Sample records for forming cement dry

  1. Non-Linear Drying Diffusion and Viscoelastic Drying Shrinkage Modeling in Hardened Cement Pastes

    E-Print Network [OSTI]

    Leung, Chin K.

    2010-07-14T23:59:59.000Z

    modeling with an average diffusion coefficient and with determined viscoelastic parameters from creep tests agreed well compared to the shrinkage data from experiments, indicating that drying shrinkage of cement paste may be considered as a poroviscoelastic...

  2. Surface effects of cement-based solidified waste forms

    E-Print Network [OSTI]

    Pavlonnis, George

    1998-01-01T23:59:59.000Z

    This study was performed in order to determine-nine if the surface characteristics of cement-based waste forms were different than those of the bulk material. This was done as a prelude to the potential development of an accelerated leach test...

  3. Dry lubricant films for aluminum forming.

    SciTech Connect (OSTI)

    Wei, J.; Erdemir, A.; Fenske, G. R.

    1999-03-30T23:59:59.000Z

    During metal forming process, lubricants are crucial to prevent direct contact, adhesion, transfer and scuffing of workpiece materials and tools. Boric acid films can be firmly adhered to the clean aluminum surfaces by spraying their methanol solutions and provide extremely low friction coefficient (about 0.04). The cohesion strengths of the bonded films vary with the types of aluminum alloys (6061, 6111 and 5754). The sheet metal forming tests indicate that boric acid films and the combined films of boric acid and mineral oil can create larger strains than the commercial liquid and solid lubricants, showing that they possess excellent lubricities for aluminum forming. SEM analyses indicate that boric acid dry films separate the workpiece and die materials, and prevent their direct contact and preserve their surface qualities. Since boric acid is non-toxic and easily removed by water, it can be expected that boric acid films are environmentally friendly, cost effective and very efficient lubricants for sheet aluminum cold forming.

  4. In What Form is Lime Present in Portland Cement

    E-Print Network [OSTI]

    Wright, Claude W.

    1910-01-01T23:59:59.000Z

    to obtain Si02.33a0, In his conclusions Hebuffat does not consider it of importance whether alit consists of pure Si02.3CaO or a crystalline compound of Si02.2CaO with 3a0 and an aluminate. He says the aluminate in Portland dement can­ not be Al 203.30a..., Erd- meyer, Nev/berry's, Zulkowski, Rebuff at, Meyers, Richardson, Michaelis and Meade• d. Work of the Carbegie Institute of Washington on CaO #Si0 2 series and binary compounds of Al 2°3> Si0 2, MgO, CaO. On the presence of free lime in cement...

  5. Thermal Shock-resistant Cement

    SciTech Connect (OSTI)

    Sugama T.; Pyatina, T.; Gill, S.

    2012-02-01T23:59:59.000Z

    We studied the effectiveness of sodium silicate-activated Class F fly ash in improving the thermal shock resistance and in extending the onset of hydration of Secar #80 refractory cement. When the dry mix cement, consisting of Secar #80, Class F fly ash, and sodium silicate, came in contact with water, NaOH derived from the dissolution of sodium silicate preferentially reacted with Class F fly ash, rather than the #80, to dissociate silicate anions from Class F fly ash. Then, these dissociated silicate ions delayed significantly the hydration of #80 possessing a rapid setting behavior. We undertook a multiple heating -water cooling quenching-cycle test to evaluate the cement’s resistance to thermal shock. In one cycle, we heated the 200 and #61616;C-autoclaved cement at 500 and #61616;C for 24 hours, and then the heated cement was rapidly immersed in water at 25 and #61616;C. This cycle was repeated five times. The phase composition of the autoclaved #80/Class F fly ash blend cements comprised four crystalline hydration products, boehmite, katoite, hydrogrossular, and hydroxysodalite, responsible for strengthening cement. After a test of 5-cycle heat-water quenching, we observed three crystalline phase-transformations in this autoclaved cement: boehmite and #61614; and #61543;-Al2O3, katoite and #61614; calcite, and hydroxysodalite and #61614; carbonated sodalite. Among those, the hydroxysodalite and #61614; carbonated sodalite transformation not only played a pivotal role in densifying the cementitious structure and in sustaining the original compressive strength developed after autoclaving, but also offered an improved resistance of the #80 cement to thermal shock. In contrast, autoclaved Class G well cement with and without Class F fly ash and quartz flour failed this cycle test, generating multiple cracks in the cement. The major reason for such impairment was the hydration of lime derived from the dehydroxylation of portlandite formed in the autoclaved cement, causing its volume to expand.

  6. 7-forming, superconducting filaments through bicomponent dry spinning

    DOE Patents [OSTI]

    Tuominen, Olli P. (Ogden, UT); Morgan, Carol W. (Asheville, NC); Burlone, Dominick A. (Asheville, NC); Blankenship, Keith V. (Asheville, NC)

    2001-01-01T23:59:59.000Z

    Fibers which contain potentially superconducting material are dry spun by the steps of preparing a suspension of potentially superconducting powder in a thickened solvent; preparing a solution of fiber-forming polymer; supplying the suspension and the solution to a spinning apparatus; in the spinning apparatus, arranging the solution and the suspension in a bicomponent arrangement; extruding the arranged solution and suspension from a spinneret as a bicomponent filament; and removing the solvent from the filament.

  7. Effects of aluminosilicate minerals in clay soil fractions on pore water hydroxide ion concentrations in soil/cement matrices

    E-Print Network [OSTI]

    Cook, Evan Russell

    1998-01-01T23:59:59.000Z

    form of montmorillonite, with 0. 5, 10, 20, and 40 percent bentonite by total, air-dry weight were mixed with Type I Portland cement at 10, 20, and 30 percent cement by weight of air-dry soil. Pore water was expressed and analyzed for hydroxide, calcium...

  8. Speciation of heavy metals in cement-stabilized waste forms: A micro-spectroscopic study

    E-Print Network [OSTI]

    -ray fluorescence (XRF)) were used to investigate Co and Ni uptake by Hardened Cement Paste (HCP) with the aim. For Ni and Co, XRF mapping revealed a highly heterogeneous element distribution as far Elsevier B.V. All rights reserved. Keywords: Cement; Micro-XAS; Micro-XRF mapping; Ni; Co 1. Introduction

  9. Comparison of modified sulfur cement and hydraulic cement for encapsulation of radioactive and mixed wastes

    SciTech Connect (OSTI)

    Kalb, P.D.; Heiser, J.H. III; Colombo, P.

    1990-01-01T23:59:59.000Z

    The majority of solidification/stabilization systems for low-level radioactive waste (LLW) and mixed waste, both in the commercial sector and at Department of Energy (DOE) facilities, utilize hydraulic cement (such as portland cement) to encapsulate waste materials and yield a monolithic solid waste form for disposal. A new and innovative process utilizing modified sulfur cement developed by the US Bureau of Mines has been applied at Brookhaven National Laboratory (BNL) for the encapsulation of many of these problem'' wastes. Modified sulfur cement is a thermoplastic material, and as such, it can be heated above it's melting point (120{degree}C), combined with dry waste products to form a homogeneous mixture, and cooled to form a monolithic solid product. Under sponsorship of the DOE, research and development efforts at BNL have successfully applied the modified sulfur cement process for treatment of a range of LLWs including sodium sulfate salts, boric acid salts, and incinerator bottom ash and for mixed waste contaminated incinerator fly ash. Process development studies were conducted to determine optimal waste loadings for each waste type. Property evaluation studies were conducted to test waste form behavior under disposal conditions by applying relevant performance testing criteria established by the Nuclear Regulatory Commission (for LLW) and the Environmental Protection Agency (for hazardous wastes). Based on both processing and performance considerations, significantly greater waste loadings were achieved using modified sulfur cement when compared with hydraulic cement. Technology demonstration of the modified sulfur cement encapsulation system using production-scale equipment is scheduled for FY 1991. 12 refs., 8 figs., 3 tabs.

  10. Experimental study of potential wellbore cement carbonation by various phases of carbon dioxide during geologic carbon sequestration

    SciTech Connect (OSTI)

    Jung, Hun Bok; Um, Wooyong

    2013-08-16T23:59:59.000Z

    Hydrated Portland cement was reacted with carbon dioxide (CO2) in supercritical, gaseous, and aqueous phases to understand the potential cement alteration processes along the length of a wellbore, extending from deep CO2 storage reservoir to the shallow subsurface during geologic carbon sequestration. The 3-D X-ray microtomography (XMT) images displayed that the cement alteration was significantly more extensive by CO2-saturated synthetic groundwater than dry or wet supercritical CO2 at high P (10 MPa)-T (50°C) conditions. Scanning electron microscopy with energy dispersive spectroscopy (SEM-EDS) analysis also exhibited a systematic Ca depletion and C enrichment in cement matrix exposed to CO2-saturated groundwater. Integrated XMT, XRD, and SEM-EDS analyses identified the formation of extensive carbonated zone filled with CaCO3(s), as well as the porous degradation front and the outermost silica-rich zone in cement after exposure to CO2-saturated groundwater. The cement alteration by CO2-saturated groundwater for 2-8 months overall decreased the porosity from 31% to 22% and the permeability by an order of magnitude. Cement alteration by dry or wet supercritical CO2 was slow and minor compared to CO2-saturated groundwater. A thin single carbonation zone was formed in cement after exposure to wet supercritical CO2 for 8 months or dry supercritical CO2 for 15 months. Extensive calcite coating was formed on the outside surface of a cement sample after exposure to wet gaseous CO2 for 1-3 months. The chemical-physical characterization of hydrated Portland cement after exposure to various phases of carbon dioxide indicates that the extent of cement carbonation can be significantly heterogeneous depending on CO2 phase present in the wellbore environment. Both experimental and geochemical modeling results suggest that wellbore cement exposure to supercritical, gaseous, and aqueous phases of CO2 during geologic carbon sequestration is unlikely to damage the wellbore integrity because cement alteration by all phases of CO2 is dominated by carbonation reaction. This is consistent with previous field studies of wellbore cement with extensive carbonation after exposure to CO2 for 3 decades. However, XMT imaging indicates that preferential cement alteration by supercritical CO2 or CO2-saturated groundwater can occur along the cement-steel or cement-rock interfaces. This highlights the importance of further investigation of cement degradation along the interfaces of wellbore materials to ensure permanent geologic carbon storage.

  11. Clean and cost-effective dry boundary lubricants for aluminum forming.

    SciTech Connect (OSTI)

    Erdemir, A.; Fenske, G. R.

    1997-12-05T23:59:59.000Z

    Preliminary research in our laboratory has demonstrated that boric acid is an effective lubricant with an unusual capacity to reduce sliding fiction (providing friction coefficients as low as 0.02) and wear of metallic and ceramic materials. More recent studies have revealed that water or methanol solutions of boric acid can be used to prepare strongly bonded layers of boric acid on aluminum surfaces. It appears that boric acid molecules have a strong tendency to bond chemically to the naturally oxidized surfaces of aluminum and its alloys and to make these surfaces very slippery. Recent metal formability tests indicated that the boric acid films formed on aluminum surfaces by spraying or dipping worked quite well; improving draw scale performance by 58 to 75%. These findings have increased the prospect that boric acid can be formulated and optimized as an effective boundary lubricant and used to solve the friction, galling, and severe wear problems currently encountered in cold-forming of aluminum products. Accordingly, the major goal of this paper is to demonstrate the usefulness and lubrication capacity of thin boric acid films formed on aluminum surfaces by simple dipping or spraying processes and to describe the lubrication mechanisms under typical metal forming conditions. We will also examine the nature of chemical bonding between boric acid and aluminum surfaces and develop new ways to optimize its performance as an effective boundary lubricant.

  12. Abstract The concurrent goals of cement hydration are to percolate (bridge) the original

    E-Print Network [OSTI]

    Bentz, Dale P.

    Cement hydration Ã? Low temperature calorimetry Ã? Microstructure Ã? Percolation Ã? Porosity Ã? Rheology Ã?, however, cement-based materials exhibit a highly dynamic (micro)structure that is extremely sen- sitive. Because many of the cement hydration prod- ucts form around the initial cement clinker par- ticles

  13. Z .Chemical Geology 152 1998 257271 The thermal and cementation histories of a sandstone petroleum

    E-Print Network [OSTI]

    Z .Chemical Geology 152 1998 257­271 The thermal and cementation histories of a sandstone petroleum of the cement formed, the maturation of petroleum in the interbedded shales likely postdates cementation. q 1998 of partially cemented petroleum reservoirs may help in constraining the physical character of a reservoir

  14. Cement advanced furnace and process

    SciTech Connect (OSTI)

    Litka, A.F.; Cohen, S.M.

    1992-06-02T23:59:59.000Z

    This patent describes a suspension shaft furnace for producing discrete cement clinkers from discrete pellets of cement-forming batch materials which are gravity-migrated therethrough. It comprises a vertical furnace housing enclosing a top pellet-feeding and preheating zone comprising an elongate vertical shaft section opening into an intermediate fluidized bed section comprising fuel inlet conduits, an air-permeable clinker-impermeable support; a lower clinker-cooling section beneath the fluidized bed section; clinker-discharge means communicating between the fluidized bed section and the cooling section and air inlet means.

  15. Improved cement quality and grinding efficiency by means of closed mill circuit modeling

    E-Print Network [OSTI]

    Mejeoumov, Gleb Gennadievich

    2009-05-15T23:59:59.000Z

    ..............................................................................................................................185 Page x LIST OF FIGURES Figure 1.1. Portland Cement (after Bhatty et al., 2004). ....................................................1 Figure 1.2. A Simplified Schematic of a Dry Cement Manufacturing Process. ................3 Figure 1....................................13 Figure 2.2. Typical Particle Size Distribution of a Type I Portland Cement Sample. .....16 Figure 2.3. Rosin-Rammler Representation of Cement PSD...........................................21 Figure 2.4. Blaine Calculation within the Particle...

  16. Phosphate-bonded calcium aluminate cements

    DOE Patents [OSTI]

    Sugama, T.

    1993-09-21T23:59:59.000Z

    A method is described for making a rapid-setting phosphate-bonded cementitious material. A powdered aluminous cement is mixed with an aqueous solution of ammonium phosphate. The mixture is allowed to set to form an amorphous cementitious material which also may be hydrothermally treated at a temperature of from about 120 C to about 300 C to form a crystal-containing phosphate-bonded material. Also described are the cementitious products of this method and the cement composition which includes aluminous cement and ammonium polyphosphate. 10 figures.

  17. Problems in squeeze cementing

    SciTech Connect (OSTI)

    Toor, I.A.

    1983-03-01T23:59:59.000Z

    For the past half century, work has been carried out to improve squeeze cementing. During the course of time, new techniques, equipment, cement and cement additives were introduced. Work is still underway to improve squeeze cementing. Basic concept of squeeze cementing, understanding the problems, planning for a squeeze job and then later testing of the job help in achieving the goal. Solutions were offered to some common problems, whereas many regional problems need time to time study and effort. Squeezing long perforations in highly permeable sand has always been a problem, for which some techniques were presented.

  18. International Best Practices for Pre-Processing and Co-Processing Municipal Solid Waste and Sewage Sludge in the Cement Industry

    E-Print Network [OSTI]

    Hasanbeigi, Ali

    2013-01-01T23:59:59.000Z

    least two seconds. ” The waste heat from the co-processingis drawn from the waste heat of the associated cementSewage sludge drying using waste heat from cement plant flue

  19. Effective Permeability Change in Wellbore Cement with Carbon Dioxide Reaction

    SciTech Connect (OSTI)

    Um, Wooyong; Jung, Hun Bok; Martin, Paul F.; McGrail, B. Peter

    2011-11-01T23:59:59.000Z

    Portland cement, a common sealing material for wellbores for geological carbon sequestration was reacted with CO{sub 2} in supercritical, gaseous, and aqueous phases at various pressure and temperature conditions to simulate cement-CO{sub 2} reaction along the wellbore from carbon injection depth to the near-surface. Hydrated Portland cement columns (14 mm diameter x 90 mm length; water-to-cement ratio = 0.33) including additives such as steel coupons and Wallula basalt fragments were reacted with CO{sub 2} in the wet supercritical (the top half) and dissolved (the bottom half) phases under carbon sequestration condition with high pressure (10 MPa) and temperature (50 C) for 5 months, while small-sized hydrated Portland cement columns (7 mm diameter x 20 mm length; water-to-cement ratio = 0.38) were reacted with CO{sub 2} in dissolved phase at high pressure (10 MPa) and temperature (50 C) for 1 month or with wet CO{sub 2} in gaseous phase at low pressure (0.2 MPa) and temperature (20 C) for 3 months. XMT images reveal that the cement reacted with CO{sub 2} saturated groundwater had degradation depth of {approx}1 mm for 1 month and {approx}3.5 mm for 5 month, whereas the degradation was minor with cement exposure to supercritical CO{sub 2}. SEM-EDS analysis showed that the carbonated cement was comprised of three distinct zones; the innermost less degraded zone with Ca atom % > C atom %, the inner degraded zone with Ca atom % {approx} C atom % due to precipitation of calcite, the outer degraded zone with C atom % > Ca atom % due to dissolution of calcite and C-S-H, as well as adsorption of carbon to cement matrix. The outer degraded zone of carbonated cement was porous and fractured because of dissolution-dominated reaction by carbonic acid exposure, which resulted in the increase in BJH pore volume and BET surface area. In contrast, cement-wet CO{sub 2}(g) reaction at low P (0.2 MPa)-T (20 C) conditions for 1 to 3 months was dominated by precipitation of micron-sized calcite on the outside surface of cement, which resulted in the decrease in BJH pore volume and BET surface area. Cement carbonation and pore structure change are significantly dependent on pressure and temperature conditions as well as the phase of CO{sub 2}, which controls the balance between precipitation and dissolution in cement matrix. Geochemical modeling result suggests that ratio of solid (cement)-to-solution (carbonated water) has a significant effect on cement carbonation, thus the cement-CO{sub 2} reaction experiment needs to be conducted under realistic conditions representing the in-situ wellbore environment of carbon sequestration field site. Total porosity and air permeability for a duplicate cement column with water-to-cement ratio of 0.38 measured after oven-drying by Core Laboratories using Boyle's Law technique and steady-state method were 31% and 0.576 mD. A novel method to measure the effective liquid permeability of a cement column using X-ray micro-tomography images after injection of pressurized KI (potassium iodide) is under development by PNNL. Preliminary results indicate the permeability of a cement column with water-to-cement ratio of 0.38 is 4-8 mD. PNNL will apply the method to understand the effective permeability change of Portland cement by CO{sub 2}(g) reaction under a variety of pressure and temperature conditions to develop a more reliable well-bore leakage risk model.

  20. Alex Benson Cement Plants

    E-Print Network [OSTI]

    Toohey, Darin W.

    with steel balls which grind mix into a fine powder -> Final Cement Product Associated Air Pollution: o From health effects Relative News; o "EPA Clamps down on Cement Plant Pollution" http.4 million dollars for violating the Clean Air Act and 2 million dollars for pollution controls #12

  1. Demonstration of Mixed Waste Debris Macroencapsulation Using Sulfur Polymer Cement

    SciTech Connect (OSTI)

    Mattus, C.H.

    1998-07-01T23:59:59.000Z

    This report covers work performed during FY 1997 as part of the Evaluation of Sulfur Polymer Cement Fast-Track System Project. The project is in support of the ``Mercury Working Group/Mercury Treatment Demonstrations - Oak Ridge`` and is described in technical task plan (TTP) OR-16MW-61. Macroencapsulation is the treatment technology required for debris by the U.S. Environmental Protection Agency Land Disposal Restrictions (LDR) under the Resource Conservation and Recovery Act. Based upon the results of previous work performed at Oak Ridge, the concept of using sulfur polymer cement (SPC) for this purpose was submitted to the Mixed Waste Focus Area (MWFA). Because of the promising properties of the material, the MWFA accepted this Quick Win project, which was to demonstrate the feasibility of macroencapsulation of actual mixed waste debris stored on the Oak Ridge Reservation. The waste acceptance criteria from Envirocare, Utah, were chosen as a standard for the determination of the final waste form produced. During this demonstration, it was shown that SPC was a good candidate for macroencapsulation of mixed waste debris, especially when the debris pieces were dry. The matrix was found to be quite easy to use and, once the optimum operating conditions were identified, very straightforward to replicate for batch treatment. The demonstration was able to render LDR compliant more than 400 kg of mixed wastes stored at the Oak Ridge National Laboratory.

  2. Thermodynamics and cement science

    SciTech Connect (OSTI)

    Damidot, D., E-mail: damidot@ensm-douai.fr [Universite Lille Nord de France (France); EM Douai, LGCgE-MPE-GCE, Douai (France); Lothenbach, B. [Empa, Lab. Concrete and Construction Chemistry, Duebendorf (Switzerland); Herfort, D. [Cementir Holding (Denmark); Glasser, F.P. [Chemistry Department, University of Aberdeen, Aberdeen (United Kingdom)

    2011-07-15T23:59:59.000Z

    Thermodynamics applied to cement science has proved to be very valuable. One of the most striking findings has been the extent to which the hydrate phases, with one conspicuous exception, achieve equilibrium. The important exception is the persistence of amorphous C-S-H which is metastable with respect to crystalline calcium silicate hydrates. Nevertheless C-S-H can be included in the scope of calculations. As a consequence, from comparison of calculation and experiment, it appears that kinetics is not necessarily an insuperable barrier to engineering the phase composition of a hydrated Portland cement. Also the sensitivity of the mineralogy of the AFm and AFt phase compositions to the presence of calcite and to temperature has been reported. This knowledge gives a powerful incentive to develop links between the mineralogy and engineering properties of hydrated cement paste and, of course, anticipates improvements in its performance leading to decreasing the environmental impacts of cement production.

  3. ULTRA-LIGHTWEIGHT CEMENT

    SciTech Connect (OSTI)

    Fred Sabins

    2001-10-23T23:59:59.000Z

    The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). Work reported herein addresses tasks performed in the fourth quarter as well as the other three quarters of the past year. The subjects that were covered in previous reports and that are also discussed in this report include: Analysis of field laboratory data of active cement applications from three oil-well service companies; Preliminary findings from a literature review focusing on problems associated with ultra-lightweight cements; Summary of pertinent information from Russian ultra-lightweight cement literature review; and Comparison of compressive strengths of ULHS systems using ultrasonic and crush methods Results reported from the fourth quarter include laboratory testing of ULHS systems along with other lightweight cement systems--foamed and sodium silicate slurries. These comparison studies were completed for two different densities (10.0 and 11.5 lb/gal) and three different field application scenarios. Additional testing included the mechanical properties of ULHS systems and other lightweight systems. Studies were also performed to examine the effect that circulation by centrifugal pump during mixing has on breakage of ULHS.

  4. High temperature lightweight foamed cements

    DOE Patents [OSTI]

    Sugama, Toshifumi.

    1989-10-03T23:59:59.000Z

    Cement slurries are disclosed which are suitable for use in geothermal wells since they can withstand high temperatures and high pressures. The formulation consists of cement, silica flour, water, a retarder, a foaming agent, a foam stabilizer, and a reinforcing agent. A process for producing these cements is also disclosed. 3 figs.

  5. High temperature lightweight foamed cements

    DOE Patents [OSTI]

    Sugama, Toshifumi (Mastic Beach, NY)

    1989-01-01T23:59:59.000Z

    Cement slurries are disclosed which are suitable for use in geothermal wells since they can withstand high temperatures and high pressures. The formulation consists of cement, silica flour, water, a retarder, a foaming agent, a foam stabilizer, and a reinforcing agent. A process for producing these cements is also disclosed.

  6. Influence of the physical form of the feed on the performance of bacon pigs. 1. Comparison between dry meal, soup and pellets.

    E-Print Network [OSTI]

    Boyer, Edmond

    dry meal, soup and pellets. 2. Technical and economical influence P. QUEMERE J. CASTAING J, a soup (2.5-3 1 per kg diet), or as pellets (dry pellets in trials 2 and 3). During the growing period, pellets improved the daily mean gain in all trials compared to dry meal or soup : on an average the daily

  7. SYNCHROTRON X-RAY MICROTOMOGRAPHY, ELECTRON PROBE MICROANALYSIS, AND NMR OF TOLUENE WASTE IN CEMENT.

    SciTech Connect (OSTI)

    BUTLER,L.G.

    1999-07-22T23:59:59.000Z

    Synchrotron X-ray microtomography shows vesicular structures for toluene/cement mixtures, prepared with 1.22 to 3.58 wt% toluene. Three-dimensional imaging of the cured samples shows spherical vesicles, with diameters ranging from 20 to 250 {micro}m; a search with EPMA for vesicles in the range of 1-20 {micro}m proved negative. However, the total vesicle volume, as computed from the microtomography images, accounts for less than 10% of initial toluene. Since the cements were cured in sealed bottles, the larger portion of toluene must be dispersed within the cement matrix. Evidence for toluene in the cement matrix comes from {sup 29}Si MAS NMR spectroscopy, which shows a reduction in chain silicates with added toluene. Also, {sup 2}H NMR of d{sub 8}-toluene/cement samples shows high mobility for all, toluene and thus no toluene/cement binding. A model that accounts for all observations follows: For loadings below about 3 wt%, most toluene is dispersed in the cement matrix, with a small fraction of the initial toluene phase separating from the cement paste and forming vesicular structures that are preserved in the cured cement. Furthermore, at loadings above 3 wt%, the abundance of vesicles formed during toluene/cement paste mixing leads to macroscopic phase separation (most toluene floats to the surface of the cement paste).

  8. Proceedings of the 12 International Congress on the Chemistry of Cement

    E-Print Network [OSTI]

    Bentz, Dale P.

    in water or as a granular water-filled porous media. In the former case, significant settling, and Evaporative Water Loss during Early Age Curing/Drying Immediately after placement, gravitational forces and the local drying environment begin to influence the (micro)structure of a cement paste, mortar, or concrete

  9. Burning hazardous waste in cement kilns

    SciTech Connect (OSTI)

    Chadbourne, J.F.; Helmsteller, A.J.

    1983-06-01T23:59:59.000Z

    The cement manufacturing process is one of the oldest in the world, having been in practice for over 2000 years. It is also one of the most energy intensive, with up to 65 percent of the cost of the product attributable to energy consumption. In addition to high energy demand, the process conditions include extremely high temperatures. Cement clinker forms when the correct mixture of raw materials is heated to 2650/sup 0/ F. This requires combustion temperatures exceeding 3000/sup 0/ F. under oxidizing conditions. To accomplish this, gas temperatures above 2000/sup 0/ F. occur for several seconds (typically five seconds), which is much longer than residence times in permitted hazardous waste incinerators. These conditions are extremely favorable to the destruction of organic compounds and have led to extensive investigation into the potential for burning hazardous waste in cement kilns. Cement kilns consuming hazardous wastes have been tested for air emissions under various operating conditions. The substantial body of information on the emissions and handling of hazardous wastes from these studies has demonstrated that effective destruction of wastes can be accomplished with the added benefits of energy conservation and no significant change in air emissions.

  10. Downhole cement test in a very hot hole

    SciTech Connect (OSTI)

    Pettitt, R.A.; Cocks, G.G.; Dreesen, D.N.; Sims, J.R.; Nicholson, R.W.; Boevers, B.

    1982-01-01T23:59:59.000Z

    Completion of the commercial-sized Hot Dry Rock Geothermal Energy Project requires that hydraulic fractures be created between two inclined wellbores at a depth of about 4 km (15,000 ft). Isolation of a section of the open wellbore is necessary for pressurization to achieve the fracture connections. A cemented-in liner/PBR assembly is one of the methods used for zone isolation near the botton of the injection well. A downhole, pumped cement test was first conducted at a wellbore temperature of 275/sup 0/C (525/sup 0/F) to determine if a suitable slurry could be designed, pumped, and later recovered to assure the success of the cemented-in liner operation.

  11. Forms

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibilityFieldMinds" Give Forms (All forms are in .pdf

  12. Improved method and composition for immobilization of waste in cement-based material

    DOE Patents [OSTI]

    Tallent, O.K.; Dodson, K.E.; McDaniel, E.W.

    1987-10-01T23:59:59.000Z

    A composition and method for fixation or immobilization of aqueous hazardous waste material in cement-based materials (grout) is disclosed. The amount of drainable water in the cured grout is reduced by the addition of an ionic aluminum compound to either the waste material or the mixture of waste material and dry-solid cement- based material. This reduction in drainable water in the cured grout obviates the need for large, expensive amounts of gelling clays in grout materials and also results in improved consistency and properties of these cement-based waste disposal materials.

  13. Guidebook for Using the Tool BEST Cement: Benchmarking and Energy Savings Tool for the Cement Industry

    SciTech Connect (OSTI)

    Galitsky, Christina; Price, Lynn; Zhou, Nan; Fuqiu , Zhou; Huawen, Xiong; Xuemin, Zeng; Lan, Wang

    2008-07-30T23:59:59.000Z

    The Benchmarking and Energy Savings Tool (BEST) Cement is a process-based tool based on commercially available efficiency technologies used anywhere in the world applicable to the cement industry. This version has been designed for use in China. No actual cement facility with every single efficiency measure included in the benchmark will likely exist; however, the benchmark sets a reasonable standard by which to compare for plants striving to be the best. The energy consumption of the benchmark facility differs due to differences in processing at a given cement facility. The tool accounts for most of these variables and allows the user to adapt the model to operational variables specific for his/her cement facility. Figure 1 shows the boundaries included in a plant modeled by BEST Cement. In order to model the benchmark, i.e., the most energy efficient cement facility, so that it represents a facility similar to the user's cement facility, the user is first required to input production variables in the input sheet (see Section 6 for more information on how to input variables). These variables allow the tool to estimate a benchmark facility that is similar to the user's cement plant, giving a better picture of the potential for that particular facility, rather than benchmarking against a generic one. The input variables required include the following: (1) the amount of raw materials used in tonnes per year (limestone, gypsum, clay minerals, iron ore, blast furnace slag, fly ash, slag from other industries, natural pozzolans, limestone powder (used post-clinker stage), municipal wastes and others); the amount of raw materials that are preblended (prehomogenized and proportioned) and crushed (in tonnes per year); (2) the amount of additives that are dried and ground (in tonnes per year); (3) the production of clinker (in tonnes per year) from each kiln by kiln type; (4) the amount of raw materials, coal and clinker that is ground by mill type (in tonnes per year); (5) the amount of production of cement by type and grade (in tonnes per year); (6) the electricity generated onsite; and, (7) the energy used by fuel type; and, the amount (in RMB per year) spent on energy. The tool offers the user the opportunity to do a quick assessment or a more detailed assessment--this choice will determine the level of detail of the energy input. The detailed assessment will require energy data for each stage of production while the quick assessment will require only total energy used at the entire facility (see Section 6 for more details on quick versus detailed assessments). The benchmarking tool provides two benchmarks--one for Chinese best practices and one for international best practices. Section 2 describes the differences between these two and how each benchmark was calculated. The tool also asks for a target input by the user for the user to set goals for the facility.

  14. Investigation of the formation of a Portland Cement plant detached plume

    SciTech Connect (OSTI)

    Cheney, J.L.; Knapp, K.T.

    1986-05-01T23:59:59.000Z

    A gaseous and particulate-source emissions sampling program was conducted at a Portland Cement production plant in Rapid City, South Dakota. The study was conducted to determine the cause of the formation of an opaque detached plume from the plants' dry process kiln. The instack opacity of the emissions was less than 10% while the opacity of the plume five to ten stack diameters from the mouth of the stack was in excess of 40%, thus giving an appearance of a detached plume. The sampling and analysis program included particulate emissions measurements, particle sizing and composition, and measurements of gaseous and particle ammonia, chloride, fluoride, and sulfur dioxide. Extensive process materials sampling and analysis were also conducted. Based on the resulting data, one conclusion is that the opaque detached plume is the result of ammonium chloride particles formed by the reaction of gaseous ammonia and hydrochloric acid. It was also found that the ammonia in the cement plant was generated from the shale portion of the raw products when the raw product was passed through the heat exchanger.

  15. Leaching induced concentration profiles in the solid phase of cement

    SciTech Connect (OSTI)

    Fuhrmann, M.; Colombo, P.

    1987-04-01T23:59:59.000Z

    Analysis of the solid phase of portland cement specimens by energy dispersive x-ray spectrometry before and after leaching provided elemental profiles within the cement. Releases of potassium were calculated from the solid phase profiles and were compared to releases determined from leachate analyses of potassium and cesium-137. The fraction of potassium released in the leachate was found to correlate closely to that of cesium-137 under varying time and temperature conditions, despite the different manner in which each was originally contained in the cement. Agreement was obtained among potassium releases as determined from the solid, potassium in the leachate and cesium-137 in the leachate. These correlations allowed the use of potassium as an analog for cesium-137 in cement. Profiles of potassium in the solid showed varying degrees of depletion. A specimen, sectioned immediately after leaching for 471 days, showed complete removal of potassium to 9 mm depth from the specimens surface. From 9 mm to the center of the specimen, an apparently linear increase in concentration was observed. Specimens that had been air dried prior to sectioning had profiles that were produced by evaporative transport of dissolved species toward the surface. Carbonation of the surface appears to have retarded migration of the dissolved material. This prevented it from reaching the outer edge and resulted in increased potassium concentrations several mm inside the surface. 9 refs., 10 figs., 2 tabs.

  16. Increasing Energy Efficiency and Reducing Emissions from China's Cement Kilns: Audit Report of Two Cement Plants in Shandong Province, China

    E-Print Network [OSTI]

    Price, Lynn

    2013-01-01T23:59:59.000Z

    and a vertical shaft kiln at another cement manufacturingrotary kiln or vertical shaft kiln in a cement plant. Baseda vertical shaft kiln (VSK) at another cement manufacturing

  17. Guidebook for Using the Tool BEST Cement: Benchmarking and Energy Savings Tool for the Cement Industry

    E-Print Network [OSTI]

    Galitsky, Christina

    2009-01-01T23:59:59.000Z

    the small cement plants, earthen vertical kiln (and hollowcement plant in North China utilizing vertical shaft kilnsCement Industry Technical Conference: 75- Replacing Vertical Shaft Kilns

  18. COMPOSITE PORTLAND CEMENT CONCRETE PAVEMENTS (Tollway) Effective: January 30, 2012

    E-Print Network [OSTI]

    COMPOSITE PORTLAND CEMENT CONCRETE PAVEMENTS (Tollway) Effective: January 30, 2012 Revised: May 8 for special applications to composite pavements as shown and described on the Drawings and in this Special as required; 5. Constructing the composite pavement on a prepared subgrade, or subbase, without forms. 6

  19. Sulfur dioxide oxidation and plume formation at cement kilns

    SciTech Connect (OSTI)

    Dellinger, B.; Grotecloss, G.; Fortune, C.R.; Cheney, J.L.; Homolya, J.B.

    1980-10-01T23:59:59.000Z

    Results of source sampling at the Glens Falls cement kiln in Glens Falls, N.Y., are reported for sulfur oxides, ammonia, hydrochloric acid, oxygen, and moisture content. The origin of a detached, high-opacity, persistent plume originating from the cement kiln stack is investigated. It is proposed that this plume is due to ammonium salts of SOx and sulfuric acid that have been formed in condensed water droplets in the plume by the pseudocatalytic action of ammonia. (1 diagram, 1 graph, 22 references, 7 tables)

  20. Synthesis and Characterization of High Temperature Cement-Based Hydroceramic Materials 

    E-Print Network [OSTI]

    Kyritsis, Konstantinos

    2009-01-01T23:59:59.000Z

    Cement-based materials are of importance in the construction of geothermal wells and high-temperature oil and gas wells. These materials fill the annulus between the well casing and the rock forming a protective layer, ...

  1. Drying Foods at Home Safely Drying Herbs

    E-Print Network [OSTI]

    jars, freezer bags, and airtight plastic containers. Like other foods dried at home, dried herbs in an airtight container and store in a cool, dry, and dark place. Recommended containers include glass canning

  2. ADVANCED CEMENTS FOR GEOTHERMAL WELLS

    SciTech Connect (OSTI)

    SUGAMA,T.

    2007-01-01T23:59:59.000Z

    Using the conventional well cements consisting of the calcium silicate hydrates (CaO-SiO{sub 2}-H{sub 2}O system) and calcium aluminum silicate hydrates (CaO-Al{sub 2}O{sub 3}-SiO{sub 2}-H{sub 2}O system) for the integrity of geothermal wells, the serious concern confronting the cementing industries was their poor performance in mechanically supporting the metallic well casing pipes and in mitigating the pipe's corrosion in very harsh geothermal reservoirs. These difficulties are particularly acute in two geological regions: One is the deep hot downhole area ({approx} 1700 m depth at temperatures of {approx} 320 C) that contains hyper saline water with high concentrations of CO{sub 2} (> 40,000 ppm) in conjunction with {approx} 100 ppm H{sub 2}S at a mild acid of pH {approx} 5.0; the other is the upper well region between the well's surface and {approx} 1000 m depth at temperatures up to 200 C. The specific environment of the latter region is characterized by highly concentrated H{sub 2}SO{sub 4} (pH < 1.5) brine containing at least 5000 ppm CO{sub 2}. When these conventional cements are emplaced in these harsh environments, their major shortcoming is their susceptibility to reactions with hot CO{sub 2} and H{sub 2}SO4, thereby causing their deterioration brought about by CO{sub 2}-catalyzed carbonation and acid-initiated erosion. Such degradation not only reduced rapidly the strength of cements, lowering the mechanical support of casing pipes, but also increased the extent of permeability of the brine through the cement layer, promoting the rate of the pipe's corrosion. Severely carbonated and acid eroded cements often impaired the integrity of a well in less than one year; in the worst cases, casings have collapsed within three months, leading to the need for costly and time-consuming repairs or redrilling operations. These were the reasons why the geothermal well drilling and cementing industries were concerned about using conventional well cements, and further their deterioration was a major impediment in expediting the development of geothermal energy resources.

  3. Cement design key to subsalt success

    SciTech Connect (OSTI)

    NONE

    1996-07-01T23:59:59.000Z

    Failures in casing set across salt formations have cost the petroleum industry billions of dollars. One of the most effective weapons for halting casing damage in salt formations is a competent cement sheath across the whole salt zone formation. Good cement jobs are at least as important as casing design. Choice of cementing recipe and practice can ensure a lasting cementation and is a function of the formation, its inclusions and its boundaries. The paper discusses the gauge hole, salt creep, and well casing and cementing.

  4. High temperature synthetic cement retarder

    SciTech Connect (OSTI)

    Eoff, L.S.; Buster, D.

    1995-11-01T23:59:59.000Z

    A synthetic cement retarder which provides excellent retardation and compressive strength development has been synthesized. The response properties and temperature ranges of the synthetic retarder far exceed those of commonly used retarders such as lignosulfonates. The chemical nature of the new retarder is discussed and compared to another synthetic retarder.

  5. Process for cementing geothermal wells

    DOE Patents [OSTI]

    Eilers, Louis H. (Inola, OK)

    1985-01-01T23:59:59.000Z

    A pumpable slurry of coal-filled furfuryl alcohol, furfural, and/or a low molecular weight mono- or copolymer thereof containing, preferably, a catalytic amount of a soluble acid catalyst is used to cement a casing in a geothermal well.

  6. Effects of composition and exposure on the solar reflectance of Portland cement concrete

    SciTech Connect (OSTI)

    Levinson, Ronnen; Akbari, Hashem

    2001-12-21T23:59:59.000Z

    Increasing the solar reflectance (albedo) of a paved surface keeps it cooler in the sun, reducing convection of heat from pavement to air and thereby decreasing the ambient air temperature. Simulations of the influence of pavement albedo on air temperature in Los Angeles predict that increasing the albedo of 1,250 km2 of pavement by 0.25 would save cooling energy worth $15M yr-1, and reduce smog-related medical and lost-work expenses by $76M yr-1. Most sidewalks and a small fraction of roads and parking areas are paved with portland cement concrete, which can be made quite reflective through suitable choice of cement and aggregate. Variations with composition and environmental exposure of the albedos of portland cement concrete pavements were investigated through laboratory fabrication and exposure of 32 mixes of concrete. Twenty-four mixes yielded substandard, ''rough'' concretes due to high, unmet aggregate water demand. The albedos of the remaining eight ''smooth'' concrete mixes ranged from 0.41 to 0.77 (mean 0.59). Simulated weathering, soiling, and abrasion each reduced average concrete albedo (mean decreases 0.06, 0.05, and 0.19, respectively), though some samples became slightly more reflective through weathering or soiling. Simulated rain (wetting) strongly depressed the albedos of concretes (mean decrease 0.23) until their surfaces were dried. Concrete albedo grew as the cement hydration reaction progressed (mean increase 0.08), but stabilized within six weeks of casting. White-cement concretes were on average significantly more reflective than gray-cement concretes. The albedo of the most-reflective white-cement concrete was 0.18 to 0.39 higher than that of the most-reflective gray-cement concrete, depending on state of exposure. Concrete albedo generally correlated with cement albedo and sand albedo, and, after abrasion, with rock albedo. Cement albedo had a disproportionately strong influence on the reflectance of concrete. Efflorescence and surface carbonation whitened some gray-cement mixes.

  7. CONSTRUCTION-GRADE CEMENT PRODUCTION FROM CONTAMINATED SEDIMENTS USING

    E-Print Network [OSTI]

    Brookhaven National Laboratory

    1 CONSTRUCTION-GRADE CEMENT PRODUCTION FROM CONTAMINATED SEDIMENTS USING CEMENT-LOCKTM TECHNOLOGY A manufacturing technology for producing construction-grade cements from a wide variety of contaminated waste cementitious properties that allow it to be transformed into construction-grade cement. The Cement

  8. HYDRAULIC CEMENT PREPARATION FROM LURGI SPENT SHALE

    SciTech Connect (OSTI)

    Mehta, P.K.; Persoff, P.; Fox, J.P.

    1980-06-01T23:59:59.000Z

    Low cost material is needed for grouting abandoned retorts. Experimental work has shown that a hydraulic cement can be produced from Lurgi spent shale by mixing it in a 1:1 weight ratio with limestone and heating one hour at 1000°C. With 5% added gypsum, strengths up to 25.8 MPa are obtained. This cement could make an economical addition up to about 10% to spent shale grout mixes, or be used in ordinary cement applications.

  9. INVESTIGATIONS ON HYDRAULIC CEMENTS FROM SPENT OIL SHALE

    E-Print Network [OSTI]

    Mehta, P.K.

    2012-01-01T23:59:59.000Z

    CEMENTS FROM SPENT OIL SHALE P.K. Mehta and P. Persoff AprilCement Manufacture from Oil Shale, U.S. Patent 2,904,445,CEMENTS FROM SPENT OIL SHALE P, K, Mehta Civil Engineering

  10. Management of solid wastes from the Limestone Injection Dry Scrubbing (LIDS) clean coal technology. Final report

    SciTech Connect (OSTI)

    Musiol, W.F. Jr.; Czuczwa, J.M.

    1993-03-01T23:59:59.000Z

    The objectives of this project were to characterize by-products from a pilot Limestone Injection Dry Scrubbing (LIDS) process and to develop processes directed toward the safe and economic use or disposal of these wastes. Because LIDS is a developing Clean Coal technology, a database of chemical and physical characteristics of the by-product was first developed. During the course of this project, it was found that the waste alone did not form high-strength products sufficient for use in construction and engineering applications. Therefore, the project was redirected to evaluate the by-product as a soil-cement and Portland cement raw material, agricultural liming agent, backfill/landfill material component, and mine reclamation/neutralizing agent. Based on these evaluations, the most viable uses for the LIDS byproduct include use in mine reclamation or as a neutralization agent. If soluble sulfites can be minimized by avoiding a dolomitic LIDS reagent, use as an agricultural liming agent has promise. Interest from an Ohio utility in the LIDS process suggests possible application of results at the demonstration or commercial stages.

  11. Relationship Between Engineering Properties, Mineralogy, and Microstructure in Cement-Based Hydroceramic Materials Cured at

    E-Print Network [OSTI]

    Bentz, Dale P.

    . I. Introduction CEMENT is universally used in the construction of oil and geothermal wells. Cement

  12. Drying of fiber webs

    DOE Patents [OSTI]

    Warren, David W. (9253 Glenoaks Blvd., Sun Valley, CA 91352)

    1997-01-01T23:59:59.000Z

    A process and an apparatus for high-intensity drying of fiber webs or sheets, such as newsprint, printing and writing papers, packaging paper, and paperboard or linerboard, as they are formed on a paper machine. The invention uses direct contact between the wet fiber web or sheet and various molten heat transfer fluids, such as liquified eutectic metal alloys, to impart heat at high rates over prolonged durations, in order to achieve ambient boiling of moisture contained within the web. The molten fluid contact process causes steam vapor to emanate from the web surface, without dilution by ambient air; and it is differentiated from the evaporative drying techniques of the prior industrial art, which depend on the uses of steam-heated cylinders to supply heat to the paper web surface, and ambient air to carry away moisture, which is evaporated from the web surface. Contact between the wet fiber web and the molten fluid can be accomplished either by submersing the web within a molten bath or by coating the surface of the web with the molten media. Because of the high interfacial surface tension between the molten media and the cellulose fiber comprising the paper web, the molten media does not appreciately stick to the paper after it is dried. Steam generated from the paper web is collected and condensed without dilution by ambient air to allow heat recovery at significantly higher temperature levels than attainable in evaporative dryers.

  13. Drying of fiber webs

    DOE Patents [OSTI]

    Warren, D.W.

    1997-04-15T23:59:59.000Z

    A process and an apparatus are disclosed for high-intensity drying of fiber webs or sheets, such as newsprint, printing and writing papers, packaging paper, and paperboard or linerboard, as they are formed on a paper machine. The invention uses direct contact between the wet fiber web or sheet and various molten heat transfer fluids, such as liquefied eutectic metal alloys, to impart heat at high rates over prolonged durations, in order to achieve ambient boiling of moisture contained within the web. The molten fluid contact process causes steam vapor to emanate from the web surface, without dilution by ambient air; and it is differentiated from the evaporative drying techniques of the prior industrial art, which depend on the uses of steam-heated cylinders to supply heat to the paper web surface, and ambient air to carry away moisture, which is evaporated from the web surface. Contact between the wet fiber web and the molten fluid can be accomplished either by submersing the web within a molten bath or by coating the surface of the web with the molten media. Because of the high interfacial surface tension between the molten media and the cellulose fiber comprising the paper web, the molten media does not appreciatively stick to the paper after it is dried. Steam generated from the paper web is collected and condensed without dilution by ambient air to allow heat recovery at significantly higher temperature levels than attainable in evaporative dryers. 6 figs.

  14. A literature review of mixed waste components: Sensitivities and effects upon solidification/stabilization in cement-based matrices

    SciTech Connect (OSTI)

    Mattus, C.H.; Gilliam, T.M.

    1994-03-01T23:59:59.000Z

    The US DOE Oak Ridge Field Office has signed a Federal Facility Compliance Agreement (FFCA) regarding Oak Ridge Reservation (ORR) mixed wastes subject to the land disposal restriction (LDR) provisions of the Resource conservation and Recovery Act. The LDR FFCA establishes an aggressive schedule for conducting treatability studies and developing treatment methods for those ORR mixed (radioactive and hazardous) wastes listed in Appendix B to the Agreement. A development, demonstration, testing, and evaluation program has been initiated to provide those efforts necessary to identify treatment methods for all of the wastes that meet Appendix B criteria. The program has assembled project teams to address treatment development needs in a variety of areas, including that of final waste forms (i.e., stabilization/solidification processes). A literature research has been performed, with the objective of determining waste characterization needs to support cement-based waste-form development. The goal was to determine which waste species are problematic in terms of consistent production of an acceptable cement-based waste form and at what concentrations these species become intolerable. The report discusses the following: hydration mechanisms of Portland cement; mechanisms of retardation and acceleration of cement set-factors affecting the durability of waste forms; regulatory limits as they apply to mixed wastes; review of inorganic species that interfere with the development of cement-based waste forms; review of radioactive species that can be immobilized in cement-based waste forms; and review of organic species that may interfere with various waste-form properties.

  15. Comparative assessment of TRU waste forms and processes. Volume I. Waste form and process evaluations

    SciTech Connect (OSTI)

    Ross, W.A.; Lokken, R.O.; May, R.P.; Roberts, F.P.; Timmerman, C.L.; Treat, R.L.; Westsik, J.H. Jr.

    1982-09-01T23:59:59.000Z

    This study provides an assesses seven waste forms and eight processes for immobilizing transuranic (TRU) wastes. The waste forms considered are cast cement, cold-pressed cement, FUETAP (formed under elevated temperature and pressure) cement, borosilicate glass, aluminosilicate glass, basalt glass-ceramic, and cold-pressed and sintered silicate ceramic. The waste-immobilization processes considered are in-can glass melting, joule-heated glass melting, glass marble forming, cement casting, cement cold-pressing, FUETAP cement processing, ceramic cold-pressing and sintering, basalt glass-ceramic processing. Properties considered included gas generation, chemical durability, mechanical strength, thermal stability, and radiation stability. The ceramic products demonstrated the best properties, except for plutonium release during leaching. The glass and ceramic products had similar properties. The cement products generally had poorer properties than the other forms, except for plutonium release during leaching. Calculations of the Pu release indicated that the waste forms met the proposed NRC release rate limit of 1 part in 10/sup 5/ per year in most test conditions. The cast-cement process had the lowest processing cost, followed closely by the cold-pressed and FUETAP cement processes. Joule-heated glass melting had the lower cost of the glass processes. In-can melting in a high-quality canister had the highest cost, and cold-pressed and sintered ceramic the second highest. Labor and canister costs for in-can melting were identified. The major contributor to costs of disposing of TRU wastes in a defense waste repository is waste processing costs. Repository costs could become the dominant cost for disposing of TRU wastes in a commercial repository. It is recommended that cast and FUETAP cement and borosilicate glass waste-form systems be considered. 13 figures, 16 tables.

