experimental results are presented involving U-tube steam generator tube bundle local heat transfer and fluid conditions during stead-state, full-power operations performed at high temperatures and pressures with conditions typical of a pressurized water reactor (15.0 MPa primary pressure, 600 K steam generator inlet plenum fluid temperatures, 6.2 MPa secondary pressure). The Semiscale (MOD-2C facility represents the state-of-the-art in measurement of tube local heat transfer data and average tube bundle secondary fluid density at several elevations, which allows an estimate of the axial heat transfer and void distributions during steady-state and transient operations. The method of heat transfer data reduction is presented and the heat flux, secondary convective heat transfer coefficient, and void fraction distributions are quantified for steady-state, full-power operations.

Boucher, T.J.

1987-01-01T23:59:59.000Z

337

This Traveler is the industry’s Steam Generator Program Generic License Change  

E-Print Network (OSTI)

Package (GLCP) that we have been developing in coordination with the NRC staff for the past several years. The format of the documents in this submittal has been changed from the GLCP that the staff has reviewed previously in order to comply with standard technical specification convention, but the information contained therein is unchanged. The information in this Traveler is consistent with the Catawba license amendment request for steam generator technical specification changes that was submitted by the licensee on February 25, 2003. The two submittals need to remain consistent to ensure an unambiguous template for other licensees to follow when submitting related steam generator technical specification changes. We therefore request that your review of these two submittals proceed in parallel.

Anthony R. Pietrangelo; Dr. William; D. Beckner

2003-01-01T23:59:59.000Z

338

Demonstration Development Project: Solar-Fossil Hybrid Power Plants: Summary Report on Conceptual Designs  

Science Conference Proceedings (OSTI)

This document provides a high-level summary of selected EPRI research into solar-fossil hybrid power systems. It summarizes key technology results from a series of conceptual design studies that evaluated the performance of a range of solar-fossil hybrid options for existing natural gas combined cycle (NGCC) and coal-fired plants. All of the conceptual designs considered the use of solar-derived steam in conventional fossil-fired steam cycles, an approach that offsets some of the fuel required to generat...

2010-12-17T23:59:59.000Z

339

Steam Generator Management Program: Assessment of the Effect of Deposit Removal Frequency on Sludge Management  

Science Conference Proceedings (OSTI)

In a PWR steam generator, the buildup of deposits on the tubes near the tubesheet can increase the risk of tube degradation. To ensure the integrity of the tubes which are part of the primary-to-secondary side pressure boundary, various repair and/or mitigation techniques are available which have attendant benefits, risks, and costs. To mitigate deposit buildup, utilities employ a variety of deposit removal techniques, such as sludge lancing and chemical cleaning. This report addresses the effect of ...

2012-12-12T23:59:59.000Z

340

Guidelines for the Nondestructive Examination of Heat Recovery Steam Generators, Revision 2  

Science Conference Proceedings (OSTI)

As heat recovery steam generators (HRSGs) have become more complex over the last 20 years, operating with multiple pressures and temperatures, operators have experienced an increasing suite of HRSG tube failures (HTFs). This report provides guidance on the performance of nondestructive evaluation (NDE) of HRSGs so that operators will know what types of NDE to perform and where to perform them.BackgroundModern HRSGs have numerous varieties available within the ...

2013-12-16T23:59:59.000Z

Note: This page contains sample records for the topic "fossil steam generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Multivariable Assessment of Flow-Accelerated Corrosion and Steam Generator Fouling  

Science Conference Proceedings (OSTI)

Steam generator (SG) fouling is an endemic and very costly problem in many pressurized water reactor (PWR) and CANDU power stations. In fact, fouling is believed to be a root or contributing cause for several SG degradation modes. A chemical method to inhibit SG fouling would significantly reduce SG maintenance and operating costs in both new and aging power plants. This work examines more closely the role of iron (particulate versus soluble) in the overall fouling process, providing additional insights ...

2006-10-11T23:59:59.000Z

342

Study for Snake Robot Technology for Inspection of Headers and Tubes in Heat Recovery Steam Generators  

Science Conference Proceedings (OSTI)

Heat recovery steam generator (HRSG) tubing is especially difficult to inspect using conventional nondestructive evaluation (NDE) techniques because: The tubing is tightly bundled, with interior bundle tubing typically inaccessible by conventional equipment without cutting and later repairing the exterior tubes. The tubing is finned and, since ultrasonic techniques require solid contact with the tube, cannot be accessed unless the tubing is cut away. Access to the inside of the tubes is difficult, requi...

2009-11-10T23:59:59.000Z

343

Heat Recovery Steam Generator Procurement Guideline: HRSG Design Best Practices and Specification for Cyclic Duty  

Science Conference Proceedings (OSTI)

This document provides a summary of best practices for designing a new heat recovery steam generator (HRSG) for cycling and rapid start duty, including typical performance requirements and suggestions for design improvements to improve the HRSGs ability to handle cyclic operation. This document also provides a generic procurement specification for the definition and purchase of an HRSG for installation downstream of a combustion turbine. It includes both horizontal and vertical configuration options. The...

2009-12-16T23:59:59.000Z

344

Evaluation of Thermal-, Creep-, and Corrosion-Fatigue of Heat Recovery Steam Generator Pressure Parts  

Science Conference Proceedings (OSTI)

The worldwide fleet of combined cycle units with heat recovery steam generators (HRSG) has exhibited a disappointing track record with respect to reliability and availability in terms of fatigue HRSG tube failures (HTF) which are thermal transient driven. This report, which forms part of a series, will assist designer, owners, and operators with the technical basis to facilitate specifying, designing, and operating HRSG in a manner to minimize fatigue damage.

2006-03-31T23:59:59.000Z

345

Eddy Current Data Quality Parameters for Inspection of Steam Generator Tubes: Volume 1: Bobbin Coil Probe  

Science Conference Proceedings (OSTI)

This report identifies parameters, methods of measurement, and acceptance criteria for a data quality check that can be performed during eddy current inspection of steam generator tubes. Its implementation is expected to result in improved accuracy in detecting and sizing tube degradation by ensuring that such measurements are performed only on quality data. Additionally, identifying unacceptable data during acquisition is expected to reduce overall inspection time by providing an opportunity to efficien...

2001-05-14T23:59:59.000Z

346

Steam Generator Management Program: PWR Primary-to-Secondary Leak Guidelines Revision 4  

Science Conference Proceedings (OSTI)

Primary-to-secondary leakage of steam generator tubes in PWRs can result from mechanisms that propagate slowly or rapidly. Control room operators rely on online data for a rapid assessment of tube leakage conditions to ensure that the plant is maneuvered safely and to minimize the risk of tube rupture. Industry experts prepared and reviewed these revised guidelines to incorporate recent industry operating experience and technology improvements and to review the technical bases for action levels. This rep...

2011-09-12T23:59:59.000Z

347

HRSG Startup and Shutdown Guidelines for Avoiding Heat Recovery Steam Generator Pressure Part Failures  

Science Conference Proceedings (OSTI)

Most of the damage to heat recovery steam generator (HRSG) pressure parts is caused by transiently high thermal-mechanical stresses that occur during shutdown and startup, along with cycle chemistry changes imposed by cyclic operation. Unit shutdown and startup impose considerably more potential for cumulative pressure part damage than stable on-load operation does. Essentially every HRSG damage mechanism is exacerbated by cyclic operationeither directly, through transiently high localized stresses appli...

2009-07-28T23:59:59.000Z

348

Troubleshooting Guide for Thermal Transients in Heat Recovery Steam Generators (HRSG)  

Science Conference Proceedings (OSTI)

Over the period 2000-2009 EPRI developed ten reports and guidance documents on Heat Recovery Steam Generator (HRSG) thermal transients. Collectively, these documents provide the information required to identify, address, and minimize thermal transients in HRSG superheaters, reheaters, economizers, and evaporators. This summary report offers an overview of this EPRI work on HRSG transients organized to guide the reader to pertinent sections in the original reports and facilitate troubleshooting.

2009-11-09T23:59:59.000Z

349

Steam Generator Management Program: Experimental Studies of Flow Around Foreign Objects in a Tube Array  

Science Conference Proceedings (OSTI)

Tube wear caused by foreign objects (FOs) in steam generators can lead to unplanned and costly forced outages. The complex flow field within the tube bundle, coupled with the wide range of FO sizes and possible configurations relative to the tubes, poses a challenge to the understanding of the fundamental mechanisms of FO-tube interaction and prediction of the resulting tube wear.The goals of the project were (1) to develop an experimental apparatus and measurement system capable of ...

2013-12-18T23:59:59.000Z

350

Steam Generator Management Program: Development of Automated Data Analysis Algorithms for Assessment of SG Tube Degradation  

Science Conference Proceedings (OSTI)

Automated eddy current data analysis systems for detection of steam generator (SG) tube degradation can provide significant benefits to utilities. Potential benefits include lower costs by reducing labor and equipment requirement needs and by providing analysis results at rates comparable to those for data acquisition; savings in time resulting from reducing the impact of data analyst shortages during peak outage periods; and reliability improvements by providing consistent, repeatable, and accurate ...

2013-12-18T23:59:59.000Z

351

Steam generator tube integrity program: Annual report, August 1995--September 1996. Volume 2  

Science Conference Proceedings (OSTI)

This report summarizes work performed by Argonne National Laboratory on the Steam Generator Tube Integrity Program from the inception of the program in August 1995 through September 1996. The program is divided into five tasks: (1) assessment of inspection reliability, (2) research on ISI (inservice-inspection) technology, (3) research on degradation modes and integrity, (4) tube removals from steam generators, and (5) program management. Under Task 1, progress is reported on the preparation of facilities and evaluation of nondestructive evaluation techniques for inspecting a mock-up steam generator for round-robin testing, the development of better ways to correlate failure pressure and leak rate with eddy current (EC) signals, the inspection of sleeved tubes, workshop and training activities, and the evaluation of emerging NDE technology. Results are reported in Task 2 on closed-form solutions and finite-element electromagnetic modeling of EC probe responses for various probe designs and flaw characteristics. In Task 3, facilities are being designed and built for the production of cracked tubes under aggressive and near-prototypical conditions and for the testing of flawed and unflawed tubes under normal operating, accident, and severe-accident conditions. Crack behavior and stability are also being modeled to provide guidance for test facility design, develop an improved understanding of the expected rupture behavior of tubes with circumferential cracks, and predict the behavior of flawed and unflawed tubes under severe accident conditions. Task 4 is concerned with the acquisition of tubes and tube sections from retired steam generators for use in the other research tasks. Progress on the acquisition of tubes from the Salem and McGuire 1 nuclear plants is reported.

Diercks, D.R.; Bakhtiari, S.; Kasza, K.E.; Kupperman, D.S.; Majumdar, S.; Park, J.Y.; Shack, W.J. [Argonne National Lab., IL (United States)

1998-02-01T23:59:59.000Z

352

An Evaluation of Time Dependent Leak Rates in Degraded Steam Generator Tubing  

Science Conference Proceedings (OSTI)

The U.S. Nuclear Regulatory Commission sponsored leak rate tests of steam generator (SG) tubing with stress corrosion cracks and electrodischarged machining (EDM) notches at Argonne National Laboratory (ANL). Some test specimens displayed time-dependent leak rate increases when the pressure was held constant. Post-test visual examination clearly revealed that the outside diameter (OD) crack length of these specimens had increased. It was suspected that fatigue due to jet/structure interaction was respons...

2008-10-08T23:59:59.000Z

353

Short-Term Shutdown Guidance for Steam Turbine-Generators and Auxiliary Systems  

Science Conference Proceedings (OSTI)

This report provides guidelines on the methods that utilities should consider to protect operating equipment when it is removed from service for short periods of time. The equipment and systems considered in this report include the steam turbine, generator, exciter, feedwater heaters, and related auxiliaries. The timeframe for this report includes outage periods from a weekend to six months. Improper layup can cause long-term equipment damage and premature failure. Increased shutdown frequency and durati...

2010-11-12T23:59:59.000Z

354

Impacts of Renewable Generation on Fossil Fuel Unit Cycling: Costs and Emissions (Presentation)  

Science Conference Proceedings (OSTI)

Prepared for the Clean Energy Regulatory Forum III, this presentation looks at the Western Wind and Solar Integration Study and reexamines the cost and emissions impacts of fossil fuel unit cycling.

Brinkman, G.; Lew, D.; Denholm, P.

2012-09-01T23:59:59.000Z

355

A protocol for evaluating thermal performance of 14 solar steam generators for the Kogan Creek solar boost project.  

E-Print Network (OSTI)

??The Kogan Creek Solar Boost is a world-first commercial project that sees AREVA Solar designing, supplying and constructing CLFR-based solar steam generators for CS Energy,… (more)

Watson, Bond

2012-01-01T23:59:59.000Z

356

CFD Predictions of Severe Accident Steam Generator Flows in a 1/7. Scale Pressurized Water Reactor  

SciTech Connect

Computational Fluid Dynamics (CFD) is applied to steam generator inlet plenum mixing as part of a larger plan covering steam generator tube integrity. The technique is verified by comparing predicted results with severe accident natural circulation data from a 1/7. scale Westinghouse facility. This exercise demonstrates that the technique can predict the natural circulation and mixing phenomena relevant to steam generator tube integrity issues. The model includes primary side flow paths for a single hot leg and steam generator. Qualitatively, the experimentally observed flow phenomena are predicted. The paths of the natural circulation flows and the relative flow proportions are correctly predicted. Quantitatively, comparisons are made with temperatures, mass flows, and other parameters. All predictions are generally within 10% of the experimental values. Overall, there is a high degree of confidence in the CFD technique for prediction of the relevant flow phenomena associated with this type of severe accident sequence. (authors)

Boyd, Christopher; Hardesty, Kelly [U.S. Nuclear Regulatory Commission, Washington, DC 20555-0001 (United States)

2002-07-01T23:59:59.000Z

357

Steam Generator Management Program: Laboratory Testing to Validate pH and Conductivity MULTEQ Calculations, Revision 1  

Science Conference Proceedings (OSTI)

Measures to control corrosion processes in steam generators have for the most part proven successful to date, but intergranular attack/stress corrosion cracking (IGA/SCC) of Alloy 600 continues to occur in steam generators at some nuclear plants. The present mitigation strategy is based on the premise that crack initiation and propagation rates depend on pH and electrochemical potential. There is some evidence suggesting that lead (Pb) may play a key role. This report documents laboratory testing to vali...

