Sample records for fort saint vrain

  1. Fort Saint Vrain HTGR (Th/U carbide) Fuel Characteristics for Disposal Criticality Analysis

    SciTech Connect (OSTI)

    Taylor, Larry Lorin

    2001-01-01T23:59:59.000Z

    DOE-owned spent nuclear fuels encompass many fuel types. In an effort to facilitate criticality analysis for these various fuel types, they were categorized into eight characteristic fuel groups with emphasis on fuel matrix composition. Out of each fuel group, a representative fuel type was chosen for analysis as a bounding case within that fuel group. Generally, burnup data, fissile enrichments and total fuel mass govern the selection of the representative or candidate fuel within that group. For the HTGR group, the Fort Saint Vrain (FSV) reactor fuel has been chosen for the evaluation of viability for waste co-disposal. The FSV reactor was operated by Public Service of Colorado as a licensed power reactor. The FSV fuel employs a U/Th carbide matrix in individually pyrolytic carbon-coated particles. These individual particles are in turn coated with silicon carbide (SiC) and contained within fuel compacts, that are in turn embedded in graphite blocks that comprised the structural core of the reactor.

  2. Nondestructive examination of 51 fuel and reflector elements from Fort St. Vrain Core Segment 1

    SciTech Connect (OSTI)

    Miller, C.M.; Saurwein, J.J.

    1980-12-01T23:59:59.000Z

    Fifty-one fuel and reflector elements irradiated in core segment 1 of the Fort St. Vrain High-Temperature Gas-Cooled Reactor (HTGR) were inspected dimensionally and visually in the Hot Service Facility at Fort St. Vrain in July 1979. Time- and volume-averaged graphite temperatures for the examined fuel elements ranged from approx. 400/sup 0/ to 750/sup 0/C. Fast neutron fluences varied from approx. 0.3 x 10/sup 25/ n/m/sup 2/ to 1.0 x 10/sup 25/ n/m/sup 2/ (E > 29 fJ)/sub HTGR/. Nearly all of the examined elements shrank in both axial and radial dimensions. The measured data were compared with strain and bow predictions obtained from SURVEY/STRESS, a computer code that employs viscoelastic beam theory to calculate stresses and deformations in HTGR fuel elements.

  3. Annual Radiological Environmental Monitoring Program Report for the Fort St. Vrain Independent Spent Fuel Storage Installation

    SciTech Connect (OSTI)

    Hall, Gregory Graham; Newkirk, Jay Ronald; Borst, Frederick Jon

    2002-02-01T23:59:59.000Z

    This report presents the results of the 2001 Radiological Environmental Monitoring Program conducted in accordance with 10 CFR 72.44 for the Fort St. Vrain Independent Spent Fuel Storage Installation. A description of the facility and the monitoring program is provided. The results of monitoring the predominant radiation exposure pathway, direct and scattered radiation exposure, indicate the facility operation has not contributed to any increase in the estimated maximum potential dose commitment to the general public.

  4. DOE - Office of Legacy Management -- Fort St Vrain - 011

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTable ofArizonaBuffalo -Elk River ReactorProjectFordhamFort

  5. Annual Radiological Environmental Monitoring Program Report for the Fort St. Vrain Independent Spent Fuel Storage Installation (2003)

    SciTech Connect (OSTI)

    J. R. Newkirk; F. J. Borst, CHP

    2004-02-01T23:59:59.000Z

    This report presents the results of the 2003 Radiological Environmental Monitoring Program conducted in accordance with 10 CFR 72.44 for the Fort St. Vrain Independent Spent Fuel Storage Installation. A description of the facility and the monitoring program is provided. The results of monitoring the predominant radiation exposure pathway, direct radiation exposure, indicate the facility operation has not contributed to any increase in the estimated maximum potential dose commitment to the general public.

  6. Characterization plan for Fort St. Vrain and Peach Bottom graphite fuels

    SciTech Connect (OSTI)

    Maarschman, S.C.; Berting, F.M.; Clemmer, R.G.; Gilbert, E.R.; Guenther, R.J.; Morgan, W.C.; Sliva, P.

    1993-09-01T23:59:59.000Z

    Part of Fort St. Vrain (FSV) and most of the Peach Bottom (PB) reactor spent fuels are currently stored at INEL and may remain in storage for many years before disposal. Three disposal pathways have been proposed: intact disposal, fuels partially disassembled and the high-level waste fraction conditioned prior to disposal, and fuels completed disassembled and conditioned prior to disposal. Many options exist within each of these pathways. PNL evaluated the literature and other reference to develop a fuels characterization plan for these fuels. This plan provides guidance for the characteristics of the fuel which will be needed to pursue any of the storage or disposal pathways. It also provides a suggested fuels monitoring program for the current storage facilities. This report recommends a minimum of 7 fuel elements be characterized: PB Core 1 fuel: one Type II nonfailed element, one Type II failed element, and one Type III nonfailed element; PB Core 2 fuel: two Type II nonfailed fuel elements; and FSV fuel: at least two fuel blocks from regions of high temperature and fluence and long in-reactor performance (preferably at reactor end-of- life). Selection of PB fuel elements should focus on these between radial core position 8 and 14 and on compacts between compact numbers 10 and 20. Selection of FSV fuel elements should focus on these from Fuel Zones II and III, located in Core Layers 6, 7, and possibly 8.

  7. Characteristics of potential repository wastes: Volume 4, Appendix 4A, Nuclear reactors at educational institutions of the United States; Appendix 4B, Data sheets for nuclear reactors at educational institutions; Appendix 4C, Supplemental data for Fort St. Vrain spent fuel; Appendix 4D, Supplemental data for Peach Bottom 1 spent fuel; Appendix 4E, Supplemental data for Fast Flux Test Facility

    SciTech Connect (OSTI)

    Not Available

    1992-07-01T23:59:59.000Z

    Volume 4 contains the following appendices: nuclear reactors at educational institutions in the United States; data sheets for nuclear reactors at educational institutions in the United States(operational reactors and shut-down reactors); supplemental data for Fort St. Vrain spent fuel; supplemental data for Peach Bottom 1 spent fuel; and supplemental data for Fast Flux Test Facility.

  8. Fort Carson Sustainability Journey

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FORT CARSON - ENERGY RELIABILITY AND SECURITY SPIDERS PH2 Microgrid pilot site Power to critical facilities during grid outage Ties several facilities together ...

  9. Eighty-eight historical and present-day maps of Saint-Domingue/Haiti, its sites, towns, and islands

    E-Print Network [OSTI]

    Freeman, Bryant C.

    1999-01-01T23:59:59.000Z

    . Mart ial 31 Col lege St. Louis 32 de Gonzague 33 Church of St. Anne Hotel Splendid 34 Church of Sacrd Coeur 35 Marche de Fer ( I r on Marke t ) Batterie St.Clair Hotel de France Banque Nat ionale Dan A l i ens Restaurant Fort D imanche Fort...Occasional Paper N° 20 Bryant C. Freeman Eighty-Eight Historical and Present-Day Maps of Saint-Domingue/Haiti, its Sites, Towns, and Islands Institute of Haitian Studies University of Kansas Occasional Paper N° 20 Bryant C. Freeman Eighty...

  10. Nebraska Nuclear Profile - Fort Calhoun

    U.S. Energy Information Administration (EIA) Indexed Site

    Fort Calhoun" "Unit","Summer Capacity (MW)","Net Generation (Thousand MWh)","Summer Capacity Factor (Percent)","Type","Commercial Operation Date","License Expiration Date"...

  11. Water resource opportunity assessment: Fort Dix

    SciTech Connect (OSTI)

    Sullivan, G.P.; Hostick, D.J.; Elliott, D.B.; Fitzpatrick, Q.K.; Dahowski, R.T.; Dison, D.R

    1996-12-01T23:59:59.000Z

    This report provides the results of the water resource opportunity assessments performed by Pacific Northwest National Laboratory at the Fort Dix facility located in Fort Dix, New Jersey.

  12. Fort Carson Wind Resource Assessment

    SciTech Connect (OSTI)

    Robichaud, R.

    2012-10-01T23:59:59.000Z

    This report focuses on the wind resource assessment, the estimated energy production of wind turbines, and economic potential of a wind turbine project on a ridge in the southeastern portion of the Fort Carson Army base.

  13. FORT UNION DEEP

    SciTech Connect (OSTI)

    Lyle A. Johnson Jr.

    2002-03-01T23:59:59.000Z

    Coalbed methane (CBM) is currently the hottest area of energy development in the Rocky Mountain area. The Powder River Basin (PRB) is the largest CBM area in Wyoming and has attracted the majority of the attention because of its high permeability and relatively shallow depth. Other Wyoming coal regions are also being targeted for development, but most of these areas have lower permeability and deeper coal seams. This project consists of the development of a CBM stimulation system for deep coal resources and involves three work areas: (1) Well Placement, (2) Well Stimulation, and (3) Production Monitoring and Evaluation. The focus of this project is the Washakie Basin. Timberline Energy, Inc., the cosponsor, has a project area in southern Carbon County, Wyoming, and northern Moffat County, Colorado. The target coal is found near the top of the lower Fort Union formation. The well for this project, Evans No.1, was drilled to a depth of 2,700 ft. Three coal seams were encountered with sandstone and some interbedded shale between seams. Well logs indicated that the coal seams and the sandstone contained gas. For the testing, the upper seam at 2,000 ft was selected. The well, drilled and completed for this project, produced very little water and only occasional burps of methane. To enhance the well, a mild severity fracture was conducted to fracture the coal seam and not the adjacent sandstone. Fracturing data indicated a fracture half-length of 34 ft, a coal permeability of 0.2226 md, and permeability of 15.3 md. Following fracturing, the gas production rate stabilized at 10 Mscf/day within water production of 18 bpd. The Western Research Institute (WRI) CBM model was used to design a 14-day stimulation cycle followed by a 30-day production period. A maximum injection pressure of 1,200 psig to remain well below the fracture pressure was selected. Model predictions were 20 Mscf/day of air injection for 14 days, a one-day shut-in, then flowback. The predicted flowback was a four-fold increase over the prestimulation rate with production essentially returning to prestimulation rates after 30 days. The physical stimulation was conducted over a 14-day period. Problems with the stimulation injection resulted in a coal bed fire that was quickly quenched when production was resumed. The poststimulation, stabilized production was three to four times the prestimulation rate. The methane content was approximately 45% after one day and increased to 65% at the end of 30 days. The gas production rate was still two and one-half times the prestimulation rate at the end of the 30-day test period. The field results were a good match to the numerical simulator predictions. The physical stimulation did increase the production, but did not produce a commercial rate.

  14. FORT UNION DEEP

    SciTech Connect (OSTI)

    Lyle A. Johnson Jr.

    2002-09-01T23:59:59.000Z

    Coalbed methane (CBM) is currently the hottest area of energy development in the Rocky Mountain area. The Powder River Basin (PRB) is the largest CBM area in Wyoming and has attracted the majority of the attention because of its high permeability and relatively shallow depth. Other Wyoming coal regions are also being targeted for development, but most of these areas have lower permeability and deeper coal seams. This project consists of the development of a CBM stimulation system for deep coal resources and involves three work areas: (1) Well Placement, (2) Well Stimulation, and (3) Production Monitoring and Evaluation. The focus of this project is the Washakie Basin. Timberline Energy, Inc., the cosponsor, has a project area in southern Carbon County, Wyoming, and northern Moffat County, Colorado. The target coal is found near the top of the lower Fort Union formation. The well for this project, Evans No.1, was drilled to a depth of 2,700 ft. Three coal seams were encountered with sandstone and some interbedded shale between seams. Well logs indicated that the coal seams and the sandstone contained gas. For the testing, the upper seam at 2,000 ft was selected. The well, drilled and completed for this project, produced very little water and only occasional burps of methane. To enhance the well, a mild severity fracture was conducted to fracture the coal seam and not the adjacent sandstone. Fracturing data indicated a fracture half-length of 34 ft, a coal permeability of 0.2226 md, and permeability of 15.3 md. Following fracturing, the gas production rate stabilized at 10 Mscf/day within water production of 18 bpd. The Western Research Institute (WRI) CBM model was used to design a 14-day stimulation cycle followed by a 30-day production period. A maximum injection pressure of 1,200 psig to remain well below the fracture pressure was selected. Model predictions were 20 Mscf/day of air injection for 14 days, a one-day shut-in, then flowback. The predicted flowback was a four-fold increase over the prestimulation rate with production essentially returning to prestimulation rates after 30 days. The physical stimulation was conducted over a 14-day period. Problems with the stimulation injection resulted in a coal bed fire that was quickly quenched when production was resumed. The poststimulation, stabilized production was three to four times the prestimulation rate. The methane content was approximately 45% after one day and increased to 65% at the end of 30 days. The gas production rate was still two and one-half times the prestimulation rate at the end of the 30-day test period. The field results were a good match to the numerical simulator predictions. The physical stimulation did increase the production, but did not produce a commercial rate.

  15. Nebraska Nuclear Profile - Fort Calhoun

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthrough 1996) in DelawareTotal Consumption (MillionYeartotalFort

  16. Saint Mary's University Mathematics and Computing Science

    E-Print Network [OSTI]

    .S.A. lshampin@mail.smu.edu, P.H. Muir and H. Xu Department of Mathematics and Computing Science Saint Mary's University Halifax, Nova Scotia B3H 3C3, Canada muir@smu.ca, h xu@cs.stmarys.ca Abstract MIRKDC is a FORTRAN

  17. Fort Drum integrated resource assessment

    SciTech Connect (OSTI)

    Dixon, D.R.; Armstrong, P.R.; Brodrick, J.R.; Daellenbach, K.K.; Di Massa, F.V.; Keller, J.M.; Richman, E.E.; Sullivan, G.P.; Wahlstrom, R.R.

    1992-12-01T23:59:59.000Z

    The US Army Forces Command (FORSCOM) has tasked the Pacific Northwest Laboratory (PNL) as the lead laboratory supporting the US Department of Energy (DOE) Federal Energy Management Program's mission to identify, evaluate, and assist in acquiring all cost-effective energy projects at Fort Drum. This is a model program PNL is designing for federal customers served by the Niagara Mohawk Power Company. It will identify and evaluate all electric and fossil fuel cost-effective energy projects; develop a schedule at each installation for project acquisition considering project type, size, timing, and capital requirements, as well as energy and dollar savings; and secure 100% of the financing required to implement electric energy efficiency projects from Niagara Mohawk and have Niagara Mohawk procure the necessary contractors to perform detailed audits and install the technologies. This report documents the assessment of baseline energy use at one of Niagara Mohawk's primary federal facilities, the FORSCOM Fort Drum facility located near Watertown, New York. It is a companion report to Volume 1, the Executive Summary, and Volume 3, the Resource Assessment. This analysis examines the characteristics of electric, gas, oil, propane, coal, and purchased thermal capacity use for fiscal year (FY) 1990. It records energy-use intensities for the facilities at Fort Drum by building type and energy end use. It also breaks down building energy consumption by fuel type, energy end use, and building type. A complete energy consumption reconciliation is presented that includes the accounting of all energy use among buildings, utilities, central systems, and applicable losses.

  18. United States Army; Fort Gordon, Georgia, Range Control Operations

    Office of Environmental Management (EM)

    (DPTMS), Page 10 2.5 Chief-Training Division, DPTMS, Page 10 2.6 Fort Gordon Range Control Operations, Page 10 2.7 Fort Gordon Installation Range Manager, Page 10 2.8 Fort...

  19. EECBG Success Story: Bright Green Spot: Fort Worth Library |...

    Broader source: Energy.gov (indexed) [DOE]

    Bright Green Spot: Fort Worth Library EECBG Success Story: Bright Green Spot: Fort Worth Library September 30, 2010 - 9:53am Addthis Fort Worth's Central Library is seeing...

  20. Bright Green Spot: Fort Worth Library | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Bright Green Spot: Fort Worth Library Bright Green Spot: Fort Worth Library September 30, 2010 - 4:07pm Addthis Lindsay Gsell Fort Worth's Central Library is seeing tremendous...

  1. Fort Drum integrated resource assessment

    SciTech Connect (OSTI)

    Dixon, D.R.; Armstrong, P.R.; Daellenbach, K.K.; Dagle, J.E.; Di Massa, F.V.; Elliott, D.B.; Keller, J.M.; Richman, E.E.; Shankle, S.A.; Sullivan, G.P.; Wahlstrom, R.R.

    1992-12-01T23:59:59.000Z

    The US Army Forces Command (FORSCOM) has tasked Pacific Northwest Laboratory (PNL) as the lead laboratory supporting the US Department of Energy (DOE) Federal Energy Management Program's (FEMP) mission to identify, evaluate, and assist in acquiring all cost-effective energy projects at Fort Drum. This is a model program PNL is designing for federal customers served by the Niagara Mohawk Power Company (Niagara Mohawk). It will (1) identify and evaluate all electric and fossil fuel cost-effective energy projects; (2) develop a schedule at each installation for project acquisition considering project type, size, timing, capital requirements, as well as energy and dollar savings; and (3) secure 100% of the financing required to implement electric energy efficiency projects from Niagara Mohawk and have Niagara Mohawk procure the necessary contractors to perform detailed audits and install the technologies. This report provides the results of the fossil fuel and electric energy resource opportunity (ERO) assessments performed by PNL at one of Niagara Mohawk's primary federal facilities, the FORSCOM Fort Drum facility located near Watertown, New York. It is a companion report to Volume 1, the Executive Summary, and Volume 2, the Baseline Detail.

  2. Energy Department Recognizes Fort Worth for Leadership in Advancing...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fort Worth for Leadership in Advancing Energy Efficiency Energy Department Recognizes Fort Worth for Leadership in Advancing Energy Efficiency April 14, 2015 - 10:04am Addthis NEWS...

  3. City of Fort Collins Comment on Information Collection Extension...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2011 City of Fort Collins Comment on Information Collection Extension, October 2011 The City of Fort Collins provided comments to the Department of Energy's notice of intent to...

  4. Saint Vincent and the Grenadines-Caribbean Community (CARICOM...

    Open Energy Info (EERE)

    navigation, search Name Saint Vincent and the Grenadines-Caribbean Community (CARICOM) Sustainable Energy Roadmap and Strategy AgencyCompany Organization Inter-American...

  5. Saint Lucia-Caribbean Community (CARICOM) Sustainable Energy...

    Open Energy Info (EERE)

    Strategy Jump to: navigation, search Name Saint-LuciaCaribbean Community (CARICOM) Sustainable Energy Roadmap and Strategy AgencyCompany Organization Inter-American Development...

  6. Fort Loudoun Electric Coop | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A PotentialJumpGermanFife Energy ParkForked Deer ElectricFort BelknapFortFort

  7. Fort Valley Utility Comm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A PotentialJumpGermanFife Energy ParkForked Deer ElectricFortFort PierceFort

  8. SAINT GEORGES CONTRE LES MAURES SPECIFICITES ET ENJEUX DES REPRESENTATIONS PLASTIQUES DU SAINT

    E-Print Network [OSTI]

    Boyer, Edmond

    Georges ne pose aucun problème : ce soldat a largement mérité son auréole grâce à la résistance qu'Occident chrétien la popularité de saint Georges atteint un degré maximal au Bas Moyen-�ge, si bien que ce soldat

  9. Renewable Energy Opportunities at Fort Hood, Texas

    SciTech Connect (OSTI)

    Solana, Amy E.; Warwick, William M.; Orrell, Alice C.; Russo, Bryan J.; Parker, Kyle R.; Weimar, Mark R.; Horner, Jacob A.; Manning, Anathea

    2011-11-14T23:59:59.000Z

    This report presents the results of Pacific Northwest National Laboratory's (PNNL) follow-on renewable energy (RE) assessment of Fort Hood. Fort Hood receives many solicitations from renewable energy vendors who are interested in doing projects on site. Based on specific requests from Fort Hood staff so they can better understand these proposals, and the results of PNNL's 2008 RE assessment of Fort Hood, the following resources were examined in this assessment: (1) Municipal solid waste (MSW) for waste-to-energy (WTE); (2) Wind; (3) Landfill gas; (4) Solar photovoltaics (PV); and (5) Shale gas. This report also examines the regulatory issues, development options, and environmental impacts for the promising RE resources, and includes a review of the RE market in Texas.

  10. Fort Collins Utilities- Home Efficiency Program

    Broader source: Energy.gov [DOE]

    Fort Collins Utilities (FCU) provides rebates for customers living in existing single-family homes who pursue energy efficiency projects. Either the Efficiency Audit or Efficiency Audit Plus is a...

  11. fort hood range revegetation Located on the northern edge of the Texas Hill Country, Fort Hood Military

    E-Print Network [OSTI]

    Conservation Service (NRCS) and Fort Hood's Integrated Training Area Management (ITAM) and Directorate

  12. Saint Lucia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form HistoryRistma AG Jump to:Energysource History ViewJumpSaint Lucia:

  13. Saint Lucia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ |Rippey Jump to:WY) JumpLandSRTHelena: EnergySaint Lucia:

  14. ECOLE NATIONALE SUPERIEURE DES MINES DE SAINT-ETIENNE

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    'EAU DANS DES HYDROCARBURES Soutenue ŕ Saint-Etienne le 28 juin 19?6~ devant la Commission d'E~en MM. M HYDROCARBURES Soutenue ŕ Saint-Etienne le 28 juin 19?6~ devant la Commission d'Examen MM. M. CHEMLA PJLéhident F

  15. FORTE spacecraft vibration mitigation. Final report

    SciTech Connect (OSTI)

    Maly, J.R.

    1996-02-01T23:59:59.000Z

    This report documents work that was performed by CSA Engineering, Inc., for Los Alamos National Laboratory (LANL), to reduce vibrations of the FORTE spacecraft by retrofitting damped structural components into the spacecraft structure. The technical objective of the work was reduction of response at the location of payload components when the structure is subjected to the dynamic loading associated with launch and proto-qualification testing. FORTE is a small satellite that will be placed in orbit in 1996. The structure weighs approximately 425 lb, and is roughly 80 inches high and 40 inches in diameter. It was developed and built by LANL in conjunction with Sandia National Laboratories Albuquerque for the United States Department of Energy. The FORTE primary structure was fabricated primarily with graphite epoxy, using aluminum honeycomb core material for equipment decks and solar panel substrates. Equipment decks were bonded and bolted through aluminum mounting blocks to adjoining structure.

  16. Renewable Energy Opportunities at Fort Sill, Oklahoma

    SciTech Connect (OSTI)

    Boyd, Brian K.; Hand, James R.; Horner, Jacob A.; Orrell, Alice C.; Russo, Bryan J.; Weimar, Mark R.; Nesse, Ronald J.

    2011-03-31T23:59:59.000Z

    This document provides an overview of renewable resource potential at Fort Sill, based primarily upon analysis of secondary data sources supplemented with limited on-site evaluations. This effort focuses on grid-connected generation of electricity from renewable energy sources and on ground source heat pumps for heating and cooling buildings. The effort was funded by the U.S. Army Installation Management Command (IMCOM) as follow-on to the 2005 Department of Defense (DoD) Renewables Assessment. The site visit to Fort Sill took place on June 10, 2010.

  17. Renewable Energy Opportunities at Fort Polk, Louisiana

    SciTech Connect (OSTI)

    Solana, Amy E.; Boyd, Brian K.; Horner, Jacob A.; Gorrissen, Willy J.; Orrell, Alice C.; Weimar, Mark R.; Hand, James R.; Russo, Bryan J.; Williamson, Jennifer L.

    2010-11-17T23:59:59.000Z

    This document provides an overview of renewable resource potential at Fort Polk, based primarily upon analysis of secondary data sources supplemented with limited on-site evaluations. This effort focuses on grid-connected generation of electricity from renewable energy sources and also on ground source heat pumps for heating and cooling buildings. The effort was funded by the U.S. Army Installation Management Command (IMCOM) as follow-on to the 2005 Department of Defense (DoD) Renewables Assessment. The site visit to Fort Polk took place on February 16, 2010.

  18. Fort Bliss Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A PotentialJumpGermanFife Energy ParkForked Deer ElectricFort BelknapFort

  19. Fort Pierce Utilities Auth | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A PotentialJumpGermanFife Energy ParkForked Deer ElectricFortFort Pierce

  20. Direct-Current Resistivity Survey At Cove Fort Area (Warpinski...

    Open Energy Info (EERE)

    The project at Cove FortSulphurdale in Utah, T26S R67W, is concerned with locating and drilling a 900-meter well to explore the western extension of the Cove Fort-Sulphurdale...

  1. Direct-Current Resistivity Survey At Cove Fort Area - Vapor ...

    Open Energy Info (EERE)

    The project at Cove FortSulphurdale in Utah, T26S R67W, is concerned with locating and drilling a 900-meter well to explore the western extension of the Cove Fort-Sulphurdale...

  2. Fort Pierce Utilities Authority- Solar Water Heating Rebate

    Broader source: Energy.gov [DOE]

    Note: Fort Pierce Utilities Authority has completed its rebate program for 2015. Check the website for updates.

  3. Law and Society in Saint Domingue, 1789-1805

    E-Print Network [OSTI]

    Dawson, Brandon

    2013-09-29T23:59:59.000Z

    and Society in Saint Domingue and France: 1789-1805 (May 2014) Brandon Dawson Katelyn Polk Department of History Texas A&M University Research Advisor: Dr. Rebecca Schloss Department of History We will examine the discrepancy between boundaries of race... knowledge and expertise. 3 CHAPTER I INTRODUCTION Between 1789 and 1805, strict laws clearly regulated life for both free people of color and slaves in French Saint Domingue and metropolitan France. However...

  4. Law and Society in Saint Domingue, 1789-1805

    E-Print Network [OSTI]

    Polk, Katelyn Brune

    2013-09-29T23:59:59.000Z

    LAW AND SOCIETY IN SAINT DOMINGUE: 1789-1805 An Undergraduate Research Scholars Thesis by BRANDON DAWSON AND KATELYN POLK Submitted to Honors and Undergraduate Research Texas A&M University In partial fulfillment of the requirements... and Society in Saint Domingue and France: 1789-1805 (May 2014) Brandon Dawson Katelyn Polk Department of History Texas A&M University Research Advisor: Dr. Rebecca Schloss Department of History We will examine the discrepancy between boundaries of race...

  5. 1490 Campus Delivery Fort Collins, Colorado 80523-1490

    E-Print Network [OSTI]

    or coauthored over 100 articles for various journals and publications. In his spare time, Dr. Allen is an active he discusses the efforts being made to document the flora of Fort Polk, and by publishing articles concerning the flora of Fort Polk in academic journals each year. His work at Fort Polk has given

  6. Process Optimization Assessments at Fort Leonard Wood, Missouri and Fort Carson, Colorado

    E-Print Network [OSTI]

    Lin, M.; Vavrin, J.; Smith, W.

    2004-01-01T23:59:59.000Z

    Process Optimization Assessments at Fort Leonard Wood, Missouri and Fort Carson, Colorado Mike C.J. Lin U.S. Army Corps of Engineers Engineer Research Development Center, Construction Engineering Research Laboratory Champaign, Illinois... a specific Level II scope of work, respective roles, and the most expeditious path forward. This begins with a formal review of this report, combined with a planning session to organize the Level II program. REFERENCES 1. Lin, Mike C.J., et...

  7. Renewable Energy Opportunities at Fort Hood, Texas

    SciTech Connect (OSTI)

    Chvala, William D.; Warwick, William M.; Dixon, Douglas R.; Solana, Amy E.; Weimar, Mark R.; States, Jennifer C.; Reilly, Raymond W.

    2008-06-30T23:59:59.000Z

    The document provides an overview of renewable resource potential at Fort Hood based primarily upon analysis of secondary data sources supplemented with limited on-site evaluations. The effort was funded by the U.S. Army Installation Management Command (IMCOM) as follow-on to the 2005 DoD Renewables Assessment. This effort focuses on grid-connected generation of electricity from renewable energy sources and also ground source heat pumps for heating and cooling buildings, as directed by IMCOM.

  8. Saint Joseph's University Institute for Environmental Stewardship

    SciTech Connect (OSTI)

    McCann, Michael; Springer, Clint

    2014-06-18T23:59:59.000Z

    Task A: Examination of the physiological, morphological, and reproductive responses of Panicum virgatum (switchgrass) cultivars identified as potential biofuel producing cultivars as well as naturally-occurring varieties of switchgrass to projected changes in climate for the central portion of the United States. This project was a multi-year project set in a field site located at the Konza Prairie Biological Station near Manhattan, KS USA. The major objective of the study was to understand the physiological and growth responses of the important biofuel grass species, Panicum virgatum (switch grass) to simulated changes in precipitation expected for the Central Plains region of the United States. Population level adaptation to broad-scale regional climates or within-population variation in genome size of this genetically and phenotypically diverse C4 grass species may influence the responses to future precipitation variability associated with climate change. Therefore, we investigated switchgrass responses to water variability between natural populations collected across latitudinal gradient and populations. P. virgatum plants from natural populations originating from Kansas, Oklahoma, and Texas received frequent, small precipitation events (“ambient’) or infrequent, large precipitation events (‘altered”) to simulate contrasting rainfall variability expected from this region. We measured leaf-level physiology, aboveground biomass varied significantly by population origin but did not differ by genome size. Our results suggest that trait variation in P. virgatum is primarily attributed to population-level adaptation across latitudinal gradient, not genome size, and that neither population-level adaptation nor genome size may be important predictors of P. virgatum responses to future climatic conditions. Based solely on the data presented here, the most important consideration when deciding what varieties of switchgrass to cultivate for biofuel feedstocks under future climate scenarios is local adaptation and not necessarily genome size as has been hypothesized in the literature. Task B: Installation of an extensive green roof system on the Science Center at Saint Joseph's University for research, research-training and educational outreach activities. An experimental green roof system was designed and installed by an outside contractor (Roofmeadows) on the roof of the Science Center at Saint Joseph's University. The roof system includes four test plots, each with a different drainage system, instrumentation to monitor storm water retention, roof deck temperature, heat flux into and out of the building, rain fall, wind speed and direction, relative humidity and heat emission from the roof system. The vegetative roof was planted with 26 species of plants, distributed throughout the roof area, to assess species/variety growth and coverage characteristics, both in terms of the different drain layer systems, and in terms of the different exposures along the north to south axis of the building. Analysis of the drain layer performance, in terms of storm water retention, shows that the aggregate (stone) drainage layer system performed the best, with the moisture management mat system second, and the geotextile drain layer and reservoir sheet layer systems coming in last. This information is of value in the planning and design of vegetative roof systems since the different types of drainage layer systems have different installation costs and different weights. The different drainage layer systems also seem to be having an impact on plant growth and spread with the test plot with the reservoir sheet layer actually having the poorest plant coverage and plant spread of all areas of the roof studied. Plant growth performance analysis is ongoing, but significant differences have been observed in the third growing season ('13) along the north to south axis, with most species doing better towards the northern end of the roof (in terms of percent ground coverage and plant spread and reproduction). Interestingly, plant growth in all f

  9. Saint Joseph's University Institute for Environmental Stewardship

    SciTech Connect (OSTI)

    McCann, Michael P.; Springer, Clint J.

    2014-06-05T23:59:59.000Z

    Task A: Examination of the physiological, morphological, and reproductive responses of Panicum virgatum (switchgrass) cultivars identified as potential biofuel producing cultivars as well as naturally-occurring varieties of switchgrass to projected changes in climate for the central portion of the United States. This project was a multi-year project set in a field site located at the Konza Prairie Biological Station near Manhattan, KS USA. The major objective of the study was to understand the physiological and growth responses of the important biofuel grass species, Panicum virgatum (switch grass) to simulated changes in precipitation expected for the Central Plains region of the United States. Population level adaptation to broad-scale regional climates or within-population variation in genome size of this genetically and phenotypically diverse C4 grass species may influence the responses to future precipitation variability associated with climate change. Therefore, we investigated switchgrass responses to water variability between natural populations collected across latitudinal gradient and populations. P. virgatum plants from natural populations originating from Kansas, Oklahoma, and Texas received frequent, small precipitation events (“ambient’) or infrequent, large precipitation events (‘altered”) to simulate contrasting rainfall variability expected from this region. We measured leaf-level physiology, aboveground biomass varied significantly by population origin but did not differ by genome size. Our results suggest that trait variation in P. virgatum is primarily attributed to population-level adaptation across latitudinal gradient, not genome size, and that neither population-level adaptation nor genome size may be important predictors of P. virgatum responses to future climatic conditions. Based solely on the data presented here, the most important consideration when deciding what varieties of switchgrass to cultivate for biofuel feedstocks under future climate scenarios is local adaptation and not necessarily genome size as has been hypothesized in the literature. Task B: Installation of an extensive green roof system on the Science Center at Saint Joseph's University for research, research-training and educational outreach activities. An experimental green roof system was designed and installed by an outside contractor (Roofmeadows) on the roof of the Science Center at Saint Joseph's University. The roof system includes four test plots, each with a different drainage system, instrumentation to monitor storm water retention, roof deck temperature, heat flux into and out of the building, rain fall, wind speed and direction, relative humidity and heat emission from the roof system. The vegetative roof was planted with 26 species of plants, distributed throughout the roof area, to assess species/variety growth and coverage characteristics, both in terms of the different drain layer systems, and in terms of the different exposures along the north to south axis of the building. Analysis of the drain layer performance, in terms of storm water retention, shows that the aggregate (stone) drainage layer system performed the best, with the moisture management mat system second, and the geotextile drain layer and reservoir sheet layer systems coming in last. This information is of value in the planning and design of vegetative roof systems since the different types of drainage layer systems have different installation costs and different weights. The different drainage layer systems also seem to be having an impact on plant growth and spread with the test plot with the reservoir sheet layer actually having the poorest plant coverage and plant spread of all areas of the roof studied. Plant growth performance analysis is ongoing, but significant differences have been observed in the third growing season ('13) along the north to south axis, with most species doing better towards the northern end of the roof (in terms of percent ground coverage and plant spread and reproduction). Interestingly, plant growth in all f

  10. Saint Joseph's University Institute for Environmental Stewardship

    SciTech Connect (OSTI)

    McCann, Micahel P.; Springer, Clint J.

