Sample records for fort yukon alaska

  1. EA-1922: Combined Power and Biomass Heating System, Fort Yukon, Alaska

    Broader source: Energy.gov [DOE]

    DOE (lead agency), Denali Commission (cooperating agency) and USDA Rural Utilities Services (cooperating agency) are proposing to provide funding to support the final design and construction of a biomass combined heat and power plant and associated district heating system to the Council of Athabascan Tribal Governments and the Gwitchyaa Zhee Corporation. The proposed biomass district heating system would be located in Fort Yukon Alaska.

  2. Fort Yukon, Chalkyitsik, & Venetie Biomass Boiler Feasibility Study

    SciTech Connect (OSTI)

    Greg Koontz, ME William A. Wall, PhD

    2009-03-31T23:59:59.000Z

    The Council of Athabascan Tribal Governments (CATG) is a consortium of ten Gwich'in and Koyukon Athabascan tribes settled in 10 remote villages and are linked by the Yukon River System. The CATG mission is to maintain the Yukon Flats region as Indian Country by asserting traditional rights and taking responsibility for developing tribal technical capacity to manage the land and resources. It is the intent of CATG to explore and develop all opportunities for a renewable and self-sufficient energy program for each of the villages. CATG envisions utilization of forest resources both for construction and energy as one of the best long-term strategies for integrating the economic goals for the region as well as supporting the cultural and social issues. The intent for this feasibility project is to focus specifically on biomass utilization for heat, first, and for future electrical generation within the region, second. An initial determination has already been made regarding the importance of wood energy as a primary source of renewable energy to displace diesel fuel in the Yukon Flats region. A desktop study of other potential renewable resources was conducted in 2006.

  3. Environmental and Hydrologic Overview of the Yukon River Basin, Alaska and Canada

    E-Print Network [OSTI]

    , Alaska and Canada By Timothy P. Brabets, Bronwen Wang, and Robert H. Meade Editor L-L. Harris, Cartographic Technician For additional information: Copies of this report may

  4. Fluctuations in lemming populations in north Yukon, Canada, 20072010

    E-Print Network [OSTI]

    Krebs, Charles J.

    severe for population persistence on the coastal plain along the north coast of the Yukon. Further work are so pronounced on the arctic coastal plain of Alaska and virtually absent on the coastal plain. Il se peut que les conditions de neige en hiver soient trop sévères pour la persistance des

  5. Rural Alaska Coal Bed Methane: Application of New Technologies to Explore and Produce Energy

    SciTech Connect (OSTI)

    David O. Ogbe; Shirish L. Patil; Doug Reynolds

    2005-06-30T23:59:59.000Z

    The Petroleum Development Laboratory, University of Alaska Fairbanks prepared this report. The US Department of Energy NETL sponsored this project through the Arctic Energy Technology Development Laboratory (AETDL) of the University of Alaska Fairbanks. The financial support of the AETDL is gratefully acknowledged. We also acknowledge the co-operation from the other investigators, including James G. Clough of the State of Alaska Department of Natural Resources, Division of Geological and Geophysical Surveys; Art Clark, Charles Barker and Ed Weeks of the USGS; Beth Mclean and Robert Fisk of the Bureau of Land Management. James Ferguson and David Ogbe carried out the pre-drilling economic analysis, and Doug Reynolds conducted post drilling economic analysis. We also acknowledge the support received from Eric Opstad of Elko International, LLC; Anchorage, Alaska who provided a comprehensive AFE (Authorization for Expenditure) for pilot well drilling and completion at Fort Yukon. This report was prepared by David Ogbe, Shirish Patil, Doug Reynolds, and Santanu Khataniar of the University of Alaska Fairbanks, and James Clough of the Alaska Division of Geological and Geophysical Survey. The following research assistants, Kanhaiyalal Patel, Amy Rodman, and Michael Olaniran worked on this project.

  6. Yukon-Koyukuk Census Area, Alaska: Energy Resources | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperative JumpWilliamsonWoodsonCounty is aYoakumYu Energy Corp

  7. EIS-0139: Trans-Alaska Gas System Final Environmental Impact Statement

    Broader source: Energy.gov [DOE]

    This EIS analyzes the Yukon Pacific Corporation (YPC) proposed construction of the Trans-Alaska Gas System (TAGS) a 796.5 mile long 36-inch diameter pipeline to transport High Pressured Natural Gas between Prudhoe Bay and a Tidewater terminal and LNG Plant near Anderson Bay, AK.

  8. Yukon, Oklahoma: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperative JumpWilliamsonWoodsonCounty is aYoakumYu Energy Corp Region:Yukon,

  9. Yellowstone in Yukon: The Late Cretaceous Carmacks Group Stephen T. Johnston* Canada/Yukon Geoscience Office, Box 2703 (F-3), Whitehorse, Yukon Y1A 2C6, Canada

    E-Print Network [OSTI]

    Johnston, Stephen T.

    Yellowstone in Yukon: The Late Cretaceous Carmacks Group Stephen T. Johnston* Canada/Yukon Geoscience Office, Box 2703 (F-3), Whitehorse, Yukon Y1A 2C6, Canada P. Jane Wynne Geological Survey of Canada, 9860 West Saanich Road, P.O. Box 6000, Sidney, British Columbia V8L 4B2, Canada Don Francis Earth

  10. Nebraska Nuclear Profile - Fort Calhoun

    U.S. Energy Information Administration (EIA) Indexed Site

    Fort Calhoun" "Unit","Summer Capacity (MW)","Net Generation (Thousand MWh)","Summer Capacity Factor (Percent)","Type","Commercial Operation Date","License Expiration Date"...

  11. Fort Carson Sustainability Journey

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecordFederal7.pdfFlash_2010_-24.pdfOverviewPlans |Updated August 12,FORT

  12. Water resource opportunity assessment: Fort Dix

    SciTech Connect (OSTI)

    Sullivan, G.P.; Hostick, D.J.; Elliott, D.B.; Fitzpatrick, Q.K.; Dahowski, R.T.; Dison, D.R

    1996-12-01T23:59:59.000Z

    This report provides the results of the water resource opportunity assessments performed by Pacific Northwest National Laboratory at the Fort Dix facility located in Fort Dix, New Jersey.

  13. Fort Carson Wind Resource Assessment

    SciTech Connect (OSTI)

    Robichaud, R.

    2012-10-01T23:59:59.000Z

    This report focuses on the wind resource assessment, the estimated energy production of wind turbines, and economic potential of a wind turbine project on a ridge in the southeastern portion of the Fort Carson Army base.

  14. Alaska Rural Energy Conference

    Broader source: Energy.gov [DOE]

    Organized and sponsored by the Alaska Energy Authority and the Alaska Center for Energy and Power, the Alaska Rural Energy Conference is a three-day event featuring a wide array of technical...

  15. Alaska BIA Providers Conference

    Broader source: Energy.gov [DOE]

    The Alaska Bureau of Indian Affairs (BIA) is hosting the 24th Annual BIA Tribal Providers Conference in Anchorage, Alaska, Dec. 1-5, 2014.

  16. MHK Projects/Yukon River Hydrokinetic Turbine Project | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAKGalway Bay IE < MHKInformationInformation Yukon

  17. FORT UNION DEEP

    SciTech Connect (OSTI)

    Lyle A. Johnson Jr.

    2002-03-01T23:59:59.000Z

    Coalbed methane (CBM) is currently the hottest area of energy development in the Rocky Mountain area. The Powder River Basin (PRB) is the largest CBM area in Wyoming and has attracted the majority of the attention because of its high permeability and relatively shallow depth. Other Wyoming coal regions are also being targeted for development, but most of these areas have lower permeability and deeper coal seams. This project consists of the development of a CBM stimulation system for deep coal resources and involves three work areas: (1) Well Placement, (2) Well Stimulation, and (3) Production Monitoring and Evaluation. The focus of this project is the Washakie Basin. Timberline Energy, Inc., the cosponsor, has a project area in southern Carbon County, Wyoming, and northern Moffat County, Colorado. The target coal is found near the top of the lower Fort Union formation. The well for this project, Evans No.1, was drilled to a depth of 2,700 ft. Three coal seams were encountered with sandstone and some interbedded shale between seams. Well logs indicated that the coal seams and the sandstone contained gas. For the testing, the upper seam at 2,000 ft was selected. The well, drilled and completed for this project, produced very little water and only occasional burps of methane. To enhance the well, a mild severity fracture was conducted to fracture the coal seam and not the adjacent sandstone. Fracturing data indicated a fracture half-length of 34 ft, a coal permeability of 0.2226 md, and permeability of 15.3 md. Following fracturing, the gas production rate stabilized at 10 Mscf/day within water production of 18 bpd. The Western Research Institute (WRI) CBM model was used to design a 14-day stimulation cycle followed by a 30-day production period. A maximum injection pressure of 1,200 psig to remain well below the fracture pressure was selected. Model predictions were 20 Mscf/day of air injection for 14 days, a one-day shut-in, then flowback. The predicted flowback was a four-fold increase over the prestimulation rate with production essentially returning to prestimulation rates after 30 days. The physical stimulation was conducted over a 14-day period. Problems with the stimulation injection resulted in a coal bed fire that was quickly quenched when production was resumed. The poststimulation, stabilized production was three to four times the prestimulation rate. The methane content was approximately 45% after one day and increased to 65% at the end of 30 days. The gas production rate was still two and one-half times the prestimulation rate at the end of the 30-day test period. The field results were a good match to the numerical simulator predictions. The physical stimulation did increase the production, but did not produce a commercial rate.

  18. FORT UNION DEEP

    SciTech Connect (OSTI)

    Lyle A. Johnson Jr.

    2002-09-01T23:59:59.000Z

    Coalbed methane (CBM) is currently the hottest area of energy development in the Rocky Mountain area. The Powder River Basin (PRB) is the largest CBM area in Wyoming and has attracted the majority of the attention because of its high permeability and relatively shallow depth. Other Wyoming coal regions are also being targeted for development, but most of these areas have lower permeability and deeper coal seams. This project consists of the development of a CBM stimulation system for deep coal resources and involves three work areas: (1) Well Placement, (2) Well Stimulation, and (3) Production Monitoring and Evaluation. The focus of this project is the Washakie Basin. Timberline Energy, Inc., the cosponsor, has a project area in southern Carbon County, Wyoming, and northern Moffat County, Colorado. The target coal is found near the top of the lower Fort Union formation. The well for this project, Evans No.1, was drilled to a depth of 2,700 ft. Three coal seams were encountered with sandstone and some interbedded shale between seams. Well logs indicated that the coal seams and the sandstone contained gas. For the testing, the upper seam at 2,000 ft was selected. The well, drilled and completed for this project, produced very little water and only occasional burps of methane. To enhance the well, a mild severity fracture was conducted to fracture the coal seam and not the adjacent sandstone. Fracturing data indicated a fracture half-length of 34 ft, a coal permeability of 0.2226 md, and permeability of 15.3 md. Following fracturing, the gas production rate stabilized at 10 Mscf/day within water production of 18 bpd. The Western Research Institute (WRI) CBM model was used to design a 14-day stimulation cycle followed by a 30-day production period. A maximum injection pressure of 1,200 psig to remain well below the fracture pressure was selected. Model predictions were 20 Mscf/day of air injection for 14 days, a one-day shut-in, then flowback. The predicted flowback was a four-fold increase over the prestimulation rate with production essentially returning to prestimulation rates after 30 days. The physical stimulation was conducted over a 14-day period. Problems with the stimulation injection resulted in a coal bed fire that was quickly quenched when production was resumed. The poststimulation, stabilized production was three to four times the prestimulation rate. The methane content was approximately 45% after one day and increased to 65% at the end of 30 days. The gas production rate was still two and one-half times the prestimulation rate at the end of the 30-day test period. The field results were a good match to the numerical simulator predictions. The physical stimulation did increase the production, but did not produce a commercial rate.

  19. Fort Sill Tribal Energy Plan

    SciTech Connect (OSTI)

    Shamieka Ross

    2006-06-26T23:59:59.000Z

    The Fort Sill Apache Tribe of Oklahoma has concluded an energy project funded through the First Steps Toward Developing Renewable Energy & Energy Efficiency program provided by the Department of Energy. The intent of the project was to include the establishment of a tribal Energy Office, an energy audit of tribal facilities, and a Strategic Energy Plan.

  20. The Outlier State: Alaskas FY 2012 Budget

    E-Print Network [OSTI]

    McBeath, Jerry; Corbin, Tanya Buhler

    2012-01-01T23:59:59.000Z

    rankings of Alaskas oil investment favorability. Source:it would increase oil company investment in Alaska, neededGovernment Support Oil & Gas Investment Tax Credits Other

  1. Mitochondrial-DNA variation among populations of Peromyscus from Yukon, Canada and southeastern Alaska

    E-Print Network [OSTI]

    Wike, Melanie Joy

    1998-01-01T23:59:59.000Z

    as Peromyscus maniculatus were first identified as Hesperomys manicuiatus by Wagner in 1845. These mice were subsequently recognized as Peromyscus canadensis umbrinus (Miller 1897) until Bangs (1898) proposed the current combination, Peromyscus manicuiatus... keeni. The taxonomic history of P. areas has been complicated. This form was erected by Bangs (1898) as a subspecies of P. maniculatus and retained as such by Osgood (1909a). Although considerable morphologic and ecologic evidence supports...

  2. Water and Sediment Quality in the Yukon River Basin, Alaska, During Water Year 2005

    E-Print Network [OSTI]

    ................................................................44 CHAPTER 7- Sediment Chemistry...............................................60 CHAPTER 12 - Uranium Isotopes

  3. Water and Sediment Quality in the Yukon River Basin, Alaska, During Water Year 2004

    E-Print Network [OSTI]

    ................................................................45 CHAPTER 7- Sediment Chemistry)..................................62 CHAPTER 12 - Uranium Isotopes

  4. Water and Sediment Quality in the Yukon River Basin, Alaska, During Water Year 2003

    E-Print Network [OSTI]

    ................................................................49 CHAPTER 8 - Sediment Chemistry)..................................70 CHAPTER 13 - Uranium Isotopes

  5. Water and Sediment Quality in the Yukon River Basin, Alaska, During Water Year 2002

    E-Print Network [OSTI]

    ................................................. 56 CHAPTER 8 - Sediment Chemistry) ..................... 78 CHAPTER 13 - Uranium Isotopes

  6. The Outlier State: Alaskas FY 2012 Budget

    E-Print Network [OSTI]

    McBeath, Jerry; Corbin, Tanya Buhler

    2012-01-01T23:59:59.000Z

    State: Alaskas FY 2012 Budget themselves Alaskans United toJ. (2011) What Recession? Alaskas 2011 Budget, in AnnualWestern States Budget Review, and California Journal of

  7. Planning Amid Abundance: Alaskas FY 2013 Budget Process

    E-Print Network [OSTI]

    McBeath, Jerry

    2013-01-01T23:59:59.000Z

    2011) The Outlier State: Alaskas FY 2012 Budget, AnnualWestern States Budget Review. New York Times, selectedAbundance: Alaskas FY 2013 Budget Process Abstract: This

  8. Fort Drum integrated resource assessment

    SciTech Connect (OSTI)

    Dixon, D.R.; Armstrong, P.R.; Brodrick, J.R.; Daellenbach, K.K.; Di Massa, F.V.; Keller, J.M.; Richman, E.E.; Sullivan, G.P.; Wahlstrom, R.R.

    1992-12-01T23:59:59.000Z

    The US Army Forces Command (FORSCOM) has tasked the Pacific Northwest Laboratory (PNL) as the lead laboratory supporting the US Department of Energy (DOE) Federal Energy Management Program's mission to identify, evaluate, and assist in acquiring all cost-effective energy projects at Fort Drum. This is a model program PNL is designing for federal customers served by the Niagara Mohawk Power Company. It will identify and evaluate all electric and fossil fuel cost-effective energy projects; develop a schedule at each installation for project acquisition considering project type, size, timing, and capital requirements, as well as energy and dollar savings; and secure 100% of the financing required to implement electric energy efficiency projects from Niagara Mohawk and have Niagara Mohawk procure the necessary contractors to perform detailed audits and install the technologies. This report documents the assessment of baseline energy use at one of Niagara Mohawk's primary federal facilities, the FORSCOM Fort Drum facility located near Watertown, New York. It is a companion report to Volume 1, the Executive Summary, and Volume 3, the Resource Assessment. This analysis examines the characteristics of electric, gas, oil, propane, coal, and purchased thermal capacity use for fiscal year (FY) 1990. It records energy-use intensities for the facilities at Fort Drum by building type and energy end use. It also breaks down building energy consumption by fuel type, energy end use, and building type. A complete energy consumption reconciliation is presented that includes the accounting of all energy use among buildings, utilities, central systems, and applicable losses.

  9. Wind Power in Alaska

    Broader source: Energy.gov [DOE]

    In the past few years wind power has become more and more prevalent across Alaska, with big turbines sprouting up in all parts of the state. Sponsored by the Renewable Energy Alaska Project, event...

  10. Alaska Rural Energy Conference

    Broader source: Energy.gov [DOE]

    The Alaska Rural Energy Conference is a three-day event offering a large variety of technical sessions covering new and ongoing energy projects in Alaska, as well as new technologies and needs for...

  11. EECBG Success Story: Bright Green Spot: Fort Worth Library |...

    Broader source: Energy.gov (indexed) [DOE]

    Bright Green Spot: Fort Worth Library EECBG Success Story: Bright Green Spot: Fort Worth Library September 30, 2010 - 9:53am Addthis Fort Worth's Central Library is seeing...

  12. Bright Green Spot: Fort Worth Library | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Bright Green Spot: Fort Worth Library Bright Green Spot: Fort Worth Library September 30, 2010 - 4:07pm Addthis Lindsay Gsell Fort Worth's Central Library is seeing tremendous...

  13. Fort Drum integrated resource assessment

    SciTech Connect (OSTI)

    Dixon, D.R.; Armstrong, P.R.; Daellenbach, K.K.; Dagle, J.E.; Di Massa, F.V.; Elliott, D.B.; Keller, J.M.; Richman, E.E.; Shankle, S.A.; Sullivan, G.P.; Wahlstrom, R.R.

    1992-12-01T23:59:59.000Z

    The US Army Forces Command (FORSCOM) has tasked Pacific Northwest Laboratory (PNL) as the lead laboratory supporting the US Department of Energy (DOE) Federal Energy Management Program's (FEMP) mission to identify, evaluate, and assist in acquiring all cost-effective energy projects at Fort Drum. This is a model program PNL is designing for federal customers served by the Niagara Mohawk Power Company (Niagara Mohawk). It will (1) identify and evaluate all electric and fossil fuel cost-effective energy projects; (2) develop a schedule at each installation for project acquisition considering project type, size, timing, capital requirements, as well as energy and dollar savings; and (3) secure 100% of the financing required to implement electric energy efficiency projects from Niagara Mohawk and have Niagara Mohawk procure the necessary contractors to perform detailed audits and install the technologies. This report provides the results of the fossil fuel and electric energy resource opportunity (ERO) assessments performed by PNL at one of Niagara Mohawk's primary federal facilities, the FORSCOM Fort Drum facility located near Watertown, New York. It is a companion report to Volume 1, the Executive Summary, and Volume 2, the Baseline Detail.

  14. City of Fort Collins Comment on Information Collection Extension...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2011 City of Fort Collins Comment on Information Collection Extension, October 2011 The City of Fort Collins provided comments to the Department of Energy's notice of intent to...

  15. El Paso County Geothermal Project at Fort Bliss | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Project at Fort Bliss El Paso County Geothermal Project at Fort Bliss DOE Geothermal Peer Review 2010 - Presentation. Project objective: Determine if, and where, economically...

  16. MHK Projects/UEK Yukon River Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowell Point, Alaska:LuzClickKembla <

  17. alaska: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    River, our learning community reading. Start your own Scheel, David 170 Source water controls on the character and origin of dissolved organic matter in streams of the Yukon...

  18. Alaska Forum on the Environment

    Broader source: Energy.gov [DOE]

    The Alaska Forum on the Environment is Alaska's largest statewide gathering of environmental professionals from government agencies, non-profit and for-profit businesses, community leaders, Alaskan...

  19. Renewable Energy Opportunities at Fort Hood, Texas

    SciTech Connect (OSTI)

    Solana, Amy E.; Warwick, William M.; Orrell, Alice C.; Russo, Bryan J.; Parker, Kyle R.; Weimar, Mark R.; Horner, Jacob A.; Manning, Anathea

    2011-11-14T23:59:59.000Z

    This report presents the results of Pacific Northwest National Laboratory's (PNNL) follow-on renewable energy (RE) assessment of Fort Hood. Fort Hood receives many solicitations from renewable energy vendors who are interested in doing projects on site. Based on specific requests from Fort Hood staff so they can better understand these proposals, and the results of PNNL's 2008 RE assessment of Fort Hood, the following resources were examined in this assessment: (1) Municipal solid waste (MSW) for waste-to-energy (WTE); (2) Wind; (3) Landfill gas; (4) Solar photovoltaics (PV); and (5) Shale gas. This report also examines the regulatory issues, development options, and environmental impacts for the promising RE resources, and includes a review of the RE market in Texas.

  20. Fort Collins Utilities- Home Efficiency Program

    Broader source: Energy.gov [DOE]

    Fort Collins Utilities (FCU) provides rebates for customers living in existing single-family homes who pursue energy efficiency projects. Either the Efficiency Audit or Efficiency Audit Plus is a...

  1. Renewable Energy in Alaska

    SciTech Connect (OSTI)

    Not Available

    2013-03-01T23:59:59.000Z

    This report examines the opportunities, challenges, and costs associated with renewable energy implementation in Alaska and provides strategies that position Alaska's accumulating knowledge in renewable energy development for export to the rapidly growing energy/electric markets of the developing world.

  2. Alaska geothermal bibliography

    SciTech Connect (OSTI)

    Liss, S.A.; Motyka, R.J.; Nye, C.J. (comps.)

    1987-05-01T23:59:59.000Z

    The Alaska geothermal bibliography lists all publications, through 1986, that discuss any facet of geothermal energy in Alaska. In addition, selected publications about geology, geophysics, hydrology, volcanology, etc., which discuss areas where geothermal resources are located are included, though the geothermal resource itself may not be mentioned. The bibliography contains 748 entries.

  3. FORTE spacecraft vibration mitigation. Final report

    SciTech Connect (OSTI)

    Maly, J.R.

    1996-02-01T23:59:59.000Z

    This report documents work that was performed by CSA Engineering, Inc., for Los Alamos National Laboratory (LANL), to reduce vibrations of the FORTE spacecraft by retrofitting damped structural components into the spacecraft structure. The technical objective of the work was reduction of response at the location of payload components when the structure is subjected to the dynamic loading associated with launch and proto-qualification testing. FORTE is a small satellite that will be placed in orbit in 1996. The structure weighs approximately 425 lb, and is roughly 80 inches high and 40 inches in diameter. It was developed and built by LANL in conjunction with Sandia National Laboratories Albuquerque for the United States Department of Energy. The FORTE primary structure was fabricated primarily with graphite epoxy, using aluminum honeycomb core material for equipment decks and solar panel substrates. Equipment decks were bonded and bolted through aluminum mounting blocks to adjoining structure.

  4. Renewable Energy Opportunities at Fort Polk, Louisiana

    SciTech Connect (OSTI)

    Solana, Amy E.; Boyd, Brian K.; Horner, Jacob A.; Gorrissen, Willy J.; Orrell, Alice C.; Weimar, Mark R.; Hand, James R.; Russo, Bryan J.; Williamson, Jennifer L.

    2010-11-17T23:59:59.000Z

    This document provides an overview of renewable resource potential at Fort Polk, based primarily upon analysis of secondary data sources supplemented with limited on-site evaluations. This effort focuses on grid-connected generation of electricity from renewable energy sources and also on ground source heat pumps for heating and cooling buildings. The effort was funded by the U.S. Army Installation Management Command (IMCOM) as follow-on to the 2005 Department of Defense (DoD) Renewables Assessment. The site visit to Fort Polk took place on February 16, 2010.

  5. Renewable Energy Opportunities at Fort Sill, Oklahoma

    SciTech Connect (OSTI)

    Boyd, Brian K.; Hand, James R.; Horner, Jacob A.; Orrell, Alice C.; Russo, Bryan J.; Weimar, Mark R.; Nesse, Ronald J.

    2011-03-31T23:59:59.000Z

    This document provides an overview of renewable resource potential at Fort Sill, based primarily upon analysis of secondary data sources supplemented with limited on-site evaluations. This effort focuses on grid-connected generation of electricity from renewable energy sources and on ground source heat pumps for heating and cooling buildings. The effort was funded by the U.S. Army Installation Management Command (IMCOM) as follow-on to the 2005 Department of Defense (DoD) Renewables Assessment. The site visit to Fort Sill took place on June 10, 2010.

  6. What Recession? Alaska's FY 2011 Budget

    E-Print Network [OSTI]

    McBeath, Jerry

    2011-01-01T23:59:59.000Z

    Recession? Alaskas FY 2011 Budget Jerry McBeath Universityexplaining Alaskas FY 2011 budget process and out- comes.It introduces the governors budget requests, legislative

  7. Fort Pierce Utilities Authority- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    '''Fort Pierce Utilities Authority has suspended rebate offerings until 2013. Contact the utility for more information on this program. '''

  8. Alaska Renewable Energy Fair

    Office of Energy Efficiency and Renewable Energy (EERE)

    The 10th annual Alaska Renewable Energy Fair on the downtown parkstrip in Anchorage is fun for the whole family! Come down and enjoy the live music, crafts, great local food, informational booths,...

  9. Pilgrim Hot Springs, Alaska

    Broader source: Energy.gov [DOE]

    Residents in rural Alaska may someday have the option of replacing diesel generators with clean renewable geothermal energy. Alaskans face some of the harshest weather conditions in America, and in...

  10. Interconnection Guidelines (Alaska)

    Broader source: Energy.gov [DOE]

    In October 2009, the Regulatory Commission of Alaska (RCA) approved net metering regulations. These rules were finalized and approved by the lieutenant governor in January 2010 and became effective...

  11. Alaska Workshop: Workforce Development

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy Office of Indian Energy is hosting two workshops at the Alaska Village Initiatives Rural Small Business Conference on Wednesday, February 12, 2014. Each workshop will...

  12. 1490 Campus Delivery Fort Collins, Colorado 80523-1490

    E-Print Network [OSTI]

    or coauthored over 100 articles for various journals and publications. In his spare time, Dr. Allen is an active he discusses the efforts being made to document the flora of Fort Polk, and by publishing articles concerning the flora of Fort Polk in academic journals each year. His work at Fort Polk has given

  13. Energy Engineering Analysis Program (EEAP), Fort Bliss headquarters building, lighting retrofit, Fort Bliss, El Paso, Texas

    SciTech Connect (OSTI)

    NONE

    1993-02-01T23:59:59.000Z

    The purpose of this study is to analyze the use of high efficiency fluorescent lighting with energy efficient lamps and electronic ballast for the Headquarters Building (Bldg. number 2) at Fort Bliss.

  14. Process Optimization Assessments at Fort Leonard Wood, Missouri and Fort Carson, Colorado

    E-Print Network [OSTI]

    Lin, M.; Vavrin, J.; Smith, W.

    2004-01-01T23:59:59.000Z

    Process Optimization Assessments at Fort Leonard Wood, Missouri and Fort Carson, Colorado Mike C.J. Lin U.S. Army Corps of Engineers Engineer Research Development Center, Construction Engineering Research Laboratory Champaign, Illinois... a specific Level II scope of work, respective roles, and the most expeditious path forward. This begins with a formal review of this report, combined with a planning session to organize the Level II program. REFERENCES 1. Lin, Mike C.J., et...

  15. Assessment of boreal forest historical C dynamics in Yukon River Basin: relative roles of warming and fire regime change

    SciTech Connect (OSTI)

    Yuan, Fengming [ORNL; Yi, Shuhua [Cold and Arid Regions Environmental and Engineering Research Institute, CAS; McGuire, A. David [University of Alaska; Johnson, Kristopher D [University of Alaska, Fairbanks; Liang, Jingjing [University of Alaska, Fairbanks; Harden, Jennifer [USGS, Menlo Park, CA; Kasischke, Eric S. [University of Maryland, College Park; Kurz, Werner [Canadian Forest Service

    2012-01-01T23:59:59.000Z

    Carbon (C) dynamics of boreal forest ecosystems have substantial implications for efforts to mitigate the rise of atmospheric CO2 and may be substantially influenced by warming and changing wildfire regimes. In this study we applied a large-scale ecosystem model that included dynamics of organic soil horizons and soil organic matter characteristics of multiple pools to assess forest C stock changes of the Yukon River Basin (YRB) in Alaska, USA, and Canada from 1960 through 2006, a period characterized by substantial climate warming and increases in wildfire. The model was calibrated for major forests with data from long-term research sites and evaluated using a forest inventory database. The regional assessment indicates that forest vegetation C storage increased by 46 Tg C, but that total soil C storage did not change appreciably during this period. However, further analysis suggests that C has been continuously lost from the mineral soil horizon since warming began in the 1970s, but has increased in the amorphous organic soil horizon. Based on a factorial experiment, soil C stocks would have increased by 158 Tg C if the YRB had not undergone warming and changes in fire regime. The analysis also identified that warming and changes in fire regime were approximately equivalent in their effects on soil C storage, and interactions between these two suggests that the loss of organic horizon thickness associated with increases in wildfire made deeper soil C stocks more vulnerable to loss via decomposition. Subbasin analyses indicate that C stock changes were primarily sensitive to the fraction of burned forest area within each subbasin and that boreal forest ecosystems in the YRB are currently transitioning from being sinks to sources at ;0.7% annual area burned. We conclude that it is important for international mitigation efforts focused on controlling atmospheric CO2 to consider how climate warming and changes in fire regime may concurrently affect the CO2 sink strength of boreal forests. It is also important for large-scale biogeochemical and earth system models to include organic soil dynamics in applications to assess regional C dynamics of boreal forests responding to warming and changes in fire regime.

  16. america project alaska: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Medicine Websites Summary: Alaska Tour Company Alaska Center for Energy and Power Norton Sound Health Corp Alaska Earth Sciences & Haugeberg LLC CPA's State of Alaska...

  17. Alaska: Alaska's Clean Energy Resources and Economy (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2013-03-01T23:59:59.000Z

    This document highlights the Office of Energy Efficiency and Renewable Energy's investments and impacts in the state of Alaska.

  18. Renewable Energy Opportunities at Fort Hood, Texas

    SciTech Connect (OSTI)

    Chvala, William D.; Warwick, William M.; Dixon, Douglas R.; Solana, Amy E.; Weimar, Mark R.; States, Jennifer C.; Reilly, Raymond W.

    2008-06-30T23:59:59.000Z

    The document provides an overview of renewable resource potential at Fort Hood based primarily upon analysis of secondary data sources supplemented with limited on-site evaluations. The effort was funded by the U.S. Army Installation Management Command (IMCOM) as follow-on to the 2005 DoD Renewables Assessment. This effort focuses on grid-connected generation of electricity from renewable energy sources and also ground source heat pumps for heating and cooling buildings, as directed by IMCOM.

  19. acid pit fort: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at DallasFort Worth International Airport Jerry R. Dennis, CEM, CEP Energy Manager October 9, 2013 Energy Management Practices at DFW Airport, October 9, 2013 Presentation...

  20. Fort Pierce Utilities Authority- Solar Water Heating Rebate (Florida)

    Broader source: Energy.gov [DOE]

    '''''Fort Pierce Utilities Authority has suspended the Solar Water Heating rebate program until 2013. Contact the utility for more information on these offerings.'''''

  1. Contrasting Eruption Styles Of The 147 Kimberlite, Fort A La...

    Open Energy Info (EERE)

    Contrasting Eruption Styles Of The 147 Kimberlite, Fort A La Corne, Saskatchewan, Canada Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article:...

  2. Direct-Current Resistivity At Cove Fort Area - Liquid (Warpinski...

    Open Energy Info (EERE)

    Warpinski, Et Al., 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity At Cove Fort Area - Liquid (Warpinski, Et...

  3. Fort Boise Veteran's Hospital District Heating Low Temperature...

    Open Energy Info (EERE)

    Veteran's Hospital District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Fort Boise Veteran's Hospital District Heating Low Temperature Geothermal...

  4. Fort Collins Utilities- Commercial and Industrial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Fort Collins provides businesses incentives for new construction projects and existing building retrofits. The Electric Efficiency Program encourages companies to retrofit facilities with new...

  5. Energy Department Recognizes Fort Worth for Leadership in Advancing...

    Energy Savers [EERE]

    water utilities, the Fort Worth Better Buildings Challenge effectively provides a local education and outreach program promoting energy conservation and efficiency as well as...

  6. Fort Bliss Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublicIDAPowerPlantSitingConstruction.pdfNotify98.pdf JumpFlixMapFile Jump to:Forseo GmbH Jump(Redirected from Fort

  7. FORTE antenna element and release mechanism design

    SciTech Connect (OSTI)

    Rohweller, D.J. [Astro Aerospace Corp., Carpinteria, CA (United States); Butler, T.Af. [Los Alamos National Lab., NM (United States)

    1995-02-01T23:59:59.000Z

    The Fast On-Orbit Recording of Transient Events (FORTE) satellite being built by Los Alamos National Laboratory (LANL) and Sandia National Laboratories (SNL) has as its most prominent feature a large deployable (11 m by 5 m) log periodic antenna to monitor emissions from electrical storms on the Earth. This paper describes the antenna and the design for the long elements and explains the dynamics of their deployment and the damping system employed. It also describes the unique paraffin-actuated reusable tie-down and release mechanism employed in the system.

  8. Modeling methane emissions from the Alaskan Yukon River basin, 19862005, by coupling a large-scale hydrological model

    E-Print Network [OSTI]

    Modeling methane emissions from the Alaskan Yukon River basin, 1986­2005, by coupling a large-scale hydrological model and a process-based methane model Xiaoliang Lu1 and Qianlai Zhuang1,2 Received 25 August has been made in methane modeling for the Arctic. However, there is still large uncertainty

  9. Applications for Alaska Strategic Technical Assistance Response...

    Energy Savers [EERE]

    Alaska START is aimed at achieving the following goals: Reducing the cost and use of energy for rural Alaska consumers and communities Increasing local capacity, energy...

  10. Better Buildings Challenge U.S. Department of Energy Fort Worth

    E-Print Network [OSTI]

    Roskelly,A.; LEED aP BD+C; GGP; GPCP USGBC Representative

    2014-01-01T23:59:59.000Z

    Steps ? Fort Worth Better Buildings Network ? 2014: Refine Energy Audit Process; Host Fort Worth Better Building Network Events; Build Advisory Sub-Committee Network; Target Needed Partner Market Sectors ? 2015-2020: Expand the Fort Worth Better...

  11. anchorage alaska installation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FORUM UNIVERSITY of ALASKA ANCHORAGE Physics Websites Summary: ALASKA JUSTICE FORUM UNIVERSITY of ALASKA ANCHORAGE A PUBLICATION OF THE JUSTICE CENTER Andr B Justice...

  12. alaska forest service: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Airlines NANA Management Services Biology and Medicine Websites Summary: Alaska Tour Company Alaska Center for Energy and Power Norton Sound Health Corp Alaska Earth Sciences...

  13. Alaska Electric Light&Power Co (Alaska) EIA Revenue and Sales...

    Open Energy Info (EERE)

    August 2008. Monthly Electric Utility Sales and Revenue Data Short Name 2008-08 Utility Company Alaska Electric Light&Power Co (Alaska) Place Alaska Start Date 2008-08-01 End Date...

  14. Targeting Net Zero Energy at Fort Carson: Assessment and Recommendations

    SciTech Connect (OSTI)

    Anderson, K.; Markel, T.; Simpson, M.; Leahey, J.; Rockenbaugh, C.; Lisell, L.; Burman, K.; Singer, M.

    2011-10-01T23:59:59.000Z

    The U.S. Army's Fort Carson installation was selected to serve as a prototype for net zero energy assessment and planning. NREL performed the comprehensive assessment to appraise the potential of Fort Carson to achieve net zero energy status through energy efficiency, renewable energy, and electric vehicle integration. This report summarizes the results of the assessment and provides energy recommendations. This study is part of a larger cross-laboratory effort that also includes an assessment of renewable opportunities at seven other DoD Front Range installations, a microgrid design for Fort Carson critical loads and an assessment of regulatory and market-based barriers to a regional secure smart grid.

  15. AMF Deployment, Oliktok, Alaska

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies |November 2011Astudies smartHistory:CONTR.l\CTIndia GangesAlaska

  16. AMCHITICA ISLAND, ALASKA

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$0.C. 20545 OCTTO:March_ ,'I- i.(ALASKA

  17. El Paso County Geothermal Project at Fort Bliss

    Broader source: Energy.gov (indexed) [DOE]

    & Geosciences Institute at the University of Utah (Research & Reporting) Marylin Segall, Ph.D. Co-Principal Investigator and Greg Nash, Ph.D. Fort BlissU.S. Army Toufic Alhaj,...

  18. Fort Collins Utilities- Residential and Small Commercial Appliance Rebate Program

    Broader source: Energy.gov [DOE]

    Fort Collins Utilities offers a number of appliance and recycling rebates to residential and small commercial customers. The appliance rebate program offers a $50 rebate for Energy Star rated...

  19. area fort calhoun: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the laundry operation and the DOL maintenance complex with specific focus on paintingmedia blasting... Lin, M.; Vavrin, J.; Smith, W. 2004-01-01 33 FOREST TECHNOLOGY 2 FORT...