  16. asbestos cement workers: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    early stage hydration of different classes of oilwell cement Bentz, Dale P. 152 NISTIR 7232 CEMHYD3D: A Three-Dimensional Cement Hydration Engineering Websites Summary: NISTIR...

  17. ash cement concrete: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    early stage hydration of different classes of oilwell cement Bentz, Dale P. 410 NISTIR 7232 CEMHYD3D: A Three-Dimensional Cement Hydration Engineering Websites Summary: NISTIR...

  18. ash substituted cements: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    early stage hydration of different classes of oilwell cement Bentz, Dale P. 199 NISTIR 7232 CEMHYD3D: A Three-Dimensional Cement Hydration Engineering Websites Summary: NISTIR...

  19. asbestos cement dust: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    early stage hydration of different classes of oilwell cement Bentz, Dale P. 278 NISTIR 7232 CEMHYD3D: A Three-Dimensional Cement Hydration Engineering Websites Summary: NISTIR...

  20. african portland cement: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    present in hardened cement blends in the long term Sheffield, University of 337 NISTIR 7232 CEMHYD3D: A Three-Dimensional Cement Hydration Engineering Websites Summary: NISTIR...

  1. Multifunctional Corrosion-resistant Foamed Well Cement Composites...

    Broader source: Energy.gov (indexed) [DOE]

    Multifunctional Corrosion-resistant Foamed Well Cement Composites Multifunctional Corrosion-resistant Foamed Well Cement Composites Multifunctional Corrosion-resistant Foamed Well...

  2. Energy Efficiency Improvement Opportunities for the Cement Industry

    E-Print Network [OSTI]

    Worrell, Ernst

    2008-01-01T23:59:59.000Z

    flash distillation waste heat power generation demonstrationAdvanced Concepts of Waste Heat Recovery in Cement PlantsCement Ltd. also installed waste heat recovery equipment on

  3. Fracture model for cemented aggregates

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zubelewicz, Aleksander; Thompson, Darla G.; Ostoja-Starzewski, Martin; Ionita, Axinte; Shunk, Devin; Lewis, Matthew W.; Lawson, Joe C.; Kale, Sohan; Koric, Seid

    2013-01-01T23:59:59.000Z

    A mechanisms-based fracture model applicable to a broad class of cemented aggregates and, among them, plastic-bonded explosive (PBX) composites, is presented. The model is calibrated for PBX 9502 using the available experimental data under uniaxial compression and tension gathered at various strain rates and temperatures. We show that the model correctly captures inelastic stress-strain responses prior to the load peak and it predicts the post-critical macro-fracture processes, which result from the growth and coalescence of micro-cracks. In our approach, the fracture zone is embedded into elastic matrix and effectively weakens the material's strength along the plane of the dominant fracture.

  4. Effect of Sodium Carboxymethyl Celluloses on Water-catalyzed Self-degradation of 200-degree C-heated Alkali-Activated Cement

    SciTech Connect (OSTI)

    Sugama T.; Pyatina, T.

    2012-05-01T23:59:59.000Z

    We investigated the usefulness of sodium carboxymethyl celluloses (CMC) in promoting self-degradation of 200°C-heated sodium silicate-activated slag/Class C fly ash cementitious material after contact with water. CMC emitted two major volatile compounds, CO2 and acetic acid, creating a porous structure in cement. CMC also reacted with NaOH from sodium silicate to form three water-insensitive solid reaction products, disodium glycolate salt, sodium glucosidic salt, and sodium bicarbonate. Other water-sensitive solid reaction products, such as sodium polysilicate and sodium carbonate, were derived from hydrolysates of sodium silicate. Dissolution of these products upon contact with water generated heat that promoted cement’s self-degradation. Thus, CMC of high molecular weight rendered two important features to the water-catalyzed self-degradation of heated cement: One was the high heat energy generated in exothermic reactions in cement; the other was the introduction of extensive porosity into cement.

  5. Phyllosilicate orientation demonstrates early timing of compactional stabilization in calcite-cemented concretions in the Barnett Shale (Late Mississippian), Fort Worth

    E-Print Network [OSTI]

    -cemented concretions in the Barnett Shale (Late Mississippian), Fort Worth Basin, Texas (U.S.A) Ruarri J. Day-Stirrat a in revised form 8 April 2008 Accepted 16 April 2008 Keywords: Barnett Shale Goniometry Concretions Fabric Calcite-cemented zones in the prolific gas-producing Barnett Shale (Ft. Worth Basin, Texas) preserve very

  6. Guidebook for Using the Tool BEST Cement: Benchmarking and Energy Savings Tool for the Cement Industry

    E-Print Network [OSTI]

    Galitsky, Christina

    2009-01-01T23:59:59.000Z

    Advanced Concepts of Waste Heat Recovery in Cement Plantsquantities of low grade waste heat from the kilns or clinkerthere is significant effect of waste heat recovery on dioxin

  7. Analysis of Energy-Efficiency Opportunities for the Cement Industry in Shandong Province, China

    E-Print Network [OSTI]

    Price, Lynn

    2010-01-01T23:59:59.000Z

    obsolete vertical shaft kiln (VSK) cement plants, with theobsolete vertical shaft kiln (VSK) cement plants, with theobsolete vertical shaft kiln (VSK) cement plants, with the

  8. Supply chain management in the cement industry

    E-Print Network [OSTI]

    Agudelo, Isabel

    2009-01-01T23:59:59.000Z

    Traditionally supply chain management has played an operational role within cement and mineral extraction commodity companies. Recently, cost reduction projects have brought supply chain management into the limelight. In ...

  9. A nanochemomechanical investigation of carbonated cement paste

    E-Print Network [OSTI]

    Vanzo, James (James F.)

    2009-01-01T23:59:59.000Z

    Concrete, and in particular its principal component, cement paste, has an interesting relation with carbon dioxide. Concrete is a carbon dioxide generator-- it is estimated that 5-10% of atmospheric CO? comes from this ...

  10. HYDRAULIC CEMENT PREPARATION FROM LURGI SPENT SHALE

    E-Print Network [OSTI]

    Mehta, P.K.

    2013-01-01T23:59:59.000Z

    cement from spent oil shale," Vol. 10, No. 4, p. 54S,Colorado's primary oil shale resource for vertical modifiedSimulated effects of oil-shale development on the hydrology

  11. HYDRAULIC CEMENT PREPARATION FROM LURGI SPENT SHALE

    E-Print Network [OSTI]

    Mehta, P.K.

    2013-01-01T23:59:59.000Z

    hydraulic cement from spent oil shale," Vol. 10, No. 4, p.J. W. , "Colorado's primary oil shale resource for verticalSimulated effects of oil-shale development on the hydrology

  12. Wearability of Portland Cement Concrete Pavement Finishes

    E-Print Network [OSTI]

    McKeen, William Rew

    1971-01-01T23:59:59.000Z

    Major Subject: Civil Engineering NEARABILITY OF PORTLAND CENENT CONCRETE PAPFNENT FIVISNFS A Thesis by Nilliam Rem NcKeen Approved as to style and content by: (Chairman of Committ e) (Nember) August 1971 ABSTRACT Hearabil'tv of Portland Cement... portland cement, and an air entrainment admixture. Standard laboratory tests were performed on all aggregates to determine their properties. iv The test specimens were molded in a controlled environmental room and the anpropriate surface finish (burlap...

  13. Production of cements from Illinois coal ash. Technical report, September 1, 1995--November 30, 1995

    SciTech Connect (OSTI)

    Wagner, J.C. [Institute of Gas Technology, Chicago, IL (United States); Bhatty, J.I.; Mishulovich, A. [Construction Technology Labs., Inc., Washington, DC (United States)

    1995-12-31T23:59:59.000Z

    The objective of this program is to convert Illinois coal combustion residues, such as fly ash, bottom ash, and boiler slag, into novel cementitious materials for use in the construction industry. Currently only about 30% of the 5 million tons of these coal combustion residues generated in Illinois each year are utilized, mainly as aggregate. These residues are composed largely Of SiO{sub 2}, Al{sub 2}O{sub 3}, Fe{sub 2}O{sub 3}, MgO, and CaO, which are also the major components of cement. The process being developed in this program will use the residues directly in the manufacture of cement products. Therefore, a much larger amount of residues can be utilized. To achieve the above objective, in the first phase (current year) samples of coal combustion residues will be blended and mixed, as needed, with a lime or cement kiln dust (CKD) to adjust the CaO composition. Six mixtures will be melted in a laboratory-scale furnace at CTL. The resulting products will then be tested for cementitious properties. Two preliminary blends have been tested. One blend used fly ash with limestone, while the other used fly ash with CKD. Each blend was melted and then quenched, and the resulting product samples were ground to a specific surface area similar to portland cement. Cementitious properties of these product samples were evaluated by compression testing of 1-inch cube specimens. The specimens were formed out of cement paste where a certain percentage of the cement paste is displaced by one of the sample products. The specimens were cured for 24 hours at 55{degrees}C and 100% relative humidity. The specimens made with the product samples obtained 84 and 89% of the strength of a pure portland cement control cube. For comparison, similar (pozzolanic) materials in standard concrete practice are required to have a compressive strength of at least 75% of that of the control.

  14. Evaluation of cement production using a pressurized fluidized-bed combustor

    SciTech Connect (OSTI)

    DeLallo, M.; Eshbach, R.

    1994-01-01T23:59:59.000Z

    There are several primary conclusions which can be reached and used to define research required in establishing the feasibility of using PFBC-derived materials as cement feedstock. 1. With appropriate blending almost any material containing the required cement-making materials can be utilized to manufacture cement. However, extensive blending with multiple materials or the use of ash in relatively small quantities would compromise the worth of this concept. 2. The composition of a potential feedstock must be considered not only with respect to the presence of required materials, but just as significantly, with respect to the presence and concentration of known deleterious materials. 3. The processing costs for rendering the feedstock into an acceptable composition and the energy costs associated with both processing and burning must be considered. It should be noted that the cost of energy to produce cement, expressed as a percentage of the price of the product is higher than for any other major industrial product. Energy consumption is, therefore, a major issue. 4. The need for conformance to environmental regulations has a profound effect on the cement industry since waste materials can neither be discharged to the atmosphere or be shipped to a landfill. 5. Fifth, the need for achieving uniformity in the composition of the cement is critical to controlling its quality. Unfortunately, certain materials in very small concentrations have the capability to affect the rate and extent to which the cementitious compound in portland cement are able to form. Particularly critical are variations in the ash, the sulfur content of the coal or the amount and composition of the stack dust returned to the kiln.

  15. Corrosion of Aluminium in Composite Cements Anthony Setiadi* and Neil B. Milestone

    E-Print Network [OSTI]

    Sheffield, University of

    Corrosion of Aluminium in Composite Cements Anthony Setiadi* and Neil B. Milestone Immobilisation they are economic, durable and have long-term stability. However, there may be issues regarding the corrosion it is exposed to air, an oxide layer is formed. This layer generally provides protection to further corrosion

  16. CSER 00-001 Criticality Safety Evaluation Report for Cementation Operations at the PFP

    SciTech Connect (OSTI)

    DOBBIN, K.D.

    2000-04-18T23:59:59.000Z

    Glovebox HA-20MB is located in Room 235B of the 234-5Z Building at the Plutonium Finishing Plant. This enclosure contains mixers, mixer bowls, a crusher unit, an isolated inoperable conveyor unit, plutonium residue feed cans, cemented cans, and a feedwater container. Plutonium residue, not conducive to other forms of stabilization, is prepared for storage and ultimate disposal by cementation. The feed residue material cans can have plutonium contents of only a few grams or up to 200 grams. This evaluation accommodates this wide range of container fissile concentrations.

  17. Alternative Fuel for Portland Cement Processing

    SciTech Connect (OSTI)

    Anton K. Schindler; Steve R. Duke; Thomas E. Burch; Edward W. Davis; Ralph H. Zee; David I. Bransby; Carla Hopkins; Rutherford L. Thompson; Jingran Duan; Vignesh Venkatasubramanian; Stephen Giles.

    2012-06-30T23:59:59.000Z

    The production of cement involves a combination of numerous raw materials, strictly monitored system processes, and temperatures on the order of 1500 °C. Immense quantities of fuel are required for the production of cement. Traditionally, energy from fossil fuels was solely relied upon for the production of cement. The overarching project objective is to evaluate the use of alternative fuels to lessen the dependence on non-renewable resources to produce portland cement. The key objective of using alternative fuels is to continue to produce high-quality cement while decreasing the use of non-renewable fuels and minimizing the impact on the environment. Burn characteristics and thermodynamic parameters were evaluated with a laboratory burn simulator under conditions that mimic those in the preheater where the fuels are brought into a cement plant. A drop-tube furnace and visualization method were developed that show potential for evaluating time- and space-resolved temperature distributions for fuel solid particles and liquid droplets undergoing combustion in various combustion atmospheres. Downdraft gasification has been explored as a means to extract chemical energy from poultry litter while limiting the throughput of potentially deleterious components with regards to use in firing a cement kiln. Results have shown that the clinkering is temperature independent, at least within the controllable temperature range. Limestone also had only a slight effect on the fusion when used to coat the pellets. However, limestone addition did display some promise in regards to chlorine capture, as ash analyses showed chlorine concentrations of more than four times greater in the limestone infused ash as compared to raw poultry litter. A reliable and convenient sampling procedure was developed to estimate the combustion quality of broiler litter that is the best compromise between convenience and reliability by means of statistical analysis. Multi-day trial burns were conducted at a full-scale cement plant with alternative fuels to examine their compatibility with the cement production process. Construction and demolition waste, woodchips, and soybean seeds were used as alternative fuels at a full-scale cement production facility. These fuels were co-fired with coal and waste plastics. The alternative fuels used in this trial accounted for 5 to 16 % of the total energy consumed during these burns. The overall performance of the portland cement produced during the various trial burns performed for practical purposes very similar to the cement produced during the control burn. The cement plant was successful in implementing alternative fuels to produce a consistent, high-quality product that increased cement performance while reducing the environmental footprint of the plant. The utilization of construction and demolition waste, woodchips and soybean seeds proved to be viable replacements for traditional fuels. The future use of these fuels depends on local availability, associated costs, and compatibility with a facilityâ??s production process.

  18. SENSITIVITY OF THE BOND STRENGTH TO THE STRUCTURE OF THE INTERFACE BETWEEN REINFORCEMENT AND CEMENT, AND THE

    E-Print Network [OSTI]

    Chung, Deborah D.L.

    Ashland Petroleum Co. (Ashland, KY). Cement paste made from Portland cement (Type I) from Lafarge Corp

  19. Fe-containing phases in hydrated cements

    SciTech Connect (OSTI)

    Dilnesa, B.Z., E-mail: belay.dilnesa@gmail.com [Empa, Laboratory for Concrete and Construction Chemistry, Überlandstrasse 129, 8600 Dübendorf (Switzerland); Wieland, E. [Paul Scherrer Institute, Laboratory for Waste Management, 5232 Villigen PSI (Switzerland); Lothenbach, B. [Empa, Laboratory for Concrete and Construction Chemistry, Überlandstrasse 129, 8600 Dübendorf (Switzerland); Dähn, R. [Paul Scherrer Institute, Laboratory for Waste Management, 5232 Villigen PSI (Switzerland); Scrivener, K.L. [Ecole Polytechnique Federal de Lausanne (EPFL), Laboratory for Construction Materials, 1015 Lausanne (Switzerland)

    2014-04-01T23:59:59.000Z

    In this study synchrotron X-ray absorption spectroscopy (XAS) has been applied, an element specific technique which allows Fe-containing phases to be identified in the complex mineral mixture of hydrated cements. Several Fe species contributed to the overall Fe K-edge spectra recorded on the cement samples. In the early stage of cement hydration ferrite was the dominant Fe-containing mineral. Ferrihydrite was detected during the first hours of the hydration process. After 1 day the formation of Al- and Fe-siliceous hydrogarnet was observed, while the amount of ferrihydrite decreased. The latter finding agrees with thermodynamic modeling, which predicts the formation of Fe-siliceous hydrogarnet in Portland cement systems. The presence of Al- and Fe-containing siliceous hydrogarnet was further substantiated in the residue of hydrated cement by performing a selective dissolution procedure. - Highlights: • Fe bound to ferrihydrite at early age hydration • Fe found to be stable in siliceous hydrogarnet at longer term age hydration • Fe-containing AFt and AFm phases are less stable than siliceous hydrogarnet. • The study demonstrates EXAFS used to identify amorphous or poorly crystalline phases.

  20. INVESTIGATIONS ON HYDRAULIC CEMENTS FROM SPENT OIL SHALE

    E-Print Network [OSTI]

    Mehta, P.K.

    2012-01-01T23:59:59.000Z

    20 to 40% of the oil shale, and explosively rubblizing andCEMENTS FROM SPENT OIL SHALE P.K. Mehta and P. Persoff AprilCement Manufacture from Oil Shale, U.S. Patent 2,904,445,

  1. Identification of Concrete Incompatibilities Using Cement Paste Rheology

    E-Print Network [OSTI]

    Jang, Se Hoon

    2010-07-14T23:59:59.000Z

    as well as heat evolution abnormalities. The objectives of the present study were to examine the applicability of the dynamic shear rheometer (DSR) to measure cement paste rheology, and to identify cement and mineral/chemical admixture incompatibilities...

  2. Development of an Improved Cement for Geothermal Wells

    Broader source: Energy.gov [DOE]

    DOE Geothermal Peer Review 2010 - Presentation. Project objectives: Develop a novel, zeolite-containing lightweight, high temperature, high pressure geothermal cement, which will provide operators with an easy to use, flexible cementing system that saves time and simplifies logistics.

  3. Energy Efficiency Improvement Opportunities for the Cement Industry

    E-Print Network [OSTI]

    Worrell, Ernst

    2008-01-01T23:59:59.000Z

    and energy savings per tonne of cement produced are estimated and then carbon dioxide emissionsand energy savings per tonne of cement produced are estimated and then carbon dioxide emissions

  4. Cooling Dry Cows

    E-Print Network [OSTI]

    Stokes, Sandra R.

    2000-07-17T23:59:59.000Z

    This publication discusses the effects of heat stress on dairy cows, methods of cooling cows, and research on the effects of cooling cows in the dry period....

  5. Cooking with Dried Potatoes

    E-Print Network [OSTI]

    Anding, Jenna

    2008-12-09T23:59:59.000Z

    This fact sheet describes the nutritional value and safe storage of dried potatoes, a commodity food. It also offers food preparation ideas....

  6. Drying and first heat up of a kiln unit with cyclone heat exchangers with a lining of refractory concretes

    SciTech Connect (OSTI)

    Petrov-Denisov, V.G.; Matveev, Y.V.; Pichkov, A.M.; Pozdnyakova, N.K.; Shakhov, I.I.

    1985-11-01T23:59:59.000Z

    This paper describes an accelerated drying and first heatup cycle developed for a kiln unit for dry production of clinker with a capacity of 3000 tons/day with cyclone heat exchangers of refractory concretes of high-alumina cement with a chamotte aggregate. The drying of the lining and the heating of the unit were done in 4 days. The results of the work indicate the desirability of use of refractory concretes for lining the cyclone heat exchangers of kiln units for dry production of clinker.

  7. Master Thesis: Simulation of plastic deformation in cemented carbide inserts

    E-Print Network [OSTI]

    Haviland, David

    Master Thesis: Simulation of plastic deformation in cemented carbide inserts Background Sandvik in cemented carbide, high-speed steel and other hard materials such as diamond, cubic boron nitride in cemented carbide inserts will be performed using the FEM software Ansys and AdvantEdge. The work

  8. Successful Alternatives to Conventional Cement Designs in the Williston Basin

    SciTech Connect (OSTI)

    Bryant, G.A.

    1984-05-01T23:59:59.000Z

    Since mid-1981, 36 wells have been cemented in the Williston Basin with a cementing system diametrically opposed to conventional cementing designs used for bonding across massive salt members. Since implementation, along with the use of relaxed invert emulsion oil mud, not one casing problem has arisen in the wells where these systems were used.

  9. NIST Special Publication 1173 Virtual Cement and Concrete

    E-Print Network [OSTI]

    #12;NIST Special Publication 1173 Virtual Cement and Concrete Testing Laboratory Version 9.5 User;Virtual Cement and Concrete Testing Laboratory Version 9.5 User Guide Jeffrey W. Bullard1 Materials-8615 This document serves as the user's guide for the Virtual Cement and Con- crete Testing Laboratory (VCCTL

  10. Improved microstructure of cement-based composites through the addition of rock wool particles

    SciTech Connect (OSTI)

    Lin, Wei-Ting [Dept. of Civil Engineering, National Ilan University, Ilan 26047, Taiwan (China); Institute of Nuclear Energy Research, Atomic Energy Council, Taoyuan 32546, Taiwan (China); Cheng, An, E-mail: ancheng@niu.edu.tw [Dept. of Civil Engineering, National Ilan University, Ilan 26047, Taiwan (China); Huang, Ran; Zou, Si-Yu [Dept. of Harbor and River Engineering, National Taiwan Ocean University, Keelung 20224, Taiwan (China)

    2013-10-15T23:59:59.000Z

    Rock wool is an inorganic fibrous substance produced by steam blasting and cooling molten glass. As with other industrial by-products, rock wool particles can be used as cementitious materials or ultra fine fillers in cement-based composites. This study investigated the microstructure of mortar specimens produced with cement-based composites that include various forms of rock wool particles. It conducted compressive strength testing, rapid chloride penetration tests, X-ray diffraction analysis, thermo-gravimetric analysis, and scanning electronic microscopy to evaluate the macro- and micro-properties of the cement-based composites. Test results indicate that inclusion of rock wool particles in composites improved compressive strength and reduced chloride ion penetration at the age of 91 days due to the reduction of calcium hydroxide content. Microscopic analysis confirms that the use of rock wool particles contributed to the formation of a denser, more compact microstructure within the hardened paste. In addition, X-ray diffraction analysis shows few changes in formation of pozzolanic reaction products and no new hydrations are formed with incorporating rock wool particles. - Highlights: • We report the microstructural characterization of cement-based composites. • Different mixes produced with various rock wool particles have been tested. • The influence of different mixes on macro and micro properties has been discussed. • The macro properties are included compressive strength and permeability. • XRD and SEM observations confirm the pozzolanic reaction in the resulting pastes.

  11. Encapsulation of mixed radioactive and hazardous waste contaminated incinerator ash in modified sulfur cement

    SciTech Connect (OSTI)

    Kalb, P.D.; Heiser, J.H. III; Colombo, P.

    1990-01-01T23:59:59.000Z

    Some of the process waste streams incinerated at various Department of Energy (DOE) facilities contain traces of both low-level radioactive (LLW) and hazardous constituents, thus yielding ash residues that are classified as mixed waste. Work is currently being performed at Brookhaven National Laboratory (BNL) to develop new and innovative materials for encapsulation of DOE mixed wastes including incinerator ash. One such material under investigation is modified sulfur cement, a thermoplastic developed by the US Bureau of Mines. Monolithic waste forms containing as much as 55 wt % incinerator fly ash from Idaho national Engineering Laboratory (INEL) have been formulated with modified sulfur cement, whereas maximum waste loading for this waste in hydraulic cement is 16 wt %. Compressive strength of these waste forms exceeded 27.6 MPa. Wet chemical and solid phase waste characterization analyses performed on this fly ash revealed high concentrations of soluble metal salts including Pb and Cd, identified by the Environmental Protection Agency (EPA) as toxic metals. Leach testing of the ash according to the EPA Toxicity Characteristic Leaching Procedure (TCLP) resulted in concentrations of Pb and Cd above allowable limits. Encapsulation of INEL fly ash in modified sulfur cement with a small quantity of sodium sulfide added to enhance retention of soluble metal salts reduced TCLP leachate concentrations of Pb and Cd well below EPA concentration criteria for delisting as a toxic hazardous waste. 12 refs., 4 figs., 2 tabs.

  12. Capture of green-house carbon dioxide in Portland cement

    SciTech Connect (OSTI)

    Wagh, A.S.; Singh, D.; Pullockaran, J.; Knox, L.

    1993-12-31T23:59:59.000Z

    A novel process has been developed to sequester green-house carbon dioxide produced by the cement industry in precast cement products. Typically, 10--24 wt % of CO{sub 2} produced by calcination of calcium carbonate during clinkering of the cement may be captured. The carbonation process also cures the cement paste within minutes into hard bodies. The process maintains high pH conditions during curing, to allow conventional steel reinforcement of concrete. The process will save time and money to the cement industry, and at the same time, help them to comply with the Clean Air Act by sequestering the green-house carbon dioxide.

  13. INVESTIGATIONS ON HYDRAULIC CEMENTS FROM SPENT OIL SHALE

    SciTech Connect (OSTI)

    Mehta, P.K.; Persoff, P.

    1980-04-01T23:59:59.000Z

    A process for making hydraulic cements from spent oil shale is described in this paper. Inexpensive cement is needed to grout abandoned in-situ retorts of spent shale for subsidence control, mitigation of leaching, and strengthening the retorted mass in order to recover oil from adjacent pillars of raw shale. A hydraulic cement was produced by heating a 1:1 mixture of Lurgi spent shale and CaCO{sub 3} at 1000 C for one hour. This cement would be less expensive than ordinary portland cement and is expected to fulfill the above requirements.

  14. How to run and cement liners

    SciTech Connect (OSTI)

    Bowman, G.R.; Sherer, B.

    1988-09-01T23:59:59.000Z

    Testing the top of a liner after it has been cemented is necessary to ensure a well's integrity. However, whether done with or without packers there are potential problems attendant with either method that can occur if the tests are not properly engineered. A discussion of these problems and ways to avoid them is presented.

  15. Freeze drying method

    SciTech Connect (OSTI)

    Coppa, Nicholas V. (Malvern, PA); Stewart, Paul (Youngstown, NY); Renzi, Ernesto (Youngstown, NY)

    1999-01-01T23:59:59.000Z

    The present invention provides methods and apparatus for freeze drying in which a solution, which can be a radioactive salt dissolved within an acid, is frozen into a solid on vertical plates provided within a freeze drying chamber. The solid is sublimated into vapor and condensed in a cold condenser positioned above the freeze drying chamber and connected thereto by a conduit. The vertical positioning of the cold condenser relative to the freeze dryer helps to help prevent substances such as radioactive materials separated from the solution from contaminating the cold condenser. Additionally, the system can be charged with an inert gas to produce a down rush of gas into the freeze drying chamber to also help prevent such substances from contaminating the cold condenser.

  16. Freeze drying apparatus

    SciTech Connect (OSTI)

    Coppa, Nicholas V. (Malvern, PA); Stewart, Paul (Youngstown, NY); Renzi, Ernesto (Youngstown, NY)

    2001-01-01T23:59:59.000Z

    The present invention provides methods and apparatus for freeze drying in which a solution, which can be a radioactive salt dissolved within an acid, is frozen into a solid on vertical plates provided within a freeze drying chamber. The solid is sublimated into vapor and condensed in a cold condenser positioned above the freeze drying chamber and connected thereto by a conduit. The vertical positioning of the cold condenser relative to the freeze dryer helps to help prevent substances such as radioactive materials separated from the solution from contaminating the cold condenser. Additionally, the system can be charged with an inert gas to produce a down rush of gas into the freeze drying chamber to also help prevent such substances from contaminating the cold condenser.

  17. Dry Process Electrode Fabrication

    Broader source: Energy.gov (indexed) [DOE]

    250m of free standing dry process cathode at thickness >200 m thickness. + Validate cost model by running pilot coating line at >25 mmin. + Deliver 24 cells in A123 SOA EV...

  18. Dry Process Electrode Fabrication

    Broader source: Energy.gov (indexed) [DOE]

    free standing dry process cathode that retains 50% capacity at 1C rate. + Validate cost model by running pilot coating line. + Deliver 24 cells in SOA EV cell format....

  19. Dry Process Electrode Fabrication

    Broader source: Energy.gov (indexed) [DOE]

    free standing dry process cathode that retains 50% capacity at 1C rate. + Validate cost model by running pilot coating line. + Deliver 24 cells in SOA EV cell format. 3...

  20. Dry etching method for compound semiconductors

    DOE Patents [OSTI]

    Shul, Randy J. (Albuquerque, NM); Constantine, Christopher (Safety Harbor, FL)

    1997-01-01T23:59:59.000Z

    A dry etching method. According to the present invention, a gaseous plasma comprising, at least in part, boron trichloride, methane, and hydrogen may be used for dry etching of a compound semiconductor material containing layers including aluminum, or indium, or both. Material layers of a compound semiconductor alloy such as AlGaInP or the like may be anisotropically etched for forming electronic devices including field-effect transistors and heterojunction bipolar transistors and for forming photonic devices including vertical-cavity surface-emitting lasers, edge-emitting lasers, and reflectance modulators.

  1. Use of waste gypsum to replace natural gypsum as set retarders in portland cement

    SciTech Connect (OSTI)

    Chandara, Chea; Azizli, Khairun Azizi Mohd [School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang (Malaysia); Ahmad, Zainal Arifin [School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang (Malaysia)], E-mail: zainal@eng.usm.my; Sakai, Etsuo [Tokyo Institute of Technology, Graduate School of Science and Engineering, Department of Metallurgy and Ceramic Science, 2-12-1 Meguro-ku, Ookayama, Meguro-ku, Tokyo 152-8552 (Japan)

    2009-05-15T23:59:59.000Z

    The present study is focused on clarifying the influence of waste gypsum (WG) in replacing natural gypsum (NG) in the production of ordinary Portland cement (OPC). WG taken from slip casting moulds in a ceramic factory was formed from the hydration of plaster of paris. Clinker and 3-5 wt% of WG was ground in a laboratory ball mill to produce cement waste gypsum (CMWG). The same procedure was repeated with NG to substitute WG to prepare cement natural gypsum (CMNG). The properties of NG and WG were investigated via X-ray Diffraction (XRD), X-ray fluorescence (XRF) and differential scanning calorimetry (DSC)/thermogravimetric (TG) to evaluate the properties of CMNG and CMWG. The mechanical properties of cement were tested in terms of setting time, flexural and compressive strength. The XRD result of NG revealed the presence of dihydrate while WG contained dihydrate and hemihydrate. The content of dihydrate and hemihydrates were obtained via DSC/TG, and the results showed that WG and NG contained 12.45% and 1.61% of hemihydrate, respectively. Furthermore, CMWG was found to set faster than CMNG, an average of 15.29% and 13.67% faster for the initial and final setting times, respectively. This was due to the presence of hemihydrate in WG. However, the values obtained for flexural and compressive strength were relatively the same for CMNG and CMWG. Therefore, this result provides evidence that WG can be used as an alternative material to NG in the production of OPC.

  2. Corrosion-resistant Foamed Cements for Carbon Steels

    SciTech Connect (OSTI)

    Sugama T.; Gill, S.; Pyatina, T., Muraca, A.; Keese, R.; Khan, A.; Bour, D.

    2012-12-01T23:59:59.000Z

    The cementitious material consisting of Secar #80, Class F fly ash, and sodium silicate designed as an alternative thermal-shock resistant cement for the Enhanced Geothermal System (EGS) wells was treated with cocamidopropyl dimethylamine oxide-based compound as foaming agent (FA) to prepare numerous air bubble-dispersed low density cement slurries of and #61603;1.3 g/cm3. Then, the foamed slurry was modified with acrylic emulsion (AE) as corrosion inhibitor. We detailed the positive effects of the acrylic polymer (AP) in this emulsion on the five different properties of the foamed cement: 1) The hydrothermal stability of the AP in 200 and #61616;C-autoclaved cements; 2) the hydrolysis-hydration reactions of the slurry at 85 and #61616;C; 3) the composition of crystalline phases assembled and the microstructure developed in autoclaved cements; 4) the mechanical behaviors of the autoclaved cements; and, 5) the corrosion mitigation of carbon steel (CS) by the polymer. For the first property, the hydrothermal-catalyzed acid-base interactions between the AP and cement resulted in Ca-or Na-complexed carboxylate derivatives, which led to the improvement of thermal stability of the AP. This interaction also stimulated the cement hydration reactions, enhancing the total heat evolved during cement’s curing. Addition of AP did not alter any of the crystalline phase compositions responsible for the strength of the cement. Furthermore, the AP-modified cement developed the porous microstructure with numerous defect-free cavities of disconnected voids. These effects together contributed to the improvement of compressive-strength and –toughness of the cured cement. AP modification of the cement also offered an improved protection of CS against brine-caused corrosion. There were three major factors governing the corrosion protection: 1) Reducing the extents of infiltration and transportation of corrosive electrolytes through the cement layer deposited on the underlying CS surfaces; 2) inhibiting the cathodic reactions at the corrosion site of CS; 3) extending the coverage of cement over CS surfaces; and, 4) improving the adherence of the cement to CS surfaces. Thus, the CS’s corrosion rate of 176 milli inch/per year (mpy) for 1 wt% FA-foamed cement without AP was considerably reduced to 69 mpy by adding only 2 wt% AP. Addition of AP at 10 wt% further reduced this rate to less than 10 mpy.

  3. Carbon dioxide capture from a cement manufacturing process

    DOE Patents [OSTI]

    Blount, Gerald C. (North Augusta, SC); Falta, Ronald W. (Seneca, SC); Siddall, Alvin A. (Aiken, SC)

    2011-07-12T23:59:59.000Z

    A process of manufacturing cement clinker is provided in which a clean supply of CO.sub.2 gas may be captured. The process also involves using an open loop conversion of CaO/MgO from a calciner to capture CO.sub.2 from combustion flue gases thereby forming CaCO.sub.3/CaMg(CO.sub.3).sub.2. The CaCO.sub.3/CaMg(CO.sub.3).sub.2 is then returned to the calciner where CO.sub.2 gas is evolved. The evolved CO.sub.2 gas, along with other evolved CO.sub.2 gases from the calciner are removed from the calciner. The reactants (CaO/MgO) are feed to a high temperature calciner for control of the clinker production composition.

  4. Cement substitution by a combination of metakaolin and limestone

    SciTech Connect (OSTI)

    Antoni, M., E-mail: mathieu.antoni@epfl.ch [EPFL-STI-IMX-Laboratoires des Materiaux de Construction, Station12, CH-1015 Lausanne (Switzerland); Rossen, J. [EPFL-STI-IMX-Laboratoires des Materiaux de Construction, Station12, CH-1015 Lausanne (Switzerland)] [EPFL-STI-IMX-Laboratoires des Materiaux de Construction, Station12, CH-1015 Lausanne (Switzerland); Martirena, F. [CIDEM-UCLV, Universidad Las Villas, Santa Clara (Cuba)] [CIDEM-UCLV, Universidad Las Villas, Santa Clara (Cuba); Scrivener, K. [EPFL-STI-IMX-Laboratoires des Materiaux de Construction, Station12, CH-1015 Lausanne (Switzerland)] [EPFL-STI-IMX-Laboratoires des Materiaux de Construction, Station12, CH-1015 Lausanne (Switzerland)

    2012-12-15T23:59:59.000Z

    This study investigates the coupled substitution of metakaolin and limestone in Portland cement (PC). The mechanical properties were studied in mortars and the microstructural development in pastes by X-ray diffraction, thermogravimetry analysis, mercury intrusion porosimetry and isothermal calorimetry. We show that 45% of substitution by 30% of metakaolin and 15% of limestone gives better mechanical properties at 7 and 28 days than the 100% PC reference. Our results show that calcium carbonate reacts with alumina from the metakaolin, forming supplementary AFm phases and stabilizing ettringite. Using simple mass balance calculations derived from thermogravimetry results, we also present the thermodynamic simulation for the system, which agrees fairly well with the experimental observations. It is shown that gypsum addition should be carefully balanced when using calcined clays because it considerably influences the early age strength by controlling the very rapid reaction of aluminates.

  5. Evaluation of Type I cement sorbent slurries in the U.C. pilot spray dryer facility. Final report, November 1, 1994--February 28, 1996

    SciTech Connect (OSTI)

    Keener, T.C.; Khang, S.J.

    1996-07-31T23:59:59.000Z

    This research was focused on evaluating hydrated cement sorbents in the U. C. pilot spray dryer. The main goal of this work was to determine the hydration conditions resulting in reactive hydrated cement sorbents. Hydration of cement was achieved by stirring or by grinding in a ball mill at either room temperature or elevated temperatures. Also, the effects of several additives were studied. Additives investigated include calcium chloride, natural diatomite, calcined diatomaceous earth, and fumed silica. The performance of these sorbents was compared with conventional slaked lime. Further, the specific surface area and pore volume of the dried SDA sorbents were measured and compared to reactivity. Bench-scale tests were performed to obtain a more detailed picture of the development of the aforementioned physical properties as a function of hydration time.

  6. A leach model for solidified/stabilized waste forms based on empirical partitioning of contaminants

    E-Print Network [OSTI]

    Kim, Inchul

    1997-01-01T23:59:59.000Z

    -liquid or solid form. A variety of binders have been used, but the principal type of inorganic binder is portland cement. When the portland cement is mixed with aqueous wastes, hydration reactions occur and calcium silicate hydrate (C-S- H) and calcium... immobilization mechanisms in s/s, particularly when portland cement is used as a binder. When portland cement is mixed with liquid wastes, hydration reactions occur and a high pH environment (near 12) develop as a result of the formation of Ca(OH), . This high...

  7. Cement Kiln Flue Gas Recovery Scrubber Project

    SciTech Connect (OSTI)

    National Energy Technology Laboratory

    2001-11-30T23:59:59.000Z

    The Cement Kiln Flue Gas Recovery Scrubber Project was a technical success and demonstrated the following: CKD can be used successfully as the sole reagent for removing SO2 from cement kiln flue gas, with removal efficiencies of 90 percent or greater; Removal efficiencies for HCl and VOCs were approximately 98 percent and 70 percent, respectively; Particulate emissions were low, in the range of 0.005 to 0.007 grains/standard cubic foot; The treated CKD sorbent can be recycled to the kiln after its potassium content has been reduced in the scrubber, thereby avoiding the need for landfilling; The process can yield fertilizer-grade K2SO4, a saleable by-product; and Waste heat in the flue gas can provide the energy required for evaporation and crystallization in the by-product recovery operation. The demonstration program established the feasibility of using the Recovery Scrubber{trademark} for desulfurization of flue gas from cement kilns, with generally favorable economics, assuming tipping fees are available for disposal of ash from biomass combustion. The process appears to be suitable for commercial use on any type of cement kiln. EPA has ruled that CKD is a nonhazardous waste, provided the facility meets Performance Standards for the Management of CKD (U.S. Environmental Protection Agency 1999d). Therefore, regulatory drivers for the technology focus more on reduction of air pollutants and pollution prevention, rather than on treating CKD as a hazardous waste. Application of the Recovery Scrubbe{trademark} concept to other waste-disposal operations, where pollution and waste reductions are needed, appears promising.

  8. New techniques for monitoring cement hydration under simulated well conditions

    SciTech Connect (OSTI)

    Luke, K.; Hall, C.; Jones, T. [Schlumberger Cambridge Research (United Kingdom); Barnes, P.; Turillas, X.; Lewis, A. [Univ. of London (United Kingdom). Birkbeck College

    1995-11-01T23:59:59.000Z

    Fourier transform infrared spectroscopy and synchrotron X-ray powder diffraction methods are described for studying cement hydration chemistry at temperatures up to 200 C, covering the normal temperature range of wellbore cementing. The methods provide complementary information on the transformation of silicate, ferrite and sulfate minerals. The thermal decomposition of the cement mineral ettringite is shown to occur at 114 C in a sealed system in contact with water. The FTIR spectrum of a well cement slurry hydrating at 150 C and 2,000 psi is analyzed. The anomalous thickening time behavior of certain cements around 75--100 C is discussed in the light of new data on the hydration of a Class G cement at 65 and 95 C, with and without retarder.

  9. Development programs in the United States of America for the application of cement-based grouts in radioactive waste management

    SciTech Connect (OSTI)

    Dole, L.R.; Row, T.H.

    1984-01-01T23:59:59.000Z

    This paper briefly reviews seven cement-based waste form development programs at six of the US Department of Energy (DOE) sites. These sites have developed a variety of processes that range from producing 25 mm (1 in.) diameter pellets in a glove box to producing 240 m (800 ft.) diameter grout sheets within the bedding planes of a deep shale formation. These successful applications of cement-based waste forms to the many radioactive waste streams from nuclear facilities bear witness to the flexibility and reliability of this class of materials. This paper also discusses the major issues regarding the application of cement-based waste forms to radioactive waste management problems. These issues are (1) leachability, (2) radiation stability, (3) thermal stability, (4) phase complexity of the matrix, and (5) effects of the waste stream composition. A cursory review of current research in each of these areas is given This paper also discusses future trends in cement-based waste form development and applications. 31 references, 11 figures.

  10. An investigation of cement mortar thermal storage characteristics

    E-Print Network [OSTI]

    Davis, Glenn Baker

    2012-06-07T23:59:59.000Z

    energy storage characteristics of solid cement mortar cylinders. Two var1a- tions 1nvolving mechanically induced porosity were also investigated. Rocks, a commonly used sensible heat storage material, were tested to prov1de a reference for the cement... mortar. A numer1cal model, analogous to program available for rock bed storage systems, simulating the cement mortar cylinder storage section was developed. Heat transfer coefficients were calculated from the experimental data for use in the model...

  11. An evaluation of the carbonate cements and their diagenesis on selected banks, outer Continental Shelf: northern Gulf of Mexico

    E-Print Network [OSTI]

    Stafford, John Michael

    1982-01-01T23:59:59.000Z

    solutions were exact replicates of Mg-calcites formed within the marine environment. Th1s implies that the 20 composition of the cement cannot be determined on the basis of crystal morphology alone (Badiozamani et al, 1977). The literature on carbonate... in that needle-fiber cements are the needles of calcite growing on minute root hairs (Ward, 1975). Care should be taken not to confuse the two. ~S he uiitic c me ts are also aao ite cemeets. The eedias th t comprise the cone shaped bundles are from 1-5 u wide...

  12. Energy Efficiency Improvement Opportunities for the Cement Industry

    E-Print Network [OSTI]

    Worrell, Ernst

    2008-01-01T23:59:59.000Z

    the small cement plants, earthen vertical kiln (and hollowcement plant in North China utilizing vertical shaft kilnscement has ordered a vertical roller mill for the new kiln

  13. Energy Efficiency Improvement Opportunities for the Cement Industry

    E-Print Network [OSTI]

    Worrell, Ernst

    2008-01-01T23:59:59.000Z

    Lime Institute. 2001. Energy Efficiency Opportunity Guide inIndustry, Office of Energy Efficiency, Natural Resourcesof a Cement Kiln, Energy Efficiency Demonstration Scheme,

  14. Multifunctional Corrosion-resistant Foamed Well Cement Composites

    Broader source: Energy.gov (indexed) [DOE]

    Multifunctional Corrosion-resistant Foamed Well Cement Composites Project Officer: Dan KingGreg Stillman Total budget: 300 K April 24 , 2013 Principal Investigator: Dr. Toshifumi...

  15. Optimization Online - The carbon leakage effect on the cement ...

    E-Print Network [OSTI]

    Elisabetta Allevi

    2015-02-08T23:59:59.000Z

    Feb 8, 2015 ... This paper investigates the impact of these two policies on the cement sector ... Environmental policies, Generalized Nash Equilibrium Problem.

  16. Development of an Improved Cement for Geothermal Wells

    Broader source: Energy.gov (indexed) [DOE]

    availability. * Schedule slippage resulting from delays in the fabrication of Chandler Engineering specialized high pressurehigh temperature cement testing equipment. 6 | US...

  17. Energy Efficiency Improvement Opportunities for the Cement Industry

    E-Print Network [OSTI]

    Worrell, Ernst

    2008-01-01T23:59:59.000Z

    on Power Generation by Waste Heat of the Kiln in NingguoPure Low Temperature & Waste Heat in Beijing Cement Ltd. ;flash distillation waste heat power generation demonstration

  18. Stabilizing coal-water mixtures with Portland cement

    DOE Patents [OSTI]

    Steinberg, M.; Krishna, C.R.

    1984-10-17T23:59:59.000Z

    Coal-water mixes stabilized by the addition of Portland cement which may additionally contain retarding carbohydrates, or borax are described. 1 tab.

  19. Identification of active agents for tetrachloroethylene degradation in Portland cement slurry containing ferrous iron

    E-Print Network [OSTI]

    Ko, Sae Bom

    2006-08-16T23:59:59.000Z

    -EDS) were used to identify minerals in chemical mixtures that have high activities. Results indicate that active agents for PCE degradation in Portland cement slurries and in cement extracts might be one of several AFm phases. However, systems without cement...

  20. Instantaneous In-Situ Determination of Water-Cement Ratio of Fresh Concrete

    E-Print Network [OSTI]

    Mancio, Mauricio; Moore, Jeffrey R.; Brooks, Zenzile; Monteiro, Paulo J. M.; Glaser, Steve D.

    2010-01-01T23:59:59.000Z

    method for cement content determination of fresh concrete.Cement and Concrete Research, 1980. 10(1): p. 23-34. Hime,the cement content of plastic concrete. ASTM Bulletin, 1955.

  1. Calcite cemented layers, their characterization and use in improving reservoir recovery from Murchison field, northern North Sea

    SciTech Connect (OSTI)

    Warrender, J.M. (Conoco Ltd., Aberdeen (United Kingdom)); Spears, D.A. (Univ. of Sheffield (United Kingdom))

    1991-08-01T23:59:59.000Z

    Murchison field is a mature development forming part of the Brent oil province in the East Shetland basin, northern North Sea. The productive reservoir consists of coastal deltaic sands of the Middle Jurassic Brent Group and is produced by a line-drive waterflood mechanism. The Rannoch Formation in Murchison, one of the field's most prolific producing zones, is characterized by the presence of calcite-cemented zones, known locally as doggers, which occlude all porosity and behave as vertical barriers to fluid flow. Geochemical-mineralogical analysis of the carbonate cements allied to sedimentological studies of host sandstone indicate that they occur as continuously cemented layers with relatively homogeneous compositions. Dogger occurrence is generally confined to the upper parts of individual coarsening-upward confined to the upper parts of individual coarsening-upward profile and sand bodies, characterized by low detrital clay and mica contents, low bioturbation, and high pre-cementation porosites and permeabilities. The carbonate bands are thus thought to represent zones of maximum pore water flow through high permeability conduits during burial diagenesis. Wireline correlation supported by core description indicates that at least three significant, laterally continuous calcite-cemented zones occur, the most extensive of which has a lateral extent of at least 5 km. All significant doggers have been mapped geologically and incorporated into the full-field reservoir simulation model. Based on this new understanding, a revised infill drilling and perforation strategy has been devised for the Rannoch Formation, aimed at improving recovery from this complex reservoir zone.

  2. Energy Efficiency Improvement and Cost Saving Opportunities for Cement Making. An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Worrell, Ernst

    2008-01-01T23:59:59.000Z

    Modern Vertical Shaft Kiln Technology” World Cement 1 26cement has ordered a vertical roller mill for the new kiln

  3. E-Print Network 3.0 - affect cement penetration Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a coating Summary: as an admixture in cement and as a coating on cement for electromagnetic interference shielding'' J. Cao, D... parameters that affect the shielding...

  4. E-Print Network 3.0 - aluminate cement blended Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    predicting the setting times of Type I cement concrete and blended... -29, 1980. 20. Tay, J. .H., Properties of Pulverized Sludge Ash Blended Cement. ACI Materials Journals... OF...

  5. Analysis of Energy-Efficiency Opportunities for the Cement Industry in Shandong Province, China

    E-Print Network [OSTI]

    Price, Lynn

    2010-01-01T23:59:59.000Z

    Wang, L. , 2008. Alternative fuel using and waste materialPolicy Research on Alternative Fuels for Cement Industry incement and using alternative fuels in the cement kiln. There

  6. Analysis of Energy-Efficiency Opportunities for the Cement Industry in Shandong Province, China

    E-Print Network [OSTI]

    Price, Lynn

    2010-01-01T23:59:59.000Z

    UNFCCC), 2007 b. Energy efficiency measures at cementUNFCCC), 2007 c. Energy efficiency measures at cementBanerjee, R. , 2005. Energy Efficiency and Demand Side

  7. Analysis of Energy-Efficiency Opportunities for the Cement Industry in Shandong Province, China

    E-Print Network [OSTI]

    Price, Lynn

    2010-01-01T23:59:59.000Z

    and MAIN, 1993. Energy Technology in the Cement Industrialof Demonstrated Energy Technologies (CADDET), Internationaland MAIN. 1993. Energy Technology in the Cement Industrial

  8. Method and apparatus for drying web

    DOE Patents [OSTI]

    Orloff, David I. (Atlanta, GA); Kloth, Gerald R. (Kennesaw, GA); Rudemiller, Gary R. (Paducah, KY)

    1992-01-01T23:59:59.000Z

    The present invention is directed to a method and apparatus for drying a web of paper utilizing impulse drying techniques. In the method of the invention for drying a paper web, the paper web is transported through a pair of rolls wherein at least one of the rolls has been heated to an elevated temperature. The heated roll is provided with a surface having a low thermal diffusivity of less than about 1.times.10.sup.-6 m.sup.2 /s. The surface material of the roll is preferably prepared from a material selected from the group consisting of ceramics, polymers, glass, inorganic plastics, composite materials and cermets. The heated roll may be constructed entirely from the material having a low thermal diffusivity or the roll may be formed from metal, such as steel or aluminum, or other suitable material which is provided with a surface layer of a material having a low thermal diffusivity.