    2014-06-03T23:59:59.000Z

    Task A: Examination of the physiological, morphological, and reproductive responses of Panicum virgatum (switchgrass) cultivars identified as potential biofuel producing cultivars as well as naturally-occurring varieties of switchgrass to projected changes in climate for the central portion of the United States. This project was a multi-year project set in a field site located at the Konza Prairie Biological Station near Manhattan, KS USA. The major objective of the study was to understand the physiological and growth responses of the important biofuel grass species, Panicum virgatum (switch grass) to simulated changes in precipitation expected for the Central Plains region of the United States. Population level adaptation to broad-scale regional climates or within-population variation in genome size of this genetically and phenotypically diverse C4 grass species may influence the responses to future precipitation variability associated with climate change. Therefore, we investigated switchgrass responses to water variability between natural populations collected across latitudinal gradient and populations. P. virgatum plants from natural populations originating from Kansas, Oklahoma, and Texas received frequent, small precipitation events (“ambient’) or infrequent, large precipitation events (‘altered”) to simulate contrasting rainfall variability expected from this region. We measured leaf-level physiology, aboveground biomass varied significantly by population origin but did not differ by genome size. Our results suggest that trait variation in P. virgatum is primarily attributed to population-level adaptation across latitudinal gradient, not genome size, and that neither population-level adaptation nor genome size may be important predictors of P. virgatum responses to future climatic conditions. Based solely on the data presented here, the most important consideration when deciding what varieties of switchgrass to cultivate for biofuel feedstocks under future climate scenarios is local adaptation and not necessarily genome size as has been hypothesized in the literature. Task B: Installation of an extensive green roof system on the Science Center at Saint Joseph's University for research, research-training and educational outreach activities. An experimental green roof system was designed and installed by an outside contractor (Roofmeadows) on the roof of the Science Center at Saint Joseph's University. The roof system includes four test plots, each with a different drainage system, instrumentation to monitor storm water retention, roof deck temperature, heat flux into and out of the building, rain fall, wind speed and direction, relative humidity and heat emission from the roof system. The vegetative roof was planted with 26 species of plants, distributed throughout the roof area, to assess species/variety growth and coverage characteristics, both in terms of the different drain layer systems, and in terms of the different exposures along the north to south axis of the building. Analysis of the drain layer performance, in terms of storm water retention, shows that the aggregate (stone) drainage layer system performed the best, with the moisture management mat system second, and the geotextile drain layer and reservoir sheet layer systems coming in last. This information is of value in the planning and design of vegetative roof systems since the different types of drainage layer systems have different installation costs and different weights. The different drainage layer systems also seem to be having an impact on plant growth and spread with the test plot with the reservoir sheet layer actually having the poorest plant coverage and plant spread of all areas of the roof studied. Plant growth performance analysis is ongoing, but significant differences have been observed in the third growing season ('13) along the north to south axis, with most species doing better towards the northern end of the roof (in terms of percent ground coverage and plant spread and reproduction). Interestingly, plant growth in all f

  11. Saint Joseph's University Institute for Environmental Stewardship

    SciTech Connect (OSTI)

    McCann, Michael P; Springer, Clint

    2013-10-15T23:59:59.000Z

    Task A: Examination of the physiological, morphological, and reproductive responses of Panicum virgatum (switchgrass) cultivars identified as potential biofuel producing cultivars as well as naturally-occurring varieties of switchgrass to projected changes in climate for the central portion of the United States. This project was a multi-year project set in a field site located at the Konza Prairie Biological Station near Manhattan, KS USA. At the field site we planted switchgrass collected from regions in Kansas, Oklahoma, and Texas. After a year of establishment we implemented a set of two-year water treatments that examined the responses in physiology, growth and development of switchgrass to predicted changes in precipitation amount for the central United States. After this experiment was completed we performed a second set of experiments that examined the responses of switchgrass physiology, growth, and development to changes in precipitation frequency. We also included in this analysis how genome size of individuals influenced their responses to precipitation frequency changes. Generally, we found switchgrass to be unresponsive to realistic predictions of precipitation changes for the Central Plains of the United States. These studies have provided significant insight into how this important grassland species will respond to future climate change from both an ecological and applied biological perspective. Finally, we provided insight into the mechanism through which this species changes in the face of altered water availability by not supporting the hypothesis that the control of switchgrass responses to changes in precipitation is altered by genome size. Task B: Installation of an extensive green roof system on the Science Center at Saint Joseph's University for research, research-training and educational outreach activities. An experimental green roof system was designed and installed by an outside contractor (Roofmeadows) on the roof of the Science Center at Saint Joseph's University. The roof system includes four test plots, each with a different drainage system, instrumentation to monitor storm water retention, roof deck temperature, heat flux into and out of the building, rain fall, wind speed and direction, relative humidity and heat emission from the roof system. The vegetative roof was planted with 26 species of plants, distributed throughout the roof area, to assess species/variety growth and coverage characteristics, both in terms of the different drain layer systems, and in terms of the different exposures along the north to south axis of the building. Analysis of the drain layer performance, in terms of storm water retention, shows that the aggregate (stone) drainage layer system performed the best, with the moisture management mat system second, and the geotextile drain layer and reservoir sheet layer systems coming in last. Plant growth performance analysis is ongoing, but significant differences have been observed in the third growing season ('13) along the north to south axis, with most species doing better towards the northern end of the roof (in terms of percent ground coverage and plant spread and reproduction). Interestingly, plant growth in all four of the test plots was reduced relative to the lower areas of the roof (the lower area was ca. 2 inches lower than the test plots, due to the space needed for sensors under the plots. The lower roof area uses an aggregate drain layer comparable to that in the third test plot), even when accounting for the north to south differences. The reasons for these differences are not clear and studies are underway to examine the impact of wind scour, drainage rates, temperature, and other factors. Task C: Education and community outreach efforts by the IES involving conferences at SJU, presentations by faculty and students off campus, and educational signage. The Institute for Environmental Stewardship hosted three storm water management workshops on the SJU campus in Philadelphia, in collaboration with the Lower Merion Conservancy, a not-for-profit organizati

  12. Process Optimization Assessments at Fort Leonard Wood, Missouri and Fort Carson, Colorado 

    E-Print Network [OSTI]

    Lin, M.; Vavrin, J.; Smith, W.

    2004-01-01T23:59:59.000Z

    for process energy efficiency improvements and reductions of pollutant emissions at Fort Leonard Wood and Fort Carson, using the process energy and pollution reduction (PEPR) methodology and the process optimization guide, both of which are tools developed.../CERL Technical Report, TR- 03-8, April 2003. 3. Lin, Mike C.J., et al. "Process Energy and Pollution Reduction (PEPR) Level I Review at the Watervliet Arsenal, New York" USACERL Technical Report 99/92, November 1999. 4. Lin, Mike C.J., Walter Smith...

  13. Fort Boise Veteran's Hospital District Heating Low Temperature...

    Open Energy Info (EERE)

    Veteran's Hospital District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Fort Boise Veteran's Hospital District Heating Low Temperature Geothermal...

  14. Contrasting Eruption Styles Of The 147 Kimberlite, Fort A La...

    Open Energy Info (EERE)

    Contrasting Eruption Styles Of The 147 Kimberlite, Fort A La Corne, Saskatchewan, Canada Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article:...

  15. acid pit fort: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at DallasFort Worth International Airport Jerry R. Dennis, CEM, CEP Energy Manager October 9, 2013 Energy Management Practices at DFW Airport, October 9, 2013 Presentation...

  16. Fort Pierce Utilities Authority- Solar Water Heating Rebate (Florida)

    Broader source: Energy.gov [DOE]

    '''''Fort Pierce Utilities Authority has suspended the Solar Water Heating rebate program until 2013. Contact the utility for more information on these offerings.'''''

  17. Fort Totten Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489Information HydroFontana,dataset nameFort BendLupton,Totten

  18. FORTE antenna element and release mechanism design

    SciTech Connect (OSTI)

    Rohweller, D.J. [Astro Aerospace Corp., Carpinteria, CA (United States); Butler, T.Af. [Los Alamos National Lab., NM (United States)

    1995-02-01T23:59:59.000Z

    The Fast On-Orbit Recording of Transient Events (FORTE) satellite being built by Los Alamos National Laboratory (LANL) and Sandia National Laboratories (SNL) has as its most prominent feature a large deployable (11 m by 5 m) log periodic antenna to monitor emissions from electrical storms on the Earth. This paper describes the antenna and the design for the long elements and explains the dynamics of their deployment and the damping system employed. It also describes the unique paraffin-actuated reusable tie-down and release mechanism employed in the system.

  19. Fort Payne Improvement Auth | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A PotentialJumpGermanFife Energy ParkForked Deer ElectricFort

  20. Fort Bliss Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to:ar-80m.pdfFillmoreGabbs ValleyCity,ForkedAdd aNorthFort Bliss

  1. SPIDERS Phase 2 Fort Carson Technology Transition Consolidated Report

    Broader source: Energy.gov [DOE]

    Final program public report for phase 2 summarizes the key outcomes generated during the second phase of the Smart Power Infrastructure Demonstration for Energy Reliability and Security (SPIDERS) Joint Capability Technology Demonstration (JCTD), which was implemented at Fort Carson, Colorado, during 2013-2014. The public demonstration of the technology at Fort Carson was completed in April 2014.

  2. Consumer Query Health Profile Saint Alphonsus Regional Medical Center

    E-Print Network [OSTI]

    Barrash, Warren

    Consumer Query Health Profile Saint Alphonsus Regional Medical Center Query resulted in 570 BSU Classified and Non-Classified employees that participated in the Fall 2004 Health Risk Appraisal. Non.2% 9.6% 7.7% 9.0% Heart Disease 2.3% 2.3% 2.6% 3.1% No Primary Care Physician 33.0% 31.8% 30.0% 24

  3. Targeting Net Zero Energy at Fort Carson: Assessment and Recommendations

    SciTech Connect (OSTI)

    Anderson, K.; Markel, T.; Simpson, M.; Leahey, J.; Rockenbaugh, C.; Lisell, L.; Burman, K.; Singer, M.

    2011-10-01T23:59:59.000Z

    The U.S. Army's Fort Carson installation was selected to serve as a prototype for net zero energy assessment and planning. NREL performed the comprehensive assessment to appraise the potential of Fort Carson to achieve net zero energy status through energy efficiency, renewable energy, and electric vehicle integration. This report summarizes the results of the assessment and provides energy recommendations. This study is part of a larger cross-laboratory effort that also includes an assessment of renewable opportunities at seven other DoD Front Range installations, a microgrid design for Fort Carson critical loads and an assessment of regulatory and market-based barriers to a regional secure smart grid.

  4. U.S. Army Fort Carson Photovoltaics Project Lease

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NO. DACA45-1-07-6037 DEPARTMENT OF THE ARMY LEASE FORT CARSON MILITARY INSTALLATION EL PAS0 COUNTY, COLORADO THIS LEASE, made on behalf of the United States, between the SECRETARY...

  5. U.S. Army Fort Carson Environmental Document

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1.0 PURPOSE The purpose of this Finding of Suitability to Lease (FOSL) is to document the environmental suitability of property at Fort Carson, Colorado, for leasing and...

  6. Fort Pierce Utilities Authority- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Fort Pierce Utilities Authority offers a variety of incentives for their residential customers to save energy in their homes. Rebates are available for room A/C units, insulation upgrades, central...

  7. area fort calhoun: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the laundry operation and the DOL maintenance complex with specific focus on paintingmedia blasting... Lin, M.; Vavrin, J.; Smith, W. 2004-01-01 33 FOREST TECHNOLOGY 2 FORT...

  8. Paleoenvironment of Fort Union Formation, South Dakota

    SciTech Connect (OSTI)

    Goodrum, C.

    1983-08-01T23:59:59.000Z

    Rocks of Paleocene age are represented in the Cave Hills of northwestern South Dakota by the Ludlow, Cannonball, and Tongue River members of the Fort Union Formation. The Cave Hills are situated within the southern margin of the Williston basin, 80 mi (130 km) north of the Black Hills, South Dakota. Numerous fine-grained, fining-upward sedimentary sequences comprise the Ludlow Member and are attributed to meandering streams occupying a low-gradient lower alluvial to upper deltaic plain. The Cannonball Member is 130 ft (40 m) thick in the North Cave Hills and is represented by two fine-grained, coarsening-upward sandstone mudstone sequences. A distinct vertical succession of sedimentary facies occur within each sequence representing offshore/lower shoreface through upper shoreface/foreshore depositional environment. A north to northeast depositional strike for the Cannonball shoreline is inferred from ripple crest and cross-bed orientations. The basal part of the Tongue River consists of approximately 40 to 50 ft (12 to 15 m) of lenticular sandstone, siltstone, mudstone, thin-bedded lignite, and kaolinite beds representing thin broad channels, point-bar, levee, overbank, and nearshore swamp depositional environments. Massive fluvial channel sandstones measuring several tens of ft in thickness overlie the fine-grained basal Tongue River lithologies. These channel sandstones represent the continued progradation of continental/fluvial/coastal plain depositional environments eastward over the marine sandstones of the Cannonball Member.

  9. Four years of operations and results with FORTE

    SciTech Connect (OSTI)

    Klingner, P. L. (Phillip L.); Carlson, L. D. (Leslie D.); Dingler, R. D. (Robert D.); Esch-Mosher, D. M. (Diana M.); Jacobson, A. R.; Roussel-Dupre, D. (Diane)

    2001-01-01T23:59:59.000Z

    The FORTE (Fast Onboard Recording of Transient Events) satellite was launched on 29 August 1997 and has been in continuous operation since that time. FORTE was placed in a nearly circular, 825-km-altitude, 70 degrees inclination orbit by a Pegasus rocket funded by Air Force Space Test Program. The Department of Energy funded the FORTE satellite, which was designed and built at Los Alamos. FORTE's successful launch and engineered robustness were a result of several years of dedicated work by the joint Los Alamos National Laboratory/Sandia National Laboratory project team, led through mission definition, payload and satellite development, and launch by Dr. Stephen Knox. The project is now led by Dr. Abram Jacobson. FORTE carries a suite of instruments, an optical system and a rf system, for the study of lightning and anthropogenic signals. As a result of this effort, new understandings of lightning events have emerged as well as a more complete understanding of the relationship between optical and rf lightning events. This paper will provide an overview of the FORTE satellite and will discuss the on orbit performance of the subsystems.

  10. Saint Barthélemy: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ |Rippey Jump to:WY) JumpLandSRT JumpSMUDSafeskySaint

  11. Saint Paul Island Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ |Rippey Jump to:WY) JumpLandSRTHelena: EnergySaint

  12. City of Saint Peter, Minnesota (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformation Smyrna Beach, FloridaCityRuston, LouisianaCity of Saint

  13. ECOLE NATIONALE SUPERIEURE INSTITUT NATIONAL POLYTECHNIQUE DES MINES DE SAINT-ETIENNE DE GRENOBLE

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    SAINT-ETIENNE BIODEGRADATION DES HYDROCARBURES AROMATIQUES POLYCYCLIQUES Approche MicrobioIogique et MINES DE SAINT-ETIENNE BIODEGRADATION DES HYDROCARBURES AROMATIQUES POLYCYCLIQUES Approche-00841329,version1-4Jul2013 #12;Résumé RESUME Les Hydrocarbures Aromatiques Polycycliques (HAP) sont des

  14. An Adaptive Artificial Viscosity Method for the Saint-Venant System

    E-Print Network [OSTI]

    Kurganov, Alexander

    An Adaptive Artificial Viscosity Method for the Saint-Venant System Yunlong Chen, Alexander in applying the adaptive artificial viscosity method proposed in [13] to the Saint-Venant system of shallow enforc- ing the nonlinear stability by adding an artificial viscosity to the PDE system in the regions

  15. Central Energy System Modernization at Fort Jackson, South Carolina

    SciTech Connect (OSTI)

    Brown, Daryl R.; Chvala, William D.; Dirks, James A.

    2006-11-29T23:59:59.000Z

    An evaluation of technology options was conducted for the central energy systems at Fort Jackson, South Carolina. There were two objectives in conducting this study. From a broader viewpoint, the Army would like to develop a systematic approach to management of its central energy systems and selected Fort Jackson for this ''pilot'' study for a prospective Central Energy System Modernization Program. From a site-specific perspective, the objective was to identify the lowest life-cycle cost energy supply option(s) at Fort Jackson for buildings currently served by central boilers and chillers. This study was co-funded by the Army's Southeast Region and the U.S. Department of Energy's Federal Energy Management Program.

  16. Renewable Energy Opportunities at Fort Campbell, Tennessee/Kentucky

    SciTech Connect (OSTI)

    Hand, James R.; Horner, Jacob A.; Kora, Angela R.; Orrell, Alice C.; Russo, Bryan J.; Weimar, Mark R.; Nesse, Ronald J.

    2011-03-31T23:59:59.000Z

    This document provides an overview of renewable resource potential at Fort Campbell, based primarily upon analysis of secondary data sources supplemented with limited on-site evaluations. This effort focuses on grid-connected generation of electricity from renewable energy sources and also on ground source heat pumps for heating and cooling buildings. The effort was funded by the U.S. Army Installation Management Command (IMCOM) as follow-on to the 2005 Department of Defense (DoD) Renewables Assessment. The site visit to Fort Campbell took place on June 10, 2010.

  17. Renewable Energy Opportunities at Fort Drum, New York

    SciTech Connect (OSTI)

    Brown, Scott A.; Orrell, Alice C.; Solana, Amy E.; Williamson, Jennifer L.; Hand, James R.; Russo, Bryan J.; Weimar, Mark R.; Rowley, Steven; Nesse, Ronald J.

    2010-10-20T23:59:59.000Z

    This document provides an overview of renewable resource potential at Fort Drum, based primarily upon analysis of secondary data sources supplemented with limited on-site evaluations. This effort focuses on grid-connected generation of electricity from renewable energy sources and also on ground source heat pumps for heating and cooling buildings. The effort was funded by the U.S. Army Installation Management Command (IMCOM) as follow-on to the 2005 Department of Defense (DoD) Renewables Assessment. The site visit to Fort Drum took place on May 4 and 5, 2010.

  18. El Paso County Geothermal Project at Fort Bliss

    Broader source: Energy.gov [DOE]

    DOE Geothermal Peer Review 2010 - Presentation. Project objective: Determine if, and where, economically viable low temperature geothermal resources might exist in the McGregor test area ?or if necessary at other lesser known sites that exist on the Fort Bliss Military Reservation ?and to determine at what location they can be best accessed without compromising the tactical and strategic missions of Fort Bliss. Determine if identified resources have adequate temperatures and flow rates/volumes to justify development at any scale, with an eye toward the 20 megawatt target identified. Over base need: 45 megawatts.

  19. Fort Inge and the Texas frontier, 1849-1869

    E-Print Network [OSTI]

    Smith, Thomas Tyree

    1991-01-01T23:59:59.000Z

    ) May 1991 ABSTRACT Fort Inge and the Texas Frontier, 1849-1869. (May 1991) Thomas Tyree Smith B. S. in Ed. , Southwest Texas State University Chair of Advisory Committee: Dr. Joseph G. Dawson III Now an obscure site near Uvalde, Fort Inge was once...'s Report on the Eighth Nilitary Department, " Cartographic Division, DR 148, RG 77, NA. 12 NOTES 1. Frederick Law Olmsted, A Journey Through Texas: Or A Saddle- Trip On the Southwestern Frontier (New York: Dix, Edwards 6 Co. , 1857; rpr. , Austin...

  20. Fort Worth, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A PotentialJumpGermanFife Energy ParkForked Deer ElectricFortFort

  1. Conference shapes direction of Doctrine 2015 -Fort Leavenworth, KS -The Fort Leavenworth Lamp http://www.ftleavenworthlamp.com/news/around_the_force/x27456959/Conference-shapes-direction-of-Doctrine-2015[8/18/2011 12:32:27 PM

    E-Print Network [OSTI]

    US Army Corps of Engineers

    Conference shapes direction of Doctrine 2015 - Fort Leavenworth, KS - The Fort Leavenworth Lamp and more accessible. The conference was led by the Combined Arms Doctrine Directorate, a subordinate

  2. Better Buildings Challenge U.S. Department of Energy Fort Worth 

    E-Print Network [OSTI]

    Roskelly,A.; LEED aP BD+C; GGP; GPCP USGBC Representative

    2014-01-01T23:59:59.000Z

    Air Through Efficiency Conference, Dallas, Texas Nov. 18-20 The Fort Worth Better Buildings Challenge 3 ? Community Partner Agreement (2012) ? Focus: Energy and Water Reductions ? Structure: Local Partner & Ally Network ? Partners: Building Property... • ASHRAE Fort Worth • North Texas AEE • AIA Fort Worth • USGBC north Texas • Oncor Electric Delivery • Atmos Energy • FW Water Department ESL-KT-14-11-33 CATEE 2014: Clean Air Through Efficiency Conference, Dallas, Texas Nov. 18-20 The Fort Worth Better...

  3. Efficiency of Surveying, Baiting, and Trapping Wild Pigs at Fort Benning, Georgia Brian Lee Williams

    E-Print Network [OSTI]

    Ditchkoff, Steve

    Efficiency of Surveying, Baiting, and Trapping Wild Pigs at Fort Benning, Georgia by Brian Lee surveys, trapping efficiency, Fort Benning Copyright 2010 by Brian Lee Williams Approved by Stephen S This study, conducted at Fort Benning, Georgia, sought to develop more efficient ways of surveying

  4. School of Social Work Fort Collins, Colorado 80523-1586

    E-Print Network [OSTI]

    Rutledge, Steven

    School of Social Work Fort Collins, Colorado 80523-1586 Phone (970) 491-6612 Fax (970) 491-7280 Colorado State University College of Health and Human Sciences School of Social Work http or disability. #12;ii Greetings! Welcome to the School of Social Work at Colorado State University! Central

  5. Fort Irwin Integrated Resource Assessment. Volume 2, Baseline detail

    SciTech Connect (OSTI)

    Richman, E.E.; Keller, J.M.; Dittmer, A.L.; Hadley, D.L.

    1994-01-01T23:59:59.000Z

    This report documents the assessment of baseline energy use at Fort Irwin, a US Army Forces Command facility near Barstow, California. It is a companion report to Volume 1, Executive Summary, and Volume 3, Integrated Resource Assessment. The US Army Forces Command (FORSCOM) has tasked the US Department of Energy (DOE) Federal Energy Management Program (FEMP), supported by the Pacific Northwest Laboratory (PNL), to identify, evaluate, and assist in acquiring all cost-effective energy projects at Fort Irwin. This is part of a model program that PNL has designed to support energy-use decisions in the federal sector. This program (1) identifies and evaluates all cost-effective energy projects; (2) develops a schedule at each installation for project acquisition considering project type, size, timing, and capital requirements, as well as energy and dollar savings; and (3) targets 100% of the financing required to implement energy efficiency projects. PNL applied this model program to Fort Irwin. This analysis examines the characteristics of electric, propane gas, and vehicle fuel use for a typical operating year. It records energy-use intensities for the facilities at Fort Irwin by building type and energy end use. It also breaks down building energy consumption by fuel type, energy end use, and building type. A complete energy consumption reconciliation is presented that accounts for all energy use among buildings, utilities, and applicable losses.

  6. Fort Stewart integrated resource assessment. Volume 2, Baseline detail

    SciTech Connect (OSTI)

    Keller, J.M.; Sullivan, G.P.; Wahlstrom, R.R.; Larson, L.L.

    1993-08-01T23:59:59.000Z

    This report documents the assessment of baseline energy use at Fort Stewart, a US Army Forces Command facility located near Savannah, Georgia. This is a companion report to Volume 1, Executive Summary, and Volume 3, Integrated Resource Assessment. The US Army Forces Command (FORSCOM) tasked Pacific Northwest Laboratory (PNL) to identify, evaluate, and assist in acquiring all cost-effective energy projects at Fort Stewart. PNL, in support of the US Department of Energy (DOE) Federal Energy Management Program (FEMP), has designed a model program applicable to the federal sector for this purpose. The model program (1) identifies and evaluates all cost-effective energy projects; (2) develops a schedule at each installation for project acquisition considering project type, size, timing, and capital requirements, as well as energy and dollar savings; and (3) targets 100% of the financing required to implement energy efficiency projects. PNL applied this model program to Fort Stewart. The analysis examines the characteristics of electric, natural gas, oil, propane, and wood chip use for fiscal year (FY) 1990. The results include energy-use intensities for the facilities at Fort Stewart by building type, fuel type, and energy end use. A complete energy consumption reconciliation is presented that accounts for the distribution of all major energy uses and losses among buildings, utilities, and central systems.

  7. Water Management Plan for Fort Buchanan, Puerto Rico

    SciTech Connect (OSTI)

    Chvala, William D.; Sullivan, Gregory P.; Mcmordie, Katherine

    2004-06-01T23:59:59.000Z

    This document reports findings and recommendations as a result of a design assistance project with Fort Buchanan with the goals of developing a Water Management Plan (WMP). The WRMP developed during this task is an amalgam of the templates and guidelines from the Federal Energy Management Program and Army regulations.

  8. Parton distributions and event generators Stefano Carrazza, Stefano Forte

    E-Print Network [OSTI]

    Heller, Barbara

    Parton distributions and event generators Stefano Carrazza, Stefano Forte Dipartimento di Fisica ingredient in achieving all of these goals is the integration of parton distri- butions within Monte Carlo, and data collected in an experimental fiducial region. Whereas next-to-leading (NLO) order Monte Carlo

  9. EIS-0090: Fort Peck-Havre Transmission Line Project, Montana

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy’s Western Area Power Administration prepared this statement to assess the potential environmental and socioeconomic implications of its proposed action to construct and operate a 230kV transmission line from Fort Peck to Havre, Montana, with three intermediate interconnecting substations.

  10. Scottish saints cults and pilgrimage from the Black Death to the Reformation, c.1349-1560 

    E-Print Network [OSTI]

    Turpie, Thomas James Myles

    2011-11-22T23:59:59.000Z

    This thesis is an examination of the most important Scottish saints’ cults and pilgrimage centres in the period c.1349-1560. Specifically, this project locates the role of this group within the wider devotional practices ...

  11. FRAMEWORK GEOLOGY OF FORT UNION COAL IN THE WILLISTON BASIN

    E-Print Network [OSTI]

    Chapter WF FRAMEWORK GEOLOGY OF FORT UNION COAL IN THE WILLISTON BASIN By R.M. Flores,1 C.W. Keighin,1 A.M. Ochs,2 P.D. Warwick,1 L.R. Bader,1 and E.C. Murphy3 in U.S. Geological Survey Professional Paper 1625-A 1 U.S. Geological Survey 2 Consultant, U.S. Geological Survey, Denver, Colorado 3 North

  12. Informal report on measurements of slant TEC by FORTE

    SciTech Connect (OSTI)

    Massey, R.S.

    1997-11-21T23:59:59.000Z

    Los Alamos National Laboratory`s Space and Atmospheric Sciences group is now operating the FORTE satellite, which has two sets of instruments: optical detectors and radio detectors. In this report the author describes work with one set of radio detectors that allow measurements of the total electron content (TEC) traversed by VHF radiation originating at an electromagnetic pulse (EMP) generator located at Los Alamos.

  13. Geothermal heat pumps at Fort Polk: Early results

    SciTech Connect (OSTI)

    Hughes, P.J.; Shonder, J.A.

    1996-12-31T23:59:59.000Z

    At Fort Polk, LA an entire city (4,003 military family housing units) is being converted to geothermal heat pumps (GHP) under a performance contract. At the same time other efficiency measures such as compact fluorescent lights (CFLs), low-flow water outlets, and attic insulation are being installed. If these contracts and this technology are to be used widely in US Department of Defense (DoD) facilities and other public buildings, better data from actual projects is the key. Being the first GHP project of this type and size, Fort Polk proved to be very challenging for all concerned. To get from RFP to start of construction took several years. This hard work by others created a once-in-a-lifetime opportunity to address many of the due diligence issues that delayed the Fort Polk project. So that future projects can move faster, an evaluation has been undertaken to address the following barriers: absence of a documented large-scale demonstration of GHP energy, demand, and maintenance savings (a barrier to acceptance by federal customers, performance contractors, and investors); newness of large-scale facility capital renewal procurements at federal facilities under energy savings performance contracts (ESPCs) or traditional appropriations (lack of case studies); and variability in current GHP design tools (increases risks and costs for federal customers, performance contractors, investors and designers). This paper presents early energy and demand savings results based on data collection through January 1996.

  14. Feeding Ecology of 0-Group Sea Bass, Dicentrarchus labrax, in Salt Marshes of Mont Saint Michel Bay (France)

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    bass Dicentrarchus labrax is among the most abundant and exploited fish species of Eu- ropean coastsFeeding Ecology of 0-Group Sea Bass, Dicentrarchus labrax, in Salt Marshes of Mont Saint Michel Bay, France ABSTRACT: 0-group sea bass, Dicentrarchus labrax, colonize intertidal marsh creeks of Mont Saint

  15. U.S. Army Fort Knox: Using the Earth for Space Heating and Cooling (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-04-01T23:59:59.000Z

    FEMP case study overview of the geothermal/ground source heat pump project at the U.S. Army Fort Knox Disney Barracks.

  16. An evaluation of the Fort Polk energy savings performance contract

    SciTech Connect (OSTI)

    Hughes, P.J.; Shonder, J.A.

    1998-11-01T23:59:59.000Z

    The US Army, in cooperation with an energy services company (ESCO), used private capital to retrofit 4,003 family housing units on the Fort Polk, Louisiana, military base with geothermal heat pumps (GHPs). The project was performed under an energy savings performance contract (ESPC) that provides for the Army and the ESCO to share the cost savings realized through the energy retrofit over the 20-year life of the contract. Under the terms of the contract, the ESCO is responsible for maintaining the GHPs and provides ongoing measurement and verification (M and V) to assure cost and energy savings to the Army. An independent evaluation conducted by the Department of Energy`s Oak Ridge National Laboratory indicates that the GHP systems in combination with other energy retrofit measures have reduced annual whole-community electrical consumption by 33%, and natural gas consumption by 100%. These energy savings correspond to an estimated reduction in CO{sub 2} emissions of 22,400 tons per year. Peak electrical demand has been reduced by 43%. The electrical energy and demand savings correspond to an improvement in the whole-community annual electric load factor from 0.52 to 0.62. As a result of the project, Fort Polk saves about $450,000 annually and benefits from complete renewal of the major energy consuming systems in family housing and maintenance of those systems for 20 years. Given the magnitude of the project, the cost and energy savings achieved, and the lessons learned during its design and implementation, the Fort Polk ESPC can provide a model for other housing-related energy savings performance contracts in both the public and private sectors.

  17. An Evaluation of the Fort Polk Energy Savings Performance Contract

    SciTech Connect (OSTI)

    Hughes, Patrick [ORNL; Shonder, John A [ORNL

    1998-08-01T23:59:59.000Z

    The US Army, in cooperation with an energy services company (ESCO), used private capital to retrofit 4003 family housing units on the Fort Polk, Louisiana, military base with geothermal heat pumps (GHPs). The project was performed under an energy savings performance contract (ESPC) that provides for the army and the ESCO to share the cost savings realized through the energy retrofit over the 20-year life of the contract. Under the terms of the contract, the ESCO is responsible for maintaining the GHPs and provides ongoing measurement and verification (M&V) to assure cost and energy savings to the Army. An independent evaluation conducted by the Department of Energy's Oak Ridge National Laboratory indicates that the GHPS systems in combination with other energy retrofit measures have reduced annual whole-community electrical consumption by 33%, and natural gas consumption by 100%. These energy savings correspond to an estimated reduction in CO{sub 2} emissions of 22,400 tons per year. Peak electrical demand has been reduced by 43%. The electrical energy and demand savings correspond to an improvement in the whole-community annual electric load factor from 0.52 to 0.62. As a result of the project, Fort Polk saves about $450,000 annually and benefits from complete renewal of the major energy consuming systems in family housing and maintenance of those systems for 20 years. Given the magnitude of the project, the cost and energy savings achieved, and the lessons learned during its design and implementation, the Fort Polk ESPC can provide a model for other housing-related energy savings performance contracts in both the public and private sectors.

  18. Fort Drum integrated resource assessment. Volume 2, Baseline detail

    SciTech Connect (OSTI)

    Dixon, D.R.; Armstrong, P.R.; Brodrick, J.R.; Daellenbach, K.K.; Di Massa, F.V.; Keller, J.M.; Richman, E.E.; Sullivan, G.P.; Wahlstrom, R.R.

    1992-12-01T23:59:59.000Z

    The US Army Forces Command (FORSCOM) has tasked the Pacific Northwest Laboratory (PNL) as the lead laboratory supporting the US Department of Energy (DOE) Federal Energy Management Program`s mission to identify, evaluate, and assist in acquiring all cost-effective energy projects at Fort Drum. This is a model program PNL is designing for federal customers served by the Niagara Mohawk Power Company. It will identify and evaluate all electric and fossil fuel cost-effective energy projects; develop a schedule at each installation for project acquisition considering project type, size, timing, and capital requirements, as well as energy and dollar savings; and secure 100% of the financing required to implement electric energy efficiency projects from Niagara Mohawk and have Niagara Mohawk procure the necessary contractors to perform detailed audits and install the technologies. This report documents the assessment of baseline energy use at one of Niagara Mohawk`s primary federal facilities, the FORSCOM Fort Drum facility located near Watertown, New York. It is a companion report to Volume 1, the Executive Summary, and Volume 3, the Resource Assessment. This analysis examines the characteristics of electric, gas, oil, propane, coal, and purchased thermal capacity use for fiscal year (FY) 1990. It records energy-use intensities for the facilities at Fort Drum by building type and energy end use. It also breaks down building energy consumption by fuel type, energy end use, and building type. A complete energy consumption reconciliation is presented that includes the accounting of all energy use among buildings, utilities, central systems, and applicable losses.

  19. Development of a composite satellite structure for FORTE

    SciTech Connect (OSTI)

    Grastataro, C.I.; Butler, T.A.; Smith, B.G.; Thompson, T.C.

    1995-04-01T23:59:59.000Z

    The Los Alamos National Laboratory (LANL) in partnership with Composite Optics Incorporated (COI) has advanced the development of low-cost, lightweight, composite technology for use in small satellite structures, in this case, for the Fast On-Orbit Recording of Transient Events (FORTE) satellite mission. The use of advanced composites in space applications is well developed, but the application of an all-composite satellite structure has not been achieved until now. This paper investigates the application of composite technology in the design of an all-composite spacecraft structure for small satellites. Engineering analysis and test results obtained from the development of the spacecraft engineering model are also presented.

  20. Wind Monitoring Report for Fort Wainwright's Donnelly Training Area

    SciTech Connect (OSTI)

    Orrell, Alice C.; Dixon, Douglas R.

    2011-01-18T23:59:59.000Z

    Using the wind data collected at a location in Fort Wainwright’s Donnelly Training Area (DTA) near the Cold Regions Test Center (CRTC) test track, Pacific Northwest National Laboratory (PNNL) estimated the gross and net energy productions that proposed turbine models would have produced exposed to the wind resource measured at the meteorological tower (met tower) location during the year of measurement. Calculations are based on the proposed turbine models’ standard atmospheric conditions power curves, the annual average wind speeds, wind shear estimates, and standard industry assumptions.