  20. Planning Amid Abundance: Alaskas FY 2013 Budget Process

    E-Print Network [OSTI]

    McBeath, Jerry

    2013-01-01T23:59:59.000Z

    extreme dependence on depleting oil reserves and on federaldependence on depleting oil reserves and federal governmentReserve-Alaska (NPR-A), regarded as the most likely on-shore oil

  1. Planning Amid Abundance: Alaskas FY 2013 Budget Process

    E-Print Network [OSTI]

    McBeath, Jerry

    2013-01-01T23:59:59.000Z

    on liquefied natural gas (LNG). He met with the Alaska CEOsof the companies position on LNG exports with the states (unclear whether a large LNG project would be feasible and

  2. Energy Engineering Analysis Program, Fort Bliss, TX. Executive summary

    SciTech Connect (OSTI)

    NONE

    1983-01-01T23:59:59.000Z

    The CRS Group, Inc. is pleased to submit this report on the Energy Engineering Analysis Program (EEAP) for Fort Bliss, Texas. This work summarizes the present completion of the increments of the Fort Bliss EEAP where: (1) Data gathering and field inspections; (2) Analysis, project identification, technical feasibility and economic evaluations; (3) Preparation of DD Forms 1391 and POB`s where applicable and final documentation of results and recommendations.

  3. Alaska Renewable Energy Fund Grants for Renewable Energy Projects

    Broader source: Energy.gov [DOE]

    The Alaska Energy Authority is offering grants for renewable energy projects funded by the Alaska State Legislature.

  4. Graduate Programs University of AlaskaFairbanks

    E-Print Network [OSTI]

    Geology Graduate Programs University of AlaskaFairbanks Fairbanks, Alaska 997755780 Program Program: Geology http://www.auburn.edu/academic/science_math/geology/docs/graddrg.htm Brigham Young University Provo, Utah 846024606 Program: Geology http://geologyindy.byu.edu/programs

  5. Alaska Rural Energy Conference | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Alaska Rural Energy Conference Alaska Rural Energy Conference September 23, 2014 12:00PM EDT to September 25, 2014 9:00PM EDT Fairbanks, AK http:www.akruralenergy.org...

  6. Thunderstorm and Lightning Studies using the FORTE Optical Lightning System (FORTE/OLS)

    SciTech Connect (OSTI)

    Argo, P.; Franz, R.; Green, J.; Guillen, J.L.; Jacobson, A.R.; Kirkland, M.; Knox, S.; Spalding, R.; Suszcynsky, D.M.

    1999-02-01T23:59:59.000Z

    Preliminary observations of simultaneous RF and optical emissions from lightning as seen by the FORTE spacecraft are presented. RF/optical pairs of waveforms are routinely collected both as individual lightning events and as sequences of events associated with cloud-to-ground (CG) and intra-cloud (IC) flashes. CG pulses can be distinguished from IC pulses based on the properties of the RF and optical waveforms, but mostly based on the associated RF spectrograms. The RF spectrograms are very similar to previous ground-based VHF observations of lightning and show signatures associated with return strokes, stepped and dart leaders, and attachment processes,. RF emissions are observed to precede the arrival of optical emissions at the satellite by a mean value of 280 microseconds. The dual phenomenology nature of these observations are discussed in terms of their ability to contribute to a satellite-based lightning monitoring mission.

  7. Renewable Energy Opportunities at Fort Campbell, Tennessee/Kentucky

    SciTech Connect (OSTI)

    Hand, James R.; Horner, Jacob A.; Kora, Angela R.; Orrell, Alice C.; Russo, Bryan J.; Weimar, Mark R.; Nesse, Ronald J.

    2011-03-31T23:59:59.000Z

    This document provides an overview of renewable resource potential at Fort Campbell, based primarily upon analysis of secondary data sources supplemented with limited on-site evaluations. This effort focuses on grid-connected generation of electricity from renewable energy sources and also on ground source heat pumps for heating and cooling buildings. The effort was funded by the U.S. Army Installation Management Command (IMCOM) as follow-on to the 2005 Department of Defense (DoD) Renewables Assessment. The site visit to Fort Campbell took place on June 10, 2010.

  8. Fort Inge and the Texas frontier, 1849-1869

    E-Print Network [OSTI]

    Smith, Thomas Tyree

    1991-01-01T23:59:59.000Z

    ) May 1991 ABSTRACT Fort Inge and the Texas Frontier, 1849-1869. (May 1991) Thomas Tyree Smith B. S. in Ed. , Southwest Texas State University Chair of Advisory Committee: Dr. Joseph G. Dawson III Now an obscure site near Uvalde, Fort Inge was once...'s Report on the Eighth Nilitary Department, " Cartographic Division, DR 148, RG 77, NA. 12 NOTES 1. Frederick Law Olmsted, A Journey Through Texas: Or A Saddle- Trip On the Southwestern Frontier (New York: Dix, Edwards 6 Co. , 1857; rpr. , Austin...

  9. Development of Baseline Monthly Utility Models for Fort Hood, Texas

    E-Print Network [OSTI]

    Reddy, T. A.; Saman, N. F.; Claridge, D. E.; Haberl, J. S.; Turner, W. D.; Chalifoux, A.

    monthly models for electricity use, electricity demand, gas use, and water use for the three cantonment areas of Fort Hood have been developed. Such models can be used as screening tools for detecting changes in future utility bills and also to track...

  10. Energy Management Practices at Dalls/Fort Worth International Airport

    E-Print Network [OSTI]

    Dennis, J. R.

    2013-01-01T23:59:59.000Z

    Energy Management Practices at Dallas/Fort Worth International Airport Jerry R. Dennis, CEM, CEP Energy Manager October 9, 2013 Energy Management Practices at DFW Airport, October 9, 2013 Presentation Outline ? DFW Airport Overview ? Energy... Management Section ? Structure & Mission ? Supply-Side Management ? Reliability ? Cost (Risk) mitigation ? Environmental stewardship ? Demand-Side Management ? Energy monitoring ? Energy audits ? Energy standards ? Continuous Commissioning...

  11. School of Social Work Fort Collins, Colorado 80523-1586

    E-Print Network [OSTI]

    Rutledge, Steven

    School of Social Work Fort Collins, Colorado 80523-1586 Phone (970) 491-6612 Fax (970) 491-7280 Colorado State University College of Health and Human Sciences School of Social Work http or disability. #12;ii Greetings! Welcome to the School of Social Work at Colorado State University! Central

  12. Fort Irwin Integrated Resource Assessment. Volume 2, Baseline detail

    SciTech Connect (OSTI)

    Richman, E.E.; Keller, J.M.; Dittmer, A.L.; Hadley, D.L.

    1994-01-01T23:59:59.000Z

    This report documents the assessment of baseline energy use at Fort Irwin, a US Army Forces Command facility near Barstow, California. It is a companion report to Volume 1, Executive Summary, and Volume 3, Integrated Resource Assessment. The US Army Forces Command (FORSCOM) has tasked the US Department of Energy (DOE) Federal Energy Management Program (FEMP), supported by the Pacific Northwest Laboratory (PNL), to identify, evaluate, and assist in acquiring all cost-effective energy projects at Fort Irwin. This is part of a model program that PNL has designed to support energy-use decisions in the federal sector. This program (1) identifies and evaluates all cost-effective energy projects; (2) develops a schedule at each installation for project acquisition considering project type, size, timing, and capital requirements, as well as energy and dollar savings; and (3) targets 100% of the financing required to implement energy efficiency projects. PNL applied this model program to Fort Irwin. This analysis examines the characteristics of electric, propane gas, and vehicle fuel use for a typical operating year. It records energy-use intensities for the facilities at Fort Irwin by building type and energy end use. It also breaks down building energy consumption by fuel type, energy end use, and building type. A complete energy consumption reconciliation is presented that accounts for all energy use among buildings, utilities, and applicable losses.

  13. Fort Stewart integrated resource assessment. Volume 2, Baseline detail

    SciTech Connect (OSTI)

    Keller, J.M.; Sullivan, G.P.; Wahlstrom, R.R.; Larson, L.L.

    1993-08-01T23:59:59.000Z

    This report documents the assessment of baseline energy use at Fort Stewart, a US Army Forces Command facility located near Savannah, Georgia. This is a companion report to Volume 1, Executive Summary, and Volume 3, Integrated Resource Assessment. The US Army Forces Command (FORSCOM) tasked Pacific Northwest Laboratory (PNL) to identify, evaluate, and assist in acquiring all cost-effective energy projects at Fort Stewart. PNL, in support of the US Department of Energy (DOE) Federal Energy Management Program (FEMP), has designed a model program applicable to the federal sector for this purpose. The model program (1) identifies and evaluates all cost-effective energy projects; (2) develops a schedule at each installation for project acquisition considering project type, size, timing, and capital requirements, as well as energy and dollar savings; and (3) targets 100% of the financing required to implement energy efficiency projects. PNL applied this model program to Fort Stewart. The analysis examines the characteristics of electric, natural gas, oil, propane, and wood chip use for fiscal year (FY) 1990. The results include energy-use intensities for the facilities at Fort Stewart by building type, fuel type, and energy end use. A complete energy consumption reconciliation is presented that accounts for the distribution of all major energy uses and losses among buildings, utilities, and central systems.

  14. Parton distributions and event generators Stefano Carrazza, Stefano Forte

    E-Print Network [OSTI]

    Heller, Barbara

    Parton distributions and event generators Stefano Carrazza, Stefano Forte Dipartimento di Fisica ingredient in achieving all of these goals is the integration of parton distri- butions within Monte Carlo, and data collected in an experimental fiducial region. Whereas next-to-leading (NLO) order Monte Carlo

  15. EIS-0090: Fort Peck-Havre Transmission Line Project, Montana

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energys Western Area Power Administration prepared this statement to assess the potential environmental and socioeconomic implications of its proposed action to construct and operate a 230kV transmission line from Fort Peck to Havre, Montana, with three intermediate interconnecting substations.

  16. A Heart Health Alaska Natives

    E-Print Network [OSTI]

    Bandettini, Peter A.

    Honoring the Gift of Heart Health A Heart Health Educator's Manual for Alaska Natives U . S . D E Health Service Office of Prevention, Education, and Control #12;Honoring the Gift of Heart Health A Heart National Heart, Lung, and Blood Institute and Indian Health Service NIH Publication No. 06-5218 Revised

  17. fort hood range revegetation Located on the northern edge of the Texas Hill Country, Fort Hood Military

    E-Print Network [OSTI]

    and implement best management practices (BMPs) and guides for restoring the installation's training lands of the Army and U.S. Department of Defense are keenly interested in integrating sound stewardship practices Fort Hood ·Received the 2006 Texas Environmental Excellence Award ­ Agriculture Division, presented

  18. Combating soil erosion: AgriLife scientist discovering what works for Fort Hood

    E-Print Network [OSTI]

    Wythe, Kathy

    2008-01-01T23:59:59.000Z

    for Fort Hood, Texas, was initi- ated with federal funding through NRCS to the Texas Water Resources Institute. The revegetation project brought composted dairy manure from the Bosque River watershed to Fort Hood to use as a soil amendment to test its...tx H2O | pg. 24 When most people think of Fort Hood, they think of the military readying troops for combat. When a group of Texas AgriLife Research scientists think of Fort Hood, it?s combating soil erosion. Fort Hood is one of the largest...

  19. Alaska Gateway School District Adopts Combined Heat and Power...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Alaska Gateway School District Adopts Combined Heat and Power Alaska Gateway School District Adopts Combined Heat and Power May 7, 2013 - 12:00am Addthis In Tok, Alaska, the...

  20. Alaska Native Village Renewable Energy Project Development Workshop...

    Office of Environmental Management (EM)

    Bethel Alaska Native Village Renewable Energy Project Development Workshop in Bethel March 23, 2015 8:00AM AKDT to March 25, 2015 5:00PM AKDT Bethel, Alaska University of Alaska...

  1. Alaska Native Village Renewable Energy Project Development Workshop...

    Office of Environmental Management (EM)

    Juneau Alaska Native Village Renewable Energy Project Development Workshop in Juneau March 30, 2015 8:00AM AKDT to April 1, 2015 5:00PM AKDT Juneau, Alaska University of Alaska...

  2. Alaska Electric Light&Power Co (Alaska) EIA Revenue and Sales...

    Open Energy Info (EERE)

    Alaska) EIA Revenue and Sales - July 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alaska Electric Light&Power Co for July 2008. Monthly...

  3. Federal Agencies Collaborate to Expedite Construction of Alaska...

    Broader source: Energy.gov (indexed) [DOE]

    Collaborate to Expedite Construction of Alaska Natural Gas Pipeline Federal Agencies Collaborate to Expedite Construction of Alaska Natural Gas Pipeline June 29, 2006 - 2:44pm...

  4. DOE Alaska Native Village Renewable Energy Project Development...

    Energy Savers [EERE]

    Alaska Native Village Renewable Energy Project Development Workshop DOE Alaska Native Village Renewable Energy Project Development Workshop March 30, 2015 9:00AM AKDT to April 1,...

  5. Geothermal Exploration In Pilgrim, Alaska- First Results From...

    Open Energy Info (EERE)

    Pilgrim, Alaska- First Results From Remote Sensing Studies Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Poster: Geothermal Exploration In Pilgrim, Alaska- First...

  6. Climate, Conservation, and Community in Alaska and Northwest Canada

    Broader source: Energy.gov [DOE]

    Climate, Conservation, and Community in Alaska and Northwest Canada is a joint Landscape Conservation Cooperative (LCC) and Alaska Climate Science Center (AK CSC) conference scheduled for November...

  7. Energy Engineering Analysis Program (EEAP), Fort Bliss Water Distribution System, Fort Bliss, El Paso, Texas

    SciTech Connect (OSTI)

    NONE

    1993-02-01T23:59:59.000Z

    The purpose of this study is to analyze the existing system and two alternate methods of peak electrical demand shaving for the water distribution system at Fort Bliss, Texas. The existing system will be referred to as Alternative Number 1 throughout the report. Alternative Number 2 includes the addition of water storage capacity in order to allow the well and booster pumps to operate only during non-peak electrical periods. Alternative Number 3 includes the use of natural gas powered electric generators at each well and booster pumping station. These generators would be utilized during the peak electrical periods. This report is prepared in accordance with the detailed scope of work for Contract No. DACA63-91-D-0048, Delivery Order 0005 (Refer to Appendix J for complete scope of work). The blast Life Cycle Cost In Design (LCCID) program with the ECIP option was used to determine the Life Cycle Cost (LCC) and Savings to Investment Ratio (SIR) for the analyzed retrofit for a 25 year study life. The existing water distribution system consists of 17 well pumps and 5 booster pumping stations. The desert field well and booster pumps were not included in this study due to their remote location. The well and booster pumps provide water supply to several ground elevated storage tanks located across the reservation (Refer to Appendix K for map indicating general locations). These storage tanks are located to provide three pressure zones. The upper pressure zone is maintained by a one million gallon tank. The intermediate pressure zone is maintained by a 0.6 million gallon tank. Pressure in the lower zone is maintained by three (3) elevated storage tanks.

  8. Alaska Village Initiatives Rural Small Business Conference

    Broader source: Energy.gov [DOE]

    The Alaska Village Initiatives 23rd Annual Rural Small Business Conference will bring together rural businesses and leaders and provide them with networking opportunities, training, and technical...

  9. Alaska: a guide to geothermal energy development

    SciTech Connect (OSTI)

    Basescu, N.; Bloomquist, R.G.; Higbee, C.; Justus, D.; Simpson, S.

    1980-06-01T23:59:59.000Z

    Alaska's geothermal potential, exploration, drilling, utilization, and legal and institutional setting are covered. Economic factors of direct use projects are discussed. (MHR)

  10. Alaska START Round 3 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    opportunity aimed at achieving the following goals: Reducing the cost and use of energy for rural Alaska consumers and communities Increasing local capacity, energy...

  11. FRAMEWORK GEOLOGY OF FORT UNION COAL IN THE WILLISTON BASIN

    E-Print Network [OSTI]

    Chapter WF FRAMEWORK GEOLOGY OF FORT UNION COAL IN THE WILLISTON BASIN By R.M. Flores,1 C.W. Keighin,1 A.M. Ochs,2 P.D. Warwick,1 L.R. Bader,1 and E.C. Murphy3 in U.S. Geological Survey Professional Paper 1625-A 1 U.S. Geological Survey 2 Consultant, U.S. Geological Survey, Denver, Colorado 3 North

  12. Development of Baseline Monthly Utility Models for Fort Hood, Texas

    E-Print Network [OSTI]

    Reddy, T. A.; Saman, N. F.; Claridge, D. E.; Haberl, J. S.; Turner, W. D.; Chalifoux, A.

    1996-01-01T23:59:59.000Z

    , where separate substations have been installed. Natural gas is metered in only two locations: one gas meter records the combined gas usage of Main and West cantonment areas, and the other gas meter records usage at North Fort Hood. Water metering... electricity use, electricity demand, gas use and water use for the Main, West and North substations. As seen in Fig.1, which pertains to the Main cantonment area, the plots seem to generally depict consistent annual patterns and little variation over...

  13. Geothermometry At Fort Bliss Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation, searchGeaugaInformation Mexico - A SurveyInformationEnergyFishFort

  14. Alaska | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWende NewSowitecAWSAgri-Energy LLCAir EnergyTayyarAlaska

  15. Russ S. Schumacher, John M. Haynes, Robert B. Seigel Daniel T. Lindsey Colorado State University, Fort Collins, CO NOAA/NESDIS/STAR/RAMMB, Fort Collins, CO

    E-Print Network [OSTI]

    Collett Jr., Jeffrey L.

    of understanding the transport of chemical species by deep convective storms" · The project focused on three, Fort Collins, CO NOAA/NESDIS/STAR/RAMMB, Fort Collins, CO " ! ! ! ! ! ! ! ! ! ! ! " INTRODUCTION! · In May-June 2012, the Deep Convective Clouds and Chemistry (DC3) experiment was conducted, with the goals

  16. E-Print Network 3.0 - alaska installation restoration Sample...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    role in the history of Alaska. Salmon, along with mining, timber, and furs, were the keystone... of residents and visitors to Alaska. Alaska native peoples and their heritage...

  17. U.S. Army Fort Knox: Using the Earth for Space Heating and Cooling (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-04-01T23:59:59.000Z

    FEMP case study overview of the geothermal/ground source heat pump project at the U.S. Army Fort Knox Disney Barracks.

  18. Recovery Act State Memos Alaska

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L dDepartment ofList?Department09 Section 9990|Updated July 2010Alaska

  19. Amchitka, Alaska, Site Fact Sheet

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$0.C. 20545 OCTTO:March_ ,'I-Amchitka, Alaska, Site.

  20. Fort Drum integrated resource assessment. Volume 2, Baseline detail

    SciTech Connect (OSTI)

    Dixon, D.R.; Armstrong, P.R.; Brodrick, J.R.; Daellenbach, K.K.; Di Massa, F.V.; Keller, J.M.; Richman, E.E.; Sullivan, G.P.; Wahlstrom, R.R.

    1992-12-01T23:59:59.000Z

    The US Army Forces Command (FORSCOM) has tasked the Pacific Northwest Laboratory (PNL) as the lead laboratory supporting the US Department of Energy (DOE) Federal Energy Management Program`s mission to identify, evaluate, and assist in acquiring all cost-effective energy projects at Fort Drum. This is a model program PNL is designing for federal customers served by the Niagara Mohawk Power Company. It will identify and evaluate all electric and fossil fuel cost-effective energy projects; develop a schedule at each installation for project acquisition considering project type, size, timing, and capital requirements, as well as energy and dollar savings; and secure 100% of the financing required to implement electric energy efficiency projects from Niagara Mohawk and have Niagara Mohawk procure the necessary contractors to perform detailed audits and install the technologies. This report documents the assessment of baseline energy use at one of Niagara Mohawk`s primary federal facilities, the FORSCOM Fort Drum facility located near Watertown, New York. It is a companion report to Volume 1, the Executive Summary, and Volume 3, the Resource Assessment. This analysis examines the characteristics of electric, gas, oil, propane, coal, and purchased thermal capacity use for fiscal year (FY) 1990. It records energy-use intensities for the facilities at Fort Drum by building type and energy end use. It also breaks down building energy consumption by fuel type, energy end use, and building type. A complete energy consumption reconciliation is presented that includes the accounting of all energy use among buildings, utilities, central systems, and applicable losses.

  1. DOE - Office of Legacy Management -- Fort St Vrain - 011

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou are here Home »HillNYEra ToolFennFoodFort St Vrain

  2. Radiometrics At Fort Bliss Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant of Access Permit5-ID-aREC Solar JumpRGSRadiant EnergyRadioFort

  3. Fort Meade, Maryland: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublicIDAPowerPlantSitingConstruction.pdfNotify98.pdf JumpFlixMapFile Jump to:ForseoMcKinley, Ohio: EnergyFort

  4. Alaska Electric Light&Power Co (Alaska) EIA Revenue and Sales...

    Open Energy Info (EERE)

    November 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alaska Electric Light&Power Co for November 2008. Monthly Electric Utility Sales...

  5. Alaska Electric Light&Power Co (Alaska) EIA Revenue and Sales...

    Open Energy Info (EERE)

    December 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alaska Electric Light&Power Co for December 2008. Monthly Electric Utility Sales...

  6. Dust Plume Modeling at Fort Bliss: Full Training Scenario

    SciTech Connect (OSTI)

    Chapman, Elaine G.; Rishel, Jeremy P.; Rutz, Frederick C.; Seiple, Timothy E.; Newsom, Rob K.; Allwine, K Jerry

    2006-09-26T23:59:59.000Z

    The potential for air quality impacts from heavy mechanized vehicles operating in the training ranges and on the unpaved main supply routes at Fort Bliss is being investigated. The investigation uses the atmospheric modeling system DUSTRAN to simulate fugitive dust emission and dispersion from typical activities occurring on the installation. This report conveys the results of DUSTRAN simulations conducted using a Full Training scenario developed by Fort Bliss personnel. he Full Training scenario includes simultaneous off-road activities of two full Heavy Brigade Combat Teams (HCBTs) and one HCBT battalion on three training ranges. Simulations were conducted for the six-day period, April 25-30, 2005, using previously archived meteorological records. Simulation results are presented in the form of 24-hour average PM10 plots and peak 1-hour PM10 concentration plots, where the concentrations represent contributions resulting from the specified military vehicular activities, not total ambient PM10 concentrations. Results indicate that the highest PM10 contribution concentrations occurred on April 30 when winds were light and variable. Under such conditions, lofted particulates generated by vehicular movement stay in the area of generation and are not readily dispersed. The effect of training duration was investigated by comparing simulations with vehicular activity extending over a ten hour period (0700 to 1700 MST) with simulations where vehicular activity was compressed into a one hour period (0700 to 0800 MST). Compressing all vehicular activity into one hour led to higher peak one-hour and 24-hour average concentration contributions, often substantially higher.

  7. Fort Stewart integrated resource assessment. Volume 3: Resource assessment

    SciTech Connect (OSTI)

    Sullivan, G.P.; Keller, J.M.; Stucky, D.J.; Wahlstrom, R.R.; Larson, L.L.

    1993-10-01T23:59:59.000Z

    The US Army Forces Command (FORSCOM) has tasked the US Department of Energy (DOE) Federal Energy Management Program (FEMP), supported by the Pacific Northwest Laboratory, to identify, evaluate, and assist in acquiring all cost-effective energy projects at Fort Stewart. This is part of a model program that PNL is designing to support energy-use decisions in the federal sector. This report provides the results of the fossil fuel and electric energy resource opportunity (ERO) assessments performed by PNL at the FORSCOM Fort Stewart facility located approximately 25 miles southwest of Savannah, Georgia. It is a companion report to Volume 1, Executive Summary, and Volume 2, Baseline Detail. The results of the analyses of EROs are presented in 11 common energy end-use categories (e.g., boilers and furnaces, service hot water, and building lighting). A narrative description of each ERO is provided, along with a table detailing information on the installed cost, energy and dollar savings; impacts on operations and maintenance (O&M); and, when applicable, a discussion of energy supply and demand, energy security, and environmental issues. A description of the evaluation methodologies and technical and cost assumptions is also provided for each ERO. Summary tables present the cost-effectiveness of energy end-use equipment before and after the implementation of each ERO. The tables also present the results of the life-cycle cost (LCC) analysis indicating the net present value (NPV) and savings to investment ratio (SIR) of each ERO.

  8. Innovative use of DSP technology in space: FORTE event classifier

    SciTech Connect (OSTI)

    Briles, S.; Moore, K. Jones, R.; Klingner, P.; Neagley, D.; Caffrey, M.; Henneke, K.; Spurgen, W. [Los Alamos National Lab., NM (United States); Blain, P. [EG and G Idaho, Inc., Idaho Falls, ID (United States)

    1994-08-01T23:59:59.000Z

    The Fast On-Orbit Recording of Transient Events (FORTE) small satellite will field a digital signal processor (DSP) experiment for the purpose of classifying radio-frequency (rf) transient signals propagating through the earth`s ionosphere. Designated the Event Classifier experiment, this DSP experiment uses a single Texas Instruments` SMJ320C30 DSP to execute preprocessing, feature extraction, and classification algorithms on down-converted, digitized, and buffered rf transient signals in the frequency range of 30 to 300 MHz. A radiation-hardened microcontroller monitors DSP- abnormalities and supervises spacecraft command communications. On- orbit evaluation of multiple algorithms is supported by the Event Classifier architecture. Ground-based commands determine the subset and sequence of algorithms executed to classify a captured time series. Conventional neural network classification algorithms will be some of the classification techniques implemented on-board FORTE while in a low-earth orbit. Results of all experiments, after being stored in DSP flash memory, will be transmitted through the spacecraft to ground stations. The Event Classifier is a versatile and fault-tolerant experiment that is an important new space-based application of DSP technology.

  9. Solar Energy Development Assistance for Fort Hunter Liggett

    SciTech Connect (OSTI)

    Russo, Bryan J.; Hoffman, Michael G.; Chvala, William D.

    2011-03-30T23:59:59.000Z

    Pacific Northwest National Laboratory provided assistance to Fort Hunter Liggett to determine the opportunities for solar energy development on the site. Increasing use of renewable energy is mandated by several executive orders and legislation. Fort Hunter Liggett has many attributes that enhance its suitability for renewable energy development. First, the site is located south of San Francisco in a remote portion of the costal foothills. Brush and forest fires are frequent and often result in power outages, which subsequently impacts the sites training mission. In addition, the sites blended electric rate during fiscal year (FY) 2010 was high at 12 /kWh. Lastly, the solar resource is moderately high; the site receives nearly 5.7 kWh/m2/day on a south facing, latitude-tilted surface. In light of these factors, the site is a clear candidate for a solar photovoltaic array. Prior to Pacific Northwest National Laboratorys (PNNL) involvement, the site secured funding for a 1 megawatt (MW) photovoltaic (PV) array that will also provide shading for site vehicles. To best implement this project, PNNL conducted a site visit and was tasked with providing the site technical guidance and support regarding module selection, array siting, and other ancillary issues.

  10. Strategic Energy Management Plan For Fort Buchanan, Puerto Rico

    SciTech Connect (OSTI)

    Parker, Steven A.; Hunt, W. D.

    2001-10-31T23:59:59.000Z

    This document reports findings and recommendations as a result of a design assistance project with Fort Buchanan with the goals of developing a Strategic Energy Management Plan for the Site. A strategy has been developed with three major elements in mind: 1) development of a strong foundation from which to build, 2) understanding technologies that are available, and 3) exploring financing options to fund the implementation of improvements. The objective of this report is to outline a strategy that can be used by Fort Buchanan to further establish an effective energy management program. Once a strategy is accepted, the next step is to take action. Some of the strategies defined in this Plan may be implemented directly. Other strategies may require the development of a more sophisticated tactical, or operational, plan to detail a roadmap that will lead to successful realization of the goal. Similarly, some strategies are not single events. Rather, some strategies will require continuous efforts to maintain diligence or to change the culture of the Base occupants and their efforts to conserve energy resources.

  11. Fort Drum integrated resource assessment. Volume 3, Resource assessment

    SciTech Connect (OSTI)

    Dixon, D.R.; Armstrong, P.R.; Daellenbach, K.K.; Dagle, J.E.; Di Massa, F.V.; Elliott, D.B.; Keller, J.M.; Richman, E.E.; Shankle, S.A.; Sullivan, G.P.; Wahlstrom, R.R.

    1992-12-01T23:59:59.000Z

    The US Army Forces Command (FORSCOM) has tasked Pacific Northwest Laboratory (PNL) as the lead laboratory supporting the US Department of Energy (DOE) Federal Energy Management Program`s (FEMP) mission to identify, evaluate, and assist in acquiring all cost-effective energy projects at Fort Drum. This is a model program PNL is designing for federal customers served by the Niagara Mohawk Power Company (Niagara Mohawk). It will (1) identify and evaluate all electric and fossil fuel cost-effective energy projects; (2) develop a schedule at each installation for project acquisition considering project type, size, timing, capital requirements, as well as energy and dollar savings; and (3) secure 100% of the financing required to implement electric energy efficiency projects from Niagara Mohawk and have Niagara Mohawk procure the necessary contractors to perform detailed audits and install the technologies. This report provides the results of the fossil fuel and electric energy resource opportunity (ERO) assessments performed by PNL at one of Niagara Mohawk`s primary federal facilities, the FORSCOM Fort Drum facility located near Watertown, New York. It is a companion report to Volume 1, the Executive Summary, and Volume 2, the Baseline Detail.

  12. Sun Ultra 80 SPEC CFP95 Sun Forte Inter-Array Padding for Data Localization

    E-Print Network [OSTI]

    Kasahara, Hironori

    Sun Ultra 80 SPEC CFP95 Sun Forte 5.5 Inter-Array Padding for Data Localization with Static for data localization to minimize cache conflict misses. In the evaluation on Sun Ultra 80 using SPEC CFP95, the OSCAR multigrain compiler gave us up to 5.5 times speedup against Sun Forte automatic paralleling

  13. 2013 Alaska Federation of Natives Convention

    Broader source: Energy.gov [DOE]

    The Alaska Federation of Natives (AFN) Convention is the largest representative annual gathering in the United States of any Native peoples. Delegates are elected on a population formula of one...

  14. Alaska Federation of Natives Annual Convention

    Broader source: Energy.gov [DOE]

    The Alaska Federation of Natives (AFN) Convention is the largest representative annual gathering in the United States of any Native peoples. Delegates are elected on a population formula of one...

  15. Alaska Native Village Energy Development Workshop

    Broader source: Energy.gov [DOE]

    Presented by the DOE Office of Indian Energy and Tribal Energy Program, this workshop is designed to help Alaska Native villages and corporations understand the range of energy efficiency and...

  16. Alaska Village Initiatives Rural Business Conference

    Broader source: Energy.gov [DOE]

    Hosted by the Alaska Village Initiative, the 24th Annual Rural Small Business Conference brings together rural businesses and leaders to provide them with networking opportunities, training, and technical information.

  17. DOE Alaska Native Village Renewable Energy Workshop

    Broader source: Energy.gov [DOE]

    The Department of Energy Office of Indian Energy Policy and Programs and Office of Energy Efficiency and Renewable Energy Tribal Energy Program are offering a 2-day workshop for Alaska Native...

  18. Advancing Efforts to Energize Native Alaska (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2013-04-01T23:59:59.000Z

    This brochure describes key programs and initiatives of the DOE Office of Indian Energy Policy and Programs to advance energy efficiency, renewable energy, and energy infrastructure projects in Alaska Native villages.

  19. Alaska Strategic Energy Plan and Planning Handbook

    Broader source: Energy.gov (indexed) [DOE]

    AEA Alaska Energy Authority Btu British thermal unit DOE U.S. Department of Energy EERE Office of Energy Efficiency and Renewable Energy kW kilowatt kWh kilowatt-hour LCOE...

  20. Heavy oil production from Alaska

    SciTech Connect (OSTI)

    Mahmood, S.M.; Olsen, D.K. [NIPER/BDM-Oklahoma, Inc., Bartlesville, OK (United States); Thomas, C.P. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1995-12-31T23:59:59.000Z

    North Slope of Alaska has an estimated 40 billion barrels of heavy oil and bitumen in the shallow formations of West Sak and Ugnu. Recovering this resource economically is a technical challenge for two reasons: (1) the geophysical environment is unique, and (2) the expected recovery is a low percentage of the oil in place. The optimum advanced recovery process is still undetermined. Thermal methods would be applicable if the risks of thawing the permafrost can be minimized and the enormous heat losses reduced. Use of enriched natural gas is a probable recovery process for West Sak. Nearby Prudhoe Bay field is using its huge natural gas resources for pressure maintenance and enriched gas improved oil recovery (IOR). Use of carbon dioxide is unlikely because of dynamic miscibility problems. Major concerns for any IOR include close well spacing and its impact on the environment, asphaltene precipitation, sand production, and fines migration, in addition to other more common production problems. Studies have indicated that recovering West Sak and Lower Ugnu heavy oil is technically feasible, but its development has not been economically viable so far. Remoteness from markets and harsh Arctic climate increase production costs relative to California heavy oil or Central/South American heavy crude delivered to the U.S. Gulf Coast. A positive change in any of the key economic factors could provide the impetus for future development. Cooperation between the federal government, state of Alaska, and industry on taxation, leasing, and permitting, and an aggressive support for development of technology to improve economics is needed for these heavy oil resources to be developed.

  1. Alaska

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781Title: Telephone:short version)ecTotalnerrSpring

  2. Alaska

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781Title: Telephone:short version)ecTotalnerrSpring: Shale natural

  3. Analysis of natural gas supply strategies at Fort Drum

    SciTech Connect (OSTI)

    Stucky, D.J.; Shankle, S.A.; Anderson, D.M.

    1992-07-01T23:59:59.000Z

    This analysis investigates strategies for Fort Drum to acquire a reliable natural gas supply while reducing its gas supply costs. The purpose of this study is to recommend an optimal supply mix based on the life-cycle costs of each strategy analyzed. In particular, this study is intended to provide initial guidance as to whether or not the building and operating of a propane-air mixing station is a feasible alternative to the current gas acquisition strategy. The analysis proceeded by defining the components of supply (gas purchase, gas transport, supplemental fuel supply); identifying alternative options for each supply component; constructing gas supply strategies from different combinations of the options available for each supply component and calculating the life-cycle costs of each supply strategy under a set of different scenarios reflecting the uncertainty of future events.

  4. Energy Engineering Analysis Program, Fort Bliss, TX. Executive summary

    SciTech Connect (OSTI)

    NONE

    1984-04-01T23:59:59.000Z

    This is a brief overview of a report which consists of nine volumes and a set of appendices in which the EEAP results are presented. All calculational routines for the analyzed Energy Conserving Measures (ECM`s) are either explicitly presented or the computer code employed is referenced. The purpose of the presentation is to allow others to follow the procedures in a straight-forward manner. Costs of implementing an ECM are also shown, broken out by labor and material where applicable, referenced and adjusted to the Fort Bliss market. Where appropriate, applicability lists have been prepared identifying where the ECM`s are to be implemented. Additionally, ECIP Economic Analysis Summary Sheets, Detailed Cost Estimates and Life Cycle Cost Analysis Summary Sheets are included where appropriate. A brief overview of each volume is presented below.

  5. Energy Engineering Analysis Program, Fort Bliss, TX. Executive summary

    SciTech Connect (OSTI)

    NONE

    1983-09-01T23:59:59.000Z

    This summary provides a brief overview of a report which consists of nine volumes and a set of appendices in which the EEAP results to date are presented. All calculational routines for the analyzed Energy Conserving Measures (ECM`s) are either explicitly presented or the computer code employed is referenced. The purpose of the presentation is to allow others to follow the procedures in a straight-forward manner. Costs of implementing an ECM are also shown, broken out by labor and material where applicable, referenced and adjusted to the Fort Bliss market. Where appropriate, applicability lists have been prepared identifying where the ECM1s are to be implemented. Additionally, ECIP Economic Analysis Summary Sheets, Detailed Cost Estimates, and Life Cycle Cost Analysis Summary Sheets are included where appropriate. A brief overview of each volume is presented below.

  6. Energy Department Moves Forward on Alaska Natural Gas Pipeline...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Moves Forward on Alaska Natural Gas Pipeline Loan Guarantee Program Energy Department Moves Forward on Alaska Natural Gas Pipeline Loan Guarantee Program May 26, 2005 - 1:03pm...

  7. alaska north slope: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and accurate manner; and managing the AKSC office and staffAlaska Seafood Cooperative Report to the North Pacific Fishery Management 10 UNIVERSITY OF ALASKA MUSEUM OF THE NORTH...

  8. Alaska Native Village Renewable Energy Project Development Workshop...

    Office of Environmental Management (EM)

    Dillingham Alaska Native Village Renewable Energy Project Development Workshop in Dillingham March 26, 2015 8:00AM AKDT to March 27, 2015 5:00PM AKDT Dillingham, Alaska University...

  9. alaska r4d investigations: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 181 Source water controls on the character and origin of dissolved organic matter in streams of the Yukon...

