National Library of Energy BETA

Sample records for formations production potential

  1. Uncovering Fundamental Ash-Formation Mechanisms and Potential...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Uncovering Fundamental Ash-Formation Mechanisms and Potential Means to Control the Impact on DPF Performance and Engine Efficiency Uncovering Fundamental Ash-Formation Mechanisms...

  2. WP 3 Report: Biomass Potentials Biomass production potentials

    E-Print Network [OSTI]

    WP 3 Report: Biomass Potentials 1 Biomass production potentials in Central and Eastern Europe under different scenarios Final report of WP3 of the VIEWLS project, funded by DG-Tren #12;WP 3 Report: Biomass Potentials 2 Report Biomass production potentials in central and Eastern Europe under different scenarios

  3. Primordial Black Holes Formation from Particle Production during Inflation

    E-Print Network [OSTI]

    Erfani, Encieh

    2015-01-01

    We study the possibility that particle production during inflation can source the required power spectrum for dark matter (DM) primordial black holes (PBH) formation. We consider the scalar and the gauge quanta production in inflation models, where in the latter case, we focus in two sectors: inflaton coupled i) directly and ii) gravitationally to a $U(1)$ gauge field. We do not assume any specific potential for the inflaton field. Hence, in the gauge production case, in a model independent way we show that the non-production of DM PBHs puts stronger upper bound on the particle production parameter. Our analysis show that this bound is more stringent than the bounds from the bispectrum and the tensor-to-scalar ratio derived by gauge production in these models. In the scenario where the inflaton field coupled to a scalar field, we put an upper bound on the amplitude of the generated scalar power spectrum by non-production of PBHs. As a by-product we also show that the required scalar power spectrum for PBHs fo...

  4. Potential Oil Production from the Coastal Plain of the Arctic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Potential Oil Production from the Coastal Plain of the Arctic National Wildlife Refuge: Updated Assessment Executive Summary This Service Report, Potential Oil Production from the...

  5. Assessment of Energy Production Potential from Ocean Currents...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Assessment of Energy Production Potential from Ocean Currents along the United States Coastline Assessment of Energy Production Potential from Ocean Currents along the United...

  6. Production from multiple zones of a tar sands formation

    DOE Patents [OSTI]

    Karanikas, John Michael; Vinegar, Harold J

    2013-02-26

    A method for treating a tar sands formation includes providing heat to at least part of a hydrocarbon layer in the formation from a plurality of heaters located in the formation. The heat is allowed to transfer from the heaters to at least a portion of the formation. Fluids are produced from the formation through at least one production well that is located in at least two zones in the formation. The first zone has an initial permeability of at least 1 darcy. The second zone has an initial of at most 0.1 darcy. The two zones are separated by a substantially impermeable barrier.

  7. Modes of Production and Social Formations

    E-Print Network [OSTI]

    Amin, Samir

    1974-01-01

    and from slavery to feudalism. production are not Onmode of production: hence feudalism rested on an embryonicThis Zapse int o feudalism appeared as a regression and a

  8. Potential Oil Production from the Coastal Plain of the Arctic...

    U.S. Energy Information Administration (EIA) Indexed Site

    foreign and domestic oil and gas resources, reserves, and production potential. As a policy-neutral agency, EIAs standard analysis of the potential of the Alaska North Slope...

  9. Formation lengths of hadrons in lepto-production

    E-Print Network [OSTI]

    Levon Grigoryan

    2012-09-28

    The average formation lengths of the hadrons produced during the deep inelastic scattering (DIS) of leptons on protons are studied in the framework of the symmetric Lund model. It is shown that these formation lengths essentially depend on the electric charges of the hadron. For electro-production and charged current (CC) neutrino-production, the average formation lengths of positively charged particles are larger than those of negatively charged antiparticles. This situation is reversed for CC antineutrino-production. In all the mentioned cases, the main mechanism is the direct production of hadrons. The additional mechanism of hadron production, through the decay of resonances, is essential only for pions and leads to a decrease in the average formation lengths.

  10. Shale Gas Production: Potential versus Actual GHG Emissions

    E-Print Network [OSTI]

    Shale Gas Production: Potential versus Actual GHG Emissions Francis O'Sullivan and Sergey Paltsev://globalchange.mit.edu/ Printed on recycled paper #12;1 Shale Gas Production: Potential versus Actual GHG Emissions Francis O'Sullivan* and Sergey Paltsev* Abstract Estimates of greenhouse gas (GHG) emissions from shale gas production and use

  11. Shale gas production: potential versus actual greenhouse gas emissions*

    E-Print Network [OSTI]

    Shale gas production: potential versus actual greenhouse gas emissions* Francis O Environ. Res. Lett. 7 (2012) 044030 (6pp) doi:10.1088/1748-9326/7/4/044030 Shale gas production: potential gas (GHG) emissions from shale gas production and use are controversial. Here we assess the level

  12. Potential Oil Production from the Coastal Plain of the Arctic...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Potential Oil Production from the Coastal Plain of the Arctic National Wildlife Refuge: Updated Assessment Glossary ANILCA: Alaska National Interest Lands Conservation Act ANS:...

  13. Potential Oil Production from the Coastal Plain of the Arctic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Potential Oil Production from the Coastal Plain of the Arctic National Wildlife Refuge: Updated Assessment 2. Analysis Discussion Resource Assessment The USGS most recent...

  14. Assessment of Energy Production Potential from Ocean Currents...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ocean Currents along the United States Coastline Assessment of Energy Production Potential from Ocean Currents along the United States Coastline Report summarizing the results of...

  15. Controlling formation fines at their sources to maintain well productivity

    SciTech Connect (OSTI)

    Nguyen, P.D.; Weaver, J.D.; Rickman, R.D.; Dusterhoft, R.G.; Parker, M.A.

    2007-05-15

    Migration of formation fines has been shown to cause production decline in many wells. Despite the availability of new downhole tools for use in well stimulation and completion, the ability to sustain desired production levels is often plagued with fines migration problems. The solution to this problem is appropriate treatment to mitigate fines migration at its source. This paper describes the use of an ultra-thin tackifying agent (UTTA) for stabilizing fines in high-rate producing or injection wells. This UTTA is applied as part of an initial prepad in fracturing or gravel-packing operations, as a remedial treatment, or as a post-treatment following acid fracturing or matrix acidizing treatments. The primary purpose of UTTA application is to immobilize formation fines so that they will not detach, migrate with flowing fluids, plug the pore channels, and reduce the flow path permeability. Results of laboratory testing indicate that the UTTA system is applicable to most types of formation fines, including coals, sandstones, and carbonates. Once injected into the formation matrix or proppant pack, the UTTA forms a thin film on formation surfaces, encapsulating the fines. Capillary action helps pull the tackifier into the contact points, fixing the particulate in place without plugging the pore throat. The UTTA does not require a shut-in time after its application. The thin film tackifier does not harden, but remains flexible, enhancing the ability of a formation to withstand stress cycling and allowing the formation to handle high shear stress during high flow rates.

  16. Oil and Gas Production Optimization; Lost Potential due to Uncertainty

    E-Print Network [OSTI]

    Johansen, Tor Arne

    Oil and Gas Production Optimization; Lost Potential due to Uncertainty Steinar M. Elgsaeter Olav.ntnu.no) Abstract: The information content in measurements of offshore oil and gas production is often low, and when in the context of offshore oil and gas fields, can be considered the total output of production wells, a mass

  17. Potential Oil Production from the Coastal Plain of the Arctic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Potential Oil Production from the Coastal Plain of the Arctic National Wildlife Refuge: Updated Assessment 3. Summary The 1.5 million-acre coastal plain of the 19 million-acre...

  18. Method and apparatus for production of subsea hydrocarbon formations

    SciTech Connect (OSTI)

    Blandford, Joseph W.

    1992-01-01

    A well tender system for controlling, separating, storing and offloading well fluids produced from subsea hydrocarbon formations. The system comprises a vertically aligned series of tethered cylindrical tanks which are torsionally stabilized by flexible catenary production riser and expert riser bundles, and serviced by separate catenary pipe bundles. Piles are secured to the seabed, each pile assembly being pivotally connected to a lower rigid tendon, which is in turn connected to tendons arranged about the periphery of the interconnected cylindrical tanks.

  19. Method and apparatus for production of subsea hydrocarbon formations

    DOE Patents [OSTI]

    Blandford, Joseph W. (15 Mott La., Houston, TX 77024)

    1994-01-01

    A well tender system for controlling, separating, storing and offloading well fluids produced from subsea hydrocarbon formations. The system comprises a vertically aligned series of tethered cylindrical tanks which are torsionally stabilized by flexible catenary production riser and export riser bundles, and serviced by separate catenary pipe bundles. Piles are secured to the seabed, each pile assembly being pivotally connected to a lower rigid tendon, which is in turn connected to tendons arranged about the periphery of the interconnected cylindrical tanks.

  20. Potential Internet Applications in Forest Products Exporting and

    E-Print Network [OSTI]

    Potential Internet Applications in Forest Products Exporting and International Trade Olivian T Laboratory Louisiana State University Agricultural Center #12;Research Objectives · Provide Internet usage with implementing the Internet as a business tool · Document the use of foreign languages on wood products exporter

  1. Aalborg Universitet Grasses a potential sustainable resource for biocrude production

    E-Print Network [OSTI]

    Berning, Torsten

    Aalborg Universitet Grasses ­ a potential sustainable resource for biocrude production Grigoras for biocrude production. Poster session presented at 22nd European Biomass Conference and Exhibition, Hamburg, Germany. General rights Copyright and moral rights for the publications made accessible in the public

  2. Estimating Production Potentials: Expert Bias in Applied Decision Making

    SciTech Connect (OSTI)

    Reece, Wendy Jane

    1998-10-01

    A study was conducted to evaluate how workers predict manufacturing production potentials given positively and negatively framed information. Findings indicate the existence of a bias toward positive information and suggest that this bias may be reduced with experience but is never the less maintained. Experts err in the same way non experts do in differentially processing negative and positive information. Additionally, both experts and non experts tend to overestimate production potentials in a positive direction. The authors propose that these biases should be addressed with further research including cross domain analyses and consideration in training, workplace design, and human performance modeling.

  3. Succinic Acid Production with Reduced By-Product Formation in the

    E-Print Network [OSTI]

    -product acetic acid. The gram ratio of suc- cinic acid to acetic acid was 25.8:1, which is 6.5 times higher than ratio of succinic acid to acetic acid and succinic acid yield de- creased, suggesting that glucose enhanced acetic acid formation irrespective of the presence of glycerol. Glyc- erol consumption by A

  4. UAV Formation Flight using 3D Potential Field Tobias Paul Thomas R. Krogstad Jan Tommy Gravdahl

    E-Print Network [OSTI]

    Gravdahl, Jan Tommy

    UAV Formation Flight using 3D Potential Field Tobias Paul Thomas R. Krogstad Jan Tommy Gravdahl ESG aerial vehicles (UAVs). Based on a virtual leader approach, combined with an extended local potential a group of UAVs based on a simplified small-scale helicopter, which is simulated in MATLABTM /Simulink

  5. National Microalgae Biofuel Production Potential and Resource Demand

    SciTech Connect (OSTI)

    Wigmosta, Mark S.; Coleman, Andre M.; Skaggs, Richard; Huesemann, Michael H.; Lane, Leonard J.

    2011-04-14

    Microalgae continue to receive global attention as a potential sustainable "energy crop" for biofuel production. An important step to realizing the potential of algae is quantifying the demands commercial-scale algal biofuel production will place on water and land resources. We present a high-resolution national resource and oil production assessment that brings to bear fundamental research questions of where open pond microalgae production can occur, how much land and water resource is required, and how much energy is produced. Our study suggests under current technology microalgae have the potential to generate 220 billion liters/year of oil, equivalent to 48% of current U.S. petroleum imports for transportation fuels. However, this level of production would require 5.5% of the land area in the conterminous U.S., and nearly three times the volume of water currently used for irrigated agriculture, averaging 1,421 L water per L of oil. Optimizing the selection of locations for microalgae production based on water use efficiency can greatly reduce total water demand. For example, focusing on locations along the Gulf Coast, Southeastern Seaboard, and areas adjacent to the Great Lakes, shows a 75% reduction in water demand to 350 L per L of oil produced with a 67% reduction in land use. These optimized locations have the potential to generate an oil volume equivalent to 17% of imports for transportation fuels, equal to the Energy Independence and Security Act year 2022 "advanced biofuels" production target, and utilizing some 25% of the current irrigation consumptive water demand for the U. S. These results suggest that, with proper planning, adequate land and water are available to meet a significant portion of the U.S. renewable fuel goals.

  6. Simulating Potential Switchgrass Production in the United States

    SciTech Connect (OSTI)

    Thomson, Allison M.; Izaurralde, Roberto C.; West, T. O.; Parrish, David J.; Tyler, Donald D.; Williams, Jimmy R.

    2009-12-31

    Using results from field trials of switchgrass (Panicum virgatum L.) in the United States, the EPIC (Environmental Policy Integrated Climate) process-level agroecosystem model was calibrated, validated, and applied to simulate potential productivity of switchgrass for use as a biofuel feedstock. The model was calibrated with a regional study of 10-yr switchgrass field trials and subsequently tested against a separate compiled dataset of field trials from across the eastern half of the country. An application of the model in a national database using 8-digit watersheds as the primary modeling unit produces 30-yr average switchgrass yield estimates that can be aggregated to 18 major watersheds. The model projects average annual switchgrass productivity of greater than 7 Mg ha-1 in the Upper Mississippi, Lower Mississippi, and Ohio watersheds. The major factors limiting simulated production vary by region; low precipitation is the primary limiting factor across the western half of the country, while moderately acidic soils limit yields on lands east of the Mississippi River. Average projected switchgrass production on all crop land in the continental US is 5.6 Mg ha-1. At this level of productivity, 28.6 million hectares of crop land would be required to produce the 16 billion gallons of cellulosic ethanol called for by 2022 in the 2007 Energy Independence and Security Act. The model described here can be applied as a tool to inform the land-use and environmental consequences of switchgrass production.

  7. Seismic Evaluation of the Fruitland Formation with Implications on Leakage Potential of Injected CO2

    E-Print Network [OSTI]

    Wilson, Thomas H.

    Seismic Evaluation of the Fruitland Formation with Implications on Leakage Potential of Injected CO Basin pilot test include acquisition of geophysical logs, time lapse VSP and analysis of 3D seismic data on the analysis of 3D seismic from the area. 3D seismic interpretation reveals that the Late Cretaceous Fruitland

  8. The Brazil Eucalyptus Potential Productivity Project: Influence of water, nutrients and stand uniformity on wood production

    E-Print Network [OSTI]

    Anderson, Charles W.

    The Brazil Eucalyptus Potential Productivity Project: Influence of water, nutrients and stand, Brazil f Veracel Celulose, Eunapolis, Bahia, Brazil g International Paper do Brasil, Mogi Guacu, Sao Paulo, Brazil h Suzano Papel e Celulose, Teixeira de Freitas, Bahia, Brazil i CENIBRA, Ipatinga, Minas

  9. Identifying and Remediating High Water Production Problems in Basin-Centered Formations

    SciTech Connect (OSTI)

    R.L. Billingsley

    2005-12-01

    Through geochemical analyses of produced waters, petrophysics, and reservoir simulation we developed concepts and approaches for mitigating unwanted water production in tight gas reservoirs and for increasing recovery of gas resources presently considered noncommercial. Only new completion research (outside the scope of this study) will validate our hypothesis. The first task was assembling and interpreting a robust regional database of historical produced-water analyses to address the production of excessive water in basin-centered tight gas fields in the Greater Green (GGRB ) and Wind River basins (WRB), Wyoming. The database is supplemented with a sampling program in currently active areas. Interpretation of the regional water chemistry data indicates most produced waters reflect their original depositional environments and helps identify local anomalies related to basement faulting. After the assembly and evaluation phases of this project, we generated a working model of tight formation reservoir development, based on the regional nature and occurrence of the formation waters. Through an integrative approach to numerous existing reservoir concepts, we synthesized a generalized development scheme organized around reservoir confining stress cycles. This single overarching scheme accommodates a spectrum of outcomes from the GGRB and Wind River basins. Burial and tectonic processes destroy much of the depositional intergranular fabric of the reservoir, generate gas, and create a rock volume marked by extremely low permeabilities to gas and fluids. Stress release associated with uplift regenerates reservoir permeability through the development of a penetrative grain bounding natural fracture fabric. Reservoir mineral composition, magnitude of the stress cycle and local tectonics govern the degree, scale and exact mechanism of permeability development. We applied the reservoir working model to an area of perceived anomalous water production. Detailed water analyses, seismic mapping, petrophysics, and reservoir simulation indicate a lithologic and structural component to excessive in situ water permeability. Higher formation water salinity was found to be a good pay indicator. Thus spontaneous potential (SP) and resistivity ratio approaches combined with accurate formation water resistivity (Rw) information may be underutilized tools. Reservoir simulation indicates significant infill potential in the demonstration area. Macro natural fracture permeability was determined to be a key element affecting both gas and water production. Using the reservoir characterization results, we generated strategies for avoidance and mitigation of unwanted water production in the field. These strategies include (1) more selective perforation by improved pay determination, (2) using seismic attributes to avoid small-scale fault zones, and (3) utilizing detailed subsurface information to deliberately target optimally located small scale fault zones high in the reservoir gas column. Tapping into the existing natural fracture network represents opportunity for generating dynamic value. Recognizing the crucial role of stress release in the natural generation of permeability within tight reservoirs raises the possibility of manmade generation of permeability through local confining stress release. To the extent that relative permeabilities prevent gas and water movement in the deep subsurface a reduction in stress around a wellbore has the potential to increase the relative permeability conditions, allowing gas to flow. For this reason, future research into cavitation completion methods for deep geopressured reservoirs is recommended.

  10. Method and apparatus for production of subsea hydrocarbon formations

    DOE Patents [OSTI]

    Blandford, Joseph W. (15 Mott La., Houston, TX 77024)

    1995-01-01

    A system for controlling, separating, processing and exporting well fluids produced from subsea hydrocarbon formations is disclosed. The subsea well tender system includes a surface buoy supporting one or more decks above the water surface for accommodating equipment to process oil, gas and water recovered from the subsea hydrocarbon formation. The surface buoy includes a surface-piercing central flotation column connected to one or more external floatation tanks located below the water surface. The surface buoy is secured to the seabed by one or more tendons which are anchored to a foundation with piles imbedded in the seabed. The system accommodates multiple versions on the surface buoy configuration.