  1. Fort Bend County, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489Information HydroFontana,dataset nameFort Bend County, Texas:

  2. Fort Defiance, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489Information HydroFontana,dataset nameFort Bend County,

  3. Fort Lauderdale, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489Information HydroFontana,dataset nameFort Bend

  4. Fort Lupton, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489Information HydroFontana,dataset nameFort BendLupton,

  5. Fort Wayne, Indiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489Information HydroFontana,dataset nameFort

  6. Fort Belknap Electric Coop Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A PotentialJumpGermanFife Energy ParkForked Deer ElectricFort Belknap

  7. Radiometrics At Fort Bliss Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ | Roadmap Jump to:b <RGS Development BVRadiantRadioFort

  8. Boralex Fort Fairfield Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: EnergyAvignon,BelcherBlundell 1Fort Fairfield Biomass Facility Jump

  9. Town of Fort Laramie, Wyoming (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlin Baxin Hydropower Station JumpOpenEITown ofTown of Fort Laramie,

  10. Town of Fort Supply, Oklahoma (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlin Baxin Hydropower Station JumpOpenEITown ofTown of Fort Laramie,Town

  11. Fort Bliss, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to:ar-80m.pdfFillmoreGabbs ValleyCity,ForkedAdd aNorthFort BlissBliss,

  12. Fort Boise Veteran's Hospital District Heating Low Temperature Geothermal

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to:ar-80m.pdfFillmoreGabbs ValleyCity,ForkedAdd aNorthFort

  13. Fort Carson, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to:ar-80m.pdfFillmoreGabbs ValleyCity,ForkedAdd aNorthFortCarson,

  14. Air Quality and Road Emission Results for Fort Stewart, Georgia

    SciTech Connect (OSTI)

    Kirkham, Randy R.; Driver, Crystal J.; Chamness, Mickie A.; Barfuss, Brad C.

    2004-02-02T23:59:59.000Z

    The Directorate of Public Works Environmental & Natural Resources Division (Fort Stewart /Hunter Army Airfield) contracted with the Pacific Northwest National Laboratory (PNNL) to monitor particulate matter (PM) concentrations on Fort Stewart, Georgia. The purpose of this investigation was to establish a PM sampling network using monitoring equipment typically used in U.S. Environmental Protection Agency (EPA) ''saturation sampling'', to determine air quality on the installation. In this initial study, the emphasis was on training-generated PM, not receptor PM loading. The majority of PM samples were 24-hr filter-based samples with sampling frequency ranging from every other day, to once every six days synchronized with the EPA 6th day national sampling schedule. Eight measurement sites were established and used to determine spatial variability in PM concentrations and evaluate whether fluctuations in PM appear to result from training activities and forest management practices on the installation. Data collected to date indicate the average installation PM2.5 concentration is lower than that of nearby urban Savannah, Georgia. At three sites near the installation perimeter, analyses to segregate PM concentrations by direction of air flow across the installation boundary indicate that air (below 80 ft) leaving the installation contains less PM2.5 than that entering the installation. This is reinforced by the observation that air near the ground is cleaner on average than the air at the top of the canopy.

  15. Fort Drum integrated resource assessment. Volume 3, Resource assessment

    SciTech Connect (OSTI)

    Dixon, D.R.; Armstrong, P.R.; Daellenbach, K.K.; Dagle, J.E.; Di Massa, F.V.; Elliott, D.B.; Keller, J.M.; Richman, E.E.; Shankle, S.A.; Sullivan, G.P.; Wahlstrom, R.R.

    1992-12-01T23:59:59.000Z

    The US Army Forces Command (FORSCOM) has tasked Pacific Northwest Laboratory (PNL) as the lead laboratory supporting the US Department of Energy (DOE) Federal Energy Management Program`s (FEMP) mission to identify, evaluate, and assist in acquiring all cost-effective energy projects at Fort Drum. This is a model program PNL is designing for federal customers served by the Niagara Mohawk Power Company (Niagara Mohawk). It will (1) identify and evaluate all electric and fossil fuel cost-effective energy projects; (2) develop a schedule at each installation for project acquisition considering project type, size, timing, capital requirements, as well as energy and dollar savings; and (3) secure 100% of the financing required to implement electric energy efficiency projects from Niagara Mohawk and have Niagara Mohawk procure the necessary contractors to perform detailed audits and install the technologies. This report provides the results of the fossil fuel and electric energy resource opportunity (ERO) assessments performed by PNL at one of Niagara Mohawk`s primary federal facilities, the FORSCOM Fort Drum facility located near Watertown, New York. It is a companion report to Volume 1, the Executive Summary, and Volume 2, the Baseline Detail.

  16. Strategic Energy Management Plan For Fort Buchanan, Puerto Rico

    SciTech Connect (OSTI)

    Parker, Steven A.; Hunt, W. D.

    2001-10-31T23:59:59.000Z

    This document reports findings and recommendations as a result of a design assistance project with Fort Buchanan with the goals of developing a Strategic Energy Management Plan for the Site. A strategy has been developed with three major elements in mind: 1) development of a strong foundation from which to build, 2) understanding technologies that are available, and 3) exploring financing options to fund the implementation of improvements. The objective of this report is to outline a strategy that can be used by Fort Buchanan to further establish an effective energy management program. Once a strategy is accepted, the next step is to take action. Some of the strategies defined in this Plan may be implemented directly. Other strategies may require the development of a more sophisticated tactical, or operational, plan to detail a roadmap that will lead to successful realization of the goal. Similarly, some strategies are not single events. Rather, some strategies will require continuous efforts to maintain diligence or to change the culture of the Base occupants and their efforts to conserve energy resources.

  17. Solar Energy Development Assistance for Fort Hunter Liggett

    SciTech Connect (OSTI)

    Russo, Bryan J.; Hoffman, Michael G.; Chvala, William D.

    2011-03-30T23:59:59.000Z

    Pacific Northwest National Laboratory provided assistance to Fort Hunter Liggett to determine the opportunities for solar energy development on the site. Increasing use of renewable energy is mandated by several executive orders and legislation. Fort Hunter Liggett has many attributes that enhance its suitability for renewable energy development. First, the site is located south of San Francisco in a remote portion of the costal foothills. Brush and forest fires are frequent and often result in power outages, which subsequently impacts the site’s training mission. In addition, the site’s blended electric rate during fiscal year (FY) 2010 was high at 12 ˘/kWh. Lastly, the solar resource is moderately high; the site receives nearly 5.7 kWh/m2/day on a south facing, latitude-tilted surface. In light of these factors, the site is a clear candidate for a solar photovoltaic array. Prior to Pacific Northwest National Laboratory’s (PNNL) involvement, the site secured funding for a 1 megawatt (MW) photovoltaic (PV) array that will also provide shading for site vehicles. To best implement this project, PNNL conducted a site visit and was tasked with providing the site technical guidance and support regarding module selection, array siting, and other ancillary issues.

  18. Innovative use of DSP technology in space: FORTE event classifier

    SciTech Connect (OSTI)

    Briles, S.; Moore, K. Jones, R.; Klingner, P.; Neagley, D.; Caffrey, M.; Henneke, K.; Spurgen, W. [Los Alamos National Lab., NM (United States); Blain, P. [EG and G Idaho, Inc., Idaho Falls, ID (United States)

    1994-08-01T23:59:59.000Z

    The Fast On-Orbit Recording of Transient Events (FORTE) small satellite will field a digital signal processor (DSP) experiment for the purpose of classifying radio-frequency (rf) transient signals propagating through the earth`s ionosphere. Designated the Event Classifier experiment, this DSP experiment uses a single Texas Instruments` SMJ320C30 DSP to execute preprocessing, feature extraction, and classification algorithms on down-converted, digitized, and buffered rf transient signals in the frequency range of 30 to 300 MHz. A radiation-hardened microcontroller monitors DSP- abnormalities and supervises spacecraft command communications. On- orbit evaluation of multiple algorithms is supported by the Event Classifier architecture. Ground-based commands determine the subset and sequence of algorithms executed to classify a captured time series. Conventional neural network classification algorithms will be some of the classification techniques implemented on-board FORTE while in a low-earth orbit. Results of all experiments, after being stored in DSP flash memory, will be transmitted through the spacecraft to ground stations. The Event Classifier is a versatile and fault-tolerant experiment that is an important new space-based application of DSP technology.

  19. Dust Plume Modeling at Fort Bliss: Full Training Scenario

    SciTech Connect (OSTI)

    Chapman, Elaine G.; Rishel, Jeremy P.; Rutz, Frederick C.; Seiple, Timothy E.; Newsom, Rob K.; Allwine, K Jerry

    2006-09-26T23:59:59.000Z

    The potential for air quality impacts from heavy mechanized vehicles operating in the training ranges and on the unpaved main supply routes at Fort Bliss is being investigated. The investigation uses the atmospheric modeling system DUSTRAN to simulate fugitive dust emission and dispersion from typical activities occurring on the installation. This report conveys the results of DUSTRAN simulations conducted using a “Full Training” scenario developed by Fort Bliss personnel. he Full Training scenario includes simultaneous off-road activities of two full Heavy Brigade Combat Teams (HCBTs) and one HCBT battalion on three training ranges. Simulations were conducted for the six-day period, April 25-30, 2005, using previously archived meteorological records. Simulation results are presented in the form of 24-hour average PM10 plots and peak 1-hour PM10 concentration plots, where the concentrations represent contributions resulting from the specified military vehicular activities, not total ambient PM10 concentrations. Results indicate that the highest PM10 contribution concentrations occurred on April 30 when winds were light and variable. Under such conditions, lofted particulates generated by vehicular movement stay in the area of generation and are not readily dispersed. The effect of training duration was investigated by comparing simulations with vehicular activity extending over a ten hour period (0700 to 1700 MST) with simulations where vehicular activity was compressed into a one hour period (0700 to 0800 MST). Compressing all vehicular activity into one hour led to higher peak one-hour and 24-hour average concentration contributions, often substantially higher.

  20. Fort Stewart integrated resource assessment. Volume 3: Resource assessment

    SciTech Connect (OSTI)

    Sullivan, G.P.; Keller, J.M.; Stucky, D.J.; Wahlstrom, R.R.; Larson, L.L.

    1993-10-01T23:59:59.000Z

    The US Army Forces Command (FORSCOM) has tasked the US Department of Energy (DOE) Federal Energy Management Program (FEMP), supported by the Pacific Northwest Laboratory, to identify, evaluate, and assist in acquiring all cost-effective energy projects at Fort Stewart. This is part of a model program that PNL is designing to support energy-use decisions in the federal sector. This report provides the results of the fossil fuel and electric energy resource opportunity (ERO) assessments performed by PNL at the FORSCOM Fort Stewart facility located approximately 25 miles southwest of Savannah, Georgia. It is a companion report to Volume 1, Executive Summary, and Volume 2, Baseline Detail. The results of the analyses of EROs are presented in 11 common energy end-use categories (e.g., boilers and furnaces, service hot water, and building lighting). A narrative description of each ERO is provided, along with a table detailing information on the installed cost, energy and dollar savings; impacts on operations and maintenance (O&M); and, when applicable, a discussion of energy supply and demand, energy security, and environmental issues. A description of the evaluation methodologies and technical and cost assumptions is also provided for each ERO. Summary tables present the cost-effectiveness of energy end-use equipment before and after the implementation of each ERO. The tables also present the results of the life-cycle cost (LCC) analysis indicating the net present value (NPV) and savings to investment ratio (SIR) of each ERO.

  1. Composition of Fish Communities in a European Macrotidal Salt Marsh (the Mont Saint-Michel Bay,

    E-Print Network [OSTI]

    Boyer, Edmond

    Composition of Fish Communities in a European Macrotidal Salt Marsh (the Mont Saint-Michel Bay At least 100 fish species are known to be present in the intertidal areas (estuaries, mudflats and salt, such as estuaries and lagoons, play a nursery role for many fish species. However, in Europe little attention has

  2. Degradation of PEO in the Solid State: A Theoretical Kinetic Model Pascal de Sainte Claire*

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Degradation of PEO in the Solid State: A Theoretical Kinetic Model Pascal de Sainte Claire of the inner mechanisms that play a key role in the natural oxidative degradation (photoinduced and thermal grasps the complexity of the degradation mechanism, results depend mainly on the reactivity of peroxy

  3. Shapes of Knotted Cyclic Polymers Eric J. Rawdon, University of St. Thomas, Saint Paul, MN, USA

    E-Print Network [OSTI]

    Bigelow, Stephen

    Shapes of Knotted Cyclic Polymers Eric J. Rawdon, University of St. Thomas, Saint Paul, MN, USA, USA Momentary configurations of long polymers at thermal equilibrium usually deviate from spherical of asphericity (or prolateness) that describe these momentary ellipsoidal shapes of a polymer are determined

  4. NEW GEOMETRIC FOURIER DESCRIPTORS FOR COLOR IMAGE RECOGNITION Jose Mennesson, Christophe Saint-Jean, Laurent Mascarilla

    E-Print Network [OSTI]

    NEW GEOMETRIC FOURIER DESCRIPTORS FOR COLOR IMAGE RECOGNITION Jos´e Mennesson, Christophe Saint are a color Fourier transform us- ing geometric algebra [1] and Generalized Fourier descrip- tors defined from the group M2 of the motion of the plane [2]. In this paper, new generalized color Fourier descrip- tors

  5. Numerical modelling of avalanches based on Saint-Venant equations using a kinetic scheme

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    avalanches are treated here as a dry granular flow with Coulomb-type behavior. The numerical finite volume of an avalanche over simplified topography. Coulomb-type behavior with constant and variable friction angle modelling, Coulomb friction, Saint-Venant equations, finite volume kinetic scheme. 1 Introduction Granular

  6. Analysis of natural gas supply strategies at Fort Drum

    SciTech Connect (OSTI)

    Stucky, D.J.; Shankle, S.A.; Anderson, D.M.

    1992-07-01T23:59:59.000Z

    This analysis investigates strategies for Fort Drum to acquire a reliable natural gas supply while reducing its gas supply costs. The purpose of this study is to recommend an optimal supply mix based on the life-cycle costs of each strategy analyzed. In particular, this study is intended to provide initial guidance as to whether or not the building and operating of a propane-air mixing station is a feasible alternative to the current gas acquisition strategy. The analysis proceeded by defining the components of supply (gas purchase, gas transport, supplemental fuel supply); identifying alternative options for each supply component; constructing gas supply strategies from different combinations of the options available for each supply component and calculating the life-cycle costs of each supply strategy under a set of different scenarios reflecting the uncertainty of future events.

  7. Landscape influences on headwater streams on Fort Stewart, Georgia, USA

    SciTech Connect (OSTI)

    Jager, Yetta [ORNL; Bevelhimer, Mark S [ORNL; al., et. [Various Institutes

    2011-01-01T23:59:59.000Z

    Military landscapes represent a mixture of undisturbed natural ecosystems, developed areas, and lands that support different types and intensities of military training. Research to understand water-quality influences of military landscapes usually involves intensive sampling in a few watersheds. In this study, we developed a survey design of accessible headwater watersheds intended to improve our ability to distinguish land water relationships in general, and training influences, in particular, on Fort Stewart, GA. We sampled and analyzed water from watershed outlets. We successfully developed correlative models for total suspended solids (TSS), total nitrogen (TN), organic carbon (OC), and organic nitrogen (ON), which dominated in this blackwater ecosystem. TSS tended to be greater in samples after rainfall and during the growing season, and models that included %Wetland suggested a build-and-flush relationship. We also detected a positive association between TSS and tank-training, which suggests a need to intercept sediment-laden runoff from training areas. Models for OC showed a negative association with %Grassland. TN and ON both showed negative associations with %Grassland, %Wetland, and %Forest. Unexpected positive associations were observed between OC and equipmenttraining activity and between ON and %Bare ground ? Roads. Future studies that combine our survey-based approach with more intensive monitoring of the timing and intensity of training would be needed to better understand the mechanisms for these empirical relationships involving military training. Looking beyond local effects on Fort Stewart streams, we explore questions about how exports of OC and nitrogen from coastal military installations ultimately influence estuaries downstream.

  8. Fort Smith, mother post of the southwest quartermaster supply and archeological patterning

    E-Print Network [OSTI]

    Bento, Sylvia Deborah

    1988-01-01T23:59:59.000Z

    is the site of the second Fort Smith on a relatively level terrace reaching an elevation of 440 to 455 feet AMSL. This terrace extends east beyond the park boundary about three quarters of a mile until uplands are encountered. The majority of the park... of Fort Smith became a topic of concern to the War Department . On July 8, 1845, General Thomas Jesup 'I f irst Quartermaster General of the United States Army, was sent to examine "the site of Fort Smith in its relation to the line of defense...

  9. A review of "Mohawk Saint: Catherine Tekakwitha and the Jesuits." by Allan Greer

    E-Print Network [OSTI]

    Br. Benet Exton, O.S.B.

    2005-01-01T23:59:59.000Z

    on major writers in early modern England. With its insistence that inwardness matters as much as the social forces that regulate identity, the book represents an important contribution to theories of Renaissance subjec- tivity and identity. Allan Greer... Tekakawitha. She died in 1680, and progress of her cause for sainthood has taken a long time. She has not been canonized a saint although the elusive miracle needed has reportedly occurred, and so it is possible that Pope Benedict XVI will canonize her. Allan...

  10. Nuclear Safeguards Considerations For The Pebble Bed Modular Reactor (PBMR)

    SciTech Connect (OSTI)

    Phillip Casey Durst; David Beddingfield; Brian Boyer; Robert Bean; Michael Collins; Michael Ehinger; David Hanks; David L. Moses; Lee Refalo

    2009-10-01T23:59:59.000Z

    High temperature reactors (HTRs) have been considered since the 1940s, and have been constructed and demonstrated in the United Kingdom (Dragon), United States (Peach Bottom and Fort Saint Vrain), Japan (HTTR), Germany (AVR and THTR-300), and have been the subject of conceptual studies in Russia (VGM). The attraction to these reactors is that they can use a variety of reactor fuels, including abundant thorium, which upon reprocessing of the spent fuel can produce fissile U-233. Hence, they could extend the stocks of available uranium, provided the fuel is reprocessed. Another attractive attribute is that HTRs typically operate at a much higher temperature than conventional light water reactors (LWRs), because of the use of pyrolytic carbon and silicon carbide coated (TRISO) fuel particles embedded in ceramic graphite. Rather than simply discharge most of the unused heat from the working fluid in the power plant to the environment, engineers have been designing reactors for 40 years to recover this heat and make it available for district heating or chemical conversion plants. Demonstrating high-temperature nuclear energy conversion was the purpose behind Fort Saint Vrain in the United States, THTR-300 in Germany, HTTR in Japan, and HTR-10 and HTR-PM, being built in China. This resulted in nuclear reactors at least 30% or more thermodynamically efficient than conventional LWRs, especially if the waste heat can be effectively utilized in chemical processing plants. A modern variant of high temperature reactors is the Pebble Bed Modular Reactor (PBMR). Originally developed in the United States and Germany, it is now being redesigned and marketed by the Republic of South Africa and China. The team examined historical high temperature and high temperature gas reactors (HTR and HTGR) and reviewed safeguards considerations for this reactor. The following is a preliminary report on this topic prepared under the ASA-100 Advanced Safeguards Project in support of the NNSA Next Generation Safeguards Initiative (NGSI).

  11. A SUMMARY OF COAL IN THE FORT UNION FORMATION (TERTIARY), BIGHORN BASIN,

    E-Print Network [OSTI]

    Chapter SB A SUMMARY OF COAL IN THE FORT UNION FORMATION (TERTIARY), BIGHORN BASIN, WYOMING assessment of selected Tertiary coal beds and zones in the Northern RockyMountains and Great Plains region, U...........................................................................................................................SB-1 Coal Production History

  12. An ozone climatology of the Dallas-Fort Worth area and its relationship to meteorology 

    E-Print Network [OSTI]

    Nobis, Timothy Edward

    1998-01-01T23:59:59.000Z

    The Environmental protection agency has established a hics. National Ambient Air Quality Standard for surface ozone through the Clean Air Act and its amendments. The Dallas / Fort Worth area is in violation of these standards, and to date...

  13. City of Fort Collins- Green Building Requirement for City-Owned Buildings

    Broader source: Energy.gov [DOE]

    The City Council of Fort Collins passed a resolution in September 2006, establishing green building goals for new city-owned buildings of 5,000 square feet or more. New buildings must be designed...

  14. Contour Ripping and Composted Dairy Manure for Erosion Control on Fort Hood Military Installation, Texas 

    E-Print Network [OSTI]

    Prcin, Lisa J.

    2010-07-14T23:59:59.000Z

    erosion. This investigation examined two conservation practices directed at improving and creating sustainable training conditions on Fort Hood training lands, contour ripping and the application of composted dairy manure. The application of composted...

  15. Fort Collins Utilities- Residential On-Bill Financing Program Program (Colorado)

    Broader source: Energy.gov [DOE]

    Fort Collins offers its residential customers low-interest loans that may be used to finance a variety of projects including adding insulation, replacing a furnace, upgrading water and space...

  16. Contour Ripping and Composted Dairy Manure for Erosion Control on Fort Hood Military Installation, Texas

    E-Print Network [OSTI]

    Prcin, Lisa J.

    2010-07-14T23:59:59.000Z

    erosion. This investigation examined two conservation practices directed at improving and creating sustainable training conditions on Fort Hood training lands, contour ripping and the application of composted dairy manure. The application of composted...

  17. Reassembling the rolling bridge : an art gallery at Fort Point Channel, Boston

    E-Print Network [OSTI]

    Lim, Winston E

    1996-01-01T23:59:59.000Z

    Spanning the Fort Point Channel for nearly a century, Boston's Rolling Bridge is a familiar landmark to many railway commuters and residents of the city. Its robust steel assembly, characterized by three anthropomorphic ...

  18. Urban tree maintenance scheduling: a case study using Fort Worth's METRIS geo data base

    E-Print Network [OSTI]

    Mirenda, Joseph Salvatore

    1981-01-01T23:59:59.000Z

    URBAN TREE MAINTENANCE SCHEDULING: A CASE STUDY USING FORT WORTH'S METRIS GEO DATA BASE A Thesis JOSEPH SALVATORE MIRENDA Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement for the degree... of MASTER OF SCIENCE December, 1981 Major Subject: Forestry URBAN TREE MAINTENANCE SCHEDULING: A CASE STUDY USING FORT WORTH'S METRIS GEO DATA BASE A Thesis by JOSEPH SALVATORE MIRENDA Approved as to style and content by: Dr. Robert D. Baker...

  19. Facility Energy Decision System (FEDS) Assessment Report for Fort Buchanan, Puerto Rico

    SciTech Connect (OSTI)

    Chvala, William D.; Solana, Amy E.; Dixon, Douglas R.

    2005-02-01T23:59:59.000Z

    This report documents the findings of the Facility Energy Decision System (FEDS) assessment at Fort Buchanan, Puerto Rico, by a team of PNNL engineers under contract to the Installation Management Agency (IMA) Southeast Region Office (SERO). Funding support was also provided by the Department of Energy's Federal Energy Management Program. The purpose of the assessment was to determine how energy is consumed at Fort Buchanan, identify the most cost-effective energy retrofit measures, and calculate the potential energy and cost savings.

  20. Identification and prehistoric exploitation of chert from Fort Hood, Bell and Coryell counties, Texas

    E-Print Network [OSTI]

    Dickens, William Alan

    1995-01-01T23:59:59.000Z

    IDENTIFICATION AND PREHISTORIC EXPLOITATION OF CHERT FROM FORT HOOD, BELL AND CORYELL COUNTIES, TEXAS A Thesis by WILLIAM ALAN DICKENS Submitted to the Office of Graduate Studies of Texas ASM University in partial fulfillment... of the requirements for the degree of MASTER OF ARTS May 1995 Major Subject: Anthropology IDENTIFICATION AND PREHISTORIC EXPLOITATION OF CHERT FROM FORT HOOD, BELL AND CORYELL COUNTIES, TEXAS A Thesis by WILLIAM ALAN DICKENS Submitted to Texas A&M University...

  1. Trace fossils of Fort Hays Limestone Member of Niobrara Chalk (Upper Cretaceous), west-central Kansas

    E-Print Network [OSTI]

    Frey, R. W.

    1970-07-17T23:59:59.000Z

    THE UNIVERSITY OF KANSAS PALEONTOLOGICAL CONTRIBUTIONS ARTICLE 53 (CRETACEOUS 2) TRACE FOSSILS OF FORT HAYS LIMESTONE MEMBER OF NIOBRARA CHALK (UPPER CRETACEOUS), WEST-CENTRAL KANSAS ROBERT W. FREY University of Georgia Marine Institute, Sapelo... Figures, 10 Plates, 4 Tables TRACE FOSSILS OF FORT HAYS LIMESTONE MEMBER OF NIOBRARA CHALK (UPPER CRETACEOUS), WEST-CENTRAL KANSAS' ROBERT W. FREY University of Georgia Marine Institute, Sapelo Island, Georgia CONTENTS PAGE PAGE ABSTRACT 5 Thalassinoides...

  2. Market segmentation of visitors to Fort Wilkins State Park using a hierarchical clustering approach

    E-Print Network [OSTI]

    Fisher, Thomas Mark

    1980-01-01T23:59:59.000Z

    MARKET SEGMENTATION OF VISITORS TO FORT WILKINS STATE PARK USING A HIERARCHICAL CLUSTERING APPROACH A Thesis by THOMAS MARK FISHER Submitted to the Graduate College of Texas AAM University in partial fulfillment of the requirement... for the degree of MASTER OF SCIENCE August 1980 Major Subject: Recreation and Resources Development MARKET SEGMENTATION OF VISITORS TO FORT WILKINS STATE PARK USING A HIERARCHICAL CLUSTERING APPROACH A Thesis by THOMAS MARK FISHER Approved as to style...

  3. Fort Stewart integrated resource assessment. Volume 1, Executive summary

    SciTech Connect (OSTI)

    Larson, L.L.; Keller, J.M.

    1993-10-01T23:59:59.000Z

    The US Department of Energy (DOE) Federal Energy Management Program (FEMP), supported by the Pacific Northwest Laboratory (PNL), has developed a model program that provides a systematic approach to evaluating energy opportunities that (1) identifies the building groups and end uses that use the most energy (not just have the greatest energy-use intensity), and (2) evaluates the numerous options for retrofit or installation of new technology that will result in the selection of the most cost-effective technologies. In essence, this model program provides the federal energy manager with a roadmap to significantly reduce energy use in a planned, rational, cost-effective fashion that is not biased by the constraints of the typical funding sources available to federal sites. The results from this assessment process can easily be turned into a five- to ten-year energy management plan that identifies where to start and how to proceed in order to reach the mandated energy consumption targets. This report provides the results of the fossil fuel and electric energy resource opportunity (ERO) assessments performed by PNL at the US Army US Forces Command (FORSCOM) Fort Stewart facility located approximately 25 miles southwest of Savannah, Georgia. It is a companion report to Volume 2, Baseline Detail, and Volume 3, Resource Assessment.

  4. Habitat Restoration/Enhancement Fort Hall Reservation : 2008 Annual Report.

    SciTech Connect (OSTI)

    Osborne, Hunter [Shoshone Bannock Tribes

    2009-07-23T23:59:59.000Z

    Habitat enhancement, protection and monitoring were the focus of the Resident Fisheries Program during 2008. Enhancement and protection included sloping, fencing and planting wetlands plugs at sites on Spring Creek (Head-waters). Many previously constructed instream structures (rock barbs and wing dams) were repaired throughout the Fort Hall Indian Reservation (Reservation). Physical sampling during 2008 included sediment and depth measurements (SADMS) in Spring Creek at the Car Removal site. SADMS, used to track changes in channel morphology and specifically track movements of silt through Bottoms stream systems were completed for 5 strata on Spring Creek. Water temperature and chemistry were monitored monthly on Spring Creek, Clear Creek, Diggie Creek, and Portneuf (Jimmy Drinks) and Blackfoot rivers. Fish population densities and biomass were sampled in five reservation streams which included nine sites. Sampling protocols were identical to methods used in past years. Numbers of fish in Spring Creek series remained relatively low, however, there was an increase of biomass overall since 1993. Salmonid fry densities were monitored near Broncho Bridge and were similar to 2006, and 2007, however, as in years past, high densities of macrophytes make it very difficult to see fry in addition to lack of field technicians. Mean catch rate by anglers on Bottoms streams stayed the same as 2007 at 1.5/hr. Numbers of fish larger than 18-inches caught by anglers increased from 2007 at .20 to .26/hr.

  5. Les ombres noires de Saint Domingue: The Impact of Black Women on Gender and Racial Boundaries in Eighteenth- and Nineteenth-Century France

    E-Print Network [OSTI]

    Mitchell, Robin

    2010-01-01T23:59:59.000Z

    Sara Flounders, and Kim Ives. Haiti, a Slave Revolution: 200Fick, Carolyn E. The Making of Haiti: The Saint Domingue119-138. ________. “ ________.Haiti and the Abolitionists:

  6. Water Reclamation and Reuse at Fort Carson: Best Management Practice Case Study #14 - Alternate Water Sources (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2009-08-01T23:59:59.000Z

    FEMP Water Efficiency Best Management Practice #14 Case Study: Overview of the water reclamation and reuse program at the U.S. Army's Fort Carson.

  7. Fort Smith, mother post of the southwest quartermaster supply and archeological patterning 

    E-Print Network [OSTI]

    Bento, Sylvia Deborah

    1988-01-01T23:59:59.000Z

    the supplies and haul them to Fort Smith. This process was extremely time consuming and expensive. When steamers attempted to ride the low water they would often collide with floating debris and become stranded. The steamer New World was stuck 10 miles... below Pine Bluff ? Arkansas? for six months (NcClel land 18'55) . Unable to get the vessel out of the r iver & the For t Smith quartermaster, then Captain French& knew that a way had to be found to get the stores from the steamer to Fort Smith...

  8. Dust Plume Modeling at Fort Bliss: Move-Out Operations, Combat Training and Wind Erosion

    SciTech Connect (OSTI)

    Chapman, Elaine G.; Rishel, Jeremy P.; Rutz, Frederick C.; Seiple, Timothy E.; Newsom, Rob K.; Allwine, K Jerry

    2006-09-29T23:59:59.000Z

    The potential for air-quality impacts from heavy mechanized vehicles operating in the training ranges and on the unpaved main supply routes at Fort Bliss was investigated. This report details efforts by the staff of Pacific Northwest National Laboratory for the Fort Bliss Directorate of Environment in this investigation. Dust emission and dispersion from typical activities, including move outs and combat training, occurring on the installation were simulated using the atmospheric modeling system DUSTRAN. Major assumptions associated with designing specific modeling scenarios are summarized, and results from the simulations are presented.

  9. GROUPE D'ANALYSE ET DE THORIE CONOMIQUE LYON -ST TIENNE La critique saint-simonienne de la secte des

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    'une approche sp´ecifique, op- posant oisifs et travailleurs. Cette partition modifie les d´ebats classiquesGROUPE D'ANALYSE ET DE THÉORIE ÉCONOMIQUE LYON - ST ÉTIENNE WP 1409 La critique saint-simonienne de|WorkingPapers #12;GATE Groupe d'Analyse et de Théorie Économique Lyon-St Étienne 93, chemin des Mouilles 69130

  10. A magnetic fabric study of the AigoualSaint GuiralLiron granite pluton (French Massif Central) and relationships

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    A magnetic fabric study of the Aigoual­Saint Guiral­Liron granite pluton (French Massif Central been carried out to determine the granite fabric. Biotite, local hornblende, and small grains of magnetite are the main carriers of AMS in both types. Porphyritic granite and dikes display different AMS

  11. IAEA FEC Saint Petersburg, Russia, 13-18 October 2014, O. Motojima The ITER Project Construction Status

    E-Print Network [OSTI]

    Regulation/QA Quality Control #12;IAEA FEC Saint Petersburg, Russia, 13-18 October 2014, O. Motojima Slide 3 advances in modelling of physics processes underlying ELMs and ELM control Development of physics basis plasma fusion performance Design of advanced plasma control system progressing Integrated modelling

  12. EIS-0069: Solvent Refined Coal-II Demonstration Project, Fort Martin, Monongalia County, West Virginia

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy developed this statement to assess the potential environmental, economic and social impacts associated with the construction and short-term operation of a 6,000-tons-per-stream-day-capacity facility that will demonstrate the technical operability, economic viability, and environmental acceptability of the solvent refined coal process at Fort Martin, West Virginia.

  13. FORT UNION COAL IN THE POWDER RIVER BASIN, WYOMING AND MONTANA: A SYNTHESIS

    E-Print Network [OSTI]

    Chapter PS FORT UNION COAL IN THE POWDER RIVER BASIN, WYOMING AND MONTANA: A SYNTHESIS By R of selected Tertiary coal beds and zones in the Northern RockyMountains and Great Plains region, U Resource assessment of selected Tertiary coal beds and zones in the Northern Rocky Mountains and Great

  14. FORT UNION COAL IN THE GREATER GREEN RIVER BASIN, EAST FLANK OF THE ROCK SPRINGS UPLIFT,

    E-Print Network [OSTI]

    Chapter GS FORT UNION COAL IN THE GREATER GREEN RIVER BASIN, EAST FLANK OF THE ROCK SPRINGS UPLIFT 1999 Resource assessment of selected Tertiary coal beds and zones in the Northern Rocky in the toolbar to return. 1999 Resource assessment of selected Tertiary coal beds and zones in the Northern Rocky

  15. BOCA RATON DANIA BEACH DAVIE FORT LAUDERDALE HARBOR BRANCH JUPITER PORT ST. LUCIE Educational Plant Survey

    E-Print Network [OSTI]

    Fernandez, Eduardo

    BOCA RATON DANIA BEACH DAVIE FORT LAUDERDALE HARBOR BRANCH JUPITER PORT ST. LUCIE Educational Plant Survey 2011/2012 ­ 2016/2017 Approved by FAU BOT on June 15, 2011 #12;EDUCATIONAL PLANT SURVEY Florida ...................................................................................................................... ii Educational Plant Survey Team

  16. Jordan Cove Energy Project Fort Chicago Energy Partners L.P.

    E-Print Network [OSTI]

    Jordan Cove Energy Project Fort Chicago Energy Partners L.P. 1.0 Bcfd Coos Bay, Oregon Oregon LNG Funding Partners 1.0-1.5 Bcfd Astoria, Oregon Portwestward LNG Facility Portwestward LNG, LLC 0.7-1.25 Bcfd Clatskanie, Oregon Kitimat LNG Facility Apache Corp 0.64 -1.0 Bcfd Kitimat, British Columbia

  17. FRAMEWORK GEOLOGY OF FORT UNION COAL IN THE EASTERN ROCK SPRINGS UPLIFT,

    E-Print Network [OSTI]

    Chapter GF FRAMEWORK GEOLOGY OF FORT UNION COAL IN THE EASTERN ROCK SPRINGS UPLIFT, GREATER GREEN RIVER BASIN, WYOMING By R.M. Flores,1 A.M. Ochs,2 and L.R. Bader1 in U.S. Geological Survey Professional Paper 1625-A 1 U.S. Geological Survey 2 Consultant, U.S. Geological Survey, Denver, Colorado 1999

  18. WARNER COLLEGE OF NATURAL RESOURCES 1401 Campus Delivery Fort Collins, CO 80523-1401

    E-Print Network [OSTI]

    and Protected Area· Management Natural Resources Management Rangeland Ecology Range and Forest ManagementWARNER COLLEGE OF NATURAL RESOURCES 1401 Campus Delivery · Fort Collins, CO 80523-1401 (970) 491 Science· Forest Management· Forestry Business· Geology Environmental Geology· Geology· Natural Resource

  19. Survival Estimates of White-tailed Deer Fawns at Fort Rucker, Alabama Angela Marie Jackson

    E-Print Network [OSTI]

    Ditchkoff, Steve

    Survival Estimates of White-tailed Deer Fawns at Fort Rucker, Alabama by Angela Marie Jackson for the Degree of Master of Science Auburn, Alabama August 6, 2011 Keywords: White-tailed deer, fawn survival, coyote, predator-prey theory Copyright 2011 by Angela Marie Jackson Approved by Stephen S. Ditchkoff

  20. EA-1922: Combined Power and Biomass Heating System, Fort Yukon, Alaska

    Broader source: Energy.gov [DOE]

    DOE (lead agency), Denali Commission (cooperating agency) and USDA Rural Utilities Services (cooperating agency) are proposing to provide funding to support the final design and construction of a biomass combined heat and power plant and associated district heating system to the Council of Athabascan Tribal Governments and the Gwitchyaa Zhee Corporation. The proposed biomass district heating system would be located in Fort Yukon Alaska.