2011-11-28T23:59:59.000Z

358

Combined cycle electric power plant and a heat recovery steam generator having improved boiler feed pump flow control  

SciTech Connect

A combined cycle electric power plant is described that includes gas and steam turbines and a steam generator for recovering the heat in the exhaust gases exited from the gas turbine and for using the recovered heat to produce and supply steam to the steam turbine. The steam generator includes an economizer tube and a high pressure evaporator tube and a boiler feed pump for directing the heat exchange fluid serially through the aforementioned tubes. A condenser is associated with the steam turbine for converting the spent steam into condensate water to be supplied to a deaerator for removing undesired air and for preliminarily heating the water condensate before being pumped to the economizer tube. Condensate flow through the economizer tube is maintained substantially constant by maintaining the boiler feed pump at a predetermined, substantially constant rate. A bypass conduit is provided to feed back a portion of the flow heated in the economizer tube to the deaerator; the portion being equal to the difference between the constant flow through the economizer tube and the flow to be directed through the high pressure evaporator tube as required by the steam turbine for its present load.

Martz, L.F.; Plotnick, R.J.

1976-06-29T23:59:59.000Z

359

EPRI Ergonomics Handbook for the Electric Power Industry: Ergonomic Design Handbook for Fossil-Fueled Electric Generating Stations  

Science Conference Proceedings (OSTI)

The EPRI Occupational Health and Safety (OHS) Research Program has provided ergonomic information to the electric energy industry workforce since 1999. This is the fifth EPRI ergonomics handbook; it provides a framework and specific guidelines for decisionmaking that will apply ergonomic principles to the design of electric generating stations. Fossil-fueled power plant operation and maintenance is physically strenuous, and it may contribute to development of musculoskeletal disorders (MSDs) such as carp...

2008-03-11T23:59:59.000Z

360

FutureGen: Stepping-Stone to Sustainable Fossil-Fuel Power Generation  

SciTech Connect

This presentation will highlight the U.S. Department of Energy's FutureGen Initiative. The nearly $1 billion government-industry project is a stepping-stone toward future coal-fired power plants that will produce hydrogen and electricity with zero-emissions, including carbon dioxide. The 275-megawatt FutureGen plant will initiate operations around 2012 and employ advanced coal gasification technology integrated with combined cycle electricity generation, hydrogen production, and carbon capture and sequestration. The initiative is a response to a presidential directive to develop a hydrogen economy by drawing upon the best scientific research to address the issue of global climate change. The FutureGen plant will be based on cutting-edge power generation technology as well as advanced carbon capture and sequestration systems. The centerpiece of the project will be coal gasification technology that can eliminate common air pollutants such as sulfur dioxide and nitrogen oxides and convert them to useable by-products. Gasification will convert coal into a highly enriched hydrogen gas, which can be burned much more cleanly than directly burning the coal itself. Alternatively, the hydrogen can be used in a fuel cell to produce ultra-clean electricity, or fed to a refinery to help upgrade petroleum products. Carbon sequestration will also be a key feature that will set the Futuregen plant apart from other electric power plant projects. The initial goal will be to capture 90 percent of the plant's carbon dioxide, but capture of nearly 100 percent may be possible with advanced technologies. Once captured, the carbon dioxide will be injected as a compressed fluid deep underground, perhaps into saline reservoirs. It could even be injected into oil or gas reservoirs, or into unmineable coal seams, to enhance petroleum or coalbed methane recovery. The ultimate goal for the FutureGen plant is to show how new technology can eliminate environmental concerns over the future use of coal--the most abundant fossil fuel in the United States with supplies projected to last 250 years. FutureGen's co-production of power and hydrogen will also serve as a stepping-stone to an environmentally sustainable energy future.

Zitney, S.E.

2006-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "fossil steam generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Method and apparatus for steam mixing a nuclear fueled electricity generation system  

SciTech Connect

A method and apparatus for improving the efficiency and performance of a nuclear electrical generation system that comprises the addition of steam handling equipment to an existing plant that results in a surprising increase in plant performance. More particularly, a gas turbine electrical generation system with heat recovery boiler is installed along with a micro-jet high pressure and a low pressure mixer superheater. Depending upon plant characteristics, the existing moisture separator reheater (MSR) can be either augmented or done away with. The instant invention enables a reduction in T.sub.hot without a derating of the reactor unit, and improves efficiency of the plant's electrical conversion cycle. Coupled with this advantage is a possible extension of the plant's fuel cycle length due to an increased electrical conversion efficiency. The reduction in T.sub.hot further allows for a surprising extension of steam generator life. An additional advantage is the reduction in erosion/corrosion of secondary system components including turbine blades and diaphragms. The gas turbine generator used in the instant invention can also replace or augment existing peak or emergency power needs. Another benefit of the instant invention is the extension of plant life and the reduction of downtime due to refueling.

Tsiklauri, Georgi V. (Richland, WA); Durst, Bruce M. (Kennewick, WA)

1996-01-01T23:59:59.000Z

362

Method and apparatus for steam mixing a nuclear fueled electricity generation system  

DOE Patents (OSTI)

A method and apparatus for improving the efficiency and performance of a nuclear electrical generation system that comprises the addition of steam handling equipment to an existing plant that results in a surprising increase in plant performance. More particularly, a gas turbine electrical generation system with heat recovery boiler is installed along with a micro-jet high pressure and a low pressure mixer superheater. Depending upon plant characteristics, the existing moisture separator reheater (MSR) can be either augmented or done away with. The instant invention enables a reduction in T.sub.hot without a derating of the reactor unit, and improves efficiency of the plant's electrical conversion cycle. Coupled with this advantage is a possible extension of the plant's fuel cycle length due to an increased electrical conversion efficiency. The reduction in T.sub.hot further allows for a surprising extension of steam generator life. An additional advantage is the reduction in erosion/corrosion of secondary system components including turbine blades and diaphragms. The gas turbine generator used in the instant invention can also replace or augment existing peak or emergency power needs. Another benefit of the instant invention is the extension of plant life and the reduction of downtime due to refueling.

Tsiklauri, Georgi V. (Richland, WA); Durst, Bruce M. (Kennewick, WA)

1996-01-01T23:59:59.000Z

363

Method for improving the steam splits in a multiple steam injection process using multiple steam headers  

SciTech Connect

This patent describes a method for enhancing the uniformity of steam distribution in a multiple steam injection system comprising a steam generator, a primary steam header, at least one secondary steam header, a primary steam line connecting the generator to the primary header, at lease one secondary steam line connecting the primary header to the secondary steam header, and a plurality of tertiary steam lines connecting the secondary steam header to a plurality of stem injection wells. It comprises injecting a surfactant into the primary steam line, mixing the surfactant and steam in the primary steam line sufficiently so that the surfactant and the steam enter the primary steam header as a foam, and mixing the surfactant and steam in the secondary steam lines sufficiently so that the surfactant and the steam enter the secondary steam header as a foam.

Stowe, G.R.

1991-03-19T23:59:59.000Z

364

Cycling Operation of Fossil Plants: Volume 3: Cycling Evaluation of Pepco's Potomac River Generating Station  

Science Conference Proceedings (OSTI)

This report presents a methodology for examining the economic feasibility of converting fossil power plants from baseload to cycling service. It employs this approach to examine a proposed change of Pepco's Potomac River units 3, 4, and 5 from baseload operation to two-shift cycling.

1991-06-01T23:59:59.000Z

365

Characterization of Elevated Temperature Properties of Heat Exchanger and Steam Generator Alloys  

Science Conference Proceedings (OSTI)

The Next Generation Nuclear Plant project is considering Alloy 800H and Alloy 617 for steam generator and intermediate heat exchangers. It is envisioned that a steam generator would operate with reactor outlet temperatures from 750 to 800°C, while an intermediate heat exchanger for primary to secondary helium would operate up to an outlet temperature of 950°C. Although both alloys are of interest due in part to their technical maturity, a number of specific properties require further characterization for design of nuclear components. Strain rate sensitivity of both alloys has been characterized and is found to be significant above 600°C. Both alloys also exhibit dynamic strain aging, characterized by serrated flow, over a wide range of temperatures and strain rates. In general dynamic strain aging is observed to begin at higher temperatures and serrated flow persists to higher temperatures in Alloy 617 compared to Alloy 800H. Dynamic strain aging is a concern for these materials since it is observed to result in reduced ductility for many solid solution alloys. The role of dynamic strain aging in the creep-fatigue behavior of Alloy 617 at temperatures of 800°C and above has also been examined in detail. Serrated flow is found to persist in cyclic stress-strain curves up to nearly the cycle to failure in some temperature and strain regimes. Results of those experiments and implications for creep-fatigue testing protocols will be described.

J.K. Wright; L.J. Carroll; J.K. Benz; J.A. Simpson; R.N. Wright; W.R. Lloyd; J.A. Chapman

2010-10-01T23:59:59.000Z

366

CHARACTERIZATION OF ELEVATED TEMPERATURE PROPERTIES OF HEAT EXCHANGER AND STEAM GENERATOR ALLOYS  

Science Conference Proceedings (OSTI)

The Next Generation Nuclear Plant project is considering Alloy 800H and Alloy 617 for steam generator and intermediate heat exchangers. It is envisioned that a steam generator would operate with reactor outlet temperatures from 750 to 800 C, while an intermediate heat exchanger for primary to secondary helium would operate up to an outlet temperature of 950 C. Although both alloys are of interest due in part to their technical maturity, a number of specific properties require further characterization for design of nuclear components. Strain rate sensitivity of both alloys has been characterized and is found to be significant above 600 C. Both alloys also exhibit dynamic strain aging, characterized by serrated flow, over a wide range of temperatures and strain rates. High temperature tensile testing of Alloy 617 has been conducted over a range of temperatures. Dynamic strain aging is a concern for these materials since it is observed to result in reduced ductility for many solid solution alloys. Creep, fatigue, and creep-fatigue properties of Alloy 617 have been measured as well, with the goal of determining the influence of the temperature, strain rate and atmosphere on the creep fatigue life of Alloy 617. Elevated temperature properties and implications for codification of the alloys will be described.

J.K. Wright; L.J. Carroll; C.J. Cabet; T. Lillo; J.K. Benz; J.A. Simpson; A. Chapman; R.N. Wright

2012-10-01T23:59:59.000Z

367

MELCOR Analysis of Steam Generator Tube Creep Rupture in Station Blackout Severe Accident  

SciTech Connect

A pressurized water reactor steam generator tube rupture (SGTR) is of concern because it represents a bypass of the containment for radioactive materials to the environment. In a station blackout accident, tube integrity could be threatened by creep rupture, particularly if cracks are present in the tube walls. Methods are developed herein to improve assessment capabilities for SGTR by using the severe-accident code MELCOR. Best-estimate assumptions based on recent research and computational fluid dynamics calculations are applied in the MELCOR analysis to simulate two-dimensional natural circulation and to determine the relative creep-rupture timing in the reactor coolant pressure boundary components. A new method is developed to estimate the steam generator (SG) hottest tube wall temperature and the tube critical crack size for the SG tubes to fail first. The critical crack size for SG tubes to fail first is estimated to be 20% of the wall thickness larger than by a previous analysis. Sensitivity studies show that the failure sequence would change if some assumptions are modified. In particular, the uncertainty in the countercurrent flow limit model could reverse the failure sequence of the SG tubes and surge line.

Liao, Y.; Vierow, K. [Purdue University (United States)

2005-12-15T23:59:59.000Z

368

Steam Generator Management Program: Thermal-Hydraulic and Flow-Induced Vibration Analyses of a Representative Model F Steam Generato r  

Science Conference Proceedings (OSTI)

During the Fall 2006 refueling outage of Vogtle 1, circumferential outside-diameter stress corrosion cracking (ODSCC) indications were observed in Model F steam generator tubes on the hot leg near the top of the tubesheet at low-row number, high-column number tubes. Additional ODSCC indications were observed in the same region during the Spring 2008 outage. All tubes with cracklike indications were plugged and stabilized. This report summarizes the comprehensive thermal-hydraulic and flow-induced vibrati...

2009-06-25T23:59:59.000Z

369

Carbon Capture and Water Emissions Treatment System (CCWESTRS) at Fossil-Fueled Electric Generating Plants  

Science Conference Proceedings (OSTI)

The Tennessee Valley Authority (TVA), the Electric Power Research Institute (EPRI), and the Department of Energy-National Energy Technologies Laboratory (DOE-NETL) are evaluating and demonstrating integration of terrestrial carbon sequestration techniques at a coal-fired electric power plant through the use of Flue Gas Desulfurization (FGD) system gypsum as a soil amendment and mulch, and coal fly ash pond process water for periodic irrigation. From January to March 2002, the Project Team initiated the construction of a 40 ha Carbon Capture and Water Emissions Treatment System (CCWESTRS) near TVA's Paradise Fossil Plant on marginally reclaimed surface coal mine lands in Kentucky. The CCWESTRS is growing commercial grade trees and cover crops and is expected to sequester 1.5-2.0 MT/ha carbon per year over a 20-year period. The concept could be used to meet a portion of the timber industry's needs while simultaneously sequestering carbon in lands which would otherwise remain non-productive. The CCWESTRS includes a constructed wetland to enhance the ability to sequester carbon and to remove any nutrients and metals present in the coal fly ash process water runoff. The CCWESTRS project is a cooperative effort between TVA, EPRI, and DOE-NETL, with a total budget of $1,574,000. The proposed demonstration project began in October 2000 and has continued through December 2005. Additional funding is being sought in order to extend the project. The primary goal of the project is to determine if integrating power plant processes with carbon sequestration techniques will enhance carbon sequestration cost-effectively. This goal is consistent with DOE objectives to provide economically competitive and environmentally safe options to offset projected growth in U.S. baseline emissions of greenhouse gases after 2010, achieve the long-term goal of $10/ton of avoided net costs for carbon sequestration, and provide half of the required reductions in global greenhouse gases by 2025. Other potential benefits of the demonstration include developing a passive technology for water treatment for trace metal and nutrient release reductions, using power plant by-products to improve coal mine land reclamation and carbon sequestration, developing wildlife habitat and green-space around production facilities, generating Total Maximum Daily Load (TMDL) credits for the use of process water, and producing wood products for use by the lumber and pulp and paper industry. Project activities conducted during the five year project period include: Assessing tree cultivation and other techniques used to sequester carbon; Project site assessment; Greenhouse studies to determine optimum plant species and by-product application; Designing, constructing, operating, monitoring, and evaluating the CCWESTRS system; and Reporting (ongoing). The ability of the system to sequester carbon will be the primary measure of effectiveness, measured by accessing survival and growth response of plants within the CCWESTRS. In addition, costs associated with design, construction, and monitoring will be evaluated and compared to projected benefits of other carbon sequestration technologies. The test plan involves the application of three levels each of two types of power plant by-products--three levels of FGD gypsum mulch, and three levels of ash pond irrigation water. This design produces nine treatment levels which are being tested with two species of hardwood trees (sweet gum and sycamore). The project is examining the effectiveness of applications of 0, 8-cm, and 15-cm thick gypsum mulch layers and 0, 13 cm, and 25 cm of coal fly ash water for irrigation. Each treatment combination is being replicated three times, resulting in a total of 54 treatment plots (3 FGD gypsum levels X 3 irrigation water levels x 2 tree species x 3 replicates). Survival and growth response of plant species in terms of sequestering carbon in plant material and soil will be the primary measure of effectiveness of each treatment. Additionally, the ability of the site soils and unsaturated zone subsurface m

P. Alan Mays; Bert R. Bock; Gregory A. Brodie; L. Suzanne Fisher; J. Devereux Joslin; Donald L. Kachelman; Jimmy J. Maddox; N. S. Nicholas; Larry E. Shelton; Nick Taylor; Mark H. Wolfe; Dennis H. Yankee; John Goodrich-Mahoney

2005-08-30T23:59:59.000Z

370

HRE-3 BLANKET HEAT EXCHANGER AS A FEEDWATER REACTOR RATHER THAN AS A STEAM GENERATOR  

SciTech Connect

There may be an advantage to designing the HRE-3 vertical shell and tube slurry heat exchanger as a feedwater heater rather than as a steam generator from the standpoint of space requirement and blowdown problems. This study of the effect of this arrangement on the thermal efficiency of the heat-power cycle indicates that the gross electrical generating capacity of HRE-3 would be reduced by about 500-kw, or about 3 to 4% of the output. It is concluded that, (a) there is sufficient merit in using the exchanger as a feedwater heater to warrant continued study of the concept, and (b) the effect on the thermal efficiency is so small as to not be a major deciding influence. (auth)

Robertson, R.C.

