Powered by Deep Web Technologies
Note: This page contains sample records for the topic "fossil electricity total" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

"State","Fossil Fuels",,,,,,"Nuclear Electric Power",,"Renewable Energy",,,,,,"Total Energy Production"  

U.S. Energy Information Administration (EIA) Indexed Site

P2. Energy Production Estimates in Trillion Btu, 2011 " P2. Energy Production Estimates in Trillion Btu, 2011 " "State","Fossil Fuels",,,,,,"Nuclear Electric Power",,"Renewable Energy",,,,,,"Total Energy Production" ,"Coal a",,"Natural Gas b",,"Crude Oil c",,,,"Biofuels d",,"Other e",,"Total" ,"Trillion Btu" "Alabama",468.671,,226.821,,48.569,,411.822,,0,,245.307,,245.307,,1401.191 "Alaska",33.524,,404.72,,1188.008,,0,,0,,15.68,,15.68,,1641.933 "Arizona",174.841,,0.171,,0.215,,327.292,,7.784,,107.433,,115.217,,617.734 "Arkansas",2.985,,1090.87,,34.087,,148.531,,0,,113.532,,113.532,,1390.004 "California",0,,279.71,,1123.408,,383.644,,25.004,,812.786,,837.791,,2624.553

2

MSN YYYYMM Value Column Order Description Unit FFPRBUS Total Fossil Fuels Production Quadrillion Btu  

Gasoline and Diesel Fuel Update (EIA)

MSN YYYYMM Value Column Order Description Unit MSN YYYYMM Value Column Order Description Unit FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu

3

Office of the Assistant General Counsel Electricity & Fossil...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Policy Office of the Assistant General Counsel Electricity & Fossil Energy Office of the Assistant General Counsel Electricity & Fossil Energy The Office of the Assistant...

4

Office of the Assistant General Counsel Electricity & Fossil Energy |  

NLE Websites -- All DOE Office Websites (Extended Search)

Electricity & Fossil Energy Electricity & Fossil Energy Office of the Assistant General Counsel Electricity & Fossil Energy The Office of the Assistant General Counsel for Electricity and Fossil Energy (GC-76) provides legal support and advice, and policy guidance, to the Department on electricity, fossil energy, energy regulatory and Federal Power Marketing Administration issues. The office is the lead departmental attorney for the Assistant Secretaries for Electricity Delivery and Energy Reliability, and Fossil Energy, and provides legal advice and support on matters pertaining to the generation, transmission and distribution of electricity; natural gas production, transmission, storage, importation and exportation; oil production and storage including the Strategic Petroleum

5

Kyoto-Related Fossil-Fuel CO2 Emission Totals  

NLE Websites -- All DOE Office Websites (Extended Search)

Kyoto-Related Emissions Kyoto-Related Emissions Kyoto-Related Fossil-Fuel CO2 Emission Totals DOI: 10.3334/CDIAC/ffe.007_V2012 world map Kyoto-Related Fossil-Fuel CO2 Emission Totals Year Annex B Countries Non Annex B Countries Fossil-Fuel CO2 Emissions (million metric tonnes C) Bunkers (million metric tonnes C) Fossil-Fuel CO2 Emissions (million metric tonnes C) Bunkers (million metric tonnes C) 1990 3894 90 2111 46 1991 3801 94 2299 38 1992 3750 109 2263 44 1993 3685 107 2339 48 1994 3656 107 2469 54 1995 3681 110 2570 59 1996 3704 111 2657 72 1997 3727 114 2737 74 1998 3746 118 2698 82 1999 3678 124 2718 90 2000 3725 130 2821 90 2001 3781 120 2936 92 2002 3764 128 3013 94 2003 3853 123 3347 98 2004 3888 135 3683 107 2005 3933 142 3926 106

6

Contacts for the Assistant General Counsel for Electricity and Fossil  

NLE Websites -- All DOE Office Websites (Extended Search)

Electricity and Fossil Energy Electricity and Fossil Energy Contacts for the Assistant General Counsel for Electricity and Fossil Energy Office of the Assistant General Counsel for Electricity & Fossil Energy (GC-76) Steven A. Porter, Assistant General Counsel for Electricity & Fossil Energy 202-586-4219 Steven.Porter@hq.doe.gov Bettie Corey, Administrative Support Specialist 202-586-9507 bettie.corey@hq.doe.gov Subject Matter Attorney Contacts Electricity Delivery Energy Reliability Energy Emergency Lot Cooke 202-586-0503 Critical Infrastructure Protection Becca Smith 202-586-6335 International Electricity Natural Gas Imports and Exports Strategic Petroleum Reserve Mike Skinker 202-586-2793 Alaska Natural Gas Pipeline Natural Gas Including LNG Ed Myers 202-586-3397 Clean Coal Ed Myers

7

Table 11.6 Installed Nameplate Capacity of Fossil-Fuel Steam-Electric Generators With Environmental Equipment, 1985-2010 (Megawatts)  

U.S. Energy Information Administration (EIA) Indexed Site

Installed Nameplate Capacity of Fossil-Fuel Steam-Electric Generators With Environmental Equipment," Installed Nameplate Capacity of Fossil-Fuel Steam-Electric Generators With Environmental Equipment," " 1985-2010 (Megawatts)" "Year","Coal",,,,"Petroleum and Natural Gas",,,,"Total 1" ,,,"Flue Gas","Total 2",,,"Flue Gas","Total 2",,,"Flue Gas","Total 2" ,"Particulate","Cooling","Desulfurization",,"Particulate","Cooling","Desulfurization",,"Particulate","Cooling","Desulfurization" ,"Collectors","Towers","(Scrubbers)",,"Collectors","Towers","(Scrubbers)",,"Collectors","Towers","(Scrubbers)"

8

California Natural Gas % of Total Electric Utility Deliveries...  

U.S. Energy Information Administration (EIA) Indexed Site

Electric Utility Deliveries (Percent) California Natural Gas % of Total Electric Utility Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

9

Table A39. Total Expenditures for Purchased Electricity and Steam  

U.S. Energy Information Administration (EIA) Indexed Site

9. Total Expenditures for Purchased Electricity and Steam" 9. Total Expenditures for Purchased Electricity and Steam" " by Type of Supplier, Census Region, Census Division, and" " Economic Characteristics of the Establishment, 1994" " (Estimates in Million Dollars)" ," Electricity",," Steam" ,,,,,"RSE" ,"Utility","Nonutility","Utility","Nonutility","Row" "Economic Characteristics(a)","Supplier(b)","Supplier(c)","Supplier(b)","Supplier(c)","Factors" ,"Total United States" "RSE Column Factors:",0.3,2,1.6,1.2

10

Carbon emission and mitigation cost comparisons between fossil fuel, nuclear and renewable energy resources for electricity generation  

Science Journals Connector (OSTI)

A study was conducted to compare the electricity generation costs of a number of current commercial technologies with technologies expected to become commercially available within the coming decade or so. The amount of greenhouse gas emissions resulting per kWh of electricity generated were evaluated. A range of fossil fuel alternatives (with and without physical carbon sequestration), were compared with the baseline case of a pulverised coal, steam cycle power plant. Nuclear, hydro, wind, bioenergy and solar generating plants were also evaluated. The objectives were to assess the comparative costs of mitigation per tonne of carbon emissions avoided, and to estimate the total amount of carbon mitigation that could result from the global electricity sector by 2010 and 2020 as a result of fuel switching, carbon dioxide sequestration and the greater uptake of renewable energy. Most technologies showed potential to reduce both generating costs and carbon emission avoidance by 2020 with the exception of solar power and carbon dioxide sequestration. The global electricity industry has potential to reduce its carbon emissions by over 15% by 2020 together with cost saving benefits compared with existing generation.

Ralph E.H. Sims; Hans-Holger Rogner; Ken Gregory

2003-01-01T23:59:59.000Z

11

Carbon Capture and Water Emissions Treatment System (CCWESTRS) at Fossil-Fueled Electric Generating Plants  

SciTech Connect

The Tennessee Valley Authority (TVA), the Electric Power Research Institute (EPRI), and the Department of Energy-National Energy Technologies Laboratory (DOE-NETL) are evaluating and demonstrating integration of terrestrial carbon sequestration techniques at a coal-fired electric power plant through the use of Flue Gas Desulfurization (FGD) system gypsum as a soil amendment and mulch, and coal fly ash pond process water for periodic irrigation. From January to March 2002, the Project Team initiated the construction of a 40 ha Carbon Capture and Water Emissions Treatment System (CCWESTRS) near TVA's Paradise Fossil Plant on marginally reclaimed surface coal mine lands in Kentucky. The CCWESTRS is growing commercial grade trees and cover crops and is expected to sequester 1.5-2.0 MT/ha carbon per year over a 20-year period. The concept could be used to meet a portion of the timber industry's needs while simultaneously sequestering carbon in lands which would otherwise remain non-productive. The CCWESTRS includes a constructed wetland to enhance the ability to sequester carbon and to remove any nutrients and metals present in the coal fly ash process water runoff. The CCWESTRS project is a cooperative effort between TVA, EPRI, and DOE-NETL, with a total budget of $1,574,000. The proposed demonstration project began in October 2000 and has continued through December 2005. Additional funding is being sought in order to extend the project. The primary goal of the project is to determine if integrating power plant processes with carbon sequestration techniques will enhance carbon sequestration cost-effectively. This goal is consistent with DOE objectives to provide economically competitive and environmentally safe options to offset projected growth in U.S. baseline emissions of greenhouse gases after 2010, achieve the long-term goal of $10/ton of avoided net costs for carbon sequestration, and provide half of the required reductions in global greenhouse gases by 2025. Other potential benefits of the demonstration include developing a passive technology for water treatment for trace metal and nutrient release reductions, using power plant by-products to improve coal mine land reclamation and carbon sequestration, developing wildlife habitat and green-space around production facilities, generating Total Maximum Daily Load (TMDL) credits for the use of process water, and producing wood products for use by the lumber and pulp and paper industry. Project activities conducted during the five year project period include: Assessing tree cultivation and other techniques used to sequester carbon; Project site assessment; Greenhouse studies to determine optimum plant species and by-product application; Designing, constructing, operating, monitoring, and evaluating the CCWESTRS system; and Reporting (ongoing). The ability of the system to sequester carbon will be the primary measure of effectiveness, measured by accessing survival and growth response of plants within the CCWESTRS. In addition, costs associated with design, construction, and monitoring will be evaluated and compared to projected benefits of other carbon sequestration technologies. The test plan involves the application of three levels each of two types of power plant by-products--three levels of FGD gypsum mulch, and three levels of ash pond irrigation water. This design produces nine treatment levels which are being tested with two species of hardwood trees (sweet gum and sycamore). The project is examining the effectiveness of applications of 0, 8-cm, and 15-cm thick gypsum mulch layers and 0, 13 cm, and 25 cm of coal fly ash water for irrigation. Each treatment combination is being replicated three times, resulting in a total of 54 treatment plots (3 FGD gypsum levels X 3 irrigation water levels x 2 tree species x 3 replicates). Survival and growth response of plant species in terms of sequestering carbon in plant material and soil will be the primary measure of effectiveness of each treatment. Additionally, the ability of the site soils and unsaturated zone subsurface m

P. Alan Mays; Bert R. Bock; Gregory A. Brodie; L. Suzanne Fisher; J. Devereux Joslin; Donald L. Kachelman; Jimmy J. Maddox; N. S. Nicholas; Larry E. Shelton; Nick Taylor; Mark H. Wolfe; Dennis H. Yankee; John Goodrich-Mahoney

2005-08-30T23:59:59.000Z

12

Base-Load and Peak Electricity from a Combined Nuclear Heat and Fossil Combined-Cycle Plant  

SciTech Connect

A combined-cycle power plant is proposed that uses heat from a high-temperature reactor and fossil fuel to meet base-load and peak electrical demands. The high-temperature gas turbine produces shaft power to turn an electric generator. The hot exhaust is then fed to a heat recovery steam generator (HRSG) that provides steam to a steam turbine for added electrical power production. A simplified computational model of the thermal power conversion system was developed in order to parametrically investigate two different steady-state operation conditions: base load nuclear heat only from an Advanced High Temperature Reactor (AHTR), and combined nuclear heat with fossil heat to increase the turbine inlet temperature. These two cases bracket the expected range of power levels, where any intermediate power level can result during electrical load following. The computed results indicate that combined nuclear-fossil systems have the potential to offer both low-cost base-load electricity and lower-cost peak power relative to the existing combination of base-load nuclear plants and separate fossil-fired peak-electricity production units. In addition, electric grid stability, reduced greenhouse gases, and operational flexibility can also result with using the conventional technology presented here for the thermal power conversion system coupled with the AHTR.

Conklin, Jim [ORNL; Forsberg, Charles W [ORNL

2007-01-01T23:59:59.000Z

13

Base-Load and Peak Electricity from a Combined Nuclear Heat and Fossil Combined-Cycle Plant  

SciTech Connect

A combined-cycle power plant is proposed that uses heat from a high-temperature reactor and fossil fuel to meet base-load and peak electrical demands. The high temperature gas turbine produces shaft power to turn an electric generator. The hot exhaust is then fed to a heat recovery steam generator (HRSG) that provides steam to a steam turbine for added electrical power production. A simplified computational model of the thermal power conversion system was developed in order to parametrically investigate two different steady-state operation conditions: base load nuclear heat only from an Advanced High Temperature Reactor (AHTR), and combined nuclear heat with fossil heat to increase the turbine inlet temperature. These two cases bracket the expected range of power levels, where any intermediate power level can result during electrical load following. The computed results indicate that combined nuclear-fossil systems have the potential to offer both low-cost base-load electricity and lower-cost peak power relative to the existing combination of base-load nuclear plants and separate fossil-fired peak-electricity production units. In addition, electric grid stability, reduced greenhouse gases, and operational flexibility can also result with using the conventional technology presented here for the thermal power conversion system coupled with the AHTR. (authors)

Conklin, James C.; Forsberg, Charles W. [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831 (United States)

2007-07-01T23:59:59.000Z

14

Modelling and forecasting fossil fuels, CO2 and electricity prices and their volatilities  

Science Journals Connector (OSTI)

In the current uncertain context that affects both the world economy and the energy sector, with the rapid increase in the prices of oil and gas and the very unstable political situation that affects some of the largest raw materials’ producers, there is a need for developing efficient and powerful quantitative tools that allow to model and forecast fossil fuel prices, CO2 emission allowances prices as well as electricity prices. This will improve decision making for all the agents involved in energy issues. Although there are papers focused on modelling fossil fuel prices, CO2 prices and electricity prices, the literature is scarce on attempts to consider all of them together. This paper focuses on both building a multivariate model for the aforementioned prices and comparing its results with those of univariate ones, in terms of prediction accuracy (univariate and multivariate models are compared for a large span of days, all in the first 4 months in 2011) as well as extracting common features in the volatilities of the prices of all these relevant magnitudes. The common features in volatility are extracted by means of a conditionally heteroskedastic dynamic factor model which allows to solve the curse of dimensionality problem that commonly arises when estimating multivariate GARCH models. Additionally, the common volatility factors obtained are useful for improving the forecasting intervals and have a nice economical interpretation. Besides, the results obtained and methodology proposed can be useful as a starting point for risk management or portfolio optimization under uncertainty in the current context of energy markets.

Carolina García-Martos; Julio Rodríguez; María Jesús Sánchez

2013-01-01T23:59:59.000Z

15

A comparative environmental analysis of fossil fuel electricity generation options for South Africa .  

E-Print Network (OSTI)

??The increased demand for electricity in South Africa is expected to exceed supply between 2004 and 2007. Electricity supply options in the country would be… (more)

Govender, Indran

2009-01-01T23:59:59.000Z

16

Hydrogen-or-Fossil-Combustion Nuclear Combined-Cycle Systems for Base- and Peak-Load Electricity Production  

SciTech Connect

A combined-cycle power plant is described that uses (1) heat from a high-temperature nuclear reactor to meet base-load electrical demands and (2) heat from the same high-temperature reactor and burning natural gas, jet fuel, or hydrogen to meet peak-load electrical demands. For base-load electricity production, fresh air is compressed; then flows through a heat exchanger, where it is heated to between 700 and 900 C by heat provided by a high-temperature nuclear reactor via an intermediate heat-transport loop; and finally exits through a high-temperature gas turbine to produce electricity. The hot exhaust from the Brayton-cycle gas turbine is then fed to a heat recovery steam generator that provides steam to a steam turbine for added electrical power production. To meet peak electricity demand, the air is first compressed and then heated with the heat from a high-temperature reactor. Natural gas, jet fuel, or hydrogen is then injected into the hot air in a combustion chamber, combusts, and heats the air to 1300 C-the operating conditions for a standard natural-gas-fired combined-cycle plant. The hot gas then flows through a gas turbine and a heat recovery steam generator before being sent to the exhaust stack. The higher temperatures increase the plant efficiency and power output. If hydrogen is used, it can be produced at night using energy from the nuclear reactor and stored until needed. With hydrogen serving as the auxiliary fuel for peak power production, the electricity output to the electric grid can vary from zero (i.e., when hydrogen is being produced) to the maximum peak power while the nuclear reactor operates at constant load. Because nuclear heat raises air temperatures above the auto-ignition temperatures of the various fuels and powers the air compressor, the power output can be varied rapidly (compared with the capabilities of fossil-fired turbines) to meet spinning reserve requirements and stabilize the electric grid. This combined cycle uses the unique characteristics of high-temperature reactors (T>700 C) to produce electricity for premium electric markets whose demands can not be met by other types of nuclear reactors. It may also make the use of nuclear reactors economically feasible in smaller electrical grids, such as those found in many developing countries. The ability to rapidly vary power output can be used to stabilize electric grid performance-a particularly important need in small electrical grids.

Forsberg, Charles W [ORNL; Conklin, Jim [ORNL

2007-09-01T23:59:59.000Z

17

Ways Electricity Can Be Used To Replace Fossil Fuels in The French Chemical Industry  

E-Print Network (OSTI)

commissioned roughly 7,250 MW of nuclear power plants (for 600 MW of coal - fired power plants - 450 MW of gas turbine and 170 MW of hydro-plants. From now on the share of nuclear energy in production of electricity will drastically increase ELECTRICITY... commissioned roughly 7,250 MW of nuclear power plants (for 600 MW of coal - fired power plants - 450 MW of gas turbine and 170 MW of hydro-plants. From now on the share of nuclear energy in production of electricity will drastically increase ELECTRICITY...

Mongon, A.

1982-01-01T23:59:59.000Z

18

Potential Energy Total electric potential energy, U, of a system of  

E-Print Network (OSTI)

Potential Energy Total electric potential energy, U, of a system of charges is obtained from of work done by the field, W*= -W. Bring q1 from , W *= 0 since no electric F yet #12;Potential Energy Total electric potential energy, U, of a system of charges is obtained from the work done by an external

Bertulani, Carlos A. - Department of Physics and Astronomy, Texas A&M University

19

Managing Total Corporate Electricity/Energy Market Risks  

Science Journals Connector (OSTI)

This paper starts with a short history of the use of value-at-risk techniques in financial risk management. The specific and often unique risk management challenges faced by electricity companies are then desc...

Alex Henney; Greg Keers

2000-01-01T23:59:59.000Z

20

"Table A38. Total Expenditures for Purchased Electricity, Steam, and Natural Gas"  

U.S. Energy Information Administration (EIA) Indexed Site

8. Total Expenditures for Purchased Electricity, Steam, and Natural Gas" 8. Total Expenditures for Purchased Electricity, Steam, and Natural Gas" " by Type of Supplier, Census Region, Census Division, Industry Group," " and Selected Industries, 1994" " (Estimates in Million Dollars)" ,," Electricity",," Steam" ,,,,,,"RSE" "SIC",,"Utility","Nonutility","Utility","Nonutility","Row" "Code(a)","Industry Group and Industry","Supplier(b)","Supplier(c)","Supplier(b)","Supplier(c)","Factors" ,,"Total United States"

Note: This page contains sample records for the topic "fossil electricity total" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

"Table A16. Components of Total Electricity Demand by Census Region, Industry"  

U.S. Energy Information Administration (EIA) Indexed Site

6. Components of Total Electricity Demand by Census Region, Industry" 6. Components of Total Electricity Demand by Census Region, Industry" " Group, and Selected Industries, 1991" " (Estimates in Million Kilowatthours)" " "," "," "," "," "," "," "," " " "," "," "," "," ","Sales and/or"," ","RSE" "SIC"," "," ","Transfers","Total Onsite","Transfers","Net Demand for","Row" "Code(a)","Industry Groups and Industry","Purchases","In(b)","Generation(c)","Offsite","Electricity(d)","Factors"

22

Beyond the Fossil Fuel Era: On the Feasibility of Sustainable Electricity Generation Using Biogas from Microalgae  

Science Journals Connector (OSTI)

The functional unit was the delivery of 1.0 TWh of electrical energy using biomethane firing. ... The main finding was that maize-based biomethane electricity provision outperforms a prospective microalgae system in terms of NER, estimated at 4.9 and 3.2, respectively, when utilizing cogenerated heat. ... The contributions of this paper are as follows: (1) maize-based biomethane production outperforms a prospective microalgae system, in terms of net energy ratio (i.e., ratio of energy produced to energy required for fuel production; abbreviated hereafter as NER); (2) a prospective microalgae system requires 35% less land area, compared to maize, and (3) the performance, in terms of NER, of microalgae-based biogas production is set by the provision and extraction of nutrients rather than areal productivity and/or microalgal lipid content. ...

Frank ter Veld

2012-05-21T23:59:59.000Z

23

Table A10. Total Inputs of Energy for Heat, Power, and Electricity...  

U.S. Energy Information Administration (EIA) Indexed Site

0. Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Fuel Type, Industry Group, Selected Industries, and End Use, 1994:" " Part 2" " (Estimates in Trillion...

24

"Table A46. Total Expenditures for Purchased Electricity, Steam, and Natural"  

U.S. Energy Information Administration (EIA) Indexed Site

6. Total Expenditures for Purchased Electricity, Steam, and Natural" 6. Total Expenditures for Purchased Electricity, Steam, and Natural" " Gas by Type of Supplier, Census Region, Industry Group, and Selected Industries," 1991 " (Estimates in Million Dollars)" ,," Electricity",," Steam",," Natural Gas" ,,"-","-----------","-","-----------","-","------------","-","RSE" "SIC",,"Utility","Nonutility","Utility","Nonutility","Utility","Transmission","Other","Row" "Code(a)","Industry Groups and Industry","Supplier(b)","Supplier(c)","Supplier(b)","Supplier(c)","Supplier(b)","Pipelines","Supplier(d)","Factors"

25

"Table A48. Total Expenditures for Purchased Electricity, Steam, and Natural"  

U.S. Energy Information Administration (EIA) Indexed Site

8. Total Expenditures for Purchased Electricity, Steam, and Natural" 8. Total Expenditures for Purchased Electricity, Steam, and Natural" " Gas by Type of Supplier, Census Region, and Economic Characteristics of the" " Establishment, 1991" " (Estimates in Million Dollars)" ," Electricity",," Steam",," Natural Gas" ,"-","-----------","-","-----------","-","------------","-----------","RSE" " ","Utility","Nonutility","Utility","Nonutility","Utility","Transmission","Other","Row" "Economic Characteristics(a)","Supplier(b)","Supplier(c)","Supplier(b)","Supplier(c)","Supplier(b)","Pipelines","Supplier(d)","Factors"," "

26

Table 16. Total Electricity Sales, Projected vs. Actual  

Gasoline and Diesel Fuel Update (EIA)

Electricity Sales, Projected vs. Actual Electricity Sales, Projected vs. Actual (billion kilowatt-hours) 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 AEO 1982 2364 2454 2534 2626 2708 2811 AEO 1983 2318 2395 2476 2565 2650 2739 3153 AEO 1984 2321 2376 2461 2551 2637 2738 3182 AEO 1985 2317 2360 2427 2491 2570 2651 2730 2808 2879 2949 3026 AEO 1986 2363 2416 2479 2533 2608 2706 2798 2883 2966 3048 3116 3185 3255 3324 3397 AEO 1987 2460 2494 2555 2622 2683 2748 2823 2902 2977 3363 AEO 1989* 2556 2619 2689 2760 2835 2917 2994 3072 3156 3236 3313 3394 3473 AEO 1990 2612 2689 3083 3488.0 3870.0 AEO 1991 2700 2762 2806 2855 2904 2959 3022 3088 3151 3214 3282 3355 3427 3496 3563 3632 3704 3776 3846 3916 AEO 1992 2746 2845 2858 2913 2975 3030 3087 3146 3209 3276 3345 3415 3483 3552 3625 3699 3774 3847 3921 AEO 1993 2803 2840 2893 2946 2998 3052 3104 3157 3214 3271 3327

27

Table A45. Total Inputs of Energy for Heat, Power, and Electricity Generation  

U.S. Energy Information Administration (EIA) Indexed Site

Total Inputs of Energy for Heat, Power, and Electricity Generation" Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Enclosed Floorspace, Percent Conditioned Floorspace, and Presence of Computer" " Controls for Building Environment, 1991" " (Estimates in Trillion Btu)" ,,"Presence of Computer Controls" ,," for Buildings Environment",,"RSE" "Enclosed Floorspace and"," ","--------------","--------------","Row" "Percent Conditioned Floorspace","Total","Present","Not Present","Factors" " "," " "RSE Column Factors:",0.8,1.3,0.9 "ALL SQUARE FEET CATEGORIES" "Approximate Conditioned Floorspace"

28

Table A31. Total Inputs of Energy for Heat, Power, and Electricity Generation  

U.S. Energy Information Administration (EIA) Indexed Site

Total Inputs of Energy for Heat, Power, and Electricity Generation" Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Value of Shipment Categories, Industry Group, and Selected Industries, 1991" " (Continued)" " (Estimates in Trillion Btu)",,,,"Value of Shipments and Receipts(b)" ,,,," (million dollars)" ,,,"-","-","-","-","-","-","RSE" "SIC"," "," "," "," "," "," "," ",500,"Row" "Code(a)","Industry Groups and Industry","Total","Under 20","20-49","50-99","100-249","250-499","and Over","Factors"

29

Table A19. Components of Total Electricity Demand by Census Region and  

U.S. Energy Information Administration (EIA) Indexed Site

Components of Total Electricity Demand by Census Region and" Components of Total Electricity Demand by Census Region and" " Economic Characteristics of the Establishment, 1991" " (Estimates in Million Kilowatthours)" " "," "," "," ","Sales/"," ","RSE" " "," ","Transfers","Onsite","Transfers"," ","Row" "Economic Characteristics(a)","Purchases","In(b)","Generation(c)","Offsite","Net Demand(d)","Factors" ,"Total United States" "RSE Column Factors:",0.5,1.4,1.3,1.9,0.5 "Value of Shipments and Receipts" "(million dollars)"

30

Table A26. Components of Total Electricity Demand by Census Region, Census Di  

U.S. Energy Information Administration (EIA) Indexed Site

Components of Total Electricity Demand by Census Region, Census Division, and" Components of Total Electricity Demand by Census Region, Census Division, and" " Economic Characteristics of the Establishment, 1994" " (Estimates in Million Kilowatthours)" " "," "," "," ","Sales/"," ","RSE" " "," ","Transfers","Onsite","Transfers"," ","Row" "Economic Characteristics(a)","Purchases","In(b)","Generation(c)","Offsite","Net Demand(d)","Factors" ,"Total United States" "RSE Column Factors:",0.5,2.1,1.2,2,0.4 "Value of Shipments and Receipts"

31

"2012 Total Electric Industry- Customers"  

U.S. Energy Information Administration (EIA) Indexed Site

Customers" Customers" "(Data from forms EIA-861- schedules 4A, 4B, 4D, EIA-861S and EIA-861U)" "State","Residential","Commercial","Industrial","Transportation","Total" "New England",6203726,842773,34164,5,7080668 "Connecticut",1454651,150435,4647,2,1609735 "Maine",703770,89048,2780,0,795598 "Massachusetts",2699141,389272,21145,2,3109560 "New Hampshire",601697,104978,3444,0,710119 "Rhode Island",435448,57824,1927,1,495200 "Vermont",309019,51216,221,0,360456 "Middle Atlantic",15727423,2215961,45836,26,17989246 "New Jersey",3455302,489943,12729,6,3957980 "New York",7010740,1038268,8144,6,8057158

32

RADIOLOGICAL HEALTH AND RELATED STANDARDS FOR NUCLEAR POWER PLANTS. VOLUME 2 OF HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network (OSTI)

for Fossil-Fu.e l and Geothermal Power Plants", Lawrencefrom fossil-fuel and geothermal power plants Control offrom fossil-fuel and geothermal power plants Radionuclide

Nero, A.V.

2010-01-01T23:59:59.000Z

33

"2012 Total Electric Industry- Revenue (Thousands Dollars)"  

U.S. Energy Information Administration (EIA) Indexed Site

Revenue (Thousands Dollars)" Revenue (Thousands Dollars)" "(Data from forms EIA-861- schedules 4A-D, EIA-861S and EIA-861U)" "State","Residential","Commercial","Industrial","Transportation","Total" "New England",7418025.1,6137400,3292222.3,37797.4,16885444.6 "Connecticut",2212594.3,1901294.3,451909.7,18679.5,4584477.8 "Maine",656822,467228,241624.4,0,1365674.3 "Massachusetts",3029291.6,2453106,2127180,17162,7626739.5 "New Hampshire",713388.2,598371.1,231041,0,1542800.3 "Rhode Island",449603.6,431951.9,98597.2,1955.9,982108.6 "Vermont",356325.4,285448.7,141870,0,783644.1 "Middle Atlantic",20195109.9,20394744.7,5206283.9,488944,46285082.4

34

"2012 Total Electric Industry- Sales (Thousand Megawatthours)"  

U.S. Energy Information Administration (EIA) Indexed Site

Sales (Thousand Megawatthours)" Sales (Thousand Megawatthours)" "(Data from forms EIA-861- schedules 4A, 4B, 4D, EIA-861S and EIA-861U)" "State","Residential","Commercial","Industrial","Transportation","Total" "New England",47207.696,44864.227,27817.984,566.173,120456.08 "Connecticut",12757.633,12976.05,3565.944,192.711,29492.338 "Maine",4480.736,4053.188,3027.135,0,11561.059 "Massachusetts",20313.469,17722.811,16927.205,349.839,55313.324 "New Hampshire",4439.208,4478.42,1952.633,0,10870.261 "Rhode Island",3121.367,3639.866,923.478,23.623,7708.334 "Vermont",2095.283,1993.892,1421.589,0,5510.764 "Middle Atlantic",132230.522,157278.208,69506.519,3910.06,362925.309

35

Energy, environmental, health and cost benefits of cogeneration from fossil fuels and nuclear energy using the electrical utility facilities of a province  

Science Journals Connector (OSTI)

A method is investigated for increasing the utilization efficiency of energy resources and reducing environmental emissions, focusing on utility-scale cogeneration and the contributions of nuclear energy. A case study is presented for Ontario using the nuclear and fossil facilities of the main provincial electrical utility. Implementation of utility-based cogeneration in Ontario or a region with a similar energy system and attributes is seen to be able to reduce significantly annual and cumulative uranium and fossil fuel use and related emissions, provide economic benefits for the province and its electrical utility, and substitute nuclear energy for fossil fuels. The reduced emissions of greenhouse gases are significant, and indicate that utility-based cogeneration can contribute notably to efforts to combat climate change. Ontario and other regions with similar energy systems and characteristics would benefit from working with the regional electrical utilities and other relevant parties to implementing cogeneration in a careful and optimal manner. Implementation decisions need to balance the interests of the stakeholders when determining which cogeneration options to adopt and barriers to regional utility-based cogeneration need to be overcome.

Marc A. Rosen

2009-01-01T23:59:59.000Z

36

An evaluation of total body electrical conductivity to estimate body composition of largemouth bass  

E-Print Network (OSTI)

Information about body composition of fish is important for the assessment and management of fish stocks. Measurement of total body electrical conductivity (TOBEC) recently has been used to estimate the body composition of several fish species in a...

Barziza, Daniel Eugene

2012-06-07T23:59:59.000Z

37

Table A36. Total Inputs of Energy for Heat, Power, and Electricity  

U.S. Energy Information Administration (EIA) Indexed Site

"Net","Residual","and Diesel",,,"and",,"Row" "Code(a)","End-Use Categories","Total","Electricity(b)","Fuel Oil","Fuel(c)","Natural Gas(d)","LPG","Breeze)","Other(e)","Factors" ,...

38

Table A10. Total Inputs of Energy for Heat, Power, and Electricity...  

U.S. Energy Information Administration (EIA) Indexed Site

,,,"Net","Residual","and Diesel",,,"Coal Coke",,"RSE" "SIC",,"Total","Electricity(b)","Fuel Oil","Fuel(c)","Natural Gas(d)","LPG","and Breeze)","Other(e)","Row"...

39

Fossil Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Research and Development Fossil Energy Research and Development Table of Contents Page Appropriation Language .................................................................................................................... FE-3 Overview ............................................................................................................................................ FE-4 Coal .................................................................................................................................................. FE-13

40

Table A50. Total Inputs of Energy for Heat, Power, and Electricity Generatio  

U.S. Energy Information Administration (EIA) Indexed Site

A50. Total Inputs of Energy for Heat, Power, and Electricity Generation" A50. Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Census Region, Industry Group, Selected Industries, and Type of" " Energy-Management Program, 1994" " (Estimates in Trillion Btu)" ,,,," Census Region",,,"RSE" "SIC",,,,,,,"Row" "Code(a)","Industry Group and Industry","Total","Northeast","Midwest","South","West","Factors" ,"RSE Column Factors:",0.7,1.2,1.1,0.9,1.2 "20-39","ALL INDUSTRY GROUPS" ,"Participation in One or More of the Following Types of Programs",12605,1209,3303,6386,1706,2.9

Note: This page contains sample records for the topic "fossil electricity total" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Table A15. Total Inputs of Energy for Heat, Power, and Electricity Generation  

U.S. Energy Information Administration (EIA) Indexed Site

Total Inputs of Energy for Heat, Power, and Electricity Generation" Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Value of Shipment Categories, Industry Group, and Selected Industries, 1994" " (Estimates in Trillion Btu)" ,,,," Value of Shipments and Receipts(b)" ,,,," "," (million dollars)" ,,,,,,,,,"RSE" "SIC"," "," "," "," "," "," "," ",500,"Row" "Code(a)","Industry Group and Industry","Total","Under 20","20-49","50-99","100-249","250-499","and Over","Factors" ,"RSE Column Factors:",0.6,1.3,1,1,0.9,1.2,1.2

42

Table A41. Total Inputs of Energy for Heat, Power, and Electricity  

U.S. Energy Information Administration (EIA) Indexed Site

A41. Total Inputs of Energy for Heat, Power, and Electricity" A41. Total Inputs of Energy for Heat, Power, and Electricity" " Generation by Census Region, Industry Group, Selected Industries, and Type of" " Energy Management Program, 1991" " (Estimates in Trillion Btu)" ,,," Census Region",,,,"RSE" "SIC","Industry Groups",," -------------------------------------------",,,,"Row" "Code(a)","and Industry","Total","Northeast","Midwest","South","West","Factors" ,"RSE Column Factors:",0.7,1.3,1,0.9,1.2 "20-39","ALL INDUSTRY GROUPS" ,"Participation in One or More of the Following Types of Programs",10743,1150,2819,5309,1464,2.6,,,"/WIR{D}~"

43

RADIOLOGICAL HEALTH AND RELATED STANDARDS FOR NUCLEAR POWER PLANTS. VOLUME 2 OF HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network (OSTI)

Health and Safety Aspects of Pro- posed Nuclear, Geothermal, and Fossil-FuelHEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUELHealth and Safety Impacts of Nuclear, Geothermal, and Fossil- Fuel

Nero, A.V.

2010-01-01T23:59:59.000Z

44

The Role of Nuclear Power in Reducing Risk of the Fossil Fuel Prices and Diversity of Electricity Generation in Tunisia: A Portfolio Approach  

Science Journals Connector (OSTI)

Given the global energy trend to substitute fossil fuel, the nuclear power has known an important ... degrees of uncertainties related to nuclear and fossil fuel. The higher uncertainty of fossil fuel prices make...

Mohamed Ben Abdelhamid; Chaker Aloui; Corinne Chaton…

2010-04-01T23:59:59.000Z

45

Total  

Gasoline and Diesel Fuel Update (EIA)

Total Total .............. 16,164,874 5,967,376 22,132,249 2,972,552 280,370 167,519 18,711,808 1993 Total .............. 16,691,139 6,034,504 22,725,642 3,103,014 413,971 226,743 18,981,915 1994 Total .............. 17,351,060 6,229,645 23,580,706 3,230,667 412,178 228,336 19,709,525 1995 Total .............. 17,282,032 6,461,596 23,743,628 3,565,023 388,392 283,739 19,506,474 1996 Total .............. 17,680,777 6,370,888 24,051,665 3,510,330 518,425 272,117 19,750,793 Alabama Total......... 570,907 11,394 582,301 22,601 27,006 1,853 530,841 Onshore ................ 209,839 11,394 221,233 22,601 16,762 1,593 180,277 State Offshore....... 209,013 0 209,013 0 10,244 260 198,509 Federal Offshore... 152,055 0 152,055 0 0 0 152,055 Alaska Total ............ 183,747 3,189,837 3,373,584 2,885,686 0 7,070 480,828 Onshore ................ 64,751 3,182,782

46

Table A11. Total Inputs of Energy for Heat, Power, and Electricity Generatio  

U.S. Energy Information Administration (EIA) Indexed Site

1" 1" " (Estimates in Btu or Physical Units)" ,,,,"Distillate",,,"Coal" ,,,,"Fuel Oil",,,"(excluding" ,,"Net","Residual","and Diesel",,,"Coal Coke",,"RSE" ,"Total","Electricity(a)","Fuel Oil","Fuel(b)","Natural Gas(c)","LPG","and Breeze)","Other(d)","Row" "End-Use Categories","(trillion Btu)","(million kWh)","(1000 bbls)","(1000 bbls)","(billion cu ft)","(1000 bbls)","(1000 short tons)","(trillion Btu)","Factors" ,,,,,,,,,,, ,"Total United States"

47

Table 6b. Relative Standard Errors for Total Electricity Consumption per  

U.S. Energy Information Administration (EIA) Indexed Site

b. Relative Standard Errors for Total Electricity Consumption per b. Relative Standard Errors for Total Electricity Consumption per Effective Occupied Square Foot, 1992 Building Characteristics All Buildings Using Electricity (thousand) Total Electricity Consumption (trillion Btu) Electricity Intensities (thousand Btu) Per Square Foot Per Effective Occupied Square Foot All Buildings 4 5 4 4 Building Floorspace (Square Feet) 1,001 to 5,000 5 6 6 6 5,001 to 10,000 4 9 9 9 10,001 to 25,000 5 7 5 5 25,001 to 50,000 7 10 10 10 50,001 to 100,000 7 12 8 8 100,001 to 200,000 9 13 10 10 200,001 to 500,000 10 13 11 11 Over 500,000 26 18 18 21 Principal Building Activity Education 8 9 6 6 Food Sales and Service 8 9 8 7 Health Care 14 12 12 9 Lodging 11 22 16 16 Mercantile and Service 5 7 7 7 Office 6 10 7 6 Public Assembly 7 12 28 30 Public Order and Safety 18 29 18 18 Religious Worship 10 10 11 11 Warehouse and Storage

48

Table A4. Total Inputs of Energy for Heat, Power, and Electricity Generation  

U.S. Energy Information Administration (EIA) Indexed Site

2" 2" " (Estimates in Trillion Btu)" " "," "," "," "," "," "," "," "," "," "," "," " " "," "," "," "," "," "," "," "," "," "," ","RSE" "SIC"," "," ","Net","Residual","Distillate"," "," "," ","Coke"," ","Row" "Code(a)","Industry Groups and Industry","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","LPG","Coal","and Breeze","Other(e)","Factors"

49

Table A37. Total Inputs of Energy for Heat, Power, and Electricity  

U.S. Energy Information Administration (EIA) Indexed Site

2" 2" " (Estimates in Trillion Btu)" ,,,,,,,"Coal" ,,,,"Distillate",,,"(excluding" ,,,,"Fuel Oil",,,"Coal Coke",,"RSE" ,,"Net","Residual","and Diesel",,,"and",,"Row" "End-Use Categories","Total","Electricity(a)","Fuel Oil","Fuel(b)","Natural Gas(c)","LPG","Breeze)","Other(d)","Factors" "Total United States" "RSE Column Factors:","NF",0.4,1.6,1.5,0.7,1,1.6,"NF" "TOTAL INPUTS",15027,2370,414,139,5506,105,1184,5309,3 "Boiler Fuel","--","W",296,40,2098,18,859,"--",3.6

50

Table A11. Total Inputs of Energy for Heat, Power, and Electricity Generatio  

U.S. Energy Information Administration (EIA) Indexed Site

2" 2" " (Estimates in Trillion Btu)" ,,,,,,,"Coal" ,,,,"Distillate",,,"(excluding" ,,,,"Fuel Oil",,,"Coal Coke",,"RSE" ,,"Net","Residual","and Diesel",,,"and",,"Row" "End-Use Categories","Total","Electricity(a)","Fuel Oil","Fuel(b)","Natural Gas(c)","LPG","Breeze)","Other(d)","Factors" ,"Total United States" "RSE Column Factors:"," NF",0.5,1.3,1.4,0.8,1.2,1.2," NF" "TOTAL INPUTS",16515,2656,441,152,6141,99,1198,5828,2.7 "Indirect Uses-Boiler Fuel"," --",28,313,42,2396,15,875," --",4

51

Total............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Total................................................................... Total................................................................... 111.1 2,033 1,618 1,031 791 630 401 Total Floorspace (Square Feet) Fewer than 500............................................... 3.2 357 336 113 188 177 59 500 to 999....................................................... 23.8 733 667 308 343 312 144 1,000 to 1,499................................................. 20.8 1,157 1,086 625 435 409 235 1,500 to 1,999................................................. 15.4 1,592 1,441 906 595 539 339 2,000 to 2,499................................................. 12.2 2,052 1,733 1,072 765 646 400 2,500 to 2,999................................................. 10.3 2,523 2,010 1,346 939 748 501 3,000 to 3,499................................................. 6.7 3,020 2,185 1,401 1,177 851 546

52

Total...................  