  1. Fort Lewis natural gas and fuel oil energy baseline and efficiency resource assessment

    SciTech Connect (OSTI)

    Brodrick, J.R. [USDOE, Washington, DC (United States); Daellenbach, K.K.; Parker, G.B.; Richman, E.E.; Secrest, T.J.; Shankle, S.A. [Pacific Northwest Lab., Richland, WA (United States)

    1993-02-01T23:59:59.000Z

    The mission of the US Department of Energy (DOE) Federal Energy Management Program (FEMP) is to lead the improvement of energy efficiency and fuel flexibility within the federal sector. Through the Pacific Northwest Laboratory (PNL), FEMP is developing a fuel-neutral approach for identifying, evaluating, and acquiring all cost-effective energy projects at federal installations; this procedure is entitled the Federal Energy Decision Screening (FEDS) system. Through a cooperative program between FEMP and the Army Forces Command (FORSCOM) for providing technical assistance to FORSCOM installations, PNL has been working with the Fort Lewis Army installation to develop the FEDS procedure. The natural gas and fuel oil assessment contained in this report was preceded with an assessment of electric energy usage that was used to implement a cofunded program between Fort Lewis and Tacoma Public Utilities to improve the efficiency of the Fort`s electric-energy-using systems. This report extends the assessment procedure to the systems using natural gas and fuel oil to provide a baseline of consumption and an estimate of the energy-efficiency potential that exists for these two fuel types at Fort Lewis. The baseline is essential to segment the end uses that are targets for broad-based efficiency improvement programs. The estimated fossil-fuel efficiency resources are estimates of the available quantities of conservation for natural gas, fuel oils {number_sign}2 and {number_sign}6, and fuel-switching opportunities by level of cost-effectiveness. The intent of the baseline and efficiency resource estimates is to identify the major efficiency resource opportunities and not to identify all possible opportunities; however, areas of additional opportunity are noted to encourage further effort.

  2. California’s North Coast Fishing Communities Historical Perspective and Recent Trends: Fort Bragg/Noyo Harbor Fishing Community Profile

    E-Print Network [OSTI]

    Pomeroy, Caroline; Thomson, Cynthia J.; Stevens, Melissa M.

    2011-01-01T23:59:59.000Z

    3/29/10. Fort Bragg/Noyo Harbor Fishing Community ProfileHarbor Fishing Community Profile Henning. 1966. FeasibilityVaccaro. 2007. Community Profiles for West Coast and North

  3. Building America Whole-House Solutions for New Home: Fort Devens: Cold Climate Market-Rate Townhomes

    Broader source: Energy.gov [DOE]

    Fort Devens: Cold Climate Market-Rate Townhomes Targeting HERS Index of 40, Harvard, Massachusetts (Fact Sheet), Building America Case Study: Efficient Solutions for New and Existing Homes, Building Technologies Office (BTO)

  4. Fort Lewis natural gas and fuel oil energy baseline and efficiency resource assessment

    SciTech Connect (OSTI)

    Brodrick, J.R. (USDOE, Washington, DC (United States)); Daellenbach, K.K.; Parker, G.B.; Richman, E.E.; Secrest, T.J.; Shankle, S.A. (Pacific Northwest Lab., Richland, WA (United States))

    1993-02-01T23:59:59.000Z

    The mission of the US Department of Energy (DOE) Federal Energy Management Program (FEMP) is to lead the improvement of energy efficiency and fuel flexibility within the federal sector. Through the Pacific Northwest Laboratory (PNL), FEMP is developing a fuel-neutral approach for identifying, evaluating, and acquiring all cost-effective energy projects at federal installations; this procedure is entitled the Federal Energy Decision Screening (FEDS) system. Through a cooperative program between FEMP and the Army Forces Command (FORSCOM) for providing technical assistance to FORSCOM installations, PNL has been working with the Fort Lewis Army installation to develop the FEDS procedure. The natural gas and fuel oil assessment contained in this report was preceded with an assessment of electric energy usage that was used to implement a cofunded program between Fort Lewis and Tacoma Public Utilities to improve the efficiency of the Fort's electric-energy-using systems. This report extends the assessment procedure to the systems using natural gas and fuel oil to provide a baseline of consumption and an estimate of the energy-efficiency potential that exists for these two fuel types at Fort Lewis. The baseline is essential to segment the end uses that are targets for broad-based efficiency improvement programs. The estimated fossil-fuel efficiency resources are estimates of the available quantities of conservation for natural gas, fuel oils [number sign]2 and [number sign]6, and fuel-switching opportunities by level of cost-effectiveness. The intent of the baseline and efficiency resource estimates is to identify the major efficiency resource opportunities and not to identify all possible opportunities; however, areas of additional opportunity are noted to encourage further effort.

  5. Mobility 2030: The Metropolitan Transportation Plan for the Dallas-Fort Worth Area 2009 Amendment

    E-Print Network [OSTI]

    North Central Texas Council of Governments

    2009-04-09T23:59:59.000Z

    the airports via DART light rail. DCTA will connect to the system in Carrollton. ? Review surface access to aviation and related changes over time. St udy alternative access and congestion scenarios at commercial airports based on alternative air travel... Dallas/Fort Worth International Airport Kathryn Wilemon Councilm e m b e r, City of Arlingt on Michael Morris, P.E. Director of Transportation, NCTC OG Surface Transportation Technical Committee Jim Sparks, Chair City of Grand Prairi e...

  6. Methodology for the evaluation of a 4000-home geothermal heat pump retrofit at Fort Polk, Louisiana

    SciTech Connect (OSTI)

    Hughes, P.J.; Shonder, J.A.; White, D.L.; Huang, H.L.

    1998-03-01T23:59:59.000Z

    The US Army and a private energy service company are developing a comprehensive energy efficiency project to upgrade the family housing at Fort Polk, Louisiana. The project includes converting the space conditioning systems of more than 4,000 housing units to geothermal (or ground-source) heat pumps (GHPs). This interim report describes the methodology of the evaluation associated with this project, including the field monitoring that has been conducted at the base.

  7. Energy efficiency campaign for residential housing at the Fort Lewis army installation

    SciTech Connect (OSTI)

    AH McMakin; RE Lundgren; EL Malone

    2000-02-23T23:59:59.000Z

    In FY1999, Pacific Northwest National Laboratory conducted an energy efficiency campaign for residential housing at the Fort Lewis Army Installation near Tacoma, Washington. Preliminary weather-corrected calculations show energy savings of 10{percent} from FY98 for energy use in family housing. This exceeded the project's goal of 3{percent}. The work was funded by the U.S. DOEs Federal Energy Management Program (FEMP), Office of Energy Efficiency and Renewable Energy. The project adapted FEMP's national ``You Have the Power Campaign'' at the local level, tailoring it to the military culture. The applied research project was designed to demonstrate the feasibility of tailored, research-based strategies to promote energy conservation in military family housing. In contrast to many energy efficiency efforts, the campaign focused entirely on actions residents could take in their own homes, as opposed to technology or housing upgrades. Behavioral change was targeted because residents do not pay their own utility bills; thus other motivations must drive personal energy conservation. This campaign augments ongoing energy savings from housing upgrades carried out by Fort Lewis. The campaign ran from September 1998 through August 1999. The campaign strategy was developed based on findings from previous research and on input from residents and officials at Fort Lewis. Energy use, corrected to account for weather differences, was compared with the previous year's use. Survey responses from 377 of Fort Lewis residents of occupied housing showed that the campaign was moderately effective in promoting behavior change. Of those who were aware of the campaign, almost all said they were now doing one or more energy-efficient things that they had not done before. Most people were motivated by the desire to do the right thing and to set a good example for their children. They were less motivated by other factors.

  8. The justification of budget requests utilizing a grounds resource inventory at the Fort Worth Botanic Garden

    E-Print Network [OSTI]

    Powers, Vivian Lee

    1989-01-01T23:59:59.000Z

    TEXAS ARM UNIVERSITY LIBRARY Record of Study THE JUST1FICATION OF BUDGET REQUESTS UTILIZING A GROUNDS RESOURCE INVENTORY AT THE FORT WORTH BOTANIC GARDEN A PROFESSIONAL PAPER by Vivian Lee Powers Submitted to the College of Agriculture... budget requests. Anaheim City Park's Superintendent Chris Jarvi knew that when the new Riverdaie Park was completed it would require him to hire 1. 3 addition maintenance workers. (I) He could also prove this to the budget analysts, city manager...

  9. Energy saving potential of residential HVAC options at Fort Irwin, California

    SciTech Connect (OSTI)

    Hadley, D.L.; Stucky, D.J.

    1995-03-01T23:59:59.000Z

    The Pacific Northwest Laboratory (PNL) evaluated heating and cooling system options for existing family housing at Fort Irwin, California. The purpose of this work was to quantify the energy conservation potential of alternative system types and to identify the most cost-effective technology available. The conventional residential heating/cooling systems at Fort Irwin are separate propane forced-air furnaces and central air conditioners. The options examined included air- and ground-source heat pumps, a natural gas furnace with central air conditioning, and a natural-gas-fired heat pump. The most cost-effective technology applicable to Fort Irwin was found to be the high-efficiency ground-source heat pumps. If all conventional units were replaced immediately, the net energy savings would be 76,660 MBtu (80.9 TJ) per year and a reduction in electrical demand of approximately 15,000 kW-month. The initial investment for implementing this technology would be approximately $7.1 million, with a savings-to-investment ratio of 1.74.

  10. Federal Energy Decision Screening (FEDS) process at Fort Drum, New York

    SciTech Connect (OSTI)

    Dixon, D.R.; Daellenbach, K.K. [Pacific Northwest Lab., Richland, WA (United States); Rowley, S.E. [Directorate of Engineering & Housing, Ft. Drum, NY (United States); Gillespie, A.H. [Army Forces Command, Ft. McPherson, GA (United States)

    1993-10-01T23:59:59.000Z

    The federal energy manager has been directed by the Comprehensive Energy Policy Act of 1992 (EPAct) to reduce energy consumption by 20% from 1985 levels, by the year 2000. However, the tools and funding to capture this resource in a cost-effective manner have not been provided. In an effort to assist federal agencies in meeting EPAct requirements, the Pacific Northwest Laboratory (PNL) has been tasked by the US Army Forces Command (FORSCOM) to identify, evaluate, and acquire all cost-effective energy projects at selected federal facilities. PNL has developed and applied the Federal Energy Decision Screening (FEDS) methodology at the Fort Drum FORSCOM facility near Watertown, New York. The FEDS methodology is a systematic approach to evaluating energy opportunities that result in a roadmap to significantly reduce energy use in a planned, rational, cost justified fashion over a 5 to 10 year period. At Fort Drum, the net present value (NPV) of the installed cost of all cost-effective energy resource opportunities (EROS) is over $16 million (1992 $). The NPV of the savings associated with this investment is nearly $47 million (1992 $), for an overall NPV of approximately $31 million. By implementing all the cost-effective EROS, Fort Drum will reduce annual energy use by over 230,000 MBtu, or 15%. Annual energy expenditures will decrease by over $2.4 million, or a 20% reduction.

  11. Fort Huachuca Water Awareness Program: Best Management Practice Case Study #2: Information and Education Programs, Federal Energy Management Program (FEMP) (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2009-12-01T23:59:59.000Z

    Case study overview of the U.S. Army Fort Huachuca water awareness practice as part of FEMP's water efficiency best management practice series.

  12. Geothermal heat pump energy savings performance contract at Fort Polk, LA: Lessons learned

    SciTech Connect (OSTI)

    Shonder, J.A.; Hughes, P.J. [Oak Ridge National Lab., TN (United States); Gordon, R. [Applied Energy Management Techniques, Corvallis, OR (United States); Giffin, T. [SAIC/The Fleming Group, East Syracuse, NY (United States)

    1997-08-01T23:59:59.000Z

    At Fort Polk, LA the space conditioning systems of 4,003 military family housing units have been converted to geothermal heat pumps (GHP) under an energy savings performance contract (ESPC). At the same time, other efficiency measures, such as compact fluorescent lights (CFLs), low-flow shower heads, and attic insulation, were installed. An independent evaluation of the Fort Polk ESPC was carried out. Findings indicate that the project has resulted in a 25.6 million kWh savings in electrical energy use, or 32.4% of the pre-retrofit electrical consumption in family housing, for a typical meteorological year. Peak electrical demand has also been reduced by 6,541 kW, which is 39.6% of the pre-retrofit peak demand. Natural gas savings are about 260,000 therms per year. In addition, the ESPC has allowed the Army to effectively cap its future expenditures for family housing HVAC maintenance at about 77% of its previous costs. Given these successful results, the Fort Polk ESPC can provide a model for other ESPCs in both the public and the private sectors. The purpose of this paper is to outline the method by which the ESPC was engineered and implemented, both from the standpoint of the facility owner (the US Army) and the energy services company (ESCO) which is carrying out the contract. The lessons learned from this experience should be useful to other owners, ESCOs and investors in the implementation of future ESPCs. It should be noted that the energy savings presented in this document are the apparent energy savings observed in the monitored data, and are not to be confused with the contracted energy savings used as the basis for payments. To determine the contracted energy savings, the apparent energy savings may require adjustments for such things as changes in indoor temperature performance criteria, additions of ceiling fans, and other factors.

  13. Fort Devens: Cold Climate, Energy-Efficient, Market-Rate Townhomes

    SciTech Connect (OSTI)

    Zoeller, W.; Slattery, M.; Grab, J.

    2013-08-01T23:59:59.000Z

    In 2009, Mass Development issued an RFQ and subsequent RFP for teams to develop moderately priced high-efficiency homes on two sites within the Devens Regional Enterprise Zone. MassDevelopment, a Massachusetts agency that owns the Devens site (formerly Fort Devens Army Base, in Harvard, Massachusetts), set a goal of producing a replicable example of current and innovative sustainable building practices with a near-zero energy potential. Metric Development, as primary developer and construction manager, formed one of the successful teams that included CARB and Cambridge Seven Architects (C7A).

  14. Baseline Report for the Fort Hood Army Base: Sept. 1, 2001 To Aug. 31, 2002

    E-Print Network [OSTI]

    Haberl, J. S.; Baltazar, J. C.; Sung, Y. H.; Claridge, D. E.; Turner, W. D.

    ESL-TR-02/12-02 BASELINE REPORT FOR THE FORT HOOD ARMY BASE: SEPT. 1, 2001 TO AUG. 31, 2002 A Research Project for the U.S. Army C.E.R.L. and the Ft. Hood Energy Office Jeff S. Haberl, Ph.D., P.E. Juan...-Carlos Baltazar Cervantes Yong Hoon Sung David E. Claridge, Ph.D., P.E. W. Dan Turner, Ph.D., P.E. December 2002 ENERGY SYSTEMS LABORATORY Texas Engineering Experiment Station Texas A&M University System FT. HOOD BASELINE...

  15. The Role of Occupant Behavior in Achieving Net Zero Energy: A Demonstration Project at Fort Carson

    SciTech Connect (OSTI)

    Judd, Kathleen S.; Sanquist, Thomas F.; Zalesny, Mary D.; Fernandez, Nicholas

    2013-09-30T23:59:59.000Z

    This study, sponsored by the U.S. General Services Administration’s Office of Federal High-Performance Green Buildings, aimed to understand the potential for institutional and behavioral change to enhance the performance of buildings, through a demonstration project with the Department of Defense in five green buildings on the Fort Carson, Colorado, Army base. To approach this study, the research team identified specific occupant behaviors that had the potential to save energy in each building, defined strategies that might effectively support behavior change, and implemented a coordinated set of actions during a three-month intervention.

  16. Geothermal Direct Use Feasibility Study on the Fort Bidwell Indian Reservation

    SciTech Connect (OSTI)

    Dale Merrick

    2007-04-20T23:59:59.000Z

    The Fort Bidwell Indian Reservation (FBIR) is rich in renewable energy resources. Development of its geothermal resources has the potential to profoundly affect the energy and economic future of the FBIC. Geothermal energy can contribute to making the reservation energy self-sufficient and, potentially, an energy exporter. The feasibility study assessed the feasibility of installing a geothermal district heating system to provide low-cost, efficient heating of existing and planned residences, community buildings and water, using an existing geothermal well, FB-3.

  17. Lincoln-Fort Rice, North Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:Landowners and WindLighting ControlWyoming:Rhode Island: EnergyLincoln-Fort

  18. Fort Collins, Colorado on Track to Net Zero | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM Flash2011-12 OPAM Revised DOEDepartment of EnergyUpdated FebruaryFort

  19. 2-M Probe At Fort Bliss Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1 Wind ProjectsourceInformation 2-M Probe At DesertFort

  20. Fort Rucker

    Office of Environmental Management (EM)

    by: FEDERAL UTILITY PARTNERSHIP WORKING GROUP SEMINAR May 7 - 8, 2014 Virginia Beach, VA UESC Program Case Study - Ft. Rucker * Contract Value 16.6MTotal Project Lifetime Savings...

  1. Fort Irwin integrated resource assessment. Volume 3: Sitewide Energy Project identification for buildings and facilities

    SciTech Connect (OSTI)

    Keller, J.M.; Dittmer, A.L.; Elliott, D.B.; McMordie, K.L.; Richman, E.E.; Stucky, D.J.; Wahlstrom, R.R.; Hadley, D.L.

    1995-02-01T23:59:59.000Z

    The U.S. Army Forces Command (FORSCOM) has tasked the U.S. Department of Energy (DOE) Federal Energy Management Program (FEMP), supported by the Pacific Northwest Laboratory, to identify, evaluate, and assist in acquiring all cost-effective energy projects at Fort Irwin. This is part of a model program that PNL is designing to support energy-use decisions in the federal sector. This report provides the results of the fossil fuel and electric energy resource opportunity (ERO) assessments performed by PNL at the FORSCOM Fort Irwin facility located near Barstow, California. It is a companion report to Volume 1, Executive Summary, and Volume 2, Baseline Detail. The results of the analyses of EROs are presented in 16 common energy end-use categories (e.g., boilers and furnaces, service hot water, and building lighting). A narrative description of each ERO is provided, along with a table detailing information on the installed cost, energy and dollar savings; impacts on operations and maintenance (O&M); and, when applicable, a discussion of energy supply and demand, energy security, and environmental issues. A description of the evaluation methodologies and technical and cost assumptions is also provided for each ERO. Summary tables present the cost-effectiveness of energy end-use equipment before and after the implementation of each ERO and present the results of the life-cycle cost (LCC) analysis indicating the net present valve (NPV) and savings-to-investment ratio (SIR) of each ERO.

  2. Seeing Savings from an ESPC Project in Fort Polk's Utility Bills

    SciTech Connect (OSTI)

    Shonder, J.A.

    2005-03-08T23:59:59.000Z

    Federal agencies have implemented many energy efficiency projects over the years with direct funding or alternative financing vehicles such as energy savings performance contracts (ESPCs). While it is generally accepted that these projects save energy and costs, the savings are usually not obvious in the utility bills. This is true for many valid technical reasons, even when savings are verified in other ways to the highest degree of certainty. However, any perceived deficiency in the evidence for savings is problematic when auditors or other observers evaluate the outcome of energy projects and the achievements of energy management programs. This report discusses under what circumstances energy savings should or should not be evident in utility bills. In the special case of a large ESPC project at the Army's Fort Polk, the analysis of utility bills carried out by the authors does unequivocally confirm and quantify savings. The data requirements and methods for arriving at definitive answers through utility bill analysis are demonstrated in our discussion of the Fort Polk project. The following paragraphs address why the government generally should not expect to see savings from ESPC projects in their utility bills. We also review lessons learned and best practices for measurement and verification (M&V) that can assure best value for the government and are more practical, straightforward, and cost-effective than utility bill analysis.

  3. Installation-wide energy-conservation demonstration at Fort McClellan, Alabama. Final report

    SciTech Connect (OSTI)

    Windingland, L.M.; Lilly, B.P.; Shonder, J.A.; Underwood, D.M.; Augustine, L.J.

    1988-11-01T23:59:59.000Z

    The objective of the installation-wide energy conservation demonstration at Fort McClellan, AL, was to evaluate the effectiveness of applying available energy-conservation technologies and techniques to produce significant and predictable reductions in energy use and cost. Five major areas of energy conservation were identified and investigated: (1) pressure reduction in district-steam-heating systems; (2) reduction of outdoor air in heating, ventilation, and air-conditioning (HVAC) systems; (3) replacement of oversized and inefficient motors in HVAC systems; (4) reduction of outdoor air infiltration in family housing; and (5) combustion optimization of gas-fired heating equipment. Other areas of investigation included radio-controlled exterior lighting, and temperature reduction in the high-temperature hot-water system. Each conservation project was evaluated on a small scale to verify energy savings before it was implemented. An energy-information management system was developed to maintain annual consumption data for each building. The system provides immediate feedback on energy use so managers can make correct decisions on conservation measures. The energy conservation programs implemented at Fort McClellan contributed to the 14% reduction in baseline (weather independent) energy consumption from FY84 to FY86. These programs have wide applicability to other U.S. Army installations. This research has also shown the importance of preliminary, small-scale testing of energy-conservation programs before implementation.

  4. Depositional history of the Mississippian Ullin and Fort Payne Formations in the Illinois Basin

    SciTech Connect (OSTI)

    Lasemi, Z.; Treworgy, J.D.; Norby, R.D. (Illinois State Geological Survey, Champaign, IL (United States))

    1994-04-01T23:59:59.000Z

    Field and subsurface data suggest that the mid-Mississippian Ullin Limestone in the Illinois Basin is composed of coalesced Waulsortian-type mounds and porous bryozoan-dominated buildups. Waulsortian mounds in the basin contain a lime mudstone to wackestone core that is flanked and capped by in situ porous bryozoan bafflestone or transported crinoidal-bryozoan packstone and grainstone. The mound core facies appear to be most common in the lower part of the Ullin and is thicker in a deeper outer-ramp setting. Shoreward and up-section (upper part of the outer-ramp through mid-ramp setting), the core facies is generally thinner, while the flanking and capping facies are thicker. Isopachous maps of the Ullin and Fort Payne suggest the presence of several large areas of thick carbonate buildups (Ullin) surrounded by a deep-water, sub-oxic environment (Fort Payne) in the Illinois Basin. Progradation of these buildups and associated facies resulted in a shallower ramp setting during deposition of the upper Ullin. Storm-generated carbonate sandwaves became widespread on this ramp. Sandwaves were mobile and for the most part unfavorable sites for further development of thick mud mounds and/or in situ bryozoan buildups. However, isolated mounds and flanking buildups are present in the upper part of the Ullin, and, together with the sandwaves, formed an irregular topography that led to the development of oolitic grainstone shoals during deposition of the overlying Salem Limestone.

  5. Using Qualified Energy Conservation Bonds (QECBs) to Fund a Residential Energy Efficiency Loan Program: Case Study on Saint Louis County, MO

    SciTech Connect (OSTI)

    Zimring, Mark

    2011-06-23T23:59:59.000Z

    Qualified Energy Conservation Bonds (QECBs) are federally-subsidized debt instruments that enable state, tribal, and local government issuers to borrow money to fund a range of qualified energy conservation projects. QECBs offer issuers very attractive borrowing rates and long terms, and can fund low-interest energy efficiency loans for home and commercial property owners. Saint Louis County, MO recently issued over $10 million of QECBs to finance the Saint Louis County SAVES residential energy efficiency loan program. The county's experience negotiating QECB regulations and restrictions can inform future issuers.

  6. Dust Plume Modeling from Ranges and Maneuver Areas on Fort Bliss and the White Sands Missile Range: Final Report

    SciTech Connect (OSTI)

    Chapman, Elaine G.; Barnard, James C.; Rutz, Frederick C.; Pekour, Mikhail S.; Rishel, Jeremy P.; Shaw, William J.

    2009-05-04T23:59:59.000Z

    The potential for air quality impacts from heavy mechanized vehicles operating on and between the unpaved main supply routes at Fort Bliss and White Sands Missile Range was investigated. This report details efforts by the staff of Pacific Northwest National Laboratory for the Fort Bliss Directorate of Environment in this investigation. Dust emission and dispersion from typical move-out activities occurring on the installations were simulated using the atmospheric modeling system DUSTRAN. Major assumptions associated with designing the modeling scenarios are summarized and results of simulations conducted under these assumptions are presented for four representative meteorological periods.

  7. U.S. ARMY CORPS OF ENGINEERS HURRICANE SANDY COASTAL MANAGEMENT DIVISION 130 Wainwright Dr. Fort Hamilton, NY 11209

    E-Print Network [OSTI]

    US Army Corps of Engineers

    U.S. ARMY CORPS OF ENGINEERS ­ HURRICANE SANDY COASTAL MANAGEMENT DIVISION 130 Wainwright Dr. Fort,000 miles of coastline within the North Atlantic Division that were affected by Hurricane Sandy. The study response to the devastation in the wake of Hurricane Sandy represents a need to address as a regional

  8. GROUND PENETRATING RADAR STUDY OF THE CHEKO LAKE AREA (SIBERIA) M.Pipan, L.Baradello, E.Forte

    E-Print Network [OSTI]

    Curci, Gabriele

    .Forte University of Trieste, Department of Geological, Environmental and Marine Sciences via Weiss 1, 34127 Trieste, Italy pipan@univ.trieste.it barad@geops15.univ.trieste.it ema@geops15.univ.trieste.it L.Gasperini, E of the Exploration Geophysics Group of the University of Trieste (Italy) in the framework of a scientific cooperation

  9. Quality site seasonal report, Fort Devens Launderette, SFBP (Solar in Federal Buildings Program) 1751, December 1984 through June 1985

    SciTech Connect (OSTI)

    Logee, T.L.

    1987-10-15T23:59:59.000Z

    The active solar Domestic Hot Water (DHW) system at the Fort Devens Launderette was designed and constructed as part of the Solar in Federal Buildings Program (SFBP). This retrofitted system was one of eight systems selected for quality monitoring. The purpose of this monitoring effort was to document the performance of quality state-of-the-art solar systems in large federal buildings. The launderette is part of the Post Exchange complex at the Fort Devens Army Post in Fort Devens, Massachusetts. The solar system preheats hot water for the coin operated laundry which has an estimated 25,000 customers per year. There are 108 collector panels comprising the 2563-square foot collector array. Collected solar energy is stored in a 3800-gallon tank. Propylene glycol is used to protect the solar array from freezing. Two immersed heat exchangers provide heat transfer from the propylene glycol to directly heat the DHW supply water in the storage tank. Auxiliary energy is supplied by gas and oil boilers. This solar system can be considered one of a kind and as such is a prototype. The lessons learned from building and operating this system should be used to correct design deficiencies and improve the performance of future solar systems for this application. Highlights of the system performance at the Fort Devens Launderette solar system during the December 1984 through June 1985 monitoring period are presented in this report.

  10. Development of a Monitoring and Verification (M&V) Plan and Baseline for the Fort Hood ESPC Project

    E-Print Network [OSTI]

    Haberl, J. S.; Liu, Z.; Baltazar-Cervantes, J. C.; Lynn, B.; Underwood, D.

    2004-01-01T23:59:59.000Z

    Fort Hood has selected an Energy Services Performance Contract (ESPC) contractor to help achieve its energy reduction goals as mandated by Executive Order. This ESPC is expected to be a $3.8 million, 20 year contract, which includes five primary...

  11. In Proceedings of the 12th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2013), Saint Paul, Minnesota, USA, May 2013.

    E-Print Network [OSTI]

    Stone, Peter

    (AAMAS 2013), Saint Paul, Minnesota, USA, May 2013. A Learning Agent for Heat­Pump Thermostat Control around the world. With the e#orts of moving to sustainable energy consump­ tion, heat­pump based HVAC by electricity rather than by gas or oil. One drawback of heat­pump systems is that their e#ciency sharply

  12. In Proceedings of the 12th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2013), Saint Paul, Minnesota, USA, May 2013.

    E-Print Network [OSTI]

    Stone, Peter

    (AAMAS 2013), Saint Paul, Minnesota, USA, May 2013. A Learning Agent for Heat-Pump Thermostat Control around the world. With the efforts of moving to sustainable energy consump- tion, heat-pump based HVAC by electricity rather than by gas or oil. One drawback of heat-pump systems is that their efficiency sharply

  13. Avalanche protection dam of Cialancier in Saint Etienne de Tine : From 2D digital modeling to the start of the onsite work

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Avalanche protection dam of Cialancier in Saint Etienne de Tinée : From 2D digital modeling to design and build an avalanche protection dam. KEYWORDS Avalanche protection ­ Modeling ­ Work Adresse de. SEGEL, M. SCHMITT, E. MICHEL VILLAZ, T. EME, S. ROUDNITSKA, M. NAAIM. Avalanche protection dam

  14. Preliminary assessment report for Fort Custer Training Center, Installation 26035, Augusta, Michigan. Installation Restoration Program

    SciTech Connect (OSTI)

    Flaim, S.; Krokosz, M.

    1993-08-01T23:59:59.000Z

    This report presents the results of the preliminary assessment (PA) conducted by Argonne National Laboratory at the Michigan Army National Guard property near Augusta, Michigan. Preliminary assessments of federal facilities are being conducted to compile the information necessary for completing preremedial activities and to provide a basis for establishing corrective actions in response to releases of hazardous substances. The principal objective of the PA is to characterize the site accurately and determine the need for further action by examining site activities, quantities of hazardous substances present, and potential pathways by which contamination could affect public health and the environment. This PA satisfies, for the Fort Custer Training Center, phase I of the Department of Defense Installation Restoration Program. The environmentally significant operations associated with the property are (1) storage of hazardous materials and hazardous waste, (2) storage and dispensing of fuel, (3) washing of vehicles and equipment, and (4) weapons training ranges that may have accumulated lead.

  15. Preliminary assessment report for Fort Jacob F. Wolters, Installation 48555, Mineral Wells, Texas. Installation Restoration Program

    SciTech Connect (OSTI)

    Dennis, C.B.

    1993-08-01T23:59:59.000Z

    This report presents the results of the preliminary assessment (PA) conducted by Argonne National Laboratory at the Texas Army National Guard (TXARNG) property near Mineral Wells, Texas. Preliminary assessments of federal facilities are being conducted to compile the information necessary for completing preremedial activities and to provide a basis for establishing corrective actions in response to releases of hazardous substances. The principal objective of the PA is to characterize the site accurately and determine the need for further action by examining site activities, quantities of hazardous substances present, and potential pathways by which contamination could affect public health and the environment. This PA satisfies, for the Fort Wolters property, the requirement of the Department of Defense Installation Restoration Program.

  16. Integrated Assessment Plan Template and Operational Demonstration for SPIDERS Phase 2: Fort Carson

    SciTech Connect (OSTI)

    Barr, Jonathan L.; Tuffner, Francis K.; Hadley, Mark D.; Kreyling, Sean J.; Schneider, Kevin P.

    2013-09-01T23:59:59.000Z

    This document contains the Integrated Assessment Plan (IAP) for the Phase 2 Operational Demonstration (OD) of the Smart Power Infrastructure Demonstration for Energy Reliability (SPIDERS) Joint Capability Technology Demonstration (JCTD) project. SPIDERS will be conducted over a three year period with Phase 2 being conducted at Fort Carson, Colorado. This document includes the Operational Demonstration Execution Plan (ODEP) and the Operational Assessment Execution Plan (OAEP), as approved by the Operational Manager (OM) and the Integrated Management Team (IMT). The ODEP describes the process by which the OD is conducted and the OAEP describes the process by which the data collected from the OD is processed. The execution of the OD, in accordance with the ODEP and the subsequent execution of the OAEP, will generate the necessary data for the Quick Look Report (QLR) and the Utility Assessment Report (UAR). These reports will assess the ability of the SPIDERS JCTD to meet the four critical requirements listed in the Implementation Directive (ID).

  17. The evaluation of a 4000-home geothermal heat pump retrofit at Fort Polk, Louisiana: Final Report

    SciTech Connect (OSTI)

    Hughes, P.J.; Shonder, J.A.

    1998-03-01T23:59:59.000Z

    This report documents an independent evaluation of an energy retrofit of 4,003 family housing units at Fort Polk, Louisiana, under an energy savings performance contract (ESPC). Replacement of the heating, cooling, and water heating systems in these housing units with geothermal heat pumps (GHPs) anchored the retrofit; low-flow shower heads and compact fluorescent lighting were also installed, as well as attic insulation where needed. Statistically valid findings indicate that the project will save 25.8 million kWh, or 32.5% of the pre-retrofit whole-community electrical consumption, and 100% of the whole-community natural gas previously used for space conditioning and water heating (260,000 therms) in a typical meteorological year. At the end-use level, the GHPs were found to save about 42% of the pre-retrofit electrical consumption for heating, cooling, and water heating in housing units that were all-electric in the pre-retrofit period. This report also demonstrates an improved method of predicting energy savings. Using an engineering model calibrated to pre-retrofit energy use data collected in the field, the method predicted actual energy savings on one of the electric feeders at Fort Polk with a very high degree of accuracy. The accuracy of this model was in turn dependent on data-calibrated models of the geothermal heat pump and ground heat exchanger that are described in this report. In addition this report documents the status of vertical borehole ground heat exchanger (BHEx) design methods at the time this project was designed, and demonstrates methods of using data collected from operating GHP systems to benchmark BHEx design methods against a detailed engineering model calibrated to date. The authors also discuss the ESPC`s structure and implementation and how the experience gained here can contribute to the success of future ESPCs.