  11. Method and apparatus for production of subsea hydrocarbon formations

    DOE Patents [OSTI]

    Blandford, J.W.

    1995-01-17

    A system for controlling, separating, processing and exporting well fluids produced from subsea hydrocarbon formations is disclosed. The subsea well tender system includes a surface buoy supporting one or more decks above the water surface for accommodating equipment to process oil, gas and water recovered from the subsea hydrocarbon formation. The surface buoy includes a surface-piercing central flotation column connected to one or more external flotation tanks located below the water surface. The surface buoy is secured to the sea bed by one or more tendons which are anchored to a foundation with piles imbedded in the sea bed. The system accommodates multiple versions on the surface buoy configuration. 20 figures.

  12. Use of tamarisk as a potential feedstock for biofuel production.

    SciTech Connect (OSTI)

    Sun, Amy Cha-Tien; Norman, Kirsten

    2011-01-01

    This study assesses the energy and water use of saltcedar (or tamarisk) as biomass for biofuel production in a hypothetical sub-region in New Mexico. The baseline scenario consists of a rural stretch of the Middle Rio Grande River with 25% coverage of mature saltcedar that is removed and converted to biofuels. A manufacturing system life cycle consisting of harvesting, transportation, pyrolysis, and purification is constructed for calculating energy and water balances. On a dry short ton woody biomass basis, the total energy input is approximately 8.21 mmBTU/st. There is potential for 18.82 mmBTU/st of energy output from the baseline system. Of the extractable energy, approximately 61.1% consists of bio-oil, 20.3% bio-char, and 18.6% biogas. Water consumptive use by removal of tamarisk will not impact the existing rate of evapotranspiration. However, approximately 195 gal of water is needed per short ton of woody biomass for the conversion of biomass to biocrude, three-quarters of which is cooling water that can be recovered and recycled. The impact of salt presence is briefly assessed. Not accounted for in the baseline are high concentrations of Calcium, Sodium, and Sulfur ions in saltcedar woody biomass that can potentially shift the relative quantities of bio-char and bio-oil. This can be alleviated by a pre-wash step prior to the conversion step. More study is needed to account for the impact of salt presence on the overall energy and water balance.

  13. Productivity in Historical Linguistics: Computational Perspectives on Word-Formation in Ancient Greek and Sanskrit

    E-Print Network [OSTI]

    Sandell, Ryan Paul

    2015-01-01

    Productivity and Word Frequency: StatisticalBases of Word Frequency Dis- tributions inFrom “Strict” P to “Potential” I . . . . Word Frequency

  14. Removing of Formation Damage and Enhancement of Formation Productivity Using Environmentally Friendly Chemicals 

    E-Print Network [OSTI]

    Mahmoud, Mohamed Ahmed Nasr Eldin

    2012-07-16

    of stimulation of sandstone reservoirs is to remove the damage caused to the production zone during drilling or completion operations. Many problems may occur during sandstone acidizing with Hydrochloric/Hydrofluoric acids (HCl/HF) mud acid. Among those problems...

  15. Formation damage in underbalanced drilling operations 

    E-Print Network [OSTI]

    Reyes Serpa, Carlos Alberto

    2003-01-01

    Formation damage has long been recognized as a potential source of reduced productivity and injectivity in both horizontal and vertical wells. From the moment that the pay zone is being drilled until the well is put on production, a formation...

  16. Assessment of the potential for karst in the Rustler Formation at the WIPP site.

    SciTech Connect (OSTI)

    Lorenz, John Clay

    2006-01-01

    This report is an independent assessment of the potential for karst dissolution in evaporitic strata of the Rustler Formation at the Waste Isolation Pilot Plant (WIPP) site. Review of the available data suggests that the Rustler strata thicken and thin across the area in depositional patterns related to lateral variations in sedimentary accommodation space and normal facies changes. Most of the evidence that has been offered for the presence of karst in the subsurface has been used out of context, and the different pieces are not mutually supporting. Outside of Nash Draw, definitive evidence for the development of karst in the Rustler Formation near the WIPP site is limited to the horizon of the Magenta Member in drillhole WIPP-33. Most of the other evidence cited by the proponents of karst is more easily interpreted as primary sedimentary structures and the localized dissolution of evaporitic strata adjacent to the Magenta and Culebra water-bearing units. Some of the cited evidence is invalid, an inherited baggage from studies made prior to the widespread knowledge of modern evaporite depositional environments and prior to the existence of definitive exposures of the Rustler Formation in the WIPP shafts. Some of the evidence is spurious, has been taken out of context, or is misquoted. Lateral lithologic variations from halite to mudstone within the Rustler Formation under the WIPP site have been taken as evidence for the dissolution of halite such as that seen in Nash Draw, but are more rationally explained as sedimentary facies changes. Extrapolation of the known karst features in Nash Draw eastward to the WIPP site, where conditions are and have been significantly different for half a million years, is unwarranted. The volumes of insoluble material that would remain after dissolution of halite would be significantly less than the observed bed thicknesses, thus dissolution is an unlikely explanation for the lateral variations from halite to mudstone and siltstone. Several surficial depressions at WIPP, suggested to be sinkholes, do not have enough catchment area to form a sinkhole, and holes drilled to investigate the subsurface strata do not support a sinkhole interpretation. Surface drainage across the WIPP site is poorly developed because it has been disrupted by migrating sand dunes and because precipitation is not focused by defined catchment areas in this region of low precipitation and low-dip bedding, not because it has been captured by sinkholes. There are no known points of discharge from the Rustler Formation at WIPP that would indicate the presence of a subsurface karst drainage system. The existing drillholes across the WIPP site, though small in diameter, are sufficient to assess the probability of karst development along the horizontal fractures that are common in the Rustler Formation, and the area of investigation has been augmented significantly by the mapping of four large-diameter shafts excavated into the WIPP repository. The general absence of dissolution, karsting, and related conduits is corroborated by the pumping tests which have interrogated large volumes of the Rustler Formation between drillholes. Diffusion calculations suggest that separate isotopic signatures for the water found in the fractures and the water found in the pores of the matrix rock between fractures are unlikely, thus the isotopic evidence for ancient Rustler formation waters is valid. Geophysical techniques show a number of anomalies, but the anomalies do not overlap to portray consistent and mutually supporting patterns that can be definitively related to karst void space at any given location. The coincidence of the Culebra and Magenta potentiometric heads between Nash Draw and the WIPP site is the inevitable intersection of two non-parallel surfaces rather than an indication of karst-related hydraulic communication between the two units. The proponents of karst in the Rustler Formation at the WIPP site tend to mix data, to take data out of context, and to offer theory as fact. They do not analyze the data or synthesize

  17. Supporting Information for: A Global Comparison of National Biodiesel Production Potentials

    E-Print Network [OSTI]

    Wisconsin at Madison, University of

    -specific vegetable oil production for feedstock i, country j FAO 2005 Units = metric tons APj Aggregate vegetable oil production for country j FAO 2005 Units = metric tons PEOij Potential exports of processed vegetable oilSupporting Information for: A Global Comparison of National Biodiesel Production Potentials Matt

  18. Potential Direct and Indirect Effects of Global Cellulosic Biofuel Production on Greenhouse

    E-Print Network [OSTI]

    Potential Direct and Indirect Effects of Global Cellulosic Biofuel Production on Greenhouse Gas on recycled paper #12;1 Potential Direct and Indirect Effects of Global Cellulosic Biofuel Production. Melillo*, John M. Reilly§ , and Sergey Paltsev§ Abstract The production of cellulosic biofuels may have

  19. Manufacturing cell formation with production data using neural networks R. Sudhakara Pandian, S.S. Mahapatra *

    E-Print Network [OSTI]

    Rucci, Michele

    Manufacturing cell formation with production data using neural networks R. Sudhakara Pandian, S Exceptional elements a b s t r a c t Batch type production strategies need adoption of cellular manufacturing (CM) in order to improve oper- ational effectiveness by reducing manufacturing lead time and costs

  20. ARM Convective Available Potential Energy (CAPE), Convective Inhibition (CIN) Product

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Jensen, Michael

    2014-04-10

    ARM soundings are used to determine Convective Available Potential Energy (CAPE), Convective Inhibition (CIN) and associated properties, using the following relationships;

  1. ARM Convective Available Potential Energy (CAPE), Convective Inhibition (CIN) Product

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Jensen, Michael

    ARM soundings are used to determine Convective Available Potential Energy (CAPE), Convective Inhibition (CIN) and associated properties, using the following relationships;

  2. Assessment of Energy Production Potential from Ocean Currents...

    Broader source: Energy.gov (indexed) [DOE]

    ocean currents in the United States and the database created with that data. energyproductionoceancurrentsus.pdf More Documents & Publications Assessment of Energy Production...

  3. Absorption and elimination of formate following oral administration of calcium formate in female human subjects

    E-Print Network [OSTI]

    Hanzlik, Robert P.; Fowler, Stephen C.; Eells, Janis T.

    2005-02-01

    Published abstract: Calcium formate is a water-soluble salt of an essential mineral nutrient with potential for use as a dietary calcium supplement. Formate ion is a product of endogenous and xenobiotic metabolism, but sustained high plasma formate...

  4. Constraints and potentials of future irrigation water availability on agricultural production under

    E-Print Network [OSTI]

    | hydrology | uncertainty Alack of available water for agricultural production, energy projects, other formsConstraints and potentials of future irrigation water availability on agricultural production under, United Kingdom; e Potsdam Institute for Climate Impact Research, 14473 Potsdam, Germany; f Department

  5. POTENTIAL BENCHMARKS FOR ACTINIDE PRODUCTION IN HANFORD REACTORS

    SciTech Connect (OSTI)

    PUIGH RJ; TOFFER H

    2011-10-19

    A significant experimental program was conducted in the early Hanford reactors to understand the reactor production of actinides. These experiments were conducted with sufficient rigor, in some cases, to provide useful information that can be utilized today in development of benchmark experiments that may be used for the validation of present computer codes for the production of these actinides in low enriched uranium fuel.

  6. Assessment of Energy Production Potential from Tidal Streams...

    Broader source: Energy.gov (indexed) [DOE]

    project documented in this report created a national database of tidal stream energy potential, as well as a GIS tool usable by industry in order to accelerate the market for tidal...

  7. Mapping the Potential for Biofuel Production on Marginal Lands: Differences in Definitions, Data and Models across Scales

    E-Print Network [OSTI]

    Lewis, Sarah M

    2014-01-01

    availability for biofuel production. Environ. Sci. Technol.of land available for biofuel production. Environ. Sci.the Potential for Biofuel Production on Marginal Lands:

  8. Shale Gas Production: Potential versus Actual GHG Emissions

    E-Print Network [OSTI]

    O'Sullivan, Francis

    Estimates of greenhouse gas (GHG) emissions from shale gas production and use are controversial. Here we assess the level of GHG emissions from shale gas well hydraulic fracturing operations in the United States during ...

  9. Shale gas production: potential versus actual greenhouse gas emissions

    E-Print Network [OSTI]

    O’Sullivan, Francis Martin

    Estimates of greenhouse gas (GHG) emissions from shale gas production and use are controversial. Here we assess the level of GHG emissions from shale gas well hydraulic fracturing operations in the United States during ...

  10. Direct Determination of Equilibrium Potentials for Hydrogen Oxidation/Production by Open Circuit Potential Measurements in Acetonitrile

    SciTech Connect (OSTI)

    Roberts, John A.; Bullock, R. Morris

    2013-03-14

    Open circuit potentials were measured for acetonitrile solutions of a variety of acids and their conjugate bases under 1 atm H2. Acids examined include triethylammonium, dimethylformamidium, 2,6-dichloroanilinium, 4-cyanoanilinium, 4-bromoanilinium, and 4-anisidinium salts. These potentials, together with the pKa values of the acids, establish the value of the standard hydrogen electrode (SHE) potential in acetonitrile as ?0.028(4) V vs the ferrocenium/ferrocene couple. Dimethylformamidium is shown to form homoconjugates and other aggregates with dimethylformamide; open circuit potentials are used to quantify the extent of these reactions. Overpotentials for electrocatalytic hydrogen production and oxidation were determined from open circuit potentials and voltammograms of acidic or basic catalyst solutions under H2. This method requires neither pKa values, homoconjugation constants, nor an estimate for the SHE potential and thus allows direct comparison of catalytic systems in different media.

  11. ARM - PI Product - Convective Available Potential Energy (CAPE), Convective

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Comments?govInstrumentsnoaacrnBarrow, Alaska OutreachCalendar NSA RelatedInhibition (CIN) Product Products

  12. Naked singularity and black hole formation in self-similar Einstein-scalar fields with exponential potentials

    E-Print Network [OSTI]

    Xuefeng Zhang; Xinliang An

    2015-10-22

    Motivated by cosmic censorship in general relativity and string theory, we extend Christodoulou's celebrated examples of naked singularity formation in the Einstein-massless scalar field system to include a positive or negative scalar potential of exponential forms, i.e., $V(\\phi)=\\pm\\exp(2\\phi/\\kappa)$ with a parameter $\\kappa$. Under spherical symmetry and a self-similar ansatz depending on $\\kappa$, we derive a 3-dimensional autonomous system of first-order ordinary differential equations, which incorporates the equations for massless scalar fields as a special case. Local behavior of the phase space is studied analytically with global solutions constructed numerically. Within the 3-dimensional solution manifold, we observe, for the negative potentials, naked singularity formation from nonsingular initial data for $\\kappa^2naked singularities and black holes are also identified. However, when the potential is taken positive, numerical evolutions result in formation of black holes, but not naked singularities.

  13. Evaluating the potential for the continuous processing of pharmaceutical products - a supply network perspective

    E-Print Network [OSTI]

    Srai, Jagjit Singh; Harrington, Tomas; Alinaghian, Leila; Phillips, Mark

    2015-08-08

    combinations [45] and various pack sizes Inventory Est. Final product 3-6 months Est. Final product 3-6 months Est. Final product 3-6 months CapEx delta (batch -> continuous) Much existing capacity in place. Potential opportunities for reduced Capex... in continuous formulation of combinations Potential capex savings if new capacity is required, based on design calculations Alternative chemistry, with improved kinetics [46] enables continuous process to deliver increased capacity at lower capex...

  14. Net mineralization of N at deeper soil depths as a potential mechanism for sustained forest production

    E-Print Network [OSTI]

    Net mineralization of N at deeper soil depths as a potential mechanism for sustained forest of microbial consumption of mineral N were reduced relative to production. Overall, up to 60% of potential gross N mineralization and 100% of potential net N mineralization occurred below 15 cm depth

  15. Potential of Using Poultry Litter as a Feedstock for Energy Production Rangika Perera, Graduate Research Assistant

    E-Print Network [OSTI]

    Wu, Qinglin

    Potential of Using Poultry Litter as a Feedstock for Energy Production Rangika Perera, Graduate................................................................................................... 9 5. Environmental and Social Issues of Energy Production using Poultry Litter ....................................... 10 5.1 Issues on the anaerobic digestion of poultry litter for energy production

  16. Potential for hydrogen production with inducible chloroplast gene expression in Chlamydomonas

    E-Print Network [OSTI]

    Halazonetis, Thanos

    Potential for hydrogen production with inducible chloroplast gene expression in Chlamydomonas for hydrogen production. Upon addition of copper to cells pregrown in copper-deficient medium, PSII levels- gen production. Moreover, this inducible gene expression system is applicable to any chloroplast gene

  17. Alternating minimal energy approach to ODEs and conservation laws in tensor product formats

    E-Print Network [OSTI]

    Dolgov, Sergey V

    2014-01-01

    We propose an algorithm for solution of high-dimensional evolutionary equations (ODEs and discretized time-dependent PDEs) in tensor product formats. The solution must admit an approximation in a low-rank separation of variables framework, and the right-hand side of the ODE (for example, a matrix) must be computable in the same low-rank format at a given time point. The time derivative is discretized via the Chebyshev spectral scheme, and the solution is sought simultaneously for all time points from the global space-time linear system. To compute the solution adaptively in the tensor format, we employ the Alternating Minimal Energy algorithm, the DMRG-flavored alternating iterative technique. Besides, we address the problem of maintaining system invariants inside the approximate tensor product scheme. We show how the conservation of a linear function, defined by a vector given in the low-rank format, or the second norm of the solution may be accurately and elegantly incorporated into the tensor product metho...

  18. Naked singularity and black hole formation in self-similar Einstein-scalar fields with exponential potentials

    E-Print Network [OSTI]

    Zhang, Xuefeng

    2015-01-01

    Motivated by cosmic censorship in general relativity and string theory, we extend Christodoulou's celebrated examples of naked singularity formation in the Einstein-massless scalar field system to include a positive or negative scalar potential of exponential forms, i.e., $V(\\phi)=\\pm\\exp(2\\phi/\\kappa)$ with a parameter $\\kappa$. Under spherical symmetry and a self-similar ansatz depending on $\\kappa$, we derive a 3-dimensional autonomous system of first-order ordinary differential equations, which incorporates the equations for massless scalar fields as a special case. Local behavior of the phase space is studied analytically with global solutions constructed numerically. Within the 3-dimensional solution manifold, we observe, for the negative potentials, naked singularity formation from nonsingular initial data for $\\kappa^2naked singularities and black holes are also identified. However, when the potential is taken positive, numerical evolutions r...

  19. Webinar: Potential Strategies for Integrating Solar Hydrogen Production and Concentrating Solar Power: A Systems Analysis

    Broader source: Energy.gov [DOE]

    The Energy Department will present a live webinar titled "Potential Strategies for Integrating Solar Hydrogen Production and Concentrating Solar Power: A Systems Analysis" on Thursday, January 21, from 12 to 1 p.m. Eastern Standard Time (EST).

  20. Modeling the Potential Effects of New Tobacco Products and Policies: A Dynamic Population Model for Multiple Product Use and Harm

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Vugrin, Eric D.; Rostron, Brian L.; Verzi, Stephen J.; Brodsky, Nancy S.; Brown, Theresa J.; Choiniere, Conrad J.; Coleman, Blair N.; Paredes, Antonio; Apelberg, Benjamin J.