Gasoline and Diesel Fuel Update (EIA)

4,690,065 52,331,397 2,802,751 4,409,699 7,526,898 209,616 1993 Total................... 4,956,445 52,535,411 2,861,569 4,464,906 7,981,433 209,666 1994 Total................... 4,847,702 53,392,557 2,895,013 4,533,905 8,167,033 202,940 1995 Total................... 4,850,318 54,322,179 3,031,077 4,636,500 8,579,585 209,398 1996 Total................... 5,241,414 55,263,673 3,158,244 4,720,227 8,870,422 206,049 Alabama ...................... 56,522 766,322 29,000 62,064 201,414 2,512 Alaska.......................... 16,179 81,348 27,315 12,732 75,616 202 Arizona ........................ 27,709 689,597 28,987 49,693 26,979 534 Arkansas ..................... 46,289 539,952 31,006 67,293 141,300 1,488 California ..................... 473,310 8,969,308 235,068 408,294 693,539 36,613 Colorado...................... 110,924 1,147,743

53

Table A52. Total Inputs of Energy for Heat, Power, and Electricity Generatio  

U.S. Energy Information Administration (EIA) Indexed Site

2. Total Inputs of Energy for Heat, Power, and Electricity Generation by Employment Size" 2. Total Inputs of Energy for Heat, Power, and Electricity Generation by Employment Size" " Categories and Presence of General Technologies and Cogeneration Technologies, 1994" " (Estimates in Trillion Btu)" ,,,,"Employment Size(a)" ,,,,,,,,"RSE" ,,,,,,,"1000 and","Row" "General/Cogeneration Technologies","Total","Under 50","50-99","100-249","250-499","500-999","Over","Factors" "RSE Column Factors:",0.5,2,2.1,1,0.7,0.7,0.9 "One or More General Technologies Present",14601,387,781,2054,2728,3189,5462,3.1 " Computer Control of Building Environment (b)",5079,64,116,510,802,1227,2361,5

54

"Table A25. Components of Total Electricity Demand by Census Region, Census Division, Industry"  

U.S. Energy Information Administration (EIA) Indexed Site

Components of Total Electricity Demand by Census Region, Census Division, Industry" Components of Total Electricity Demand by Census Region, Census Division, Industry" " Group, and Selected Industries, 1994" " (Estimates in Million Kilowatthours)" " "," "," "," "," "," "," "," " " "," "," "," "," ","Sales and/or"," ","RSE" "SIC"," "," ","Transfers","Total Onsite","Transfers","Net Demand for","Row" "Code(a)","Industry Group and Industry","Purchases","In(b)","Generation(c)","Offsite","Electricity(d)","Factors"

55

Total...................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

15.2 15.2 7.8 1.0 1.2 3.3 1.9 For Two Housing Units............................. 0.9 Q N Q 0.6 N Heat Pump.................................................. 9.2 7.4 0.3 Q 0.7 0.5 Portable Electric Heater............................... 1.6 0.8 Q Q Q 0.3 Other Equipment......................................... 1.9 0.7 Q Q 0.7 Q Fuel Oil........................................................... 7.7 5.5 0.4 0.8 0.9 0.2 Steam or Hot Water System........................ 4.7 2.9 Q 0.7 0.8 N For One Housing Unit.............................. 3.3 2.9 Q Q Q N For Two Housing Units............................. 1.4 Q Q 0.5 0.8 N Central Warm-Air Furnace........................... 2.8 2.4 Q Q Q 0.2 Other Equipment......................................... 0.3 0.2 Q N Q N Wood..............................................................

56

Ediacaran Fossils  

Science Journals Connector (OSTI)

...organisms are fossilized they are typically flattened. What is of interest is that the evident quilted structure of many of the Edia-caran fauna indicates that these orga-nisms were also of a generally flattened appearance in life. Hence, at least in part...

KENNETH E. CASTER

1984-03-16T23:59:59.000Z

57

Table A4. Total Inputs of Energy for Heat, Power, and Electricity Generation  

U.S. Energy Information Administration (EIA) Indexed Site

1 " 1 " " (Estimates in Btu or Physical Units)" " "," "," "," "," "," "," "," "," ","Coke"," "," " " "," "," ","Net","Residual","Distillate","Natural Gas(d)"," ","Coal","and Breeze"," ","RSE" "SIC"," ","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","(billion","LPG","(1000","(1000","Other(e)","Row" "Code(a)","Industry Groups and Industry","(trillion Btu)","(million kWh)","(1000 bbls)","(1000 bbls)","cu ft)","(1000 bbls)","short tons)","short tons)","(trillion Btu)","Factors"

58

Table A37. Total Inputs of Energy for Heat, Power, and Electricity  

U.S. Energy Information Administration (EIA) Indexed Site

1",,,,,,,"Coal" 1",,,,,,,"Coal" " (Estimates in Btu or Physical Units)",,,,,,,"(excluding" ,,,,"Distillate",,,"Coal Coke" ,,"Net",,"Fuel Oil",,,"and" ,,"Electricity(a)","Residual","and Diesel","Natural Gas",,"Breeze)",,"RSE" ,"Total","(million","Fuel Oil","Fuel","(billion","LPG","(1000 short","Other","Row" "End-Use Categories","(trillion Btu)","kWh)","(1000 bbls)","(1000 bbls)","cu ft)","(1000 bbls)","tons)","(trillion Btu)","Factors"

59

Table A36. Total Inputs of Energy for Heat, Power, and Electricity  

U.S. Energy Information Administration (EIA) Indexed Site

,,,,,,,,"Coal" ,,,,,,,,"Coal" " Part 1",,,,,,,,"(excluding" " (Estimates in Btu or Physical Units)",,,,,"Distillate",,,"Coal Coke" ,,,,,"Fuel Oil",,,"and" ,,,"Net","Residual","and Diesel","Natural Gas",,"Breeze)",,"RSE" "SIC",,"Total","Electricity(b)","Fuel Oil","Fuel","(billion","LPG","(1000 Short","Other","Row" "Code(a)","End-Use Categories","(trillion Btu)","(million kWh)","(1000 bbls)","(1000 bbls)","cu ft)","(1000 bbls)","tons)","(trillion Btu)","Factors",

60

Cost and Performance Comparison Baseline for Fossil Energy Plants, Volume 3 Executive Summary: Low Rank Coal and Natural Gas to Electricity  

NLE Websites -- All DOE Office Websites (Extended Search)

Baseline Baseline for Fossil Energy Plants Volume 3 Executive Summary: Low Rank Coal and Natural Gas to Electricity September 2011 DOE/NETL-2010/1399 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring

Note: This page contains sample records for the topic "fossil electricity total" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

fossil fuels | OpenEI  

Open Energy Info (EERE)

fossil fuels fossil fuels Dataset Summary Description Energy intensity data and documentation published by the U.S. DOE's office of Energy Efficiency and Renewable Energy (EERE). Energy intensity is defined as: amount of energy used in producing a given level of output or activity; expressed as energy per unit of output. This is the energy intensity of the the electricity sector, which is an energy consuming sector that generates electricity. Data are organized to separate electricity-only generators from combined heat and power (CHP) generators. Data is available for the period 1949 - 2004. Source EERE Date Released May 31st, 2006 (8 years ago) Date Updated Unknown Keywords Electricity Energy Consumption energy intensity fossil fuels renewable energy Data application/vnd.ms-excel icon electricity_indicators.xls (xls, 2.1 MiB)

62

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

7.1 7.1 19.0 22.7 22.3 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 2.1 0.6 Q 0.4 500 to 999........................................................... 23.8 13.6 3.7 3.2 3.2 1,000 to 1,499..................................................... 20.8 9.5 3.7 3.4 4.2 1,500 to 1,999..................................................... 15.4 6.6 2.7 2.5 3.6 2,000 to 2,499..................................................... 12.2 5.0 2.1 2.8 2.4 2,500 to 2,999..................................................... 10.3 3.7 1.8 2.8 2.1 3,000 to 3,499..................................................... 6.7 2.0 1.4 1.7 1.6 3,500 to 3,999..................................................... 5.2 1.6 0.8 1.5 1.4 4,000 or More.....................................................

63

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

0.7 0.7 21.7 6.9 12.1 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.6 Q Q 500 to 999........................................................... 23.8 9.0 4.2 1.5 3.2 1,000 to 1,499..................................................... 20.8 8.6 4.7 1.5 2.5 1,500 to 1,999..................................................... 15.4 6.0 2.9 1.2 1.9 2,000 to 2,499..................................................... 12.2 4.1 2.1 0.7 1.3 2,500 to 2,999..................................................... 10.3 3.0 1.8 0.5 0.7 3,000 to 3,499..................................................... 6.7 2.1 1.2 0.5 0.4 3,500 to 3,999..................................................... 5.2 1.5 0.8 0.3 0.4 4,000 or More.....................................................

64

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

25.6 25.6 40.7 24.2 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.5 0.9 1.0 500 to 999........................................................... 23.8 4.6 3.9 9.0 6.3 1,000 to 1,499..................................................... 20.8 2.8 4.4 8.6 5.0 1,500 to 1,999..................................................... 15.4 1.9 3.5 6.0 4.0 2,000 to 2,499..................................................... 12.2 2.3 3.2 4.1 2.6 2,500 to 2,999..................................................... 10.3 2.2 2.7 3.0 2.4 3,000 to 3,499..................................................... 6.7 1.6 2.1 2.1 0.9 3,500 to 3,999..................................................... 5.2 1.1 1.7 1.5 0.9 4,000 or More.....................................................

65

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

4.2 4.2 7.6 16.6 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 1.0 0.2 0.8 500 to 999........................................................... 23.8 6.3 1.4 4.9 1,000 to 1,499..................................................... 20.8 5.0 1.6 3.4 1,500 to 1,999..................................................... 15.4 4.0 1.4 2.6 2,000 to 2,499..................................................... 12.2 2.6 0.9 1.7 2,500 to 2,999..................................................... 10.3 2.4 0.9 1.4 3,000 to 3,499..................................................... 6.7 0.9 0.3 0.6 3,500 to 3,999..................................................... 5.2 0.9 0.4 0.5 4,000 or More.....................................................

66

Total.........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Floorspace (Square Feet) Floorspace (Square Feet) Total Floorspace 2 Fewer than 500.................................................. 3.2 Q 0.8 0.9 0.8 0.5 500 to 999.......................................................... 23.8 1.5 5.4 5.5 6.1 5.3 1,000 to 1,499.................................................... 20.8 1.4 4.0 5.2 5.0 5.2 1,500 to 1,999.................................................... 15.4 1.4 3.1 3.5 3.6 3.8 2,000 to 2,499.................................................... 12.2 1.4 3.2 3.0 2.3 2.3 2,500 to 2,999.................................................... 10.3 1.5 2.3 2.7 2.1 1.7 3,000 to 3,499.................................................... 6.7 1.0 2.0 1.7 1.0 1.0 3,500 to 3,999.................................................... 5.2 0.8 1.5 1.5 0.7 0.7 4,000 or More.....................................................

67

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

. . 111.1 20.6 15.1 5.5 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.5 0.4 500 to 999........................................................... 23.8 4.6 3.6 1.1 1,000 to 1,499..................................................... 20.8 2.8 2.2 0.6 1,500 to 1,999..................................................... 15.4 1.9 1.4 0.5 2,000 to 2,499..................................................... 12.2 2.3 1.7 0.5 2,500 to 2,999..................................................... 10.3 2.2 1.7 0.6 3,000 to 3,499..................................................... 6.7 1.6 1.0 0.6 3,500 to 3,999..................................................... 5.2 1.1 0.9 0.3 4,000 or More.....................................................

68

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

7.1 7.1 7.0 8.0 12.1 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.4 Q Q 0.5 500 to 999........................................................... 23.8 2.5 1.5 2.1 3.7 1,000 to 1,499..................................................... 20.8 1.1 2.0 1.5 2.5 1,500 to 1,999..................................................... 15.4 0.5 1.2 1.2 1.9 2,000 to 2,499..................................................... 12.2 0.7 0.5 0.8 1.4 2,500 to 2,999..................................................... 10.3 0.5 0.5 0.4 1.1 3,000 to 3,499..................................................... 6.7 0.3 Q 0.4 0.3 3,500 to 3,999..................................................... 5.2 Q Q Q Q 4,000 or More.....................................................

69

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

.. .. 111.1 24.5 1,090 902 341 872 780 441 Total Floorspace (Square Feet) Fewer than 500...................................... 3.1 2.3 403 360 165 366 348 93 500 to 999.............................................. 22.2 14.4 763 660 277 730 646 303 1,000 to 1,499........................................ 19.1 5.8 1,223 1,130 496 1,187 1,086 696 1,500 to 1,999........................................ 14.4 1.0 1,700 1,422 412 1,698 1,544 1,348 2,000 to 2,499........................................ 12.7 0.4 2,139 1,598 Q Q Q Q 2,500 to 2,999........................................ 10.1 Q Q Q Q Q Q Q 3,000 or More......................................... 29.6 0.3 Q Q Q Q Q Q Heated Floorspace (Square Feet) None...................................................... 3.6 1.8 1,048 0 Q 827 0 407 Fewer than 500......................................

70

Total...................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

2,033 2,033 1,618 1,031 791 630 401 Total Floorspace (Square Feet) Fewer than 500............................................... 3.2 357 336 113 188 177 59 500 to 999....................................................... 23.8 733 667 308 343 312 144 1,000 to 1,499................................................. 20.8 1,157 1,086 625 435 409 235 1,500 to 1,999................................................. 15.4 1,592 1,441 906 595 539 339 2,000 to 2,499................................................. 12.2 2,052 1,733 1,072 765 646 400 2,500 to 2,999................................................. 10.3 2,523 2,010 1,346 939 748 501 3,000 to 3,499................................................. 6.7 3,020 2,185 1,401 1,177 851 546 3,500 to 3,999................................................. 5.2 3,549 2,509 1,508

71

Fossil Energy Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Fossil Energy, the DOE National Energy Technology Laboratory, the DOE Fossil Energy Clean Coal Technology Program, the DOE Fossil Energy Office of Strategic Petroleum Reserve, and...

72

Total...........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

26.7 26.7 28.8 20.6 13.1 22.0 16.6 38.6 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................... 3.2 1.9 0.9 Q Q Q 1.3 2.3 500 to 999........................................... 23.8 10.5 7.3 3.3 1.4 1.2 6.6 12.9 1,000 to 1,499..................................... 20.8 5.8 7.0 3.8 2.2 2.0 3.9 8.9 1,500 to 1,999..................................... 15.4 3.1 4.2 3.4 2.0 2.7 1.9 5.0 2,000 to 2,499..................................... 12.2 1.7 2.7 2.9 1.8 3.2 1.1 2.8 2,500 to 2,999..................................... 10.3 1.2 2.2 2.3 1.7 2.9 0.6 2.0 3,000 to 3,499..................................... 6.7 0.9 1.4 1.5 1.0 1.9 0.4 1.4 3,500 to 3,999..................................... 5.2 0.8 1.2 1.0 0.8 1.5 0.4 1.3 4,000 or More...................................... 13.3 0.9 1.9 2.2 2.0 6.4 0.6 1.9 Heated Floorspace

73

Total...........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

14.7 14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500.................................... 3.2 0.7 Q 0.3 0.3 0.7 0.6 0.3 Q 500 to 999........................................... 23.8 2.7 1.4 2.2 2.8 5.5 5.1 3.0 1.1 1,000 to 1,499..................................... 20.8 2.3 1.4 2.4 2.5 3.5 3.5 3.6 1.6 1,500 to 1,999..................................... 15.4 1.8 1.4 2.2 2.0 2.4 2.4 2.1 1.2 2,000 to 2,499..................................... 12.2 1.4 0.9 1.8 1.4 2.2 2.1 1.6 0.8 2,500 to 2,999..................................... 10.3 1.6 0.9 1.1 1.1 1.5 1.5 1.7 0.8 3,000 to 3,499..................................... 6.7 1.0 0.5 0.8 0.8 1.2 0.8 0.9 0.8 3,500 to 3,999..................................... 5.2 1.1 0.3 0.7 0.7 0.4 0.5 1.0 0.5 4,000 or More...................................... 13.3

74

Total................................................  

U.S. Energy Information Administration (EIA) Indexed Site

.. .. 111.1 86.6 2,522 1,970 1,310 1,812 1,475 821 1,055 944 554 Total Floorspace (Square Feet) Fewer than 500............................. 3.2 0.9 261 336 162 Q Q Q 334 260 Q 500 to 999.................................... 23.8 9.4 670 683 320 705 666 274 811 721 363 1,000 to 1,499.............................. 20.8 15.0 1,121 1,083 622 1,129 1,052 535 1,228 1,090 676 1,500 to 1,999.............................. 15.4 14.4 1,574 1,450 945 1,628 1,327 629 1,712 1,489 808 2,000 to 2,499.............................. 12.2 11.9 2,039 1,731 1,055 2,143 1,813 1,152 Q Q Q 2,500 to 2,999.............................. 10.3 10.1 2,519 2,004 1,357 2,492 2,103 1,096 Q Q Q 3,000 or 3,499.............................. 6.7 6.6 3,014 2,175 1,438 3,047 2,079 1,108 N N N 3,500 to 3,999.............................. 5.2 5.1 3,549 2,505 1,518 Q Q Q N N N 4,000 or More...............................

75

Model-Based Sensor Placement for Component Condition Monitoring and Fault Diagnosis in Fossil Energy Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Sensor Placement for Sensor Placement for Component Condition Monitoring and Fault Diagnosis in Fossil Energy Systems Background Fossil fuel power plants generate approximately two-thirds of the world's total electricity and are expected to continue this important role in the years ahead. Increasing global energy demands, aging and inefficient power plants, and increasingly stricter emission requirements will require high levels of performance, available capacity, efficiency, and

76

An Estimate of the Cost of Electricity from Light Water Reactors and Fossil Plants with Carbon Capture and Sequestration  

SciTech Connect

As envisioned in this report, LIFE technology lends itself to large, centralized, baseload (or 'always on') electrical generation. Should LIFE plants be built, they will have to compete in the electricity market with other generation technologies. We consider the economics of technologies with similar operating characteristics: significant economies of scale, limited capacity for turndown, zero dependence on intermittent resources and ability to meet environmental constraints. The five generation technologies examined here are: (1) Light Water Reactors (LWR); (2) Coal; (3) Coal with Carbon Capture and Sequestration (CCS); (4) Natural Gas; and (5) Natural Gas with Carbon Capture and Sequestration. We use MIT's cost estimation methodology (Du and Parsons, 2009) to determine the cost of electricity at which each of these technologies is viable.

Simon, A J

2009-08-21T23:59:59.000Z

77

Fossil Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fossil Energy Fossil Energy Natural gas production from "shale" formations (fine-grained sedimentary rocks with relatively low permeability that can be rich sources of petroleum and natural gas) is one of the most rapidly-growing trends in U.S. domestic energy exploration and production. In some cases, this fast expansion has resulted in natural gas drilling and production activity in parts of the country that have seen little or no activity of this type in the recent past. "Natural Gas from Shale" explains the basics, including what shale gas is, where it's found, why it's important, how it's produced, and challenges associated with production. Also included are a list of frequently asked questions, a glossary of major terms, and a list of

78

Fossil Power Plant Applications of Expert Systems: An EPRI Perspective  

E-Print Network (OSTI)

the role of expert systems in the electric power industry, with particular emphasis on six fossil power plant applications currently under development by the Electric Power Research Institute....

Divakaruni, S. M.

79

Total plastic strain and electrical resistivity in high purity aluminum cyclically strained at 4.2 K  

E-Print Network (OSTI)

TOTAL PLASTIC STRAIN AND ELECTRICAL RESISTIVITY IN HIGH PURITY ALUMINUM CYCLICALLY STRAINED AT 4. 2 K A Thesis by JAMES TERENCE GEHAN Submitted to the Office of Graduate Studies of Texas ARM University in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE December 1988 Ulajor Subject: 1VIechanical Engineering TOTAL PLASTIC STRAIN AND ELECTRICAL RESISTIVITY IN HIGH PURITY ALUMINUM CYCLICALLY STRAINED AT 4. 2 K A Thesis by JAMES TERENCE GEHAN Approved...

Gehan, James Terence

2012-06-07T23:59:59.000Z

80

A computer-based total productive maintenance model for electric motors  

Science Journals Connector (OSTI)

The paper describes the development of a computer-based total productive maintenance (TPM) model to improve electrical motors readiness and uptime while reducing capital overhead. The TPM model includes the consideration of reactive, periodic, and predictive practices. The input data is processed and the generated report details a set of periodic recommendations providing guidelines on recommended actions and their frequency. The details about test results indicating the current condition of the motor as well estimated reactive, periodic, and predictive maintenance cost details are presented. Based on the historic data stored in its database, the model can predict potential problems prior to failure as well as prescribe periodic maintenance actions to maximise motor life. The TPM model will be a useful tool to predict the degradation in motor life due to deterioration in insulation, bearing, rotor bar and stator windings of the motor.

Aruna Muniswamy; Bhaskaran Gopalakrishnan; Subodh Chaudhari; Majid Jaridi; Ed Crowe; Deepak Gupta

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fossil electricity total" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

India Fossil-Fuel CO2 Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

India India India Fossil-Fuel CO2 Emissions Graph graphic Graphics Data graphic Data Trends India's 2008 total fossil-fuel CO2 emissions rose 8.1% over the 2007 level to 475 million metric tons of carbon. From 1950 to 2008, India experienced dramatic growth in fossil-fuel CO2 emissions averaging 5.7% per year and becoming the world's third largest fossil-fuel CO2-emitting country. Indian total emissions from fossil-fuel consumption and cement production have more than doubled since 1994. Fossil-fuel emissions in India continue to result largely from coal burning with India being the world's third largest producer of coal. Coal contributed 87% of the emissions in 1950 and 71% in 2008; at the same time, the oil fraction increased from 11% to 20%. Indian emissions data reveal little impact from the oil price increases that

82

Fossil Fuels and Carbon Capture and Storage  

Science Journals Connector (OSTI)

Reducing CO2...emissions, including those from the energy sector, ­presents a major challenge to the world at large. Fossil fuels provide two-thirds of the world’s electricity, with coal, in particular, the fuel ...

Keith Burnard; Sean McCoy

2012-01-01T23:59:59.000Z

83

2012,"Total Electric Power Industry","AK","Natural Gas",6,244.7,210.5  

U.S. Energy Information Administration (EIA) Indexed Site

TYPE_OF_PRODUCER","STATE_CODE","FUEL_SOURCE","GENERATORS","NAMEPLATE_CAPACITY TYPE_OF_PRODUCER","STATE_CODE","FUEL_SOURCE","GENERATORS","NAMEPLATE_CAPACITY (Megawatts)","SUMMER_CAPACITY (Megawatts)" 2012,"Total Electric Power Industry","AK","Natural Gas",6,244.7,210.5 2012,"Total Electric Power Industry","AK","Petroleum",4,4.8,4.8 2012,"Total Electric Power Industry","AK","Wind",1,24.6,24 2012,"Total Electric Power Industry","AK","All Sources",11,274.1,239.3 2012,"Total Electric Power Industry","AR","Coal",1,755,600 2012,"Total Electric Power Industry","AR","Natural Gas",1,22,20 2012,"Total Electric Power Industry","AR","All Sources",2,777,620

84

METHODOLOGIES FOR REVIEW OF THE HEALTH AND SAFETY ASPECTS OF PROPOSED NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL SITES AND FACILITIES. VOLUME 9 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network (OSTI)

of the health and safety impact of fossil fuel emissions.to public health and safety, of any fossil fuel plant areHEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL

Nero, A.V.

2010-01-01T23:59:59.000Z

85

Fossil | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fossil Fossil Fossil December 12, 2013 Department of Energy Releases $8 Billion Solicitation for Advanced Fossil Energy Projects The Energy Department published a solicitation today, making up to $8 billion in loan guarantee authority available to support innovative advanced fossil energy projects that avoid, reduce, or sequester greenhouse gases December 12, 2013 The National Energy Technology Laboratory's chemical looping reactor. This promising approach to capturing carbon dioxide will be among the technologies explored as part of the the Loan Program Office's advanced fossil energy solicitation. | Photo courtesy of the National Energy Technology Laboratory.

86

METHODOLOGIES FOR REVIEW OF THE HEALTH AND SAFETY ASPECTS OF PROPOSED NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL SITES AND FACILITIES. VOLUME 9 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network (OSTI)

for Fossil-Fuel and Geothermal Power Plants", Lawrenceof fossil-fuel and geothermal power plants. Choosing whatfor solid waste in geothermal power plants is the same as

Nero, A.V.

2010-01-01T23:59:59.000Z

87

Improvements in Test Protocols for Electric Vehicles to Determine Range and Total Energy Consumption  

Science Journals Connector (OSTI)

As electric vehicles have entered the market fairly recently, ... tested the same way as the ICE-driven cars with the exception that determining range is ... However, the current procedures address mainly primary...

Juhani Laurikko; Jukka Nuottimäki…

2013-01-01T23:59:59.000Z

88

A REVIEW OF LIGHT-WATER REACTOR SAFETY STUDIES. VOLUME 3 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network (OSTI)

Health and Safety Impacts of Nuclear, Geothermal, and Fossil- Fuel3 of HEALTH AND SAFETY IMPACTS OF FOSSIL-FUEL NUCLEAR,HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL

Nero, A.V.

2010-01-01T23:59:59.000Z

89

POWER PLANT RELIABILITY-AVAILABILITY AND STATE REGULATION. VOLUME 7 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network (OSTI)

HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUELHealth and Safety Impacts of Nuclear, Geothermal, and Fossil- FuelHealth and Safety Aspects of Pro- posed Nuclear, Geothermal, and Fossil-Fuel

Nero, A.V.

2010-01-01T23:59:59.000Z

90

CONTROL OF POPULATION DENSITIES SURROUNDING NUCLEAR POWER PLANTS. VOLUME 5 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network (OSTI)

HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUELHEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUELHealth and Safety Impacts of Nuclear, Geothermal, and Fossil- Fuel

Nero, jA.V.

2010-01-01T23:59:59.000Z

91

A REVIEW OF AIR QUALITY MODELING TECHNIQUES. VOLUME 8 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network (OSTI)

HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUELHEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUELHealth and Safety Impacts of Nuclear, Geothermal, and Fossil- Fuel

Rosen, L.C.

2010-01-01T23:59:59.000Z

92

RADIOLOGICAL EMERGENCY RESPONSE PLANNING FOR NUCLEAR POWER PLANTS IN CALIFORNIA. VOLUME 4 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network (OSTI)

HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUELHealth and Safety Impacts of Nuclear, Geothermal, and Fossil- FuelHealth and Safety Aspects of Pro- posed Nuclear, Geothermal, and Fossil-Fuel

Yen, W.W.S.

2010-01-01T23:59:59.000Z

93

Electric Power Quarterly, October-December 1984  

SciTech Connect

The Electric Power Quarterly (EPQ) provides electric utilities' plant-level information about the cost, quantity, and quality of fossil fuel receipts, net generation, fuel consumption, and fuel stocks. The EPQ contains monthly data and quarterly totals for the reporting quarter. In this report, data collected on Form EIA-759 regarding electric utilities' net generation, fuel consumption, and fuel stocks are presented on a plant-by-plant basis. In addition, quantity, cost, and quality of fossil fuel receipts collected on the Federal Energy Regulatory Commission (FERC) Form 423 are presented on a plant-by-plant basis.

Not Available

1985-04-01T23:59:59.000Z

94

Electric Power Quarterly, January-March 1986  

SciTech Connect

The ''Electric Power Quarterly (EPQ)'' provides information on electric utilities at the plant level. The information concerns the following: cost, quantity, and quality of fossil fuel receipts; net generation; fuel consumption; and fuel stocks. The ''EPQ'' contains monthly data and quarterly totals for the reporting quarter. In this report, data collected on Form EIA-759 regarding electric utilities' net generation, fuel consumption, and fuel stocks are presented on a plant-by-plant basis. In addition, quantity, cost, and quality of fossil fuel receipts collected on the Federal Energy Regulatory Commission (FERC) Form 423 are presented on a plant-by-plant basis.

Not Available

1986-07-21T23:59:59.000Z

95

Electric Power Quarterly, July-September 1984  

SciTech Connect

The Electric Power Quarterly (EPQ) provides electric utilities' plant-level information about the cost, quantity, and quality of fossil fuel receipts, net generation, fuel consumption, and fuel stocks. The EPQ contains monthly data and quarterly totals for the reporting quarter. In this report, data collected on Form EIA-759 regarding electric utilities' net generation, fuel consumption, and fuel stocks are presented on a plant-by-plant basis. In addition, quantity, cost, and quality of fossil fuel receipts collected on the Federal Energy Regulatory Commission (FERC) Form 423 are presented on a plant-by-plant basis.

Not Available

1985-01-01T23:59:59.000Z

96

Table ET1. Primary Energy, Electricity, and Total Energy Price and Expenditure Estimates, Selected Years, 1970-2011, United States  

Gasoline and Diesel Fuel Update (EIA)

ET1. Primary Energy, Electricity, and Total Energy Price and Expenditure Estimates, Selected Years, 1970-2011, United States ET1. Primary Energy, Electricity, and Total Energy Price and Expenditure Estimates, Selected Years, 1970-2011, United States Year Primary Energy Electric Power Sector h,j Retail Electricity Total Energy g,h,i Coal Coal Coke Natural Gas a Petroleum Nuclear Fuel Biomass Total g,h,i,j Coking Coal Steam Coal Total Exports Imports Distillate Fuel Oil Jet Fuel b LPG c Motor Gasoline d Residual Fuel Oil Other e Total Wood and Waste f,g Prices in Dollars per Million Btu 1970 0.45 0.36 0.38 1.27 0.93 0.59 1.16 0.73 1.43 2.85 0.42 1.38 1.71 0.18 1.29 1.08 0.32 4.98 1.65 1975 1.65 0.90 1.03 2.37 3.47 1.18 2.60 2.05 2.96 4.65 1.93 2.94 3.35 0.24 1.50 2.19 0.97 8.61 3.33 1980 2.10 1.38 1.46 2.54 3.19 2.86 6.70 6.36 5.64 9.84 3.88 7.04 7.40 0.43 2.26 4.57 1.77 13.95 6.89 1985 2.03 1.67 1.69 2.76 2.99 4.61 7.22 5.91 6.63 9.01 4.30 R 7.62 R 7.64 0.71 2.47 4.93 1.91 19.05

97

Department of Energy - Fossil  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

61 en Department of Energy Releases $8 61 en Department of Energy Releases $8 Billion Solicitation for Advanced Fossil Energy Projects http://energy.gov/articles/department-energy-releases-8-billion-solicitation-advanced-fossil-energy-projects fossil-energy-projects" class="title-link">Department of Energy Releases $8 Billion Solicitation for Advanced Fossil Energy Projects

98

"2012 Total Electric Industry- Average Retail Price (cents/kWh)"  

U.S. Energy Information Administration (EIA) Indexed Site

Average Retail Price (cents/kWh)" Average Retail Price (cents/kWh)" "(Data from forms EIA-861- schedules 4A-D, EIA-861S and EIA-861U)" "State","Residential","Commercial","Industrial","Transportation","Total" "New England",15.713593,13.679941,11.83487,6.6759453,14.017926 "Connecticut",17.343298,14.652335,12.672933,9.6930118,15.54464 "Maine",14.658797,11.52742,7.9819499,".",11.812709 "Massachusetts",14.912724,13.841518,12.566635,4.9056852,13.78825 "New Hampshire",16.070168,13.36121,11.83228,".",14.192854 "Rhode Island",14.404061,11.867247,10.676724,8.2796427,12.740867 "Vermont",17.006075,14.316157,9.9796777,".",14.220244

99

Fossil Algae in India  

Science Journals Connector (OSTI)

... TWENTY-FIVE years ago, I reported in Nature J. the discovery of abundant fossil algae in the Cretaceous rocks of South India, especially in one of the limestones belonging ... associated flints and cherts which are their silicified representatives yielded a rich harvest of fossil algae of various kinds; these were studied and described by me in collaboration with Dr. ...

L. RAMA RAO

1958-02-22T23:59:59.000Z

100

Fossil | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fossil Fossil Fossil For the first time since 1995, U.S. oil production has surpassed imports. Explore the trend with our interactive chart. | Graphic by Daniel Wood, Energy Department. For the first time since 1995, U.S. oil production has surpassed imports. Explore the trend with our interactive chart. | Graphic by Daniel Wood, Energy Department. Fossil energy sources, including oil, coal and natural gas, are non-renewable resources that formed when prehistoric plants and animals died and were gradually buried by layers of rock. Over millions of years, different types of fossil fuels formed -- depending on what combination of organic matter was present, how long it was buried and what temperature and pressure conditions existed as time passed.

Note: This page contains sample records for the topic "fossil electricity total" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Electricity - Data - U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

Find statistics on electric power plants, capacity, generation, fuel Find statistics on electric power plants, capacity, generation, fuel consumption, sales, prices and customers. + EXPAND ALL Summary Additional formats Summary electricity statistics 2001-2011 › XLS Supply and disposition of electricity 2002-2011 › XLS Electricity overview › Generation, retail sales, electricity trade, losses PDF XLS Consumption for electricity generation › Fossil and renewable fuel consumption for electricity generation PDF XLS Generating capacity › Electric net summer capacity by specific energy source more on electricity PDF XLS Monthly electricity overview - back to 1973 CSV PDF XLS Latest month total electric power industry summary statistics › Overview XLS Year-to-date total electric power industry summary statistics ›

102

Global Fossil-Fuel CO2 Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

Data (ASCII, Fixed Format) Data graphic Data (ASCII, Fixed Format) Data graphic Data (ASCII, Comma-delimited) Trends Since 1751 approximately 337 billion metric tonnes of carbon have been released to the atmosphere from the consumption of fossil fuels and cement production. Half of these emissions have occurred since the mid 1970s. The 2007 global fossil-fuel carbon emission estimate, 8365 million metric tons of carbon, represents an all-time high and a 1.7% increase from 2006. Globally, liquid and solid fuels accounted for 76.3% of the emissions from fossil-fuel burning and cement production in 2007. Combustion of gas fuels (e.g., natural gas) accounted for 18.5% (1551 million metric tons of carbon) of the total emissions from fossil fuels in 2007 and reflects a gradually increasing global utilization of natural gas. Emissions from

103

Crop production without fossil fuel.  

E-Print Network (OSTI)

??With diminishing fossil fuel reserves and concerns about global warming, the agricultural sector needs to reduce its use of fossil fuels. The objective of this… (more)

Ahlgren, Serina

2009-01-01T23:59:59.000Z

104

Electric Power Quarterly, October-December 1985. [Glossary  

SciTech Connect

The Electric Power Quarterly (EPQ) provides information on electric utilities at the plant level. The information concerns the following: cost, quantity, and quality of fossil fuel receipts; net generation; fuel consumption; and fuel stocks. The EPQ contains monthly data and quarterly totals for the reporting quarter. Data collected on Form EIA-759 regarding electric utilities' net generation, fuel consumption, and fuel stocks are presented on a plant-by-plant basis. In addition, quantity, cost, and quality of fossil fuel receipts collected on the Federal Energy Regulatory Commission (FERC) Form 423 are presented on a plant-by-plant basis.

Not Available

1986-05-05T23:59:59.000Z

105

Fossil Energy FY 2009 Budget  

Energy.gov (U.S. Department of Energy (DOE))

Fossil Energy's FY 2009 budget, including request, House and Senate marks, and Omnibus appropriation.

106

Japan Fossil-Fuel CO2 Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

Oceania » Japan Oceania » Japan Japan Fossil-Fuel CO2 Emissions Graph graphic Graphics Data graphic Data Trends The history of fossil-fuel CO2 emissions from Japan is remarkable for the abrupt change that occurred in 1973. With postwar growth at 9.8% per year from 1950 to 1973, total emissions were virtually constant from 1974-1987. From 1987-96, emissions grew 25.3% reaching 329 million metric tons of carbon. Growth during this period was characterized by a return to mid-1970s consumption levels for liquid petroleum products and increased contributions from coal and natural gas use. Since 1996, Japan's fossil-fuel CO2 emissions have vacilated and now total 329 million metric tons of carbon in 2008. Based on United Nations energy trade data for 2008, Japan is the world's largest importer of coal (184 million metric tons) and

107

FOSSIL-FUEL COSTS  

Science Journals Connector (OSTI)

FOSSIL-FUEL-BASED energy production, mostly from coal and oil, causes $120 billion worth of health and other non-climate-related damages in the U.S. each year that are not figured into the price of energy, says a National Research Council report ...

JEFF JOHNSON

2009-10-26T23:59:59.000Z

108

Spatial Relationships of Sector-Specific Fossil-fuel CO2 Emissions in the United States  

SciTech Connect

Quantification of the spatial distribution of sector-specific fossil fuel CO2 emissions provides strategic information to public and private decision-makers on climate change mitigation options and can provide critical constraints to carbon budget studies being performed at the national to urban scales. This study analyzes the spatial distribution and spatial drivers of total and sectoral fossil fuel CO2 emissions at the state and county levels in the United States. The spatial patterns of absolute versus per capita fossil fuel CO2 emissions differ substantially and these differences are sector-specific. Area-based sources such as those in the residential and commercial sectors are driven by a combination of population and surface temperature with per capita emissions largest in the northern latitudes and continental interior. Emission sources associated with large individual manufacturing or electricity producing facilities are heterogeneously distributed in both absolute and per capita metrics. The relationship between surface temperature and sectoral emissions suggests that the increased electricity consumption due to space cooling requirements under a warmer climate may outweigh the savings generated by lessened space heating. Spatial cluster analysis of fossil fuel CO2 emissions confirms that counties with high (low) CO2 emissions tend to be clustered close to other counties with high (low) CO2 emissions and some of the spatial clustering extends to multi-state spatial domains. This is particularly true for the residential and transportation sectors, suggesting that emissions mitigation policy might best be approached from the regional or multi-state perspective. Our findings underscore the potential for geographically focused, sector-specific emissions mitigation strategies and the importance of accurate spatial distribution of emitting sources when combined with atmospheric monitoring via aircraft, satellite and in situ measurements. Keywords: Fossil-fuel; Carbon dioxide emissions; Sectoral; Spatial cluster; Emissions mitigation policy

Zhou, Yuyu; Gurney, Kevin R.

2011-07-01T23:59:59.000Z

109

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Resource Use: January 2012 Resource Use: January 2012 Supply and Fuel Consumption In this section, we look at what resources are used to produce electricity. Electricity supplied from the grid is consumed the moment it is produced. Generating units are chosen to run primarily on their operating costs, of which fuel costs account for the lion's share. Therefore, we present below electricity generation output by generator type and fuel type. Since the generator/fuel mix of utilities varies significantly by region, we also present generation output by region. Generation Output by Region By generator type By fuel type Region map map showing electricity regions Generation output declined in all regions due to unseasonably warm temperatures in January. Fossil steam generation followed total generation

110

Fossil Energy Advanced Technologies (2008 - 2009) | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fossil Energy Advanced Technologies (2008 - 2009) Fossil Energy Advanced Technologies (2008 - 2009) Fossil Energy Advanced Technologies (2008 - 2009) Amendment: Energy and...

111

www.fossil.energy.gov  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Office of Fossil Energy (FE) programs are focused on The Office of Fossil Energy (FE) programs are focused on activities related to the reliable, efficient, affordable and en- vironmentally sound use of fossil fuels which are essential to our Nation's security and economic prosperity. FE manages DOE's Fossil Energy Research and Development Program, which includes the CCS Dem- onstration Programs; Carbon Capture and Storage and Power Systems Program; and

112

Fossil-Based Hydrogen Production  

E-Print Network (OSTI)

) Fossil-Based Hydrogen Production Praxair Praxair SNL TIAX · Integrated Ceramic Membrane System for H2

113

Electric power quarterly, July-September 1986  

SciTech Connect

The Electric Power Quarterly (EPQ) provides information on electric utilities at the plant level. The information concerns the following: cost, quantity, and quality of fossil fuel receipts; net generation; fuel consumption; and fuel stocks. The EPQ contains monthly data and quarterly totals for the reporting quarter. In this report, data collected on Form EIA-759 regarding electric utilities' net generation, fuel consumption, and fuel stocks are presented on a plant-by-plant basis. In addition, quantity, cost, and quality of fossil fuel receipts collected on the Form 423 are presented on a plant-by-plant basis. The EPQ presents a quarterly summary of disturbances and unusual occurrences affecting the electric power industry collected by the Office of International Affairs and Energy Emergencies (IE) on Form IE-417.

Not Available

1987-02-04T23:59:59.000Z

114

Fossil | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

August 15, 2012 August 15, 2012 Alex-andra "Ale" Hakala is an award-winning geoscientist at DOE's National Energy Technology Laboratory. | Photo from the National Energy Technology Laboratory. Energy Department Lab Researcher Wins HENAAC Award for Outstanding Achievement One of the Energy Department's own talented scientists is recognized with a Great Minds in STEM award. July 26, 2012 Ohio State University (OSU) Professor Liang-Shih Fan shows Assistant Secretary for Fossil Energy Charles McConnell OSU's coal direct chemical looping reactor. | Photo by Niranjani Deshpande Making Carbon Capture and Storage Efficient and Cost Competitive Assistant Secretary for Fossil Energy Charles McConnell visited Ohio State University to highlight new Energy Department investments in carbon capture

115

Office of Fossil Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Office of Fossil Energy Office of Fossil Energy Detection and Production of Methane Hydrate Semi-annual Progress Report Reporting Period: November, 2008-April, 2009 Submitted by: Rice University and University of Houston George J. Hirasaki and Walter Chapman, Chemical and Biomolecular Engineering Gerald R. Dickens, Colin A. Zelt, and Brandon E. Dugan, Earth Science Kishore K. Mohanty, University of Houston May, 2009 DOE Award No.: DE-FC26-06NT42960 Rice University - MS 362 6100 Main St. Houston, TX 77251-1892 Phone: 713-348-5416; FAX: 713-348-5478; Email: gjh@rice.edu University of Houston Department of Chemical Engineering 4800 Calhoun Street Houston, TX 77204-4004 Prepared for: United States Department of Energy National Energy Technology Laboratory Oil & Natural Gas Technology

116

Fossil | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

July 28, 2010 July 28, 2010 DOE Collaboration with National Geographic's JASON Project Yields Three CODiE Awards The JASON Project's multimedia energy curriculum has earned three CODiE Awards from the Software & Information Industry Association. July 23, 2010 Weekly Wrap-Up: Testing Wind Blades, Converting Carbon Emissions, and Eco-Driving Two Energy Department-funded projects are helping save energy and save money. Find out more here. July 23, 2010 Cool Roofs Lead to Cooler Cities Want to know more about one of the quickest and lowest cost ways we can reduce our carbon footprint and slow climate change? Read this. February 1, 2010 President Requests $760.4 Million for Fossil Energy Programs President Obama's FY 2011 budget seeks $760.4 million for the Office of Fossil Energy to support improved energy security and rapid development of

117

Control of SO{sub 2} and NOx emissions from fossil fuel-fired power plants: Research and practice of TPRI  

SciTech Connect

The generation of electric power in China has been dominated by coal for many years. By the end of 1990, total installed generating capacity reached 135 GW, of which fossil fuel-fired plants accounted for 74 percent. The total electricity generated reached 615 TWh, with fossil fuels accounting for 80.5 percent. About 276 million tons of raw coal are consumed in these fossil fuel-burning units per year, accounting for about 25 percent of the total output of the country. According to the government, by the year 2000, the total installed capacity of Chinese power systems should be at least 240 GW, of which fossil fuels will account for about 77 percent. The coal required for power generation will increase to about 530 million tons per year, accounting for about 38 percent of the total coal output. So, it is obvious that coal consumed in coal-fired power plants occupies a very important place in the national fuel balance. The current environmental protection standards, which are based on ground-level concentrations of pollutants, do not effectively lead to the control of pollution emission concentrations or total SO{sub 2} emissions. Due to the practical limitations of the Chinese economy, there is a limited capability to introduce advanced sulfur emission control technologies. Thus, except for the two 360 MW units imported from Japan for the Luohuang Power Plant in Shichuan province, all the other fossil fuel-fired units have not yet adopted any kind of SO{sub 2} removal measures. The Luohuang units are equipped with Mitsubishi limestone flue gas desulfurization systems. Because of the lack of effective pollution control technologies, large areas of the country have been seriously polluted by SO{sub 2}, and some of them even by acid rain.

Ming-Chuan Zhang

1993-12-31T23:59:59.000Z

118

POWER PLANT RELIABILITY-AVAILABILITY AND STATE REGULATION. VOLUME 7 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network (OSTI)

nuclear, geothermal, and fossil-fuel power plants. However,power plants, which are reviewed and licensed by the Nuclear Regulatory Commission (NRC), and relatively few areas of geothermal and

Nero, A.V.