  18. Inorganic water chemistry 71 Chapter 4 -Inorganic Water Chemistry of the Boulder Creek

    E-Print Network [OSTI]

    Inorganic water chemistry 71 Chapter 4 - Inorganic Water Chemistry of the Boulder Creek Watershed Creek Watershed, Colorado were determined on a suite of water samples collected during high and low flow sixteen stream sites, twelve tributaries/inflows, and Saint Vrain Creek. The most upstream site was above

  19. Fort Worth Museum of Science and History: Reports on Federal Awards Program for the year ended September 30, 1994

    SciTech Connect (OSTI)

    NONE

    1994-12-31T23:59:59.000Z

    Six reports by independent accountants of the financial statements of the Fort Worth Museum of Science and History for the fiscal year ending September 30, 1994 are presented. The audits were performed on the financial statements on the (1) schedule of federal awards, (2) internal control structure, (3) compliance with laws, regulations, contracts, and grants, (4) the internal control structure used in administering federal awards, (5) compliance with general requirements, (6) compliance with specific requirements applicable to non-major program actions.

  20. History told from the depths of Lake Champlai: 1992-1993 Fort Ticonderoga-Mount Independence submerged cultural resource survey

    E-Print Network [OSTI]

    McLaughlin, Scott Arthur

    2000-01-01T23:59:59.000Z

    Campano Virginia West Funding The Fort Ticonderoga-Mount Independence Project could not have been completed without the cooperative efforts and funds from a number of federal and state government agencies. Federal funding was pmvided by the New... at its mouth (Johnson 1984). The topography and landforms visible today sunoundng the project area are products of ancient mountain-building process' and erosional forces of glaciers and rivers that gouged the valleys and scoured the surfaces...

  1. Regional analysis of rhythmic bedding in the Fort Hays limestone member, Niobrara Formation (Upper Cretaceous), US western interior

    SciTech Connect (OSTI)

    Laferriere, A.P.

    1987-01-01T23:59:59.000Z

    Results of a regional stratigraphic investigation of the rhythmically bedded Fort Hays limestone member of Kansas, Colorado, and New Mexico indicate at least two levels of cyclicity. Regional development of these cycles strongly supports the hypothesis that they are climatic in origin. Departures from simple cyclical patterns resulted from sedimentary effects of Late Cretaceous orogenic activity, erosional events associated with eustatic sea level changes, diagenetic modification, and possibly from interference between orbital parameters having different periodicities. The vulnerability of Milankovitch-type cyclicity to overprinting by tectono-sedimentologic effects makes units such as the Fort Hays useful as indicators of subtle tectonic activity. Regional thickness changes in groups of shale-limestone couplets were identified, correlated, and mapped in the subsurface using geophysical well log information in order to locate subtle structural elements that influenced Fort Hays sedimentation. In the Denver-Julesburg Basin of Colorado and western Kansas, thinning of the section between Fort Hays marker horizons occurs dominantly along northeastwardly trending belts that resulted apparently from Late Cretaceous reactivation of the Transcontinental Arch. Isotopic and petrographic analyses were conducted on pelagic (carbonate matrix) and benthic (inoceramid bivalve) constituents of selected shale/limestone couplets. These data suggest that there was little difference in temperature or salinity between times of terrigenous detrital input and times of nearly pure carbonate deposition. Isotopic information from matrix samples suggests a westward decrease in salinity of surface water in the Western Interior Sea. Isotopic data from largely unaltered inoceramid bivalves indicate bottom-water conditions of near-normal marine salinity.

  2. Study of well logs from Cove Fort-Sulphurdale KGRA, Millard and Beaver Counties, Utah

    SciTech Connect (OSTI)

    Glenn, W.E.; Ross, H.P.

    1982-07-01T23:59:59.000Z

    Union Oil Company drilled four geothermal test wells in the Cove Fort-Sulphurdale KGRA between 1975 and 1979. A fairly complete suite of well logs were recorded for the three deeper holes, and these data are presented as composite well log plots in this report. The composite well log plots have facilitated the interpretation of limestone, dolomite, sandstone, quartz-monzonite, serpentine, and volcanic lithologies and the identification of numerous fractures. This has been especially helpful because of the extensive lost circulaton zones and poor cuttings recovery. Intraformational flow was identified by a fluid migration-temperature tracer log at depth in CFSU 31-33. Well log crossplots were computed to assist in lithologic identification and the determination of physical properties for specific depth intervals in a given hole. The presence of hydrous minerals sometimes results in neutron porosity somewhat higher than the true nonfracture porosity, which is generally less than 4%. Permeability is clearly controlled by fractures. A maximum well temperature of 178.9/sup 0/C, low flow rates and low probable percent flash indicate these wells are subeconomic for electric generation at present. The well log study has substantially improved our understanding of the reservoir as presently drilled.

  3. Electrical Energy and Demand Savings from a Geothermal Heat Pump ESPC at Fort Polk, LA

    SciTech Connect (OSTI)

    Shonder, John A [ORNL; Hughes, Patrick [ORNL

    1997-06-01T23:59:59.000Z

    At Fort Polk, Louisiana, the space-conditioning systems of an entire city (4,003 military family housing units) have been converted to geothermal heat pumps (GHPs) under an energy savings performance contract. At the same time, other efficiency measures, such as compact fluorescent lights, low-flow hot water outlets, and attic insulation, were installed. Pre- and post-retrofit data were taken at 15-minute intervals on energy flows through the electrical distribution feeders that serve the family housing areas of the post. Fifteen-minute interval data were also taken on energy use from a sample of the residences. The analysis presented in this paper shows that for a typical meteorological year, the retrofits result in an electrical energy savings of approximately 25.6 million kWh, or 32.4% of the pre-retrofit electrical use in family housing. Peak electrical demand has also been reduced by about 6.8 MW, which is 40% of pre-retrofit peak demand. In addition, the retrofits save about 260,000 therms per year of natural gas. It should be noted that the energy savings presented in this document are the 'apparent' energy savings observed in the monitored data and are not to be mistaken for the 'contracted' energy savings used as the basis for payments. To determine the 'contracted' energy savings, the 'apparent' energy savings may require adjustments for such things as changes in indoor temperature performance criteri, addition of ceiling fans, and other factors.

  4. Relative risk site evaluation for buildings 7740 and 7741 Fort Campbell, Kentucky

    SciTech Connect (OSTI)

    Last, G.V.; Gilmore, T.J.; Bronson, F.J.

    1998-01-01T23:59:59.000Z

    Buildings 7740 and 7741 are a part of a former nuclear weapon`s storage and maintenance facility located in the southeastern portion of Fort Campbell, Kentucky. This underground tunnel complex was originally used as a classified storage area beginning in 1949 and continuing until 1969. Staff from the Pacific Northwest National Laboratory recently completed a detailed Relative Risk Site Evaluation of the facility. This evaluation included (1) obtaining engineering drawings of the facility and associated structures, (2) conducting detailed radiological surveys, (3) air sampling, (4) sampling drainage systems, and (5) sampling the underground wastewater storage tank. Ten samples were submitted for laboratory analysis of radionuclides and priority pollutant metals, and two samples submitted for analysis of volatile organic compounds. No volatile organic contaminants were detected using field instruments or laboratory analyses. However, several radionuclides and metals were detected in water and/or soil/sediment samples collected from this facility. Of the radionuclides detected, only {sup 226}Ra may have come from facility operations; however, its concentration is at least one order of magnitude below the relative-risk comparison value. Several metals (arsenic, beryllium, cadmium, copper, mercury, lead, and antimony) were found to exceed the relative-risk comparison values for water, while only arsenic, cadmium, and lead were found to exceed the relative risk comparison values for soil. Of these constituents, it is believed that only arsenic, beryllium, mercury, and lead may have come from facility operations. Other significant hazards posed by the tunnel complex include radon exposure and potentially low oxygen concentrations (<19.5% in atmosphere) if the tunnel complex is not allowed to vent to the outside air. Asbestos-wrapped pipes, lead-based paint, rat poison, and possibly a selenium rectifier are also present within the tunnel complex.

  5. American Recovery and Reinvestment Act (ARRA) FEMP Technical Assistance U.S. Army Project 181 Implementation Challenges in Deployment of an Energy Security Microgrid for Army Reserve Facilities located on the Former Fort Devens Army Base

    SciTech Connect (OSTI)

    Warwick, William M.

    2010-09-30T23:59:59.000Z

    This documents reports on a request for technical assistance from Fort Devens to analyze procurement of energy from nearby renewable generating resources.

  6. A preliminary analysis of league bowlers, casual bowlers, and non-bowlers in the Dallas-Fort Worth metropolian area

    E-Print Network [OSTI]

    Lawrence, Larry Ray

    1977-01-01T23:59:59.000Z

    -Fort Worth metropolitan area. The differ nce in the age of the classif. ications of bowlers would seem to indicate that, new sources of revenue lie with the young casual bowler. 1f proprietors can convert the young casual bowlers to young league bowlers... the apparatus of a game very similar to modern day bowling. Sir Flinders of Petrie, emeritus professor o f Egyptology, the Univer- sity of London, found nine pieces of stone, used as pins and a stone ball (The National Bowling Council, 1974) The parishioners...

  7. Aerial gamma ray and magnetic survey: Mississippi and Florida airborne survey, Fort Smith quadrangle, Oklahoma, and Arkansas. Final report

    SciTech Connect (OSTI)

    Not Available

    1980-09-01T23:59:59.000Z

    The Fort Smith quadrangle in western Arkansas and eastern Oklahoma overlies thick Paleozoic sediments of the Arkoma Basin. These Paleozoics dominate surface exposure except where covered by Quaternary Alluvial materials. Examination of available literature shows no known uranium deposits (or occurrences) within the quadrangle. Seventy-five groups of uranium samples were defined as anomalies and are discussed briefly. None were considered significant, and most appeared to be of cultural origin. Magnetic data show character that suggest structural and/or lithologic complexity, but imply relatively deep-seated sources.

  8. Fort Peck-Havre transmission line project, Hill, Blaine, Phillips, Valley and McCone Counties, Montana

    SciTech Connect (OSTI)

    Not Available

    1982-09-01T23:59:59.000Z

    Construction and operation of a 180-mile, 230-kilovlt (kV) transmission line between Fort Peck and Havre, Montana is proposed to provide a replacement for the 161-kV line that currently runs between the two cities. The new line would be carried on woodpole, H-frame structures. The existing 161-kV line would be removed, and the Richardson Coulee Substation would be relocated. Intermediate facilities to be improved would include the Fort Peck Switchyard and the Richardson Coulee, Malta, Harlem, and Havre substations.Construction of the line would commence in August 1983, and operation would commence in January 1986. The expected life of the transmission system would be 100 years. Estimated cost of the project, in 1983 dollars, is $36.1 million. The project would upgrade an essential element of the Western Area Power Administration's electric power system and the Montana Power Company's interconnected transmission network. Continued electric service reliability would be improved, and safety conditions affecting personnel who maintain the line would be enhanced. Additional transmission capacity would be provided to accommodate future load growth, precluding the need for multiple transmission lines. The line would eleminate seven acres of productive land and create physical conflicts with present and future agricultural activities. The line would traverse areas characterized by concentrations of archaeological resources and cultural resources of importance to native Americans. Transmission structures could mar scenery in areas with historically significant architecture and would interfere with waterfowl.

  9. American Recovery and Reinvestment Act (ARRA) Federal Energy Management Program Technical Assistance Project 282 Renewable Energy Opportunities at Fort Gordon, Georgia

    SciTech Connect (OSTI)

    Boyd, Brian K.; Gorrissen, Willy J.; Hand, James R.; Horner, Jacob A.; Orrell, Alice C.; Russo, Bryan J.; Weimar, Mark R.; Williamson, Jennifer L.; Nesse, Ronald J.

    2010-09-30T23:59:59.000Z

    This document provides an overview of renewable resource potential at Fort Gordon, based primarily upon analysis of secondary data sources supplemented with limited on-site evaluations. This effort focuses on grid-connected generation of electricity from renewable energy sources and also on ground source heat pumps for heating and cooling buildings. The effort was funded by the American Recovery and Reinvestment Act (ARRA) as follow-on to the 2005 Department of Defense (DoD) Renewables Assessment. The site visit to Fort Gordon took place on March 9, 2010.

  10. Phyllosilicate orientation demonstrates early timing of compactional stabilization in calcite-cemented concretions in the Barnett Shale (Late Mississippian), Fort Worth

    E-Print Network [OSTI]

    -cemented concretions in the Barnett Shale (Late Mississippian), Fort Worth Basin, Texas (U.S.A) Ruarri J. Day-Stirrat a in revised form 8 April 2008 Accepted 16 April 2008 Keywords: Barnett Shale Goniometry Concretions Fabric Calcite-cemented zones in the prolific gas-producing Barnett Shale (Ft. Worth Basin, Texas) preserve very

  11. 3-DOF potential air flow manipulation by inverse modeling control Anne Delettre, Guillaume J. Laurent, Nadine Le Fort-Piat and Christophe Varnier

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    3-DOF potential air flow manipulation by inverse modeling control Anne Delettre, Guillaume J. Laurent, Nadine Le Fort-Piat and Christophe Varnier Abstract-- Potential air flows can be used to perform non- prehensile contactless manipulations of objects gliding on air- hockey table. In this paper, we

  12. In Situ Redox Manipulation Proof-of-Principle Test at the Fort Lewis Logistics Center: Final Report

    SciTech Connect (OSTI)

    VR Vermeul; MD Williams; JC Evans; JE Szecsody; BN Bjornstad; TL Liikala

    2000-10-25T23:59:59.000Z

    Pacific Northwest National Laboratory (PNNL) conducted a proof-of-principle test at the Fort Lewis Logistics Center to determine the feasibility of using the In Situ Redox Manipulation (ISRM) technology for remediating groundwater contaminated with dissolved trichloroethylene (TCE). ISRM creates a permeable treatment zone in the subsurface to remediate redox-sensitive contaminants in groundwater. The permeable treatment zone is formed by injecting a chemical reducing agent (sodium dithionite with pH buffers) into the aquifer through a well to reduce the naturally occurring ferric iron in the sediments to ferrous iron. Once the reducing agent is injected and given sufficient time to react with aquifer sediments, residual chemicals and reaction products are withdrawn from the aquifer through the same well used for the injection. Redox-sensitive contaminants such as TCE, moving through the treatment zone under natural groundwater flow conditions, are destroyed. TCE is degraded via reductive dechlorination within the ISRM treatment zone to benign degradation products (i.e., acetylene, ethylene). Prior to the proof-of-principle field test, the ISRM technology was successfully demonstrated in laboratory experiments for the reductive dechlorination of dissolved TCE using sediments from the Fort Lewis site. The Logistics Center was placed on the National Priorities List in December 1989 because of TCE contamination in groundwater beneath the site. A Federal Facilities Agreement between the Army, the U.S. Environmental Protection Agency, and the Washington State Department of Ecology became effective in January 1990, and a Record of Decision (ROD) was signed in September 1990. The major components of the ROD included installation of two pump-and-treat systems for the upper aquifer and further investigation of the lower aquifer and other potential sources of contamination. The pump-and-treat systems became operational in August 1995. Fort Lewis asked PNNL to provide technical support in accelerating Installation Restoration Program site remediation and significantly reducing site life-cycle costs at the Logistics Center. In support of this program, ISRM was selected as an innovative technology for bench and field-scale demonstration. Emplacement of the ISRM treatment zone was accomplished through a series of four separate dithionite injection tests conducted between November 10, 1998 and March 29,2000. An extensive program of chemical monitoring was also performed before, during, and after each injection to evaluate the performance of ISRM. Prior to emplacement of the ISRM treatment zone, the site was extensively characterized with respect to geologic, hydrologic, and geochemical properties. Sediment core samples collected for the characterization studies were analyzed in bench-scale column tests at PNNL to determine reducible iron content. These site-specific hydrogeologic and geochemical data were used to develop the emplacement design of the pilot-scale (i.e., single injection well) ISRM treatment zone. Performance data obtained from the proof-of-principle test indicate that field-scale reductive dechlorination of TCE using the ISRM technology is feasible. A treatment zone was created in the subsurface that reduced TCE concentrations as much as 92% on the downgradient side of the reduced zone, from a background concentration of approximately 140 ppb to approximately 11 ppb. The appearance of the principal degradation product, acetylene, also confirmed that TCE destruction was occurring. Analysis of sediment samples collected from post-test boreholes showed a high degree of iron reduction, which helped to confirm the effectiveness of the treatment zone emplacement. Another important goal of the testing program was to provide assurances that chemical treatment of the subsurface did not result in undesirable secondary effects, including formation of toxic TCE degradation products, mobilization of trace elements, and degradation of hydraulic performance. Results obtained from the Fort Lewis ISRM proof-of-principle test, which are c

  13. EIS-0473: W.A. Parish Post-Combustion CO2 Capture and Sequestration Project (PCCS), Fort Bend County, TX

    Broader source: Energy.gov [DOE]

    This EIS evaluates the environmental impacts of a proposal to provide financial assistance for a project proposed by NRG Energy, Inc (NRG). DOE selected NRG’s proposed W.A. Parish Post-Combustion CO2 Capture and Sequestration Project for a financial assistance award through a competitive process under the Clean Coal Power Initiative Program. NRG would design, construct and operate a commercial-scale carbon dioxide (CO2) capture facility at its existing W.A. Parish Generating Station in Fort Bend County, Texas; deliver the CO2 via a new pipeline to the existing West Ranch oil field in Jackson County, Texas, for use in enhanced oil recovery operations; and demonstrate monitoring techniques to verify the permanence of geologic CO2 storage.

  14. Field Demonstration of a High-Efficiency Packaged Rooftop Air Conditioning Unit at Fort Gordon, Augusta, GA

    SciTech Connect (OSTI)

    Armstrong, Peter R.; Sullivan, Gregory P.; Parker, Graham B.

    2006-03-31T23:59:59.000Z

    As part of a larger program targeting the market transformation of packaged rooftop air conditioning, five high-efficiency rooftop air conditioning products were selected in 2002 by the U.S. Department of Energy (DOE) under the Unitary Air Conditioner (UAC) Technology Procurement (http://www.pnl.gov/uac). In February 2003, Fort Gordon in Augusta, Georgia was chosen as the demonstration site. With the goal of validating the field performance and operation of one of the awarded products, a 10-ton high-efficiency packaged rooftop unit (RTU) manufactured by Global Energy Group (GEG) was installed at Fort Gordon in October 2003. Following equipment installation, power metering, air- and refrigerant-side instrumentation was installed on the GEG RTU and a 4-year old typical-efficiency 20-ton RTU manufactured by AAON . The GEG and AAON units were instrumented identically and operated May through July, 2005, to observe performance under a range of conditions. Based on the data collected as part of this demonstration, the GEG equipment performed at least 8% better in stage-1 (single compressor running) cooling and at least 16% better in stage-2 (both compressors running) than the baseline AAON equipment. Performance comparisons are based on what we call application EER normalized to equivalent specific fan power. The full-load, specific-fan-power-normalized application EERs at ARI design conditions were 10.48 Btu/Wh for the GEG and 9.00 Btu/Wh for the baseline machine. With a cost premium of nearly 50%, and slightly higher maintenance costs, the life-cycle cost analysis shows that the GEG technology pays for itself--a positive net-present value (NPV)--only in climates and buildings with long cooling seasons. Manufacture of this equipment on a larger scale can be expected to reduce costs to the point where it is more broadly cost-effective. The assumed 10-ton baseline and new-technology unit costs are $3824.00 and $5525.00 respectively. If the new technology cost is assumed to drop as sales increase to $4674.50 for a 10-ton unit (i.e. the original cost difference is halved), the life-cycle costs improve. A grid of first cost, annual maintenance cost and electricity price is enumerated and the results presented in the report show the sensitivity of life cycle cost to these three financial parameters in each of eight different climates.

  15. Fort Devens: Cold Climate Market-Rate Townhomes Targeting HERS Index of 40, Harvard, Massachusetts (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-11-01T23:59:59.000Z

    Achieving aggressive energy efficiency targets requires tight coordination and clear communication among owners, designers, builders, and subcontractors. For this townhome project, MassDevelopment, the quasi-governmental agency owner, selected Metric Development of Boston, teaming with the U.S. Department of Energy (DOE) Consortium for Advanced Residential Buildings (CARB) and Cambridge Seven Architects, to build very high performing market-rate homes. Fort Devens is part of a decommissioned army base in working-class Harvard, Massachusetts, approximately one hour northwest of Boston. The team proposed 12 net zero energy-ready townhomes, meaning that the application of renewable energy systems would result in annual net zero energy use in the homes. The homes were also designed to achieve a Home Energy Rating System (HERS) Index Score of 41 before adding renewables. For this project, CARB drew on its experience working with Rural Development Inc. on a series of affordable townhomes in northern Massachusetts. The team carefully planned the site to maximize solar access, daylighting, and efficient building forms. The basic strategy was to design a very efficient thermal enclosure while minimizing incremental cost increases compared with standard construction. Using BEopt modeling software, the team established the requirements of the enclosure and investigated multiple assembly options. They settled on double-wall construction with dense-pack cellulose fill. High performance vinyl windows (U-0.24, solar heat gain coefficient [SHGC]-0.22), a vented R-59 attic, and exceptional air sealing completed the package.

  16. Superfund Record of Decision (EPA Region 10): Fort Wainwright, Operable Unit 2, Fairbanks North Star Borough, AK, March 31, 1997

    SciTech Connect (OSTI)

    NONE

    1997-11-01T23:59:59.000Z

    This Record of Decision (ROD) presents the selected remedial actions for Operable Unit 2 (OU-2) at Fort Wainwright in Fairbanks, Alaska. OU-2 originally consisted in eight source areas: the defense Reutilization and Marketing Office (DRMO) Yard, the Building 1168 Leach Well, the North Post Site, the 801 Drum Burial Site, the Engineers Park Drum Site, the Drum Site South of the Landfill, Building 3477, and the Tar Sites. The major components of the remedies at source areas are: in situ soil vapor extraction and air sparging of the groundwater to reduce volatile organic compounds to a level that meets state and federal MCLs; institutional controls that would include restrictions on groundwater well installations, site access restrictions, and maintenance of fencing at the DRMO Yard until state and federal MCLs are met; additional institutional controls, including a limitation on refilling the DRMO Yard fire suppression water tank from the existing potable water supply well, until state and federal MCLs are met (except in emergency situations); and natural attenuation to attain Alaska Water Quality Standards after reaching state and federal MCLs.

  17. Aqueous Corrosion Rates for Waste Package Materials

    SciTech Connect (OSTI)

    S. Arthur

    2004-10-08T23:59:59.000Z

    The purpose of this analysis, as directed by ''Technical Work Plan for: Regulatory Integration Modeling and Analysis of the Waste Form and Waste Package'' (BSC 2004 [DIRS 171583]), is to compile applicable corrosion data from the literature (journal articles, engineering documents, materials handbooks, or standards, and national laboratory reports), evaluate the quality of these data, and use these to perform statistical analyses and distributions for aqueous corrosion rates of waste package materials. The purpose of this report is not to describe the performance of engineered barriers for the TSPA-LA. Instead, the analysis provides simple statistics on aqueous corrosion rates of steels and alloys. These rates are limited by various aqueous parameters such as temperature (up to 100 C), water type (i.e., fresh versus saline), and pH. Corrosion data of materials at pH extremes (below 4 and above 9) are not included in this analysis, as materials commonly display different corrosion behaviors under these conditions. The exception is highly corrosion-resistant materials (Inconel Alloys) for which rate data from corrosion tests at a pH of approximately 3 were included. The waste package materials investigated are those from the long and short 5-DHLW waste packages, 2-MCO/2-DHLW waste package, and the 21-PWR commercial waste package. This analysis also contains rate data for some of the materials present inside the fuel canisters for the following fuel types: U-Mo (Fermi U-10%Mo), MOX (FFTF), Thorium Carbide and Th/U Carbide (Fort Saint Vrain [FSVR]), Th/U Oxide (Shippingport LWBR), U-metal (N Reactor), Intact U-Oxide (Shippingport PWR, Commercial), aluminum-based, and U-Zr-H (TRIGA). Analysis of corrosion rates for Alloy 22, spent nuclear fuel, defense high level waste (DHLW) glass, and Titanium Grade 7 can be found in other analysis or model reports.

  18. Low-risk and cost-effective prior savings estimates for large-scale energy conservation projects in housing: Learning from the Fort Polk GHP project

    SciTech Connect (OSTI)

    Shonder, J.A.; Hughes, P.J. [Oak Ridge National Lab., TN (United States); Thornton, J.W. [Thermal Energy Systems Specialists, Inc., Madison, WI (United States)

    1997-08-01T23:59:59.000Z

    Many opportunities exist for large-scale energy conservation projects in housing. Energy savings performance contracting (ESPC) is now receiving greater attention, as a means to implement such projects. This paper proposes an improved method for prior (to construction) savings estimates for these projects. The proposed approach to prior estimates is verified against data from Fort Polk, LA. In the course of evaluating the ESPC at Fort Polk, the authors have collected energy use data which allowed them to develop calibrated engineering models which accurately predict pre-retrofit energy consumption. They believe that such calibrated models could be used to provide much more accurate estimates of energy savings in retrofit projects. The improved savings estimating approach described here is based on an engineering model calibrated to field-collected data from the pre-retrofit period. A dynamic model of pre-retrofit energy use was developed for all housing and non-housing loads on a complete electrical feeder at Fort Polk. The model included the heat transfer characteristics of the buildings, the pre-retrofit air source heat pump, a hot water consumption model and a profile for electrical use by lights and other appliances. Energy consumption for all 200 apartments was totaled, and by adjusting thermostat setpoints and outdoor air infiltration parameters, the models were matched to field-collected energy consumption data for the entire feeder. The energy conservation measures were then implemented in the calibrated model: the air source heat pumps were replaced by geothermal heat pumps with desuperheaters; hot water loads were reduced to account for the low-flow shower heads; and lighting loads were reduced to account for fixture delamping and replacement with compact fluorescent lights. The analysis of pre- and post-retrofit data indicates that the retrofits have saved 30.3% of pre-retrofit electrical energy consumption on the feeder modeled in this paper.

  19. Limited Energy Engineering Analysis (EEAP) study of summer boiler at high temperature hot water plants, Fort Leonard Wood, Missouri. Final report

    SciTech Connect (OSTI)

    NONE

    1993-09-02T23:59:59.000Z

    This report is a study of the existing High Temperature Hot Water Distribution Systems at Fort Leonard Wood, Missouri. There are two systems with central boilers located in Buildings 1021 and 2369. The study focuses on the operation of the boilers during the summer months which is required to provide domestic hot water and sanitizing steam to various buildings. Because the boilers are operating under a reduced load condition, it may be cost effective in terms of energy conservation to implement one of the following energy conservation opportunities (ECO`s).

  20. Geothermal Space Heating Applications for the Fort Peck Indian Reservation in the Vicinity of Poplar, Montana. Phase I Report, August 20, 1979--December 31, 1979

    SciTech Connect (OSTI)

    Spencer, Glenn J.; Cohen, M. Jane

    1980-01-04T23:59:59.000Z

    This engineering and economic study is concerned with the question of using the natural heat of the earth, or geothermal energy, as an alternative to other energy sources such as oil and natural gas which are increasing in cost. This document represents a quarterly progress report on the effort directed to determine the availability of geothermal energy within the Fort Peck Indian Reservation, Montana (Figure 1), and the feasibility of beneficial use of this resource including engineering, economic and environmental considerations. The project is being carried out by the Tribal Research office, Assinboine and Sioux Tribes, Fort Peck Indian Reservation, Poplar, Montana under a contract to the United States Department of Energy. PRC TOUPS, the major subcontractor, is responsible for engineering and economic studies and the Council of Energy Resource Tribes (CERT) is providing support in the areas of environment and finance, the results of which will appear in the Final Report. The existence of potentially valuable geothermal resource within the Fort Peck Indian Reservation was first detected from an analysis of temperatures encountered in oil wells drilled in the area. This data, produced by the Montana Bureau of Mines and Geology, pointed to a possible moderate to high temperature source near the town of Poplar, Montana, which is the location of the Tribal Headquarters for the Fort Peck Reservation. During the first phase of this project, additional data was collected to better characterize the nature of this geothermal resource and to analyze means of gaining access to it. As a result of this investigation, it has been learned that not only is there a potential geothermal resource in the region but that the producing oil wells north of the town of Poplar bring to the surface nearly 20,000 barrels a day (589 gal/min) of geothermal fluid in a temperature range of 185-200 F. Following oil separation, these fluids are disposed of by pumping into a deep groundwater aquifer. While beneficial uses may be found for these geothermal fluids, even higher temperatures (in excess of 260 F) may be found directly beneath the town of Poplar and the new residential development which is being planned in the area. This project is primarily concerned with the use of geothermal energy for space heating and domestic hot water for the town of Poplar (Figure 2 and Photograph 1) and a new residential development of 250 homes which is planned for an area approximately 4 miles east of Poplar along U.S. Route 2 (Figure 2 and Photograph 2). A number of alternative engineering design approaches have been evaluated, and the cost of these systems has been compared to existing and expected heating costs.

  1. AVTA Federal Fleet PEV Readiness Data Logging and Characterization Study for the National Park Service: Fort Vancouver National Historic Site

    SciTech Connect (OSTI)

    Stephen Schey; Jim Francfort

    2014-03-01T23:59:59.000Z

    Battelle Energy Alliance, LLC, managing and operating contractor for the U.S. Department of Energy’s Idaho National Laboratory, is the lead laboratory for the U.S. Department of Energy’s Advanced Vehicle Testing. Battelle Energy Alliance, LLC contracted with Intertek Testing Services, North America (ITSNA) to collect data on federal fleet operations as part of the Advanced Vehicle Testing Activity’s Federal Fleet Vehicle Data Logging and Characterization study. The Advanced Vehicle Testing Activity study seeks to collect data to validate the use of advanced electric drive vehicle transportation. This report focuses on the Fort Vancouver National Historic Site (FVNHS) fleet to identify daily operational characteristics of select vehicles and report findings on vehicle and mission characterizations to support the successful introduction of electric vehicles (EVs) into the agencies’ fleet. Individual observations of the selected vehicles provided the basis for recommendations related to EV adoption and whether a battery electric vehicle (BEV) or plug-in hybrid electric vehicle (PHEV) (collectively plug-in electric vehicles) could fulfill the mission requirements. FVNHS identified three vehicles in its fleet for consideration. While the FVNHS vehicles conduct many different missions, only two (i.e., support and pool missions) were selected by agency management to be part of this fleet evaluation. The logged vehicles included a pickup truck and a minivan. This report will show that BEVs and PHEVs are capable of performing the required missions and providing an alternative vehicle for both mission categories, because each has sufficient range for individual trips and time available each day for charging to accommodate multiple trips per day. These charging events could occur at the vehicle’s home base, high-use work areas, or in intermediate areas along routes that the vehicles frequently travel. Replacement of vehicles in the current fleet would result in significant reductions in emission of greenhouse gases and petroleum use, while also reducing fuel costs. The Vancouver, Washington area and neighboring Portland, Oregon are leaders in adoption of PEVs in the United States1. PEV charging stations, or more appropriately identified as electric vehicle supply equipment, located on the FVNHS facility would be a benefit for both FVNHS fleets and general public use. Fleet drivers and park visitors operating privately owned plug-in electric vehicles benefit by using the charging infrastructure. ITSNA recommends location analysis of the FVNHS site to identify the optimal station placement for electric vehicle supply equipment. ITSNA recognizes the support of Idaho National Laboratory and ICF International for their efforts to initiate communication with the National Parks Service and FVNHS for participation in this study. ITSNA is pleased to provide this report and is encouraged by the high interest and support from the National Park Service and FVNHS personnel

  2. Low-Risk and Cost-Effective Prior Savings Estimates for Large-Scale Energy Conservation Projects in Housing: Learning from the Fort Polk GHP Project

    SciTech Connect (OSTI)

    Shonder, John A [ORNL; Hughes, Patrick [ORNL; Thornton, Jeff W. [Thermal Energy Systems Specialists, Inc.

    1997-08-01T23:59:59.000Z

    Many opportunities exist for large-scale energy conservation projects in housing: military housing, federally-subsidized low-income housing, and planned communities (condominiums, townhomes, senior centers) to name a few. Energy savings performance contracting (ESPC) is now receiving greater attention, as a means to implement such projects. This paper proposes an improved method for prior (to construction) savings estimates for these projects. More accurate prior estimates reduce project risk, decrease financing costs, and help avoid post-construction legal disputes over performance contract baseline adjustments. The proposed approach to prior estimates is verified against data from Fort Polk, LA. In the course of evaluating the ESPC at Fort Polk, Louisiana, we have collected energy use data - both at the electrical feeder level and at the level of individual residences - which allowed us to develop calibrated engineering models which accurately predict pre-retrofit energy consumption. We believe that such calibrated models could be used to provide much more accurate estimates of energy savings in retrofit projects, particularly in cases where the energy consumption of large populations of housing can be captured on one or a few meters. The improved savings estimating approach described here is based on an engineering model calibrated to field-collected data from the pre-retrofit period. A dynamic model of pre-retrofit energy use was developed for all housing and non-housing loads on a complete electrical feeder at Fort Polk. The feeder serves 46 buildings containing a total of 200 individual apartments. Of the 46 buildings, there are three unique types, and among these types the only difference is compass orientation. The model included the heat transfer characteristics of the buildings, the pre-retrofit air source heat pump, a hot water consumption model and a profile for electrical use by lights and other appliances. Energy consumption for all 200 apartments was totaled, and by adjusting thermostat setpoints and outdoor air infiltration parameters, the models were matched to field-collected energy consumption data for the entire feeder. The energy conservation measures were then implemented in the calibrated model: the air source heat pumps were replaced by geothermal heat pumps (GHPs) with desuperheaters; hot water loads were reduced to account for the low-flow shower heads; and lighting loads were reduced to account for fixture delamping and replacement with compact fluorescent lights (CFLs). Our analysis of pre- and post-retrofit data (Shonder and Hughes, 1997) indicates that the retrofits have saved 30.3% of pre-retrofit electrical energy consumption on the feeder modeled in this paper. Using the method outlined, we have been able to predict this savings within 0.1% of its measured value, using only pre-construction energy consumption data, and data from one pilot test site. It is well-known that predictions of savings from energy conservation programs are often optimistic, especially in the case of residential retrofits. Fels and keating (1993) cite several examples of programs which achieved as little as 20% of the predicted energy savings. Factors which influence the sometimes large discrepancies between actual and predicted savings include changes in occupancy, take-back effects (in which more efficient system operation leads occupants to choose higher levels of comfort), and changes in base energy use (e.g. through purchase of additional appliances such as washing machines and clothes dryers). An even larger factor, perhaps, is the inaccuracy inherent in the engineering models (BLAST, DOE-2, etc.) commonly used to estimate building energy consumption, if these models are not first calibrated to site-monitored data. For example, prior estimates of base-wide savings from the Fort Polk ESPC were on the order of 40% of pre-retrofit electrical use; our analysis has shown the true savings for the entire project (which includes 16 separate electrical feeders) to be about 32%. It should be noted that the retrofits ca

  3. Secondary natural gas recovery: Targeted applications for infield reserve growth in midcontinent reservoirs, Boonsville Field, Fort Worth Basin, Texas. Topical report, May 1993--June 1995

    SciTech Connect (OSTI)

    Hardage, B.A.; Carr, D.L.; Finley, R.J.; Tyler, N.; Lancaster, D.E.; Elphick, R.Y.; Ballard, J.R.