    2015-03-27

    Background Recent declines in US cigarette smoking prevalence have coincided with increases in use of other tobacco products. Multiple product tobacco models can help assess the population health impacts associated with use of a wide range of tobacco products. Methods and Findings We present a multi-state, dynamical systems population structure model that can be used to assess the effects of tobacco product use behaviors on population health. The model incorporates transition behaviors, such as initiation, cessation, switching, and dual use, related to the use of multiple products. The model tracks product use prevalence and mortality attributable to tobacco use formore »the overall population and by sex and age group. The model can also be used to estimate differences in these outcomes between scenarios by varying input parameter values. We demonstrate model capabilities by projecting future cigarette smoking prevalence and smoking-attributable mortality and then simulating the effects of introduction of a hypothetical new lower-risk tobacco product under a variety of assumptions about product use. Sensitivity analyses were conducted to examine the range of population impacts that could occur due to differences in input values for product use and risk. We demonstrate that potential benefits from cigarette smokers switching to the lower-risk product can be offset over time through increased initiation of this product. Model results show that population health benefits are particularly sensitive to product risks and initiation, switching, and dual use behaviors. Conclusion Our model incorporates the variety of tobacco use behaviors and risks that occur with multiple products. As such, it can evaluate the population health impacts associated with the introduction of new tobacco products or policies that may result in product switching or dual use. Further model development will include refinement of data inputs for non-cigarette tobacco products and inclusion of health outcomes such as morbidity and disability.« less

  1. The dependence of potential well formation on the magnetic field strength and electron injection current in a polywell device

    SciTech Connect (OSTI)

    Cornish, S., E-mail: cornish@physics.usyd.edu.au; Gummersall, D.; Carr, M.; Khachan, J. [School of Physics, The University of Sydney, Sydney, NSW 2006 (Australia)

    2014-09-15

    A capacitive probe has been used to measure the plasma potential in a polywell device in order to observe the dependence of potential well formation on magnetic field strength, electron injection current, and polywell voltage bias. The effectiveness of the capacitive probe in a high energy electron plasma was determined by measuring the plasma potential of a planar diode with an axial magnetic field. The capacitive probe was translated along the axis of one of the field coils of the polywell, and the spatial profile of the potential well was measured. The confinement time of electrons in the polywell was estimated with a simple analytical model which used the experimentally observed potential well depths, as well as a simulation of the electron trajectories using particle orbit theory.

  2. Prediction of gas-hydrate formation conditions in production and surface facilities 

    E-Print Network [OSTI]

    Ameripour, Sharareh

    2006-10-30

    .2 Phase diagram for natural gas hydrocarbons which form hydrates .............9 Fig. 2.3 Formation of gas hydrate plugs a subsea hydrocarbon pipeline................11 Fig. 2.4 Experimental hydrate equilibrium conditions for the ternary... exploration and production operations. Hydrate clathrates can plug gas gathering systems and transmission pipelines subsea and on the surface. In offshore explorations, the main concern is the multiphase transfer lines from the wellhead...

  3. The potential of carbonyl sulfide as a proxy for gross primary production at flux tower sites

    E-Print Network [OSTI]

    Minnesota, University of

    The potential of carbonyl sulfide as a proxy for gross primary production at flux tower sites J. M August 2011; published 15 November 2011. [1] Seasonal dynamics of atmospheric carbonyl sulfide (OCS of carbonyl sulfide as a proxy for gross primary production at flux tower sites, J. Geophys. Res., 116, G04019

  4. Cultivar variation and selection potential relevant to the production of cellulosic ethanol from wheat straw

    E-Print Network [OSTI]

    California at Riverside, University of

    Cultivar variation and selection potential relevant to the production of cellulosic ethanol from a , J. Magid b , B. Yang d , C.E. Wyman c a Forestry and Wood Products, Forest & Landscape, Faculty Received in revised form 8 November 2011 Accepted 9 December 2011 Available online xxx Keywords: Bioethanol

  5. Red or blue? A potential kilonova imprint of the delay until black hole formation following a neutron star merger

    E-Print Network [OSTI]

    Brian D. Metzger; Rodrigo Fernández

    2014-05-02

    Mergers of binary neutron stars (NSs) usually result in the formation of a hypermassive neutron star (HMNS). Whether- and when this remnant collapses to a black hole (BH) depends primarily on the equation of state and on angular momentum transport processes, both of which are uncertain. Here we show that the lifetime of the merger remnant may be directly imprinted in the radioactively powered kilonova emission following the merger. We employ axisymmetric, time-dependent hydrodynamic simulations of remnant accretion disks orbiting a HMNS of variable lifetime, and characterize the effect of this delay to BH formation on the disk wind ejecta. When BH formation is relatively prompt (~ 100 ms), outflows from the disk are sufficiently neutron rich to form heavy r-process elements, resulting in ~ week-long emission with a spectral peak in the near-infrared (NIR), similar to that produced by the dynamical ejecta. In contrast, delayed BH formation allows neutrinos from the HMNS to raise the electron fraction in the polar direction to values such that potentially Lanthanide-free outflows are generated. The lower opacity would produce a brighter, bluer, and shorter-lived ~ day-long emission (a `blue bump') prior to the late NIR peak from the dynamical ejecta and equatorial wind. This new diagnostic of BH formation should be useful for events with a signal to noise lower than that required for direct detection of gravitational waveform signatures.

  6. Potential formation in a collisionless plasma produced in an open magnetic field in presence of volume negative ion source

    SciTech Connect (OSTI)

    Phukan, Ananya, E-mail: ananya.phukan26@gmail.com; Goswami, K. S.; Bhuyan, P. J. [Centre of Plasma Physics, Institute for Plasma Research Sonapur, Kamrup (M), Assam 782402 (India)

    2014-08-15

    The electric potential near a wall for a multi-species plasma with volume produced negative ions in presence of axially varying magnetic field is studied following an analytical-numerical approach. A constant negative ion source is assumed throughout the plasma volume, along with finite temperature positive ions and Boltzmann electrons. The particles are assumed to be guided by an open magnetic field that has its maximum at the centre, and field strength decreasing towards the walls. The one dimensional (1D) Poisson equation is derived using an analytical approach, and then solved numerically to study the potential profiles. Effect of (a) negative ion production rate, (b) magnetic field profile, and (c) negative ion temperature on the potential profile has been investigated. A potential peak appears near the wall when the negative ion temperature and density are sufficiently high. Also, the presence of negative ions further decreases the potential in the plasma region for a finite Debye Length (?{sub D})

  7. Comparison of hydrocarbon production trends in Middle and Upper members of Minnelusa formation

    SciTech Connect (OSTI)

    Reel, C.L.; Horne, J.C.; Kelly, A.O.

    1985-05-01

    The main reservoir rocks in the upper and middle members of the Minnelusa Formation consist of wind blown dunal sands in the area surrounding the Lusk embayment. Changes in the local depositional setting, tectonic framework, and eustatic sea level controlled the distribution and reservior quality of these sandstones. The middle member exhibits two production trends. Age-equivalent Tensleep rocks deposited along the western margin of the embayment produce from sandstones accumulated in a sand sea paleoenvironment. Structure is atnececessary for trapping owing to permeability continuity. Along the eastern margin of the embayment, production comes from isolated accumulations of sandstone deposited as dunes on broad coastal sabkhas. Fields in these sandstones define a linear trend due to the coast-parallel alignment of these dunes. Production from the upper member defines four major trends. Upper member sandstones in the southern part of the basin, similar to Leo reservoirs, produce from sediments deposited as coast-parallel dunes in a northwest-southeast alignment. In the northern portion of the basin, production is from sandstones deposited in broad, flat eolian sand seas. Because of the permeability continuity of these sandstones, structural closure is necessary for trapping hydrocarbons. Upper member production has been influenced by the unconformity developed at the top of the Minnelusa. Movement along the Rosebud arch resulted in a southwest-northeast production trend apparent in each sandstone unit reflecting their northwestward erosional limits. The last, and most apparent, production trend, results from the Opeche Shale infilling of northwest-southeast-oriented stream valleys. Most production to date has been from sandstones following this alignment juxta-posed downdip of these impermeable shales.

  8. Preliminary analyses of scenarios for potential human interference for repositories in three salt formations

    SciTech Connect (OSTI)

    Not Available

    1985-10-01

    Preliminary analyses of scenarios for human interference with the performance of a radioactive waste repository in a deep salt formation are presented. The following scenarios are analyzed: (1) the U-Tube Connection Scenario involving multiple connections between the repository and the overlying aquifer system; (2) the Single Borehole Intrusion Scenario involving penetration of the repository by an exploratory borehole that simultaneously connects the repository with overlying and underlying aquifers; and (3) the Pressure Release Scenario involving inflow of water to saturate any void space in the repository prior to creep closure with subsequent release under near lithostatic pressures following creep closure. The methodology to evaluate repository performance in these scenarios is described and this methodology is applied to reference systems in three candidate formations: bedded salt in the Palo Duro Basin, Texas; bedded salt in the Paradox Basin, Utah; and the Richton Salt Dome, Mississippi, of the Gulf Coast Salt Dome Basin.

  9. Study sizes up Iraq`s reserves, exploration status, production potential

    SciTech Connect (OSTI)

    Ibrahim, M.W. [Target Exploration Consultants, London (United Kingdom)

    1996-06-24

    Iraq has a volatile exploration and production history, but unlike more stable OAPEC countries it was National Oil Co. (INOC) rather than foreign oil companies that discovered most of the country`s proved oil reserves. Proved reserves are in Paleozoic, Triassic, Jurassic, Cretaceous, and Tertiary reservoirs charged by Silurian and Jurassic and/or Cretaceous source rocks. The pre-gulf war production capacity was 3.5 million b/d, but the country`s current damaged production capacity is about 2.5 million b/d. New discoveries have elevated Iraq`s proved reserves to 120 billion bbl of oil. The paper discusses exploration history, proven reserves, exploration plays, exploration potential, and production potential.

  10. The potential impact of turbulent velocity fluctuations on drizzle formation in Cumulus clouds in an idealized 2D setup

    E-Print Network [OSTI]

    Andrejczuk, M; Blyth, A

    2015-01-01

    This article discusses a potential impact of turbulent velocity fluctuations of the air on a drizzle formation in Cumulus clouds. Two different representations of turbulent velocity fluctuations for a microphysics formulated in a Lagrangian framework are discussed - random walk model and the interpolation, and its effect on microphysical properties of the cloud investigated. Turbulent velocity fluctuations significantly enhances velocity differences between colliding droplets, especially those having small sizes. As a result drizzle forms faster in simulations including a representation of turbulence. Both representations of turbulent velocity fluctuations, random walk and interpolation, have similar effect on droplet spectrum evolution, but interpolation of the velocity does account for a possible anisotropy in the air velocity. All discussed simulations show relatively large standard deviation ($\\sim$1${\\mu}m$) of the cloud droplet distribution from the onset of cloud formation is observed. Because coalesen...

  11. Potential

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Potential and Frictional Drag on a Floating Sphere in a Flowing Plasma I. H. Hutchinson Plasma Science and Fusion Center Massachusetts Institute of Technology, Cambridge, MA, USA...

  12. FOAM FORMATION IN THE SALTSTONE PRODUCTION FACILITY: EVALUATION OF SOURCES AND MITIGATION

    SciTech Connect (OSTI)

    Cozzi, A.

    2011-01-18

    The Saltstone Production Facility receives waste from Tank 50H for treatment. Influents into Tank 50H include the Effluent Treatment Project waste concentrate, H-Canyon low activity waste and General Purpose Evaporator bottoms, Modular Caustic Side Solvent Extraction Unit decontaminated salt solution, and salt solution from the Deliquification, Dissolution and Adjust campaign. Using the Waste Characterization System (WCS), this study tracks the relative amounts of each influent into Tank 50H, as well as the total content of Tank 50H, in an attempt to identify the source of foaming observed in the Saltstone Production Facility hopper. Saltstone has been using antifoam as part of routine processing with the restart of the facility in December 2006. It was determined that the maximum admix usage in the Saltstone Production Facility, both antifoam and set retarder, corresponded with the maximum concentration of H-Canyon low activity waste in Tank 50H. This paper also evaluates archived salt solutions from Waste Acceptance Criteria analysis for propensity to foam and the antifoam dosage required to mitigate foaming. It was determined that Effluent Treatment Project contributed to the expansion factor (foam formation) and General Purpose Evaporator contributed to foaminess (persistence). It was also determined that undissolved solids contribute to foam persistence. It was shown that additions of Dow Corning Q2-1383a antifoam reduced both the expansion factor and foaminess of salt solutions. The evaluation of foaming in the grout hopper during the transition from water to salt solution indicated that higher water-to-premix ratios tended to produce increased foaming. It was also shown that additions of Dow Corning Q2-1383a antifoam reduced foam formation and persistence.

  13. PETROPHYSICAL INVESTIGATION OF THE SECONDARY RECOVERY POTENTIAL IN THE CHERRY CANYON FORMATION NE LEA FIELD LEA COUNTY, NEW MEXICO

    SciTech Connect (OSTI)

    T. Scott Hickman

    2002-06-01

    Read and Stevens has proposed the evaluation of the waterflood potential from the Cherry Canyon formation in the NE Lea Field in lea County, New Mexico. Much of the development in this area is approaching primary recovery limitations; additional recovery of remaining oil reserves by waterflood needs to be evaluated. The Cherry Canyon formation is composed of fine grained sandstone, containing clay material which results in high water saturation, and also has the tendency to swell and reduce reservoir permeability--the ability of fluid to flow through the rock pores and fractures. There are also abundant organic materials that interfere with obtaining reliable well logs. These complications have limited oil in place calculations and identification of net pay zones, presenting a challenge to the planned waterflood. Core analysis of the Cherry Canyon should improve the understanding of existing well logs and possibly indicate secondary recovery measures, such as waterflood, to enhance field recovery. Lacking truly representative core to provide accurate analyses, Read and Stevens will obtain and preserve fresh core. The consulting firm of T. Scott Hickman and Associates will then collaborate on special core analyses and obtain additional well logs for a more detailed analysis of reservoir properties. The log interpretation will be compared to the core analysis results, and the entire collected data set will be used to assess the potential and economic viability of successfully waterflooding the identified oil zones. Successful results from the project will improve accuracy of log interpretation and establish a methodology for evaluating secondary recovery by waterflood.

  14. Environmental characterization of two potential locations at Hanford for a new production reactor

    SciTech Connect (OSTI)

    Watson, E.C.; Becker, C.D.; Fitzner, R.E.; Gano, K.A.; Imhoff, K.L.; McCallum, R.F.; Myers, D.A.; Page, T.L.; Price, K.R.; Ramsdell, J.V.; Rice D.G.; Schreiber D.L.; Skumatz L.A.; Sommer D.J.; Tawil J.J.; Wallace R.W.; Watson D.G.

    1984-09-01

    This report describes various environmental aspects of two areas on the Hanford Site that are potential locations for a New Production Reactor (NPR). The area known as the Skagit Hanford Site is considered the primary or reference site. The second area, termed the Firehouse Site, is considered the alternate site. The report encompasses an environmental characterization of these two potential NPR locations. Eight subject areas are covered: geography and demography; ecology; meteorology; hydrology; geology; cultural resources assessment; economic and social effects of station construction and operation; and environmental monitoring. 80 refs., 68 figs., 109 tabs.

  15. Production and rescattering of strange baryons at SPS energies in a transport model with hadron potentials

    E-Print Network [OSTI]

    Qingfeng Li; Zhuxia Li

    2010-10-13

    A mean-field potential version of the Ultra-relativistic Quantum Molecular Dynamics (UrQMD) model is used to investigate the production of strange baryons, especially the $\\Lambda$s and $\\overline{\\Lambda}$s, from heavy ion collisions at SPS energies. It is found that, with the consideration of both formed and pre-formed hadron potentials in UrQMD, the transverse mass and longitudinal rapidity distributions of experimental data of both $\\Lambda$s and $\\overline{\\Lambda}$s can be quantitatively explained fairly well. Our investigation also shows that both the production mechanism and the rescattering process of hadrons play important roles in the final yield of strange baryons.

  16. EXPLORING THE POTENTIAL FORMATION OF ORGANIC SOLIDS IN CHONDRITES AND COMETS THROUGH POLYMERIZATION OF INTERSTELLAR FORMALDEHYDE

    SciTech Connect (OSTI)

    Kebukawa, Yoko; Cody, George D.; David Kilcoyne, A. L. E-mail: yoko@ep.sci.hokudai.ac.jp

    2013-07-01

    Polymerization of interstellar formaldehyde, first through the formose reaction and then through subsequent condensation reactions, provides a plausible explanation for how abundant and highly chemically complex organic solids may have come to exist in primitive solar system objects. In order to gain better insight on the reaction, a systematic study of the relationship of synthesis temperature with resultant molecular structure was performed. In addition, the effect of the presence of ammonia on the reaction rate and molecular structure of the product was studied. The synthesized formaldehyde polymer is directly compared to chondritic insoluble organic matter (IOM) isolated from primitive meteorites using solid-state {sup 13}C nuclear magnetic resonance, Fourier transform infrared, and X-ray absorption near edge structure spectroscopy. The molecular structure of the formaldehyde polymer is shown to exhibit considerable similarity at the functional group level with primitive chondritic IOM. The addition of ammonia to the solution enhances the rate of polymerization reaction at lower temperatures and results in substantial incorporation of nitrogen into the polymer. Morphologically, the formaldehyde polymer exists as submicron to micron-sized spheroidal particles and spheroidal particle aggregates that bare considerable similarity to the organic nanoglobules commonly observed in chondritic IOM. These spectroscopic and morphological data support the hypothesis that IOM in chondrites and refractory organic carbon in comets may have formed through the polymerization of interstellar formaldehyde after planetesimal accretion, in the presence of liquid water, early in the history of the solar system.

  17. Influence of Gas Flow Rate for Formation of Aligned Nanorods in ZnO Thin Films for Solar-Driven Hydrogen Production

    SciTech Connect (OSTI)

    Shet, S.; Chen, L.; Tang, H.; Nuggehalli, R.; Wang, H.; Yan, Y.; Turner, J.; Al-Jassim, M.