1958-04-14T23:59:59.000Z

371

Steam Turbine Generator Auxiliary System Maintenance Guide--Volume 7 (Generator Excitation System)  

Science Conference Proceedings (OSTI)

Excitation systems are a critical part of the power generation system. They must be capable of providing a reliable excitation current to the generator and respond to system fluctuations while maintaining consistent generator voltage and power factor. Most modern excitation systems use a static or rotating solid-state exciter and include the associated components required to provide regulation and control over voltage and reactive power flow and to enhance power system stability. The proper operation of ...

2011-12-23T23:59:59.000Z

372

SVM-Based Multiclass Cost-sensitive Classification with Reject Option for Fault Diagnosis of Steam Turbine Generator  

Science Conference Proceedings (OSTI)

The steam turbine generator faults not only damage the generator itself, but also cause outages and loss of profits, for this reason, many researchers work on the fault diagnosis. But misdiagnosing may also lead to serious losses. In order to improve ... Keywords: SVM, multiclass, cost-sensitive, fault diagnosis, reject option

Chao Zou; En-hui Zheng; Hong-wei Xu; Le Chen

2010-02-01T23:59:59.000Z

373

A PROBABILISTIC MECHANISTIC APPROACH FOR ASSESSING THE RUPTURE FREQUENCY OF SMALL MODULAR REACTOR STEAM GENERATOR TUBES USING UNCERTAIN INPUTS FROM IN-SERVICE INSPECTIONS.  

E-Print Network (OSTI)

??One of the significant safety issues in nuclear power plants is the rupture of steam generator tubes leading to the loss of radioactive primary coolant… (more)

Chatterjee, Kaushik

2011-01-01T23:59:59.000Z

374

Health and safety impacts of nuclear, geothermal, and fossil-fuel electric generation in California. Volume 1. Health and safety impacts of nuclear, geothermal, and fossil-fuel electric generation in California  

DOE Green Energy (OSTI)

This report presents an overview of a project on the health and safety impacts of nuclear, geothermal, and fossil-fuel electric generation in California. In addition to presenting an executive summary of the project, it sets forth the main results of the four tasks of the project: to review the health impacts (and related standards) of these forms of power generation, to review the status of standards related to plant safety (with an emphasis on nuclear power), to consider the role of the California Energy Resources Conservation and Development Commission in selection of standards, and to set forth methodologies whereby that Commission may review the health and safety aspects of proposed sites and facilities.

Nero, A.V. Jr.

1977-01-01T23:59:59.000Z

375

Program on Technology Innovation: Fossil Power Plant Cost and Performance Trends  

Science Conference Proceedings (OSTI)

This report is one of two companion studies that describe trends in operating costs and reliability of fossil steam plants since 1970. The studies are a foundation for more sophisticated statistical studies aimed at modeling and predicting the impacts of cycling. This report summarizes results for gas- and oil-fired steam generating units, contrasting two-shift or daily cycling with all other operating modes. It also includes systematic and similar data on coal plants. Chronological trends since 1982 are...

2006-08-31T23:59:59.000Z

376

Performance demonstration tests for eddy current inspection of steam generator tubing  

SciTech Connect

This report describes the methodology and results for development of performance demonstration tests for eddy current (ET) inspection of steam generator tubes. Statistical test design principles were used to develop the performance demonstration tests. Thresholds on ET system inspection performance were selected to ensure that field inspection systems would have a high probability of detecting and and correctly sizing tube degradation. The technical basis for the ET system performance thresholds is presented in detail. Statistical test design calculations for probability of detection and flaw sizing tests are described. A recommended performance demonstration test based on the design calculations is presented. A computer program for grading the probability of detection portion of the performance demonstration test is given.

Kurtz, R.J.; Heasler, P.G.; Anderson, C.M.

1996-05-01T23:59:59.000Z

377

Preliminary assessment of PWR Steam Generator modelling in RELAP5/MOD3. International Agreeement Report  

SciTech Connect

A preliminary assessment of Steam Generator (SG) modelling in the PWR thermal-hydraulic code RELAP5/MOD3 is presented. The study is based on calculations against a series of steady-state commissioning tests carried out on the Wolf Creek PWR over a range of load conditions. Data from the tests are used to assess the modelling of primary to secondary side heat transfer and, in particular, to examine the effect of reverting to the standard form of the Chen heat transfer correlation in place of the modified form applied in RELAP5/MOD2. Comparisons between the two versions of the code are also used to show how the new interphase drag model in RELAP5/MOD3 affects the calculation of SG liquid inventory and the void fraction profile in the riser.

Preece, R.J.; Putney, J.M. [National Power, Leatherhead (United Kingdom). Technology and Environment Centre

1993-07-01T23:59:59.000Z

378

Assessment of PWR Steam Generator modelling in RELAP5/MOD2. International Agreement Report  

SciTech Connect

An assessment of Steam Generator (SG) modelling in the PWR thermal-hydraulic code RELAP5/MOD2 is presented. The assessment is based on a review of code assessment calculations performed in the UK and elsewhere, detailed calculations against a series of commissioning tests carried out on the Wolf Creek PWR and analytical investigations of the phenomena involved in normal and abnormal SG operation. A number of modelling deficiencies are identified and their implications for PWR safety analysis are discussed -- including methods for compensating for the deficiencies through changes to the input deck. Consideration is also given as to whether the deficiencies will still be present in the successor code RELAP5/MOD3.

Putney, J.M.; Preece, R.J. [National Power, Leatherhead (GB). Technology and Environment Centre

1993-06-01T23:59:59.000Z

379

Steam Generator Replacement and Power Up-rating on Tihange 2 Nuclear Plant Safety Study Analyses  

SciTech Connect

The Tihange2 900 MWe 3-L PWR NPP, operated by the Belgian utility Electrabel, was first commissioned in 1982 with a design core power of 2775 MWth. Following an initial core power up-rating by 4,5% in 1995, Electrabel has since replaced the Steam Generators which has allowed a further core power increase by roughly 5% (total 10%) in 2001. For both of each projects, licensing and implementation studies were successfully performed by Tractebel Energy Engineering and Framatome ANP. The demanding new operating conditions required a complete review of the plant design basis for which advanced methods were applied and licensed through a continuous process of discussions with the client and the Belgian Safety Authorities AVN. The licensing process required flexibility in the methods application in order to meet the specific requirements of the S.A., which was achieved within the time schedule and without jeopardising the technical objectives of the utility. (authors)

Malaval, Andre; Marin-Lafleche, Pascale; Forgeot d'Arc, Myriam; Collin, Celine [Framatome ANP (France)

2002-07-01T23:59:59.000Z

380

Steady-state heat transfer in an inverted U-tube steam generator  

SciTech Connect

Experimental results are presented involving U-tube steam generator tube bundle local heat transfer and fluid conditions during steady-state, full-power operations performed at high temperatures and pressures with conditions typical of a pressurized water reactor (15.0 MPa primary pressure, 600 K hot-leg fluid temperatures, 6.2 MPa secondary pressure). The MOD-2C facility represents the state-of-the-art in measurement of tube local heat transfer data and average tube bundle secondary fluid density at several elevations, which allows an estimate of the axial heat transfer and void distributions during steady-state and transient operations. The method of heat transfer data reduction is presented and the heat flux, secondary convective heat transfer coefficient, and void fraction distributions are quantified for steady-state, full-power operations.

Boucher, T.J.

1986-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fossil steam generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Evaluation of a once-through heat recovery steam generator concept: Final report  

Science Conference Proceedings (OSTI)

This report presents the results of a reliability, availability, and maintainability (RAM) evaluation of a once-through concept for a combined-cycle heat recovery steam generator (HRSG). The project included a review of differences in reliability and maintainability characteristics of the once-through concept and a typical drum-type HRSG design. A special effort was placed on an investigation of the expected performance of the thin-wall alloy 800 boiler tubing used in the once-through HRSG. An analysis was performed by using the UNIRAM computer modeling methodology to compare the predicted availability of the once-through HRSG design with that of a drum-type system. The results of this project provide a basis for understanding the RAM characteristics of the once-through HRSG concept and identify areas where additional research may be beneficial in evaluating this new design for application within the utility industry. 28 refs., 5 figs., 7 tabs.

Babione, R.A.

1988-04-01T23:59:59.000Z

382

A Review of Some Degradation Mechanisms in CANDU Steam Generator Tubing  

SciTech Connect

The first CANDU (Canadian Deuterium Uranium) pressurized heavy water reactor (PHWR) went into operation in July 1971. Today, there are several units in operation at the Pickering, Bruce, and Darlington sites in Ontario, Canada. The steam generator tubing materials were manufactured from Monel 400, Inconel 600, and Incoloy 800 for the Pickering, Bruce, and Darlington respectively and are subjected to different operating conditions. This paper presents a review of some of the various types of degradation mechanisms that have been observed on these tubing materials over the operating period of the respective plants. The results presented are based on the metallurgical examination of removed tubes. The mechanisms that have been observed include pitting, stress corrosion cracking, intergranular attack, fretting, and erosion corrosion. The nature of the flaws and causative factors (if known) are discussed. (authors)

Ogundele, G.; Clark, M.; Goszczynski, G.; Lloyd, A. [Kinectrics, Inc., 800 Kipling Avenue Toronto, Ontario M8Z 6C4 (Canada); Pagan, S. [Ontario Power Generation, 700 University Avenue Toronto, Ontario, M5G 1X6 (Canada); Sedman, K. [Bruce Power, P.O. Box 3000 177 Tie Rd., R.R. 2, Tiverton, Ontario N0G 2T0 (Canada); King, P. [Babcock and Wilcox (Canada)

2006-07-01T23:59:59.000Z

383

EDDY CURRENT EXAMINATION OF STEAM GENERATOR TUBES FROM PHWR POWER PLANTS USING ROTATING MAGNETIC FIELD TRANSDUCER  

E-Print Network (OSTI)

Abstract. This paper present the results obtained at examination of steam generator tubes samples made from Incoloy 800, using eddy current transducer with rotating magnetic field. The emission part creates a magnetic rotating field which induces eddy currents in the walls of tubes, the reception being made with an array of sensors. The method presents the advantages of a complete inspection of tube’s surface at one passing. To increase the precision of discontinuity localization, a super resolution algorithm is used. The results are comparables with those obtained at the inspection with rotating probe, being obtained a good correlation, the speed of control being superior in the case of transducer with rotating magnetic field. 1.

Raimond Grimberg; Lalita Udpa; Alina Bruma; Rozina Steigmann; Adriana Savin; Satish S. Udpa

2007-01-01T23:59:59.000Z

384

A new caustic process for softening produced water for steam generation  

Science Conference Proceedings (OSTI)

Oilfield produced water containing a high concentration of total dissolved solids (TDS) and hardness can successfully be softened for use as oilfield steam-generator feedwater. At the Belridge field in Kern County, CA, the combination of caustic softening and weak-acid cation exchange has been used to soften produced water containing 11,000 TDS and 550-ppm hardness to {lt}1-ppm hardness. The resultant sludge containing calcium carbonate and magnesium hydroxide is concentrated by centrifuging and is disposed of in a landfill. Compared to the use of conventional strong-acid ion exchange followed by weak acid or weak acid followed by weak-acid ion exchange systems, the process offers the benefits of lower capital and chemical costs, partial silica removal, and elimination of liquid waste discharge. This paper gives design parameters and operating conditions and discusses future applications in thermal recovery projects.

Jan, R.J.; Reed, T.G. Jr. (Mobil E and P U.S. (US))

1992-05-01T23:59:59.000Z

385

Development and analysis of a linearly segmented CPC collector for industrial steam generation  

DOE Green Energy (OSTI)

This study involves the design, analysis and construction of a modular, non-imaging, trough, concentrating solar collector for generation of process steam in a tropical climate. The most innovative feature of this concentrator is that the mirror surface consists of long and narrow planar segments placed inside sealed low-cost glass tubes. The absorber is a cylindrical fin inside an evacuated glass tube. As an extension of the same study, the optical efficiency of the segmented concentrator has been simulated by means of a Monte-Carlo Ray-Tracing program. Laser Ray-Tracing techniques were also used to evaluate the possibilities of this new concept. A preliminary evaluation of the experimental concentrator was done using a relatively simple method that combines results from two experimental measurements: overall heat loss coefficient and optical efficiency. A transient behaviour test was used to measure the overall heat loss coefficient throughout a wide range of temperatures.