  9. Cement (2010 MECS) | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New Substation Sites ProposedOccupational HealthcatalystsMaking Same -Cement (2010

  10. High Temperature Cements | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:GreerHi Gtel Jump to: navigation,Solar Power Plant JumpDrillingCements

  11. Cement Bond Log | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:Energy Information on PV EconomicsOregon: Energy ResourcesCeilingCement Bond

  12. Communication Electric polarization in carbon fiber-reinforced cement

    E-Print Network [OSTI]

    Chung, Deborah D.L.

    Communication Electric polarization in carbon fiber-reinforced cement Sihai Wen, D.D.L. Chung Abstract Electric polarization induced an increase of the measured electrical resistivity of carbon fiber of the cement paste through the use of carbon fibers that were more crystalline, the increase of the fiber

  13. Portland Cement Concrete Pavement Shannon Golden, Alabama DOT

    E-Print Network [OSTI]

    Portland Cement Concrete Pavement Shannon Golden, Alabama DOT PORTLAND CEMENT CONCRETE PAVEMENT PROJECT · First in Alabama in more than 25 years! · IM-I059 (342) Etowah County ­ I-59 Concrete Pavement Rehabilitation with Unbonded Concrete Overlay ­ Length: 10.9 miles ­ Thickness: 11.0 to 13.5 inches ­ Volume: 300

  14. Magnesium phosphate glass cements with ceramic-type properties

    DOE Patents [OSTI]

    Sugama, Toshifumi (Mastic Beach, NY); Kukacka, Lawrence E. (Port Jefferson, NY)

    1984-03-13T23:59:59.000Z

    Rapid setting magnesium phosphate (Mg glass) cementitious materials consisting of magnesium phosphate cement paste, polyborax and water-saturated aggregate exhibiting rapid setting and high early strength characteristics. The magnesium glass cement is prepared from a cation-leachable powder and a bivalent metallic ion-accepting liquid such as an aqueous solution of diammonium phosphate and ammonium polyphosphate. The cation-leachable powder includes a mixture of two different magnesium oxide powders processed and sized differently which when mixed with the bivalent metallic ion-accepting liquid provides the magnesium glass cement consisting primarily of magnesium ortho phosphate tetrahydrate, with magnesium hydroxide and magnesium ammonium phosphate hexahydrate also present. The polyborax serves as a set-retarder. The resulting magnesium mono- and polyphosphate cements are particularly suitable for use as a cementing matrix in rapid repair systems for deteriorated concrete structures as well as construction materials and surface coatings for fireproof structures.

  15. Magnesium-phosphate-glass cements with ceramic-type properties

    DOE Patents [OSTI]

    Sugama, T.; Kukacka, L.E.

    1982-09-23T23:59:59.000Z

    Rapid setting magnesium phosphate (Mg glass) cementitious materials consisting of magnesium phosphate cement paste, polyborax and water-saturated aggregate, exhibits rapid setting and high early strength characteristics. The magnesium glass cement is prepared from a cation-leachable powder and a bivalent metallic ion-accepting liquid such as an aqueous solution of diammonium phosphate and ammonium polyphosphate. The cation-leachable powder includes a mixture of two different magnesium oxide powders processed and sized differently which when mixed with the bivalent metallic ion-accepting liquid provides the magnesium glass cement consisting primarily of magnesium ortho phosphate tetrahydrate, with magnesium hydroxide and magnesium ammonium phosphate hexahydrate also present. The polyborax serves as a set-retarder. The resulting magnesium mono- and polyphosphate cements are particularly suitable for use as a cementing matrix in rapid repair systems for deteriorated concrete structures as well as construction materials and surface coatings for fireproof structures.

  16. Method for dry etching of transition metals

    SciTech Connect (OSTI)

    Ashby, Carol I. H. (Edgewood, NM); Baca, Albert G. (Albuquerque, NM); Esherick, Peter (Albuquerque, NM); Parmeter, John E. (Albuquerque, NM); Rieger, Dennis J. (Tijeras, NM); Shul, Randy J. (Albuquerque, NM)

    1998-01-01T23:59:59.000Z

    A method for dry etching of transition metals. The method for dry etching of a transition metal (or a transition metal alloy such as a silicide) on a substrate comprises providing at least one nitrogen- or phosphorous-containing .pi.-acceptor ligand in proximity to the transition metal, and etching the transition metal to form a volatile transition metal/.pi.-acceptor ligand complex. The dry etching may be performed in a plasma etching system such as a reactive ion etching (RIE) system, a downstream plasma etching system (i.e. a plasma afterglow), a chemically-assisted ion beam etching (CAIBE) system or the like. The dry etching may also be performed by generating the .pi.-acceptor ligands directly from a ligand source gas (e.g. nitrosyl ligands generated from nitric oxide), or from contact with energized particles such as photons, electrons, ions, atoms, or molecules. In some preferred embodiments of the present invention, an intermediary reactant species such as carbonyl or a halide ligand is used for an initial chemical reaction with the transition metal, with the intermediary reactant species being replaced at least in part by the .pi.-acceptor ligand for forming the volatile transition metal/.pi.-acceptor ligand complex.

  17. Method for dry etching of transition metals

    DOE Patents [OSTI]

    Ashby, C.I.H.; Baca, A.G.; Esherick, P.; Parmeter, J.E.; Rieger, D.J.; Shul, R.J.

    1998-09-29T23:59:59.000Z

    A method for dry etching of transition metals is disclosed. The method for dry etching of a transition metal (or a transition metal alloy such as a silicide) on a substrate comprises providing at least one nitrogen- or phosphorus-containing {pi}-acceptor ligand in proximity to the transition metal, and etching the transition metal to form a volatile transition metal/{pi}-acceptor ligand complex. The dry etching may be performed in a plasma etching system such as a reactive ion etching (RIE) system, a downstream plasma etching system (i.e. a plasma afterglow), a chemically-assisted ion beam etching (CAIBE) system or the like. The dry etching may also be performed by generating the {pi}-acceptor ligands directly from a ligand source gas (e.g. nitrosyl ligands generated from nitric oxide), or from contact with energized particles such as photons, electrons, ions, atoms, or molecules. In some preferred embodiments of the present invention, an intermediary reactant species such as carbonyl or a halide ligand is used for an initial chemical reaction with the transition metal, with the intermediary reactant species being replaced at least in part by the {pi}-acceptor ligand for forming the volatile transition metal/{pi}-acceptor ligand complex.

  18. Method of drying articles

    DOE Patents [OSTI]

    Janney, Mark A. (Knoxville, TN); Kiggans, Jr., James O. (Oak Ridge, TN)

    1999-01-01T23:59:59.000Z

    A method of drying a green particulate article includes the steps of: a. Providing a green article which includes a particulate material and a pore phase material, the pore phase material including a solvent; and b. contacting the green article with a liquid desiccant for a period of time sufficient to remove at least a portion of the solvent from the green article, the pore phase material acting as a semipermeable barrier to allow the solvent to be sorbed into the liquid desiccant, the pore phase material substantially preventing the liquid desiccant from entering the pores.

  19. Method of drying articles

    DOE Patents [OSTI]

    Janney, M.A.; Kiggans, J.O. Jr.

    1999-03-23T23:59:59.000Z

    A method of drying a green particulate article includes the steps of: (a) Providing a green article which includes a particulate material and a pore phase material, the pore phase material including a solvent; and (b) contacting the green article with a liquid desiccant for a period of time sufficient to remove at least a portion of the solvent from the green article, the pore phase material acting as a semipermeable barrier to allow the solvent to be sorbed into the liquid desiccant, the pore phase material substantially preventing the liquid desiccant from entering the pores. 3 figs.

  20. Effect of Elevated Curing Temperature on Early Hydration and Microstructure of Composite Cements

    E-Print Network [OSTI]

    Sheffield, University of

    Effect of Elevated Curing Temperature on Early Hydration and Microstructure of Composite Cements J, Seascale, Cumbria, CA20 1PG, UK Abstract The heat of hydration of a number of composite cement systems has of composite cements based on the partial replacement of Portland cement by waste materials has become

  1. Time-dependent behaviour of hardened cement paste under isotropic loading

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    of hardened cement paste under isotropic loading, Cement and Concrete Research, doi: 10.1016/j.cemconres.2012.03.002 hal-00689716,version1-19Apr2012 Author manuscript, published in "Cement and Concrete Research (2012 the framework of the classical theory of porous media. The effects of water-to-cement ratio and chemical

  2. Energy, environmental and greenhouse gas effects of using alternative fuels in cement production

    E-Print Network [OSTI]

    Columbia University

    1 Energy, environmental and greenhouse gas effects of using alternative fuels in cement to an increase of AF use from 8.7% to 20.9% of the total energy consumption. 2. One of the alternative fuels used cement industry produces about 3.3 billion tonnes of cement annually. Cement production is energy

  3. Dry reforming of hydrocarbon feedstocks

    SciTech Connect (OSTI)

    Shah, Yatish T. [Norfolk State University; Gardner, Todd H. [U.S. DOE

    2014-01-01T23:59:59.000Z

    Developments in catalyst technology for the dry reforming of hydrocarbon feedstocks are reviewed for methane, higher hydrocarbons and alcohols. Thermodynamics, mechanisms and the kinetics of dry reforming are also reviewed. The literature on Ni catalysts, bi-metallic Ni catalysts and the role of promoters on Ni catalysts is critically evaluated. The use of noble and transitional metal catalysts for dry reforming is discussed. The application of solid oxide and metal carbide catalysts to dry reforming is also evaluated. Finally, various mechanisms for catalyst deactivation are assessed. This review also examines the various process related issues associated with dry reforming such as its application and heat optimization. Novel approaches such as supercritical dry reforming and microwave assisted dry reforming are briefly expanded upon.

  4. Hazardous-waste combustion in industrial processes: cement and lime kilns

    SciTech Connect (OSTI)

    Mournighan, R.E.; Branscome, M.

    1987-11-01T23:59:59.000Z

    This report summarizes the results of several studies relating to hazardous-waste combustion in cement and lime kilns. The tests included in the study are four kilns tested by the U.S. Environmental Protection Agency, four kilns tested by State agencies or the kiln operator, two Canadian tests, and one Swedish test. The predominant types of wastes tested included chlorinated organic compounds, aromatic compounds, and metal-contaminated waste oil. The kiln types include lime kilns and cement kilns, which included the dry, wet, and preheated processes. Fabric filters and electrostatic precipitators (ESPs) were the pollution-control devices used in these processes, and the primary fuels included coal, coke, coal/coke, fuel oil, and natural gas/coke. The parameters examined in the report were Destruction and Removal Efficiency (DRE) of the Principal Organic Hazardous Constitutents, particulate and HCl emissions, metals, and the effect of burning hazardous waste on SO/sub 2/, NOx, and CO emissions. The primary conclusion of the study is that DRE's of 99.99% or greater can be obtained in properly-operated calcining kilns. Particulate matter can increase when chlorinated wastes are burned in a kiln equipped with an electrostatic precipitator. Those kilns equipped with fabric filters showed no change in emissions.

  5. Energy Efficiency Improvement Opportunities for the Cement Industry

    SciTech Connect (OSTI)

    Price, Lynn; Worrell, Ernst; Galitsky, Christina; Price, Lynn

    2008-01-31T23:59:59.000Z

    This report provides information on the energy savings, costs, and carbon dioxide emissions reductions associated with implementation of a number of technologies and measures applicable to the cement industry. The technologies and measures include both state-of-the-art measures that are currently in use in cement enterprises worldwide as well as advanced measures that are either only in limited use or are near commercialization. This report focuses mainly on retrofit measures using commercially available technologies, but many of these technologies are applicable for new plants as well. Where possible, for each technology or measure, costs and energy savings per tonne of cement produced are estimated and then carbon dioxide emissions reductions are calculated based on the fuels used at the process step to which the technology or measure is applied. The analysis of cement kiln energy-efficiency opportunities is divided into technologies and measures that are applicable to the different stages of production and various kiln types used in China: raw materials (and fuel) preparation; clinker making (applicable to all kilns, rotary kilns only, vertical shaft kilns only); and finish grinding; as well as plant wide measures and product and feedstock changes that will reduce energy consumption for clinker making. Table 1 lists all measures in this report by process to which they apply, including plant wide measures and product or feedstock changes. Tables 2 through 8 provide the following information for each technology: fuel and electricity savings per tonne of cement; annual operating and capital costs per tonne of cement or estimated payback period; and, carbon dioxide emissions reductions for each measure applied to the production of cement. This information was originally collected for a report on the U.S. cement industry (Worrell and Galitsky, 2004) and a report on opportunities for China's cement kilns (Price and Galitsky, in press). The information provided in this report is based on publicly-available reports, journal articles, and case studies from applications of technologies around the world.

  6. Standard guide for drying behavior of spent nuclear fuel

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2008-01-01T23:59:59.000Z

    1.1 This guide is organized to discuss the three major components of significance in the drying behavior of spent nuclear fuel: evaluating the need for drying, drying spent nuclear fuel, and confirmation of adequate dryness. 1.1.1 The guide addresses drying methods and their limitations in drying spent nuclear fuels that have been in storage at water pools. The guide discusses sources and forms of water that remain in SNF, its container, or both, after the drying process and discusses the importance and potential effects they may have on fuel integrity, and container materials. The effects of residual water are discussed mechanistically as a function of the container thermal and radiological environment to provide guidance on situations that may require extraordinary drying methods, specialized handling, or other treatments. 1.1.2 The basic issue in drying is to determine how dry the SNF must be in order to prevent issues with fuel retrievability, container pressurization, or container corrosion. Adequate d...

  7. Use of Finite-element Analysis to Improve Well Cementing in HTHP Conditions

    E-Print Network [OSTI]

    Arias, Henry

    2013-07-30T23:59:59.000Z

    stresses of San Antonio cement (left) and PEEQ of cement San Antonio and Barco formation (right) after hydraulic fracturing ........ 103 Figure 5.1 UCS (top left), Young?s modulus (top right), and Poisson?s ratio (bottom) for Halliburton Portland... cements ............................................... 110 Figure 5.2 Tensile strength for Halliburton Portland cements ................................... 111 Figure 5.3 Stress strain-curve and photo of uniaxial test for Halliburton Portland cement...

  8. Permeability of consolidated incinerator facility wastes stabilized with portland cement

    SciTech Connect (OSTI)

    Walker, B.W.

    2000-04-19T23:59:59.000Z

    The Consolidated Incinerator Facility (CIF) at the Savannah River Site (SRS) burns low-level radioactive wastes and mixed wastes as a method of treatment and volume reduction. The CIF generates secondary waste, which consists of ash and offgas scrubber solution. Currently the ash is stabilized/solidified in the Ashcrete process. The scrubber solution (blowdown) is sent to the SRS Effluent Treatment Facility (ETF) for treatment as wastewater. In the past, the scrubber solution was also stabilized/solidified in the Ashcrete process as blowcrete, and will continue to be treated this way for listed waste burns and scrubber solutions that do not meet the ETF Waste Acceptance Criteria (WAC). The disposal plan for Ashcrete and special case blowcrete is to bury these containerized waste forms in shallow unlined trenches in E-Area. The WAC for intimately mixed, cement-based wasteforms intended for direct disposal specifies limits on compressive strength and permeability. Simulated waste and actual CIF ash and scrubber solution were mixed in the laboratory and cast into wasteforms for testing. Test results and related waste disposal consequences are given in this report.

  9. Characterization and modeling of the cemented sediment surrounding...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cement phase is likely the reaction between the glass and the sea water to from a Mg-silicate, here modeled as sepiolite. Citation: Strachan DM, JV Crum, JV Ryan, and A...

  10. Controlling the set of carbon-fiber embedded cement with electric current

    DOE Patents [OSTI]

    Mattus, Alfred J.

    2004-06-15T23:59:59.000Z

    A method for promoting cement or concrete set on demand for concrete that has been chemically retarded by adding carbon fiber to the concrete, which enables it to become electrically conductive, sodium tartrate retardant, and copper sulfate which forms a copper tartrate complex in alkaline concrete mixes. Using electricity, the concrete mix anodically converts the retarding tartrate to an insoluble polyester polymer. The carbon fibers act as a continuous anode surface with a counter electrode wire embedded in the mix. Upon energizing, the retarding effect of tartrate is defeated by formation of the polyester polymer through condensation esterification thereby allowing the normal set to proceed unimpeded.

  11. Potential for energy conservation in the cement industry

    SciTech Connect (OSTI)

    Garrett-Price, B.A.

    1985-02-01T23:59:59.000Z

    This report assesses the potential for energy conservation in the cement industry. Energy consumption per ton of cement decreased 20% between 1972 and 1982. During this same period, the cement industry became heavily dependent on coal and coke as its primary fuel source. Although the energy consumed per ton of cement has declined markedly in the past ten years, the industry still uses more than three and a half times the fuel that is theoretically required to produce a ton of clinker. Improving kiln thermal efficiency offers the greatest opportunity for saving fuel. Improving the efficiency of finish grinding offers the greatest potential for reducing electricity use. Technologies are currently available to the cement industry to reduce its average fuel consumption per ton by product by as much as 40% and its electricity consumption per ton by about 10%. The major impediment to adopting these technologies is the cement industry's lack of capital as a result of low or no profits in recent years.

  12. History and some potentials of oil shale cement

    SciTech Connect (OSTI)

    Knutson, C.F.; Smith, R.P.; Russell, B.F. (Idaho National Engineering Lab., Idaho Falls, ID (USA))

    1989-01-01T23:59:59.000Z

    The utilization of oil shale as a cement component is discussed. It was investigated in America and Europe during World War I. Additional development occurred in Western Europe, Russia, and China during the 1920s and 1930s. World War II provided further development incentives and a relatively mature technology was in place in Germany, Russia, and China prior to 1980. The utilization of oil shale in cement has taken a number of different paths. One approach has been to utilize the energy in the oil shale as the principal source for the cement plant and to use the combusted shale as a minor constituent of the plant's cement product. A second approach has been to use the combusted shale as a class C or cementitious fly-ash component in portland cement concrete. Other approaches utilizing eastern oil shale have been to use the combusted oil shale with additives as a specialty cement, or to cocombust the oil shale with coal and utilize the sulfur-rich combustion product.

  13. Hot Dry Rock; Geothermal Energy

    SciTech Connect (OSTI)

    None

    1990-01-01T23:59:59.000Z

    The commercial utilization of geothermal energy forms the basis of the largest renewable energy industry in the world. More than 5000 Mw of electrical power are currently in production from approximately 210 plants and 10 000 Mw thermal are used in direct use processes. The majority of these systems are located in the well defined geothermal generally associated with crustal plate boundaries or hot spots. The essential requirements of high subsurface temperature with huge volumes of exploitable fluids, coupled to environmental and market factors, limit the choice of suitable sites significantly. The Hot Dry Rock (HDR) concept at any depth originally offered a dream of unlimited expansion for the geothermal industry by relaxing the location constraints by drilling deep enough to reach adequate temperatures. Now, after 20 years intensive work by international teams and expenditures of more than $250 million, it is vital to review the position of HDR in relation to the established geothermal industry. The HDR resource is merely a body of rock at elevated temperatures with insufficient fluids in place to enable the heat to be extracted without the need for injection wells. All of the major field experiments in HDR have shown that the natural fracture systems form the heat transfer surfaces and that it is these fractures that must be for geothermal systems producing from naturally fractured formations provide a basis for directing the forthcoming but, equally, they require accepting significant location constraints on HDR for the time being. This paper presents a model HDR system designed for commercial operations in the UK and uses production data from hydrothermal systems in Japan and the USA to demonstrate the reservoir performance requirements for viable operations. It is shown that these characteristics are not likely to be achieved in host rocks without stimulation processes. However, the long term goal of artificial geothermal systems developed by systematic engineering procedures at depth may still be attained if high temperature sites with extensive fracturing are developed or exploited. [DJE -2005

  14. Evaluation of dry-solids-blend material source for grouts containing 106-AN waste: Final report

    SciTech Connect (OSTI)

    Spence, R.D.; Gilliam, T.M.; Osborne, S.C.; Francis, C.L.; Trotter, D.R.

    1993-09-01T23:59:59.000Z

    Stabilization/solidification technology is one of the most widely used techniques for the treatment and ultimate disposal of both radioactive and chemically hazardous wastes. Cement-based products, commonly referred to as grouts, are the predominant materials of choice because of their low associated processing costs, compatibility with a wide variety of disposal scenarios, and ability to meet stringent processing and performance requirements. Such technology is being utilized in a Grout Treatment Facility (GTF) by the Westinghouse Hanford Company (WHC) for the disposal of various wastes, including 106-AN wastes, located on the Hanford Reservation. The WHC personnel have developed a grout formula for 106-AN disposal that is designed to meet stringent performance requirements. This formula consists of a dry-solids blend containing 40 wt % limestone, 28 wt % granulated blast furnace slag (BFS), 28 wt % American Society for Testing and Materials (ASTM) Class F fly ash, and 4 wt % Type I-II-LA Portland cement. This blend is mixed with 106-AN at a mix ratio of 9 lb of dry-solids blend per gallon of waste. This report documents the final results of efforts at Oak Ridge National Laboratory in support of WHC`s Grout Technology Program to assess the effects of the source of the dry-solids-blend materials on the resulting grout formula.

  15. Carbonation Behavior of Pure Cement Hydrates under Supercritical Carbon Dioxide Conditions - 12199

    SciTech Connect (OSTI)

    Hirabayashi, Daisuke; Enokida, Youichi [Graduate School of Engineering, Nagoya University, 1 Furo-cho, Chikusa-ku, Nagoya-shi, Aichi-ken, 464-8603 (Japan); Sawada, Kayo [EcoTopia Science Institute, Nagoya University, 1 Furo-cho, Chikusa-ku, Nagoya-shi, Aichi-ken, 464-8603 (Japan); Hertz, Audrey; Charton, Frederic [CEA, DEN, Marcoule, DTCD/SPDE/L2ED, BP 17171, F-30207 Bagnols-sur-Ceze (France); Frizon, Fabien [CEA, DEN, Marcoule, DTCD/SPDE/LFSM, BP 17171, F-30207 Bagnols-sur-Ceze (France); Brouno, Fournel [CEA, DEN, Marcoule, DTCD, BP 17171, F-30207 Bagnols-sur-Ceze (France)

    2012-07-01T23:59:59.000Z

    Carbonation of cement-based waste forms using a supercritical carbon dioxide (SCCO{sub 2}) is a developing technology for the waste immobilization of radioactive and non-radioactive wastes. However, the detail carbonation behaviors of cement matrices under the SCCO{sub 2} condition are unknown, since cement matrices forms very complex phases. In this study, in order to clarify the crystal phases, we synthesized pure cement hydrate phases as each single phases; portlandite (Ca(OH){sub 2}), ettringite (Ca{sub 6}Al{sub 2}(SO{sub 4}){sub 3}(OH){sub 12}.26H{sub 2}O), and calcium silicate hydrate (n CaO---m SiO{sub 2} ---x H{sub 2}O), using suspensions containing a stoichiometric mixture of chemical regents, and performed carbonation experiments using an autoclave under supercritical condition for carbon dioxide. The XRD results revealed both the carbonate phases and co-product phases depending on the initial hydrate phases; gypsum for Ettringite, amorphous or crystalline silica for calcium silicate hydroxide. Thermogravimetric analysis was also performed to understand carbonation behaviors quantitatively. According to the experimental results, it was found that the major reaction was formation of calcium carbonate (CaCO{sub 3}) in all cases. However, the behaviors of H{sub 2}O and CO{sub 2} content were quietly different: Portlandite was most reactive for carbonation under SCCO{sub 2} conditions, and the CO{sub 2} content per one molar CaO was ranged from 0.96 ? 0.98. In the case of Ettringite, the experiment indicates partial decomposition of ettringite phase during carbonation. Ettringite was comparatively stable even under the SCCO{sub 2} conditions. Therefore, a part of ettringite remained and formed similar phases after the ettringite carbonation. The CO{sub 2} content for ettringite showed almost constant values around 0.86 ? 0.87. In the case of calcium silicate hydrate, the carbonation behavior was significantly influenced by the condition of SCCO{sub 2}. The CO{sub 2} content for the calcium silicate hydrate had values that ranged from 0.51 ? 1.01. The co-products of the carbonation were gypsum (CaSO{sub 4}) for ettringite, silica gel (SiO{sub x}) and silica (SiO{sub 2}) for calcium silicate hydrate, which also contributed to the densification of the particles. The production of co-products enhanced the change to their morphology after the carbonation. (authors)

  16. Assessment of gas-side fouling in cement plants

    SciTech Connect (OSTI)

    Marner, W.J.

    1982-09-01T23:59:59.000Z

    The purpose of this study is to provide an assessment of gas-side fouling in cement plants with special emphasis on heat recovery applications. Exhaust gases in the cement industry which are suitable for heat recovery range in temperature from about 400 to 1300 K, are generally dusty, may be highly abrasive, and are often heavily laden with alkalies, sulfates, and chlorides. Particulates in the exhaust streams range in size from molecular to about 100 ..mu..m in diameter and come from both the raw feed as well as the ash in the coal which is the primary fuel used in the cement industry. The major types of heat-transfer equipment used in the cement industry include preheaters, gas-to-air heat exchangers, waste heat boilers, and clinker coolers. The most important gas-side fouling mechanisms in the cement industry are those due to particulate, chemical reaction, and corrosion fouling. Particulate transport mechanisms which appear to be of greatest importance include laminar and turbulent mass transfer, thermophoresis, electrophoresis, and inertial impaction. Chemical reaction mechanisms of particular importance include the deposition of alkali sulfates, alkali chlorides, spurrite, calcium carbonate, and calcium sulfate. At sufficiently low temperatures, sulfuric acid and water can condense on heat exchanger surfaces which can cause corrosion and also attract particulates in the flow. The deleterious effects of gas-side fouling in cement plants are due to: (1) increased capital costs; (2) increased maintenance costs; (3) loss of production; and (4) energy losses. A conservative order-of-magnitude analysis shows that the cost of gas-side fouling in US cement plants is $0.24 billion annually.

  17. Passamaquoddy Technology Recovery Scrubber{trademark} at the Dragon Products, Inc. Cement Plant located in Thomaston, Maine. 1990 Annual technical report

    SciTech Connect (OSTI)

    Not Available

    1990-12-31T23:59:59.000Z

    The background and process of the Passamaquoddy Technology Recovery Scrubber{trademark} are described. The Scrubber was developed for Dragon Cement Plant in Thomaston, Maine and facilitates a number of process improvements. The exhaust gas is scrubbed of SO{sub 2} with better than 90% efficiency. The kiln dust is cleaned of alkalines and so can be returned to kiln feed instead of dumped to landfill. Potassium sulfate in commercial quantity and purity can be recovered. Distilled water is recovered which also has commercial potential. Thus, various benefits are accrued and no waste streams remain for disposal. The process is applicable to both wet and dry process cement kilns and appears to have potential in any industry which generates acidic gaseous exhausts and/or basic solid or liquid wastes.

  18. Method of forming ceramic bricks

    DOE Patents [OSTI]

    Poeppel, Roger B. (Glen Ellyn, IL); Claar, Terry D. (Newark, DE); Silkowski, Peter (Urbana, IL)

    1988-01-01T23:59:59.000Z

    A method for forming free standing ceramic bricks for use as tritium breeder material is disclosed. Aqueous solutions of sodium carbonate and potassium carbonate are mixed with an organic hydrocolloid dispersion and powdered lithium carbonate, spray dried, and ceramic bricks formed by molding in a die and firing.

  19. Method of forming ceramic bricks

    DOE Patents [OSTI]

    Poeppel, R.B.; Claar, T.D.; Silkowski, P.

    1987-04-22T23:59:59.000Z

    A method for forming free standing ceramic bricks for use as tritium breeder material is disclosed. Aqueous solutions of sodium carbonate and potassium carbonate are mixed with an organic hydrocolloid dispersion and powdered lithium carbonate, spray dried, and ceramic bricks formed by molding in a die and firing.

  20. High-intensity drying processes: Impulse drying. Annual report

    SciTech Connect (OSTI)

    Orloff, D.I.; Phelan, P.M.

    1993-12-01T23:59:59.000Z

    Experiments were conducted on a sheet-fed pilot-scale shoe press to compare impulse drying and double-felted pressing. Both an IPST (Institute of Paper Science and Technology) ceramic coated and Beloit Type A press roll were evaluated for lienrboard sheet structures having a wide range of z-direction permeability. Purpose was to find ways of correcting sheet sticking problems observed in previous pilot-scale shoe press experiments. Results showed that impulse drying was superior to double felted pressing in both press dryness and in important paper physical properties. Impulse drying critical temperature was found to depend on specific surface of the heated layer of the sheet, thermal properties of the press roll surface, and choice of felt. Impulse drying of recycled and two-ply liner was demonstrated for both Southern Pile and Douglas fir-containing furnishes.

  1. A Review of Emerging Energy-efficiency and CO2 Emission-reduction Technologies for Cement and Concrete Production

    E-Print Network [OSTI]

    Hasanbeigi, Ali

    2014-01-01T23:59:59.000Z

    and Resource Saving Technologies in Cement Industry.1:87–94. Blue World Crete. 2012. Technology. Available atOakey. 2009. CO 2 Capture Technologies for Cement Industry.

  2. The use of scrap tires in rotary cement kilns

    SciTech Connect (OSTI)

    Blumenthal, M. [Scrap Tire Management Council, Washington, DC (United States)

    1996-12-31T23:59:59.000Z

    The use of scrap tires as a supplemental fuel in the United States Portland cement industry has increased significantly in the past six years. In 1990, there were two kilns using tire-derived fuel (TDF), today 30 kilns use TDF. The outlook for continued and expanded use of TDF in the U.S. cement industry should be considered favorable, with 15 kilns conducting tests to determine TDF`s applicability or in the permitting process. The Council`s estimates are that by the end of 1996, the cement industry could be consuming some 75-100 million of the 253 million annually generated scrap tires in the United States. This level of TDF usage will make the cement industry the largest market segments for scrap tires in the United States. While the long-term outlook is at present positive, there are a series of factors that have, and will likely continue to adversely impact the near-term usage of TDF. These issues, as well as the factors that are likely to positively impact the cement kiln TDF market are the subject of this presentation.

  3. Hydration of a low-alkali CEM III/B-SiO{sub 2} cement (LAC)

    SciTech Connect (OSTI)

    Lothenbach, Barbara, E-mail: barbara.lothenbach@empa.ch [Empa, Laboratory for Concrete and Construction Chemistry, CH-8600 Duebendorf (Switzerland); Le Saout, Gwenn; Ben Haha, Mohsen; Figi, Renato [Empa, Laboratory for Concrete and Construction Chemistry, CH-8600 Duebendorf (Switzerland); Wieland, Erich [PSI, Laboratory for Waste Management, CH-5232 Villigen PSI (Switzerland)

    2012-02-15T23:59:59.000Z

    The hydration of a low-alkali cement based on CEM III/B blended with 10 wt.% of nanosilica has been studied. The nanosilica reacted within the first days and 90% of the slag reacted within 3.5 years. C-S-H (Ca/Si {approx} 1.2, Al/Si {approx} 0.12), calcite, hydrotalcite, ettringite and possibly straetlingite were the main hydrates. The pore water composition revealed ten times lower alkali concentrations than in Portland cements. Reducing conditions (HS{sup -}) and a pH value of 12.2 were observed. Between 1 month and 3.5 years of hydration more hydrates were formed due to the ongoing slag reaction but no significant differences in the composition of the pore solution or solid phase assemblage were observed. On the basis of thermodynamic calculations it is predicted that siliceous hydrogarnet could form in the long-term and, in the presence of siliceous hydrogarnet, also thaumasite. Nevertheless, even after 3.5 year hydration, neither siliceous hydrogarnet nor thaumasite have been observed.

  4. NISTIR 7232 CEMHYD3D: A Three-Dimensional Cement Hydration

    E-Print Network [OSTI]

    Bentz, Dale P.

    NISTIR 7232 CEMHYD3D: A Three-Dimensional Cement Hydration and Microstructure Development Modeling Package. Version 3.0 Dale P. Bentz #12;NISTIR 7232 CEMHYD3D: A Three-Dimensional Cement Hydration

  5. Potential Energy Savings and CO2 Emissions Reduction of China's Cement Industry

    E-Print Network [OSTI]

    Ke, Jing

    2013-01-01T23:59:59.000Z

    production instantly reaches the current world best practice energyworld best practice and implement aggressive energy efficiency and carbon reduction measures in all cement productionenergy intensity of China’s cement production would reach current world

  6. Nano-ChemoMechanical assessment of Rice Husk Ash cement by wavelength dispersive spectroscopy and nanoindentation

    E-Print Network [OSTI]

    Abuhaikal, Muhannad (Muhannad A. R.)

    2011-01-01T23:59:59.000Z

    Cement global production stands at 3 Giga tons making concrete the most consumed structural mateial worldwide. This massively produced material comes with a heavy environmental footprint rendering the cement industry ...

  7. Energy conservation potential of Portland cement particle size distribution control, Phase 2

    SciTech Connect (OSTI)

    Helmuth, R.A; Whiting, D.A.

    1983-01-01T23:59:59.000Z

    The main objectives of Phase 2 are to determine the feasibility of using cements with controlled particle size distributions (CPSD cements) in practical concrete applications, and to refine our estimates of the potential energy savings that may ensue from such use. The work in Phase 2 is divided into two main tasks, some parts of which will be carried out simultaneously: Task 1 will continue cement paste studies to optimize cement performance similar to those of Phase 1, but with particular emphasis on gypsum requirements, blended cements, and water-reducing admixtures. This task will also include preparation of sufficient CPSD cements for use in all Phase 2 work. Task 2 will be a comprehensive examination of the properties of concretes made with CPSD cements. This will include optimization of concrete mix designs to obtain the best possible performance for practical applications of both portland and blended cements. The effects of chemical admixtures and curing temperature variations will also be determined.

  8. Unprocessed rice husk ash as a partial replacement of cement for low-cost concrete

    E-Print Network [OSTI]

    Brown, Dorothy Kamilah

    2012-01-01T23:59:59.000Z

    Cement is a very valuable commodity as it can be used to construct structurally sound buildings and infrastructure. However, in many developing countries cement is expensive due to the unavailability of local resources to ...

  9. Potential Energy Savings and CO2 Emissions Reduction of China's Cement Industry

    E-Print Network [OSTI]

    Ke, Jing

    2013-01-01T23:59:59.000Z

    2050 China Energy and CO2 Emissions Report. Science Press,Energy Savings and CO2 Emissions Reduction of China’s CementEnergy Savings and CO2 Emissions Reduction of China’s Cement

  10. Sustaining dry surfaces under water

    E-Print Network [OSTI]

    Paul R. Jones; Xiuqing Hao; Eduardo R. Cruz-Chu; Konrad Rykaczewski; Krishanu Nandy; Thomas M. Schutzius; Kripa K. Varanasi; Constantine M. Megaridis; Jens H. Walther; Petros Koumoutsakos; Horacio D. Espinosa; Neelesh A. Patankar

    2014-09-29T23:59:59.000Z

    Rough surfaces immersed under water remain practically dry if the liquid-solid contact is on roughness peaks, while the roughness valleys are filled with gas. Mechanisms that prevent water from invading the valleys are well studied. However, to remain practically dry under water, additional mechanisms need consideration. This is because trapped gas (e.g. air) in the roughness valleys can dissolve into the water pool, leading to invasion. Additionally, water vapor can also occupy the roughness valleys of immersed surfaces. If water vapor condenses, that too leads to invasion. These effects have not been investigated, and are critically important to maintain surfaces dry under water. In this work, we identify the critical roughness scale below which it is possible to sustain the vapor phase of water and/or trapped gases in roughness valleys - thus keeping the immersed surface dry. Theoretical predictions are consistent with molecular dynamics simulations and experiments.

  11. E-Print Network 3.0 - aluminate cements hydration Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    INTRODUCTION Many entities currently use fly ash in portland cement concrete (PCC) pavements... Transportation & Development and Louisiana State University incorporating...

  12. Emerging Energy-efficiency and CO2 Emission-reduction Technologies for Cement and Concrete Production

    E-Print Network [OSTI]

    Hasanbeigi, Ali

    2013-01-01T23:59:59.000Z

    of granulated blast furnace slag and its effect on theblast furnace slag in cement results from the combined effects

  13. Rapid setting of portland cement by greenhouse carbon dioxide capture

    SciTech Connect (OSTI)

    Wagh, A.S.; Singh, D.; Knox, L.J.

    1994-04-01T23:59:59.000Z

    Following the work by Berger et al. on rapid setting of calcium silicates by carbonation, a method of high-volume capture of CO{sub 2} in portland cement has been developed. Typically, 10--24 wt. % of CO{sub 2} produced by the calcination of calcium carbonate during clinkering, may be captured, and the set cement acquires most of its full strength in less than a day. The approach will have economic advantages in fabrication of precast structures, in emergency development of infrastructure during natural disasters, and in defense applications. Moreover, it will help the cement industry comply with the Clean Air Act of 1990 by sequestering the greenhouse carbon dioxide.

  14. Thermal stability of certain hydrated phases in systems made using portland cement. Final report

    SciTech Connect (OSTI)

    Buck, A.D.; Burkes, J.P.; Poole, T.S.

    1985-08-01T23:59:59.000Z

    As part of the study of hydraulic-cement system for use in possible underground isolation of nuclear wastes, this study was made to determine the temperature stability of ettringite and chloroaluminate. Either or both of these phases may be expected in a hydraulic cement system depending on the presence of salt (NaCl). The study of ettringite was made using 15 mixtures that contained portland cement, plaster, 2 levels of water, and in some mixtures, 1 of 6 pozzolans (3 fly ashes, 1 slag, a silica fume, a natural pozzolan), plus a 16th mixture with anhydrous sodium sulfate replacing plaster (CaSO4 . 1/2H20). Specimens were made and stored at 23, 50, and 75 C or 23, 75, and 100 C (all four temperatures in one case) for periodic examination by x-ray diffraction for phase compositiion and ettringite stability, and testing for compressive strength and restrained expansion. A more limited study of the stability of chloroaluminate was made along the same lines using fewer mixtures, salt instead of plaster, and higher temperatures plus some pressure. It was found that while some ettringette was decomposed at 75 C, depending on the composition of the mixture, all ettringite was undetectable by x-ray diffraction at 100 C, usually within a few days. The evidence indicates that the ettringite became amorphous and no significant test phases formed in its place. Since there was no corresponding loss in strength or reduction in volume, this loss of ettringite crystallinity was considered to be damaging. Based on much more limited data, chloroaluminate was found to decompose between 130 C at 25 psi and 170 C at 100 psi; no significant phases replaced it.

  15. Effect of MgO Additive on Volumetric Expansion of Self-Degradable Cements

    SciTech Connect (OSTI)

    Sugama T.; Warren, J.; Butcher, T.

    2011-09-30T23:59:59.000Z

    We identified hard-burned magnesium oxide (MgO) as a suitable expansive additive for improving the plugging performance of self-degradable, temporary sodium silicate-activated slag/Class C fly ash (SSASC) blend cement sealers into rock fractures in Enhanced Geothermal Systems (EGSs). MgO extended the volumetric expansion of sealers during their exposure to a hydrothermal environment at 200 C under pressures, ranging from 300 to 1500 psi. A great expansion ratc of 19.3% was observed by adding 3.0 wt% MgO under 300 psi pressure, thus promising to plug thoroughly inner fracture. When the pressure was increased from 300 psi to 1500 psi, the expansion rate of cement markedly reduced, corresponding to the formaLion of crack-free specimens and the improvement of compressive strength. However, with 3.0 wt% MgO, the specimens still engendered the generation of numerous visual cracks, although they were prepared under a high pressure of 1500 psi. The effective content of MgO in minimizing and eliminating the generation of cracks was 2.0 wt%, which provided a moderate expansion of {ge} 0.5%. The compressive strength of 2.0 wt% MgO specimens made under a pressure of 300 psi rose {approx} 1.7-fold to 4816 psi with an increasing pressure to 1500 psi. The in-situ growth of brucite crystal formed by the hydrothermal hydration of MgO was responsive for such an expansion of the SSASC cement; meanwhile. two crystalline hydrothermal reaction products, 1.1 nm tobermorite and calcium silicate hydrated, contributed to the development of the sealer's compressive strength. Thus, the increasing pressure seems to suppress and control a growth rate of brucite crystal in response to a lower extension of expansion. Furthermore, all MgO-conlaining SSASC sealers possessed the water-catalyzed self-degradable properties.

  16. The Effect of Simulated Barium Carbonate Waste Stream on the Hydration of Composite Cement Systems

    E-Print Network [OSTI]

    Sheffield, University of

    The Effect of Simulated Barium Carbonate Waste Stream on the Hydration of Composite Cement Systems cements, comprised of ordinary Portland cement (OPC) and blast furnace slag (BFS), are used to encapsulate it is not uncommon for up to 90% of the OPC to be replaced by BFS, which will have significant effects

  17. The effect of BaCO3 on the hydration of OPC and composite cements

    E-Print Network [OSTI]

    Sheffield, University of

    The effect of BaCO3 on the hydration of OPC and composite cements Claire A. Utton* and Neil B of ordinary Portland cement (OPC) and up to 90% blast furnace slag (BFS), are used to encapsulate Intermediate. The effect of BaCO3 on the hydration properties of composite cements is being studied. This paper reports

  18. Virtual Cement and Concrete Testing Laboratory Educational Version 2.0 User Guide

    E-Print Network [OSTI]

    Magee, Joseph W.

    1 Virtual Cement and Concrete Testing Laboratory Educational Version 2.0 User Guide Jeffrey W of the Virtual Cement and Concrete Testing Laboratory (VCCTL) software, version 2.0. Using the VCCTL software, cement hydration, computer modeling, concrete testing, microstructure, simulation, virtual laboratory

  19. Production casing for hot-dry-rock wells EE-2 and EE-3

    SciTech Connect (OSTI)

    Nicholson, R.W.; Pettitt, R.; Sims, J.

    1982-01-01T23:59:59.000Z

    The production casing for a pair of hot dry rock (HDR) energy extraction wells had to be designed for unique conditions. Two hot dry rock wells (EE-2 and EE-3) were drilled and production casing installed at Fenton Hill, NM for the Los Alamos National Laboratory HDR program. The design of the production casing and subsequent completion operations in these wells revealed that thermal cycling, anticipated operating pressures, and wear during downhole operations are major considerations for both casing specifications and installation procedures. The first well (Energy Extraction No. 2; EE-2) is intended to be the injection well and EE-3 the production well. The top joint strain in EE-3 was monitored during installation, cementing and tensioning.

  20. Computational studies of two-phase cement-CO2-brine interaction in wellbore environments

    SciTech Connect (OSTI)

    Carey, James William [Los Alamos National Laboratory; Lichtner, Peter C [Los Alamos National Laboratory

    2009-01-01T23:59:59.000Z

    Wellbore integrity is essential to ensuring long-term isolation of buoyant supercritical CO{sub 2} during geologic sequestration of CO{sub 2}. In this report, we summarize recent progress in numerical simulations of cement-brine-CO{sub 2} interactions with respect to migration of CO{sub 2} outside of casing. Using typical values for the hydrologic properties of cement, caprock (shale) and reservoir materials, we show that the capillary properties of good quality cement will prevent flow of CO{sub 2} into and through cement. Rather, CO{sub 2}, if present, is likely to be confined to the casing-cement or cement-formation interfaces. CO{sub 2} does react with the cement by diffusion from the interface into the cement, in which case it produces distinct carbonation fronts within the cement. This is consistent with observations of cement performance at the CO{sub 2}-enhanced oil recovery SACROC Unit in West Texas (Carey et al. 2007). For poor quality cement, flow through cement may occur and would produce a pattern of uniform carbonation without reaction fronts. We also consider an alternative explanation for cement carbonation reactions as due to CO{sub 2} derived from caprock. We show that carbonation reactions in cement are limited to surficial reactions when CO{sub 2} pressure is low (< 10 bars) as might be expected in many caprock environments. For the case of caprock overlying natural CO{sub 2} reservoirs for millions of years, we consider Scherer and Huet's (2009) hypothesis of diffusive steady-state between CO{sub 2} in the reservoir and in the caprock. We find that in this case, the aqueous CO{sub 2} concentration would differ little from the reservoir and would be expected to produce carbonation reaction fronts in cements that are relatively uniform as a function of depth.

  1. 'The Overriding Demand for Energy Conservation in the Cement Industry' An Update

    E-Print Network [OSTI]

    Spellman, L. U.

    1981-01-01T23:59:59.000Z

    addi tives. While cement makes up only about 7 to 15 percent of the weight of concrete, it is 1:5y far the greatest contributor of energy content in the mixture. Cement, usually portland cement, is a product derived from pyro-processing calcareous... and argillaceous materials such as limestone and clay or shale into an intermediate fused material called clinker, which is subse quently ground together with a small amount of gypsum. Portland cement is the principal material produced by the U. S. cement...

  2. Cement fatigue and HPHT well integrity with application to life of well prediction

    E-Print Network [OSTI]

    Ugwu, Ignatius Obinna

    2009-05-15T23:59:59.000Z

    to the cyclic loading and few data sets may not be sufficient to give an adequate description of cement behavior under fatigue loading. Studies were conducted by Kim and Kim 2 on the fatigue behavior of high strength concrete using a type I Portland cement....3: Comparison of Max Stress Levels to Number of Cycles for Different Cement Strengths [2] Antrim 3 conducted fatigue studies on hardened ordinary Portland (type I) cement paste using 2 specimens; one with a high-water cement ratio of 0.7 and another...

  3. Westinghouse Cementation Facility of Solid Waste Treatment System - 13503

    SciTech Connect (OSTI)

    Jacobs, Torsten; Aign, Joerg [Westinghouse Electric Germany GmbH, Global Waste Management, Tarpenring 6, D- 22419 Hamburg (Germany)] [Westinghouse Electric Germany GmbH, Global Waste Management, Tarpenring 6, D- 22419 Hamburg (Germany)

    2013-07-01T23:59:59.000Z

    During NPP operation, several waste streams are generated, caused by different technical and physical processes. Besides others, liquid waste represents one of the major types of waste. Depending on national regulation for storage and disposal of radioactive waste, solidification can be one specific requirement. To accommodate the global request for waste treatment systems Westinghouse developed several specific treatment processes for the different types of waste. In the period of 2006 to 2008 Westinghouse awarded several contracts for the design and delivery of waste treatment systems related to the latest CPR-1000 nuclear power plants. One of these contracts contains the delivery of four Cementation Facilities for waste treatment, s.c. 'Follow on Cementations' dedicated to three locations, HongYanHe, NingDe and YangJiang, of new CPR-1000 nuclear power stations in the People's Republic of China. Previously, Westinghouse delivered a similar cementation facility to the CPR-1000 plant LingAo II, in Daya Bay, PR China. This plant already passed the hot functioning tests successfully in June 2012 and is now ready and released for regular operation. The 'Follow on plants' are designed to package three 'typical' kind of radioactive waste: evaporator concentrates, spent resins and filter cartridges. The purpose of this paper is to provide an overview on the Westinghouse experience to design and execution of cementation facilities. (authors)

  4. Development of Bulk Nanocrystalline Cemented Tungsten Carbide for Industrial Applicaitons

    SciTech Connect (OSTI)

    Z. Zak Fang, H. Y. Sohn

    2009-03-10T23:59:59.000Z

    This report contains detailed information of the research program entitled "Development of Bulk Nanocrystalline Cemented Tungsten Carbide Materials for Industrial Applications". The report include the processes that were developed for producing nanosized WC/Co composite powders, and an ultrahigh pressure rapid hot consolidation process for sintering of nanosized powders. The mechanical properties of consolidated materials using the nanosized powders are also reported.

  5. Automated Assessment of Polyethylene Wear in Cemented Acetabular Components using

    E-Print Network [OSTI]

    St Andrews, University of

    Automated Assessment of Polyethylene Wear in Cemented Acetabular Components using Anteroposterior, Ninewells Hospital, Dundee, DD1 9SY, UK Abstract Polyethylene wear in the acetabular components of hip to the polyethylene acetabular component of a prosthesis so that both it and the metal femoral head component can

  6. India's cement industry: Productivity, energy efficiency and carbon emissions

    SciTech Connect (OSTI)

    Schumacher, Katja; Sathaye, Jayant

    1999-07-01T23:59:59.000Z

    Historical estimates of productivity growth in India's cement sector vary from indicating an improvement to a decline in the sector's productivity. The variance may be traced to the time period of study, source of data for analysis, and type of indices and econometric specifications used for reporting productivity growth. Analysis shows that in the twenty year period, 1973 to 1993, productivity in the aluminum sector increased by 0.8% per annum. An econometric analysis reveals that technical progress in India's cement sector has been biased towards the use of energy and capital, while it has been material and labor saving. The increase in productivity was mainly driven by a period of progress between 1983 and 1991 following partial decontrol of the cement sector in 1982. The authors examine the current changes in structure and energy efficiency in the sector. Their analysis shows that the Indian cement sector is moving towards world-best technology, which will result in fewer carbon emissions and more efficient energy use. However, substantial further energy savings and carbon reduction potentials still exist.