    2012-04-01

    ZnO thin films have been deposited in mixed Ar/N{sub 2} gas ambient at substrate temperature of 500 C by radiofrequency sputtering of ZnO targets. We find that an optimum N{sub 2}-to-Ar ratio in the deposition ambient promotes the formation of well-aligned nanorods. ZnO thin films grown in ambient with 25% N{sub 2} gas flow rate promoted nanorods aligned along c-axis and exhibit significantly enhanced photoelectrochemical (PEC) response, compared with ZnO thin films grown in an ambient with different N{sub 2}-to-Ar gas flow ratios. Our results suggest that chamber ambient is critical for the formation of aligned nanostructures, which offer potential advantages for improving the efficiency of PEC water splitting for H{sub 2} production.

  18. Evaluation of a deposit in the vicinity of the PBU L-106 Site, North Slope, Alaska, for a potential long-term test of gas production from hydrates

    SciTech Connect (OSTI)

    Moridis, G.J.; Reagan, M.T.; Boyle, K.L.; Zhang, K.

    2010-05-01

    As part of the effort to investigate the technical feasibility of gas production from hydrate deposits, a long-term field test (lasting 18-24 months) is under consideration in a project led by the U.S. Department of Energy. We evaluate a candidate deposit involving the C-Unit in the vicinity of the PBU-L106 site in North Slope, Alaska. This deposit is stratigraphically bounded by impermeable shale top and bottom boundaries (Class 3), and is characterized by high intrinsic permeabilities, high porosity, high hydrate saturation, and a hydrostatic pressure distribution. The C-unit deposit is composed of two hydrate-bearing strata separated by a 30-ft-thick shale interlayer, and its temperatrure across its boundaries ranges between 5 and 6.5 C. We investigate by means of numerical simulation involving very fine grids the production potential of these two deposits using both vertical and horizontal wells. We also explore the sensitivity of production to key parameters such as the hydrate saturation, the formation permeability, and the permeability of the bounding shale layers. Finally, we compare the production performance of the C-Unit at the PBU-L106 site to that of the D-Unit accumulation at the Mount Elbert site, a thinner, single-layer Class 3 deposit on the North Slope of Alaska that is shallower, less-pressurized and colder (2.3-2.6 C). The results indicate that production from horizontal wells may be orders of magnitude larger than that from vertical ones. Additionally, production increases with the formation permeability, and with a decreasing permeability of the boundaries. The effect of the hydrate saturation on production is complex and depends on the time frame of production. Because of higher production, the PBU-L106 deposit appears to have an advantage as a candidate for the long-term test.

  19. Vacuum Potentials for the Two Only Permanent Free Particles, Proton and Electron. Pair Productions

    E-Print Network [OSTI]

    J. X. Zheng-Johansson

    2015-02-26

    The two only species of isolatable, smallest, or unit charges +e and -e present in nature interact with the universal vacuum in a polarisable dielectric representation through two uniquely defined vacuum potential functions. All of the non-composite subatomic particles containing one-unit charges, +e or -e, are therefore formed in terms of the IED model of the respective charges, of zero rest masses, oscillating in either of the two unique vacuum potential fields, together with the radiation waves of their own charges. In this paper we give a first principles treatment of the dynamics of charge in a dielectric vacuum, based on which, combined with solutions for the radiation waves obtained previously, we subsequently derive the vacuum potential function for a given charge q, which we show to be quadratic and consist each of quantised potential levels, giving therefore rise to quantised characteristic oscillation frequencies of the charge and accordingly quantised, sharply-defined masses of the IED particles. By further combining with relevant experimental properties as input information, we determine the IED particles built from the charges +e,-e at their first excited states in the respective vacuum potential wells to be the proton and the electron, the observationally two only stable (permanently lived) and "free" particles containing one-unit charges. Their antiparticles as produced in pair productions can be accordingly determined. The characteristics of all of the other more energetic non-composite subatomic particles can also be recognised. We finally discuss the energy condition for pair production, which requires two successive energy supplies to (1) first disintegrate the bound pair of vaculeon charges +e,-e composing a vacuuon of the vacuum and (2) impart masses to the disintegrated charges.

  20. Productivity in Historical Linguistics: Computational Perspectives on Word-Formation in Ancient Greek and Sanskrit

    E-Print Network [OSTI]

    Sandell, Ryan Paul

    2015-01-01

    susceptible to the measurement of productivity through therelation to the measurement of productivity, I will treatthat concrete measurement of productivity, and the system-

  1. Compost: A study of the development process and end-product potential for suppression of turfgrass disease

    E-Print Network [OSTI]

    Boland, Greg J.

    Review Compost: A study of the development process and end-product potential for suppression stable, humi®ed forms and inorganic products (CO2, H2O, ammonia, nitrate, methane), and releases heat of competition for nutrients, antibiosis, lytic and other extracellular enzyme production, parasitism, predation

  2. Fundamental Studies of Irradiation-Induced Defect Formation and Fission Product Dynamics in Oxide Fuels

    SciTech Connect (OSTI)

    James Stubbins

    2012-12-19

    The objective of this research program is to address major nuclear fuels performance issues for the design and use of oxide-type fuels in the current and advanced nuclear reactor applications. Fuel performance is a major issue for extending fuel burn-up which has the added advantage of reducing the used fuel waste stream. It will also be a significant issue with respect to developing advanced fuel cycle processes where it may be possible to incorporate minor actinides in various fuel forms so that they can be 'burned' rather than join the used fuel waste stream. The potential to fission or transmute minor actinides and certain long-lived fission product isotopes would transform the high level waste storage strategy by removing the need to consider fuel storage on the millennium time scale.

  3. Biofuels from Microalgae: Review of Products, Processes and Potential, with Special Focus on Dunaliella sp.

    SciTech Connect (OSTI)

    Huesemann, Michael H.; Benemann, John R.

    2009-12-31

    There is currently great interest in using microalgae for the production of biofuels, mainly due to the fact that microalgae can produce biofuels at a much higher productivity than conventional plants and that they can be cultivated using water, in particular seawater, and land not competing for resources with conventional agriculture. However, at present such microalgae-based technologies are not yet developed and the economics of such processes are uncertain. We review power generation by direct combustion, production of hydrogen and other fuel gases and liquids by gasification and pyrolysis, methane generation by anaerobic digestion, ethanol fermentations, and hydrogen production by dark and light-driven metabolism. We in particular discuss the production of lipids, vegetable oils and hydrocarbons, which could be converted to biodiesel. Direct combustion for power generation has two major disadvantages in that the high N-content of algal biomass causes unacceptably high NOx emissions and losses of nitrogen fertilizer. Thus, the use of sun-dried microalgal biomass would not be cost-competitive with other solid fuels such as coal and wood. Thermochemical conversion processes such as gasification and pyrolysis have been successfully demonstrated in the laboratory but will be difficult to scale up commercially and suffers from similar, though sometimes not as stringent, limitations as combustion. Anaerobic digestion of microalgal cells yields only about 0.3 L methane per g volatile solids destroyed, about half of the maximum achievable, but yields can be increased by adding carbon rich substrates to circumvent ammonia toxicity caused by the N-rich algal biomass. Anaerobic digestion would be best suited for the treatment of algal biomass waste after value-added products have been separated. Algae can also be grown to accumulate starches or similar fermentable products, and ethanol or similar (e.g., butanol) fermentations could be applied to such biomass, but research is required on increasing solvent yields. Dark fermentation of algal biomass can also produce hydrogen, but, as for other fermentations, only at low yields. Hydrogen can also be generated by algae in the light, however, this process has not yet been demonstrated in any way that could be scaled up and, in any event, Dunaliella, is not known to produce hydrogen. In response to nutrient deficiency (nitrogen or silicon), some microalgae accumulate neutral lipids which, after physical extraction, could be converted, via transesterification with methanol, to biodiesel. Nitrogen-limitation does not appear to increase either cellular lipid content or lipid productivity in Dunaliella. Results from life cycle energy analyses indicate that cultivation of microalgal biomass in open raceway ponds has a positive energy output ratio (EOR), approaching up to 10 (i.e., the caloric energy output from the algae is 10 times greater than the fossil energy inputs), but EOR are less than 1 for biomass grown in engineered photobioreactors. Thus, from both an energetic as well as economic perspective, only open ponds systems can be considered. Significant long-term R&D will be required to make microalgal biofuels processes economically competitive. Specifically, future research should focus on (a) the improvement of biomass productivities (i.e., maximizing solar conversion efficiencies), (b) the selection and isolation of algal strains that can be mass cultured and maintained stably for long periods, (c) the production of algal biomass with a high content of lipids, carbohydrates, and co-products, at high productivity, (d) the low cost harvesting of the biomass, and (e) the extraction and conversion processes to actually derive the biofuels. For Dunaliella specifically, the highest potential is in the co-production of biofuels with high-value animal feeds based on their carotenoid content.

  4. Uncovering Fundamental Ash-Formation Mechanisms and Potential Means to Control the Impact on DPF Performance and Engine Efficiency

    Broader source: Energy.gov [DOE]

    Results illustrate ash particle growth and formation pathways, and influence of lubricant chemistry and exhaust conditions on fundamental ash properties

  5. Potential petroleum source rock deposition in the middle Cretaceous Wasia Formation, Rub'Al Khali, Saudi Arabia

    SciTech Connect (OSTI)

    Newell, K.D.; Hennington, R.D.

    1983-03-01

    Stratigraphic correlation and regional geochemical sampling in the Rub'Al Khali (The Empty Quarter) of Saudi Arabia indicate at least two potential petroleum source rock units occur in the middle Cretaceous Wasia Formation. These two sequences, informally named the Safaniya ''source rock'' and the lower Mishrif, are dominated by oil-prone amorphous (Type II) organic matter, in places in excess of 10 weight percent organic carbon. Both units are fine-grained pelagic lime mudstones which were probably deposited in relatively quiet anoxic waters of large intraplatform embayments or basins. The Safaniya ''source rock'' and the lower Mishrif reflect strong marine transgressions on the Arabian craton in Albian to Cenomanian and Cenomanian to Turonian time, respectively. Regressive-phase sedimentary rocks overlying these two transgressive organic-rock phases are generally poor in organic carbon despite being deposited, in part, in similar forereef open-marine depositional settings. The sealevel high-stands associated with the Safaniya ''source rock'' and the lower Mishrif are partly synchronous with two recently described ''oceanic anoxic events'' respectively occurring in late Barremian to late Albian time and late Cenomanian to early Turonian time. Although there is a credible time correlation of these organic-rock units with oceanic anoxic events, their connection to oceanic anoxic events could be strengthened if they could be traced out to the vicinity of the middle Cretaceous continental margin.

  6. Toward Production From Gas Hydrates: Current Status, Assessment of Resources, and Simulation-Based Evaluationof Technology and Potential

    SciTech Connect (OSTI)

    Reagan, Matthew; Moridis, George J.; Collett, Timothy; Boswell, Ray; Kurihara, M.; Reagan, Matthew T.; Koh, Carolyn; Sloan, E. Dendy

    2008-02-12

    Gas hydrates are a vast energy resource with global distribution in the permafrost and in the oceans. Even if conservative estimates are considered and only a small fraction is recoverable, the sheer size of the resource is so large that it demands evaluation as a potential energy source. In this review paper, we discuss the distribution of natural gas hydrate accumulations, the status of the primary international R&D programs, and the remaining science and technological challenges facing commercialization of production. After a brief examination of gas hydrate accumulations that are well characterized and appear to be models for future development and gas production, we analyze the role of numerical simulation in the assessment of the hydrate production potential, identify the data needs for reliable predictions, evaluate the status of knowledge with regard to these needs, discuss knowledge gaps and their impact, and reach the conclusion that the numerical simulation capabilities are quite advanced and that the related gaps are either not significant or are being addressed. We review the current body of literature relevant to potential productivity from different types of gas hydrate deposits, and determine that there are consistent indications of a large production potential at high rates over long periods from a wide variety of hydrate deposits. Finally, we identify (a) features, conditions, geology and techniques that are desirable in potential production targets, (b) methods to maximize production, and (c) some of the conditions and characteristics that render certain gas hydrate deposits undesirable for production.

  7. Webinar November 19: Potential Strategies for Integrating Solar Hydrogen Production and Concentrating Solar Power: A Systems Analysis

    Broader source: Energy.gov [DOE]

    The Energy Department will present a live webinar titled "Potential Strategies for Integrating Solar Hydrogen Production and Concentrating Solar Power: A Systems Analysis" on Thursday, November 19, from 1:00 to 2:00 p.m. EST. This webinar will present the results of an analysis conducted by Sandia National Laboratories that explored potential synergies that may be realized by integrating solar hydrogen production and concentrating solar power (CSP) technologies.

  8. The impact of co-occurring tree and grassland species on carbon sequestration and potential biofuel production

    E-Print Network [OSTI]

    Thomas, David D.

    for terrestrial carbon sequestration and potential biofuel production. For P. strobus, above- ground plant carbonThe impact of co-occurring tree and grassland species on carbon sequestration and potential biofuel production R A M E S H L A U N G A N I and J O H A N N E S M . H . K N O P S School of Biological Sciences

  9. Gas production potential of disperse low-saturation hydrate accumulations in oceanic sediments

    E-Print Network [OSTI]

    Moridis, George J.; Sloan, E. Dendy

    2006-01-01

    Page viable gas production. The overall conclusion drawnnot promising targets for gas production. Acknowledgment TheTS. Strategies for gas production from hydrate accumulations

  10. Drilling and Production Testing the Methane Hydrate Resource Potential Associated with the Barrow Gas Fields

    SciTech Connect (OSTI)

    Steve McRae; Thomas Walsh; Michael Dunn; Michael Cook

    2010-02-22

    In November of 2008, the Department of Energy (DOE) and the North Slope Borough (NSB) committed funding to develop a drilling plan to test the presence of hydrates in the producing formation of at least one of the Barrow Gas Fields, and to develop a production surveillance plan to monitor the behavior of hydrates as dissociation occurs. This drilling and surveillance plan was supported by earlier studies in Phase 1 of the project, including hydrate stability zone modeling, material balance modeling, and full-field history-matched reservoir simulation, all of which support the presence of methane hydrate in association with the Barrow Gas Fields. This Phase 2 of the project, conducted over the past twelve months focused on selecting an optimal location for a hydrate test well; design of a logistics, drilling, completion and testing plan; and estimating costs for the activities. As originally proposed, the project was anticipated to benefit from industry activity in northwest Alaska, with opportunities to share equipment, personnel, services and mobilization and demobilization costs with one of the then-active exploration operators. The activity level dropped off, and this benefit evaporated, although plans for drilling of development wells in the BGF's matured, offering significant synergies and cost savings over a remote stand-alone drilling project. An optimal well location was chosen at the East Barrow No.18 well pad, and a vertical pilot/monitoring well and horizontal production test/surveillance well were engineered for drilling from this location. Both wells were designed with Distributed Temperature Survey (DTS) apparatus for monitoring of the hydrate-free gas interface. Once project scope was developed, a procurement process was implemented to engage the necessary service and equipment providers, and finalize project cost estimates. Based on cost proposals from vendors, total project estimated cost is $17.88 million dollars, inclusive of design work, permitting, barging, ice road/pad construction, drilling, completion, tie-in, long-term production testing and surveillance, data analysis and technology transfer. The PRA project team and North Slope have recommended moving forward to the execution phase of this project.

  11. World Biofuels Production Potential Understanding the Challenges to Meeting the U.S. Renewable Fuel Standard

    SciTech Connect (OSTI)

    Sastri, B.; Lee, A.

    2008-09-15

    This study by the U.S. Department of Energy (DOE) estimates the worldwide potential to produce biofuels including biofuels for export. It was undertaken to improve our understanding of the potential for imported biofuels to satisfy the requirements of Title II of the 2007 Energy Independence and Security Act (EISA) in the coming decades. Many other countries biofuels production and policies are expanding as rapidly as ours. Therefore, we modeled a detailed and up-to-date representation of the amount of biofuel feedstocks that are being and can be grown, current and future biofuels production capacity, and other factors relevant to the economic competitiveness of worldwide biofuels production, use, and trade. The Oak Ridge National Laboratory (ORNL) identified and prepared feedstock data for countries that were likely to be significant exporters of biofuels to the U.S. The National Renewable Energy Laboratory (NREL) calculated conversion costs by conducting material flow analyses and technology assessments on biofuels technologies. Brookhaven National Laboratory (BNL) integrated the country specific feedstock estimates and conversion costs into the global Energy Technology Perspectives (ETP) MARKAL (MARKet ALlocation) model. The model uses least-cost optimization to project the future state of the global energy system in five year increments. World biofuels production was assessed over the 2010 to 2030 timeframe using scenarios covering a range U.S. policies (tax credits, tariffs, and regulations), as well as oil prices, feedstock availability, and a global CO{sub 2} price. All scenarios include the full implementation of existing U.S. and selected other countries biofuels policies (Table 4). For the U.S., the most important policy is the EISA Title II Renewable Fuel Standard (RFS). It progressively increases the required volumes of renewable fuel used in motor vehicles (Appendix B). The RFS requires 36 billion (B) gallons (gal) per year of renewable fuels by 2022. Within the mandate, amounts of advanced biofuels, including biomass-based diesel and cellulosic biofuels, are required beginning in 2009. Imported renewable fuels are also eligible for the RFS. Another key U.S. policy is the $1.01 per gal tax credit for producers of cellulosic biofuels enacted as part of the 2008 Farm Bill. This credit, along with the DOE's research, development and demonstration (RD&D) programs, are assumed to enable the rapid expansion of U.S. and global cellulosic biofuels production needed for the U.S. to approach the 2022 RFS goal. While the Environmental Protection Agency (EPA) has yet to issue RFS rules to determine which fuels would meet the greenhouse gas (GHG) reduction and land use restrictions specified in EISA, we assume that cellulosic ethanol, biomass-to-liquid fuels (BTL), sugar-derived ethanol, and fatty acid methyl ester biodiesel would all meet the EISA advanced biofuel requirements. We also assume that enough U.S. corn ethanol would meet EISA's biofuel requirements or otherwise be grandfathered under EISA to reach 15 B gal per year.