Figueroa, J.A.A.

1980-06-01T23:59:59.000Z

386

Development and Application of Advanced Models for Steam Hydrogasification: Process Design and Economic Evaluation  

E-Print Network (OSTI)

in a Heat Recovery Steam Generator (HRSG) to make additionalAuxiliary Power Block Steam turbine generator using steam

Lu, Xiaoming

2012-01-01T23:59:59.000Z

387

Steam generator tube integrity program. Semiannual report, August 1995--March 1996  

SciTech Connect

This report summarizes work performed by Argonne National Laboratory on the Steam Generator Tube Integrity Program from the inception of that program in August 1995 through March 1996. The program is divided into five tasks, namely (1) Assessment of Inspection Reliability, (2) Research on ISI (in-service-inspection) Technology, (3) Research on Degradation Modes and Integrity, (4) Development of Methodology and Technical Requirements for Current and Emerging Regulatory Issues, and (5) Program Management. Under Task 1, progress is reported on the preparation of and evaluation of nondestructive evaluation (NDE) techniques for inspecting a mock-up steam generator for round-robin testing, the development of better ways to correlate burst pressure and leak rate with eddy current (EC) signals, the inspection of sleeved tubes, workshop and training activities, and the evaluation of emerging NDE technology. Under Task 2, results are reported on closed-form solutions and finite element electromagnetic modeling of EC probe response for various probe designs and flaw characteristics. Under Task 3, facilities are being designed and built for the production of cracked tubes under aggressive and near-prototypical conditions and for the testing of flawed and unflawed tubes under normal operating, accident, and severe accident conditions. In addition, crack behavior and stability are being modeled to provide guidance on test facility design, to develop an improved understanding of the expected rupture behavior of tubes with circumferential cracks, and to predict the behavior of flawed and unflawed tubes under severe accident conditions. Task 4 is concerned with the cracking and failure of tubes that have been repaired by sleeving, and with a review of literature on this subject.

Diercks, D.R.; Bakhtiari, S.; Chopra, O.K. [and others

1997-04-01T23:59:59.000Z

388

Fossil Energy [Corrosion and Mechanics of Materials] - Nuclear Engineering  

NLE Websites -- All DOE Office Websites (Extended Search)

Fossil Energy Fossil Energy Capabilities Materials Testing Environmentally Assisted Cracking (EAC) of Reactor Materials Corrosion Performance/Metal Dusting Overview Light Water Reactors Fossil Energy Fusion Energy Metal Dusting Publications List Irradiated Materials Steam Generator Tube Integrity Other Facilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Corrosion and Mechanics of Materials Fossil Energy Bookmark and Share Conceptual designs of advanced coal-fired combustion systems require furnaces and heat transfer surfaces that operate at much higher temperatures than those in current coal-fired power plants. The combination of elevated temperatures and hostile combustion environments necessitates the development and application of ceramic materials in these designs.

389

GENERATION, TRANSPORT AND DEPOSITION OF TUNGSTEN-OXIDE AEROSOLS AT 1000 C IN FLOWING AIR-STEAM MIXTURES.  

SciTech Connect

Experiments were conducted to measure the rates of oxidation and vaporization of pure tungsten rods in flowing air, steam and air-steam mixtures in laminar flow. Also measured were the downstream transport of tungsten-oxide condensation aerosols and their region of deposition, including plateout in the superheated flow tube, rainout in the condenser and ambient discharge which was collected on an array of sub-micron aerosol filters. The nominal conditions of the tests, with the exception of the first two tests, were tungsten temperatures of 1000 C, gas mixture temperatures of 200 C and wall temperatures of 150 C to 200 C. It was observed that the tungsten oxidation rates were greatest in all air and least in all steam, generally decreasing non-linearly with increasing steam mole fraction. The tungsten oxidation rates in all air were more than five times greater than the tungsten oxidation rates in all steam. The tungsten vaporization rate was zero in all air and increased with increasing steam mole fraction. The vaporization rate became maximum at a steam mole fraction of 0.85 and decreased thereafter as the steam mole fraction was increased to unity. The tungsten-oxide was transported downstream as condensation aerosols, initially flowing upwards from the tungsten rod through an 18-inch long, one-inch diameter quartz tube, around a 3.5-inch radius, 90{sup o} bend and laterally through a 24-inch horizontal run. The entire length of the quartz glass flow path was heated by electrical resistance clamshell heaters whose temperatures were individually controlled and measured. The tungsten-oxide plateout in the quartz tube was collected, nearly all of which was deposited at the end of the heated zone near the entrance to the condenser which was cold. The tungsten-oxide which rained out in the condenser as the steam condensed was collected with the condensate and weighed after being dried. The aerosol smoke which escaped the condenser was collected on the sub-micron filter assemblies. There was no aerosol generation for the case of all air, so the plateout, condensate and smoke were all zero. For the case of all steam, there was very little plateout in the superheated regions (several percent) and the rest of the aerosol was collected in the condensate from the condenser. There was no smoke discharge into the filters. For the experiments with intermediate air-steam fractions, there was some aerosol plateout, considerable aerosol in the condensate and aerosol smoke discharged from the condenser with the escaping air.

GREENE,G.A.; FINFROCK,C.C.

2001-10-01T23:59:59.000Z

390

Technical considerations in repowering a nuclear plant for fossil fueled operation  

SciTech Connect

Repowering involves replacement of the reactor by a fossil fuel source of steam. This source can be a conventional fossil fueled boiler or the heat recovery steam generator (HRSG) on a gas turbine exhaust. The existing steam turbine plant is used to the extent possible. Alternative fuels for repowering a nuclear plant are coal, natural gas and oil. In today`s world oil is not usually an alternative. Selection of coal or natural gas is largely a matter of availability of the fuel near the location of the plant. Both the fossil boiler and the HRSG produce steam at higher pressures and temperatures than the throttle conditions for a saturated steam nuclear turbine. It is necessary to match the steam conditions from the new source to the existing turbine as closely as possible. Technical approaches to achieve a match range from using a topping turbine at the front end of the cycle to attemperation of the throttle steam with feedwater. The electrical output from the repowered plant is usually greater than that of the original nuclear fueled design. This requires consideration of the ability to use the excess electricity. Interfacing of the new facility with the existing turbine plant requires consideration of facility layout and design. Site factors must also be considered, especially for a coal fired boiler, since rail and coal handling facilities must be added to a site for which these were not considered. Additional site factors that require consideration are ash handling and disposal.

Patti, F.J.

1996-03-01T23:59:59.000Z

391

Tests of Types 51A and 51M Steam Generators at Bugey 4 and Tricastin 1 Nuclear Power Plants  

Science Conference Proceedings (OSTI)

This report presents thermal-hydraulic and chemical sampling data obtained at various power levels from special instrumentation on Electricite de France's operating steam generators at Bugey-4 and Tricastin-1. The data include downcomer flow rates, shell temperatures, and temperatures and chemical concentrations near the secondary surface of tubesheets. These data are useful for qualifying thermal-hydraulic computer codes.

1982-10-01T23:59:59.000Z

392

Diagnostic/Troubleshooting Monitoring to Identify Damaging Cycle Chemistry or Thermal Transients in Heat Recovery Steam Generator Pressure Parts  

Science Conference Proceedings (OSTI)

The worldwide fleet of combined cycle units with heat recovery steam generators (HRSGs) has exhibited a disappointing track record with respect to reliability and availability in terms of HRSG tube failures (HTFs). This report will assist operators in identifying the harmful chemical and thermal transient excursions that lead to failure.

2005-03-07T23:59:59.000Z

393

Field test of two high-pressure direct-contact downhole steam generators. Volume II. Oxygen/diesel system  

SciTech Connect

A field test of an oxygen/diesel fuel, direct contact steam generator has been completed. The field test, which was a part of Project DEEP STEAM and was sponsored by the US Department of Energy, involved the thermal stimulation of a well pattern in the Tar Zone of the Wilmington Oil Field. The activity was carried out in cooperation with the City of Long Beach and the Long Beach Oil Development Company. The steam generator was operated at ground level, with the steam and combustion products delivered to the reservoir through 2022 feet of calcium-silicate insulated tubing. The objectives of the test included demonstrations of safety, operational ease, reliability and lifetime; investigations of reservoir response, environmental impact, and economics; and comparison of those points with a second generator that used air rather than oxygen. The test was extensively instrumented to provide the required data. Excluding interruptions not attributable to the oxygen/diesel system, steam was injected 78% of the time. System lifetime was limited by the combustor, which required some parts replacement every 2 to 3 weeks. For the conditions of this particular test, the use of trucked-in LOX resulted in liess expense than did the production of the equivalent amount of high pressure air using on site compressors. No statistically significant production change in the eight-acre oxygen system well pattern occurred during the test, nor were any adverse effects on the reservoir character detected. Gas analyses during the field test showed very low levels of SOX (less than or equal to 1 ppM) in the generator gaseous effluent. The SOX and NOX data did not permit any conclusion to be drawn regarding reservoir scrubbing. Appreciable levels of CO (less than or equal to 5%) were measured at the generator, and in this case produced-gas analyses showed evidence of significant gas scrubbing. 64 figures, 10 tables.

Moreno, J.B.

1983-07-01T23:59:59.000Z

394

Method for improving the steam splits in a multiple steam injection process  

SciTech Connect

This patent describes a method for enhancing the uniformity of steam distribution in a multiple steam injection system comprising a steam generator, a steam header, a primary steam line connecting the generator to the header, and secondary steam lines connecting the header to steam injection wells. It comprises: injecting a surfactant into the primary steam line, and mixing the surfactant and steam sufficiently so that the surfactant and the steam enter the header as a foam.

Stowe, G.R. III.

1990-09-04T23:59:59.000Z

395

Case History of Reapplication of a 2500 KW Steam Turbine/Gear Drive Generator  

E-Print Network (OSTI)

In today' s equipment market more and more projects are turning toward existing equipment to justify a project. New equipment's delivery time and/or capital cost can keep a good project "grounded". In the turbomachinery industry, a few companies have developed the expertise to identify candidates of existing machines that can be adopted for many new applications. These companies can inspect, modify, recondition and rerate the equipment as needed, which helps bring in a project within budget and on time. This paper is the history of such an application. The delivery schedule requirements and limited capital made the project feasible only through the technology of reapplying existing machines to a new service. The project involves a plant that extracts landfill gas and converts it to diesel fuel, naphtha and a high grade of wax. The plant requires a steam turbine generator set to produce electrical power for its base load operation. This paper covers the history of how the turbine, gear and generator were selected, along with the highlights of the engineering work required to insure the mechanical operation of the string of equipment.

Smith, S.

1991-06-01T23:59:59.000Z

396

A global fouling factor methodology for analyzing steam generator thermal performance degradation  

Science Conference Proceedings (OSTI)

Over the past few years, steam generator (SG) thermal performance degradation has led to decreased plant efficiency and power output at numerous PWR nuclear power plants with recirculating-type SGs. The authors have developed and implemented methodologies for quantitatively evaluating the various sources of SG performance degradation, both internal and external to the SG pressure boundary. These methodologies include computation of the global fouling factor history, evaluation of secondary deposit thermal resistance using deposit characterization data, and consideration of pressure loss causes unrelated to the tube bundle, such as hot-leg temperature streaming and SG moisture separator fouling. In order to evaluate the utility of the global fouling factor methodology, the authors performed case studies for a number of PWR SG designs. Key results from two of these studies are presented here. In tandem with the fouling-factor analyses, a study evaluated for each plant the potential causes of pressure loss. The combined results of the global fouling factor calculations and the pressure-loss evaluations demonstrated two key points: (1) that the available thermal margin against fouling, which can vary substantially from plant to plant, has an important bearing on whether a given plant exhibits losses in electrical generating capacity, and (2) that a wide variety of causes can result in SG thermal performance degradation.

Kreider, M.A.; White, G.A.; Varrin, R.D. Jr. [Dominion Engineering, Inc., McLean, VA (United States)

1998-06-01T23:59:59.000Z

397

Steam driven markets  

Science Conference Proceedings (OSTI)

The market for steam equipment has been relatively level. Looking ahead, manufacturers anticipate steady market growth worldwide. Steam equipment manufacturers share a similar view of the market for next few years - upward. The steady upward climb is being attributed to a number of factors that will benefit steam turbine and heat recovery steam generator (HRSG) makers.

Anderson, J.L.

1993-02-01T23:59:59.000Z

398

Potential use of wood and agriculture wastes as steam generator fuel for thermal enhanced oil recovery. Final report  

DOE Green Energy (OSTI)

Enhanced oil recovery by steam injection methods produces over 200,000 barrels per day of crude oil in California. A sizeable portion of the produced crude, up to 40% for some projects, may be burned to generate steam for injection into the reservoir. The purpose of this study is to evaluate the potential to use wood and agriculture wastes to replace crude oil as steam generator fuel. The Bakersfield area of California's San Joaquin Valley is the focus for this paper. Production from thermal EOR methods centers around Bakersfield and agriculture and wood wastes are available from the San Joaquin Valley and the nearby Sierra Nevada mountains. This paper documents the production of waste materials by county, estimated energy value of each material, and estimated transportation cost for each material. Both agriculture and wood wastes were found to be available in sizeable quantities and could become attractive steam generation fuels. However, some qualifications need to be made on the use of these materials. Transportation costs will probably limit the range of shipping these materials to perhaps 50 to 100 miles. Availability is subject to competition from existing and developing uses of these materials, such as energy sources in their immediate production area. Existing steam generators probably cannot be retrofitted to burn these materials. Fluidized bed combustion, or low Btu gasification, may be a good technology for utilization. FBC or FBG could accept a variety of waste materials. This will be important because the amount of any single waste may not be large enough to support the energy requirements of a good size thermal f a good size thermal EOR operation.

Kosstrin, H.M.; McDonald, R.K.