  7. Regional distribution of diagenetic carbonate cement in Palaeocene deepwater

    E-Print Network [OSTI]

    Haszeldine, Stuart

    0QF, UK (Received 9 June 1998; revised 15 March 1999) ABSTRACT: Sandstones of the Palaeocene al., 1993), and by inorganic thermal breakdown of organic material at depths >1.5 km (Irwin et al., 1977). Within the Rannoch Formation of the Brent Group, sandstones contain >5% carbonate cement

  8. Contact Mechanics Based Mechanical Characterization of Portland Cement Paste

    E-Print Network [OSTI]

    Jones, Christopher

    2012-02-14T23:59:59.000Z

    that the calcium silicate hydrate (C-S-H) phase of hydrated portland cement has different properties on the nanometric scale than on the micron scale. Packing density of C-S-H particles is proposed as an explanation for the disparity in the measured results...

  9. Study of composite cement containing burned oil shale

    E-Print Network [OSTI]

    Dalang, Robert C.

    Study of composite cement containing burned oil shale Julien Ston Supervisors : Prof. Karen properties. SCMs can be by-products from various industries or of natural origin, such as shale. Oil shale correctly, give a material with some cementitious properties known as burned oil shale (BOS). This study

  10. More durable roof coverings such as steel and fiber cement

    E-Print Network [OSTI]

    - heating equipment saves money. Tankless water heaters provide hot water on demand at a preset temperature- cement siding is termite- and water-resistant and warrantied to last 50 years. Increasing the amount natural daylighting. Xeriscaping, or using native plants, significantly reduces the need for watering

  11. Data on production and use of DRI: World and U. S. [Direct Reduced Iron

    SciTech Connect (OSTI)

    Jensen, H.B.

    1993-01-01T23:59:59.000Z

    This paper will present data on the production and use direct-reduced iron (DRI) worldwide, focusing primarily on its use in the United States. The author is indebted to the Midrex Corporation for the data on world production of DRI. The U.S. data is his own and he will explain later how it was collected. He uses the term DRI to include all forms of direct-reduced iron, whether briquettes, pellets or lump.

  12. Multi-Megawatt Organic Rankine Engine power plant (MORE). Phase IA final report: system design of MORE power plant for industrial energy conservation emphasizing the cement industry

    SciTech Connect (OSTI)

    Bair, E.K.; Breindel, B.; Collamore, F.N.; Hodgson, J.N.; Olson, G.K.

    1980-01-31T23:59:59.000Z

    The Multi-Megawatt Organic Rankine Engine (MORE) program is directed towards the development of a large, organic Rankine power plant for energy conservation from moderate temperature industrial heat streams. Organic Rankine power plants are ideally suited for use with heat sources in the temperature range below 1100/sup 0/F. Cement manufacture was selected as the prototype industry for the MORE system because of the range of parameters which can be tested in a cement application. This includes process exit temperatures of 650/sup 0/F to 1110/sup 0/F for suspension preheater and long dry kilns, severe dust loading, multi-megawatt power generation potential, and boiler exhaust gas acid dew point variations. The work performed during the Phase IA System Design contract period is described. The System Design task defines the complete MORE system and its installation to the level necessary to obtain detailed performance maps, equipment specifications, planning of supporting experiments, and credible construction and hardware cost estimates. The MORE power plant design is based upon installation in the Black Mountain Quarry Cement Plant near Victorville, California.

  13. Ghabezloo et al.: Poromechanical behaviour of hardened cement paste under isotropic loading Poromechanical behaviour of hardened cement paste

    E-Print Network [OSTI]

    Boyer, Edmond

    of the material is described in the framework of the mechanics of porous media. The poroelastic parameters the framework of the theory of porous media. Keywords: hardened cement paste, poromechanics, effective stress and Concrete Research, DOI 10.1016/j.cemconres.2008.06.007 * Corresponding Author : CERMES, Ecole Nationale des

  14. Revision 08 (08/10) Form G Radioactive Waste Disposal Form

    E-Print Network [OSTI]

    Nair, Sankar

    Revision 08 (08/10) Form G Radioactive Waste Disposal Form RS - 19g Proc. 9290, 9501 General Instructions: 1. Do not mix different waste forms together. Keep dry, liquid, and scintillation vials separate. 2. Do not mix waste of different isotopes. 3. Entries are to be made on this form each time waste

  15. Radionuclide Retention in Concrete Waste Forms

    SciTech Connect (OSTI)

    Mattigod, Shas V.; Bovaird, Chase C.; Wellman, Dawn M.; Wood, Marcus I.

    2010-09-30T23:59:59.000Z

    Assessing long-term performance of Category 3 waste cement grouts for radionuclide encasement requires knowledge of the radionuclide-cement interactions and mechanisms of retention (i.e., sorption or precipitation); the mechanism of contaminant release; the significance of contaminant release pathways; how waste form performance is affected by the full range of environmental conditions within the disposal facility; the process of waste form aging under conditions that are representative of processes occurring in response to changing environmental conditions within the disposal facility; the effect of waste form aging on chemical, physical, and radiological properties; and the associated impact on contaminant release. This knowledge will enable accurate prediction of radionuclide fate when the waste forms come in contact with groundwater. The information presented in the report provides data that 1) quantify radionuclide retention within concrete waste form materials similar to those used to encapsulate waste in the Low-Level Waste Burial Grounds (LLBG); 2) measure the effect of concrete waste form properties likely to influence radionuclide migration; and 3) quantify the stability of uranium-bearing solid phases of limited solubility in concrete.

  16. Opportunities for Energy Efficiency and Demand Response in the California Cement Industry

    SciTech Connect (OSTI)

    Olsen, Daniel; Goli, Sasank; Faulkner, David; McKane, Aimee

    2010-12-22T23:59:59.000Z

    This study examines the characteristics of cement plants and their ability to shed or shift load to participate in demand response (DR). Relevant factors investigated include the various equipment and processes used to make cement, the operational limitations cement plants are subject to, and the quantities and sources of energy used in the cement-making process. Opportunities for energy efficiency improvements are also reviewed. The results suggest that cement plants are good candidates for DR participation. The cement industry consumes over 400 trillion Btu of energy annually in the United States, and consumes over 150 MW of electricity in California alone. The chemical reactions required to make cement occur only in the cement kiln, and intermediate products are routinely stored between processing stages without negative effects. Cement plants also operate continuously for months at a time between shutdowns, allowing flexibility in operational scheduling. In addition, several examples of cement plants altering their electricity consumption based on utility incentives are discussed. Further study is needed to determine the practical potential for automated demand response (Auto-DR) and to investigate the magnitude and shape of achievable sheds and shifts.

  17. A Coupled Nanoindentation/SEM-EDS Study on Low Water/Cement Ratio Portland Cement Paste: Evidence for C-S-H/Ca(OH)[subscript 2] Nanocomposites

    E-Print Network [OSTI]

    Chen, Jeffrey J.

    A low water/cement ratio (w/c=0.20) hydrated Portland cement paste was analyzed by grid-indentation coupled with ex situ scanning electron microscope-energy-dispersive X-ray spectra (SEM-EDS) analysis at each indentation ...

  18. Scanning probe microscopy: Sulfate minerals in scales and cements

    SciTech Connect (OSTI)

    Hall, C. [Schlumberger Cambridge Research (United Kingdom)

    1995-11-01T23:59:59.000Z

    The principles of scanning probe microscopy (SPM) are illustrated with examples from oilfield mineralogy, particularly emphasizing sulfate minerals involved in scale formation and cement hydration chemistry. The topography of the (010) cleavage surface of gypsum observed by atomic force microscopy shows atomically flat terraces separated by shallow steps often only one unit cell high. SPM allows direct observation of processes on mineral surfaces while they are in contact with solutions. The dissolution etching and crystal growth of gypsum and barite are discussed and rates of step migration estimated. The orientation of steps is related to the crystallographic axes. The action of phosphonate crystal growth inhibitor on gypsum and of a chelating scale solvent on barite are also shown. The multiphase microstructure of an oilwell cement clinker is described in relation to its hydration chemistry in contact with water and its reaction with sulfate ions.

  19. Emissions control through dry scrubbing

    SciTech Connect (OSTI)

    Farber, P.S.

    1986-01-01T23:59:59.000Z

    Concern with operating problems, and the desire for system simplicity, has resulted in the development of dry scrubbing systems for flue gas cleanup, and their acceptance by industry as an alternate to the conventional wet scrubbers. These dry scrubbing systems incorporate two commonly used pieces of equipment; spray dryers, which have been used for many years to manufacture everything from detergents to powdered milk, and a particulates removal device (either a fabric filter or an electrostatic precipitator). The first application of this technology to removal of sulfur oxides from high sulfur coal combustion gases occurred when Argonne National Laboratory installed a system in 1981 as the control device on its main coal-fired boiler. To date, this type of pollution control system has shown itself capable of meeting state emission standards and, in a special test run, of removing over 90% of the sulfur oxides produced from combustion of a coal with over 4% sulfur.

  20. Analysis of Energy-Efficiency Opportunities for the Cement Industry in Shandong Province, China

    SciTech Connect (OSTI)

    Price, Lynn; Hasanbeigi, Ali; Lu, Hongyou; Wang, Lan

    2009-10-01T23:59:59.000Z

    China's cement industry, which produced 1,388 million metric tons (Mt) of cement in 2008, accounts for almost half of the world's total cement production. Nearly 40% of China's cement production is from relatively obsolete vertical shaft kiln (VSK) cement plants, with the remainder from more modern rotary kiln cement plants, including plants equipped with new suspension pre-heater and pre-calciner (NSP) kilns. Shandong Province is the largest cement-producing Province in China, producing 10% of China's total cement output in 2008. This report documents an analysis of the potential to improve the energy efficiency of NSP kiln cement plants in Shandong Province. Sixteen NSP kiln cement plants were surveyed regarding their cement production, energy consumption, and current adoption of 34 energy-efficient technologies and measures. Plant energy use was compared to both domestic (Chinese) and international best practice using the Benchmarking and Energy Saving Tool for Cement (BEST-Cement). This benchmarking exercise indicated an average technical potential primary energy savings of 12% would be possible if the surveyed plants operated at domestic best practice levels in terms of energy use per ton of cement produced. Average technical potential primary energy savings of 23% would be realized if the plants operated at international best practice levels. Energy conservation supply curves for both fuel and electricity savings were then constructed for the 16 surveyed plants. Using the bottom-up electricity conservation supply curve model, the cost-effective electricity efficiency potential for the studied cement plants in 2008 is estimated to be 373 gigawatt hours (GWh), which accounts for 16% of total electricity use in the 16 surveyed cement plants in 2008. Total technical electricity-saving potential is 915 GWh, which accounts for 40% of total electricity use in the studied plants in 2008. The fuel conservation supply curve model shows the total technical fuel efficiency potential equal to 7,949 terajoules (TJ), accounting for 8% of total fuel used in the studied cement plants in 2008. All the fuel efficiency potential is shown to be cost effective. Carbon dioxide (CO{sub 2}) emission reduction potential associated with cost-effective electricity saving is 383 kiloton (kt) CO{sub 2}, while total technical potential for CO{sub 2} emission reduction from electricity-saving is 940 ktCO{sub 2}. The CO{sub 2} emission reduction potentials associated with fuel-saving potentials is 950 ktCO{sub 2}.

  1. Textile Drying Via Wood Gasification

    E-Print Network [OSTI]

    McGowan, T. F.; Jape, A. D.

    1983-01-01T23:59:59.000Z

    TEXTILE DRYING VIA WOOD GASIFICATION Thomas F. ;McGowan, Anthony D. Jape Georgia Institute of Technology Atlanta, Georgia ABSTRACT This project was carried out to investigate the possibility of using wood gas as a direct replacement... for dryers. In addition to the experimental program described above, the DOE grant covered two other major areas. A survey of the textile industry was made to assess the market for gasification equip ment. The major findings were that a large amount...

  2. Extension and replacement of aspalt cement with sulphur

    E-Print Network [OSTI]

    Pickett, Daniel Ernest

    1977-01-01T23:59:59.000Z

    material containing bitumen, sulphur, and mineral matter such as sand, rock, road metal and clinker (41). He recommended preparing the mixture in hot mix plants, and completely filling the voids between aggregate particles with sulphur-asphalt binder... Selection . Aggregate Selection Selection of Asphalt Cement and Sulphur Content 10 13 20 23 23 26 27 28 28 28 33 44 PAGE Selection of Moisture Condition and Compaction Effort . 45 Processing of Sulphur-Asphalt Emulsion (SAE) Binders...

  3. Polymer-cement geothermal-well-completion materials. Final report

    SciTech Connect (OSTI)

    Zeldin, A.N.; Kukacka, L.E.

    1980-07-01T23:59:59.000Z

    A program to develop high-temperature polymer cements was performed. Several formulations based on organic and semi-inorganic binders were evaluated on the basis of mechanical and thermal stability, and thickening time. Two optimized systems exhibited properties exceeding those required for use in geothermal wells. Both systems were selected for continued evaluation at the National Bureau of Standards and contingent upon the results, for field testing in geothermal wells.

  4. Corrosion of aluminium metal in OPC- and CAC-based cement matrices

    SciTech Connect (OSTI)

    Kinoshita, Hajime, E-mail: h.kinoshita@sheffield.ac.uk [Department of Materials Science and Engineering, The University of Sheffield, Mappin Street, Sheffield, S1 3JD (United Kingdom)] [Department of Materials Science and Engineering, The University of Sheffield, Mappin Street, Sheffield, S1 3JD (United Kingdom); Swift, Paul; Utton, Claire [Department of Materials Science and Engineering, The University of Sheffield, Mappin Street, Sheffield, S1 3JD (United Kingdom)] [Department of Materials Science and Engineering, The University of Sheffield, Mappin Street, Sheffield, S1 3JD (United Kingdom); Carro-Mateo, Beatriz [The Public University of Navarra, C/Esquíroz, 30 trasera, Pamplona 31007 (Spain)] [The Public University of Navarra, C/Esquíroz, 30 trasera, Pamplona 31007 (Spain); Marchand, Geraldine [The National Institute of Applied Sciences (INSA) Lyon, 20 Avenue Albert Einstein 69621 Villeurbanne Cedex (France)] [The National Institute of Applied Sciences (INSA) Lyon, 20 Avenue Albert Einstein 69621 Villeurbanne Cedex (France); Collier, Nick [National Nuclear Laboratory, Chadwick House, Birchwood Park, Warrington, WA3 6AE (United Kingdom)] [National Nuclear Laboratory, Chadwick House, Birchwood Park, Warrington, WA3 6AE (United Kingdom); Milestone, Neil [Industrial Research Ltd., 69 Gracefield Road, Lower Hutt, 5040 (New Zealand)] [Industrial Research Ltd., 69 Gracefield Road, Lower Hutt, 5040 (New Zealand)

    2013-08-15T23:59:59.000Z

    Corrosion of aluminium metal in ordinary Portland cement (OPC) based pastes produces hydrogen gas and expansive reaction products causing problems for the encapsulation of aluminium containing nuclear wastes. Although corrosion of aluminium in cements has been long known, the extent of aluminium corrosion in the cement matrices and effects of such reaction on the cement phases are not well established. The present study investigates the corrosion reaction of aluminium in OPC, OPC-blast furnace slag (BFS) and calcium aluminate cement (CAC) based systems. The total amount of aluminium able to corrode in an OPC and 4:1 BFS:OPC system was determined, and the correlation between the amount of calcium hydroxide in the system and the reaction of aluminium obtained. It was also shown that a CAC-based system could offer a potential matrix to incorporate aluminium metal with a further reduction of pH by introduction of phosphate, producing a calcium phosphate cement.

  5. Water quality investigation of Kingston Fossil Plant dry ash stacking

    SciTech Connect (OSTI)

    Bohac, C.E.

    1990-04-01T23:59:59.000Z

    Changing to a dry ash disposal systems at Kingston Fossil Plant (KFP) raises several water quality issues. The first is that removing the fly ash from the ash pond could alter the characteristics of the ash pond discharge to the river. The second concerns proper disposal of the runoff and possibly leachate from the dry ash stack. The third is that dry ash stacking might change the potential for groundwater contamination at the KFP. This report addresses each of these issues. The effects on the ash pond and its discharge are described first. The report is intended to provide reference material to TVA staff in preparation of environmental review documents for new ash disposal areas at Kingston. Although the investigation was directed toward analysis of dry stacking, considerations for other disposal options are also discussed. This report was reviewed in draft form under the title Assessment of Kingston Fossil Plant Dry Ash Stacking on the Ash Pond and Groundwater Quality.'' 11 refs., 3 figs., 18 tabs.

  6. Compton Dry-Cask Imaging System

    ScienceCinema (OSTI)

    None

    2013-05-28T23:59:59.000Z

    The Compton-Dry Cask Imaging Scanner is a system that verifies and documents the presence of spent nuclear fuel rods in dry-cask storage and determines their isotopic composition without moving or opening the cask. For more information about this project, visit http://www.inl.gov/rd100/2011/compton-dry-cask-imaging-system/

  7. Compton Dry-Cask Imaging System

    SciTech Connect (OSTI)

    None

    2011-01-01T23:59:59.000Z

    The Compton-Dry Cask Imaging Scanner is a system that verifies and documents the presence of spent nuclear fuel rods in dry-cask storage and determines their isotopic composition without moving or opening the cask. For more information about this project, visit http://www.inl.gov/rd100/2011/compton-dry-cask-imaging-system/

  8. Potential Energy Savings and CO2 Emissions Reduction of China's Cement Industry

    E-Print Network [OSTI]

    Ke, Jing

    2013-01-01T23:59:59.000Z

    dioxide (CO2) emissions from fossil fuel combustion, as wellCO2 emissions (including cement process and fossil fuel combustion

  9. Microsoft Word - NETL-TRS-2-2013_Foamed Cement_20140124.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ultimately, this research will provide industry the knowledge to ensure long-term well integrity and safe operation of wells in which foamed cements are used. Computed...

  10. E-Print Network 3.0 - ash blended cement Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CLSM mixture utilized... . CHARACTERIZATION AND APPLICATION OF CLASS F FLY ASH AND CLEAN-COAL ASH FOR CEMENT-BASED MATERIALS 2 The major... investigation. Two additional ash ......

  11. Policy Options for Encouraging Energy Efficiency Best Practices in Shandong Province's Cement Industry

    E-Print Network [OSTI]

    Price, Lynn

    2013-01-01T23:59:59.000Z

    Azure. Alternative Fuel Use in the Cement Sector in ShandongAlternative fuels ..6 Resource potential for alternative fuel use in Shandong

  12. Analysis of Energy-Efficiency Opportunities for the Cement Industry in Shandong Province, China

    E-Print Network [OSTI]

    Price, Lynn

    2010-01-01T23:59:59.000Z

    Sustainable Development waste heat recovery World Wide FundTaishan Cement Works Waste Heat Recovery and Utilisation forPlant’s Low Temperature Waste Heat Power Generation Project.

  13. Potential Energy Savings and CO2 Emissions Reduction of China's Cement Industry

    E-Print Network [OSTI]

    Ke, Jing

    2013-01-01T23:59:59.000Z

    report of cement industry waste heat power generation. ChinaWorrell et al. , 2001). Waste heat recovery (WHR) poweradoption and utilization of waste heat recovery (WHR) power

  14. Analysis of Energy-Efficiency Opportunities for the Cement Industry in Shandong Province, China

    E-Print Network [OSTI]

    Price, Lynn

    2010-01-01T23:59:59.000Z

    Banerjee, R. , 2005. Energy Efficiency and Demand SideKiln Systems,” Energy Efficiency in the Cement Industry (Ed.for Improving Energy Efficiency, Reducing Pollution and

  15. Emerging Energy-efficiency and CO2 Emission-reduction Technologies for Cement and Concrete Production

    E-Print Network [OSTI]

    Hasanbeigi, Ali

    2013-01-01T23:59:59.000Z

    2010. Cement and concrete nanoscience and nanotechnology.of 100 Percent Fly Ash Concrete. 2005 World of Coal Ash (carbon dioxide in precast concrete. TECHNOLOGY REVIEW – A

  16. Emerging Energy-efficiency and CO2 Emission-reduction Technologies for Cement and Concrete Production

    E-Print Network [OSTI]

    Hasanbeigi, Ali

    2013-01-01T23:59:59.000Z

    cement industry Oxygen enrichment technology Post-combustionOther Benefits: ? Oxygen enrichment technology reduces fuelprocess. Oxy-fuel technology uses oxygen instead of air in

  17. Analysis of Energy-Efficiency Opportunities for the Cement Industry in Shandong Province, China

    E-Print Network [OSTI]

    Price, Lynn

    2010-01-01T23:59:59.000Z

    of Demonstrated Energy Technologies (CADDET), Internationaland MAIN. 1993. Energy Technology in the Cement IndustrialAugust 19, 2009. Energy Technology Support Unit (ETSU).

  18. Estimation of CO2 Emissions from China's Cement Production: Methodologies and Uncertainties

    E-Print Network [OSTI]

    Ke, Jing

    2014-01-01T23:59:59.000Z

    L. , 2006. Discussion of CO2 emission reduction in ChineseFurther discussion of CO2 emission reduction in Chinesecalculation method of CO2 emissions of cement production.

  19. Quantifying the Co-benefits of Energy-Efficiency Programs: A Case Study of the Cement Industry in Shandong Province, China

    E-Print Network [OSTI]

    Hasanbeigi, Ali

    2014-01-01T23:59:59.000Z

    ingredient in cement: vertical shaft kilns and rotary kilns.cement was produced by plants using outdated vertical shaft kilns (Vertical shaft kilns (Mt) Rotary (NSP + other) kilns (Mt) Clinker production (Mt) Clinker-cement

  20. Dry Transfer Systems for Used Nuclear Fuel

    SciTech Connect (OSTI)

    Brett W. Carlsen; Michaele BradyRaap

    2012-05-01T23:59:59.000Z

    The potential need for a dry transfer system (DTS) to enable retrieval of used nuclear fuel (UNF) for inspection or repackaging will increase as the duration and quantity of fuel in dry storage increases. This report explores the uses for a DTS, identifies associated general functional requirements, and reviews existing and proposed systems that currently perform dry fuel transfers. The focus of this paper is on the need for a DTS to enable transfer of bare fuel assemblies. Dry transfer systems for UNF canisters are currently available and in use for transferring loaded canisters between the drying station and storage and transportation casks.

  1. Dry-cleaning of graphene

    SciTech Connect (OSTI)

    Algara-Siller, Gerardo [Central Facility for Electron Microscopy, Group of Electron Microscopy of Materials Science, Ulm University, Albert-Einstein-Allee 11, Ulm 89081 (Germany); Department of Chemistry, Technical University Ilmenau, Weimarer Strasse 25, Ilmenau 98693 (Germany); Lehtinen, Ossi; Kaiser, Ute, E-mail: ute.kaiser@uni-ulm.de [Central Facility for Electron Microscopy, Group of Electron Microscopy of Materials Science, Ulm University, Albert-Einstein-Allee 11, Ulm 89081 (Germany); Turchanin, Andrey [Faculty of Physics, University of Bielefeld, Universitätsstr. 25, Bielefeld 33615 (Germany)

    2014-04-14T23:59:59.000Z

    Studies of the structural and electronic properties of graphene in its pristine state are hindered by hydrocarbon contamination on the surfaces. Also, in many applications, contamination reduces the performance of graphene. Contamination is introduced during sample preparation and is adsorbed also directly from air. Here, we report on the development of a simple dry-cleaning method for producing large atomically clean areas in free-standing graphene. The cleanness of graphene is proven using aberration-corrected high-resolution transmission electron microscopy and electron spectroscopy.

  2. Imaging Wellbore Cement Degradation by Carbon Dioxide under Geologic Sequestration Conditions Using X?ray Computed Microtomography

    SciTech Connect (OSTI)

    Jung, Hun Bok; Jansik, Danielle P.; Um, Wooyong

    2013-01-01T23:59:59.000Z

    ABSTRACT: X-ray microtomography (XMT), a nondestructive three-dimensional imaging technique, was applied to demonstrate its capability to visualize the mineralogical alteration and microstructure changes in hydrated Portland cement exposed to carbon dioxide under geologic sequestration conditions. Steel coupons and basalt fragments were added to the cement paste in order to simulate cement-steel and cement-rock interfaces. XMT image analysis showed the changes of material density and porosity in the degradation front (density: 1.98 g/cm3, porosity: 40%) and the carbonated zone (density: 2.27 g/cm3, porosity: 23%) after reaction with CO2- saturated water for 5 months compared to unaltered cement (density: 2.15 g/cm3, porosity: 30%). Three-dimensional XMT imaging was capable of displaying spatially heterogeneous alteration in cement pores, calcium carbonate precipitation in cement cracks, and preferential cement alteration along the cement-steel and cement-rock interfaces. This result also indicates that the interface between cement and host rock or steel casing is likely more vulnerable to a CO2 attack than the cement matrix in a wellbore environment. It is shown here that XMT imaging can potentially provide a new insight into the physical and chemical degradation of wellbore cement by CO2 leakage.

  3. Rapid formation of phase-clean 110 K (Bi-2223) powders derived via freeze-drying process

    SciTech Connect (OSTI)

    Balachandran, U.; Krishnaraj, P.; Eror, N.G.; Lelovic, M.

    1994-12-31T23:59:59.000Z

    This invention relates to an improved process of preparing Bi-Sr-Ca-Cu-O (BSCCO) powders, and more particularly, to a process for preparing BSCCO powders that utilize freeze-drying. The process generally includes splat freezing a nitrate solution of Bi, Pb, Sr, Ca, and Cu to form flakes of the solution; grinding the flakes to form a powder; freeze-drying the frozen powder; heating the powder to form dry green precursor powders; denitrating the powders; and heating the powders to form phase-clean Bi-2223 powders.

  4. Microwave drying of ferric oxide pellets

    SciTech Connect (OSTI)

    Pickles, C.A.; Xia, D.K. [Queens` Univ., Kingston, Ontario (Canada). Dept. of Materials and Metallurgical Engineering

    1997-12-31T23:59:59.000Z

    The application of microwave energy for the drying of ferric oxide pellets has been investigated and evaluated. It is shown that the microwave drying rates are much higher than those observed in the conventional process. Also there is some potential for improved quality of the product. As a stand-alone technology it is unlikely that microwave drying would be economical for pellets due to the low cost of conventional fuels. However, based on an understanding of the drying mechanisms in the conventional process and in the microwave process, it is shown that microwave-assisted drying offers considerable potential. In this hybrid process, the advantages of the two drying techniques are combined to provide an improved drying process.

  5. Dry melting of high albite

    SciTech Connect (OSTI)

    Anovitz, L.M.: Blencoe, J.G.

    1999-12-01T23:59:59.000Z

    The properties of albitic melts are central to thermodynamic models for synthetic and natural granitic liquids. The authors have analyzed published phase-equilibrium and thermodynamic data for the dry fusion of high albite to develop a more accurate equation for the Biggs free energy of this reaction to 30 kbar and 1,400 C. Strict criteria for reaction reversal were sued to evaluate the phase-equilibrium data, and the thermodynamic properties of solid and liquid albite were evaluated using the published uncertainties in the original measurements. Results suggest that neither available phase-equilibrium experiments nor thermodynamic data tightly constrain the location of the reaction. Experimental solidus temperatures at 1 atm range from 1,100 to 1,120 C. High-pressure experiments were not reversed completely and may have been affected by several sources of error, but the apparent inconsistencies among the results of the various experimentalists are eliminated when only half-reversal data are considered. Uncertainties in thermodynamic data yield large variations in permissible reaction slopes. Disparities between experimental and calculated melting curves are, therefore, largely attributable to these difficulties, and there is no fundamental disagreement between the available phase-equilibrium and thermodynamic data for the dry melting of albite. Consequently, complex speciation models for albitic melts, based on the assumption that these discrepancies represent a real characteristic of the system, are unjustified at this time.

  6. Process and apparatus for indirect-fired heating and drying

    DOE Patents [OSTI]

    Abbasi, Hamid Ali; Chudnovsky, Yaroslav

    2005-04-12T23:59:59.000Z

    A method for heating flat or curved surfaces comprising injecting fuel and oxidant along the length, width or longitudinal side of a combustion space formed between two flat or curved plates, transferring heat from the combustion products via convection and radiation to the surface being heated on to the material being dried/heated, and recirculating at least 20% of the combustion products to the root of the flame.

  7. Above Ground Storage Tank (AST) Inspection Form

    E-Print Network [OSTI]

    Pawlowski, Wojtek

    Above Ground Storage Tank (AST) Inspection Form Petroleum Bulk Storage Form Facility Name: ______________________ Tank No:_______________ Date:_____________ Inspection Parameter Result Comments/Corrective Actions 1. Is there leaking in the interstitial space (not DRY)? YES/NO/NA 2. Tank surface shows signs of leakage? YES/NO/NA 3

  8. Unique aspects of drilling and completing hot-dry-rock geothermal wells

    SciTech Connect (OSTI)

    Carden, R.S.; Nicholson, R.W.; Pettitt, R.A.; Rowley, J.C.

    1983-01-01T23:59:59.000Z

    Drilling operations at the Fenton Hill Hot Dry Rock (HDR) Geothermal Test Site have led to numerous developments needed to solve the problems caused by a very harsh downhole environment. A pair of deep wells were drilled to approximately 15,000 ft (4.6 km); formation temperatures were in excess of 600/sup 0/F (300/sup 0/C). The wells were directionally drilled, inclined at 35/sup 0/, one above the other, in a direction orthogonal to the least principal stress field. The well site is near the flank of a young silicic composite volcano in the Jemez Mountains of northern New Mexico. The completion of this pair of wells is unique in reservoir development. The lower well was planned as a cold water injector which will be cooled by the introduced water from the static geothermal gradient to about 80/sup 0/F (25/sup 0/C). The upper well will be heated during production to over 500/sup 0/F (250/sup 0/C). The well pair is designed to perform as a closed loop heat-extraction system connected by hydraulic fractures with a vertical spacing of 1200 ft between the wells. These conditions strongly constrain the drilling technique, casing design, cement formulation, and cementing operations.

  9. Energy Efficiency Improvement and Cost Saving Opportunities for Cement Making. An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Worrell, Ernst

    2008-01-01T23:59:59.000Z

    B. , 1990. “Utilisation of Waste Heat from the Cement RotaryAdvanced Concepts of Waste Heat Recovery in Cement Plants”a roller mill. Utilizing waste heat from the kiln exhaust,

  10. Sulfur polymer cement for macroencapsulation of mixed waste debris

    SciTech Connect (OSTI)

    Mattus, C.H.

    1998-06-01T23:59:59.000Z

    In FY 1997, the US DOE Mixed Waste Focus Area (MWFA) sponsored a demonstration of the macroencapsulation of mixed waste debris using sulfur polymer cement (SPC). Two mixed wastes were tested--a D006 waste comprised of sheets of cadmium and a D008/D009 waste comprised of lead pipes and joints contaminated with mercury. The demonstration was successful in rendering these wastes compliant with Land Disposal Restrictions (LDR), thereby eliminating one Mixed Waste Inventory Report (MWIR) waste stream from the national inventory.

  11. Corrosion of Metals in Composite Cements Anthony Setiadi*, J. Hill and N. B. Milestone

    E-Print Network [OSTI]

    Sheffield, University of

    Corrosion of Metals in Composite Cements Anthony Setiadi*, J. Hill and N. B. Milestone. However, there may be issues regarding the corrosion of some of the metal components which arise from reprocessing and decommissioning due to the alkaline environment in the cement grouts. The corrosion

  12. Carbon 39 (2001) 19952001 Silane-treated carbon fiber for reinforcing cement

    E-Print Network [OSTI]

    Chung, Deborah D.L.

    Carbon 39 (2001) 1995­2001 Silane-treated carbon fiber for reinforcing cement *Yunsheng Xu, D-treated carbon fibers and silane-treated silica fume, relative to the values for cement paste with as-received carbon fibers and as-received silica fume. Silane treatment of fibers and silica fume contributed about

  13. The Effect of Cement Mechanical Properties and Reservoir Compaction on HPHT Well Integrity

    E-Print Network [OSTI]

    Yuan, Zhaoguang

    2012-11-15T23:59:59.000Z

    Cement high- cycle fatigue failure constant B Cement high -cycle fatigue failure constant C Rock internal strength, psi Cr Volumetric solid...-grain compressibility, psi-1 Cbc Volumetric bulk-volume compressibility, psi-1 E Young?s modulus, psi F Critical force, lbf G...

  14. Using artificial neural networks to predict the quality and performance of oilfield cements

    SciTech Connect (OSTI)

    Coveney, P.V.; Hughes, T.L. [Schlumberger Cambridge Research Ltd., Cambridge (United Kingdom); Fletcher, P. [Schlumberger Dowell, Skene, Aberdeen (United Kingdom)

    1996-12-31T23:59:59.000Z

    Inherent batch to batch variability, ageing and contamination are major factors contributing to variability in oilfield cement slurry performance. Of particular concern are problems encountered when a slurry is formulated with one cement sample and used with a batch having different properties. Such variability imposes a heavy burden on performance testing and is often a major factor in operational failure. We describe methods which allow the identification, characterization and prediction of the variability of oilfield cements. Our approach involves predicting cement compositions, particle size distributions and thickening time curves from the diffuse reflectance infrared Fourier transform spectrum of neat cement powders. Predictions make use of artificial neural networks. Slurry formulation thickening times can be predicted with uncertainties of less than {+-}10%. Composition and particle size distributions can be predicted with uncertainties a little greater than measurement error but general trends and differences between cements can be determined reliably. Our research shows that many key cement properties are captured within the Fourier transform infrared spectra of cement powders and can be predicted from these spectra using suitable neural network techniques. Several case studies are given to emphasize the use of these techniques which provide the basis for a valuable quality control tool now finding commercial use in the oilfield.

  15. Portland cement for SO/sub 2/ control in coal-fired power plants

    DOE Patents [OSTI]

    Steinberg, M.

    1984-10-17T23:59:59.000Z

    A method is described for removing oxides of sulfur from the emissions of fossil fuel combustion by injecting portland cement into the boiler with the fuel, the combustion air, or downstream with the combustion gases. The cement products that result from this method is also described. 1 tab.

  16. Portland cement for SO.sub.2 control in coal-fired power plants

    DOE Patents [OSTI]

    Steinberg, Meyer (Melville, NY)

    1985-01-01T23:59:59.000Z

    There is described a method of removing oxides of sulfur from the emissions of fossil fuel combustion by injecting portland cement into the boiler with the fuel, the combustion air, or downstream with the combustion gases. There is also described the cement products that result from this method.

  17. Thermal Energy Storage/Waste Heat Recovery Applications in the Cement Industry

    E-Print Network [OSTI]

    Beshore, D. G.; Jaeger, F. A.; Gartner, E. M.

    1979-01-01T23:59:59.000Z

    , and the Portland Cement Association have studied the potential benefits of using waste heat recovery methods and thermal energy storage systems in the cement manufacturing process. This work was performed under DOE Contract No. EC-77-C-01-50S4. The study has been...

  18. Z .Chemical Geology 152 1998 227256 The thermal and cementation histories of a sandstone petroleum

    E-Print Network [OSTI]

    Z .Chemical Geology 152 1998 227­256 The thermal and cementation histories of a sandstone petroleum-feldspars recovered at various depths from a deep well drilled through a carbonate-cemented sandstone petroleum of a sandstone petroleum xreservoir, Elk Hills, California. Part 2: In situ oxygen and carbon isotopic results

  19. Impact of Hydrated Cement Paste Quality and Entrained Air-Void

    E-Print Network [OSTI]

    Impact of Hydrated Cement Paste Quality and Entrained Air-Void System on the Durability of Concrete the characteristics of the entrained air-void system #12;Objectives · Review the current accepted relationship between is affected by the quality of the hydrated cement paste (HCP) and the presence of a properly entrained air

  20. Long-term modeling of glass waste in portland cement- and clay-based matrices

    SciTech Connect (OSTI)

    Stockman, H.W.; Nagy, K.L. [Sandia National Labs., Albuquerque, NM (United States); Morris, C.E. [Wollongong Univ., NSW (Australia). Dept. of Civil and Mining Engineering

    1995-12-01T23:59:59.000Z

    A set of ``templates`` was developed for modeling waste glass interactions with cement-based and clay-based matrices. The templates consist of a modified thermodynamic database, and input files for the EQ3/6 reaction path code, containing embedded rate models and compositions for waste glass, cement, and several pozzolanic materials. Significant modifications were made in the thermodynamic data for Th, Pb, Ra, Ba, cement phases, and aqueous silica species. It was found that the cement-containing matrices could increase glass corrosion rates by several orders of magnitude (over matrixless or clay matrix systems), but they also offered the lowest overall solubility for Pb, Ra, Th and U. Addition of pozzolans to cement decreased calculated glass corrosion rates by up to a factor of 30. It is shown that with current modeling capabilities, the ``affinity effect`` cannot be trusted to passivate glass if nuclei are available for precipitation of secondary phases that reduce silica activity.

  1. Comparative analysis of the life cycle impact assessment of available cement inventories in the EU

    SciTech Connect (OSTI)

    Josa, Alejandro [Technical University of Catalonia (UPC), School of Civil Engineering (ETSECCPB), C/Jordi Girona 1-3 Modul D2/C1, Barcelona 08034 (Spain)]. E-mail: alejandro.josa@upc.edu; Aguado, Antonio [Technical University of Catalonia (UPC), School of Civil Engineering (ETSECCPB), C/Jordi Girona 1-3 Modul D2/C1, Barcelona 08034 (Spain); Cardim, Arnaldo [Civil Engineering Department, Polytechnic School of Penambuco University, Rua Benfica, 455-Madalena, CEP 50.750-410 (Brazil); Byars, Ewan [Centre for Cement and Concrete, Department of Civil and Structural Engineering, University of Sheffield, Sir Frederick Mappin Building, Mappin Street, Sheffield S1 3JD (United Kingdom)

    2007-05-15T23:59:59.000Z

    Life cycle impact assessment (LCIA) is one of basic steps in life cycle assessment methodology (LCA). This paper presents a comparative study of the LCIA of different life cycle inventories (LCI) for EU cements. The analysis unit used is the manufacture of 1 kg of cement, from 'cradle to gate'. The impact categories considered are those resulting from the manufacture of cement and include greenhouse effects, acidification, eutrophication and summer and winter smog, amongst others. The results of the study highlighted some inconsistencies in existing inventories. As for the LCIA, the main environmental interventions related to cement manufacture were classified and characterised and their effect on different impact categories analysed. Differences observed in evaluation of the impact of cement type were essentially related to their clinker content.

  2. Hydration and leaching characteristics of cement pastes made from electroplating sludge

    SciTech Connect (OSTI)

    Chen, Ying-Liang [Department of Environmental Engineering, National Cheng Kung University, No. 1, University Rd., Tainan City 70101, Taiwan (China); Sustainable Environment Research Center, National Cheng Kung University, No. 1, University Rd., Tainan City 70101, Taiwan (China); Ko, Ming-Sheng [Institute of Mineral Resources Engineering, National Taipei University of Technology, No. 1, Sec. 3, Chunghsiao E. Rd., Taipei City 10608, Taiwan (China); Lai, Yi-Chieh [Department of Bioenvironmental Engineering, Chung Yuan Christian University, No. 200, Chung-Pei Rd., Chung-Li 32023, Taiwan (China); Chang, Juu-En, E-mail: juuen@mail.ncku.edu.tw [Department of Environmental Engineering, National Cheng Kung University, No. 1, University Rd., Tainan City 70101, Taiwan (China); Sustainable Environment Research Center, National Cheng Kung University, No. 1, University Rd., Tainan City 70101, Taiwan (China)

    2011-06-15T23:59:59.000Z

    The purpose of this study was to investigate the hydration and leaching characteristics of the pastes of belite-rich cements made from electroplating sludge. The compressive strength of the pastes cured for 1, 3, 7, 28, and 90 days was determined, and the condensation of silicate anions in hydrates was examined with the {sup 29}Si nuclear magnetic resonance (NMR) technology. The leachabilities of the electroplating sludge and the hardened pastes were studied with the multiple toxicity characteristic leaching procedure (MTCLP) and the tank leaching test (NEN 7345), respectively. The results showed that the electroplating sludge continued to leach heavy metals, including nickel, copper, and zinc, and posed a serious threat to the environment. The belite-rich cement made from the electroplating sludge was abundant in hydraulic {beta}-dicalcium silicate, and it performed well with regard to compressive-strength development when properly blended with ordinary Portland cements. The blended cement containing up to 40% the belite-rich cement can still satisfy the compressive-strength requirements of ASTM standards, and the pastes cured for 90 days had comparable compressive strength to an ordinary Portland cement paste. It was also found that the later hydration reaction of the blended cements was relatively more active, and high fractions of belite-rich cement increased the chain length of silicate hydrates. In addition, by converting the sludge into belite-rich cements, the heavy metals became stable in the hardened cement pastes. This study thus indicates a viable alternative approach to dealing with heavy metal bearing wastes, and the resulting products show good compressive strength and heavy-metal stability.

  3. Dynamic Evolution of Cement Composition and Transport Properties under Conditions Relevant to Geological Carbon Sequestration

    SciTech Connect (OSTI)

    Brunet, Jean-Patrick Leopold; Li, Li; Karpyn, Zuleima T.; Strazisar, Brian; Bromhal Grant

    2013-08-01T23:59:59.000Z

    Assessing the possibility of CO{sub 2} leakage is one of the major challenges for geological carbon sequestration. Injected CO{sub 2} can react with wellbore cement, which can potentially change cement composition and transport properties. In this work, we develop a reactive transport model based on experimental observations to understand and predict the property evolution of cement in direct contact with CO{sub 2}-saturated brine under diffusion-controlled conditions. The model reproduced the observed zones of portlandite depletion and calcite formation. Cement alteration is initially fast and slows down at later times. This work also quantified the role of initial cement properties, in particular the ratio of the initial portlandite content to porosity (defined here as ?), in determining the evolution of cement properties. Portlandite-rich cement with large ? values results in a localized “sharp” reactive diffusive front characterized by calcite precipitation, leading to significant porosity reduction, which eventually clogs the pore space and prevents further acid penetration. Severe degradation occurs at the cement–brine interface with large ? values. This alteration increases effective permeability by orders of magnitude for fluids that preferentially flow through the degraded zone. The significant porosity decrease in the calcite zone also leads to orders of magnitude decrease in effective permeability, where fluids flow through the low-permeability calcite zone. The developed reactive transport model provides a valuable tool to link cement–CO{sub 2} reactions with the evolution of porosity and permeability. It can be used to quantify and predict long-term wellbore cement behavior and can facilitate the risk assessment associated with geological CO{sub 2} sequestration.

  4. FINAL REPORT: Transformational electrode drying process

    SciTech Connect (OSTI)

    Claus Daniel, C.; Wixom, M. (A123 Systems, Inc.)

    2013-12-19T23:59:59.000Z

    This report includes major findings and outlook from the transformational electrode drying project performance period from January 6, 2012 to August 1, 2012. Electrode drying before cell assembly is an operational bottleneck in battery manufacturing due to long drying times and batch processing. Water taken up during shipment and other manufacturing steps needs to be removed before final battery assembly. Conventional vacuum ovens are limited in drying speed due to a temperature threshold needed to avoid damaging polymer components in the composite electrode. Roll to roll operation and alternative treatments can increase the water desorption and removal rate without overheating and damaging other components in the composite electrode, thus considerably reducing drying time and energy use. The objective of this project was the development of an electrode drying procedure, and the demonstration of processes with no decrease in battery performance. The benchmark for all drying data was an 80°C vacuum furnace treatment with a residence time of 18 – 22 hours. This report demonstrates an alternative roll to roll drying process with a 500-fold improvement in drying time down to 2 minutes and consumption of only 30% of the energy compared to vacuum furnace treatment.

  5. Cold vacuum drying system conceptual design report

    SciTech Connect (OSTI)

    Bradshaw, F.W.

    1996-05-01T23:59:59.000Z

    This document summarizes the activities involved in the removal of the SNF from the leaking basins and to place it in stable dry storage.

  6. Cold vacuum drying facility design requirements

    SciTech Connect (OSTI)

    IRWIN, J.J.

    1999-07-01T23:59:59.000Z

    This document provides the detailed design requirements for the Spent Nuclear Fuel Project Cold Vacuum Drying Facility. Process, safety, and quality assurance requirements and interfaces are specified.

  7. ,"New York Dry Natural Gas Proved Reserves"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Dry Natural Gas Proved Reserves",10,"Annual",2013,"6301977" ,"Release Date:","124...

  8. Hydration studies of calcium sulfoaluminate cements blended with fly ash

    SciTech Connect (OSTI)

    García-Maté, M.; De la Torre, A.G. [Departamento de Química Inorgánica, Cristalografía y Mineralogía, Universidad de Málaga, 29071 Málaga (Spain)] [Departamento de Química Inorgánica, Cristalografía y Mineralogía, Universidad de Málaga, 29071 Málaga (Spain); León-Reina, L. [Servicios Centrales de Apoyo a la Investigación, Universidad de Málaga, 29071 Málaga (Spain)] [Servicios Centrales de Apoyo a la Investigación, Universidad de Málaga, 29071 Málaga (Spain); Aranda, M.A.G. [Departamento de Química Inorgánica, Cristalografía y Mineralogía, Universidad de Málaga, 29071 Málaga (Spain) [Departamento de Química Inorgánica, Cristalografía y Mineralogía, Universidad de Málaga, 29071 Málaga (Spain); CELLS-Alba synchrotron, Carretera BP 1413, Km. 3.3, E-08290 Cerdanyola, Barcelona (Spain); Santacruz, I., E-mail: isantacruz@uma.es [Departamento de Química Inorgánica, Cristalografía y Mineralogía, Universidad de Málaga, 29071 Málaga (Spain)

    2013-12-15T23:59:59.000Z

    The main objective of this work is to study the hydration and properties of calcium sulfoaluminate cement pastes blended with fly ash (FA) and the corresponding mortars at different hydration ages. Laboratory X-ray powder diffraction, rheological studies, thermal analysis, porosimetry and compressive strength measurements were performed. The analysis of the diffraction data by Rietveld method allowed quantifying crystalline phases and overall amorphous contents. The studied parameters were: i) FA content, 0, 15 and 30 wt.%; and ii) water addition, water-to-CSA mass ratio (w/CSA = 0.50 and 0.65), and water-to-binder mass ratio (w/b = 0.50). Finally, compressive strengths after 6 months of 0 and 15 wt.% FA [w/CSA = 0.50] mortars were similar: 73 ± 2 and 72 ± 3 MPa, respectively. This is justified by the filler effect of the FA as no strong evidences of reactivity of FA with CSA were observed. These results support the partial substitution of CSA cements with FA with the economic and environmental benefits.

  9. Acceptable approaches for beneficial use of cement kiln dust

    SciTech Connect (OSTI)

    Schreiber, R.J.; Smeenk, S.D. [Schreiber, Yonley and Associates, St. Louis, MO (United States)

    1998-12-31T23:59:59.000Z

    One beneficial use of cement kiln dust (CKD) is application of CKD to cropland as agricultural lime or fertilizer. However, the EPA has expressed a concern over land application of CKD when the metals constituents in the CKD are above the industry-wide median levels presented in EPA`s Report to Congress on Cement Kiln Dust. Under the Clean Water Act, EPA has established limits for metals concentrations in sewage sludge that is applied to the land for beneficial use of the nitrogen in the sludge. The limits for land application of sewage sludge were established based on the results of exposure risk assessments. A comparison of the median industry-wide metals concentrations in CKD to the metals concentration limits for land application of sewage sludge indicates that all trace metal concentrations IN CKD are below the corresponding sewage sludge land application limit, with the exception of the median level of arsenic from one data set. EPA has determined that land application of CKD with metals concentration limits at or below the industry-wide median concentrations does not pose a significant human cancer or non-cancer health risk. Therefore, with appropriate limits, CKD can be beneficially reused for land application on agricultural land in a manner that is protective of human health and the environment.

  10. Synthesis of belite cement clinker of high hydraulic reactivity

    SciTech Connect (OSTI)

    Kacimi, Larbi [Laboratoire de Genie des Procedes, Departement de Chimie, Universite des Sciences et de la Technologie d'Oran, B.P. 1505, El-M'nouar, U.S.T. Oran (Algeria)], E-mail: kacimi20002000@yahoo.fr; Simon-Masseron, Angelique [Laboratoire des Materiaux a Porosite Controlee, CNRS UMR 7016, Universite de Haute-Alsace, 3, rue Alfred-Werner, F-68093 Mulhouse cedex (France)], E-mail: A.Simon@univ-mulhouse.fr; Salem, Souria [Departement d'Architecture, Faculte de Genie Civile, USTO-Oran (Algeria)], E-mail: zinaisalem@yahoo.fr; Ghomari, Abdelhamid [Departement de Chimie, U.A.I.B., Route de Belahcel, Mostaganem (Algeria)], E-mail: belkey@hotmail.com; Derriche, Zoubir [Laboratoire de Genie des Procedes, Departement de Chimie, Universite des Sciences et de la Technologie d'Oran, B.P. 1505, El-M'nouar, U.S.T. Oran (Algeria)

    2009-07-15T23:59:59.000Z

    This study is concerned with the increase of the cooling rate of belite clinker, by using the water quenching for the chemical stabilization of reactive belite, which improves the hydraulic properties of this clinker. The addition of adequate mineralizers, as NaF and Fe{sub 2}O{sub 3}, contributes to the improvement of the clinker properties obtained at low burning temperature. X-ray fluorescence spectroscopy, X-ray diffraction analysis and optical microscopy were used to determine the chemical and mineralogical compositions of this clinker. The samples were analyzed by means of a scanning electronic microscope connected with an energy-dispersive X-ray spectrometer to detect the composition of the belite phase and its morphology. Physical and mechanical properties of this clinker cement were determined. The results show that the belite clinker obtained at 1150 {sup o}C, with lime saturation factor 0.67, is characterized by a great hydraulic reactivity, similar to that of the ordinary alite clinker. The addition of 2% of NaF and the water quenching improved the chemical, mineralogical and structural properties, while improving the cement hydraulic properties.