  12. Gas production potential of disperse low-saturation hydrate accumulations in oceanic sediments

    E-Print Network [OSTI]

    Moridis, George J.; Sloan, E. Dendy

    2006-01-01

    to economically Page viable gas production. The overallare not promising targets for gas production. AcknowledgmentEnergy, Office of Natural Gas and Petroleum Technology,

  13. Optimizing the distribution network of perishable products to Small Format Stores

    E-Print Network [OSTI]

    Khandekar, Sachin

    2012-01-01

    FoodCo is a leading foods company that has reputed brands and global operations with revenues in excess of USD 5Bn. Although FoodCo's sales to Small Format Stores (SFS) customers are a small part of the overall sales, it ...

  14. SUBTASK 1.7 EVALUATION OF KEY FACTORS AFFECTING SUCCESSFUL OIL PRODUCTION IN THE BAKKEN FORMATION, NORTH DAKOTA PHASE II

    SciTech Connect (OSTI)

    Darren D. Schmidt; Steven A. Smith; James A. Sorensen; Damion J. Knudsen; John A. Harju; Edward N. Steadman

    2011-10-31

    Production from the Bakken and Three Forks Formations continues to trend upward as forecasts predict significant production of oil from unconventional resources nationwide. As the U.S. Geological Survey reevaluates the 3.65 billion bbl technically recoverable estimate of 2008, technological advancements continue to unlock greater unconventional oil resources, and new discoveries continue within North Dakota. It is expected that the play will continue to expand to the southwest, newly develop in the northeastern and northwestern corners of the basin in North Dakota, and fully develop in between. Although not all wells are economical, the economic success rate has been near 75% with more than 90% of wells finding oil. Currently, only about 15% of the play has been drilled, and recovery rates are less than 5%, providing a significant future of wells to be drilled and untouched hydrocarbons to be pursued through improved stimulation practices or enhanced oil recovery. This study provides the technical characterizations that are necessary to improve knowledge, provide characterization, validate generalizations, and provide insight relative to hydrocarbon recovery in the Bakken and Three Forks Formations. Oil-saturated rock charged from the Bakken shales and prospective Three Forks can be produced given appropriate stimulation treatments. Highly concentrated fracture stimulations with ceramic- and sand-based proppants appear to be providing the best success for areas outside the Parshall and Sanish Fields. Targeting of specific lithologies can influence production from both natural and induced fracture conductivity. Porosity and permeability are low, but various lithofacies units within the formation are highly saturated and, when targeted with appropriate technology, release highly economical quantities of hydrocarbons.

  15. Cluster formation in sputtering: A molecular dynamics study using the MD/MC-corrected effective medium potential

    E-Print Network [OSTI]

    Wucher, Andreas

    medium potential A. Wuchera) Fachbereich Physik, University of Kaiserslautern, 67653 Kaiserslautern may eventually form a cluster on their way from a solid to a gas phase environment far away from-body interaction potentials which, for the case of metals, were constructed by the so- called embedded-atom method

  16. Potential of Using Poultry Litter as a Feedstock for Energy Production Rangika Perera, Graduate Research Assistant

    E-Print Network [OSTI]

    ............................................ 11 5.3 Issues on the gasification of poultry litter for energy production: USDA, 2007) ............... 5 Figure 2: Geographical Distribution of Turkey Production in the U) .............................................................................. 8 Table 2: Litter Estimates for Turkey Operations (2008 & 2009

  17. Impact of U.S. Wholesale Demand for Canned Sardines on Market Accessibility of Potential Gulf of Mexico Products

    E-Print Network [OSTI]

    Impact of U.S. Wholesale Demand for Canned Sardines on Market Accessibility of Potential Gulf their demand characteristics. Results in- dicate that opportunities for entry exist, especiallyfor products was packed in soy oil. The major sources for imported sar- dines are Norway, Peru, Portugal, Japan

  18. Potential for CO2 Sequestration and Enhanced Coalbed Methane Production, Blue Creek Field, NW Black Warrior Basin, Alabama 

    E-Print Network [OSTI]

    He, Ting

    2011-02-22

    and enhanced coalbed methane production in San Juan and Alberta basins, but reservoir modeling is needed to assess the potential of the Black Warrior basin. Alabama ranks 9th nationally in CO2 emissions from power plants; two electricity generation plants...

  19. A CRITICAL EXAMINATION OF THE X-WIND MODEL FOR CHONDRULE AND CALCIUM-RICH, ALUMINUM-RICH INCLUSION FORMATION AND RADIONUCLIDE PRODUCTION

    SciTech Connect (OSTI)

    Desch, S. J.; Morris, M. A.; Connolly, H. C.; Boss, Alan P.

    2010-12-10

    Meteoritic data, especially regarding chondrules and calcium-rich, aluminum-rich inclusions (CAIs), and isotopic evidence for short-lived radionuclides (SLRs) in the solar nebula, potentially can constrain how planetary systems form. Interpretation of these data demands an astrophysical model, and the 'X-wind' model of Shu et al. and collaborators has been advanced to explain the origin of chondrules, CAIs, and SLRs. It posits that chondrules and CAIs were thermally processed <0.1 AU from the protostar, then flung by a magnetocentrifugal outflow to the 2-3 AU region to be incorporated into chondrites. Here we critically examine key assumptions and predictions of the X-wind model. We find a number of internal inconsistencies: theory and observation show no solid material exists at 0.1 AU; particles at 0.1 AU cannot escape being accreted into the star; particles at 0.1 AU will collide at speeds high enough to destroy them; thermal sputtering will prevent growth of particles; and launching of particles in magnetocentrifugal outflows is not modeled, and may not be possible. We also identify a number of incorrect predictions of the X-wind model: the oxygen fugacity where CAIs form is orders of magnitude too oxidizing, chondrule cooling rates are orders of magnitude lower than those experienced by barred olivine chondrules, chondrule-matrix complementarity is not predicted, and the SLRs are not produced in their observed proportions. We conclude that the X-wind model is not relevant to chondrule and CAI formation and SLR production. We discuss more plausible models for chondrule and CAI formation and SLR production.

  20. Feedback from Galaxy Formation: Production and Photodissociation of Primordial Molecular Hydrogen

    E-Print Network [OSTI]

    Massimo Ricotti; Nickolay Y. Gnedin; J. Michael Shull

    2001-09-14

    We use one-dimensional radiative transfer simulations to study the evolution of H_2 gas-phase (H^- catalyzed) formation and photo-dissociation regions in the primordial universe. We find a new positive feedback mechanism capable of producing shells of H_2 in the intergalactic medium, which are optically thick in some Lyman-Werner bands. While these shells exist, this feedback effect is important in reducing the H_2 dissociating background flux and the size of photo-dissociation spheres around each luminous object. The maximum background opacity of the IGM in the H_2 Lyman-Werner bands is \\tau_{H_2} ~ 1-2 for a relic molecular fraction x_{H_2}=2 x 10^{-6}, about 6 times greater than found by Haiman, Abel & Rees. Therefore, the relic molecular hydrogen can decrease the photo-dissociation rate by about an order of magnitude. The problem is relevant to the formation of small primordial galaxies with masses M_{DM} hydrogen cooling to collapse. Alternatively, the universe may have remained dark for several hundred million years after the birth of the first stars, until galaxies with virial temperature T_{vir} > 10^4 K formed.

  1. The formation of IRIS diagnostics VI. The Diagnostic Potential of the C II Lines at 133.5 nm in the Solar Atmosphere

    E-Print Network [OSTI]

    Rathore, Bhavna; Leenaarts, Jorrit; De Pontieu, Bart

    2015-01-01

    We use 3D radiation magnetohydrodynamic models to investigate how the thermodynamic quantities in the simulation are encoded in observable quantities, thus exploring the diagnostic potential of the 133.5 nm lines. We find that the line core intensity is correlated with the temperature at the formation height but the correlation is rather weak, especially when the lines are strong. The line core Doppler shift is a good measure of the line-of-sight velocity at the formation height. The line width is both dependent on the width of the absorption profile (thermal and non-thermal width) and an opacity broadening factor of 1.2-4 due to the optically thick line formation with a larger broadening for double peak profiles. The 133.5 nm lines can be formed both higher and lower than the core of the Mg II k line depending on the amount of plasma in the 14-50 kK temperature range. More plasma in this temperature range gives a higher 133.5 nm formation height relative to the Mg II k line core. The synthetic line profiles ...

  2. Radiation effects in moist-air systems and the influence of radiolytic product formation on nuclear waste glass corrosion

    SciTech Connect (OSTI)

    Wronkiewicz, D.J.; Bates, J.K.; Buck, E.C.; Hoh, J.C.; Emery, J.W. [Argonne National Lab., IL (United States). Chemical Technology Div.; Wang, L.M. [Univ. of New Mexico, Albuquerque, NM (United States). Dept. of Geology

    1997-07-01

    Ionizing radiation may affect the performance of glass in an unsaturated repository site by interacting with air, water vapor, or liquid water to produce a variety of radiolytic products. Tests were conducted to examine the effects of radiolysis under high gas/liquid ratios. Results indicate that nitrate is the predominant radiolytic product produced following both gamma and alpha radiation exposure, with lesser amounts of nitrite and carboxylic acids. The formation of nitrogen acids during exposure to long-lived, alpha-particle-emitting transuranic elements indicates that these acids may play a role in influencing nuclear waste form reactions in a long-term unsaturated disposal scenario. Experiments were also conducted with samples that simulate the composition of Savannah River Plant nuclear waste glasses. Radiolytic product formation in batch tests (340 m{sup {minus}1}, 90 C) resulted in a small increase in the release rates of many glass components, such as alkali and alkaline earth elements, although silicon and uranium release rates were slightly reduced indicating an overall beneficial effect of radiation on waste form stability. The radiolytic acids increased the rate of ion exchange between the glass and the thin film of condensate, resulting in accelerated corrosion rates for the glass. The paragenetic sequence of alteration phases formed on both the irradiated and nonirradiated glass samples reacted in the vapor hydration tests matches closely with those developed during volcanic glass alteration in naturally occurring saline-alkaline lake systems. This correspondence suggests that the high temperatures used in these tests have not changed the underlying glass reaction mechanism relate to that which controls glass reactions under ambient surficial conditions.

  3. A RAPID SPECTROSCOPIC TECHNIQUE FOR DETERMINING THE POTENTIAL ALPHA ENERGY CONCENTRATION OF RADON DECAY PRODUCTS

    E-Print Network [OSTI]

    Revzan, K.L.

    2013-01-01

    Comparison of the Attachment the Decay Products of Radon-220and Radon-222 to Monodispersed Aerosols,". :! _. Aerosol.Kusnetz H.L. , 1956, "Radon Daughters in Mine Atmosphers.

  4. Potential environmental/economic impact reductions using extracted flakes in oriented strandboard production

    E-Print Network [OSTI]

    Gray, Matthew

    strandboard production Jay Messer M.S. Candidate Center for Renewable Carbon University of Tennessee Uranium 50 114 Biomass 2573 3951 Hydropower 43 98 Electricity other 15 20 TOTAL 5649 MJ/m3 11145 MJ/m3 · Use existing data to model environmental and economic lifeg cycle of OSB production using

  5. THE POTENTIAL OF THE SOLID OXIDE ELECTROLYSER FOR THE PRODUCTION OF SYNTHETIC FUELS

    E-Print Network [OSTI]

    the 1980'es. The discussions focussed on the use of heat from solar concentrators or waste heat from power to a potential of high electricity efficiency (60%) as compared to ordinary gas turbine power plants (30%- 40

  6. Assessment of Energy Production Potential from Tidal Streams in the United States

    SciTech Connect (OSTI)

    Haas, Kevin A.; Fritz, Hermann M.; French, Steven P.; Smith, Brennan T.; Neary, Vincent

    2011-06-29

    The project documented in this report created a national database of tidal stream energy potential, as well as a GIS tool usable by industry in order to accelerate the market for tidal energy conversion technology.

  7. A biased probe analysis of potential well formation in an electron only, low beta Polywell magnetic field

    SciTech Connect (OSTI)

    Carr, Matthew; Khachan, Joe [Department of Plasma Physics, School of Physics A28, University of Sydney NSW 2006 (Australia)] [Department of Plasma Physics, School of Physics A28, University of Sydney NSW 2006 (Australia)

    2013-05-15

    Orbital limited motion theory has been applied to two biased probes in a low beta Polywell. The cases studied include electron injection, magnetic field scaling, Polywell bias scaling, and radial position profiles. Langmuir's original orbital limited motion results for a monoenergetic electron beam are shown to be in excellent agreement for electron injection into the Polywell. A distribution function is proposed for the electron plasma characteristics in the centre of the magnetic null and confirmed with experimental results. A translational stage was used to measure the radial plasma potential profile. In other experiments, two probes were used to simultaneously measure the profiles in both the null and a position halfway along a corner cusp. The results confirm a radial potential well created by electron trapping in the device. In addition, we present preliminary results of the potential well scaling with the magnetic field, Polywell bias voltage, and the injected beam current. The electron population was found to maintain non-equilibrium in all cases studied.

  8. Geographic Variation in Potential of Rooftop Residential Photovoltaic Electric Power Production in the United States

    Broader source: Energy.gov [DOE]

    This paper describes a geographic evaluation of Zero Energy Home (ZEH) potential, specifically an assessment of residential roof-top solar electric photovoltaic (PV) performance around the United States and how energy produced would match up with very-efficient and super-efficient home designs. We performed annual simulations for 236 TMY2 data locations throughout the United States on two highly-efficient one-story 3-bedroom homes with a generic grid-tied solar electric 2kW PV system. These annual simulations show how potential annual solar electric power generation (kWh) and potential energy savings from PV power vary geographically around the U.S. giving the user in a specific region an indication of their expected PV system performance.

  9. Procedure for matching synfuel users with potential suppliers. Appendix B. Proposed and ongoing synthetic fuel production projects

    SciTech Connect (OSTI)

    1981-08-07

    To assist the Department of Energy, Office of Fuels Conversion (OFC), in implementing the synthetic fuel exemption under the Powerplant and Industrial Fuel Use Act (FUA) of 1978, Resource Consulting Group, Inc. (RCG), has developed a procedure for matching prospective users and producers of synthetic fuel. The matching procedure, which involves a hierarchical screening process, is designed to assist OFC in: locating a supplier for a firm that wishes to obtain a synthetic fuel exemption; determining whether the fuel supplier proposed by a petitioner is technically and economically capable of meeting the petitioner's needs; and assisting the Synthetic Fuels Corporation or a synthetic fuel supplier in evaluating potential markets for synthetic fuel production. A data base is provided in this appendix on proposed and ongoing synthetic fuel production projects to be used in applying the screening procedure. The data base encompasses a total of 212 projects in the seven production technologies.

  10. Sequential Screening Approach for the Identification of Potential Critical Supply Chain Conditions on Product Quality

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    : · ambient temperature · wind speed · solar and atmospheric radiation · some basic characteristics. The mode incorporates: · ambient temperature · wind speed · solar and atmospheric radiation · some basic at building a simulation-tool that will be used to determine the impact of supply chain conditions on product

  11. Soft X-ray irradiation of methanol ice: Formation of products as a function of photon energy

    SciTech Connect (OSTI)

    Chen, Y.-J.; Juang, K.-J.; Yih, T.-S. [Department of Physics, National Central University, Jhongli City, Taoyuan County 32054, Taiwan (China); Ciaravella, A.; Cecchi-Pestellini, C. [INAF-Osservatorio Astronomico di Palermo, P.za Parlamento 1, I-90134 Palermo (Italy); Muñoz Caro, G. M.; Jiménez-Escobar, A., E-mail: aciaravella@astropa.unipa.it [Centro de Astrobiología (INTA-CSIC), Carretera de Ajalvir, km 4, Torrejón de Ardoz, E-28850 Madrid (Spain)

    2013-12-01

    Pure methanol ices have been irradiated with monochromatic soft X-rays of 300 and 550 eV close to the 1s resonance edges of C and O, respectively, and with a broadband spectrum (250-1200 eV). The infrared (IR) spectra of the irradiated ices show several new products of astrophysical interest such as CH{sub 2}OH, H{sub 2}CO, CH{sub 4}, HCOOH, HCOCH{sub 2}OH, CH{sub 3}COOH, CH{sub 3}OCH{sub 3}, HCOOCH{sub 3}, and (CH{sub 2}OH){sub 2}, as well as HCO, CO, and CO{sub 2}. The effect of X-rays is the result of the combined interactions of photons and electrons with the ice. A significant contribution to the formation and growth of new species in the CH{sub 3}OH ice irradiated with X-rays is given by secondary electrons, whose energy distribution depends on the energy of X-ray photons. Within a single experiment, the abundances of the new products increase with the absorbed energy. Monochromatic experiments show that product abundances also increase with the photon energy. However, the abundances per unit energy of newly formed species show a marked decrease in the broadband experiment as compared to irradiations with monochromatic photons, suggesting a possible regulatory role of the energy deposition rate. The number of new molecules produced per absorbed eV in the X-ray experiments has been compared to those obtained with electron and ultraviolet (UV) irradiation experiments.

  12. Fossil fuel potential of Turkey: A statistical evaluation of reserves, production, and consumption

    SciTech Connect (OSTI)

    Korkmaz, S.; Kara-Gulbay, R.; Turan, M. [Karadeniz Technical University, Trabzon (Turkey)

    2008-07-01

    Since Turkey is a developing country with tremendous economic growth, its energy demand is also getting increased. Of this energy, about 70% is supplied from fossil fuels and the remaining 30% is from renewable sources. Among the fossil fuels, 90% of oil, natural gas, and coal are imported, and only 10% is from domestic sources. All the lignite is supplied from domestic sources. The total share of renewable sources and lignite in the total energy production is 45%. In order for Turkey to have sufficient and reliable energy sources, first the renewable energy sources must be developed, and energy production from fossil fuels, except for lignite, must be minimized. Particularly, scarcity of fossil fuels and increasing oil prices have a strong effect on economic growth of the country.

  13. Potential Benefits from Improved Energy Efficiency of KeyElectrical Products: The Case of India

    SciTech Connect (OSTI)

    McNeil, Michael; Iyer, Maithili; Meyers, Stephen; Letschert,Virginie; McMahon, James E.