    1995-07-01T23:59:59.000Z

    The objectives of this project are to define undrained or incompletely drained reservoir compartments controlled primarily by depositional heterogeneity in a low-accommodation, cratonic Midcontinent depositional setting, and, afterwards, to develop and transfer to producers strategies for infield reserve growth of natural gas. Integrated geologic, geophysical, reservoir engineering, and petrophysical evaluations are described in complex difficult-to-characterize fluvial and deltaic reservoirs in Boonsville (Bend Conglomerate Gas) field, a large, mature gas field located in the Fort Worth Basin of North Texas. The purpose of this project is to demonstrate approaches to overcoming the reservoir complexity, targeting the gas resource, and doing so using state-of-the-art technologies being applied by a large cross section of Midcontinent operators.

  4. Estimating the Energy, Demand and Cost Savings from a Geothermal Heat Pump ESPC Project at Fort Polk, LA Through Utility Bill Analysis.

    SciTech Connect (OSTI)

    Shonder, John A [ORNL; Hughes, Patrick [ORNL

    2006-01-01T23:59:59.000Z

    Energy savings performance contracts (ESPCs) are a method of financing energy conservation projects using the energy cost savings generated by the conservation measures themselves. Ideally, reduced energy costs are visible as reduced utility bills, but in fact this is not always the case. On large military bases, for example, a single electric meter typically covers hundreds of individual buildings. Savings from an ESPC involving only a small number of these buildings will have little effect on the overall utility bill. In fact, changes in mission, occupancy, and energy prices could cause substantial increases in utility bills. For this reason, other, more practical, methods have been developed to measure and verify savings in ESPC projects. Nevertheless, increasing utility bills--when ESPCs are expected to be reducing them--are problematic and can lead some observers to question whether savings are actually being achieved. In this paper, the authors use utility bill analysis to determine energy, demand, and cost savings from an ESPC project that installed geothermal heat pumps in the family housing areas of the military base at Fort Polk, Louisiana. The savings estimates for the first year after the retrofits were found to be in substantial agreement with previous estimates that were based on submetered data. However, the utility bills also show that electrical use tended to increase as time went on. Since other data show that the energy use in family housing has remained about the same over the period, the authors conclude that the savings from the ESPC have persisted, and increases in electrical use must be due to loads unassociated with family housing. This shows that under certain circumstances, and with the proper analysis, utility bills can be used to estimate savings from ESPC projects. However, these circumstances are rare and over time the comparison may be invalidated by increases in energy use in areas unaffected by the ESPC.

  5. Fort Devens: Cold Climate Market-Rate Townhomes Targeting HERS Index of 40, Harvard, Massachusetts (Fact Sheet), Building America Case Study: Whole-House Solutions for New Homes, Building Technologies Office (BTO)

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2: FinalOffers3.pdf0-45.pdf Flash2010-45.pdfFlash2011-43andPropertyForPlans FactFort Devens:

  6. SPIDERS Fort Carson Industry Day

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    20% 25% 30% 35% 40% 45% Info Tech BankingFinance Dams FoodAgriculture Communications Health Care Transportation Nuclear Government Chemical Crit Manufacturing Commercial...

  7. Fort Benning Indianhead Townhome Renovations

    SciTech Connect (OSTI)

    Stephenson, R.; Roberts, S.; Butler, T.; Kim, E.

    2012-12-01T23:59:59.000Z

    The NAHB Research Center partnered with production builder Winchester/Camberley Homes to build a DOE Building America New Construction Test House (NCTH). This single family, detached house, located in the mixed-humid climate zone of Silver Spring, MD, was completed in June 2011. The primary goal for this house was to improve energy efficiency by 30% over the Building America B10 benchmark by developing and implementing an optimized energy solutions package design that could be cost effectively and reliably constructed on a production basis using quality management practices. The intent of this report is to outline the features of this house, discuss the implementation of the energy efficient design, and report on short-term testing results. During the interactive design process of this project, numerous iterations of the framing, air sealing, insulation, and space conditioning systems were evaluated for energy performance, cost, and practical implementation. The final design featured numerous advanced framing techniques, high levels of insulation, and the HVAC system entirely within conditioned space. Short-term testing confirmed a very tight thermal envelope and efficient and effective heating and cooling. In addition, relevant heating, cooling, humidity, energy, and wall cavity moisture data will be collected and presented in a future long-term report.

  8. Criticality Model

    SciTech Connect (OSTI)

    A. Alsaed

    2004-09-14T23:59:59.000Z

    The ''Disposal Criticality Analysis Methodology Topical Report'' (YMP 2003) presents the methodology for evaluating potential criticality situations in the monitored geologic repository. As stated in the referenced Topical Report, the detailed methodology for performing the disposal criticality analyses will be documented in model reports. Many of the models developed in support of the Topical Report differ from the definition of models as given in the Office of Civilian Radioactive Waste Management procedure AP-SIII.10Q, ''Models'', in that they are procedural, rather than mathematical. These model reports document the detailed methodology necessary to implement the approach presented in the Disposal Criticality Analysis Methodology Topical Report and provide calculations utilizing the methodology. Thus, the governing procedure for this type of report is AP-3.12Q, ''Design Calculations and Analyses''. The ''Criticality Model'' is of this latter type, providing a process evaluating the criticality potential of in-package and external configurations. The purpose of this analysis is to layout the process for calculating the criticality potential for various in-package and external configurations and to calculate lower-bound tolerance limit (LBTL) values and determine range of applicability (ROA) parameters. The LBTL calculations and the ROA determinations are performed using selected benchmark experiments that are applicable to various waste forms and various in-package and external configurations. The waste forms considered in this calculation are pressurized water reactor (PWR), boiling water reactor (BWR), Fast Flux Test Facility (FFTF), Training Research Isotope General Atomic (TRIGA), Enrico Fermi, Shippingport pressurized water reactor, Shippingport light water breeder reactor (LWBR), N-Reactor, Melt and Dilute, and Fort Saint Vrain Reactor spent nuclear fuel (SNF). The scope of this analysis is to document the criticality computational method. The criticality computational method will be used for evaluating the criticality potential of configurations of fissionable materials (in-package and external to the waste package) within the repository at Yucca Mountain, Nevada for all waste packages/waste forms. The criticality computational method is also applicable to preclosure configurations. The criticality computational method is a component of the methodology presented in ''Disposal Criticality Analysis Methodology Topical Report'' (YMP 2003). How the criticality computational method fits in the overall disposal criticality analysis methodology is illustrated in Figure 1 (YMP 2003, Figure 3). This calculation will not provide direct input to the total system performance assessment for license application. It is to be used as necessary to determine the criticality potential of configuration classes as determined by the configuration probability analysis of the configuration generator model (BSC 2003a).

  9. Idaho, Navy, DOE agree on shipments to, from INEL

    SciTech Connect (OSTI)

    Tompkins, B.

    1995-12-01T23:59:59.000Z

    This report describes aspects of a legal agreement between the U.S. Navy, the state of Idaho, and the United States Department of Energy (US DOE) regarding shipments of radioactive wastes. The agreement will allow for the shipment of 244 spent fuel shipments from the Fort St Vrain facility in Colorado, if a repository or interim storage facility outside Idaho is open and accepting spent fuel from INEL. The number of shipments to the INEL will be limited to 1133, instead of the 1940 originally planned. The Navy will be allowed 575 total shipments through the year 2035.

  10. High-temperature gas-cooled reactor safety studies for the division of accident evaluation. Quarterly progress report, October 1-December 31, 1982

    SciTech Connect (OSTI)

    Ball, S.J.; Clapp, N.E. Jr.; Cleveland, J.C.; Conklin, J.C.; Harrington, R.M.; Lindemer, T.B.; Siman-Tov, I.

    1983-08-01T23:59:59.000Z

    Work continued on high-temperature gas-cooled reactor safety code development, including both the Fort St. Vrain and the 2240-MW(t) lead plant versions of the three-dimensional core code ORECA, the BLAST steam generator code, and a simplified core model code called SCORE. Oak Ridge National Laboratory participated in the Nuclear Regulatory Commission siting study for the lead plant with three other laboratories. Investigations continued to determine the status of fission-product source-term methodology applicable to postulated severe accidents.

  11. SAINT PETERSBURG STATE UNIVERSITY Mathematics & Mechanics Faculty

    E-Print Network [OSTI]

    Granichin, Oleg

    : 9 1.1. GARCH- 9 1.2. QMLE (QUASI-MAXIMUM LIKELIHOOD ESTIMATOR) 10 1;5 . , , , , . , ( GARCH-, , , - [2]), . , , , . . 50- XX]), ­ GARCH (generalized ARCH, [Bollerslev, 1986]). , . GARCH

  12. Saint Paul Port Authority PACE Program

    Broader source: Energy.gov [DOE]

     Note:  In 2010, the Federal Housing Finance Agency (FHFA), which has authority over mortgage underwriters Fannie Mae and Freddie Mac, directed these enterprises against purchasing mortgages of...

  13. Peter Martyr: The Inquisitor as Saint

    E-Print Network [OSTI]

    Caldwell, Christine

    2000-01-01T23:59:59.000Z

    consider this as a reverse of Aviad Kleinberg’s paradigm ofDominique (Paris 1995) 35–49. Aviad M. Kleinberg, Prophetsn. 1 above) 84, 87–88; cf. Aviad M. Kleinberg, “Proving

  14. Magic and Mesmerism in Saint Domingue

    E-Print Network [OSTI]

    Murphy, Kieran

    2008-01-01T23:59:59.000Z

    Jean. Les marrons de la Haiti: H. Deschamps, 1988. Gauld,of what Vodou site in Haiti. In the 1780s, the firstreligion of the people Haiti, Vodou dates back to the times

  15. Harvey Haven: BPA's patron saint of safety

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm) Harmonicbet When yourecoveryG - SSCWhy

  16. Saint Gobain Group | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form HistoryRistma AG Jump to:Energysource History ViewJump

  17. Saint Charles International | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ |Rippey Jump to:WY) JumpLandSRT

  18. Saint Helena: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ |Rippey Jump to:WY) JumpLandSRTHelena: Energy Resources Jump

  19. Evaluation and combined geophysical interpretations of NURE and related geoscience data in the Van Horn, Pecos, Marfa, Fort Stockton, Presidido, and Emory Peak quadrangles, Texas. Volume 1. Final report

    SciTech Connect (OSTI)

    Keller, G.R.; Hinze, W.J.; Aiken, C.L.V.; Goodell, P.C.; Roy, R.F.; Pingitore, N.E.

    1981-09-01T23:59:59.000Z

    This report (two volumes) is the culmination of a two-year study of the six Trans-Pecos Texas quadrangles (Van Horn, Pecos, Marfa, Fort Stockton, Presidio, and Emory Park) surveyed as part of the National Uranium Resource Evaluation (NURE) program. Volume I contains a discussion of the aeromagnetic, gravity and geochemical data, their processing, and their analysis. The geologic history and setting of the Trans-Pecos are discussed along with the uranium potential of the region. Uranium anomalies and occurrences characteristic of numerous different NURE classes are present in the study area, and information is presented on 33 drill holes into these targets. Volume II is a folio of maps reduced to a scale of 1:500,000. Geologic maps for each of the six quadrangles are included and the geophysical maps have been prepared to be overlays for the goelogic maps. In addition to the geologic maps, residual aeromagnetic anomaly, complete Bouguer gravity anomaly, flight line index, gravity station index, and anomaly interpretative maps were prepared for each quadrangle. A large suite of digitally processed maps of gravity and aeromagnetic data were prepared and are included in Volume II.

  20. Feasibility Study of Economics and Performance of Solar Photovoltaics at the Former Fort Ord Army Base Site in Marina, California. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    SciTech Connect (OSTI)

    Stoltenberg, B.; Konz, C.; Mosey, G.

    2013-05-01T23:59:59.000Z

    The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Former Fort Ord Army Base (FOAB) site in Marina, California, for a feasibility study of renewable energy production. The National Renewable Energy Laboratory (NREL) provided technical assistance for this project. The purpose of this report is to assess the site for a possible photovoltaic (PV) system installation and estimate the cost, performance, and site impacts of different PV options. In addition, the report recommends financing options that could assist in the implementation of a PV system at the site.

  1. Corrections and Changes for the Paperback Edition of Barton H. Barbour, "Jedediah Smith: No Ordinary Mountain Man."

    E-Print Network [OSTI]

    Barrash, Warren

    Corrections and Changes for the Paperback Edition of Barton H. Barbour, "Jedediah Smith Jedediah Smith, this time to convey the peltry safely to Saint Louis. There could be no weightier, critical leg of the journey. In addition, Smith was to inform military authorities at Fort Atkinson

  2. Colorado State University and Fort Collins

    E-Print Network [OSTI]

    range of installation cultural resources to ensure that these diverse non-renewable resources, rock climbing and white water sports. For Further Information on CEMML's Cultural Resources Management Support, Contact: James A. Zeidler, Ph.D., RPA Associate Director for Cultural Resources Center

  3. Innovative Utility Partnership at Fort Lewis, Washington

    SciTech Connect (OSTI)

    Not Available

    2000-07-01T23:59:59.000Z

    Utility partnership upgrades energy system to help meet the General Services Administration's (GSA) energy-saving goals

  4. Fort Lauderdale, Florida, USA 1999 December 0204

    E-Print Network [OSTI]

    ]. The high energy coupling factors of up to k ß 0:76 achieved with certain magne­ tostrictive materials motivates the utilization of these materials in sensing applications involving energy conversion between a magnetostrictive material to convert between mechanical and magnetic energies. It is emphasized that this energy

  5. Field Support Assistant Fort Hunter Liggett, California

    E-Print Network [OSTI]

    University (CSU). CEMML applies the latest and most appropriate science to promote the sustainable management Project, use of global position systems (GPS), application of Best Management Practices (BMP) for soil (Research Associate I Special) position is available with the Center for Environmental Management

  6. Oscillations fortes sur un champ lineairement degenere

    E-Print Network [OSTI]

    MĂ©tivier, Guy

    .1 Solutions BKW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.2 Stabilit´e hyperbolique . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.3 Instabilit´e hyperbolique . . . . . . . . . . . . . . . . . . . . . . . . . 19 4 Solutions BKW

  7. Cove Fort Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationinConcentratingEnergyCoosaPage Edit with form HistoryCovalent

  8. Cove Fort Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformationNew|Core AnalysisCouncil, Idaho:Stanislaus Energy

  9. Cove Fort Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformationNew|Core AnalysisCouncil, Idaho:Stanislaus EnergyPower

  10. Fort Bidwell Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to:ar-80m.pdfFillmoreGabbs ValleyCity,ForkedAdd aNorth Carolina:

  11. Fort Bidwell Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to:ar-80m.pdfFillmoreGabbs ValleyCity,ForkedAdd aNorth

  12. Evaluation of FSV-1 cask for the transport of LWR irradiated fuel assemblies

    SciTech Connect (OSTI)

    Not Available

    1980-05-01T23:59:59.000Z

    The Model FSV-1 spent fuel shipping cask was designed by General Atomic Company (GA) to service the Fort St. Vrain (FSV) nuclear generating station, a High Temperature Gas Reactor (HTGR) owned and operated by Public Service Company of Colorado (PSC). This report presents an evaluation of the suitability of the FSV-1 cask for the transport of irradiated Light Water Reactor (LWR) fuel assemblies from both Pressurized Water Reactors (PWR) and Boiling Water Reactors (BWR). The FSV-1 cask evaluation parameters covered a wide spectrum of LWR fuel assemblies, based on burnup in Megawatt Days/Metric Ton of Heavy Metal (MWD/MTHM) and years of decay since irradiation. The criteria for suitability included allowable radiation dose rates, cask surface and interior temperatures and the Gross Vehicle Weight (GVW) of the complete shipping system.

  13. Medium-size high-temperature gas-cooled reactor

    SciTech Connect (OSTI)

    Peinado, C.O.; Koutz, S.L.

    1980-08-01T23:59:59.000Z

    This report summarizes high-temperature gas-cooled reactor (HTGR) experience for the 40-MW(e) Peach Bottom Nuclear Generating Station of Philadelphia Electric Company and the 330-MW(e) Fort St. Vrain Nuclear Generating Station of the Public Service Company of Colorado. Both reactors are graphite moderated and helium cooled, operating at approx. 760/sup 0/C (1400/sup 0/F) and using the uranium/thorium fuel cycle. The plants have demonstrated the inherent safety characteristics, the low activation of components, and the high efficiency associated with the HTGR concept. This experience has been translated into the conceptual design of a medium-sized 1170-MW(t) HTGR for generation of 450 MW of electric power. The concept incorporates inherent HTGR safety characteristics (a multiply redundant prestressed concrete reactor vessel (PCRV), a graphite core, and an inert single-phase coolant) and engineered safety features (core auxiliary cooling, relief valve, and steam generator dump systems).

  14. Options for treating high-temperature gas-cooled reactor fuel for repository disposal

    SciTech Connect (OSTI)

    Lotts, A.L.; Bond, W.D.; Forsberg, C.W.; Glass, R.W.; Harrington, F.E.; Micheals, G.E.; Notz, K.J.; Wymer, R.G.

    1992-02-01T23:59:59.000Z

    This report describes the options that can reasonably be considered for disposal of high-temperature gas-cooled reactor (HTGR) fuel in a repository. The options include whole-block disposal, disposal with removal of graphite (either mechanically or by burning), and reprocessing of spent fuel to separate the fuel and fission products. The report summarizes what is known about the options without extensively projecting or analyzing actual performance of waste forms in a repository. The report also summarizes the processes involved in convert spent HTGR fuel into the various waste forms and projects relative schedules and costs for deployment of the various options. Fort St. Vrain Reactor fuel, which utilizes highly-enriched {sup 235}U (plus thorium) and is contained in a prismatic graphite block geometry, was used as the baseline for evaluation, but the major conclusions would not be significantly different for low- or medium-enriched {sup 235}U (without thorium) or for the German pebble-bed fuel. Future US HTGRs will be based on the Fort St. Vrain (FSV) fuel form. The whole block appears to be a satisfactory waste form for disposal in a repository and may perform better than light-water reactor (LWR) spent fuel. From the standpoint of process cost and schedule (not considering repository cost or value of fuel that might be recycled), the options are ranked as follows in order of increased cost and longer schedule to perform the option: (1) whole block, (2a) physical separation, (2b) chemical separation, and (3) complete chemical processing.

  15. ACADEMIE DE LYON UNIVERSITE JEAN MONNET SAINT ETIENNE

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    GEOCHIMIQUE ET ISOTOPIQUE DES EAUX SUPERFICIELLES DU BASSIN VERSANT DU FURAN ET DES EAUX MINERALES DU GRABEN DU BASSIN VERSANT DU FURAN ET DES EAUX MINERALES DU GRABEN DU FOREZ, EST DU MASSIF CENTRAL FRANÇAIS

  16. BPA's patron saint of safety enters International Lineman Hall...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    said he was "very humbled" to be recognized. Haven, 74, took a break from his full slate of teaching duties for BPA and companies across North America to become one of five...

  17. Adaptive Load Forecasting Philip Anton de Saint-Aubain

    E-Print Network [OSTI]

    mathematical models for the heat load. Based on district heating consumption data from four houses in a small taken is to reveal the details in the heating consumption in resi- dential houses by developing the heating signals into different components. One of the models is able to split the overall consumption

  18. Minneapolis and Saint Paul, Minnesota: Solar in Action (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01T23:59:59.000Z

    This brochure provides an overview of the challenges and successes of Minneapolis, MN, a 2008 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

  19. Saint Peter Municipal Utilities- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Southern Minnesota Municipal Power Agency ([http://www.smmpa.com SMMPA]) is a joint-action agency which generates and sells reliable electricity at wholesale to its eighteen non-profit, municipally...

  20. Minneapolis and Saint Paul, Minnesota: Solar in Action (Brochure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in 2007 and an additional 12 cities in 2008 to develop comprehensive approaches to urban solar energy use that can serve as a model for cities around the nation. DOE...

  1. Minneapolis and Saint Paul, Minnesota: Solar in Action (Brochure...

    Energy Savers [EERE]

    Efficiency & Renewable Energy (EERE) SunShot Home About Concentrating Solar Power Photovoltaics Systems Integration Soft Costs Technology to Market Financial Opportunities...

  2. MHK Projects/Saint Catherine Bend | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:LandownersLuther, Oklahoma:Energy InformationSEAREV Pays de la Loire

  3. Saint Lucia-Caribbean Community (CARICOM) Sustainable Energy Roadmap and

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to:RoscommonSBY SolutionsChange Resilience Framework | Open

  4. Saint Lucia-Regional Implementation Plan for CARICOM's Climate Change

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to:RoscommonSBY SolutionsChange Resilience Framework |Resilience

  5. Saint Vincent and the Grenadines-Caribbean Community (CARICOM) Sustainable

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to:RoscommonSBY SolutionsChange Resilience Framework |ResilienceEnergy

  6. Saint Vincent and the Grenadines-Regional Implementation Plan for

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to:RoscommonSBY SolutionsChange Resilience FrameworkCARICOM's Climate

  7. Saint Vincent and the Grenadines: Energy Resources | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to:RoscommonSBY SolutionsChange Resilience FrameworkCARICOM's

  8. Saint Kitts and Nevis: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ |Rippey Jump to:WY) JumpLandSRTHelena: Energy Resources

  9. Saint Kitts and Nevis: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ |Rippey Jump to:WY) JumpLandSRTHelena: Energy

  10. Saint Vincent and the Grenadines: Energy Resources | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ |Rippey Jump to:WY) JumpLandSRTHelena:

  11. Minneapolis and Saint Paul, Minnesota: Solar in Action (Brochure), Solar

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment3311,Official FileEnergy Midsize9 SuggestedAmerica Cities,

  12. City of Saint Paul, Alaska (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformation Smyrna Beach, FloridaCityRuston, Louisiana

  13. Development of Baseline Monthly Utility Models for Fort Hood, Texas

    E-Print Network [OSTI]

    Reddy, T. A.; Saman, N. F.; Claridge, D. E.; Haberl, J. S.; Turner, W. D.; Chalifoux, A.

    1996-01-01T23:59:59.000Z

    /evaluate the extent to which Presidential Executive Order 12902, mandating 30% decrease in energy utility bills from 1985 to 2005, is being met. In this analysis, 1990 has been selected as the baseline year to illustrate the predictive capability of the models. Since...

  14. A Comparative Study of the Mississippian Barnett Shale, Fort...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Top right: The Marcellus Shale exposed in the Valley and Ridge Province near Keyser, West Virginia. Photographs by Kathy R. Bruner, U.S. Department of Energy (USDOE), National...

  15. 1490 Campus Delivery Fort Collins, Colorado 80523-1490

    E-Print Network [OSTI]

    Management Program (ITAM): -Don Applegate -Christopher Long -Blaize Uva Work Location: Camp Roberts and Camp nominations. The Integrated Training Area Management (ITAM) Program is responsible for maintaining the training lands of California Army National Guard (CAARNG) installations. The ITAM Program supports

  16. El Paso County Geothermal Project at Fort Bliss

    Broader source: Energy.gov (indexed) [DOE]

    GIS database development * Conceptual geologicgeothermal system modeling - Slim-hole drilling & Resource testing * Corecuttings analysis including XRD * Integrated wellbore...

  17. Renewable Energy Development on Fort Mojave Reservation Feasiblity Study

    SciTech Connect (OSTI)

    Russell Gum, ERCC analytics LLC

    2008-03-17T23:59:59.000Z

    The Ft. Mojave tribe, whose reservation is located along the Colorado River in the states of Arizona, California, and Nevada near the point where all three states meet, has a need for increased energy supplies. This need is a direct result of the aggressive and successful economic development projects undertaken by the tribe in the last decade. While it is possible to contract for additional energy supplies from fossil fuel sources it was the desire of the tribal power company, AHA MACAV Power Service (AMPS) to investigate the feasibility and desirability of producing power from renewable sources as an alternative to increased purchase of fossil fuel generated power and as a possible enterprise to export green power. Renewable energy generated on the reservation would serve to reduce the energy dependence of the tribal enterprises on off reservation sources of energy and if produced in excess of reservation needs, add a new enterprise to the current mix of economic activities on the reservation. Renewable energy development would also demonstrate the tribe’s support for improving environmental quality, sustainability, and energy independence both on the reservation and for the larger community.

  18. Fort Drum integrated resource assessment. Volume 1, Executive summary

    SciTech Connect (OSTI)

    Dixon, D.R.; Armstrong, P.R.; Daellenbach, K.K.

    1993-09-01T23:59:59.000Z

    Some of the most difficult problems that a federal site has in reducing its energy consumption in a cost-effective manner revolve around understanding where the energy is being used, and what technologies could be employed to decrease the energy use. Many large federal sites have one or two meters to track electric energy use for several thousand buildings and numerous industrial processes. Even where meters are available on individual buildings or family housing units, the meters are not consistently read. When the federal energy manager has been able to identify high energy users, he or she may not have the background, training, or resources to determine the most cost-effective options for reducing this energy use. This can lead to selection of suboptimal projects that prevent the site from achieving the full life-cycle cost savings. The US Department of Energy (DOE) Federal Energy Management Program (FEMP), supported by the Pacific Northwest Laboratory (PNL), has developed a model program that provides a systematic approach to evaluating energy opportunities that (1) identifies the building groups and end uses that use the most energy (not just have the greatest energy-use intensity), and (2) evaluates the numerous options for retrofit or installation of new technology that will result in the selection of the most cost-effective technologies. In essence, this model program provides the federal energy manager with a roadmap to significantly reduce energy use in a planned, rational, cost-effective fashion that is not biased by the constraints of the typical funding sources available to federal sites. The results from this assessment process can easily be turned into a five- to ten-year energy management plan that identifies where to start and how to proceed in order to reach the mandated energy consumption targets.

  19. Y-12 replaces ŤFort Knox? as standard for security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for security On Monday, September 29, 2008, an historic milestone was reached at the Y-12 National Security Complex. The Highly Enriched Uranium Materials Facility (HEUMF) was...

  20. Direct-Current Resistivity Survey At Cove Fort Area - Vapor ...

    Open Energy Info (EERE)

    Notes Update to Warpinski, et al., 2002 References N. R. Warpinski, A. R. Sattler, R. Fortuna, D. A. Sanchez, J. Nathwani (2004) Geothermal Resource Exploration And Definition...

  1. Direct-Current Resistivity At Cove Fort Area - Liquid (Warpinski...

    Open Energy Info (EERE)

    Notes Update to Warpinski, et al., 2002 References N. R. Warpinski, A. R. Sattler, R. Fortuna, D. A. Sanchez, J. Nathwani (2004) Geothermal Resource Exploration And Definition...

  2. Direct-Current Resistivity Survey At Cove Fort Area (Warpinski...

    Open Energy Info (EERE)

    Notes Update to Warpinski, et al., 2002 References N. R. Warpinski, A. R. Sattler, R. Fortuna, D. A. Sanchez, J. Nathwani (2004) Geothermal Resource Exploration And Definition...

  3. Research Signpost 37/661 (2), Fort P.O.

    E-Print Network [OSTI]

    Li, Xiaofan

    is a straight cylinder, then shocks forms when the interior gas oscillates at its resonance frequency. High to solve the compressible Navier- Stokes equations. The geometry of the resonator strongly influences its resonance frequencies and the nonlinear standing pressure waveform generated within the cavity. Studying

  4. Development of Baseline Monthly Utility Models for Fort Hood, Texas 

    E-Print Network [OSTI]

    Reddy, T. A.; Saman, N. F.; Claridge, D. E.; Haberl, J. S.; Turner, W. D.; Chalifoux, A.

    1996-01-01T23:59:59.000Z

    /evaluate the extent to which Presidential Executive Order 12902, mandating 30% decrease in energy utility bills from 1985 to 2005, is being met. In this analysis, 1990 has been selected as the baseline year to illustrate the predictive capability of the models. Since...

  5. New sensitivity analysis subordinated to a Jean-Claude Fort

    E-Print Network [OSTI]

    Klein, Thierry

    (e.g. see [8]): geophysics and oil reservoir, safety in nuclear industry, soil pollution, and more of interest (thermal, acoustic, electromagnetic study...). Such sensitivity analysis may be done for instance

  6. New sensitivity analysis subordinated to a Jean-Claude Fort

    E-Print Network [OSTI]

    Boyer, Edmond

    (e.g. see [8]): geophysics and oil reservoir, safety in nuclear industry, soil pollution, and more the simulations more tractable for the study of interest (thermal, acoustic, electromagnetic study

  7. Dallas-Fort Worth, TX Clean Taxi Replacement Incentive

    Broader source: Energy.gov [DOE]

    The North Central Texas Council of Governments has partnered with the U.S. Environmental Protection Agency and the City of Dallas to develop the North Texas Green & Go Clean Taxi Partnership as...

  8. Savings Report for the Fort Hood Army Base

    E-Print Network [OSTI]

    Song, S.; Liu, Z.; Cho, S.; Baltazar-Cervantes, J. C.; Haberl, J. S.

    Underwood (USACERL), and Bobby Lynn, Danny Shaff and Myron Cook (Ft. Hood Energy Office). Thanks also to Ms. Sherrie Hughes for assistance ordering the ASHRAE reports, preparing the final report and CDROM, and sending the report. Thanks also...

  9. Fort Yukon, Chalkyitsik, & Venetie Biomass Boiler Feasibility Study

    SciTech Connect (OSTI)

    Greg Koontz, ME William A. Wall, PhD

    2009-03-31T23:59:59.000Z

    The Council of Athabascan Tribal Governments (CATG) is a consortium of ten Gwich'in and Koyukon Athabascan tribes settled in 10 remote villages and are linked by the Yukon River System. The CATG mission is to maintain the Yukon Flats region as Indian Country by asserting traditional rights and taking responsibility for developing tribal technical capacity to manage the land and resources. It is the intent of CATG to explore and develop all opportunities for a renewable and self-sufficient energy program for each of the villages. CATG envisions utilization of forest resources both for construction and energy as one of the best long-term strategies for integrating the economic goals for the region as well as supporting the cultural and social issues. The intent for this feasibility project is to focus specifically on biomass utilization for heat, first, and for future electrical generation within the region, second. An initial determination has already been made regarding the importance of wood energy as a primary source of renewable energy to displace diesel fuel in the Yukon Flats region. A desktop study of other potential renewable resources was conducted in 2006.

  10. Fort Calhoun Station disposal of spent fuel pool racks

    SciTech Connect (OSTI)

    Jamieson, T.W. [Omaha Public Power District, Fort Calhoun Station, NE (United States)

    1995-09-01T23:59:59.000Z

    The original plan was to have the racks pulled out of the pool, washed down and wrapped and placed in Sea/Lands to be sent to a vendor for free release and disposal. In the winter of 93 the proposed quotations on the Spent Fuel Rerack Processing were all rejected. With the rerack job starting in March of 94 and the closing of Barnwell in July we were faced with what to do with the racks. Processing of the existing racks were required since if the racks were sent to Barnwell for burial intact the cost would be prohibitive, that is, if Barnwell would have stayed open. If the racks were sent to a smelter, such as Scientific Ecology Group (SEG), there are restrictions on the length of the components that can go through the smelter. If SEG were to do the rack processing (sectioning) at their facility, the cost would also be prohibitive and they would not be in a position to receive the racks until June, 1995. Therefore, bid specifications were requested for on-site volume reduction processing of the existing spent fuel storage racks, with further ultimate disposal to be performed by SEG. The processing of the racks included piping and supports. Volume reduction (VR) was an issue in the evaluation since after this process the racks were to be shipped to SEG. If a low VR ratio option was chosen, OPPD would need a significant number of shipping containers and required more radwaste shipments versus if a high VR ratio option were chosen.

  11. Fort Collins- Green Building Requirement for City-Owned Buildings

    Broader source: Energy.gov [DOE]

    To control the construction and design costs associated with new buildings meeting this standard, the goal of Gold can be reduced to Silver for projects where the payback period for earning Gold...

  12. Development of Baseline Monthly Utility Models for Fort Hood, Texas

    E-Print Network [OSTI]

    Reddy, T. A.; Saman, N. F.; Claridge, D. E.; Haberl, J. S.; Turner, W. D.; Chalifoux, A.

    ----~ ---__".._--------_r_~_J 20,000 +--I---_\\_---f---\\----,f-----'''''r----/--~--__r__-_T__I 10,000 +---------------------------1 O+----+--+-----j---+---+---+---+---+--+--.....J Jan-89 Jan-90 Jan-91 Jan-92 Jan-93 Main Substation Elec. Demand o E 60,000 b /\\ ~ ~40...,000-~ ~ - '-' -g 20,000 ------------------ 03 ? 0 I Cl Jan-89 Jan-90 Jan-91 Jan-92 Jan-93 Main and West Substations Gas Use 400,000 .,--------------------------, c: .~ I 300,000 +:-----Pt-----------.:------------------1 E-- ::3 u.. 200...

  13. City of Fort Collins Comment on Information Collection Extension, October

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T, Inc.'sEnergyTexas1. Feedstock &EnergyDepartment ofTreatment2011 |

  14. Energy Department Recognizes Fort Worth for Leadership in Advancing Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721 Federal RegisterHydrogen and FuelDefense as Part ofEnergy | Department

  15. Energy Department Recognizes Fort Worth for Leadership in Advancing Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 Russian NuclearandJunetrackEllen O'KaneSystemsDepartmentCarbon |Energy

  16. SPIDERS Phase 2 Fort Carson Technology Transition Public Report

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    G) will automatically shut down as if utility power was restored. Initial autonomous response to utility failure, Buildings A, E, and F go "black", while generators provide...

  17. Energy Management Practices at Dalls/Fort Worth International Airport

    E-Print Network [OSTI]

    Dennis, J. R.

    2013-01-01T23:59:59.000Z

    of the Airport?s energy conservation building codes and standards. Proposed Street Light for Southgate Fanwall AHU (TRIP) Energy Management Practices at DFW Airport, October 9, 2013 Demand-Side Management (cont.) ? Continuous Commissioning? ? Optimizes... Management Section ? Structure & Mission ? Supply-Side Management ? Reliability ? Cost (Risk) mitigation ? Environmental stewardship ? Demand-Side Management ? Energy monitoring ? Energy audits ? Energy standards ? Continuous Commissioning...

  18. analysis program fort: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the laundry operation and the DOL maintenance complex with specific focus on paintingmedia blasting... Lin, M.; Vavrin, J.; Smith, W. 2004-01-01 104 Statewide Degree...

  19. aux fortes doses: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the laundry operation and the DOL maintenance complex with specific focus on paintingmedia blasting... Lin, M.; Vavrin, J.; Smith, W. 2004-01-01 34 De la Bretagne aux oprades...