  10. Amchitka, Alaska Site Fact Sheet

    SciTech Connect (OSTI)

    None

    2011-12-15T23:59:59.000Z

    Amchitka Island is near the western end of the Aleutian Island chain and is the largest island in the Rat Island Group that is located about 1,340 miles west-southwest of Anchorage, Alaska, and 870 miles east of the Kamchatka Peninsula in eastern Russia. The island is 42 miles long and 1 to 4 miles wide, with an area of approximately 74,240 acres. Elevations range from sea level to more than 1,100 feet above sea level. The coastline is rugged; sea cliffs and grassy slopes surround nearly the entire island. Vegetation on the island is low-growing, meadow-like tundra grasses at lower elevations. No trees grow on Amchitka. The lowest elevations are on the eastern third of the island and are characterized by numerous shallow lakes and heavily vegetated drainages. The central portion of the island has higher elevations and fewer lakes. The westernmost 3 miles of the island contains a windswept rocky plateau with sparse vegetation.

  11. Chariot, Alaska Site Fact Sheet

    SciTech Connect (OSTI)

    None

    2013-01-16T23:59:59.000Z

    The Chariot site is located in the Ogotoruk Valley in the Cape Thompson region of northwest Alaska. This region is about 125 miles north of (inside) the Arctic Circle and is bounded on the southwest by the Chukchi Sea. The closest populated areas are the Inupiat villages of Point Hope, 32 miles northwest of the site, and Kivalina,41 miles to the southeast. The site is accessible from Point Hope by ATV in the summer and by snowmobile in the winter. Project Chariot was part of the Plowshare Program, created in 1957 by the U.S. Atomic Energy Commission (AEC), a predecessor agency of the U.S. Department of Energy (DOE), to study peaceful uses for atomic energy. Project Chariot began in 1958 when a scientific field team chose Cape Thompson as a potential site to excavate a harbor using a series of nuclear explosions. AEC, with assistance from other agencies, conducted more than40 pretest bioenvironmental studies of the Cape Thompson area between 1959 and 1962; however, the Plowshare Program work at the Project Chariot site was cancelled because of strong public opposition. No nuclear explosions were conducted at the site.

  12. City of Fort Collins- Green Building Requirement for City-Owned Buildings

    Broader source: Energy.gov [DOE]

    The City Council of Fort Collins passed a resolution in September 2006, establishing green building goals for new city-owned buildings of 5,000 square feet or more. New buildings must be designed...

  13. Fort Collins Utilities- Residential On-Bill Financing Program Program (Colorado)

    Broader source: Energy.gov [DOE]

    Fort Collins offers its residential customers low-interest loans that may be used to finance a variety of projects including adding insulation, replacing a furnace, upgrading water and space...

  14. Reassembling the rolling bridge : an art gallery at Fort Point Channel, Boston

    E-Print Network [OSTI]

    Lim, Winston E

    1996-01-01T23:59:59.000Z

    Spanning the Fort Point Channel for nearly a century, Boston's Rolling Bridge is a familiar landmark to many railway commuters and residents of the city. Its robust steel assembly, characterized by three anthropomorphic ...

  15. Aggregate stability, infiltration, and glomalin in eroded and compacted soils on Fort Hood Military Reservation

    E-Print Network [OSTI]

    Applewhite, James Kenneth

    2008-10-10T23:59:59.000Z

    on soil aggregation, infiltration, and levels of glomalin. A field study was done on plots located inside Fort Hood on a Nuff silty clay (fine-silty, carbonatic, thermic Udic Calciustoll). The plots were amended with composted dairy manure, inorganic...

  16. A SUMMARY OF COAL IN THE FORT UNION FORMATION (TERTIARY), BIGHORN BASIN,

    E-Print Network [OSTI]

    Chapter SB A SUMMARY OF COAL IN THE FORT UNION FORMATION (TERTIARY), BIGHORN BASIN, WYOMING assessment of selected Tertiary coal beds and zones in the Northern RockyMountains and Great Plains region, U...........................................................................................................................SB-1 Coal Production History

  17. Identification and prehistoric exploitation of chert from Fort Hood, Bell and Coryell counties, Texas

    E-Print Network [OSTI]

    Dickens, William Alan

    1995-01-01T23:59:59.000Z

    IDENTIFICATION AND PREHISTORIC EXPLOITATION OF CHERT FROM FORT HOOD, BELL AND CORYELL COUNTIES, TEXAS A Thesis by WILLIAM ALAN DICKENS Submitted to the Office of Graduate Studies of Texas ASM University in partial fulfillment... of the requirements for the degree of MASTER OF ARTS May 1995 Major Subject: Anthropology IDENTIFICATION AND PREHISTORIC EXPLOITATION OF CHERT FROM FORT HOOD, BELL AND CORYELL COUNTIES, TEXAS A Thesis by WILLIAM ALAN DICKENS Submitted to Texas A&M University...

  18. Facility Energy Decision System (FEDS) Assessment Report for Fort Buchanan, Puerto Rico

    SciTech Connect (OSTI)

    Chvala, William D.; Solana, Amy E.; Dixon, Douglas R.

    2005-02-01T23:59:59.000Z

    This report documents the findings of the Facility Energy Decision System (FEDS) assessment at Fort Buchanan, Puerto Rico, by a team of PNNL engineers under contract to the Installation Management Agency (IMA) Southeast Region Office (SERO). Funding support was also provided by the Department of Energy's Federal Energy Management Program. The purpose of the assessment was to determine how energy is consumed at Fort Buchanan, identify the most cost-effective energy retrofit measures, and calculate the potential energy and cost savings.

  19. Permian fusulinids from Pacific northwest and Alaska

    E-Print Network [OSTI]

    Skinner, J. W.; Wilde, G. L.

    1966-05-23T23:59:59.000Z

    THE UNIVERSITY OF KANSAS PALEONTOLOGICAL CONTRIBUTIONS May 23, 1966 Paper 4 PERMIAN FUSULINIDS FROM PACIFIC NORTHWEST AND ALASKA By JoHN W. SKINNER and GARNER L. WILDE Plumbic Oil & Rcfining Company, Midland, Texas CONTENTS PAGE Part 1 PERMIAN... varies Skinner & WildePermian Fusulinids from Pacific Northwest and Alaska 5 FEET FEET FEET 800 1600 111) 7001500IV& 1.1 600 Nev - 9 1400 1111 nibORD NMI ENDMONS rub WINE M- amaimam wom.wen Imo%1111/10 Minh Nev -20 NNW=NM 200 MOD 1000NNW NIPMOM Nev...

  20. Depositional environments of the Kodiak Shelf, Alaska

    E-Print Network [OSTI]

    Burbach, Stuart Peter

    1977-01-01T23:59:59.000Z

    'te ?eel i 9/I !, . jor S h!est; O? anoo! aphJ DEPOSITIONAL ENVIRONMENTS OF THE KODIAK SHELF, ALASKA A Thesis by STUART PETER BURBACH Approved as to sty1e and content by: (Chairman of Committee ( ead of Department) (Member) (Member) December 1977... -'DSTRRCT Depositional Environments of the Kodiak ', elf, Alaska. (December 1977) Stuart Peter Burbach, B. P, . , University of Ifisconsin at Iililv!aukee Chairman of Cidvfsory Committee: Dr. I!illiam B. Bryant Four depositional environments are defined...

  1. Fort Stewart integrated resource assessment. Volume 1, Executive summary

    SciTech Connect (OSTI)

    Larson, L.L.; Keller, J.M.

    1993-10-01T23:59:59.000Z

    The US Department of Energy (DOE) Federal Energy Management Program (FEMP), supported by the Pacific Northwest Laboratory (PNL), has developed a model program that provides a systematic approach to evaluating energy opportunities that (1) identifies the building groups and end uses that use the most energy (not just have the greatest energy-use intensity), and (2) evaluates the numerous options for retrofit or installation of new technology that will result in the selection of the most cost-effective technologies. In essence, this model program provides the federal energy manager with a roadmap to significantly reduce energy use in a planned, rational, cost-effective fashion that is not biased by the constraints of the typical funding sources available to federal sites. The results from this assessment process can easily be turned into a five- to ten-year energy management plan that identifies where to start and how to proceed in order to reach the mandated energy consumption targets. This report provides the results of the fossil fuel and electric energy resource opportunity (ERO) assessments performed by PNL at the US Army US Forces Command (FORSCOM) Fort Stewart facility located approximately 25 miles southwest of Savannah, Georgia. It is a companion report to Volume 2, Baseline Detail, and Volume 3, Resource Assessment.

  2. Habitat Restoration/Enhancement Fort Hall Reservation : 2008 Annual Report.

    SciTech Connect (OSTI)

    Osborne, Hunter [Shoshone Bannock Tribes

    2009-07-23T23:59:59.000Z

    Habitat enhancement, protection and monitoring were the focus of the Resident Fisheries Program during 2008. Enhancement and protection included sloping, fencing and planting wetlands plugs at sites on Spring Creek (Head-waters). Many previously constructed instream structures (rock barbs and wing dams) were repaired throughout the Fort Hall Indian Reservation (Reservation). Physical sampling during 2008 included sediment and depth measurements (SADMS) in Spring Creek at the Car Removal site. SADMS, used to track changes in channel morphology and specifically track movements of silt through Bottoms stream systems were completed for 5 strata on Spring Creek. Water temperature and chemistry were monitored monthly on Spring Creek, Clear Creek, Diggie Creek, and Portneuf (Jimmy Drinks) and Blackfoot rivers. Fish population densities and biomass were sampled in five reservation streams which included nine sites. Sampling protocols were identical to methods used in past years. Numbers of fish in Spring Creek series remained relatively low, however, there was an increase of biomass overall since 1993. Salmonid fry densities were monitored near Broncho Bridge and were similar to 2006, and 2007, however, as in years past, high densities of macrophytes make it very difficult to see fry in addition to lack of field technicians. Mean catch rate by anglers on Bottoms streams stayed the same as 2007 at 1.5/hr. Numbers of fish larger than 18-inches caught by anglers increased from 2007 at .20 to .26/hr.

  3. Energy savings opportunity survey, Fort Bliss, Texas. Executive summary

    SciTech Connect (OSTI)

    NONE

    1986-12-31T23:59:59.000Z

    This Energy Savings Opportunity Survey (ESOS) at Ft. Bliss Texas was prepared by Engineering Design Management, Inc., St. Louis, MO., under contract with the Department of the Army, Fort Worth District, Corps of Engineers. In summary, the ESOS can be divided into six essentially separate studies. These are: (1) Re-evaluate previous ECIP on family housing ceiling insulation. (2) Examine 60 to 400 Hz converters for opportunities to reduce utility costs. Review includes examination of alternative technologies, as well as optional utilization of existing stock. (3) Examine the possibility of adding additional storage to potable water system to allow pumping during `off peak` hours as defined by local utility. Savings will occur as demand savings. (4) Study three `typical` buildings on base for savings due to fenestration improvements. These improvements include exterior shading, double pane glazing, reflective films, and window area reduction. (5) Evaluate the feasibility of down-sizing existing transformers and/or connecting additional load to improve transformer utilization and reduce transformer core energy losses. (6) Evaluate the feasibility of implementing several common ECOs at the base. These ECOs include wall and roof insulation, timeclocks, etc.

  4. Alaska Electric Light&Power Co (Alaska) EIA Revenue and Sales...

    Open Energy Info (EERE)

    EIA Monthly Electric Utility Sales and Revenue Data for Alaska Electric Light&Power Co for February 2009. Monthly Electric Utility Sales and Revenue Data Short Name 2009-02 Utility...

  5. EA-1183: Coal-fired Diesel Generator University of Alaska, Fairbanks, Alaska

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts for the proposal to provide funds to support the construction and operation of a coal-fired diesel generator at the University of Alaska, Fairbanks.

  6. Fort Bliss Water Distribution System, Fort Bliss, El Paso, Texas, Energy Engineering Analysis Program (EEAP). Final report

    SciTech Connect (OSTI)

    NONE

    1994-08-01T23:59:59.000Z

    The purpose of this study is to analyze the existing system and an alternate method of peak electrical demand shaving for the water distribution system at Fort Bliss, Texas. The existing system will be referred to as Alternative Number 1 throughout the report. Alternative Number 2 includes the addition of water storage capacity in order to allow the well and booster pumps to operate only during non-peak electrical periods. This report is prepared in accordance with the scope of work for Contract No. DACA63-93-M-1259, Purchase Request No. FED-MO-0093-0101 (Refer to Appendix M for complete scope of work) and is a continuation of a report conducted in February, 1993 by Carter Burgess. All pertinent data from the previous report is represented in this report. With the addition of the detailed KY Pipe Analysis. The blast Life Cycle Cost In Design (LCCID) program with the ECIP option was used to determine the Life Cycle Cost (LCC) and Savings to Investment Ratio (SIR) for the analyzed retrofit for a 20 year study life.

  7. UNIVERSITY OF ALASKA FAIRBANKS ENGINEERING FACILITY

    E-Print Network [OSTI]

    Wagner, Diane

    UNIVERSITY OF ALASKA FAIRBANKS ENGINEERING FACILITY PROGRAMMING AND SITE SELECTION REPORT FINAL 09 SUMMARY 2. PROGRAMMING PARTICIPANTS & DESIGN TEAM 3. CODES & REGULATIONS 4. PROGRAM 5. SITE 6. PLAN ORGANIZATIONAL DIAGRAMS 7. CIVIL ENGINEERING 8. STRUCTURAL SYSTEMS 9. MECHANICAL SYSTEMS 10. PLUMBING SYSTEMS 11

  8. Indicators of recent environmental change in Alaska

    SciTech Connect (OSTI)

    Jacoby, G.C.; D`Arrigo, R.D.; Juday, G.

    1997-12-31T23:59:59.000Z

    Climate models predict that global warming due to the effects of increasing trace gases will be amplified in northern high latitude regions, including Alaska. Several environmental indicators, including tree-ring based temperature reconstructions, borcal forest growth measurements and observations of glacial retreat all indicate that the general warming of the past century has been significant relative to prior centuries to millenia. The tree-ring records for central and northern Alaska indicate that annual temperature increased over the past century, peaked in the 1940s, and are still near the highest level for the past three centuries (Jacoby and D`Arrigo 1995). The tree-ring analyses also suggest that drought stress may now be a factor limiting growth at many northern sites. The recent warming combined with drier years may be altering the response of tree growth to climate and raising the likelihood of forest changes in Alaska and other boreal forests. Other tree-ring and forest data from southern and interior Alaska provide indices of the response of vegetation to extreme events (e.g., insect outbreaks, snow events) in Alaska (Juday and marler 1996). Historical maps, field measurements and satellite imagery indicate that Alaskan glaciers have receded over the past century (e.g., Hall and Benson 1996). Severe outbreaks of bark beetles may be on the increase due to warming, which can shorten their reproductive cycle. Such data and understanding of causes are useful for policy makers and others interested in evaluation of possible impacts of trace-gas induced warming and environmental change in the United States.

  9. Water Reclamation and Reuse at Fort Carson: Best Management Practice Case Study #14 - Alternate Water Sources (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2009-08-01T23:59:59.000Z

    FEMP Water Efficiency Best Management Practice #14 Case Study: Overview of the water reclamation and reuse program at the U.S. Army's Fort Carson.

  10. E-Print Network 3.0 - alaska marine mammal Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Delphinapterus leucas, Distribution and Survey Effort in the Gulf of Alaska Summary: . Rugh are with the National Marine Mammal Laboratory, Alaska Fisheries Science Center,...

  11. E-Print Network 3.0 - alaska power administration Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and political power of migrants to Alaska... in Ecological, Traditional, and Ecotourism Values 2001 May 15-16; Anchorage, Alaska 12;USDA Forest Service... in the...

  12. State of Alaska Department of Transportation and Public Facilities...

    Open Energy Info (EERE)

    Alaska Department of Transportation and Public Facilities - ApplicationRenewal for Encroachment Permit Jump to: navigation, search OpenEI Reference LibraryAdd to library Form:...

  13. Executive Order 13592: Improving American Indian and Alaska Native...

    Office of Environmental Management (EM)

    America, I hereby order as follows: Section 1. Policy. The United States has a unique political and legal relation- ship with the federally recognized American Indian and Alaska...

  14. ,"Alaska Crude Oil plus Lease Condensate Proved Reserves"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Alaska Crude Oil plus Lease Condensate Proved Reserves",10,"Annual",2013,"6302009" ,"Release...

  15. Title 11 Alaska Administrative Code 87 Geothermal Drilling and...

    Open Energy Info (EERE)

    Geothermal Drilling and Conservation Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: Title 11 Alaska Administrative Code 87...

  16. alaska fairbanks fairbanks: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    goals? Disability Information In your own Ickert-Bond, Steffi 12 Organic Chemistry II Syllabus University of Alaska Fairbanks Environmental Sciences and Ecology Websites Summary: 1...

  17. Alaska Administrative Code - Title 17, Chapter 10, Section 12...

    Open Energy Info (EERE)

    RegulationRegulation: Alaska Administrative Code - Title 17, Chapter 10, Section 12 - Approval Requirements for EncroachmentsLegal Abstract This section describes the...

  18. Chemical Hygiene Planh UNIVERSITY OF AlASKA

    E-Print Network [OSTI]

    Hartman, Chris

    Chemical Hygiene Planh · UNIVERSITY OF AlASKA · · FAIRBANKS INTRODUCTION.....................................................................................................3 C Chemical Hygiene Officer (CHO........................................................................................................ 8 F Reactive Chemicals

  19. Alaska Energy Workshop Tour Creates Rich Opportunities for Knowledge...

    Energy Savers [EERE]

    Sharing April 16, 2015 - 11:11am Addthis Sherry Stout presents at the Native Village Renewable Energy Project Development workshop in Dillingham, Alaska. Photo by Sherry Stout,...

  20. anwr northeastern alaska: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    24 25 Next Page Last Page Topic Index 1 Late Pleistocene and Holocene glaciation of the Fish Lake valley, northeastern Alaska Range, Geosciences Websites Summary: in the...

  1. alaska seafood processing: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sammler - NOAANational Weather Service ten Brink, Uri S. 131 Large-Scale Climate Controls of Interior Alaska River Ice Breakup PETER A. BIENIEK AND UMA S. BHATT...

  2. Alaska Energy in Action: Akiak Reaps Benefits of PCE Technical...

    Office of Environmental Management (EM)

    electric utility customers and the procurement costs incurred by the 184 isolated diesel microgrid utilities scattered across rural Alaska. Importing fossil fuels by barge or...

  3. Alaska Natives Benefit from First-Ever Community Energy Development...

    Office of Environmental Management (EM)

    village councils to regional housing authorities and Native corporations and nonprofits. "Rural Alaska is facing an energy crisis that makes rural community and regional economic...

  4. DOE to Host Alaska Native Village Energy Development Workshop...

    Broader source: Energy.gov (indexed) [DOE]

    Alaska Native villages, the workshop agenda will cover topics such as: Strategic energy planning Clean energy project development and financing Technology updates Energy...

  5. Preserving Alaska's early Cold War legacy.

    SciTech Connect (OSTI)

    Hoffecker, J.; Whorton, M.

    1999-03-08T23:59:59.000Z

    The US Air Force owns and operates numerous facilities that were constructed during the Cold War era. The end of the Cold War prompted many changes in the operation of these properties: missions changed, facilities were modified, and entire bases were closed or realigned. The widespread downsizing of the US military stimulated concern over the potential loss of properties that had acquired historical value in the context of the Cold War. In response, the US Department of Defense in 1991 initiated a broad effort to inventory properties of this era. US Air Force installations in Alaska were in the forefront of these evaluations because of the role of the Cold War in the state's development and history and the high interest on the part of the Alaska State Historic Preservation Officer (SHPO) in these properties. The 611th Air Support Group (611 ASG) owns many of Alaska's early Cold War properties, most were associated with strategic air defense. The 611 ASG determined that three systems it operates, which were all part of the integrated defense against Soviet nuclear strategic bomber threat, were eligible for the National Register of Historic Places (NRHP) and would require treatment as historic properties. These systems include the Aircraft Control and Warning (AC&W) System, the Distant Early Warning (DEW) Line, and Forward Operating Bases (FOBs). As part of a massive cleanup operation, Clean Sweep, the 611 ASG plans to demolish many of the properties associated with these systems. To mitigate the effects of demolition, the 611 ASG negotiated agreements on the system level (e.g., the DEW Line) with the Alaska SHPO to document the history and architectural/engineering features associated with these properties. This system approach allowed the US Air Force to mitigate effects on many individual properties in a more cost-effective and efficient manner.

  6. Nuiqsut, Alaska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(Utility Company)ReferencesNuiqsut, Alaska: Energy Resources Jump to: navigation,

  7. Nulato, Alaska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(Utility Company)ReferencesNuiqsut, Alaska: Energy Resources Jump to:

  8. Nulato, Alaska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(Utility Company)ReferencesNuiqsut, Alaska: Energy Resources Jump to:8.1030556°

  9. Kodiak, Alaska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 Throttled (botOpen6Kentwood,GeorgeKlimaschutz eKodiak, Alaska: Energy

  10. Alaska Native Villages | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless orA BRIEF HISTORYAgency FinancialEnergy DevelopmentAlaska

  11. Alaska Renewable Energy Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWende NewSowitecAWSAgri-Energy LLCAir EnergyTayyarAlaska

  12. Homer, Alaska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:GreerHi GtelHomer, Alaska: Energy Resources Jump to: navigation,

  13. Hope, Alaska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:GreerHi GtelHomer, Alaska: EnergyHooker County, Nebraska:Hope

  14. Akhiok, Alaska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergy Information LightningAikenAkan, Wisconsin:Akhiok, Alaska:

  15. Kachemak, Alaska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 Throttled (botOpen6 Climate ZoneJeromeCountyKGRA Energy LLCKachemak, Alaska:

  16. Alternative Fuels Data Center: Alaska Information

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onAlternative Fuel VehicleNaturalAlaska Information to

  17. Dust Plume Modeling at Fort Bliss: Move-Out Operations, Combat Training and Wind Erosion

    SciTech Connect (OSTI)

    Chapman, Elaine G.; Rishel, Jeremy P.; Rutz, Frederick C.; Seiple, Timothy E.; Newsom, Rob K.; Allwine, K Jerry

    2006-09-29T23:59:59.000Z

    The potential for air-quality impacts from heavy mechanized vehicles operating in the training ranges and on the unpaved main supply routes at Fort Bliss was investigated. This report details efforts by the staff of Pacific Northwest National Laboratory for the Fort Bliss Directorate of Environment in this investigation. Dust emission and dispersion from typical activities, including move outs and combat training, occurring on the installation were simulated using the atmospheric modeling system DUSTRAN. Major assumptions associated with designing specific modeling scenarios are summarized, and results from the simulations are presented.

  18. In cooperation with Fort Peck Tribes Office of Environmental Protection Delineation of Brine Contamination in and near the

    E-Print Network [OSTI]

    Torgersen, Christian

    ;#12;Delineation of Brine Contamination in and near the East Poplar Oil Field, Fort Peck Indian Reservation citation: Thamke, J.N., and Smith, B.D., 2014, Delineation of brine contamination in and near the EastIn cooperation with Fort Peck Tribes Office of Environmental Protection Delineation of Brine

  19. Alaska oil and gas: Energy wealth or vanishing opportunity

    SciTech Connect (OSTI)

    Thomas, C.P.; Doughty, T.C.; Faulder, D.D.; Harrison, W.E.; Irving, J.S.; Jamison, H.C.; White, G.J.

    1991-01-01T23:59:59.000Z

    The purpose of the study was to systematically identify and review (a) the known and undiscovered reserves and resources of arctic Alaska, (b) the economic factors controlling development, (c) the risks and environmental considerations involved in development, and (d) the impacts of a temporary shutdown of the Alaska North Slope Oil Delivery System (ANSODS). 119 refs., 45 figs., 41 tabs.

  20. Control Strategies for Late Blight in the Alaska Potato Crop

    E-Print Network [OSTI]

    Wagner, Diane

    Control Strategies for Late Blight in the Alaska Potato Crop PMC-00339 Late blight is a devastating disease of both tomatoes and potatoes that is occasionally found in Alaska. There is no "cure" for the disease and there are very few re- sistant varieties of potatoes, so disease management strategies

  1. alaska native people: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    alaska native people First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Alaska Native People Shaping...

  2. TAKU SHUTTLE YUKON DRIVE

    E-Print Network [OSTI]

    Ickert-Bond, Steffi

    Point Beluga Field Ice Rink Townshend Point TROTH YEDDHA' PARK HULBERT NANOOK TERRAIN PARK Facilities Nerland McIntosh Stevens Ice Arena Lola Tilly Wickersham Police Fire Dept Police Fire Dept MacLean House Nerland McIntosh Stevens Ice Arena Lola Tilly Student Recreation Center Wickersham Police Fire Dept Police

  3. Comments, Protests and Interventions for Alaska LNG Project LLC- 14-96-LNG

    Broader source: Energy.gov [DOE]

    Alaska Region-Granite Construction Company, Michael D. Miller, Business Development Manager/Estimator

  4. ABR, Inc KPMG LLP Alaska Air National Guard Mikunda, Cottrell & Co

    E-Print Network [OSTI]

    Wagner, Diane

    Administration Cook & Haugeberg LLC CPA's Solar Turbines Inc Cook Inlet Aquaculture Association State of Alaska

  5. FRAMEWORK GEOLOGY OF FORT UNION COAL IN THE EASTERN ROCK SPRINGS UPLIFT,

    E-Print Network [OSTI]

    Chapter GF FRAMEWORK GEOLOGY OF FORT UNION COAL IN THE EASTERN ROCK SPRINGS UPLIFT, GREATER GREEN RIVER BASIN, WYOMING By R.M. Flores,1 A.M. Ochs,2 and L.R. Bader1 in U.S. Geological Survey Professional Paper 1625-A 1 U.S. Geological Survey 2 Consultant, U.S. Geological Survey, Denver, Colorado 1999

  6. FORT UNION COAL IN THE POWDER RIVER BASIN, WYOMING AND MONTANA: A SYNTHESIS

    E-Print Network [OSTI]

    ...................................................................................PS-18 Coal-Bed Methane ResourceChapter PS FORT UNION COAL IN THE POWDER RIVER BASIN, WYOMING AND MONTANA: A SYNTHESIS By R of selected Tertiary coal beds and zones in the Northern RockyMountains and Great Plains region, U

  7. WARNER COLLEGE OF NATURAL RESOURCES 1401 Campus Delivery Fort Collins, CO 80523-1401

    E-Print Network [OSTI]

    and Protected Area Management Natural Resources Management Rangeland Ecology Range and Forest ManagementWARNER COLLEGE OF NATURAL RESOURCES 1401 Campus Delivery Fort Collins, CO 80523-1401 (970) 491 Science Forest Management Forestry Business Geology Environmental Geology Geology Natural Resource

  8. Fort Meade demonstration test LEDS in freezer rooms, fiber optics in display cases

    SciTech Connect (OSTI)

    Parker, Steven; Parker, Graham B.

    2008-10-25T23:59:59.000Z

    Demonstration projects at Fort George G. Meade, MD, substituted LED lighting for incandescent bulbs in commisary wal-in freezers and fiber optic lighting in reach-in display cases. The goal was to reduce energy consumption and the results were positive. Journal article published in Public Works Digest

  9. BOCA RATON DANIA BEACH DAVIE FORT LAUDERDALE HARBOR BRANCH JUPITER PORT ST. LUCIE Educational Plant Survey

    E-Print Network [OSTI]

    Fernandez, Eduardo

    BOCA RATON DANIA BEACH DAVIE FORT LAUDERDALE HARBOR BRANCH JUPITER PORT ST. LUCIE Educational Plant Survey 2011/2012 ­ 2016/2017 Approved by FAU BOT on June 15, 2011 #12;EDUCATIONAL PLANT SURVEY Florida ...................................................................................................................... ii Educational Plant Survey Team

  10. Jordan Cove Energy Project Fort Chicago Energy Partners L.P.

    E-Print Network [OSTI]

    Jordan Cove Energy Project Fort Chicago Energy Partners L.P. 1.0 Bcfd Coos Bay, Oregon Oregon LNG Funding Partners 1.0-1.5 Bcfd Astoria, Oregon Portwestward LNG Facility Portwestward LNG, LLC 0.7-1.25 Bcfd Clatskanie, Oregon Kitimat LNG Facility Apache Corp 0.64 -1.0 Bcfd Kitimat, British Columbia

  11. FORT UNION COAL IN THE GREATER GREEN RIVER BASIN, EAST FLANK OF THE ROCK SPRINGS UPLIFT,

    E-Print Network [OSTI]

    Chapter GS FORT UNION COAL IN THE GREATER GREEN RIVER BASIN, EAST FLANK OF THE ROCK SPRINGS UPLIFT 1999 Resource assessment of selected Tertiary coal beds and zones in the Northern Rocky in the toolbar to return. 1999 Resource assessment of selected Tertiary coal beds and zones in the Northern Rocky

  12. Systems Performance Analyses of Alaska Wind-Diesel Projects; St. Paul, Alaska (Fact Sheet)

    SciTech Connect (OSTI)

    Baring-Gould, I.

    2009-04-01T23:59:59.000Z

    This fact sheet summarizes a systems performance analysis of the wind-diesel project in St. Paul, Alaska. Data provided for this project include load data, average wind turbine output, average diesel plant output, dump (controlling) load, average net capacity factor, average net wind penetration, estimated fuel savings, and wind system availability.

  13. Categorical Exclusion Determinations: Alaska | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd:JuneNovember 26, 2014 CX-100126A5 CategoricalManufacturingAlaska

  14. Cohoe, Alaska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin: Energy, -105.3774934°Coda BatteryCohoe, Alaska: Energy

  15. Alaska Natural Gas Gross Withdrawals and Production

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781Title: Telephone:short version)ecTotalnerrSpring: ShaleAlaska

  16. Nenana, Alaska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's HeatMexico: EnergyMithunCenter Jump to:2 Rules,Nellis AFB SolarNenana, Alaska:

  17. Alaska Energy Authority | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergy InformationTuri BiomassWheelerLand and Water Jump to:GasAlaska

  18. Alatna, Alaska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergy InformationTuri BiomassWheelerLand andAlatna, Alaska: Energy

  19. Salamatof, Alaska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, searchVirginiaRooseveltVI Solar PowerSaftEnergy Roadmap andSalamatof, Alaska:

  20. Adak, Alaska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 SouthWaterBrasil Jump to: navigation,DiagramAdak, Alaska: Energy Resources

  1. Alaska Power Telephone Company | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 SouthWaterBrasilInformation 5-01 End Date 2008-06-01EnergyAlaska Power

  2. Alaska coal geology, resources, and coalbed methane potential

    SciTech Connect (OSTI)

    Romeo M. Flores; Gary D. Stricker; Scott A. Kinney

    2005-11-15T23:59:59.000Z

    Estimated Alaska coal resources are largely in Cretaceous and Tertiary rocks distributed in three major provinces, Northern Alaska-Slope, Central Alaska-Nenana, and Southern Alaska-Cook Inlet. Cretaceous resources, predominantly bituminous coal and lignite, are in the Northern Alaska-Slope coal province. Most of the Tertiary resources, mainly lignite to subbituminous coal with minor amounts of bituminous and semianthracite coals, are in the other two provinces. The combined measured, indicated, inferred, and hypothetical coal resources in the three areas are estimated to be 5,526 billion short tons (5,012 billion metric tons), which constitutes about 87 percent of Alaska's coal and surpasses the total coal resources of the conterminous United States by 40 percent. Coal mining has been intermittent in the Central Alaskan-Nenana and Southern Alaska-Cook Inlet coal provinces, with only a small fraction of the identified coal resource having been produced from some dozen underground and strip mines. Alaskan coals have a lower sulfur content (averaging 0.3 percent) than most coals in the conterminous United States and are within or below the minimum sulfur value mandated by the 1990 Clean Air Act amendments. Another untapped potential resource is coalbed methane estimated to total 1,000 trillion cubic feet (28 trillion cubic meters).

  3. Financing Opportunities for Renewable Energy Development in Alaska

    SciTech Connect (OSTI)

    Ardani, K.; Hillman, D.; Busche, S.

    2013-04-01T23:59:59.000Z

    This technical report provides an overview of existing and potential financing structures for renewable energy project development in Alaska with a focus on four primary sources of project funding: government financed or supported (the most commonly used structure in Alaska today), developer equity capital, commercial debt, and third-party tax-equity investment. While privately funded options currently have limited application in Alaska, their implementation is theoretically possible based on successful execution in similar circumstances elsewhere. This report concludes that while tax status is a key consideration in determining appropriate financing structure, there are opportunities for both taxable and tax-exempt entities to participate in renewable energy project development.

  4. Building America Whole-House Solutions for New Home: Fort Devens: Cold Climate Market-Rate Townhomes

    Broader source: Energy.gov [DOE]

    Fort Devens: Cold Climate Market-Rate Townhomes Targeting HERS Index of 40, Harvard, Massachusetts (Fact Sheet), Building America Case Study: Efficient Solutions for New and Existing Homes, Building Technologies Office (BTO)

  5. Reinhabiting the Fort Point Channel : a proposal for transforming and extending the warehouse district in South Boston

    E-Print Network [OSTI]

    Dale, John Randall

    1986-01-01T23:59:59.000Z

    The focus of this design investigation is the warehouse fabric of the Fort Point Channel and its potentials as a model for further development This extensive configuration of warehouses and access roads is the product of ...

  6. EEAP lighting survey study at the Fort Bliss El Paso, Texas. Volume 1. Final report

    SciTech Connect (OSTI)

    NONE

    1995-08-03T23:59:59.000Z

    This energy conservation study was performed by Huitt-Zollars Inc, for the U.S Army Engineer District (USAED), Fort Worth, under contract number DACAC63-94-D-0015. The study was conducted at Fort Bliss in El Paso, Texas, between October 31, 1994 and May 12, 1995. The site survey and data collection was performed by C.A. Pieper, P.E., Tom Luckett, Lighting Designer, and Merrel Nichols, CADD Technician. The purpose of the study was to perform a limited site survey of specific buildings at the facility, identify specific Energy Conservation Opportunities (ECOs) that exist, and then evaluate these ECOs for technical and economic feasibility. These ECOs were limited to building interior lighting and it`s effects on the heating, ventilating and air conditioning (HVAC) systems.

  7. Market segmentation of visitors to Fort Wilkins State Park using a hierarchical clustering approach

    E-Print Network [OSTI]

    Fisher, Thomas Mark

    2012-06-07T23:59:59.000Z

    describe natural groupings of people. 16 In short, what direction does literature provide for this re- search project? Initially it was shown that state parks are for people. The objective of the parks is to provide satisfying ex- periences to park...MARKET SEGMENTATION OF VISITORS TO FORT WILKINS STATE PARK USING A HIERARCHICAL CLUSTERING APPROACH A Thesis by THOMAS MARK FISHER Submitted to the Graduate College of Texas AAM University in partial fulfillment of the requirement...

  8. Methodology for the evaluation of a 4000-home geothermal heat pump retrofit at Fort Polk, Louisiana

    SciTech Connect (OSTI)

    Hughes, P.J.; Shonder, J.A.; White, D.L.; Huang, H.L.

    1998-03-01T23:59:59.000Z

    The US Army and a private energy service company are developing a comprehensive energy efficiency project to upgrade the family housing at Fort Polk, Louisiana. The project includes converting the space conditioning systems of more than 4,000 housing units to geothermal (or ground-source) heat pumps (GHPs). This interim report describes the methodology of the evaluation associated with this project, including the field monitoring that has been conducted at the base.

  9. The justification of budget requests utilizing a grounds resource inventory at the Fort Worth Botanic Garden

    E-Print Network [OSTI]

    Powers, Vivian Lee

    1989-01-01T23:59:59.000Z

    TEXAS ARM UNIVERSITY LIBRARY Record of Study THE JUST1FICATION OF BUDGET REQUESTS UTILIZING A GROUNDS RESOURCE INVENTORY AT THE FORT WORTH BOTANIC GARDEN A PROFESSIONAL PAPER by Vivian Lee Powers Submitted to the College of Agriculture... budget requests. Anaheim City Park's Superintendent Chris Jarvi knew that when the new Riverdaie Park was completed it would require him to hire 1. 3 addition maintenance workers. (I) He could also prove this to the budget analysts, city manager...

  10. EEAP lighting survey study at the Fort Bliss, El Paso, Texas. Volume I. Final report

    SciTech Connect (OSTI)

    NONE

    1995-08-03T23:59:59.000Z

    This energy conservation study was performed by Huitt-Zollars Inc, for the U.S. Army Engineer District (USAED), Fort Worth, under contract number DACAC63-94-D-0015. The study was conducted at Fort Bliss in El Paso, Texas, between October 31, 1994 and May 12, 1995. The site survey and data collection was performed by C.A. Pieper, P.E., Tom Luckett, Lighting Designer, and Merrel Nichols, CADD Technician. The purpose of the study was to perform a limited site survey of specific buildings at the facility, identify specific Energy Conservation Opportunities (ECOs) that exist, and then evaluate these ECOs for technical and economic feasibility. These ECOs were limited to building interior lighting and it`s effects on the heating, ventilating and air conditioning (HVAC) systems. This survey was conducted with the assistance of many persons at the facility. Special thanks are extended to all of them, including the following individuals: (1) Mr. Joe Mathis, Energy Coordinator; (2) Mr. Raymond Balderos, Utilities Sales Clerk; and (3) Mr. Louis Arenas, Electrical Maintenance Supervisor. Any questions concerning this report should be directed to the Project Manager, C.A. Pieper, P.E., at Huitt-Zollars Inc., 512 Main Street, Suite 1300, Fort Worth, Texas 76102. Phone 817-335-3000. This study was conducted on a total of 132 buildings at Fort Bliss. Of this total number of buildings, there were 52 unique building types. All of the other buildings were duplicates of one of these unique buildings. A complete description of all buildings studied is provided on page 9. The total building area covered in this study was 1,818,828 sq ft. Base Year Energy Consumption: The total metered electrical and gas consumptions for 12 consecutive months, prior to this study, were obtained from the facility and are referred to as the base year`.