    2005-12-20

    The goal of this project was to estimate the net benefits that cost-effective improvements in energy efficiency can bring to developing countries. The study focused on four major electrical products in the world's second largest developing country, India. These products--refrigerators, room air conditioners, electric motors, and distribution transformers--are important targets for efficiency improvement in India and in other developing countries. India is an interesting subject of study because of it's size and rapid economic growth. Implementation of efficient technologies in India would save billions in energy costs, and avoid hundreds of megatons of greenhouse gas emissions. India also serves as an example of the kinds of improvement opportunities that could be pursued in other developing countries.

  14. Geothermal source potential and utilization for methane generation and alcohol production

    SciTech Connect (OSTI)

    Austin, J.C.

    1981-11-01

    A study was conducted to assess the technical and economic feasibility of integrating a geothermally heated anaerobic digester with a fuel alcohol plant and cattle feedlot. Thin stillage produced from the alcohol production process and manure collected from the cattle feedlot would be digested in anaerobic digesters to produce biogas, a mixture of methane and carbon dioxide, and residue. The energy requirements to maintain proper digester temperatures would be provided by geothermal water. The biogas produced in the digesters would be burned in a boiler to produce low-pressure steam which would be used in the alcohol production process. The alcohol plant would be sized so that the distiller's grains byproduct resulting from the alcohol production would be adequate to supply the daily cattle feed requirements. A portion of the digester residue would substitute for alfalfa hay in the cattle feedlot ration. The major design criterion for the integrated facilty was the production of adequate distiller's grain to supply the daily requirements of 1700 head of cattle. It was determined that, for a ration of 7 pounds of distiller's grain per head per day, a 1 million gpy alcohol facility would be required. An order-of-magnitude cost estimate was prepared for the proposed project, operating costs were calculated for a facility based on a corn feedstock, the economic feasibility of the proposed project was examined by calculating its simple payback, and an analysis was performed to examine the sensitivity of the project's economic viability to variations in feedstock costs and alcohol and distiller's grain prices.

  15. Study of gas production potential of New Albany Shale (group) in the Illinois basin

    SciTech Connect (OSTI)

    Hasenmueller, N.R.; Boberg, W.S.; Comer, J.; Smidchens, Z. (Indiana Geological Survey, Bloomington (United States)); Frankie, W.T.; Lumm, D.K. (Illinois State Geological Survey, Champaign (United States)); Hamilton-Smith, T.; Walker, J.D. (Kentucky Geological Survey, Lexington (United States))

    1991-08-01

    The New Albany Shale (Devonian and Mississippian) is recognized as both a source rock and gas-producing reservoir in the Illinois basin. The first gas discovery was made in 1885, and was followed by the development of several small fields in Harrison County, Indiana, and Meade County, Kentucky. Recently, exploration for and production of New Albany gas has been encouraged by the IRS Section 29 tax credit. To identify technology gaps that have restricted the development of gas production form the shale gas resource in the basin, the Illinois Basin Consortium (IBC), composed of the Illinois, Indiana, and Kentucky geological surveys, is conducting a cooperative research project with the Gas Research Institute (GRI). An earlier study of the geological and geochemical aspects of the New Albany was conducted during 1976-1978 as part of the Eastern Gas Shales Project (EGSP) sponsored by the Department of Energy (DOE). The current IBC/GRI study is designed to update and reinterpret EGSP data and incorporate new data obtained since 1978. During the project, relationships between gas production and basement structures are being emphasized by constructing cross sections and maps showing thickness, structure, basement features, and thermal maturity. The results of the project will be published in a comprehensive final report in 1992. The information will provide a sound geological basis for ongoing shale-gas research, exploration, and development in the basin.

  16. Assessment of Energy Production Potential from Ocean Currents along the United States Coastline

    SciTech Connect (OSTI)

    Haas, Kevin A.

    2013-10-03

    Increasing energy consumption and depleting reserves of fossil fuels have resulted in growing interest in alternative renewable energy from the ocean. Ocean currents are an alternative source of clean energy due to their inherent reliability, persistence and sustainability. General ocean circulations exist in the form of large rotating ocean gyres, and feature extremely rapid current flow in the western boundaries due to the Coriolis Effect. The Gulf Stream system is formed by the western boundary current of the North Atlantic Ocean that flows along the east coastline of the United States, and therefore is of particular interest as a potential energy resource for the United States.

  17. Production of liquid fuels out of plant biomass and refuse: Methods, cost, potential

    SciTech Connect (OSTI)

    Woick, B.; Friedrich, R.

    1981-09-01

    Different ways of producing biomass and its conversion into high grade fuel for vehicles are reviewed with particular reference to physical and geographical factors, pertaining in the Federal Republic of Germany (FRG). Even with the potentially small amount of biomass in the FRG, the fueling of diesel engines with rape oil or modified ethanol, which can be obtained from any cellulosic feedstock, seems to pose the fewest difficulties and promises greatest efficiency. However, the amount of fuel produced from biomass can probably only meet a very small percentage of the total amount required.

  18. Potential for Hydrogen Production from Key Renewable Resources in the United States

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram Guidelines This document outlines thePotential for Hydrogen

  19. Assessment of Energy Production Potential from Tidal Streams in the United States

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l De p u tCorporationIt's Potential from Tidal Streams in the United

  20. Potential of Ozone Formation by the Smog Mechanism to shield the surface of the Early Earth from UV radiation?

    E-Print Network [OSTI]

    John Lee Grenfell; Barbara Stracke; Beate Patzer; Ruth Titz; Heike Rauer

    2006-09-08

    We propose that the photochemical smog mechanism produced substantial ozone (O3) in the troposphere during the Proterozoic, which contributed to ultraviolet (UV) radiation shielding hence favoured the establishment of life. The smog mechanism is well-established and is associated with pollution hazes which sometimes cover modern cities. The mechanism proceeds via the oxidation of volatile organic compounds (VOCs) such as methane (CH4) in the presence of UV radiation and nitrogen oxides (NOx). It would have been particularly favoured during the Proterozoic given the high levels of CH4 (up to 1000 ppm) recently suggested. Proterozoic UV levels on the surface of the Earth were generally higher compared with today, which would also have favoured the mechanism. On the other hand, Proterozoic O2 required in the final step of the smog mechanism to form O3 was less abundant compared with present times. Further, results are sensitive to Proterozoic NOx concentrations, which are challenging to predict, since they depend on uncertain quantities such as NOx source emissions and OH concentrations. We review NOx sources during the Proterozoic and apply a photochemical box model having methane oxidation with NOx, HOx and Ox chemistry to estimate the O3 production from the smog mechanism. Runs suggest the smog mechanism during the Proterozoic can produce about double present day ozone columns for NOx levels of 1.53 10-9 by volume mixing ratio, which was attainable according to our NOx source analysis, with 1 per-cent present atmospheric levels (PALs) of O2. Clearly, forming ozone in the troposphere is a trade-off for survivability. On the one hand harmful UV is blocked, but on the other hand ozone is a respiratory irratant, which becomes fatal at concentrations exceeding about 1 ppmv.

  1. The Potential for Biomass District Energy Production in Port Graham, Alaska

    SciTech Connect (OSTI)

    Charles Sink, Chugachmiut; Keeryanne Leroux, EERC

    2008-05-08

    This project was a collaboration between The Energy & Environmental Research Center (EERC) and Chugachmiut – A Tribal organization Serving the Chugach Native People of Alaska and funded by the U.S. Department of Energy (DOE) Tribal Energy Program. It was conducted to determine the economic and technical feasibility for implementing a biomass energy system to service the Chugachmiut community of Port Graham, Alaska. The Port Graham tribe has been investigating opportunities to reduce energy costs and reliance on energy imports and support subsistence. The dramatic rise in the prices of petroleum fuels have been a hardship to the village of Port Graham, located on the Kenai Peninsula of Alaska. The Port Graham Village Council views the forest timber surrounding the village and the established salmon industry as potential resources for providing biomass energy power to the facilities in their community. Benefits of implementing a biomass fuel include reduced energy costs, energy independence, economic development, and environmental improvement. Fish oil–diesel blended fuel and indoor wood boilers are the most economical and technically viable options for biomass energy in the village of Port Graham. Sufficient regional biomass resources allow up to 50% in annual heating savings to the user, displacing up to 70% current diesel imports, with a simple payback of less than 3 years for an estimated capital investment under $300,000. Distributive energy options are also economically viable and would displace all imported diesel, albeit offering less savings potential and requiring greater capital. These include a large-scale wood combustion system to provide heat to the entire village, a wood gasification system for cogeneration of heat and power, and moderate outdoor wood furnaces providing heat to 3–4 homes or community buildings per furnace. Coordination of biomass procurement and delivery, ensuring resource reliability and technology acceptance, and arbitrating equipment maintenance mitigation for the remote village are challenges to a biomass energy system in Port Graham that can be addressed through comprehensive planning prior to implementation.

  2. Radiochemically-Supported Microbial Communities: A Potential Mechanism for Biocolloid Production of Importance to Actinide Transport

    SciTech Connect (OSTI)

    Moser, Duane P; Hamilton-Brehm, Scott D; Fisher, Jenny C; Bruckner, James C; Kruger, Brittany; Sackett, Joshua; Russell, Charles E; Onstott, Tullis C; Czerwinski, Ken; Zavarin, Mavrik; Campbell, James H

    2014-06-01

    Due to the legacy of Cold War nuclear weapons testing, the Nevada National Security Site (NNSS, formerly known as the Nevada Test Site (NTS)) contains millions of Curies of radioactive contamination. Presented here is a summary of the results of the first comprehensive study of subsurface microbial communities of radioactive and nonradioactive aquifers at this site. To achieve the objectives of this project, cooperative actions between the Desert Research Institute (DRI), the Nevada Field Office of the National Nuclear Security Administration (NNSA), the Underground Test Area Activity (UGTA), and contractors such as Navarro-Interra (NI), were required. Ultimately, fluids from 17 boreholes and two water-filled tunnels were sampled (sometimes on multiple occasions and from multiple depths) from the NNSS, the adjacent Nevada Test and Training Range (NTTR), and a reference hole in the Amargosa Valley near Death Valley. The sites sampled ranged from highly-radioactive nuclear device test cavities to uncontaminated perched and regional aquifers. Specific areas sampled included recharge, intermediate, and discharge zones of a 100,000-km2 internally-draining province, known as the Death Valley Regional Flow System (DVRFS), which encompasses the entirety of the NNSS/NTTR and surrounding areas. Specific geological features sampled included: West Pahute and Ranier Mesas (recharge zone), Yucca and Frenchman Flats (transitional zone), and the Western edge of the Amargosa Valley near Death Valley (discharge zone). The original overarching question underlying the proposal supporting this work was stated as: Can radiochemically-produced substrates support indigenous microbial communities and subsequently stimulate biocolloid formation that can affect radionuclides in NNSS subsurface nuclear test/detonation sites? Radioactive and non-radioactive groundwater samples were thus characterized for physical parameters, aqueous geochemistry, and microbial communities using both DNA- and cultivation-based tools in an effort to understand the drivers of microbial community structure (including radioactivity) and microbial interactions with select radionuclides and other factors across the range of habitats surveyed.

  3. The design and testing of subsea production equipment: Current practice and potential for the future

    SciTech Connect (OSTI)

    Cort, A.J.C.; Ford, J.T.

    1995-12-31

    This paper presents an analysis of the current approach to the design and testing of equipment used in subsea developments. The paper critically assesses the current equipment specification, design, manufacture and testing process. An essential part of the analysis is a review of the standards used by the industry and statutory regulations which impact on this process. It raises significant questions about the efficacy of the design and testing procedures and the role of the regulating bodies in that process. It discusses the impact of poor specification and design procedures, and inadequate testing, of the safety and reliability of the equipment. As a consequence of the analysis it is suggested that the manner in which equipment is specified, designed and tested may need to be changed in order to meet future needs. The above issues are focused, by considering the production of a subsea wellhead, from specification by the operator to delivery by the manufacturer.

  4. AN INITIAL ASSESSMENT OF POTENTIAL PRODUCTION TECHNOLOGIES FOR EPSILON-METAL WASTE FORMS

    SciTech Connect (OSTI)

    Rohatgi, Aashish; Strachan, Denis M.

    2011-03-01

    This report examines and ranks a total of seven materials processing techniques that may be potentially utilized to consolidate the undissolved solids from nuclear fuel reprocessing into a low-surface area form. Commercial vendors of processing equipment were contacted and literature researched to gather information for this report. Typical equipment and their operation, corresponding to each of the seven techniques, are described in the report based upon the discussions and information provided by the vendors. Although the report does not purport to describe all the capabilities and issues of various consolidation techniques, it is anticipated that this report will serve as a guide by highlighting the key advantages and disadvantages of these techniques. The processing techniques described in this report were broadly classified into those that employed melting and solidification, and those in which the consolidation takes place in the solid-state. Four additional techniques were examined that were deemed impractical, but were included for completeness. The techniques were ranked based on criteria such as flexibility in accepting wide-variety of feed-stock (chemistry, form, and quantity), ease of long-term maintenance, hot cell space requirements, generation of additional waste streams, cost, and any special considerations. Based on the assumption of ~2.5 L of waste to be consolidated per day, sintering based techniques, namely, microwave sintering, spark plasma sintering and hot isostatic pressing, were ranked as the top-3 choices, respectively. Melting and solidification based techniques were ranked lower on account of generation of volatile phases and difficulties associated with reactivity and containment of the molten metal.

  5. Evaluation of the Potential Environmental Impacts from Large-Scale Use and Production of Hydrogen in Energy and Transportation Applications

    SciTech Connect (OSTI)

    Wuebbles, D.J.; Dubey, M.K., Edmonds, J.; Layzell, D.; Olsen, S.; Rahn, T.; Rocket, A.; Wang, D.; Jia, W.

    2010-06-01

    The purpose of this project is to systematically identify and examine possible near and long-term ecological and environmental effects from the production of hydrogen from various energy sources based on the DOE hydrogen production strategy and the use of that hydrogen in transportation applications. This project uses state-of-the-art numerical modeling tools of the environment and energy system emissions in combination with relevant new and prior measurements and other analyses to assess the understanding of the potential ecological and environmental impacts from hydrogen market penetration. H2 technology options and market penetration scenarios will be evaluated using energy-technology-economics models as well as atmospheric trace gas projections based on the IPCC SRES scenarios including the decline in halocarbons due to the Montreal Protocol. Specifically we investigate the impact of hydrogen releases on the oxidative capacity of the atmosphere, the long-term stability of the ozone layer due to changes in hydrogen emissions, the impact of hydrogen emissions and resulting concentrations on climate, the impact on microbial ecosystems involved in hydrogen uptake, and criteria pollutants emitted from distributed and centralized hydrogen production pathways and their impacts on human health, air quality, ecosystems, and structures under different penetration scenarios

  6. Ab Initio/RRKM Study of the Potential Energy Surface of Triplet Ethylene and Product Branching Ratios of the C(3P) + CH4 Reaction

    E-Print Network [OSTI]

    Nguyen, Minh Tho

    Ab Initio/RRKM Study of the Potential Energy Surface of Triplet Ethylene and Product Branching originating from the collision energy (12.2 kcal/mol), the sole reaction products are C2H3 + H, where 90 potential energy surface for the C(3P) + CH4 reaction have been performed using the CCSD(T)/6-311+G(3df,2p

  7. VirtualToxLab — A platform for estimating the toxic potential of drugs, chemicals and natural products

    SciTech Connect (OSTI)

    Vedani, Angelo; Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel ; Dobler, Max; Smieško, Martin

    2012-06-01

    The VirtualToxLab is an in silico technology for estimating the toxic potential (endocrine and metabolic disruption, some aspects of carcinogenicity and cardiotoxicity) of drugs, chemicals and natural products. The technology is based on an automated protocol that simulates and quantifies the binding of small molecules towards a series of proteins, known or suspected to trigger adverse effects. The toxic potential, a non-linear function ranging from 0.0 (none) to 1.0 (extreme), is derived from the individual binding affinities of a compound towards currently 16 target proteins: 10 nuclear receptors (androgen, estrogen ?, estrogen ?, glucocorticoid, liver X, mineralocorticoid, peroxisome proliferator-activated receptor ?, progesterone, thyroid ?, and thyroid ?), four members of the cytochrome P450 enzyme family (1A2, 2C9, 2D6, and 3A4), a cytosolic transcription factor (aryl hydrocarbon receptor) and a potassium ion channel (hERG). The interface to the technology allows building and uploading molecular structures, viewing and downloading results and, most importantly, rationalizing any prediction at the atomic level by interactively analyzing the binding mode of a compound with its target protein(s) in real-time 3D. The VirtualToxLab has been used to predict the toxic potential for over 2500 compounds: the results are posted on (http://www.virtualtoxlab.org). The free platform — the OpenVirtualToxLab — is accessible (in client–server mode) over the Internet. It is free of charge for universities, governmental agencies, regulatory bodies and non-profit organizations. -- Highlights: ? In silico technology for estimating the toxic potential of drugs and chemicals. ? Simulation of binding towards 16 proteins suspected to trigger adverse effects. ? Mechanistic interpretation and real-time 3D visualization. ? Accessible over the Internet. ? Free of charge for universities, governmental agencies, regulatory bodies and NPOs.