2010-01-01T23:59:59.000Z

119

Combating global warming via non-fossil fuel energy options  

Science Journals Connector (OSTI)

Non-fossil fuel energy options can help reduce or eliminate the emissions of greenhouse gases and are needed to combat climate change. Three distinct ways in which non-fossil fuel options can be used in society are examined here: the capture/production of non-fossil fuel energy sources, their conversion into appropriate energy carriers and increased efficiency throughout the life cycle. Non-fossil fuel energy sources are insufficient to avoid global warming in that they are not necessarily readily utilisable in their natural forms. Hydrogen energy systems are needed to facilitate the use of non-fossil fuels by converting them to two main classes of energy carriers: hydrogen (and hydrogen-derived fuels) and electricity. High efficiency is needed to allow the greatest benefits to be attained from energy options in terms of climate change and other factors. A case study is considered involving the production of hydrogen from non-fossil energy sources via thermochemical water decomposition. Thermochemical water decomposition provides a realistic future non-fossil fuel energy option, which can be driven by non-fossil energy sources (particularly nuclear or solar energy) and help combat global warming.

Marc A. Rosen

2009-01-01T23:59:59.000Z

120

Fossil Biodiversity: Red Noise Plus Signal  

E-Print Network (OSTI)

We have examined the Fourier power spectrum as well as the Hurst exponent of extinction, origination, and total biodiversity in the marine fossil record, using a recently improved geologic timescale. We find all of them strongly inconsistent with past claims of self-similarity as well as inconsistent with random walk behavior. Instead, they are dominated by low-frequency power, with approximate f^-2 power over one decade in frequency. The spectrum turns over at about 10^8 y, lending plausibility to connections with galactic dynamics. Even in the background of this low-frequency dominance, a previously noted 62 My biodiversity cycle stands out with better than 99% confidence above the noise level, accounting for about 35% of the total variance in the fossil biodiversity record.

Adrian L. Melott; Bruce S. Lieberman

2006-06-14T23:59:59.000Z

Note: This page contains sample records for the topic "fossil electricity total" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Fossil Biodiversity: Red Noise Plus Signal  

E-Print Network (OSTI)

We have examined the Fourier power spectrum as well as the Hurst exponent of extinction, origination, and total biodiversity in the marine fossil record, using a recently improved geologic timescale. We find all of them strongly inconsistent with past claims of self-similarity as well as inconsistent with random walk behavior. Instead, they are dominated by low-frequency power, with approximate f^-2 power over one decade in frequency. The spectrum turns over at about 10^5 y, lending plausibility to connections with galactic dynamics. Even in the background of this low-frequency dominance, a previously noted 62 My biodiversity cycle stands out with better than 99% confidence above the noise level, accounting for about 35% of the total variance in the fossil biodiversity record.

Melott, A L; Melott, Adrian L.; Lieberman, Bruce S.

2006-01-01T23:59:59.000Z

122

Electric Power Quarterly, January-March 1983  

SciTech Connect

The Electric Power Quarterly (EPQ), a new series in the EIA statistical publications, provides electric utilities' plant-level information about the cost, quantity, and quality of fossil fuel receipts, net generation, fuel consumption and fuel stocks. The EPQ contains monthly data and quarterly totals for the reporting quarter. The data presented in this report were collected and published by the EIA to fulfill its responsibilities as specified in the Federal Energy Administration Act of 1974 (P.L. 93-275). This edition of the EPQ contains monthly data for the first quarter of 1983. In this report, data collected on Form EIA-759 regarding electric utilities' net generation, fuel consumption, and fuel stocks are presented for the first time on a plant-by-plant basis. In addition, quantity, cost, and quality of fossil fuel receipts collected on the Federal Energy Regulatory Commission (FERC) Form 423 are presented on a plant-by-plant basis.

Not Available

1983-07-01T23:59:59.000Z

123

North Korea Fossil-Fuel CO2 Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

Far East » North Korea Far East » North Korea North Korea Fossil-Fuel CO2 Emissions Graph graphic Graphics Data graphic Data Trends The total fossil-fuel CO2 emissions for North Korea, or the Democratic People's Republic of Korea, averaged 11.2% growth from 1950-93, reaching 71 million metric tons of carbon. Since 1993 according to published UN energy statistics, fossil-fuel CO2 emissions have declined 70% to 21.4 million metric tons of carbon. As the world's 14th largest producer of coal, it is no surprise North Korea's fossil-fuel CO2 emissions record is dominated by emissions from coal burning. Coal consumption accounted for 93% of the 2008 CO2 emission total. With no natural gas usage, another 3.4% currently comes from liquid petroleum consumption, and the remainder is from cement

124

"YEAR","MONTH","STATE","UTILITY CODE","UTILITY NAME","RESIDENTIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","TOTAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","COMMERCIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","INDUSTRIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","TRANSPORTATIONPHOTOVOLTAIC NET METERING CUSTOMER COUNT","TOTAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","RESIDENTIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION WIND ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL WIND INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL WIND INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL WIND INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION WIND INSTALLED NET METERING CAPACITY (MW)","TOTAL WIND INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL WIND NET METERING CUSTOMER COUNT","COMMERCIAL WIND NET METERING CUSTOMER COUNT","INDUSTRIAL WIND NET METERING CUSTOMER COUNT","TRANSPORTATION WIND NET METERING CUSTOMER COUNT","TOTAL WIND NET METERING CUSTOMER COUNT","RESIDENTIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL OTHER INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL OTHER INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL OTHER INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION OTHER INSTALLED NET METERING CAPACITY (MW)","TOTAL OTHER INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL OTHER NET METERING CUSTOMER COUNT","COMMERCIAL OTHER NET METERING CUSTOMER COUNT","INDUSTRIAL OTHER NET METERING CUSTOMER COUNT","TRANSPORTATION OTHER NET METERING CUSTOMER COUNT","TOTAL OTHER NET METERING CUSTOMER COUNT","RESIDENTIAL TOTAL ENERGY SOLD BACK TO THE UTILITY (MWh)","COMMERCIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION TOTAL INSTALLED NET METERING CAPACITY (MW)","TOTAL INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL TOTAL NET METERING CUSTOMER COUNT","COMMERCIAL TOTAL NET METERING CUSTOMER COUNT","INDUSTRIAL TOTAL NET METERING CUSTOMER COUNT","TRANSPORTATION TOTAL NET METERING CUSTOMER COUNT","TOTAL NET METERING CUSTOMER COUNT","RESIDENTIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","COMMERCIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","INDUSTRIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TRANSPORTATION ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TOTAL ELECTRIC ENERGY SOLD BACK TO THE UTILITYFOR ALL STATES SERVED(MWh)","RESIDENTIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","COMMERCIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INDUSTRIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","TRANSPORTATION INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","RESIDENTIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","COMMERCIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","INDUSTRIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","TRANSPORTATION NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","NET METERING CUSTOMER COUNT FOR ALL STATES SERVED"  

U.S. Energy Information Administration (EIA) Indexed Site

TRANSPORTATIONPHOTOVOLTAIC NET METERING CUSTOMER COUNT","TOTAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","RESIDENTIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION WIND ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL WIND INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL WIND INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL WIND INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION WIND INSTALLED NET METERING CAPACITY (MW)","TOTAL WIND INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL WIND NET METERING CUSTOMER COUNT","COMMERCIAL WIND NET METERING CUSTOMER COUNT","INDUSTRIAL WIND NET METERING CUSTOMER COUNT","TRANSPORTATION WIND NET METERING CUSTOMER COUNT","TOTAL WIND NET METERING CUSTOMER COUNT","RESIDENTIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL OTHER INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL OTHER INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL OTHER INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION OTHER INSTALLED NET METERING CAPACITY (MW)","TOTAL OTHER INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL OTHER NET METERING CUSTOMER COUNT","COMMERCIAL OTHER NET METERING CUSTOMER COUNT","INDUSTRIAL OTHER NET METERING CUSTOMER COUNT","TRANSPORTATION OTHER NET METERING CUSTOMER COUNT","TOTAL OTHER NET METERING CUSTOMER COUNT","RESIDENTIAL TOTAL ENERGY SOLD BACK TO THE UTILITY (MWh)","COMMERCIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION TOTAL INSTALLED NET METERING CAPACITY (MW)","TOTAL INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL TOTAL NET METERING CUSTOMER COUNT","COMMERCIAL TOTAL NET METERING CUSTOMER COUNT","INDUSTRIAL TOTAL NET METERING CUSTOMER COUNT","TRANSPORTATION TOTAL NET METERING CUSTOMER COUNT","TOTAL NET METERING CUSTOMER COUNT","RESIDENTIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","COMMERCIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","INDUSTRIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TRANSPORTATION ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TOTAL ELECTRIC ENERGY SOLD BACK TO THE UTILITYFOR ALL STATES SERVED(MWh)","RESIDENTIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","COMMERCIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INDUSTRIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","TRANSPORTATION INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","RESIDENTIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","COMMERCIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","INDUSTRIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","TRANSPORTATION NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","NET METERING CUSTOMER COUNT FOR ALL STATES SERVED"

125

System studies guiding fossil energy RD & D  

SciTech Connect

The article describes the following recently completed studies, all of which may be accessed on NETL's website: http://netl.doe.gov/energy-analyses/ref-shelf.html: Cost and performance baseline for fossil energy power plants - volume 1: bituminous coal and natural gas to electricity (May 2007); Increasing security and reducing carbon emissions of the US transportation sector: a transformational role for coal with biomass (August 2007); Industrial size gasification for syngas, substitute natural gas, and power production (April 2007); and Carbon dioxide capture from existing coal-fired power plants (December 2006). 2 figs.

NONE

2007-12-31T23:59:59.000Z

126

ELECTRIC  

Office of Legacy Management (LM)

you nay give us will be greatly uppreckted. VPry truly your23, 9. IX. Sin0j3, Mtinager lclectronics and Nuclear Physics Dept. omh , WESTINGHOUSE-THE NAT KING IN ELECTRICITY...

127

PIA - Fossil Energy Web System (FEWEB) | Department of Energy  

Energy Savers (EERE)

Fossil Energy Web System (FEWEB) PIA - Fossil Energy Web System (FEWEB) PIA - Fossil Energy Web System (FEWEB) PIA - Fossil Energy Web System (FEWEB) More Documents & Publications...

128

Intelligent emissions controller for substance injection in the post-primary combustion zone of fossil-fired boilers  

DOE Patents (OSTI)

The control of emissions from fossil-fired boilers wherein an injection of substances above the primary combustion zone employs multi-layer feedforward artificial neural networks for modeling static nonlinear relationships between the distribution of injected substances into the upper region of the furnace and the emissions exiting the furnace. Multivariable nonlinear constrained optimization algorithms use the mathematical expressions from the artificial neural networks to provide the optimal substance distribution that minimizes emission levels for a given total substance injection rate. Based upon the optimal operating conditions from the optimization algorithms, the incremental substance cost per unit of emissions reduction, and the open-market price per unit of emissions reduction, the intelligent emissions controller allows for the determination of whether it is more cost-effective to achieve additional increments in emission reduction through the injection of additional substance or through the purchase of emission credits on the open market. This is of particular interest to fossil-fired electrical power plant operators. The intelligent emission controller is particularly adapted for determining the economical control of such pollutants as oxides of nitrogen (NO.sub.x) and carbon monoxide (CO) emitted by fossil-fired boilers by the selective introduction of multiple inputs of substances (such as natural gas, ammonia, oil, water-oil emulsion, coal-water slurry and/or urea, and combinations of these substances) above the primary combustion zone of fossil-fired boilers.

Reifman, Jaques (Western Springs, IL); Feldman, Earl E. (Willowbrook, IL); Wei, Thomas Y. C. (Downers Grove, IL); Glickert, Roger W. (Pittsburgh, PA)

2003-01-01T23:59:59.000Z

129

Fossil fuel furnace reactor  

DOE Patents (OSTI)

A fossil fuel furnace reactor is provided for simulating a continuous processing plant with a batch reactor. An internal reaction vessel contains a batch of shale oil, with the vessel having a relatively thin wall thickness for a heat transfer rate effective to simulate a process temperature history in the selected continuous processing plant. A heater jacket is disposed about the reactor vessel and defines a number of independent controllable temperature zones axially spaced along the reaction vessel. Each temperature zone can be energized to simulate a time-temperature history of process material through the continuous plant. A pressure vessel contains both the heater jacket and the reaction vessel at an operating pressure functionally selected to simulate the continuous processing plant. The process yield from the oil shale may be used as feedback information to software simulating operation of the continuous plant to provide operating parameters, i.e., temperature profiles, ambient atmosphere, operating pressure, material feed rates, etc., for simulation in the batch reactor.

Parkinson, William J. (Los Alamos, NM)

1987-01-01T23:59:59.000Z

130

FOSSIL2 energy policy model documentation: FOSSIL2 documentation  

SciTech Connect

This report discusses the structure, derivations, assumptions, and mathematical formulation of the FOSSIL2 model. Each major facet of the model - supply/demand interactions, industry financing, and production - has been designed to parallel closely the actual cause/effect relationships determining the behavior of the United States energy system. The data base for the FOSSIL2 program is large, as is appropriate for a system dynamics simulation model. When possible, all data were obtained from sources well known to experts in the energy field. Cost and resource estimates are based on DOE data whenever possible. This report presents the FOSSIL2 model at several levels. Volumes II and III of this report list the equations that comprise the FOSSIL2 model, along with variable definitions and a cross-reference list of the model variables. Volume III lists the model equations and a one line definition for equations, in a short, readable format.

None

1980-10-01T23:59:59.000Z

131

Fossil descriptions: Private collections of fossils are a plus  

Science Journals Connector (OSTI)

... Paul Barrett and Martin Munt contend that private collections of fossil specimens hold back science because they are not readily accessible (Nature ... , but this need not be the case. The solution lies in closer collaboration between private collectors and palaeontologists. ...

Oliver W. M. Rauhut; Adriana López-Arbarello; Gert Wörheide

2014-08-27T23:59:59.000Z

132

Total energy cycle assessment of electric and conventional vehicles: an energy and environmental analysis. Volume 2: appendices A-D to technical report  

SciTech Connect

This report compares the energy use, oil use and emissions of electric vehicles (EVs) with those of conventional, gasoline- powered vehicles (CVs) over the total life cycle of the vehicles. The various stages included in the vehicles` life cycles include vehicle manufacture, fuel production, and vehicle operation. Disposal is not included. An inventory of the air emissions associated with each stage of the life cycle is estimated. Water pollutants and solid wastes are reported for individual processes, but no comprehensive inventory is developed. Volume II contains additional details on the vehicle, utility, and materials analyses and discusses several details of the methodology.

NONE

1998-01-01T23:59:59.000Z

133

Total energy cycle assessment of electric and conventional vehicles: an energy and environmental analysis. Volume 4: peer review comments on technical report  

SciTech Connect

This report compares the energy use, oil use and emissions of electric vehicles (EVs) with those of conventional, gasoline-powered vehicles (CVs) over the total life cycle of the vehicles. The various stages included in the vehicles` life cycles include vehicle manufacture, fuel production, and vehicle operation. Disposal is not included. An inventory of the air emissions associated with each stage of the life cycle is estimated. Water pollutants and solid wastes are reported for individual processes, but no comprehensive inventory is developed. Volume IV includes copies of all the external peer review comments on the report distributed for review in July 1997.

NONE

1998-01-01T23:59:59.000Z

134

Fossil Energy FY 2015 Budget in Brief  

Energy.gov (U.S. Department of Energy (DOE))

Fossil Energy FY 2015 Budget in Brief document gives highlights to the budget request for the FY 2015 budget request for the Office of Fossil Energy.

135

Monthly Flash Estimates of Electric Power Data  

Gasoline and Diesel Fuel Update (EIA)

7/22/2011 7/22/2011 Table of Contents 1. Commentary Page 1 2. Key Indicators of Generation, Consumption & Stocks Page 2 3. Month-to-Month Comparisons: Generation, Consumption and Stocks (Total) Page 3 4. Net Generation Trends Page 4 5. Fossil Fuel Consumption Trends Page 5 6. Fossil Fuel Stock Trends Page 6 7. Average Number of Days of Burn Non-Lignite Coal Page 7 8. Month-to-Month Comparisons: Electric Power Retail Sales and Average Prices Page 8 9. Retail Sales Trends Page 9 10. Average Retail Price Trends Page 10 11. Heating and Cooling Degree Days Page 11 12. Documentation Page 12 Monthly Flash Estimates of Data for: May 2011 Section 1. Commentary Electric Power Data The contiguous United States experienced temperatures that were slightly below normal in May 2011.

136

Monthly Flash Estimates of Electric Power Data  

Gasoline and Diesel Fuel Update (EIA)

6/24/2011 6/24/2011 Table of Contents 1. Commentary Page 1 2. Key Indicators of Generation, Consumption & Stocks Page 2 3. Month-to-Month Comparisons: Generation, Consumption and Stocks (Total) Page 3 4. Net Generation Trends Page 4 5. Fossil Fuel Consumption Trends Page 5 6. Fossil Fuel Stock Trends Page 6 7. Average Number of Days of Burn Non-Lignite Coal Page 7 8. Month-to-Month Comparisons: Electric Power Retail Sales and Average Prices Page 8 9. Retail Sales Trends Page 9 10. Average Retail Price Trends Page 10 11. Heating and Cooling Degree Days Page 11 12. Documentation Page 12 Monthly Flash Estimates of Data for: April 2011 Section 1. Commentary Electric Power Data The contiguous United States experienced temperatures that were above normal in April 2011.

137

Monthly Flash Estimates of Electric Power Data  

Gasoline and Diesel Fuel Update (EIA)

9/20/2011 9/20/2011 Table of Contents 1. Commentary Page 1 2. Key Indicators of Generation, Consumption & Stocks Page 2 3. Month-to-Month Comparisons: Generation, Consumption and Stocks (Total) Page 3 4. Net Generation Trends Page 4 5. Fossil Fuel Consumption Trends Page 5 6. Fossil Fuel Stock Trends Page 6 7. Average Number of Days of Burn Non-Lignite Coal Page 7 8. Month-to-Month Comparisons: Electric Power Retail Sales and Average Prices Page 8 9. Retail Sales Trends Page 9 10. Average Retail Price Trends Page 10 11. Heating and Cooling Degree Days Page 11 12. Documentation Page 12 Monthly Flash Estimates of Data for: July 2011 Section 1. Commentary Electric Power Data The contiguous United States experienced temperatures

138

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Highlights: September 2011 Highlights: September 2011 Cooler temperatures drove down retail sales of electricity in the Southeast compared to September 2010. Fossil steam generation decreased in much of the United States, except in the ERCOT portion of Texas where total generation increased from September, 2010. Bituminous coal stocks dropped 18% from September 2010. Key Indicators Sept. 2011 % Change from Sept. 2010 Total Net Generation (Thousand MWh) 336,264 -3% Residential Retail Price (cents/Kwh) 12.26 2% Retail Sales (Thousand MWh) 324,357 -1% Cooling Degree-Days 184 -6% Natural Gas Price, Henry Hub ($/mmBtu) 4.04 0% Coal Stocks (Thousand Tons) 144,439 -11% Coal Consumption (Thousand Tons) 76,765 -3% Natural Gas Consumption (Mcf) 702,589 -2% Nuclear Outages (MW) 9,227 70%

139

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

September 2011 | Release Date: Nov. 21, September 2011 | Release Date: Nov. 21, 2011 | Next Release Date: Dec. 21, 2011  | Re-Release Date: November 28, 2012 (correction) Previous Issues Issue: November 2013 October 2013 September 2013 August 2013 July 2013 June 2013 May 2013 April 2013 March 2013 February 2013 January 2013 December 2012 November 2012 Previous issues Format: html xls Go Highlights: September 2011 Cooler temperatures drove down retail sales of electricity in the Southeast compared to September 2010. Fossil steam generation decreased in much of the United States, except in the ERCOT portion of Texas where total generation increased from September, 2010. Bituminous coal stocks dropped 18% from September 2010. Key Indicators Sept. 2011 % Change from Sept. 2010 Total Net Generation

140

ELECTRIC  

Office of Legacy Management (LM)

ELECTRIC ELECTRIC cdrtrokArJclaeT 3 I+ &i, y$ \I &OF I*- j< t j,fci..- ir )(yiT !E-li, ( \-,v? Cl -p/4.4 RESEARCH LABORATORIES EAST PITTSBURGH, PA. 8ay 22, 1947 Mr. J. Carrel Vrilson General ?!!mager Atomic Qxzgy Commission 1901 Constitution Avenue Kashington, D. C. Dear Sir: In the course of OUT nuclenr research we are planning to study the enc:ri;y threshold anti cross section for fission. For thib program we require a s<>piAroted sample of metallic Uranium 258 of high purity. A quantity of at lezst 5 grams would probably be sufficient for our purpose, and this was included in our 3@icntion for license to the Atonic Energy Coskqission.. This license has been approved, 2nd rre would Llp!Jreciate informztion as to how to ?r*oceed to obtain thit: m2teria.l.

Note: This page contains sample records for the topic "fossil electricity total" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Cost and quality of fuels for electric utility plants 1991  

SciTech Connect

Data for 1991 and 1990 receipts and costs for fossil fuels discussed in the Executive Summary are displayed in Tables ES1 through ES7. These data are for electric generating plants with a total steam-electric and combined-cycle nameplate capacity of 50 or more megawatts. Data presented in the Executive Summary on generation, consumption, and stocks of fossil fuels at electric utilities are based on data collected on the Energy Information Administration, Form EIA-759, ``Monthly Power Plant Report.`` These data cover all electric generating plants. The average delivered cost of coal, petroleum, and gas each decreased in 1991 from 1990 levels. Overall, the average annual cost of fossil fuels delivered to electric utilities in 1991 was $1.60 per million Btu, a decrease of $0.09 per million Btu from 1990. This was the lowest average annual cost since 1978 and was the result of the abundant supply of coal, petroleum, and gas available to electric utilities. US net generation of electricity by all electric utilities in 1991 increased by less than I percent--the smallest increase since the decline that occurred in 1982.3 Coal and gas-fired steam net generation, each, decreased by less than I percent and petroleum-fired steam net generation by nearly 5 percent. Nuclear-powered net generation, however, increased by 6 percent. Fossil fuels accounted for 68 percent of all generation; nuclear, 22 percent; and hydroelectric, 10 percent. Sales of electricity to ultimate consumers in 1991 were 2 percent higher than during 1990.

Not Available

1992-08-04T23:59:59.000Z

142

Cost and quality of fuels for electric utility plants 1991  

SciTech Connect

Data for 1991 and 1990 receipts and costs for fossil fuels discussed in the Executive Summary are displayed in Tables ES1 through ES7. These data are for electric generating plants with a total steam-electric and combined-cycle nameplate capacity of 50 or more megawatts. Data presented in the Executive Summary on generation, consumption, and stocks of fossil fuels at electric utilities are based on data collected on the Energy Information Administration, Form EIA-759, Monthly Power Plant Report.'' These data cover all electric generating plants. The average delivered cost of coal, petroleum, and gas each decreased in 1991 from 1990 levels. Overall, the average annual cost of fossil fuels delivered to electric utilities in 1991 was $1.60 per million Btu, a decrease of $0.09 per million Btu from 1990. This was the lowest average annual cost since 1978 and was the result of the abundant supply of coal, petroleum, and gas available to electric utilities. US net generation of electricity by all electric utilities in 1991 increased by less than I percent--the smallest increase since the decline that occurred in 1982.3 Coal and gas-fired steam net generation, each, decreased by less than I percent and petroleum-fired steam net generation by nearly 5 percent. Nuclear-powered net generation, however, increased by 6 percent. Fossil fuels accounted for 68 percent of all generation; nuclear, 22 percent; and hydroelectric, 10 percent. Sales of electricity to ultimate consumers in 1991 were 2 percent higher than during 1990.

Not Available

1992-08-04T23:59:59.000Z

143

Fossil Energy Today | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Blog » Fossil Energy Today Blog » Fossil Energy Today Fossil Energy Today Fossil Energy Today - a free, quarterly newsletter published by the Office of Fossil Energy Fossil Energy Today - launched in January 2011 - is a free digital newsletter published quarterly by the U.S. Department of Energy's Office of Fossil Energy. Fossil Energy Today provides you with updates on important activities, progress and other developments within Fossil Energy. To subscribe, please send us an email. Issues Available for Download January 22, 2013 Fossil Energy Today - First Quarter, 2013 Here are just some of the stories featured in this issue: Carbon Storage Partner Completes First Year of CO2 Injection; Atlas Estimates 2,400 Billion Metric Tons of U.S. CO2 Storage Resource; CCUS Projects Making

144

Cost and quality of fuels for electric utility plants, 1984  

SciTech Connect

Information on the cost and quality of fossil fuel receipts in 1984 to electric utility plants is presented, with some data provided for each year from 1979 through 1984. Data were collected on Forms FERC-423 and EIA-759. Fuels are coal, fuel oil, and natural gas. Data are reported by company and plant, by type of plant, and by State and Census Region, with US totals. This report contains information on fossil fuel receipts to electric utility plants with a combined steam capacity of 50 megawatts or larger. Previous reports contained data on all electric plants with a combined capacity of 25 megawatts or larger. All historical data in this publication have been revised to reflect the new reporting threshold. Peaking unit data are no longer collected. A glossary of terms, technical notes, and references are also provided. 7 figs., 62 tabs.

Not Available

1985-07-01T23:59:59.000Z

145

METHODOLOGIES FOR REVIEW OF THE HEALTH AND SAFETY ASPECTS OF PROPOSED NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL SITES AND FACILITIES. VOLUME 9 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network (OSTI)

quality assurance Standard Review Plan totally dissolvedmore fully in the Standard Review Plan (see Stage 3). Seenuclear power plants: the Standard Review Plan The Nuclear

Nero, A.V.

2010-01-01T23:59:59.000Z

146

FOSSIL2 energy policy model documentation: FOSSIL2 documentation  

SciTech Connect

This report discusses the structure, derivations, assumptions, and mathematical formulation of the FOSSIL2 model. Each major facet of the model - supply/demand interactions, industry financing, and production - has been designed to parallel closely the actual cause/effect relationships determining the behavior of the United States energy system. The data base for the FOSSIL2 program is large, as is appropriate for a system dynamics simulation model. When possible, all data were obtained from sources well known to experts in the energy field. Cost and resource estimates are based on DOE data whenever possible. This report presents the FOSSIL2 model at several levels. Volumes II and III of this report list the equations that comprise the FOSSIL2 model, along with variable definitions and a cross-reference list of the model variables. Volume II provides the model equations with each of their variables defined, while Volume III lists the equations, and a one line definition for equations, in a shorter, more readable format.

None

1980-10-01T23:59:59.000Z

147

Electricity - Analysis & Projections - U.S. Energy Information  

Gasoline and Diesel Fuel Update (EIA)

Electricity Electricity Glossary › FAQS › Overview Data Electricty Data Browser (interactive query tool with charting & mapping) Summary Sales (consumption), revenue, prices & customers Generation and thermal output Electric power plants generating capacity Consumption of fuels used to generate electricity Receipts of fossil-fuels for electricity generation Average cost of fossil-fuels for electricity generation Fossil-fuel stocks for electricity generation Revenue and expense statistics for... Electricity purchases, sales for resale, imports/exports, reliability Demand, capacity resources, and capacity margins Electricity and the environment All Electricity Data Reports Analysis & Projections Most Requested Capacity and Generation Costs, Revenue and Expense Demand

148

Electricity - Analysis & Projections - U.S. Energy Information  

U.S. Energy Information Administration (EIA) Indexed Site

Electricity Electricity Glossary › FAQS › Overview Data Electricty Data Browser (interactive query tool with charting & mapping) Summary Sales (consumption), revenue, prices & customers Generation and thermal output Electric power plants generating capacity Consumption of fuels used to generate electricity Receipts of fossil-fuels for electricity generation Average cost of fossil-fuels for electricity generation Fossil-fuel stocks for electricity generation Revenue and expense statistics for... Electricity purchases, sales for resale, imports/exports, reliability Demand, capacity resources, and capacity margins Electricity and the environment All Electricity Data Reports Analysis & Projections Most Requested Capacity and Generation Costs, Revenue and Expense Demand

149

Office of Fossil Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Energy Office of Oil and Gas Global Security and Supply Division of Natural Gas Regulatory Activities Phone: 202-586-9478 Email: ngreports@hq.doe.gov 2013 Jan Feb March April May June July Aug Sept Oct Nov Dec TOTAL Egypt 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Nigeria 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.6 0.0 2.6 Norway 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.7 2.9 0.0 5.6 Qatar 0.0 3.7 3.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7.3 Trinidad 10.8 7.7 4.6 5.2 5.6 8.0 8.0 6.0 8.5 2.7 67.2 Yemen 2.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.8 2.8 8.3 TOTAL 13.5 11.4 8.3 5.2 5.6 8.0 8.0 8.7 16.8 5.5 0.0 0.0 91.0 2013 Jan Feb March April May June July Aug Sept Oct Nov Dec TOTAL Cameron, LA 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Cove Point, MD 2.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.6 0.0 5.4 Elba Island, GA 2.9 6.4 3.7 0.0 0.0 0.0 0.0 0.0 2.7 0.0 15.6 Everett, MA 7.9 5.0 4.6 5.2 5.6 5.2 8.0 6.0 5.8 5.5 58.7 Freeport, TX 0.0 0.0 0.0 0.0 0.0 0.0

150

Office of Fossil Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Energy Office of Oil and Gas Global Security and Supply Division of Natural Gas Regulatory Activities Phone: 202-586-9478 Email: ngreports@hq.doe.gov 2013 Jan Feb March April May June July Aug Sept Oct Nov Dec TOTAL Egypt 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Nigeria 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.6 0.0 0.0 2.6 Norway 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.7 2.9 0.0 0.0 5.6 Qatar 0.0 3.7 3.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7.3 Trinidad 10.8 7.7 4.6 5.2 5.6 8.0 8.0 6.0 8.5 2.7 2.6 69.7 Yemen 2.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.8 2.8 0.0 8.3 TOTAL 13.5 11.4 8.3 5.2 5.6 8.0 8.0 8.7 16.8 5.5 2.6 0.0 93.6 2013 Jan Feb March April May June July Aug Sept Oct Nov Dec TOTAL Cameron, LA 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Cove Point, MD 2.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.6 0.0 0.0 5.4 Elba Island, GA 2.9 6.4 3.7 0.0 0.0 0.0 0.0 0.0 2.7 0.0 0.0 15.6 Everett, MA 7.9 5.0 4.6 5.2 5.6 5.2 8.0 6.0 5.8 5.5 2.6 61.3

151

POWER PLANT RELIABILITY-AVAILABILITY AND STATE REGULATION. VOLUME 7 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network (OSTI)

generate steam to drive a steam turbine, giving rise to theValves and Pi~ing STEAM TURBINE COMPONENT OUTAGE CAUSESbasically of a steam-driven turbine, an electric generator

Nero, A.V.

2010-01-01T23:59:59.000Z

152

Summary of First AEO2014 Electricity Working Group Meeting  

Gasoline and Diesel Fuel Update (EIA)

Eric (U.S. DOE: Office of Electricity Delivery and Energy Reliability) *Kislear, Jordan P (U.S. DOE: Office of Fossil Energy) *Khan, Sikander (U.S. DOE: Office of Fossil...

153

Fossil Energy RSS Feeds | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fossil Energy RSS Feeds Fossil Energy RSS Feeds Fossil Energy RSS Feeds RSS, sometimes known as Really Simple Syndication, is a popular means of sharing content (such as news headlines) without requiring readers to constantly visit a Web site to see what's new. RSS feeds contain headlines and hyperlinks to longer articles or Web pages. RSS feeds from the Office of Fossil Energy provide updates of specific interest to the fossil fuel community. Fossil Energy RSS feeds are free of charge. RSS content can be read using software called an RSS reader, feed reader, or an aggregator, which can be web-based or desktop-based. Click on RSS button below to subscribe to Fossil Energy latest news. All Fossil Energy News Clean Coal Technology News Carbon Capture and Storage News Oil & Natural Gas News

154

Morphometric identification of fossil spiders: Comment  

Science Journals Connector (OSTI)

Kinchloe Roberts et al. (2008) proposed a technique, using outline-morphometric and linear analyses to permit identification of spider compression fossils to family level. This work focussed on fossil spiders ...

D. Penney; A. M. Langan

2010-11-01T23:59:59.000Z

155

Conceptual Design of Optimized Fossil Energy Systems with Capture and Sequestration of Carbon Dioxide  

E-Print Network (OSTI)

of Fossil Hydrogen Energy Systems with Carbon Capture andThe Implications Of New Carbon Capture And SequestrationW H SAMMIS WILLOW ISLAND TOTAL Carbon capture In the plant

Ogden, Joan

2004-01-01T23:59:59.000Z

156

Furnace Blower Electricity: National and Regional Savings Potential  

E-Print Network (OSTI)

Currently, total electricity consumption of furnaces isthe total furnace electricity consumption and are primarilyto calculate the electricity consumption during cooling

Franco, Victor; Florida Solar Energy Center

2008-01-01T23:59:59.000Z

157

HS_FossilFuels_Studyguide.indd  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fossil Fuels Fossil Fuels Fossil Energy Study Guide: Fossil Fuels C ontrary to what many people believe, fossil fuels are not the remains of dead dinosaurs. In fact, most of the fossil fuels found today were formed millions of years before the fi rst dinosaurs. Fossil fuels, however, were once alive. Th ey were formed from prehistoric plants and animals that lived hundreds of millions of years ago. Th ink about what the Earth must have looked like 300 million years or so ago. Th e land masses we live on today were just forming. Th ere were swamps and bogs everywhere. Th e climate was warmer. Trees and plants grew everywhere. Strange looking animals walked on the land, and just as weird looking fi sh swam in the rivers and seas. Tiny one-celled organisms called protoplankton fl

158

Assessment of the impacts on health due to the emissions of Cuban power plants that use fossil fuel oils with high content of sulfur. Estimation of external costs  

Science Journals Connector (OSTI)

Fossil fuel electricity generation has been demonstrated to be a main source of atmospheric pollution. The necessity of finding out a balance between the costs of achieving a lower level of environmental and health injury and the benefits of providing electricity at a reasonable cost have lead to the process of estimating the external costs derived from these impacts and not included in the electricity prices as a quantitative measure of it that, even when there are large uncertainties involved, can be used by decision makers in the process of achieving a global sustainable development. The external costs of the electricity generation in three Cuban power plants that use fossil fuel oils with high sulfur content have been assessed. With that purpose a specific implementation of the Impact Pathways Methodology for atmospheric emissions was developed. Dispersion of atmospheric pollutants is modeled at local and regional scales in a detailed way. Health impacts include mortality and those morbidity effects that showed relation with the increment of selected pollutant concentration in national studies. The external cost assessed for the three plants was 40,588,309 USD yr?1 (min./max.: 10,194,833/169,013,252), representing 1.06 USD Cent kWh?1. Costs derived from sulfur species (SO2 and sulfate aerosol) stand for 93% of the total costs.

L. Turtós Carbonell; E. Meneses Ruiz; M. Sánchez Gácita; J. Rivero Oliva; N. Díaz Rivero

2007-01-01T23:59:59.000Z

159

Definition: Fossil fuels | Open Energy Information  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon » Definition: Fossil fuels Jump to: navigation, search Dictionary.png Fossil fuels Fuels formed in the Earth's crust over millions of years from decomposed organic matter. Common fossil fuels include petroleum, coal, and natural gas.[1][2] View on Wikipedia Wikipedia Definition Fossil fuels are fuels formed by natural processes such as anaerobic decomposition of buried dead organisms. The age of the organisms and their resulting fossil fuels is typically millions of years, and sometimes exceeds 650 million years. Fossil fuels contain high percentages of carbon and include coal, petroleum, and natural gas. They range from volatile materials with low carbon:hydrogen ratios like methane, to liquid petroleum

160

No Fossil Fuel - Kingston | Open Energy Information  

Open Energy Info (EERE)

No Fossil Fuel - Kingston No Fossil Fuel - Kingston Jump to: navigation, search Name No Fossil Fuel - Kingston Facility No Fossil Fuel - Kingston Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner No Fossil Fuel LLC Developer No Fossil Fuel LLC Energy Purchaser Net-metered Location Kingston MA Coordinates 41.97388106°, -70.72577477° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.97388106,"lon":-70.72577477,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "fossil electricity total" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Microsoft Word - DeMoss Fossil CX.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

13, 2010 13, 2010 REPLY TO ATTN OF: KEC-4 SUBJECT: Environmental Clearance Memorandum Emmanuel Jaramillo Project Manager - TEP-TPP-1 Proposed Action: De Moss-Fossil 115-kV Line Upgrade Budget Information: 00220054 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B4.6 - Additions/modifications to electric power transmission facilities that would not affect the environment beyond the previously developed facility area... Location: De Moss Substation is located in Section 3, Township 1 South, Range 17 East, Wasco County, Oregon. The Fossil Substation is located in Section 33, Township 6 South, Range 21 East, Wasco County, Oregon. Proposed by: Bonneville Power Administration (BPA) Description of the Proposed Action:

162

Office of Fossil Energy | Department of Energy  

NLE Websites -- All DOE Office Websites

Fossil Energy Fossil Energy Search Search form Search Office of Fossil Energy Office of Fossil Energy Services Services Home Petroleum Reserves Petroleum Reserves Home Strategic Petroleum Reserve Heating Oil Reserve Naval Reserves International Cooperation Natural Gas Regulation Advisory Committees Science & Innovation Science & Innovation Home Clean Coal Clean Coal Home Turbines Gasification Fuel Cells Hydrogen from Coal Coal to Liquids Major Demonstrations Crosscutting Research Carbon Capture and Storage Carbon Capture and Storage Home Capture Storage Utilization MVA Regional Partnerships Oil & Gas Oil & Gas Home Methane Hydrate LNG Offshore Drilling Enhanced Oil Recovery Shale Gas Mission About Us About Us Home News & Blog News & Blog Home FE Today Press Releases & Techlines

163

Fossil Energy Word Find | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Word Search More Documents & Publications Fossil Energy Crossword Puzzle Coal Study Guide for Elementary School Guide to Low-Emission Boiler and Combustion Equipment Selection...

164

Fossil Energy (WFP) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and in the future. Fossil Energy (WFP) Responsible Contacts Thomas Wheeler Director, Workforce Analysis & Planning Division E-mail thomas.wheeler@hq.doe.gov Phone (202)...

165

Advanced Fossil Energy Projects Solicitation | Department of...  

NLE Websites -- All DOE Office Websites (Extended Search)

for Advanced Fossil Energy Projects December 12, 2013 - Attachment C - Summary GHG Emissions Data FINAL July 9, 2014 - Supplement to Loan Guarantee Announcement November...

166

Advanced Fossil Energy Projects Solicitation | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

for Advanced Fossil Energy Projects December 12, 2013 - Attachment C - Summary GHG Emissions Data FINAL July 9, 2014 - Supplement to Loan Guarantee Announcement Press...

167

Design of advanced fossil-fuel systems (DAFFS): a study of three developing technologies for coal-fired, base-load electric power generation. Integrated coal gasification/combined cycle power plant with Texaco gasification process  

SciTech Connect

The objectives of this report are to present the facility description, plant layouts and additional information which define the conceptual engineering design, and performance and cost estimates for the Texaco Integrated Gasification Combined Cycle (IGCC) power plant. Following the introductory comments, the results of the Texaco IGCC power plant study are summarized in Section 2. In Section 3, a description of plant systems and facilities is provided. Section 4 includes pertinent performance information and assessments of availability, natural resource requirements and environmental impact. Estimates of capital costs, operation and maintenance costs and cost of electricity are presented in Section 5. A Bechtel Group, Inc. assessment and comments on the designs provided by Burns and Roe-Humphreys and Glasgow Synthetic Fuel, Inc. are included in Section 6. The design and cost estimate reports which were prepared by BRHG for those items within their scope of responsibility are included as Appendices A and B, respectively. Appendix C is an equipment list for items within the BGI scope. The design and cost estimate classifications chart referenced in Section 5 is included as Appendix D. 8 references, 17 figures, 15 tables.

Not Available

1983-06-01T23:59:59.000Z

168

Design of advanced fossil-fuel systems (DAFFS): a study of three developing technologies for coal-fired, base-load electric power generation. Integrated coal-gasification/combined power plant with BGC/Lurgi gasification process  

SciTech Connect

The objectives of this report are to present the facility description, plant layouts and additional information which define the conceptual engineering design, and performance and cost estimates for the BGC/Lurgi Integrated Gasification Combined Cycle (IGCC) power plant. Following the introductory comments, the results of the British Gas Corporation (BGC)/Lurgi IGCC power plant study are summarized in Section 2. In Secion 3, a description of plant systems and facilities is provided. Section 4 includes pertinent performance information and assessments of availability, natural resource requirements and environmental impact. Estimates of capital costs, operating and maintenance costs and cost of electricity are presented in Section 5. A Bechtel Group Inc. (BGI) assessment and comments on the designs provided by Burns and Roe-Humphreys and Glasgow Synthetic Fuels, Inc. (BRHG) are included in Section 6. The design and cost estimate reports which were prepared by BRHG for those items within their scope of responsibility are included as Appendices A and B, respectively. Apendix C is an equipment list for items within the BGI scope. The design and cost estimate classifications chart referenced in Section 5 is included as Appendix D. 8 references, 18 figures, 5 tables.

Not Available

1983-06-01T23:59:59.000Z

169

No Fossils in This Fuel  

NLE Websites -- All DOE Office Websites (Extended Search)

Plan for Environmental Teaching Plan for Environmental Teaching GM Environmental Science Club No Fossils in This Fuel Your PlanET Sixth through Eighth Grades (Can be easily adapted to any elementary/middle school level) Ingredients: Yeast, sugar ... what are you making? Sweet rolls? Not in Science Class! You're blending these ingredients to make an innovative form of fuel! That's right ... when these two simple ingredients are mixed, the yeast  a simple, living organism  breaks the sugar down into ethyl alcohol, or ethanol, and carbon dioxide. While you won't be burning the fuel to prove its usefulness, you can share with your students how ethanol is being used right now to power some of today's vehicles! Students will be able to experiment with the activity, and they will see how the fermentation that occurs can blow up a

170

Evaluation of Innovative Fossil Fuel Power Plants with CO2 Removal  

NLE Websites -- All DOE Office Websites (Extended Search)

Innovative Fossil Fuel Power Innovative Fossil Fuel Power Plants with CO 2 Removal Technical Report EPRI Project Manager N. A. H. Holt EPRI * 3412 Hillview Avenue, Palo Alto, California 94304 * PO Box 10412, Palo Alto, California 94303 * USA 800.313.3774 * 650.855.2121 * askepri@epri.com * www.epri.com Evaluation of Innovative Fossil Fuel Power Plants with CO 2 Removal 1000316 Interim Report, December 2000 Cosponsors U. S. Department of Energy - Office of Fossil Energy 19901 Germantown Road Germantown, Maryland 20874 U.S. Department of Energy/NETL 626 Cochrans Mill Road PO Box 10940 Pittsburgh, Pennsylvania 15236-0940 DISCLAIMER OF WARRANTIES AND LIMITATION OF LIABILITIES THIS DOCUMENT WAS PREPARED BY THE ORGANIZATION(S) NAMED BELOW AS AN ACCOUNT OF WORK SPONSORED OR COSPONSORED BY THE ELECTRIC POWER RESEARCH

171

Fossil Energy Today- Second Quarter, 2012  

Energy.gov (U.S. Department of Energy (DOE))

Here are just some of the stories featured in this issue: NETL Share Computing Speed, Efficiency to Tackle Barriers; Global Collaboration in Clean Fossil Energy; Charles McConnell Confirmed Assistant Secretary for Fossil Energy; and, New Catalyst Technology Reduces Diesel Engine Idling.