1979-01-01T23:59:59.000Z

399

Field test of two high-pressure, direct-contact downhole steam generators. Volume I. Air/diesel system  

SciTech Connect

As a part of the Project DEEP STEAM to develop technology to more efficiently utilize steam for the recovery of heavy oil from deep reservoirs, a field test of a downhole steam generator (DSG) was performed. The DSG burned No. 2 diesel fuel in air and was a direct-contact, high pressure device which mixed the steam with the combustion products and injected the resulting mixture directly into the oil reservoir. The objectives of the test program included demonstration of long-term operation of a DSG, development of operational methods, assessment of the effects of the steam/combustion gases on the reservoir and comparison of this air/diesel DSG with an adjacent oxygen/diesel direct contact generator. Downhole operation of the air/diesel DSG was started in June 1981 and was terminated in late February 1982. During this period two units were placed downhole with the first operating for about 20 days. It was removed, the support systems were slightly modified, and the second one was operated for 106 days. During this latter interval the generator operated for 70% of the time with surface air compressor problems the primary source of the down time. Thermal contact, as evidenced by a temperature increase in the production well casing gases, and an oil production increase were measured in one of the four wells in the air/diesel pattern. Reservoir scrubbing of carbon monoxide was observed, but no conclusive data on scrubbing of SO/sub x/ and NO/sub x/ were obtained. Corrosion of the DSG combustor walls and some other parts of the downhole package were noted. Metallurgical studies have been completed and recommendations made for other materials that are expected to better withstand the downhole combustion environment. 39 figures, 8 tables.

Marshall, B.W.

1983-05-01T23:59:59.000Z

400

A SODIUM-GRAPHITE REACTOR STEAM-ELECTRIC STATION FOR 75 MEGAWATTS NET GENERATION  

SciTech Connect

The major design features, nuclear characteristics and performance data for a nuclear fueled central station power plant of 75,000 kw net capacity are presented. The heat source is a Na cooled graphite moderated reactor. The design of the reactor takes full advantage of the experience gained to date on the Sodium Reactor Experiment (SRE); the plant described here is a straightforward extension of the smaller experimental SRE, which is now under construction. The fuel elements are made up of rod clusters and the moderator is in the form of Zr canned graphite elements. The performance of the reactor has been based on conservative temperatures and coolant flow velocities which result in a plant with "built-in reserve." Thus, as experience is gained and anticipated improvements in reactor fuel elements and construction materials are proven, the performance of the plant can be increased accordingly. Two reactor designs are described, one for operation with slightly enriched U fuel elements and the other for operation with Th--U fuel elements. The associated heat exchangers, pumps, steam, and electrical generating equipment are identical for either reactor design. An analysis of turbine cycles describes the particular cycle chosen for initial operation and discusses a method by which modern central station performance can be initially obtained. The design and performance data which are required to enable reliable estimates of the plant construction and operating costs to be made are established. (auth)

Weisner, E.F.; Sybert, W.M.

1955-03-22T23:59:59.000Z

Note: This page contains sample records for the topic "fossil steam generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Device performance of in situ steam generated gate dielectric nitrided by remote plasma nitridation  

Science Conference Proceedings (OSTI)

In situ steam generated (ISSG) oxides have recently attracted interest for use as gate dielectrics because of their demonstrated reliability improvement over oxides formed by dry oxidation. [G. Minor, G. Xing, H. S. Joo, E. Sanchez, Y. Yokota, C. Chen, D. Lopes, and A. Balakrishna, Electrochem. Soc. Symp. Proc. 99-10, 3 (1999); T. Y. Luo, H. N. Al-Shareef, G. A. Brown, M. Laughery, V. Watt, A. Karamcheti, M. D. Jackson, and H. R. Huff, Proc. SPIE 4181, 220 (2000).] We show in this letter that nitridation of ISSG oxide using a remote plasma decreases the gate leakage current of ISSG oxide by an order of magnitude without significantly degrading transistor performance. In particular, it is shown that the peak normalized transconductance of n-channel devices with an ISSG oxide gate dielectric decreases by only 4% and the normalized drive current by only 3% after remote plasma nitridation (RPN). In addition, it is shown that the reliability of the ISSG oxide exhibits only a small degradation after RPN. These observations suggest that the ISSG/RPN process holds promise for gate dielectric applications. {copyright} 2001 American Institute of Physics.

Al-Shareef, H. N.; Karamcheti, A.; Luo, T. Y.; Bersuker, G.; Brown, G. A.; Murto, R. W.; Jackson, M. D.; Huff, H. R.; Kraus, P.; Lopes, D. (and others)

2001-06-11T23:59:59.000Z

402

Downhole steam generator with improved preheating/cooling features. [Patent application  

DOE Patents (OSTI)

An apparatus is described for downhole steam generation employing dual-stage preheaters for liquid fuel and for the water. A first heat exchange jacket for the fuel surrounds the fuel/oxidant mixing section of the combustor assembly downstream of the fuel nozzle and contacts the top of the combustor unit of the combustor assembly, thereby receiving heat directly from the combustion of the fuel/oxidant. A second stage heat exchange jacket surrounds an upper portion of the oxidant supply line adjacent the fuel nozzle receiving further heat from the compression heat which results from pressurization of the oxidant. The combustor unit includes an inner combustor sleeve whose inner wall defines the combustion zone. The inner combustor sleeve is surrounded by two concentric water channels, one defined by the space between the inner combustor sleeve and an intermediate sleeve, and the second defined by the space between the intermediate sleeve and an outer cylindrical housing. The channels are connected by an annular passage adjacent the top of the combustor assembly and the countercurrent nature of the water flow provides efficient cooling of the inner combustor sleeve. An annular water ejector with a plurality of nozzles is provided to direct water downwardly into the combustor unit at the boundary of the combustion zone and along the lower section of the intermediate sleeve.

Donaldson, A.B.; Hoke, D.E.; Mulac, A.J.

1980-10-10T23:59:59.000Z

403

Development of Design Criteria for Fluid Induced Structural Vibration in Steam Generators and Heat Exchangers  

SciTech Connect

OAK-B135 Flow-induced vibration in heat exchangers has been a major cause of concern in the nuclear industry for several decades. Many incidents of failure of heat exchangers due to apparent flow-induced vibration have been reported through the USNRC incident reporting system. Almost all heat exchangers have to deal with this problem during their operation. The phenomenon has been studied since the 1970s and the database of experimental studies on flow-induced vibration is constantly updated with new findings and improved design criteria for heat exchangers. In the nuclear industry, steam generators are often affected by this problem. However, flow-induced vibration is not limited to nuclear power plants, but to any type of heat exchanger used in many industrial applications such as chemical processing, refrigeration and air conditioning. Specifically, shell and tube type heat exchangers experience flow-induced vibration due to the high velocity flow over the tube banks. Flow-induced vibration in these heat exchangers leads to equipment breakdown and hence expensive repair and process shutdown. The goal of this research is to provide accurate measurements that can help modelers to validate their models using the measured experimental parameters and thereby develop better design criteria for avoiding fluid-elastic instability in heat exchangers. The research is divided between two primary experimental efforts, the first conducted using water alone (single phase) and the second using a mixture of air or steam and water as the working fluid (two phase). The outline of this report is as follows: After the introduction to fluid-elastic instability, the experimental apparatus constructed to conduct the experiments is described in Chapter 2 along with the measurement procedures. Chapter 3 presents results obtained on the tube array and the flow loop, as well as techniques used in data processing. The project performance is described and evaluated in Chapter 4 followed by a discussion of publications and presentations relevant to the project in Chapter 5, while the conclusions and recommendations for future work are presented in Chapter 6.

Catton, Ivan; Dhir, Vijay K.; Alquaddoomi, O.S.; Mitra, Deepanjan; Adinolfi, Pierangelo

2004-03-26T23:59:59.000Z

404

Simulation System on the Thermal Stress and Fatigue Life Loss of Startup and Shutdown for a Domestic 600MW Steam Turbo Generator Unit  

Science Conference Proceedings (OSTI)

The Simulation System on the thermal stresses and fatigue life loss of the rotator during startup and shutdown for a domestic 600MW steam turbo generator unit, By means of the analysis of Simulation System on the thermal stress and life loss of the rotor, ... Keywords: steam turbine unit, thermal stress, Fatigue Life Loss, rotator, startup, shutdown

Yunchun Xia

2009-10-01T23:59:59.000Z

405

Generation Maintenance Application Center: Combined-Cycle Combustion Turbine Steam Turbine Stop and Control Valve Maintenance Guide  

Science Conference Proceedings (OSTI)

BackgroundCombustion turbine combined-cycle (CTCC) facilities use various components that are unique to these types of power generation plants. Therefore, use of the Electric Power Research Institute (EPRI) Preventive Maintenance Basis Database (1018758) by owners of CTCC facilities is somewhat limited to only those components that are common to both CTCC facilities and nuclear or fossil power plants. With the projected growth in the number of CTCC facilities, ...

2013-03-27T23:59:59.000Z

406

Steam Pressure Reduction: Opportunities and Issues; A BestPractices Steam Technical Brief  

SciTech Connect

A BestPractices Technical Brief describing industrial steam generation systems and opportunities for reducing steam system operating pressure.

Not Available

2005-11-01T23:59:59.000Z

407

Effect of high silica content on scale deposition and pipe-wall loss in oilfield steam generators  

Science Conference Proceedings (OSTI)

Studies were conducted on site in the Coalinga, Belridge, and Midway Sunset fields in California to research the cause of metal losses detected in the radiant section return bends and immediate piping downstream form the stem generators. This paper reports on the surveillance of silica content in the influent and effluent streams of the selected steam generators and the results of X-ray inspection of bends, elbows, welds, and pipings which indicated that a correlation is likely to exist between the silica and bicarbonate concentration in the feedwater and the silicate scale buildup, and incident rate of wall loss and the cause of wall loss/pipe failures is a combination of corrosion and erosion mechanisms accelerated at higher steam qualities.

Khatib, Z.I.; Olson, E.E.; Place, M.C. Jr. (Shell Development Co., Houston, TX (United States))

1992-11-01T23:59:59.000Z

408

Comparison of Control System Performance for Fossil-Fuel Fired Power Plants Using Emission Measurement Data from the Utility Industr y Information Collection Request for Hazardous Air Pollutants  

Science Conference Proceedings (OSTI)

On On May 3, 2011, the U.S. Environmental Protection Agency (EPA) published a notice of proposed rulemaking (40 Code of Federal Regulations Parts 60 and 63: National Emission Standards for Hazardous Air Pollutants from Coal- and Oil-Fired Electric Utility Steam Generating Units and Standards of Performance for Fossil-FuelFired Electric Utility, Industrial-Commercial-Institutional, and Small Industrial-Commercial-Institutional Steam-Generating Units). The intent of this rulemaking is to set Maximum Achiev...

2011-12-23T23:59:59.000Z

409

Battery-free Wireless Sensor Network For Advanced Fossil-Fuel Based Power Generation  

SciTech Connect

This report summarizes technical progress achieved during the project supported by the Department of Energy under Award Number DE-FG26-07NT4306. The aim of the project was to conduct basic research into battery-free wireless sensing mechanism in order to develop novel wireless sensors and sensor network for physical and chemical parameter monitoring in a harsh environment. Passive wireless sensing platform and five wireless sensors including temperature sensor, pressure sensor, humidity sensor, crack sensor and networked sensors developed and demonstrated in our laboratory setup have achieved the objective for the monitoring of various physical and chemical parameters in a harsh environment through remote power and wireless sensor communication, which is critical to intelligent control of advanced power generation system. This report is organized by the sensors developed as detailed in each progress report.

Yi Jia

2011-02-28T23:59:59.000Z

410

Water Reactor Chemical Volume and Control System and Steam Generator Blowdown Resins and Filters Sourcebook: 2013 Edition  

Science Conference Proceedings (OSTI)

An understanding of ion exchange practices within the industry for the removal of soluble and insoluble contaminants and filtration practices for the removal of insoluble contaminants is important for providing insight into beneficial practices as well as conditions to avoid. This report includes information on system descriptions, system operating practices, resins, and filters used in pressurized water reactor (PWR) chemical volume and control, makeup purification, and steam generator blowdown ...

2013-08-23T23:59:59.000Z

411

High Speed Rotational Motor Unit with Optimized Couplant Feed System for Ultrasonic Examination of Steam Generator Tubes  

Science Conference Proceedings (OSTI)

A high-speed rotational motor unit was designed and built to increase the ultrasonic data acquisition speed of steam generator tube examination in field applications. Rotational and couplant delivery speeds were optimized as they have a significant impact on data acquisition speed. The motor unit was designed to be waterproof and to move couplant (water) to the ultrasonic search unit in an efficient manner. Lessons learned from design and operations of laboratory motors were applied to this design. The r...

2005-11-15T23:59:59.000Z

412

Summary of Analytical Electron Microscopy Observation of Intergranular Attack and Stress Corrosion Cracks in Alloy 600 Steam Generator Tubing  

Science Conference Proceedings (OSTI)

High-resolution analytical transmission electron microscopy (ATEM) can identify structures and compositions of corrosion products in attacked boundaries, cracks, and crack tips to help assess impurities that promote intergranular degradation. ATEM analyses has recently been performed on samples from Watts Bar 1 and Diablo Canyon 2 steam generator (SG) tubing and has revealed that lead (Pb) was involved in intergranular stress corrosion cracking (IGSCC). These new results in combination with previous resu...

2005-04-29T23:59:59.000Z

413

Effect of steam generator configuration in a loss of the RHR during mid-loop operation at PKL facility  

SciTech Connect

The loss of the residual heat removal system in mid-loop conditions may occur with a non-negligible contribution to the plant risk, so the analysis of the accidental sequences and the actions to mitigate the accident are of great interest in shutdown conditions. In order to plan the appropriate measures to mitigate the accident is necessary to understand the thermal-hydraulic processes following the loss of the residual heat removal system during shutdown. Thus, transients of this kind have been simulated using best-estimate codes in different integral test facilities and compared with experimental data obtained in different facilities. In PKL (Primaerkreislauf-Versuchsanlage, primary coolant loop test facility) test facility different series of experiments have been undertaken to analyze the plant response in shutdown. In this context, the E3 and F2 series consist of analyzing the loss of the residual heat removal system with a reduced inventory in the primary system. In particular, the experiments were developed to investigate the influence of the steam generators secondary side configuration on the plant response, what involves the consideration of different number of steam generators filled with water and ready for activation, on the heat transfer mechanisms inside the steam generators U-tubes. This work presents the results of such experiments calculated using, RELAP5/Mod 3.3. (authors)

Villanueva, J. F.; Carlos, S.; Martorell, S.; Sanchez, F. [Dpto. Ingenieria Quimica Y Nuclear, Universitat Politecnica de Valencia, Camino Vera s/n, 46022 Valencia (Spain)

2012-07-01T23:59:59.000Z

414

High performance steam development  

SciTech Connect

DOE has launched a program to make a step change in power plant to 1500 F steam, since the highest possible performance gains can be achieved in a 1500 F steam system when using a topping turbine in a back pressure steam turbine for cogeneration. A 500-hour proof-of-concept steam generator test module was designed, fabricated, and successfully tested. It has four once-through steam generator circuits. The complete HPSS (high performance steam system) was tested above 1500 F and 1500 psig for over 102 hours at full power.