  11. Energy efficiency campaign for residential housing at the Fort Lewis army installation

    SciTech Connect (OSTI)

    AH McMakin; RE Lundgren; EL Malone

    2000-02-23T23:59:59.000Z

    In FY1999, Pacific Northwest National Laboratory conducted an energy efficiency campaign for residential housing at the Fort Lewis Army Installation near Tacoma, Washington. Preliminary weather-corrected calculations show energy savings of 10{percent} from FY98 for energy use in family housing. This exceeded the project's goal of 3{percent}. The work was funded by the U.S. DOEs Federal Energy Management Program (FEMP), Office of Energy Efficiency and Renewable Energy. The project adapted FEMP's national ``You Have the Power Campaign'' at the local level, tailoring it to the military culture. The applied research project was designed to demonstrate the feasibility of tailored, research-based strategies to promote energy conservation in military family housing. In contrast to many energy efficiency efforts, the campaign focused entirely on actions residents could take in their own homes, as opposed to technology or housing upgrades. Behavioral change was targeted because residents do not pay their own utility bills; thus other motivations must drive personal energy conservation. This campaign augments ongoing energy savings from housing upgrades carried out by Fort Lewis. The campaign ran from September 1998 through August 1999. The campaign strategy was developed based on findings from previous research and on input from residents and officials at Fort Lewis. Energy use, corrected to account for weather differences, was compared with the previous year's use. Survey responses from 377 of Fort Lewis residents of occupied housing showed that the campaign was moderately effective in promoting behavior change. Of those who were aware of the campaign, almost all said they were now doing one or more energy-efficient things that they had not done before. Most people were motivated by the desire to do the right thing and to set a good example for their children. They were less motivated by other factors.

  12. QER- Comment of Alaska Department of Natural Resources

    Broader source: Energy.gov [DOE]

    To Whom It May Concern: Attached please find the State of Alaska Department of Natural Resources official comments on the Quadrennial Energy Review being conducted by the Department of Energy pursuant to Presidential Memorandum of January 9, 2014.

  13. Mesoscale Eddies in the Gulf of Alaska: Observations and Implications

    E-Print Network [OSTI]

    Rovegno, Peter

    2012-01-01T23:59:59.000Z

    M. T. , Lohan, M. C. , & Bruland, K. W. 2011. Reactive ironChair Professor Kenneth W. Bruland Professor Raphael Kudelaof Alaska as a whole. The Bruland Lab, drawing on data taken

  14. State of Alaska Department of Transportation and Public Facilities...

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library Form: State of Alaska Department of Transportation and Public Facilities - Utility Permit Abstract This document is an example of a...

  15. 05663_AlaskaHeavyOil | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Controls On Production and Seismic Monitoring Alaska Heavy Oils Last Reviewed 12202012 DE-NT0005663 Goal The goal of this project is to improve recovery of Alaskan North...

  16. Alaska Prudhoe Bay Crude Oil Shut-in Report

    Reports and Publications (EIA)

    2006-01-01T23:59:59.000Z

    Background and facts on Alaska's crude oil reserves, production, and transportation with the Energy Information Administration's analysis of potential shut-in impacts on U.S. oil markets.

  17. Alaska LNG Project LLC- 14-96-LNG

    Broader source: Energy.gov [DOE]

    The Office of Fossil Energy gives notice of receipt of an application filed on July 18, 2014, by, Alaska LNG ProjectLLC submits this application requesting long-term authorization to export 20...

  18. Climate Change Adaptation for an At Risk Community Shaktoolik Alaska

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Norton Sound village of Shaktoolik faces serious threats of erosion and flooding resulting from climate change. University of Alaska Sea Grant agent Terry Johnson and consultant Glenn Gray...

  19. Alaska Native People Shaping Health Care 2011Malcolm Baldrige

    E-Print Network [OSTI]

    Magee, Joseph W.

    Optometry Pediatrics Outpatient Physical Therapy Radiology Valley Native Primary Care Center Screening and Genecology Pediatrics Inpatient Pharmacy Rural Anchorage Service Unit Operational Support Office Primary Care Automated Annual Planning Tool AAPP All Alaska Pediatric Partnership ACE Advancing Customer Excellence AFN

  20. alaska initiative fact: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 121 Large-Scale Climate Controls of Interior Alaska River Ice Breakup PETER A. BIENIEK AND UMA S. BHATT...

  1. Alaska Workshop: Renewable Energy Technologies and Case Studies

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy Office of Indian Energy is hosting two workshops at the Alaska Village Initiatives Rural Small Business Conference on Wednesday, February 12, 2014. Each workshop will...

  2. Energy Ambassadors to Provide Front Line Support for Alaska Native...

    Office of Environmental Management (EM)

    in an the initial facilitation workshop for Alaska Energy Ambassadors held at the U.S. Fish & Wildlife Service Regional Office in Anchorage in September. Photo by Jared Temanson,...

  3. DOE to Host Three Alaska Native Village Renewable Energy Project...

    Office of Environmental Management (EM)

    in an the initial facilitation workshop for Alaska Energy Ambassadors held at the U.S. Fish & Wildlife Service Regional Office in Anchorage in September. Photo by Jared Temanson,...

  4. Title 5 Alaska Administrative Code Chapter 95 Protection of Fish...

    Open Energy Info (EERE)

    Chapter 95 Protection of Fish and Game Habitat Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: Title 5 Alaska...

  5. Federal Energy Decision Screening (FEDS) process at Fort Drum, New York

    SciTech Connect (OSTI)

    Dixon, D.R.; Daellenbach, K.K. [Pacific Northwest Lab., Richland, WA (United States); Rowley, S.E. [Directorate of Engineering & Housing, Ft. Drum, NY (United States); Gillespie, A.H. [Army Forces Command, Ft. McPherson, GA (United States)

    1993-10-01T23:59:59.000Z

    The federal energy manager has been directed by the Comprehensive Energy Policy Act of 1992 (EPAct) to reduce energy consumption by 20% from 1985 levels, by the year 2000. However, the tools and funding to capture this resource in a cost-effective manner have not been provided. In an effort to assist federal agencies in meeting EPAct requirements, the Pacific Northwest Laboratory (PNL) has been tasked by the US Army Forces Command (FORSCOM) to identify, evaluate, and acquire all cost-effective energy projects at selected federal facilities. PNL has developed and applied the Federal Energy Decision Screening (FEDS) methodology at the Fort Drum FORSCOM facility near Watertown, New York. The FEDS methodology is a systematic approach to evaluating energy opportunities that result in a roadmap to significantly reduce energy use in a planned, rational, cost justified fashion over a 5 to 10 year period. At Fort Drum, the net present value (NPV) of the installed cost of all cost-effective energy resource opportunities (EROS) is over $16 million (1992 $). The NPV of the savings associated with this investment is nearly $47 million (1992 $), for an overall NPV of approximately $31 million. By implementing all the cost-effective EROS, Fort Drum will reduce annual energy use by over 230,000 MBtu, or 15%. Annual energy expenditures will decrease by over $2.4 million, or a 20% reduction.

  6. Energy saving potential of residential HVAC options at Fort Irwin, California

    SciTech Connect (OSTI)

    Hadley, D.L.; Stucky, D.J.

    1995-03-01T23:59:59.000Z

    The Pacific Northwest Laboratory (PNL) evaluated heating and cooling system options for existing family housing at Fort Irwin, California. The purpose of this work was to quantify the energy conservation potential of alternative system types and to identify the most cost-effective technology available. The conventional residential heating/cooling systems at Fort Irwin are separate propane forced-air furnaces and central air conditioners. The options examined included air- and ground-source heat pumps, a natural gas furnace with central air conditioning, and a natural-gas-fired heat pump. The most cost-effective technology applicable to Fort Irwin was found to be the high-efficiency ground-source heat pumps. If all conventional units were replaced immediately, the net energy savings would be 76,660 MBtu (80.9 TJ) per year and a reduction in electrical demand of approximately 15,000 kW-month. The initial investment for implementing this technology would be approximately $7.1 million, with a savings-to-investment ratio of 1.74.

  7. Ecology of Zooplankton of the Cape Thompson Area Alaska

    E-Print Network [OSTI]

    Tash, Jerry C.; Armitage, Kenneth

    1967-01-01T23:59:59.000Z

    . Until recently (Ed- mondson 1955; Comita 1956), detailed studies of zooplankton in arctic Alaska had not been made. Most published works are short-term species sur- veys (Comita 1952; Johnson 1961; Juday and Muttkowski 1915; Marsh 1920; Reed 1962...-September and typically lasted until mid-May or early June. RESULTS During ice-free periods, physicoclhemical values found in aquatic habitats at Cape Thompson were simlilar to those recorded for other areas of Alaska (Comita and Edmondson 1953; Edmondson 1956...

  8. Understanding Energy Code Acceptance within the Alaska Building Community

    SciTech Connect (OSTI)

    Mapes, Terry S.

    2012-02-14T23:59:59.000Z

    This document presents the technical assistance provided to the Alaska Home Financing Corporation on behalf of PNNL regarding the assessment of attitudes toward energy codes within the building community in Alaska. It includes a summary of the existing situation and specific assistance requested by AHFC, the results of a questionnaire designed for builders surveyed in a suburban area of Anchorage, interviews with a lender, a building official, and a research specialist, and recommendations for future action by AHFC.

  9. 336 VOLUME 14J O U R N A L O F C L I M A T E 2001 American Meteorological Society

    E-Print Network [OSTI]

    Sturm, Matthew

    Research and Engineering Laboratory, Fort Wainwright, Alaska Department of Integrative Biology, University, Fort Collins, Colorado @ Institute of Arctic Biology, University of Alaska, Fairbanks, Fairbanks of Atmospheric Science, Col- orado State University, Fort Collins, Colorado. Corresponding author address: Dr

  10. Alaska Sea Grant Marine Advisory Program Webinar: Climate Change Adaptation for an at-Risk Community in Shaktoolik, Alaska

    Broader source: Energy.gov [DOE]

    Hosted by the Alaska Sea Grant Marine Advisory Program, this webinar will cover the Norton Sound Village of Shaktoolik, which faced serious threats of erosion and flooding resulting from climate change.

  11. igure 1. Map of N. Alaska and NW Canada Showing the Locations...

    Gasoline and Diesel Fuel Update (EIA)

    1. Map of Northern Alaska and Northwestern Canada Showing the Locations of the National Petroleum Reserve-Alaska (NPR-A), Arctic National Wildlife Refuge (ANWR), 1002 Area, Current...

  12. Running head: GEOTHERMAL POWER PRODUCTION 1 Geothermal Power Production for Emmonak, Alaska

    E-Print Network [OSTI]

    Scheel, David

    January 2009. This paper researches the possibility of using geothermal energy as an alternative energy Energy Investment cost .................................................... 40 Geothermal use in AlaskaRunning head: GEOTHERMAL POWER PRODUCTION 1 Geothermal Power Production for Emmonak, Alaska Anthony

  13. E-Print Network 3.0 - alaska river Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for: alaska river Page: << < 1 2 3 4 5 > >> 1 revised 122010 Alaska Cooperative Fish and Wildlife Research Unit Summary: the production and harvest of beaver in the upper...

  14. E-Print Network 3.0 - arctic alaska r4d Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for: arctic alaska r4d Page: << < 1 2 3 4 5 > >> 1 revised 122010 Alaska Cooperative Fish and Wildlife Research Unit Summary: . 1966. The recreational potential of the Arctic...

  15. E-Print Network 3.0 - alaska linking wildlife Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Life Sciences Summary: of the state and federal agencies in Alaska (e.g. U.S. Fish and Wildlife Service, Alaska Department of Fish... in FY08, close to 75 percent are...

  16. E-Print Network 3.0 - anchorage alaska usa Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4101 University Drive, Anchorage, AK 99508, U.S.A... in Ecological, Traditional, and Ecotourism Values 2001 May 15-16; Anchorage, Alaska 12;USDA Forest Service... in Alaska add up...

  17. Indigenous frameworks for observing and responding to climate change in Alaska

    E-Print Network [OSTI]

    Ickert-Bond, Steffi

    . Excluding the oil-rich North Slope, rural Alaska is the most extensive area of poverty in the United States

  18. APPENDIX B Alaska, Hawaii, and US Possessions Per Diem Rates Effective October 1, 2012

    E-Print Network [OSTI]

    41$ 10$ 51$ ALASKA PORT ALEXANDER 1-Jan 31-Dec 34$ 9$ 43$ ALASKA PORT ALSWORTH 1-Jan 31-Dec 70$ 18-Oct 14-May 70$ 18$ 88$ ALASKA UMIAT 1-Jan 31-Dec 51$ 13$ 64$ ALASKA VALDEZ 16-May 14-Sep 71$ 18$ 89 TELE AREA 1-Jan 31-Dec 101$ 25$ 126$ HAWAII FT. DERUSSEY 1-Jan 31-Dec 101$ 25$ 126$ HAWAII FT. SHAFTER

  19. Fort Huachuca Water Awareness Program: Best Management Practice Case Study #2: Information and Education Programs, Federal Energy Management Program (FEMP) (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2009-12-01T23:59:59.000Z

    Case study overview of the U.S. Army Fort Huachuca water awareness practice as part of FEMP's water efficiency best management practice series.

  20. Tax policy can change the production path: A model of optimal oil extraction in Alaska

    E-Print Network [OSTI]

    Lin, C.-Y. Cynthia

    production units (fields) on Alaska's North Slope. We use adjustment cost and discount rate to calibrate approach was to simulate economically optimal production paths for units on the Alaska North Slope, compare production for the seven individual units on Alaska's North Slope: Prudhoe Bay, Kuparuk River, Milne Point

  1. Some Effects of DDT on the Ecology of Salmon Streams in Southeastern Alaska

    E-Print Network [OSTI]

    542 Some Effects of DDT on the Ecology of Salmon Streams in Southeastern Alaska By Roger J. ReedKernan, Director Some Effects of DDT on the Ecology of Salmon Streams in Southeastern Alaska By ROGER J. REED Literature cited 14 #12;#12;Some Effects of DDT on the Ecology of Salmon Streams in Southeastern Alaska

  2. ASSESSMENT OF HYDROCARBON SEEPAGE DETECTION METHODS ON THE FORT PECK RESERVATION, NORTHEAST MONTANA

    SciTech Connect (OSTI)

    Lawrence M. Monson

    2003-06-30T23:59:59.000Z

    Surface exploration techniques have been employed in separate study areas on the Fort Peck Reservation in northeastern Montana. Anomalies associated with hydrocarbon seepage are documented in all three areas and a variety of surface exploration techniques can be compared. In a small area with established production, Head Gas and Thermal Desorption methods best match production; other methods also map depletion. In a moderate-size area that has prospects defined by 3D seismic data, Head Gas along with Microbial, Iodine, and Eh soil anomalies are all associated with the best hydrocarbon prospect. In a large area that contains many curvilinear patterns observed on Landsat images, that could represent micro-seepage chimneys, results are inconclusive. Reconnaissance mapping using Magnetic Susceptibility has identified a potential prospect; subsequent Soil Gas and Head Gas surveys suggest hydrocarbon potential. In the final year of this project the principle contractor, the Fort Peck Tribes, completed a second survey in the Wicape 3D Seismic Prospect Area (also known as Area 6 in Phase I of the project) and sampled several Landsat image features contained in the Smoke Creek Aeromag Anomaly Area (also known as Area 1 in Phase II of the project). Methods determined to be most useful in Phases I and II, were employed in this final Phase III of the study. The Southwest Wicape seismic anomaly was only partially confirmed. The abundant curvilinears proposed to be possible hydrocarbon micro-seepage chimneys in the Smoke Creek Area were not conclusively verified as such. Insufficient sampling of background data precludes affirmative identification of these mostly topographic Landsat features as gas induced soil and vegetation anomalies. However relatively higher light gas concentrations were found associated with some of the curvilinears. Based on the findings of this work the Assiniboine & Sioux Tribes of the Fort Peck Reservation intend to utilize surface hydrocarbon exploration techniques for future identification and confirmation of oil and gas prospects.

  3. Skogen r ttare, grvre och mer lvrik Virkesfrrdet i Sveriges skogar fort-

    E-Print Network [OSTI]

    perioden medan för- rådet av tall och gran ökat med 17 respektive 7 procent. Samtidigt har arealen för virkesförrådet,fortsätter Göran Kempe. Bättre tillgång till statistiken på nätet Den som vill göra egna sökningar. Arbetsnamnet är Tax- webb. ­ Vi vill öka tillgängligheten av vår skogliga statistik.Tanken är att Taxwebb

  4. The Role of Occupant Behavior in Achieving Net Zero Energy: A Demonstration Project at Fort Carson

    SciTech Connect (OSTI)

    Judd, Kathleen S.; Sanquist, Thomas F.; Zalesny, Mary D.; Fernandez, Nicholas

    2013-09-30T23:59:59.000Z

    This study, sponsored by the U.S. General Services Administrations Office of Federal High-Performance Green Buildings, aimed to understand the potential for institutional and behavioral change to enhance the performance of buildings, through a demonstration project with the Department of Defense in five green buildings on the Fort Carson, Colorado, Army base. To approach this study, the research team identified specific occupant behaviors that had the potential to save energy in each building, defined strategies that might effectively support behavior change, and implemented a coordinated set of actions during a three-month intervention.

  5. Baseline Report for the Fort Hood Army Base: Sept. 1, 2001 To Aug. 31, 2002

    E-Print Network [OSTI]

    Haberl, J. S.; Baltazar, J. C.; Sung, Y. H.; Claridge, D. E.; Turner, W. D.

    ESL-TR-02/12-02 BASELINE REPORT FOR THE FORT HOOD ARMY BASE: SEPT. 1, 2001 TO AUG. 31, 2002 A Research Project for the U.S. Army C.E.R.L. and the Ft. Hood Energy Office Jeff S. Haberl, Ph.D., P.E. Juan... REPORT, P. 1 December 2002 Energy Systems Laboratory, Texas A&M University PREFACE This report is the 2001/2002 baseline report for a multi-year Research Project performed for the U.S. Army Construction Engineering Research Laboratory...

  6. Fort Smith, mother post of the southwest quartermaster supply and archeological patterning

    E-Print Network [OSTI]

    Bento, Sylvia Deborah

    1988-01-01T23:59:59.000Z

    . 14 CHAPTER V FORT SMITH AS QUARTERMASTER DEPOT At the start of the nineteenth century& the American frontier began its westward push . There was little conce& n of the effects that the movement would have on Indians of the trans-Mississippi West... building foundations (Coleman 1986&. 1 985 Archeological testing to reveal bastion and wall f'oundations. Further testing at the sites of bastions ?4 and ?5 was conducted (Coleman n. d. ) . 1985-1986 Test excavation for construction of a pedestrzan...

  7. Fort Devens: Cold Climate, Energy-Efficient, Market-Rate Townhomes

    SciTech Connect (OSTI)

    Zoeller, W.; Slattery, M.; Grab, J.

    2013-08-01T23:59:59.000Z

    In 2009, Mass Development issued an RFQ and subsequent RFP for teams to develop moderately priced high-efficiency homes on two sites within the Devens Regional Enterprise Zone. MassDevelopment, a Massachusetts agency that owns the Devens site (formerly Fort Devens Army Base, in Harvard, Massachusetts), set a goal of producing a replicable example of current and innovative sustainable building practices with a near-zero energy potential. Metric Development, as primary developer and construction manager, formed one of the successful teams that included CARB and Cambridge Seven Architects (C7A).

  8. Fort Collins, Colorado on Track to Net Zero | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf Flash2006-14.pdfattachment.pdf6.pdf5.pdfFluorescentDepartment ofSummaryof EnergyFort

  9. Slim Holes At Fort Bliss Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant ofRichardtonManagement, 2009) |Crump's Hot SpringsFort Bliss

  10. 2-M Probe At Fort Bliss Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place:ReferenceEditWisconsin:YBR14 CCRInformation Sladek, EtFort

  11. Density Log at Fort Bliss Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6 No revision has beenFinancial IncentiveEnergy(LECBP)Fort

  12. Flow Test At Fort Bliss Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublicIDAPowerPlantSitingConstruction.pdfNotify98.pdf JumpFlix SolarBlack Warrior Area (DOE GTP)Flow Test At Fort

  13. Fort Rucker

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecordFederal7.pdfFlash_2010_-24.pdfOverviewPlans |Updated August

  14. A Compilation and Review of Alaska Energy Projects

    SciTech Connect (OSTI)

    Arlon Tussing; Steve Colt

    2008-12-31T23:59:59.000Z

    There have been many energy projects proposed in Alaska over the past several decades, from large scale hydro projects that have never been built to small scale village power projects to use local alternative energy sources, many of which have also not been built. This project was initially intended to review these rejected projects to evaluate the economic feasibility of these ideas in the light of current economics. This review included contacting the agencies responsible for reviewing and funding these projects in Alaska, including the Alaska Energy Authority, the Denali Commission, and the Arctic Energy Technology Development Laboratory, obtaining available information about these projects, and analyzing the economic data. Unfortunately, the most apparent result of this effort was that the data associated with these projects was not collected in a systematic way that allowed this information to be analyzed.

  15. Installation-wide energy-conservation demonstration at Fort McClellan, Alabama. Final report

    SciTech Connect (OSTI)

    Windingland, L.M.; Lilly, B.P.; Shonder, J.A.; Underwood, D.M.; Augustine, L.J.

    1988-11-01T23:59:59.000Z

    The objective of the installation-wide energy conservation demonstration at Fort McClellan, AL, was to evaluate the effectiveness of applying available energy-conservation technologies and techniques to produce significant and predictable reductions in energy use and cost. Five major areas of energy conservation were identified and investigated: (1) pressure reduction in district-steam-heating systems; (2) reduction of outdoor air in heating, ventilation, and air-conditioning (HVAC) systems; (3) replacement of oversized and inefficient motors in HVAC systems; (4) reduction of outdoor air infiltration in family housing; and (5) combustion optimization of gas-fired heating equipment. Other areas of investigation included radio-controlled exterior lighting, and temperature reduction in the high-temperature hot-water system. Each conservation project was evaluated on a small scale to verify energy savings before it was implemented. An energy-information management system was developed to maintain annual consumption data for each building. The system provides immediate feedback on energy use so managers can make correct decisions on conservation measures. The energy conservation programs implemented at Fort McClellan contributed to the 14% reduction in baseline (weather independent) energy consumption from FY84 to FY86. These programs have wide applicability to other U.S. Army installations. This research has also shown the importance of preliminary, small-scale testing of energy-conservation programs before implementation.

  16. Fort Irwin integrated resource assessment. Volume 3: Sitewide Energy Project identification for buildings and facilities

    SciTech Connect (OSTI)

    Keller, J.M.; Dittmer, A.L.; Elliott, D.B.; McMordie, K.L.; Richman, E.E.; Stucky, D.J.; Wahlstrom, R.R.; Hadley, D.L.

    1995-02-01T23:59:59.000Z

    The U.S. Army Forces Command (FORSCOM) has tasked the U.S. Department of Energy (DOE) Federal Energy Management Program (FEMP), supported by the Pacific Northwest Laboratory, to identify, evaluate, and assist in acquiring all cost-effective energy projects at Fort Irwin. This is part of a model program that PNL is designing to support energy-use decisions in the federal sector. This report provides the results of the fossil fuel and electric energy resource opportunity (ERO) assessments performed by PNL at the FORSCOM Fort Irwin facility located near Barstow, California. It is a companion report to Volume 1, Executive Summary, and Volume 2, Baseline Detail. The results of the analyses of EROs are presented in 16 common energy end-use categories (e.g., boilers and furnaces, service hot water, and building lighting). A narrative description of each ERO is provided, along with a table detailing information on the installed cost, energy and dollar savings; impacts on operations and maintenance (O&M); and, when applicable, a discussion of energy supply and demand, energy security, and environmental issues. A description of the evaluation methodologies and technical and cost assumptions is also provided for each ERO. Summary tables present the cost-effectiveness of energy end-use equipment before and after the implementation of each ERO and present the results of the life-cycle cost (LCC) analysis indicating the net present valve (NPV) and savings-to-investment ratio (SIR) of each ERO.

  17. Specimen Catalog, Numbers 9502-10346 (1975-1981)

    E-Print Network [OSTI]

    Davis, William B.

    2012-04-09T23:59:59.000Z

    of Saskatchewan: Mephitis mephitis hudsonica. Wingard, near Carlton House: Zapus prin? ceps minor. Yukon Alaska-Yukon boundary, about 50 miles south of Arctic coast: Ursus interna- tionalis intemationalis. Camp Davidson, Yukon River: Glaucomys sabrinus.... Houston.? Dothan: Glaucomys volans saturatus. Jackson.? Woodville: Peromyscus gossy- pinus megacephalus; Sigmodon his- pidus komareki. Alaska Mainland, no exact locality: Vulpes lagopus kenaiensis. Probably between Cross Sound and Alsek River...

  18. Dust Plume Modeling from Ranges and Maneuver Areas on Fort Bliss and the White Sands Missile Range: Final Report

    SciTech Connect (OSTI)

    Chapman, Elaine G.; Barnard, James C.; Rutz, Frederick C.; Pekour, Mikhail S.; Rishel, Jeremy P.; Shaw, William J.

    2009-05-04T23:59:59.000Z

    The potential for air quality impacts from heavy mechanized vehicles operating on and between the unpaved main supply routes at Fort Bliss and White Sands Missile Range was investigated. This report details efforts by the staff of Pacific Northwest National Laboratory for the Fort Bliss Directorate of Environment in this investigation. Dust emission and dispersion from typical move-out activities occurring on the installations were simulated using the atmospheric modeling system DUSTRAN. Major assumptions associated with designing the modeling scenarios are summarized and results of simulations conducted under these assumptions are presented for four representative meteorological periods.

  19. Figure 1.-Map of McGregor Range, Fort Bliss Military Base depicting the locations of trapping census lines (closed circles) utilized in this study. Numbers refer to census lines 1-24, which are described in Table

    E-Print Network [OSTI]

    Baker, Robert J.

    , grama grassland, and nonstabilized sand dune) identified on the Fort Bliss Military Base. Small mammal 1998. #12;CHECKLIST OF MAMMALs FROM TWELVE IlABITAT TYPES AT FORT BLISS MILITARY BASE; 1997. LOCKE, ROBERTJ. BAKER, AND ROBERTD. BRADLEY The Fort Bliss Military Base is located in Dona Afia

  20. Rope Culture of the Kelp Laminaria groenlandica in Alaska

    E-Print Network [OSTI]

    Rope Culture of the Kelp Laminaria groenlandica in Alaska ROBERT J. ELLIS and NATASHA I. CALVIN beach and subtidal area. Introduction The brown seaweed or kelp, Lam- inaria groenlandica, which, Clupea harengus pallasi, eggs on kelp in Prince William Sound. In British Columbia, L. groen- landica

  1. Continuous Snow Depth, Intensive Site 1, Barrow, Alaska

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Cable, William; Romanovsky, Vladimir; Hinzman, Larry; Busey, Bob

    Continuous Snow depth data are being collected at several points within four intensive study areas in Barrow, Alaska. These data are being collected to better understand the energy dynamics above the active layer and permafrost. They complement in-situ snow and soil measurements at this location. The data could also be used as supporting measurements for other research and modeling activities.

  2. Summer Internship Program for American Indian & Native Alaska College Students

    ScienceCinema (OSTI)

    None

    2013-04-19T23:59:59.000Z

    Argonne National Laboratory's Summer Internship Program for American Indian & Native Alaska College Students. Supported by the Office of Indian Energy and Economic Development (IEED) in partnership with the Council of Energy Resource Tribes (CERT) and the U.S. Department of Energy.

  3. Alaska Native Community Energy Planning and Projects (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-06-01T23:59:59.000Z

    This fact sheet provides information on the Alaska Native villages selected to receive assistance from the U.S. Department of Energy Office of Indian Energy 2013 Strategic Technical Assistance Response Team (START) Program, which provides technical expertise to support the development of next-generation energy projects on tribal lands.

  4. Environmental assessment: Kotzebue Wind Installation Project, Kotzebue, Alaska

    SciTech Connect (OSTI)

    NONE

    1998-05-01T23:59:59.000Z

    The DOE is proposing to provide financial assistance to the Kotzebue Electric Association to expand its existing wind installation near Kotzebue, Alaska. Like many rural Alaska towns, Kotzebue uses diesel-powered generators to produce its electricity, the high cost of which is currently subsidized by the Alaska State government. In an effort to provide a cost effective and clean source of electricity, reduce dependence on diesel fuel, and reduce air pollutants, the DOE is proposing to fund an experimental wind installation to test commercially available wind turbines under Arctic conditions. The results would provide valuable information to other Alaska communities experiencing similar dependence on diesel-powered generators. The environmental assessment for the proposed wind installation assessed impacts to biological resources, land use, electromagnetic interference, coastal zone, air quality, cultural resources, and noise. It was determined that the project does not constitute a major Federal action significantly affecting the quality of the human environment. Therefore, the preparation of an environmental impact statement is not required, and DOE has issued a Finding of No Significant Impact.

  5. Summer Program for Undergraduate Research Alaska Oregon Research Training Alliance

    E-Print Network [OSTI]

    Oregon, University of

    in SPUR Oregon-Chile International REU Program University of Oregon, Eugene OR 97403-1254 phone (541 Undergraduate Researchers in SPUR (OURS) spur.uoregon.edu Oregon-Chile International REU Program (OC-iREU) spurSummer Program for Undergraduate Research Alaska Oregon Research Training Alliance NSF REU Site

  6. ABR, Inc Morning Star Ranch Alaska Airlines NANA Management Services

    E-Print Network [OSTI]

    Ickert-Bond, Steffi

    Pipeline Riverboat Discovery Baker Hughes RJG, A Professional Corporation Big Brothers Big Sisters Conservation Association Design Alaska Tanana Chiefs Conference Dolin Gold TDL Staffing, Inc Doyon Utilities, Inc U.S. National Park Services Glacier Services U.S. Navy Granite Construction U.S. Peace Corps

  7. Summer Internship Program for American Indian & Native Alaska College Students

    ScienceCinema (OSTI)

    None

    2010-09-01T23:59:59.000Z

    Argonne National Laboratory's Summer Internship Program for American Indian & Native Alaska College Students. Supported by the Office of Indian Energy and Economic Development (IEED) in partnership with the Council of Energy Resource Tribes (CERT) and the U.S. Department of Energy.

  8. NGEE Arctic Webcam Photographs, Barrow Environmental Observatory, Barrow, Alaska

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Bob Busey; Larry Hinzman

    The NGEE Arctic Webcam (PTZ Camera) captures two views of seasonal transitions from its generally south-facing position on a tower located at the Barrow Environmental Observatory near Barrow, Alaska. Images are captured every 30 minutes. Historical images are available for download. The camera is operated by the U.S. DOE sponsored Next Generation Ecosystem Experiments - Arctic (NGEE Arctic) project.

  9. Status Review of Southeast Alaska Herring (Clupea pallasi)

    E-Print Network [OSTI]

    of extinction throughout all or a significant portion of its range." The term threatened species is definedStatus Review of Southeast Alaska Herring (Clupea pallasi) Threats Evaluation and Extinction Risk of this report. NMFS gratefully acknowledges the commitment and efforts of the Extinction Risk Assessment (ERA

  10. Continuous Snow Depth, Intensive Site 1, Barrow, Alaska

    SciTech Connect (OSTI)

    Cable, William; Romanovsky, Vladimir; Hinzman, Larry; Busey, Bob

    2014-11-06T23:59:59.000Z

    Continuous Snow depth data are being collected at several points within four intensive study areas in Barrow, Alaska. These data are being collected to better understand the energy dynamics above the active layer and permafrost. They complement in-situ snow and soil measurements at this location. The data could also be used as supporting measurements for other research and modeling activities.

  11. Alaska Native Village Renewable Energy Project Development Workshop in Dillingham

    Broader source: Energy.gov [DOE]

    Presented by the DOE Office of Indian Energy with support from DOEs National Renewable Energy Laboratory, this interactive workshop will walk participants through the process of developing renewable energy and energy efficiency projects in rural Alaska and highlight the potential opportunities and challenges involved.

  12. Alaska Native Village Renewable Energy Project Development Workshop in Bethel

    Broader source: Energy.gov [DOE]

    Presented by the DOE Office of Indian Energy with support from DOEs National Renewable Energy Laboratory, this interactive workshop will walk participants through the process of developing renewable energy and energy efficiency projects in rural Alaska and highlight the potential opportunities and challenges involved.

  13. Alaska Native Village Renewable Energy Project Development Workshop in Juneau

    Broader source: Energy.gov [DOE]

    Presented by the DOE Office of Indian Energy with support from DOEs National Renewable Energy Laboratory, this interactive workshop will walk participants through the process of developing renewable energy and energy efficiency projects in rural Alaska and highlight the potential opportunities and challenges involved.

  14. ABC Allowable Biological Catch AFSC Alaska Fisheries Science Center

    E-Print Network [OSTI]

    and Industrial Re- search Organization (Australia) DAS ­ Days At Sea EBM ­ Ecosystem-Based Management EBS GLOBEC ­ GLOBal ocean ECosystem dynamics GOA ­ Gulf of Alaska GOM ­ Gulf of Mexico HMS ­ Highly Migratory NMFS ­ National Marine Fisheries Service NOAA ­ National Oceanic and Atmospheric Administration NRC

  15. UniversityofHouston AlaskaUniversityTransportationCenter

    E-Print Network [OSTI]

    Hartman, Chris

    UniversityofHouston AlaskaUniversityTransportationCenter Impact of Embedded Carbon Fiber Heating (LEAVE BLANK) 2. REPORT DATE December 2012 3. REPORT TYPE AND DATES COVERED Final Report (7/1/2011-12/31/2012 4. TITLE AND SUBTITLE Impact of Embedded Carbon Fiber Heating Panel on the Structural/ Mechanical

  16. SENSE AND NONSENSE MORE ALASKA PRODUCTION ACT (MAPA)

    E-Print Network [OSTI]

    Pantaleone, Jim

    , a modest increase in oil investment would create more state revenues under SB21 than ACES. New money #12;Switch to MAPA & New Investment #12;Job Creation in the Oil Patch #12;Job Creation from State into the oil patch creates long lasting jobs and increased consumer purchasing power. #12;Alaska Constitution

  17. Summer Internship Program for American Indian & Native Alaska College Students

    SciTech Connect (OSTI)

    2010-03-05T23:59:59.000Z

    Argonne National Laboratory's Summer Internship Program for American Indian & Native Alaska College Students. Supported by the Office of Indian Energy and Economic Development (IEED) in partnership with the Council of Energy Resource Tribes (CERT) and the U.S. Department of Energy.

  18. Summer Internship Program for American Indian & Native Alaska College Students

    SciTech Connect (OSTI)

    None

    2010-01-01T23:59:59.000Z

    Argonne National Laboratory's Summer Internship Program for American Indian & Native Alaska College Students. Supported by the Office of Indian Energy and Economic Development (IEED) in partnership with the Council of Energy Resource Tribes (CERT) and the U.S. Department of Energy.

  19. PERFORMANCE '13University of Alaska Anchorage TOM CASE, Chancellor

    E-Print Network [OSTI]

    Pantaleone, Jim

    PERFORMANCE '13University of Alaska Anchorage #12;TOM CASE, Chancellor ELISHA ("BEAR") R. BAKER IV, Interim President (3/2012-4/2013) Jacob Ng, President (effective 7/2013) UNIVERSITY GOVERNANCE FACULTY on Diversity 28 Focus on Safety #12;ELISHA "BEAR" R. BAKER IV, Ph.D., was named provost and vice chancellor

  20. Development of a Monitoring and Verification (M&V) Plan and Baseline for the Fort Hood ESPC Project

    E-Print Network [OSTI]

    Haberl, J. S.; Liu, Z.; Baltazar-Cervantes, J. C.; Lynn, B.; Underwood, D.

    2004-01-01T23:59:59.000Z

    Fort Hood has selected an Energy Services Performance Contract (ESPC) contractor to help achieve its energy reduction goals as mandated by Executive Order. This ESPC is expected to be a $3.8 million, 20 year contract, which includes five primary...

  1. Integrated Assessment Plan Template and Operational Demonstration for SPIDERS Phase 2: Fort Carson

    SciTech Connect (OSTI)

    Barr, Jonathan L.; Tuffner, Francis K.; Hadley, Mark D.; Kreyling, Sean J.; Schneider, Kevin P.

    2013-09-01T23:59:59.000Z

    This document contains the Integrated Assessment Plan (IAP) for the Phase 2 Operational Demonstration (OD) of the Smart Power Infrastructure Demonstration for Energy Reliability (SPIDERS) Joint Capability Technology Demonstration (JCTD) project. SPIDERS will be conducted over a three year period with Phase 2 being conducted at Fort Carson, Colorado. This document includes the Operational Demonstration Execution Plan (ODEP) and the Operational Assessment Execution Plan (OAEP), as approved by the Operational Manager (OM) and the Integrated Management Team (IMT). The ODEP describes the process by which the OD is conducted and the OAEP describes the process by which the data collected from the OD is processed. The execution of the OD, in accordance with the ODEP and the subsequent execution of the OAEP, will generate the necessary data for the Quick Look Report (QLR) and the Utility Assessment Report (UAR). These reports will assess the ability of the SPIDERS JCTD to meet the four critical requirements listed in the Implementation Directive (ID).