  20. Continuous Commissioning® of the Dallas/Fort Worth International Airport

    E-Print Network [OSTI]

    Yazdani, B.; Schroeder, F.; Kramer, L.; Baltazar, J. C.; Turner, W. D.; Wei, G.; Deng, S.; Henson, R.; Dennis, J. R.; T., R.

    and cost savings. The Energy Systems Laboratory was hired to apply the Continuous Commissioning ? (CC ? ) 1 process at the airport. Five projects have been identified to date including: 1. An energy audit and assessment of Terminal B and a lighting... on the completed projects: the Consolidated Rent-A-Car Center, the Airport Administration Building, and the major on-going projects, CC of Terminal D and Energy Plaza. 1 Both Continuous Commissioning and CC...

  1. Fort Collins Utilities - Commercial and Industrial Energy Efficiency Rebate

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy Chinaof EnergyImpactOnSTATEMENT8.pdf MoreRevisedProgramCostFWP brochure

  2. Fort Collins Utilities - Home Efficiency Loan Program | Department of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy Chinaof EnergyImpactOnSTATEMENT8.pdf MoreRevisedProgramCostFWP brochureEnergy

  3. Fort Collins Utilities - Residential and Small Commercial Appliance Rebate

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy Chinaof EnergyImpactOnSTATEMENT8.pdf MoreRevisedProgramCostFWP

  4. Clean Cities: Dallas-Fort Worth Clean Cities coalition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z CPlasma0 12

  5. MHK Projects/Fort Adams | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf KilaueaInformationCygnet < MHKSound, NY ProjectAdams < MHK

  6. MHK Projects/Fort Ross North | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf KilaueaInformationCygnet < MHKSound, NY ProjectAdams < MHK,

  7. MHK Projects/Fort Ross South | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf KilaueaInformationCygnet < MHKSound, NY ProjectAdams < MHK,°,

  8. NREL: Continuum Magazine - Helping Fort Carson Meet DOD Energy Goals

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNREL NRELChemicalIndustry Photo of a wind

  9. City of Fort Collins, Colorado (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin Urban Transport |CityCity of Dayton,CityCityCityCityCollinsCity

  10. City of Fort Morgan, Colorado (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin Urban Transport |CityCity of

  11. Geothermometry At Fort Bliss Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°,Park,2005)EnergyAmatitlanGmbH und Co KGEnergyFish Lake

  12. Multispectral Imaging At Cove Fort Area (Laney, 2005) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose BendMiasoleTremor(Question) | Open Energy

  13. Spontaneous Potential At Fort Bidwell Area (Laney, 2005) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk,Southeast ColoradoOhio: Energy ResourcesSpire(book section)

  14. Thermochronometry At Fort Bliss Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f <MaintainedInformationThe yearThermalSoul Jump to:ThermoDate

  15. Cove Fort Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformationNew|Core AnalysisCouncil, Idaho:Stanislaus EnergyPower Plant

  16. City of Fort Collins, Colorado (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png El CER esDataset CountryChoosEVCityDenison,

  17. Multispectral Imaging At Fort Bliss Area (DOE GTP) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula,MontereyHill,SpurrMulberry,Energy Information

  18. Fort Belvoir, Virginia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to:ar-80m.pdfFillmoreGabbs ValleyCity,ForkedAdd aNorth Carolina:

  19. Fort Collins, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to:ar-80m.pdfFillmoreGabbs ValleyCity,ForkedAdd

  20. Fort Defiance, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to:ar-80m.pdfFillmoreGabbs ValleyCity,ForkedAdd

  1. Fort Devens, Massachusetts: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to:ar-80m.pdfFillmoreGabbs ValleyCity,ForkedAddDevens, Massachusetts:

  2. Fort Hunt, Virginia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to:ar-80m.pdfFillmoreGabbs ValleyCity,ForkedAddDevens,

  3. Fort Knox, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to:ar-80m.pdfFillmoreGabbs ValleyCity,ForkedAddDevens,Knox, Kentucky:

  4. Fort Lee, New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to:ar-80m.pdfFillmoreGabbs ValleyCity,ForkedAddDevens,Knox, Kentucky:Lee,

  5. Fort McKinley, Ohio: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to:ar-80m.pdfFillmoreGabbs ValleyCity,ForkedAddDevens,Knox,

  6. Fort Meade, Maryland: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to:ar-80m.pdfFillmoreGabbs ValleyCity,ForkedAddDevens,Knox,Meade,

  7. Fort Ripley, Minnesota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to:ar-80m.pdfFillmoreGabbs ValleyCity,ForkedAddDevens,Knox,Meade,Ripley,

  8. Fort Rucker, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to:ar-80m.pdfFillmoreGabbs

  9. Fort Salonga, New York: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to:ar-80m.pdfFillmoreGabbsSalonga, New York: Energy Resources Jump to:

  10. Fort Snelling, Minnesota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to:ar-80m.pdfFillmoreGabbsSalonga, New York: Energy Resources Jump

  11. Fort Washington, Pennsylvania: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to:ar-80m.pdfFillmoreGabbsSalonga, New York: Energy Resources

  12. Fort Worth, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to:ar-80m.pdfFillmoreGabbsSalonga, New York: Energy ResourcesWorth,

  13. Update On Geothermal Exploration At Fort Bidwell, Surprise Valley

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga, IndianaTurtleCooperativeCROSS-VALIDATION OF SWERA's CORECalifornia |

  14. City of Fort Meade, Florida (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here.TelluricPowerCity ofInformation CityIowa (Utility Company)Meade,

  15. City of Fort Pierre, South Dakota (Utility Company) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here.TelluricPowerCity ofInformation CityIowa (Utility

  16. Fuel-Cycle and Nuclear Material Disposition Issues Associated with High-Temperature Gas Reactors

    SciTech Connect (OSTI)

    Shropshire, D.E.; Herring, J.S.

    2004-10-03T23:59:59.000Z

    The objective of this paper is to facilitate a better understanding of the fuel-cycle and nuclear material disposition issues associated with high-temperature gas reactors (HTGRs). This paper reviews the nuclear fuel cycles supporting early and present day gas reactors, and identifies challenges for the advanced fuel cycles and waste management systems supporting the next generation of HTGRs, including the Very High Temperature Reactor, which is under development in the Generation IV Program. The earliest gas-cooled reactors were the carbon dioxide (CO2)-cooled reactors. Historical experience is available from over 1,000 reactor-years of operation from 52 electricity-generating, CO2-cooled reactor plants that were placed in operation worldwide. Following the CO2 reactor development, seven HTGR plants were built and operated. The HTGR came about from the combination of helium coolant and graphite moderator. Helium was used instead of air or CO2 as the coolant. The helium gas has a significant technical base due to the experience gained in the United States from the 40-MWe Peach Bottom and 330-MWe Fort St. Vrain reactors designed by General Atomics. Germany also built and operated the 15-MWe Arbeitsgemeinschaft Versuchsreaktor (AVR) and the 300-MWe Thorium High-Temperature Reactor (THTR) power plants. The AVR, THTR, Peach Bottom and Fort St. Vrain all used fuel containing thorium in various forms (i.e., carbides, oxides, thorium particles) and mixtures with highly enriched uranium. The operational experience gained from these early gas reactors can be applied to the next generation of nuclear power systems. HTGR systems are being developed in South Africa, China, Japan, the United States, and Russia. Elements of the HTGR system evaluated included fuel demands on uranium ore mining and milling, conversion, enrichment services, and fuel fabrication; fuel management in-core; spent fuel characteristics affecting fuel recycling and refabrication, fuel handling, interim storage, packaging, transportation, waste forms, waste treatment, decontamination and decommissioning issues; and low-level waste (LLW) and high-level waste (HLW) disposal.

  17. Overview of Rocky Mountain Region's Capital Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Casper Riverton Wyodak Ft. St. Vrain Ault Story Flaming Gorge Lost Canyon Hesperus Lamar (DC Terminal) Hayden Meeker Rifle Bonanza Vernal Osage Lange Spence Platte Montrose...

  18. atlantic forest state: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    15 credits FORT 110* Forest Inventories (3) FORT 140 Forest Surveying (3) FORT 160 to Forestry 1 FORT 105 - Forest Mensuration* 3 FORT 110 - Forest...

  19. Characteristics of potential repository wastes. Volume 2

    SciTech Connect (OSTI)

    Not Available

    1992-07-01T23:59:59.000Z

    The LWR spent fuels discussed in Volume 1 of this report comprise about 99% of all domestic non-reprocessed spent fuel. In this report we discuss other types of spent fuels which, although small in relative quantity, consist of a number of diverse types, sizes, and compositions. Many of these fuels are candidates for repository disposal. Some non-LWR spent fuels are currently reprocessed or are scheduled for reprocessing in DOE facilities at the Savannah River Site, Hanford Site, and the Idaho National Engineering Laboratory. It appears likely that the reprocessing of fuels that have been reprocessed in the past will continue and that the resulting high-level wastes will become part of defense HLW. However, it is not entirely clear in some cases whether a given fuel will be reprocessed, especially in cases where pretreatment may be needed before reprocessing, or where the enrichment is not high enough to make reprocessing attractive. Some fuels may be canistered, while others may require special means of disposal. The major categories covered in this chapter include HTGR spent fuel from the Fort St. Vrain and Peach Bottom-1 reactors, research and test reactor fuels, and miscellaneous fuels, and wastes generated from the decommissioning of facilities.

  20. Initiating Event Rates at U.S. Nuclear Power Plants 1988–2013

    SciTech Connect (OSTI)

    John A. Schroeder; Gordon R. Bower

    2014-02-01T23:59:59.000Z

    Analyzing initiating event rates is important because it indicates performance among plants and also provides inputs to several U.S. Nuclear Regulatory Commission (NRC) risk-informed regulatory activities. This report presents an analysis of initiating event frequencies at U.S. commercial nuclear power plants since each plant’s low-power license date. The evaluation is based on the operating experience from fiscal year 1988 through 2013 as reported in licensee event reports. Engineers with nuclear power plant experience staff reviewed each event report since the last update to this report for the presence of valid scrams or reactor trips at power. To be included in the study, an event had to meet all of the following criteria: includes an unplanned reactor trip (not a scheduled reactor trip on the daily operations schedule), sequence of events starts when reactor is critical and at or above the point of adding heat, occurs at a U.S. commercial nuclear power plant (excluding Fort St. Vrain and LaCrosse), and is reported by a licensee event report. This report displays occurrence rates (baseline frequencies) for the categories of initiating events that contribute to the NRC’s Industry Trends Program. Sixteen initiating event groupings are trended and displayed. Initiators are plotted separately for initiating events with different occurrence rates for boiling water reactors and pressurized water reactors. p-values are given for the possible presence of a trend over the most recent 10 years.

  1. PRISMATIC CORE COUPLED TRANSIENT BENCHMARK

    SciTech Connect (OSTI)

    J. Ortensi; M.A. Pope; G. Strydom; R.S. Sen; M.D. DeHart; H.D. Gougar; C. Ellis; A. Baxter; V. Seker; T.J. Downar; K. Vierow; K. Ivanov

    2011-06-01T23:59:59.000Z

    The Prismatic Modular Reactor (PMR) is one of the High Temperature Reactor (HTR) design concepts that have existed for some time. Several prismatic units have operated in the world (DRAGON, Fort St. Vrain, Peach Bottom) and one unit is still in operation (HTTR). The deterministic neutronics and thermal-fluids transient analysis tools and methods currently available for the design and analysis of PMRs have lagged behind the state of the art compared to LWR reactor technologies. This has motivated the development of more accurate and efficient tools for the design and safety evaluations of the PMR. In addition to the work invested in new methods, it is essential to develop appropriate benchmarks to verify and validate the new methods in computer codes. The purpose of this benchmark is to establish a well-defined problem, based on a common given set of data, to compare methods and tools in core simulation and thermal hydraulics analysis with a specific focus on transient events. The benchmark-working group is currently seeking OECD/NEA sponsorship. This benchmark is being pursued and is heavily based on the success of the PBMR-400 exercise.

  2. High Temperature Gas-Cooled Reactors Lessons Learned Applicable to the Next Generation Nuclear Plant

    SciTech Connect (OSTI)

    J. M. Beck; L. F. Pincock

    2011-04-01T23:59:59.000Z

    The purpose of this report is to identify possible issues highlighted by these lessons learned that could apply to the NGNP in reducing technical risks commensurate with the current phase of design. Some of the lessons learned have been applied to the NGNP and documented in the Preconceptual Design Report. These are addressed in the background section of this document and include, for example, the decision to use TRISO fuel rather than BISO fuel used in the Peach Bottom reactor; the use of a reactor pressure vessel rather than prestressed concrete found in Fort St. Vrain; and the use of helium as a primary coolant rather than CO2. Other lessons learned, 68 in total, are documented in Sections 2 through 6 and will be applied, as appropriate, in advancing phases of design. The lessons learned are derived from both negative and positive outcomes from prior HTGR experiences. Lessons learned are grouped according to the plant, areas, systems, subsystems, and components defined in the NGNP Preconceptual Design Report, and subsequent NGNP project documents.

  3. CONFIDENTIAL Saint-Gobain and Versailles : a long story starting in 1665...

    E-Print Network [OSTI]

    Rollins, Andrew M.

    Microturbines #12;Projects : Construction and Renovation CERAMIC IGNITERS (Gas Fired Heating and Cooking) FIBER

  4. Food partitioning between coexisting Atlantic salmon and brook trout in the Sainte-Marguerite River

    E-Print Network [OSTI]

    Mazumder, Asit

    in August to September 1996. The food and feeding habits of an allopatric brook trout population in a nearby, University of Victoria, Victoria (BC), N8W 3N5, Canada. Journal of Fish Biology (2004) 64, 680­694 doi:10

  5. AU CONSERVATOJRE NATIONAL DES ARTS ET METIERS CENTRE ASSOCIE DE SAINT ETIENNE

    E-Print Network [OSTI]

    Boyer, Edmond

    .C. GOUT.[ LIE \\ 1 tel-00905255,version1-18Nov2013 #12;Cette étude a été effectuée au Laboratoire de Chimie

  6. fall 2011 ENGINEERING & SCIENCE 5 Saint Petersburg, Russia, may have its Amber Room, but Pasadena, California,

    E-Print Network [OSTI]

    that accel- erates ions to generate thrust instead of relying on chemical fuels--to boldly go beyond earth QuiZ: The French word collisionneur refers to (a) a part of a locomotive; (b) a particle accelerator

  7. Imaging the Angevin Patron Saint: Mary Magdalen in the Pipino Chapel in Naples

    E-Print Network [OSTI]

    Wilkins, Sarah S.

    2012-01-01T23:59:59.000Z

    Cathedral of Lucera see, Egidi, “Colonia Saracena di Lucera”London: Longman, 1998. Egidi, Pietro “La Colonia Saracena diCharles II, see Pietro Egidi, “La Colonia Saracena di Lucera

  8. Saint Vincent and the Grenadines-Pilot Program for Climate Resilience...

    Open Energy Info (EERE)

    production system is dependent on the annual flooding and recession of Tonle Sap Great Lake, and is therefore particularly sensitive to potential changes in local...

  9. Imaging the Angevin Patron Saint: Mary Magdalen in the Pipino Chapel in Naples

    E-Print Network [OSTI]

    Wilkins, Sarah S.

    2012-01-01T23:59:59.000Z

    meant to represent contemporary modest fashion. However, theespecially drawn to this modest image of the Magdalen. To my

  10. Using micro saint to predict performance in a nuclear power plant control room

    SciTech Connect (OSTI)

    Lawless, M.T.; Laughery, K.R. [Micro Analysis and Design, Inc., Boulder, CO (United States); Persenky, J.J. [Nuclear Regulatory Commission, Washington, DC (United States)

    1995-09-01T23:59:59.000Z

    The United States Nuclear Regulatory Commission (NRC) requires a technical basis for regulatory actions. In the area of human factors, one possible technical basis is human performance modeling technology including task network modeling. This study assessed the feasibility and validity of task network modeling to predict the performance of control room crews. Task network models were built that matched the experimental conditions of a study on computerized procedures that was conducted at North Carolina State University. The data from the {open_quotes}paper procedures{close_quotes} conditions were used to calibrate the task network models. Then, the models were manipulated to reflect expected changes when computerized procedures were used. These models` predictions were then compared to the experimental data from the {open_quotes}computerized conditions{close_quotes} of the North Carolina State University study. Analyses indicated that the models predicted some subsets of the data well, but not all. Implications for the use of task network modeling are discussed.

  11. Imaging the Angevin Patron Saint: Mary Magdalen in the Pipino Chapel in Naples

    E-Print Network [OSTI]

    Wilkins, Sarah S.

    2012-01-01T23:59:59.000Z

    Le forme della propaganda politica nel Due e nel Trecento:Le forme della propaganda politica nel Due e nel Trecento:

  12. Low Altitude Wind Simulation Over Mount Saint Helens Using NASA SRTM Digital Terrain Model

    E-Print Network [OSTI]

    Alberta, University of

    . Using a new radar sweep- ing technique most of the Earth's surfaces was digitized in 3D in approximately Medellin, Colombia Edmonton, Alberta, Canada T6J 2E8 Abstract On February 11, 2000, the Shuttle Radar Topography Mis- sion (SRTM) was launched into space as part of one of the payload of the Shuttle Endeavor

  13. Imaging the Angevin Patron Saint: Mary Magdalen in the Pipino Chapel in Naples

    E-Print Network [OSTI]

    Wilkins, Sarah S.

    2012-01-01T23:59:59.000Z

    Comitato di studi storici di Trieste, dall’École françaisedi storia dell’Universitŕ degli Studi di Trieste, (Trieste, 2-5 marzo 1993), edited by Paolo Cammarosano, 85-

  14. "Myself when young did eagerly frequent Doctor and Saint, and heard great argument

    E-Print Network [OSTI]

    Pedersen, Tom

    University of Alberta electrical engineers are creating an internal combustion engine that could be 10 per combustion engine. One is a super sparkplug that is 1,000 times stronger than most plugs and 100 times more. Peter Smy and Dr. David Topham of the U of A, have developed two basic improve- ments on the internal

  15. Center for Tobacco Policy Research at Saint Louis University. Project LEAP. Oregon

    E-Print Network [OSTI]

    Jenine Harris

    2005-01-01T23:59:59.000Z

    return. The Sustainability Framework O ften organizationsCapacity The Sustainability Framework State Political &

  16. Center for Tobacco Policy Research at Saint Louis University. Project LEAP. Nebraska

    E-Print Network [OSTI]

    Jenine Harris

    2005-01-01T23:59:59.000Z

    Program Sustainability The Sustainability Framework Stateplanning Sustainability The Sustainability Framework State

  17. Center for Tobacco Policy Research at Saint Louis University. Project LEAP. North Carolina

    E-Print Network [OSTI]

    Jenine Harris

    2006-01-01T23:59:59.000Z

    return. The Sustainability Framework O ften organizationsCapacity The Sustainability Framework State Political &been identified (see The Sustainability Framework graphic to

  18. Center for Tobacco Policy Research at Saint Louis University. Project LEAP. Michigan

    E-Print Network [OSTI]

    Jenine Harris

    2005-01-01T23:59:59.000Z

    return. The Sustainability Framework O ften organizationsSustainability The Sustainability Framework Statebeen identified (see The Sustainability Framework graphic to

  19. Center for Tobacco Policy Research at Saint Louis University. Project LEAP. New Mexico

    E-Print Network [OSTI]

    Jenine Harris

    2005-01-01T23:59:59.000Z

    return. The Sustainability Framework O ften organizationsBy Sustainability The Sustainability Framework State

  20. Center for Tobacco Policy Research at Saint Louis University. Project LEAP. Minnesota

    E-Print Network [OSTI]

    Jenine Harris

    2005-01-01T23:59:59.000Z

    funding return. The Sustainability Framework B ecause littlemovements. Sustainability The Sustainability Framework State

  1. Center for Tobacco Policy Research at Saint Louis University. Project LEAP. Indiana

    E-Print Network [OSTI]

    Jenine Harris

    2005-01-01T23:59:59.000Z

    return. The Sustainability Framework O ften organizationsSustainability The Sustainability Framework State

  2. Center for Tobacco Policy Research at Saint Louis University. Project LEAP. Florida

    E-Print Network [OSTI]

    Jenine Harris

    2005-01-01T23:59:59.000Z

    funding return. The Sustainability Framework B ecause littleState Financial Climate Sustainability Framework Community

  3. "When the saints go marching in" : sadhus in democratic politics in late 20th century India

    E-Print Network [OSTI]

    Pradhan, Rajesh Kumar

    2009-01-01T23:59:59.000Z

    This empirical study examines the political significance of religious leaders-known commonly as sadhus-in a huge and mature democracy like India. During the late '80s and the '90s, a flurry of sadhu activism coincided with ...

  4. Universit de Versailles Saint-Quentin-en-Yvelines (France) and Universidad de la Repblica (Uruguay)

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    (Uruguay) Data Quality Evaluation in Data Integration Systems by VerĂłnika PERALTA PhD Thesis for obtaining) RaĂşl RUGGIA Professor, Universidad de la RepĂşblica, Uruguay (advisor) tel-00325139,version1-26Sep2008 at the University of the Republic of Uruguay, who introduced me to the fabulous world of research during my master

  5. Optimal Sequencing Energy Allocation for CMOS Integrated Systems Martin Saint-Laurent*

    E-Print Network [OSTI]

    California at Davis, University of

    on this optimum, a methodology to design energy-efficient systems is proposed. Introduction All digital systems-hoc methodologies, which may or may not be energy-efficient. For sequential elements, a power-delay product minimi in a system from an energy-efficiency standpoint. The value of this method is that it can be used to jointly

  6. A study of the distribution of estuarine mollusca in eastern Saint Bernard Parish, Louisiana

    E-Print Network [OSTI]

    Jones, John Arthur

    1960-01-01T23:59:59.000Z

    as to style end rontont by& (C+irmen of Cenaittae I (Head of Departnent or Student Advisor August 1960 &7 TABLv. GF CINTsNTS Page I INTHGDUCTICN Purpose of the ~ ~ ~ ~ ~ ~ ~ ~ Previous Literature ~ ~ ~ ~ 4 ~ ~ ~ ~ ~ ~ 1 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 1... ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 7 3 ~ Station Descriptions ~ o o ~ ~ s ~ ~ e o a ~ ~ ~ o o o o ~ ~ 14-15 4, Sediment Typos of an Abandoned Sulxb lta . . . . ~ , . . . ~ . 25 5. S asonal Abundance of Nollusks~ Bayou Dupre Complex . . . ~ . . 33 6, Seasonal Abundance of Nollusks...

  7. Universit Paris8 -Vincennes Saint-Denis Ecole Doctorale de Sciences Sociales

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    , hôpitaux personnel infirmier. tel-00657653,version1-8Jan2012 #12;3 Between activities, trajectories

  8. Center for Tobacco Policy Research at Saint Louis University. Project LEAP. North Carolina

    E-Print Network [OSTI]

    Jenine Harris

    2006-01-01T23:59:59.000Z

    current community and school program grantees and allowedfor continued grantee training and technical assistance.community and school program grantees, which increased the

  9. Deux cent ans de gologie travers les paysages languedociens autour du Pic Saint Loup

    E-Print Network [OSTI]

    Boyer, Edmond

    précurseurs ont d'abord établi la succession stratigraphique des roches, puis ils ont commencé de reporter les garrigues, lardées d'escarpement rocheux et de petites plaines cultivées, caractérisent les paysages strates, tant sous la surface que vers le ciel ; il relèvera aussi la distribution des différentes

  10. Ultrasonic attenuation in glassy crystalline cyclohexanol (*) M. Saint Paul and R. Nava

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    rods (Q) of dimensions 4 x 4 x 25.4 mm3 and 4 x 4 x 12.5 mm3 with optically polished and parallel end faces. The two rods were separated by a thin ~copper ring spacer (S) of calibrated thickness. The whole

  11. Saint Peter Municipal Utilities- Commercial and Industrial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Southern Minnesota Municipal Power Agency ([http://www.smmpa.com SMMPA]) is a joint-action agency which generates and sells reliable electricity at wholesale to its eighteen non-profit,...

  12. Saint Kitts and Nevis-Regional Implementation Plan for CARICOM's Climate

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to:RoscommonSBY SolutionsChange Resilience Framework | Open Energy

  13. Saint Lucia-Pilot Program for Climate Resilience (PPCR) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to:RoscommonSBY SolutionsChange Resilience Framework |

  14. Saint Vincent and the Grenadines-Pilot Program for Climate Resilience

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to:RoscommonSBY SolutionsChange Resilience Framework

  15. Saint-Gobain Shows the Way on Effectively Preparing for Energy Savings Assessments

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin ofEnergy atLLC - FE DKT. 10-160-LNG - ORDERSTATE0-1of EnergyIndiaAs the front

  16. Saint-Gobain Shows the Way on Effectively Preparing for Energy Savings

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMay 2015 <Department of iiBiodieselWATER,ProgramFuel CellDevelopment

  17. Memo: Quarry Residuals Geochemical Sampling of the Shallow USGS Piezometers in the Saint Charles County Wellfield.

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling CorpNewCF INDUSTRIES,L? .-IGYS,:?' _.JI' ;i.\'3

  18. Review of Risk Assessment for Weldon Spring Quarry Site, Saint Charles, Missouri.

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling7 AugustAFRICAN3u ;;;:: A' 3 ct' RIDGEGeneral

  19. BPA's patron saint of safety enters International Lineman Hall of Fame

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms About BecomeTechnologiesVehicleAuthorAwards

  20. Letter: Weldon Spring Site Remedial Action Project, Southeast Drainage, Saint Charles County, Missouri.

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling CorpNewCF INDUSTRIES,L? .-I I2 m.m\ LILTS PlanI9

  1. Residues of polychlorinated biphenyls and DDT in water and sediment of the Indian River Lagoon, Florida - 1977 to 1978

    SciTech Connect (OSTI)

    Wang, T.C.; Johnson, R.S.; Bricker, J.L.

    1980-01-01T23:59:59.000Z

    Water and sediment samples collected during 1977 to 1978 from the Indian River lagoon between Vero Beach, Indian River County, and Fort Pierce, Saint Lucie County, Florida were analyzed for PCBs and DDT. Sample locations were chosen on the basis of proximity to major tributaries, sewage outfalls, or municipal area. Concentrations in water samples were below 0.01 ppB sigma DDT and 0.5 ppB PCBs. Small amounts of PCBs and DDT were found in most sediment samples, ranging from less than 1.0 ppB to 0.63 ppM Aroclor 1254 and from less than 0.1 ppB to 0.081 ppM sigma DDT. Samples from the Taylor Creek tributary and from the Fort Pierce power plant and municipal docking area contained higher PCB concentrations than did samples from other locations. DDT and PCB levels in most samples indicate little contamination by these compounds of the Indian River Waterway between Vero Beach and Fort Pierce.

  2. John Tyler McGoffin 830 Mathews St. jtmcgoffin@gmail.com Fort Collins, CO 80521

    E-Print Network [OSTI]

    Sites, James R.

    and Characterization of Thin Film photovoltaic devices including Current Density Voltage (JV), Quantum Efficiency (QETe) and Copper Indium Gallium diSelenide (CIGS) thin film photovoltaic devices using Close Space Sublimation (CSS approachable and easy to talk to #12;Employment: Founder January 2014 - Present Photovoltaic Imaging Systems

  3. Creating Trails from Traditions: The Kashaya Pomo Interpretive Trail at Fort Ross State Historic Park

    E-Print Network [OSTI]

    Gonzalez, Sara Lynae

    2011-01-01T23:59:59.000Z

    AAC7! D&0*%! @AACEF! G8! /%*. *%6!.2-(,8! =&! 4,*. *=+:&'! T&,+('? C0! SC5+(! 6##G8!. /6/H8! ':P4? ',+3! 4J! ,%&2+-! ()'! $%&(+-%0! 63'-%0. *! G8%15%*,&! :8-E'9V$%&(+-%0!

  4. An ozone climatology of the Dallas-Fort Worth area and its relationship to meteorology

    E-Print Network [OSTI]

    Nobis, Timothy Edward

    1998-01-01T23:59:59.000Z

    , no extensive studies on ozone in this area have been published. This study presents a broad overview of the ozone problem in the DFW area. An ozone spatial and temporal climatology was constructed using ozone data at 23 different monitoring sites from 1980...

  5. Population size and contaminant exposure of bats using caves on Fort Hood Military Base

    E-Print Network [OSTI]

    Land, Tarisha Ann

    2001-01-01T23:59:59.000Z

    Female Male Female Male Female Reproductive Data Lactatin 22 Each sample was placed in a chemically cleaned glass jar and sealed with paraffin tape and transported to GERG for analysis. RESULTS Residue values listed as I = &mdl, I... in the United States since 1986, prior to which it was used as a pesticide to control insects, rodents, and birds. Compared to other organochlorines, endrin has a relatively short half-life in tissues of mammals (Cole et aL 1970, Brooks 1974). Lethal endrin...

  6. ECOLE NATIONALE DU GENIE RURAL, DES EAUX ET DES FORTS N attribu par la bibliothque

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Rural, des Eaux et Foręts Centre de Paris BIODISPONIBILITE DES HYDROCARBURES AROMATIQUES POLYCYCLIQUES-Hélčne TUSSEAU-VUILLEMIN Co-directrice #12;#12;Biodisponibilité des hydrocarbures aromatiques polycycliques dans

  7. Fort Future: Virtual Installation supports rapidly changing needs of armed forces in the field

    E-Print Network [OSTI]

    Kemner, Ken

    : Deployment Modeling; Chemical, Biological, and Radiological Model- ing; and Utility Modeling. Deployment of the deploy- ment modeling output shows visu- alizations of shortest travel paths, facility capacities, resource usage, and current queues. Chemical, Biological, and Radiological Modeling Module The Chemical

  8. Baseline Report for the Fort Hood Army Base: Sept. 1, 2002 - Aug. 31, 2003

    E-Print Network [OSTI]

    Haberl, J. S.; Baltazar-Cervantes, J. C.; Liu, Z.; Claridge, D. E.; Turner, W. D.

    2003-01-01T23:59:59.000Z

    A&M University ABSTRACT This report presents electricity, natural gas and cooling baselines for the thermal plant, buildings located in the 87000 block, III Corp building and other buildings that were determined to be part of the ESPC project...

  9. Transworld Research Network 37/661 (2), Fort P.O., Trivandrum-695 023, Kerala, India

    E-Print Network [OSTI]

    Reid, Scott A.

    in the study of molecular spectroscopy and dynamics using coherent laser spectroscopy. In this article, we exploited for the study of molecular spectroscopy and dynamics [1-10]. While many diverse methodologies have of molecular superposition states via coherent laser excitation. The time evolution of the prepared

  10. Combating soil erosion: AgriLife scientist discovering what works for Fort Hood

    E-Print Network [OSTI]

    Wythe, Kathy

    2008-01-01T23:59:59.000Z

    Conservation Service (NRCS) and the military?s Integrated Train- ing Area Management (ITAM) to combat this soil erosion while maintaining sustainability of the training mission and ensuring high quality natural resources in the watersheds. In the initial... has caused compacted ground, loss of plant cover, and accelerated soil erosion that deposits excess sediment in area streams and lakes. AgriLife Research scientists in Temple and College Station are working with the USDA?s Natural Resources...

  11. Fort Irwin National Training Center integrated resource assessment. Volume 1: Executive summary

    SciTech Connect (OSTI)

    Keller, J.M.; Richman, E.E.; Stucky, D.J.

    1995-05-01T23:59:59.000Z

    Some of the most difficult problems encountered at federal sites in reducing energy consumption in a cost-effective manner revolve around understanding where energy is being used and what technologies can be employed to decrease energy use. Many large federal sites have one or two meters to track electric energy use for several thousand buildings and numerous industrial processes. Even where meters are available on individual buildings or family housing units, the meters are not consistently read. When the federal energy manager has been able to identify high energy users, the energy manager may not have the background, training, or resources to determine the most cost-effective options for reducing this energy use. This limitation can lead to selection of suboptimal projects that prevent the site from achieving full life-cycle cost savings. The U.S. Department of Energy (DOE) Federal Energy Management Program (FEMP) has been tasked by the U.S. Army Forces Command (FORSCOM) to identify, evaluate, and acquire all cost-effective energy projects at selected federal facilities. Pacific Northwest Laboratory (PNL) is assisting FEMP in this effort. This is part of a model program that PNL has developed to provide a systematic approach to evaluating energy opportunities. The program (1) identifies the building groups and end uses using the most energy (not just having the greatest energy-use intensity), and (2) evaluates the numerous options for retrofit or installation of new technology that will result in the selection of the most cost-effective technologies. In essence, this model program provides the federal energy manager with a road map to significantly reduce energy use in a planned, rational, cost-effective fashion that is not biased by the constraints of the typical funding sources available to federal sites.

  12. Street as structure : an approach to the incremental development of Fort Point Channel

    E-Print Network [OSTI]

    Powers, Darleen D

    1980-01-01T23:59:59.000Z

    This work seeks to create an approach to the incremental development of a warehouse district in the City of Boston. The focus of the thesis is on the generation of rules and an implementation process that will organize the ...

  13. Curriculum Vitae 2011Present Ph.D. in Physics, Colorado State University, Fort Collins.

    E-Print Network [OSTI]

    Sites, James R.

    -PACE CIGS program, mainly focus on the device characterization and simulation of CIGS solar cells with Zn of CIGS solar cells with sputtered Zn(O,S) buffer layers (in progress) July 2013 Summer Intern, DOE-V Distortion of CIGS Solar Cells with Sputtered Zn(O,S) Buffer Layers Department of Physics, 1875 Campus

  14. CSU's Atmospheric Science 50th Anniversary Fort Collins, CO, July 2012

    E-Print Network [OSTI]

    Collett Jr., Jeffrey L.

    scientists were skeptical, and they pointed to a future of global warming, not cooling, resulting from Data Center The Myth of the 1970s Global Cooling Scientific Consensus: The Evolution of Integrated in global cooling ­ Human induced cooling ­ Leading to another ice age · In just a few years · If you don

  15. Continuous Commissioning of the Reynolds Army Community Hospital, Fort Sill, Oklahoma

    E-Print Network [OSTI]

    Turner, W. D.; Baltazar-Cervantes, J. C.; Martinez, J. T.

    2007-01-01T23:59:59.000Z

    Continuous Commissioning® (CC®) of the Reynolds Army Community Hospital facility was a two phase project. The first phase consisted of a point-to-point verification of a newly upgraded Energy Management Control System (EMCS) and calibration of key...

  16. Poudre High School From Fort Collins , Colorado Wins U.S. Department...

    Broader source: Energy.gov (indexed) [DOE]

    won in separate competitions of the Hydrogen Fuel Cell Model Car Challenge. Edwin O. Smith High School of Storrs, Connecticut won first place in the speed competition and...

  17. Data Polling Routine (PlotHood) to Generate Weekly Inspection Plots for Fort Hood, Texas

    E-Print Network [OSTI]

    Saman, N. F.; Reddy, T. A.; Haberl, J. S.; Claridge, D. E.; Turner, W. D.