172

Russia Federation Fossil-Fuel CO2 Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

Centrally Planned Europe Centrally Planned Europe » Russian Federation Russia Federation Fossil-Fuel CO2 Emissions Graph graphic Graphics Data graphic Data Trends Since 1992 total fossil-fuel CO2 emissions from the Russian Federation have dropped 23% to 466 million metric tons of carbon, still the fourth largest emitting country in the world and the largest emitter of the republics comprising the former USSR. Emissions from gas consumption still represent the largest fraction (49.1%) of Russia's emissions and only recently have returned to the 1992 level. Emissions from coal consumption have dropped 25.5% since 1992 and presently account for 26.6% of Russia's emissions. Russia has the largest population of any Eastern European country with a population of 141 million people. From a per capita standpoint, Russia's

173

Italy (including San Marino) Fossil-Fuel CO2 Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

Western Europe » Italy Western Europe » Italy (including San Marino) Italy (including San Marino) Fossil-Fuel CO2 Emissions Graph graphic Graphics Data graphic Data Trends As occurred in many industrialized nations, CO2 emissions from Italy rose steeply since the late 1940's until the growth was abruptly terminated in 1974. Since 1974, emissions from liquid fuels have vacillated, dropping from 76% to 46% of a static but varying total. Significant increases in natural gas consumption have compensated for the drop in oil consumption. In 2008, 35.8% of Italy's fossil-fuel CO2 emissions were due to natural gas consumption. Coal usage grew steadily until 1985 when CO2 emissions from coal consumption reached 16 million metric tons of carbon. Not until 2004 did coal usage exceed 1985 levels and now accounts for 13.9% of Italy's

174

Sales of Fossil Fuels Produced from Federal and Indian Lands, FY 2003 through FY 2013  

Reports and Publications (EIA)

The U.S. Energy Information Administration (EIA) estimates that total sales of fossil fuels from production1 on federal and Indian lands decreased by 7% during fiscal year 2013. The decrease in production on federal lands alone was also 7%. Sales from production on Indian lands, which account for less than 7% of total federal and Indian lands production, increased by 9%.

2014-01-01T23:59:59.000Z

175

Projection of world fossil fuels by country  

Science Journals Connector (OSTI)

Abstract Detailed projections of world fossil fuel production including unconventional sources were created by country and fuel type to estimate possible future fossil fuel production. Four critical countries (China, USA, Canada and Australia) were examined in detail with projections made on the state/province level. Ultimately Recoverable Resources (URR) for fossil fuels were estimated for three scenarios: Low = 48.4 ZJ, Best Guess (BG) = 75.7 ZJ, High = 121.5 ZJ. The scenarios were developed using Geologic Resources Supply-Demand Model (GeRS-DeMo). The Low and Best Guess (BG) scenarios suggest that world fossil fuel production may peak before 2025 and decline rapidly thereafter. The High scenario indicates that fossil fuels may have a strong growth till 2025 followed by a plateau lasting approximately 50 years before declining. All three scenarios suggest that world coal production may peak before 2025 due to peaking Chinese production and that only natural gas could have strong growth in the future. In addition, by converting the fossil fuel projections to greenhouse gas emissions, the projections were compared to IPCC scenarios which indicated that based on current estimates of URR there are insufficient fossil fuels to deliver the higher emission IPCC scenarios \\{A1Fl\\} and RCP8.5.

S.H. Mohr; J. Wang; G. Ellem; J. Ward; D. Giurco

2015-01-01T23:59:59.000Z

176

2012 Annual Planning Summary for Fossil Energy, National Energy...  

Energy Savers (EERE)

for Fossil Energy, National Energy Technology Laboratory, RMOTC, and Strategic Petroleum Reserve Field Office 2012 Annual Planning Summary for Fossil Energy, National Energy...

177

Fossil Fuel-Generated Energy Consumption Reduction for New Federal...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fossil Fuel-Generated Energy Consumption Reduction for New Federal Buildings and Major Renovations of Federal Buildings OIRA Comparison Document Fossil Fuel-Generated Energy...

178

Energy Department Releases Draft Advanced Fossil Energy Solicitation...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

fossil energy projects and facilities that substantially reduce greenhouse gas and other air pollution. The Advanced Fossil Energy Projects solicitation, authorized by Title XVII...

179

Electric power monthly, July 1994  

SciTech Connect

The Electric Power Monthly (EPM) presents monthly electricity statistics. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. Data in this report are presented for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. The EIA collected the information in this report to fulfill its data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275) as amended. The EPM is prepared by the Survey Management Division; Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), Department of Energy. This publication provides monthly statistics at the US, Census division, and State levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. Statistics by company and plant are published in the EPM on the capability of new generating units, net generation, fuel consumption, fuel stocks, quantity and quality of fuel, and cost of fossil fuels. Data on quantity, quality, and cost of fossil fuels lag data on net generation, fuel consumption, fuel stocks, electricity sales, and average revenue per kilowatthour by 1 month. This difference in reporting appears in the US, Census division, and State level tables. However, for purposes of comparison, plant-level data are presented for the earlier month.

Not Available

1994-07-01T23:59:59.000Z

180

Advanced Fossil Energy Projects Loan Guarantee Solicitation  

Energy Savers (EERE)

of production and use, including resource development, energy generation, and end use. Fossil fuels currently account for more than 80 percent of U.S. energy production and are...

Note: This page contains sample records for the topic "fossil electricity total" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Disclosure of Permitted Communication Concerning Fossil Fuel...  

Energy Savers (EERE)

Fossil Fuel Energy Consumption Reduction for New Construction and Major Renovations of Federal Buildings -- Docket No. EERE-2010-BT-STD-0031; RIN 1904-AB96 Disclosure of Permitted...

182

Fossil energy program. Progress report, July 1980  

SciTech Connect

This report - the seventy-second of a series - is a compendium of monthly progress reports for the ORNL research and development programs that are in support of the increased utilization of coal and other fossil fuel alternatives to oil and gas as sources of clean energy. The projects reported this month include those for coal conversion development, chemical research and development, materials technology, component development and process evaluation, technical support to major liquefaction projects, process and program analysis, fossil energy environmental analysis, coal preparation and waste utilization, coal preparation plant automation, atmospheric fluidized bed coal combustor for cogeneration, technical support to the TVA fluidized bed combustion demonstration plant program, fossil energy applications assessments, performance assurance system support for fossil energy projects, international assessment of atmospheric fluidized bed combustion technology, and PFBC systems analysis.

McNeese, L. E.

1980-10-01T23:59:59.000Z

183

State Renewable Electricity Profiles  

Reports and Publications (EIA)

Presents a summary of current and recent historical data for the renewable electric power industry. The data focuses on net summer capacity and net generation for each type of renewable generator, as well as fossil-fired and nuclear power plant types, for the period 2006 through 2010.

2012-01-01T23:59:59.000Z

184

The Office of Fossil Energy's (FE) Clean  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Office of Fossil Energy's (FE) Clean Office of Fossil Energy's (FE) Clean Coal Technology Demonstration Program (1986-1993) laid the foundation for effective technologies now in use that have helped significantly lower emissions of sulfur dioxide (SO 2 ), nitrogen oxides (NO x ) and airborne particulates (PM 10 ). The program forged cost-sharing partnerships between the U.S. Department of Energy, industry, universities and technology suppliers and users.

185

Commodity Price Interaction: CO2 Allowances, Fuel Sources and Electricity  

Science Journals Connector (OSTI)

This work anlyses the relationship between the returns for carbon, electricity and fossil fuel price (coal, oil and natural gas), ... in carbon are not strongly reflected in electricity prices. Also, market power...

Mara Madaleno; Carlos Pinho; Cláudia Ribeiro

2014-01-01T23:59:59.000Z

186

Driving Smart Growth: Electric Vehicle Adoption and OffPeak Electricity Rates  

E-Print Network (OSTI)

Driving Smart Growth: Electric Vehicle Adoption and OffPeak Electricity Rates Peter Driving Smart Growth: Electric Vehicle Adoption Page 2 Executive Summary Reducing our dependence to electric vehicles (EVs)1 is core to reducing reliance on fossil fuels and driving smart growth

Holsinger, Kent

187

Fossil organic carbon in wastewater and its fate in treatment plants  

Science Journals Connector (OSTI)

Abstract This study reports the presence of fossil organic carbon in wastewater and its fate in wastewater treatment plants. The findings pinpoint the inaccuracy of current greenhouse gas accounting guidelines which defines all organic carbon in wastewater to be of biogenic origin. Stable and radiocarbon isotopes (13C and 14C) were measured throughout the process train in four municipal wastewater treatment plants equipped with secondary activated sludge treatment. Isotopic mass balance analyses indicate that 4–14% of influent total organic carbon (TOC) is of fossil origin with concentrations between 6 and 35 mg/L; 88–98% of this is removed from the wastewater. The TOC mass balance analysis suggests that 39–65% of the fossil organic carbon from the influent is incorporated into the activated sludge through adsorption or from cell assimilation while 29–50% is likely transformed to carbon dioxide (CO2) during secondary treatment. The fossil organic carbon fraction in the sludge undergoes further biodegradation during anaerobic digestion with a 12% decrease in mass. 1.4–6.3% of the influent TOC consists of both biogenic and fossil carbon is estimated to be emitted as fossil CO2 from activated sludge treatment alone. The results suggest that current greenhouse gas accounting guidelines, which assume that all CO2 emission from wastewater is biogenic may lead to underestimation of emissions.

Yingyu Law; Geraldine E. Jacobsen; Andrew M. Smith; Zhiguo Yuan; Paul Lant

2013-01-01T23:59:59.000Z

188

TOTAL Full-TOTAL Full-  

E-Print Network (OSTI)

Conducting - Orchestral 6 . . 6 5 1 . 6 5 . . 5 Conducting - Wind Ensemble 3 . . 3 2 . . 2 . 1 . 1 Early- X TOTAL Full- Part- X TOTAL Alternative Energy 6 . . 6 11 . . 11 13 2 . 15 Biomedical Engineering 52 English 71 . 4 75 70 . 4 74 72 . 3 75 Geosciences 9 . 1 10 15 . . 15 19 . . 19 History 37 1 2 40 28 3 3 34

Portman, Douglas

189

Electricity generation and environmental externalities: Case studies, September 1995  

SciTech Connect

Electricity constitutes a critical input in sustaining the Nation`s economic growth and development and the well-being of its inhabitants. However, there are byproducts of electricity production that have an undesirable effect on the environment. Most of these are emissions introduced by the combustion of fossil fuels, which accounts for nearly 70 percent of the total electricity generated in the United States. The environmental impacts (or damages) caused by these emissions are labeled environmental ``externalities.`` Included in the generic term ``externality`` are benefits or costs resulting as an unintended byproduct of an economic activity that accrue to someone other than the parties involved in the activity. This report provides an overview of the economic foundation of externalities, the Federal and State regulatory approaches, and case studies of the impacts of the externality policies adopted by three States.

NONE

1995-09-28T23:59:59.000Z

190

Total Imports  

U.S. Energy Information Administration (EIA) Indexed Site

Data Series: Imports - Total Imports - Crude Oil Imports - Crude Oil, Commercial Imports - by SPR Imports - into SPR by Others Imports - Total Products Imports - Total Motor Gasoline Imports - Finished Motor Gasoline Imports - Reformulated Gasoline Imports - Reformulated Gasoline Blended w/ Fuel Ethanol Imports - Other Reformulated Gasoline Imports - Conventional Gasoline Imports - Conv. Gasoline Blended w/ Fuel Ethanol Imports - Conv. Gasoline Blended w/ Fuel Ethanol, Ed55 & Ed55 Imports - Other Conventional Gasoline Imports - Motor Gasoline Blend. Components Imports - Motor Gasoline Blend. Components, RBOB Imports - Motor Gasoline Blend. Components, RBOB w/ Ether Imports - Motor Gasoline Blend. Components, RBOB w/ Alcohol Imports - Motor Gasoline Blend. Components, CBOB Imports - Motor Gasoline Blend. Components, GTAB Imports - Motor Gasoline Blend. Components, Other Imports - Fuel Ethanol Imports - Kerosene-Type Jet Fuel Imports - Distillate Fuel Oil Imports - Distillate F.O., 15 ppm Sulfur and Under Imports - Distillate F.O., > 15 ppm to 500 ppm Sulfur Imports - Distillate F.O., > 500 ppm to 2000 ppm Sulfur Imports - Distillate F.O., > 2000 ppm Sulfur Imports - Residual Fuel Oil Imports - Propane/Propylene Imports - Other Other Oils Imports - Kerosene Imports - NGPLs/LRGs (Excluding Propane/Propylene) Exports - Total Crude Oil and Products Exports - Crude Oil Exports - Products Exports - Finished Motor Gasoline Exports - Kerosene-Type Jet Fuel Exports - Distillate Fuel Oil Exports - Residual Fuel Oil Exports - Propane/Propylene Exports - Other Oils Net Imports - Total Crude Oil and Products Net Imports - Crude Oil Net Imports - Petroleum Products Period: Weekly 4-Week Avg.

191

NETL: News Release - DOE's Fossil Energy Program Provides 10th Year of  

NLE Websites -- All DOE Office Websites (Extended Search)

May 4, 2001 May 4, 2001 DOE's Fossil Energy Program Provides 10th Year of Research Support to Historically Black Colleges and Universities and Other Minority Institutions PITTSBURGH, PA - With new projects to study microbes that can boost oil recovery to advanced ways of providing high-purity hydrogen for fuel cells, the U.S. Department of Energy's Office of Fossil Energy commemorates its 10th year of research support for Historically Black Colleges and Universities and other minority institutions this week with seven new grants. For the last decade, the department's fossil energy program has provided almost $1 million each year specifically to give blacks and other minority students hands-on experience in conducting science and energy research. This year, another $1 million will go to seven institutions for a wide range of projects that tackle many of the nation's major energy concerns - from generating reliable, clean electricity to producing more crude oil and natural gas from domestic fields.

192

Poland Fossil-Fuel CO2 Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

Europe Europe » Poland Poland Fossil-Fuel CO2 Emissions Graph graphic Graphics Data graphic Data Trends Carbon dioxide emissions from Poland's use of fossil-fuels and cement production climbed at a remarkably steady rate of 3.9% per year from 1800 until 1980, when they dropped abruptly (11.7%). Fossil-fuel CO2 emissions crept back up throughout the 1980s peaking in 1987 at 127 million metric tons of carbon. Since the 1987 high, CO2 emissions have plummeted 32% to early 1970s levels while per capita emissions have dropped to late 1960s levels. Poland is the world's ninth largest producer of coal and emissions are predominantly from coal burning: 97% in 1950 and 68% in 2008. The drop following 1980 is apparent in rates of liquid fuel burning but releases from consumption of petroleum products have returned and surpassed 1980s

193

FE - Fossil Energy - Energy Conservation Plan  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

(1) (1) Office of Fossil Energy Energy Conservation Plan The Office of Fossil Energy (FE) strongly supports the implementation of strategies to reduce energy consumption in the Headquarters buildings. FE engaged its employees by sending an office-wide email soliciting input for this plan; the ideas were then compiled into this document. The focus of this plan is on how FE employees can change their behavior to reduce energy consumption. This plan purposefully excludes measures that would require any significant capital investment. The measures outlined below in each category can be implemented without much effort and with minimal cost and will reduce the energy used by Fossil Energy employees in the Forrestal and Germantown buildings. FE recognizes that transparency is a key element of a successful energy conservation

194

Trace fossil assemblages in selected shelf sandstones  

E-Print Network (OSTI)

with progradation of the delta. The presence of trace fossils throughout the section, as compared to the lack of burrows in the upper unit of the True Watt A-1 section, can be attributed to the marginal location of the deposits. Santa Fe 13 and Santa Fe 10... with progradation of the delta. The presence of trace fossils throughout the section, as compared to the lack of burrows in the upper unit of the True Watt A-1 section, can be attributed to the marginal location of the deposits. Santa Fe 13 and Santa Fe 10...

Locke, Kathleen Ann

2012-06-07T23:59:59.000Z

195

Life cycle assessment of electric mobility: answers and challenges—Zurich, April 6, 2011  

Science Journals Connector (OSTI)

At this forum most recent results of life cycle assessment studies of electric car driving compared to driving fossil- and agro...

Rolf Frischknecht; Karin Flury

2011-08-01T23:59:59.000Z

196

Combined-Cycle Power Generation — A Promising Alternative for the Generation of Electric Power from Coal  

Science Journals Connector (OSTI)

The classic concept of generating electric power from a fossil energy source (coal, oil, gas) comprises the following essential process steps (Fig. 1): Combustion of coal and g...

Eberhard Nitschke

1987-01-01T23:59:59.000Z

197

Presence of estrogenic activity from emission of fossil fuel combustion as detected by a recombinant yeast bioassay  

Science Journals Connector (OSTI)

Estrogenic activities of emission samples generated by fossil fuel combustion were investigated with human estrogen receptor (ER) recombinant yeast bioassay. The results showed that there were weak but clear estrogenic activities in combustion emissions of fossil fuels including coal, petroleum, and diesel. The estrogenic relative potency (RP) of fossil fuel combustion was the highest in petroleum-fired car, followed by coal-fired stove, diesel-fired agrimotor, coal-fired electric power station. On the other hand, the estrogenic relative inductive efficiency (RIE) was the highest in coal-fired stove and coal-fired electric power station, followed by petroleum-fired car and diesel-fired agrimotor. The estrogenic activities in the sub-fractions from chromatographic separation of emitted materials were also determined. The results indicated that different chemical fractions in these complex systems have different estrogenic potencies. The GC/MS analysis of the emission showed that there were many aromatic carbonyls, big molecular alcohol, \\{PAHs\\} and derivatives, and substituted phenolic compounds and derivatives which have been reported as environmental estrogens. The existence of estrogenic substances in fossil fuel combustion demands further investigation of their potential adverse effects on human and on the ecosystem. The magnitude of pollution due to global usage of fossil fuels makes it imperative to understand the issue of fossil fuel-derived endocrine activities and the associated health risks, particularly the aggregated risks stemmed from exposure to toxicants of multiple sources.

Jingxian Wang; Wenzhong Wu; Bernhard Henkelmann; Li You; Antonius Kettrup; Karl-Werner Schramm

2003-01-01T23:59:59.000Z

198

Fossil Energy Materials Program conference proceedings  

SciTech Connect

The US Department of Energy Office of Fossil Energy has recognized the need for materials research and development to assure the adequacy of materials of construction for advanced fossil energy systems. The principal responsibility for identifying needed materials research and for establishing a program to address these needs resides within the Office of Technical Coordination. That office has established the Advanced Research and Technology Development (AR and TD) Fossil Energy Materials Program to fulfill that responsibility. In addition to the AR and TD Materials Program, which is designed to address in a generic way the materials needs of fossil energy systems, specific materials support activities are also sponsored by the various line organizations such as the Office of Coal Gasification. A conference was held at Oak Ridge, Tennessee on May 19-21, 1987, to present and discuss the results of program activities during the past year. The conference program was organized in accordance with the research thrust areas we have established. These research thrust areas include structural ceramics (particularly fiber-reinforced ceramic composites), corrosion and erosion, and alloy development and mechanical properties. Eighty-six people attended the conference. Papers have been entered individually into EDB and ERA. (LTN)

Judkins, R.R. (comp.)

1987-08-01T23:59:59.000Z

199

Fossil Gulch Wind Park | Open Energy Information  

Open Energy Info (EERE)

Fossil Gulch Wind Park Fossil Gulch Wind Park Jump to: navigation, search Name Fossil Gulch Wind Park Facility Fossil Gulch Wind Park Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Exergy Development Group/United Materials Developer Exergy Development Group/United Materials Energy Purchaser Idaho Power Location Northwest of Hagerman ID Coordinates 42.814261°, -114.996665° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.814261,"lon":-114.996665,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

200

HIGH EFFICIENCY FOSSIL POWER PLANT (HEFPP) CONCEPTUALIZATION PROGRAM  

SciTech Connect

This study confirms the feasibility of a natural gas fueled, 20 MW M-C Power integrated pressurized molten carbonate fuel cell combined in a topping cycle with a gas turbine generator plant. The high efficiency fossil power plant (HEFPP) concept has a 70% efficiency on a LHV basis. The study confirms the HEFPP has a cost advantage on a cost of electricity basis over the gas turbine based combined cycle plants in the 20 MW size range. The study also identifies the areas of further development required for the fuel cell, gas turbine generator, cathode blower, inverter, and power module vessel. The HEFPP concept offers an environmentally friendly power plant with minuscule emission levels when compared with the combined cycle power plant.

J.L. Justice

1999-03-25T23:59:59.000Z

Note: This page contains sample records for the topic "fossil electricity total" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Synergistic energy conversion processes using nuclear energy and fossil fuels  

Science Journals Connector (OSTI)

This paper reviews the methods of producing energy carriers, such as electricity, hydrocarbons and hydrogen, by utilising both nuclear energy and fossil fuels synergistically. There are many possibilities for new, innovative, synergistic processes, which combine chemical and nuclear systems for efficient, clean and economical production of energy carriers. Besides the individual processes by each form of energy to produce the energy carriers, the synergistic processes which use two primary energies to produce the energy carriers will become important with the features of resource saving, CO2 emission reduction and economic production, due to the higher conversion efficiency and low cost of nuclear heat. The synergistic processes will be indispensable to the 21st century, when efficient best-mixed supplies of available primary energies are crucial.

Masao Hori

2009-01-01T23:59:59.000Z

202

SECA Core Technology Fossil Energy Fuel Cell Program  

NLE Websites -- All DOE Office Websites (Extended Search)

June 3, 2003 June 3, 2003 National Energy Technology Laboratory Office of Fossil Energy SECA Core Technology IAPG, GPPD-DWC 4/30/03 SECA CORE TECHNOLOGY PROGRAM W. Nernst "Electrical Glow-Light" U.S. Patent 623,811 April 25, 1899 C C IAPG, GPPD-DWC 4/30/03 SECA SECA Program Structure Program Management Research Topics Needs Industry Integration Teams Technology Transfer Small Business University National Lab Industry Power Electronics Modeling & Simulation Materials Controls & Diagnostics Fuel Processing Fuel Processing Manufacturing Modeling & Simulation Power Electronics Controls & Diagnostics Manufacturing Materials Core Technology Program Fuel Cell Core Technology Project Management Industry Input IAPG, GPPD-DWC 4/30/03 Core Technology Program Powering All Ships Siemens Westinghouse

203

CONCEPTUAL DESIGN OF OPTIMIZED FOSSIL ENERGY SYSTEMS WITH CAPTURE AND SEQUESTRATION OF CARBON DIOXIDE  

SciTech Connect

In this semi-annual progress report, we describe research results from an ongoing study of fossil hydrogen energy systems with CO{sub 2} sequestration. This work was performed under NETL Award No. DE-FC26-02NT41623, during the six-month period September 2002 through March 2003. The primary objective of the study is to better understand system design issues and economics for a large-scale fossil energy system co-producing H{sub 2} and electricity with CO{sub 2} sequestration. This is accomplished by developing analytic and simulation methods for studying the entire system in an integrated way. We examine the relationships among the different parts of a hydrogen energy system, and attempt to identify which variables are the most important in determining both the disposal cost of CO{sub 2} and the delivered cost of H{sub 2}. A second objective is to examine possible transition strategies from today's energy system toward one based on fossil-derived H{sub 2} and electricity with CO{sub 2} sequestration. We are carrying out a geographically specific case study of development of a fossil H{sub 2} system with CO{sub 2} sequestration, for the Midwestern United States, where there is presently substantial coal conversion capacity in place, coal resources are plentiful and potential sequestration sites in deep saline aquifers are widespread.

Joan M. Ogden

2003-06-26T23:59:59.000Z

204

Conceptual Design of Optimized Fossil Energy Systems with Capture and Sequestration of Carbon Dioxide  

SciTech Connect

In this final progress report, we describe research results from Phase I of a technical/economic study of fossil hydrogen energy systems with CO{sub 2} sequestration. This work was performed under NETL Award No. DE-FC26-02NT41623, during the period September 2002 through August 2005 The primary objective of the study is to better understand system design issues and economics for a large-scale fossil energy system co-producing H{sub 2} and electricity with CO{sub 2} sequestration. This is accomplished by developing analytic and simulation methods for studying the entire system in an integrated way. We examine the relationships among the different parts of a hydrogen energy system, and identify which variables are the most important in determining both the disposal cost of CO{sub 2} and the delivered cost of H{sub 2}. A second objective is to examine possible transition strategies from today's energy system toward one based on fossil-derived H{sub 2} and electricity with CO{sub 2} sequestration. We carried out a geographically specific case study of development of a fossil H{sub 2} system with CO{sub 2} sequestration, for the Midwestern United States, where there is presently substantial coal conversion capacity in place, coal resources are plentiful and potential sequestration sites in deep saline aquifers are widespread.

Joan M. Ogden

2005-11-29T23:59:59.000Z

205

Energy Perspectives, Total Energy - Energy Information Administration  

Gasoline and Diesel Fuel Update (EIA)

Total Energy Total Energy Glossary › FAQS › Overview Data Monthly Annual Analysis & Projections this will be filled with a highchart PREVIOUSNEXT Energy Perspectives 1949-2011 September 2012 PDF | previous editions Release Date: September 27, 2012 Introduction Energy Perspectives is a graphical overview of energy history in the United States. The 42 graphs shown here reveal sweeping trends related to the Nation's production, consumption, and trade of energy from 1949 through 2011. Energy Flow, 2011 (Quadrillion Btu) Total Energy Flow diagram image For footnotes see here. Energy can be grouped into three broad categories. First, and by far the largest, is the fossil fuels-coal, petroleum, and natural gas. Fossil fuels have stored the sun's energy over millennia past, and it is primarily

206

Arizona: Solar Panels Replace Inefficient Fossil Fuel-Powered...  

Energy Savers (EERE)

Arizona: Solar Panels Replace Inefficient Fossil Fuel-Powered Energy Systems Arizona: Solar Panels Replace Inefficient Fossil Fuel-Powered Energy Systems May 1, 2014 - 9:33am...

207

Implementing Agreement - U.S.-UK Collaboration in Fossil Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Implementing Agreement - U.S.-UK Collaboration in Fossil Energy R&D Implementing Agreement - U.S.-UK Collaboration in Fossil Energy R&D Implementing Agreement - U.S.-UK...

208

Memorandum of Understanding - U.S.-UK Collaboration in Fossil...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Memorandum of Understanding - U.S.-UK Collaboration in Fossil Energy R&D Memorandum of Understanding - U.S.-UK Collaboration in Fossil Energy R&D Memorandum of Understanding -...

209

,"Program Source/ Treasury Account Symbol: Agency Code","Program Source/Treasury Account Symbol: Account Code","Program Source/Treasury Account Symbol; Sub-Account Code (OPTIONAL)","Program Description (Account Title)","Total Appropriation","Total Obligations","Total Disbursements"  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9 9 ,"Submitter Name:","David Abercrombie" ,"Submitter Contact Info:","David.Abercrombie@hq.doe.gov" ,"Program Source/ Treasury Account Symbol: Agency Code","Program Source/Treasury Account Symbol: Account Code","Program Source/Treasury Account Symbol; Sub-Account Code (OPTIONAL)","Program Description (Account Title)","Total Appropriation","Total Obligations","Total Disbursements" 1,89,331,"N/A","Energy Efficiency and Renewable Energy, Recovery Act ",1.68e+10,228226615,0 2,89,328,"N/A","Electricity Delivery and Energy Reliability, Recovery Act",4500000000,0,0 3,89,211,"N/A","Fossil Energy Research and Development, Recovery Act",3400000000,0,0

210

,"Program Source/ Treasury Account Symbol: Agency Code","Program Source/Treasury Account Symbol: Account Code","Program Source/Treasury Account Symbol; Sub-Account Code (OPTIONAL)","Program Description (Account Title)","Total Appropriation","Total Obligations","Total Disbursements"  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

906 906 ,"Submitter Name:","David Abercrombie" ,"Submitter Contact Info:","David.Abercrombie@hq.doe.gov" ,"Program Source/ Treasury Account Symbol: Agency Code","Program Source/Treasury Account Symbol: Account Code","Program Source/Treasury Account Symbol; Sub-Account Code (OPTIONAL)","Program Description (Account Title)","Total Appropriation","Total Obligations","Total Disbursements" 1,89,331,"N/A","Energy Efficiency and Renewable Energy, Recovery Act ",1.68e+10,374217313.6,78891.63 2,89,328,"N/A","Electricity Delivery and Energy Reliability, Recovery Act",4500000000,0,0 3,89,211,"N/A","Fossil Energy Research and Development, Recovery Act",3400000000,0,0

211

Draft Advanced Fossil Energy Projects Solicitation Public Comments  

Energy.gov (U.S. Department of Energy (DOE))

U.S. Department of Energy Loan Programs Office: Draft Advanced Fossil Energy Projects Solicitation Public Comments

212

2011 Annual Planning Summary for Fossil Energy (FE)  

Energy.gov (U.S. Department of Energy (DOE))

The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2011 and 2012 within Fossil Energy (FE).

213

Carbon Capture by Fossil Fuel Power Plants: An Economic Analysis  

E-Print Network (OSTI)

Carbon Capture by Fossil Fuel Power Plants: An Economic Analysis ¨Ozge I¸slegen Graduate School excellent research assistance. #12;Carbon Capture by Fossil Fuel Power Plants: An Economic Analysis Abstract: For fossil fuel power plants to be built in the future, carbon capture and storage (CCS) technologies offer

Silver, Whendee

214

Energy Conversion to Electricity  

Science Journals Connector (OSTI)

30 May 1974 research-article Energy Conversion to Electricity D. Clark...continuing growth in the demand for energy, and of electricity as the route...the electricity share of the total energy market and of the substitution of electricity...

1974-01-01T23:59:59.000Z

215

Office of Fossil Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Office of Fossil Energy Office of Fossil Energy Celebrating a Decade of Carbon Storage Research Through Partnership Lessons learned from the Regional Carbon Sequestration Partnerships. Read more NETL Recognized for Sustainable Buildings A new awards program initiated by DOE recognizes NETL as a high-performance sustainable building Read more National Lab Technology Transfer Making a Difference Technology transfer making it possible to move innovations from lab to marketplace. Read more News November 15, 2013 Energy Department Authorizes Additional Volume at Proposed Freeport LNG Facility to Export Liquefied Natural Gas November 7, 2013 Energy Department Invests to Drive Down Costs of Carbon Capture, Support Reductions in Greenhouse Gas Pollution September 18, 2013 DOE Awards Management and Operating Contract for DOE's Strategic

216

Fossil energy waste management. Technology status report  

SciTech Connect

This report describes the current status and recent accomplishments of the Fossil Energy Waste Management (FE WM) projects sponsored by the Morgantown Energy Technology Center (METC) of the US Department of Energy (DOE). The primary goal of the Waste Management Program is to identify and develop optimal strategies to manage solid by-products from advanced coal technologies for the purpose of ensuring the competitiveness of advanced coal technologies as a future energy source. The projects in the Fossil Energy Waste Management Program are divided into three types of activities: Waste Characterization, Disposal Technologies, and Utilization Technologies. This technology status report includes a discussion on barriers to increased use of coal by-products. Also, the major technical and nontechnical challenges currently being addressed by the FE WM program are discussed. A bibliography of 96 citations and a list of project contacts is included if the reader is interested in obtaining additional information about the FE WM program.

Bossart, S.J.; Newman, D.A.

1995-02-01T23:59:59.000Z

217

NETL: News Release - Six Minority Universities Win Fossil Energy Research  

NLE Websites -- All DOE Office Websites (Extended Search)

August 3, 1996 August 3, 1996 Seven Historically Black Colleges Win Support for Fossil Energy R&D WASHINGTON, DC - As part of its efforts to encourage more participation by minority college students and teachers in its national energy program, the Department of Energy (DOE) has selected seven coal, natural gas, and oil research projects to be carried out by student-teacher teams at six Historically Black Colleges and Universities (HBCU). Six of the winning schools will partner with private sector companies and receive Federal research grants totaling $100,000 to $200,000 each. The industry-university partnerships will focus on environmental research in natural gas and oil exploration and production, advanced methods for cleaning sulfur and nitrogen pollutants from coal, and innovative coal use technologies.

218

NETL: News Release - Six Minority Universities Win Fossil Energy Research  

NLE Websites -- All DOE Office Websites (Extended Search)

August 7, 1995 August 7, 1995 DOE Adds New Fossil Energy Projects to Historically Black Colleges and Universities Grant Program WASHINGTON, DC - As part of its efforts to encourage more participation by minority college students and teachers in its national energy program, the Department of Energy (DOE) has selected seven natural gas, oil, and coal research projects to be carried out by teacher-student teams at historically black colleges and universities. The institutions will receive Federal research grants, each totalling $100,000 to $200,000, for fundamental research in topics ranging from improved oil and gas recovery and to the environmentally cleaner use of coal. One university, Clark Atlanta University, will also receive a separate smaller grant for a 1-year exploratory effort in oil processing.

219

State Residential Commercial Industrial Transportation Total  

Gasoline and Diesel Fuel Update (EIA)

schedules 4A-D, EIA-861S and EIA-861U) State Residential Commercial Industrial Transportation Total 2012 Total Electric Industry- Average Retail Price (centskWh) (Data from...

220

The Fossil Record of the Peronosporomycetes (Oomycota)  

E-Print Network (OSTI)

identified as a parasite. Key words: antheridium, Carboniferous, chert, coal ball, Devonian, fossil water mold, oogonium INTRODUCTION The Peronosporomycetes (also called Peronosporo- mycota, Oomycota or Oomycetes; David 2002) are heterotrophic eukaryotes... that thrive in both aquatic and terrestrial environments where they are effective as saprotrophs and disease-causative agents in plants and animals including humans (Margulis and Schwartz 1998). Within the group are economically important phytopathogens...

Krings, Michael; Taylor, Thomas N.; Dotzler, Nora

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fossil electricity total" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Congressional House Senate Request Marks Marks FOSSIL ENERGY R&D  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3 3 FY 2013 FY 2013 ($ in thousands) Congressional House Senate Request Marks Marks FOSSIL ENERGY R&D Coal 275,869 384,294 301,622 Natural Gas Technologies 17,000 17,000 22,000 Unconventional Fossil Energy Technologies 0 25,000 5,000 Program Direction 115,753 115,753 120,000 Plant & Capital Equipment 13,294 13,294 13,294 Environmental Restoration 5,897 5,897 5,897 Special Recruitment Program 700 700 700 Subtotal, Fossil Energy R&D 428,513 561,938 468,513 Use of prior year balances -7,938 -7,938 -7,938 Rescission of prior year balances 0 0 0 TOTAL FOSSIL ENERGY R&D 420,575 554,000 460,575 STRATEGIC PETROLEUM RESERVE Facilities Development 195,609 195,609 195,609 Rescission of prior year balances 0 0 0 Use of prior year balances 0 0 0 TOTAL, STRATEGIC PETROLEUM RESERVE

222

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Resource Use: September 2011 Resource Use: September 2011 Supply and Fuel Consumption In this section, we look at what resources are used to produce electricity. Electricity supplied from the grid is consumed the moment it is produced. Generating units are chosen to run primarily on their operating costs, of which fuel costs account for the lion's share. Therefore, we present below electricity generation output by generator type and fuel type. Since the generator/fuel mix of utilities varies significantly by region, we also present generation output by region. Generation Output by Region By generator type By fuel type Region map map showing electricity regions Fossil steam generation, primarily coal-fired, is most pronounced in the Central region and supplies close to half of the electricity in the

223

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Resource Use: August 2011 Resource Use: August 2011 Supply and Fuel Consumption In this section, we look at what resources are used to produce electricity. Electricity supplied from the grid is consumed the moment it is produced. Generating units are chosen to run primarily on their operating costs, of which fuel costs account for the lion's share. Therefore, we present below electricity generation output by generator type and fuel type. Since the generator/fuel mix of utilities varies significantly by region, we also present generation output by region. Generation output by region By generator type By fuel type Region map map showing electricity regions Fossil steam generation, primarily coal-fired, predominants in the Central region and supplies close to half of the electricity in the Southeast and

224

Categorical Exclusion Determinations: Fossil Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Categorical Exclusion Determinations: Fossil Energy Categorical Exclusion Determinations: Fossil Energy Categorical Exclusion Determinations: Fossil Energy Categorical Exclusion Determinations issued by Fossil Energy. DOCUMENTS AVAILABLE FOR DOWNLOAD February 6, 2013 CX-009797: Categorical Exclusion Determination Eni USA Gas Marketing, LLC CX(s) Applied: B5.7 Date: 02/06/2013 Location(s): Louisiana Offices(s): Fossil Energy January 15, 2013 CX-009796: Categorical Exclusion Determination Sempra Liquid Natural Gas Marketing, LLC CX(s) Applied: B5.7 Date: 01/15/2013 Location(s): Louisiana Offices(s): Fossil Energy January 15, 2013 CX-009533: Categorical Exclusion Determination Sempra LNG Marketing, Inc. CX(s) Applied: B5.7 Date: 01/15/2013 Location(s): California, Louisiana Offices(s): Fossil Energy November 29, 2012 CX-009523: Categorical Exclusion Determination

225

Categorical Exclusion Determinations: Fossil Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fossil Energy Fossil Energy Categorical Exclusion Determinations: Fossil Energy Categorical Exclusion Determinations issued by Fossil Energy. DOCUMENTS AVAILABLE FOR DOWNLOAD February 6, 2013 CX-009797: Categorical Exclusion Determination Eni USA Gas Marketing, LLC CX(s) Applied: B5.7 Date: 02/06/2013 Location(s): Louisiana Offices(s): Fossil Energy January 15, 2013 CX-009796: Categorical Exclusion Determination Sempra Liquid Natural Gas Marketing, LLC CX(s) Applied: B5.7 Date: 01/15/2013 Location(s): Louisiana Offices(s): Fossil Energy January 15, 2013 CX-009533: Categorical Exclusion Determination Sempra LNG Marketing, Inc. CX(s) Applied: B5.7 Date: 01/15/2013 Location(s): California, Louisiana Offices(s): Fossil Energy November 29, 2012 CX-009523: Categorical Exclusion Determination

226

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

the country last July, while temperatures in July 2014 were closer to average. This led to a decrease in demand for electricity generation in July 2014, with total...

227

Fossil Fuels Without CO2 Emissions  

Science Journals Connector (OSTI)

...develop a zero-emission electric plant that exploits...moderate marginal cost. In electric plants, even present...decentralized sources as vehicles, home furnaces, or...participate. Unlike the electric sector, the required...sequestration—a tax rebate or creation...

E. A. Parson; D. W. Keith

1998-11-06T23:59:59.000Z

228

Implementation of optimum solar electricity generating system  

Science Journals Connector (OSTI)

Under the 10th Malaysian Plan the government is expecting the renewable energy to contribute approximately 5.5% to the total electricity generation by the year 2015 which amounts to 98MW. One of the initiatives to ensure that the target is achievable was to establish the Sustainable Energy Development Authority of Malaysia. SEDA is given the authority to administer and manage the implementation of the feed-in tariff (FiT) mechanism which is mandated under the Renewable Energy Act 2011. The move to establish SEDA is commendable and the FiT seems to be attractive but there is a need to create awareness on the implementation of the solar electricity generating system (SEGS). In Malaysia harnessing technologies related to solar energy resources have great potential for implementation. However the main issue that plagues the implementation of SEGS is the intermittent nature of this source of energy. The availability of sunlight is during the day time and there is a need for electrical energy storage system so that there is electricity available during the night time as well. The meteorological condition such as clouds haze and pollution affects the SEGS as well. The PV based SEGS is seems to be promising electricity generating system that can contribute towards achieving the 5.5% target and will be able to minimize the negative effects of utilizing fossil fuels for electricity generation on the environment. Malaysia is committed to Kyoto Protocol which emphasizes on fighting global warming by achieving stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system. In this paper the technical aspects of the implementation of optimum SEGS is discussed especially pertaining to the positioning of the PV panels.

2014-01-01T23:59:59.000Z

229

Fossil Energy Research Benefits Enhanced Oil Recovery  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Research Benefits Energy Research Benefits Enhanced Oil Recovery EOR helps increase domestic oil supplies while also providing a way to safely and permanently store CO 2 underground. Enhanced Oil Recovery (EOR) is a way to squeeze out additional, hard- to-recover barrels of oil remaining in older fields following conventional production operations. It can also be used to permanently store carbon dioxide (CO 2 ) underground. Thanks in part to innovations supported by the Office of Fossil Energy's National Energy Technology Laboratory (NETL) over the past 30 years, the United States is a world leader in the number of EOR projects (200) and volume of oil production (over

230

If I generate 20 percent of my national electricity from wind and solar -  

Open Energy Info (EERE)

If I generate 20 percent of my national electricity from wind and solar - If I generate 20 percent of my national electricity from wind and solar - what does it do to my GDP and Trade Balance ? Home > Groups > DOE Wind Vision Community I think that the economics of fossil fuesl are well understood. Some gets to find the fuel and sell it. The fuel and all associated activities factor into the economic equation of the nation and the wrold. What is the economics of generating 20 percent of my total capacity from say wind? And all of it replaces coal powered electricty ? What happended to GDP ? Is the economy a net gain or net loss ? The value of the electricity came into the system, but no coal is bought or sold. Submitted by Jamespr on 6 May, 2013 - 17:46 0 answers Groups Menu You must login in order to post into this group.

231

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Resource Use: December 2011 Resource Use: December 2011 Supply and Fuel Consumption In this section, we look at what resources are used to produce electricity. Electricity supplied from the grid is consumed the moment it is produced. Generating units are chosen to run primarily on their operating costs, of which fuel costs account for the lion's share. Therefore, we present below electricity generation output by generator type and fuel type. Since the generator/fuel mix of utilities varies significantly by region, we also present generation output by region. Generation Output by Region By generator type By fuel type Region map map showing electricity regions Generation output declined in all regions, with the exception of the West and Texas, due to unseasonably warm temperatures in December. Fossil steam

232

Can 3-D models explain the observed fractions of fossil and non-fossil carbon in and near Mexico City?  

SciTech Connect

Abstract. A 3-D chemistry-transport model has been applied to the Mexico City metropolitan area to investigate the origin of elevated levels of non-fossil (NF) carbonaceous aerosols observed in this highly urbanized region. High time resolution measurements of the fine aerosol concentration and composition, and 12 or 24 h integrated 14C measurements of aerosol modern carbon have been performed in and near Mexico City during the March 2006 MILAGRO field experiment. The non-fossil carbon fraction (fNF), which is lower than the measured modern fraction (fM) due to the elevated 14C in the atmosphere caused by nuclear bomb testing, is estimated from the measured fM and the source-dependent information on modern carbon enrichment. The fNF contained in PM1 total carbon analyzed by a US team (f TC NF ) ranged from 0.37 to 0.67 at the downtown location, and from 0.50 to 0.86 at the suburban site. Substantially lower values (i.e. 0.24–0.49) were found for PM10 filters downtown by an independent set of measurements (Swiss team), which are inconsistent with the modeled and known differences between the size ranges, suggesting higher than expected uncertainties in the measurement techniques of 14C. An increase in the non-fossil organic carbon (OC) fraction (f OC NF ) by 0.10–0.15 was observed for both sets of filters during periods with enhanced wildfire activity in comparison to periods when fires were suppressed by rain, which is consistent with the wildfire impacts estimated with other methods. Model results show that the relatively high fraction of nonfossil carbon found in Mexico City seems to arise from the combination in about equal proportions of regional biogenic SOA, biomass burning POA and SOA, as well as non-fossil urban POA and SOA. Predicted spatial and temporal variations for f OC NF are similar to those in the measurements between the urban vs. suburban sites, and high-fire vs. low-fire periods. The absolute modeled values of f OC NF are consistent with the Swiss dataset but lower than the US dataset. Resolving the 14C measurement discrepancies is necessary for further progress in model evaluation. The model simulations that included secondary organic aerosol (SOA) formation from semi-volatile and intermediate volatility (S/IVOC) vapors showed improved closure for the total OA mass compared to simulations which only included SOA from VOCs, providing a more realistic basis to evaluate the fNF predictions. f OC NF urban sources of modern carbon are important in reducing or removing the difference in fNF between model and measurements, even though they are often neglected on the interpretation of 14C datasets. An underprediction of biomass burning POA by the model during some mornings also explains a part of the model-measurement differences. The fNF of urban POA and SOA precursors is an important parameter that needs to be better constrained by measurements. Performing faster ( 3 h) 14C measurements in future campaigns is critical to further progress in this area. To our knowledge this is the first time that radiocarbon measurements are used together with aerosol mass spectrometer (AMS) organic components to assess the performance of a regional model for organic aerosols.