  8. Assessment of Energy Production Potential from Ocean Currents along the United States Coastline

    SciTech Connect (OSTI)

    Haas, Kevin

    2013-09-15

    Increasing energy consumption and depleting reserves of fossil fuels have resulted in growing interest in alternative renewable energy from the ocean. Ocean currents are an alternative source of clean energy due to their inherent reliability, persistence and sustainability. General ocean circulations exist in the form of large rotating ocean gyres, and feature extremely rapid current flow in the western boundaries due to the Coriolis Effect. The Gulf Stream system is formed by the western boundary current of the North Atlantic Ocean that flows along the east coastline of the United States, and therefore is of particular interest as a potential energy resource for the United States. This project created a national database of ocean current energy resources to help advance awareness and market penetration in ocean current energy resource assessment. The database, consisting of joint velocity magnitude and direction probability histograms, was created from data created by seven years of numerical model simulations. The accuracy of the database was evaluated by ORNL?s independent validation effort documented in a separate report. Estimates of the total theoretical power resource contained in the ocean currents were calculated utilizing two separate approaches. Firstly, the theoretical energy balance in the Gulf Stream system was examined using the two-dimensional ocean circulation equations based on the assumptions of the Stommel model for subtropical gyres with the quasi-geostrophic balance between pressure gradient, Coriolis force, wind stress and friction driving the circulation. Parameters including water depth, natural dissipation rate and wind stress are calibrated in the model so that the model can reproduce reasonable flow properties including volume flux and energy flux. To represent flow dissipation due to turbines additional turbine drag coefficient is formulated and included in the model. Secondly, to determine the reasonableness of the total power estimates from the Stommel model and to help determine the size and capacity of arrays necessary to extract the maximum theoretical power, further estimates of the available power based on the distribution of the kinetic power density in the undisturbed flow was completed. This used estimates of the device spacing and scaling to sum up the total power that the devices would produce. The analysis has shown that considering extraction over a region comprised of the Florida Current portion of the Gulf Stream system, the average power dissipated ranges between 4-6 GW with a mean around 5.1 GW. This corresponds to an average of approximately 45 TWh/yr. However, if the extraction area comprises the entire portion of the Gulf Stream within 200 miles of the US coastline from Florida to North Carolina, the average power dissipated becomes 18.6 GW or 163 TWh/yr. A web based GIS interface, http://www.oceancurrentpower.gatech.edu/, was developed for dissemination of the data. The website includes GIS layers of monthly and yearly mean ocean current velocity and power density for ocean currents along the entire coastline of the United States, as well as joint and marginal probability histograms for current velocities at a horizontal resolution of 4-7 km with 10-25 bins over depth. Various tools are provided for viewing, identifying, filtering and downloading the data.

  9. Toward Production From Gas Hydrates: Current Status, Assessment of Resources, and Simulation-Based Evaluation of Technology and Potential

    E-Print Network [OSTI]

    Moridis, George J.

    2008-01-01

    Mallik Gas Hydrate Production Research Program, Northwestof Depressurization for Gas Production from Gas Hydrate5L-38 Gas Hydrate Thermal Production Test Through Numerical

  10. Macroalgae Analysis A National GIS-based Analysis of Macroalgae Production Potential Summary Report and Project Plan

    SciTech Connect (OSTI)

    Roesijadi, Guritno; Coleman, Andre M.; Judd, Chaeli; Van Cleve, Frances B.; Thom, Ronald M.; Buenau, Kate E.; Tagestad, Jerry D.; Wigmosta, Mark S.; Ward, Jeffrey A.

    2011-12-01

    The overall project objective is to conduct a strategic analysis to assess the state of macroalgae as a feedstock for biofuels production. The objective in FY11 is to develop a multi-year systematic national assessment to evaluate the U.S. potential for macroalgae production using a GIS-based assessment tool and biophysical growth model developed as part of these activities. The initial model development for both resource assessment and constraints was completed and applied to the demonstration areas. The model for macroalgal growth was extended to the EEZ off the East and West Coasts of the United States, and a plan to merge the findings for an initial composite assessment was developed. In parallel, an assessment of land-based, port, and offshore infrastructure needs based on published and grey literature was conducted. Major information gaps and challenges encountered during this analysis were identified. Also conducted was an analysis of the type of local, state, and federal requirements that pertain to permitting land-based facilities and nearshore/offshore culture operations

  11. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2003-02-10

    Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, strategy is to inject CO{sub 2} into organic-rich shales of Devonian age. Devonian black shales underlie approximately two-thirds of Kentucky and are generally thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to the way methane is stored in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane at a ratio of two to one. Black shales may similarly desorb methane in the presence of CO{sub 2}. If black shales similarly desorb methane in the presence of CO{sub 2}, the shales may be an excellent sink for CO{sub 2} with the added benefit of serving to enhance natural gas production. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject this research. To accomplish this investigation, drill cuttings and cores will be selected from the Kentucky Geological Survey Well Sample and Core Library. CO{sub 2} adsorption analyses will be performed in order to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, new drill cuttings and sidewall core samples will be acquired to investigate specific black-shale facies, their uptake of CO{sub 2}, and the resultant displacement of methane. Advanced logging techniques (elemental capture spectroscopy) will be used to investigate possible correlations between adsorption capacity and geophysical log measurements.

  12. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2003-02-11

    Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, strategy is to inject CO{sub 2} into organic-rich shales of Devonian age. Devonian black shales underlie approximately two-thirds of Kentucky and are generally thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to the way methane is stored in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane at a ratio of two to one. Black shales may similarly desorb methane in the presence of CO{sub 2}. If black shales similarly desorb methane in the presence of CO{sub 2}, the shales may be an excellent sink for CO{sub 2} with the added benefit of serving to enhance natural gas production. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject this research. To accomplish this investigation, drill cuttings and cores will be selected from the Kentucky Geological Survey Well Sample and Core Library. CO{sub 2} adsorption analyses will be performed in order to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, new drill cuttings and sidewall core samples will be acquired to investigate specific black-shale facies, their uptake of CO{sub 2}, and the resultant displacement of methane. Advanced logging techniques (elemental capture spectroscopy) will be used to investigate possible correlations between adsorption capacity and geophysical log measurements.

  13. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2003-04-28

    Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, strategy is to inject CO{sub 2} into organic-rich shales of Devonian age. Devonian black shales underlie approximately two-thirds of Kentucky and are generally thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to the way methane is stored in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane at a ratio of two to one. Black shales may similarly desorb methane in the presence of CO{sub 2}. If black shales similarly desorb methane in the presence of CO{sub 2}, the shales may be an excellent sink for CO{sub 2} with the added benefit of serving to enhance natural gas production. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject this research. To accomplish this investigation, drill cuttings and cores will be selected from the Kentucky Geological Survey Well Sample and Core Library. CO{sub 2} adsorption analyses will be performed in order to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, new drill cuttings and sidewall core samples will be acquired to investigate specific black-shale facies, their uptake of CO{sub 2}, and the resultant displacement of methane. Advanced logging techniques (elemental capture spectroscopy) will be used to investigate possible correlations between adsorption capacity and geophysical log measurements.

  14. Mapping the Potential for Biofuel Production on Marginal Lands: Differences in Definitions, Data and Models across Scales

    E-Print Network [OSTI]

    Lewis, Sarah M

    2014-01-01

    D. Land availability for biofuel production. Environ. Sci.of land available for biofuel production. Environ. Sci.so marginal land for biofuel crops is limited. Energy Policy

  15. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2004-01-01

    CO{sub 2} emissions from the combustion of fossil fuels have been linked to global climate change. Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, sequestration strategy is to inject CO{sub 2} into organic-rich shales. Devonian black shales underlie approximately two-thirds of Kentucky and are thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky than in central Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to methane storage in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject of current research. To accomplish this investigation, drill cuttings and cores were selected from the Kentucky Geological Survey Well Sample and Core Library. Methane and carbon dioxide adsorption analyses are being performed to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, sidewall core samples are being acquired to investigate specific black-shale facies, their potential CO{sub 2} uptake, and the resulting displacement of methane. Advanced logging techniques (elemental capture spectroscopy) are being investigated for possible correlations between adsorption capacity and geophysical log measurements. For the Devonian shale, average total organic carbon is 3.71 (as received) and mean random vitrinite reflectance is 1.16. Measured adsorption isotherm data range from 37.5 to 2,077.6 standard cubic feet of CO{sub 2} per ton (scf/ton) of shale. At 500 psia, adsorption capacity of the Lower Huron Member of the shale is 72 scf/ton. Initial estimates indicate a sequestration capacity of 5.3 billion tons CO{sub 2} in the Lower Huron Member of the Ohio shale in parts of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker portions of the Devonian shales in Kentucky. The black shales of Kentucky could be a viable geologic sink for CO{sub 2}, and their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

  16. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2004-04-01

    CO{sub 2} emissions from the combustion of fossil fuels have been linked to global climate change. Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, sequestration strategy is to inject CO{sub 2} into organic-rich shales. Devonian black shales underlie approximately two-thirds of Kentucky and are thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky than in central Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to methane storage in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject of current research. To accomplish this investigation, drill cuttings and cores were selected from the Kentucky Geological Survey Well Sample and Core Library. Methane and carbon dioxide adsorption analyses are being performed to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, sidewall core samples are being acquired to investigate specific black-shale facies, their potential CO{sub 2} uptake, and the resulting displacement of methane. Advanced logging techniques (elemental capture spectroscopy) are being investigated for possible correlations between adsorption capacity and geophysical log measurements. For the Devonian shale, average total organic carbon is 3.71 percent (as received) and mean random vitrinite reflectance is 1.16. Measured adsorption isotherm data range from 37.5 to 2,077.6 standard cubic feet of CO{sub 2} per ton (scf/ton) of shale. At 500 psia, adsorption capacity of the Lower Huron Member of the shale is 72 scf/ton. Initial estimates indicate a sequestration capacity of 5.3 billion tons CO{sub 2} in the Lower Huron Member of the Ohio shale in parts of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker portions of the Devonian shales in Kentucky. The black shales of Kentucky could be a viable geologic sink for CO{sub 2}, and their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

  17. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2003-07-28

    CO{sub 2} emissions from the combustion of fossil fuels have been linked to global climate change. Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, sequestration strategy is to inject CO{sub 2} into organic-rich shales. Devonian black shales underlie approximately two-thirds of Kentucky and are thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky than in central Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to methane storage in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject of current research. To accomplish this investigation, drill cuttings and cores were selected from the Kentucky Geological Survey Well Sample and Core Library. Methane and carbon dioxide adsorption analyses are being performed to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, sidewall core samples are being acquired to investigate specific black-shale facies, their potential CO{sub 2} uptake, and the resulting displacement of methane. Advanced logging techniques (elemental capture spectroscopy) are being investigated for possible correlations between adsorption capacity and geophysical log measurements. Initial estimates indicate a sequestration capacity of 5.3 billion tons CO{sub 2} in the Lower Huron Member of the Ohio shale in parts of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker portions of the Devonian shales in Kentucky. Should the black shales of Kentucky prove to be a viable geologic sink for CO{sub 2}, their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

  18. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2003-10-29

    CO{sub 2} emissions from the combustion of fossil fuels have been linked to global climate change. Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, sequestration strategy is to inject CO{sub 2} into organic-rich shales. Devonian black shales underlie approximately two-thirds of Kentucky and are thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky than in central Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to methane storage in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject of current research. To accomplish this investigation, drill cuttings and cores were selected from the Kentucky Geological Survey Well Sample and Core Library. Methane and carbon dioxide adsorption analyses are being performed to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, sidewall core samples are being acquired to investigate specific black-shale facies, their potential CO{sub 2} uptake, and the resulting displacement of methane. Advanced logging techniques (elemental capture spectroscopy) are being investigated for possible correlations between adsorption capacity and geophysical log measurements. For the Devonian shale, average total organic carbon is 3.71 (as received) and mean random vitrinite reflectance is 1.16. Measured adsorption isotherm data range from 37.5 to 2,077.6 standard cubic feet of CO{sub 2} per ton (scf/ton) of shale. At 500 psia, adsorption capacity of the Lower Huron Member of the shale is 72 scf/ton. Initial estimates indicate a sequestration capacity of 5.3 billion tons CO{sub 2} in the Lower Huron Member of the Ohio shale in parts of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker portions of the Devonian shales in Kentucky. The black shales of Kentucky could be a viable geologic sink for CO{sub 2}, and their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

  19. THE POTENTIAL OF FRESHWATER MACROALGAE AS A BIOFUELS FEEDSTOCK AND THE INFLUENCE OF NUTRIENT AVAILABILITY ON FRESHWATER MACROALGAL BIOMASS PRODUCTION

    E-Print Network [OSTI]

    Yun, Jin-Ho

    2014-12-31

    difference in productivity between the treatments, the average dry weight productivity of Oedogonium (3.37 g/m2/day) was found to be much higher than is achievable with common terrestrial plant crops. Although filamentous freshwater macroalgae, therefore...

  20. Businesses, governments, and institutions across the globe are collecting and to innovation and productivity for organizations able to use their potential to

    E-Print Network [OSTI]

    Snider, Barry B.

    and to innovation and productivity for organizations able to use their potential to direct strategic, operational intelligence and decision making. Design innovative, cross-functional data analytics solutions for applied WORK OR HAVE WORKED AT PRESTIGIOUS ORGANIZATIONS SUCH AS: Cigna Healthcare Coca-Cola Refreshments EMC

  1. Economic Impact of Reservoir Properties, Horizontal Well Length and Orientation on Production from Shale Formations: Application to New

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    and the orientation of horizontal wells on gas production in New Albany Shale. The study was conducted using on the Net Present Value of investing on gas wells producing from New Albany Shale. Introduction New Albany Shale Gas -The New Albany Shale is predominantly an organic-rich brownish-black and grayish-black shale

  2. Mapping the Potential for Biofuel Production on Marginal Lands: Differences in Definitions, Data and Models across Scales

    E-Print Network [OSTI]

    Lewis, Sarah M

    2014-01-01

    J. Evaluation of renewable energy potential using a GISJ.M. ; Mabee, W.E. Toward renewable energy geo-informationthe availability of renewable energy sources. Renew.

  3. Microjet formation and hard x-ray production from a liquid metal target irradiated by intense femtosecond laser pulses

    SciTech Connect (OSTI)

    Lar'kin, A. Uryupina, D.; Ivanov, K.; Savel'ev, A.; Bonnet, T.; Gobet, F.; Hannachi, F.; Tarisien, M.; Versteegen, M.; Spohr, K.; Breil, J.; Chimier, B.; Dorchies, F.; Fourment, C.; Leguay, P.-M.; Tikhonchuk, V. T.

    2014-09-15

    By using a liquid metal as a target one may significantly enhance the yield of hard x-rays with a sequence of two intense femtosecond laser pulses. The influence of the time delay between the two pulses is studied experimentally and interpreted with numerical simulations. It was suggested that the first arbitrary weak pulse produces microjets from the target surface, while the second intense pulse provides an efficient electron heating and acceleration along the jet surface. These energetic electrons are the source of x-ray emission while striking the target surface. The microjet formation is explained based on the results given by both optical diagnostics and hydrodynamic modeling by a collision of shocks originated from two distinct zones of laser energy deposition.

  4. Evaluating the potential use of winter cover crops in cornsoybean systems for sustainable co-production of food and fuel

    E-Print Network [OSTI]

    Minnesota, University of

    concerns have motivated intense interest in the development of renewable energy sources, including fuels of the atmospheric impact of fossil fuel combustion has spurred research and development of renewable alternatives of total US fuel consumption, and places energy production in competition with food production for raw

  5. Assessing the potential of SeaWiFS and MODIS for estimating chlorophyll concentration in turbid productive waters

    E-Print Network [OSTI]

    Gitelson, Anatoly

    purpose of this study was to evaluate the extent to which near-infrared (NIR) to red reflectance ratios productive waters using red and near-infrared bands Giorgio Dall'Olmoa,b,*, Anatoly A. Gitelsona,b , Donald C estimation of Chl in turbid productive waters has so far not been feasible from satellite sensors. The main

  6. The effects of potential changes in United States beef production on global grazing systems and greenhouse gas emissions

    E-Print Network [OSTI]

    Zhou, Yaoqi

    and greenhouse gas emissions Jerome Dumortier1 , Dermot J Hayes2 , Miguel Carriquiry2 , Fengxia Dong3 , Xiaodong in the U.S. causes a net increase in GHG emissions on a global scale. We couple a global agricultural production in the United States. The effects on emissions from agricultural production (i.e., methane

  7. Fuel from wastewater : harnessing a potential energy source in Canada through the co-location of algae biofuel production to sources of effluent, heat and CO2.

    SciTech Connect (OSTI)

    Passell, Howard David; Whalen, Jake (SmartWhale Consulting, Dartmouth, NS, CA); Pienkos, Philip P. (National Renewable Energy Laboratory, Golden, CO); O'Leary, Stephen J. (National Research Council Canada, Institute for Marine Biosciences, Halifax, NS, CA); Roach, Jesse Dillon; Moreland, Barbara D.; Klise, Geoffrey Taylor

    2010-12-01

    Sandia National Laboratories is collaborating with the National Research Council (NRC) Canada and the National Renewable Energy Laboratory (NREL) to develop a decision-support model that will evaluate the tradeoffs associated with high-latitude algae biofuel production co-located with wastewater, CO2, and waste heat. This project helps Canada meet its goal of diversifying fuel sources with algae-based biofuels. The biofuel production will provide a wide range of benefits including wastewater treatment, CO2 reuse and reduction of demand for fossil-based fuels. The higher energy density in algae-based fuels gives them an advantage over crop-based biofuels as the 'production' footprint required is much less, resulting in less water consumed and little, if any conversion of agricultural land from food to fuel production. Besides being a potential source for liquid fuel, algae have the potential to be used to generate electricity through the burning of dried biomass, or anaerobically digested to generate methane for electricity production. Co-locating algae production with waste streams may be crucial for making algae an economically valuable fuel source, and will certainly improve its overall ecological sustainability. The modeling process will address these questions, and others that are important to the use of water for energy production: What are the locations where all resources are co-located, and what volumes of algal biomass and oil can be produced there? In locations where co-location does not occur, what resources should be transported, and how far, while maintaining economic viability? This work is being funded through the U.S. Department of Energy (DOE) Biomass Program Office of Energy Efficiency and Renewable Energy, and is part of a larger collaborative effort that includes sampling, strain isolation, strain characterization and cultivation being performed by the NREL and Canada's NRC. Results from the NREL / NRC collaboration including specific productivities of selected algal strains will eventually be incorporated into this model.

  8. This study focuses on the methodology of generating and measuring HONO to study its potential formation from self-cleaning surfaces such as TiO2.

    E-Print Network [OSTI]

    Collins, Gary S.

    Vehicle emissions, when oxidized in the presence of NOx and sunlight, produce photochemical air pollution as a photocatalyst to oxidize surface absorbed compounds. It has been proposed that air pollution can be reduced pollution by increasing the formation arte of HO radical. The oxidation of VOCs by TiO2 can lead

  9. Microalgae-derived HEFA jet fuel : environmental and economic impacts of scaled/integrated growth facilities and global production potential

    E-Print Network [OSTI]

    Ames, Jacob L. (Jacob Lee)

    2015-01-01

    Biofuels have the potential to mitigate the environmental impact of aviation and offer increased energy security through the displacement of conventional jet fuel. This study investigates strategies designed to reduce the ...