  2. Energy Engineering Analysis Program (EEAP), William Beaumont Army Medical Center, Fort Bliss, Texas. Executive summary

    SciTech Connect (OSTI)

    NONE

    1984-08-01T23:59:59.000Z

    The purpose of this study was to perform a complete energy audit and analysis of William Beaumont Army Medical Center (WBAMC) under the guidelines of the Energy Engineering Analysis Program (EEAP) at Fort Bliss in El Paso, Texas. Project documentation was prepared for all economically feasible energy conservation opportunities (ECOs). This report summarizes the work, including (1) Performing a complete energy audit and analysis for the entire hospital facility. (2) Developing a metering plan for the facility. (3) Identifying all ECOs and performing complete evaluations, including low cost/no cost items. (4) Preparing project documentation for all economically justifiable ECOs. (5) Listing and prioritizing all recommended energy conservation projects. and (6) Preparing a comprehensive report which documents the work accomplished, the results, and the recommendations.

  3. The evaluation of a 4000-home geothermal heat pump retrofit at Fort Polk, Louisiana: Final Report

    SciTech Connect (OSTI)

    Hughes, P.J.; Shonder, J.A.

    1998-03-01T23:59:59.000Z

    This report documents an independent evaluation of an energy retrofit of 4,003 family housing units at Fort Polk, Louisiana, under an energy savings performance contract (ESPC). Replacement of the heating, cooling, and water heating systems in these housing units with geothermal heat pumps (GHPs) anchored the retrofit; low-flow shower heads and compact fluorescent lighting were also installed, as well as attic insulation where needed. Statistically valid findings indicate that the project will save 25.8 million kWh, or 32.5% of the pre-retrofit whole-community electrical consumption, and 100% of the whole-community natural gas previously used for space conditioning and water heating (260,000 therms) in a typical meteorological year. At the end-use level, the GHPs were found to save about 42% of the pre-retrofit electrical consumption for heating, cooling, and water heating in housing units that were all-electric in the pre-retrofit period. This report also demonstrates an improved method of predicting energy savings. Using an engineering model calibrated to pre-retrofit energy use data collected in the field, the method predicted actual energy savings on one of the electric feeders at Fort Polk with a very high degree of accuracy. The accuracy of this model was in turn dependent on data-calibrated models of the geothermal heat pump and ground heat exchanger that are described in this report. In addition this report documents the status of vertical borehole ground heat exchanger (BHEx) design methods at the time this project was designed, and demonstrates methods of using data collected from operating GHP systems to benchmark BHEx design methods against a detailed engineering model calibrated to date. The authors also discuss the ESPC`s structure and implementation and how the experience gained here can contribute to the success of future ESPCs.

  4. E-Print Network 3.0 - augustine volcano alaska Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    volcanic eruption on weather and climate Summary: for surface albedo impacted from ash fall data was established based on data provided by the Alaska Volcano... at elevated...

  5. E-Print Network 3.0 - alaska native women Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 National Center for Education Statistics IPEDS Data Center Summary: Women Nonresident alien Black, non-Hispanic American IndianAlaska Native AsianPacific Islander... Total men...

  6. Title 20 Alaska Administrative Code Section 25.112 Oil & Gas...

    Open Energy Info (EERE)

    Oil & Gas Well Plugging Requirements Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: Title 20 Alaska Administrative Code...

  7. Title 20 Alaska Administrative Code Section 25.105 Oil & Gas...

    Open Energy Info (EERE)

    Oil & Gas Well Abandonment Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: Title 20 Alaska Administrative Code Section...

  8. E-Print Network 3.0 - alaska arm climate Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Executive Assistant drparkerson@alaska.edu 6016 John Walsh President's Professor of Climate Change... UnitDepartment Name Title EMail Phone ... Source: Wagner, Diane -...

  9. E-Print Network 3.0 - alaska natives gocadan Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    as food, sharing... for personal or family consumption as food, or for customary trade. Alaska Native Tribe means, for purposes... of the subsistence fishery for Pacific...

  10. 1983 annual report on Alaska's mineral resources. Geological Survey Circular 908

    SciTech Connect (OSTI)

    Not Available

    1983-01-01T23:59:59.000Z

    This report describes activity during 1982 in Alaska relating to oil and gas, uranium, coal and peat, geothermal resources, and non-fuel, critical and strategic minerals. (ACR)

  11. Energy Project Development and Financing Strategy for Native Alaska (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-04-01T23:59:59.000Z

    This DOE Office of Indian Energy fact sheet describes the energy project development process with a focus on Alaska Native villages and regional corporations.

  12. Title 5 Alaska Administrative Code Section 95.011 Waters Important...

    Open Energy Info (EERE)

    Alaska Administrative Code Section 95.011 Waters Important to Anadromous Fish Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document-...

  13. E-Print Network 3.0 - alaska pollack theragra Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (P Summary: and early larval stages of the Alaska pollack, Theragra chalcogramma (Pallas). Bull. Fac. Fish., Hokkaido... development of the fish, Theragra chalcogramma...

  14. Conversion economics for Alaska North Slope natural gas

    SciTech Connect (OSTI)

    Thomas, C.P.; Robertson, E.P.

    1995-07-01T23:59:59.000Z

    For the Prudhoe Bay field, this preliminary analysis provides an indication that major gas sales using a gas pipeline/LNG plant scenario, such as Trans Alaska Gas System, or a gas-to-liquids process with the cost parameters assumed, are essentially equivalent and would be viable and profitable to industry and beneficial to the state of Alaska and the federal government. The cases are compared for the Reference oil price case. The reserves would be 12.7 BBO for the base case without major gas sales, 12.3 BBO and 20 Tcf gas for the major gas sales case, and 14.3 BBO for the gas-to-liquids conversion cases. Use of different parameters will significantly alter these results; e.g., the low oil price case would result in the base case for Prudhoe Bay field becoming uneconomic in 2002 with the operating costs and investments as currently estimated.

  15. North Pole, Alaska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(Utility Company) JumpNorth Haven, Maine:Ohio:Pole, Alaska: Energy Resources Jump

  16. 2014 Alaska Native Village Energy Development Workshop | Department of

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustionImprovement3 Beryllium-Associated Worker Registry Summary 2013Evaluation32013Energy Alaska

  17. Moose Creek, Alaska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 -Energieprojekte3 Climate ZoneMontrose, Wisconsin: EnergyMoodyMoose Creek, Alaska:

  18. Lowell Point, Alaska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowell Point, Alaska: Energy Resources Jump to: navigation,

  19. MHK Projects/Alaska 17 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowell Point, Alaska:Luz IILynnM Setek85 -

  20. MHK Projects/Alaska 25 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowell Point, Alaska:Luz IILynnM Setek85

  1. Fritz Creek, Alaska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation, search Equivalent URI DBpediaFredonia,IowaFriendshipAlaska: Energy

  2. RAPID/BulkTransmission/Alaska | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: EnergyPotentialUrbanUtilityScalePVCapacityPulaski County, Kentucky:County,Quogue isRAPID/BulkTransmission/Alaska

  3. RAPID/Geothermal/Water Use/Alaska | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, search RAPID RegulatoryRAPID/Geothermal/Water Use/Alaska < RAPID‎ |

  4. City of Chefornak, Alaska (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDITOhio (Utility Company) Jump to: navigation,Caliente,Locks,Chefornak, Alaska

  5. City of Manokotak, Alaska (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDITOhio (UtilityHolyrood, KansasLampasas,Luverne Place:Madison,Manokotak, Alaska

  6. City of Petersburg, Alaska (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDITOhioOglesby, Illinois (Utility Company) JumpPaullina, IowaPetersburg, Alaska

  7. City of Seward, Alaska (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDITOhioOglesby, IllinoisSchulenburg, Texas (UtilitySeward, Alaska (Utility

  8. City of Tenakee Springs, Alaska (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDITOhioOglesby,Sullivan, Missouri (Utility Company) JumpAlaska (Utility Company)

  9. Alaska Oil and Gas Exploration, Development, and Permitting Project

    SciTech Connect (OSTI)

    Richard McMahon; Robert Crandall

    2006-03-31T23:59:59.000Z

    This is the final technical report for Project 15446, covering the grant period of October 2002 through March 2006. This project connects three parts of the oil exploration, development, and permitting process to form the foundation for an advanced information technology infrastructure to better support resource development and resource conservation. Alaska has nearly one-quarter of the nation's supply of crude oil, at least five billion barrels of proven reserves. The American Association of Petroleum Geologists report that the 1995 National Assessment identified the North Slope as having 7.4 billion barrels of technically recoverable oil and over 63 trillion cubic feet of natural gas. From these reserves, Alaska produces roughly one-fifth of the nation's daily crude oil production, or approximately one million barrels per day from over 1,800 active wells. The broad goal of this grant is to increase domestic production from Alaska's known producing fields through the implementation of preferred upstream management practices. (PUMP). Internet publication of extensive and detailed geotechnical data is the first task, improving the permitting process is the second task, and building an advanced geographical information system to offer continuing support and public access of the first two goals is the third task. Excellent progress has been made on all three tasks; the technical objectives as defined by the approved grant sub-tasks have been met. The end date for the grant was March 31, 2006.

  10. ENVIRONMENT CANADA PACIFIC & YUKON REGION

    E-Print Network [OSTI]

    . Municipal and industrial waste discharges, air and groundwater pollution, agriculture and other human, 60 percent of metal mining operations, and nearly 45 percent of BC's precious farmland. The lower pollution and by significantly reducing the discharge of persistent toxic substances into the Fraser River

  11. Annual Radiological Environmental Monitoring Program Report for the Fort St. Vrain Independent Spent Fuel Storage Installation (2003)

    SciTech Connect (OSTI)

    J. R. Newkirk; F. J. Borst, CHP

    2004-02-01T23:59:59.000Z

    This report presents the results of the 2003 Radiological Environmental Monitoring Program conducted in accordance with 10 CFR 72.44 for the Fort St. Vrain Independent Spent Fuel Storage Installation. A description of the facility and the monitoring program is provided. The results of monitoring the predominant radiation exposure pathway, direct radiation exposure, indicate the facility operation has not contributed to any increase in the estimated maximum potential dose commitment to the general public.

  12. Fort Worth Museum of Science and History: Reports on Federal Awards Program for the year ended September 30, 1994

    SciTech Connect (OSTI)

    NONE

    1994-12-31T23:59:59.000Z

    Six reports by independent accountants of the financial statements of the Fort Worth Museum of Science and History for the fiscal year ending September 30, 1994 are presented. The audits were performed on the financial statements on the (1) schedule of federal awards, (2) internal control structure, (3) compliance with laws, regulations, contracts, and grants, (4) the internal control structure used in administering federal awards, (5) compliance with general requirements, (6) compliance with specific requirements applicable to non-major program actions.

  13. The future of oil and gas in Northern Alaska

    SciTech Connect (OSTI)

    Bird, K.J.; Cole, F.; Howell, D.G.; Magoon, L.B. [Geological Survey, Menlo Park, CA (United States)

    1995-04-01T23:59:59.000Z

    The North Slope accounts for about 98 percent of Alaska`s total oil production or about 1.6 MMBOPD (million barrels of oil per day). This makes Alaska the number two oil-producing State, contributing about 25% of the Nation`s daily oil production. Cumulative North Slope production at year-end 1993 was 9.9 BBO (billion barrels of oil). Natural gas from the North Slope is not marketable for lack of a gas transportation system. At year-end 1993, North Slope reserves as calculated by the State of Alaska stood at 6.1 BBO and 26.3 TCFG. By 1988, production from Prudhoe Bay and three other oil fields peaked at 2 MMBOPD; since then production has declined to the current rate of 1.6 MMBOPD in spite of six more oil fields coming into production. Undiscovered, economically recoverable oil resources, as of 1987, were estimated at 0-26 BBO (mean probability, 8 BBO) for the onshore region and adjacent State waters by USGS and 0-5 BBO (mean probability, Alaska Pipeline System). Recent studies by the U.S. Department of Energy have assumed a range of minimum throughput rates to to illustrate the effects of a shutdown of TAPS. Using reserve and production rate numbers from existing fields, a TAPS shutdown is predicted for year-end 2014 assuming minimum rates of 200 MBOPD. In both cases, producible oil would be left in the ground: 1,000 MMBO for the 2008 scenario and 500 MMBO for the 2014 scenario. Because the time between field discovery or decision-to-develop and first production is about 10 years, new or discovered fields may need to be brought into production by 1998 to assure continued operation of the pipeline and maximum oil recovery.

  14. Fort Saint Vrain HTGR (Th/U carbide) Fuel Characteristics for Disposal Criticality Analysis

    SciTech Connect (OSTI)

    Taylor, Larry Lorin

    2001-01-01T23:59:59.000Z

    DOE-owned spent nuclear fuels encompass many fuel types. In an effort to facilitate criticality analysis for these various fuel types, they were categorized into eight characteristic fuel groups with emphasis on fuel matrix composition. Out of each fuel group, a representative fuel type was chosen for analysis as a bounding case within that fuel group. Generally, burnup data, fissile enrichments and total fuel mass govern the selection of the representative or candidate fuel within that group. For the HTGR group, the Fort Saint Vrain (FSV) reactor fuel has been chosen for the evaluation of viability for waste co-disposal. The FSV reactor was operated by Public Service of Colorado as a licensed power reactor. The FSV fuel employs a U/Th carbide matrix in individually pyrolytic carbon-coated particles. These individual particles are in turn coated with silicon carbide (SiC) and contained within fuel compacts, that are in turn embedded in graphite blocks that comprised the structural core of the reactor.

  15. Study of well logs from Cove Fort-Sulphurdale KGRA, Millard and Beaver Counties, Utah

    SciTech Connect (OSTI)

    Glenn, W.E.; Ross, H.P.

    1982-07-01T23:59:59.000Z

    Union Oil Company drilled four geothermal test wells in the Cove Fort-Sulphurdale KGRA between 1975 and 1979. A fairly complete suite of well logs were recorded for the three deeper holes, and these data are presented as composite well log plots in this report. The composite well log plots have facilitated the interpretation of limestone, dolomite, sandstone, quartz-monzonite, serpentine, and volcanic lithologies and the identification of numerous fractures. This has been especially helpful because of the extensive lost circulaton zones and poor cuttings recovery. Intraformational flow was identified by a fluid migration-temperature tracer log at depth in CFSU 31-33. Well log crossplots were computed to assist in lithologic identification and the determination of physical properties for specific depth intervals in a given hole. The presence of hydrous minerals sometimes results in neutron porosity somewhat higher than the true nonfracture porosity, which is generally less than 4%. Permeability is clearly controlled by fractures. A maximum well temperature of 178.9/sup 0/C, low flow rates and low probable percent flash indicate these wells are subeconomic for electric generation at present. The well log study has substantially improved our understanding of the reservoir as presently drilled.

  16. Characterization plan for Fort St. Vrain and Peach Bottom graphite fuels

    SciTech Connect (OSTI)

    Maarschman, S.C.; Berting, F.M.; Clemmer, R.G.; Gilbert, E.R.; Guenther, R.J.; Morgan, W.C.; Sliva, P.

    1993-09-01T23:59:59.000Z

    Part of Fort St. Vrain (FSV) and most of the Peach Bottom (PB) reactor spent fuels are currently stored at INEL and may remain in storage for many years before disposal. Three disposal pathways have been proposed: intact disposal, fuels partially disassembled and the high-level waste fraction conditioned prior to disposal, and fuels completed disassembled and conditioned prior to disposal. Many options exist within each of these pathways. PNL evaluated the literature and other reference to develop a fuels characterization plan for these fuels. This plan provides guidance for the characteristics of the fuel which will be needed to pursue any of the storage or disposal pathways. It also provides a suggested fuels monitoring program for the current storage facilities. This report recommends a minimum of 7 fuel elements be characterized: PB Core 1 fuel: one Type II nonfailed element, one Type II failed element, and one Type III nonfailed element; PB Core 2 fuel: two Type II nonfailed fuel elements; and FSV fuel: at least two fuel blocks from regions of high temperature and fluence and long in-reactor performance (preferably at reactor end-of- life). Selection of PB fuel elements should focus on these between radial core position 8 and 14 and on compacts between compact numbers 10 and 20. Selection of FSV fuel elements should focus on these from Fuel Zones II and III, located in Core Layers 6, 7, and possibly 8.

  17. Reactivation of the Shock-Tunnel Facility at Fort Cronkhite. Final report

    SciTech Connect (OSTI)

    Not Available

    1982-05-01T23:59:59.000Z

    This final report describes the results of work undertaken to reactivate the Shock Tunnel Facility at Battery Townsley, Fort Cronkhite, Marin County, California. The facility has been reactivated and can not be utilized for blast testing. The major emphasis will be testing of concepts pertaining to programs of interest to the Federal Emergency Management Agency (FEMA) and in particular to civil defense oriented research. However, a wide variety of testing requirements can be accommodated. For example, past programs at the facility have included: tests of debris from trees subjected to blast for Bell Telephone Laboratories; tests of the response of aluminum hull panels to blast loading and of the response of a model surface effects ship for the Naval Ship Research and Development center, and tests of the response of a radome prototype to blast loading conducted for ANCOM (the radome manufacturer). The Shock Tunnel Facility is located in a former coastal defense 16-inch gun emplacement constructed by the US Army beginning in 1938. It was converted in 1967 to serve as a facility for full-scale testing of the loading and response of structural elements and civil defense equipment. It remained in operation until November 1976 when Battery Townsley was turned over to the National Park Service. Work under the present purchase order consisted of the following major tasks: (I) cleanup and secure the facility, (II) reactivate the shock tunnel, and (III) design permanent facility improvements. (WHK)

  18. POTASSIC MAGMATISM ON ST. LAWRENCE ISLAND, ALASKA, AND CAPE DEZHNEV, NORTHEAST RUSSIA

    E-Print Network [OSTI]

    Amato, Jeff

    1 POTASSIC MAGMATISM ON ST. LAWRENCE ISLAND, ALASKA, AND CAPE DEZHNEV, NORTHEAST RUSSIA: EVIDENCE island on the Bering Shelf between Russia andAlaska and was the subject of reconnaissance investigations a syenite pluton at Cape Dezhnev on the Chukotka Peninsula of Russia. These geochemical data are used

  19. POTASSIC MAGMATISM ON ST. LAWRENCE ISLAND, ALASKA, AND CAPE DEZHNEV, NORTHEAST RUSSIA

    E-Print Network [OSTI]

    Toro, Jaime

    1 POTASSIC MAGMATISM ON ST. LAWRENCE ISLAND, ALASKA, AND CAPE DEZHNEV, NORTHEAST RUSSIA: EVIDENCE island on the Bering Shelf between Russia andAlaska and was the subject of reconnaissance investigations a syenite pluton at Cape Dezhnev on the Chukotka Peninsula of Russia. These geo-chemical data are used

  20. Long-term ecosystem level experiments at Toolik Lake, Alaska, and at Abisko, Northern Sweden: generalizations

    E-Print Network [OSTI]

    Long-term ecosystem level experiments at Toolik Lake, Alaska, and at Abisko, Northern Sweden, University of Sheffield, Sheffield S10 2TN, UK, zAbisko Scientific Research Station, SE 981-07 Abisko, Sweden-level experiments near Toolik Lake, Alaska, and Abisko, Sweden. We quantified aboveground biomass responses

  1. Alaska Community & Facility Scale Tribal Renewable Energy Project Development and Finance Workshop

    Broader source: Energy.gov [DOE]

    Presented by the DOE Office of Indian Energy and Tribal Energy Program, with support from DOE's National Renewable Energy Laboratory, this interactive workshop will walk participants through five steps to help Alaska Native villages and Alaska Native corporations understand the process for and potential pitfalls of developing community- and facility-scale renewable energy projects.

  2. H. R. 3277: Trans-Alaska Pipeline System Reform Act of 1989. Introduced in the House of Representatives, One Hundredth First Congress, First Session, September 14, 1989

    SciTech Connect (OSTI)

    Not Available

    1989-01-01T23:59:59.000Z

    The bill would improve Federal laws relating to the Trans-Alaska Pipeline System in light of the recent Valdez oil spill and its environmental consequences. The bill explains provisions for the Trans-Alaska Pipeline System fund and liability; the Trans-Alaska Pipeline System trust fund; improvement of the pipeline system (establishes a Presidential task force); Alaska oil spill recovery institute; penalties; provisions applicable to Alaska natives; and state laws and programs.

  3. Remote-site power generation opportunities for Alaska

    SciTech Connect (OSTI)

    Jones, M.L.

    1997-03-01T23:59:59.000Z

    The Energy and Environmental Research Center (EERC) has been working with the Federal Energy Technology Center in Morgantown, West Virginia, to assess options for small, low-cost, environmental acceptable power generation for application in remote areas of Alaska. The goal of this activity was to reduce the use of fuel in Alaskan villages by developing small, low-cost power generation applications. Because of the abundance of high-quality coal throughout Alaska, emphasis was placed on clean coal applications, but other energy sources, including geothermal, wind, hydro, and coalbed methane, were also considered. The use of indigenous energy sources would provide cheaper cleaner power, reduce the need for PCE (Power Cost Equalization program) subsidies, increase self-sufficiency, and retain hard currency in the state while at the same time creating jobs in the region. The introduction of economical, small power generation systems into Alaska by US equipment suppliers and technology developers aided by the EERC would create the opportunities for these companies to learn how to engineer, package, transport, finance, and operate small systems in remote locations. All of this experience would put the US developers and equipment supply companies in an excellent position to export similar types of small power systems to rural areas or developing countries. Thus activities in this task that relate to determining the generic suitability of these technologies for other countries can increase US competitiveness and help US companies sell these technologies in foreign countries, increasing the number of US jobs. The bulk of this report is contained in the two appendices: Small alternative power workshop, topical report and Global market assessment of coalbed methane, fluidized-bed combustion, and coal-fired diesel technologies in remote applications.

  4. Plant community composition and vegetation height, Barrow, Alaska, Ver. 1

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sloan, Victoria; Norby, Richard; Siegrist, Julia; Iversen, Colleen; Brooks, Jonathan; Liebig, Jennifer; Wood, Sarah

    This dataset contains i) the results of field surveys of plant community composition and vegetation height made between 17th and 29th July 2012 in 48, 1 x 1 m plots located in areas A-D of Intensive Site 1 at the Next-Generation Ecosystem Experiments (NGEE) Arctic site near Barrow, Alaska and ii) results of a mapping exercise undertaken in August 2013 using two perpendicular transects across each polygon containing vegetation plots to determine the boundaries of vegetation communities described in 2012.

  5. Application of PDC bits in the Kuparuk River Field, Alaska

    SciTech Connect (OSTI)

    Balkenbush, R.J.; Onisko, J.E.

    1983-10-01T23:59:59.000Z

    In soft to medium hard clays and shales, PDC bits have proven to be economically successful in the Kuparuk River Field, Alaska. Through the redesign and modification of PDC bits and rig equipment, the necessary operating parameters have been achieved and the use of PDC bits has become routine. These bits are typically run with a standpipe pressure of 4000 psi, pump rate of 400 to 450 gpm, and a rotary speed of 150 to 200 rpm. Using these high operating parameters, a savings of about $50,000 per PDC bit is being achieved when compared to roller cone bits.

  6. Record of Decision for Amchitka Surface Closure, Alaska

    SciTech Connect (OSTI)

    None

    2008-08-01T23:59:59.000Z

    This Record of Decision has been prepared to document the remedial actions taken on Amchitka Island to stabilize contaminants associated with drilling mud pits generated as a result of nuclear testing operations conducted on the island. This document has been prepared in accordance with the recommended outline in the Alaska Department of Environmental Conservation guidance on decision documentation under the Site Cleanup Rules (18 AAC 75.325-18 AAC 75.390) (ADEC 1999). It also describes the decision-making process used to establish the remedial action plans and defines the associated human health and ecological risks for the remediation.

  7. Alaska Electric Light&Power Co | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWende NewSowitecAWSAgri-Energy LLCAir EnergyTayyarAlaska Electric

  8. Diamond Ridge, Alaska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump to:52c8ff988c1Dering Harbor, NewRidge, Alaska: Energy Resources Jump to:

  9. Alaska Town Invests in Energy Efficiency | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South42.2 (April 2012) 1 Documentation and Approval of TS NOTMethaneBtuAlaska

  10. CT Scans of Cores Metadata, Barrow, Alaska 2015

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Katie McKnight; Tim Kneafsey; Craig Ulrich

    Individual ice cores were collected from Barrow Environmental Observatory in Barrow, Alaska, throughout 2013 and 2014. Cores were drilled along different transects to sample polygonal features (i.e. the trough, center and rim of high, transitional and low center polygons). Most cores were drilled around 1 meter in depth and a few deep cores were drilled around 3 meters in depth. Three-dimensional images of the frozen cores were constructed using a medical X-ray computed tomography (CT) scanner. TIFF files can be uploaded to ImageJ (an open-source imaging software) to examine soil structure and densities within each core.

  11. Alaska Energy Champion: David Pelunis-Messier | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energyon ArmedWaste andAccess to OUO Access to OUO DOENuclearAdverseDepartmentAlaska Energy

  12. Alaska Feature Articles and Blogs | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energyon ArmedWaste andAccess to OUO Access to OUOAlaska Feature Articles and Blogs Alaska

  13. The 2004 North Slope of Alaska Arctic Winter Radiometric Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2 and NbSe2 .2004 North Slope of Alaska Arctic Winter

  14. Energy Efficiency and Renewable Energy Technologies for Alaska

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program -Department oftoThese Web sitesEERE Technologies for Alaska Day 1

  15. MHK Projects/Alaska 35 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowell Point, Alaska:Luz IILynnM Setek85 < MHK Projects Jump

  16. MHK Projects/Alaska 7 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowell Point, Alaska:Luz IILynnM Setek85 < MHK Projects

  17. Port Graham, Alaska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County, Maine:Plug Power Inc Jump to:Venture,149.Pope CountyGraham, Alaska:

  18. Alaska Power and Telephone Co | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 SouthWaterBrasilInformation 5-01 End Date 2008-06-01EnergyAlaska

  19. Alaska Public Participation in APDES Permitting Process | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 SouthWaterBrasilInformation 5-01 End DateInformation Alaska Public

  20. Alaska Request for SHPO Section 106 Review | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 SouthWaterBrasilInformation 5-01 End DateInformation Alaska

  1. Alaska Sample Special Area Permit | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 SouthWaterBrasilInformation 5-01 End DateInformation AlaskaSpecial

  2. Alaska Special Area Permit Application | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 SouthWaterBrasilInformation 5-01 End DateInformation AlaskaSpecial

  3. City of Atka, Alaska (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWendeGuoCatalystPathwaysAltamont CityKansas (UtilityAtka, Alaska

  4. Alaska Forum on the Environment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EERE Blog Posts1-034 Advance| DepartmentBurden RFIAlan Yu About UsAlaska

  5. City of Akutan, Alaska (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:Energy InformationLake SouthChroma ATEEnergy LLC Place:Akutan, Alaska

  6. Alaska - Rankings - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperativeA2.Reformulated, Average RefinerEnergy SupplyU.S. Offshore U.S.:Alaska

  7. ALASKA DEPARTMENT OF ENVIRONMENTAL CONSERVATION NORTHERN REGIONAL OFFICZ ,

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$0.C. 20545 OCTTO:March_ ,'I- i.(ALASKA DEPARTMENT OF

  8. Plant community composition and vegetation height, Barrow, Alaska, Ver. 1

    SciTech Connect (OSTI)

    Sloan, Victoria; Norby, Richard; Siegrist, Julia; Iversen, Colleen; Brooks, Jonathan; Liebig, Jennifer; Wood, Sarah

    2014-04-25T23:59:59.000Z

    This dataset contains i) the results of field surveys of plant community composition and vegetation height made between 17th and 29th July 2012 in 48, 1 x 1 m plots located in areas A-D of Intensive Site 1 at the Next-Generation Ecosystem Experiments (NGEE) Arctic site near Barrow, Alaska and ii) results of a mapping exercise undertaken in August 2013 using two perpendicular transects across each polygon containing vegetation plots to determine the boundaries of vegetation communities described in 2012.

  9. American Recovery and Reinvestment Act (ARRA) FEMP Technical Assistance U.S. Army Project 181 Implementation Challenges in Deployment of an Energy Security Microgrid for Army Reserve Facilities located on the Former Fort Devens Army Base

    SciTech Connect (OSTI)

    Warwick, William M.

    2010-09-30T23:59:59.000Z

    This documents reports on a request for technical assistance from Fort Devens to analyze procurement of energy from nearby renewable generating resources.

  10. Alaska Power Administration combined financial statements, schedules and supplemental reports, September 30, 1995 and 1994

    SciTech Connect (OSTI)

    NONE

    1995-12-31T23:59:59.000Z

    This report presents the results of the independent certified public accountant`s audit of the Department of Energy`s Alaska Power Administration`s (Alaska) financial statements as of September 30, 1995. The auditors have expressed an unqualified opinion on the 1995 statements. Their reports on Alaska`s internal control structure and on compliance with laws and regulations are also provided. The Alaska Power Administration operates and maintains two hydroelectric projects that include five generator units, three power tunnels and penstocks, and over 88 miles of transmission line. Additional information about Alaska Power Administration is provided in the notes to the financial statements. The 1995 financial statement audit was made under the provisions of the Inspector General Act (5 U.S.C. App.), as amended, the Chief Financial Officers (CFO) Act (31 U.S.C. 1500), and Office of Management and Budget implementing guidance to the CFO Act. The auditor`s work was conducted in accordance with generally accepted government auditing standards. To fulfill the audit responsibilities, the authors contracted with the independent public accounting firm of KPMG Peat Marwick (KPMG) to conduct the audit for us, subject to review. The auditor`s report on Alaska`s internal control structure disclosed no reportable conditions that could have a material effect on the financial statements. The auditor also considered the overview and performance measure data for completeness and material consistency with the basic financial statements, as noted in the internal control report. The auditor`s report on compliance with laws and regulations disclosed no instances of noncompliance by Alaska.

  11. Aerial gamma ray and magnetic survey: Mississippi and Florida airborne survey, Fort Smith quadrangle, Oklahoma, and Arkansas. Final report

    SciTech Connect (OSTI)

    Not Available

    1980-09-01T23:59:59.000Z

    The Fort Smith quadrangle in western Arkansas and eastern Oklahoma overlies thick Paleozoic sediments of the Arkoma Basin. These Paleozoics dominate surface exposure except where covered by Quaternary Alluvial materials. Examination of available literature shows no known uranium deposits (or occurrences) within the quadrangle. Seventy-five groups of uranium samples were defined as anomalies and are discussed briefly. None were considered significant, and most appeared to be of cultural origin. Magnetic data show character that suggest structural and/or lithologic complexity, but imply relatively deep-seated sources.

  12. Migration and oil industry employment of north slope Alaska natives. Technical report (Final)

    SciTech Connect (OSTI)

    Marshall, D.

    1993-01-01T23:59:59.000Z

    This study has two purposes: To find out why people migrate to and within the North Slope; To find out if working for the oil industry at Prudhoe Bay or Kuparuk makes North Slope Natives more likely to migrate. This is the first study of Alaska Native migration based on interviews of Alaska North Slope Native migrants, of non-Native migrants, and of Alaska North Slope Natives who are oil industry employees. It has two major chapters: one on household migration and the other on oil industry employment. The report is based on interviews conducted in March 1992.

  13. American Recovery and Reinvestment Act (ARRA) Federal Energy Management Program Technical Assistance Project 282 Renewable Energy Opportunities at Fort Gordon, Georgia

    SciTech Connect (OSTI)

    Boyd, Brian K.; Gorrissen, Willy J.; Hand, James R.; Horner, Jacob A.; Orrell, Alice C.; Russo, Bryan J.; Weimar, Mark R.; Williamson, Jennifer L.; Nesse, Ronald J.

    2010-09-30T23:59:59.000Z

    This document provides an overview of renewable resource potential at Fort Gordon, based primarily upon analysis of secondary data sources supplemented with limited on-site evaluations. This effort focuses on grid-connected generation of electricity from renewable energy sources and also on ground source heat pumps for heating and cooling buildings. The effort was funded by the American Recovery and Reinvestment Act (ARRA) as follow-on to the 2005 Department of Defense (DoD) Renewables Assessment. The site visit to Fort Gordon took place on March 9, 2010.

  14. Pick any region of the US from Alaska to Florida to New Mexico, and determine

    E-Print Network [OSTI]

    Auerbach, Scott M.

    Research: Pick any region of the US from Alaska to Florida to New Mexico, and determine the most to store this energy effectively. Therefore, your task is to think of new ways to store renewable energy

  15. E-Print Network 3.0 - alaska science center Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    science center Search Powered by Explorit Topic List Advanced Search Sample search results for: alaska science center Page: << < 1 2 3 4 5 > >> 1 UnitDepartment Name Title EMail...

  16. Alaska Native Weatherization Training and Jobs Program First Steps Toward Tribal Weatherization Human Capacity Development

    SciTech Connect (OSTI)

    Wiita, Joanne

    2013-07-30T23:59:59.000Z

    The Alaska Native Weatherization Training and Jobs Project expanded weatherization services for tribal members homes in southeast Alaska while providing weatherization training and on the job training (OJT) for tribal citizens that lead to jobs and most probably careers in weatherization-related occupations. The program resulted in; (a) 80 Alaska Native citizens provided with skills training in five weatherization training units that were delivered in cooperation with University of Alaska Southeast, in accordance with the U.S. Department of Energy Core Competencies for Weatherization Training that prepared participants for employment in three weatherizationrelated occupations: Installer, Crew Chief, and Auditor; (b) 25 paid OJT training opportunities for trainees who successfully completed the training course; and (c) employed trained personnel that have begun to rehab on over 1,000 housing units for weatherization.

  17. The Dropout/Graduation Crisis Among American Indian and Alaska Native Students

    E-Print Network [OSTI]

    Faircloth, Susan C.; Tippeconnic, John W. III

    2010-01-01T23:59:59.000Z

    8th grader, state of Oklahoma 1st place in the 6 th - 8 thCarolina, North Dakota, Oklahoma, Oregon, South Dakota,Student Population Alaska Oklahoma Montana New Mexico South

  18. Reconstructing long term sediment flux from the Brooks Range, Alaska, using edge clinoforms

    E-Print Network [OSTI]

    Kaba, Christina Marie

    2004-01-01T23:59:59.000Z

    Laterally extensive, well-developed clinoforms have been mapped in Early Cretaceous deposits located in the northeastern 27,000 km2 of the Colville Basin, North Slope of Alaska. Using public domain 2-D seismic data, well ...

  19. E-Print Network 3.0 - alaska bering sea Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Figure 1. No groundfish resources erere alloca... -specific.r' Descriptions of other terms employed will be given in later sections. 12;2 ... Source: Alaska Fisheries Science...

  20. Agency Responses to Comments Received during the 2011 Alaska Forum on the Environment

    Broader source: Energy.gov [DOE]

    Agency Responses to Comments Received during the 2011 Alaska Forum on the EnvironmentEnvironmental JusticeInteragency Working Group Community DialogueAnchorage, AKFebruary 7-11, 2011

  1. Alaska: Enhanced Efficiency of Wind-Diesel Power Generation in Tribal Villages

    Office of Energy Efficiency and Renewable Energy (EERE)

    This project is benefiting tribal communities in Alaska with fuel savings, increased revenues to local utilities, reduced heating cost, as well as enabling utilities and customers to control costs.

  2. Title 46 Alaska Statutes Section 03.380 Registration of Tanks...

    Open Energy Info (EERE)

    Registration of Tanks and Tank Systems Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: Title 46 Alaska Statutes Section 03.380...

  3. Title 46 Alaska Statutes Section 03.385 Registration Fee for...

    Open Energy Info (EERE)

    Registration Fee for Registration of Tanks and Tank Systems Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: Title 46 Alaska...

  4. Weatherization Savings Peak in Alaska: Weatherization Assistance Close-Up Fact Sheet

    SciTech Connect (OSTI)

    D& R International

    2001-10-10T23:59:59.000Z

    Alaska demonstrates its commitment to technology and efficiency through the Weatherization Program. Weatherization uses advanced technologies and techniques to reduce energy costs for low-income families by increasing the energy efficiency of their homes.

  5. Amchitka Island, Alaska, Biological Monitoring Report 2011 Sampling Results

    SciTech Connect (OSTI)

    None

    2013-09-01T23:59:59.000Z

    The Long-Term Surveillance and Maintenance (LTS&M) Plan for the U.S. Department of Energy (DOE) Office of Legacy Management (LM) Amchitka Island sites describes how LM plans to conduct its mission to protect human health and the environment at the three nuclear test sites located on Amchitka Island, Alaska. Amchitka Island, near the western end of the Aleutian Islands, is approximately 1,340 miles west-southwest of Anchorage, Alaska. Amchitka is part of the Aleutian Island Unit of the Alaska Maritime National Wildlife Refuge, which is administered by the U.S. Fish and Wildlife Service (USFWS). Since World War II, Amchitka has been used by multiple U.S. government agencies for various military and research activities. From 1943 to 1950, it was used as a forward air base for the U.S. Armed Forces. During the middle 1960s and early 1970s, the U.S. Department of Defense (DOD) and the U.S. Atomic Energy Commission (AEC) used a portion of the island as a site for underground nuclear tests. During the late 1980s and early 1990s, the U.S. Navy constructed and operated a radar station on the island. Three underground nuclear tests were conducted on Amchitka Island. DOD, in conjunction with AEC, conducted the first nuclear test (named Long Shot) in 1965 to provide data that would improve the United States' capability of detecting underground nuclear explosions. The second nuclear test (Milrow) was a weapons-related test conducted by AEC in 1969 as a means to study the feasibility of detonating a much larger device. Cannikin, the third nuclear test on Amchitka, was a weapons-related test detonated on November 6, 1971. With the exception of small concentrations of tritium detected in surface water shortly after the Long Shot test, radioactive fission products from the tests remain in the subsurface at each test location As a continuation of the environmental monitoring that has taken place on Amchitka Island since before 1965, LM in the summer of 2011 collected biological and seawater samples from the marine and terrestrial environment of Amchitka Island adjacent to the three detonation sites and at a background or reference site, Adak Island, 180 miles to the east. Consistent with the goals of the Amchitka LTS&M Plan, four data quality objectives (DQOs) were developed for the 2011 sampling event.