Hodzic, Alma; Jimenez, Jose L.; Prevot, A. S. H.; Szidat, S.; Fast, Jerome D.; Madronich, Sasha

2010-11-25T23:59:59.000Z

233

Historically Black Colleges and Universities Receive Funds for Fossil  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Historically Black Colleges and Universities Receive Funds for Historically Black Colleges and Universities Receive Funds for Fossil Energy Research Historically Black Colleges and Universities Receive Funds for Fossil Energy Research August 15, 2013 - 1:18pm Addthis Washington, D.C. - Five fossil energy-related projects that will help maintain the nation's energy portfolio while also providing educational and research training opportunities for tomorrow's scientists and engineers have been selected for funding by the U.S. Department of Energy (DOE). The funding opportunity to enhance scientific and technical understanding of conversion and utilization of fossil fuels is through the Office of Fossil Energy's National Energy Technology Laboratory (NETL). The DOE program involved is the Support of Advanced Fossil Resource Utilization

234

Fossil Energy Research Efforts in Carbon Capture and Storage | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fossil Energy Research Efforts in Carbon Capture and Storage Fossil Energy Research Efforts in Carbon Capture and Storage Fossil Energy Research Efforts in Carbon Capture and Storage May 14, 2009 - 1:54pm Addthis Statement of Dr. Victor K. Der, Acting Assistant Secretary, Office of Fossil Energy before the Energy and Natural Resources Committee, United States Senate. Thank you, Mr. Chairman and members of the Committee. I appreciate this opportunity to provide testimony on the United States Department of Energy's (DOE's) research efforts in carbon capture and storage. The Department of Energy has not had an opportunity to fully analyze S. 1013, and therefore, cannot take a position on the bill at this time. Introduction Fossil fuel resources represent a tremendous national asset. An abundance of fossil fuels in North America has contributed to our Nation's economic

235

Electric power annual 1992  

SciTech Connect

The Electric Power Annual presents a summary of electric utility statistics at national, regional and State levels. The objective of the publication is to provide industry decisionmakers, government policymakers, analysts and the general public with historical data that may be used in understanding US electricity markets. The Electric Power Annual is prepared by the Survey Management Division; Office of Coal, Nuclear, Electric and Alternate Fuels; Energy Information Administration (EIA); US Department of Energy. ``The US Electric Power Industry at a Glance`` section presents a profile of the electric power industry ownership and performance, and a review of key statistics for the year. Subsequent sections present data on generating capability, including proposed capability additions; net generation; fossil-fuel statistics; retail sales; revenue; financial statistics; environmental statistics; electric power transactions; demand-side management; and nonutility power producers. In addition, the appendices provide supplemental data on major disturbances and unusual occurrences in US electricity power systems. Each section contains related text and tables and refers the reader to the appropriate publication that contains more detailed data on the subject matter. Monetary values in this publication are expressed in nominal terms.

Not Available

1994-01-06T23:59:59.000Z

236

EEE 463 Electrical Power Plants (3) [F] Course (Catalog) Description  

E-Print Network (OSTI)

. Environmental impact of electric generation (3 lectures) 9. Advanced energy conversion systems (geothermalEEE 463 Electrical Power Plants (3) [F] Course (Catalog) Description: Generation of electric power using fossil, nuclear and renewable, including solar, geothermal, wind, hydroelectric, biomass and ocean

Zhang, Junshan

237

Fossil Energy Technical Assistance Topic Areas | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

in the Office of Fossil Energy EPA Regulations - Analysis to Support Planning Contact: Jordan Kislear Storage Infrastructure Contact: Mark Ackiewicz Major Demonstrations Contact:...

238

Carbon Dioxide Information Analysis Center (CDIAC)-Fossil Fuel...  

Open Energy Info (EERE)

Analysis Center (CDIAC)-Fossil Fuel CO2 Emissions AgencyCompany Organization: Oak Ridge National Laboratory Sector: Energy, Climate Topics: GHG inventory, Background...

239

Sales of Fossil Fuels Produced from Federal and Indian Lands...  

Gasoline and Diesel Fuel Update (EIA)

fossil fuel sales continually flow into the DOI program offices, and those programs also conduct audit activities that may result, over time, in changes in the previously reported...

240

Fossil Energy Today - First Quarter, 2011 | Department of Energy  

Office of Environmental Management (EM)

Topics In This Issue... NETL's High Speed Imaging System Welcome to Fossil Energy Today Carbon Sequestration Atlas Coal-Fired Project of the Year National Risk Assessment Program...

Note: This page contains sample records for the topic "fossil electricity total" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Christopher A. Smith Confirmed as Assistant Secretary for Fossil Energy  

Energy.gov (U.S. Department of Energy (DOE))

Christopher A. Smith was confirmed by the Senate on Tuesday, December 16th, 2014, as the Department of Energy’s Assistant Secretary for Fossil Energy.

242

Fossil Energy Acting Assistant Secretary Recognized at Black...  

Energy Savers (EERE)

the Year Awards February 19, 2013 - 8:54am Addthis Director Dot Harris presents Chris Smith, Principal Deputy Assistant Secretary and Acting Assistant Secretary of Fossil Energy,...

243

A functional analysis of electrical load curve modelling for some households specific electricity end-uses  

E-Print Network (OSTI)

domestic end-uses, the development of plug-in hybrid and electric vehicles, the increase of heat pumps heating systems such as heat pumps in new building or which will replace old installed fossil fuels based systems; · integration of new end-uses such as Plug-in Electric Vehicles and an always growing number

Paris-Sud XI, Université de

244

Fossil plant layup and reactivation conference: Proceedings  

SciTech Connect

The Fossil Plant Layup and Reactivation Conference was held in New Orleans, Louisiana on April 14--15, 1992. The Conference was sponsored by EPRI and hosted by Entergy Services, Inc. to bring together representatives from utilities, consulting firms, manufacturers and architectural engineers. Eighteen papers were presented in three sessions. These sessions were devoted to layup procedures and practices, and reactivation case studies. A panel discussion was held on the second day to interactively discuss layup and reactivation issues. More than 80 people attended the Conference. This report contains technical papers and a summary of the panel discussion. Of the eighteen papers, three are related to general, one is related to regulatory issues, three are related to specific equipment, four are related to layup procedures and practices, and seven are layup and reactivation case studies.

Not Available

1992-10-01T23:59:59.000Z

245

Electric Currents Electric Current  

E-Print Network (OSTI)

coefficient of resistivity Electric Power: = = = Also, = . So, = = 2 = 2 Unit of Power(P): Watt (WChapter 18 Electric Currents #12;Electric Current: Flow of electric charge Current is flow of positive charge. In reality it's the electron moves in solids- Electron current. #12;Ohm's Law : Resistance

Yu, Jaehoon

246

A nuclear wind/solar oil-shale system for variable electricity and liquid fuels production  

SciTech Connect

The recoverable reserves of oil shale in the United States exceed the total quantity of oil produced to date worldwide. Oil shale contains no oil, rather it contains kerogen which when heated decomposes into oil, gases, and a carbon char. The energy required to heat the kerogen-containing rock to produce the oil is about a quarter of the energy value of the recovered products. If fossil fuels are burned to supply this energy, the greenhouse gas releases are large relative to producing gasoline and diesel from crude oil. The oil shale can be heated underground with steam from nuclear reactors leaving the carbon char underground - a form of carbon sequestration. Because the thermal conductivity of the oil shale is low, the heating process takes months to years. This process characteristic in a system where the reactor dominates the capital costs creates the option to operate the nuclear reactor at base load while providing variable electricity to meet peak electricity demand and heat for the shale oil at times of low electricity demand. This, in turn, may enable the large scale use of renewables such as wind and solar for electricity production because the base-load nuclear plants can provide lower-cost variable backup electricity. Nuclear shale oil may reduce the greenhouse gas releases from using gasoline and diesel in half relative to gasoline and diesel produced from conventional oil. The variable electricity replaces electricity that would have been produced by fossil plants. The carbon credits from replacing fossil fuels for variable electricity production, if assigned to shale oil production, results in a carbon footprint from burning gasoline or diesel from shale oil that may half that of conventional crude oil. The U.S. imports about 10 million barrels of oil per day at a cost of a billion dollars per day. It would require about 200 GW of high-temperature nuclear heat to recover this quantity of shale oil - about two-thirds the thermal output of existing nuclear reactors in the United States. With the added variable electricity production to enable renewables, additional nuclear capacity would be required. (authors)

Forsberg, C. [Massachusetts Inst. of Technology, 77 Massachusetts Ave., Cambridge, MA 012139 (United States)

2012-07-01T23:59:59.000Z

247

Insect Trace Fossil Associations in Paleosols: The Coprinisphaera Ichnofacies  

Science Journals Connector (OSTI)

...Namibia Sossus Sand (Khommabes Car-bonates) Late Pleistocene...from the Pleistocene Khommabes Car-bonates of Namibia are not...1993, Trace fossils from a Car-boniferous turbiditic lake...1985, Trace fossils from the Panther Member, Star Point Formation...

JORGE F. GENISE; M. GABRIELA MáNGANO; LUIS A. BUATOIS; JOSÉ H. LAZA; MARIANO VERDE

248

Environmental Law and Fossil Fuels: Barriers to Renewable Energy  

E-Print Network (OSTI)

This article is concerned with renewable energy’s too-slow transition and with how existing legal regimes work to preserve fossil energy dominance. It develops from two related claims: that an implicit support structure for fossil energy is written...

Outka, Uma

2012-01-01T23:59:59.000Z

249

Supplementary Information Potential for Electricity Generation from Renewable Resources and Levelized Cost of Electricity (LCOE)  

E-Print Network (OSTI)

Supplementary Information Potential for Electricity Generation from Renewable Resources and Levelized Cost of Electricity (LCOE) Electrical energy can be generated from renewable resources the potential to meet the worldwide demand of electricity and they contribute to the total generation

Suo, Zhigang

250

Fossil Energy Fiscal Year 2012 Budget Request | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fiscal Year 2012 Budget Request Fiscal Year 2012 Budget Request Fossil Energy Fiscal Year 2012 Budget Request March 30, 2011 - 2:40pm Addthis Statement of Dr. Victor Der, Acting Assistant Secretary for Fossil Energy before the House Committee on Appropriations Subcommittee on Energy and Water Development. Mr. Chairman, Members of the Committee, it is my pleasure to appear before you today to present the Office of Fossil Energy's (FE) proposed Budget for Fiscal Year 2012. The Office of Fossil Energy's primary objective is to ensure that we can continue to utilize our traditional fuel sources for clean, affordable, reliable energy. Fossil fuels currently provide 83 percent of U.S. energy consumption and are expected to continue to play a critical role in meeting our Nation's energy needs for the foreseeable future. Making use of these

251

Four Minority Universities Selected for Fossil Energy Research Grants |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Four Minority Universities Selected for Fossil Energy Research Four Minority Universities Selected for Fossil Energy Research Grants Four Minority Universities Selected for Fossil Energy Research Grants July 28, 2011 - 1:00pm Addthis Washington, DC - The Department of Energy has selected four universities to receive grants under the department's annual competition for fossil energy research ideas from Historically Black Colleges and Universities and Other Minority Institutions (HBCU/OMI). "I want to congratulate the winners of this year's competition, and thank them for their hard work," said Charles McConnell, Chief Operating Officer of DOE's Office of Fossil Energy. "Identifying the next generation of leaders and innovators is one of the keys to strengthening our economy and creating the clean energy jobs of tomorrow."

252

Fossil Energy Acting Assistant Secretary Recognized at Black Engineer of  

NLE Websites -- All DOE Office Websites (Extended Search)

Fossil Energy Acting Assistant Secretary Recognized at Black Fossil Energy Acting Assistant Secretary Recognized at Black Engineer of the Year Awards Fossil Energy Acting Assistant Secretary Recognized at Black Engineer of the Year Awards February 19, 2013 - 8:54am Addthis Director Dot Harris presents Chris Smith, Principal Deputy Assistant Secretary and Acting Assistant Secretary of Fossil Energy, with a professional achievement award at the Black Engineer of the Year Awards conference this February. Photo Credit: Nancy Jo Brown/106FOTO Director Dot Harris presents Chris Smith, Principal Deputy Assistant Secretary and Acting Assistant Secretary of Fossil Energy, with a professional achievement award at the Black Engineer of the Year Awards conference this February. Photo Credit: Nancy Jo Brown/106FOTO Dot Harris Dot Harris

253

Energy Department Releases Draft Advanced Fossil Energy Solicitation to  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Releases Draft Advanced Fossil Energy Releases Draft Advanced Fossil Energy Solicitation to Support Reductions in Greenhouse Gas Pollution Energy Department Releases Draft Advanced Fossil Energy Solicitation to Support Reductions in Greenhouse Gas Pollution July 2, 2013 - 12:42pm Addthis NEWS MEDIA CONTACT (202) 586-4940 Washington, D.C. - As part of President Obama's Climate Action Plan, the U.S. Department of Energy announced today a draft loan guarantee solicitation for innovative and advanced fossil energy projects and facilities that substantially reduce greenhouse gas and other air pollution. The Advanced Fossil Energy Projects solicitation, authorized by Title XVII of the Energy Policy Act of 2005 through Section 1703 of the Loan Guarantee Program, does just that. The draft solicitation will be open

254

Response to several FOIA requests - Renewable Energy. Demand for Fossil  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Response to several FOIA requests - Renewable Energy. Demand for Response to several FOIA requests - Renewable Energy. Demand for Fossil Fuels Response to several FOIA requests - Renewable Energy. Demand for Fossil Fuels Response to several FOIA requests - Renewable Energy. nepdg_251_500.pdf. Demand for Fossil Fuels. Renewable sources of power. Demand for fossil fuels surely will overrun supply sooner or later, as indeed it already has in the casc of United States domestic oil drilling. Recognition also is growing that our air and land can no longer absorb unlimited quantities of waste from fossil fuel extraction and combustion. As that day draws nearer, policymakers will have no realistic alternative but to turn to sources of power that today make up a viable but small part of America's energy picture. And they will be

255

People's Republic of China Fossil-Fuel CO2 Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

Asia Asia » People's Republic of China People's Republic of China Fossil-Fuel CO2 Emissions Graph graphic Graphics Data graphic Data Trends According to reported energy statistics, coal production and use in China has increased ten-fold since the 1960s. As a result, Chinese fossil-fuel CO2 emissions have more than doubled 2000 alone. At 1.92 billion metric tons of carbon in 2008, the People's Republic of China is the world's largest emitter of CO2 due to fossil-fuel use and cement production. Even with the reported decline in Chinese emissions from 1997 to 1999, China's industrial emissions of CO2 have grown phenomenally since 1950, when China stood tenth among nations based on annual fossil-fuel CO2 emissions. From 1970 to 1997, China's fossil-fuel CO2 emissions grew at an annual rate of

256

Fossil Energy Acting Assistant Secretary Recognized at Black Engineer of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fossil Energy Acting Assistant Secretary Recognized at Black Fossil Energy Acting Assistant Secretary Recognized at Black Engineer of the Year Awards Fossil Energy Acting Assistant Secretary Recognized at Black Engineer of the Year Awards February 19, 2013 - 8:54am Addthis Director Dot Harris presents Chris Smith, Principal Deputy Assistant Secretary and Acting Assistant Secretary of Fossil Energy, with a professional achievement award at the Black Engineer of the Year Awards conference this February. Photo Credit: Nancy Jo Brown/106FOTO Director Dot Harris presents Chris Smith, Principal Deputy Assistant Secretary and Acting Assistant Secretary of Fossil Energy, with a professional achievement award at the Black Engineer of the Year Awards conference this February. Photo Credit: Nancy Jo Brown/106FOTO Dot Harris Dot Harris

257

FACT SHEET: Draft Advanced Fossil Energy Solicitation to Support Reductions  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FACT SHEET: Draft Advanced Fossil Energy Solicitation to Support FACT SHEET: Draft Advanced Fossil Energy Solicitation to Support Reductions in Greenhouse Gas and Other Pollution FACT SHEET: Draft Advanced Fossil Energy Solicitation to Support Reductions in Greenhouse Gas and Other Pollution July 2, 2013 - 12:16pm Addthis What are the key facts? This solicitation will support projects that avoid, reduce, or sequester air pollutants or greenhouse gas emissions, an important part of the Administration's long-term plan towards a cleaner and more secure energy future. Applications for projects and facilities include any fossil technology that is new or significantly improved, as compared to commercial technologies in service in the U.S. The Department of Energy's (DOE) Loan Programs Office is releasing a new draft loan guarantee solicitation for innovative and advanced fossil energy

258

Fossil Energy Fiscal Year 2011 Budget Request | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Fiscal Year 2011 Budget Request Energy Fiscal Year 2011 Budget Request Fossil Energy Fiscal Year 2011 Budget Request March 17, 2010 - 1:12pm Addthis Mr. Chairman, Members of the Committee, it is my pleasure to appear before you today to present the Office of Fossil Energy's (FE) proposed Budget for Fiscal Year 2011 (FY 2011). The Office of Fossil Energy's primary objective is to ensure that we can continue to utilize our traditional fuel sources for clean, affordable, reliable energy. Fossil fuels are anticipated to play a critical role in meeting our Nation's future energy needs. Making use of the Nation's fossil fuel assets in an environmentally responsible manner will help the United States to meet its energy requirements, minimize detrimental environmental impacts, positively contribute to energy security and compete

259

FACT SHEET: Draft Advanced Fossil Energy Solicitation to Support Reductions  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FACT SHEET: Draft Advanced Fossil Energy Solicitation to Support FACT SHEET: Draft Advanced Fossil Energy Solicitation to Support Reductions in Greenhouse Gas and Other Pollution FACT SHEET: Draft Advanced Fossil Energy Solicitation to Support Reductions in Greenhouse Gas and Other Pollution July 2, 2013 - 12:16pm Addthis What are the key facts? This solicitation will support projects that avoid, reduce, or sequester air pollutants or greenhouse gas emissions, an important part of the Administration's long-term plan towards a cleaner and more secure energy future. Applications for projects and facilities include any fossil technology that is new or significantly improved, as compared to commercial technologies in service in the U.S. The Department of Energy's (DOE) Loan Programs Office is releasing a new draft loan guarantee solicitation for innovative and advanced fossil energy

260

Fossil Energy FY 2014 Appropriations Hearing | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FY 2014 Appropriations Hearing FY 2014 Appropriations Hearing Fossil Energy FY 2014 Appropriations Hearing March 14, 2013 - 1:36pm Addthis Statement of Christopher Smith, Acting Assistant Secretary for Fossil Energy before the House Committee on Appropriations, Subcommittee on Energy and Water Development. Mr. Chairman, Madam Ranking Member, and Members of the Committee, it is my pleasure to appear before you today to discuss the Department of Energy's (DOE) Office of Fossil Energy's (FE) programs. Our fossil fuel resources are essential to the Nation's security and economic prosperity. The Office of Fossil Energy's primary mission is to ensure that the U.S. can continue to utilize those traditional fuel sources for clean, affordable, reliable energy. Technology development is critical to this mission. FE's Research and Development (FER&D) program

Note: This page contains sample records for the topic "fossil electricity total" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

NETL: News Release - Four Minority Universities Selected for Fossil Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

9, 2006 9, 2006 Four Minority Universities Selected for Fossil Energy Research Grants Projects Advance Concepts in Fossil Fuel Conversion and Utilization WASHINGTON, DC - The Department of Energy (DOE) today awarded grants to four institutions for energy research through the Historically Black Colleges and Universities and Other Minority Institutions (HBCU/OMI) program. "It is indeed gratifying to see the creativity and technical expertise of our HBCU/OMI college students applied to the resolution of critical energy issues," said Assistant Secretary for Fossil Energy Jeffrey Jarrett. "The bright minds and enthusiasm that the students bring to the program are essential to fossil energy research in the 21st century." The HBCU/OMI program is carried out under DOE's Office of Fossil Energy. The program gives minority students valuable hands-on experience in developing technologies to promote the efficient and environmentally safe use of coal, oil, and natural gas. The National Energy Technology Laboratory (NETL) will manage the projects.

262

Fossil-energy program. Progress report for June 1981  

SciTech Connect

This report - the eighty-third of series - is a compendium of monthly progress reports for the ORNL research and development programs that are in support of the increased utilization of coal and other fossil fuel alternatives as sources of clean energy. The projects reported this month include those for coal conversion development, chemical research and development, materials technology, component development and process evaluation, technical support to major liquefaction projects, process analysis and engineering evaluations, fossil energy environmental analysis, flue gas desulfurization, coal preparation waste utilization, atmospheric fluidized bed coal combustor for cogeneration, TVA FBC demonstration plant program technical support, PFBC systems analysis, fossil fuel applications assessments, performance assurance system support for fossil energy projects, international energy technology assessment, generalized equilibrium models for liquid and gaseous fuel supplies, analyses of coal production goals, and fossil energy information center.

Not Available

1981-08-01T23:59:59.000Z

263

Energy Department's Fossil Energy Chief to Tour Western Michigan  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fossil Energy Chief to Tour Western Michigan Fossil Energy Chief to Tour Western Michigan University's Clean Coal Research Facilities, Host Business Roundtable Energy Department's Fossil Energy Chief to Tour Western Michigan University's Clean Coal Research Facilities, Host Business Roundtable June 26, 2012 - 10:51am Addthis Assistant Energy Secretary for Fossil Energy Charles McConnell will join Western Michigan University President John M. Dunn and Core Energy CEO Bob Mannes to tour WMU's cutting-edge facilities at the Michigan Geological Repository for Research and Education. NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON - Tomorrow, Wednesday, June 27, 2012, Assistant Energy Secretary for Fossil Energy Charles McConnell will join Western Michigan University President John M. Dunn and Core Energy CEO Bob Mannes to tour

264

Electric power annual 1997. Volume 1  

SciTech Connect

The Electric Power Annual presents a summary of electric power industry statistics at national, regional, and State levels. The objective of the publication is to provide industry decisionmakers, government policy-makers, analysts, and the general public with data that may be used in understanding US electricity markets. The Electric Power Annual is prepared by the Electric Power Division; Office of Coal, Nuclear, Electric and Alternate Fuels; Energy Information Administration (EIA); US Department of Energy. Volume 1 -- with a focus on US electric utilities -- contains final 1997 data on net generation and fossil fuel consumption, stocks, receipts, and cost; preliminary 1997 data on generating unit capability, and retail sales of electricity, associated revenue, and the average revenue per kilowatthour of electricity sold (based on a monthly sample: Form EIA-826, ``Monthly Electric Utility Sales and Revenue Report with State Distributions``). Additionally, information on net generation from renewable energy sources and on the associated generating capability is included in Volume 1 of the EPA.

NONE

1998-07-01T23:59:59.000Z

265

INNOVATIVE FOSSIL FUEL FIRED VITRIFICATION TECHNOLOGY FOR SOIL REMEDIATION  

SciTech Connect

This Summary Report summarizes the progress of Phases 3, 3A and 4 of a waste technology Demonstration Project sponsored under a DOE Environmental Management Research and Development Program and administered by the U.S. Department of Energy National Energy Technology Laboratory-Morgantown (DOE-NETL) for an ''Innovative Fossil Fuel Fired Vitrification Technology for Soil Remediation''. The Summary Reports for Phases 1 and 2 of the Program were previously submitted to DOE. The total scope of Phase 3 was to have included the design, construction and demonstration of Vortec's integrated waste pretreatment and vitrification process for the treatment of low level waste (LLW), TSCA/LLW and mixed low-level waste (MLLW). Due to funding limitations and delays in the project resulting from a law suit filed by an environmental activist and the extended time for DOE to complete an Environmental Assessment for the project, the scope of the project was reduced to completing the design, construction and testing of the front end of the process which consists of the Material Handling and Waste Conditioning (MH/C) Subsystem of the vitrification plant. Activities completed under Phases 3A and 4 addressed completion of the engineering, design and documentation of the Material Handling and Conditioning System such that final procurement of the remaining process assemblies can be completed and construction of a Limited Demonstration Project be initiated in the event DOE elects to proceed with the construction and demonstration testing of the MH/C Subsystem.

J. Hnat; L.M. Bartone; M. Pineda

2001-07-13T23:59:59.000Z

266

Monthly, global emissions of carbon dioxide from fossil fuel consumption  

SciTech Connect

This paper examines available data, develops a strategy and presents a monthly, global time series of fossil-fuel carbon dioxide emissions for the years 1950 2006. This monthly time series was constructed from detailed study of monthly data from the 21 countries that account for approximately 80% of global total emissions. These data were then used in a Monte Carlo approach to proxy for all remaining countries. The proportional-proxy methodology estimates by fuel group the fraction of annual emissions emitted in each country and month. Emissions from solid, liquid and gas fuels are explicitly modelled by the proportional-proxy method. The primary conclusion from this study is the global monthly time series is statistically significantly different from a uniform distribution throughout the year. Uncertainty analysis of the data presented show that the proportional-proxy method used faithfully reproduces monthly patterns in the data and the global monthly pattern of emissions is relatively insensitive to the exact proxy assignments used. The data and results presented here should lead to a better understanding of global and regional carbon cycles, especially when the mass data are combined with the stable carbon isotope data in atmospheric transport models.

Andres, Robert Joseph [ORNL; Gregg, JS [Riso National Laboratory, Roskilde, Denmark; Losey, London M [ORNL; Marland, Gregg [ORNL; Boden, Thomas A [ORNL

2011-01-01T23:59:59.000Z

267

Barge Truck Total  

Annual Energy Outlook 2012 (EIA)

Barge Truck Total delivered cost per short ton Shipments with transportation rates over total shipments Total delivered cost per short ton Shipments with transportation rates over...

268

Economic feasibility of carbon emission reduction in electricity generation, a case study based on Sri Lanka  

Science Journals Connector (OSTI)

The main purpose of this paper is an assessment of economic feasibility in reducing carbon dioxide emission of electricity generation in Sri Lanka. The paper shows that the present annual green house gas (GHG) emission with respect to electricity generation in Sri Lanka is about 2.8 million metric tons. The identified total GHG emission reduction potential in electricity generation is about 37 GW. The total reduction in GHG will be 16 million metric tons per year. Considering the savings on fossil fuel combustion, the total investment on CHG reduction methods would be recovered within a reasonable period as confirmed by a sensitivity analysis. To achieve these benefits, broad policies and guidelines are presented in-line with the country's environmental obligations. This is the first time that this type of scientific research study has been carried out in Sri Lanka to ascertain the current situation of GHG emission of electricity generation, to identify possible methods in reducing carbon dioxide emission and their economic feasibility. The methodology employed and the policies derived can be used as guides to similar types of research in other countries as well.

S.W.S.B. Dasanayaka; W. Jayarathne

2012-01-01T23:59:59.000Z

269

Fossil fuel combined cycle power generation method  

DOE Patents (OSTI)

A method for converting fuel energy to electricity includes the steps of converting a higher molecular weight gas into at least one mixed gas stream of lower average molecular weight including at least a first lower molecular weight gas and a second gas, the first and second gases being different gases, wherein the first lower molecular weight gas comprises H.sub.2 and the second gas comprises CO. The mixed gas is supplied to at least one turbine to produce electricity. The mixed gas stream is divided after the turbine into a first gas stream mainly comprising H.sub.2 and a second gas stream mainly comprising CO. The first and second gas streams are then electrochemically oxidized in separate fuel cells to produce electricity. A nuclear reactor can be used to supply at least a portion of the heat the required for the chemical conversion process.

Labinov, Solomon D [Knoxville, TN; Armstrong, Timothy R [Clinton, TN; Judkins, Roddie R [Knoxville, TN

2008-10-21T23:59:59.000Z

270

Antelope-Fossil Rebuild Project : Environmental Assessment.  

SciTech Connect

The Columbia Power Cooperative Association (CPCA), Monument, Oregon, proposes to upgrade a 69-kV transmission line in Wasco and Wheeler Counties, Oregon, between the Antelope Substation and the Bonneville Power Administration`s (BPA) Fossil Substation. The project involves rebuilding and reconductoring 23.2 miles of transmission line, including modifying it for future use at 115 kV. Related project activities will include setting new wood pole structures, removing and disposing of old structures, conductors, and insulators, and stringing new conductor, all within the existing right-of-way. No new access roads will be required. A Borrower`s Environmental Report was prepared for the 1992--1993 Work Plan for Columbia Power Cooperative Association in March 1991. This report investigated cultural resources, threatened or endangered species, wetlands, and floodplains, and other environmental issues, and included correspondence with appropriate Federal, state, and local agencies. The report was submitted to the Rural Electrification Administration for their use in preparing their environmental documentation for the project.

United States. Bonneville Power Administration.

1992-04-01T23:59:59.000Z

271

Antelope-Fossil Rebuild Project : Environmental Assessment.  

SciTech Connect

The Columbia Power Cooperative Association (CPCA), Monument, Oregon, proposes to upgrade a 69-kV transmission line in Wasco and Wheeler Counties, Oregon, between the Antelope Substation and the Bonneville Power Administration's (BPA) Fossil Substation. The project involves rebuilding and reconductoring 23.2 miles of transmission line, including modifying it for future use at 115 kV. Related project activities will include setting new wood pole structures, removing and disposing of old structures, conductors, and insulators, and stringing new conductor, all within the existing right-of-way. No new access roads will be required. A Borrower's Environmental Report was prepared for the 1992--1993 Work Plan for Columbia Power Cooperative Association in March 1991. This report investigated cultural resources, threatened or endangered species, wetlands, and floodplains, and other environmental issues, and included correspondence with appropriate Federal, state, and local agencies. The report was submitted to the Rural Electrification Administration for their use in preparing their environmental documentation for the project.

United States. Bonneville Power Administration.

1992-04-01T23:59:59.000Z

272

Evaluation of hybrid solar/fossil Rankine-cooling concept  

SciTech Connect

The hybrid solar/fossil Rankine cycle is analyzed thermodynamically to determine fuel use and efficiency. The hybrid system is briefly compared with solar organic Rankine systems with a fossil fuel auxiliary mode, and with geothermal resources. The economic evaluation compares the present value of the superheater fuel cost over the system lifetime with the first cost reduction obtained by substituting a hybrid solar/fossil Rankine engine for an organic Rankine engine. The economics analysis indicates that even if the hybrid solar/fossil Rankine cooling system were developed to the point of being a commercial product with an economic advantage over an otherwise equivalent solar organic Rankine cooling system, it would gradually lose that advantage with rising fuel costs and decreasing collector costs. From the standpoint of national fossil fuel conservation, the hybrid concept would be preferable only in applications where the operating duration in the solar/fossil mode would be substantially greater than in the fossil fuel-only auxiliary mode. (LEW)

Curran, H M

1980-11-01T23:59:59.000Z

273

" Level: National Data and Regional Totals;"  

U.S. Energy Information Administration (EIA) Indexed Site

3. Quantity of Purchased Electricity, Natural Gas, and Steam, 1998;" 3. Quantity of Purchased Electricity, Natural Gas, and Steam, 1998;" " Level: National Data and Regional Totals;" " Row: NAICS Codes;" " Column: Supplier Sources of Purchased Electricity, Natural Gas, and Steam;" " Unit: Physical Units or Btu." ,,,"Electricity","Components",,"Natural Gas","Components",,"Steam","Components" " "," ",,,"Electricity",,,"Natural Gas",,,"Steam"," ",," " " "," ",,"Electricity","from Sources",,"Natural Gas","from Sources",,"Steam","from Sources"

274

President Requests $711.0 Million for Fossil Energy Programs  

Energy.gov (U.S. Department of Energy (DOE))

President Obama’s FY 2015 budget seeks $711.0 million for the Office of Fossil Energy (FE) to advance technologies related to the reliable, efficient, affordable and environmentally sound use of fossil fuels as well as manage the Strategic Petroleum Reserve and Northeast Home Heating oil Reserve to provide strategic and economic security against disruptions in U.S. oil supplies. The request includes $475.5 million for Fossil Energy Research and Development, $205.0 million for the Strategic Petroleum Reserve, $1.6 million for the Northeast Home Heating Oil Reserve and $19.95 million for the Naval Petroleum Reserves.

275

Fossil energy use in conventional and low-external-input cropping systems.  

E-Print Network (OSTI)

??The production of fossil fuels will crest within the next decade and with reliance of modern conventional agriculture on fossil fuel energy inputs, food production… (more)

Cruse, Michael James

2009-01-01T23:59:59.000Z

276

E-Print Network 3.0 - assess fossil fuel Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Environmental Sciences and Ecology ; Geosciences 6 EARTH'S CLIMATE, THE GREENHOUSE EFFECT, AND ENERGY Summary: ,PgCyr Fossil Fuel Emissions Fossil Fuel - Marland...

277

E-Print Network 3.0 - atmospheric fossil fuel Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Centre de mathmatiques Collection: Mathematics 10 EARTH'S CLIMATE, THE GREENHOUSE EFFECT, AND ENERGY Summary: ,PgCyr Fossil Fuel Emissions Fossil Fuel - Marland...

278

The breeder reactor: a fossil fuel viewpoint  

Science Journals Connector (OSTI)

... elegant and simple: to generate electricity and, at the same time, to produce additional fuel from the uranium discarded by the existing thermal reactor system. Without the breeder reactor, ... seems likely that the role of nuclear energy will begin to be constrained by the price and availability of uranium at about the turn of the century. There is, however ...

David Merrick

1976-12-16T23:59:59.000Z

279

Fossil and biogenic CO{sub 2} from waste incineration based on a yearlong radiocarbon study  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer Yearlong radiocarbon study on the share of biogenic CO{sub 2} from waste incineration. Black-Right-Pointing-Pointer Direct approach combining temporal integrating gas sampling and {sup 14}CO{sub 2} analysis by AMS. Black-Right-Pointing-Pointer Significant differences between incinerators with 43% and 54%Fos C. Black-Right-Pointing-Pointer No annual cycle of fossil CO{sub 2} for all, except one, of the included incinerators. - Abstract: We describe the first long-term implementation of the radiocarbon ({sup 14}C) method to study the share of biogenic (%Bio C) and fossil (%Fos C) carbon in combustion CO{sub 2}. At five Swiss incinerators, a total of 24 three-week measurement campaigns were performed over 1 year. Temporally averaged bag samples were analyzed for {sup 14}CO{sub 2} by accelerator mass spectrometry. Significant differences between the plants in the share of fossil CO{sub 2} were observed, with annual mean values from 43.4 {+-} 3.9% to 54.5 {+-} 3.1%. Variations can be explained by the waste composition of the respective plant. Based on our dataset, an average value of 48 {+-} 4%Fos C was determined for waste incineration in Switzerland. No clear annual trend in %Fos C was observed for four of the monitored incinerators, while one incinerator showed considerable variations, which are likely due to the separation and temporary storage of bulky goods.

Mohn, J., E-mail: joachim.mohn@empa.ch [Empa, Laboratory for Air Pollution and Environmental Technology, Ueberlandstrasse 129, CH-8600 Duebendorf (Switzerland); Szidat, S. [University of Bern, Department of Chemistry and Biochemistry and Oeschger Center for Climate Change Research, Freiestrasse 3, CH-3012 Berne (Switzerland); Zeyer, K.; Emmenegger, L. [Empa, Laboratory for Air Pollution and Environmental Technology, Ueberlandstrasse 129, CH-8600 Duebendorf (Switzerland)

2012-08-15T23:59:59.000Z

280

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

fuel type. Generator type categories include: Fossil Steam: Steam turbines powered by the combustion of fossil fuels Combined Cycle: Combined cycle generation powered by natural...

Note: This page contains sample records for the topic "fossil electricity total" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Location Student Fac/Staff Disabled Special OLLI Reserved Electric Carpool Park and Pay 30 Minute Loading Maint/Service State Vehicle Motorcycle Control* S / L** P / T / LD*** Location Total Alumni House 1 1 17 D L P 19  

E-Print Network (OSTI)

Loading Maint/Service State Vehicle Motorcycle Control* S / L** P / T / LD*** Location Total Alumni House = Surface Lot *** P = Permanent, T = Temporary, LD = Leased Structure 5,631 Motorcycle space count is not included in "Total Spaces" count and is an es mate of how many motorcycles can park in each area Surface

de Lijser, Peter

282

Design of the Experimental Procedures for Analysis of Thermal and Electrical Properties of a Prismatic LiFeYPO4 Battery in a Modified Electric Car  

Science Journals Connector (OSTI)

Electric vehicle has become one of the alternatives for replacing the fossil-fuel vehicle due to the rapid decrease in the energy source and increase in the automobile utilization. Also, with the zero pipe-tail e...

Chayangkun Sanguanwatana…

2013-01-01T23:59:59.000Z

283

Journal of Asian Electric Vehicles, Volume 11, Number 1, June 2013 Correlation Between Energy and Information  

E-Print Network (OSTI)

are mostly fed by fossil energies, such as coal, oil, and nature gas. These fossil fuels are non is able to enhance the efficiency, cleanness, reliability and stability of whole energy system. To makeJournal of Asian Electric Vehicles, Volume 11, Number 1, June 2013 1625 Correlation Between Energy

Leung, Ka-Cheong

284

Department of Energy Releases $8 Billion Solicitation for Advanced Fossil  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

$8 Billion Solicitation for Advanced $8 Billion Solicitation for Advanced Fossil Energy Projects Department of Energy Releases $8 Billion Solicitation for Advanced Fossil Energy Projects December 12, 2013 - 1:40pm Addthis NEWS MEDIA CONTACT (202) 586-4940 Washington, D.C. - As part of President Obama's Climate Action Plan, the Energy Department published a solicitation today, making up to $8 billion in loan guarantee authority available to support innovative advanced fossil energy projects that avoid, reduce, or sequester greenhouse gases. Authorized by Title XVII of the Energy Policy Act of 2005, loan guarantees under this new solicitation will help provide critical financing to support new or significantly improved advanced fossil energy projects - such as advanced resource development, carbon capture, low-carbon power

285

DOE Leverages Fossil Energy Expertise to Develop and Explore Geothermal  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Leverages Fossil Energy Expertise to Develop and Explore Leverages Fossil Energy Expertise to Develop and Explore Geothermal Energy Resources DOE Leverages Fossil Energy Expertise to Develop and Explore Geothermal Energy Resources February 7, 2011 - 12:00pm Addthis Washington, D.C. - Focusing on reducing the upfront costs of geothermal development as well as improve its effectiveness, the U.S. Department of Energy today announced plans to leverage oil and gas expertise to test the reliability and efficiency of geothermal power generation at oil and gas fields. DOE's Office of Fossil Energy and Office of Energy Efficiency and Renewable Energy will combine efforts to have experts test and validate low temperature geothermal power generation technologies at the Rocky Mountain Oilfield Testing Center (RMOTC) near Casper, Wyoming.

286

South Korea Fossil-Fuel CO2 Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

Far East » South Korea Far East » South Korea South Korea Fossil-Fuel CO2 Emissions Graph graphic Graphics Data graphic Data Trends South Korea, or the Republic of Korea, is the world's tenth largest emitter of CO2 based on 2008 fossil-fuel consumption and cement production with 139 million metric tons of carbon. From 1946-1997 South Korea experienced phenomenal growth in fossil-fuel CO2 emissions with a growth rate that averaged 11.5%. Initial growth in emissions was due to coal consumption, which still accounts for 46.9% of South Korea's fossil-fuel CO2 emissions. Since the late 1960s oil consumption has been a major source of emissions. South Korea is the world's fifth largest importer of crude oil. Natural gas became a significant source of CO2 for the first time in 1987, as South

287

Fossil Energy [Corrosion and Mechanics of Materials] - Nuclear Engineering  

NLE Websites -- All DOE Office Websites (Extended Search)

Fossil Energy Fossil Energy Capabilities Materials Testing Environmentally Assisted Cracking (EAC) of Reactor Materials Corrosion Performance/Metal Dusting Overview Light Water Reactors Fossil Energy Fusion Energy Metal Dusting Publications List Irradiated Materials Steam Generator Tube Integrity Other Facilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Corrosion and Mechanics of Materials Fossil Energy Bookmark and Share Conceptual designs of advanced coal-fired combustion systems require furnaces and heat transfer surfaces that operate at much higher temperatures than those in current coal-fired power plants. The combination of elevated temperatures and hostile combustion environments necessitates the development and application of ceramic materials in these designs.

288

NETL: News Release - Four Minority Universities Selected for Fossil Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

May 20, 2010 May 20, 2010 Four Minority Universities Selected for Fossil Energy Research Grants College Students to Focus on Computational Modeling, High-Temperature Materials and Components Washington, DC - Innovative fossil energy research projects will be investigated by students and faculty from four winning institutions in the Department of Energy's annual competition for fossil energy research ideas from the nation's Historically Black Colleges and Universities and Other Minority Institutions (HBCU/OMI). Students and faculty from the chosen universities - the University of Texas, El Paso; Southern University and A&M College; Tennessee State University; and the University of Texas, San Antonio - will investigate projects dealing with computational energy sciences, material sciences, and sensors and controls for use in fossil fuel power systems.

289

Projects Selected to Advance Innovative Materials for Fossil Energy Power  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Selected to Advance Innovative Materials for Fossil Energy Selected to Advance Innovative Materials for Fossil Energy Power Systems Projects Selected to Advance Innovative Materials for Fossil Energy Power Systems September 14, 2010 - 1:00pm Addthis Washington, DC - Four projects that will develop capabilities for designing sophisticated materials that can withstand the harsh environments of advanced fossil energy power systems have been selected by the U.S. Department of Energy. The projects will develop computational capabilities for designing materials with unique thermal, chemical and mechanical properties necessary for withstanding the high temperatures and extreme environments of advanced energy systems. These innovative systems are both fuel efficient and produce lower amounts of emissions, including carbon dioxide for permanent

290

Projects Selected to Advance Innovative Materials for Fossil Energy Power  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Projects Selected to Advance Innovative Materials for Fossil Energy Projects Selected to Advance Innovative Materials for Fossil Energy Power Systems Projects Selected to Advance Innovative Materials for Fossil Energy Power Systems September 14, 2010 - 1:00pm Addthis Washington, DC - Four projects that will develop capabilities for designing sophisticated materials that can withstand the harsh environments of advanced fossil energy power systems have been selected by the U.S. Department of Energy. The projects will develop computational capabilities for designing materials with unique thermal, chemical and mechanical properties necessary for withstanding the high temperatures and extreme environments of advanced energy systems. These innovative systems are both fuel efficient and produce lower amounts of emissions, including carbon dioxide for permanent

291

Status of fossil energy resources: A global perspective  

SciTech Connect

This article deals with recently status of global fossil energy sources. Fossil energy sources have been split into three categories: oil,coal, and natural gas. Fossil fuels are highly efficient and cheap. Currently oil is the fastest primary energy source in the world (39% of world energy consumption). Coal will be a major source of energy for the world for the foreseeable future (24% of world energy consumption). In 2030, coal covers 45% of world energy needs. Natural gas is expected to be the fastest growing component of world energy consumption (23% of world energy consumption). Fossil fuel extraction and conversion to usable energy has several environmental impacts. They could be a major contributor to global warming and greenhouse gases and a cause of acid rain; therefore, expensive air pollution controls are required.