    1996-01-01T23:59:59.000Z

    . For this part of the project, a weather station that includes temperature, humidity and solar sensors was installed at the west substation of Ft. Hood as part of Phase I of this project. Weekly inspection plots of electricity use at the main substation of Ft...-Phase II, p. ii TABLE OF CONTENTS General Abstract i Disclaimer iii Acknowledgments iv Provide Data Polling and Inspection Plots Generation Routine (PlotHood) Executive Summary 2 Existing Monitoring System 3 a- ESL Weather Station at the West Substation. 3...

  18. Natural gas cost for evaluating energy resource opportunities at Fort Stewart

    SciTech Connect (OSTI)

    Stucky, D.J.; Shankle, S.A.

    1993-01-01T23:59:59.000Z

    Ft. Stewart, a United States Army Forces Command (FORSCOM) installation located near Hinesville, Georgia, is currently undergoing an evaluation of its energy usage, which is being performed by Pacific Northwest Laboratory. In order to examine the energy resource opportunities (EROs) at Ft. Stewart, marginal fuel costs must be calculated. The marginal, or avoided, cost of gas service is used in conjunction with the estimated energy savings of an ERO to calculate the dollar value of those savings. In the case of natural gas, the costing becomes more complicated due to the installation of a propane-air mixing station. The propane-air station is being built under a shared energy savings (SES) contract. The building of a propane-air station allows Ft. Stewart to purchase natural gas from their local utility at an interruptible rate, which is lower than the rate for contracting natural gas on a firm basis. The propane-air station will also provide Ft. Stewart with fuel in the event that the natural gas supply is curtailed. While the propane-air station does not affect the actual cost of natural gas, it does affect the cost of services provided by gas. Because the propane-air station and the SES contract affect the cost of gas service, they must be included in the analysis. Our analysis indicates a marginal cost of gas service of 30.0 cents per therm, assuming a total propane usage by the mixing station of 42,278 gallons (38,600 therms) annually. Because the amount of propane that may be required in the event of a curtailment is small relative to the total service requirement, variations in the actual amount should not significantly affect the cost per therm.

  19. Research Signpost 37/661 (2), Fort P.O., Trivandrum-695 023, Kerala, India

    E-Print Network [OSTI]

    Rey Juan Carlos, Universidad

    We experimentally study the polarization dynamics of a quasi-isotropic CO2 laser emitting anisotropies that we call extrinsic [8, 9], or different level structure [10]. Experiments carried out on gas]. However, most of the experiments in gas laser are performed in class A laser systems with simple level

  20. The feasibility of a helicopter passenger service in the Dallas-Fort Worth area

    E-Print Network [OSTI]

    Kelley, Nelson Lane

    1965-01-01T23:59:59.000Z

    petfetseeee betm a, fmt~~ -~ffektp, xeXfemxty, : -sag' ~e sf-. pff pJ, fef;@ '-k. :: ~'ee'S Chp' ~et -smf&QXs. ttagspei&. hiive? fsi@~es', ' 1-~, , k ', ". "=:~t44eg", stot:: habet'. the'R0$88e5, s easf+tggf h s~ that teste XfCCXe m se se...

  1. The feasibility of a helicopter passenger service in the Dallas-Fort Worth area 

    E-Print Network [OSTI]

    Kelley, Nelson Lane

    1965-01-01T23:59:59.000Z

    I Psx'sf, el Kw~X& l;Snab af '@e rejeigmedte %aj. 'phd Be+em 'og 5 By. EMsrm Xapa Kathy Approved hs 00 @~ale ~ qmCeha. by& M-5R $8gQR~B&) ' r Hl59g , ' ' G:-G 'K 5 5:. 'N 'g S ':" 5 :''''I-. . 1. 05t$8ctf vog... - -- - ? ' ? - - 1, S XXX SVAMNXGS AMS SEEN' GP Sg~ ??- - . ' ' 19 QQXI XGS ~ ??? ~ ? R?? 79 Xg S 55??' ?' ?? ~ ~' . ? ? ' ' ? 3R S Qfto1 XG7 V S~gg l XV RKXSSIUG'~ 'AMG FG'g5555XQ GF TIE QN8d@ VGA 'BGSXH ~ Qx' ?sg S-'M?' ea...

  2. International Truck & Bus Meeting & Exhibition, Fort Worth, TX, November 2003. 2003-01-3369

    E-Print Network [OSTI]

    Peng, Huei

    and Jessy W. Grizzle University of Michigan Jason Liu and Matt Busdiecker Eaton Corporation Copyright © 2003

  3. New Technology Demonstration of Microturbine with Heat Recovery at Fort Drum, New York

    SciTech Connect (OSTI)

    Friedrich, Michele; Armstrong, Peter R.; Smith, David L.

    2004-04-30T23:59:59.000Z

    This report replaces PNNL-14417 and documents a project to demonstrate and evaluate a combined heat and power-configured microturbine system.

  4. A Study of Heuristic Approaches for Runway Scheduling for the Dallas-Fort Worth Airport

    E-Print Network [OSTI]

    Stiverson, Paul W.

    2010-01-16T23:59:59.000Z

    as well as degrading the passenger experience. There are a number of factors that cause delay, chief among these is weather. Some factors, like mechanical troubles, cause a localized delay that doesn?t necessarily affect other aircraft. It is reported...: for i?1?|I|do 7: for j?1?|I|do 8: P ?I 9: P[i]?I[j] 10: P[j]?I[i] 11: if prelimOrderFeasible then 12: objecive?prelimObjectiveCheck 13: if objective < oldObjective then 14: I?P 15: oldObjective?objective 16: improvement?1 17: end if 18: end if 19: end...

  5. Identification of "lost" structures through satellite imagery and aerial photographs at Fort Garland, CO

    E-Print Network [OSTI]

    Gilbes, Fernando

    .joyce@upr.edu ABSTRACT: Thermography studies using airborne remote sensors have proven useful in the search for buried the appropriateness of thermography studies using free LandSat 7 ETM+ images, and digital manipulation of aerial of variations in temperature to determine the presence of buried foundations or features. Thermography studies

  6. Research Signpost 37/661 (2), Fort P.O., Trivandrum-695 023, Kerala, India

    E-Print Network [OSTI]

    Decoteau, Dennis R.

    and early development of colored reflective plastic mulch technology in agriculture Dennis R. Decoteau Abstract The use of plastic (polyethylene) mulches in field production of selected vegetable and fruit of wavelength selective (colored) reflective plastic mulches. The purpose of this review is to present

  7. Kimberly A. Moore, Professor University of Florida, Fort Lauderdale Research and Education Center

    E-Print Network [OSTI]

    Pilyugin, Sergei S.

    -360. IN: Irrigation Systems and Practices in Challenging Environments. Moore, K.A., S.G. Greenhut, and W and nutritional management of ornamental horticultural plants. This includes research on fertilization, irrigation. HortTechnology 22(6):787-797. Moore, K.A. 2012. Urban Irrigation Challenges and Conservation pp 343

  8. 2004 Specifications Abilene, Austin, Brownwood, Childress, Dallas, Fort Worth, Waco and Wichita Falls Districts

    E-Print Network [OSTI]

    Mukhtar, Saqib

    trimmings, biosolids, food scraps, food-processing residuals, manure or other agricultural residuals, forest (CFR), Title 40, Part 503 standards for Class A biosolids and Texas Commission on Environmental Quality that the compost meets the requirements of Table 1. When furnishing biosolids compost, also provide a copy

  9. que rcemment dans la fort tropicale humide ctire du Brsil, 40 ans aprs que

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    unspezifische Vibrationen ausgelöst werden. Um dies zu zeigen wurde ein Video- film gedreht (Brückner 96, Zur behaviour of queens of the Sicil- ian honeybee (Apis me

  10. Building America Whole-House Solutions for New Home: Fort Devens: Cold

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. Department ofJune 2,The BigSiding Retrofit inDemonstration of Phased

  11. Building America Whole-House Solutions for New Home: Fort Devens: Cold

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof Energy Future ofHydronicBuilding Enclosures |MissedIndividual

  12. Geographic Information System At Cove Fort Area - Vapor (Nash, Et Al.,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489InformationFrenchtown,Jump to:Locations2002) | Open Energy

  13. Ground Gravity Survey At Cove Fort Area (Warpinski, Et Al., 2002) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEI ReferenceJump to:InformationGroton Jump to:Energy

  14. Ground Gravity Survey At Cove Fort Area (Warpinski, Et Al., 2004) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEI ReferenceJump to:InformationGroton Jump to:EnergyEnergy

  15. Ground Gravity Survey At Cove Fort Area - Vapor (Warpinski, Et Al., 2002) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEI ReferenceJump to:InformationGroton Jump to:EnergyEnergyOpen

  16. Ground Magnetics At Cove Fort Area (Warpinski, Et Al., 2002) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEI ReferenceJump to:InformationGrotonOpenGround Magnetics

  17. Ground Magnetics At Cove Fort Area - Vapor (Warpinski, Et Al., 2002) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEI ReferenceJump to:InformationGrotonOpenGround MagneticsEnergy

  18. Ground Magnetics At Cove Fort Area - Vapor (Warpinski, Et Al., 2004) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEI ReferenceJump to:InformationGrotonOpenGround

  19. Baseline Report for the Fort Hood Army Base: September 2003 to October 2004

    E-Print Network [OSTI]

    Haberl, J. S.; Liu, Z.

    2007-09-21T23:59:59.000Z

    December 2004 ENERGY SYSTEMS LABORATORY Texas Engineering Experiment Station Texas A&M University System Ft. Hood Baseline Report, p. 1 December 2004 Energy Systems Laboratory, Texas A&M University PREFACE This report... building was also initiated in November of 2001 and completed in 2002. The data from Central Thermal Power Plant (87000), III Corp building, Darnall Hospital 1 , Main Substation, West Substation, and North Substation are plotted and reported...

  20. First Year Sedimentological Characteristics and Morphological Evolution of an Artificial Berm at Fort Myers Beach, Florida

    E-Print Network [OSTI]

    US Army Corps of Engineers

    First Year Sedimentological Characteristics and Morphological Evolution of an Artificial Berm Methods and Data Analysis 29 Results and Discussion 34 Sedimentological Characteristics of the Artificial Project Area 45 Control Area Northwest of Berm 47 Discussion of Sedimentological Characteristics 49

  1. Characterization of atmospheric ammonia near Fort Worth, TX Part I. Dynamics of gaseous ammonia

    E-Print Network [OSTI]

    effects, and influence11 the cloud albedo and lifetime via indirect effects. The largest uncertainties among all12 radiative forcing components in global climate models are associated with PM [IPCC, 2007 its potential effects on the20 local and regional air quality.21 Keywords: ammonia, air quality

  2. Poudre High School From Fort Collins , Colorado Wins U.S. Department of

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_CostNSAR - T enAmount forDecontaminationComments and Protests

  3. them. A French military officer noted in 1750 that Indians living near Fort Figu

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of Bad CholesteroliManage Presentation iManagemodule 4

  4. Pressure Temperature Log At Fort Bliss Area (DOE GTP) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation,Pillar Group BV Jump to: navigation,Power RentalAreas-| Open

  5. Application to Export Electric Energy OE Docket No. EA-353 Boralex Fort

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 RussianBy:Whether you'reInc.: Federal Register Notice Volume 69, No. 218Fairfield

  6. Magnetotellurics At Cove Fort Area (Toksoz, Et Al, 2010) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHKconverter <WAGMadison Gas &OpenInformation

  7. Application to Export Electric Energy OE Docket No. EA-353 Boralex Fort

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T, Inc.'s ReplyApplication of SyntheticPower Marketing, LLC |Line, LLC |Fairfield

  8. Reflection Survey At Cove Fort Area - Liquid (Toksoz, Et Al, 2010) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ | Roadmap Jump to:bJumpRed Bank,Reflection SurveyEnergy

  9. Resistivity Log At Fort Bliss Area (Combs, Et Al., 1999) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ | RoadmapRenewableGeothermal Field |

  10. Resistivity Log At Fort Bliss Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ | RoadmapRenewableGeothermal Field

  11. Self Potential At Cove Fort Area (Combs 2006) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ |Rippey JumpAir JumpCalifornia | OpenSelawik WindCosoCove

  12. Slim Holes At Fort Bliss Area (Combs, Et Al., 1999) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ |RippeyInformation Slim Holes Activity

  13. Slim Holes At Fort Bliss Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ |RippeyInformation Slim Holes ActivityNotes 2 slim holes

  14. City of Fort Collins Utilities Smart Grid Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin Urban Transport |CityCity of Dayton,CityCityCityCityCollins

  15. Ground Gravity Survey At Cove Fort Area (Toksoz, Et Al, 2010) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG ContractingGreenOrderNebraska:Gridley,GroceryOpenInformation

  16. Ground Gravity Survey At Cove Fort Area - Vapor (Warpinski, Et Al., 2004) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG ContractingGreenOrderNebraska:Gridley,GroceryOpenInformationOpen

  17. Ground Gravity Survey At Fort Bliss Area (DOE GTP) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG| Open Energy Information 2000) Exploration ActivityInformation

  18. Ground Magnetics At Cove Fort Area (Warpinski, Et Al., 2004) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG| Open Energy Information 2000)2004) | Open

  19. Modeling-Computer Simulations At Cove Fort Area (Toksoz, Et Al, 2010) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose BendMiasole IncMinuteman WindMoana GeothermalInformation 0Open

  20. Neutron Log At Fort Bliss Area (Combs, Et Al., 1999) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcerns Jump to:Neppel Wind Power Project Jump

  1. Static Temperature Survey At Fort Bliss Area (Combs, Et Al., 1999) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk,SoutheastSt. Francis(RedirectedStarr| Open Energy

  2. U.S. Army Fort Carson Environmental Document | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic|IndustrialCenterMarchC. BERKELEY: NEGAWATT THEEnvironmental

  3. U.S. Army Fort Carson Interconnection Agreement | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic|IndustrialCenterMarchC. BERKELEY: NEGAWATT

  4. U.S. Army Fort Carson Photovoltaics Project Lease | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic|IndustrialCenterMarchC. BERKELEY: NEGAWATTPhotovoltaics Project

  5. DOE - Office of Legacy Management -- Reactor Site - Fort Belvoir - VA 0-02

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling Corp -K Le Blond Machine Tool Co

  6. Thermal Gradient Holes At Cove Fort Area (Warpinski, Et Al., 2002) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f <MaintainedInformationThe year open (energy)Energy Information

  7. Thermal Gradient Holes At Cove Fort Area (Warpinski, Et Al., 2004) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f <MaintainedInformationThe year open (energy)Energy

  8. Thermal Gradient Holes At Cove Fort Area - Vapor (Warpinski, Et Al., 2002)

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f <MaintainedInformationThe year open (energy)Energy| Open Energy

  9. Thermal Gradient Holes At Cove Fort Area - Vapor (Warpinski, Et Al., 2004)

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f <MaintainedInformationThe year open (energy)Energy| Open Energy|

  10. Thermal Gradient Holes At Fort Bidwell Area (Lafleur, Et Al., 2010) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f <MaintainedInformationThe year open (energy)Energy|Energy

  11. Thermal Gradient Holes At Fort Bliss Area (DOE GTP) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f <MaintainedInformationThe year open

  12. Core Analysis At Fort Bliss Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformationNew|

  13. Core Holes At Fort Bliss Area (Combs, Et Al., 1999) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformationNew|Core Analysis At Geysers Area(Armstrong, Et

  14. Direct-Current Resistivity At Cove Fort Area (Warpinski, Et Al., 2004) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE FacilityDimondale, Michigan: Energy Resources Jump to:1999) |Methanol

  15. Direct-Current Resistivity At Cove Fort Area - Liquid (Combs 2006) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE FacilityDimondale, Michigan: Energy Resources Jump to:1999) |MethanolEnergy

  16. Direct-Current Resistivity Survey At Cove Fort Area - Vapor (Warpinski, Et

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE FacilityDimondale, Michigan: Energy Resources Jump(Thomas, 1986) |OpenAl.,

  17. Direct-Current Resistivity Survey At Cove Fort Area - Vapor (Warpinski, Et

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE FacilityDimondale, Michigan: Energy Resources Jump(Thomas, 1986)

  18. Controlled Source Audio MT At Cove Fort Area - Liquid (Combs 2006) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png ElColumbia,2005)ConservationLSCEnergy Information

  19. Core Analysis At Fort Bliss Area (Combs, Et Al., 1999) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.pngRoofs and Heat Islands Jump to:Coppell,Information

  20. Cuttings Analysis At Fort Bliss Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.pngRoofs and HeatOpen

  1. Application to Export Electric Energy OE Docket No. EA-353 Boralex Fort

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureComments from Tarasa U.S. HDPartners Inc:Power Marketing,Fairfield LP

  2. Flow Test At Fort Bliss Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to:ar-80m.pdfFillmore

  3. Gamma Log At Fort Bliss Area (Combs, Et Al., 1999) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°,Park, Texas: Energy Resources Jump81"

  4. Geographic Information System At Cove Fort Area (Nash, Et Al., 2002) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°,Park,2005) | Open Energy Information(Blewitt, Et

  5. Compound and Elemental Analysis At Fort Bliss Area (DOE GTP) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformationNew York:GovernorCommons(Grigsby, Et Al.,Information

  6. Contrasting Eruption Styles Of The 147 Kimberlite, Fort A La Corne,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformationNew| OpenCongress,ConsolidatedContained EnergySaskatchewan,

  7. Density Log at Fort Bliss Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 No revision hasda62829c05b

  8. Direct-Current Resistivity At Cove Fort Area (Warpinski, Et Al., 2002) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 No revision hasda62829c05bGabbs TypeWindsInformationOpen

  9. Direct-Current Resistivity At Cove Fort Area (Warpinski, Et Al., 2002) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 No revision hasda62829c05bGabbs TypeWindsInformationOpenOpen

  10. Direct-Current Resistivity At Cove Fort Area - Liquid (Warpinski, Et Al.,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 No revision hasda62829c05bGabbs

  11. Direct-Current Resistivity Survey At Cove Fort Area (Warpinski, Et Al.,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 No revision hasda62829c05bGabbsInformationEnergy2002) | Open

  12. Direct-Current Resistivity Survey At Cove Fort Area (Warpinski, Et Al.,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 No revision hasda62829c05bGabbsInformationEnergy2002) |

  13. Direct-Current Resistivity Survey At Cove Fort Area - Liquid (Combs 2006) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 No revision hasda62829c05bGabbsInformationEnergy2002) |Open

  14. High Temperature Gas Reactors: Assessment of Applicable Codes and Standards

    SciTech Connect (OSTI)

    McDowell, Bruce K.; Nickolaus, James R.; Mitchell, Mark R.; Swearingen, Gary L.; Pugh, Ray

    2011-10-31T23:59:59.000Z

    Current interest expressed by industry in HTGR plants, particularly modular plants with power up to about 600 MW(e) per unit, has prompted NRC to task PNNL with assessing the currently available literature related to codes and standards applicable to HTGR plants, the operating history of past and present HTGR plants, and with evaluating the proposed designs of RPV and associated piping for future plants. Considering these topics in the order they are arranged in the text, first the operational histories of five shut-down and two currently operating HTGR plants are reviewed, leading the authors to conclude that while small, simple prototype HTGR plants operated reliably, some of the larger plants, particularly Fort St. Vrain, had poor availability. Safety and radiological performance of these plants has been considerably better than LWR plants. Petroleum processing plants provide some applicable experience with materials similar to those proposed for HTGR piping and vessels. At least one currently operating plant - HTR-10 - has performed and documented a leak before break analysis that appears to be applicable to proposed future US HTGR designs. Current codes and standards cover some HTGR materials, but not all materials are covered to the high temperatures envisioned for HTGR use. Codes and standards, particularly ASME Codes, are under development for proposed future US HTGR designs. A 'roadmap' document has been prepared for ASME Code development; a new subsection to section III of the ASME Code, ASME BPVC III-5, is scheduled to be published in October 2011. The question of terminology for the cross-duct structure between the RPV and power conversion vessel is discussed, considering the differences in regulatory requirements that apply depending on whether this structure is designated as a 'vessel' or as a 'pipe'. We conclude that designing this component as a 'pipe' is the more appropriate choice, but that the ASME BPVC allows the owner of the facility to select the preferred designation, and that either designation can be acceptable.

  15. Changing Places: How Communities Will Improve the Health of Boys of Color

    E-Print Network [OSTI]

    Edley, Christopher; Ruiz de Velasco, Jorge

    2010-01-01T23:59:59.000Z

    Dayton Memphis Honolulu Harrisburg Colorado Fort WorthDayton Memphis Honolulu Harrisburg Colorado Fort Worth

  16. Forcing-type-dependent stability of steady states in a turbulent swirling flow B. Saint-Michel,1,

    E-Print Network [OSTI]

    Brest, Université de

    states and reveal dynamical regimes that bear similarities with low-dimensional systems. We suggest statistical systems, and that it may be applicable to other turbulent systems. PACS numbers: 47.20.Ky, 05 of systems such as 2D Euler equations [3, 4], Blume-Emery-Griffiths model [5], and random graphs [6]. More

  17. RenPar'20 / SympA'14 / CFSE 8 Saint-Malo, France, du 10 au 13 mai 2011

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    vu qu'il est prévu d'atteindre 10 pétaflops en 2011 avec Bluewaters 6 , et de franchir le seuil des://www.lanl.gov/roadrunner/ 5. Tianhe-1A in TOP500 Supercomputing Sites : http ://www.top500.org/system/10587 6. BlueWaters

  18. October, November, and December 1996. Quarterly Report, Saint Charles County Well Field Monitoring Project. QY-200-202-1.17.

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling7 AugustAFRICAN .METALS~ c3ppY-.I ' Y{ i_"

  19. April, May, and June, 1996. Quarterly Report, Saint Charles County Well Field Monitoring Project. QY-200-202-1.15.

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling Corp -KWatertown Arsenal'.I Y.it !D;rC. ,, *'

  20. April, May, and June, 1997. Quarterly Report, Saint Charles County Well Field Monitoring Project. QY-200-202-1.19.

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling Corp -KWatertown Arsenal'.I Y.it !D;rC. ,, *'

  1. January, February, and March, 1997. Quarterly Report, Saint Charles County Well Field Monitoring Project. QY-200-202-1.18.

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling CorpNewCF INDUSTRIES,L? .-I I2 m.m 2 1 ' ,1 -

  2. July, August, and September, 1996. Quarterly Report, Saint Charles County Well Field Monitoring Project. QY-200-202-1.16.

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling CorpNewCF INDUSTRIES,L? .-I I2 m.m 2 1 'FR?M :'

  3. July, August, and September, 1997. Quarterly Report, Saint Charles County Well Field Monitoring Project. QY-200-202-1.20

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling CorpNewCF INDUSTRIES,L? .-I I2 m.m 2 1 'FR?M :'

  4. Spatial dimensions of workplaces and the effects on commuting: the dase of metropolitan Dallas-Fort Worth

    E-Print Network [OSTI]

    Shin, Sangyoung

    2004-09-30T23:59:59.000Z

    Sang-Chuel Choe in Seoul National University and to Professor Yang-Choon Park in Kyungpook National University. Thanks to all not listed in this page but deserving of credits. vii TABLE OF CONTENTS Page ABSTRACT g46g46g46g46g46g46g46g46g46g46...g46g46g46g46g46g46g46g46g46g46g46g46g46g46g46g46g46g46g46g46g46g46g46g46g46g46g46g46g46g46g46g46g46g46g46g46g46g46g46g46g46g46g46g46g46g46g46g46g46g46g46g46g46g46g46g46g46g46g46g46g46g46g46g46g46g46g46g46g46g46g46g46g46g46g46g46g46g46g46g46g46g46g46g...

  5. Facilities management: the development of a model for building condition assessment surveys conducted at Fort Riley, Kansas

    E-Print Network [OSTI]

    Riblett, Carl Olin

    1993-01-01T23:59:59.000Z

    . To verify the system's accuracy, ten percent (10%) of the buildings were re-inspected by the developers of the system (quality control) . The analysis of the system included a random sample of 20 buildings from the data collected. The data were analyzed...

  6. California’s North Coast Fishing Communities Historical Perspective and Recent Trends: Fort Bragg/Noyo Harbor Fishing Community Profile

    E-Print Network [OSTI]

    Pomeroy, Caroline; Thomson, Cynthia J.; Stevens, Melissa M.

    2011-01-01T23:59:59.000Z

    a mild curing 4 and cold storage plant in 1915, and theMarine Refrigeration Cold Storage Ice Facility Fuel Baitbe kept indefinitely in cold storage, but was usually sold

  7. California’s North Coast Fishing Communities Historical Perspective and Recent Trends: Fort Bragg/Noyo Harbor Fishing Community Profile

    E-Print Network [OSTI]

    Pomeroy, Caroline; Thomson, Cynthia J.; Stevens, Melissa M.

    2011-01-01T23:59:59.000Z

    Statement, Maintenance Dredging, Noyo River Channel, NoyoProfile costs, particularly for dredging and dredge materialcommunity. The need for dredging is acute for fishermen and

  8. NOx Emissions Reduction from Continuous Commissioning(R) Measures for the Dallas-Fort Worth International Airport

    E-Print Network [OSTI]

    Yazdani, B.; Haberl, J. S.; Baltazar-Cervantes, J. C.

    Total NOx Reductions (lbs/day) Total NOx Reductions (Tons/day) TOT EQ ELECTRICITY (MWh) (Electricity and Chilled water) 4,761 7,278.7 3.6393 24.2 36.7 0.0184 HOT WATER (MCF) 8,358 1,170.2 0.5851 41.0 5.7 0.0029 Total 8,448.9 4.2244 42.5 0....0212 NOTES: 1) Assuming 7% for T&D losses and a Discount factor of 25%. Corresponding factors to integrated savings presented to the TCEQ. 2) A factor of 0.140 lb of NOx/MCF of Natural Gas (Controlled - Low NOx burners 140 A...

  9. High temperature hot water distribution system study, Directorate of Public Works, Fort Drum, New York; executive summary. Final report

    SciTech Connect (OSTI)

    NONE

    1996-12-01T23:59:59.000Z

    The existing High Temperature Hot Water (HTHW) Distribution System has been plagued with design and construction deficiencies since startup of the HTHW system, in October 1988. In October 1989, after one year of service, these deficiencies were outlined in a technical evaluation. The deficiencies included flooded manholes, sump pumps not hooked up, leaking valves, contaminated HTHW water, and no cathodic protection system. This feasibility study of the High Temperature Hot Water (HTHW) Distribution System was performed under Contract No. DACA01-94-D-0033, Delivery Order 0013, Modification 1, issued to EMC Engineers, Inc. (EMC), by the Norfolk District Corps of Engineers, on 25 April 1996. The purpose of this study was to determine the existing conditions of the High Temperature Hot Water Distribution System, manholes, and areas of containment system degradation. The study focused on two areas of concern, as follows: (1) Determine existing conditions and areas of containment system degradation (leaks) in the underground carrier pipes and protective conduit. (2) Document the condition of underground steel and concrete manholes. To document the leaks, a site survey was performed, using state-of-the-art infrared leak detection equipment and tracer gas leak detection equipment. To document the condition of the manholes, color photographs were taken of the insides of 125 manholes, and notes were made on the condition of these manholes.

  10. The influence of the growth of the Dallas/Fort Worth (DFW) Metroplex on regional precipitation patterns

    E-Print Network [OSTI]

    Nordfelt, Anna Marie

    2009-05-15T23:59:59.000Z

    Due to the effects urbanization has on land-use and land cover change (LULC), urban areas have a major influence on the environment. The strong coupling between the land and atmosphere can alter the microclimatology of cities and their surrounding...

  11. Nadir BOUMAZA, PR Sciences humaines, UPMF Grenoble La pauvret, une piste de recherche et d'action fort heuristique.

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    possibilités de lutte contre la pauvreté par la durabilisation du tourisme, dans le cas du Maroc et plus #12;Pauvreté, mutations et régulation dans le cas du Maroc Le Maroc connaît depuis plus de deux Maroc. Il découle de l'interaction de cela avec d'autres phénomènes, un réel progrès économique que

  12. Police Department Organizational Chart Green Hall 750 S. Meridian Avenue 6023 Campus Delivery Fort Collins, CO 80523-6023

    E-Print Network [OSTI]

    Police Department ­ Organizational Chart Green Hall 750 S. Meridian Avenue 6023 Campus DeliveryClure Dispatcher Police Comm. Tech R. Trask CHAIN OF COMMAND AND ORGANIZATIONAL RESPONSIBILITY Each employee is directly responsible to his or her immediate supervisor as delineated in the organizational chart Officers

  13. AFFILIATIONS: KLOTZBACH AND GRAY--Department of Atmo-spheric Science, Colorado State University, Fort Collins, Colorado

    E-Print Network [OSTI]

    Gray, William

    of Hurricane Andrew (1992; National Climatic Data Center 2004). Five of the six intense or major (Saffir Atlantic basin hurricane season is attributed to two primary features: a strong Atlantic equatorial trough and steering currents that caused hurricanes to track westward across the U.S. coastline. According to best

  14. Trials and Tribulations of Ancient Starch Research: An Investigation of Contamination and Earth Ovens at Fort Hood, Texas

    E-Print Network [OSTI]

    Laurence, Andrew

    2013-04-26T23:59:59.000Z

    and control samples. Laboratory and field equipment were processed and analyzed for contamination. Only one feature (Feature 4 from 41 CV984) yielded starch granules that are unambiguously archaeological in origin, rather than the result of contamination...

  15. Paleoecology and depositional environment of Fort Hays Limestone Member, Niobrara Chalk (Upper Cretaceous), west-central Kansas

    E-Print Network [OSTI]

    Frey, R. W.

    1972-05-12T23:59:59.000Z

    of the Sigma Xi, and Indiana University. STRATIGRAPHY AND PETROGRAPHY PHYSICAL STRATIGRAPHIC SETTING The Niobrara Chalk, as presently defined, is the uppermost formation of the Colorado Group (Zeller, 1968, pl. 1). Units of this group comprise about 900 ) feet... each unit of the Colorado Group. It may therefore be present at any stratigraphie level of the Niobrara. In west-central Kansas the Ogallala has been stripped away by erosion along the major stream valleys, except for scattered lag deposits...

  16. A Comparative Study of the Mississippian Barnett Shale, Fort Worth Basin, and Devonian Marcellus Shale, Appalachian Basin

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isNFebruaryOctober 2, AlgeriaQ1 Q2 Q3(SC) ANeutronPast

  17. CENTRE DE RECHERCHES CRITIQUES SUR LE DROIT (CERCRID)

    E-Print Network [OSTI]

    Boyer, Edmond

    Saint Etienne GOUT Olivier, HDR Maître de Conférences, Université Jean Monnet de Saint Etienne MOUNCIF

  18. COLE DOCTORALE SCIENCES DE L'HOMME ET DE LA SOCIET LABORATOIRE CEDETE EA 1210

    E-Print Network [OSTI]

    paroissiens de Saint Yves de La Source et de Saint Marceau, pour leur soutien. Sur le terrain, l'accčs ŕ l

  19. Preliminary materials selection issues for the next generation nuclear plant reactor pressure vessel.

    SciTech Connect (OSTI)

    Natesan, K.; Majumdar, S.; Shankar, P. S.; Shah, V. N.; Nuclear Engineering Division

    2007-03-21T23:59:59.000Z

    In the coming decades, the United States and the entire world will need energy supplies to meet the growing demands due to population increase and increase in consumption due to global industrialization. One of the reactor system concepts, the Very High Temperature Reactor (VHTR), with helium as the coolant, has been identified as uniquely suited for producing hydrogen without consumption of fossil fuels or the emission of greenhouse gases [Generation IV 2002]. The U.S. Department of Energy (DOE) has selected this system for the Next Generation Nuclear Plant (NGNP) Project, to demonstrate emissions-free nuclear-assisted electricity and hydrogen production within the next 15 years. The NGNP reference concepts are helium-cooled, graphite-moderated, thermal neutron spectrum reactors with a design goal outlet helium temperature of {approx}1000 C [MacDonald et al. 2004]. The reactor core could be either a prismatic graphite block type core or a pebble bed core. The use of molten salt coolant, especially for the transfer of heat to hydrogen production, is also being considered. The NGNP is expected to produce both electricity and hydrogen. The process heat for hydrogen production will be transferred to the hydrogen plant through an intermediate heat exchanger (IHX). The basic technology for the NGNP has been established in the former high temperature gas reactor (HTGR) and demonstration plants (DRAGON, Peach Bottom, AVR, Fort St. Vrain, and THTR). In addition, the technologies for the NGNP are being advanced in the Gas Turbine-Modular Helium Reactor (GT-MHR) project, and the South African state utility ESKOM-sponsored project to develop the Pebble Bed Modular Reactor (PBMR). Furthermore, the Japanese HTTR and Chinese HTR-10 test reactors are demonstrating the feasibility of some of the planned components and materials. The proposed high operating temperatures in the VHTR place significant constraints on the choice of material selected for the reactor pressure vessel for both the PBMR and prismatic design. The main focus of this report is the RPV for both design concepts with emphasis on material selection.

  20. Investigation on the Core Bypass Flow in a Very High Temperature Reactor

    SciTech Connect (OSTI)

    Hassan, Yassin

    2013-10-22T23:59:59.000Z

    Uncertainties associated with the core bypass flow are some of the key issues that directly influence the coolant mass flow distribution and magnitude, and thus the operational core temperature profiles, in the very high-temperature reactor (VHTR). Designers will attempt to configure the core geometry so the core cooling flow rate magnitude and distribution conform to the design values. The objective of this project is to study the bypass flow both experimentally and computationally. Researchers will develop experimental data using state-of-the-art particle image velocimetry in a small test facility. The team will attempt to obtain full field temperature distribution using racks of thermocouples. The experimental data are intended to benchmark computational fluid dynamics (CFD) codes by providing detailed information. These experimental data are urgently needed for validation of the CFD codes. The following are the project tasks: • Construct a small-scale bench-top experiment to resemble the bypass flow between the graphite blocks, varying parameters to address their impact on bypass flow. Wall roughness of the graphite block walls, spacing between the blocks, and temperature of the blocks are some of the parameters to be tested. • Perform CFD to evaluate pre- and post-test calculations and turbulence models, including sensitivity studies to achieve high accuracy. • Develop the state-of-the art large eddy simulation (LES) using appropriate subgrid modeling. • Develop models to be used in systems thermal hydraulics codes to account and estimate the bypass flows. These computer programs include, among others, RELAP3D, MELCOR, GAMMA, and GAS-NET. Actual core bypass flow rate may vary considerably from the design value. Although the uncertainty of the bypass flow rate is not known, some sources have stated that the bypass flow rates in the Fort St. Vrain reactor were between 8 and 25 percent of the total reactor mass flow rate. If bypass flow rates are on the high side, the quantity of cooling flow through the core may be considerably less than the nominal design value, causing some regions of the core to operate at temperatures in excess of the design values. These effects are postulated to lead to localized hot regions in the core that must be considered when evaluating the VHTR operational and accident scenarios.