  6. Small Wind Electric Systems: An Alaska Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2007-04-01T23:59:59.000Z

    Small Wind Electric Systems: An Alaska Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  7. 3-DOF potential air flow manipulation by inverse modeling control Anne Delettre, Guillaume J. Laurent, Nadine Le Fort-Piat and Christophe Varnier

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    3-DOF potential air flow manipulation by inverse modeling control Anne Delettre, Guillaume J. Laurent, Nadine Le Fort-Piat and Christophe Varnier Abstract-- Potential air flows can be used to perform non- prehensile contactless manipulations of objects gliding on air- hockey table. In this paper, we

  8. Forts du succs de l'expdition DeepWater mene le long du Gulf Stream auprintemps2013,l'UniversitdeGenve(UNIGE)etPlanetSolarlancent

    E-Print Network [OSTI]

    Halazonetis, Thanos

    Forts du succès de l'expédition DeepWater menée le long du Gulf Stream auprintemps2013,l rive nord de la baie de Kiladha (Golfe de Nauplie), a été occupée pendant près de 35 000 ans, du

  9. Phyllosilicate orientation demonstrates early timing of compactional stabilization in calcite-cemented concretions in the Barnett Shale (Late Mississippian), Fort Worth

    E-Print Network [OSTI]

    -cemented concretions in the Barnett Shale (Late Mississippian), Fort Worth Basin, Texas (U.S.A) Ruarri J. Day-Stirrat a in revised form 8 April 2008 Accepted 16 April 2008 Keywords: Barnett Shale Goniometry Concretions Fabric Calcite-cemented zones in the prolific gas-producing Barnett Shale (Ft. Worth Basin, Texas) preserve very

  10. Wind Generation Feasibility Study in Bethel, AK

    SciTech Connect (OSTI)

    Tom Humphrey, YKHC; Lance Kincaid, EMCOR Energy & Technologies

    2004-07-31T23:59:59.000Z

    This report studies the wind resources in the Yukon-Kuskokwim Health Corporation (YKHC) region, located in southwestern Alaska, and the applicability of wind generation technologies to YKHC facilities.

  11. Dear Fellow Columbian, Join alumni and friends in Alaska from June 24-July 1, 2013 on an 8-day exploration of

    E-Print Network [OSTI]

    Lazar, Aurel A.

    and stunning Sandhill Cranes. · The emergence of Alaska's beautiful wildflowers, such as lupine and fireweed history. After tonight's welcome dinner, we'll visit the famous Alaska Pipeline. Overnight at Pike

  12. In Situ Redox Manipulation Proof-of-Principle Test at the Fort Lewis Logistics Center: Final Report

    SciTech Connect (OSTI)

    VR Vermeul; MD Williams; JC Evans; JE Szecsody; BN Bjornstad; TL Liikala

    2000-10-25T23:59:59.000Z

    Pacific Northwest National Laboratory (PNNL) conducted a proof-of-principle test at the Fort Lewis Logistics Center to determine the feasibility of using the In Situ Redox Manipulation (ISRM) technology for remediating groundwater contaminated with dissolved trichloroethylene (TCE). ISRM creates a permeable treatment zone in the subsurface to remediate redox-sensitive contaminants in groundwater. The permeable treatment zone is formed by injecting a chemical reducing agent (sodium dithionite with pH buffers) into the aquifer through a well to reduce the naturally occurring ferric iron in the sediments to ferrous iron. Once the reducing agent is injected and given sufficient time to react with aquifer sediments, residual chemicals and reaction products are withdrawn from the aquifer through the same well used for the injection. Redox-sensitive contaminants such as TCE, moving through the treatment zone under natural groundwater flow conditions, are destroyed. TCE is degraded via reductive dechlorination within the ISRM treatment zone to benign degradation products (i.e., acetylene, ethylene). Prior to the proof-of-principle field test, the ISRM technology was successfully demonstrated in laboratory experiments for the reductive dechlorination of dissolved TCE using sediments from the Fort Lewis site. The Logistics Center was placed on the National Priorities List in December 1989 because of TCE contamination in groundwater beneath the site. A Federal Facilities Agreement between the Army, the U.S. Environmental Protection Agency, and the Washington State Department of Ecology became effective in January 1990, and a Record of Decision (ROD) was signed in September 1990. The major components of the ROD included installation of two pump-and-treat systems for the upper aquifer and further investigation of the lower aquifer and other potential sources of contamination. The pump-and-treat systems became operational in August 1995. Fort Lewis asked PNNL to provide technical support in accelerating Installation Restoration Program site remediation and significantly reducing site life-cycle costs at the Logistics Center. In support of this program, ISRM was selected as an innovative technology for bench and field-scale demonstration. Emplacement of the ISRM treatment zone was accomplished through a series of four separate dithionite injection tests conducted between November 10, 1998 and March 29,2000. An extensive program of chemical monitoring was also performed before, during, and after each injection to evaluate the performance of ISRM. Prior to emplacement of the ISRM treatment zone, the site was extensively characterized with respect to geologic, hydrologic, and geochemical properties. Sediment core samples collected for the characterization studies were analyzed in bench-scale column tests at PNNL to determine reducible iron content. These site-specific hydrogeologic and geochemical data were used to develop the emplacement design of the pilot-scale (i.e., single injection well) ISRM treatment zone. Performance data obtained from the proof-of-principle test indicate that field-scale reductive dechlorination of TCE using the ISRM technology is feasible. A treatment zone was created in the subsurface that reduced TCE concentrations as much as 92% on the downgradient side of the reduced zone, from a background concentration of approximately 140 ppb to approximately 11 ppb. The appearance of the principal degradation product, acetylene, also confirmed that TCE destruction was occurring. Analysis of sediment samples collected from post-test boreholes showed a high degree of iron reduction, which helped to confirm the effectiveness of the treatment zone emplacement. Another important goal of the testing program was to provide assurances that chemical treatment of the subsurface did not result in undesirable secondary effects, including formation of toxic TCE degradation products, mobilization of trace elements, and degradation of hydraulic performance. Results obtained from the Fort Lewis ISRM proof-of-principle test, which are c

  13. EIS-0473: W.A. Parish Post-Combustion CO2 Capture and Sequestration Project (PCCS), Fort Bend County, TX

    Broader source: Energy.gov [DOE]

    This EIS evaluates the environmental impacts of a proposal to provide financial assistance for a project proposed by NRG Energy, Inc (NRG). DOE selected NRGs proposed W.A. Parish Post-Combustion CO2 Capture and Sequestration Project for a financial assistance award through a competitive process under the Clean Coal Power Initiative Program. NRG would design, construct and operate a commercial-scale carbon dioxide (CO2) capture facility at its existing W.A. Parish Generating Station in Fort Bend County, Texas; deliver the CO2 via a new pipeline to the existing West Ranch oil field in Jackson County, Texas, for use in enhanced oil recovery operations; and demonstrate monitoring techniques to verify the permanence of geologic CO2 storage.

  14. End-use energy characterization and conservation potentials at DoD Facilities: An analysis of electricity use at Fort Hood, Texas

    SciTech Connect (OSTI)

    Akbari, H.; Konopacki, S.

    1995-05-01T23:59:59.000Z

    This report discusses the application of the LBL`s End-use Disaggregation Algorithm (EDA) to a DoD installation and presents hourly reconciled end-use data for all major building types and end uses. The project initially focused on achieving these objectives and pilot-testing the methodology at Fort Hood, Texas. Fort Hood, with over 5000 buildings was determined to have representative samples of nearly all of the major building types in use on DoD installations. These building types at Fort Hood include: office, administration, vehicle maintenance, shop, hospital, grocery store, retail store, car wash, church, restaurant, single-family detached housing, two and four-plex housings, and apartment building. Up to 11 end uses were developed for each prototype, consisting of 9 electric and 2 gas; however, only electric end uses were reconciled against known data and weather conditions. The electric end uses are space cooling, ventilation, cooking, miscellaneous/plugs, refrigeration, exterior lighting, interior lighting, process loads, and street lighting. The gas end uses are space heating and hot water heating. Space heating energy-use intensities were simulated only. The EDA was applied to 10 separate feeders from the three substations at Fort Hood. The results from the analyses of these ten feeders were extrapolated to estimate energy use by end use for the entire installation. The results show that administration, residential, and the bar-rack buildings are the largest consumers of electricity for a total of 250GWh per year (74% of annual consumption). By end use, cooling, ventilation, miscellaneous, and indoor lighting consume almost 84% of total electricity use. The contribution to the peak power demand is highest by residential sector (35%, 24 MW), followed by administration buildings (30%), and barrack (14%). For the entire Fort Hood installation, cooling is 54% of the peak demand (38 MW), followed by interior lighting at 18%, and miscellaneous end uses by 12%.

  15. An Alaska fur seal family on St. Paul Island, Pribilof Group, Alaska . (Photo: V.B . Scheffe SEC. STANS REPORTS FAVORABLY ON

    E-Print Network [OSTI]

    Pribilof Isl ands off Alaska in the Bering iea on July 8 and 9. He went to observe fur-seal management, I onservation practices, and to review har- esting methods because of recent criticisms. He consulted with 6 CLUSIO S liAs a result of my meetings and my per- sonal review of the situation, II he said, "I can

  16. Coccidia (Apicomplexa: Eimeriidae) Infecting Cricetid Rodents from Alaska, U.S.A., and Northeastern Siberia, Russia, and Description of a

    E-Print Network [OSTI]

    Siberia, Russia, and Description of a New Eimeria Species from Myodes rutilus, the Northern Red, and 16 species of rodents in Alaska, U.S.A. (N¼1,711), and Siberia, Russia (N¼239) were examined, all from Alaska, 0/5 Erethizon dorsatum had oocysts when examined. In the Muridae, all from Russia, 0

  17. Impacts of the Norway Rat on the auklet breeding colony at Sirius Point, Kiska Island, Alaska in 2003

    E-Print Network [OSTI]

    Jones, Ian L.

    Impacts of the Norway Rat on the auklet breeding colony at Sirius Point, Kiska Island, Alaska of the Norway rat (Rattus norvegicus) onto Kiska Island, Aleutian Islands, Alaska, in the 1940s (Murie 1959 and to investigate the biology and demography of the Norway rat population. Moors and Atkinson (1984) suggested

  18. 401 Rasmuson Library 450-8300 102 Butrovich UAF Main Campus helpdesk@alaska.edu UAF West Ridge

    E-Print Network [OSTI]

    Wagner, Diane

    Nixle 401 Rasmuson Library 450-8300 102 Butrovich UAF Main Campus helpdesk@alaska.edu UAF West 450-8300 102 Butrovich UAF Main Campus helpdesk@alaska.edu UAF West Ridge 4. Enter a Location Enter of Certified Government Agencies & Organizations will load. #12;3 Nixle 401 Rasmuson Library 450-8300 102

  19. Analysis of Loads and Wind Energy Potential for Remote Power Stations in Alaska University of Massachusetts Amherst

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Analysis of Loads and Wind Energy Potential for Remote Power Stations in Alaska Mia Devine@avec.org ABSTRACT This report addresses the potential of utilizing wind energy in remote communities of Alaska. This report evaluates the village electric usage patterns, wind energy resource potential, and wind

  20. Biomass District Heat System for Interior Rural Alaska Villages

    SciTech Connect (OSTI)

    Wall, William A.; Parker, Charles R.

    2014-09-01T23:59:59.000Z

    Alaska Village Initiatives (AVI) from the outset of the project had a goal of developing an integrated village approach to biomass in Rural Alaskan villages. A successful biomass project had to be ecologically, socially/culturally and economically viable and sustainable. Although many agencies were supportive of biomass programs in villages none had the capacity to deal effectively with developing all of the tools necessary to build a complete integrated program. AVI had a sharp learning curve as well. By the end of the project with all the completed tasks, AVI developed the tools and understanding to connect all of the dots of an integrated village based program. These included initially developing a feasibility model that created the capacity to optimize a biomass system in a village. AVI intent was to develop all aspects or components of a fully integrated biomass program for a village. This meant understand the forest resource and developing a sustainable harvest system that included the right sized harvest equipment for the scale of the project. Developing a training program for harvesting and managing the forest for regeneration. Making sure the type, quality, and delivery system matched the needs of the type of boiler or boilers to be installed. AVI intended for each biomass program to be of the scale that would create jobs and a sustainable business.

  1. A Step Towards Conservation for Interior Alaska Tribes

    SciTech Connect (OSTI)

    Kimberly Carlo

    2012-07-07T23:59:59.000Z

    This project includes a consortium of tribes. The tribes include Hughes (representing the consortium) Birch Creek, Huslia, and Allakaket. The project proposed by Interior Regional Housing Authority (IRHA) on behalf of the villages of Hughes, Birch Creek, Huslia and Allakaket is to develop an energy conservation program relevant to each specific community, educate tribe members and provide the tools to implement the conservation plan. The program seeks to achieve both energy savings and provide optimum energy requirements to support each tribe's mission. The energy management program will be a comprehensive program that considers all avenues for achieving energy savings, from replacing obsolete equipment, to the design and construction of energy conservation measures, the implementation of energy saving operation and maintenance procedures, the utilization of a community-wide building energy management system, and a commitment to educating the tribes on how to decrease energy consumption. With the implementation of this program and the development of an Energy Management Plan, these communities can then work to reduce the high cost of living in rural Alaska.

  2. Options for Gas-to-Liquids Technology in Alaska

    SciTech Connect (OSTI)

    Robertson, Eric Partridge

    1999-10-01T23:59:59.000Z

    The purposes of this work was to assess the effect of applying new technology to the economics of a proposed natural gas-to-liquids (GTL) plant, to evaluate the potential of a slower-paced, staged deployment of GTL technology, and to evaluate the effect of GTL placement of economics. Five scenarios were economically evaluated and compared: a no-major-gas-sales scenario, a gas-pipeline/LNG scenario, a fast-paced GTL development scenario, a slow-paced GTL development scenario, and a scenario which places the GTL plant in lower Alaska, instead of on the North Slope. Evaluations were completed using an after-tax discounted cash flow analysis. Results indicate that the slow-paced GTL scenario is the only one with a rate of return greater than 10 percent. The slow-paced GTL development would allow cost saving on subsequent expansions. These assumed savings, along with the lowering of the transportation tariff, combine to distinquish this option for marketing the North Slope gas from the other scenarios. Critical variables that need further consideration include the GTL plant cost, the GTL product premium, and operating and maintenance costs.

  3. Options for gas-to-liquids technology in Alaska

    SciTech Connect (OSTI)

    Robertson, E.P.

    1999-12-01T23:59:59.000Z

    The purpose of this work was to assess the effect of applying new technology to the economics of a proposed natural gas-to-liquids (GTL) plant, to evaluate the potential of a slower-paced, staged deployment of GTL technology, and to evaluate the effect of GTL placement of economics. Five scenarios were economically evaluated and compared: a no-major-gas-sales scenario, a gas-pipeline/LNG scenario, a fast-paced GTL development scenario, a slow-paced GTL development scenario, and a scenario which places the GTL plant in lower Alaska, instead of on the North Slope. Evaluations were completed using an after-tax discounted cash flow analysis. Results indicate that the slow-paced GTL scenario is the only one with a rate of return greater than 10%. The slow-paced GTL development would allow cost saving on subsequent expansions. These assumed savings, along with the lowering of the transportation tariff, combine to distinguish this option for marketing the North Slope gas from the other scenarios. Critical variables that need further consideration include the GTL plant cost, the GTL product premium, and operating and maintenance costs.

  4. Bringing Alaska North Slope Natural Gas to Market (released in AEO2009)

    Reports and Publications (EIA)

    2009-01-01T23:59:59.000Z

    At least three alternatives have been proposed over the years for bringing sizable volumes of natural gas from Alaska's remote North Slope to market in the lower 48 states: a pipeline interconnecting with the existing pipeline system in central Alberta, Canada; a gas-to-liquids (GTL) plant on the North Slope; and a large liquefied natural gas (LNG) export facility at Valdez, Alaska. The National Energy Modeling System (NEMS) explicitly models the pipeline and GTL options. The what if LNG option is not modeled in NEMS.

  5. Pacific Northwest and Alaska Bioenergy Program Year Book; 1992-1993 Yearbook with 1994 Activities.

    SciTech Connect (OSTI)

    Pacific Northwest and Alaska Bioenergy Program (U.S.); United States. Bonneville Power Administration.

    1994-04-01T23:59:59.000Z

    The U.S. Department of Energy administers five Regional Bioenergy Programs to encourage regionally specific application of biomass and municipal waste-to-energy technologies to local needs, opportunities and potentials. The Pacific Northwest and Alaska region has taken up a number of applied research and technology projects, and supported and guided its five participating state energy programs. This report describes the Pacific Northwest and Alaska Regional Bioenergy Program, and related projects of the state energy agencies, and summarizes the results of technical studies. It also considers future efforts of this regional program to meet its challenging assignment.

  6. Field Demonstration of a High-Efficiency Packaged Rooftop Air Conditioning Unit at Fort Gordon, Augusta, GA

    SciTech Connect (OSTI)

    Armstrong, Peter R.; Sullivan, Gregory P.; Parker, Graham B.

    2006-03-31T23:59:59.000Z

    As part of a larger program targeting the market transformation of packaged rooftop air conditioning, five high-efficiency rooftop air conditioning products were selected in 2002 by the U.S. Department of Energy (DOE) under the Unitary Air Conditioner (UAC) Technology Procurement (http://www.pnl.gov/uac). In February 2003, Fort Gordon in Augusta, Georgia was chosen as the demonstration site. With the goal of validating the field performance and operation of one of the awarded products, a 10-ton high-efficiency packaged rooftop unit (RTU) manufactured by Global Energy Group (GEG) was installed at Fort Gordon in October 2003. Following equipment installation, power metering, air- and refrigerant-side instrumentation was installed on the GEG RTU and a 4-year old typical-efficiency 20-ton RTU manufactured by AAON . The GEG and AAON units were instrumented identically and operated May through July, 2005, to observe performance under a range of conditions. Based on the data collected as part of this demonstration, the GEG equipment performed at least 8% better in stage-1 (single compressor running) cooling and at least 16% better in stage-2 (both compressors running) than the baseline AAON equipment. Performance comparisons are based on what we call application EER normalized to equivalent specific fan power. The full-load, specific-fan-power-normalized application EERs at ARI design conditions were 10.48 Btu/Wh for the GEG and 9.00 Btu/Wh for the baseline machine. With a cost premium of nearly 50%, and slightly higher maintenance costs, the life-cycle cost analysis shows that the GEG technology pays for itself--a positive net-present value (NPV)--only in climates and buildings with long cooling seasons. Manufacture of this equipment on a larger scale can be expected to reduce costs to the point where it is more broadly cost-effective. The assumed 10-ton baseline and new-technology unit costs are $3824.00 and $5525.00 respectively. If the new technology cost is assumed to drop as sales increase to $4674.50 for a 10-ton unit (i.e. the original cost difference is halved), the life-cycle costs improve. A grid of first cost, annual maintenance cost and electricity price is enumerated and the results presented in the report show the sensitivity of life cycle cost to these three financial parameters in each of eight different climates.

  7. Compilation of data on strippable Fort Union coals in the northern Rocky Mountains and Great Plains region: A CD-ROM presentation

    SciTech Connect (OSTI)

    Flores, R.M.; Bader, L.R.; Cavaroc, V.V. [Geological Survey, Denver, CO (United States)] [and others

    1998-04-01T23:59:59.000Z

    The Fort Union Formation and equivalent formations of Paleocene age in the northern Rocky Mountains and Great Plains region contain 14 strippable coals that yielded more than 30 percent of the 1.03 billion short tons produced in the United States in 1996. These thick, low contaminant, compliant coals, which are utilized by electric power plants in 28 States, are being assessed by the US Geological Survey. The minable coals occur in the Powder River Basin in Wyoming and Montana, Hanna, Carbon and Greater Green River Basins in Wyoming, and Williston Basin in North Dakota. Production during the past 25 years of thick, high quality Fort Union and equivalent coal beds and zones in the region increased from 40 to more than 340 million short tons. The Powder River Basin is projected to produce 416 million short tons of coal in 2015. Major production in the Powder River Basin is from the Wyodak-Anderson, Anderson-Dietz, and Rosebud coal deposits. Producing Fort Union coals in the Williston Basin include the Beulah-Zap, Hagel, and Harmon coal deposits. Producing Fort Union coals in the Greater Green River Basin are in five beds of the Deadman coal zone. Coal production in the Hanna Basin is from eight beds in the Ferris and Hanna Formations. Coals in the Powder River Basin and Williston Basin contain much less sulfur and ash than coals produced in other regions in the conterminous US. When sulfur values are compared as pounds of SO{sub 2} per million Btu (as received basis), Powder River Basin and Williston Basin coals have the lowest amounts of any coals in the conterminous US.

  8. Economics of Alaska North Slope gas utilization options

    SciTech Connect (OSTI)

    Thomas, C.P.; Doughty, T.C.; Hackworth, J.H.; North, W.B.; Robertson, E.P.

    1996-08-01T23:59:59.000Z

    The recoverable natural gas available for sale in the developed and known undeveloped fields on the Alaskan North Slope (ANS) total about 26 trillion cubic feet (TCF), including 22 TCF in the Prudhoe Bay Unit (PBU) and 3 TCF in the undeveloped Point Thomson Unit (PTU). No significant commercial use has been made of this large natural gas resource because there are no facilities in place to transport this gas to current markets. To date the economics have not been favorable to support development of a gas transportation system. However, with the declining trend in ANS oil production, interest in development of this huge gas resource is rising, making it important for the U.S. Department of Energy, industry, and the State of Alaska to evaluate and assess the options for development of this vast gas resource. The purpose of this study was to assess whether gas-to-liquids (GTL) conversion technology would be an economic alternative for the development and sale of the large, remote, and currently unmarketable ANS natural gas resource, and to compare the long term economic impact of a GTL conversion option to that of the more frequently discussed natural gas pipeline/liquefied natural gas (LNG) option. The major components of the study are: an assessment of the ANS oil and gas resources; an analysis of conversion and transportation options; a review of natural gas, LNG, and selected oil product markets; and an economic analysis of the LNG and GTL gas sales options based on publicly available input needed for assumptions of the economic variables. Uncertainties in assumptions are evaluated by determining the sensitivity of project economics to changes in baseline economic variables.

  9. Elements of environmental concern in the 1990 Clean Air Act Amendments: A perspective of Fort Union coals in northern Rocky Mountains and Great Plains region

    SciTech Connect (OSTI)

    Stricker, G.D.; Ellis, M.E.; Flores, R.M.; Bader, L.R.

    1998-07-01T23:59:59.000Z

    The elements of environmental concern (EECs) named in the 1990 Clean Air Act Amendments include 12 trace elements consisting of antimony, arsenic, beryllium, cadmium, chromium, cobalt, lead, manganese, mercury, nickel, selenium, and uranium. Although all these trace elements are potentially hazardous, arsenic, mercury, lead, and selenium may be targeted in forthcoming Environmental Protection Agency regulations. Fort Union coals contain all the trace elements named in the Clean Air Act Amendments; however, the presence and amounts of individual trace elements vary from basin to basin. In the Powder River Basin, the major producing Fort Union coals (Wyodak-Anderson and equivalent coal beds, and Rosebud coal bed) contain the lowest (or statistically as low) amounts of EECs of any of the coal producing basins (i.e., Williston, Hanna, and Green River) in the region. In addition, when the arithmetic means of these trace elements in Powder River Basin coals are compared to other regions in the conterminous US, they are lower than those of Cretaceous coals in Colorado Plateau, Tertiary lignites in the Gulf Coast, and Pennsylvanian coals in the Illinois and Appalachian Basins. Thus, elements of environmental concern are generally low in Fort Union coals in the Northern Rocky Mountains and Great Plains region, and particularly low in the Powder River Basin. Projected increase in production of Powder River Basin coals will, therefore, be of greater benefit to the nation than an increase in development and production of coals in other basins.

  10. Elements of environmental concern in the 1990 Clean Air Act amendments: A perspective of Fort Union coals in northern Rocky Mountains and Great Plains region

    SciTech Connect (OSTI)

    Stricker, G.D.; Ellis, M.E.; Flores, R.M.; Bader, L.R. [Geological Survey, Denver, CO (United States)

    1998-04-01T23:59:59.000Z

    The elements of environmental concern (EECs) named in the 1990 Clean Air Act Amendments include 12 trace elements consisting of antimony, arsenic, beryllium, cadmium, chromium, cobalt, lead, manganese, mercury, nickel, selenium, and uranium. Although all these trace elements are potentially hazardous, arsenic, mercury, lead, and selenium may be targeted in forthcoming Environmental Protection Agency regulations. Fort Union coals contain all the trace elements named in the Clean Air Act Amendments; however, the presence and amounts of individual trace elements vary from basin to basin. In the Powder River Basin, the major producing Fort Union coals (Wyodak-Anderson and equivalent coal beds, and Rosebud coal bed) contain the lowest (or statistically as low) amounts of EECs of any of the coal producing basins (i.e. Williston, Hanna, and Green River) in the region. In addition, when the arithmetic means of these trace elements in Powder River Basin coals are compared to other regions in the conterminous U.S., they are lower than those of Cretaceous coals in Colorado Plateau, Tertiary lignites in the Gulf Coast, and Pennsylvanian coals in the Illinois and Appalachian Basins. Thus, elements of environmental concern are generally low in Fort Union coals in the Northern Rocky Mountains and Great Plains region, and particularly low in the Powder River Basin. Projected increase in production of Powder River Basin coals will, therefore, be of greater benefit to the nation than an increase in development and production of coals in other basins.

  11. Hydrogeologic aspects of brine disposal in the East Poplar oil field, Fort Peck Indian Reservation, northeastern Montana

    SciTech Connect (OSTI)

    Craigg, S.D.; Thamke, J.N. (Geological Survey, Helena, MT (United States))

    1993-04-01T23:59:59.000Z

    The East Poplar Oil Field encompasses about 70 square miles in the south-central part of the Fort Peck Indian Reservation. Oil production began in 1952 from the Mississippian Madison Group. Production depths range from about 5,500 to 6,000 feet below land surface. Large quantities of brine (water having a dissolved-solids concentration greater than 35,000 milligrams per liter) have been produced with the oil. The brine has a dissolved-solids concentration of as much as 160,000 milligrams per liter. Most of the brine has been disposed of by injection into shallower subsurface formations (mainly the Lower Cretaceous Dakota Sandstone at depths of about 3,300 feet and the Upper Cretaceous Judith River Formation at depths of about 1,000 feet). Smaller quantities of brine have been directed to storage and evaporation pits. Handling, transport, and disposal of the brine have resulted in its movement into and migration through shallow Quaternary alluvial and glacial deposits along the Poplar River valley. Locally, domestic water supplies are obtained from these deposits. The major point, sources of shallow ground-water contamination probably is leakage of brine from corroded disposal-well casing and pipelines. Using electromagnetic geophysical techniques and auger drilling, three saline-water plumes in alluvial deposits and one plum in glacial deposits have been delineated. Dominant constituents in plume areas are sodium and chloride, whereas those in nonplume areas are sodium and bicarbonate.

  12. Fort Devens: Cold Climate Market-Rate Townhomes Targeting HERS Index of 40, Harvard, Massachusetts (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-11-01T23:59:59.000Z

    Achieving aggressive energy efficiency targets requires tight coordination and clear communication among owners, designers, builders, and subcontractors. For this townhome project, MassDevelopment, the quasi-governmental agency owner, selected Metric Development of Boston, teaming with the U.S. Department of Energy (DOE) Consortium for Advanced Residential Buildings (CARB) and Cambridge Seven Architects, to build very high performing market-rate homes. Fort Devens is part of a decommissioned army base in working-class Harvard, Massachusetts, approximately one hour northwest of Boston. The team proposed 12 net zero energy-ready townhomes, meaning that the application of renewable energy systems would result in annual net zero energy use in the homes. The homes were also designed to achieve a Home Energy Rating System (HERS) Index Score of 41 before adding renewables. For this project, CARB drew on its experience working with Rural Development Inc. on a series of affordable townhomes in northern Massachusetts. The team carefully planned the site to maximize solar access, daylighting, and efficient building forms. The basic strategy was to design a very efficient thermal enclosure while minimizing incremental cost increases compared with standard construction. Using BEopt modeling software, the team established the requirements of the enclosure and investigated multiple assembly options. They settled on double-wall construction with dense-pack cellulose fill. High performance vinyl windows (U-0.24, solar heat gain coefficient [SHGC]-0.22), a vented R-59 attic, and exceptional air sealing completed the package.

  13. In Situ Redox Manipulation Proof-of-Principle Test at the Fort Lewis Logistics Center: Final Report

    SciTech Connect (OSTI)

    Vermeul, Vincent R.; Williams, Mark D.; Evans, John C.; Szecsody, James E.; Bjornstad, Bruce N.; Liikala, Terry L.

    2000-10-25T23:59:59.000Z

    Pacific Northwest National Laboratory conducted a proof-of-principle test at the Fort Lewis Logistics Center to determine the feasibility of using the innovative remedial technology In Situ Redox Manipulation (ISRM) to treat groundwater contaminated with dissolved TCE. ISRM creates a permeable treatment zone in the subsurface to remediate redox-sensitive contaminants in groundwater. The permeable treatment zone is created by injecting a chemical reducing agent (sodium dithionite with pH buffers) into the aquifer through a well to chemically reduce the naturally occurring ferric iron in the sediments to ferrous iron. Once the reducing agent has been given sufficient time to react with aquifer sediments, residual chemicals and reaction products are withdrawn through the same well. Redox-sensitive contaminants such as TCE, moving in a dissolved-phase plume through the treatment zone, are destroyed. TCE is degraded via reductive dechlorination within the treatment zone to benign degradation products (acetylene, ehtylene). Analyses of sediment samples collected from post-test boreholes showed a high degree of iron reduction, which confirmed the effectiveness of the treatment zone.

  14. Alpine field, Alaska: openhole completion and wellbore cleanup methods in an Artic environment

    E-Print Network [OSTI]

    Leeftink, Gerrit J.

    2001-01-01T23:59:59.000Z

    This study compares the practices used to drill and complete three horizontal, openhole wells in the Alpine field on the north slope of Alaska. This study is a continuation of the work performed in conjunction with CEA-73. In the first phase of CEA...

  15. Soil Physicochemical Characteristics from Ice Wedge Polygons, Barrow, Alaska, Ver. 1

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Chowdhury, Taniya; Graham, David

    This dataset provides details about soil cores (active layer and permafrost) collected from ice-wedge polygons during field expeditions to Barrow Environmental Observatory, Alaska in April, 2012 and 2013. Core information available are exact core locations; soil horizon descriptions and characteristics; and fundamental soil physico-chemical properties.

  16. Soil Physicochemical Characteristics from Ice Wedge Polygons, Barrow, Alaska, Ver. 1

    SciTech Connect (OSTI)

    Chowdhury, Taniya; Graham, David

    2013-12-08T23:59:59.000Z

    This dataset provides details about soil cores (active layer and permafrost) collected from ice-wedge polygons during field expeditions to Barrow Environmental Observatory, Alaska in April, 2012 and 2013. Core information available are exact core locations; soil horizon descriptions and characteristics; and fundamental soil physico-chemical properties.

  17. Soil Physicochemical Characteristics from Ice Wedge Polygons, Barrow, Alaska, Ver. 1

    SciTech Connect (OSTI)

    Chowdhury, Taniya

    2014-03-24T23:59:59.000Z

    This dataset provides details about soil cores (active layer and permafrost) collected from ice-wedge polygons during field expeditions to Barrow Environmental Observatory, Alaska in April, 2012 and 2013. Core information available are exact core locations; soil horizon descriptions and characteristics; and fundamental soil physico-chemical properties.

  18. Akiak School 2009 We are a small school in Western Alaska.

    E-Print Network [OSTI]

    Pantaleone, Jim

    Akiak School 2009 We are a small school in Western Alaska. Students are predominantly Yupik. We engagement in a network have on your school improvement efforts? ·It helped us focus on what our school of leadership have become visible:.. a. in your direct work at your school? ·We have paraprofessionals covering

  19. Foraging behavior of juvenile steller sea lions in the Gulf of Alaska

    E-Print Network [OSTI]

    Schrader, Wendy Jane

    2007-09-17T23:59:59.000Z

    and locations in the Gulf of Alaska via satellite telemetry. Twelve of the 17 had experienced 1-3 months of temporary captivity. Effects of temporary captivity on endurance, habitat use and development of diving and ranging behavior were tested. Diving...

  20. Development of an Autonomous Underwater Vehicle for Sub-Ice Environmental Monitoring in Prudhoe Bay, Alaska

    E-Print Network [OSTI]

    Wood, Stephen L.

    Alaska's northern coast. Of particular interest are the impacts of construction of offshore gravel the effects of offshore gravel-island based oil development on the marine environment. As part effects on marine plant life, due to decreased light transmission through the water column. In order

  1. Age of Pre-late-Wisconsin Glacial-Estuarine Sedimentation, Bristol Bay, Alaska

    E-Print Network [OSTI]

    Ingólfsson, ?lafur

    stimu- lated and thermoluminescence (IRSL and TL) techniques. Analy- sis of modern and 14 C-dated of northeastern Bristol Bay, southwestern Alaska, was dated using a variety of approaches, including infrared techniques. IRSL seems to be especially well suited for dating, with resolution on time scales of

  2. Alaska Park Science, Volume 8, Issue 1 The Colors of the Aurora

    E-Print Network [OSTI]

    Lummerzheim, Dirk

    36 #12;37 Alaska Park Science, Volume 8, Issue 1 The Colors of the Aurora By Dirk Lummerzheim Abstract The aurora has fascinated observers at high latitudes for centuries, but only recently have we that are responsible for the colors of the aurora. Observations of color balance in aurora can provide us

  3. Presented at the 28 IEEE Photovoltaics Specialists Conference, Anchorage Alaska, September 17-22, 2000

    E-Print Network [OSTI]

    Sites, James R.

    Presented at the 28 th IEEE Photovoltaics Specialists Conference, Anchorage Alaska, September 17. Tarrant, Siemens Solar Industries, Camarillo, CA 93012 ABSTRACT Many thin-film CIS photovoltaic devices behavior. INTRODUCTION The modest transient behavior exhibited by many thin-film CIS photovoltaic devices

  4. Wind-Diesel Hybrid Options for Remote Villages in Alaska Dr. James Manwell

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    -Gould National Renewable Energy Laboratory 1617 Cole Boulevard Golden, CO 80401 email: ian, and particulates. To address these issues, Alaska energy representatives are looking to renewable energy technologies to reduce the costs of power production in rural areas, the dependence on imported fuels

  5. Identifying Oil Exploration Leads using Intergrated Remote Sensing and Seismic Data Analysis, Lake Sakakawea, Fort Berthold Indian Reservation, Willistion Basin

    SciTech Connect (OSTI)

    Scott R. Reeves; Randal L. Billingsley

    2004-02-26T23:59:59.000Z

    The Fort Berthold Indian Reservation, inhabited by the Arikara, Mandan and Hidatsa Tribes (now united to form the Three Affiliated Tribes) covers a total area of 1530 mi{sup 2} (980,000 acres). The Reservation is located approximately 15 miles east of the depocenter of the Williston basin, and to the southeast of a major structural feature and petroleum producing province, the Nesson anticline. Several published studies document the widespread existence of mature source rocks, favorable reservoir/caprock combinations, and production throughout the Reservation and surrounding areas indicating high potential for undiscovered oil and gas resources. This technical assessment was performed to better define the oil exploration opportunity, and stimulate exploration and development activities for the benefit of the Tribes. The need for this assessment is underscored by the fact that, despite its considerable potential, there is currently no meaningful production on the Reservation, and only 2% of it is currently leased. Of particular interest (and the focus of this study) is the area under the Lake Sakakawea (formed as result of the Garrison Dam). This 'reservoir taking' area, which has never been drilled, encompasses an area of 150,000 acres, and represents the largest contiguous acreage block under control of the Tribes. Furthermore, these lands are Tribal (non-allotted), hence leasing requirements are relatively simple. The opportunity for exploration success insofar as identifying potential leads under the lake is high. According to the Bureau of Land Management, there have been 591 tests for oil and gas on or immediately adjacent to the Reservation, resulting in a total of 392 producing wells and 179 plugged and abandoned wells, for a success ratio of 69%. Based on statistical probability alone, the opportunity for success is high.