Balat, M. [SILA Science, Trabzon (Turkey)

2007-07-01T23:59:59.000Z

292

Proceedings of the fourth annual conference on fossil energy materials  

SciTech Connect

The Fourth Annual Conference on Fossil Energy Materials was held in Oak Ridge, Tennessee, on may 15--17, 1990. The meeting was sponsored by the US Department of Energy's Office of Fossil Energy through the Advanced Research and Technology Development (AR TD) Materials Program, and ASM International. The objective of the AR TD Materials Program is to conduct research and development on materials for longer-term fossil energy applications as well as for generic needs of various fossil fuel technologies. The work is divided into the following categories: (1) Ceramics, (2) New Alloys, (3) Corrosion and Erosion, and (4) Technology Assessment and Technology Transfer. Individual projects are processed separately for the data bases.

Judkins, R.R.; Braski, D.N. (comps.)

1990-08-01T23:59:59.000Z

293

Fossil Energy Today - Fourth Quarter, 2011 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CCUS FE R&D: A Legacy of Benefit NETL Helps Develop Improved Coronary Stents for Heart Patients CSLF Ministerial Reinforces Support for CCUS Fossil Energy Today - Issue No....

294

NREL: Technology Deployment - Fossil Fuel Dependency Falls from...  

NLE Websites -- All DOE Office Websites (Extended Search)

Fossil Fuel Dependency Falls from 100% to 56% on Alcatraz Island News Solar Cells Light Up Prison Cells on 'The Rock' Sponsors U.S. National Park Service American Recovery and...

295

Three essays on biofuel's and fossil fuel's stochastic prices.  

E-Print Network (OSTI)

??The dissertation consists of three essays on biofuel's and fossil fuel's stochastic prices focusing on the U.S. corn-based fuel-ethanol market. The research objectives include investigating… (more)

Zhang, Zibin

2009-01-01T23:59:59.000Z

296

Register for Fossil Energy NewsAlerts | Department of Energy  

Office of Environmental Management (EM)

of the U.S. Department of Energy's Office of Fossil Energy. Each time we update our web site in your area of interest, we will send you a brief e-mail alerting you to the new...

297

FACT SHEET: Draft Advanced Fossil Energy Solicitation to Support...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Fossil Energy Solicitation to Support Reductions in Greenhouse Gas and Other Pollution July 2, 2013 - 12:16pm Addthis What are the key facts? This solicitation will...

298

Office of Fossil Energy Continues Long-Running Minority Educational  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fossil Energy Continues Long-Running Minority Educational Fossil Energy Continues Long-Running Minority Educational Research Program Office of Fossil Energy Continues Long-Running Minority Educational Research Program April 19, 2012 - 11:41am Addthis Annie Whatley Annie Whatley Deputy Director, Office of Minority Economic Impact Editor's Note: This article is cross-posted from the Office of Fossil Energy. Four projects that will strengthen and promote U.S. energy security, scientific discovery and economic competitiveness while producing a diverse next generation of scientists and engineers have been selected as part of the Energy Department's long-running minority educational research program. The awards - presented under the Historically Black Colleges and Universities and Other Minority Institutions program - are $200,000 each

299

Brazil-NETL Advanced Fossil Fuels Partnerships | Open Energy Information  

Open Energy Info (EERE)

Advanced Fossil Fuels Partnerships Advanced Fossil Fuels Partnerships (Redirected from Brazil-NETL Cooperation) Jump to: navigation, search Logo: Brazil-NETL Cooperation Name Brazil-NETL Cooperation Agency/Company /Organization National Energy Technology Laboratory Partner Brazil Sector Energy Topics Background analysis Website http://www.netl.doe.gov/techno Program Start 2007 Program End 2012 Country Brazil South America References NETL Technologies Programs[1] This article is a stub. You can help OpenEI by expanding it. Advanced Fossil Fuels Partnerships with Brazil ORD International Research Agreements Brazilian Coal Gasification and CCS MOUs References ↑ NETL Technologies Programs Retrieved from "http://en.openei.org/w/index.php?title=Brazil-NETL_Advanced_Fossil_Fuels_Partnerships&oldid=375248"

300

NETL: News Release - DOE-Fossil Energy: World's Most Advanced Gas Turbine  

NLE Websites -- All DOE Office Websites (Extended Search)

February 18, 2000 February 18, 2000 DOE-Fossil Energy: World's Most Advanced Gas Turbine Now Ready to Cross Commercial Threshold Secretary Richardson Cites Success of Government-Industry Partnership For natural gas turbines - the technology likely to dominate the growing market for new electric power generation - the future was unveiled today in Greenville, South Carolina. GE's MS7001H Advanced Gas Turbine The 4000-ton Model MS7001H advanced gas turbine is the size of a locomotive. Secretary of Energy Bill Richardson and U.S. Senator Ernest Hollings joined General Electric today in announcing that the company's newest H System™ gas turbine, the most advanced combustion turbine in the world, is ready to cross the commercial threshold. "Today, we are seeing the most advanced combustion turbine anywhere,

Note: This page contains sample records for the topic "fossil electricity total" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Adaptable Sensor Packaging for High Temperature Fossil Fuel Energy System  

NLE Websites -- All DOE Office Websites (Extended Search)

Adaptable Sensor Packaging for High Adaptable Sensor Packaging for High Temperature Fossil Fuel Energy Systems Background The Advanced Research Sensors and Controls Program is leading the effort to develop sensing and control technologies and methods to achieve automated and optimized intelligent power systems. The program is led by the U.S. Department of Energy (DOE) Office of Fossil Energy National Energy Technology Laboratory (NETL) and is implemented through research and development agreements with other

302

President Requests $842.1 Million for Fossil Energy Programs  

Energy.gov (U.S. Department of Energy (DOE))

President Obama’s FY 2016 budget seeks $842.1 million for the Office of Fossil Energy (FE) to advance technologies related to the reliable, efficient, affordable and environmentally sound use of fossil fuels, implement ongoing federal responsibilities at the Naval Petroleum and Oil Shale Reserves, and manage the Strategic Petroleum Reserve, Northeast Gasoline Supply Reserve and Northeast Home Heating oil Reserve to provide strategic and economic security against disruptions in U.S. petroleum supplies.

303

Fossil Energy Advanced Research and Technology Development Materials Program  

SciTech Connect

Objective of this materials program is to conduct R and D on materials for fossil energy applications with focus on longer-term and generic needs of the various fossil fuel technologies. The projects are organized according to materials research areas: (1) ceramics, (2) new alloys: iron aluminides, advanced austenitics and chromium niobium alloys, and (3) technology development and transfer. Separate abstracts have been prepared.

Cole, N.C.; Judkins, R.R. (comps.)

1992-12-01T23:59:59.000Z

304

Total Energy - Data - U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

Electricity Flow, (Quadrillion Btu) Electricity Flow, (Quadrillion Btu) Electricity Flow diagram image Footnotes: 1 Blast furnace gas, propane gas, and other manufactured and waste gases derived from fossil fuels. 2 Batteries, chemicals, hydrogen, pitch, purchased steam, sulfur, miscellaneous technologies, and non-renewable waste (municipal solid waste from non-biogenic sources, and tire-derived fuels). 3 Data collection frame differences and nonsampling error. Derived for the diagram by subtracting the "T & D Losses" estimate from "T & D Losses and Unaccounted for" derived from Table 8.1. 4 Electric energy used in the operation of power plants. 5 Transmission and distribution losses (electricity losses that occur between the point of generation and delivery to the customer) are estimated

305

Quantification of fossil fuel CO2 emissions at the building/street scale for a large US city  

SciTech Connect

In order to advance the scientific understanding of carbon exchange with the land surface, build an effective carbon monitoring system and contribute to quantitatively-based U.S. climate change policy interests, fine spatial and temporal quantification of fossil fuel CO2 emissions, the primary greenhouse gas, is essential. Called the ‘Hestia Project’, this research effort is the first to use bottom-up methods to quantify all fossil fuel CO2 emissions down to the scale of individual buildings, road segments, and industrial/electricity production facilities on an hourly basis for an entire urban landscape. a large city (Indianapolis, Indiana USA). Here, we describe the methods used to quantify the on-site fossil fuel CO2 emissions across the city of Indianapolis, Indiana. This effort combines a series of datasets and simulation tools such as a building energy simulation model, traffic data, power production reporting and local air pollution reporting. The system is general enough to be applied to any large U.S. city and holds tremendous potential as a key component of a carbon monitoring system in addition to enabling efficient greenhouse gas mitigation and planning. We compare our estimate of fossil fuel emissions from natural gas to consumption data provided by the local gas utility. At the zip code level, we achieve a bias adjusted pearson r correlation value of 0.92 (p<0.001).

Gurney, Kevin R.; Razlivanov, I.; Song, Yang; Zhou, Yuyu; Benes, Bedrich; Abdul- Massih, Michel

2012-08-15T23:59:59.000Z

306

"Characteristic(a)","Total(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","Breeze","Other(g)","Produced Onsite(h)"  

U.S. Energy Information Administration (EIA) Indexed Site

1.3 Relative Standard Errors for Table 1.3;" 1.3 Relative Standard Errors for Table 1.3;" " Unit: Percents." " "," "," "," "," "," "," "," "," "," " " "," ",," "," ",," "," ",," ","Shipments" "Economic",,"Net","Residual","Distillate",,"LPG and",,"Coke and"," ","of Energy Sources" "Characteristic(a)","Total(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","Breeze","Other(g)","Produced Onsite(h)"

307

O:\ELECTRIC\EA-177.ORD  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

BURKE-DIVIDE ELECTRIC COOPERATIVE, INC. BURKE-DIVIDE ELECTRIC COOPERATIVE, INC. ORDER NO. EA-177 I. BACKGROUND Exports of electricity from the United States to a foreign country are regulated and require authorization under section 202(e) of the Federal Power Act (FPA) (16 U.S.C. §824a(e)). On March 18, 1998, Burke-Divide Electric Cooperative, Inc. (Burke-Divide) applied to the Office of Fossil Energy (FE) of the Department of Energy (DOE) for authorization to transmit electric energy to Canada. Burke-Divide is a rural electric cooperative headquartered in Columbus, North Dakota. Burke-Divide does not own generation resources. Rather, the electric energy Burke-Divide proposes to export will be purchased from Basin Electric Power

308

INNOVATIVE FOSSIL FUEL FIRED VITRIFICATION TECHNOLOGY FOR SOIL REMEDIATION  

SciTech Connect

This Final Report summarizes the progress of Phases 3,3A and 4 of a waste technology Demonstration Project sponsored under a DOE Environmental Management Research and Development Program and administered by the U.S. Department of Energy National Energy Technology Laboratory-Morgantown (DOE-NETL) for an ''Innovative Fossil Fuel Fired Vitrification Technology for Soil Remediation''. The Summary Reports for Phases 1 and 2 of the Program were previously submitted to DOE. The total scope of Phase 3 was to have included the design, construction and demonstration of Vortec's integrated waste pretreatment and vitrification process for the treatment of low level waste (LLW), TSCA/LLW and mixed low-level waste (MLLW). Due to funding limitations and delays in the project resulting from a law suit filed by an environmental activist and the extended time for DOE to complete an Environmental Assessment for the project, the scope of the project was reduced to completing the design, construction and testing of the front end of the process which consists of the Material Handling and Waste Conditioning (MH/C) Subsystem of the vitrification plant. Activities completed under Phases 3A and 4 addressed completion of the engineering, design and documentation of the MH/C System such that final procurement of the remaining process assemblies can be completed and construction of a Limited Demonstration Project be initiated in the event DOE elects to proceed with the construction and demonstration testing of the MH/C Subsystem. Because of USEPA policies and regulations that do not require treatment of low level or low-level/PCB contaminated wastes, DOE terminated the project because there is no purported need for this technology.

J. Hnat; L.M. Bartone; M. Pineda

2001-10-31T23:59:59.000Z

309

Monitoring of temperature-compensated conductivity in fossil power plants  

SciTech Connect

Specific conductivity is an inexpensive, reliable, on-line method for monitoring the overall level of contaminants and its trends in fossil plant cycles. The most important applications are the monitoring in makeup water and at the economizer inlet. In the makeup, the specific conductivity is related to the content of makeup ionic impurities and carbon dioxide. Specific conductivity at the economizer inlet is an indication of the ammonia level during normal operation, since other ionic impurity levels are relatively very low in relation to the ammonia content. Cation conductivity serves as an excellent diagnostic tool. The advantage of using strong-acid cation exchanger for the alkalizing agents elimination and for the great sensitivity improvement has already been recognized in the 1950`s. The cation conductivity is currently one of the most important {open_quotes}core parameters{close_quotes} in the Cycle Chemistry Improvement Project. In this project, the most important plant cycle locations where cation conductivity on-line monitoring is strongly advised are: condensate pump discharge; polisher outlet or economizer inlet; and hot reheat steam or main steam. An additional monitoring location is the blowdown or the downcomer of drum boilers. The cation conductivity monitoring at this location is becoming vital with the introduction of oxygenated chemistry and OH (sodium hydroxide) treatment in cycles with drum boilers. Degassed cation conductivity has been addressed. Applying this method, the effect of carbon dioxide on cation conductivity is eliminated by boiling off gaseous carbon dioxide before the actual cation conductivity monitoring. Therefore, the degassed cation conductivity reflects only the total non-volatile anionic impurity level.

Bursik, A. [Grosskraftwerk Mannheim AG (Germany)

1995-01-01T23:59:59.000Z

310

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

38 38 Nevada - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S30. Summary statistics for natural gas - Nevada, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 4 4 4 3 4 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 4 4 4 3 4

311

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

4 4 Idaho - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S14. Summary statistics for natural gas - Idaho, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

312

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

4 4 Washington - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S49. Summary statistics for natural gas - Washington, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

313

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 Maine - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S21. Summary statistics for natural gas - Maine, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0 0

314

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

8 8 Minnesota - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S25. Summary statistics for natural gas - Minnesota, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0 0 0

315

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 South Carolina - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S42. Summary statistics for natural gas - South Carolina, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

316

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

6 6 North Carolina - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S35. Summary statistics for natural gas - North Carolina, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

317

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

0 0 Iowa - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S17. Summary statistics for natural gas - Iowa, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0 0

318

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

4 4 Massachusetts - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S23. Summary statistics for natural gas - Massachusetts, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

319

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

6 6 Minnesota - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S25. Summary statistics for natural gas - Minnesota, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0 0 0

320

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

0 0 New Jersey - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S32. Summary statistics for natural gas - New Jersey, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

Note: This page contains sample records for the topic "fossil electricity total" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

0 0 Vermont - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S47. Summary statistics for natural gas - Vermont, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0 0 0

322

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

8 8 Wisconsin - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S51. Summary statistics for natural gas - Wisconsin, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0 0 0

323

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

8 8 North Carolina - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S35. Summary statistics for natural gas - North Carolina, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

324

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 New Jersey - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S32. Summary statistics for natural gas - New Jersey, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

325

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

0 0 Maryland - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S22. Summary statistics for natural gas - Maryland, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 7 7 7 7 8 Production (million cubic feet) Gross Withdrawals From Gas Wells 35 28 43 43 34 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 35

326

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 New Hampshire - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S31. Summary statistics for natural gas - New Hampshire, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

327

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 Maryland - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S22. Summary statistics for natural gas - Maryland, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 7 7 7 8 9 Production (million cubic feet) Gross Withdrawals From Gas Wells 28 43 43 34 44 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 28

328

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 Missouri - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S27. Summary statistics for natural gas - Missouri, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 53 100 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

329

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

2 2 Massachusetts - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S23. Summary statistics for natural gas - Massachusetts, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

330

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

0 0 South Carolina - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S42. Summary statistics for natural gas - South Carolina, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

331

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 Rhode Island - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S41. Summary statistics for natural gas - Rhode Island, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

332

Electricity consumption from renewable and non-renewable sources and economic growth: Evidence from Latin American countries  

Science Journals Connector (OSTI)

Abstract This study explores the effect of renewable and non-renewable electricity consumption on economic growth in 18 Latin American countries. To achieve the goal of this study a panel Gross Domestic Product (GDP) model was constructed taking the period 1980–2010 into account. From the Pedroni cointegration test results it was found that renewable electricity consumption, non-renewable electricity consumption, labor, gross fixed capital formation, and total trade are cointegrated. Moreover, the panel Dynamic Ordinary Least Squares (DOLS) test results revealed that all above the mentioned variables have a long run positive effect on GDP growth in the investigated countries. The Vector Error-Correction (VEC) Granger causality model results revealed the existence of feedback causality between the variables. The results of the study indicated that renewable electricity consumption is more significant than non-renewable electricity consumption in promoting economic growth in the investigated countries in the long run and the short run. Based on the results of this study, it is recommended that the investigated countries should increase their investment on renewable energy projects to increase the role of electricity consumption from renewable sources. In addition, it is essential that these countries should reduce their non-renewable electricity consumption by increasing their energy efficiency and implementing energy saving projects. By applying these recommendations, these countries would be able to mitigate global warming and reduce their dependency on fossil fuel to increase their energy security.

Usama Al-mulali; Hassan Gholipour Fereidouni; Janice Y.M. Lee

2014-01-01T23:59:59.000Z

333

Level: National Data and Regional Totals; Row: NAICS Codes, Value...  

U.S. Energy Information Administration (EIA) Indexed Site

6 Capability to Switch Electricity to Alternative Energy Sources, 2006; Level: National Data and Regional Totals; Row: NAICS Codes, Value of Shipments and Employment Sizes; Column:...

334

Percentage of Total Natural Gas Industrial Deliveries included...  

U.S. Energy Information Administration (EIA) Indexed Site

Industrial Price Percentage of Total Industrial Deliveries included in Prices Vehicle Fuel Price Electric Power Price Period: Monthly Annual Download Series History Download...

335

Modeling Fossil Energy Demands of Primary Nonferrous Metal Production: The Case of Copper  

Science Journals Connector (OSTI)

Modeling Fossil Energy Demands of Primary Nonferrous Metal Production: The Case of Copper ... Alumbrera (Argentina) ...

Pilar Swart; Jo Dewulf

2013-11-22T23:59:59.000Z

336

Compare All CBECS Activities: Electricity Use  

U.S. Energy Information Administration (EIA) Indexed Site

Electricity Use Electricity Use Compare Activities by ... Electricity Use Total Electricity Consumption by Building Type Commercial buildings in the U.S. used a total of approximately 908 billion kilowatthours (kWh) of electricity in 1999. Office and mercantile buildings used the most total electricity. Both of these building types used electricity as their predominant energy source. Figure showing total electricity consumption by building type. If you need assistance viewing this page, please call 202-586-8800. Electricity Consumption per Building by Building Type Inpatient health care buildings used by far the most electricity per building. Figure showing electricity consumption per building by building type. If you need assistance viewing this page, please call 202-586-8800.

337

Development of the performance simulator for electric scooters with an in-wheel motor  

Science Journals Connector (OSTI)

Due to the increasing use of fossil fuel, carbon dioxide emission also increased and environmental problems have emerged as social issues. Accordingly, the research about electric vehicles as personal transportat...

B. Wang; J. H. Choi; H. W. Song; H. K. Choi…

2014-08-01T23:59:59.000Z

338

Technology investment decisions under uncertainty : a new modeling framework for the electric power sector  

E-Print Network (OSTI)

Effectively balancing existing technology adoption and new technology development is critical for successfully managing carbon dioxide (CO2) emissions from the fossil-dominated electric power generation sector. The long ...

Santen, Nidhi

2013-01-01T23:59:59.000Z

339

If I generate 20 percent of my national electricity from wind...  

Open Energy Info (EERE)

generate 20 percent of my national electricity from wind and solar - what does it do to my GDP and Trade Balance ? Home I think that the economics of fossil fuesl are well...

340

Fossil Energy Program Annual Progress Report for April 1, 2002, Through March 31, 2003  

SciTech Connect

The mission of the Fossil Energy Program is to conduct research and development that contribute to the advancement of fossil energy technologies. The Oak Ridge National Laboratory Fossil Energy Program research and development activities, performed for the Department of Energy Assistant Secretary for Fossil Energy, cover the areas of coal, clean coal technology, gas, petroleum, and support to the Strategic Petroleum Reserve. Projects on the ORNL Fossil Energy Program are supported by the U.S. Department of Energy Office of Fossil Energy, the DOE National Energy Technology Laboratory, the DOE Fossil Energy Clean Coal Technology Program, the DOE National Petroleum Technology Office, and the DOE Fossil Energy Office of Strategic Petroleum Reserve. The ORNL Fossil Energy Program shares with DOE Oak Ridge Operations technical management responsibility for all activities on the DOE Fossil Energy Advanced Research Materials Program. The Advanced Research Materials Program includes research at other DOE and government laboratories, at universities, and at industrial organizations.

Judkins, RR

2003-06-19T23:59:59.000Z

Note: This page contains sample records for the topic "fossil electricity total" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

DOE - Fossil Energy: R&D Project Data Base  

NLE Websites -- All DOE Office Websites (Extended Search)

About DOE Button Organization Button News Button Contact Us Button About DOE Button Organization Button News Button Contact Us Button Search Go Button US Department of Energy Seal and Header Photo Science and Technology Button Energy Sources Button Energy Efficiency Button The Environment Button Prices and Trends Button National Security Button Safety and Health Button _ DOE Office of Fossil Energy Web Site Fossil Energy - Clean Coal Technologies - Carbon Capture, Utilization and Storage - Hydrogen & Other Clean Fuels - Oil & Natural Gas Technologies - Natural Gas Regulation - U.S. Petroleum Reserves - STAY CONNECTED Join Us on Facebook Follow Us on Twitter Sign Up for NewsAlerts Subscribe to our RSS Feeds You are here: Fossil Energy R&D Project Data Base The Department of Energy's Office of Fossil Energy typically manages more than 300 active research and development projects spanning a wide range of coal, petroleum and natural gas topics. You can access information on each of these projects from the Fossil Energy Online Project Database. There are three ways to obtain specific data on these projects:

342

Novel integration options of concentrating solar thermal technology with fossil-fuelled and CO2 capture processes  

Science Journals Connector (OSTI)

Concentrating solar thermal (CST) technology has been commercially proven in utility-scale power plants that have been in operation since the 1980’s. CST uses reflecting surfaces to focus solar energy onto collectors, generating extreme heat than can be used for a variety of purposes. The current focus of CST is large-scale electrical power generation. However, new applications, such as solar fuels, are quickly gaining momentum. One key shortcoming of CST technology is its sensitivity to disruptions in sunlight availability over time. CST systems require either thermal energy storage or backup systems to operate during heavy cloud periods or at night. On the other hand, fossil-based energy systems have high availability and reliability, but they generate substantial CO2 emissions compared to equivalent CST processes. A novel solution would combine the benefits of CST technology and of fossil-fueled energy systems. Such a solar-fossil hybrid system would guarantee energy availability in the absence of sunlight or stored solar energy. The addition of carbon capture to these systems could reduce their carbon intensity to almost zero. This paper introduces three important solar-fossil hybrid energy systems: (1) Integrated Solar Combined Cycle (ISCC), (2) Solar-assisted post-combustion capture (SAPCAP), and (3) Solar gasification with CO2 capture. These novel concepts have great potential to overcome the inherent limitations of their component technologies and to achieve superior greenhouse gas mitigation techno-economic performance in large-scale applications. The paper describes the features of the three solar-fossil hybrid systems described earlier, discusses its advantages and disadvantages, and provides examples of applications. The goal of this manuscript is to introduce experts in the CCS and CST fields to the opportunities of integration between these technologies and their potential benefits.

Guillermo Ordorica-Garcia; and Alfonso Vidal Delgado; Aranzazu Fernandez Garcia

2011-01-01T23:59:59.000Z

343

Sorting through the many total-energy-cycle pathways possible with early plug-in hybrids.  

SciTech Connect

Using the 'total energy cycle' methodology, we compare U.S. near term (to {approx}2015) alternative pathways for converting energy to light-duty vehicle kilometers of travel (VKT) in plug-in hybrids (PHEVs), hybrids (HEVs), and conventional vehicles (CVs). For PHEVs, we present total energy-per-unit-of-VKT information two ways (1) energy from the grid during charge depletion (CD); (2) energy from stored on-board fossil fuel when charge sustaining (CS). We examine 'incremental sources of supply of liquid fuel such as (a) oil sands from Canada, (b) Fischer-Tropsch diesel via natural gas imported by LNG tanker, and (c) ethanol from cellulosic biomass. We compare such fuel pathways to various possible power converters producing electricity, including (i) new coal boilers, (ii) new integrated, gasified coal combined cycle (IGCC), (iii) existing natural gas fueled combined cycle (NGCC), (iv) existing natural gas combustion turbines, (v) wood-to-electricity, and (vi) wind/solar. We simulate a fuel cell HEV and also consider the possibility of a plug-in hybrid fuel cell vehicle (FCV). For the simulated FCV our results address the merits of converting some fuels to hydrogen to power the fuel cell vs. conversion of those same fuels to electricity to charge the PHEV battery. The investigation is confined to a U.S. compact sized car (i.e. a world passenger car). Where most other studies have focused on emissions (greenhouse gases and conventional air pollutants), this study focuses on identification of the pathway providing the most vehicle kilometers from each of five feedstocks examined. The GREET 1.7 fuel cycle model and the new GREET 2.7 vehicle cycle model were used as the foundation for this study. Total energy, energy by fuel type, total greenhouse gases (GHGs), volatile organic compounds (VOC), carbon monoxide (CO), nitrogen oxides (NO{sub x}), fine particulate (PM2.5) and sulfur oxides (SO{sub x}) values are presented. We also isolate the PHEV emissions contribution from varying kWh storage capability of battery packs in HEVs and PHEVs from {approx}16 to 64 km of charge depleting distance. Sensitivity analysis is conducted with respect to the effect of replacing the battery once during the vehicle's life. The paper includes one appendix that examines several recent studies of interactions of PHEVs with patterns of electric generation and one that provides definitions, acronyms, and fuel consumption estimation steps.

Gaines, L.; Burnham, A.; Rousseau, A.; Santini, D.; Energy Systems

2008-01-01T23:59:59.000Z

344

A comparative analysis of accident risks in fossil, hydro, and nuclear energy chains  

SciTech Connect

This study presents a comparative assessment of severe accident risks in the energy sector, based on the historical experience of fossil (coal, oil, natural gas, and LPG (Liquefied Petroleum Gas)) and hydro chains contained in the comprehensive Energy-related Severe Accident Database (ENSAD), as well as Probabilistic Safety Assessment (PSA) for the nuclear chain. Full energy chains were considered because accidents can take place at every stage of the chain. Comparative analyses for the years 1969-2000 included a total of 1870 severe ({>=} 5 fatalities) accidents, amounting to 81,258 fatalities. Although 79.1% of all accidents and 88.9% of associated fatalities occurred in less developed, non-OECD countries, industrialized OECD countries dominated insured losses (78.0%), reflecting their substantially higher insurance density and stricter safety regulations. Aggregated indicators and frequency-consequence (F-N) curves showed that energy-related accident risks in non-OECD countries are distinctly higher than in OECD countries. Hydropower in non-OECD countries and upstream stages within fossil energy chains are most accident-prone. Expected fatality rates are lowest for Western hydropower and nuclear power plants; however, the maximum credible consequences can be very large. Total economic damages due to severe accidents are substantial, but small when compared with natural disasters. Similarly, external costs associated with severe accidents are generally much smaller than monetized damages caused by air pollution.

Burgherr, P.; Hirschberg, S. [Paul Scherrer Institute, Villigen (Switzerland)

2008-07-01T23:59:59.000Z

345

State-of-Health Aware Optimal Control of Plug-in Electric Vehicles  

E-Print Network (OSTI)

), which utilize electric motors for propulsion, differ from fossil fuel powered vehiclesState-of-Health Aware Optimal Control of Plug-in Electric Vehicles Yanzhi Wang, Siyu Yue, USA {yanzhiwa, siyuyue, pedram}@usc.edu Abstract--Plug-in electric vehicles (PEVs) are key new energy

Pedram, Massoud

346

Electricity Data Browser | Open Energy Information  

Open Energy Info (EERE)

Data Browser Data Browser Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Electricity Data Browser Agency/Company /Organization: U.S. Energy Information Administration Sector: Energy Resource Type: Software/modeling tools User Interface: Website Website: www.eia.gov/electricity/data/browser/ Web Application Link: www.eia.gov/electricity/data/browser/ Language: English Electricity Data Browser Screenshot References: EIA[1] EIA Today In Energy[2] Logo: Electricity Data Browser Use to find generation, fuel consumption, sales, revenue and average price time series, and even drill down to the plant level data. Overview The U.S. Energy Information Administration recently posted an electricity data browser to show generation, consumption, fossil fuel receipts, stockpiles, retail sales, and electricity prices. The data appear on an

347

Categorical Exclusion Determinations: Fossil Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

11, 2011 11, 2011 CX-005593: Categorical Exclusion Determination Building 39 - Replace Waterless Urinals CX(s) Applied: B1.15 Date: 04/11/2011 Location(s): Morgantown, West Virginia Office(s): Fossil Energy, National Energy Technology Laboratory April 11, 2011 CX-005592: Categorical Exclusion Determination Computational Modeling and Assessment of Nanocoatings for Ultra Supercritical Boilers CX(s) Applied: A1, A9 Date: 04/11/2011 Location(s): Charlotte, North Carolina Office(s): Fossil Energy, National Energy Technology Laboratory April 11, 2011 CX-005591: Categorical Exclusion Determination Computational Modeling and Assessment of Nanocoatings for Ultra Supercritical Boilers CX(s) Applied: A9, B3.6 Date: 04/11/2011 Location(s): Livingston, New Jersey Office(s): Fossil Energy, National Energy Technology Laboratory

348

Categorical Exclusion Determinations: Fossil Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

January 19, 2011 January 19, 2011 CX-005043: Categorical Exclusion Determination ArmorBelt Single Point Gas Lift System for Stripper Wells CX(s) Applied: B3.7 Date: 01/19/2011 Location(s): Tulsa County, Oklahoma Office(s): Fossil Energy, National Energy Technology Laboratory January 19, 2011 CX-005042: Categorical Exclusion Determination Hydrogen Production and Purification from Coal and Other Heavy Feedstocks CX(s) Applied: B3.6 Date: 01/19/2011 Location(s): Grand Forks, North Dakota Office(s): Fossil Energy, National Energy Technology Laboratory January 19, 2011 CX-005040: Categorical Exclusion Determination Induction Furnace Melting (Includes Graphite and Mold Prep) CX(s) Applied: B3.6 Date: 01/19/2011 Location(s): Albany, Oregon Office(s): Fossil Energy, National Energy Technology Laboratory

349

Categorical Exclusion Determinations: Fossil Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

18, 2010 18, 2010 CX-004483: Categorical Exclusion Determination Gyroscope Guidance Sensor for Ultra-Deepwater Applications CX(s) Applied: A9 Date: 11/18/2010 Location(s): Golden, Colorado Office(s): Fossil Energy, National Energy Technology Laboratory November 18, 2010 CX-004482: Categorical Exclusion Determination Gyroscope Guidance Sensor for Ultra-Deepwater Applications CX(s) Applied: B3.6 Date: 11/18/2010 Location(s): Grand Forks, North Dakota Office(s): Fossil Energy, National Energy Technology Laboratory November 18, 2010 CX-004481: Categorical Exclusion Determination Gyroscope Guidance Sensor for Ultra-Deepwater Applications CX(s) Applied: B3.6 Date: 11/18/2010 Location(s): Grand Forks, North Dakota Office(s): Fossil Energy, National Energy Technology Laboratory

350

Categorical Exclusion Determinations: Fossil Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

June 4, 2010 June 4, 2010 CX-002647: Categorical Exclusion Determination Development of Biochemical Techniques for the Extraction of Mercury from Waste Streams Containing Coal CX(s) Applied: B3.6 Date: 06/04/2010 Location(s): Morgantown, West Virginia Office(s): Fossil Energy, National Energy Technology Laboratory June 4, 2010 CX-002646: Categorical Exclusion Determination Polymer Nanocomposites for Carbon Dioxide Capture CX(s) Applied: B3.6 Date: 06/04/2010 Location(s): Morgantown, West Virginia Office(s): Fossil Energy, National Energy Technology Laboratory June 4, 2010 CX-002645: Categorical Exclusion Determination Fine Coal Flotation and Removal of Toxic Trace Elements CX(s) Applied: B3.6 Date: 06/04/2010 Location(s): Morgantown, West Virginia Office(s): Fossil Energy, National Energy Technology Laboratory

351

Categorical Exclusion Determinations: Fossil Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

September 28, 2011 September 28, 2011 CX-006966: Categorical Exclusion Determination Building 903 Renovation CX(s) Applied: B1.16, B1.29, B2.1, B2.2, B2.5 Date: 09/28/2011 Location(s): Pittsburgh, Pennsylvania Office(s): Fossil Energy, National Energy Technology Laboratory September 28, 2011 CX-006960: Categorical Exclusion Determination Building 83 Lab 242 Renovations as per Office of Research and Development Modifications CX(s) Applied: B1.29, B2.1, B2.2 Date: 09/28/2011 Location(s): Pittsburgh, Pennsylvania Office(s): Fossil Energy, Sandia Site Office September 26, 2011 CX-006973: Categorical Exclusion Determination Characterization of Most Promising Sequestration Formations in the Rocky Mountain Region CX(s) Applied: B3.1 Date: 09/26/2011 Location(s): Craig, Colorado Office(s): Fossil Energy, National Energy Technology Laboratory

352

Lab Breakthrough: Supercomputing Power to Accelerate Fossil Energy Research  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Supercomputing Power to Accelerate Fossil Energy Supercomputing Power to Accelerate Fossil Energy Research Lab Breakthrough: Supercomputing Power to Accelerate Fossil Energy Research September 30, 2013 - 4:49pm Addthis At the heart of the Simulation-Based Engineering User Center (SBEUC) is a high-performance computer that enables the simulation of processes or technologies that are difficult or impossible to demonstrate using traditional methods. | Video by the National Energy Technology Laboratory. Ben Dotson Ben Dotson Project Coordinator for Digital Reform, Office of Public Affairs How can I participate? Watch the video and learn more about the National Labs and their work in high performance computing. The Lab Breakthroughs series features videos produced by each of the National Labs about their game-changing innovations and discoveries. To see

353

Disclosure of Permitted Communication Concerning Fossil Fuel Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Disclosure of Permitted Communication Concerning Fossil Fuel Energy Disclosure of Permitted Communication Concerning Fossil Fuel Energy Consumption Reduction for New Construction and Major Renovations of Federal Buildings -- Docket No. EERE-2010-BT-STD-0031; RIN 1904-AB96 Disclosure of Permitted Communication Concerning Fossil Fuel Energy Consumption Reduction for New Construction and Major Renovations of Federal Buildings -- Docket No. EERE-2010-BT-STD-0031; RIN 1904-AB96 This memo provides an overview of communications made to DOE staff on the subject of the rulemaking referenced above. The communications occurred at a meeting held on February 13, 2013. DOE 433 ex parte memo.pdf More Documents & Publications Disclosure of Permitted Communication Concerning Regional Standards Enforcement Framework Document -- Docket No. EERE-2011-BT-CE-0077

354

Categorical Exclusion Determinations: Fossil Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

24, 2010 24, 2010 CX-001210: Categorical Exclusion Determination Recovery Act: Carbon Dioxide Reuse in Petrochemical Facilities CX(s) Applied: A9, A11, B3.6 Date: 03/24/2010 Location(s): Durham, North Carolina Office(s): Fossil Energy, National Energy Technology Laboratory March 22, 2010 CX-001298: Categorical Exclusion Determination Full-Scale Mercury Control Demonstrations: Information Collection Request Sampling with Mercury Control Elements CX(s) Applied: A9, B3.6 Date: 03/22/2010 Location(s): Grand Forks, North Dakota Office(s): Fossil Energy, National Energy Technology Laboratory March 17, 2010 CX-001328: Categorical Exclusion Determination Fischer Tropsch Laboratory CX(s) Applied: B3.6 Date: 03/17/2010 Location(s): Pittsburgh, Pennsylvania Office(s): Fossil Energy, National Energy Technology Laboratory

355

Categorical Exclusion Determinations: Fossil Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

May 17, 2010 May 17, 2010 CX-002306: Categorical Exclusion Determination Developing a Novel Method of Cleaning and Dewatering Fine Coal CX(s) Applied: B3.6 Date: 05/17/2010 Location(s): Blacksburg, Virginia Office(s): Fossil Energy, National Energy Technology Laboratory May 17, 2010 CX-002303: Categorical Exclusion Determination Center for Renewable Energy Science and Technology (CREST) CX(s) Applied: B3.6, A11 Date: 05/17/2010 Location(s): Arlington, Texas Office(s): Fossil Energy, National Energy Technology Laboratory May 13, 2010 CX-002247: Categorical Exclusion Determination Alaska Rural Energy Conference CX(s) Applied: A9 Date: 05/13/2010 Location(s): Fairbanks, Alaska Office(s): Fossil Energy, National Energy Technology Laboratory May 13, 2010 CX-002246: Categorical Exclusion Determination

356

Categorical Exclusion Determinations: Fossil Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

August 30, 2011 August 30, 2011 CX-006498: Categorical Exclusion Determination Pilot Testing: Pretreatment Options to Allow Re-Use of Frac Flowback Water CX(s) Applied: B3.6 Date: 08/30/2011 Location(s): Plymouth, New York Office(s): Fossil Energy, National Energy Technology Laboratory August 29, 2011 CX-006503: Categorical Exclusion Determination B83 1st Floor Renovation - Phase II Completion CX(s) Applied: B1.29, B1.31, B2.1, B2.2 Date: 08/29/2011 Location(s): Pittsburgh, Pennsylvania Office(s): Fossil Energy, National Energy Technology Laboratory August 25, 2011 CX-006544: Categorical Exclusion Determination Building 84 Laboratory Renovation CX(s) Applied: A11, B1.15, B3.6 Date: 08/25/2011 Location(s): Pittsburgh, Pennsylvania Office(s): Fossil Energy, National Energy Technology Laboratory

357

Fossil Energy Research Benefits Carbon Capture and Storage  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Through Office of Fossil Energy (FE) Through Office of Fossil Energy (FE) research and development (R&D), the United States has become a world leader in carbon capture and storage (CCS) science and technology. CCS is a group of technologies for effectively capturing, compressing and transporting, and permanently injecting and storing in geologic formations carbon dioxide (CO 2 ) from industrial or power plants. It is one part of a wider portfolio strategy (including greater use of renewable and nuclear energy, and higher efficiencies) that many scientists and nations favor for achieving significant cuts in atmospheric CO 2 emissions. Fossil Energy Research Benefits Carbon Capture and Storage FE and its research facility, the National Energy Technology

358

Categorical Exclusion Determinations: Fossil Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

July 15, 2011 July 15, 2011 CX-006142: Categorical Exclusion Determination Recovery Act: Skyonic Beneficial Carbon Dioxide Use Project CX(s) Applied: A9, A11, B3.6 Date: 07/15/2011 Location(s): San Antonio, Texas Office(s): Fossil Energy, National Energy Technology Laboratory July 13, 2011 CX-006156: Categorical Exclusion Determination Utility Metering Installation: B3, B14, B36 CX(s) Applied: B1.15, B2.2 Date: 07/13/2011 Location(s): Morgantown, West Virginia Office(s): Fossil Energy, National Energy Technology Laboratory July 12, 2011 CX-006173: Categorical Exclusion Determination Plains Carbon Dioxide Reduction Partnership (PCOR) Phase III Bell Creek Site CX(s) Applied: B3.1 Date: 07/12/2011 Location(s): Montana Office(s): Fossil Energy, National Energy Technology Laboratory

359

Categorical Exclusion Determinations: Fossil Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

March 3, 2010 March 3, 2010 CX-001004: Categorical Exclusion Determination West Hackberry Site Security Detection Systems Upgrade (Install) CX(s) Applied: B2.2 Date: 03/03/2010 Location(s): West Hackberry, Louisiana Office(s): Fossil Energy, Strategic Petroleum Reserve Field Office March 2, 2010 CX-001034: Categorical Exclusion Determination Recovery Act: Solar Reforming of Carbon Dioxide to Produce Diesel Fuel CX(s) Applied: B3.6 Date: 03/02/2010 Location(s): Sacramento, California Office(s): Fossil Energy, National Energy Technology Laboratory March 1, 2010 CX-001003: Categorical Exclusion Determination West Hackberry Tank (WHT)-1 and WHT-10 Liner Removal/Reline CX(s) Applied: B1.3 Date: 03/01/2010 Location(s): West Hackberry, Louisiana Office(s): Fossil Energy, Strategic Petroleum Reserve Field Office

360

Categorical Exclusion Determinations: Fossil Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

29, 2011 29, 2011 CX-005664: Categorical Exclusion Determination Development and Testing of Compact Heat Exchange Reactors (CHER) for Synthesis of Liquid Fuels CX(s) Applied: B3.6 Date: 04/29/2011 Location(s): Laramie, Wyoming Office(s): Fossil Energy, National Energy Technology Laboratory April 29, 2011 CX-005663: Categorical Exclusion Determination Vortex Tube Project Decommissioning Project CX(s) Applied: B3.6 Date: 04/29/2011 Location(s): Morgantown, West Virginia Office(s): Fossil Energy, National Energy Technology Laboratory April 29, 2011 CX-005662: Categorical Exclusion Determination The Use of Scrap Tires for Oil Well Stimulation CX(s) Applied: B3.7 Date: 04/29/2011 Location(s): Upper Falls, West Virginia Office(s): Fossil Energy, National Energy Technology Laboratory

Note: This page contains sample records for the topic "fossil electricity total" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Four Minority Universities Selected for Fossil Energy Research Grants |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

May 20, 2010 - 1:00pm May 20, 2010 - 1:00pm Addthis Washington, DC - Innovative fossil energy research projects will be investigated by students and faculty from four winning institutions in the Department of Energy's annual competition for fossil energy research ideas from the nation's Historically Black Colleges and Universities and Other Minority Institutions (HBCU/OMI). Students and faculty from the chosen universities - the University of Texas, El Paso; Southern University and A&M College; Tennessee State University; and the University of Texas, San Antonio - will investigate projects dealing with computational energy sciences, material sciences, and sensors and controls for use in fossil fuel power systems. Established in 1984, the HBCU/OMI program was designed to encourage

362

Environmental inventories for future electricity supply systems for Switzerland  

Science Journals Connector (OSTI)

The Swiss Association of Producers and Distributors of Electricity (VSE) identified a number of possible supply mix options to meet the future electricity demand in Switzerland. In this context, PSI, in co-operation with ETHZ, analysed environmental inventories for the selected electricity supply systems. Life Cycle Analysis (LCA) was used to establish the inventories, covering the complete energy chains associated with fossil, nuclear and renewable systems. The assessment was performed on three levels: (1) individually for each system considered; (2) comparison of systems; (3) comparison of supply mix options. In absolute value, the emissions of the major pollutants considered are, in most cases, significantly reduced in comparison with the currently operating systems. Due to the considerable advancements in fossil power plant technologies, the relative importance of other activities increases in the fossil energy systems. Selected results for systems and supply options are given in the present paper.

R. Dones; U.; Ganter; S. Hirschberg

1999-01-01T23:59:59.000Z

363

Life cycle analysis of world electricity in the 21st century using the world energy LCA model  

Science Journals Connector (OSTI)

World energy and electricity demand by the year 2100 has been analysed using the World Energy LCA (Life Cycle Analysis) Model. Three energy scenarios are set-up: the current fossil fuel-intensive pattern, as well as renewable-intensive and nuclear-intensive alternatives. The performance of CO2 emissions, resource availability, total investment costs, indirect energy consumption from the life cycle standpoint and total fatality risks are compared between these scenarios. The result shows that the renewable and nuclear scenarios achieve the 1990 CO2 emission level by 2100, while the total investment cost and indirect energy consumption for the renewable scenario would hamper its wide scale adoption. In the case of the current fossil-fuel scenario, coal is used for as much as 53% of primary energy, which gives about a three times higher fatality rate compared with the other scenarios. Although resource availability will not constrain all three scenarios, the marginal production cost of oil and gas will double by the year 2100. As a whole, the nuclear scenario becomes advantageous from the comparisons made in the present study.