Duffy, T.; Schneider, P.

1995-12-31T23:59:59.000Z

415

Hardware-in-the-loop simulation of pressurized water reactor steam-generator water-level control, designed for use within physically distributed testing environments.  

E-Print Network (OSTI)

??A hardware-in-the-loop model was developed to represent digital sensing and control of steam generator water-level. The model was created with an intention to serve as… (more)

Brink, Michael Joseph

2013-01-01T23:59:59.000Z

416

Field Guide: Turbine Steam Path Damage  

Science Conference Proceedings (OSTI)

Steam path damage, particularly of blades, has long been recognized as a leading cause of steam turbine unavailability for large fossil fuel plants. Damage to steam path components by various mechanisms continues to result in significant economic impact domestically and internationally. Electric Power Research Institute (EPRI) Report TR-108943, Turbine Steam Path Damage: Theory and Practice, Volumes 1 and 2, was prepared to compile the most recent knowledge about turbine steam path damage: identifying th...

2011-12-12T23:59:59.000Z

417

Fossil Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Research and Development Fossil Energy Research and Development Table of Contents Page Appropriation Language .................................................................................................................... FE-3 Overview ............................................................................................................................................ FE-4 Coal .................................................................................................................................................. FE-13

418

Computational fluid dynamics (CFD) simulations of aerosol in a u-shaped steam generator tube  

E-Print Network (OSTI)

To quantify primary side aerosol retention, an Eulerian/Lagrangian approach was used to investigate aerosol transport in a compressible, turbulent, adiabatic, internal, wall-bounded flow. The ARTIST experimental project (Phase I) served as the physical model replicated for numerical simulation. Realizable k-? and standard k-? turbulence models were selected from the computational fluid dynamics (CFD) code, FLUENT, to provide the Eulerian description of the gaseous phase. Flow field simulation results exhibited: a) onset of weak secondary flow accelerated at bend entrance towards the inner wall; b) flow separation zone development on the convex wall that persisted from the point of onset; c) centrifugal force concentrated high velocity flow in the direction of the concave wall; d) formation of vortices throughout the flow domain resulted from rotational (Dean-type) flow; e) weakened secondary flow assisted the formation of twin vortices in the outflow cross section; and f) perturbations induced by the bend influenced flow recovery several pipe diameters upstream of the bend. These observations were consistent with those of previous investigators. The Lagrangian discrete random walk model, with and without turbulent dispersion, simulated the dispersed phase behavior, incorrectly. Accurate deposition predictions in wall-bounded flow require modification of the Eddy Impaction Model (EIM). Thus, to circumvent shortcomings of the EIM, the Lagrangian time scale was changed to a wall function and the root-mean-square (RMS) fluctuating velocities were modified to account for the strong anisotropic nature of flow in the immediate vicinity of the wall (boundary layer). Subsequent computed trajectories suggest a precision that ranges from 0.1% to 0.7%, statistical sampling error. The aerodynamic mass median diameter (AMMD) at the inlet (5.5 ?m) was consistent with the ARTIST experimental findings. The geometric standard deviation (GSD) varied depending on the scenario evaluated but ranged from 1.61 to 3.2. At the outlet, the computed AMMD (1.9 ?m) had GSD between 1.12 and 2.76. Decontamination factors (DF), computed based on deposition from trajectory calculations, were just over 3.5 for the bend and 4.4 at the outlet. Computed DFs were consistent with expert elicitation cited in NUREG-1150 for aerosol retention in steam generators.

Longmire, Pamela

2007-05-01T23:59:59.000Z

419

Steam System Optimization  

E-Print Network (OSTI)

Refinery and chemical plant steam systems are complex and the fuel required to produce the steam represents a major expense. The incremental cost for generating a 1,000 lb./hr. of steam is typically $45,000 - $60,000/year. Most plants have numerous low/

Aegerter, R.

2004-01-01T23:59:59.000Z

420

Steam Turbine Cogeneration  

E-Print Network (OSTI)

Steam turbines are widely used in most industrial facilities because steam is readily available and steam turbine is easy to operate and maintain. If designed properly, a steam turbine co-generation (producing heat and power simultaneously) system can increase energy efficiency, reduce air emissions and qualify the equipment for a Capital Cost tax Allowance. As a result, such a system benefits the stakeholders, the society and the environment. This paper describes briefly the types of steam turbine classified by their conditions of exhaust and review quickly the fundamentals related to steam and steam turbine. Then the authors will analyze a typical steam turbine co-generation system and give examples to illustrate the benefits of the System.

Quach, K.; Robb, A. G.

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fossil steam generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Steam Generating Units (duct burners) 40 CFR Part 60 Subpart GG- Standards of Performance for Stationary Gas Turbines  

E-Print Network (OSTI)

For nitrogen oxides has been determined to be selective catalytic reduction. l As authorized by the Northwest Clean Air Agency Regulation Section 300, this order is issued subject to the following restrictions and conditions: 1) The gas turbines shall burn either pipeline natural gas, or number 2 distillate oil with a sulfur content not to exceed 0.05 weight percent. The HRSG duct burners shall burn only pipeline natural gas. 2) Pollutant concentrations for each gas turbinelheat recovery steam generator stack shall not exceed the following:

unknown authors

2007-01-01T23:59:59.000Z

422

Steam in Distribution and Use: Steam Quality Redefined  

E-Print Network (OSTI)

Steam quality is an important measurement in steam generation. It's a measurement of steam to moisture ratio. In use, steam quality takes on a different meaning- steam which maximizes energy transfer. To do this, the steam must be clean, dry, of desired pressure and free of air and non-condensible gases. Objectives in these areas should be set and an action plan implemented. Typical objectives could be to specify steam pressure delivery of maximum pressure and to use steam at the lowest pressure possible. Steam velocity ranges and maximum system pressure drops should be set. Cleaning steam and protecting control devices is an important means of maintaining quality. Draining condensate and venting air and other gases preserves the steam quality at the point of use. Poor pressure control yields poor operation and efficiency. Dirty steam causes valve leaks and maintenance problems. Improper drainage and venting can cause premature corrosion and poor heat transfer.

Deacon, W. T.

1989-09-01T23:59:59.000Z

423

Steam in Distribution and Use: Steam Quality Redefined  

E-Print Network (OSTI)

"Steam quality is an important measurement in steam generation. It's a measurement of steam to moisture ratio. In use, steam quality takes on a different meaning - steam which maximizes energy transfer. To do this, the steam must be clean, dry, of desired pressure and free of air and non-condensable gases. Objectives in these areas should be set and an action plan implemented. Typical objectives could be to specify steam pressure delivery of maximum pressure and to use steam at the lowest pressure possible. Steam velocity ranges and maximum system pressure drops should be set. Cleaning steam and protecting control devices is an important means of maintaining quality. Draining condensate and venting air and other gases preserves the steam quality at the point of use. Poor pressure control yields poor operation and efficiency. Dirty steam causes valve leaks and maintenance problems. Improper drainage and venting can cause premature corrosion and poor heat transfer."

Deacon, W.

1989-09-01T23:59:59.000Z

424

Initial steam flow regulator for steam turbine start-up  

SciTech Connect

In a combined steam generator-turbine system, a drain type is provided in front of the stop valve to drain the first steam supply with the stop valve closed until the temperature of the valve and/or the temperature of the steam exceeds the temperature of saturation by a predetermined amount, and logic circuitry is provided to generate permissive signals which combine to allow successive admission of steam to the gland seal and to the steam turbine.

Martens, A.; Hobbs, M. M.

1985-12-31T23:59:59.000Z

425

U.S. Steam Turbine Valve Actuator Condition Assessment  

Science Conference Proceedings (OSTI)

This report provides nuclear and fossil plant personnel with current information on the inspection and assessment of steam turbine valve actuators.

2008-12-23T23:59:59.000Z

426

U.S. Steam Turbine Valve Metallurgy Guide  

Science Conference Proceedings (OSTI)

This report provides nuclear and fossil plant personnel with current information on the metallurgical aspects of the steam turbine valve components used in U.S. power plants.

2009-03-30T23:59:59.000Z

427

POWER PLANT RELIABILITY-AVAILABILITY AND STATE REGULATION. VOLUME 7 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network (OSTI)

entry are u Table 4-6 GAS TURBINE FOR 1965-1974 (OUTAGES)AVERAGE utage Cause Code GAS TURBINE GENERATOR FORCED OUTAGEof fossil units, and for gas turbine units, the basic data

Nero, A.V.

2010-01-01T23:59:59.000Z

428

On the Corrosion adequacy of the 2 1/4 CR-1Mo steel for LMFBR steam generation system service. Critical literature survey  

SciTech Connect

The focus of this review is on the long-term serviceability of 2 1/4-1 Mo steel under the waterside environmental conditions presented in the steam generator of an LMFBR commercial scale plant. The basic question related to material behavior is to what extent the water side physico-chemical environment will affect the favorable performance of a given material under operating experience. In present light water reactors, the steam generator corrosion problems in part are attributable to complex interactions between the localized secondary environment and the mechanical design of the components (i.e., tube/tube support crevice, tube/tubesheet crevice, flow pattern, etc.) in the steam generating system.

Zima, G.E.

1980-05-01T23:59:59.000Z

429

Steam generation in line-focus solar collectors: a comparative assessment of thermal performance, operating stability, and cost issues  

DOE Green Energy (OSTI)

The engineering and system benefits of using direct steam (in situ) generation in line-focus collectors are assessed. The major emphasis of the analysis is a detailed thermal performance comparison of in situ systems (which utilize unfired boilers). The analysis model developed for this study is discussed in detail. An analysis of potential flow stability problems is also provided along with a cursory cost analysis and an assessment of freeze protection, safety, and control issues. Results indicated a significant thermal performance advantage over the more conventional oil and flash systems and the flow stability does not appear to be a significant problem. In particular, at steam temperatures of 220/sup 0/C (430/sup 0/F) under the chosen set of assumptions, annual delivered energy predictions indicate that the in situ system can deliver 15% more energy than an oil system and 12% more energy than a flash system, with all of the systems using the same collector field. Further, the in situ system may result in a 10% capital cost reduction. Other advantages include improvement in simpler control when compared with flash systems, and fluid handling and safety enhancement when compared with oil systems.

Murphy, L.M.; May, E.K.

1982-04-01T23:59:59.000Z

430

Solar production of industrial process steam ranging in temperature from 300/sup 0/F to 550/sup 0/F (Phase I). Volume 1. Final report, September 30, 1978-June 30, 1979  

DOE Green Energy (OSTI)

This section summarizes the Foster Wheeler Development Corporation/Dow Chemical Company Phase I solar industrial process steam system and includes a system schematic, a brief system description, general specifications of the major system components, expected system performance, and a cost estimate summary for Phases II and III. The objectives of Phase I are: (1) design a cost-effective solar steam generating system, using state-of-the-art components and technology, to supply steam for Dow Chemical Company's Dalton, Georgia, plant; (2) predict the performance of the solar process steam plant; (3) conduct a safety evaluation and an environmental impact assessment of the solar steam system; (4) conduct an economic analysis to determine the potential economic benefits of a solar-augmented process steam production system compared with an existing fossil-fuel-fired steam generator; and (5) promote the project extensively to make it visible to industry and the general public.

Not Available

1979-06-30T23:59:59.000Z

431

Coal-gasification/MHD/steam-turbine combined-cycle (GMS) power generation  

DOE Green Energy (OSTI)

The coal-gasification/MHD/steam-turbine combined cycle (GMS) refers to magnetohydrodynamic (MHD) systems in which coal gasification is used to supply a clean fuel (free of mineral matter and sulfur) for combustion in an MHD electrical power plant. Advantages of a clean-fuel system include the elimination of mineral matter or slag from all components other than the coal gasifier and gas cleanup system; reduced wear and corrosion on components; and increased seed recovery resulting from reduced exposure of seed to mineral matter or slag. Efficiencies in some specific GMS power plants are shown to be higher than for a comparably sized coal-burning MHD power plant. The use of energy from the MHD exhaust gas to gasify coal (rather than the typical approach of burning part of the coal) results in these higher efficiencies.

Lytle, J.M.; Marchant, D.D.

1980-11-01T23:59:59.000Z

432

Flow Characteristics Analysis of Widows' Creek Type Control Valve for Steam Turbine Control  

Science Conference Proceedings (OSTI)

The steam turbine converts the kinetic energy of steam to mechanical energy of rotor blades in the power conversion system of fossil and nuclear power plants. The electric output from the generator of which the rotor is coupled with that of the steam turbine depends on the rotation velocity of the steam turbine bucket. The rotation velocity is proportional to the mass flow rate of steam entering the steam turbine through valves and nozzles. Thus, it is very important to control the steam mass flow rate for the load following operation of power plants. Among various valves that control the steam turbine, the control valve is most significant. The steam flow rate is determined by the area formed by the stem disk and the seat of the control valve. While the ideal control valve linearly controls the steam mass flow rate with its stem lift, the real control valve has various flow characteristic curves pursuant to the stem lift type. Thus, flow characteristic curves are needed to precisely design the control valves manufactured for the operating conditions of nuclear power plants. OMEGA (Optimized Multidimensional Experiment Geometric Apparatus) was built to experimentally study the flow characteristics of steam flowing inside the control valve. The Widows' Creek type control valve was selected for reference. Air was selected as the working fluid in the OMEGA loop to exclude the condensation effect in this simplified approach. Flow characteristic curves were plotted by calculating the ratio of the measured mass flow rate versus the theoretical mass flow rate of the air. The flow characteristic curves are expected to be utilized to accurately design and operate the control valve for fossil as well as nuclear plants. (authors)

Yoo, Yong H.; Sohn, Myoung S.; Suh, Kune Y. [PHILOSOPHIA, Inc., Seoul National University, San 56-1 Sillim-dong, Gwanak-gu, Seoul, 151-742 (Korea, Republic of)

2006-07-01T23:59:59.000Z

433

State-of-Knowledge on Deposition, Part 2: Assessment of Deposition Activity in Fossil Plant Units  

Science Conference Proceedings (OSTI)

Over the last 20 years, substantial advances have been made in the understanding and control of fossil plant cycle chemistry. In spite of these advances, deposition activity, most notably in boilers and steam turbines, remains an issue of concern to many organizations that operate fossil units. The underlying science of deposition in fossil unit components has not, with the exception of steam turbines, been studied extensively under the EPRI Boiler and Turbine Steam and Cycle Chemistry Program. This repo...