  6. Stratigraphy, coal occurrence, and depositional history of the Paleocene Fort Union Formation, Sand Wash basin, northwestern Colorado

    SciTech Connect (OSTI)

    Tyler, R. (Univ. of Texas, Austin, TX (United States))

    1993-08-01T23:59:59.000Z

    The Fort Union Formation in the Sand Wash basin is divided into the massive Cretaceous and Tertiary (K/T) sandstone unit, lower coal-bearing unit, gray-green mudstone unit, basin sandy unit, and upper shaly unit. Lithofacies and coal-occurrence maps of the stratigraphic units indicate that sandstone bodies and coal beds occur along south-north oriented, intermontane fluvial systems. Net-sandstone-thickness trends of the massive K/T sandstone unit reveal laterally extensive channel-fill sandstones formed in north-flowing fluvial systems. The massive K/T sandstone unit's dominant source was in the Sawatch Range. Sandstones within the lower coal-bearing unit consist of similar north-flowing fluvial systems, but they are laterally discontinuous and have several tectonically active source areas, including the Uinta and Sierra Madre-Park uplifts, and Sawatch Range. Coal-occurrence maps of the lower coal-bearing unit indicate that maximum coal-bed thicknesses are greatest along the south-north-oriented fluvial axes. Coal beds thin and split to the east and west, confirming a direct relation between the position of thick, fluvial-sandstone bodies, which form a stable platform for peat accumulation, and the location of the thick coal beds. Above the lower coal-bearing unit, the gray-green mudstone unit forms north-trending belts centered R91W and R100W. The gray-green mudstone thins to the north and into the basin center and probably is lacustrine in origin, reflecting tectonic quiescence and cessation of coarse clastic sedimentation. The basin sandy unit is best developed in the central parts of the basin, where its fluvial depositional axis is oriented south-north. The upper shaly unit directly overlies the basin sandy unit and includes a thin Cherokee coal zone. The upper shaly unit has variable thicknesses due to erosion at the base of the Wasatch Formation and lateral facies changes.

  7. Chemical, biomedical and ecological studies of SRC-I materials from the Fort Lewis Pilot Plant: a status report

    SciTech Connect (OSTI)

    Mahlum, D.D. (ed.)

    1981-01-01T23:59:59.000Z

    This document discusses studies performed with solvent refined coal (SRC) materials obtained from the Fort Lewis Pilot Plant during operation in the SRC-I mode. The development of analytical methodology is presented as well as results obtained from the application of these methods to light oil (LO), wash solvent (WS) and process solvent (PS). Results of cellular and animal studies with LO, WS and PS are included, along with a description of methods for the generation and characterization of LO and PS aerosols, and for exposing rats, mice and guinea pigs to these aerosols. The effects of SRC-I product on seed germination and plant growth which have also been studied are discussed. The SRC-I product, feed coal and the mineral residue have been analyzed for organic and inorganic constituents. The higher-boiling-point material, PS, exhibited significant mutagenic activity in the Ames assay; LO and WS were inactive. Process solvent also caused transformation of cultured Syrian hamster embryo cells. Additional chemical fractionation studies suggest that primary aromatic amines are major determinants of the observed mutagenic activity. Skin-painting studies with SRC-II naphtha, heavy distillate, shale oil and petroleum crude indicate a good correlation between the results of the cellular assays and skin carcinogenesis in mice. Wash solvent was more toxic after oral administration to rats than was light oil or process solvent. The effects of LO, WS and PS on development were studied after administration to pregnant rats. The tissue distribution of a number of components of PS was studied after oral administration of PS to rats. The effect of SRC-I product on the germination and growth of barley was investigated by mixing or layering the product with soil and placing the mixture in a field lysimeter.

  8. Evaluation of Codisposal Viability for TH/U Carbide (Fort Saint Vrain HTGR) DOE-Owned Fuel

    SciTech Connect (OSTI)

    H. radulescu

    2001-09-28T23:59:59.000Z

    There are more than 250 forms of US Department of Energy (DOE)-owned spent nuclear fuel (SNF). Due to the variety of the spent nuclear fuel, the National Spent Nuclear Fuel Program has designated nine representative fuel groups for disposal criticality analyses based on fuel matrix, primary fissile isotope, and enrichment. The Fort Saint Vrain reactor (FSVR) SNF has been designated as the representative fuel for the Th/U carbide fuel group. The FSVR SNF consists of small particles (spheres of the order of 0.5-mm diameter) of thorium carbide or thorium and high-enriched uranium carbide mixture, coated with multiple, thin layers of pyrolytic carbon and silicon carbide, which serve as miniature pressure vessels to contain fission products and the U/Th carbide matrix. The coated particles are bound in a carbonized matrix, which forms fuel rods or ''compacts'' that are loaded into large hexagonal graphite prisms. The graphite prisms (or blocks) are the physical forms that are handled in reactor loading and unloading operations, and which will be loaded into the DOE standardized SNF canisters. The results of the analyses performed will be used to develop waste acceptance criteria. The items that are important to criticality control are identified based on the analysis needs and result sensitivities. Prior to acceptance to fuel from the Th/U carbide fuel group for disposal, the important items for the fuel types that are being considered for disposal under the Th/U carbide fuel group must be demonstrated to satisfy the conditions determined in this report.

  9. Neural network analysis of sparse datasets ?? an application to the fracture system in folds of the Lisburne Formation, northeastern Alaska

    E-Print Network [OSTI]

    Bui, Thang Dinh

    2005-11-01T23:59:59.000Z

    with conventional statistical analysis, were used to examine the effects of folding, bed thickness, structural position, and lithology on the fracture properties distributions in the Lisburne Formation, folded and exposed in the northeastern Brooks Range of Alaska...

  10. Design of a model pipeline for testing of piezoelectric micro power generator for the Trans-Alaska Pipeline System

    E-Print Network [OSTI]

    Lah, Mike M. (Mike Myoung)

    2007-01-01T23:59:59.000Z

    In order to provide a reliable corrosion detection system for the Trans-Alaska Pipeline System (TAPS), a distributed wireless self-powered sensor array is needed to monitor the entire length of the pipeline at all times. ...

  11. Geochemical and isotopic results for groundwater, drainage waters, snowmelt, permafrost, precipitation in Barrow, Alaska (USA) 2012-2013

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Wilson, Cathy; Newman, Brent; Heikoop, Jeff

    Data include a large suite of analytes (geochemical and isotopic) for samples collected in Barrow, Alaska (2012-2013). Sample types are indicated, and include soil pore waters, drainage waters, snowmelt, precipitation, and permafrost samples.

  12. Alaska coal gasification feasibility studies - Healy coal-to-liquids plant

    SciTech Connect (OSTI)

    Lawrence Van Bibber; Charles Thomas; Robert Chaney [Research & Development Solutions, LLC (United States)

    2007-07-15T23:59:59.000Z

    The Alaska Coal Gasification Feasibility Study entailed a two-phase analysis of the prospects for greater use of Alaska's abundant coal resources in industrial applications. Phase 1, Beluga Coal Gasification Feasibility Study (Report DOE/NETL 2006/1248) assessed the feasibility of using gasification technology to convert the Agrium fertilizer plant in Nikiski, Alaska, from natural gas to coal feedstock. The Phase 1 analysis evaluated coals from the Beluga field near Anchorage and from the Usibelli Coal Mine near Healy, both of which are low in sulfur and high in moisture. This study expands the results of Phase 1 by evaluating a similar sized gasification facility at the Usibelli Coal mine to supply Fischer-Tropsch (F-T) liquids to central Alaska. The plant considered in this study is small (14,640 barrels per day, bbl/d) compared to the recommended commercial size of 50,000 bbl/d for coal-to-liquid plants. The coal supply requirements for the Phase 1 analysis, four million tons per year, were assumed for the Phase 2 analysis to match the probable capacity of the Usibelli mining operations. Alaska refineries are of sufficient size to use all of the product, eliminating the need for F-T exports out of the state. The plant could produce marketable by-products such as sulfur as well as electric power. Slag would be used as backfill at the mine site and CO{sub 2} could be vented, captured or used for enhanced coalbed methane recovery. The unexpected curtailment of oil production from Prudhoe Bay in August 2006 highlighted the dependency of Alaskan refineries (with the exception of the Tesoro facility in Nikiski) on Alaska North Slope (ANS) crude. If the flow of oil from the North Slope declines, these refineries may not be able to meet the in-state needs for diesel, gasoline, and jet fuel. Additional reliable sources of essential fuel products would be beneficial. 36 refs., 14 figs., 29 tabs., 3 apps.

  13. Determination of marine migratory behavior and its relationship to selected physical traits for least cisco (Coregonus sardinella) of the western Arctic coastal plain, Alaska.

    E-Print Network [OSTI]

    Seigle, John C.

    2003-01-01T23:59:59.000Z

    ??With increased resource development on the western Arctic coastal plain of Alaska (especially within the oil extraction industry) it is important to understand the basic (more)

  14. Alaska District, lab partner on cold regions work Subzero temperatures and limited daylight shorten the work season in northern regions. Add

    E-Print Network [OSTI]

    US Army Corps of Engineers

    Alaska District, lab partner on cold regions work Subzero temperatures and limited daylight shorten and innovative solutions in engineering, construction and operations in cold regions. The partnership between

  15. Limited Energy Engineering Analysis (EEAP) study of summer boiler at high temperature hot water plants, Fort Leonard Wood, Missouri. Final report

    SciTech Connect (OSTI)

    NONE

    1993-09-02T23:59:59.000Z

    This report is a study of the existing High Temperature Hot Water Distribution Systems at Fort Leonard Wood, Missouri. There are two systems with central boilers located in Buildings 1021 and 2369. The study focuses on the operation of the boilers during the summer months which is required to provide domestic hot water and sanitizing steam to various buildings. Because the boilers are operating under a reduced load condition, it may be cost effective in terms of energy conservation to implement one of the following energy conservation opportunities (ECO`s).

  16. Ophiolitic terranes of northern and central Alaska and their correlatives in Canada and northeastern Russia

    SciTech Connect (OSTI)

    Patton, W.W. Jr. (Geological Survey, Menlo Park, CA (United States))

    1993-04-01T23:59:59.000Z

    All of the major ophiolitic terranes (Angayucham, Tozitna, Innoko, Seventymile, and Goodnews terranes) in the northern and central Alaska belong to the Tethyan-type' of Moores (1982) and were obducted onto Paleozoic and Proterozoic continental and continental margin terranes in Mesozoic time. Tethyan-type' ophiolitic assemblages also occur in the Slide Mountain terrane in the Canadian Cordillera and extend from western Alaska into northeastern Russia. Although investigators have suggested widely different ages from their times of abduction onto the continent, these ophiolitic terranes display some remarkably similar features: (1) they consist of a stack of imbricated thrust slices dominated by ocean floor sediments, basalt, and high-level gabbro of late Paleozoic and Triassic age; (2) their mafic-ultramafic complexes generally are confined to the uppermost thrust sheets; (3) they lack the large tectonic melanges zones and younger accretionary flysch deposits associated with the ophiolitic terranes of southern Alaska and the Koryak region of northeastern Russia; (4) blueschist mineral assemblages occur in the lower part of these ophiolite terranes and (or) in the underlying continental terranes; and (5) they are bordered on their outboard' side by Mesozoic intraoceanic volcanic arc terranes. Recent geochemical and geologic studies of the mafic-ultramafic complexes in the Anagayucham and Tozitna terranes strongly suggest they were generated in a supra-subduction zone (SSZ) and that they are directly overlain by volcanic rocks of the Koyukuk terrane.

  17. AVTA Federal Fleet PEV Readiness Data Logging and Characterization Study for the National Park Service: Fort Vancouver National Historic Site

    SciTech Connect (OSTI)

    Stephen Schey; Jim Francfort

    2014-03-01T23:59:59.000Z

    Battelle Energy Alliance, LLC, managing and operating contractor for the U.S. Department of Energys Idaho National Laboratory, is the lead laboratory for the U.S. Department of Energys Advanced Vehicle Testing. Battelle Energy Alliance, LLC contracted with Intertek Testing Services, North America (ITSNA) to collect data on federal fleet operations as part of the Advanced Vehicle Testing Activitys Federal Fleet Vehicle Data Logging and Characterization study. The Advanced Vehicle Testing Activity study seeks to collect data to validate the use of advanced electric drive vehicle transportation. This report focuses on the Fort Vancouver National Historic Site (FVNHS) fleet to identify daily operational characteristics of select vehicles and report findings on vehicle and mission characterizations to support the successful introduction of electric vehicles (EVs) into the agencies fleet. Individual observations of the selected vehicles provided the basis for recommendations related to EV adoption and whether a battery electric vehicle (BEV) or plug-in hybrid electric vehicle (PHEV) (collectively plug-in electric vehicles) could fulfill the mission requirements. FVNHS identified three vehicles in its fleet for consideration. While the FVNHS vehicles conduct many different missions, only two (i.e., support and pool missions) were selected by agency management to be part of this fleet evaluation. The logged vehicles included a pickup truck and a minivan. This report will show that BEVs and PHEVs are capable of performing the required missions and providing an alternative vehicle for both mission categories, because each has sufficient range for individual trips and time available each day for charging to accommodate multiple trips per day. These charging events could occur at the vehicles home base, high-use work areas, or in intermediate areas along routes that the vehicles frequently travel. Replacement of vehicles in the current fleet would result in significant reductions in emission of greenhouse gases and petroleum use, while also reducing fuel costs. The Vancouver, Washington area and neighboring Portland, Oregon are leaders in adoption of PEVs in the United States1. PEV charging stations, or more appropriately identified as electric vehicle supply equipment, located on the FVNHS facility would be a benefit for both FVNHS fleets and general public use. Fleet drivers and park visitors operating privately owned plug-in electric vehicles benefit by using the charging infrastructure. ITSNA recommends location analysis of the FVNHS site to identify the optimal station placement for electric vehicle supply equipment. ITSNA recognizes the support of Idaho National Laboratory and ICF International for their efforts to initiate communication with the National Parks Service and FVNHS for participation in this study. ITSNA is pleased to provide this report and is encouraged by the high interest and support from the National Park Service and FVNHS personnel

  18. Fishery Biology Graduate Programs

    E-Print Network [OSTI]

    Fishery Biology Graduate Programs University of Alaska Fairbanks, Alaska 997750820 Program: Fisheries Biology, Marine Biology, Oceanography http://www.sfos.uaf.edu:8000/academics State University Fort Collins, Colorado 805230015 Programs: Fishery Biology http

  19. 214 USDA Forest Service RMRS-P-53CD. 2008. In: Olberding, Susan D., and Moore, Margaret M., tech coords. 2008. Fort Valley Experimental Forest--A Century of

    E-Print Network [OSTI]

    p. Forest Structure and Tree Recruitment Changes on a Permanent Historical Cinder Hills Plot Over214 USDA Forest Service RMRS-P-53CD. 2008. In: Olberding, Susan D., and Moore, Margaret M., tech coords. 2008. Fort Valley Experimental Forest--A Century of Research 1908-2008. Proceedings RMRS-P-53CD

  20. 156 USDA Forest Service RMRS-P-55. 2008. In: Olberding, Susan D., and Moore, Margaret M., tech coords. 2008. Fort Valley Experimental Forest--A Century of Research 1908-2008.

    E-Print Network [OSTI]

    Bakker, Jon

    coords. 2008. Fort Valley Experimental Forest--A Century of Research 1908-2008. Proceedings RMRS-P-55 with catastrophic disturbances and widespread degradation of these ecosys- tems (Allen and others 2002), few studies environmental conditions as- sociated with black cinder soils. Methods This study was conducted on a 3.24 ha (8

  1. Secondary natural gas recovery: Targeted applications for infield reserve growth in midcontinent reservoirs, Boonsville Field, Fort Worth Basin, Texas. Topical report, May 1993--June 1995

    SciTech Connect (OSTI)

    Hardage, B.A.; Carr, D.L.; Finley, R.J.; Tyler, N.; Lancaster, D.E.; Elphick, R.Y.; Ballard, J.R.

    1995-07-01T23:59:59.000Z

    The objectives of this project are to define undrained or incompletely drained reservoir compartments controlled primarily by depositional heterogeneity in a low-accommodation, cratonic Midcontinent depositional setting, and, afterwards, to develop and transfer to producers strategies for infield reserve growth of natural gas. Integrated geologic, geophysical, reservoir engineering, and petrophysical evaluations are described in complex difficult-to-characterize fluvial and deltaic reservoirs in Boonsville (Bend Conglomerate Gas) field, a large, mature gas field located in the Fort Worth Basin of North Texas. The purpose of this project is to demonstrate approaches to overcoming the reservoir complexity, targeting the gas resource, and doing so using state-of-the-art technologies being applied by a large cross section of Midcontinent operators.

  2. The Potential for Biomass District Energy Production in Port Graham, Alaska

    SciTech Connect (OSTI)

    Charles Sink, Chugachmiut; Keeryanne Leroux, EERC

    2008-05-08T23:59:59.000Z

    This project was a collaboration between The Energy & Environmental Research Center (EERC) and Chugachmiut A Tribal organization Serving the Chugach Native People of Alaska and funded by the U.S. Department of Energy (DOE) Tribal Energy Program. It was conducted to determine the economic and technical feasibility for implementing a biomass energy system to service the Chugachmiut community of Port Graham, Alaska. The Port Graham tribe has been investigating opportunities to reduce energy costs and reliance on energy imports and support subsistence. The dramatic rise in the prices of petroleum fuels have been a hardship to the village of Port Graham, located on the Kenai Peninsula of Alaska. The Port Graham Village Council views the forest timber surrounding the village and the established salmon industry as potential resources for providing biomass energy power to the facilities in their community. Benefits of implementing a biomass fuel include reduced energy costs, energy independence, economic development, and environmental improvement. Fish oildiesel blended fuel and indoor wood boilers are the most economical and technically viable options for biomass energy in the village of Port Graham. Sufficient regional biomass resources allow up to 50% in annual heating savings to the user, displacing up to 70% current diesel imports, with a simple payback of less than 3 years for an estimated capital investment under $300,000. Distributive energy options are also economically viable and would displace all imported diesel, albeit offering less savings potential and requiring greater capital. These include a large-scale wood combustion system to provide heat to the entire village, a wood gasification system for cogeneration of heat and power, and moderate outdoor wood furnaces providing heat to 34 homes or community buildings per furnace. Coordination of biomass procurement and delivery, ensuring resource reliability and technology acceptance, and arbitrating equipment maintenance mitigation for the remote village are challenges to a biomass energy system in Port Graham that can be addressed through comprehensive planning prior to implementation.

  3. Soil temperature, soil moisture and thaw depth, Barrow, Alaska, Ver. 1

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sloan, V.L.; J.A. Liebig; M.S. Hahn; J.B. Curtis; J.D. Brooks; A. Rogers; C.M. Iversen; R.J. Norby

    This dataset consists of field measurements of soil properties made during 2012 and 2013 in areas A-D of Intensive Site 1 at the Next-Generation Ecosystem Experiments (NGEE) Arctic site near Barrow, Alaska. Included are i) weekly measurements of thaw depth, soil moisture, presence and depth of standing water, and soil temperature made during the 2012 and 2013 growing seasons (June - September) and ii) half-hourly measurements of soil temperature logged continuously during the period June 2012 to September 2013.

  4. Soil temperature, soil moisture and thaw depth, Barrow, Alaska, Ver. 1

    SciTech Connect (OSTI)

    Sloan, V.L.; J.A. Liebig; M.S. Hahn; J.B. Curtis; J.D. Brooks; A. Rogers; C.M. Iversen; R.J. Norby

    2014-01-10T23:59:59.000Z

    This dataset consists of field measurements of soil properties made during 2012 and 2013 in areas A-D of Intensive Site 1 at the Next-Generation Ecosystem Experiments (NGEE) Arctic site near Barrow, Alaska. Included are i) weekly measurements of thaw depth, soil moisture, presence and depth of standing water, and soil temperature made during the 2012 and 2013 growing seasons (June - September) and ii) half-hourly measurements of soil temperature logged continuously during the period June 2012 to September 2013.

  5. Price of Alaska Natural Gas Exports (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996)DecadeYear Jan670,174per ThousandperperAlaska Natural

  6. 2015 ALASKA REGIONAL ENERGY WORKSHOPS Facility- and Community-Scale Project Development

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustionImprovement3 Beryllium-Associated Worker2014 HouseCoveredAir ConditionersLamps;40901W WeALASKA

  7. Anchorage Borough, Alaska ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300Algoil JumpAltergyExperiments | OpenThe Tomoves Active|Information Alaska

  8. 20 AAC 25 Alaska Oil and Gas Conservation Commission | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place:ReferenceEditWisconsin:YBR14Information 20 AAC 25 Alaska Oil

  9. Analysis of Cleanup Alternatives and Supplemental Characterization Data, Amchitka Island, Alaska

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$0.C. 20545 OCTTO:March_ ,'I-Amchitka, Alaska, Site.~

  10. Geology and geochemistry of the Geyser Bight Geothermal Area, Umnak Island, Aleutian Islands, Alaska

    SciTech Connect (OSTI)

    Nye, C.J. (Alaska Univ., Fairbanks, AK (USA). Geophysical Inst. Alaska Dept. of Natural Resources, Fairbanks, AK (USA). Div. of Geological and Geophysical Surveys); Motyka, R.J. (Alaska Dept. of Natural Resources, Juneau, AK (USA). Div. of Geological and Geophysical Surveys); Turner, D.L. (Alaska Univ., Fairbanks, AK (USA). Geophysical Inst.); Liss, S.A. (Alaska Dept. of Natural Resources, Fairba

    1990-10-01T23:59:59.000Z

    The Geyser Bight geothermal area is located on Umnak Island in the central Aleutian Islands. It contains one of the hottest and most extensive areas of thermal springs and fumaroles in Alaska, and is only documented site in Alaska with geysers. The zone of hot springs and fumaroles lies at the head of Geyser Creek, 5 km up a broad, flat, alluvial valley from Geyser Bight. At present central Umnak is remote and undeveloped. This report describes results of a combined program of geologic mapping, K-Ar dating, detailed description of hot springs, petrology and geochemistry of volcanic and plutonic rock units, and chemistry of geothermal fluids. Our mapping documents the presence of plutonic rock much closer to the area of hotsprings and fumaroles than previously known, thus increasing the probability that plutonic rock may host the geothermal system. K-Ar dating of 23 samples provides a time framework for the eruptive history of volcanic rocks as well as a plutonic cooling age.

  11. A comparison of cloud properties at a coastal and inland site at the North Slope of Alaska

    E-Print Network [OSTI]

    Jakob, Christian

    (Barrow) and an inland (Atqasuk) location on the North Slope of Alaska using microwave radiometer (MWR) data collected by the U.S. Department of Energy's Atmospheric Radiation Measurement Program contaminated by wet windows on the MWRs were employed to extract high-quality data suitable for this study

  12. Thickness distribution of a cooling pyroclastic flow deposit on Augustine Volcano, Alaska: Optimization using InSAR,

    E-Print Network [OSTI]

    Thickness distribution of a cooling pyroclastic flow deposit on Augustine Volcano, Alaska of Volcanology and Geothermal Research 150 (2006) 186­201 www.elsevier.com/locate/jvolgeores #12;imagery have al., 2001), poroelastic rebound (Peltzer et al., 1996), cooling lava (Stevens et al., 2001

  13. Division of Student Services 514 Gruening Building, P.O. Box 756340, Fairbanks, Alaska 99775-6340

    E-Print Network [OSTI]

    Ickert-Bond, Steffi

    Division of Student Services 514 Gruening Building, P.O. Box 756340, Fairbanks, Alaska 99775 AGREEMENT for the Review of Infrastructure, Sustainability and Energy Board Between the Associated Students of Sustainability, Faculty Senate, and Staff Council March 2011 Preamble In order to promote investment in energy

  14. Feasibility of Tidal and Ocean Current Energy in False Pass, Aleutian Islands, Alaska FINAL REPORT

    SciTech Connect (OSTI)

    Wright, Bruce Albert [Aleutian Pribilof Islands Association] [Aleutian Pribilof Islands Association

    2014-05-07T23:59:59.000Z

    The Aleutian Pribilof Islands Association was awarded a U.S. Department of Energy Tribal Energy Program grant (DE-EE0005624) for the Feasibility of Tidal and Ocean Current Energy in False Pass, Aleutian Islands, Alaska (Project). The goal of the Project was to perform a feasibility study to determine if a tidal energy project would be a viable means to generate electricity and heat to meet long-term fossil fuel use reduction goals, specifically to produce at least 30% of the electrical and heating needs of the tribally-owned buildings in False Pass. The Project Team included the Aleut Region organizations comprised of the Aleutian Pribilof Island Association (APIA), and Aleutian Pribilof Island Community Development Association (APICDA); the University of Alaska Anchorage, ORPC Alaska a wholly-owned subsidiary of Ocean Renewable Power Company (ORPC), City of False Pass, Benthic GeoScience, and the National Renewable Energy Laboratory (NREL). The following Project objectives were completed: collected existing bathymetric, tidal, and ocean current data to develop a basic model of current circulation at False Pass, measured current velocities at two sites for a full lunar cycle to establish the viability of the current resource, collected data on transmission infrastructure, electrical loads, and electrical generation at False Pass, performed economic analysis based on current costs of energy and amount of energy anticipated from and costs associated with the tidal energy project conceptual design and scoped environmental issues. Utilizing circulation modeling, the Project Team identified two target sites with strong potential for robust tidal energy resources in Isanotski Strait and another nearer the City of False Pass. In addition, the Project Team completed a survey of the electrical infrastructure, which identified likely sites of interconnection and clarified required transmission distances from the tidal energy resources. Based on resource and electrical data, the Project Team developed a conceptual tidal energy project design utilizing ORPCs TidGen Power System. While the Project Team has not committed to ORPC technology for future development of a False Pass project, this conceptual design was critical to informing the Projects economic analysis. The results showed that power from a tidal energy project could be provided to the City of False at a rate at or below the cost of diesel generated electricity and sold to commercial customers at rates competitive with current market rates, providing a stable, flat priced, environmentally sound alternative to the diesel generation currently utilized for energy in the community. The Project Team concluded that with additional grants and private investment a tidal energy project at False Pass is well-positioned to be the first tidal energy project to be developed in Alaska, and the first tidal energy project to be interconnected to an isolated micro grid in the world. A viable project will be a model for similar projects in coastal Alaska.

  15. Fort Union coals of the northern Rockies and Great Plains: A linchpin toward a new approach to national coal resource assessment

    SciTech Connect (OSTI)

    Flores, R.M.; Stricker, G.D. [Geological Survey, Denver, CO (United States)

    1996-06-01T23:59:59.000Z

    The U.S. Geological Survey recently initiated a 5-year program to assess the Nation`s coal resources, which emphasizes a new approach relating coal quantity and quality. One assessment region includes the northern Rocky Mountains and Great Plains of Wyoming, Montana, and North Dakota, which contains a vast expanse of Paleocene Fort Union coal-bearing rocks that yielded about 30% (>299 million short tons) of the total coal produced (1.03 billion short tons) in the U.S. for 1994. Production is from 14 coal beds/zones (Wyodak-Anderson, Anderson-Dietz, Rosebud, Beulah-Zap, Hagel, Harmon, Ferris Nos. 23, 24, 25, 31, 38, 39, Hanna No. 80, and Deadman seams) mined in the Hanna, Green River, Powder River, and Williston Basins. About 254 million short tons produced from 25 mines are from the Wyodak-Anderson, Anderson-Dietz, and Rosebud coal beds/zones in the Powder River Basin (PRB). These coals are considered as clean and low contaminant compliance coals containing less sulfur and ash (arithmetic mean for sulfur is 0.58% and ash is 7%, as-received basis) than coals produced from other regions in the conterminous U.S. Preliminary elemental analysis of coal samples from the PRB for those hazardous air pollutants (HAPs) named in the Amendments to the 1990 Clean Air Act (including Sb, As, Be, Cd, Cr, Co, Pb, Mn, Hg, Ni, Se, and U), indicates that PRB coals are lower in HAPs contents than other coals from within the region and also other regions in the U.S. Arithmetic means of HAPs contents of these coals are: Sb=0.35, As=3.4, Be=0.6, Cd=0.08, Cr=6.1, Co=1.6, Pb=3.6, Mn=23.5, Hg=0.09, Ni=4.6, Se=0.9, and U=1.1 (in ppm, as-received, and on a whole-coal basis). These coal-quality parameters will be used to delineate coal quantity of the 14 Fort Union coal beds/zones defined in the resource assessment for expanded utilization of coals into the next several decades as controlled by present and future environmental constraints.

  16. A high resolution geophysical investigation of spatial sedimentary processes in a paraglacial turbid outwash fjord: Simpson Bay, Prince William Sound, Alaska

    E-Print Network [OSTI]

    Noll, Christian John, IV

    2006-04-12T23:59:59.000Z

    Simpson Bay is a turbid, outwash fjord located in northeastern Prince William Sound, Alaska. A high ratio of watershead:basin surface area combined with high precipitation and an easily erodable catchment create high sediment inputs. Fresh water...

  17. American Recovery and Reinvestment Act (ARRA) FEMP Technical Assistance U.S. Army Project 276 Renewable Resource Development on Department of Defense Bases in Alaska: Challenges and Opportunities

    SciTech Connect (OSTI)

    Warwick, William M.

    2010-09-30T23:59:59.000Z

    The potential to increase utilization of renewable energy sources among military facilities in Alaska through coordinated development and operation is the premise of this task. The US Army Pacific Command requested assistance from PNNL to help develop a more complete understanding of the context for wheeling power within Alaska, including legal and regulatory barriers that may prohibit the DOD facilities from wheeling power among various locations to optimize the development and use of renewable resources.

  18. MESURE DE 11 POUR L'URANIUM-235 AVEC DES NEUTRONS C 1 -157 leve pour donner lieu une forte conversion interne. SIGNARBIEUX(C.), RIBRAG(M.), NIFENECKER(H.)

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    MESURE DE 11 POUR L'URANIUM-235 AVEC DES NEUTRONS C 1 - 157 élevée pour donner lieu à une forte conversion interne. SIGNARBIEUX(C.), RIBRAG(M.), NIFENECKER(H.) Seule une étude plus approfondie des(K.), North Holland thermique de 235U. Publishing Company, Vol. 2, p. 1533, 1965. MESURE DE 5 POUR L'URANIUM

  19. Physical and Chemical Implications of Mid-Winter Pumping of Trunda Lakes - North Slope, Alaska

    SciTech Connect (OSTI)

    Hinzman, Larry D. (University of Alaska Fairbanks, Water and Environmental Research Center); Lilly, Michael R. (Geo-Watersheds Scientific); Kane, Douglas L. (University of Alaska Fairbanks, Water and Environmental Research Center); Miller, D. Dan (University of Alaska Fairbanks, Water and Environmental Research Center); Galloway, Braden K. (University of Alaska Fairbanks, Water and Environmental Research Center); Hilton, Kristie M. (Geo-Watersheds Scientific); White, Daniel M. (University of Alaska Fairbanks, Water and Environmental Research Center)

    2005-09-30T23:59:59.000Z

    Tundra lakes on the North Slope, Alaska, are an important resource for energy development and petroleum field operations. A majority of exploration activities, pipeline maintenance, and restoration activities take place on winter ice roads that depend on water availability at key times of the winter operating season. These same lakes provide important fisheries and ecosystem functions. In particular, overwintering habitat for fish is one important management concern. This study focused on the evaluation of winter water use in the current field operating areas to provide a better understanding of the current water use practices. It found that under the current water use practices, there were no measurable negative effects of winter pumping on the lakes studied and current water use management practices were appropriately conservative. The study did find many areas where improvements in the understanding of tundra lake hydrology and water usage would benefit industry, management agencies, and the protection of fisheries and ecosystems.

  20. Uranium hydrogeochemical and stream sediment reconnaissance of the Chandalar NTMS quadrangle, Alaska

    SciTech Connect (OSTI)

    Not Available

    1981-09-01T23:59:59.000Z

    Results of a hydrogeochemical and stream sediment reconnaissance of the Chandalar NTMS quadrangle, Alaska are presented. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. In this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, may field site observations have not been included in this volume. These data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data were subsetted by one of the Los Alamos National Laboratory (LANL) sorting programs into groups of stream sediment and lake sediment samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1000000 scale maps of pertinent elements have been included in this report.

  1. Porosity enhancement from chert dissolution beneath Neocomian unconformity: Ivishak Formation, North Slope, Alaska

    SciTech Connect (OSTI)

    Shanmugam, G.; Higgins, J.B.

    1988-05-01T23:59:59.000Z

    Secondary porosity caused by chert dissolution is common in the hydrocarbon-producing fluvial facies of the Ivishak Formation (Triassic), North Slope, Alaska. Petrographic observations suggest that macroporosity caused by chert dissolution tends to increase toward the Neocomian unconformity. In the Prudhoe Bay field, a lateral increase in core porosity (from 15% at about 30 km from the unconformity to 30% near the unconformity) and in permeability (from 50 md at about 30 km from the unconformity to 800 md near the unconformity) is evident toward the unconformity. This increase occurs within the fluvial facies (zone 4) of nearly uniform grain size and framework composition (chert litharenite). Major chert dissolution probably took place during the Neocomian uplift when the Ivishak Formation was exposed to acidic meteoric waters in the near-surface environment. 16 figures, 3 tables.

  2. Coal occurrence, quality and resource assessment, National Petroleum Reserve in Alaska

    SciTech Connect (OSTI)

    Stricker, G.D.

    1983-01-01T23:59:59.000Z

    Field studies of the Cretaceous Torok, Kukpowruk, and Corwin Formations in the western portion of the NPRA (National Petroleum Reserve in Alaska) and Cretaceos Torok, Tuktu, Grandstand, and Chandler Formations in the eastern portion of NPRA indicate that two major delta systems are responsible for most of the coal accumulation in this area. The Corwin delta in the western portion was an early Albian to Cenomanian, north and east prograding system, whereas the slightly younger mid-Albian to Cenomanian Umiat delta system prograded north and northeast in the eastern portion. Investigations of the lightologies, fossils, and primary depositional structures of these formations indicate that the Corwin system was deposited as a large, high-constructional, shaped delta on which thick and numerous coals developed on splay and interdistributary bay platforms away from the influence of the Cretaceous epicontinental sea. The Umiat delta started out as a high-constructional system but in time became wave dominated, and its shape changed to lobate.

  3. Evaluation of water source heat pumps for the Juneau, Alaska Area

    SciTech Connect (OSTI)

    Jacobsen, J.J.; King, J.C.; Eisenhauer, J.L.; Gibson, C.I.

    1980-07-01T23:59:59.000Z

    The purposes of this project were to evaluate the technical and economic feasibility of water source heat pumps (WSHP) for use in Juneau, Alaska and to identify potential demonstration projects to verify their feasibility. Information is included on the design, cost, and availability of heat pumps, possible use of seawater as a heat source, heating costs with WSHP and conventional space heating systems, and life cycle costs for WSHP-based heating systems. The results showed that WSHP's are technically viable in the Juneau area, proper installation and maintenance is imperative to prevent equipment failures, use of WSHP would save fuel oil but increase electric power consumption. Life cycle costs for WSHP's are about 8% above that for electric resistance heating systems, and a field demonstration program to verify these results should be conducted. (LCL)

  4. A comprehensive approach for stimulating produced water injection wells at Prudhoe Bay, Alaska

    SciTech Connect (OSTI)

    Fambrough, J.D.; Lane, R.H.; Braden, J.C.

    1995-11-01T23:59:59.000Z

    The paper presents a three-component approach to removing damage from produced water injection wells of Prudhoe Bay Field, Alaska: (1) identification of plugging material, (2) evaluation and selection of potential treatment chemicals, and (3) design and implementation of a well treatment and placement method. Plugging material was sampled anaerobically and kept frozen prior to identification and evaluation. Appropriate treatment chemicals were determined through a series of solvation, filtration, and weight-loss tests. Field treatments were designed so that the treating chemicals entered the formation under normal operating conditions, i.e., at pressures and rates similar to those present during produced water injection. A number of treatments improved injection rates and profiles, but continued injection of oil and solids-laden water caused deterioration of well performance at rates that precluded general application of the treatment at Prudhoe Bay.

  5. Uraniam hydrogeochemical and stream sediment reconnaissance of the Wiseman NTMS Quadrangle, Alaska

    SciTech Connect (OSTI)

    Not Available

    1981-09-01T23:59:59.000Z

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Wiseman NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form through the Grand Junction Office Information System at Oak Ridge National Laboratory. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field observations have not been included in this volume. These data are, however, available on the magnetic tape. Appendix A describes the sample media and summarizes the analytical results for each medium. The data were subdivided by one of the Los Alamos National Laboratory (LANL) sorting programs of Zinkl and others (198a) into stream sediment samples.

  6. Atmospheric Radiation Measurement (ARM) Data from Oliktok Point, Alaska (an AMF3 Deployment)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Located at the North Slope of Alaska on the coast of the Arctic Ocean, Oliktok Point is extremely isolated, accessible only by plane. From this remote spot researchers now have access to important data about Arctic climate processes at the intersection of land and sea ice. As of October 2013, Oliktok Point is the temporary home of ARMs third and newest ARM Mobile Facility, or AMF3. The AMF3 is gathering data using about two dozen instruments that obtain continuous measurements of clouds, aerosols, precipitation, energy, and other meteorological variables. Site operators will also fly manned and unmanned aircraft over sea ice, drop instrument probes and send up tethered balloons. The combination of atmospheric observations with measurements from both the ground and over the Arctic Ocean will give researchers a better sense of why the Arctic sea ice has been fluctuating in fairly dramatic fashion over recent years. AMF3 will be stationed at Oliktok Point.