Toshihide Takeshita; Yohji Uchiyama; Keishiro Ito; Hisashi Hayashibe

1998-01-01T23:59:59.000Z

364

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

6 6 Tennessee - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S44. Summary statistics for natural gas - Tennessee, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 285 310 230 210 212 Production (million cubic feet) Gross Withdrawals From Gas Wells 4,700 5,478 5,144 4,851 5,825 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

365

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 Connecticut - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S7. Summary statistics for natural gas - Connecticut, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

366

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

4 4 Oregon - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S39. Summary statistics for natural gas - Oregon, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 18 21 24 26 24 Production (million cubic feet) Gross Withdrawals From Gas Wells 409 778 821 1,407 1,344 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0

367

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

6 6 District of Columbia - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S9. Summary statistics for natural gas - District of Columbia, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

368

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

6 6 Oregon - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S39. Summary statistics for natural gas - Oregon, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 21 24 26 24 27 Production (million cubic feet) Gross Withdrawals From Gas Wells 778 821 1,407 1,344 770 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0

369

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

8 8 Georgia - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S11. Summary statistics for natural gas - Georgia, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0

370

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

2 2 Delaware - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S8. Summary statistics for natural gas - Delaware, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0

371

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

4 4 District of Columbia - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S9. Summary statistics for natural gas - District of Columbia, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

372

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

4 4 Tennessee - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S44. Summary statistics for natural gas - Tennessee, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 305 285 310 230 210 Production (million cubic feet) Gross Withdrawals From Gas Wells NA 4,700 5,478 5,144 4,851 From Oil Wells 3,942 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

373

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

4 4 Nebraska - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S29. Summary statistics for natural gas - Nebraska, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 186 322 285 276 322 Production (million cubic feet) Gross Withdrawals From Gas Wells 1,331 2,862 2,734 2,092 1,854 From Oil Wells 228 221 182 163 126 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

374

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 Georgia - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S11. Summary statistics for natural gas - Georgia, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0

375

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

0 0 Connecticut - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S7. Summary statistics for natural gas - Connecticut, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

376

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

6 6 Florida - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S10. Summary statistics for natural gas - Florida, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 2,000 2,742 290 13,938 17,129 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

377

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

4 4 Delaware - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S8. Summary statistics for natural gas - Delaware, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0

378

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 Indiana - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S16. Summary statistics for natural gas - Indiana, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 525 563 620 914 819 Production (million cubic feet) Gross Withdrawals From Gas Wells 4,701 4,927 6,802 9,075 8,814 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

379

Solar-Augment Potential of U.S. Fossil-Fired Power Plants  

SciTech Connect

Concentrating Solar Power (CSP) systems utilize solar thermal energy for the generation of electric power. This attribute makes it relatively easy to integrate CSP systems with fossil-fired power plants. The 'solar-augment' of fossil power plants offers a lower cost and lower risk alternative to stand-alone solar plant construction. This study ranked the potential to add solar thermal energy to coal-fired and natural gas combined cycle (NGCC) plants found throughout 16 states in the southeast and southwest United States. Each generating unit was ranked in six categories to create an overall score ranging from Excellent to Not Considered. Separate analysis was performed for parabolic trough and power tower technologies due to the difference in the steam temperatures that each can generate. The study found a potential for over 11 GWe of parabolic trough and over 21 GWe of power tower capacity. Power towers offer more capacity and higher quality integration due to the greater steam temperatures that can be achieved. The best sites were in the sunny southwest, but all states had at least one site that ranked Good for augmentation.

Turchi, C.; Langle, N.; Bedilion, R.; Libby, C.

2011-02-01T23:59:59.000Z

380

Compare All CBECS Activities: Total Energy Use  

U.S. Energy Information Administration (EIA) Indexed Site

Total Energy Use Total Energy Use Compare Activities by ... Total Energy Use Total Major Fuel Consumption by Building Type Commercial buildings in the U.S. used a total of approximately 5.7 quadrillion Btu of all major fuels (electricity, natural gas, fuel oil, and district steam or hot water) in 1999. Office buildings used the most total energy of all the building types, which was not a surprise since they were the most common commercial building type and had an above average energy intensity. Figure showing total major fuel consumption by building type. If you need assistance viewing this page, please call 202-586-8800. Major Fuel Consumption per Building by Building Type Because there were relatively few inpatient health care buildings and they tend to be large, energy intensive buildings, their energy consumption per building was far above that of any other building type.

Note: This page contains sample records for the topic "fossil electricity total" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Causal relationship between fossil fuel consumption and economic growth in the world  

Science Journals Connector (OSTI)

Fossil fuels are major sources of energy, and have several advantages over other primary energy sources. Without extensive dependence on fossil fuels, it is questionable whether our economic prosperity can continue. This paper analyses cointegration and causality between fossil fuel consumption and economic growth in the world over the period 1971 to 2008. The estimation results indicate that fossil fuel consumption and GDP are cointegrated and there exists long-run unidirectional causality from fossil fuel consumption to GDP. This paper also investigates the nexus between non-fossil energy consumption and GDP, and shows that there is no causality between the variables. The conclusions are that reducing fossil fuel consumption may hamper economic growth, and that it is unlikely that non-fossil energy will substantially replace fossil fuels. This paper also examines causal linkages between the variables using a trivariate model, and obtains the same results as those from the bivariate model.

Hazuki Ishida

2012-01-01T23:59:59.000Z

382

Effect of Heat and Electricity Storage and Reliability on Microgrid Viability: A Study of Commercial Buildings in California and New York States  

E-Print Network (OSTI)

ES 2. CA nursing home electricity pattern: July weekday lowJanuary and July weekday electricity and total heat (space +CA school weekday total electricity (inclusive of cooling)

Stadler, Michael

2009-01-01T23:59:59.000Z

383

Variations of Total Domination  

Science Journals Connector (OSTI)

The study of locating–dominating sets in graphs was pioneered by Slater [186, 187...], and this concept was later extended to total domination in graphs. A locating–total dominating set, abbreviated LTD-set, in G

Michael A. Henning; Anders Yeo

2013-01-01T23:59:59.000Z

384

Electricity Consumption Electricity Consumption EIA Electricity Consumption Estimates  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Consumption Consumption Electricity Consumption EIA Electricity Consumption Estimates (million kWh) National Petroleum Council Assumption: The definition of electricity con- sumption and sales used in the NPC 1999 study is the equivalent ofwhat EIA calls "sales by utilities" plus "retail wheeling by power marketers." This A nn u al Gro wth total could also be called "sales through the distribution grid," 2o 99 99 to Sales by Utilities -012% #N/A Two other categories of electricity consumption tracked by EIA cover on site Retail Wheeling Sales by generation for host use. The first, "nonutility onsite direct use," covers the Power Marketen 212.25% #N/A traditional generation/cogeneration facilities owned by industrial or large All Sales Through Distribution

385

Total Crude by Pipeline  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Total Crude by All Transport Methods Domestic Crude by All Transport Methods Foreign Crude by All Transport Methods Total Crude by Pipeline Domestic Crude by Pipeline Foreign Crude by Pipeline Total Crude by Tanker Domestic Crude by Tanker Foreign Crude by Tanker Total Crude by Barge Domestic Crude by Barge Foreign Crude by Barge Total Crude by Tank Cars (Rail) Domestic Crude by Tank Cars (Rail) Foreign Crude by Tank Cars (Rail) Total Crude by Trucks Domestic Crude by Trucks Foreign Crude by Trucks Period: Product: Total Crude by All Transport Methods Domestic Crude by All Transport Methods Foreign Crude by All Transport Methods Total Crude by Pipeline Domestic Crude by Pipeline Foreign Crude by Pipeline Total Crude by Tanker Domestic Crude by Tanker Foreign Crude by Tanker Total Crude by Barge Domestic Crude by Barge Foreign Crude by Barge Total Crude by Tank Cars (Rail) Domestic Crude by Tank Cars (Rail) Foreign Crude by Tank Cars (Rail) Total Crude by Trucks Domestic Crude by Trucks Foreign Crude by Trucks Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area 2007 2008 2009 2010 2011 2012 View

386

Comprehensive monitoring program for fossil fuel utility boilers  

SciTech Connect

Kentucky Utilities Company (KUCo) is an investor-owned electric utility serving customers in 78 Kentucky counties and through a subsidiary, Old Dominion Power Company, serves customers in five counties in southwestern Virginia. Over 99 percent of all electricity generated is from coal. KUCo has five coal-fired generating stations with a total generating capacity of 2,530,000 kilowatts. According to regulations adopted by the Kentucky Division of Air Pollution (DAP), each existing, indirect heat exchanger having a capacity factor greater than thirty percent is required to install, operate and maintain continuous opacity and sulfur dioxide monitoring equipment. Newer units already had continuous emission monitors (CEM's) and they were also required to monitor for nitrogen oxides. When the CEM retro-fit project was started in the spring of 1980, the operating status, as well as the manufacturer and model numbers of existing equipment, were identified. Approximately 80 percent of the existing equipment was manufactured by Lear Siegler, Inc. (LSI). Most of the LSI equipment was operable and it was determined that LSI equipment would be used for the retro-fit project. Existing equipment was renovated to include recent design changes and improvements and some equipment supplied by others was replaced.

Moffett, J.W.; Garcia, A.M.

1983-06-01T23:59:59.000Z

387

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Electric Power Sector Coal Stocks: January 2012 Electric Power Sector Coal Stocks: January 2012 Stocks Above normal temperatures in January have allowed electric utilities to significantly replinish stockpiles of coal. The upswing in coal stockpiles corresponds to decreasing consumption of coal at electric generators seen in the resource use section across all regions of the country. Days of Burn Days of burn Coal capacity The average number of days of burn held at electric power plants is a forward looking estimate of coal supply given a power plant's current stockpile and past consumption patterns. Along with coal stockpiles at electric power plants, the supply of coal significantly increased in January of 2012. Total bituminous coal days of burn increased 10 percent from January 2011 to 87, while subbituminous supply increased nearly 10

388

Historic patterns of CO{sub 2} emissions from fossil fuels: Implications for stabilization of emissions  

SciTech Connect

This paper examines the historical record of greenhouse gas emissions since 1950, reviews the prospects for emissions into the future, and projects what would be the short-term outcome if the stated targets of the FCCC were in fact achieved. The examination focuses on the most important of the greenhouse gases, CO{sub 2}. The extensive record of historic CO{sub 2} emissions is explored to ascertain if it is an adequate basis for useful extrapolation into the near future. Global carbon dioxide emissions from fossil fuel consumption have been documented. Emissions grew at 4.3% per year from 1950 until the time of the 1973 oil crisis. Another disruption in growth followed the oil price increases of 1979. Global total emissions have been increasing steadily since the 1982-1983 minimum and have grown by more than 20% since then. At present, emission Of CO{sub 2} from fossil fuel burning is dominated by a few countries: the U.S., the former Soviet Union, China, the developed countries of Europe and Japan. Only 20 countries emit 84% of emissions from all countries. However, rates of growth in many of the developed countries are now very low. In contrast, energy use has grown rapidly over the last 20 years in some of the large, developing economies. Emissions from fossil fuel consumption are now nearly 4 times those from land use change and are the primary cause of measured increases in the atmospheric concentration of CO{sub 2}. The increasing concentration of atmospheric CO{sub 2} has led to rising concern about the possibility of impending changes in the global climate system. In an effort to limit or mitigate potential negative effects of global climate change, 154 countries signed the United Nations Framework Convention on Climate Change (FCCC) in Rio de Janeiro in June, 1992. The FCCC asks all countries to conduct an inventory of their current greenhouse gas emissions setting non-binding targets.

Andres, R.J.; Marland, G.

1994-10-01T23:59:59.000Z

389

Historic Patterns of CO{sub 2} Emissions from Fossil Fuels: Implications for Stabilization of Emissions  

DOE R&D Accomplishments (OSTI)

This paper examines the historical record of greenhouse gas emissions since 1950, reviews the prospects for emissions into the future, and projects what would be the short-term outcome if the stated targets of the FCCC were in fact achieved. The examination focuses on the most important of the greenhouse gases, CO{sub 2}. The extensive record of historic CO{sub 2} emissions is explored to ascertain if it is an adequate basis for useful extrapolation into the near future. Global carbon dioxide emissions from fossil fuel consumption have been documented. Emissions grew at 4.3% per year from 1950 until the time of the 1973 oil crisis. Another disruption in growth followed the oil price increases of 1979. Global total emissions have been increasing steadily since the 1982-1983 minimum and have grown by more than 20% since then. At present, emission Of CO{sub 2} from fossil fuel burning is dominated by a few countries: the U.S., the former Soviet Union, China, the developed countries of Europe and Japan. Only 20 countries emit 84% of emissions from all countries. However, rates of growth in many of the developed countries are now very low. In contrast, energy use has grown rapidly over the last 20 years in some of the large, developing economies. Emissions from fossil fuel consumption are now nearly 4 times those from land use change and are the primary cause of measured increases in the atmospheric concentration of CO{sub 2}. The increasing concentration of atmospheric CO{sub 2} has led to rising concern about the possibility of impending changes in the global climate system. In an effort to limit or mitigate potential negative effects of global climate change, 154 countries signed the United Nations Framework Convention on Climate Change (FCCC) in Rio de Janeiro in June, 1992. The FCCC asks all countries to conduct an inventory of their current greenhouse gas emissions setting non-binding targets.

Andres, R. J.; Marland, G.

1994-06-00T23:59:59.000Z

390

Potential Benefits from Improved Energy Efficiency of Key Electrical Products: The Case of India  

E-Print Network (OSTI)

Thus, reduced electricity consumption from higher efficiencyestimated the daily electricity consumption from a survey ofby total commercial electricity consumption. The price of

McNeil, Michael; Iyer, Maithili; Meyers, Stephen; Letschert, Virginie; McMahon, James E.

2005-01-01T23:59:59.000Z

391

The Challenge Human activities, such as the burning of fossil  

E-Print Network (OSTI)

Oil is a multinational independent exploration and production company with interests in the North Sea oil, gas fields or saline aquifers. Emissions from fossil fuel power stations could then be reduced, is the process of the capture and long-term storage of atmospheric CO2 and will play a vital role in future

Crowther, Paul

392

Changing Biomass, Fossil, and Nuclear Fuel Cycles for Sustainability  

SciTech Connect

The energy and chemical industries face two great sustainability challenges: the need to avoid climate change and the need to replace crude oil as the basis of our transport and chemical industries. These challenges can be met by changing and synergistically combining the fossil, biomass, and nuclear fuel cycles.

Forsberg, Charles W [ORNL

2007-01-01T23:59:59.000Z

393

Fossil energy, clean coal technology, and FutureGen  

SciTech Connect

Future fossil use will rely heavily on carbon sequestration. Clean coal technologies are being incorporated in the USA, including air pollution control, and will need to incorporate carbon capture and sequestration. The paper ends with an outline of the restructured FutureGen project. 7 figs.

Sarkus, T.A.

2008-07-15T23:59:59.000Z

394

Age of Neoproterozoic Bilatarian Body and Trace Fossils, White  

E-Print Network (OSTI)

Age of Neoproterozoic Bilatarian Body and Trace Fossils, White Sea, Russia: Implications-bearing, shallow marine siliciclastic rocks in the Zimnie Gory section of the White Sea region indicates Ranges, South Australia (18); in the Poleta Formation in the White-Inyo Mountains and Upper Wood Canyon

395

Surface chemistry control for selective fossil resin flotation  

DOE Patents (OSTI)

A froth flotation method is disclosed for separating fine particles of fossil resin by use of frothing reagents which include an aliphatic organic compound having a polar group and containing not more than four carbon atoms. Butanol is an effective frothing reagent in this method. 12 figs.

Miller, J.D.; Yi, Y.; Yu, Q.

1994-06-07T23:59:59.000Z

396

Surface chemistry control for selective fossil resin flotation  

DOE Patents (OSTI)

A froth flotation method is disclosed for separating fine particles of fossil resin from by use of frothing reagents which include an aliphatic organic compound having a polar group and containing not more than four carbon atoms. Butanol is an effective frothing reagent in this method.

Miller, Jan D. (1886 Atkin Ave., Salt Lake City, UT 84106); Yi, Ye (2875 E. Wander Way, Salt Lake City, UT 84117); Yu, Qiang (224 University Village, Salt Lake City, UT 84108)

1994-01-01T23:59:59.000Z

397

" Level: National Data and Regional Totals;"  

U.S. Energy Information Administration (EIA) Indexed Site

6 Capability to Switch Electricity to Alternative Energy Sources, 2006; " 6 Capability to Switch Electricity to Alternative Energy Sources, 2006; " " Level: National Data and Regional Totals;" " Row: NAICS Codes, Value of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Million Kilowatthours." ,,"Electricity Receipts",,,"Alternative Energy Sources(b)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total"," ","Not","Natural","Distillate","Residual",,,"and" "Code(a)","Subsector and Industry","Receipts(c)","Switchable","Switchable","Gas","Fuel Oil","Fuel Oil","Coal","LPG","Breeze","Other(d)"," "

398

O:\ELECTRIC\EA-181.ORD  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 1 I. BACKGROUND Exports of electricity from the United States to a foreign country are regulated and require authorization under section 202(e) of the Federal Power Act (FPA) (16 U.S.C. §824a(e)). On April 27, 1998, H.Q. Energy Services (U.S.) Inc. (HQUS) applied to the Office of Fossil Energy (FE) of the Department of Energy (DOE) for authorization to transmit electric energy to Mexico as a power marketer. HQUS is a wholly-owned indirect subsidiary of Hydro- Quebec, the provincial electric utility of Canada's Province of Quebec. HQUS does not own or control any electric generating or transmission facilities, nor does it have a franchised service area. HQUS proposes to purchase surplus electric energy from electric utilities and other suppliers within the United States and to export this energy on its own behalf to Mexico. The

399

O:\ELECTRIC\EA-178.ORD  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

78 78 I. BACKGROUND Exports of electricity from the United States to a foreign country are regulated and require authorization under section 202(e) of the Federal Power Act (FPA) (16 U.S.C. §824a(e)). On March 19, 1998, Citizens Power Sales (CP Sales) applied to the Office of Fossil Energy (FE) of the Department of Energy (DOE) for authorization to transmit electric energy to Mexico as a power marketer. CP Sales does not own or control any electric generating or transmission facilities, nor does it have a franchised service area. CP Sales proposes to purchase surplus electric energy from electric utilities and other suppliers within the United States and to export this energy on its own behalf to Mexico. The energy to be exported would be delivered to Mexico over the international electric transmission

400

O:\ELECTRIC\EA-184.ORD  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4 4 I. BACKGROUND Exports of electricity from the United States to a foreign country are regulated and require authorization under section 202(e) of the Federal Power Act (FPA) (16 U.S.C. §824a(e)). On May 15, 1998, Morgan Stanley Capital Group Inc. (Morgan Stanley) applied to the Office of Fossil Energy (FE) of the Department of Energy (DOE) for authorization to transmit electric energy to Mexico as a power marketer. Morgan Stanley does not own or control any electric generating or transmission facilities, nor does it have a franchised service area. Morgan Stanley proposes to purchase surplus electric energy from electric utilities and other suppliers within the United States and to export this energy on its own behalf to Mexico. The energy to be exported would be delivered to Mexico over the international electric

Note: This page contains sample records for the topic "fossil electricity total" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Electric Power | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Power Power Electric Power From incandescent bulbs to fluorescents to LEDs, learn more about the long history of the light bulb. From incandescent bulbs to fluorescents to LEDs, learn more about the long history of the light bulb. Electricity -- the flow of electrical power -- is a secondary energy source, generated by the conversion of primary sources of energy, like fossil, nuclear, wind or solar. Keeping the power flowing to American homes and businesses is a critical necessity for everyday life and economic vitality. The Energy Department works to keep the grid secure from cyber and physical attacks; partners with states and other stakeholders to plan more resilient infrastructure that can better withstand extreme weather events; and supports efforts to

402

Microsoft Word - FossilLakeSolar_CX.docx  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

point of interconnection would be at the Midstate Electric Cooperative's Christmas Valley Substation. To integrate the proposed generation, BPA, Midstate Electric Cooperative, and...

403

Conceptual Design of Optimized Fossil Energy Systems with Capture and Sequestration of Carbon Dioxide  

SciTech Connect

In this final report, we describe research results from Phase 2 of a technical/economic study of fossil hydrogen energy systems with carbon dioxide (CO{sub 2}) capture and storage (CCS). CO{sub 2} capture and storage, or alternatively, CO{sub 2} capture and sequestration, involves capturing CO{sub 2} from large point sources and then injecting it into deep underground reservoirs for long-term storage. By preventing CO{sub 2} emissions into the atmosphere, this technology has significant potential to reduce greenhouse gas (GHG) emissions from fossil-based facilities in the power and industrial sectors. Furthermore, the application of CCS to power plants and hydrogen production facilities can reduce CO{sub 2} emissions associated with electric vehicles (EVs) and hydrogen fuel cell vehicles (HFCVs) and, thus, can also improve GHG emissions in the transportation sector. This research specifically examines strategies for transitioning to large-scale coal-derived energy systems with CCS for both hydrogen fuel production and electricity generation. A particular emphasis is on the development of spatially-explicit modeling tools for examining how these energy systems might develop in real geographic regions. We employ an integrated modeling approach that addresses all infrastructure components involved in the transition to these energy systems. The overall objective is to better understand the system design issues and economics associated with the widespread deployment of hydrogen and CCS infrastructure in real regions. Specific objectives of this research are to: Develop improved techno-economic models for all components required for the deployment of both hydrogen and CCS infrastructure, Develop novel modeling methods that combine detailed spatial data with optimization tools to explore spatially-explicit transition strategies, Conduct regional case studies to explore how these energy systems might develop in different regions of the United States, and Examine how the design and cost of coal-based H{sub 2} and CCS infrastructure depend on geography and location.

Nils Johnson; Joan Ogden

2010-12-31T23:59:59.000Z

404

Electricity Reliability  

E-Print Network (OSTI)

Electricity Delivery and Energy Reliability High Temperature Superconductivity (HTS) Visualization in the future because they have virtually no resistance to electric current, offering the possibility of new electric power equipment with more energy efficiency and higher capacity than today's systems

405

Environmentally-acceptable fossil energy site evaluation and selection: methodology and user's guide. Volume 1  

SciTech Connect

This report is designed to facilitate assessments of environmental and socioeconomic impacts of fossil energy conversion facilities which might be implemented at potential sites. The discussion of methodology and the User's Guide contained herein are presented in a format that assumes the reader is not an energy technologist. Indeed, this methodology is meant for application by almost anyone with an interest in a potential fossil energy development - planners, citizen groups, government officials, and members of industry. It may also be of instructional value. The methodology is called: Site Evaluation for Energy Conversion Systems (SELECS) and is organized in three levels of increasing sophistication. Only the least complicated version - the Level 1 SELECS - is presented in this document. As stated above, it has been expressly designed to enable just about anyone to participate in evaluating the potential impacts of a proposed energy conversion facility. To accomplish this objective, the Level 1 calculations have been restricted to ones which can be performed by hand in about one working day. Data collection and report preparation may bring the total effort required for a first or one-time application to two to three weeks. If repeated applications are made in the same general region, the assembling of data for a different site or energy conversion technology will probably take much less time.

Northrop, G.M.

1980-02-01T23:59:59.000Z

406

The use of geothermal energy: A reliable, cheap, and environmentally friendly method for generating electricity and heat  

Science Journals Connector (OSTI)

The economical and environmental aspects of generating electricity at traditional thermal power stations and at geothermal power stations are considered. The dynamics of prices for fossil fuel and results from...

O. A. Povarov; O. M. Dubnov; A. I. Nikol’skii

2007-08-01T23:59:59.000Z

407

Electrical insulation  

Science Journals Connector (OSTI)

n....Material with very low conductivity, which surrounds active electrical devices. Common electrical insulation chemicals are fluorine-containing polymers.

2007-01-01T23:59:59.000Z

408

Electrical Insulation  

Science Journals Connector (OSTI)

n...Material with very low conductivity which surrounds active electrical devices. Common electrical insulation chemicals are fluorine-containing polymers (Dissado LA...

Jan W. Gooch

2011-01-01T23:59:59.000Z

409

renewable electricity | OpenEI  

Open Energy Info (EERE)

electricity electricity Dataset Summary Description Total annual renewable electricity consumption by country, 2005 to 2009 (available in Billion Kilowatt-hours or as Quadrillion Btu). Compiled by Energy Information Administration (EIA). Source EIA Date Released Unknown Date Updated Unknown Keywords EIA renewable electricity Renewable Energy Consumption world Data text/csv icon total_renewable_electricity_net_consumption_2005_2009billion_kwh.csv (csv, 8.5 KiB) text/csv icon total_renewable_electricity_net_consumption_2005_2009quadrillion_btu.csv (csv, 8.9 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Time Period 2005 - 2009 License License Other or unspecified, see optional comment below Comment Rate this dataset Usefulness of the metadata

410

Where do fossil fuel carbon dioxide emissions from California go? An analysis based on radiocarbon observations and an atmospheric transport model  

E-Print Network (OSTI)

do fossil fuel carbon dioxide emissions from California go?do fossil fuel carbon dioxide emissions from California go?1° distribution of carbon dioxide emissions from fossil fuel

2008-01-01T23:59:59.000Z

411

Total Space Heat-  

Annual Energy Outlook 2012 (EIA)

Buildings Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration...

412

The Fate of Fossil Fuel Hydrocarbons in Marine Animals [and Discussion  

Science Journals Connector (OSTI)

20 May 1975 research-article The Fate of Fossil Fuel Hydrocarbons in Marine Animals [and Discussion] E...have been made of their fate in mammals. The fate of fossil fuel hydrocarbons in marine animals. | Journal Article...

1975-01-01T23:59:59.000Z

413

The Fate of Fossil Fuel Hydrocarbons in Marine Animals [and Discussion  

Science Journals Connector (OSTI)

...research-article The Fate of Fossil Fuel Hydrocarbons in Marine Animals [and Discussion...mammals. The fate of fossil fuel hydrocarbons in marine animals. | Journal Article...Carcinogens 0 Epoxy Compounds 0 Fuel Oils 0 Hydrocarbons 0 Naphthalenes...

1975-01-01T23:59:59.000Z

414

World Forests: The Area for Afforestation and their Potential for Fossil Carbon Sequestration and Substitution  

Science Journals Connector (OSTI)

A crucial factor in maintaining the carbon balance by forest plantations is to follow-up such programs by substituting fossil fuel by biomass. The amount of fossil fuel that 1 PJ of biomass energy can substitute ...

Wolfgang Schopfhauser

1998-01-01T23:59:59.000Z

415

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Electric Power Sector Coal Stocks: October 2013 Electric Power Sector Coal Stocks: October 2013 Stocks In October 2013, total coal stocks increased 0.8 percent from the previous month. This follows the normal seasonal pattern for this time of year as the country begins to build up coal stocks to be consumed during the winter months. Compared to last October, coal stocks decreased 17.7 percent. This occurred because coal stocks in October 2012 were at an extremely high level. Days of Burn Days of burn Coal capacity The average number of days of burn held at electric power plants is a forward looking estimate of coal supply given a power plant's current stockpile and past consumption patterns. The total bituminous supply decreased from 85 days the previous month to 78 days in October 2013, while the total subbituminous supply decreased from 63 days in September 2013 to

416

Soot from the burning of fossil fuels and solid biofuels contributes far more to global  

E-Print Network (OSTI)

Soot from the burning of fossil fuels and solid biofuels contributes far more to global warming Researchers ScienceDaily (July 30, 2010) -- Soot from the burning of fossil fuels and solid biofuels analyzed the impacts of soot from fossil fuels -- diesel, coal, gasoline, jet fuel -- and from solid

417

WORKING PAPER N 2010 -11 Carbon price and optimal extraction of a polluting fossil  

E-Print Network (OSTI)

WORKING PAPER N° 2010 - 11 Carbon price and optimal extraction of a polluting fossil fuel atmospheric CO2. For instance, Chakravorty et al. (2006b) examine the optimal fossil fuel price path, when AGRONOMIQUE halshs-00564852,version1-10Feb2011 #12;Carbon Price and Optimal Extraction of a Polluting Fossil

Paris-Sud XI, Université de

418

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

4. Weighted Average Cost of Fossil Fuels for the Electric Power Industry, 2002 through 2012 Coal Petroleum Natural Gas Total Fossil Bituminous Subbituminous Lignite All Coal Ranks...

419

Word Pro - S1  

U.S. Energy Information Administration (EIA) Indexed Site

(Quadrillion Btu) Production Trade Stock Change and Other d Consumption Fossil Fuels a Nuclear Electric Power Renew- able Energy b Total Imports Exports Net Imports c Fossil...

420

The Techno-economic Impacts of Using Wind Power and Plug-In Hybrid Electric Vehicles for Greenhouse Gas  

E-Print Network (OSTI)

The Techno-economic Impacts of Using Wind Power and Plug-In Hybrid Electric Vehicles for Greenhouse reliance on fossil fuels. Plug-In Hybrid Electric Vehicles (PHEVs) and wind power represent two practical Electric Vehicles for Greenhouse Gas Mitigation in Canada by Brett Kerrigan B.Eng., Carleton University

Victoria, University of

Note: This page contains sample records for the topic "fossil electricity total" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Electric Power Sector Coal Stocks: September 2011 Electric Power Sector Coal Stocks: September 2011 Stocks Electric power sector coal stocks continued to replenish after the summer burn in October, though stockpile levels remain well below 2010 levels. All coal stockpile levels declined from October 2010, with bituminous coal stockpile levels 12 percent lower than the same month of 2010. Days of Burn Days of burn Coal capacity The average number of days of burn held at electric power plants is a forward looking estimate of coal supply given a power plant's current stockpile and past consumption patterns. The average number of days of burn held on hand at electric power plants was generally flat in October 2011 compared to September of this year. The summer of 2011 saw significant declines in total U.S. stockpile levels, which were replenished in the

422

Categorical Exclusion Determinations: Fossil Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

June 4, 2011 June 4, 2011 CX-005949: Categorical Exclusion Determination Characterization of Most Promising Sequestration Formations in the Rocky Mountain Region- TerraTek CX(s) Applied: B3.6 Date: 06/04/2011 Location(s): Salt Lake City, Utah Office(s): Fossil Energy, National Energy Technology Laboratory June 4, 2011 CX-005948: Categorical Exclusion Determination Characterization of Most Promising Sequestration Formations in the Rocky Mountain Region (Schlumberger) CX(s) Applied: B3.6 Date: 06/04/2011 Location(s): Houston, Texas Office(s): Fossil Energy, National Energy Technology Laboratory June 4, 2011 CX-005947: Categorical Exclusion Determination Develop and Test an Optical Temperature Sensor at Eastman Chemical's Coal Gasifier CX(s) Applied: B3.6 Date: 06/04/2011 Location(s): Kingsport, Tennessee

423

Categorical Exclusion Determinations: Fossil Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

29, 2010 29, 2010 CX-000749: Categorical Exclusion Determination Ultra-Deepwater Resources to Reserves Development and Acceleration Through Appraisal CX(s) Applied: A9 Date: 01/29/2010 Location(s): Austin, Texas Office(s): Fossil Energy, National Energy Technology Laboratory January 29, 2010 CX-000750: Categorical Exclusion Determination Characterization of Pilocene and Miocene Formations in the Wilmington Graben, Offshore Los Angeles for Large Scale Geologic Storage of Carbon Dioxide (Terminal Island Drilling) CX(s) Applied: A9, B3.1 Date: 01/29/2010 Location(s): San Pedro, California Office(s): Fossil Energy, National Energy Technology Laboratory January 29, 2010 CX-000751: Categorical Exclusion Determination Characterization of Pilocene and Miocene Formations in the Wilmington

424

Categorical Exclusion Determinations: Fossil Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

27, 2010 27, 2010 CX-004185: Categorical Exclusion Determination Development of Ion Transport Membrane Oxygen Technology for Integration in Integrated Gasification Combined Cycle and Advanced Power Generation Systems CX(s) Applied: B3.6 Date: 09/27/2010 Location(s): Sparrows Point, Maryland Office(s): Fossil Energy, National Energy Technology Laboratory September 27, 2010 CX-004184: Categorical Exclusion Determination Development of Ion Transport Membrane Oxygen Technology for Integration in Integrated Gasification Combined Cycle and Advanced Power Generation Systems CX(s) Applied: B3.6 Date: 09/27/2010 Location(s): Allentown, Pennsylvania Office(s): Fossil Energy, National Energy Technology Laboratory September 27, 2010 CX-004181: Categorical Exclusion Determination Evaluation of Solid Sorbents as a Retrofit Technology for Carbon Dioxide

425

NETL: News Release - Six Minority Universities Win Fossil Energy Research  

NLE Websites -- All DOE Office Websites (Extended Search)

May 24, 2000 May 24, 2000 Six Minority Universities Win Fossil Energy Research Grants to Advance Use of Oil, Coal, Gas Richardson, Browner Announce Government "Showcase" Project As part of the Department of Energy's continuing efforts to increase the involvement of the nation's minority institutions in energy research, Energy Secretary Bill Richardson today announced that six historically black universities and other minority institutions will share nearly $1 million in federal funding for fossil energy projects ranging from oil reservoir characterization to burner design for low-emission burners to pollution reduction from car engines. The winning schools are: Prairie View A&M University, Prairie View, TX, (2 projects): one for research into a new way of determining the geologic characteristics of complex oil reservoirs; the other for testing a new data analysis technique based on neural networks that could simplify modeling of the way fuel burns in a compression ignition engine, such as a diesel engine;

426

Categorical Exclusion Determinations: Fossil Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7, 2009 7, 2009 CX-000461: Categorical Exclusion Determination Training Graduate and Undergraduate Students in Simulation and Risk Assessment for Carbon Sequestration CX(s) Applied: A1, A9 Date: 12/07/2009 Location(s): Golden, Colorado Office(s): Fossil Energy, National Energy Technology Laboratory December 7, 2009 CX-000460: Categorical Exclusion Determination Thermal Integration of Carbon Dioxide Compression Processes with Coal-Fired Power Plants Equipped with Carbon Capture CX(s) Applied: A9 Date: 12/07/2009 Location(s): Bethlehem, Pennsylvania Office(s): Fossil Energy, National Energy Technology Laboratory December 7, 2009 CX-000459: Categorical Exclusion Determination Molecular Simulation of Dissolved Inorganic Carbons for Underground Brine Carbon Dioxide Sequestration

427

Office of Fossil Energy Oil & Natural Gas Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Fossil Energy Fossil Energy Oil & Natural Gas Technology Detection and Production of Methane Hydrate End of Phase 2 Topical Report Reporting Period: June, 2007-June, 2008 Submitted by: Rice University and University of Houston George J. Hirasaki and Walter Chapman, Chemical and Biomolecular Engineering Gerald R. Dickens, Colin A. Zelt, and Brandon E. Dugan, Earth Science Kishore K. Mohanty, University of Houston June, 2008 DOE Award No.: DE-FC26-06NT42960 Rice University - MS 362 6100 Main St. Houston, TX 77251-1892 Phone: 713-348-5416; FAX: 713-348-5478; Email: gjh@rice.edu University of Houston Department of Chemical Engineering 4800 Calhoun Street Houston, TX 77204-4004 Prepared for: United States Department of Energy National Energy Technology Laboratory

428

Categorical Exclusion Determinations: Fossil Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

November 12, 2009 November 12, 2009 CX-000376: Categorical Exclusion Determination Boise White Paper Mill Carbon Capture and Sequestration CX(s) Applied: A1, A9, B3.1, B3.6 Date: 11/12/2009 Location(s): Richland, Washington Office(s): Fossil Energy, National Energy Technology Laboratory November 12, 2009 CX-000379: Categorical Exclusion Determination Sweeney Integrated Gasification Combined Cycle/Carbon Capture and Sequestration Project - Carbon Dioxide Pipeline and Storage CX(s) Applied: A1, A9, B3.1 Date: 11/12/2009 Location(s): Sweeney, Texas Office(s): Fossil Energy, National Energy Technology Laboratory November 12, 2009 CX-000378: Categorical Exclusion Determination Monitoring, Verification, and Analysis Feasibility Study (for Demonstration of Carbon Capture and Sequestration from Steam Methane Reforming Process

429

Categorical Exclusion Determinations: Fossil Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

January 13, 2010 January 13, 2010 CX-000727: Categorical Exclusion Determination A Novel Integrated Oxy-Combustion Flue Gas Purification Technology: A Near-Zero Emissions Pathway CX(s) Applied: A9 Date: 01/13/2010 Location(s): Bridgewater, New Jersey Office(s): Fossil Energy, National Energy Technology Laboratory January 13, 2010 CX-000728: Categorical Exclusion Determination A Novel Integrated Oxy-Combustion Flue Gas Purification Technology: A Near-Zero Emissions Pathway CX(s) Applied: A9 Date: 01/13/2010 Location(s): Perryville, New Jersey Office(s): Fossil Energy, National Energy Technology Laboratory January 13, 2010 CX-000729: Categorical Exclusion Determination A Novel Integrated Oxy-Combustion Flue Gas Purification Technology: A Near-Zero Emissions Pathway CX(s) Applied: A9

430

Categorical Exclusion Determinations: Fossil Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

11, 2009 11, 2009 CX-000426: Categorical Exclusion Determination Geoscience Perspectives in Carbon Sequestration: Educational Training and Research through Classroom, Field, and Laboratory Investigations (Rock Water Samples) CX(s) Applied: B3.1 Date: 12/11/2009 Location(s): Rolla, Missouri Office(s): Fossil Energy, National Energy Technology Laboratory December 11, 2009 CX-000425: Categorical Exclusion Determination Geoscience Perspectives in Carbon Sequestration: Educational Training and Research through Classroom, Field, and Laboratory Investigations (Historic Mine Samples) CX(s) Applied: B3.1 Date: 12/11/2009 Location(s): St. Joe State Park, Missouri Office(s): Fossil Energy, National Energy Technology Laboratory December 11, 2009 CX-000424: Categorical Exclusion Determination

431

Categorical Exclusion Determinations: Fossil Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

September 30, 2010 September 30, 2010 CX-004112: Categorical Exclusion Determination Experimental/Modeling Approaches to Studying the Fracture-Matrix Interaction in Barnett Shale CX(s) Applied: A9, B3.6 Date: 09/30/2010 Location(s): Arlington, Texas Office(s): Fossil Energy, National Energy Technology Laboratory September 30, 2010 CX-004111: Categorical Exclusion Determination Experimental/Modeling Approaches to Studying the Fracture-Matrix Interaction in Barnett Shale CX(s) Applied: A9 Date: 09/30/2010 Location(s): Ames, Iowa Office(s): Fossil Energy, National Energy Technology Laboratory September 30, 2010 CX-004108: Categorical Exclusion Determination Green Oil: Carbon Dioxide Enhanced Oil Recovery for America?s Small Oil Producers CX(s) Applied: A9, B3.6 Date: 09/30/2010 Location(s): Lakewood, Colorado

432

Four Minority Universities are 1999 Fossil Energy Grant Winners  

NLE Websites -- All DOE Office Websites (Extended Search)

August 19, 1999 August 19, 1999 Students, Teachers at Four Minority Universities Are 1999 Winners of Fossil Energy Research Grants For students and professors at four minority universities, the upcoming school year will include not only time in the classroom but also work in the research laboratory, looking for answers to such energy problems as air pollution and declining domestic oil production. The four institutions were named today by Energy Secretary Bill Richardson as the 1999 winners in the Department of Energy's annual competition for fossil energy research ideas from the nation's Historically Black Colleges and Universities and Other Minority Institutions. Hampton University, Hampton, VA, took top honors with three proposals selected for funding. Other grants will go to Prairie View A&M University, Prairie View, TX; North Carolina A&T State University, Greensboro, NC; and Florida International University, Miami, FL.

433

Categorical Exclusion Determinations: Fossil Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3, 2010 3, 2010 CX-003759: Categorical Exclusion Determination Geological Sequestration Fundamental Research Lab Move CX(s) Applied: B3.6 Date: 09/03/2010 Location(s): Pittsburgh, Pennsylvania Office(s): Fossil Energy, National Energy Technology Laboratory September 2, 2010 CX-003714: Categorical Exclusion Determination Site Characterization of Highest-Priority Geologic Formations for Carbon Dioxide Storage in Wyoming CX(s) Applied: B3.1, B3.7, B3.8 Date: 09/02/2010 Location(s): Sweetwater County, Wyoming Office(s): Fossil Energy, National Energy Technology Laboratory September 2, 2010 CX-003689: Categorical Exclusion Determination Site Characterization of Highest-Priority Geologic Formations for Carbon Dioxide Storage in Wyoming CX(s) Applied: A1, A9, B3.6 Date: 09/02/2010

434

Categorical Exclusion Determinations: Fossil Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

August 16, 2010 August 16, 2010 CX-003443: Categorical Exclusion Determination Post-Combustion Carbon Dioxide Capture for Existing Post-Combustion Boilers by Self-Concentrating Amine Absorbent CX(s) Applied: A9, A11, A14 Date: 08/16/2010 Location(s): San Francisco, California Office(s): Fossil Energy, National Energy Technology Laboratory August 16, 2010 CX-003442: Categorical Exclusion Determination Post-Combustion Carbon Dioxide Capture for Existing Post-Combustion Boilers by Self-Concentrating Amine Absorbent CX(s) Applied: B3.6 Date: 08/16/2010 Location(s): Lexington, Kentucky Office(s): Fossil Energy, National Energy Technology Laboratory August 11, 2010 CX-003396: Categorical Exclusion Determination Environmental Mechanical Testing Laboratory Construction CX(s) Applied: B3.6

435

Categorical Exclusion Determinations: Fossil Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

December 14, 2010 December 14, 2010 CX-004696: Categorical Exclusion Determination Characterization of Potential Sites for Near Miscible Carbon Dioxide Applications in Arbuckle Reservoirs CX(s) Applied: A9 Date: 12/14/2010 Location(s): Lawrence, Kansas Office(s): Fossil Energy, National Energy Technology Laboratory December 9, 2010 CX-004662: Categorical Exclusion Determination Testing of Chinese Coal in a Transport Reactor Integrated Gasification (TRIG) System CX(s) Applied: B3.6 Date: 12/09/2010 Location(s): Grand Forks, North Dakota Office(s): Fossil Energy, National Energy Technology Laboratory December 8, 2010 CX-004682: Categorical Exclusion Determination Novel Sorbents for Emission Control from Coal Combustion CX(s) Applied: A9, B3.6 Date: 12/08/2010 Location(s): Laramie, Wyoming

436

Categorical Exclusion Determinations: Fossil Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

November 20, 2009 November 20, 2009 CX-000372: Categorical Exclusion Determination Analysis of Microbial Activity Under a Supercritical Carbon Dioxide Atmosphere CX(s) Applied: A1, A9, B3.1, B3.6 Date: 11/20/2009 Location(s): Cambridge, Massachusetts Office(s): Fossil Energy, National Energy Technology Laboratory November 20, 2009 CX-000444: Categorical Exclusion Determination Gulf of Mexico Miocene Carbon Dioxide Site Characterization Mega Transect CX(s) Applied: A11, B3.1 Date: 11/20/2009 Location(s): Austin, Texas Office(s): Fossil Energy, National Energy Technology Laboratory November 20, 2009 CX-000443: Categorical Exclusion Determination Gulf of Mexico Miocene Carbon Dioxide Site Characterization Mega Transect CX(s) Applied: A11, B3.1 Date: 11/20/2009 Location(s): Austin, Texas

437

Classification of fossil fuels according to structural-chemical characteristics  

SciTech Connect

On the basis of a set of linear equations that relate the amount of major elements n{sub E} (E = C, H, O, N, S) in the organic matter of fossil fuels to structural characteristics, such as the number of cycles R, the number of atoms n{sub E}, the number of mutual chemical bonds, the degree of unsaturation of the structure {delta}, and the extent of its reduction B, a structural-chemical classification of fossil coals that is closely related to the parameters of the industrial-genetic classification (GOST 25543-88) is proposed. Structural-chemical classification diagrams are constructed for power-generating coals of Russia; coking coals; and coals designed for nonfuel purposes including the manufacture of adsorbents, synthetic liquid fuel, ion exchangers, thermal graphite, and carbon-graphite materials.