2003-12-08T23:59:59.000Z

434

Method and apparatus for improved start-up procedures in conventional steam power generators and dual fluid Cheng cycle engines  

SciTech Connect

In a start-up procedure for a steam injected gas turbine engine, a chamber; compressor means for introducing air into the chamber; means for introducing steam within the chamber, including at least a steam injection line; means for heating air and steam in the chamber, including at least a hydrocarbon fuel source and means for combustion; turbine means response to a mixture of air, combustion products and steam for converting the energy associated with the mixture to mechanical energy; counterflow heat exchanger means, including at least superheater and evaporator sections, for transferring residual thermal energy for the mixture exhausted from the turbine means, to incoming water and steam, wherein the evaporator section includes a water storage drum between, and connected with, the evaporator and superheat sections, the connection between the drum and superheater sections including a steam injector control valve, and means for providing incoming water at temperatures below the normal operating boiling temperature to the evaporator section.

Hamill, J.; Digumarth, R.; Conlon, W.; Cheng, D.Y.; Chang, C.N.

1988-04-05T23:59:59.000Z

435

Steam turbine control  

SciTech Connect

In a power plant which includes a steam turbine with main control valves for admitting steam into the steam turbine and a steam bypass with bypass control valves for diverting steam around the steam turbine directly into a condenser, it is necessary to coordinate the operation of the respective valves so that the steam turbine can be started, brought up to speed, synchronized with a generator and then loaded as smoothly and efficiently as possible. The present invention provides for such operation and, in addition, allows for the transfer of power plant operation from the so-called turbine following mode to the boiler following mode through the use of the sliding pressure concept. The invention described is particularly applicable to combined cycle power plants.

Priluck, D.M.; Wagner, J.B.

1982-05-11T23:59:59.000Z

436

Air-cooled vacuum steam condenser  

SciTech Connect

This patent describes a steam powered system. It comprises: a turbine for converting steam energy into mechanical energy upon expansion of steam therein, a boiler for generating steam to be fed to the turbine, and a conduit arrangement coupling the boiler to the turbine and then recoupling the turbine exhaust to the boiler through steam condensing mechanisms.

Larinoff, M.W.

1990-02-27T23:59:59.000Z

437

Fossil Energy Web System (FEWEB) PIA, Office of Fossil Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fossil Energy Web System (FEWEB) PIA, Office of Fossil Energy Headquaters Fossil Energy Web System (FEWEB) PIA, Office of Fossil Energy Headquaters Fossil Energy Web System (FEWEB)...

438

Steam turbine plant  

SciTech Connect

A system for regulating the rate of closing of the turbine intake valve of a steam turbine plant is disclosed. A steam turbine is supplied from a steam generator through a turbine intake valve. A branch line conducts the steam to a bypass valve which is normally closed. In the event of conditions making it necessary to close the turbine intake valve rapidly, a regulator is provided to control the rate of closing of the turbine intake valve and the opening of the bypass valve so that the pressure conditions in the steam generator do not exceed the limits established by the manufacturer. Pressure measuring instruments are placed in the system to sense the pressure immediately upstream from the turbine intake valve and the bypass valve as well as the initial steam supply pressure. These pressure signals are transmitted to a computer which produces a control signal in accordance with predetermined conditions.

Skala, K.

1981-06-09T23:59:59.000Z

439

Proceedings: 2005 EPRI/ANL/NRC Workshop on Effects of Lead (Pb) and Sulfur (S) on the Performance of Secondary Side Tubing of Steam Generators in PWRs  

Science Conference Proceedings (OSTI)

This workshop reviewed the current state of knowledge regarding the effects of lead and reduced sulfur species on the occurrence of intergranular attack/stress corrosion cracking (IGA/SCC) on the secondary sides of PWR steam generators and discussed possible strategies for mitigating this IGA/SCC.

2005-12-22T23:59:59.000Z

440

Classification of Steam Generator Tube Defects for Real-Time Applications Using Eddy Current Test Data and Self-Organizing Maps  

Science Conference Proceedings (OSTI)

A new classification method, for isolating steam generator tube defects in nuclear power plants using Eddy Current Test (ECT) signals, has been developed. The method uses Self-Organizing maps (SOM) with different data signatures to identify and classify ... Keywords: eddy current, nuclear plant, self-organizing map, tube defects

Roberto N. De Mesquita; Daniel K. S. Ting; Eduardo L. L. Cabral; Belle R. Upadhyaya

2004-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "fossil steam generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Reliability Assessment of North American Steam Turbines  

Science Conference Proceedings (OSTI)

This survey provides statistics related to the reliability and maintenance of fossil-fueled steam turbines in the continental United States. The analysis focuses primarily on active turbines larger than 200 MW.

2002-04-24T23:59:59.000Z

442

Fossil Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fossil Energy Fossil Energy Natural gas production from "shale" formations (fine-grained sedimentary rocks with relatively low permeability that can be rich sources of petroleum and natural gas) is one of the most rapidly-growing trends in U.S. domestic energy exploration and production. In some cases, this fast expansion has resulted in natural gas drilling and production activity in parts of the country that have seen little or no activity of this type in the recent past. "Natural Gas from Shale" explains the basics, including what shale gas is, where it's found, why it's important, how it's produced, and challenges associated with production. Also included are a list of frequently asked questions, a glossary of major terms, and a list of

443

Base-Load and Peak Electricity from a Combined Nuclear Heat and Fossil Combined-Cycle Plant  

SciTech Connect

A combined-cycle power plant is proposed that uses heat from a high-temperature reactor and fossil fuel to meet base-load and peak electrical demands. The high temperature gas turbine produces shaft power to turn an electric generator. The hot exhaust is then fed to a heat recovery steam generator (HRSG) that provides steam to a steam turbine for added electrical power production. A simplified computational model of the thermal power conversion system was developed in order to parametrically investigate two different steady-state operation conditions: base load nuclear heat only from an Advanced High Temperature Reactor (AHTR), and combined nuclear heat with fossil heat to increase the turbine inlet temperature. These two cases bracket the expected range of power levels, where any intermediate power level can result during electrical load following. The computed results indicate that combined nuclear-fossil systems have the potential to offer both low-cost base-load electricity and lower-cost peak power relative to the existing combination of base-load nuclear plants and separate fossil-fired peak-electricity production units. In addition, electric grid stability, reduced greenhouse gases, and operational flexibility can also result with using the conventional technology presented here for the thermal power conversion system coupled with the AHTR. (authors)

Conklin, James C.; Forsberg, Charles W. [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831 (United States)

2007-07-01T23:59:59.000Z

444

Base-Load and Peak Electricity from a Combined Nuclear Heat and Fossil Combined-Cycle Plant  

Science Conference Proceedings (OSTI)

A combined-cycle power plant is proposed that uses heat from a high-temperature reactor and fossil fuel to meet base-load and peak electrical demands. The high-temperature gas turbine produces shaft power to turn an electric generator. The hot exhaust is then fed to a heat recovery steam generator (HRSG) that provides steam to a steam turbine for added electrical power production. A simplified computational model of the thermal power conversion system was developed in order to parametrically investigate two different steady-state operation conditions: base load nuclear heat only from an Advanced High Temperature Reactor (AHTR), and combined nuclear heat with fossil heat to increase the turbine inlet temperature. These two cases bracket the expected range of power levels, where any intermediate power level can result during electrical load following. The computed results indicate that combined nuclear-fossil systems have the potential to offer both low-cost base-load electricity and lower-cost peak power relative to the existing combination of base-load nuclear plants and separate fossil-fired peak-electricity production units. In addition, electric grid stability, reduced greenhouse gases, and operational flexibility can also result with using the conventional technology presented here for the thermal power conversion system coupled with the AHTR.

Conklin, Jim [ORNL; Forsberg, Charles W [ORNL

2007-01-01T23:59:59.000Z

445

On-Line Monitoring and Diagnostics of the Integrity of Nuclear Plant Steam Generators and Heat Exchangers.  

SciTech Connect

The overall purpose of this Nuclear Engineering Education Research (NEER) project was to integrate new, innovative, and existing technologies to develop a fault diagnostics and characterization system for nuclear plant steam generators (SG) and heat exchangers (HX). Issues related to system level degradation of SG and HX tubing, including tube fouling, performance under reduced heat transfer area, and the damage caused by stress corrosion cracking, are the important factors that influence overall plant operation, maintenance, and economic viability of nuclear power systems. The research at The University of Tennessee focused on the development of techniques for monitoring process and structural integrity of steam generators and heat exchangers. The objectives of the project were accomplished by the completion of the following tasks. All the objectives were accomplished during the project period. This report summarizes the research and development activities, results, and accomplishments during June 2001-September 2004. (1) Development and testing of a high-fidelity nodal model of a U-tube steam generator (UTSG) to simulate the effects of fouling and to generate a database representing normal and degraded process conditions. Application of the group method of data handling (GMDH) method for process variable prediction. (2) Development of a laboratory test module to simulate particulate fouling of HX tubes and its effect on overall thermal resistance. Application of the GMDH technique to predict HX fluid temperatures, and to compare with the calculated thermal resistance. (3) Development of a hybrid modeling technique for process diagnosis and its evaluation using laboratory heat exchanger test data. (4) Development and testing of a sensor suite using piezo-electric devices for monitoring structural integrity of both flat plates (beams) and tubing. Experiments were performed in air, and in water with and without bubbly flow. (5) Development of advanced signal processing methods using wavelet transforms and image processing techniques for isolating flaw types. (6) Development and implementation of a new nonlinear and non-stationary signal processing method, called the Hilbert-Huang transform (HHT), for flaw detection and location. This is a more robust and adaptive approach compared to the wavelet transform. (7) Implementation of a moving-window technique in the time domain for detecting and quantifying flaw types in tubular structures. A window zooming technique was also developed for flaw location in tubes. (8) Theoretical study of elastic wave propagation (longitudinal and shear waves) in metallic flat plates and tubing with and without flaws. (9) Simulation of the Lamb wave propagation using the finite-element code ABAQUS. This enabled the verification of the experimental results. The research tasks included both analytical research and experimental studies. The experimental results helped to enhance the robustness of fault monitoring methods and to provide a systematic verification of the analytical results. The results of this research were disseminated in scientific meetings. A journal manuscript was submitted for publication. The new findings of this research have potential applications in aerospace and civil structures. The report contains a complete bibliography that was developed during the course of the project.

Belle R. Upadhyaya; J. Wesley Hines

2004-09-27T23:59:59.000Z

446

Program on Technology Innovation: Projecting Future Fossil- and Biomass-Fueled Power Generation System Configurations: Year 2030  

Science Conference Proceedings (OSTI)

The generation mix in the year 2030 will likely look somewhat different from the present, as growth in generating capacity and regulatory initiatives to reduce emissions lead to changes in the U.S. power generation fleet. Chemical pollutants emitted from this future generation mix are likely to differ from those at present, including changes to the characteristics and amounts of chemicals released to air, wastewater, and solid waste streams. This report presents interim results of a project to predict he...

2009-12-28T23:59:59.000Z

447

Backgrounder: Geothermal resource production, steam gathering, and power generation at Salton Sea Unit 3, Calipatria, California  

DOE Green Energy (OSTI)

The 10,000-kilowatt Salton Sea Unit 1 power plant was designed to demonstrate that electrical power generation, using the highly saline brines from the Salton Sea geothermal reservoir, was technically and economically feasible. Unit 1, owned by Earth Energy, a Unocal subsidiary, began operating in 1982, initiating an intensive testing program which established the design criteria necessary to construct the larger 47,500-kilowatt Unit 3 power plant, unit 3 contains many of the proprietary or patented technological innovations developed during this program. Design, construction and start-up of the Unit 3 power generating facility began in December, 1986, and was completed in 26 months. By the end of 1988, the brine handling system was in full operation, and the turbine had been tested at design speed. Desert Power Company, a Unocal subsidiary, owns the power generating facility. Unocal owns the brine resource production facility. Power is transmitted by the Imperial Irrigation District to Southern California Edison Company.

None

1989-04-01T23:59:59.000Z

448

Candu 6 severe core damage accident consequence analysis for steam generator tube rupture scenario using MAAP4-CANDU V4.0.5A: preliminary results  

SciTech Connect

This paper describes the preliminary results of the consequence analysis for a generic AECL CANDU 6 station, when it undergoes a postulated, low probability Steam Generator multiple Tube Rupture (SGTR) severe accident with assumed unavailability of several critical plant safety systems. The Modular Accident Analysis Program for CANDU (MAAP4-CANDU) code was used for this analysis. The SGTR accident is assumed to begin with the guillotine rupture of 10 steam generator tubes in one steam generator in Primary Heat Transport System (PHTS) loop 1. For the reference case, the following systems were assumed unavailable: moderator and shield cooling, emergency core cooling, crash cool-down, and main and auxiliary feed water. Two additional cases were analyzed, one with the crash cool-down system available, and another with the crash cool-down and the auxiliary feed water systems available. The three scenarios considered in this study show that most of the initial fission product inventory would be retained within the containment by various fission product retention mechanisms. For the case where the crash cool-down system was credited but the auxiliary feed water systems were not credited, the total mass of volatile fission products released to the environment including stable and radioactive isotopes was about four times more than in the reference case, because fission products could be released directly from the PHTS to the environment through the Main Steam Safety Valves (MSSVs), bypassing the containment. For the case where the crash cool-down and auxiliary feed water systems were credited, the volatile fission product release to the environment was insignificant, because the fission product release was substantially mitigated by scrubbing in the water pool in the secondary side of the steam generator (SG). (authors)

Petoukhov, S.M.; Awadh, B.; Mathew, P.M. [Chalk River Laboratories, Atomic Energy of Canada Limited, Chalk River, Ontario, K0J 1J0 (Canada)

2006-07-01T23:59:59.000Z

449

A new emergency lubricating-oil system for steam turbine generators: Final report  

Science Conference Proceedings (OSTI)

A positive-displacement pump, powered by a turbine-shaft driven permanent magnet generator (PMG) can be used to provide lubricating oil over nearly the entire turbine generator speed range. The concept offers high reliability through its simplicity; switchgear, batteries and other auxiliaries are eliminated by hard-wiring the PMG to the pump induction drive motor. In this study, an existing PMG supplying power to the electrohydraulic control (EHC) system was evaluated as the power supply for an induction motor-driven screw pump running in a ''wafting'' mode as a backup to a conventional dc emergency oil system. The screw pump rotates all the time that the turbine shaft turns; check valves allow it to deliver oil instantly if the system pressure falls. It was found that the pump drive motor would start and run reliably with no adverse effects on the PMG or the electrohydraulic control (EHC) system. 6 refs., 23 figs., 11 tabs.