  7. Alaska North Slope National Energy Strategy initiative: Analysis of five undeveloped fields

    SciTech Connect (OSTI)

    Thomas, C.P.; Allaire, R.B.; Doughty, T.C.; Faulder, D.D.; Irving, J.S.; Jamison, H.C.; White, G.J.

    1993-05-01T23:59:59.000Z

    The US Department of Energy was directed in the National Energy Strategy to establish a federal interagency task force to identify specific technical and regulatory barriers to the development of five undeveloped North Slope Alaska fields and make recommendations for their resolution. The five fields are West Sak, Point Thomson, Gwydyr Bay, Seal Island/Northstar, and Sandpiper Island. Analysis of environmental, regulatory, technical, and economic information, and data relating to the development potential of the five fields leads to the following conclusions: Development of the five fields would result in an estimated total of 1,055 million barrels of oil and 4.4 trillion cubic feet of natural gas and total investment of $9.4 billion in 1992 dollars. It appears that all five of the fields will remain economically marginal developments unless there is significant improvement in world oil prices. Costs of regulatory compliance and mitigation, and costs to reduce or maintain environmental impacts at acceptable levels influence project investments and operating costs and must be considered in the development decision making process. The development of three of the fields (West Sak, Point Thomson, and Gwydyr Bay) that are marginally feasible would have an impact on North Slope production over the period from about 2000 to 2014 but cannot replace the decline in Prudhoe Bay Unit production or maintain the operation of the Trans-Alaska Pipeline System (TAPS) beyond about 2014 with the assumption that the TAPS will shut down when production declines to the range of 400 to 200 thousand barrels of oil/day. Recoverable reserves left in the ground in the currently producing fields and soon to be developed fields, Niakuk and Point McIntyre, would range from 1 billion to 500 million barrels of oil corresponding to the time period of 2008 to 2014 based on the TAPS shutdown assumption.

  8. Operational Challenges in Gas-To-Liquid (GTL) Transportation Through Trans Alaska Pipeline System (TAPS)

    SciTech Connect (OSTI)

    Godwin A. Chukwu; Santanu Khataniar; Shirish Patil; Abhijit Dandekar

    2006-06-30T23:59:59.000Z

    Oil production from Alaskan North Slope oil fields has steadily declined. In the near future, ANS crude oil production will decline to such a level (200,000 to 400,000 bbl/day) that maintaining economic operation of the Trans-Alaska Pipeline System (TAPS) will require pumping alternative products through the system. Heavy oil deposits in the West Sak and Ugnu formations are a potential resource, although transporting these products involves addressing important sedimentation issues. One possibility is the use of Gas-to-Liquid (GTL) technology. Estimated recoverable gas reserves of 38 trillion cubic feet (TCF) on the North Slope of Alaska can be converted to liquid with GTL technology and combined with the heavy oils for a product suitable for pipeline transport. Issues that could affect transport of this such products through TAPS include pumpability of GTL and crude oil blends, cold restart of the pipeline following a prolonged winter shutdown, and solids deposition inside the pipeline. This study examined several key fluid properties of GTL, crude oil and four selected blends under TAPS operating conditions. Key measurements included Reid Vapor Pressure, density and viscosity, PVT properties, and solids deposition. Results showed that gel strength is not a significant factor for the ratios of GTL-crude oil blend mixtures (1:1; 1:2; 1:3; 1:4) tested under TAPS cold re-start conditions at temperatures above - 20 F, although Bingham fluid flow characteristics exhibited by the blends at low temperatures indicate high pumping power requirements following prolonged shutdown. Solids deposition is a major concern for all studied blends. For the commingled flow profile studied, decreased throughput can result in increased and more rapid solid deposition along the pipe wall, resulting in more frequent pigging of the pipeline or, if left unchecked, pipeline corrosion.

  9. Human Health and Ecological Risk Assessment Work Plan Mud Pit Release Sites, Amchitka Island, Alaska

    SciTech Connect (OSTI)

    DOE /NV

    2001-03-12T23:59:59.000Z

    This Work Plan describes the approach that will be used to conduct human health and ecological risk assessments for Amchitka Island, Alaska, which was utilized as an underground nuclear test site between 1965 and 1971. During this period, the U.S. Atomic Energy Commission (now the U.S. Department of Energy) conducted two nuclear tests (known as Long Shot and Milrow) and assisted the U.S. Department of Defense with a third test (known as Cannikin). Amchitka Island is approximately 42 miles long and located 1,340 miles west-southwest of Anchorage, Alaska, in the western end of the Aleutian Island archipelago in a group of islands known as the Rat Islands. Historically including deep drilling operations required large volumes of drilling mud, a considerable amount of which was left on the island in exposed mud pits after testing was completed. Therefore, there is a need for drilling mud pit remediation and risk assessment of historical mud pit releases. The scope of this work plan is to document the environmental objectives and the proposed technical site investigation strategies that will be utilized for the site characterization of the constituents in soil, surface water, and sediment at these former testing sites. Its goal is the collection of data in sufficient quantity and quality to determine current site conditions, support a risk assessment for the site surfaces, and evaluate what further remedial action is required to achieve permanent closure of these three sites that will protect both human health and the environment. Suspected compounds of potential ecological concern for investigative analysis at these sites include diesel-range organics, polyaromatic hydrocarbons, polychlorinated biphenyls, volatile organic compounds, and chromium. The results of these characterizations and risk assessments will be used to evaluate corrective action alternatives to include no further action, the implementation of institutional controls, capping on site, or off-sit e disposal of contaminated waste. The results of this evaluation will be presented in a subsequent corrective action decision document.

  10. Methane hydrate potential and development of a shallow gas field in the arctic: The Walakpa Field North Slope Alaska

    SciTech Connect (OSTI)

    Glenn, R.K.

    1992-01-01T23:59:59.000Z

    The goal of the North Slope Hydrate Study is to evaluate the methane hydrate potential of the Walakpa gas field, a shallow gas field located near Barrow, Alaska. Observing, understanding, and predicting the production characteristics of the Walakpa field will be accomplished by the analysis of the reservoir geology, and of the individual well production data, derived from reservoir engineering studies conducted in the field.

  11. Methane hydrate potential and development of a shallow gas field in the arctic: The Walakpa Field North Slope Alaska

    SciTech Connect (OSTI)

    Glenn, R.K.

    1992-06-01T23:59:59.000Z

    The goal of the North Slope Hydrate Study is to evaluate the methane hydrate potential of the Walakpa gas field, a shallow gas field located near Barrow, Alaska. Observing, understanding, and predicting the production characteristics of the Walakpa field will be accomplished by the analysis of the reservoir geology, and of the individual well production data, derived from reservoir engineering studies conducted in the field.

  12. SoilVegetationAtmosphere Transfer Schemes and Large-Scale Hydrological Models (Proceedings of a symposium held during the Sixth IAHS Scientific Assembly at Maastricht, The Netherlands, July 2001).

    E-Print Network [OSTI]

    Pielke, Roger A.

    JOSEPH P. McFADDEN & GLEN E. LISTON Department of Atmospheric Science, Colorado State University, Fort Research and Engineering Laboratory, Fort Wainwright, Alaska 99703, USA ROGER A. PIELKE, SR Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado 80523, USA F. STUART CHAPIN, III

  13. Uranium hydrogeochemical and stream sediment reconnaissance of the Survey Pass NTMS quadrangle, Alaska

    SciTech Connect (OSTI)

    Shettel, D.L. Jr.; Langfeldt, S.L.; Youngquist, C.A.; D'Andrea, R.F. Jr.; Zinkl, R.J. (comps.) [comps.

    1981-09-01T23:59:59.000Z

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Survey Pass NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form through the Grand Junction Office Information System at Oak Ridge National Laboratory. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume. These data are, however, available on the magnetic tape. Appendix A describes the sample media and summarizes the analytical results for each medium. The data were subdivided by one of the Los Alamos National Laboratory (LANL) sorting programs of Zinkl and others (1981a) into stream sediment samples. For the group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1000000 scale maps of pertinent elements have been included in this report. In addition, maps showing results of multivariate statistical analyses have been included. Further information about the HSSR program in general, or about the LANL portion of the program in particular, can be obtained in quarterly or semiannual program progress reports on open-file at DOE's Technical Library in Grand Junction. Information about the field and analytical procedures used by LANL during sample collection and analysis may be found in any HSSR data release prepared by the LANL and will not be included in this report.

  14. Remedial investigation/feasibility study analysis asphalt storage area, Elmendorf AFB, Alaska. Master's thesis

    SciTech Connect (OSTI)

    Miller, N.S.

    1993-01-01T23:59:59.000Z

    This report is focused on an abandoned material storage area located on Elmendorf Air Force Base (EAFB), Alaska. The site is located approximately 2000 feet from the east end of the east/west runway and includes approximately 25 acres. The site was used for asphalt storage and preparation activities during the 1940s and 1950s. Approximately 4,500 drums of asphalt and 29 drums of unknown materials have been abandoned at the site. The drums are located in 32 areas throughout the 25-acre site. Following several decades of exposure to the elements, many of the drums have corroded and leaked to the ground surface. Several acres of soil are inundated with liquid asphalt that has leaked from the drums. Depths of the asphalt range from 6 to 10 inches in areas where surface anomalies have created depressions, and thus a collection point for the asphalt. A 14-x 18-x 4 foot wood frame pit used to support previous asphalt operations is located at the north end of the site. The pit contains approximately 2300 gallons of asphalt. There are also locations where the soil appears to be contaminated by petroleum products other than asphalt.

  15. Community Energy Systems and the Law of Public Utilities. Volume Four. Alaska

    SciTech Connect (OSTI)

    Feurer, D A; Weaver, C L

    1981-01-01T23:59:59.000Z

    A detailed description is given of the laws and programs of the State of Alaska governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  16. Uranium hydrogeochemical and stream sediment reconnaissance of the Table Mountain NTMS quadrangle, Alaska

    SciTech Connect (OSTI)

    Youngquist, C.A.; D'Andrea, R.F. Jr.; Zinkl, R.J.; Shettel, D.L. Jr.; Langfeldt, S.L. (comps.) [comps.

    1981-09-01T23:59:59.000Z

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Table Mountain NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form through the Grand Junction Office Information System at Oak Ridge National Laboratory. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume. These data are, however, available on the magnetic tape. Appendix A describes the sample media and summarizes the analytical results for each medium. The data were subdivided by one of the Los Alamos National Laboratory (LANL) sorting programs of Zinkl and others into stream sediment samples. For the group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1000000 scale maps of pertinent elements have been included in this report. In addition, maps showing results of multivariate statistical analyses have been included. Further information about the HSSR program in general, or about the LANL portion of the program in particular, can be obtained in quarterly or semiannual program progress reports on open-file at DOE's Technical Library in Grand Junction. Information about the field and analytical procedures used by LANL during sample collection and analysis may be found in any HSSR data release prepared by the LANL and will not be included in this report.

  17. Proposed IMS infrastructure improvement project, Seward, Alaska. Final environmental impact statement

    SciTech Connect (OSTI)

    Not Available

    1994-09-01T23:59:59.000Z

    This Environmental Impact Statement (EIS) examines a proposal for improvements at the existing University of Alaska, Fairbanks, Institute of Marine Science (IMS), Seward Marine Center. The Exxon Valdez Oil Spill (EVOS) Trustee Council is proposing to improve the existing research infrastructure to enhance the EVOS Trustee Council`s capabilities to study and rehabilitate marine mammals, marine birds, and the ecosystem injured by the Exxon Valdez oil spill. The analysis in this document focuses on the effects associated with construction and operation of the proposed project and its proposed alternatives. The EIS gives a detailed description of all major elements of the proposed project and its alternatives; identifies resources of major concern that were raised during the scoping process; describes the environmental background conditions of those resources; defines and analyzes the potential effects of the proposed project and its alternatives on these conditions; and identifies mitigating measures that are part of the project design as well as those proposed to minimize or reduce the adverse effects. Included in the EIS are written and oral comments received during the public comment period.

  18. Atmospheric Radiation Measurement (ARM) Data from the North Slope Alaska (NSA) Site

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Atmospheric Radiation Measurement (ARM) Program is the largest global change research program supported by the U.S. Department of Energy. The primary goal of the ARM Program is to improve the treatment of cloud and radiation physics in global climate models in order to improve the climate simulation capabilities of these models. To achieve this goal, ARM scientists and researchers around the world use continuous data obtained through the ARM Climate Research Facility. ARM maintains four major, permanent sites for data collection and deploys the ARM Mobile Facility to other sites as determined. The North Slope of Alaska (NSA) site is a permanent site providing data about cloud and radiative processes at high latitudes. These data are being used to refine models and parameterizations as they relate to the Arctic. Centered at Barrow and extending to the south (to the vicinity of Atqasuk), west (to the vicinity of Wainwright), and east (towards Oliktok), the NSA site has become a focal point for atmospheric and ecological research activity on the North Slope. Approximately 300,000 NSA data sets from 1993 to the present reside in the ARM Archive at http://www.archive.arm.gov/. Users will need to register for a password, but all files are then free for viewing or downloading. The ARM Archive physically resides at the Oak Ridge National Laboratory.

  19. Post-Cleanup Communication and Records Plan for Project Chariot, Alaska

    SciTech Connect (OSTI)

    None

    2005-01-01T23:59:59.000Z

    The Project Chariot Site resides in a remote and isolated area in the Cape Thompson region of northwest Alaska (Figure 1-1). The Project Chariot Site was a proposed test location for the U.S. Atomic Energy Commission (AEC) Plowshare Program in 1958. In 1962, the United States Geological Survey (USGS) conducted environmental studies using less than 30 mCi of short-lived mixed fission products. The location of the studies was about 0.75 mile (1.2 km) north of the Project Chariot Site base camp. Radioactive material was spread over the 12 test plots: 10 were used for overland transport tracer tests, one for a sediment transport experiment, and one for an 18-hour percolation test. The 11 test plots constituted an area less than 0.9 percent of an acre. At the conclusion of the August 1962 tracer test, USGS scraped the ground surface of the test plots and the percolation test location. The scraped soil and vegetation were mixed with native soil, deposited in a mound on two of the plots, and covered with 4 ft (1.22 m) of uncontaminated soil (DOE 1993).

  20. Geohydrology and groundwater geochemistry at a sub-arctic landfill, Fairbanks, Alaska

    SciTech Connect (OSTI)

    Downey, J.S.; Sinton, P.O.

    1990-01-01T23:59:59.000Z

    The Fairbanks-North Star Borough, Alaska, landfill is located on silt, sand, and gravel deposits of the Tanana River flood plain, about 3 miles south of the city of Fairbanks water supply wells. The landfill has been in operation for about 25 years in this sub-arctic region of discontinuous permafrost. The cold climate limits biological activity within the landfill with corresponding low gas and leachate production. Chloride concentrations, specific conductance, water temperature, and earth conductivity measurements indicate a small plume of leachate flowing to the northwest from the landfill. The leachate remains near the water table as it flows northwestward toward a drainage ditch. Results of computer modeling of this local hydrologic system indicate that some of the leachate may be discharging to the ditch. Chemical data show that higher-than-background concentrations of several ions are present in the plume. However, the concentrations appear to be reduced to background levels within a short distance along the path of groundwater flow from the landfill, and thus the leachate is not expected to affect the water supply wells. 11 refs., 21 figs., 2 tabs.

  1. Climate change scenario planning in Alaska's National Parks: Stakeholder involvement in the decision-making process

    SciTech Connect (OSTI)

    Ernst, Kathleen M [ORNL] [ORNL; Van Riemsdijk, Dr. Micheline [University of Tennessee (UT)] [University of Tennessee (UT)

    2013-01-01T23:59:59.000Z

    This article studies the participation of stakeholders in climate change decision-making in Alaska s National Parks. We place stakeholder participation within literatures on environmental and climate change decision-making. We conducted participant observation and interviews in two planning workshops to investigate the decision-making process, and our findings are three-fold. First, the inclusion of diverse stakeholders expanded climate change decision-making beyond National Park Service (NPS) institutional constraints. Second, workshops of the Climate Change Scenario Planning Project (CCSPP) enhanced institutional understandings of participants attitudes towards climate change and climate change decision-making. Third, the geographical context of climate change influences the decisionmaking process. As the first regional approach to climate change decision-making within the NPS, the CCSPP serves as a model for future climate change planning in public land agencies. This study shows how the participation of stakeholders can contribute to robust decisions, may move climate change decision-making beyond institutional barriers, and can provide information about attitudes towards climate change decision-making.

  2. Climate Change Scenario Planning in Alaska's National Parks: Stakeholder Involvement in the Decision-Making Process

    SciTech Connect (OSTI)

    Ernst, Kathleen M [ORNL] [ORNL; Van Riemsdijk, Dr. Micheline [University of Tennessee (UT)] [University of Tennessee (UT)

    2013-01-01T23:59:59.000Z

    This article studies the participation of stakeholders in climate change decision-making in Alaska s National Parks. We place stakeholder participation within literatures on environmental and climate change decision-making. We conducted participant observation and interviews in two planning workshops to investigate the decision-making process, and our findings are three-fold. First, the inclusion of diverse stakeholders expanded climate change decision-making beyond National Park Service (NPS) institutional constraints. Second, workshops of the Climate Change Scenario Planning Project (CCSPP) enhanced institutional understandings of participants attitudes towards climate change and climate change decision-making. Third, the geographical context of climate change influences the decision-making process. As the first regional approach to climate change decision-making within the NPS, the CCSPP serves as a model for future climate change planning in public land agencies. This study shows how the participation of stakeholders can contribute to robust decisions, may move climate change decision-making beyond institutional barriers, and can provide information about attitudes towards climate change decision-making.

  3. Geology, reservoir engineering and methane hydrate potential of the Walakpa Gas Field, North Slope, Alaska

    SciTech Connect (OSTI)

    Glenn, R.K.; Allen, W.W.

    1992-12-01T23:59:59.000Z

    The Walakpa Gas Field, located near the city of Barrow on Alaska's North Slope, has been proven to be methane-bearing at depths of 2000--2550 feet below sea level. The producing formation is a laterally continuous, south-dipping, Lower Cretaceous shelf sandstone. The updip extent of the reservoir has not been determined by drilling, but probably extends to at least 1900 feet below sea level. Reservoir temperatures in the updip portion of the reservoir may be low enough to allow the presence of in situ methane hydrates. Reservoir net pay however, decreases to the north. Depths to the base of permafrost in the area average 940 feet. Drilling techniques and production configuration in the Walakpa field were designed to minimize formation damage to the reservoir sandstone and to eliminate methane hydrates formed during production. Drilling development of the Walakpa field was a sequential updip and lateral stepout from a previously drilled, structurally lower confirmation well. Reservoir temperature, pressure, and gas chemistry data from the development wells confirm that they have been drilled in the free-methane portion of the reservoir. Future studies in the Walakpa field are planned to determine whether or not a component of the methane production is due to the dissociation of updip in situ hydrates.

  4. Amchitka Island, Alaska, Potential U.S. Department of Energy Site Responsibilities

    SciTech Connect (OSTI)

    U.S. Department of Energy, Nevada Operations Office

    1999-01-22T23:59:59.000Z

    This historical records review report concerns the activities of the US Atomic Energy Commission (AEC) at Amchitka Island, Alaska, over a period extending from 1942 to 1993. The report focuses on AEC activities resulting in known or suspected contamination of the island environment by nonradiological hazardous or toxic materials as discerned through historical records. In addition, the information from historical records was augmented by an August 1998 sampling event. Both the records review and sampling were conducted by IT Corporation on behalf of the US Department of Energy (DOE), the predecessor agency to the AEC. The intent of this investigation was to identify all potentially contaminated sites for which DOE may be responsible, wholly or partially, including all official sites of concern as recognized by the US Fish and Wildlife Service (USFWS). Additionally, potential data gaps that the DOE will need to fill to support the ecological and human health risk assessments performed were identified. A review of the available historical information regarding AEC's activities on Amchitka Island indicates that the DOE is potentially responsible for 11 sites identified by USFWS and an additional 10 sites that are not included in the USFWS database of sites of potential concern.

  5. Uranium hydrogeochemical and stream sediment reconnaissance of the Arctic NTMS quadrangle, Alaska

    SciTech Connect (OSTI)

    Shettel, D.L. Jr.; Langfeldt, S.L.; Youngquist, C.A.; D'Andrea, R.F. Jr.; Zinkl, R.J. (comps.) [comps.

    1981-09-01T23:59:59.000Z

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Arctic NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form through the Grand Junction Office Information System at Oak Ridge National Laboratory. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume. These data are, however, available on the magnetic tape. Appendix A describes the sample media and summarizes the analytical results for each medium. The data were subdivided by one of the Los Alamos National Laboratory (LANL) sorting programs of Zinkl and others into stream sediment samples. For the group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1000000 scale maps of pertinent elements have been included in this report. In addition, maps showing results of multivariate statistical analyses have been included. Further information about the HSSR program in general, or about the LANL portion of the program in particular, can be obtained in quarterly or semiannual program progress reports on open-file at DOE's Technical Library in Grand Junction. Information about the field and analytical procedures used by LANL during sample collection and analysis may be found in any HSSR data release prepared by the LANL and will not be included in this report.

  6. A qualitative analysis of writing as a focus for developing policy statements on public issues in large petrochemical companies

    E-Print Network [OSTI]

    Cunningham, Richard Lee

    2002-01-01T23:59:59.000Z

    helped environmentalists secure a Federal court injunction against the proposed Trans-Alaska Pipeline, leaving expensive equipment and pipe stockpiled along the banks of the Yukon River for five years. ' Debate on the Trans-Alaska Pipeline and outrage.... He would call up the manager of a refinery near a wetlands. He was pulling together ideas and formulating them himself just about as quick as the president was. "" More than just putting the executive' s thoughts into words, the writer...

  7. TREE vol. 6, no. 7, January 1991 niches, but in any case conditions for

    E-Print Network [OSTI]

    Benton, Michael

    years from the mid and Late Cretaceous (114-66 million years ago) of the North Slope of Alaska, as well as from the North- west Territories and Yukon Terri- tories of Canada. Much of this ma- terial was collected by prospecting parties from coal and oil companies, and the spec

  8. Fort Benning Indianhead Townhome Renovations

    SciTech Connect (OSTI)

    Stephenson, R.; Roberts, S.; Butler, T.; Kim, E.

    2012-12-01T23:59:59.000Z

    The NAHB Research Center partnered with production builder Winchester/Camberley Homes to build a DOE Building America New Construction Test House (NCTH). This single family, detached house, located in the mixed-humid climate zone of Silver Spring, MD, was completed in June 2011. The primary goal for this house was to improve energy efficiency by 30% over the Building America B10 benchmark by developing and implementing an optimized energy solutions package design that could be cost effectively and reliably constructed on a production basis using quality management practices. The intent of this report is to outline the features of this house, discuss the implementation of the energy efficient design, and report on short-term testing results. During the interactive design process of this project, numerous iterations of the framing, air sealing, insulation, and space conditioning systems were evaluated for energy performance, cost, and practical implementation. The final design featured numerous advanced framing techniques, high levels of insulation, and the HVAC system entirely within conditioned space. Short-term testing confirmed a very tight thermal envelope and efficient and effective heating and cooling. In addition, relevant heating, cooling, humidity, energy, and wall cavity moisture data will be collected and presented in a future long-term report.

  9. SPIDERS Fort Carson Industry Day

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l LPROJECTS IN7 Roadmap forDKT.AwardsSPEER's Building Energy Codes

  10. Alaska has 4. 0 trillion tons of low-sulfur coal: Is there a future for this resource

    SciTech Connect (OSTI)

    Stricker, G.D. (Geological Survey, Denver, CO (USA))

    1990-05-01T23:59:59.000Z

    The demand for and use of low-sulfur coal may increase because of concern with acid rain. Alaska's low-sulfur coal resources can only be described as enormous: 4.0 trillion tons of hypothetical onshore coal. Mean total sulfur content is 0.34% (range 0.06-6.6%, n = 262) with a mean apparent rank of subbituminous B. There are 50 coal fields in Alaska; the bulk of the resources are in six major fields or regions: Nenana, Cook Inlet, Matanuska, Chignik-Herendeen Bay, North Slope, and Bering River. For comparison, Carboniferous coals in the Appalachian region and Interior Province have a mean total sulfur content of 2.3% (range 0.1-19.0%, n = 5,497) with a mean apparent rank of high-volatile A bituminous coal, and Rocky Mountain and northern Great Plains Cretaceous and Tertiary coals have a mean total sulfur content of 0.86% (range 0.02-19.0%, n = 2,754) with a mean apparent rank of subbituminous B. Alaskan coal has two-fifths the total sulfur of western US coals and one-sixth that of Carboniferous US coals. Even though Alaska has large resources of low-sulfur coal, these resources have not been developed because of (1) remote locations and little infrastructure, (2) inhospitable climate, and (3) long distances to potential markets. These resources will not be used in the near future unless there are some major, and probably violent, changes in the world energy picture.

  11. CO2 CH4 flux Air temperature Soil temperature and Soil moisture, Barrow, Alaska 2013 ver. 1

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Margaret Torn

    This dataset consists of field measurements of CO2 and CH4 flux, as well as soil properties made during 2013 in Areas A-D of Intensive Site 1 at the Next-Generation Ecosystem Experiments (NGEE) Arctic site near Barrow, Alaska. Included are i) measurements of CO2 and CH4 flux made from June to September (ii) Calculation of corresponding Gross Primary Productivity (GPP) and CH4 exchange (transparent minus opaque) between atmosphere and the ecosystem (ii) Measurements of Los Gatos Research (LGR) chamber air temperature made from June to September (ii) measurements of surface layer depth, type of surface layer, soil temperature and soil moisture from June to September.

  12. The Influence of Fold and Fracture Development on Reservoir Behavior of the Lisburne Group of Northern Alaska

    SciTech Connect (OSTI)

    Wallace, Wesley K.; Hanks, Catherine L.; Whalen, Michael T.; Jensen1, Jerry; Shackleton, J. Ryan; Jadamec, Margarete A.; McGee, Michelle M.; Karpov1, Alexandre V.

    2001-07-23T23:59:59.000Z

    The Carboniferous Lisburne Group is a major carbonate reservoir unit in northern Alaska. The lisburne is detachment folded where it is exposed throughout the northeastern Brooks Range, but is relatively underformed in areas of current production in the subsurface of the North Slope. The objectives of this study are to develop a better understanding of four major aspects of the Lisburne: (1) The geometry and kinematics of detachment folds and their truncation by thrust faults, (2) The influence of folding on fracture patterns, (3) The influence of deformation on fluid flow, and (4) Lithostratigraphy and its influence on folding, faulting, fracturing, and reservoir characteristics.

  13. Literature and information related to the natural resources of the North Aleutian Basin of Alaska.

    SciTech Connect (OSTI)

    Stull, E.A.; Hlohowskyj, I.; LaGory, K. E.; Environmental Science Division

    2008-01-31T23:59:59.000Z

    The North Aleutian Basin Planning Area of the Minerals Management Service (MMS) is a large geographic area with significant natural resources. The Basin includes most of the southeastern part of the Bering Sea Outer Continental Shelf, including all of Bristol Bay. The area supports important habitat for a wide variety of species and globally significant habitat for birds and marine mammals, including several federally listed species. Villages and communities of the Alaska Peninsula and other areas bordering or near the Basin rely on its natural resources (especially commercial and subsistence fishing) for much of their sustenance and livelihood. The offshore area of the North Aleutian Basin is considered to have important hydrocarbon reserves, especially natural gas. In 2006, the MMS released a draft proposed program, 'Outer Continental Shelf Oil and Gas Leasing Program, 2007-2012' and an accompanying draft programmatic environmental impact statement (EIS). The draft proposed program identified two lease sales proposed in the North Aleutian Basin in 2010 and 2012, subject to restrictions. The area proposed for leasing in the Basin was restricted to the Sale 92 Area in the southwestern portion. Additional EISs will be needed to evaluate the potential effects of specific lease actions, exploration activities, and development and production plans in the Basin. A full range of updated multidisciplinary scientific information will be needed to address oceanography, fate and effects of oil spills, marine ecosystems, fish, fisheries, birds, marine mammals, socioeconomics, and subsistence in the Basin. Scientific staff at Argonne National Laboratory were contracted to assist MMS with identifying and prioritizing information needs related to potential future oil and gas leasing and development activities in the North Aleutian Basin. Argonne focused on three related tasks: (1) identify and gather relevant literature published since 1996, (2) synthesize and summarize the literature, and (3) identify and prioritize remaining information needs. To assist in the latter task, MMS convened the North Aleutian Basin Information Status and Research Planning Meeting (the Planning Meeting) in Anchorage, Alaska, from November 28 through December 1, 2006. That meeting and its results are described in 'Proceedings of the North Aleutian Basin Information Status and Research Planning Meeting' (the Planning Meeting report)1. Citations for recent literature (1996-2006) to support an assessment of the impacts of oil and gas development on natural, cultural, and socioeconomic resources in the North Aleutian Basin were entered in a database. The database, a series of Microsoft Excel spreadsheets with links to many of the reference materials, was provided to MMS prior to the Planning Meeting and was made available for participants to use during the meeting. Many types of references were identified and collected from the literature, such as workshop and symposium proceedings, personal web pages, web pages of government and nongovernmental organizations, EISs, books and articles reporting research results, regulatory documents, technical reports, newspaper and newsletter articles, and theses and dissertations. The current report provides (1) a brief overview of the literature; (2) descriptions (in tabular form) of the databased references, including geographic area covered, topic, and species (where relevant); (3) synopses of the contents of the referenced documents and web pages; and (4) a full citation for each reference. At the Planning Meeting, subject matter experts with research experience in the North Aleutian Basin presented overviews of the area's resources, including oceanography, fish and shellfish populations, federal fisheries, commercial fishery economics, community socioeconomics, subsistence, seabirds and shorebirds, waterfowl, seals and sea lions, cetaceans, sea otters, and walruses. These presentations characterized the status of the resource, the current state of knowledge on the topic, and information needs related to an assessment of

  14. Characterization of Methane Degradation and Methane-Degrading Microbes in Alaska Coastal Water

    SciTech Connect (OSTI)

    David Kirchman

    2011-12-31T23:59:59.000Z

    The net flux of methane from methane hydrates and other sources to the atmosphere depends on methane degradation as well as methane production and release from geological sources. The goal of this project was to examine methane-degrading archaea and organic carbon oxidizing bacteria in methane-rich and methane-poor sediments of the Beaufort Sea, Alaska. The Beaufort Sea system was sampled as part of a multi-disciplinary expedition (??Methane in the Arctic Shelf? or MIDAS) in September 2009. Microbial communities were examined by quantitative PCR analyses of 16S rRNA genes and key methane degradation genes (pmoA and mcrA involved in aerobic and anaerobic methane degradation, respectively), tag pyrosequencing of 16S rRNA genes to determine the taxonomic make up of microbes in these sediments, and sequencing of all microbial genes (??metagenomes?). The taxonomic and functional make-up of the microbial communities varied with methane concentrations, with some data suggesting higher abundances of potential methane-oxidizing archaea in methane-rich sediments. Sequence analysis of PCR amplicons revealed that most of the mcrA genes were from the ANME-2 group of methane oxidizers. According to metagenomic data, genes involved in methane degradation and other degradation pathways changed with sediment depth along with sulfate and methane concentrations. Most importantly, sulfate reduction genes decreased with depth while the anaerobic methane degradation gene (mcrA) increased along with methane concentrations. The number of potential methane degradation genes (mcrA) was low and inconsistent with other data indicating the large impact of methane on these sediments. The data can be reconciled if a small number of potential methane-oxidizing archaea mediates a large flux of carbon in these sediments. Our study is the first to report metagenomic data from sediments dominated by ANME-2 archaea and is one of the few to examine the entire microbial assemblage potentially involved in anaerobic methane oxidation.

  15. Uranium hydrogeochemical and stream-sediment reconnaissance of the Wainwright NTMS quadrangle, Alaska

    SciTech Connect (OSTI)

    Langfeldt, S.L.; Hardy, L.C.; D& #x27; Andrea, R.F. Jr.; Zinkl, R.J.; Shettel, D.L. Jr. (comps.)

    1982-04-01T23:59:59.000Z

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Wainwright NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment and lake-sediment samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report.

  16. Coal in National Petroleum Reserve in Alaska (NPRA): framework geology and resources

    SciTech Connect (OSTI)

    Sable, E.G.; Stricker, G.D.

    1985-04-01T23:59:59.000Z

    The North Slope of Alaska contains huge resources of coal, much of which lies within NPRA. The main coal-bearing units, the Corwin and Chandler Formations of the Nanushuk Group (Lower and Upper Cretaceous), underlie about 20,000 mi/sup 2/ (51,800 km/sup 2/) of NPRA. They contain low-sulfur, low-ash, and probable coking-quality coal in gently dipping beds as thick as 20 ft (6.1 m) within stratigraphic intervals as thick as 4500 ft (1370 m). Lesser coal potential occurs in other Upper Cretaceous units and in Lower Mississippian and Tertiary strata. The river-dominated Corwin and Umiat deltas controlled the distribution of Nanushuk Group coal-forming environments. Most organic deposits formed on delta plains; fewer formed in alluvial plain or delta-front environments. Most NPRA coal beds are expected to be lenticular and irregular, as they probably accumulated in interdistributary basins, infilled bays, or inland flood basins, whereas some blanket beds may have formed on broad, slowly sinking, delta lobes. The major controls of coal rank and degree of deformation were depth of burial and subsequent tectonism. Nanushuk Group coal resources in NPRA are estimated to be as much as 2.75 trillion short tons. This value is the sum of 1.42 trillion short tons of near-surface (< 500 ft or 150 m of overburden) bituminous coal, 1.25 trillion short tons of near-surface subbituminous coal, and 0.08 trillion shorts tons of more deeply buried subbituminous coal. These estimates indicate that the North Slope may contain as much as one-third of the United States coal potential.

  17. Uranium hydrogeochemical and stream-sediment reconnaissance of the Mt. Michelson NTMS quadrangle, Alaska

    SciTech Connect (OSTI)

    Zinkl, R.J.; Shettel, D.L. Jr.; Langfeldt, S.L.; Hardy, L.C.; D'Andrea, R.F. Jr. (comps.) [comps.

    1982-04-01T23:59:59.000Z

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Mt. Michelson NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment and lake-sediment samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report.

  18. Uranium hydrogeochemical and stream-sediment reconnaissance of the Bettles NTMS quadrangle, Alaska

    SciTech Connect (OSTI)

    D& #x27; Andrea, R.F. Jr.; Zinkl, R.J.; Shettel, D.L. Jr.; Langfeldt, S.L.; Hardy, L.C. (comps.)

    1982-02-01T23:59:59.000Z

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Bettles NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment and lake-sediment samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report.

  19. Uranium hydrogeochemical and stream-sediment reconnaissance of the Chandler Lake NTMS quadrangle, Alaska

    SciTech Connect (OSTI)

    Hardy, L.C.; D& #x27; Andrea, R.F. Jr.; Zinkl, R.J.; Shettel, D.L. Jr.; Langfeldt, S.L. (comps.)

    1982-03-01T23:59:59.000Z

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Chandler Lake NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into stream-sediment and lake-sediment samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report.

  20. Assessment of Alaska's North Slope Oil Field Capacity to Sequester CO{sub 2}

    SciTech Connect (OSTI)

    Umekwe, Pascal, E-mail: wpascals@gmail.com [Baker Hughes (United States)] [Baker Hughes (United States); Mongrain, Joanna, E-mail: Joanna.Mongrain@shell.com [Shell International Exploration and Production Co (United States)] [Shell International Exploration and Production Co (United States); Ahmadi, Mohabbat, E-mail: mahmadi@alaska.edu [University of Alaska Fairbanks, Petroleum Engineering Department (United States)] [University of Alaska Fairbanks, Petroleum Engineering Department (United States); Hanks, Catherine, E-mail: chanks@gi.alaska.edu [University of Alaska Fairbanks, Geophysical Institute (United States)] [University of Alaska Fairbanks, Geophysical Institute (United States)

    2013-03-15T23:59:59.000Z

    The capacity of 21 major fields containing more than 95% of the North Slope of Alaska's oil were investigated for CO{sub 2} storage by injecting CO{sub 2} as an enhanced oil recovery (EOR) agent. These fields meet the criteria for the application of miscible and immiscible CO{sub 2}-EOR methods and contain about 40 billion barrels of oil after primary and secondary recovery. Volumetric calculations from this study indicate that these fields have a static storage capacity of 3 billion metric tons of CO{sub 2}, assuming 100% oil recovery, re-pressurizing the fields to pre-fracturing pressure and applying a 50% capacity reduction to compensate for heterogeneity and for water invasion from the underlying aquifer. A ranking produced from this study, mainly controlled by field size and fracture gradient, identifies Prudhoe, Kuparuk, and West Sak as possessing the largest storage capacities under a 20% safety factor on pressures applied during storage to avoid over-pressurization, fracturing, and gas leakage. Simulation studies were conducted using CO{sub 2} Prophet to determine the amount of oil technically recoverable and CO{sub 2} gas storage possible during this process. Fields were categorized as miscible, partially miscible, and immiscible based on the miscibility of CO{sub 2} with their oil. Seven sample fields were selected across these categories for simulation studies comparing pure CO{sub 2} and water-alternating-gas injection. Results showed that the top two fields in each category for recovery and CO{sub 2} storage were Alpine and Point McIntyre (miscible), Prudhoe and Kuparuk (partially miscible), and West Sak and Lisburne (immiscible). The study concludes that 5 billion metric tons of CO{sub 2} can be stored while recovering 14.2 billion barrels of the remaining oil.