  11. THE IMPACT OF DISSOLVED SALTS ON PASTES CONTAINING FLY ASH, CEMENT AND SLAG

    SciTech Connect (OSTI)

    Harbour, J.; Edwards, T.; Williams, V.

    2009-09-21T23:59:59.000Z

    The degree of hydration of a mixture of cementitious materials (Class F fly ash, blast furnace slag and portland cement) in highly concentrated alkaline salt solutions is enhanced by the addition of aluminate to the salt solution. This increase in the degree of hydration, as monitored with isothermal calorimetry, leads to higher values of dynamic Young's modulus and compressive strength and lower values of total porosity. This enhancement in performance properties of these cementitious waste forms by increased hydration is beneficial to the retention of the radionuclides that are also present in the salt solution. The aluminate ions in the solution act first to retard the set time of the mix but then enhance the hydration reactions following the induction period. In fact, the aluminate ions increase the degree of hydration by {approx}35% over the degree of hydration for the same mix with a lower aluminate concentration. An increase in the blast furnace slag concentration and a decrease in the water to cementitious materials ratio produced mixes with higher values of Young's modulus and lower values of total porosity. Therefore, these operational factors can be fine tuned to enhance performance properties of cementitious waste form. Empirical models for Young modulus, heat of hydration and total porosity were developed to predict the values of these properties. These linear models used only statistically significant compositional and operational factors and provided insight into those factors that control these properties.

  12. Using and Storing Nonfat Dry Milk Nonfat dry milk is convenient to store, easy to use and

    E-Print Network [OSTI]

    in a cool, dry place. s Dry milk products are very sensitive to temperature and humidity. The area where your dry milk is stored should be kept as cool as possible. s Dry milk will absorb moisture and odorsUsing and Storing Nonfat Dry Milk Nonfat dry milk is convenient to store, easy to use

  13. Increasing Energy Efficiency and Reducing Emissions from China's Cement Kilns: Audit Report of Two Cement Plants in Shandong Province, China

    E-Print Network [OSTI]

    Price, Lynn

    2013-01-01T23:59:59.000Z

    nodules by using hot water and/or using waste heat. 2.Pre dry nodules using waste heat from exhaust gases or airSteam Turbine Generator Waste Heat Boilers Preheaters and

  14. Multi-criteria analysis of the mechanism of degradation of Portland cement based mortars exposed to external sulphate attack

    SciTech Connect (OSTI)

    El-Hachem, R.; Roziere, E.; Grondin, F.; Loukili, A., E-mail: ahmed.loukili@ec-nantes.fr

    2012-10-15T23:59:59.000Z

    This work aims to contribute to the design of durable concrete structures exposed to external sulphate attacks (ESA). Following a preliminary study aimed at designing a representative test, the present paper suggests a study on the effect of the water-to-cement (w/c) ratio and the cement composition in order to understand the degradation mechanisms. Length and mass measurements were registered continuously, leached calcium and hydroxide ions were also quantified. In parallel, scanning electron microscopy observations as well as X-ray microtomography were realised at different times to identify the formed products and the crack morphology. Test results provide information on the basic aspects of the degradation mechanism, such as the main role of leaching and diffusion in the sulphate attack process. The mortar composition with a low w/c ratio leads to a better resistance to sulphate attack because the microstructure is less permeable. Reducing the C{sub 3}A content results in a macro-cracking decrease but it does not prevent expansion, which suggests the contribution of other expansive products, such as gypsum, in damage due to ESA. The observation of the cracks network in the microstructure helps to understand the micro-mechanisms of the degradation process.

  15. Dry soldering with hot filament produced atomic hydrogen

    DOE Patents [OSTI]

    Panitz, J.K.G.; Jellison, J.L.; Staley, D.J.

    1995-04-25T23:59:59.000Z

    A system is disclosed for chemically transforming metal surface oxides to metal that is especially, but not exclusively, suitable for preparing metal surfaces for dry soldering and solder reflow processes. The system employs one or more hot, refractory metal filaments, grids or surfaces to thermally dissociate molecular species in a low pressure of working gas such as a hydrogen-containing gas to produce reactive species in a reactive plasma that can chemically reduce metal oxides and form volatile compounds that are removed in the working gas flow. Dry soldering and solder reflow processes are especially applicable to the manufacture of printed circuit boards, semiconductor chip lead attachment and packaging multichip modules. The system can be retrofitted onto existing metal treatment ovens, furnaces, welding systems and wave soldering system designs. 1 fig.

  16. Wall Drying in Hot and Humid Climates

    E-Print Network [OSTI]

    Boone, K.; Weston, T.; Pascual, X.

    2004-01-01T23:59:59.000Z

    drying potential while at the same time providing a high potential for mold growth. To reduce moisture accumulation in wall systems, it is important to design wall systems that not only reduce moisture intrusion, but also allow drying. Yet often a wall...

  17. PREPARATION OF A DRY PRODUCT FROM CONDENSED

    E-Print Network [OSTI]

    PREPARATION OF A DRY PRODUCT FROM CONDENSED MENHADEN SOLUBLES Statistical Supplement WOODS HOI CONDENSED MENHADEN SOLUBLES: STATISTICAL ANALYSIS OF THE DATA (Supplement to the Fish and Wildlife Service. Fish and Wildlife Service Research Report k^, Preparation of a Dry Product from Condensed Menhaden

  18. Massachusetts Directory of Sawmills & Dry Kilns 2003

    E-Print Network [OSTI]

    Schweik, Charles M.

    Massachusetts Directory of Sawmills & Dry Kilns ­ 2003 David T. Damery - University to Sawmill Listings iv Section 1 ­ Sawmill & Dry Kiln Directories Sawmills Operating in Massachusetts 1 of Sawtimber Trees by Diameter, 1972-1998 29 History of Massachusetts Sawmills Listed in Directory 30 Stumpage

  19. Cold vacuum drying facility 90% design review

    SciTech Connect (OSTI)

    O`Neill, C.T.

    1997-05-02T23:59:59.000Z

    This document contains review comment records for the CVDF 90% design review. Spent fuels retrieved from the K Basins will be dried at the CVDF. It has also been recommended that the Multi-Conister Overpacks be welded, inspected, and repaired at the CVD Facility before transport to dry storage.

  20. Characterization of modified calcium-silicate cements exposed to acidic environment

    SciTech Connect (OSTI)

    Camilleri, Josette, E-mail: josette.camilleri@um.edu.mt

    2011-01-15T23:59:59.000Z

    Portland cement which is used as a binder in concrete in the construction industry has been developed into a biomaterial. It is marketed as mineral trioxide aggregate and is used in dentistry. This material has been reported to be very biocompatible and thus its use has diversified. The extended use of this material has led to developments of newer versions with improved physical properties. The aim of this study was to evaluate the effect of acidic environments found in the oral cavity on fast setting calcium silicate cements with improved physical properties using a combination of techniques. Two fast setting calcium silicate cements (CSA and CFA) and two cement composites (CSAG and CFAG) were assessed by subjecting the materials to lactic acid/sodium lactate buffer gel for a period of 28 days. At weekly intervals the materials were viewed under the tandem scanning confocal microscope (TSM), and scanning electron microscope (SEM). The two prototype cements exhibited changes in their internal chemistry with no changes in surface characteristics. Since the changes observed were mostly sub-surface evaluation of surface characteristics of cement may not be sufficient in the determination of chemical changes occurring. - Research Highlights: {yields} An acidic environment affects modified fast setting calcium silicate-based cements. {yields} No surface changes are observed in acidic environment. {yields} An acidic environment causes sub-surface changes in the material chemistry which are only visible in fractured specimens. {yields} A combination of techniques is necessary in order to evaluate the chemical changes occurring.

  1. Inspection of Used Fuel Dry Storage Casks

    SciTech Connect (OSTI)

    Dennis C. Kunerth; Tim McJunkin; Mark McKay; Sasan Bakhtiari

    2012-09-01T23:59:59.000Z

    ABSTRACT The U.S. Nuclear Regulatory Commission (NRC) regulates the storage of used nuclear fuel, which is now and will be increasingly placed in dry storage systems. Since a final disposition pathway is not defined, the fuel is expected to be maintained in dry storage well beyond the time frame originally intended. Due to knowledge gaps regarding the viability of current dry storage systems for long term use, efforts are underway to acquire the technical knowledge and tools required to understand the issues and verify the integrity of the dry storage system components. This report summarizes the initial efforts performed by researchers at Idaho National Laboratory and Argonne National Laboratory to identify and evaluate approaches to in-situ inspection dry storage casks. This task is complicated by the design of the current storage systems that severely restrict access to the casks.

  2. Characterization and modeling of the cemented sediment surrounding the Iulia Felix glass

    SciTech Connect (OSTI)

    Strachan, Denis M.; Crum, Jarrod V.; Ryan, Joseph V.; Silvestri, Alberta

    2014-02-28T23:59:59.000Z

    About 1800 years ago a Roman Corbita sunk off the coast of Italy carrying a barrel of glass cullet to the floor of the Adriatic Sea. Samples of glass cullet and the cemented surrounding sediment have been characterized and the reaction between the glass and the sea water saturated with respect to calcite and dolomite has been modeled. Results from characterization and modeling show that the cement phase surrounding the sediment grains is a high-Mg calcite. The origin of the cement phase is likely the reaction between the glass and the sea water to from a Mg-silicate, here modeled as sepiolite.

  3. Dry Storage of Research Reactor Spent Nuclear Fuel - 13321

    SciTech Connect (OSTI)

    Adams, T.M.; Dunsmuir, M.D.; Leduc, D.R.; Severynse, T.F.; Sindelar, R.L. [Savannah River National Laboratory (United States)] [Savannah River National Laboratory (United States); Moore, E.N. [Moore Nuclear Energy, LLC (United States)] [Moore Nuclear Energy, LLC (United States)

    2013-07-01T23:59:59.000Z

    Spent fuel from domestic and foreign research reactors is received and stored at the Savannah River Site's L Area Material Storage (L Basin) Facility. This DOE-owned fuel consists primarily of highly enriched uranium in metal, oxide or silicide form with aluminum cladding. Upon receipt, the fuel is unloaded and transferred to basin storage awaiting final disposition. Disposition alternatives include processing via the site's H Canyon facility for uranium recovery, or packaging and shipment of the spent fuel to a waste repository. A program has been developed to provide a phased approach for dry storage of the L Basin fuel. The initial phase of the dry storage program will demonstrate loading, drying, and storage of fuel in twelve instrumented canisters to assess fuel performance. After closure, the loaded canisters are transferred to pad-mounted concrete overpacks, similar to those used for dry storage of commercial fuel. Unlike commercial spent fuel, however, the DOE fuel has high enrichment, very low to high burnup, and low decay heat. The aluminum cladding presents unique challenges due to the presence of an oxide layer that forms on the cladding surface, and corrosion degradation resulting from prolonged wet storage. The removal of free and bound water is essential to the prevention of fuel corrosion and radiolytic generation of hydrogen. The demonstration will validate models predicting pressure, temperature, gas generation, and corrosion performance, provide an engineering scale demonstration of fuel handling, drying, leak testing, and canister backfill operations, and establish 'road-ready' storage of fuel that is suitable for offsite repository shipment or retrievable for onsite processing. Implementation of the Phase I demonstration can be completed within three years. Phases II and III, leading to the de-inventory of L Basin, would require an additional 750 canisters and 6-12 years to complete. Transfer of the fuel from basin storage to dry storage requires integration with current facility operations, and selection of equipment that will allow safe operation within the constraints of existing facility conditions. Examples of such constraints that are evaluated and addressed by the dry storage program include limited basin depth, varying fuel lengths up to 4 m, (13 ft), fissile loading limits, canister closure design, post-load drying and closure of the canisters, instrument selection and installation, and movement of the canisters to storage casks. The initial pilot phase restricts the fuels to shorter length fuels that can be loaded to the canister directly underwater; subsequent phases will require use of a shielded transfer system. Removal of the canister from the basin, followed by drying, inerting, closure of the canister, and transfer of the canister to the storage cask are completed with remotely operated equipment and appropriate shielding to reduce personnel radiation exposure. (authors)

  4. Rapid formation of phase-clean 110 K (Bi-2223) powders derived via freeze-drying process

    DOE Patents [OSTI]

    Balachandran, Uthamalingam (Hinsdale, IL)

    1996-01-01T23:59:59.000Z

    A process for the preparation of amorphous precursor powders for Pb-doped Bi.sub.2 Sr.sub.2 Ca.sub.2 Cu.sub.3 O.sub.x (2223) includes a freeze-drying process incorporating a splat-freezing step. The process generally includes splat freezing a nitrate solution of Bi, Pb, Sr, Ca, and Cu to form flakes of the solution without any phase separation; grinding the frozen flakes to form a powder; freeze-drying the frozen powder; heating the dried powder to form a dry green precursor powders; denitrating the green-powders; heating the denitrated powders to form phase-clean Bi-2223 powders. The grain boundaries of the 2223 grains appear to be clean, leading to good intergrain contact between 2223 grains.

  5. Rapid formation of phase-clean 110 K (Bi-2223) powders derived via freeze-drying process

    DOE Patents [OSTI]

    Balachandran, U.

    1996-06-04T23:59:59.000Z

    A process for the preparation of amorphous precursor powders for Pb-doped Bi{sub 2}Sr{sub 2} Ca{sub 2}Cu{sub 3}O{sub x} (2223) includes a freeze-drying process incorporating a splat-freezing step. The process generally includes splat freezing a nitrate solution of Bi, Pb, Sr, Ca, and Cu to form flakes of the solution without any phase separation; grinding the frozen flakes to form a powder; freeze-drying the frozen powder; heating the dried powder to form a dry green precursor powders; denitrating the green-powders; heating the denitrated powders to form phase-clean Bi-2223 powders. The grain boundaries of the 2223 grains appear to be clean, leading to good intergrain contact between 2223 grains. 11 figs.

  6. Acoustically enhanced heat exchange and drying apparatus

    DOE Patents [OSTI]

    Bramlette, T.T.; Keller, J.O.

    1987-07-10T23:59:59.000Z

    A heat transfer drying apparatus includes an acoustically augmented heat transfer chamber for receiving material to be dried. The chamber includes a first heat transfer gas inlet, a second heat transfer gas inlet, a material inlet, and a gas outlet which also serves as a dried material and gas outlet. A non-pulsing first heat transfer gas source provides a first drying gas to the acoustically augmented heat transfer chamber through the first heat transfer gas inlet. A valveless, continuous second heat transfer gas source provides a second drying gas to the acoustically augmented heat transfer chamber through the second heat transfer gas inlet. The second drying gas also generates acoustic waves which bring about acoustical coupling with the gases in the acoustically augmented heat transfer chamber. The second drying gas itself oscillates at an acoustic frequency of approximately 180 Hz due to fluid mechanical motion in the gas. The oscillations of the second heat transfer gas coupled to the first heat transfer gas in the acoustically augmented heat transfer chamber enhance heat and mass transfer by convection within the chamber. 3 figs.

  7. Polyethylene encapsulatin of nitrate salt wastes: Waste form stability, process scale-up, and economics

    SciTech Connect (OSTI)

    Kalb, P.D.; Heiser, J.H. III; Colombo, P.

    1991-07-01T23:59:59.000Z

    A polyethylene encapsulation system for treatment of low-level radioactive, hazardous, and mixed wastes has been developed at Brookhaven National Laboratory. Polyethylene has several advantages compared with conventional solidification/stabilization materials such as hydraulic cements. Waste can be encapsulated with greater efficiency and with better waste form performance than is possible with hydraulic cement. The properties of polyethylene relevant to its long-term durability in storage and disposal environments are reviewed. Response to specific potential failure mechanisms including biodegradation, radiation, chemical attack, flammability, environmental stress cracking, and photodegradation are examined. These data are supported by results from extensive waste form performance testing including compressive yield strength, water immersion, thermal cycling, leachability of radioactive and hazardous species, irradiation, biodegradation, and flammability. The bench-scale process has been successfully tested for application with a number of specific problem'' waste streams. Quality assurance and performance testing of the resulting waste form confirmed scale-up feasibility. Use of this system at Rocky Flats Plant can result in over 70% fewer drums processed and shipped for disposal, compared with optimal cement formulations. Based on the current Rocky Flats production of nitrate salt per year, polyethylene encapsulation can yield an estimated annual savings between $1.5 million and $2.7 million, compared with conventional hydraulic cement systems. 72 refs., 23 figs., 16 tabs.

  8. Effect of temperature on the hydration of Portland cement blended with siliceous fly ash

    SciTech Connect (OSTI)

    Deschner, Florian, E-mail: florian.deschner@gmail.com [Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Concrete and Construction Chemistry, Überlandstrasse 129, 8600 Dübendorf (Switzerland)] [Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Concrete and Construction Chemistry, Überlandstrasse 129, 8600 Dübendorf (Switzerland); Lothenbach, Barbara; Winnefeld, Frank [Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Concrete and Construction Chemistry, Überlandstrasse 129, 8600 Dübendorf (Switzerland)] [Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Concrete and Construction Chemistry, Überlandstrasse 129, 8600 Dübendorf (Switzerland); Neubauer, Jürgen [GeoZentrum Nordbayern, Mineralogy, University of Erlangen-Nuremberg, 91054 Erlangen (Germany)] [GeoZentrum Nordbayern, Mineralogy, University of Erlangen-Nuremberg, 91054 Erlangen (Germany)

    2013-10-15T23:59:59.000Z

    The effect of temperature on the hydration of Portland cement pastes blended with 50 wt.% of siliceous fly ash is investigated within a temperature range of 7 to 80 °C. The elevation of temperature accelerates both the hydration of OPC and fly ash. Due to the enhanced pozzolanic reaction of the fly ash, the change of the composition of the C–S–H and the pore solution towards lower Ca and higher Al and Si concentrations is shifted towards earlier hydration times. Above 50 °C, the reaction of fly ash also contributes to the formation of siliceous hydrogarnet. At 80 °C, ettringite and AFm are destabilised and the released sulphate is partially incorporated into the C–S–H. The observed changes of the phase assemblage in dependence of the temperature are confirmed by thermodynamic modelling. The increasingly heterogeneous microstructure at elevated temperatures shows an increased density of the C–S–H and a higher coarse porosity. -- Highlights: •The reaction of quartz powder at 80 °C strongly enhances the compressive strength. •Almost no strength increase of fly ash blended OPC at 80 °C was found after 2 days. •Siliceous hydrogarnet is formed upon the reaction of fly ash at high temperatures. •Temperature dependent change of the system was simulated by thermodynamic modelling. •Destabilisation of ettringite above 50 °C correlates with sulphate content of C–S–H.

  9. E-modulus evolution and its relation to solids formation of pastes from commercial cements

    SciTech Connect (OSTI)

    Maia, Lino, E-mail: lino.maia@fe.up.pt [LABEST - Laboratory for the Concrete Technology and Structural Behaviour, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto (Portugal); Centro de Ciencias Exatas e da Engenharia, Universidade da Madeira, Campus Universitario da Penteada, 9020-105 Funchal (Portugal); Azenha, Miguel, E-mail: miguel.azenha@civil.uminho.pt [ISISE - Institute for Sustainability and Innovation in Structural Engineering, Universidade do Minho, Escola de Engenharia, Campus de Azurem, 4800-058 Guimaraes (Portugal); Geiker, Mette, E-mail: mge@byg.dtu.dk [DTU - Department of Civil Engineering, Technical University of Denmark, Brovej, Building 118, DK-2800 Kgs. Lyngby (Denmark); NTNU - Department of Structural Engineering, Norwegian University of Science and Technology, Rich. Birkelandsvei 1A, 7491 Trondheim (Norway); Figueiras, Joaquim, E-mail: jafig@fe.up.pt [LABEST - Laboratory for the Concrete Technology and Structural Behaviour, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto (Portugal)

    2012-07-15T23:59:59.000Z

    Models for early age E-modulus evolution of cement pastes are available in the literature, but their validation is limited. This paper provides correlated measurements of early age evolution of E-modulus and hydration of pastes from five commercial cements differing in limestone content. A recently developed methodology allowed continuous monitoring of E-modulus from the time of casting. The methodology is a variant of classic resonant frequency methods, which are based on determination of the first resonant frequency of a composite beam containing the material. The hydration kinetics - and thus the rate of formation of solids - was determined using chemical shrinkage measurements. For the cements studied similar relationships between E-modulus and chemical shrinkage were observed for comparable water-to-binder ratio. For commercial cements it is suggested to model the E-modulus evolution based on the amount of binder reacted, instead of the degree of hydration.

  10. Microsoft Word - NETL-TRS-003-2012_Cementing Research Needs_20121207...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Research Needs Related to Improving Primary Cement Isolation of Formations in Deep Offshore Wells 7 December 2012 Office of Fossil Energy NETL-TRS-3-2012 Disclaimer This report...

  11. Effect of spatial variability on the bearing capacity of cement-treated ground

    E-Print Network [OSTI]

    Kasama, Kiyonobu

    This paper presents a reliability assessment for the undrained bearing capacity of a surface strip foundation based on the results of a probabilistic study in which the shear strength and unit weight of cement-treated ...

  12. Emerging Energy-efficiency and CO2 Emission-reduction Technologies for Cement and Concrete Production

    E-Print Network [OSTI]

    Hasanbeigi, Ali

    2013-01-01T23:59:59.000Z

    2 abatement using the calcium looping cycle. Energy Environ.the CO 2 captured by the calcium looping system, use of the16. Flow diagram of calcium-looping CO 2 capture and cement

  13. Sources of high temperature degradation of cement-based materials : nanoindentation and microporoelastic analysis

    E-Print Network [OSTI]

    DeJong, Matthew J. (Matthew Justin)

    2005-01-01T23:59:59.000Z

    The effects of high temperature exposure on cement-based materials have been under investigation for quite some time, but a fundamental understanding of the sources of high temperature degradation has been limited by ...

  14. Effects of microorganisms growth on the long-term stability of cement and bitumen

    SciTech Connect (OSTI)

    Libert, M.F.; Sellier, R.; Jouquet, G.; Trescinski, M.; Spor, H. [Nuclear Research Center of Cadarache, St.Paul-Lez-Durance (France)

    1993-12-31T23:59:59.000Z

    Cement is used as a coating matrix for nuclear waste or as an engineered barrier of waste repositories situated in geological formations. The effect of mineral acids excreted by bacteria (Thiobacillus) or organic acids produced by fungi, on the biodegradation of cement is discussed. Organic acids are quantitatively and qualitatively determined during growth of fungi over a two-year period. Even with high pH conditions, pH of the cement {approx} 11, growth of microorganisms occurs. Biodeterioration of cement is expressed in terms of bioleaching velocity of calcium and is observed by electron microscopy. Bitumen is commonly used as a matrix for the long-term storage of radioactive wastes. Long-term biodegrability of bitumen is discussed as a function of its chemical composition and various studied microorganisms.

  15. Lattice Boltzmann simulations of the permeability and capillary adsorption of cement model microstructures

    SciTech Connect (OSTI)

    Zalzale, M. [Laboratory of Construction Materials, Ecole Polytechnique Federale de Lausanne, CH-1015 Lausanne (Switzerland)] [Laboratory of Construction Materials, Ecole Polytechnique Federale de Lausanne, CH-1015 Lausanne (Switzerland); McDonald, P.J., E-mail: p.mcdonald@surrey.ac.uk [Department of Physics, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom)

    2012-12-15T23:59:59.000Z

    The lattice Boltzmann method is used to investigate the permeability of microstructures of cement pastes generated using the numerical models CEMHYD3D (Bentz, 1997) and {mu}IC (Bishnoi and Scrivener, 2009). Results are reported as a function of paste water-to-cement ratio and degree of hydration. The permeability decreases with increasing hydration and decreasing water-to-cement ratio in agreement with experiment. However the permeability is larger than the experimental data recorded using beam bending methods (Vichit-Vadakan and Scherer, 2002). Notwithstanding, the lattice Boltzmann results compare favourably with alternate numerical methods of permeability calculation for cement model microstructures. In addition, we show early results for the liquid/vapour capillary adsorption and desorption isotherms in the same model {mu}IC structures. The broad features of the experimental capillary porosity isotherm are reproduced, although further work is required to adequately parameterise the model.

  16. E-Print Network 3.0 - antibiotic-loaded cement spacers Sample...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in this study. Sealed Reference Sample Sample Cement Paste 10 mm 10 mm 11.5mm 8mm Plastic Spacers 5 mm... based on Stokes equation actually suggests that some of the...

  17. E-Print Network 3.0 - ash cements stabilized Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science 6 By-Products Utilization Summary: OF WISCONSIN - MILWAUKEE 12;2 Use of Clean Coal Ash as Setting Time Regulator in Portland Cement by Zichao Wu... as setting time...

  18. Portland cement mortar modified with latex and fiber glass for thin shell construction

    E-Print Network [OSTI]

    Raymond, Jewell Duane

    1963-01-01T23:59:59.000Z

    and materials required for the elaborate formwork. Building codes are also in need of revision to include provisions for thin shell construction. The objective of this study was to investigate the possible potential use of portland cement mortar modified...

  19. Assessment of durability performance of "Early-Opening-to-Traffic" Portland Cement Concrete pavement and patches

    E-Print Network [OSTI]

    Shrestha, Pradhumna Babu

    1999-01-01T23:59:59.000Z

    This study relates the assessment of durability to ''early-opening-to-traffic'' (EOT) portland cement concrete (PCC). Several factors were identified relative to the performance of EOT PCC. Each of these factors was considered in terms of freeze...

  20. Detecting and modeling cement failure in high pressure/ high temperature wells using finite-element method

    E-Print Network [OSTI]

    Shahri, Mehdi Abbaszadeh

    2006-04-12T23:59:59.000Z

    conditions and are investigated simultaneously to more accurately predict cement failure. The results of this study show the relevant dependency of stress principles with temperature and pressure. These results clarify the deformation caused by any...

  1. Emerging Energy-efficiency and CO2 Emission-reduction Technologies for Cement and Concrete Production

    E-Print Network [OSTI]

    Hasanbeigi, Ali

    2013-01-01T23:59:59.000Z

    Hilger, J. 2003. Combined Utilization of Oil Shale Energyand Oil Shale Minerals within the Production of Cement andOther Hydraulic Minerals. Oil Shale, Vol. 20, No. 3, pp.

  2. Grinding of cement clinkers : linking multi-scale fracture properties to system chemistry, mineralogy and microstructure

    E-Print Network [OSTI]

    Wilson, William, S.M. Massachusetts Institute of Technology

    2013-01-01T23:59:59.000Z

    Growing environmental concerns encourage the cement industry to improve its environmental performance, which in turn renews the interest in clinker grinding efficiency. Current knowledge on clinker grinding was built over ...

  3. Microsoft Word - NETL-TRS-2-2014_Addendum 1 to Foamed Cement...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Addendum 1 to Computed Tomography and Statistical Analysis of Bubble Size Distributions in Atmospheric-Generated Foamed Cement 6 March 2014 Office of Fossil Energy NETL-TRS-2-2014...

  4. Analysis of Energy-Efficiency Opportunities for the Cement Industry in Shandong Province, China

    E-Print Network [OSTI]

    Price, Lynn

    2010-01-01T23:59:59.000Z

    Potential (GWh) CO2 Emission Reduction Potential (kt CO 2 )Fuel Savings (TJ) CO2 Emission Reduction Potential (kt COPotentials and CO2 Emission Reductions in 16 Studied Cement

  5. Potential Energy Savings and CO2 Emissions Reduction of China's Cement Industry

    E-Print Network [OSTI]

    Ke, Jing

    2013-01-01T23:59:59.000Z

    Energy Savings and CO2 Emissions Reduction of China’s CementEnergy Savings and CO2 Emissions Reduction of China’s Cementenergy savings and CO2 emission reduction potentials are

  6. Dry compliant seal for phosphoric acid fuel cell

    DOE Patents [OSTI]

    Granata, Jr., Samuel J. (South Greensburg, PA); Woodle, Boyd M. (N. Huntingdon Township, Westmoreland County, PA)

    1990-01-01T23:59:59.000Z

    A dry compliant overlapping seal for a phosphoric acid fuel cell preformed f non-compliant Teflon to make an anode seal frame that encircles an anode assembly, a cathode seal frame that encircles a cathode assembly and a compliant seal frame made of expanded Teflon, generally encircling a matrix assembly. Each frame has a thickness selected to accommodate various tolerances of the fuel cell elements and are either bonded to one of the other frames or to a bipolar or end plate. One of the non-compliant frames is wider than the other frames forming an overlap of the matrix over the wider seal frame, which cooperates with electrolyte permeating the matrix to form a wet seal within the fuel cell that prevents process gases from intermixing at the periphery of the fuel cell and a dry seal surrounding the cell to keep electrolyte from the periphery thereof. The frames may be made in one piece, in L-shaped portions or in strips and have an outer perimeter which registers with the outer perimeter of bipolar or end plates to form surfaces upon which flanges of pan shaped, gas manifolds can be sealed.

  7. Submicron carbon filament cement-matrix composites for electromagnetic interference shielding

    SciTech Connect (OSTI)

    Fu, X.; Chung, D.D.L. [State Univ. of New York, Buffalo, NY (United States). Composite Materials Research Lab.] [State Univ. of New York, Buffalo, NY (United States). Composite Materials Research Lab.

    1996-10-01T23:59:59.000Z

    Carbon filaments of diameter 0.1 mm were found to be a much more effective additive than conventional carbon fibers of diameter 10 mm in providing cement pastes capable of electromagnetic interference shielding. With 0.54 vol. % filaments and a shield thickness of 4 mm, a shielding effectiveness of 30 dB was attained at 1--2 GHz. However, the filaments were less effective than the fibers for reinforcing and for providing strain sensing cement-matrix composites.

  8. The physical and chemical aspects of the leaching behavior of metals from portland cement

    E-Print Network [OSTI]

    Davis, Ricardo Corye

    1990-01-01T23:59:59.000Z

    THE PHYSICAL AND CHEMICAL ASPECTS OF THE LEACHING BEHAVIOR OF METALS FROM PORTLAND CEMENT A Thesis by RICARDO CORYE DAVIS Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE December 1990 Major Subject: Chemistry THE PHYSICAL AND CHEMICAL ASPECTS OF THE LEACHING BEHAVIOR OF METALS FROM PORTLAND CEMENT A Thesis by RICARDO CORYE DAVIS Approved as to style and content by: David L. Cocke (Co...

  9. Determining the effective diffusivity of ions in hazardous wastes solidified by portland cement

    E-Print Network [OSTI]

    Taffinder, Glen Gregory

    1991-01-01T23:59:59.000Z

    DETERMINING THE EFFECTIVE DIFFUSIVITY OF TONS IN HAZARDOUS WASTES SOLIDIFIED BY PORTLAND CEMENT A Thesis by GLEN GREGORY TAFFINDER Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE May 1991 Major Subject: Civil Engineering DETERMINING THE EFFECTIVE DIFFUSIVITY OF TONS IN HAZARDOUS WASTES SOLIDIFIED BY PORTLAND CEMENT A Thesis by GLEN GREGORY TAFFINDER Approved as to scyle and content by: Bill...

  10. Preliminary non-destructive assessment of moisture content, hydration and dielectric properties of Portland cement concrete

    E-Print Network [OSTI]

    Avelar Lezama, Ivan

    2007-04-25T23:59:59.000Z

    PRELIMINARY NON-DESTRUCTIVE ASSESSMENT OF MOISTURE CONTENT, HYDRATION AND DIELECTRIC PROPERTIES OF PORTLAND CEMENT CONCRETE A Thesis by IVAN AVELAR LEZAMA Submitted to the Office of Graduate Studies of Texas A... AND DIELECTRIC PROPERTIES OF PORTLAND CEMENT CONCRETE A Thesis by IVAN AVELAR LEZAMA Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE...

  11. The use of Devonian oil shales in the production of portland cement

    SciTech Connect (OSTI)

    Schultz, C.W.; Lamont, W.E. [Alabama Univ., University, AL (United States); Daniel, J. [Lafarge Corp., Alpena, MI (United States)

    1991-12-31T23:59:59.000Z

    The Lafarge Corporation operates a cement plant at Alpena, Michigan in which Antrim shale, a Devonian oil shale, is used as part of the raw material mix. Using this precedent the authors examine the conditions and extent to which spent shale might be utilized in cement production. They conclude that the potential is limited in size and location but could provide substantial benefit to an oil shale operation meeting these criteria.

  12. Form Approval:

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781 2,328 2,683DieselValues shown for the current8610) Form Approval:

  13. Form Approved

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781 2,328 2,683DieselValues shown for the current8610) FormApproved

  14. Service Forms

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmitted forHighlightsSeminars Seminars at theSequestration ofService Forms

  15. Dry cooling: Perspectives on future needs

    SciTech Connect (OSTI)

    Guyer, E.C. (Yankee Scientific, Inc., Ashland, MA (United States))

    1991-08-01T23:59:59.000Z

    The factors that can be expected to determine the future role of dry cooling in the United States electric power generation industry are identified and characterized. Focus is primarily on the issues of water availability for the electric power industry and the environmental impacts of evaporative cooling systems. The question of future water availability is addressed in terms of both limitations and opportunities facing the industry. A brief review of the status of dry cooling applications is provided. Included is a summary of an extensive survey of electric utility industry perspectives on the future requirements and role for dry cooling. Some regional assessments of the expected future requirements for this technology are also provided. Conclusions are a qualitative characterization of the expected future role of dry cooling in the electric power industry. 72 refs., 7 figs., 13 tabs.

  16. Dry Cask Storage Study Feb 1989

    Broader source: Energy.gov [DOE]

    This report on the use of dry-cask-storage technologies at the sites of civilian nuclear power reactors has been prepared by the U.S. Department of Energy (DOE} in response to the requirements of...

  17. High strength air-dried aerogels

    DOE Patents [OSTI]

    Coronado, Paul R.; Satcher, Jr., Joe H.

    2012-11-06T23:59:59.000Z

    A method for the preparation of high strength air-dried organic aerogels. The method involves the sol-gel polymerization of organic gel precursors, such as resorcinol with formaldehyde (RF) in aqueous solvents with R/C ratios greater than about 1000 and R/F ratios less than about 1:2.1. Using a procedure analogous to the preparation of resorcinol-formaldehyde (RF) aerogels, this approach generates wet gels that can be air dried at ambient temperatures and pressures. The method significantly reduces the time and/or energy required to produce a dried aerogel compared to conventional methods using either supercritical solvent extraction. The air dried gel exhibits typically less than 5% shrinkage.

  18. Advanced wet-dry cooling tower concept

    E-Print Network [OSTI]

    Snyder, Troxell Kimmel

    The purpose of this years' work has been to test and analyze the new dry cooling tower surface previously developed. The model heat transfer test apparatus built last year has been instrumented for temperature, humidity ...

  19. Cold vacuum drying facility design requirements

    SciTech Connect (OSTI)

    Irwin, J.J.

    1997-09-24T23:59:59.000Z

    This release of the Design Requirements Document is a complete restructuring and rewrite to the document previously prepared and released for project W-441 to record the design basis for the design of the Cold Vacuum Drying Facility.

  20. Percutaneous Extraction of Cement Leakage After Vertebroplasty Under CT and Fluoroscopy Guidance: A New Technique

    SciTech Connect (OSTI)

    Amoretti, Nicolas, E-mail: amorettinicolas@yahoo.fr; Huwart, Laurent, E-mail: huwart.laurent@wanadoo.fr [Centre Hospitalo-Universitaire de Nice, Department of Radiology (France)

    2012-12-15T23:59:59.000Z

    Purpose: We report a new minimally invasive technique of extraction of cement leakage following percutaneous vertebroplasty in adults. Methods: Seven adult patients (five women, two men; mean age: 81 years) treated for vertebral compression fractures by percutaneous vertebroplasty had cement leakage into perivertebral soft tissues along the needle route. Immediately after vertebroplasty, the procedure of extraction was performed under computed tomography (CT) and fluoroscopy guidance: a Chiba needle was first inserted using the same route as the vertebroplasty until contact was obtained with the cement fragment. This needle was then used as a guide for an 11-gauge Trocar t'am (Thiebaud, France). After needle withdrawal, a 13-gauge endoscopy clamp was inserted through the cannula to extract the cement fragments. The whole procedure was performed under local anesthesia. Results: In each patient, all cement fragments were withdrawn within 10 min, without complication. Conclusions: This report suggests that this CT- and fluoroscopy-guided percutaneous technique of extraction could reduce the rate of cement leakage-related complications.

  1. Dry aging beef for the retail channel

    E-Print Network [OSTI]

    Smith, Robert David

    2007-09-17T23:59:59.000Z

    Koohmaraie, & Goll, 1995). The Z-line is one myofibrillar structure clearly altered by proteases in the postmortem aging of beef (Goll, Otsuka, Nagainis, Shannon, Sathe, & Muguruma, 1983). However, Z-disk degradation does not occur to any significant... and humidity is said to be dry aged. Practically all beef is vacuumed packaged at the packer level. However, many believe 3 that wet aging does not produce the enhanced palatability characteristics associated with dry aged beef. This process can...

  2. Compression of cooked freeze-dried carrots

    E-Print Network [OSTI]

    Macphearson, Bruce Alan

    2012-06-07T23:59:59.000Z

    . Reduction in volume of up to 18-fold can be obtained by com- pressing dehydrated vegetables (Rabman, 1969). During World War II, the United Kingdom produced dehydrated cabbage and carrots in compressed blocks (Gooding and Rolfe, 1967). Fairbrother (1968...-propanol at low concentration by freeze-drying carbohydrate solutions. J. of Food Sci. 37:617. Flosdorf, E. W. 1949. "Freeze-drying, " Reinhold Publishing Co. , New York. Gooding, E. B. B. and Rolfe, E. J. 1957. Some Recent Work on Dehy- dration...

  3. Adsorptive Drying of Organic Liquids- An Update

    E-Print Network [OSTI]

    Joshi, S.; Humphrey, J. L.; Fair, J. R.

    reactions lowering yields and compro mising product quality. In these several situations where liquids are involved, any of the following means may be used to lower the water content: Inert Gas Purging Liquid Extraction Freeze Drying Pervaporation... Fractional Distillation Adsorption Although fractional distillation and adsorption are almost exclusively used, the others are included to complete the list. Inert Gas Purging This method can be used to dry high boiling liquids such as gear oils...

  4. Amendment 1 - Dry-type power transformers

    E-Print Network [OSTI]

    International Electrotechnical Commission. Geneva

    1986-01-01T23:59:59.000Z

    Specifies requirements for dry-type power transformers (including auto-transformers) having values of highest voltage for equipment up to and including 36 kV. The following small and special dry-type transformers are not covered by this standard: -instrument transformers (covered by IEC 60185 and 60186); -transformers for static convertors (covered by IEC 60084, 60119 and 60146). Where IEC standards do not exist for other special transformers, this standard may be applicable as a whole or in part.

  5. Steam atmosphere drying exhaust steam recompression system

    DOE Patents [OSTI]

    Becker, F.E.; Smolensky, L.A.; Doyle, E.F.; DiBella, F.A.

    1994-03-08T23:59:59.000Z

    This invention relates to a heated steam atmosphere drying system comprising dryer in combination with an exhaust recompression system which is extremely energy efficient and eliminates dangers known to air dryers. The system uses superheated steam as the drying medium, which recirculates through the system where its heat of evaporation and heat of compression is recovered, thereby providing a constant source of heat to the drying chamber. The dryer has inlets whereby feedstock and superheated steam are fed therein. High heat transfer and drying rates are achieved by intimate contact of the superheated steam with the particles being dried. The dryer comprises a vessel which enables the feedstock and steam to enter and recirculate together. When the feedstock becomes dry it will exit the dryer with the steam and become separated from the steam through the use of a curvilinear louver separator (CLS). The CLS enables removal of fine and ultrafine particles from the dryer. Water vapor separated from the particles in the CLS as superheated steam, may then be recovered and recirculated as steam through the use of a compressor to either directly or indirectly heat the dryer, and a heat exchanger or a heater to directly provide heat to the dryer. This system not only provides a very efficient heat transfer system but results in a minimum carry-over of ultrafine particles thereby eliminating any explosive hazard. 17 figures.

  6. Steam atmosphere drying exhaust steam recompression system

    DOE Patents [OSTI]

    Becker, Frederick E. (Reading, MA); Smolensky, Leo A. (Concord, MA); Doyle, Edward F. (Dedham, MA); DiBella, Francis A. (Roslindale, MA)

    1994-01-01T23:59:59.000Z

    This invention relates to a heated steam atmosphere drying system comprising dryer in combination with an exhaust recompression system which is extremely energy efficient and eliminates dangers known to air dryers. The system uses superheated steam as the drying medium, which recirculated through the system where its heat of evaporation and heat of compression is recovered, thereby providing a constant source of heat to the drying chamber. The dryer has inlets whereby feedstock and superheated steam are fed therein. High heat transfer and drying rates are achieved by intimate contact of the superheated steam with the particles being dried The dryer comprises a vessel which enables the feedstock and steam to enter recirculate together. When the feedstock becomes dry it will exit the dryer with the steam and become separated from the steam through the use of a curvilinear louver separator (CLS). The CLS enables removal of fine and ultrafine particles from the dryer. Water vapor separated from the particles in the CLS as superheated steam, may then be recovered and recirculated as steam through the use of a compressor to either directly or indirectly heat the dryer, and a heat exchanger or a heater to directly provide heat to the dryer. This system not only provides a very efficient heat transfer system but results in a minimum carry-over of ultrafine particles thereby eliminating any explosive hazard.

  7. Determination of Water Saturation in Relatively Dry Porous Media...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water Saturation in Relatively Dry Porous Media Using Gas-phase Tracer Tests. Determination of Water Saturation in Relatively Dry Porous Media Using Gas-phase Tracer Tests....

  8. Process for forming transparent aerogel insulating arrays

    DOE Patents [OSTI]

    Tewari, Param H. (Milpitas, CA); Hunt, Arlon J. (Oakland, CA)

    1986-01-01T23:59:59.000Z

    An improved supercritical drying process for forming transparent silica aerogel arrays is described. The process is of the type utilizing the steps of hydrolyzing and condensing aloxides to form alcogels. A subsequent step removes the alcohol to form aerogels. The improvement includes the additional step, after alcogels are formed, of substituting a solvent, such as CO.sub.2, for the alcohol in the alcogels, the solvent having a critical temperature less than the critical temperature of the alcohol. The resulting gels are dried at a supercritical temperature for the selected solvent, such as CO.sub.2, to thereby provide a transparent aerogel array within a substantially reduced (days-to-hours) time period. The supercritical drying occurs at about 40.degree. C. instead of at about 270.degree. C. The improved process provides increased yields of large scale, structurally sound arrays. The transparent aerogel array, formed in sheets or slabs, as made in accordance with the improved process, can replace the air gap within a double glazed window, for example, to provide a substantial reduction in heat transfer. The thus formed transparent aerogel arrays may also be utilized, for example, in windows of refrigerators and ovens, or in the walls and doors thereof or as the active material in detectors for analyzing high energy elementry particles or cosmic rays.

  9. Process for forming transparent aerogel insulating arrays

    DOE Patents [OSTI]

    Tewari, P.H.; Hunt, A.J.

    1985-09-04T23:59:59.000Z

    An improved supercritical drying process for forming transparent silica aerogel arrays is described. The process is of the type utilizing the steps of hydrolyzing and condensing aloxides to form alcogels. A subsequent step removes the alcohol to form aerogels. The improvement includes the additional step, after alcogels are formed, of substituting a solvent, such as CO/sub 2/, for the alcohol in the alcogels, the solvent having a critical temperature less than the critical temperature of the alcohol. The resulting gels are dried at a supercritical temperature for the selected solvent, such as CO/sub 2/, to thereby provide a transparent aerogel array within a substantially reduced (days-to-hours) time period. The supercritical drying occurs at about 40/sup 0/C instead of at about 270/sup 0/C. The improved process provides increased yields of large scale, structurally sound arrays. The transparent aerogel array, formed in sheets or slabs, as made in accordance with the improved process, can replace the air gap within a double glazed window, for example, to provide a substantial reduction in heat transfer. The thus formed transparent aerogel arrays may also be utilized, for example, in windows of refrigerators and ovens, or in the walls and doors thereof or as the active material in detectors for analyzing high energy elementary particles or cosmic rays.

  10. Corrective Action Investigation Plan for Corrective Action Unit 556: Dry Wells and Surface Release Points Nevada Test Site, Nevada (Draft), Revision 0

    SciTech Connect (OSTI)

    Grant Evenson

    2007-02-01T23:59:59.000Z

    Corrective Action Unit  (CAU) 556, Dry Wells and Surface Release Points, is located in Areas 6 and 25 of the Nevada Test Site, 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 556 is comprised of four corrective action sites (CASs) listed below: •06-20-04, National Cementers Dry Well •06-99-09, Birdwell Test Hole •25-60-03, E-MAD Stormwater Discharge and Piping •25-64-01, Vehicle Washdown and Drainage Pit These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives. Additional information will be obtained by conducting a corrective action investigation before evaluating corrective action alternatives and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document.

  11. Energy efficiency and carbon dioxide emissions reduction opportunities in the U.S. cement industry

    SciTech Connect (OSTI)

    Martin, Nathan; Worrell, Ernst; Price, Lynn

    1999-08-01T23:59:59.000Z

    This paper reports on an in-depth analysis of the U.S. cement industry, identifying cost-effective energy efficiency measures and potentials. The authors assess this industry at the aggregate level (Standard Industrial Classification 324), which includes establishments engaged in manufacturing hydraulic cements, including Portland, natural, masonry, and pozzolana when reviewing industry trends and when making international comparisons. Coal and coke are currently the primary fuels for the sector, supplanting the dominance of natural gas in the 1970s. Between 1970 and 1997, primary physical energy intensity for cement production (SIC 324) dropped 30%,from 7.9 GJ/t to 5.6 GJ/t, while carbon dioxide intensity due to fuel consumption (carbon dioxide emissions expressed in tons of carbon per ton cement) dropped 25%, from 0.16 tC/ton to 0.12 tC/ton. Carbon dioxide intensity due to fuel consumption and clinker calcination dropped 17%, from 0.29 tC/ton to 0.24 tC/ton. They examined 30 energy efficient technologies and measures and estimated energy savings, carbon dioxide savings, investment costs, and operation and maintenance costs for each of the measures. They constructed an energy conservation supply curve for U.S. cement industry which found a total cost-effective reduction of 0.6 GJ/ton of cement consisting of measures having a simple payback period of 3 years or less. This is equivalent to potential energy savings of 11% of 1994 energy use for cement making and a savings of 5% of total 1994 carbon dioxide emissions by the U.S. cement industry. Assuming the increased production of blended cement in the U.S., as is common in many parts of the world, the technical potential for energy efficiency improvement would not change considerably. However, the cost-effective potential, would increase to 1.1 GJ/ton cement or 18% of total energy use, and carbon dioxide emissions would be reduced by 16%.

  12. Evaluation of dry-solids-blend material source for grouts containing 106-AN waste: September 1990 progress report

    SciTech Connect (OSTI)

    Gilliam, T.M.; Osborne, S.C.; Francis, C.L.; Scott, T.C.

    1993-09-01T23:59:59.000Z

    Stabilization/solidification (S/S) is the most widely used technology for the treatment and ultimate disposal of both radioactive and chemically hazardous wastes. Such technology is being utilized in a Grout Treatment Facility (GTF) by the Westinghouse Hanford Company (WHC) for the disposal of various wastes, including 106-AN wastes, located on the Hanford Reservation. The WHC personnel have developed a grout formula for 106-AN disposal that is designed to meet stringent performance requirements. This formula consists of a dry-solids blend containing 40 wt % limestone, 28 wt % granulated blast furnace slag (BFS), 28 wt % ASTM Class F fly ash, and 4 wt % Type I-II-LA Portland cement. The blend is mixed with 106-AN waste at a ratio of 9 lb of dry-solids blend per gallon of waste. This report documents progress made to date on efforts at Oak Ridge National Laboratory (ORNL) in support of WHC`s Grout Technology Program to assess the effects of the source of the dry-solids-blend materials on the resulting grout formula.

  13. Assessment of Energy Efficiency Improvement and CO2 Emission Reduction Potentials in the Cement Industry in China

    E-Print Network [OSTI]

    Hasanbeigi, Ali

    2013-01-01T23:59:59.000Z

    Wang, L. , 2008. Alternative fuel using and waste materialPolicy Research on Alternative Fuels for Cement Industry inis very little use of alternative fuels (defined as waste

  14. Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Cement Sector

    E-Print Network [OSTI]

    Sathaye, J.

    2011-01-01T23:59:59.000Z

    Advanced Concepts of Waste Heat Recovery in Cement Plants”building controls, waste heat recovery or adjustable speedquantities of low grade waste heat from the kilns or clinker

  15. Energy efficiency for greenhouse gas emission reduction in China: The case of the cement industry

    SciTech Connect (OSTI)

    Sinton, J. [Lawrence Berkeley National Lab., Berkeley, CA (United States)

    1996-12-31T23:59:59.000Z

    A project at LBNL has combined two different approaches to investigate changes in efficiency in China`s cement industry, which currently accounts for over 6% of China`s total commercial energy use and over 1% of global carbon emissions. Cement output has doubled over the past five years, and will double again within 15 years. Addressing cement industry carbon emissions will be a key element of any program to control China`s carbon emissions. Macro-level analysis was used to investigate industry-wide trends, and detailed case studies of individual plants illuminated key issues in technology choice that fundamentally affect efficiency. In general, enterprises adopted technologies that increased output and improved quality, and had little regard for energy efficiency, though most new technologies and practices did improve efficiency. Changes in energy prices were a surprisingly weak factor in adoption of efficient technologies. Unexpectedly, many enterprises developed a strong preference for the least fuel-efficient technology, which allows power generation with kiln waste heat. This preference was motivated in a large part by the desire to achieve security in electricity supply, and by some reforms. This alternative has become increasingly popular, and threatens to reverse some progress made in reducing the carbon-intensiveness of China`s cement industry. Foreign technical assistance and more importantly, greater participation in China`s cement industry of foreign cement companies would speed the adoption of large scale very efficient precalciner plants. Paradoxically, improving energy efficiency in China`s cement industry is also a supply-side issue, improved reliability in China`s power network will make the more fuel-efficient alternative more attractive.