Kalan, G.L.; Oney, W.R.; Steenburgh, J.H.; Elwell, R.C.

1987-04-01T23:59:59.000Z

450

Cycle Chemistry Guidelines for Shutdown, Layup, and Startup of Combined Cycle Units with Heat Recovery Steam Generators  

Science Conference Proceedings (OSTI)

Complete optimization of cycle chemistry in a combined-cycle unit requires more than proper selection and optimization of operating chemistry. Protection of the steam-water cycle also is essential during shutdown, layup, and startup phases. These guidelines consider protection of steam- and water-touched components at these times, consistent with the operating cycle chemistries in use.

2006-03-21T23:59:59.000Z

451

Fossil Plant High Energy Piping Damage: Theory and Practice  

Science Conference Proceedings (OSTI)

Condition assessment programs for high-energy piping systems are often a major aspect of a fossil utility's inspection and maintenance program. In the past 30 years, a number of major failures of fossil high-energy piping have been associated with flow-accelerated corrosion of feedwater piping, creep failures of longitudinal seam-welded hot reheat and main steam piping, and corrosion fatigue failures of cold reheat steam piping. In addition to these well-documented failures, most utilities experience fai...

2007-11-29T23:59:59.000Z

452

Fossil Plant High-Energy Piping Damage: Theory and Practice  

Science Conference Proceedings (OSTI)

Condition assessment programs for high-energy piping systems are often a major aspect of a fossil utility's inspection and maintenance program. In the past 30 years, a number of major failures of fossil high-energy piping have been associated with flow-accelerated corrosion of feedwater piping, creep failures of longitudinal seam-welded hot reheat and main steam piping, and corrosion fatigue failures of cold reheat steam piping. In addition to these well-documented failures, most utilities experience fai...

2007-06-26T23:59:59.000Z

453

DOE's BestPractices Steam End User Training Steam End User Training  

E-Print Network (OSTI)

: Introduction, Steam Generation Efficiency Resource Utilization Analysis, and Steam Distribution System Losses Stack Losses Resource Utilization Analysis Steam Distribution System Losses Conclusion Quiz If youDOE's BestPractices Steam End User Training Steam End User Training Navigational Tutorial - 1 8

Oak Ridge National Laboratory

454

In situ generation of steam and alkaline surfactant for enhanced oil recovery using an exothermic water reactant (EWR)  

DOE Patents (OSTI)

A method for oil recovery whereby an exothermic water reactant (EWR) encapsulated in a water soluble coating is placed in water and pumped into one or more oil wells in contact with an oil bearing formation. After the water carries the EWR to the bottom of the injection well, the water soluble coating dissolves and the EWR reacts with the water to produce heat, an alkali solution, and hydrogen. The heat from the EWR reaction generates steam, which is forced into the oil bearing formation where it condenses and transfers heat to the oil, elevating its temperature and decreasing the viscosity of the oil. The aqueous alkali solution mixes with the oil in the oil bearing formation and forms a surfactant that reduces the interfacial tension between the oil and water. The hydrogen may be used to react with the oil at these elevated temperatures to form lighter molecules, thus upgrading to a certain extent the oil in situ. As a result, the oil can flow more efficiently and easily through the oil bearing formation towards and into one or more production wells.

Robertson, Eric P

2011-05-24T23:59:59.000Z

455

Heat transfer characteristics of porous sludge deposits and their impact on the performance of commercial steam generators  

SciTech Connect

Steam generator (SG) fouling, in the form of corrosion deposits on the secondary sides of SG tubes, has been known to occur in almost all commercial US nuclear PWR (pressurized water reactor) plants. The level of fouling, as measured by the quantity of corrosion products that form, varies widely from plant to plant. In addition, the effect of SG fouling, as measured by a decrease in effective heat-transfer coefficient, has also varied substantially among commercial US plants. While some have observed large decreases in heat transfer, others have noted little change in performance despite the presence of significant quantities of secondary corrosion layers on their SG tubes. This observation has led to considerable confusion about what role secondary deposits play in causing heat-transfer degradation in SGs. As will become clear later in this report, secondary deposits can have a wide range of effects on heat transfer, from highly resistive to slightly enhancing (reflected by negative fouling). These different behaviors are the result of differences in deposit thickness, composition, and morphology. The main focus of this report is an investigation of the effects of secondary deposits on SG thermal performance. This investigation includes compilation of detailed information on the properties of tube scale at five commercial US nuclear plants and corresponding information characterizing SG thermal performance at these plants.

Kreider, M.A.; White, G.A.; Varrin, R.D.; Ouzts, P.J.

1998-12-01T23:59:59.000Z

456

System and method for individually testing valves in a steam turbine trip control system  

SciTech Connect

This patent describes a steam turbine power plant. It comprises: a steam generator; a steam turbine adapted to receive steam form the steam generator; a throttle valve for regulating the flow of the steam received by the steam turbine; and an electro-hydraulic trip control system for causing the throttle valve to close when a predetermined condition has been reached.

Hurley, J.D.

1992-07-28T23:59:59.000Z

457

Guidelines for New High Reliability Fossil Plants  

Science Conference Proceedings (OSTI)

The purity of water and steam is central to ensuring fossil plant component availability and reliability. New plants should have the optimum cycle chemistry features designed in, and the guidelines provided in this report will assist owners and operators of new plants in specifying these features during the design phase.

2007-02-26T23:59:59.000Z

458

Power conversion unit studies for the next generation nuclear plant coupled to a high-temperature steam electrolysis facility  

E-Print Network (OSTI)

The Department of Energy and the Idaho National Laboratory are developing a Next Generation Nuclear Plant (NGNP) to serve as a demonstration of state-of-the-art nuclear technology. The purpose of the demonstration is two fold: 1) efficient low cost energy generation and 2) hydrogen production. Although a next generation plant could be developed as a single-purpose facility, early designs are expected to be dual-purpose. While hydrogen production and advanced energy cycles are still in their early stages of development, research towards coupling a high temperature reactor, electrical generation and hydrogen production is under way. Many aspects of the NGNP must be researched and developed to make recommendations on the final design of the plant. Parameters such as working conditions, cycle components, working fluids, and power conversion unit configurations must be understood. Three configurations of the power conversion unit were modeled using the process code HYSYS; a three-shaft design with 3 turbines and 4 compressors, a combined cycle with a Brayton top cycle and a Rankine bottoming cycle, and a reheated cycle with 3 stages of reheat were investigated. A high temperature steam electrolysis hydrogen production plant was coupled to the reactor and power conversion unit by means of an intermediate heat transport loop. Helium, CO2, and an 80% nitrogen, 20% helium mixture (by weight) were studied to determine the best working fluid in terms cycle efficiency and development cost. In each of these configurations the relative heat exchanger size and turbomachinery work were estimated for the different working fluids. Parametric studies away from the baseline values of the three-shaft and combined cycles were performed to determine the effect of varying conditions in the cycle. Recommendations on the optimal working fluid for each configuration were made. The helium working fluid produced the highest overall plant efficiency for the three-shaft and reheat cycle; however, the nitrogen-helium mixture produced similar efficiency with smaller component sizes. The CO2 working fluid is recommend in the combined cycle configuration.

Barner, Robert Buckner

2006-12-01T23:59:59.000Z

459

Development and Application of Advanced Models for Steam Hydrogasification: Process Design and Economic Evaluation  

E-Print Network (OSTI)

Recovery Steam Generator (HRSG) to make additional steam foras electricity through HRSG and steam cycle in the steamof FT liquids distribution HRSG CO 2 capture Heat exchanger

Lu, Xiaoming

2012-01-01T23:59:59.000Z

460

Steam systems in industry: Energy use and energy efficiency improvement potentials  

E-Print Network (OSTI)

Alesson, T. 1995. "All Steam Traps Are Not Equal."Capturing Energy Savings with Steam Traps. ” Proc. 1997V. 1994. "Understand Steam Generator Performance." Chemical

Einstein, Dan; Worrell, Ernst; Khrushch, Marta

2001-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fossil steam generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Seismic Safety Margins Research Programs. Assessment of potential increases in risk due to degradation of steam generator and reactor coolant pump supports. [PWR  

Science Conference Proceedings (OSTI)

During the NRC licensing review for the North Anna Units 1 and 2 pressurized-water reactors (PWRs), questions were raised regarding the potential for low-fracture toughness of steam-generator and reactor-coolant-pump supports. Because other PWRs may face similar problems, this issue was incorporated into the NRC Program for Resolution of Generic Issues. The work described in this report was performed to provide the NRC with a quantitative evaluation of the value/impact implications of the various options of resolving the fracture-toughness question. This report presents an assessment of the probabilistic risk associated with nil-ductility failures of steam-generator and reactor-coolant-pump structural-support systems during seismic events, performed using the Seismic Safety Margins Research Program codes and data bases.

Bohn, M. P.; Wells, J. E.; Shieh, L. C.; Cover, L. E.; Streit, R. L.

1983-08-01T23:59:59.000Z

462

Health effects and related standards for fossil-fuel and geothermal power plants. Volume 6 of health and safety impacts of nuclear, geothermal, and fossil-fuel electric generation in California. [In California  

DOE Green Energy (OSTI)

This report reviews health effects and related standards for fossil-fuel and geothermal power plants, emphasizing impacts which may occur through emissions into the atmosphere, and treating other impacts briefly. Federal regulations as well as California state and local regulations are reviewed. Emissions are characterized by power plant type, including: coal-fired, oil-fired, gas-fired, combined cycle and advanced fossil-fuel plants; and liquid and vapor geothermal systems. Dispersion and transformation of emissions are treated. The state of knowledge of health effects, based on epidemiological, physiological, and biomedical studies, is reviewed.

Case, G.D.; Bertolli, T.A.; Bodington, J.C.; Choy, T.A.; Nero, A.V.

1977-01-01T23:59:59.000Z

463

Ukraine Steam Partnership  

SciTech Connect

The Ukraine Steam Partnership program is designed to implement energy efficiency improvements in industrial steam systems. These improvements are to be made by the private plants and local government departments responsible for generation and delivery of energy to end-users. One of the activities planned under this program was to provide a two-day training workshop on industrial steam systems focusing on energy efficiency issues related to the generation, distribution, and consumption of steam. The workshop was geared towards plant managers, who are not only technically oriented, but are also key decision makers in their respective companies. The Agency for Rational Energy Use and Ecology (ARENA-ECO), a non-governmental, not-for-profit organization founded to promote energy efficiency and environmental protection in Ukraine, in conjunction with the Alliance staff in Kiev sent out invitations to potential participants in all the regions of Ukraine. The purpose of this report is the describe the proceedings from the workshop and provide recommendations from the workshop's roundtable discussion. The workshop was broken down into two main areas: (1) Energy efficient boiler house steam generation; and Energy efficient steam distribution and consumption. The workshop also covered the following topics: (1) Ukrainian boilers; (2) Water treatment systems; (3) A profile of UKRESCO (Ukrainian Energy Services Company); (4) Turbine expanders and electricity generation; (5) Enterprise energy audit basics; and (6) Experience of steam use in Donetsk oblast.

Gurvinder Singh

2000-02-15T23:59:59.000Z

464

Combined gas turbine and steam turbine power plant  

SciTech Connect

A description is given of a power plant arrangement having a gas turbine, a heat recovery steam generator, a steam turbine and means for controlling steam flow from the heat recovery steam generator to the steam turbine. Steam conditions are maintained generally constant and variations in power plant loading are carried by the steam turbine while operating the gas turbine at a generally constant fuel flow.

Baker, J.M.; Clark, G.W.; Harper, D.M.; Tomlinson, L.O.

1978-04-04T23:59:59.000Z

465

Non-pollutant fuel generator and fuel burner with a non-pollutant exhaust and supplementary dc generator. [for use in MHD generator, steam turbine, gas turbine, or fuel cell  

SciTech Connect

A system for generating non-polluting fuel and a burner for using such fuel to produce energy in the form of heat with a non-polluting exhaust, together with means for utilizing such exhaust to produce supplementary direct current power is disclosed. An electrolyzer is operated to produce hydrogen and oxygen in gaseous form which is then stored in suitable fuel tanks. As needed, the fuel is combined with air and supplied under pressure to a combustion chamber where the mixture is burned, producing heat and a pollution free exhaust. The heat so produced may be used as a conventional heat source to generate steam, drive a turbine, or the like, while the combustion gases are directed to a magnetohydrodynamic generator to produce an electrical current which is usable in any desired manner.

Barros, M.J.

1976-12-21T23:59:59.000Z

466

Solar production of industrial process steam at Ore-Ida frozen-fried-potato plant  

DOE Green Energy (OSTI)

TRW is designing a system for the demonstration of the Solar Production of Industrial Process Steam. Included, besides the Conceptual Design, is an Environmental Impact Assessment and a System Safety Analysis report. The system as proposed and conceptualized consists of an array of 9520 square feet of parabolic trough concentrating solar energy collectors which generate pressurized hot water. The pressurized water is allowed to flash to steam at 300 psi (417/sup 0/F) and fed directly into the high pressure steam lines of the Ore-Ida Foods, Inc., processing plant in Ontario, Oregon. Steam is normally generated in the factory by fossil-fired boilers and is used by means of a steam-to-oil heat exchanger for the process of frying potatoes in their frozen food processing line. The high pressure steam is also cascaded down to 125 psi for use in other food processing operations. This solar system will generate 2 x 10/sup 6/ Btu/hr during peak periods of insolation. Steam requirements in the plant for frying potatoes are: 43 x 10/sup 6/ Btu/hr at 300 psi and 52 x 10/sup 6/ Btu/hr at the lower temperatures and pressures. The Ontario plant operates on a 24 hr/day schedule six days a week during the potato processing campaigns and five days a week for the remainder of the year. The seventh day and sixth day, respectively, use steam for cleanup operations. An analysis of the steam generated, based on available annual insolation data and energy utilized in the plant, is included.

Cherne, J.M.; Gelb, G.H.; Pinkerton, J.D.; Paige, S.F.

1978-12-29T23:59:59.000Z