A.M. Gyul'maliev; G.S. Golovin; S.G. Gagarin [Institute for Fossil Fuels, Moscow (Russian Federation)

2007-10-15T23:59:59.000Z

438

Fossil energy program. Progress report for May 1980  

SciTech Connect

This report - the seventieth of a series - is a compendium of monthly progress reports for the ORNL research and development programs that are in support of the increased utilization of coal and other fossil fuel alternatives to oil and gas as sources of clean energy. The projects reported this month include those for coal conversion development, chemical research and development, materials technology, component and process evaluation studies, technical support to major liquefaction projects, process analysis and engineering evaluations, fossil energy environmental analysis, coal preparation and waste utilization, coal preparation plant automation, technical support to the TVA fluidized bed combustion demonstration plant program, coal cogeneration/district heating plant assessment, atmospheric fluidized bed coal combustor for cogeneration, performance assurance system support and international energy technology assessment.

McNeese, L.E.

1980-08-01T23:59:59.000Z

439

Categorical Exclusion Determinations: Fossil Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

July 19, 2010 July 19, 2010 CX-003045: Categorical Exclusion Determination Computational Fluid Dynamics (CFD) Simulations of a Regenerative Process for Carbon Dioxide Capture in Advanced Gasification Based Systems CX(s) Applied: B3.6 Date: 07/19/2010 Location(s): Chicago, Illinois Office(s): Fossil Energy, National Energy Technology Laboratory July 15, 2010 CX-003070: Categorical Exclusion Determination Gas Process Development Unit (GPDU)/Syngas (Synthetic Gas) Generator Decommissioning CX(s) Applied: B1.23, B1.27, B1.31, B3.6 Date: 07/15/2010 Location(s): Morgantown, West Virginia Office(s): Fossil Energy, National Energy Technology Laboratory July 13, 2010 CX-003039: Categorical Exclusion Determination High Temperature Chemical Sensors for Energy Research CX(s) Applied: B3.6

440

Evidence for GRB Induced Extinctions in the Fossil Record?  

Science Journals Connector (OSTI)

Particular problems in the fossil record are placed in context with a GRB event causing death by radiation exposure followed by comet showers from a disruption in the Oort Cloud. The absence of pollen below the iridium layer at the KT and Triassic?Jurassic boundaries the pattern of extinction on land and in the oceans and divergence times of molecular DNA studies may all have a common root in ionizing radiation.

Thomas G. Kaye

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fossil electricity total" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

New Optical Sensor Suite for Ultrahigh Temperature Fossil Fuel Application  

SciTech Connect

Accomplishments of a program to develop and demonstrate photonic sensor technology for the instrumentation of advanced powerplants and solid oxide fuel cells are described. The goal of this project is the research and development of advanced, robust photonic sensors based on improved sapphire optical waveguides, and the identification and demonstration of applications of the new sensors in advanced fossil fuel power plants, where the new technology will contribute to improvements in process control and monitoring.

John Coggin; Tom Flynn; Jonas Ivasauskas; Daniel Kominsky; Carrie Kozikowski; Russell May; Michael Miller; Tony Peng; Gary Pickrell; Raymond Rumpf; Kelly Stinson-Bagby; Dan Thorsen; Rena Wilson

2007-12-31T23:59:59.000Z

442

Effect of electric shock on capillary resistance  

Science Journals Connector (OSTI)

To determine the effect of electric shock on the capillary resistance (CR) a study was made of ... a mental hospital with a total of 31 electric shocks. The measurements were taken in the...

Dr. Rauno Heikinheimo; Osmo Sallas

1957-01-01T23:59:59.000Z

443

Property:TotalValue | Open Energy Information  

Open Energy Info (EERE)

TotalValue TotalValue Jump to: navigation, search This is a property of type Number. Pages using the property "TotalValue" Showing 25 pages using this property. (previous 25) (next 25) 4 44 Tech Inc. Smart Grid Demonstration Project + 10,000,000 + A ALLETE Inc., d/b/a Minnesota Power Smart Grid Project + 3,088,007 + Amber Kinetics, Inc. Smart Grid Demonstration Project + 10,000,000 + American Transmission Company LLC II Smart Grid Project + 22,888,360 + American Transmission Company LLC Smart Grid Project + 2,661,650 + Atlantic City Electric Company Smart Grid Project + 37,400,000 + Avista Utilities Smart Grid Project + 40,000,000 + B Baltimore Gas and Electric Company Smart Grid Project + 451,814,234 + Battelle Memorial Institute, Pacific Northwest Division Smart Grid Demonstration Project + 177,642,503 +

444

O:\ELECTRIC\PP-177.ORD  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

BURKE-DIVIDE ELECTRIC COOPERATIVE, INC. BURKE-DIVIDE ELECTRIC COOPERATIVE, INC. ORDER NO. PP-177 I. BACKGROUND The Office of Fossil Energy (FE) of the Department of Energy (DOE) has the responsibility for implementing Executive Order (EO) 10485, as amended by EO 12038, which requires the issuance of Presidential permits for the construction, connection, operation, and maintenance of electric transmission facilities at the United States international border. In an application dated March 18, 1998, Burke-Divide Electric Cooperative, Inc. (Burke- Divide) applied to FE for a Presidential permit to construct approximately 6,275 feet of 12.47- kilovolt (kV) electric distribution line from a point in North Star Township, Burke County, North

445

Total Energy Facilities Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Total Energy Facilities Biomass Facility Total Energy Facilities Biomass Facility Jump to: navigation, search Name Total Energy Facilities Biomass Facility Facility Total Energy Facilities Sector Biomass Facility Type Non-Fossil Waste Location Los Angeles County, California Coordinates 34.3871821°, -118.1122679° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.3871821,"lon":-118.1122679,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

446

Electric power annual 1996. Volume 1  

SciTech Connect

The Electric Power Annual presents a summary of electric power industry statistics at national, regional, and State levels. The objective of the publication is to provide industry decisionmakers, government policy-makers, analysts, and the general public with data that may be used in understanding US electricity markets. The Electric Power Annual is prepared by the Coal and Electric Data and Renewables Division; Office of Coal, Nuclear, Electric and Alternate Fuels; Energy Information Administration (EIA); US Department of Energy. Volume 1--with a focus on US electric utilities--contains final 1996 data on net generation and fossil fuel consumption, stocks, receipts, and cost; preliminary 1996 data on generating unit capability, and retail sales of electricity, associated revenue, and the average revenue per kilowatthour of electricity sold. Additionally, information on net generation from renewable energy sources and on the associated generating capability is included in Volume 1 of the EPA. Data published in the Electric Power Annual Volume 1 are compiled from three statistical forms filed monthly and two forms filed annually by electric utilities. These forms are described in detail in the Technical Notes. 5 figs., 30 tabs.

NONE

1997-08-01T23:59:59.000Z

447

Fossil Energy Announces Addition of Two Key Staff Members | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fossil Energy Announces Addition of Two Key Staff Members Fossil Energy Announces Addition of Two Key Staff Members Fossil Energy Announces Addition of Two Key Staff Members August 27, 2013 - 1:30pm Addthis Washington, D.C. - The Department of Energy's Office of Fossil Energy today announced the recent appointment of two key senior staff members to the Office of Fossil Energy - Julio Friedmann, Deputy Assistant Secretary for Clean Coal, and Paula Gant, Deputy Assistant Secretary for Oil and Natural Gas. "The Energy Department is fortunate to have attracted such qualified people with relevant industry and technical experience," said Christopher Smith, Acting Assistant Secretary for Fossil Energy. "Their expertise and experience make them the right people in the right jobs, and I'm proud to have them as part of our Fossil Energy team."

448

Table 2a. Electricity Consumption and Electricity Intensities, per Square  

U.S. Energy Information Administration (EIA) Indexed Site

assistance viewing this page, please call (202) 586-8800. Energy Information Administration Home Page Home > Commercial Buildings Home > Sq Ft Tables > Table 2a. Electricity Consumption per Sq Ft Table 2a. Electricity Consumption and Electricity Intensities, per Square Foot, Specific to Occupied and Vacant Floorspace, 1992 Building Characteristics All Buildings Using Electricity (thousand) Total Electricity Consumption (trillion Btu) Electricity Intensities (thousand Btu) In Total Floor space In Occupied Floor space In Vacant Floor space Per Square Foot Per Occupied Square Foot Per Vacant Square Foot All Buildings 4,590 2,600 2,563 37 39 42 8 Building Floorspace (Square Feet) 1,001 to 5,000 2,532 334 331 3 48 51 6 5,001 to 10,000 946 250 247 3 36 38 6 10,001 to 25,000

449

Electricity Markets  

NLE Websites -- All DOE Office Websites (Extended Search)

Electricity Markets Electricity Markets Researchers in the electricity markets area conduct technical, economic, and policy analysis of energy topics centered on the U.S. electricity sector. Current research seeks to inform public and private decision-making on public-interest issues related to energy efficiency and demand response, renewable energy, electricity resource and transmission planning, electricity reliability and distributed generation resources. Research is conducted in the following areas: Energy efficiency research focused on portfolio planning and market assessment, design and implementation of a portfolio of energy efficiency programs that achieve various policy objectives, utility sector energy efficiency business models, options for administering energy efficiency

450

Stirling engines in generating heat and electricity for micro: CHP systems  

Science Journals Connector (OSTI)

In this paper, an analysis of different generating heat and electricity systems with Stirling engine is made from the point of view of benefits and limitations, both operational and economic and environmental. Stirling engine has the ability to work ... Keywords: biomass, fossil fuels, generating heat and electricity system, m-CHP, stirling engine

Dan Scarpete; Krisztina Uzuneanu

2011-03-01T23:59:59.000Z

451

Production of Hydrogen and Electricity from Coal with CO2 Capture  

E-Print Network (OSTI)

fuels · H2 (and CO2) distribution · H2 utilization (e.g. fuel cells, combustion) · Princeton energy carriers are needed: electricity and hydrogen. · If CO2 sequestration is viable, fossil fuel1 Production of Hydrogen and Electricity from Coal with CO2 Capture Princeton University: Tom

452

Electric Utility Industrial Conservation Programs  

E-Print Network (OSTI)

Electrical Machinery and Equip. 7.0 3.3 3 7.6 3.0 10 7 0 10.8 100.0 90 11.9 100.0 353,5 4 * Total of 12 Industry Maximum Demand s is 832 MW. *..', Total of 12 Industry Annual Electricity Consumption is 2,981,090 Mlm. 723 ESL-IE-83-04-114 Proceedings... Electrical Machinery and Equip. 7.0 3.3 3 7.6 3.0 10 7 0 10.8 100.0 90 11.9 100.0 353,5 4 * Total of 12 Industry Maximum Demand s is 832 MW. *..', Total of 12 Industry Annual Electricity Consumption is 2,981,090 Mlm. 723 ESL-IE-83-04-114 Proceedings...

Norland, D. L.

1983-01-01T23:59:59.000Z

453

Solar total energy project Shenandoah  

SciTech Connect

This document presents the description of the final design for the Solar Total Energy System (STES) to be installed at the Shenandoah, Georgia, site for utilization by the Bleyle knitwear plant. The system is a fully cascaded total energy system design featuring high temperature paraboloidal dish solar collectors with a 235 concentration ratio, a steam Rankine cycle power conversion system capable of supplying 100 to 400 kW(e) output with an intermediate process steam take-off point, and a back pressure condenser for heating and cooling. The design also includes an integrated control system employing the supervisory control concept to allow maximum experimental flexibility. The system design criteria and requirements are presented including the performance criteria and operating requirements, environmental conditions of operation; interface requirements with the Bleyle plant and the Georgia Power Company lines; maintenance, reliability, and testing requirements; health and safety requirements; and other applicable ordinances and codes. The major subsystems of the STES are described including the Solar Collection Subysystem (SCS), the Power Conversion Subsystem (PCS), the Thermal Utilization Subsystem (TUS), the Control and Instrumentation Subsystem (CAIS), and the Electrical Subsystem (ES). Each of these sections include design criteria and operational requirements specific to the subsystem, including interface requirements with the other subsystems, maintenance and reliability requirements, and testing and acceptance criteria. (WHK)

None

1980-01-10T23:59:59.000Z

454

INTRODUCTION Ukiah Electric Utility  

E-Print Network (OSTI)

INTRODUCTION Ukiah Electric Utility Renewable Energy Resources Procurement Plan Per Senate Billlx 2 renewable energy resources, including renewable energy credits, as a specified percentage of Ukiah's total,2011 to December 31, 2013, Ukiah shall procure renewable energy resources equivalent to an average of at least

455

Electric Power Quarterly, April-June 1986  

SciTech Connect

In this report, data collected on Form EIA-759 regarding electric utilities' net generation, fuel consumption, and fuel stocks are presented on a plant-by-plant basis. In addition, quantity, cost, and quality of fossil fuel receipts collected on the Federal Energy Regulatory Commission (FERC) Form 423 are presented on a plant-by-plant basis. The report also presents a quarterly summary of disturbances and unusual occurrences affecting the electric power industry collected by the Office of International Affairs and Energy Emergencies (IE) on the Form IE-417.

Not Available

1986-10-28T23:59:59.000Z

456

Electric power quarterly, January-March 1987  

SciTech Connect

In this report, data collected on Form EIA-759 regarding electric utilities' net generation, fuel consumption, and fuel stocks are presented on a plant-by-plant basis. In addition, quantity, cost, and quality of fossil fuel receipts collected on the Federal Energy Regulatory Commission (FERC) Form 423 are presented on a plant-by-plant basis. The report also presents a quarterly summary of disturbances and unusual occurrences affecting the electric power industry collected by the Office of International Affairs and Energy Emergencies (IE) on the Form IE-417.

Not Available

1987-07-27T23:59:59.000Z

457

Electric power quarterly, October-December 1986  

SciTech Connect

In this report, data collected on Form EIA-759 regarding electric utilities' net generation, fuel consumption, and fuel stocks are presented on a plant-by-plant basis. In addition, quantity, cost, and quality of fossil fuel receipts collected on the Federal Energy Regulatory Commission (FERC) Form 423 are presented on a plant-by-plant basis. The report also presents a quarterly summary of disturbances and unusual occurrences affecting the electric power industry collected by the Office of International Affairs and Energy Emergencies (IE) on the Form IE-417.

Not Available

1987-04-08T23:59:59.000Z

458

Electric Power detailed State data  

U.S. Energy Information Administration (EIA) Indexed Site

Detailed State Data Detailed State Data Annual data for 2012 Release Date: November 12, 2013 Next Release Date: November 2014 Revision/Corrections Annual data format 1990 - 2012 Net Generation by State by Type of Producer by Energy Source (EIA-906, EIA-920, and EIA-923)1 XLS 1990 - 2012 Fossil Fuel Consumption for Electricity Generation by Year, Industry Type and State (EIA-906, EIA-920, and EIA-923)2 XLS 1990 - 2011 Existing Nameplate and Net Summer Capacity by Energy Source, Producer Type and State (EIA-860)1, 3 XLS 2011 - 2016 Proposed Nameplate and Net Summer Capacity by Year, Energy Source, and State (EIA-860)1 XLS 1990 - 2011 U.S. Electric Power Industry Estimated Emissions by State (EIA-767, EIA-906, EIA-920, and EIA-923)4 XLS 1990 - 2012 Average Price by State by Provider (EIA-861)5 XLS

459

" Row: NAICS Codes; Column: Electricity Components;"  

U.S. Energy Information Administration (EIA) Indexed Site

1. Electricity: Components of Net Demand, 1998;" 1. Electricity: Components of Net Demand, 1998;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Electricity Components;" " Unit: Million Kilowatthours." " "," ",,,,,," " " "," ",,,,"Sales and","Net Demand","RSE" "NAICS"," ",,,"Total Onsite","Transfers","for","Row" "Code(a)","Subsector and Industry","Purchases","Transfers In(b)","Generation(c)","Offsite","Electricity(d)","Factors" ,,"Total United States"

460

" Row: NAICS Codes; Column: Electricity Components;"  

U.S. Energy Information Administration (EIA) Indexed Site

1 Electricity: Components of Net Demand, 2002;" 1 Electricity: Components of Net Demand, 2002;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Electricity Components;" " Unit: Million Kilowatthours." " "," ",,,,,," " " "," ",,,"Total ","Sales and","Net Demand","RSE" "NAICS"," ",,"Transfers ","Onsite","Transfers","for","Row" "Code(a)","Subsector and Industry","Purchases"," In(b)","Generation(c)","Offsite","Electricity(d)","Factors" ,,"Total United States"

Note: This page contains sample records for the topic "fossil electricity total" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Electrical Engineer  

Energy.gov (U.S. Department of Energy (DOE))

This position is located in the Office of Electric Reliability. The Office of Electric Reliability helps protect and improve the reliability and security of the nation's bulk power system through...

462

21 briefing pages total  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

briefing pages total p. 1 briefing pages total p. 1 Reservist Differential Briefing U.S. Office of Personnel Management December 11, 2009 p. 2 Agenda - Introduction of Speakers - Background - References/Tools - Overview of Reservist Differential Authority - Qualifying Active Duty Service and Military Orders - Understanding Military Leave and Earnings Statements p. 3 Background 5 U.S.C. 5538 (Section 751 of the Omnibus Appropriations Act, 2009, March 11, 2009) (Public Law 111-8) Law requires OPM to consult with DOD Law effective first day of first pay period on or after March 11, 2009 (March 15 for most executive branch employees) Number of affected employees unclear p. 4 Next Steps

463

OpenEI - Electricity Consumption  

Open Energy Info (EERE)

Annual Electricity Annual Electricity Consumption (1980 - 2009) http://en.openei.org/datasets/node/877 Total annual electricity consumption by country, 1980 to 2009 (billion kilowatthours). Compiled by Energy Information Administration (EIA). License

Type of License:  Other (please specify below)
Source of data

464

OpenEI - Electricity Generation  

Open Energy Info (EERE)

Annual Electricity Annual Electricity Generation (1980 - 2009) http://en.openei.org/datasets/node/878 Total annual electricity generation by country, 1980 to 2009 (available in billion kilowatthours ). Compiled by Energy Information Administration (EIA).

License
Type of License:  Other (please specify below)
Source of

465

Electric Supply in the Irish Free State  

Science Journals Connector (OSTI)

... the sale of electricity has been effected, and results in a surplus of income over expenditure of about £310,000. The total ... of about £310,000. The total capital ...

1936-09-05T23:59:59.000Z

466

Total Energy - Data - U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

Total Energy Flow, (Quadrillion Btu) Total Energy Flow, (Quadrillion Btu) Total Energy Flow diagram image Footnotes: 1 Includes lease condensate. 2 Natural gas plant liquids. 3 Conventional hydroelectric power, biomass, geothermal, solar/photovoltaic, and wind. 4 Crude oil and petroleum products. Includes imports into the Strategic Petroleum Reserve. 5 Natural gas, coal, coal coke, biofuels, and electricity. 6 Adjustments, losses, and unaccounted for. 7 Natural gas only; excludes supplemental gaseous fuels. 8 Petroleum products, including natural gas plant liquids, and crude oil burned as fuel. 9 Includes 0.01 quadrillion Btu of coal coke net exports. 10 Includes 0.13 quadrillion Btu of electricity net imports. 11 Total energy consumption, which is the sum of primary energy consumption, electricity retail sales, and electrical system energy losses.

467

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Michigan Electricity Profile 2010 Michigan profile Michigan Electricity Profile 2010 Michigan profile Table 1. 2010 Summary Statistics (Michigan) Item Value U.S. Rank NERC Region(s) MRO/RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 29,831 11 Electric Utilities 21,639 10 Independent Power Producers & Combined Heat and Power 8,192 14 Net Generation (megawatthours) 111,551,371 13 Electric Utilities 89,666,874 13 Independent Power Producers & Combined Heat and Power 21,884,497 16 Emissions (thousand metric tons) Sulfur Dioxide 254 6 Nitrogen Oxide 89 6 Carbon Dioxide 74,480 11 Sulfur Dioxide (lbs/MWh) 5.0 8 Nitrogen Oxide (lbs/MWh) 1.8 19 Carbon Dioxide (lbs/MWh) 1,472 20 Total Retail Sales (megawatthours) 103,649,219 12 Full Service Provider Sales (megawatthours) 94,565,247 11

468

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Ohio Electricity Profile 2010 Ohio profile Ohio Electricity Profile 2010 Ohio profile Table 1. 2010 Summary Statistics (Ohio) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 33,071 8 Electric Utilities 20,179 13 Independent Power Producers & Combined Heat and Power 12,892 7 Net Generation (megawatthours) 143,598,337 7 Electric Utilities 92,198,096 10 Independent Power Producers & Combined Heat and Power 51,400,241 7 Emissions (thousand metric tons) Sulfur Dioxide 610 1 Nitrogen Oxide 122 3 Carbon Dioxide 121,964 4 Sulfur Dioxide (lbs/MWh) 9.4 1 Nitrogen Oxide (lbs/MWh) 1.9 17 Carbon Dioxide (lbs/MWh) 1,872 8 Total Retail Sales (megawatthours) 154,145,418 4 Full Service Provider Sales (megawatthours) 105,329,797 9

469

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Wisconsin Electricity Profile 2010 Wisconsin profile Wisconsin Electricity Profile 2010 Wisconsin profile Table 1. 2010 Summary Statistics (Wisconsin) Item Value U.S. Rank NERC Region(s) MRO/RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 17,836 23 Electric Utilities 13,098 19 Independent Power Producers & Combined Heat and Power 4,738 20 Net Generation (megawatthours) 64,314,067 24 Electric Utilities 45,579,970 22 Independent Power Producers & Combined Heat and Power 18,734,097 18 Emissions (thousand metric tons) Sulfur Dioxide 145 12 Nitrogen Oxide 49 25 Carbon Dioxide 47,238 19 Sulfur Dioxide (lbs/MWh) 5.0 9 Nitrogen Oxide (lbs/MWh) 1.7 20 Carbon Dioxide (lbs/MWh) 1,619 16 Total Retail Sales (megawatthours) 68,752,417 22 Full Service Provider Sales (megawatthours) 68,752,417 21

470

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Tennessee Electricity Profile 2010 Tennessee full report Tennessee Electricity Profile 2010 Tennessee full report Table 1. 2010 Summary Statistics (Tennessee) Item Value U.S. Rank NERC Region(s) RFC/SERC Primary Energy Source Coal Net Summer Capacity (megawatts) 21,417 19 Electric Utilities 20,968 11 Independent Power Producers & Combined Heat and Power 450 49 Net Generation (megawatthours) 82,348,625 19 Electric Utilities 79,816,049 15 Independent Power Producers & Combined Heat and Power 2,532,576 45 Emissions (thousand metric tons) Sulfur Dioxide 138 13 Nitrogen Oxide 33 31 Carbon Dioxide 48,196 18 Sulfur Dioxide (lbs/MWh) 3.7 14 Nitrogen Oxide (lbs/MWh) 0.9 40 Carbon Dioxide (lbs/MWh) 1,290 26 Total Retail Sales (megawatthours) 103,521,537 13 Full Service Provider Sales (megawatthours) 103,521,537 10

471

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Florida Electricity Profile 2010 Florida profile Florida Electricity Profile 2010 Florida profile Table 1. 2010 Summary Statistics (Florida) Item Value U.S. Rank NERC Region(s) FRCC/SERC Primary Energy Source Gas Net Summer Capacity (megawatts) 59,147 3 Electric Utilities 50,853 1 Independent Power Producers & Combined Heat and Power 8,294 13 Net Generation (megawatthours) 229,095,935 3 Electric Utilities 206,062,185 1 Independent Power Producers & Combined Heat and Power 23,033,750 15 Emissions (thousand metric tons) Sulfur Dioxide 160 11 Nitrogen Oxide 101 5 Carbon Dioxide 123,811 2 Sulfur Dioxide (lbs/MWh) 1.5 37 Nitrogen Oxide (lbs/MWh) 1.0 35 Carbon Dioxide (lbs/MWh) 1,191 31 Total Retail Sales (megawatthours) 231,209,614 3 Full Service Provider Sales (megawatthours) 231,209,614 3

472

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Arizona Electricity Profile 2010 Arizona profile Arizona Electricity Profile 2010 Arizona profile Table 1. 2010 Summary Statistics (Arizona) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 26,392 15 Electric Utilities 20,115 14 Independent Power Producers & Combined Heat and Power 6,277 16 Net Generation (megawatthours) 111,750,957 12 Electric Utilities 91,232,664 11 Independent Power Producers & Combined Heat and Power 20,518,293 17 Emissions (thousand metric tons) Sulfur Dioxide 33 33 Nitrogen Oxide 57 17 Carbon Dioxide 55,683 15 Sulfur Dioxide (lbs/MWh) 0.7 43 Nitrogen Oxide (lbs/MWh) 1.1 31 Carbon Dioxide (lbs/MWh) 1,099 35 Total Retail Sales (megawatthours) 72,831,737 21 Full Service Provider Sales (megawatthours) 72,831,737 20

473

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Kentucky Electricity Profile 2010 Kentucky profile Kentucky Electricity Profile 2010 Kentucky profile Table 1. 2010 Summary Statistics (Kentucky) Item Value U.S. Rank NERC Region(s) RFC/SERC Primary Energy Source Coal Net Summer Capacity (megawatts) 20,453 21 Electric Utilities 18,945 16 Independent Power Producers & Combined Heat and Power 1,507 38 Net Generation (megawatthours) 98,217,658 17 Electric Utilities 97,472,144 7 Independent Power Producers & Combined Heat and Power 745,514 48 Emissions (thousand metric tons) Sulfur Dioxide 249 7 Nitrogen Oxide 85 7 Carbon Dioxide 93,160 7 Sulfur Dioxide (lbs/MWh) 5.6 5 Nitrogen Oxide (lbs/MWh) 1.9 15 Carbon Dioxide (lbs/MWh) 2,091 3 Total Retail Sales (megawatthours) 93,569,426 14 Full Service Provider Sales (megawatthours) 93,569,426 12

474

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Alabama Electricity Profile 2010 Alabama profile Alabama Electricity Profile 2010 Alabama profile Table 1. 2010 Summary Statistics (Alabama) Item Value U.S. Rank NERC Region(s) SERC Primary Energy Source Coal Net Summer Capacity (megawatts) 32,417 9 Electric Utilities 23,642 7 Independent Power Producers & Combined Heat and Power 8,775 12 Net Generation (megawatthours) 152,150,512 6 Electric Utilities 122,766,490 2 Independent Power Producers & Combined Heat and Power 29,384,022 12 Emissions (thousand metric tons) Sulfur Dioxide 218 10 Nitrogen Oxide 66 14 Carbon Dioxide 79,375 9 Sulfur Dioxide (lbs/MWh) 3.2 18 Nitrogen Oxide (lbs/MWh) 1.0 36 Carbon Dioxide (lbs/MWh) 1,150 33 Total Retail Sales (megawatthours) 90,862,645 15 Full Service Provider Sales (megawatthours) 90,862,645 13

475

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Arkansas Electricity Profile 2010 Arkansas profile Arkansas Electricity Profile 2010 Arkansas profile Table 1. 2010 Summary Statistics (Arkansas) Item Value U.S. Rank NERC Region(s) SERC/SPP Primary Energy Source Coal Net Summer Capacity (megawatts) 15,981 25 Electric Utilities 11,488 23 Independent Power Producers & Combined Heat and Power 4,493 24 Net Generation (megawatthours) 61,000,185 25 Electric Utilities 47,108,063 20 Independent Power Producers & Combined Heat and Power 13,892,122 27 Emissions (thousand metric tons) Sulfur Dioxide 74 22 Nitrogen Oxide 40 29 Carbon Dioxide 34,018 28 Sulfur Dioxide (lbs/MWh) 2.7 22 Nitrogen Oxide (lbs/MWh) 1.5 24 Carbon Dioxide (lbs/MWh) 1,229 29 Total Retail Sales (megawatthours) 48,194,285 29 Full Service Provider Sales (megawatthours) 48,194,285 27

476

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Maryland Electricity Profile 2010 Maryland profile Maryland Electricity Profile 2010 Maryland profile Table 1. 2010 Summary Statistics (Maryland) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 12,516 33 Electric Utilities 80 47 Independent Power Producers & Combined Heat and Power 12,436 9 Net Generation (megawatthours) 43,607,264 33 Electric Utilities 2,996 48 Independent Power Producers & Combined Heat and Power 43,604,268 9 Emissions (thousand metric tons) Sulfur Dioxide 45 28 Nitrogen Oxide 25 34 Carbon Dioxide 26,369 33 Sulfur Dioxide (lbs/MWh) 2.3 29 Nitrogen Oxide (lbs/MWh) 1.3 29 Carbon Dioxide (lbs/MWh) 1,333 24 Total Retail Sales (megawatthours) 65,335,498 24 Full Service Provider Sales (megawatthours) 36,082,473 31

477

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Hawaii Electricity Profile 2010 Hawaii profile Hawaii Electricity Profile 2010 Hawaii profile Table 1. 2010 Summary Statistics (Hawaii) Item Value U.S. Rank NERC Region(s) -- Primary Energy Source Petroleum Net Summer Capacity (megawatts) 2,536 47 Electric Utilities 1,828 40 Independent Power Producers & Combined Heat and Power 708 47 Net Generation (megawatthours) 10,836,036 45 Electric Utilities 6,416,068 38 Independent Power Producers & Combined Heat and Power 4,419,968 38 Emissions (thousand metric tons) Sulfur Dioxide 17 36 Nitrogen Oxide 21 36 Carbon Dioxide 8,287 42 Sulfur Dioxide (lbs/MWh) 3.4 16 Nitrogen Oxide (lbs/MWh) 4.3 2 Carbon Dioxide (lbs/MWh) 1,686 13 Total Retail Sales (megawatthours) 10,016,509 48 Full Service Provider Sales (megawatthours) 10,016,509 44

478

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Mexico Electricity Profile 2010 New Mexico profile Mexico Electricity Profile 2010 New Mexico profile Table 1. 2010 Summary Statistics (New Mexico) Item Value U.S. Rank NERC Region(s) SPP/WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 8,130 36 Electric Utilities 6,345 33 Independent Power Producers & Combined Heat and Power 1,785 36 Net Generation (megawatthours) 36,251,542 37 Electric Utilities 30,848,406 33 Independent Power Producers & Combined Heat and Power 5,403,136 37 Emissions (thousand metric tons) Sulfur Dioxide 15 38 Nitrogen Oxide 56 19 Carbon Dioxide 29,379 31 Sulfur Dioxide (lbs/MWh) 0.9 42 Nitrogen Oxide (lbs/MWh) 3.4 5 Carbon Dioxide (lbs/MWh) 1,787 11 Total Retail Sales (megawatthours) 22,428,344 39 Full Service Provider Sales (megawatthours) 22,428,344 38

479

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Hampshire Electricity Profile 2010 New Hampshire profile Hampshire Electricity Profile 2010 New Hampshire profile Table 1. 2010 Summary Statistics (New Hampshire) Item Value U.S. Rank NERC Region(s) NPCC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 4,180 43 Electric Utilities 1,132 41 Independent Power Producers & Combined Heat and Power 3,048 32 Net Generation (megawatthours) 22,195,912 42 Electric Utilities 3,979,333 41 Independent Power Producers & Combined Heat and Power 18,216,579 19 Emissions (thousand metric tons) Sulfur Dioxide 34 32 Nitrogen Oxide 6 46 Carbon Dioxide 5,551 43 Sulfur Dioxide (lbs/MWh) 3.4 17 Nitrogen Oxide (lbs/MWh) 0.6 46 Carbon Dioxide (lbs/MWh) 551 47 Total Retail Sales (megawatthours) 10,890,074 47 Full Service Provider Sales (megawatthours) 7,712,938 45

480

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Oregon Electricity Profile 2010 Oregon profile Oregon Electricity Profile 2010 Oregon profile Table 1. 2010 Summary Statistics (Oregon) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Hydroelectric Net Summer Capacity (megawatts) 14,261 29 Electric Utilities 10,846 27 Independent Power Producers & Combined Heat and Power 3,415 28 Net Generation (megawatthours) 55,126,999 27 Electric Utilities 41,142,684 26 Independent Power Producers & Combined Heat and Power 13,984,316 26 Emissions (thousand metric tons) Sulfur Dioxide 16 37 Nitrogen Oxide 15 42 Carbon Dioxide 10,094 40 Sulfur Dioxide (lbs/MWh) 0.6 44 Nitrogen Oxide (lbs/MWh) 0.6 47 Carbon Dioxide (lbs/MWh) 404 48 Total Retail Sales (megawatthours) 46,025,945 30 Full Service Provider Sales (megawatthours) 44,525,865 29

Note: This page contains sample records for the topic "fossil electricity total" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Maine Electricity Profile 2010 Maine profile Maine Electricity Profile 2010 Maine profile Table 1. 2010 Summary Statistics (Maine) Item Value U.S. Rank NERC Region(s) NPCC Primary Energy Source Gas Net Summer Capacity (megawatts) 4,430 42 Electric Utilities 19 49 Independent Power Producers & Combined Heat and Power 4,410 25 Net Generation (megawatthours) 17,018,660 43 Electric Utilities 1,759 49 Independent Power Producers & Combined Heat and Power 17,016,901 22 Emissions (thousand metric tons) Sulfur Dioxide 12 42 Nitrogen Oxide 8 44 Carbon Dioxide 4,948 44 Sulfur Dioxide (lbs/MWh) 1.6 36 Nitrogen Oxide (lbs/MWh) 1.1 33 Carbon Dioxide (lbs/MWh) 641 44 Total Retail Sales (megawatthours) 11,531,568 45 Full Service Provider Sales (megawatthours) 151,588 51 Energy-Only Provider Sales (megawatthours) 11,379,980 10

482

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Mississippi Electricity Profile 2010 Mississippi profile Mississippi Electricity Profile 2010 Mississippi profile Table 1. 2010 Summary Statistics (Mississippi) Item Value U.S. Rank NERC Region(s) SERC Primary Energy Source Gas Net Summer Capacity (megawatts) 15,691 26 Electric Utilities 10,858 26 Independent Power Producers & Combined Heat and Power 4,833 18 Net Generation (megawatthours) 54,487,260 28 Electric Utilities 40,841,436 27 Independent Power Producers & Combined Heat and Power 13,645,824 28 Emissions (thousand metric tons) Sulfur Dioxide 59 26 Nitrogen Oxide 31 32 Carbon Dioxide 26,845 32 Sulfur Dioxide (lbs/MWh) 2.4 26 Nitrogen Oxide (lbs/MWh) 1.2 30 Carbon Dioxide (lbs/MWh) 1,086 36 Total Retail Sales (megawatthours) 49,687,166 28 Full Service Provider Sales (megawatthours) 49,687,166 26

483

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Washington Electricity Profile 2010 Washington profile Washington Electricity Profile 2010 Washington profile Table 1. 2010 Summary Statistics (Washington) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Hydroelectric Net Summer Capacity (megawatts) 30,478 10 Electric Utilities 26,498 5 Independent Power Producers & Combined Heat and Power 3,979 26 Net Generation (megawatthours) 103,472,729 15 Electric Utilities 88,057,219 14 Independent Power Producers & Combined Heat and Power 15,415,510 23 Emissions (thousand metric tons) Sulfur Dioxide 14 39 Nitrogen Oxide 21 37 Carbon Dioxide 13,984 39 Sulfur Dioxide (lbs/MWh) 0.3 47 Nitrogen Oxide (lbs/MWh) 0.4 50 Carbon Dioxide (lbs/MWh) 298 49 Total Retail Sales (megawatthours) 90,379,970 16 Full Service Provider Sales (megawatthours) 88,116,958 14

484

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Mexico Electricity Profile 2010 New Mexico profile Mexico Electricity Profile 2010 New Mexico profile Table 1. 2010 Summary Statistics (New Mexico) Item Value U.S. Rank NERC Region(s) SPP/WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 8,130 36 Electric Utilities 6,345 33 Independent Power Producers & Combined Heat and Power 1,785 36 Net Generation (megawatthours) 36,251,542 37 Electric Utilities 30,848,406 33 Independent Power Producers & Combined Heat and Power 5,403,136 37 Emissions (thousand metric tons) Sulfur Dioxide 15 38 Nitrogen Oxide 56 19 Carbon Dioxide 29,379 31 Sulfur Dioxide (lbs/MWh) 0.9 42 Nitrogen Oxide (lbs/MWh) 3.4 5 Carbon Dioxide (lbs/MWh) 1,787 11 Total Retail Sales (megawatthours) 22,428,344 39 Full Service Provider Sales (megawatthours) 22,428,344 38

485

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Delaware Electricity Profile 2010 Delaware profile Delaware Electricity Profile 2010 Delaware profile Table 1. 2010 Summary Statistics (Delaware) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Gas Net Summer Capacity (megawatts) 3,389 46 Electric Utilities 55 48 Independent Power Producers & Combined Heat and Power 3,334 29 Net Generation (megawatthours) 5,627,645 50 Electric Utilities 30,059 46 Independent Power Producers & Combined Heat and Power 5,597,586 36 Emissions (thousand metric tons) Sulfur Dioxide 13 41 Nitrogen Oxide 5 47 Carbon Dioxide 4,187 45 Sulfur Dioxide (lbs/MWh) 5.2 7 Nitrogen Oxide (lbs/MWh) 1.9 16 Carbon Dioxide (lbs/MWh) 1,640 15 Total Retail Sales (megawatthours) 11,605,932 44 Full Service Provider Sales (megawatthours) 7,582,539 46

486

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Ohio Electricity Profile 2010 Ohio profile Ohio Electricity Profile 2010 Ohio profile Table 1. 2010 Summary Statistics (Ohio) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 33,071 8 Electric Utilities 20,179 13 Independent Power Producers & Combined Heat and Power 12,892 7 Net Generation (megawatthours) 143,598,337 7 Electric Utilities 92,198,096 10 Independent Power Producers & Combined Heat and Power 51,400,241 7 Emissions (thousand metric tons) Sulfur Dioxide 610 1 Nitrogen Oxide 122 3 Carbon Dioxide 121,964 4 Sulfur Dioxide (lbs/MWh) 9.4 1 Nitrogen Oxide (lbs/MWh) 1.9 17 Carbon Dioxide (lbs/MWh) 1,872 8 Total Retail Sales (megawatthours) 154,145,418 4 Full Service Provider Sales (megawatthours) 105,329,797 9

487

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Arkansas Electricity Profile 2010 Arkansas profile Arkansas Electricity Profile 2010 Arkansas profile Table 1. 2010 Summary Statistics (Arkansas) Item Value U.S. Rank NERC Region(s) SERC/SPP Primary Energy Source Coal Net Summer Capacity (megawatts) 15,981 25 Electric Utilities 11,488 23 Independent Power Producers & Combined Heat and Power 4,493 24 Net Generation (megawatthours) 61,000,185 25 Electric Utilities 47,108,063 20 Independent Power Producers & Combined Heat and Power 13,892,122 27 Emissions (thousand metric tons) Sulfur Dioxide 74 22 Nitrogen Oxide 40 29 Carbon Dioxide 34,018 28 Sulfur Dioxide (lbs/MWh) 2.7 22 Nitrogen Oxide (lbs/MWh) 1.5 24 Carbon Dioxide (lbs/MWh) 1,229 29 Total Retail Sales (megawatthours) 48,194,285 29 Full Service Provider Sales (megawatthours) 48,194,285 27

488

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Oklahoma Electricity Profile 2010 Oklahoma profile Oklahoma Electricity Profile 2010 Oklahoma profile Table 1. 2010 Summary Statistics (Oklahoma) Item Value U.S. Rank NERC Region(s) SPP Primary Energy Source Gas Net Summer Capacity (megawatts) 21,022 20 Electric Utilities 16,015 18 Independent Power Producers & Combined Heat and Power 5,006 17 Net Generation (megawatthours) 72,250,733 22 Electric Utilities 57,421,195 17 Independent Power Producers & Combined Heat and Power 14,829,538 24 Emissions (thousand metric tons) Sulfur Dioxide 85 21 Nitrogen Oxide 71 12 Carbon Dioxide 49,536 17 Sulfur Dioxide (lbs/MWh) 2.6 24 Nitrogen Oxide (lbs/MWh) 2.2 11 Carbon Dioxide (lbs/MWh) 1,512 17 Total Retail Sales (megawatthours) 57,845,980 25 Full Service Provider Sales (megawatthours) 57,845,980 23

489

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Iowa Electricity Profile 2010 Iowa profile Iowa Electricity Profile 2010 Iowa profile Table 1. 2010 Summary Statistics (Iowa) Item Value U.S. Rank NERC Region(s) MRO/SERC Primary Energy Source Coal Net Summer Capacity (megawatts) 14,592 28 Electric Utilities 11,282 24 Independent Power Producers & Combined Heat and Power 3,310 30 Net Generation (megawatthours) 57,508,721 26 Electric Utilities 46,188,988 21 Independent Power Producers & Combined Heat and Power 11,319,733 30 Emissions (thousand metric tons) Sulfur Dioxide 108 18 Nitrogen Oxide 50 22 Carbon Dioxide 47,211 20 Sulfur Dioxide (lbs/MWh) 4.1 11 Nitrogen Oxide (lbs/MWh) 1.9 14 Carbon Dioxide (lbs/MWh) 1,810 10 Total Retail Sales (megawatthours) 45,445,269 31 Full Service Provider Sales (megawatthours) 45,445,269 28

490

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

West Virginia Electricity Profile 2010 West Virginia profile West Virginia Electricity Profile 2010 West Virginia profile Table 1. 2010 Summary Statistics (West Virginia) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 16,495 24 Electric Utilities 11,719 21 Independent Power Producers & Combined Heat and Power 4,775 19 Net Generation (megawatthours) 80,788,947 20 Electric Utilities 56,719,755 18 Independent Power Producers & Combined Heat and Power 24,069,192 13 Emissions (thousand metric tons) Sulfur Dioxide 105 20 Nitrogen Oxide 49 23 Carbon Dioxide 74,283 12 Sulfur Dioxide (lbs/MWh) 2.9 20 Nitrogen Oxide (lbs/MWh) 1.3 25 Carbon Dioxide (lbs/MWh) 2,027 5 Total Retail Sales (megawatthours) 32,031,803 34 Full Service Provider Sales (megawatthours) 32,031,803 33

491

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Vermont Electricity Profile 2010 Vermont profile Vermont Electricity Profile 2010 Vermont profile Table 1. 2010 Summary Statistics (Vermont) Item Value U.S. Rank NERC Region(s) NPCC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 1,128 50 Electric Utilities 260 45 Independent Power Producers & Combined Heat and Power 868 43 Net Generation (megawatthours) 6,619,990 49 Electric Utilities 720,853 44 Independent Power Producers & Combined Heat and Power 5,899,137 35 Emissions (thousand metric tons) Sulfur Dioxide * 51 Nitrogen Oxide 1 50 Carbon Dioxide 8 51 Sulfur Dioxide (lbs/MWh) * 51 Nitrogen Oxide (lbs/MWh) 0.2 51 Carbon Dioxide (lbs/MWh) 3 51 Total Retail Sales (megawatthours) 5,594,833 51 Full Service Provider Sales (megawatthours) 5,594,833 48 Direct Use (megawatthours) 19,806 47