  16. Reduction of NO{sub x} emissions from a dry process preheater kiln with calciner through the use of the urea-based SNCR process

    SciTech Connect (OSTI)

    Steuch, H.E. [Ash Grove Cement Co., Portland, OR (United States)] [Ash Grove Cement Co., Portland, OR (United States); Hille, J.T. [Ash Grove Cement Co., Seattle, WA (United States)] [Ash Grove Cement Co., Seattle, WA (United States); Sun, W.H. [Nalco Fuel Tech, Naperville, IL (United States)] [Nalco Fuel Tech, Naperville, IL (United States); Bisnett, M.J.; Kirk, D.W. [Nalco Fuel Tech, Santa Fe Springs, CA (United States)] [Nalco Fuel Tech, Santa Fe Springs, CA (United States)

    1996-07-01T23:59:59.000Z

    The post combustion reduction of NO{sub x} using urea has proven to be an effective method in controlling NO{sub x} from various combustion sources. Such a reduction process has been successfully demonstrated in a week-long test at Ash Grove`s dry process cement kiln system located in Seattle. This system is equipped with planetary coolers, a 5-stage preheater and an air-through-the-kiln calciner. Testing was done under ten different kiln/calciner operating conditions. Using three to four injectors, NO{sub x} was efficiently reduced from 350--600 lb per hour lb/ton of clinker to less than 100 lb per hour. This calculates to a NO{sub x} reduction of greater than 80% for most cases. Chemical utilization was greater than 50%. A high degree of mixing and a long residence time at an appropriate temperature present in the preheater tower contributed to these excellent results. An average ammonia slip was four ppm above a baseline level at a normalized stoichiometric ratio of 1. This demonstration confirms expectations that dry process cement kilns with 4+ preheater stages are an ideal application for the selective noncatalytic reduction of NO{sub x} with urea. NO{sub x} was efficiently and effectively reduced with minimal byproduct emissions and virtually no effect on plant operations.

  17. Special waste-form lysimeters - arid: 1984--1992 data summary and preliminary interpretation

    SciTech Connect (OSTI)

    Jones, T.L. [New Mexico State Univ., Las Cruces, NM (United States); Serne, R.J. [Pacific Northwest Lab., Richland, WA (United States)

    1994-10-01T23:59:59.000Z

    A lysimeter facility constructed at the Hanford Site in south-central Washington State has been used since 1984 to monitor the leaching of buried waste forms under natural conditions. The facility is generating data that are useful in evaluating source-term models used in radioactive waste transport analyses. The facility includes ten bare-soil lysimeters (183 cm diameter by 305 cm depth) containing buried waste forms generated at nuclear reactors in the United States and solidified with Portland M cement, masonry cement, bitumen, and vinyl-ester styrene. The waste forms contained in the lysimeters have been leached under natural, semiarid conditions. In spite of the semiarid conditions, from 1984 through 1992, an average of 45 cm of water leached through the lysimeters, representing 27% of area precipitation. Leachate samples have been routinely collected and analyzed for radionuclide and chemical content. To date, tritium, cobalt-60, and cesium-137 have been identified in the lysimeter leachate samples. From 1984 through 1992, over 4000 {mu}Ci of tritium, representing 76 and 71 % of inventory (not decay corrected), have been leached from the two waste forms containing tritium. Cobalt-60 has been found in the leachate from all six of the waste forms that originally contained > 1 mCi of inventory. The leached amounts of cobalt-60 represent < 0.1 % of original cobalt inventories. Mobile cobalt is believed to be chelated with organic compounds, such as ethylenediaminetetraacetic acid (EDTA), that are present in the waste. Trace amounts of cesium-137 have occasionally been identified in leachate from two waste forms since 1991. Qualitatively, the field leaching results confirm laboratory studies suggesting that tritium is readily leached from cement, and that cobalt-60 is generally leached more easily from cement than from vinyl-ester styrene.

  18. Heat and Mass Transfer Modeling of Dry Gases in the Cathode of PEM Fuel Cells

    E-Print Network [OSTI]

    Stockie, John

    Heat and Mass Transfer Modeling of Dry Gases in the Cathode of PEM Fuel Cells M.J. Kermani1 J and N2, through the cathode of a proton exchange membrane (PEM) fuel cell is studied numerically) an energy equation, written in a form that has enthalpy as the dependent variable. Keywords: PEM fuel cells

  19. Effect of Concrete Waste Form Properties on Radionuclide Migration

    SciTech Connect (OSTI)

    Mattigod, Shas V.; Bovaird, Chase C.; Wellman, Dawn M.; Skinner, De'Chauna J.; Cordova, Elsa A.; Wood, Marcus I.

    2009-09-30T23:59:59.000Z

    Assessing long-term performance of Category 3 waste cement grouts for radionuclide encasement requires knowledge of the radionuclide-cement interactions and mechanisms of retention (i.e., sorption or precipitation) the mechanism of contaminant release, the significance of contaminant release pathways, how waste form performance is affected by the full range of environmental conditions within the disposal facility, the process of waste form aging under conditions that are representative of processes occurring in response to changing environmental conditions within the disposal facility, the effect of waste form aging on chemical, physical, and radiological properties and the associated impact on contaminant release. This knowledge will enable accurate prediction of radionuclide fate when the waste forms come in contact with groundwater. Numerous sets of tests were initiated in fiscal years (FY) 2006-2009 to evaluate (1) diffusion of iodine (I) and technetium (Tc) from concrete into uncontaminated soil after 1 and 2 years, (2) I and rhenium (Re) diffusion from contaminated soil into fractured concrete, (3) I and Re (set 1) and Tc (set 2) diffusion from fractured concrete into uncontaminated soil, (4) evaluate the moisture distribution profile within the sediment half-cell, (5) the reactivity and speciation of uranium (VI) (U(VI)) compounds in concrete porewaters, (6) the rate of dissolution of concrete monoliths, and (7) the diffusion of simulated tank waste into concrete.

  20. Acoustically enhanced heat exchange and drying apparatus

    DOE Patents [OSTI]

    Bramlette, T. Tazwell (Livermore, CA); Keller, Jay O. (Oakland, CA)

    1989-01-01T23:59:59.000Z

    A heat transfer apparatus includes a first chamber having a first heat transfer gas inlet, a second heat transfer gas inlet, and an outlet. A first heat transfer gas source provides a first gas flow to the first chamber through the first heat transfer gas inlet. A second gas flow through a second chamber connected to the side of the first chamber, generates acoustic waves which bring about acoustical coupling of the first and second gases in the acoustically augmented first chamber. The first chamber may also include a material inlet for receiving material to be dried, in which case the gas outlet serves as a dried material and gas outlet.

  1. Self-protection in dry recycle technologies

    SciTech Connect (OSTI)

    Hannum, W.H.; Wade, D.; Stanford, G.

    1995-12-01T23:59:59.000Z

    In response to the INFCE conclusions, the U.S. undertook development of a new dry fuel cycle. Dry recycle processes have been demonstrated to be feasible. Safeguarding such fuel cycles will be dramatically simpler than the PUREX fuel cycle. At every step of the processes, the materials meet the {open_quotes}spent-fuel standard.{close_quotes} The scale is compatible with collocation of power reactors and their recycle facility, eliminating off-site transportation and storage of plutonium-bearing materials. Material diverted either covertly or overtly would be difficult (relative to material available by other means) to process into weapons feedstock.

  2. Dry-Mass Sensing for Microfluidics

    E-Print Network [OSTI]

    Müller, T.; White, D. A.; Knowles, T. P. J.

    2014-11-25T23:59:59.000Z

    Dry-Mass Sensing for Microfluidics T. Mu¨ller,1 D. A. White,1 and T. P. J. Knowles1, a) Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom (Dated: 25 November 2014) We present an approach... for interfacing an electromechanical sensor with a microfluidic device for the accurate quantification of the dry mass of analytes within microchannels. We show that depositing solutes onto the active surface of a quartz crystal microbalance by means of an on...

  3. Annotated Bibliography for Drying Nuclear Fuel

    SciTech Connect (OSTI)

    Rebecca E. Smith

    2011-09-01T23:59:59.000Z

    Internationally, the nuclear industry is represented by both commercial utilities and research institutions. Over the past two decades many of these entities have had to relocate inventories of spent nuclear fuel from underwater storage to dry storage. These efforts were primarily prompted by two factors: insufficient storage capacity (potentially precipitated by an open-ended nuclear fuel cycle) or deteriorating quality of existing underwater facilities. The intent of developing this bibliography is to assess what issues associated with fuel drying have been identified, to consider where concerns have been satisfactorily addressed, and to recommend where additional research would offer the most value to the commercial industry and the U. S. Department of Energy.

  4. In-situ early-age hydration study of sulfobelite cements by synchrotron powder diffraction

    SciTech Connect (OSTI)

    Álvarez-Pinazo, G.; Cuesta, A.; García-Maté, M.; Santacruz, I.; Losilla, E.R. [Departamento de Química Inorgánica, Universidad de Málaga, Campus Teatinos S/N., 29071 Málaga (Spain)] [Departamento de Química Inorgánica, Universidad de Málaga, Campus Teatinos S/N., 29071 Málaga (Spain); Sanfélix, S.G. [Unidad Técnica de Investigación de Materiales, AIDICO, Avda. Benjamín Franklin, 17 Paterna, Valencia (Spain)] [Unidad Técnica de Investigación de Materiales, AIDICO, Avda. Benjamín Franklin, 17 Paterna, Valencia (Spain); Fauth, F. [CELLS-Alba synchrotron, Carretera BP 1413, Km. 3.3, E-08290 Cerdanyola, Barcelona (Spain)] [CELLS-Alba synchrotron, Carretera BP 1413, Km. 3.3, E-08290 Cerdanyola, Barcelona (Spain); Aranda, M.A.G. [Departamento de Química Inorgánica, Universidad de Málaga, Campus Teatinos S/N., 29071 Málaga (Spain) [Departamento de Química Inorgánica, Universidad de Málaga, Campus Teatinos S/N., 29071 Málaga (Spain); CELLS-Alba synchrotron, Carretera BP 1413, Km. 3.3, E-08290 Cerdanyola, Barcelona (Spain); De la Torre, A.G., E-mail: mgd@uma.es [Departamento de Química Inorgánica, Universidad de Málaga, Campus Teatinos S/N., 29071 Málaga (Spain)

    2014-02-15T23:59:59.000Z

    Eco-friendly belite calcium sulfoaluminate (BCSA) cement hydration behavior is not yet well understood. Here, we report an in-situ synchrotron X-ray powder diffraction study for the first hours of hydration of BCSA cements. Rietveld quantitative phase analysis has been used to establish the degree of reaction (?). The hydration of a mixture of ye'elimite and gypsum revealed that ettringite formation (? ? 70% at 50 h) is limited by ye'elimite dissolution. Two laboratory-prepared BCSA cements were also studied: non-active-BCSA and active-BCSA cements, with ?- and ??{sub H}-belite as main phases, respectively. Ye'elimite, in the non-active-BCSA system, dissolves at higher pace (? ? 25% at 1 h) than in the active-BCSA one (? ? 10% at 1 h), with differences in the crystallization of ettringite (? ? 30% and ? ? 5%, respectively). This behavior has strongly affected subsequent belite and ferrite reactivities, yielding stratlingite and other layered phases in non-active-BCSA. The dissolution and crystallization processes are reported and discussed in detail. -- Highlights: •Belite calcium sulfoaluminate cements early hydration mechanism has been determined. •Belite hydration strongly depends on availability of aluminum hydroxide. •Orthorhombic ye’elimite dissolved at a higher pace than cubic one. •Ye’elimite larger reaction degree yields stratlingite formation by belite reaction. •Rietveld method quantified gypsum, anhydrite and bassanite dissolution rates.

  5. Determining the slag fraction, water/binder ratio and degree of hydration in hardened cement pastes

    SciTech Connect (OSTI)

    Yio, M.H.N., E-mail: marcus.yio11@imperial.ac.uk; Phelan, J.C.; Wong, H.S.; Buenfeld, N.R.

    2014-02-15T23:59:59.000Z

    A method for determining the original mix composition of hardened slag-blended cement-based materials based on analysis of backscattered electron images combined with loss on ignition measurements is presented. The method does not require comparison to reference standards or prior knowledge of the composition of the binders used. Therefore, it is well-suited for application to real structures. The method is also able to calculate the degrees of reaction of slag and cement. Results obtained from an experimental study involving sixty samples with a wide range of water/binder (w/b) ratios (0.30 to 0.50), slag/binder ratios (0 to 0.6) and curing ages (3 days to 1 year) show that the method is very promising. The mean absolute errors for the estimated slag, water and cement contents (kg/m{sup 3}), w/b and s/b ratios were 9.1%, 1.5%, 2.5%, 4.7% and 8.7%, respectively. 91% of the estimated w/b ratios were within 0.036 of the actual values. -- Highlights: •A new method for estimating w/b ratio and slag content in cement pastes is proposed. •The method is also able to calculate the degrees of reaction of slag and cement. •Reference standards or prior knowledge of the binder composition are not required. •The method was tested on samples with varying w/b ratios and slag content.

  6. Evaluation of in-situ cemented backfill performance. Rept. of Investigations/1991

    SciTech Connect (OSTI)

    Tesarik, D.R.; Vickery, J.D.; Seymour, J.B.

    1991-01-01T23:59:59.000Z

    As part of its research program to investigate ways of improving resource recovery and reducing subsidence, researchers from the U.S. Bureau of Mines placed instruments in the B-North ore body of the Cannon Mine, Wenatchee, WA, to monitor cemented backfill and rock deformation during mining. The vibrating-wire guages proved to be reliable and versatile, and approximately half of the instruments are providing data after 2 years of use. A two-dimensional, finite-element model was used to analyze the Cannon Mine's multilevel bench cut-and-fill mining method and predict rock and backfill displacements. The model accurately predicted rock displacements, but the predicted and measured displacements in cemented backfill had a correlation coefficient near zero, indicating that the model should only be used to predict rock displacements and not backfill displacements. A finite-difference model was also used to evaluate the stability of a cemented backfill pillar. Results can be used to conservatively predict backfill stresses, but on-site observations of pillar failures coupled with in situ measurements are needed to make more accurate predictions. An ongoing evaluation of the mining system has indicated that filling the primary stopes tight to the back with cemented backfill allowed these pillars to carry overburden loads soon after the cemented backfill was placed.

  7. Hog Fuel Drying Using Vapour Recompression

    E-Print Network [OSTI]

    Azarniouch, M. K.; MacEachen, I.

    1984-01-01T23:59:59.000Z

    A continuous hog fuel drying pilot plant based on the principle of mixing hog fuel with a hot oil (e.g., crude tall oil) as the heat transfer medium, and recirculating the suspension through a steam heated exchanger was designed, built...

  8. Spent fuel integrity during dry storage

    SciTech Connect (OSTI)

    McKinnon, M.A.

    1995-07-01T23:59:59.000Z

    Information on spent fuel integrity is of interest in evaluating the impact of long-term dry storage on the behavior of spent fuel rods. Spent fuel used during cask performance tests at the Idaho National Engineering Laboratory (INEL) offers significant opportunities for confirmation of the benign nature of long-term dry storage. The cask performance tests conducted at INEL included visual observation and ultrasonic examination of the condition of cladding, fuel rods, and fuel assembly hardware before dry storage and consolidation of the fuel; and a qualitative determination of the effect of dry storage and fuel consolidation on fission gas release from the spent fuel rods. A variety of cover gases and cask orientations were used during the cask performance tests. Cover gases included vacuum, nitrogen, and helium. The nitrogen and helium backfills were sampled and analyzed to detect leaking spent fuel rods. At the conclusion of each performance test, periodic gas sampling was conducted on each cask as part of a surveillance and monitoring activity. Continued surveillance and monitoring activities are being conducted for intact fuel in a CASTOR V/21 cask and for consolidated fuel in a VSC-17 cask. The results of the gas sampling activities are reported in this paper.

  9. Hot-dry-rock geothermal resource 1980

    SciTech Connect (OSTI)

    Heiken, G.; Goff, F.; Cremer, G. (ed.)

    1982-04-01T23:59:59.000Z

    The work performed on hot dry rock (HDR) geothermal resource evaluation, site characterization, and geophysical exploration techniques is summarized. The work was done by region (Far West, Pacific Northwest, Southwest, Rocky Mountain States, Midcontinent, and Eastern) and limited to the conterminous US.

  10. Influence of curing temperature on cement hydration and mechanical strength development of fly ash mortars

    SciTech Connect (OSTI)

    Maltais, Y.; Marchand, J. [Univ. Laval, Quebec (Canada). Centre de Recherche Interuniversitaire sur le Beton] [Univ. Laval, Quebec (Canada). Centre de Recherche Interuniversitaire sur le Beton

    1997-07-01T23:59:59.000Z

    The influence of fly ash and curing temperature on cement hydration and compressive strength development of mortars was investigated. Test parameters included type of fly ash (two different Class F fly ashes were tested), the level of cement replacement (10, 20 and 30% by mass), and curing temperature (20 C and 40 C). The mortar physical and microstructural properties were determined by means of thermal analyses, compressive strength measurements and SEM observations. Test results confirm that fly ash tends to increase significantly the rate of cement hydration at early age. Data also demonstrate that an elevation of the curing temperature reduces the long-term compressive strength of the reference mortar mixture. In contrast, an increase of the curing temperature seems to have no detrimental effect on the long-term compressive strength of the fly ash mixtures.

  11. Carbon black: A low cost colloidal additive for controlling gas-migration in cement slurries

    SciTech Connect (OSTI)

    Calloni, G.; Moroni, N.; Miano, F.

    1995-11-01T23:59:59.000Z

    The effect of different additives on the permeability of cement slurries to formation gas has been studied with the aid of a gas flow apparatus. The performance of two commercial additives (polymer latex and silica fume) has been compared to that of a novel additive (carbon black) that has been developed in the authors laboratories with the aim of simplifying the cement slurry composition and reducing field operational costs. Data on the thickening time, fluid loss, rheology and compressive strength are also presented to provide a clear picture of the potential of carbon black as a substitute for silica fume and polymer latex in some field applications. Finally, the paper describes the results of a field application using carbon black as a gas-block additive in the cement slurry.

  12. INTRODUCTION Portland cement concrete (PCC) is the world's most versatile and utilized construction material. Modern concrete consists of six

    E-Print Network [OSTI]

    Harms, Kyle E.

    INTRODUCTION Portland cement concrete (PCC) is the world's most versatile and utilized construction material. Modern concrete consists of six main ingredients: coarse aggregate, sand, portland cement agreement that the use of SCMs has the following effects in concrete: 1. Improved workability and finish

  13. Temperature Measurement During Polymerization of Bone Cement in Percutaneous Vertebroplasty: An In Vivo Study in Humans

    SciTech Connect (OSTI)

    Anselmetti, Giovanni Carlo, E-mail: giovanni.anselmetti@ircc.it; Manca, Antonio [Institute for Cancer Research and Treatment (IRCC), Interventional Radiology Unit (Italy); Kanika, Khanna; Murphy, Kieran [Johns Hopkins Hospital, Radiology and Radiological Science (United States); Eminefendic, Haris [Institute for Cancer Research and Treatment (IRCC), Radiology Unit (Italy); Masala, Salvatore ['Tor Vergata' University General Hospital, Department of Diagnostic Imaging, Molecular Imaging, Interventional Radiology and Radiotherapy (Italy); Regge, Daniele [Institute for Cancer Research and Treatment (IRCC), Radiology Unit (Italy)

    2009-05-15T23:59:59.000Z

    Aim of the study was to 'in vivo' measure temperature, during percutaneous vertebroplasty (PV), within a vertebral body injected with different bone cements. According to the declaration of Helsinki, 22 women (60-80 years; mean, 75 years) with painful osteoporotic vertebral collapse underwent bilateral transpedicular PV on 22 lumbar vertebrae. Two 10-G vertebroplasty needles were introduced into the vertebra under digital fluoroscopy; a 16-G radiofrequency thermoablation needle (Starburst XL; RITA Medical System Inc., USA), carrying five thermocouples, was than coaxially inserted. Eleven different bone cements were injected and temperatures were measured every 30 s until temperatures dropped under 45{sup o}C. After the thermocouple needle was withdrawn, bilateral PV was completed with cement injection through the vertebroplasty needle. Unpaired Student's t-tests, Kruskal-Wallis test, and Wilcoxon signed rank test were used to evaluate significant differences (p < 0.05) in peak temperatures, variations between cements, and clinical outcome. All procedures were completed without complications, achieving good clinical outcomes (p < 0.0001). Regarding average peak temperature, cements were divided into three groups: A (over 60{sup o}C), B (from 50{sup o} to 60{sup o}C), and C (below 50{sup o}C). Peak temperature in Group A (86.7 {+-} 10.7{sup o}C) was significantly higher (p = 0.0172) than that in Groups B (60.5 {+-} 3.7{sup o}C) and C (44.8 {+-} 2.6{sup o}C). The average of all thermocouples showed an extremely significant difference (p = 0.0002) between groups. None of the tested cements maintained a temperature {>=}45{sup o}C for more than 30 min. These data suggest that back-pain improvement is obtained not by thermal necrosis but by mechanical consolidation only. The relative necrotic thermal effect in vertebral metastases seems to confirm that analgesia must be considered the main intent of PV.

  14. Ghabezloo: Micromechanics analysis of thermal expansion and thermal pressurization of a hardened cement paste Micromechanics analysis of thermal expansion and thermal

    E-Print Network [OSTI]

    Boyer, Edmond

    pore fluid is anomalously higher than the one of pure bulk water. The micromechanics model water-to-cement ratios. It permits also to calculate the pore volume thermal expansion coefficient expansion and thermal pressurization of a hardened cement paste, Cement and Concrete Research, DOI 10.1016/j

  15. A cement kiln flue-dust evaluated as a soil liming material

    E-Print Network [OSTI]

    Stacha, Raimund

    1973-01-01T23:59:59.000Z

    A CEMENT KILN FLUE-DUST EVALUATED AS A SOIl LIMING MATERIAL A Thesis by RAIMUND STACHA Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE 1973 NJSbj t...:~StlCh tt A CEMENT KILN FLUE-DUST EVALUATED AS A SOIL I IMING MATERIAL A Thesis by RAIMUND STACHA Approved as to style and content by: (Chairman of Committee) (Head of Department) (Me er) (Member) (Member) (Member) (Member) 1973 ABSTRACT A...

  16. Soil stabilization and pavement recycling with self-cementing coal fly ash

    SciTech Connect (OSTI)

    NONE

    2008-01-15T23:59:59.000Z

    This manual provides design information for self-cementing coal fly ash as the sole stabilizing agent for a wide range of engineering applications. As in any process, the application of sound engineering practices, appropriate testing, and evaluation of fly ash quality and characteristics will lend themselves to successful projects using the guidelines in this manual. Topics discussed include: self-cementing coal fly ash characteristics; laboratory mix design; stabilization of clay soils; stabilisation of granular materials; construction considerations; high sulfate ash; environmental considerations for fly ash stabilization; design considerations; state specification/guidelines/standards; and a sample of a typical stabilization specification.

  17. Tensile creep of soil-cement and its relationship to fatigue

    E-Print Network [OSTI]

    Kim, Youngsoo

    1985-01-01T23:59:59.000Z

    Creep curves at different temperatures. 19 Log (D(t)-Dz) vs. log t at different temperatures. 68 69 INTRODUCTION Portland cement is an extremely important stabilizing agent for a wide range of soil types. Because of its strength-enhancing property... Mechanics (LEFM) is applicable to the investigation and determination of realistic failure criteria of fine-grained soils stabilized with Portland cement [27]. This is due to the fact that the radius of curvature at the tip of a microcrack is small...

  18. Dry oxidation and fracture of LWR spent fuels

    SciTech Connect (OSTI)

    Ahn, T.M.

    1996-11-01T23:59:59.000Z

    This report evaluates the characteristics of oxidation and fracture of light-water reactor (LWR) spent fuel in dry air. It also discusses their effects on radionuclide releases in the anticipated high-level waste repository environment. A sphere model may describe diffusion-limited formation of lower oxides, such as U{sub 4}O{sub 9}, in the oxidation of the spent fuel (SF) matrix. Detrimental higher oxides, such as U{sub 3}O{sub 8}, may not form at temperatures below a threshold temperature. The nucleation process suggests that a threshold temperature exists. The calculated results regarding fracture properties of the SF matrix agree with experimental observations. Oxidation and fracture of Zircaloy may not be significant under anticipated conditions. Under saturated or unsaturated aqueous conditions, oxidation of the SF matrix is believed to increase the releases of Pu-(239+240), Am-(241+243), C-14, Tc-99, I-129, and Cs-135. Under dry conditions, I-129 releases are likely to be small, unlike C-14, in lower oxides; Cl-36, Tc-99, I-129, and Cs-135 may be released fast in higher oxides. 79 refs.

  19. A Signal-Inducing Bone Cement for Magnetic Resonance Imaging-Guided Spinal Surgery Based on Hydroxyapatite and Polymethylmethacrylate

    SciTech Connect (OSTI)

    Wichlas, Florian, E-mail: florian.wichlas@charite.de; Seebauer, Christian J.; Schilling, Rene [University Charite, Center for Musculoskeletal Surgery (Germany); Rump, Jens [University Charite, Department of Radiology (Germany); Chopra, Sascha S. [University Charite, Center for Musculoskeletal Surgery (Germany); Walter, Thula; Teichgraeber, Ulf K. M. [University Charite, Department of Radiology (Germany); Bail, Hermann J. [University Charite, Center for Musculoskeletal Surgery (Germany)

    2012-06-15T23:59:59.000Z

    The aim of this study was to develop a signal-inducing bone cement for magnetic resonance imaging (MRI)-guided cementoplasty of the spine. This MRI cement would allow precise and controlled injection of cement into pathologic lesions of the bone. We mixed conventional polymethylmethacrylate bone cement (PMMA; 5 ml methylmethacrylate and 12 g polymethylmethacrylate) with hydroxyapatite (HA) bone substitute (2-4 ml) and a gadolinium-based contrast agent (CA; 0-60 {mu}l). The contrast-to-noise ratio (CNR) of different CA doses was measured in an open 1.0-Tesla scanner for fast T1W Turbo-Spin-Echo (TSE) and T1W TSE pulse sequences to determine the highest signal. We simulated MRI-guided cementoplasty in cadaveric spines. Compressive strength of the cements was tested. The highest CNR was (1) 87.3 (SD 2.9) in fast T1W TSE for cements with 4 {mu}l CA/ml HA (4 ml) and (2) 60.8 (SD 2.4) in T1W TSE for cements with 1 {mu}l CA/ml HA (4 ml). MRI-guided cementoplasty in cadaveric spine was feasible. Compressive strength decreased with increasing amounts of HA from 46.7 MPa (2 ml HA) to 28.0 MPa (4 ml HA). An MRI-compatible cement based on PMMA, HA, and CA is feasible and clearly visible on MRI images. MRI-guided spinal cementoplasty using this cement would permit direct visualization of the cement, the pathologic process, and the anatomical surroundings.

  20. Compression and immersion tests and leaching of radionuclides, stable metals, and chelating agents from cement-solidified decontamination waste collected from nuclear power stations

    SciTech Connect (OSTI)

    Akers, D.W.; Kraft, N.C.; Mandler, J.W. [EG and G Idaho, Inc., Idaho Falls, ID (United States)

    1994-06-01T23:59:59.000Z

    A study was performed for the Nuclear Regulatory Commission (NRC) to evaluate structural stability and leachability of radionuclides, stable metals, and chelating agents from cement-solidified decontamination ion-exchange resin wastes collected from seven commercial boiling water reactors and one pressurized water reactor. The decontamination methods used at the reactors were the Can-Decon, AP/Citrox, Dow NS-1, and LOMI processes. Samples of untreated resin waste and solidified waste forms were subjected to immersion and compressive strength testing. Some waste-form samples were leach-tested using simulated groundwaters and simulated seawater for comparison with the deionized water tests that are normally performed to assess waste-form leachability. This report presents the results of these tests and assesses the effects of the various decontamination methods, waste form formulations, leachant chemical compositions, and pH of the leachant on the structural stability and leachability of the waste forms. Results indicate that releases from intact and degraded waste forms are similar and that the behavior of some radionuclides such as {sup 55}Fe, {sup 60}Co, and {sup 99}Tc were similar. In addition, the leachability indexes are greater than 6.0, which meets the requirement in the NRC`s ``Technical Position on Waste Form,`` Revision 1.

  1. Horizontal modular dry irradiated fuel storage system

    DOE Patents [OSTI]

    Fischer, Larry E. (Los Gatos, CA); McInnes, Ian D. (San Jose, CA); Massey, John V. (San Jose, CA)

    1988-01-01T23:59:59.000Z

    A horizontal, modular, dry, irradiated fuel storage system (10) includes a thin-walled canister (12) for containing irradiated fuel assemblies (20), which canister (12) can be positioned in a transfer cask (14) and transported in a horizontal manner from a fuel storage pool (18), to an intermediate-term storage facility. The storage system (10) includes a plurality of dry storage modules (26) which accept the canister (12) from the transfer cask (14) and provide for appropriate shielding about the canister (12). Each module (26) also provides for air cooling of the canister (12) to remove the decay heat of the irradiated fuel assemblies (20). The modules (26) can be interlocked so that each module (26) gains additional shielding from the next adjacent module (26). Hydraulic rams (30) are provided for inserting and removing the canisters (12) from the modules (26).

  2. Dry-Mass Sensing for Microfluidics

    E-Print Network [OSTI]

    Müller, T; Knowles, T P J

    2014-01-01T23:59:59.000Z

    We present an approach for interfacing an electromechanical sensor with a microfluidic device for the accurate quantification of the dry mass of analytes within microchannels. We show that depositing solutes onto the active surface of a quartz crystal microbalance by means of an on-chip microfluidic spray nozzle and subsequent solvent removal provides the basis for the real-time determination of dry solute mass. Moreover, this detection scheme does not suffer from the decrease in the sensor quality factor and the viscous drag present if the measurement is performed in a liquid environment, yet allows solutions to be analysed. We demonstrate the sensitivity and reliability of our approach by controlled deposition of nanogram levels of salt and protein from a micrometer-sized channel.

  3. Application of Desiccant Drying in Plastic Molding

    E-Print Network [OSTI]

    Brown, M.; Connors, G.; Moore, D.

    APPLICATION OF DESICCANT DRYING IN PLASTIC MOLDING Michael Brown, P.E. Greg Connors, P.E. Douglas Moore, P.E. Senior Research Engr. Industrial Engr. Senior Research Engr. Ga. Tech Research Inst. Atlanta Gas Light Co. Ga. Tech Research Inst... will condense on refrigerated display doors. In ice rinks, condensation will occur on the ice surface causing it to soften if the humidity too high. In plastic molding, chilled water is provi ed to rapidly cool the finished parts. Cooling incr...

  4. Cold Vacuum Drying Facility hazard analysis report

    SciTech Connect (OSTI)

    Krahn, D.E.

    1998-02-23T23:59:59.000Z

    This report describes the methodology used in conducting the Cold Vacuum Drying Facility (CVDF) hazard analysis to support the CVDF phase 2 safety analysis report (SAR), and documents the results. The hazard analysis was performed in accordance with DOE-STD-3009-94, Preparation Guide for US Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports, and implements the requirements of US Department of Energy (DOE) Order 5480.23, Nuclear Safety Analysis Reports.

  5. PULSE DRYING EXPERIMENT AND BURNER CONSTRUCTION

    SciTech Connect (OSTI)

    Robert States

    2006-07-15T23:59:59.000Z

    Non steady impingement heat transfer is measured. Impingement heating consumes 130 T-BTU/Yr in paper drying, but is only 25% thermally efficient. Pulse impingement is experimentally shown to enhance heat transfer by 2.8, and may deliver thermal efficiencies near 85%. Experimental results uncovered heat transfer deviations from steady theory and from previous investigators, indicating the need for further study and a better theoretical framework. The pulse burner is described, and its roll in pulse impingement is analyzed.

  6. Dry Processing of Used Nuclear Fuel

    SciTech Connect (OSTI)

    K. M. Goff; M. F. Simpson

    2009-09-01T23:59:59.000Z

    Dry (non-aqueous) separations technologies have been used for treatment of used nuclear fuel since the 1960s, and they are still being developed and demonstrated in many countries. Dry technologies offer potential advantages compared to traditional aqueous separations including: compactness, resistance to radiation effects, criticality control benefits, compatibility with advanced fuel types, and ability to produce low purity products. Within the Department of Energy’s Advanced Fuel Cycle Initiative, an electrochemical process employing molten salts is being developed for recycle of fast reactor fuel and treatment of light water reactor oxide fuel to produce a feed for fast reactors. Much of the development of this technology is based on treatment of used Experimental Breeder Reactor II (EBR-II) fuel, which is metallic. Electrochemical treatment of the EBR-II fuel has been ongoing in the Fuel Conditioning Facility, located at the Materials and Fuel Complex of Idaho National Laboratory since 1996. More than 3.8 metric tons of heavy metal of metallic fast reactor fuel have been treated using this technology. This paper will summarize the status of electrochemical development and demonstration activities with used nuclear fuel, including high-level waste work. A historic perspective on the background of dry processing will also be provided.

  7. Transfer of hot dry rock technology

    SciTech Connect (OSTI)

    Smith, M.C.

    1985-11-01T23:59:59.000Z

    The Hot Dry Rock Geothermal Energy Development Program has focused worldwide attention on the facts that natural heat in the upper part of the earth's crust is an essentially inexhaustible energy resource which is accessible almost everywhere, and that practical means now exist to extract useful heat from the hot rock and bring it to the earth's surface for beneficial use. The Hot Dry Rock Program has successfully constructed and operated a prototype hot, dry rock energy system that produced heat at the temperatures and rates required for large-scale space heating and many other direct uses of heat. The Program is now in the final stages of constructing a larger, hotter system potentially capable of satisfying the energy requirements of a small, commercial, electrical-generating power plant. To create and understand the behavior of such system, it has been necessary to develop or support the development of a wide variety of equipment, instruments, techniques, and analyses. Much of this innovative technology has already been transferred to the private sector and to other research and development programs, and more is continuously being made available as its usefulness is demonstrated. This report describes some of these developments and indicates where this new technology is being used or can be useful to industry, engineering, and science.

  8. Hot Dry Rock Geothermal Energy Development Program

    SciTech Connect (OSTI)

    Smith, M.C.; Hendron, R.H.; Murphy, H.D.; Wilson, M.G.

    1989-12-01T23:59:59.000Z

    During Fiscal Year 1987, emphasis in the Hot Dry Rock Geothermal Energy Development Program was on preparations for a Long-Term Flow Test'' of the Phase II'' or Engineering'' hot dry rock energy system at Fenton Hill, New Mexico. A successful 30-day flow test of the system during FY86 indicated that such a system would produce heat at a temperature and rate that could support operation of a commercial electrical power plant. However, it did not answer certain questions basic to the economics of long-term operation, including the rate of depletion of the thermal reservoir, the rate of water loss from the system, and the possibility of operating problems during extended continuous operation. Preparations for a one-year flow test of the system to answer these and more fundamental questions concerning hot dry rock systems were made in FY87: design of the required surface facilities; procurement and installation of some of their components; development and testing of slimline logging tools for use through small-diameter production tubing; research on temperature-sensitive reactive chemical tracers to monitor thermal depletion of the reservoir; and computer simulations of the 30-day test, extended to modeling the planned Long-Term Flow Test. 45 refs., 34 figs., 5 tabs.

  9. Policy Options for Encouraging Energy Efficiency Best Practices in Shandong Province's Cement Industry

    E-Print Network [OSTI]

    Price, Lynn

    2013-01-01T23:59:59.000Z

    and transport Finish grinding Electricity consumption DryingOther electricity consumption Fuel consumption Clinkerstorage and transport Electricity consumption Electricity

  10. A THERMODYNAMICS STUDY ON THE UTILIZATION OF JORDANIAN OIL SHALE IN CEMENT INDUSTRY

    E-Print Network [OSTI]

    Awni Y. Al-otoom

    Oil shale can be utilized in manufacturing the Portland cement. In addition to the utilization of the spent oil shale after combustion, it can also reduce the required temperature for the clinkering reactions. A study on the Jordanian oil shale was performed to maximize the use of oil shale in the

  11. Cement-based biocide coatings for controlling algal growth in water distribution canals

    E-Print Network [OSTI]

    Mobasher, Barzin

    to potable or waste water. There is however a lack of understanding in the correlation between the natureCement-based biocide coatings for controlling algal growth in water distribution canals A. Alum Foundation, Water Quality Center, Arizona State University, Tempe, AZ, United States a r t i c l e i n f o

  12. CSER 96-027: storage of cemented plutonium residue containers in 55 gallon drums

    SciTech Connect (OSTI)

    Watson, W.T.

    1997-01-20T23:59:59.000Z

    A nuclear criticality safety analysis has been performed for the storage of residual plutonium cementation containers, produced at the Plutonium Finishing Plant, in 55 gallon drums. This CSER increases the limit of total plutonium stored in each 55 gallon drum from 100 to 200 grams.

  13. Pore water evolution in oilfield sandstones: constraints from oxygen isotope microanalyses of quartz cement

    E-Print Network [OSTI]

    Haszeldine, Stuart

    of quartz cement Ann M.E. Marchanda,*, Calum I. Macaulayb , R. Stuart Haszeldinea , Anthony E. Fallickc--direct measurements were not possible) precipitated in the sandstones at temperatures jC; (2) the second zone B in the sandstones most likely between 70 and 90 jC; (3) the third zone C (homogeneous CL pattern and directly

  14. Electromagnetic interference shielding reaching 70 dB in steel fiber cement

    E-Print Network [OSTI]

    Chung, Deborah D.L.

    Electromagnetic interference shielding reaching 70 dB in steel fiber cement Sihai Wen, D.D.L. Chung; Silica fume; Shielding 1. Introduction Electromagnetic interference (EMI) shielding [1­4] is in critical, NY 14260-4400, USA Received 9 January 2002; accepted 14 August 2003 Abstract An electromagnetic

  15. Effects of oil charge on illite dates and stopping quartz cement: calibration of basin models

    E-Print Network [OSTI]

    Haszeldine, Stuart

    Abstract Effects of oil charge on illite dates and stopping quartz cement: calibration of basin Oil can fill pores in reservoir sandstones at any burial depth by long or short distance migration. There has been a debate since 1920 concerning the effect of oil charge. We have made detailed local

  16. CAPACITY INVESTMENT UNDER DEMAND UNCERTAINTY: THE ROLE OF IMPORTS IN THE U.S. CEMENT INDUSTRY

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    varies across markets. In the presence of uncertain demand, capacity choices are shown theoreticallyCAPACITY INVESTMENT UNDER DEMAND UNCERTAINTY: THE ROLE OF IMPORTS IN THE U.S. CEMENT INDUSTRY Guy://www.economie.polytechnique.edu/ mailto:chantal.poujouly@polytechnique.edu #12;Capacity Investment under Demand Uncertainty: The Role

  17. Development of a performance-based industrial energy efficiency indicator for cement manufacturing plants.

    SciTech Connect (OSTI)

    Boyd, G.; Decision and Information Sciences

    2006-07-21T23:59:59.000Z

    Organizations that implement strategic energy management programs have the potential to achieve sustained energy savings if the programs are carried out properly. A key opportunity for achieving energy savings that plant managers can take is to determine an appropriate level of energy performance by comparing the plant performance with that of similar plants in the same industry. Manufacturing plants can set energy efficiency targets by using performance-based indicators. The U.S. Environmental Protection Agency (EPA), through its ENERGY STAR{reg_sign} program, has been developing plant energy performance indicators (EPIs) to encourage a variety of U.S. industries to use energy more efficiently. This report describes work with the cement manufacturing industry to provide a plant-level indicator of energy efficiency for assembly plants that produce a variety of products, including Portland cement and other specialty cement products, in the United States. Consideration is given to the role that performance-based indicators play in motivating change; the steps needed to develop indicators, including interacting with an industry to secure adequate data for an indicator; and the actual application and use of an indicator when complete. How indicators are employed in the EPA's efforts to encourage industries to voluntarily improve their use of energy is discussed as well. The report describes the data and statistical methods used to construct the EPI for cement manufacturing plants. Individual equations are presented, as are the instructions for using them in an associated Excel spreadsheet.

  18. The interfacial chemistry of solidification/stabilization of metals in cement and pozzolanic material systems

    SciTech Connect (OSTI)

    Yousuf, M.; Mollah, A.; Vempati, R.K.; Lin, T.C.; Cocke, D.L. [Lamar Univ., Beaumont, TX (United States)] [Lamar Univ., Beaumont, TX (United States)

    1995-11-01T23:59:59.000Z

    The chemistry of cement, its hydration and mechanisms of solidification/stabilization (s/s) of toxic metals by cement-based systems and pozzolanic materials are significantly controlled by surface, near-surface and interfacial phenomena. The adsorption conditions and the selectivity strong affinity of hazardous metals towards clay minerals, certain hydrated metal oxides and oxyhydroxides, and cementitous substances also play an important role in the s/s process for the immobilization of contaminants. Recent works from the authors` laboratory involving metal ions and superplasticizers have elucidated the mechanisms of reactions leading to the retardation of cement hydration and subsequent setting and their interactions with silicate-based systems. This article delineates the current status of interfacial chemistry at the solid-liquid boundary and places it in perspective with present and future s/s processes based on Portland cement and pozzolanic materials. The importance of surface charge, the role of interfacial phenomena on adsorption, and the importance of calcium and other types of anions and cations in s/s are also discussed. A surface charge control reaction model that accounts for the importance of calcium and other cations and anions is outlined and used to discuss the chemical nature and microstructure of the interfacial transition zone.

  19. Mechanical properties of WC10Co cemented carbides sintered from nanocrystalline spray conversion processed powders

    E-Print Network [OSTI]

    Hong, Soon Hyung

    Mechanical properties of WC±10Co cemented carbides sintered from nanocrystalline spray conversion as the spray conversion process [2]. The WC particle sizes in powders fabricated by the spray conversion: microstructural parameters such as WC grain size, Co mean free path and WC/WC contiguity; chemical factors

  20. Characterizations of WC-10Co nanocomposite powders and subsequently sinterhip sintered cemented carbide

    SciTech Connect (OSTI)

    Shi, X.L. [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122Luoshi Road, Wuhan 430070 (China)]. E-mail: sxl071932@126.com; Shao, G.Q. [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122Luoshi Road, Wuhan 430070 (China); Duan, X.L. [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122Luoshi Road, Wuhan 430070 (China); Xiong, Z. [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122Luoshi Road, Wuhan 430070 (China); Yang, H. [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122Luoshi Road, Wuhan 430070 (China)

    2006-12-15T23:59:59.000Z

    Ultrafine WC-Co cemented carbides, combining high hardness and high toughness, are expected to find broad applications. In this study, WC-10Co-0.4VC-0.4Cr{sub 3}C{sub 2} (wt.%) nanocomposite powders, whose average grain size was about 30 nm, were fabricated by spray pyrolysis-continuous reduction and carbonization technology. The as-prepared nanocomposite powders were characterized and analyzed by chemical methods, scanning electron microscopy (SEM), transmission electron microscopy (TEM), BET analysis and atomic force microscopy (AFM). Furthermore, 'sinterhip' was used in the sintering process, by which ultrafine WC-10Co cemented carbides with an average grain size of 240 nm were prepared. The material exhibited high Rockwell A hardness of HRA 92.8, Vickers hardness HV{sub 1} 1918, and transverse rapture strength (TRS) of 3780 MPa. The homogeneously dispersed grain growth inhibitors such as VC, Cr{sub 3}C{sub 2} in nanocomposite powder and the special nonmetal-metal nanocomposite structure of WC-10Co nanocomposite powder played very important roles in obtaining ultrafine WC-10Co cemented carbide with the desired properties and microstructure. There was an abundance of triple junctions in the ultrafine WC-10Co cemented carbide; these triple junctions endowed the sintered specimen with high mechanical properties.

  1. Recycle of Wastes of Clay Brick Industry for Producing Eco-cement

    E-Print Network [OSTI]

    Amin, A. M

    2010-01-01T23:59:59.000Z

    mixes were designed from the WCB and ordinary Portland cement (OPC). After adding the required amount of water for each mix, the pastes were moulded in 5x5x5cm3 mould. The initial and final setting time were measured. The moulded specimens were cured...

  2. Identification and characterization of agent for reductive dechlorination in mixtures of ferrous iron and Portland cement

    E-Print Network [OSTI]

    Ko, Sae Bom

    2001-01-01T23:59:59.000Z

    were conducted to identify a potential active agent in a mixture of Fe(II) and Portland cement extract (PCX). Results of XRD analysis indicated that a potential active agent is likely to be green rust chloride, which is a layered Fe...

  3. Influence of hydroxypropylguars on rheological behaviour of cement-based mortars

    E-Print Network [OSTI]

    Boyer, Edmond

    behavior of cementitious materials [7]. Concrete, mortar and cement grout with high fluidity (e.g. self-compacting concrete or self- leveling underlayment) have been developed in order to facilitate placement. However and Concrete Research 58 (2014) 161-168" DOI : 10.1016/j.cemconres.2014.01.020 #12;2 ABSTRACT

  4. [ ]May 2014 Portland cement concrete (PCC) overlays have been used with great success in many locations

    E-Print Network [OSTI]

    Harms, Kyle E.

    accelerated pavement testing on bonded concrete overlay pavements to be constructed at the Pavement Research testing; evaluate the structural bearing capacity of the concrete overlay pavement structures[ ]May 2014 PROBLEM Portland cement concrete (PCC) overlays have been used with great success

  5. Concrete international /january 2010 35 Portland limestone cement (PLC) is produced by

    E-Print Network [OSTI]

    Concrete international /january 2010 35 Portland limestone cement (PLC) is produced by blending demonstration of PLC concrete in the late-fall construction of a parking lot at a ready mixed concrete plant near Gatineau, QC, Canada. The performance of the plastic and hardened concretes produced with PLC

  6. Recovery Act Production of Algal BioCrude Oil from Cement Plant Carbon Dioxide

    SciTech Connect (OSTI)

    Robert Weber; Norman Whitton

    2010-09-30T23:59:59.000Z

    The consortium, led by Sunrise Ridge Algae Inc, completed financial, legal, siting, engineering and environmental permitting preparations for a proposed demonstration project that would capture stack gas from an operating cement plant and convert the carbon dioxide to beneficial use as a liquid crude petroleum substitute and a coal substitute, using algae grown in a closed system, then harvested and converted using catalyzed pyrolysis.

  7. Managing Aging Effects on Dry Cask Storage Systems for Extended...

    Office of Environmental Management (EM)

    Managing Aging Effects on Dry Cask Storage Systems for Extended Long Term Storage and Transportation of Used Fuel Rev0 Managing Aging Effects on Dry Cask Storage Systems for...

  8. Emerging Energy-efficiency and CO{sub 2} Emission-reduction Technologies for Cement and Concrete Production

    SciTech Connect (OSTI)

    Hasanbeigi, Ali; Price, Lynn; Lin, Elina

    2012-04-06T23:59:59.000Z

    Globally, the cement industry accounts for approximately 5 percent of current anthropogenic carbon dioxide (CO{sub 2}) emissions. World cement demand and production are increasing significantly, leading to an increase in this industry's absolute energy use and CO{sub 2} emissions. Development of new energy-efficiency and CO{sub 2} emission-reduction technologies and their deployment in the market will be key for the cement industry's mid- and long-term climate change mitigation strategies. This report is an initial effort to compile available information on process description, energy savings, environmental and other benefits, costs, commercialization status, and references for emerging technologies to reduce the cement industry's energy use and CO{sub 2} emissions. Although studies from around the world identify a variety of sector-specific and cross-cutting energy-efficiency technologies for the cement industry that have already been commercialized, information is scarce and/or scattered regarding emerging or advanced energy-efficiency and low-carbon technologies that are not yet commercialized. This report consolidates available information on nineteen emerging technologies for the cement industry, with the goal of providing engineers, researchers, investors, cement companies, policy makers, and other interested parties with easy access to a well-structured database of information on these technologies.

  9. Roles of Dry Friction in Fluctuating Motion of Adiabatic Piston

    E-Print Network [OSTI]

    Tomohiko G. Sano; Hisao Hayakawa

    2014-03-08T23:59:59.000Z

    The motion of an adiabatic piston under dry friction is investigated to clarify the roles of dry friction in non-equilibrium steady states. We clarify that dry friction can reverse the direction of the piston motion and causes a discontinuity or a cusp-like singularity for velocity distribution functions of the piston. We also show that the heat fluctuation relation is modified under dry friction.

  10. Modeling of Coal Drying before Pyrolysis Damintode Kolani1, a

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    in the coal without chemical decomposition and pyrolysis converts dry coal into gas and coke [1]. The final1 Modeling of Coal Drying before Pyrolysis Damintode Kolani1, a , Eric Blond1, b , Alain Gasser1 Forbach, France a damintode.kolani@univ-orleans.fr, b eric.blond@univ-orleans.fr Keywords: coal, drying

  11. African dry air outbreaks Chidong Zhang and Jeremy Pennington

    E-Print Network [OSTI]

    Zhang, Chidong

    entrainment. It is conceivable that dry air associated with African dust outbreaks also has substantialAfrican dry air outbreaks Chidong Zhang and Jeremy Pennington Rosenstiel School of Marine; accepted 5 August 2004; published 19 October 2004. [1] Dry air outbreaks from Africa into the tropical

  12. Brownfield reuse of dredged New York Harbor sediment by cement-based solidification/stabilization

    SciTech Connect (OSTI)

    Loest, K. [ECDC Environmental L.C., Pembroke, MA (United States). Eastern Operations; Wilk, C.M. [Portland Cement Association, Skokie, IL (United States)

    1998-12-31T23:59:59.000Z

    Newly effective federal regulations restrict the ocean disposal of sediments dredged from the harbors of New York and Newark. The New York Port Authority is faced with a critical situation: find land-based disposal/uses for 10`s of millions cubic yards of sediments or lose standing as a commercial port for ocean-going ships. One of the technologies now being employed to manage the sediments is portland cement-based solidification/stabilization (S/S) treatment. At least 4 million cubic yards of the sediments will undergo cement-based S/S treatment. This treatment will immobilize heavy metals, dioxin, PCBs and other organic contaminants in the sediment. The treatment changes the sediment from a environmental liability into a valuable structural fill. This structural fill is being used at two properties. The first property is an old municipal landfill in Port Newark, New Jersey. The treated sediments are being used as structural fill to cover about 20 acres of the landfill. This will allow planned redevelopment of the landfill property into a shopping mall. The second property called the Seaboard site, was the location of a coal gasification facility and later a wood preservation facility. This 160-acre property has been designated for brownfield redevelopment. Over 4 million cubic yards of treated sediments will eventually cover this site. Portland cement is the selected S/S binding reagent. Nearly 500,000 tons of cement will eventually be used to treat the sediments. Cement was selected for its ability to (a) change the peanut butter-like consistency of the sediments into a structural material and (b) to physically and chemically immobilize hazardous constituents in the sediment.

  13. DRI Renewable Energy Center (REC) (NV)

    SciTech Connect (OSTI)

    Hoekman, S. Kent; Broch, Broch; Robbins, Curtis; Jacobson, Roger; Turner, Robert

    2012-12-31T23:59:59.000Z

    The primary objective of this project was to utilize a flexible, energy-efficient facility, called the DRI Renewable Energy Experimental Facility (REEF) to support various renewable energy research and development (R&D) efforts, along with education and outreach activities. The REEF itself consists of two separate buildings: (1) a 1200-ft2 off-grid capable house and (2) a 600-ft2 workshop/garage to support larger-scale experimental work. Numerous enhancements were made to DRI's existing renewable power generation systems, and several additional components were incorporated to support operation of the REEF House. The power demands of this house are satisfied by integrating and controlling PV arrays, solar thermal systems, wind turbines, an electrolyzer for renewable hydrogen production, a gaseous-fuel internal combustion engine/generator set, and other components. Cooling needs of the REEF House are satisfied by an absorption chiller, driven by solar thermal collectors. The REEF Workshop includes a unique, solar air collector system that is integrated into the roof structure. This system provides space heating inside the Workshop, as well as a hot water supply. The Workshop houses a custom-designed process development unit (PDU) that is used to convert woody biomass into a friable, hydrophobic char that has physical and chemical properties similar to low grade coal. Besides providing sufficient space for operation of this PDU, the REEF Workshop supplies hot water that is used in the biomass treatment process. The DRI-REEF serves as a working laboratory for evaluating and optimizing the performance of renewable energy components within an integrated, residential-like setting. The modular nature of the system allows for exploring alternative configurations and control strategies. This experimental test bed is also highly valuable as an education and outreach tool both in providing an infrastructure for student research projects, and in highlighting renewable energy features to the public.

  14. An experimental investigation of high temperature, high pressure paper drying

    E-Print Network [OSTI]

    Patel, Kamal Raoji

    2012-06-07T23:59:59.000Z

    CONCLUSIONS RECOMMENDATIONS 50 51 REFERENCES APPENDIX A EXPERIMENTAL DATA 52 54 VITA 105 vail LIST OF FIGURES Page Fig. 1 Schematic of test facility 13 Fig. 2 Comparison of Texas A&M drying facility operating ranges to other drying processes... of number of drying passes for drying temperatures of 93, 149, and 204 'C (200, 300, and 400 'F), a contact pressure of 1. 4 MPa (200 psi), a basis weight of 25 g/m' (0. 005 lb/ft'), and contact times between 20 to 180 msec with same side drying...

  15. Project W-441, cold vacuum drying facility design requirements document

    SciTech Connect (OSTI)

    O`Neill, C.T.

    1997-05-08T23:59:59.000Z

    This document has been prepared and is being released for Project W-441 to record the design basis for the design of the Cold Vacuum Drying Facility. This document sets forth the physical design criteria, Codes and Standards, and functional requirements that were used in the design of the Cold Vacuum Drying Facility. This document contains section 3, 4, 6, and 9 of the Cold Vacuum Drying Facility Design Requirements Document. The remaining sections will be issued at a later date. The purpose of the Facility is to dry, weld, and inspect the Multi-Canister Overpacks before transport to dry storage.

  16. Lithographic dry development using optical absorption

    DOE Patents [OSTI]

    Olynick, Deirdre; Schuck, P. James; Schmidt, Martin

    2013-08-20T23:59:59.000Z

    A novel approach to dry development of exposed photo resist is described in which a photo resist layer is exposed to a visible light source in order to remove the resist in the areas of exposure. The class of compounds used as the resist material, under the influence of the light source, undergoes a chemical/structural change such that the modified material becomes volatile and is thus removed from the resist surface. The exposure process is carried out for a time sufficient to ablate the exposed resist layer down to the layer below. A group of compounds found to be useful in this process includes aromatic calixarenes.

  17. Hot dry rock venture risks investigation:

    SciTech Connect (OSTI)

    Not Available

    1988-01-01T23:59:59.000Z

    This study assesses a promising resource in central Utah as the potential site of a future commerical hot dry rock (HDR) facility for generating electricity. The results indicate that, if the HDR reservoir productivity equals expectations based on preliminary results from research projects to date, a 50 MWe HDR power facility at Roosevelt Hot Springs could generate power at cost competitive with coal-fired plants. However, it is imperative that the assumed productivity be demonstrated before funds are committed for a commercial facility. 72 refs., 39 figs., 38 tabs.

  18. Dry Process Electrode Fabrication | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct, Parent(CRADA andDriving Innovation at theDry Process

  19. Dry lake reveals evidence of Southwestern 'megadroughts'

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct:Directives Templates8.Sifting Slush: Speciation ofDry lake

  20. Carbon Dioxide Capture from Flue Gas Using Dry Regenerable Sorbents

    SciTech Connect (OSTI)

    Thomas Nelson; David Green; Paul Box; Raghubir Gupta; Gennar Henningsen

    2007-06-30T23:59:59.000Z

    Regenerable sorbents based on sodium carbonate (Na{sub 2}CO{sub 3}) can be used to separate carbon dioxide (CO{sub 2}) from coal-fired power plant flue gas. Upon thermal regeneration and condensation of water vapor, CO{sub 2} is released in a concentrated form that is suitable for reuse or sequestration. During the research project described in this report, the technical feasibility and economic viability of a thermal-swing CO{sub 2} separation process based on dry, regenerable, carbonate sorbents was confirmed. This process was designated as RTI's Dry Carbonate Process. RTI tested the Dry Carbonate Process through various research phases including thermogravimetric analysis (TGA); bench-scale fixed-bed, bench-scale fluidized-bed, bench-scale co-current downflow reactor testing; pilot-scale entrained-bed testing; and bench-scale demonstration testing with actual coal-fired flue gas. All phases of testing showed the feasibility of the process to capture greater than 90% of the CO{sub 2} present in coal-fired flue gas. Attrition-resistant sorbents were developed, and these sorbents were found to retain their CO{sub 2} removal activity through multiple cycles of adsorption and regeneration. The sodium carbonate-based sorbents developed by RTI react with CO{sub 2} and water vapor at temperatures below 80 C to form sodium bicarbonate (NaHCO3) and/or Wegscheider's salt. This reaction is reversed at temperatures greater than 120 C to release an equimolar mixture of CO{sub 2} and water vapor. After condensation of the water, a pure CO{sub 2} stream can be obtained. TGA testing showed that the Na{sub 2}CO3 sorbents react irreversibly with sulfur dioxide (SO{sub 2}) and hydrogen chloride (HCl) (at the operating conditions for this process). Trace levels of these contaminants are expected to be present in desulfurized flue gas. The sorbents did not collect detectable quantities of mercury (Hg). A process was designed for the Na{sub 2}CO{sub 3}-based sorbent that includes a co-current downflow reactor system for adsorption of CO{sub 2} and a steam-heated, hollow-screw conveyor system for regeneration of the sorbent and release of a concentrated CO{sub 2} gas stream. An economic analysis of this process (based on the U.S. Department of Energy's National Energy Technology Laboratory's [DOE/NETL's] 'Carbon Capture and Sequestration Systems Analysis Guidelines') was carried out. RTI's economic analyses indicate that installation of the Dry Carbonate Process in a 500 MW{sub e} (nominal) power plant could achieve 90% CO{sub 2} removal with an incremental capital cost of about $69 million and an increase in the cost of electricity (COE) of about 1.95 cents per kWh. This represents an increase of roughly 35.4% in the estimated COE - which compares very favorable versus MEA's COE increase of 58%. Both the incremental capital cost and the incremental COE were projected to be less than the comparable costs for an equally efficient CO{sub 2} removal system based on monoethanolamine (MEA).

  1. Storage capacity in hot dry rock reservoirs

    DOE Patents [OSTI]

    Brown, D.W.

    1997-11-11T23:59:59.000Z

    A method is described for extracting thermal energy, in a cyclic manner, from geologic strata which may be termed hot dry rock. A reservoir comprised of hot fractured rock is established and water or other liquid is passed through the reservoir. The water is heated by the hot rock, recovered from the reservoir, cooled by extraction of heat by means of heat exchange apparatus on the surface, and then re-injected into the reservoir to be heated again. Water is added to the reservoir by means of an injection well and recovered from the reservoir by means of a production well. Water is continuously provided to the reservoir and continuously withdrawn from the reservoir at two different flow rates, a base rate and a peak rate. Increasing water flow from the base rate to the peak rate is accomplished by rapidly decreasing backpressure at the outlet of the production well in order to meet periodic needs for amounts of thermal energy greater than a baseload amount, such as to generate additional electric power to meet peak demands. The rate of flow of water provided to the hot dry rock reservoir is maintained at a value effective to prevent depletion of the liquid inventory of the reservoir. 4 figs.

  2. Self drying roofs: What! No dripping!

    SciTech Connect (OSTI)

    Desjarlais, A.

    1995-12-31T23:59:59.000Z

    Many roofs are replaced because water accumulates in portions of the roofing system.These accumulations can cause dripping, accelerated membrane failure, poor thermal performance, the threat of structural decay, and the depreciation of building assets. Traditionally, the roofing industry has been concerned with controlling the inflow of water into the roof. An example of this strategy would be the development of a more reliable membrane. However, roof membranes inevitably leak. For this reason, the roof design strategy of the future must be concerned with controlling water outflow. The requirements of this type of roof system are described. Under normal operating conditions (no leaks), the total moisture content of a self-drying roof system shall not increase with time and condensation shall not occur under the membrane during winter uptake. Moisture vapor movement by convection must be eliminated and the flow of water by gravity through imperfections in the roof system must be controlled. After a leak has occurred, no condensation on the upper surface of the deck shall be tolerated and the water introduced by the leak must be dissipated to the building interior in a minimum amount of time. Finite difference computer modeling is used to demonstrate the effectiveness of the design. The impact of deck and insulation permeance, climate, leaks, and wintertime water uptake are simulated. A database of simulations is qualitatively described; this database will be used in future work to produce a simplified means of assessing the design parameters of a self-drying roof system.

  3. Storage capacity in hot dry rock reservoirs

    DOE Patents [OSTI]

    Brown, Donald W. (Los Alamos, NM)

    1997-01-01T23:59:59.000Z

    A method of extracting thermal energy, in a cyclic manner, from geologic strata which may be termed hot dry rock. A reservoir comprised of hot fractured rock is established and water or other liquid is passed through the reservoir. The water is heated by the hot rock, recovered from the reservoir, cooled by extraction of heat by means of heat exchange apparatus on the surface, and then re-injected into the reservoir to be heated again. Water is added to the reservoir by means of an injection well and recovered from the reservoir by means of a production well. Water is continuously provided to the reservoir and continuously withdrawn from the reservoir at two different flow rates, a base rate and a peak rate. Increasing water flow from the base rate to the peak rate is accomplished by rapidly decreasing backpressure at the outlet of the production well in order to meet periodic needs for amounts of thermal energy greater than a baseload amount, such as to generate additional electric power to meet peak demands. The rate of flow of water provided to the hot dry rock reservoir is maintained at a value effective to prevent depletion of the liquid

  4. Economics of dry FGD by sorbent injection

    SciTech Connect (OSTI)

    Naulty, D.J.; Hooper, R.G.; McDowell, D.A.; Scheck, R.W.

    1983-06-01T23:59:59.000Z

    The body of information in this paper is directed to engineers involved in desulfurization of boiler flue gas. The problems of wet scrubbing SO/sub 2/ from power plant flue gases have been well documented. The utility industry has been interested in developing new processes that would overcome problems associated with wet slurry systems. While spray dryer technology for FGD may alleviate many of these problems, this concept has problems as well. Dry injection FGD takes the development process one step further to a totally dry system, thus eliminating the difficulties of wet slurry handling. The concept of using the fabric filter as a chemical contactor for the SO/sub 2/ absorption was proposed in the late 1960s by Chaffee and Hill. In the early 1970s, Superior Oil Company, Wheelabrator Frye, Carborundum, and others investigated the use of nahcolite for SO/sub 2/ removal. Nahcolite is a natural occurring sodium bicarbonate found in great quantities in the oil shale regions of Colorado. In general, these developments were found viable in certain circumstances, but commercialization was hampered by the lack of nahcolite suppliers.

  5. Carbon nanotube and nanofiber reinforcement for improving the flexural strength and fracture toughness of portland cement paste

    E-Print Network [OSTI]

    Tyson, Bryan Michael

    2012-07-16T23:59:59.000Z

    The focus of the proposed research will be on exploring the use of nanotechnology-based nano-filaments, such as carbon nanotubes (CNTs) and nanofibers (CNFs), as reinforcement in improving the mechanical properties of portland cement paste as a...

  6. Heat Transfer Performance of a Dry and Wet / Dry Advanced Cooling Tower Condenser

    E-Print Network [OSTI]

    Fricke, H. D.; Webster, D. J.; McIlroy, K.; Bartz, J. A.

    1981-01-01T23:59:59.000Z

    phase change pilot plant (0.6 MWth) located at UCC/Linde. The first unit consisted of integral shaved-fin-extruded aluminum tubing designed for dry operation. Heat transfer and air-side pressure loss characteristics were measured under varying air face...

  7. Assessing the effect of cement-steel interface on well casing corrosion in aqueous CO2 environments

    SciTech Connect (OSTI)

    Han, Jiabin [Los Alamos National Laboratory; Carey, James W [Los Alamos National Laboratory; Zhang, Jinsuo [Los Alamos National Laboratory

    2010-01-01T23:59:59.000Z

    CO{sub 2} leakage is a critical safety concern for geologic storage. In wellbore environments, important leakage paths include the rock-cement and cement-casing interfaces. If the cement-casing interface is filled with escaping CO{sub 2}, the well casing directly contacts the CO{sub 2}. This can cause severe corrosion in the presence of water. This paper studies the effect of steel-cement interface gaps, ranging from 1 mm to 0 um, on casing corrosion. Corrosion kinetics were measured employing electrochemical techniques including linear polarization resistance, open circuit potential and electrochemical impedance spectroscopy. The experimental results showed that the corrosion of steel is not significant where the gap between steel and cement is small ({le} 100 {micro}m). Corrosion rates are controlled by the diffusion of corrosive species (H{sub 2}CO{sub 3} and H{sup +}) along the interface. In contrast, steel corrosion is severe in a broad gap where the corrosion process is limited only by the reaction kinetics of steel and corrosive species. The threshold leading to severe corrosion in terms of the cement-steel interface size (100 {micro}m) was determined. Our research clarifies a corrosion scenario at the cement-steel interface. Casing steel corrosion is initiated when attacked by corrosive species at the cement-steel interface. For relatively tight interfaces, this results in a slow thinning of the casing and expansion of the interface width. If the gap increases beyond the critical threshold size, the corrosion rate increases significantly, and a potentially damaging cycle of corrosion and interface expansion is developed.

  8. Mathematical and experimental modelling of heat pump assisted microwave drying

    SciTech Connect (OSTI)

    Xiguo Jia (Univ. of Queensland (Australia))

    1993-01-01T23:59:59.000Z

    Drying is one of the most energy intensive operations in industry and agriculture. In the quest to increase drying efficiency and product quality, new technologies and methods are constantly being sought. Of these technologies, heat pump assisted drying and microwave drying have proved to be the most promising contenders. In order to achieve a better understanding and provide a computer design tool for heat pump assisted convective and microwave drying, both mathematical modelling and experimental investigations of heat pump assisted microwave dryers have been undertaken in this study. A mathematical model has been developed to predict the steady-state performance of a heat pump assisted continuous microwave dryer, with emphasis on the simulation of heat and mass transfer processes in the evaporator and drying chamber. The model is intend to serve as a design tool in the study of heat pump dryers. To achieve the optimum design, the influences of the key design and operating parameters, as well as the comparison of different drying configurations, have been examined. Based on investigation results, several methods have been proposed to improve the performance of heat pump assisted microwave drying, such as the use of a recuperator. To validate the above mathematical model, extensive drying tests using foam rubber as the test material have been conducted on a prototype heat pump assisted microwave dryer. The prototype heat pump input power was 5 kW with a maximum microwave input power of 10 kW. The experimental performance data confirmed the veracity of the simulation model. The experimental results on drying test materials indicate that with careful design heat pump assisted microwave drying is comparable to convective drying in energy consumption while with a much higher drying speed.

  9. Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Cement Sector

    E-Print Network [OSTI]

    Sathaye, J.

    2011-01-01T23:59:59.000Z

    d) heat recovery for cogeneration (d) conversion to dryd) heat recovery for cogeneration (d) conversion from dry tod) heat recovery for cogeneration (d) conversion from dry to

  10. Engineering properties of miniature cement - fly ash compacts prepared by high pressure compaction

    E-Print Network [OSTI]

    Bormann, Jeffrey Ray

    1985-01-01T23:59:59.000Z

    ENGINEERING PROPERTIES OF MINIATURE CEMENT - FLY ASH COMPACTS PREPARED BY HIGH PRESSURE COMPACTION E NGIRPR OT SFMMAFU AEU C-ALEYY HDOBPvvIi va vGI ge(iD(vI oannItI au NId(R E)L xrP1IeRPvT 9(evP(n uDnuPnnBIrv au vGI eI0DPeIBIrvR uae vGI i...IteII au LEHNFA -M Ho2FYoF EDtDRv 3456 L(7ae HDO7I8v? oP1Pn FrtPrIIePrt ENGINEERING PROPERTIES OF MINIATURE CEMENT - FLY ASH COMPACTS PREPARED BY HIGH PRESSURE COMPACTION E NGIRPR OT SFMMAFU AEU C-ALEYY E99ea1Ii (R va RvTnI (ri 8arvIrv OT? LP...

  11. Plant-Wide Energy Efficiency Assessment at the Arizona Portland Cement Plant in Rillito, Arizona

    SciTech Connect (OSTI)

    Stephen J. Coppinger, P.E.; Bruce Colburn, Ph.D., P.E., CEM

    2007-05-17T23:59:59.000Z

    A Department of Energy Plant-wide Assessment was undertaken by Arizona Portland Cement (APC) beginning in May 2005. The assessment was performed at APC’s cement production facility in Rillito, Arizona. The assessment included a compressed air evaluation along with a detailed process audit of plant operations and equipment. The purpose of this Energy Survey was to identify a series of energy cost savings opportunities at the Plant, and provide preliminary cost and savings estimates for the work. The assessment was successful in identifying projects that could provide annual savings of over $2.7 million at an estimated capital cost of $4.3 million. If implemented, these projects could amount to a savings of over 4.9 million kWh/yr and 384,420 MMBtu/year.

  12. Evaluation of Gel Permeation Chromatography as an analytical tool for aspect cement testing

    E-Print Network [OSTI]

    Holmgreen, Richard J

    1985-01-01T23:59:59.000Z

    V ? ANALYSIS OF TEST RESULTS Introduction Hot Mixed Asphaltic Concrete Binder Aging Versus GPC . Identification by GPC . GPC and Chemical Analysis CHAPTER VI ? CONCLUSIONS AND RECOMMENDATIONS Conclusions Recommendations ~Pa e iv vii ix 7...EVALUATION OF GEL PERMEATION CHROMATOGRAPHY AS AN ANALYTICAL TOOL FOR ASPHALT CEMENT TESTING A Thesis by RICHARD JOHN HOLMGREEN, JR. Submitted to the Graduate College of Texas A8, M University in partial fulfillment of the requirements...

  13. Research on drilling fluids and cement slurries at Standard Oil Production Company: an internship report

    E-Print Network [OSTI]

    Flipse, Eugene Charles, 1956-

    2013-03-13T23:59:59.000Z

    1986 Major Subject: Chemical Engineering Research on Drilling Fluids and Cement Slurries at Standard Oil Production Company An Internship Report by EUGENE CHARLES FLIPSE Dr. K. R. Hall Chairman, Advisory Committee Dr. A Juazis Internship... was assigned to the SOPC Drilling Fluids Laboratory during his internship. Dr. W. C. McMordie, Jr. was his direct supervisor. The technical and administrative duties of this internship fell into six categories: orientation, laboratory build-out, office...

  14. A study of immobilization of four heavy metals by solidification/stabilization with portland cement

    E-Print Network [OSTI]

    Trussell, Susan A

    1994-01-01T23:59:59.000Z

    A STUDY OF IMMOBILIZATION OF FOUR HEAUY METALS BY SOLIDIFICATION/STABILIZATION WITH PORTLAND CEMEhK A Thesis by SUSAN ANN TRUSSELL Submitted to Texas AdcM University in partial fulfillment of the requirements for the degree of MASTER... of Immobilization of Four Heavy Metals By Solidification/Stabilization with Portland Cement. (May 1994) Susan Trussell, B. S. , Baylor University; M. A. , Texas ARM University Chair of Advisory Committee: Dr. Bill Batchelor Immobilization of four heavy metals...

  15. Development of long-term performance models for radioactive waste forms

    SciTech Connect (OSTI)

    Bacon, Diana H.; Pierce, Eric M.

    2011-03-22T23:59:59.000Z

    The long-term performance of solid radioactive waste is measured by the release rate of radionuclides into the environment, which depends on corrosion or weathering rates of the solid waste form. The reactions involved depend on the characteristics of the solid matrix containing the radioactive waste, the radionuclides of interest, and their interaction with surrounding geologic materials. This chapter describes thermo-hydro-mechanical and reactive transport models related to the long-term performance of solid radioactive waste forms, including metal, ceramic, glass, steam reformer and cement. Future trends involving Monte-Carlo simulations and coupled/multi-scale process modeling are also discussed.

  16. Deteriorated hardened cement paste structure analyzed by XPS and {sup 29}Si NMR techniques

    SciTech Connect (OSTI)

    Kurumisawa, Kiyofumi, E-mail: kurumi@eng.hokudai.ac.jp [Faculty of Engineering, Hokkaido University, Japan, Kita 13, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-8628 (Japan)] [Faculty of Engineering, Hokkaido University, Japan, Kita 13, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-8628 (Japan); Nawa, Toyoharu [Faculty of Engineering, Hokkaido University, Japan, Kita 13, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-8628 (Japan)] [Faculty of Engineering, Hokkaido University, Japan, Kita 13, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-8628 (Japan); Owada, Hitoshi [Radioactive Waste Management Funding and Research Center, 1-15-7 Tsukishima, Chuo-ku, Tokyo (Japan)] [Radioactive Waste Management Funding and Research Center, 1-15-7 Tsukishima, Chuo-ku, Tokyo (Japan); Shibata, Masahito [Taiheiyo Consultant Co., Ltd., 2-4-2, Ohsaku, Sakura-City, Chiba (Japan)] [Taiheiyo Consultant Co., Ltd., 2-4-2, Ohsaku, Sakura-City, Chiba (Japan)

    2013-10-15T23:59:59.000Z

    In this report, X-ray photoelectron spectroscopy (XPS) and {sup 29}Si-MAS-NMR was used for the evaluation of deteriorated hardened cement pastes. The deterioration by ammonium nitrate solution was accompanied by changes in the pore structure as well as by structural changes in the C–S–H in the hardened cement paste. The CaO/SiO{sub 2} ratio of the C–S–H decreased with the progress of deterioration, there was also polymerization of the silicate in the C–S–H. It was confirmed that the degree of polymerization of silicate of the C–S–H in hardened cement paste can be determined by XPS. It was also shown that the polymerization depends on the structure of the C–S–H. -- Highlights: •The polymerization of silicate of the C–S–H in the HCP can be observed by XPS. •The structure of C–S–H changed with the degree of calcium leaching. •The NMR result about silicate in C–S–H was in good agreement with the XPS result.

  17. Nitrogen Control in Electric Arc Furnace Steelmaking by DRI (TRP 0009)

    SciTech Connect (OSTI)

    Dr. Gordon A. Irons

    2004-03-31T23:59:59.000Z

    Nitrogen is difficult to remove in electric arc furnace (EAF) steelmaking, requiring the use of more energy in the oxygen steelmaking route to produce low-nitrogen steel. The objective of this work was to determine if the injection of directly reduced iron (DRI) fines into EAFs could reduce the nitrogen content by creating fine carbon monoxide bubbles that rinse nitrogen from the steel. The proposed work included physical and chemical characterization of DRI fines, pilot-scale injection into steel, and mathematical modeling to aid in scale-up of the process. Unfortunately, the pilot-scale injections were unsuccessful, but some full-scale data was obtained. Therefore, the original objectives were met, and presented in the form of recommendations to EAF steelmakers regarding: (1) The best composition and size of DRI fines to use; (2) The amount of DRI fines required to achieve a specific reduction in nitrogen content in the steel; and (3) The injection conditions. This information may be used by steelmakers in techno-economic assessments of the cost of reducing nitrogen with this technology.

  18. Disposability Assessment: Aluminum-Based Spent Nuclear Fuel Forms

    SciTech Connect (OSTI)

    Vinson, D.W.

    1998-11-06T23:59:59.000Z

    This report provides a technical assessment of the Melt-Dilute and Direct Al-SNF forms in disposable canisters with respect to meeting the requirements for disposal in the Mined Geologic Disposal System (MGDS) and for interim dry storage in the Treatment and Storage Facility (TSF) at SRS.

  19. aerosol dry deposition: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    43 Drying and deposition of poly(ethylene oxide) droplets determined by Pclet number Condensed Matter (arXiv) Summary: We report results of a detailed experimental...

  20. atmospheric dry deposition: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    water vapor, and we confirm such predictions in a numerical model. There have been a number 38 Dual nitrate isotopes in dry deposition: Utility for partitioning NOx source...

  1. Gas Composition Transients in the Cold Vacuum Drying (CVD) Facility

    SciTech Connect (OSTI)

    PACKER, M.J.

    1999-07-01T23:59:59.000Z

    Calculations with plotted results presented as confirmation bases for selected problems involving the prediction of transient gas compositions during Cold Vacuum Drying Operations.

  2. ,"New York Dry Natural Gas Reserves Extensions (Billion Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Dry Natural Gas Reserves Extensions (Billion Cubic Feet)",1,"Annual",2013 ,"Release...

  3. ,"New York Dry Natural Gas Reserves New Field Discoveries (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet)",1,"Annual",2013...

  4. ,"New York Dry Natural Gas Reserves Acquisitions (Billion Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Dry Natural Gas Reserves Acquisitions (Billion Cubic Feet)",1,"Annual",2013 ,"Release...

  5. ,"New York Dry Natural Gas Reserves Estimated Production (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)",1,"Annual",2013...

  6. ,"New York Dry Natural Gas Reserves Revision Decreases (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Dry Natural Gas Reserves Revision Decreases (Billion Cubic Feet)",1,"Annual",2013...

  7. ,"New York Dry Natural Gas Reserves Sales (Billion Cubic Feet...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Dry Natural Gas Reserves Sales (Billion Cubic Feet)",1,"Annual",2013 ,"Release...

  8. ,"New York Dry Natural Gas Reserves Adjustments (Billion Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Dry Natural Gas Reserves Adjustments (Billion Cubic Feet)",1,"Annual",2013 ,"Release...

  9. ,"New York Dry Natural Gas Reserves Revision Increases (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Dry Natural Gas Reserves Revision Increases (Billion Cubic Feet)",1,"Annual",2013...

  10. Hydrogen storage materials and method of making by dry homogenation

    DOE Patents [OSTI]

    Jensen, Craig M. (Kailua, HI); Zidan, Ragaiy A. (Honolulu, HI)

    2002-01-01T23:59:59.000Z

    Dry homogenized metal hydrides, in particular aluminum hydride compounds, as a material for reversible hydrogen storage is provided. The reversible hydrogen storage material comprises a dry homogenized material having transition metal catalytic sites on a metal aluminum hydride compound, or mixtures of metal aluminum hydride compounds. A method of making such reversible hydrogen storage materials by dry doping is also provided and comprises the steps of dry homogenizing metal hydrides by mechanical mixing, such as be crushing or ball milling a powder, of a metal aluminum hydride with a transition metal catalyst. In another aspect of the invention, a method of powering a vehicle apparatus with the reversible hydrogen storage material is provided.

  11. air dried soil: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    102 Concentration, size distribution, and dry deposition rate of particle-associated metals in the Los Angeles region University of California eScholarship Repository Summary:...

  12. Vehicle Technologies Office Merit Review 2014: Dry Process Electrode Fabrication

    Broader source: Energy.gov [DOE]

    Presentation given by Navitas Systems at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about dry process electrode...

  13. antarctic dry valley: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    UK b Department of Geological Sciences and Institute.V. All rights reserved. Keywords: Uranium isotopes; Dry Valleys; Antarctica; Weathering; Lake chemistry 1 isotopes. The supply...

  14. antarctic dry valleys: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    UK b Department of Geological Sciences and Institute.V. All rights reserved. Keywords: Uranium isotopes; Dry Valleys; Antarctica; Weathering; Lake chemistry 1 isotopes. The supply...

  15. Production of cements from Illinois coal ash. Final technical report, September 1, 1995--August 31, 1996

    SciTech Connect (OSTI)

    Wagner, J.C.; Bhatty, J.L.; Mishulovich, A.

    1997-05-01T23:59:59.000Z

    The objective of this program is to convert Illinois coal combustion residues, such as fly ash, bottom ash, and boiler slag, into novel cementitious materials for use in the construction industry. These residues are composed largely of SiO{sub 2}, Al{sub 2}O{sub 3}, Fe{sub 2}O{sub 3}, MgO, and CaO, which are also the major components of cement. Since the residues are used as an integral component of the cement and not just as additives to concrete, larger amounts of the residues can be utilized. The process uses submerged combustion to melt blends of coal combustion residues with lime, clay, and/or sand. The submerged combustion melter utilizes natural gas-oxidant firing directly into a molten bath to provide efficient melting of mineral-like materials. Use of this melter for cement production has many advantages over rotary kilns including very little, if any, grinding of the feed material, very low emissions, and compact size. During the first year of the program, samples of coal combustion residues were blended and mixed, as needed; with lime, clay, and/or sand to adjust the composition. Six mixtures, three with fly ash and three with bottom ash, were melted in a laboratory-scale furnace. The resultant products were used in mortar cubes and bars which were subjected to ASTM standard tests of cementitious properties. In the hydraulic activity test, mortar cubes were found to have a strength comparable to standard mortar cements. In the compressive strength test, mortar cubes were found to have strengths that exceeded ASTM blended cement performance specifications. In the ASR expansion test, mortar bars were subjected to alkali-silica reaction-induced expansion, which is a problem for siliceous aggregate-based concretes that are exposed to moisture. The mortar bars made with the products inhibited 85 to 97% of this expansion. These results show that residue-based products have an excellent potential as ASR-preventing additions in concretes.

  16. International Best Practices for Pre-Processing and Co-Processing Municipal Solid Waste and Sewage Sludge in the Cement Industry

    E-Print Network [OSTI]

    Hasanbeigi, Ali

    2013-01-01T23:59:59.000Z

    Co-processing Municipal Solid Waste and Sewage Sludge in theno date. “Integrated Solid Waste Management. ” Presentationincineration of Municipal Solid Waste in Cement Industry. :

  17. International Best Practices for Pre-Processing and Co-Processing Municipal Solid Waste and Sewage Sludge in the Cement Industry

    E-Print Network [OSTI]

    Hasanbeigi, Ali

    2013-01-01T23:59:59.000Z

    L.S. 2008. “Complete alternative fuel solution for cementKolyfetis, E. 2007. “Alternative Fuels & Raw Materials inof the workshop on Alternative Fuels & Alternative Raw

  18. ABATEMENT REQUEST FORM \\ \\ Drayton\\ Data\\ Graduate Office\\ Forms\\ F. Assistantship Forms\\ F.4 Abatement Request Form

    E-Print Network [OSTI]

    Kasman, Alex

    ABATEMENT REQUEST FORM (GSO-F4) Rev. 13-14 \\ \\ Drayton\\ Data\\ Graduate Office\\ Forms\\ F. Assistantship Forms\\ F.4 Abatement Request Form 1. CWID Degree or Certificate Program Residency Status 2. Last): Requested Enrollment Hours for Term: Note: The Abatement award is subject to the availability of funds

  19. Life-Cycle Evaluation of Concrete Building Construction as a Strategy for Sustainable Cities

    E-Print Network [OSTI]

    Stadel, Alexander

    2013-01-01T23:59:59.000Z

    BTu/tonne cement) Baseline Portland Cement produced at wet kiln long dry kiln Coal Electricity Distillate (diesel)

  20. DRY TRANSFER FACILITY WORKER DOSE ASSESSMENT

    SciTech Connect (OSTI)

    J.S. Tang

    2004-09-23T23:59:59.000Z

    The purpose of this calculation is to estimate radiation doses received by personnel working in the Dry Transfer Facility No.1 (DTF-1) performing operations to receive transportation casks, transfer wastes, prepare waste packages, and ship out loaded waste packages and empty casks. Doses received by workers due to maintenance operations are also included in this revision. The specific scope of work contained in this calculation covers both collective doses and individual worker group doses on an annual basis, and includes the contributions due to external and internal radiation from normal operation, excluding the remediation area of the building. The results of this calculation will be used to support the design of the DTF-1 and to provide occupational dose estimates for the License Application. The calculations contained in this document were developed by Environmental and Nuclear Engineering of the Design and Engineering Organization and are intended solely for the use of the Design and Engineering Organization in its work regarding facility operation. Yucca Mountain Project personnel from the Environmental and Nuclear Engineering should be consulted before use of the calculations for purposes other than those stated herein or use by individuals other than authorized personnel in the Environmental and Nuclear Engineering.

  1. Corrosion assessment of dry fuel storage containers

    SciTech Connect (OSTI)

    Graves, C.E.

    1994-09-01T23:59:59.000Z

    The structural stability as a function of expected corrosion degradation of 75 dry fuel storage containers located in the 200 Area Low-Level Waste Burial Grounds was evaluated. These containers include 22 concrete burial containers, 13 55-gal (208-l) drums, and 40 Experimental Breeder Reactor II (EBR-II) transport/storage casks. All containers are buried beneath at least 48 in. of soil and a heavy plastic tarp with the exception of 35 of the EBR-II casks which are exposed to atmosphere. A literature review revealed that little general corrosion is expected and pitting corrosion of the carbon steel used as the exterior shell for all containers (with the exception of the concrete containers) will occur at a maximum rate of 3.5 mil/yr. Penetration from pitting of the exterior shell of the 208-l drums and EBR-II casks is calculated to occur after 18 and 71 years of burial, respectively. The internal construction beneath the shell would be expected to preclude containment breach, however, for the drums and casks. The estimates for structural failure of the external shells, large-scale shell deterioration due to corrosion, are considerably longer, 39 and 150 years respectively for the drums and casks. The concrete burial containers are expected to withstand a service life of 50 years.

  2. Simple approaches for measuring dry atmospheric nitrogen deposition to watersheds

    E-Print Network [OSTI]

    Elliott, Emily M.

    '' and spatial variations of gaseous dry N deposition (i.e., nitrogen dioxide (NO2) and ammonia (NH3)), thoughSimple approaches for measuring dry atmospheric nitrogen deposition to watersheds Heather E. Golden the effects of atmospheric nitrogen (N) deposition on surface water quality requires accurate accounts

  3. Horizontal Air Flow Drying Foods at Home Safely

    E-Print Network [OSTI]

    Horizontal Air Flow Drying Foods at Home Safely Choosing a Food Dehydrator Drying is one. The thermostat should go up to 160 degrees F. The unit should have a fan or blower for air circulation. Mesh purposes. Types of Dehydrators There are two main types of dehydrators: those with vertical air flow

  4. Solvent Selection Use dry ice/isopropanol for cooling baths

    E-Print Network [OSTI]

    Chan, Hue Sun

    Solvent Selection Use dry ice/isopropanol for cooling baths Reaches essentially the same temperature as dry ice/acetone (-77°C vs. -78°C), but the lower volatility of isopropanol minimizes vapor a closed-loop cooling system for condensers Closed-loop cooling systems eliminate wastewater and accidental

  5. Dry friction avalanches: Experiment and theory Sergey V. Buldyrev,1

    E-Print Network [OSTI]

    Buldyrev, Sergey

    Dry friction avalanches: Experiment and theory Sergey V. Buldyrev,1 John Ferrante,2 and Fredy R and theoretical models are presented supporting the conjecture that dry friction stick-slip is described by self the variation of the friction force as a function of time. We study nominally flat surfaces of matching aluminum

  6. Safe Handling of Dry Ice During a Power Outage

    E-Print Network [OSTI]

    dry ice in a well-insulated container. If transporting it inside a car for more than 15 minutes, make. Burn treatment Treat dry ice burns the same as heat burns. See a doctor if skin blisters. Disposal are open to all with- out regard to race, color, national origin, gender, religion, age, disability

  7. Biomass Logistics and Particle Technology Group Purdue Improved Drying

    E-Print Network [OSTI]

    Ginzel, Matthew

    to maintain quality of grain in storage. n Farmers primarily depended on open air solar drying after logistics Grain & pest management Pre-Harvest losses from: Insect, molds and birds Harvesting & handling of PICS, technology Open Air Solar Drying of Maize in Ejura Market, Ashanti Region, Ghana #12;4 Chronology

  8. Solidification of ion exchange resin wastes

    SciTech Connect (OSTI)

    Not Available

    1982-08-01T23:59:59.000Z

    Solidification media investigated included portland type I, portland type III and high alumina cements, a proprietary gypsum-based polymer modified cement, and a vinyl ester-styrene thermosetting plastic. Samples formulated with hydraulic cement were analyzed to investigate the effects of resin type, resin loading, waste-to-cement ratio, and water-to-cement ratio. The solidification of cation resin wastes with portland cement was characterized by excessive swelling and cracking of waste forms, both after curing and during immersion testing. Mixed bed resin waste formulations were limited by their cation component. Additives to improve the mechanical properties of portland cement-ion exchange resin waste forms were evaluated. High alumina cement formulations dislayed a resistance to deterioration of mechanical integrity during immersion testing, thus providing a significant advantage over portland cements for the solidification of resin wastes. Properties of cement-ion exchange resin waste forms were examined. An experiment was conducted to study the leachability of /sup 137/Cs, /sup 85/Sr, and /sup 60/Co from resins modified in portland type III and high alumina cements. The cumulative /sup 137/Cs fraction release was at least an order of magnitude greater than that of either /sup 85/Sr or /sup 60/Co. Release rates of /sup 137/Cs in high alumina cement were greater than those in portland III cement by a factor of two.Compressive strength and leach testing were conducted for resin wastes solidified with polymer-modified gypsum based cement. /sup 137/Cs, /sup 85/Sr, and /sup 60/Co fraction releases were about one, two and three orders of magnitude higher, respectively, than in equivalent portland type III cement formulations. As much as 28.6 wt % dry ion exchange resin was successfully solidified using vinyl ester-styrene compared with a maximum of 25 wt % in both portland and gypsum-based cement.

  9. Moisture Distribution and Flow During Drying of Wood and Fiber

    SciTech Connect (OSTI)

    Zink-Sharp, Audrey; Hanna, Robert B.

    2001-12-28T23:59:59.000Z

    New understanding, theories, and techniques for moisture flow and distribution were developed in this research on wood and wood fiber. Improved understanding of the mechanisms of flake drying has been provided. Observations of flake drying and drying rate curves revealed that rate of moisture loss consisted of two falling rate periods and no constant rate drying period was observed. Convective heat transfer controls the first period, and bound water diffusion controls the second period. Influence of lower drying temperatures on bending properties of wood flakes was investigated. Drying temperature was found to have a significant influence on bending stiffness and strength. A worksheet for calculation of the energy required to dry a single strandboard flake was developed but has not been tested in an industrial setting yet. A more complete understanding of anisotropic transverse shrinkage of wood is proposed based on test results and statistical analysis. A simplified mod el of a wood cell's cross-section was drawn for calculating differential transverse shrinkage. The model utilizes cell wall thickness and microfibrillar packing density and orientation. In spite of some phenomena of cell wall structure not yet understood completely, the results might explain anisotropic transverse shrinkage to a major extent. Boundary layer theory was found useful for evaluating external moisture resistance during drying. Simulated moisture gradients were quire comparable to the actual gradients in dried wood. A mathematical procedure for determining diffusion and surface emission coefficients was also developed. Thermal conductivity models of wood derived from its anatomical structure were created and tested against experimental values. Model estimations provide insights into changes in heat transfer parameters during drying. Two new techniques for measuring moisture gradients created in wood during drying were developed. A new technique that utilizes optical properties of cobalt chloride was developed for nondestructive determination of surface moisture content. Fundamental new understanding of drying characteristics in wood and fiber has been provided that can be used by researchers to improve drying of wood and fiber. The three techniques for measuring moisture content and gradients provided in this study are efficient, practical, and economical - easy to apply by industry and researchers. An energy consumption worksheet is provided as a first step toward reducing energy consumed during drying of lumber and strandboard flakes. However, it will need additional verification and testing.

  10. Evaluation of final waste forms and recommendations for baseline alternatives to group and glass

    SciTech Connect (OSTI)

    Bleier, A.

    1997-09-01T23:59:59.000Z

    An assessment of final waste forms was made as part of the Federal Facilities Compliance Agreement/Development, Demonstration, Testing, and Evaluation (FFCA/DDT&E) Program because supplemental waste-form technologies are needed for the hazardous, radioactive, and mixed wastes of concern to the Department of Energy and the problematic wastes on the Oak Ridge Reservation. The principal objective was to identify a primary waste-form candidate as an alternative to grout (cement) and glass. The effort principally comprised a literature search, the goal of which was to establish a knowledge base regarding four areas: (1) the waste-form technologies based on grout and glass, (2) candidate alternatives, (3) the wastes that need to be immobilized, and (4) the technical and regulatory constraints on the waste-from technologies. This report serves, in part, to meet this goal. Six families of materials emerged as relevant; inorganic, organic, vitrified, devitrified, ceramic, and metallic matrices. Multiple members of each family were assessed, emphasizing the materials-oriented factors and accounting for the fact that the two most prevalent types of wastes for the FFCA/DDT&E Program are aqueous liquids and inorganic sludges and solids. Presently, no individual matrix is sufficiently developed to permit its immediate implementation as a baseline alternative. Three thermoplastic materials, sulfur-polymer cement (inorganic), bitumen (organic), and polyethylene (organic), are the most technologically developed candidates. Each warrants further study, emphasizing the engineering and economic factors, but each also has limitations that regulate it to a status of short-term alternative. The crystallinity and flexible processing of sulfur provide sulfur-polymer cement with the highest potential for short-term success via encapsulation. Long-term immobilization demands chemical stabilization, which the thermoplastic matrices do not offer. Among the properties of the remaining candidates, those of glass-ceramics (devitrified matrices) represent the best compromise for meeting the probable stricter disposal requirements in the future.

  11. Effect of pyrolyzed carbon black on asphalt cement. Part 2. Asphalt binder. Final report, September 1993-May 1995

    SciTech Connect (OSTI)

    Zeng, Y.; Lovell, C.W.

    1996-02-20T23:59:59.000Z

    Scrap tires derived from automobiles have become a large environmental problem in the United States. In the study, research is carried out to investigate the potential use of tire-derived pyrolyzed carbon black from scrap tires as an asphalt cement modifier. The asphlat cements used in the research were AC10 and AC20. Penetration and softening point tests were performed to obtain the consistency of the asphalt cements. The pyrolyzed carbon black, as provided by Wolf Industries, was combined with the asphalt cement in the following percentages: 5%, 10%, 15% and 20%. Penetration, softening point and ductility tests were performed to determine the temperature susceptibility of the modified binder as altered by the pyrolyzed carbon black. In order that the results are comparable to previous testing, commercial carbon black purchased from CABOT Industry was also used as a modifier in the tests. The same test procedures were applied to the asphalt cements modified by commercial carbon black. The test results contained in the report illustrate the viability of the pyrolyzed carbon black as an asphalt modifier. Recommendations are provided to facilitate further research on this particular project. A preliminary assessment of a test road using the pyrolyzed carbon is appended.

  12. Full-scale tests of sulfur polymer cement and non-radioactive waste in heated and unheated prototypical containers

    SciTech Connect (OSTI)

    Darnell, G.R.; Aldrich, W.C.; Logan, J.A.

    1992-02-01T23:59:59.000Z

    Sulfur polymer cement has been demonstrated to be superior to portland cement in the stabilization of numerous troublesome low- level radioactive wastes, notably mixed waste fly ash, which contains heavy metals. EG G Idaho, Inc. conducted full-scale, waste-stabilization tests with a mixture of sulfur polymer cement and nonradioactive incinerator ash poured over simulated steel and ash wastes. The container used to contain the simulated waste for the pour was a thin-walled, rectangular, steel container with no appendages. The variable in the tests was that one container and its contents were at 65{degree}F (18{degree}C) at the beginning of the pour, while the other was preheated to 275{degree}F (135{degree}C) and was insulated before the pour. The primary goal was to determine the procedures and equipment deemed operationally acceptable and capable of providing the best probability of passing the only remaining governmental test for sulfur polymer cement, the Nuclear Regulatory Commission's full-scale test. The secondary goal was to analyze the ability of the molten cement and ash mixture to fill different size pipes and thus eliminate voids in the resultant 24 ft{sup 3} monolith.

  13. Full-scale tests of sulfur polymer cement and non-radioactive waste in heated and unheated prototypical containers

    SciTech Connect (OSTI)

    Darnell, G.R.; Aldrich, W.C.; Logan, J.A.

    1992-02-01T23:59:59.000Z

    Sulfur polymer cement has been demonstrated to be superior to portland cement in the stabilization of numerous troublesome low- level radioactive wastes, notably mixed waste fly ash, which contains heavy metals. EG&G Idaho, Inc. conducted full-scale, waste-stabilization tests with a mixture of sulfur polymer cement and nonradioactive incinerator ash poured over simulated steel and ash wastes. The container used to contain the simulated waste for the pour was a thin-walled, rectangular, steel container with no appendages. The variable in the tests was that one container and its contents were at 65{degree}F (18{degree}C) at the beginning of the pour, while the other was preheated to 275{degree}F (135{degree}C) and was insulated before the pour. The primary goal was to determine the procedures and equipment deemed operationally acceptable and capable of providing the best probability of passing the only remaining governmental test for sulfur polymer cement, the Nuclear Regulatory Commission`s full-scale test. The secondary goal was to analyze the ability of the molten cement and ash mixture to fill different size pipes and thus eliminate voids in the resultant 24 ft{sup 3} monolith.

  14. Managing Aging Effects on Dry Cask Storage

    E-Print Network [OSTI]

    Kemner, Ken

    to fossil fuels, nuclear, and solar power generation technologies in terms of EROI. Ã? 2009 Elsevier Ltd. All, biomass, various forms of solar power, nuclear, fossil fuel systems with carbon sequestration, among, construction, operation, decommissioning, and other stages of facility's life cycle (Fig. 2). Comparing

  15. Structural Sensitivity of Dry Storage Canisters

    SciTech Connect (OSTI)

    Klymyshyn, Nicholas A.; Karri, Naveen K.; Adkins, Harold E.; Hanson, Brady D.

    2013-09-27T23:59:59.000Z

    This LS-DYNA modeling study evaluated a generic used nuclear fuel vertical dry storage cask system under tip-over, handling drop, and seismic load cases to determine the sensitivity of the canister containment boundary to these loads. The goal was to quantify the expected failure margins to gain insight into what material changes over the extended long-term storage lifetime could have the most influence on the security of the containment boundary. It was determined that the tip-over case offers a strong challenge to the containment boundary, and identifies one significant material knowledge gap, the behavior of welded stainless steel joints under high-strain-rate conditions. High strain rates are expected to increase the material’s effective yield strength and ultimate strength, and may decrease its ductility. Determining and accounting for this behavior could potentially reverse the model prediction of a containment boundary failure at the canister lid weld. It must be emphasized that this predicted containment failure is an artifact of the generic system modeled. Vendor specific designs analyze for cask tip-over and these analyses are reviewed and approved by the Nuclear Regulatory Commission. Another location of sensitivity of the containment boundary is the weld between the base plate and the canister shell. Peak stresses at this location predict plastic strains through the whole thickness of the welded material. This makes the base plate weld an important location for material study. This location is also susceptible to high strain rates, and accurately accounting for the material behavior under these conditions could have a significant effect on the predicted performance of the containment boundary. The handling drop case was largely benign to the containment boundary, with just localized plastic strains predicted on the outer surfaces of wall sections. It would take unusual changes in the handling drop scenario to harm the containment boundary, such as raising the drop height or changing the impact angle. The seismic load case was derived from the August 23, 2011 earthquake that affected the North Anna power station. The source of the data was a monitoring station near Charlottesville, Virginia, so the ground motion is not an exact match. Stresses on the containment boundary were so low, even from a fatigue standpoint, that the seismic load case is generally not a concern. Based on this study, it is recommended that high strain rate testing of welded stainless steel test samples be pursued to define the currently unknown material behavior. Additional modeling is recommended to evaluate specific dry storage cask system designs subjected to tip-over loads using a high level of model detail. Additional modeling of the canister interior components (basket, fuel assemblies, etc.) is also recommended, to evaluate the feasibility of fuel retrievability after a tip-over incident. Finally, additional modeling to determine how much degradation a system could undergo and still maintain the integrity of the confinement barrier should be performed.

  16. Guides and Case Studies for Hot-Dry and Mixed-Dry Climates | Department of

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAX POLICIES7.pdfFuel Celland Contractors | Department of EnergyAllEnergy Dry

  17. Time, energy & form

    E-Print Network [OSTI]

    McInnis, Martha Jane

    1982-01-01T23:59:59.000Z

    Physical manifestations of time occur in natural forms of all sizes. Architectural form serves as shelter while providing a built envelope of human life, simultaneously influencing and influenced by energetic activities ...

  18. The effect of chemical admixtures on the drying shrinkage of concrete

    E-Print Network [OSTI]

    Torrans, Patrick Henry

    1964-01-01T23:59:59.000Z

    DAYS INDICATES PERCENTAGE PULVERIZED SILICA 0 0%: ~. 24 ~ . 20 l cr. . 16 cZ K ~~ . 12 ;$0% . 04 0 10 20 50 40 50 60 WATER LOSS ? GRAMS PER SPEClMEN requirement of a given mix design would also reduce the ultimate shrink- age. However.... 7 and a cement factor of 5'z sacks of cement per cubic yard. Type I Atlas portland cement was used. Slump on all batches was 4 ? Lx inches with an air content of 5 to 7X desired. Sike Aer brand air-entraining agent was used at a rate of 0. 7...

  19. Alkali-aggregate reaction in concrete containing high-alkali cement and granite aggregate

    SciTech Connect (OSTI)

    Owsiak, Z

    2004-01-01T23:59:59.000Z

    The paper discusses results of the research into the influence of high-alkali Portland cement on granite aggregate. The deformation of the concrete structure occurred after 18 months. The research was carried out by means of a scanning electron microscope equipped with a high-energy dispersive X-ray analyzer that allowed observation of unpolished sections of concrete bars exhibiting the cracking pattern typical of the alkali-silica reaction. Both the microscopic observation and the X-ray elemental analysis confirm the presence of alkali-silica gel and secondary ettringite in the cracks.

  20. Appearance of the first cemental annulation of permanent incisor teeth of the domestic cat (Felis catus)

    E-Print Network [OSTI]

    Choi, In-Back

    1983-01-01T23:59:59.000Z

    of MASTER OF SCIENCE August 19S3 Major Subject: Veterinary Anatomy APPEARANCE OF THE FIRST CEMENTAL ANNULATION OF THE FFRMANENT INCISOR TEETH OF THE DOMEST'C CAT (EEL IS CATL'S) A Thesis by IN-BACK CHOI Approved as to styie and content by: is, D. V.... the Domestic Cat (Felis catus). (August 1983) In-Back Choi, D. V. M. , Seoul National University Cnairman of Advisory Committee: Dr. R. F. Sis O. V. M. , Ph. D. Fourteen incisors from three female and four male cats (2. 5 to 15. 5 months of age) were...

  1. Manufacturing Energy and Carbon Footprint - Sector: Cement (NAICS 327310), January 2014 (MECS 2010)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department of Energy Low-TemperatureEnergyAll Manufacturing (NAICS 31-33)Cement

  2. Cement Creek Ranch Pool & Spa Low Temperature Geothermal Facility | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:Energy Information on PV EconomicsOregon: Energy ResourcesCeilingCement

  3. Energy-efficient regenerative liquid desiccant drying process

    DOE Patents [OSTI]

    Ko, Suk M. (Huntsville, AL); Grodzka, Philomena G. (Huntsville, AL); McCormick, Paul O. (Athens, AL)

    1980-01-01T23:59:59.000Z

    This invention relates to the use of desiccants in conjunction with an open oop drying cycle and a closed loop drying cycle to reclaim the energy expended in vaporizing moisture in harvested crops. In the closed loop cycle, the drying air is brought into contact with a desiccant after it exits the crop drying bin. Water vapor in the moist air is absorbed by the desiccant, thus reducing the relative humidity of the air. The air is then heated by the used desiccant and returned to the crop bin. During the open loop drying cycle the used desiccant is heated (either fossil or solar energy heat sources may be used) and regenerated at high temperature, driving water vapor from the desiccant. This water vapor is condensed and used to preheat the dilute (wet) desiccant before heat is added from the external source (fossil or solar). The latent heat of vaporization of the moisture removed from the desiccant is reclaimed in this manner. The sensible heat of the regenerated desiccant is utilized in the open loop drying cycle. Also, closed cycle operation implies that no net energy is expended in heating drying air.

  4. Kinetics of the clay roofing tile convection drying

    SciTech Connect (OSTI)

    Thomas, S. (Univ. of Osijek (Croatia). Faculty of Food Technology); Skansi, D. (Univ. of Zagreb (Croatia). Faculty of Chemical Engineering and Technology); Sokele, M. (Croatian Post and Telecommunications, Zagreb (Croatia). Telecommunications Center)

    1993-01-01T23:59:59.000Z

    Kinetics of the convection drying process of flat tile has been investigated experimentally in an industrial tunnel dryer. Several velocities of wet tile movement through the dryer were tested to obtain maximum allowable drying rate curve. As there are various models to describe the kinetics of convection drying, finding a model that would fairly well approximate the kinetics of the whole drying process was part of the research. Especially the polynomial and exponential models were tested. It was found that exponential model of the type: B(t) = (a[minus]B[sub e])[center dot]EXP([minus]bt[sup 2])+B[sub e], ([minus]dB(t)/dt) = 2bt(B(t)[minus]B[sub e]) significantly correlates the kinetics of the whole tile drying process. Applying the maximum allowable drying rate curve obtained for flat tile in the first period of drying, a grapho-analytic model for the optimal conducting of the process has been developed.

  5. Energy Efficiency Improvement and Cost Saving Opportunities for Cement Making. An ENERGY STAR Guide for Energy and Plant Managers

    SciTech Connect (OSTI)

    Galitsky, Christina; Worrell, Ernst; Galitsky, Christina

    2008-01-01T23:59:59.000Z

    The cost of energy as part of the total production costs in the cement industry is significant, warranting attention for energy efficiency to improve the bottom line. Historically, energy intensity has declined, although more recently energy intensity seems to have stabilized with the gains. Coal and coke are currently the primary fuels for the sector, supplanting the dominance of natural gas in the 1970s. Most recently, there is a slight increase in the use of waste fuels, including tires. Between 1970 and 1999, primary physical energy intensity for cement production dropped 1 percent/year from 7.3 MBtu/short ton to 5.3 MBtu/short ton. Carbon dioxide intensity due to fuel consumption and raw material calcination dropped 16 percent, from 609 lb. C/ton of cement (0.31 tC/tonne) to 510 lb. C/ton cement (0.26 tC/tonne). Despite the historic progress, there is ample room for energy efficiency improvement. The relatively high share of wet-process plants (25 percent of clinker production in 1999 in the U.S.) suggests the existence of a considerable potential, when compared to other industrialized countries. We examined over 40 energy efficient technologies and measures and estimated energy savings, carbon dioxide savings, investment costs, and operation and maintenance costs for each of the measures. The report describes the measures and experiences of cement plants around the wold with these practices and technologies. Substantial potential for energy efficiency improvement exists in the cement industry and in individual plants. A portion of this potential will be achieved as part of (natural) modernization and expansion of existing facilities, as well as construction of new plants in particular regions. Still, a relatively large potential for improved energy management practices exists.

  6. Forms of matter and forms of radiation

    E-Print Network [OSTI]

    Maurice Kleman

    2011-04-08T23:59:59.000Z

    The theory of defects in ordered and ill-ordered media is a well-advanced part of condensed matter physics. Concepts developed in this field also occur in the study of spacetime singularities, namely: i)- the topological theory of quantized defects (Kibble's cosmic strings) and ii)- the Volterra process for continuous defects, used to classify the Poincar\\'e symmetry breakings. We reassess the classification of Minkowski spacetime defects in the same theoretical frame, starting from the conjecture that these defects fall into two classes, as on they relate to massive particles or to radiation. This we justify on the empirical evidence of the Hubble's expansion. We introduce timelike and null congruences of geodesics treated as ordered media, viz. 'm'-crystals of massive particles and 'r'-crystals of massless particles, with parallel 4-momenta in M^4. Classifying their defects (or 'forms') we find (i) 'm'- and 'r'- Volterra continuous line defects and (ii) quantized topologically stable 'r'-defects, these latter forms being of various dimensionalities. Besides these 'perfect' forms, there are 'imperfect' disclinations that bound misorientation walls in three dimensions. We also speculate on the possible relation of these forms with the large-scale structure of the Universe.

  7. Anionic Salt Programs for Close-Up Dry Cows

    E-Print Network [OSTI]

    Stokes, Sandra R.

    1998-12-17T23:59:59.000Z

    .5 to 1.8 percent of dry mat- ter (dietary supplementation between 150 and 200 grams calcium per day). 4 Set dietary phosphorus at about 0.4 percent (dietary sup- ply between 35 and 50 grams of phosphorus per day). n Monitor the urine pH of close-up dry... that contrib- ute both anions and cations to the balance. They do not affect DCAD. Although dietary DCAD is relatively easy to cal- culate, monitoring urine pH of close-up dry cows is a more accurate way to determine the diet?s impact on an animal?s acid...

  8. Methods of forming steel

    DOE Patents [OSTI]

    Branagan, Daniel J. (Iona, ID); Burch, Joseph V. (Shelley, ID)

    2001-01-01T23:59:59.000Z

    In one aspect, the invention encompasses a method of forming a steel. A metallic glass is formed and at least a portion of the glass is converted to a crystalline steel material having a nanocrystalline scale grain size. In another aspect, the invention encompasses another method of forming a steel. A molten alloy is formed and cooled the alloy at a rate which forms a metallic glass. The metallic glass is devitrified to convert the glass to a crystalline steel material having a nanocrystalline scale grain size. In yet another aspect, the invention encompasses another method of forming a steel. A first metallic glass steel substrate is provided, and a molten alloy is formed over the first metallic glass steel substrate to heat and devitrify at least some of the underlying metallic glass of the substrate.

  9. Method of low pressure and/or evaporative drying of aerogel

    DOE Patents [OSTI]

    Mayer, S.T.; Kaschmitter, J.L.; Pekala, R.W.

    1995-05-30T23:59:59.000Z

    A process is described whereby Resorcinol/Formaldehyde (RF) aerogel having a density of about 0.4--1.2 g/cc can be manufactured using a simple air drying procedure. This process is inherently simpler, quicker, and less expensive than the more conventional supercritical or subcritical CO{sub 2} extraction procedures. RF aerogels can be used as produced, such as in insulation applications, or pyrolyzed to form carbon aerogels with a density of about 0.9 g/cc for use in applications such as batteries, supercapacitors, etc.

  10. Method of low pressure and/or evaporative drying of aerogel

    DOE Patents [OSTI]

    Mayer, Steven T. (San Leandro, CA); Kaschmitter, James L. (Pleasanton, CA); Pekala, Richard W. (Pleasant Hill, CA)

    1995-01-01T23:59:59.000Z

    A process whereby Resorcinol/Formaldehyde (RF) aerogel having a density of about 0.4-1.2 g/cc can be manufactured using a simple air drying procedure. This process is inherently simpler, quicker, and less expensive than the more conventional supercritical or subcritical CO.sub.2 extraction procedures. RF aerogels can be used as produced, such as in insulation applications, or pyrolyzed to form carbon aerogels with a density of about 0.9 g/cc for use in applications such as batteries, supercapacitors, etc.

  11. Evaluation of water resources for enhanced oil recovery operations, Cement Field, Caddo and Grady Counties, Oklahoma

    SciTech Connect (OSTI)

    Preston, D.A.; Harrison, W.E.; Luza, K.V.; Prater, L.; Reddy, R.J.

    1982-02-01T23:59:59.000Z

    This report is based on the results of an investigation of the water resources local to the Cement Oil Field in Caddo and Grady Counties, southwestern, Oklahoma. The intent of the report is to present at least a semi-quantitative estimate of the volume, deliverability, and chemistry of the water potentially available for enhanced oil recovery in one or more Oklahoma oil fields. Subsequent to a review of several oil fields, the Cement Field was chosen for study because of its large size (25,000 acres), its extensive subsurface control (over 1850 wells), and its long history of production (since 1952) from several producing formations, some of which are already undergoing extensive waterflood operations. A preliminary review of the available data for this study suggested a threefold categorization of water resources, since the data for each category are distinctly different in nature, and, to some extent, different in source. The three categories are: surface water, ground water, and subsurface water. Flow, volume, and chemical analyses of each source are estimated.

  12. The Effect of Different Drying Environments on Microcracking in Alkali-Activated Slag

    E-Print Network [OSTI]

    Petta, Jason

    ., and Meida, L. O. (2001). Carbon dioxide emissions from the global cement industry. Annual Review of Energy-1156422 (PI: Prof. Mikko Haataja) Andlinger Center for Energy and the Environment

  13. Technical and economical considerations of new DRI melting process

    SciTech Connect (OSTI)

    Ito, Shuzo; Tokuda, Koji; Sammt, F.; Gray, R.

    1997-12-31T23:59:59.000Z

    The new DRI melting process can effectively and economically produce high quality molten iron. This process utilizes hot charging of DRI directly from a reduction furnace into a dedicated new melting furnace. The molten iron from this DRI premelter can be charged into a steelmaking furnace, such as an electric arc furnace (EAF), where the molten iron, together with other iron sources, can be processed to produce steel. Alternatively the molten iron can be pigged or granulated for off-site merchant sales. Comprehensive research and development of the new process has been conducted including operational process simulation, melting tests using FASTMET DRI, slag technology development, and refractory corrosion testing. This paper describes the process concept, its operational characteristics and further applications of the process.

  14. Drilling Complete on Australian Hot Dry Rock Project

    Broader source: Energy.gov [DOE]

    The first commercial attempt to create a commercial geothermal power plant using hot dry rock technology reached a crucial milestone on January 22, when a production well successfully reached its target depth.

  15. Cold Vacuum Drying (CVD) Facility Diesel Generator Fire Protection

    SciTech Connect (OSTI)

    SINGH, G.

    2000-04-25T23:59:59.000Z

    This Acceptance Test Procedure (ATP) has been prepared to demonstrate that the Fire Protection and Detection System installed by Project W-441 (Cold Vacuum Drying Facility and Diesel Generator Building) functions as required by project specifications.

  16. Reservoir Investigations on the Hot Dry Rock Geothermal System...

    Open Energy Info (EERE)

    Investigations on the Hot Dry Rock Geothermal System, Fenton Hill, New Mexico- Tracer Test Results Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference...

  17. Drying studies for corroded DOE aluminum plate fuels

    SciTech Connect (OSTI)

    Lords, R.E.; Windes, W.E. [Idaho National Engineering Lab., Idaho Falls, ID (United States); Crepeau, J.C.; Sidwell, R.W. [Idaho Univ., Idaho Falls, ID (United States) Dept. of Mechanical Engineering

    1996-05-01T23:59:59.000Z

    The Idaho National Engineering Laboratory (INEL) currently stores a wide variety of spent nuclear fuel. The fuel was originally intended to be stored underwater for a short period of thermal cooling, then removed and reprocessed. However, it has been stored underwater for much longer thank originally anticipated. During this time dust and airborne desert soil have entered the oldest INEL pool, accumulating on the fuel. Also, the aluminum fuel cladding has corroded compromising the exposed surfaces of the fuel. Plans are now underway to move some the the more vulnerable aluminum plate type fuels into dry storage in an existing vented and filtered fuel storage facility. In preparation for dry storage of the fuel a drying and canning station is being built at the INEL. The two primary objectives of this facility are to determine the influence of corrosion products on the drying process and to establish temperature distribution inside the canister during heating.

  18. ,"New York Dry Natural Gas Production (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"2262015 9:22:39 AM" "Back to Contents","Data 1: New York Dry Natural Gas Production (Million Cubic Feet)" "Sourcekey","NA1160SNY2"...

  19. Sandis irradiator for dried sewage solids. Final safety analysis report

    SciTech Connect (OSTI)

    Morris, M.

    1980-07-01T23:59:59.000Z

    Analyses of the hazards associated with the operation of the Sandia irradiator for dried sewage solids, as well as methods and design considerations to minimize these hazards, are presented in accordance with DOE directives.

  20. Evaluation of mixing characteristics of corn dry masa flours

    E-Print Network [OSTI]

    Lobeira Massu, Rodrigo

    1996-01-01T23:59:59.000Z

    Mixing characteristics of commercial and reformulated corn dry masa flours (DMF) were evaluated using a mixograph and a farinograph. The objectives were to evaluate the potential use of the mixograph and farinograph to study DMF mixing and hydration...

  1. High Burnup Dry Storage Cask Research and Development Project...

    Office of Environmental Management (EM)

    Fuel (SNF) for many decades will have a near-term and potentially significant impact on nuclear plant licensing and operations. While dry storage of lower burnup SNF less than...

  2. Loading guide for dry-type power transformers

    E-Print Network [OSTI]

    International Electrotechnical Commission. Geneva

    1987-01-01T23:59:59.000Z

    Applicable to naturally cooled dry-type power transformers complying with IEC 60726. Permits the calculation of, and indicates the permissible loading under certain defined conditions in terms of rated current.

  3. Disneyland’s Dry Cleaning Gets an Energy Efficient Upgrade

    Broader source: Energy.gov [DOE]

    As the provider of laundry and dry cleaning services for Disneyland Resort’s costumes and hospitality supply items, L&N Costume and Linen Service knows a little something about both quantity and quality.

  4. Insights into the historical construction of species-rich Mesoamerican seasonally dry tropical forests: the diversification

    E-Print Network [OSTI]

    Olson, Mark

    Insights into the historical construction of species-rich Mesoamerican seasonally dry tropical, Mesoamerica, niche conservatism, seasonally dry tropical forests. Summary · Mesoamerican arid biomes epitomize the vast species richness of Meso- american seasonally dry tropical forests (SDTFs), and to evaluate

  5. OXIDATION OF DRY HYDROCARBONS AT HIGH-POWER DENSITY ANODES

    SciTech Connect (OSTI)

    K.Krist; O. Spaldon-Stewart; R. Remick

    2004-03-01T23:59:59.000Z

    This work builds upon discoveries by the University of Pennsylvania and others pertaining to the oxidation of dry hydrocarbon fuels in high temperature solid oxide fuel cells. The work reported here was restricted primarily to dry methane and confirms that YSZ-based cells, having ceria in the anode as a catalyst and copper in the anode as a current collector, can operate on dry methane for extended periods. Thirty-three lab-scale cells of various designs were fabricated and operated under a variety of conditions. The longest-lived cell gave stable performance on dry methane at 800 C for over 305 hours. Only slight carbon deposition was noted at the completion of the test. A corresponding nickel/YSZ-based anode would have lasted for less than an hour under these test conditions (which included open circuit potential measurements) before carbon fouling essentially destroyed the cell. The best performing cell achieved 112 mW/cm{sub 2} on dry methane at 800 C. Several problems were encountered with carbon fouling and declining open circuit voltages in many of the test cells after switching from operation on hydrogen to dry methane. Although not rigorously confirmed by experimentation, the results suggested that air infiltration through less than perfect perimeter seals or pinholes in the electrolytes, or both gave rise to conditions that caused the carbon fouling and OCV decline. Small amounts of air reacting with methane in a partial oxidation reaction could produce carbon monoxide that, in turn, would deposit the carbon. If this mechanism is confirmed, it implies that near perfect hardware is required for extended operation. Some evidence was also found for the formation of electrical shorts, probably from carbon deposits bridging the electrolyte. Work with odorized methane and with methane containing 100-ppm hydrogen sulfide confirmed that copper is stable at 800 C in dry hydrocarbon fuels in the presence of sulfur. In a number of cases, but not exclusively, the performance life on dry methane with sulfur compounds was much longer than with dry methane alone. The effect of sulfur compounds in these cases appeared to correlate with inhibition of carbon deposition. Mixed results were obtained for the effect of the sulfur compounds on power density. Progress also was made in understanding the mechanisms involved in direct utilization of dry natural gas. Evidence was developed for three possible mechanisms for dry methane utilization in addition to the usually cited mechanism--direct oxidation of methane by oxygen anions. Further work is required at a fundamental level before the knowledge gained here can be translated into higher levels of performance.

  6. GEOLOGY O F THE NORTHERN PCIRT O F DRY MOUNTAXN,

    E-Print Network [OSTI]

    Seamons, Kent E.

    GEOLOGY O F THE NORTHERN PCIRT O F DRY MOUNTAXN, SOUTHERN UASCSTCH H Q - W T A X H E i i - UT&H #12;BRIGHAM YOUNG UNIVERSITY RESEARCH STUDIES Geology Seri,es Vol. 3 No. 2 April, 1956 GEOLOGY OF THE NORTHERN Department of Gedogy Provo, Utah #12;GEOLOGY OF THE NORTHERN PART OF DRY MOUNTAIN, SOUTHERN WASATCH M O U N

  7. Meson electromagnetic form factors

    E-Print Network [OSTI]

    Stanislav Dubnicka; Anna Z. Dubnickova

    2012-10-23T23:59:59.000Z

    The electromagnetic structure of the pseudoscalar meson nonet is completely described by the sophisticated Unitary&Analytic model, respecting all known theoretical properties of the corresponding form factors.

  8. Waste Form Development for the Solidification of PDCF/MOX Liquid Waste Streams

    SciTech Connect (OSTI)

    COZZI, ALEX

    2004-02-18T23:59:59.000Z

    At the Savannah River Site, part of the Department of Energy's nuclear materials complex located in South Carolina, cementation has been selected as the solidification method for high-alpha and low-activity waste streams generated in the planned plutonium disposition facilities. A Waste Solidification Building (WSB) that will be used to treat and solidify three radioactive liquid waste streams generated by the Pit Disassembly and Conversion Facility) and the Mixed Oxide Fuel Fabrication Facility is in the preliminary design stage. The WSB is expected to treat a transuranic (TRU) waste stream composed primarily of americium and two low-level waste (LLW) streams. The acidic wastes will be concentrated in the WSB evaporator and neutralized in a cement head tank prior to solidification. A series of TRU mixes were prepared to produce waste forms exhibiting a range of processing and cured properties. The LLW mixes were prepared using the premix from the preferred TRU waste form. All of the waste forms tested passed the Toxicity Characteristic Leaching Procedure. After processing in the WSB, current plans are to dispose of the solidified TRU waste at the Waste Isolation Pilot Plant in New Mexico and the solidified LLW waste at an approved low-level waste disposal facility.

  9. Form:SampleForm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublicIDAPowerPlantSitingConstruction.pdfNotify98.pdf JumpFlixMapFile Jump to: navigation,SampleForm Jump to:

  10. Use of precalciners to remove alkali from raw materials in the cement industry. Final report, July 1978-July 1980

    SciTech Connect (OSTI)

    Gartner, E.M.

    1980-07-01T23:59:59.000Z

    The objective of this work was to develop an efficient means of removing alkali metal compounds (alkalies) from high-alkali aluminosilicate raw materials of the type commonly used as part of cement raw mixes in order to increase the energy efficiency of cement manufacture. The intention of this project was to determine whether the high-alkali raw materials could be pyroprocessed separately to remove the alkalies before they entered the rotary kiln, where they would be mixed with the other raw feed components. If this could be achieved, considerable savings could be made in the energy required to remove alkalies, compared to conventional methods in which the cement raw mix must be treated as a whole. Two different methods of alkali removal were examined, namely, vaporization of alkalies at relatively low temperatures; and alkali-rich melt separation at relativey high temperatures. The results showed that the removal of alkalies by pyroprocessing of high-alkali raw feed components separate from the other cement raw mix components is not likely to be a practical alternative to the best available conventional precalciner technology. (LCL)

  11. Experimental Evidence for Self-Limiting Reactive Flow through a Fractured Cement Core: Implications for Time-Dependent Wellbore Leakage

    SciTech Connect (OSTI)

    Huerta, Nicolas J.; Hesse, Marc A.; Bryant, Steven L.; Strazisar, Brian R; Lopano, Christina L.

    2013-01-01T23:59:59.000Z

    We present a set of reactive transport experiments in cement fractures. The experiments simulate coupling between flow and reaction when acidic, CO{sub 2}-rich fluids flow along a leaky wellbore. An analog dilute acid with a pH between 2.0 and 3.15 was injected at constant rate between 0.3 and 9.4 cm/s into a fractured cement core. Pressure differential across the core and effluent pH were measured to track flow path evolution, which was analyzed with electron microscopy after injection. In many experiments reaction was restricted within relatively narrow, tortuous channels along the fracture surface. The observations are consistent with coupling between flow and dissolution/precipitation. Injected acid reacts along the fracture surface to leach calcium from cement phases. Ahead of the reaction front, high pH pore fluid mixes with calcium-rich water and induces mineral precipitation. Increases in the pressure differential for most experiments indicate that precipitation can be sufficient to restrict flow. Experimental data from this study combined with published field evidence for mineral precipitation along cemented annuli suggests that leakage of CO{sub 2}-rich fluids along a wellbore may seal the leakage pathway if the initial aperture is small and residence time allows mobilization and precipitation of minerals along the fracture.

  12. Recent technologies and processes for enhanced safety in bitumen or cement solidification of Li/ml radwaste

    SciTech Connect (OSTI)

    Tchemitcheff, F.

    1993-12-31T23:59:59.000Z

    SGN has more than 20 years of experience in the treatment of low and medium level radioactive wastes. SGN industrialized two major types of radwaste processes: bituminization and cement solidification. The R&D work on these two processes is discussed.

  13. BLENDED CALCIUM ALUMINATE-CALCIUM SULFATE CEMENT-BASED GROUT FOR P-REACTOR VESSEL IN-SITU DECOMMISSIONING

    SciTech Connect (OSTI)

    Langton, C.; Stefanko, D.

    2011-03-10T23:59:59.000Z

    The objective of this report is to document laboratory testing of blended calcium aluminate - calcium hemihydrate grouts for P-Reactor vessel in-situ decommissioning. Blended calcium aluminate - calcium hemihydrate cement-based grout was identified as candidate material for filling (physically stabilizing) the 105-P Reactor vessel (RV) because it is less alkaline than portland cement-based grout which has a pH greater than 12.4. In addition, blended calcium aluminate - calcium hemihydrate cement compositions can be formulated such that the primary cementitious phase is a stable crystalline material. A less alkaline material (pH {<=} 10.5) was desired to address a potential materials compatibility issue caused by corrosion of aluminum metal in highly alkaline environments such as that encountered in portland cement grouts [Wiersma, 2009a and b, Wiersma, 2010, and Serrato and Langton, 2010]. Information concerning access points into the P-Reactor vessel and amount of aluminum metal in the vessel is provided elsewhere [Griffin, 2010, Stefanko, 2009 and Wiersma, 2009 and 2010, Bobbitt, 2010, respectively]. Radiolysis calculations are also provided in a separate document [Reyes-Jimenez, 2010].

  14. 98 OCTOBER 2003 / Concrete international The Center for Advanced Cement-Based Materials (ACBM) is a consortium of

    E-Print Network [OSTI]

    98 OCTOBER 2003 / Concrete international The Center for Advanced Cement-Based Materials (ACBM the hydration of concrete. ACBM's Industrial Partners and Northwestern University's Infra- structure Technology to track the very early age hydration of concrete and provide accurate measurements of maturity

  15. Method of forming nanodielectrics

    DOE Patents [OSTI]

    Tuncer, Enis [Knoxville, TN; Polyzos, Georgios [Oak Ridge, TN

    2014-01-07T23:59:59.000Z

    A method of making a nanoparticle filled dielectric material. The method includes mixing nanoparticle precursors with a polymer material and reacting the nanoparticle mixed with the polymer material to form nanoparticles dispersed within the polymer material to form a dielectric composite.

  16. POSITION MANAGEMENT ACTION FORM

    E-Print Network [OSTI]

    Eirinaki, Magdalini

    POSITION MANAGEMENT ACTION FORM Workforce Planning | 408-924-2250 classcomp@sjsu.edu SJSU Human FOR POSITION MANAGEMENT FORM Workforce Planning | 408-924-2250| classcomp@sjsu.edu SJSU Human Resources Revised contact your Workforce Planning Analyst. List the name of the position this position reports to

  17. Method for forming materials

    DOE Patents [OSTI]

    Tolle, Charles R. (Idaho Falls, ID); Clark, Denis E. (Idaho Falls, ID); Smartt, Herschel B. (Idaho Falls, ID); Miller, Karen S. (Idaho Falls, ID)

    2009-10-06T23:59:59.000Z

    A material-forming tool and a method for forming a material are described including a shank portion; a shoulder portion that releasably engages the shank portion; a pin that releasably engages the shoulder portion, wherein the pin defines a passageway; and a source of a material coupled in material flowing relation relative to the pin and wherein the material-forming tool is utilized in methodology that includes providing a first material; providing a second material, and placing the second material into contact with the first material; and locally plastically deforming the first material with the material-forming tool so as mix the first material and second material together to form a resulting material having characteristics different from the respective first and second materials.

  18. Proposed research and development plan for mixed low-level waste forms

    SciTech Connect (OSTI)

    O`Holleran, T.O.; Feng, X.; Kalb, P. [and others

    1996-12-01T23:59:59.000Z

    The objective of this report is to recommend a waste form program plan that addresses waste form issues for mixed low-level waste (MLLW). The report compares the suitability of proposed waste forms for immobilizing MLLW in preparation for permanent near-surface disposal and relates them to their impact on the U.S. Department of Energy`s mixed waste mission. Waste forms are classified into four categories: high-temperature waste forms, hydraulic cements, encapsulants, and specialty waste forms. Waste forms are evaluated concerning their ability to immobilize MLLW under certain test conditions established by regulatory agencies and research institutions. The tests focused mainly on leach rate and compressive strength. Results indicate that all of the waste forms considered can be tailored to give satisfactory performance immobilizing large fractions of the Department`s MLLW inventory. Final waste form selection will ultimately be determined by the interaction of other, often nontechnical factors, such as economics and politics. As a result of this report, three top-level programmatic needs have been identified: (1) a basic set of requirements for waste package performance and disposal; (2) standardized tests for determining waste form performance and suitability for disposal; and (3) engineering experience operating production-scale treatment and disposal systems for MLLW.

  19. Forms | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehicles »Exchange Visitors ProgramEnergy FallFastForms Forms DOE Forms

  20. Intracellular Water Exchange for Measuring the Dry Mass, Water Mass and Changes in Chemical Composition of Living Cells

    E-Print Network [OSTI]

    Cermak, Nathan

    We present a method for direct non-optical quantification of dry mass, dry density and water mass of single living cells in suspension. Dry mass and dry density are obtained simultaneously by measuring a cell’s buoyant ...

  1. ALARA Design Review for the Resumption of the Plutonium Finishing Plant (PFP) Cementation Process Project Activities

    E-Print Network [OSTI]

    Dayley, L

    2000-01-01T23:59:59.000Z

    The requirements for the performance of radiological design reviews are codified in 10CFR835, Occupational Radiation Protection. The basic requirements for the performance of ALARA design reviews are presented in the Hanford Site Radiological Control Manual (HSRCM). The HSRCM has established trigger levels requiring radiological reviews of non-routine or complex work activities. These requirements are implemented in site procedures HNF-PRO-1622 and 1623. HNF-PRO-1622 Radiological Design Review Process requires that ''radiological design reviews [be performed] of new facilities and equipment and modifications of existing facilities and equipment''. In addition, HNF-PRO-1623 Radiological Work Planning Process requires a formal ALARA Review for planned activities that are estimated to exceed 1 person-rem total Dose Equivalent (DE). The purpose of this review is to validate that the original design for the PFP Cementation Process ensures that the principles of ALARA (As Low As Reasonably Achievable) were included...

  2. Characterization of asphalt cements modified with crumbed rubber from discarded tires. Final report

    SciTech Connect (OSTI)

    Daly, W.H.; Negulescu, I.I.

    1994-11-01T23:59:59.000Z

    The potential legislative requirement for incorporation of scrap rubber into asphalt blends mandated a thorough evaluation of the influence of scrap rubber additives on the physical properties and aging characteristics of rubber/asphalt blends. Blends with up to 20 percent ground vulcanized rubber (both crumb and 200 mesh powder particles) from recycled tires were prepared with asphalt cements of various grades (AC5 - AC30) and evaluated using DMA. Blends produced from powdered rubber particles exhibited Newtonian behavior at high temperatures; similar behavior was not observed with crumb rubber blends. The mechanical properties of asphalt-rubber blends depend upon the concentration of rubber additives, the particle dimensions, and the chemical composition of the asphalt.

  3. Simulation and analysis on ultrasonic testing for the cement grouting defects of the corrugated pipe

    SciTech Connect (OSTI)

    Qingbang, Han; Ling, Chen; Changping, Zhu [Changzhou Key Laboratory of Sensor Networks and Environmental Sensing, College of IOT, Hohai University Changzhou, Jiangsu, 213022 (China)

    2014-02-18T23:59:59.000Z

    The defects exist in the cement grouting process of prestressed corrugated pipe may directly impair the bridge safety. In this paper, sound fields propagation in concrete structures with corrugated pipes and the influence of various different defects are simulated and analyzed using finite element method. The simulation results demonstrate a much complex propagation characteristic due to multiple reflection, refraction and scattering, where the scattering signals caused by metal are very strong, while the signals scattered by an air bubble are weaker. The influence of defect both in time and frequency domain are found through deconvolution treatment. In the time domain, the deconvolution signals correspond to larger defect display a larger head wave amplitude and shorter arrive time than those of smaller defects; in the frequency domain, larger defect also shows a stronger amplitude, lower center frequency and lower cutoff frequency.

  4. Magnetic resonance studies of cement based materials in inhomogeneous magnetic fields

    SciTech Connect (OSTI)

    Boguszynska, Joanna [Institute of Molecular Physics, Polish Academy of Sciences, Smoluchowskiego 17, Poznan (Poland); Brown, Marc C.A. [School of Physical Sciences, University of Kent, Canterbury, Kent, CT2 7NR (United Kingdom); McDonald, Peter J. [School of Electronics and Physical Sciences, University of Surrey, Surrey, GU2 7XH (United Kingdom)]. E-mail: p.mcdonald@surrey.ac.uk; Mitchell, Jonathan [School of Electronics and Physical Sciences, University of Surrey, Surrey, GU2 7XH (United Kingdom); Mulheron, Mike [School of Engineering, University of Surrey, Surrey, GU2 7XH (United Kingdom); Tritt-Goc, Jadwiga [Institute of Molecular Physics, Polish Academy of Sciences, Smoluchowskiego 17, Poznan (Poland); Verganelakis, Dimitris A. [Department of Chemical Engineering, University of Cambridge, Cambridge, CB2 3RA (United Kingdom)

    2005-10-01T23:59:59.000Z

    Single-sided magnets give hope that Nuclear Magnetic Resonance (NMR) might in future be used for in situ characterisation of hydration and water transport in the surface layers of concrete slabs. Towards that end, a portable NMR-MOUSE (MObile Universal Surface Explorer) has been used to follow the hydration of gypsum based plaster, a Portland cement paste and concrete mortar. The results compare favourably to those obtained using a standard laboratory bench-top spectrometer. Further, stray field imaging (STRAFI) based methods have been used with embedded NMR detector coils to study water transport across a mortar/topping interface. The measured signal amplitudes are found to correlate with varying sample conditions.

  5. Effect of sodium monofluorophosphate treatment on microstructure and frost salt scaling durability of slag cement paste

    SciTech Connect (OSTI)

    Copuroglu, O. [Delft University of Technology, Faculty of CiTG, Micromechanics Laboratory (MICROLAB) (Netherlands)]. E-mail: o.copuroglu@citg.tudelft.nl; Fraaij, A.L.A. [Delft University of Technology, Faculty of CiTG, Materials Science and Sustainable Construction (Netherlands); Bijen, J.M.J.M. [Delft University of Technology, Faculty of CiTG, Materials Science and Sustainable Construction (Netherlands)

    2006-08-15T23:59:59.000Z

    Sodium-monofluorophosphate (Na-MFP) is currently in use as a surface applied corrosion inhibitor in the concrete industry. Its basic mechanism is to protect the passive layer of the reinforcement steel against disruption due to carbonation. Carbonation is known as the most detrimental environmental effect on blast furnace slag cement (BFSC) concrete with respect to frost salt scaling. In this paper the effect of Na-MFP on the microstructure and frost salt scaling resistance of carbonated BFSC paste is presented. The results of electron microscopy, mercury intrusion porosimetry (MIP) and X-ray diffraction (XRD) are discussed. It is found that the treatment modifies the microstructure and improves the resistance of carbonated BFSC paste against frost salt attack.

  6. Introduction to differential forms

    E-Print Network [OSTI]

    2015-03-08T23:59:59.000Z

    section 8) if it has a potential energy function. In terms of differential forms, F is conservative precisely when F1dx + F2dy is exact. 3 Parametric curves.

  7. Standard review plan for dry cask storage systems. Final report

    SciTech Connect (OSTI)

    NONE

    1997-01-01T23:59:59.000Z

    The Standard Review Plan (SRP) For Dry Cask Storage Systems provides guidance to the Nuclear Regulatory Commission staff in the Spent Fuel Project Office for performing safety reviews of dry cask storage systems. The SRP is intended to ensure the quality and uniformity of the staff reviews, present a basis for the review scope, and clarification of the regulatory requirements. Part 72, Subpart B generally specifies the information needed in a license application for the independent storage of spent nuclear fuel and high level radioactive waste. Regulatory Guide 3.61 {open_quotes}Standard Format and Content for a Topical Safety Analysis Report for a Spent Fuel Dry Storage Cask{close_quotes} contains an outline of the specific information required by the staff. The SRP is divided into 14 sections which reflect the standard application format. Regulatory requirements, staff positions, industry codes and standards, acceptance criteria, and other information are discussed.

  8. Spent nuclear fuel project cold vacuum drying facility operations manual

    SciTech Connect (OSTI)

    IRWIN, J.J.

    1999-05-12T23:59:59.000Z

    This document provides the Operations Manual for the Cold Vacuum Drying Facility (CVDF). The Manual was developed in conjunction with HNF-SD-SNF-SAR-002, Safety Analysis Report for the Cold Vacuum Drying Facility, Phase 2, Supporting Installation of Processing Systems (Garvin 1998) and, the HNF-SD-SNF-DRD-002, 1997, Cold Vacuum Drying Facility Design Requirements, Rev. 3a. The Operations Manual contains general descriptions of all the process, safety and facility systems in the CVDF, a general CVD operations sequence, and has been developed for the SNFP Operations Organization and shall be updated, expanded, and revised in accordance with future design, construction and startup phases of the CVDF until the CVDF final ORR is approved.

  9. Characterization and air drying of chunkwood and chips

    SciTech Connect (OSTI)

    Sturos, J.B.

    1984-01-01T23:59:59.000Z

    Chunkwood was found to be composed of a few large particles and many small particles with the large particles constituting almost half the total weight. More than 75% of the chunk weight was composed of particles weighing more than 100 grams (ovendry), while 85% of the chip weight was composed of particles weighing 3 grams or less. Energy densities ranged from 89,675 Btu/ft/sup 3/ for green aspen chips to 162,520 Btu/ft/sup 3/ for dried sugar maple chunks. Chunks and chips were air-dried from July through October in eight covered cribs. For both species tested, the chunks dried faster than the chips to about 20% moisture content.

  10. Alternative barrier layers for surface covers in dry climates

    SciTech Connect (OSTI)

    Stormont, J.C.

    1994-09-01T23:59:59.000Z

    Surface covers are one of the most widespread remediation and waste management options in all climates. Barrier layers to limit percolation through cover systems are principal features of engineered, multi-component cover designs. Conventional barrier layer components developed for humid climates have limitations in dry climates. One alternative barrier layer is a capillary barrier, which consists of a fine-over-coarse soil arrangement. The capacity of capillary barrier to laterally divert downward moving water is the key to their success. Another alternative is a dry barrier, in which atmospheric air is circulated through a coarse layer within the cover to remove water vapor. Incorporating a coarse layer which stores water for subsequent removal by air flow reduces the requirements for the air flow velocity and increases the applicability of the dry barrier.

  11. Linear Extrusion 400 Tons/Day Dry Solids Pump

    SciTech Connect (OSTI)

    Kenneth Sprouse; David Matthews

    2008-04-30T23:59:59.000Z

    Pratt & Whitney Rocketdyne (PWR) has developed an innovative gasifier concept that uses rocket engine experience to significantly improve gasifier performance, life, and cost compared to current state-of-the-art systems. The PWR gasifier concept uses a compact and highly efficient (>50%) dry solids pump that has excellent availability (>99.5%). PWR is currently developing this dry solids pump under a U.S. Department of Energy (DOE) cooperative agreement. The conceptual design on two dry solids pumps were completed under this agreement and one pump concept was selected for preliminary design. A preliminary design review (PDR) of the selected pump was presented on September 20, 2007 to PWR management and numerous technical specialists. Feedback from the PDR review team has been factored into the design and a Delta-PDR was held on April 9, 2008.

  12. Enhancing fire safety at Hydro plants with dry transformers

    SciTech Connect (OSTI)

    Clemen, D.M. (Harza Engineering Company, Chicago, IL (United States))

    1993-06-01T23:59:59.000Z

    Hydroelectric plant owners and engineers can use dry-type transformers to reduce fire hazards in auxiliary power systems. The decision to replace a liquid-immersed transformer with a dry-type product has a price: higher unit cost and a need to be more vigilant in detailing transformer specifications. But, whether the change affects only one failed transformer or is part of a plant rehabilitation project, the benefits in safety can be worth it. Voltages on hydroelectric plant auxiliary power systems can range from a 20 kV medium-voltage system to the normal 480-208/120 V low-voltage system. Dry transformers typically are used in such systems to reduce the fire hazard present with liquid-filled transformers. For a hydro plant owner or engineer seeking alternatives to liquid-filled transformers, there are two main kinds of dry-type transformers to consider: vacuum pressure impregnated (VPI) and cast coil epoxy resin. VPI transformers normally are manufactured in sizes up to 6,000 kVA with primary voltage ratings up to 20 kV. Cast coil transformers can be made in sizes from 75 to 10,000 kVA, with primary voltage ratings up to 34,500 V. Although the same transformer theory applies to dry transformers as to liquid-filled units, the cooling medium, air, required different temperature rise ratings, dielectric tests, and construction techniques to ensure reliability. Consequently, the factory and field tests for dry units are established by a separate set of American National Standards Institute (ANSI)/Institute of Electrical and Electronics Engineers (IEEE) standards. Cast coil transformers have several important advantages over VPI units.

  13. Saving for dry days: Aquifer storage and recovery may help

    E-Print Network [OSTI]

    Wythe, Kathy

    2008-01-01T23:59:59.000Z

    tx H2O | pg. 2 Saving for dry days Story by Kathy Wythe tx H2O | pg. 3 Aquifer storage and recovery may help With reoccurring droughts and growing population, Texas will always be looking for better ways to save or use water. Some water... suppliers in Texas are turning to aquifer storage and recovery. During the dry summer of 2008, the San Antonio Water System (SAWS) had enough assets in its ?bank? (of water) to make with- drawals to meet the needs of its customers. The water bank...

  14. Missouri Dry Natural Gas Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998 10,643NorwayBase4802009 2010YearSame Month126 117 94 90 82 73DryDry

  15. A chemo-poro-mechanical model of oilwell cement carbonation under CO2 geological storage A. Fabbri*, N. Jacquemet, D.M. Seyedi

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    aquifers (deep underground porous reservoir rocks saturated with brackish water or brine), can be used manuscript, published in "Cement and Concrete Research 42 (2012) 8-19" DOI : 10.1016/j.cemconres.2011

  16. International Best Practices for Pre-Processing and Co-Processing Municipal Solid Waste and Sewage Sludge in the Cement Industry

    E-Print Network [OSTI]

    Hasanbeigi, Ali

    2013-01-01T23:59:59.000Z

    December. Busato, L.C. n.d. Dioxins and Furans in Brazil:release and control of dioxins in cement kilns - A review.and Quantification of Dioxin and Furan Releases. Geneva,

  17. International Best Practices for Pre-Processing and Co-Processing Municipal Solid Waste and Sewage Sludge in the Cement Industry

    E-Print Network [OSTI]

    Hasanbeigi, Ali

    2013-01-01T23:59:59.000Z

    air pollutant hydrogen fluoride Integrated Pollution Prevention and Controland control technology requirements for toxic air pollutants.control technologies for gaseous pollutants from Portland cement manufacturing (Greer 2003) Potential control technologies Mixing air

  18. Forms | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehicles »Exchange Visitors ProgramEnergy FallFastForms Forms DOE

  19. Management of dry flue gas desulfurization by-products in underground mines. Quarterly report, August 1--October 31, 1997

    SciTech Connect (OSTI)

    Chugh, Y.P.

    1997-12-31T23:59:59.000Z

    The objective of this project was to develop and demonstrate two technologies for the placement of coal combustion by-products in abandoned underground coal mines, and to assess the environmental impact of these technologies for the management of CCB materials. The two technologies for the underground placement that were to be developed and demonstrated are: (1) pneumatic placement using virtually dry CCB products, and (2) hydraulic placement using a paste mixture of CCB products with about 70% solids. The period covered by this report is the second quarter of Phase 3 of the overall program. During this period over 8,000 tons of CCB mixtures was injected using the hydraulic paste technology. This amount of material virtually filled the underground opening around the injection well, and was deemed sufficient to demonstrate fully the hydraulic injection technology. By the end of this quarter about 2,000 tons of fly ash had been placed underground using the pneumatic placement technology. While the rate of injection of about 50 tons per hour met design criteria, problems were experienced in the delivery of fly ash to the pneumatic demonstration site. The source of the fly ash, the Archer Daniels Midland Company power plant at Decatur, Illinois is some distance from the demonstration site, and often sufficient tanker trucks are not available to haul enough fly ash to fully load the injection equipment. Further, on some occasions fly ash from the plant was not available. The injection well was plugged three times during the demonstration. This typically occurred due to cementation of the FBC ash in contact with water. After considerable deliberations and in consultation with the technical project officer, it was decided to stop further injection of CCB`s underground using the developed pneumatic technology.

  20. Technical area status report for low-level mixed waste final waste forms. Volume 1

    SciTech Connect (OSTI)

    Mayberry, J.L.; DeWitt, L.M. [Science Applications International Corp., Idaho Falls, ID (United States); Darnell, R. [EG and G Idaho, Inc., Idaho Falls, ID (United States)] [and others

    1993-08-01T23:59:59.000Z

    The Final Waste Forms (FWF) Technical Area Status Report (TASR) Working Group, the Vitrification Working Group (WG), and the Performance Standards Working Group were established as subgroups to the FWF Technical Support Group (TSG). The FWF TASR WG is comprised of technical representatives from most of the major DOE sites, the Nuclear Regulatory Commission (NRC), the EPA Office of Solid Waste, and the EPA`s Risk Reduction Engineering Laboratory (RREL). The primary activity of the FWF TASR Working Group was to investigate and report on the current status of FWFs for LLNM in this TASR. The FWF TASR Working Group determined the current status of the development of various waste forms described above by reviewing selected articles and technical reports, summarizing data, and establishing an initial set of FWF characteristics to be used in evaluating candidate FWFS; these characteristics are summarized in Section 2. After an initial review of available information, the FWF TASR Working Group chose to study the following groups of final waste forms: hydraulic cement, sulfur polymer cement, glass, ceramic, and organic binders. The organic binders included polyethylene, bitumen, vinyl ester styrene, epoxy, and urea formaldehyde. Section 3 provides a description of each final waste form. Based on the literature review, the gaps and deficiencies in information were summarized, and conclusions and recommendations were established. The information and data presented in this TASR are intended to assist the FWF Production and Assessment TSG in evaluating the Technical Task Plans (TTPs) submitted to DOE EM-50, and thus provide DOE with the necessary information for their FWF decision-making process. This FWF TASR will also assist the DOE and the MWIP in establishing the most acceptable final waste forms for the various LLMW streams stored at DOE facilities.