  10. Evaluation of the Gas Production Potential of Marine Hydrate Deposits in the Ulleung Basin of the Korean East Sea

    E-Print Network [OSTI]

    Moridis, George J.; Reagan, Matthew T.; Kim, Se-Joon; Seol, Yongkoo; Zhang, Keni

    2007-01-01

    estimates of the local geothermal gradient that bracket its1.7 o C), the local geothermal gradient was computed as dT/influxes fueled by the geothermal gradient. Production was

  11. Production

    Broader source: Energy.gov [DOE]

    Algae production R&D focuses on exploring resource use and availability, algal biomass development and improvements, characterizing algal biomass components, and the ecology and engineering of cultivation systems.

  12. Symmetry potential of $\\Delta(1232)$ resonance and its effects on the $\\pi^-/\\pi^+$ ratio in heavy-ion collisions near the pion production threshold

    E-Print Network [OSTI]

    Li, Bao-An

    2015-01-01

    Effects of the completely unknown symmetry (isovector) potential of the \\D on the total and differential \\rpi in heavy-ion collisions at beam energies from 100 to 1000 MeV/A are explored within an isospin-dependent transport model IBUU. The effects are found to be negligible at beam energies above the pion production threshold due to the very short lifetimes of less than 2 fm/c for $\\Delta$ resonances with masses around $m_{\\Delta}=1232$ MeV, leaving the $\\pi^-/\\pi^+$ ratios of especially the energetic pions still a reliable probe of the high-density behavior of nuclear symmetry energy $E_{sym}(\\rho)$. However, as the beam energy becomes deeply sub-threshold for pion production, effects of the $\\Delta$ symmetry potential becomes appreciable especially on the \\rpi of low-energy pions from the decays of low-mass $\\Delta$ resonances which have lived long enough to be affected by their mean-field potentials, providing a useful tool to study the symmetry potential and spectroscopy of $\\Delta$ resonances in neutron...

  13. Regional Algal Biofuel Production Potential in the Coterminous United States as Affected by Resource Availability Trade-offs

    SciTech Connect (OSTI)

    Venteris, Erik R.; Skaggs, Richard; Wigmosta, Mark S.; Coleman, Andre M.

    2014-03-15

    The warm sunny climate and unoccupied arid lands in the American southwest are favorable factors for algae cultivation. However, additional resources affect the overall viability of specific sites and regions. We investigated the tradeoffs between growth rate, water, and CO2 availability and costs for two strains: N. salina and Chlorella sp. We conducted site selection exercises (~88,000 US sites) to produce 21 billion gallons yr-1 (BGY) of renewable diesel (RD). Experimental trials from the National Alliance for Advanced Biofuels and Bio-Products (NAABB) team informed the growth model of our Biomass Assessment Tool (BAT). We simulated RD production by both lipid extraction and hydrothermal liquefaction. Sites were prioritized by the net value of biofuel minus water and flue gas costs. Water cost models for N. salina were based on seawater and high salinity groundwater and for Chlorella, fresh and brackish groundwater. CO2 costs were based on a flue gas delivery model. Selections constrained by production and water were concentrated along the Gulf of Mexico and southeast Atlantic coasts due to high growth rates and low water costs. Adding flue gas constraints increased the spatial distribution, but the majority of sites remained in the southeast. The 21 BGY target required ~3.8 million hectares of mainly forest (41.3%) and pasture (35.7%). Exclusion in favor of barren and scrub lands forced most production to the southwestern US, but with increased water consumption (5.7 times) and decreased economic efficiency (-38%).

  14. There has been much interest in photoelectrochemical conversion of solar energy in recent years due to its potential for low-cost, sustainable and renewable production of fuels. Despite

    E-Print Network [OSTI]

    to its potential for low-cost, sustainable and renewable production of fuels. Despite the huge potentialThere has been much interest in photoelectrochemical conversion of solar energy in recent years due characteristics such as the bandgap, flatband potential, band structure, electrochemical and photoelectrochemical

  15. Distributed Control of Formation Flying Spacecraft Built on OA

    E-Print Network [OSTI]

    and the potential for creating fuel-efficient formation configurations rele- vant to future magnetospheric space

  16. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2005-04-26

    Devonian gas shales underlie approximately two-thirds of Kentucky. In the shale, natural gas is adsorbed on clay and kerogen surfaces. This is analogous to methane storage in coal beds, where CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. Drill cuttings from the Kentucky Geological Survey Well Sample and Core Library were sampled to determine CO{sub 2} and CH{sub 4} adsorption isotherms. Sidewall core samples were acquired to investigate CO{sub 2} displacement of methane. An elemental capture spectroscopy log was acquired to investigate possible correlations between adsorption capacity and mineralogy. Average random vitrinite reflectance data range from 0.78 to 1.59 (upper oil to wet gas and condensate hydrocarbon maturity range). Total organic content determined from acid-washed samples ranges from 0.69 to 14 percent. CO{sub 2} adsorption capacities at 400 psi range from a low of 14 scf/ton in less organic-rich zones to more than 136 scf/ton. There is a direct correlation between measured total organic carbon content and the adsorptive capacity of the shale; CO{sub 2} adsorption capacity increases with increasing organic carbon content. Initial estimates based on these data indicate a sequestration capacity of 5.3 billion tons of CO{sub 2} in the Lower Huron Member of the Ohio Shale of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker parts of the Devonian shales in Kentucky. Should the black shales of Kentucky prove to be a viable geologic sink for CO{sub 2}, their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

  17. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2004-08-01

    Devonian gas shales underlie approximately two-thirds of Kentucky. In the shale, natural gas is adsorbed on clay and kerogen surfaces. This is analogous to methane storage in coal beds, where CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. Drill cuttings from the Kentucky Geological Survey Well Sample and Core Library are being sampled to collect CO{sub 2} adsorption isotherms. Sidewall core samples have been acquired to investigate CO{sub 2} displacement of methane. An elemental capture spectroscopy log has been acquired to investigate possible correlations between adsorption capacity and mineralogy. Average random vitrinite reflectance data range from 0.78 to 1.59 (upper oil to wet gas and condensate hydrocarbon maturity range). Total organic content determined from acid-washed samples ranges from 0.69 to 4.62 percent. CO{sub 2} adsorption capacities at 400 psi range from a low of 19 scf/ton in less organic-rich zones to more than 86 scf/ton in the Lower Huron Member of the shale. Initial estimates based on these data indicate a sequestration capacity of 5.3 billion tons of CO{sub 2} in the Lower Huron Member of the Ohio Shale of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker parts of the Devonian shales in Kentucky. Should the black shales of Kentucky prove to be a viable geologic sink for CO{sub 2}, their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

  18. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2005-07-29

    Devonian gas shales underlie approximately two-thirds of Kentucky. In the shale, natural gas is adsorbed on clay and kerogen surfaces. This is analogous to methane storage in coal beds, where CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. Drill cuttings from the Kentucky Geological Survey Well Sample and Core Library were sampled to determine CO{sub 2} and CH{sub 4} adsorption isotherms. Sidewall core samples were acquired to investigate CO{sub 2} displacement of methane. An elemental capture spectroscopy log was acquired to investigate possible correlations between adsorption capacity and mineralogy. Average random vitrinite reflectance data range from 0.78 to 1.59 (upper oil to wet gas and condensate hydrocarbon maturity range). Total organic content determined from acid-washed samples ranges from 0.69 to 14 percent. CO{sub 2} adsorption capacities at 400 psi range from a low of 14 scf/ton in less organic-rich zones to more than 136 scf/ton. There is a direct correlation between measured total organic carbon content and the adsorptive capacity of the shale; CO{sub 2} adsorption capacity increases with increasing organic carbon content. Initial estimates based on these data indicate a sequestration capacity of 5.3 billion tons of CO{sub 2} in the Lower Huron Member of the Ohio Shale of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker parts of the Devonian shales in Kentucky. Should the black shales of Kentucky prove to be a viable geologic sink for CO{sub 2}, their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

  19. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2005-01-01

    Devonian gas shales underlie approximately two-thirds of Kentucky. In the shale, natural gas is adsorbed on clay and kerogen surfaces. This is analogous to methane storage in coal beds, where CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. Drill cuttings from the Kentucky Geological Survey Well Sample and Core Library were sampled to determine CO{sub 2} and CH{sub 4} adsorption isotherms. Sidewall core samples were acquired to investigate CO{sub 2} displacement of methane. An elemental capture spectroscopy log was acquired to investigate possible correlations between adsorption capacity and mineralogy. Average random vitrinite reflectance data range from 0.78 to 1.59 (upper oil to wet gas and condensate hydrocarbon maturity range). Total organic content determined from acid-washed samples ranges from 0.69 to 14 percent. CO{sub 2} adsorption capacities at 400 psi range from a low of 14 scf/ton in less organic-rich zones to more than 136 scf/ton. Initial estimates based on these data indicate a sequestration capacity of 5.3 billion tons of CO{sub 2} in the Lower Huron Member of the Ohio Shale of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker parts of the Devonian shales in Kentucky. Should the black shales of Kentucky prove to be a viable geologic sink for CO{sub 2}, their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

  20. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2005-01-28

    Devonian gas shales underlie approximately two-thirds of Kentucky. In the shale, natural gas is adsorbed on clay and kerogen surfaces. This is analogous to methane storage in coal beds, where CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. Drill cuttings from the Kentucky Geological Survey Well Sample and Core Library were sampled to determine CO{sub 2} and CH{sub 4} adsorption isotherms. Sidewall core samples were acquired to investigate CO{sub 2} displacement of methane. An elemental capture spectroscopy log was acquired to investigate possible correlations between adsorption capacity and mineralogy. Average random vitrinite reflectance data range from 0.78 to 1.59 (upper oil to wet gas and condensate hydrocarbon maturity range). Total organic content determined from acid-washed samples ranges from 0.69 to 14 percent. CO{sub 2} adsorption capacities at 400 psi range from a low of 14 scf/ton in less organic-rich zones to more than 136 scf/ton. There is a direct correlation between measured total organic carbon content and the adsorptive capacity of the shale; CO{sub 2} adsorption capacity increases with increasing organic carbon content. Initial estimates based on these data indicate a sequestration capacity of 5.3 billion tons of CO{sub 2} in the Lower Huron Member of the Ohio Shale of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker parts of the Devonian shales in Kentucky. Should the black shales of Kentucky prove to be a viable geologic sink for CO{sub 2}, their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

  1. Escherichia coli Enhanced Hydrogen Production, Genome-wide Screening for Extracellular DNA, and Influence of GGDEF Proteins on Early Biofilm Formation 

    E-Print Network [OSTI]

    Sanchez Torres, Viviana

    2012-02-14

    for applications such as production of biofuels and biofilm control. The aims of this work were the application of protein engineering to increase E. coli hydrogen production, the identification of the proteins regulating extracellular DNA production (e...

  2. Evaluation of water production in tight gas sands in the Cotton Valley formation in the Caspiana, Elm Grove and Frierson fields 

    E-Print Network [OSTI]

    Ozobeme, Charles Chinedu

    2007-04-25

    in the Elm Grove and Caspiana fields. 3 Fig. 1.2: Distribution of Cotton Valley Reservoirs across East Texas and North Louisiana. (Source - Collins 2 ) CV Lime Producing Trend. CV Blanket Sands . Good porosity and permeability..., no fracturing required. CV Massive Sands . Low permeability and porosity, require fracturing. CV Sand Fields. CV Lime Fields. 4 1.2 The Cotton Valley Formation in Northwest Louisiana The Cotton Valley formation is a tight gas sand play...

  3. Technical support for the Ohio Clean Coal Technology Program. Volume 2, Baseline of knowledge concerning process modification opportunities, research needs, by-product market potential, and regulatory requirements: Final report

    SciTech Connect (OSTI)

    Olfenbuttel, R.; Clark, S.; Helper, E.; Hinchee, R.; Kuntz, C.; Means, J.; Oxley, J.; Paisley, M.; Rogers, C.; Sheppard, W.; Smolak, L.

    1989-08-28

    This report was prepared for the Ohio Coal Development Office (OCDO) under Grant Agreement No. CDO/R-88-LR1 and comprises two volumes. Volume 1 presents data on the chemical, physical, and leaching characteristics of by-products from a wide variety of clean coal combustion processes. Volume 2 consists of a discussion of (a) process modification waste minimization opportunities and stabilization considerations; (b) research and development needs and issues relating to clean coal combustion technologies and by-products; (c) the market potential for reusing or recycling by-product materials; and (d) regulatory considerations relating to by-product disposal or reuse.

  4. Formate-assisted pyrolysis

    DOE Patents [OSTI]

    DeSisto, William Joseph; Wheeler, Marshall Clayton; van Heiningen, Adriaan R. P.

    2015-03-17

    The present invention provides, among other thing, methods for creating significantly deoxygenated bio-oils form biomass including the steps of providing a feedstock, associating the feedstock with an alkali formate to form a treated feedstock, dewatering the treated feedstock, heating the dewatered treated feedstock to form a vapor product, and condensing the vapor product to form a pyrolysis oil, wherein the pyrolysis oil contains less than 30% oxygen by weight.

  5. Chemistry of ?-pinene and naphthalene oxidation products generated in a Potential Aerosol Mass (PAM) chamber as measured by acetate chemical ionization mass spectrometry

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chhabra, P. S.; Lambe, A. T.; Canagaratna, M. R.; Stark, H.; Jayne, J. T.; Onasch, T. B.; Davidovits, P.; Kimmel, J. R.; Worsnop, D. R.

    2014-07-01

    Recent developments in high resolution, time-of-flight chemical ionization mass spectrometry (HR-ToF-CIMS) have made possible the direct detection of atmospheric organic compounds in real-time with high sensitivity and with little or no fragmentation, including low volatility, highly oxygenated organic vapors that are precursors to secondary organic aerosol formation. Here, for the first time, we examine gas-phase O3 and OH oxidation products of ?-pinene and naphthalene formed in the PAM flow reactor with an HR-ToF-CIMS using acetate reagent ion chemistry. Integrated OH exposures ranged from 1.2 × 1011 to 9.7 × 1011 molec cm?3 s, corresponding to approximately 1.0 to 7.5 daysmore »of equivalent atmospheric oxidation. Measured gas-phase organic acids are similar to those previously observed in environmental chamber studies. For both precursors, we find that acetate-CIMS spectra capture both functionalization (oxygen addition) and fragmentation (carbon loss) as a function of OH exposure. The level of fragmentation is observed to increase with increased oxidation. We present a method that estimates vapor pressures of organic molecules using the measured O/C ratio, H/C ratio, and carbon number for each compound detected by the CIMS. The predicted condensed-phase SOA average acid yields and O/C and H/C ratios agree within uncertainties with previous AMS measurements and ambient CIMS results. While acetate reagent ion chemistry is used to selectively measure organic acids, in principle this method can be applied to additional reagent ion chemistries depending on the application.« less

  6. Formation of carbon deposits from coal in an arc plasma

    SciTech Connect (OSTI)

    Wang, B.; Tian, Y.; Zhang, Y.; Zhu, S.; Lu, Y.; Zhang, Y.; Xie, K.

    2007-07-01

    The issue of deposited carbon (DC) on a reactor wall during the production of acetylene by the coal/arc plasma process is a potential obstacle for the industrialization process. The formation mechanism of DC is very difficult to reveal because the high complexity of coal and the volatile matter. Combining with quenching technique, the methane, liquid petroleum gas and benzene were employed as the model materials to roughly act as the light gas, chain and aromatic subcomponents of volatile matter, and then the reasonable formation mechanism of DC was subtly speculated accordingly.

  7. Diagenesis within the deep Tuscaloosa formation, Profit Island field, Louisiana 

    E-Print Network [OSTI]

    Hudder, Karen Ann Gilchrist

    1982-01-01

    The lower Tuscaloosa Formation of south-central Louisiana is a prolific and highly potential deep gas reservoir. Of particular interest are the unusually high porosity and permeability values for the age, depth, and temperature of the rocks. In the Profit... hydrocarbon accumulation and production in reservoirs, particularly from such unusually porous and permeable rocks. THE TUSCALOOSA TREND Regional Setting The deep Tuscaloosa trend encompasses an area of south-central Louisiana measuring approximately 200...

  8. Method of fracturing a geological formation

    DOE Patents [OSTI]

    Johnson, James O. (2679-B Walnut, Los Alamos, NM 87544)

    1990-01-01

    An improved method of fracturing a geological formation surrounding a well bore is disclosed. A relatively small explosive charge is emplaced in a well bore and the bore is subsequently hydraulically pressurized to a pressure less than the formation breakdown pressure and preferably greater than the fracture propagation pressure of the formation. The charge is denoted while the bore is so pressurized, resulting in the formation of multiple fractures in the surrounding formation with little or no accompanying formation damage. Subsequent hydraulic pressurization can be used to propagate and extend the fractures in a conventional manner. The method is useful for stimulating production of oil, gas and possibly water from suitable geologic formations.

  9. Production, formation, and transport of high-brightness atomic hydrogen beam studies for the relativistic heavy ion collider polarized source upgrade

    SciTech Connect (OSTI)

    Kolmogorov, A. Stupishin, N.; Atoian, G.; Ritter, J.; Zelenski, A.; Davydenko, V.; Ivanov, A.; Novosibirsk State University, Novosibirsk

    2014-02-15

    The RHIC polarized H{sup ?} ion source had been successfully upgraded to higher intensity and polarization by using a very high brightness fast atomic beam source developed at BINP, Novosibirsk. In this source the proton beam is extracted by a four-grid multi-aperture ion optical system and neutralized in the H{sub 2} gas cell downstream from the grids. The proton beam is extracted from plasma emitter with a low transverse ion temperature of ?0.2 eV which is formed by plasma jet expansion from the arc plasma generator. The multi-hole grids are spherically shaped to produce “geometrical” beam focusing. Proton beam formation and transport of atomic beam were experimentally studied at test bench.

  10. Innovative DOE Technology Demonstrates Potential for Significant...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Technology Demonstrates Potential for Significant Increases in Safe and Responsible Production from Depleted U.S. Oil Fields Innovative DOE Technology Demonstrates Potential...

  11. Webinar: Potential Strategies for Integrating Solar Hydrogen...

    Office of Environmental Management (EM)

    Potential Strategies for Integrating Solar Hydrogen Production and Concentrating Solar Power: A Systems Analysis Webinar: Potential Strategies for Integrating Solar Hydrogen...

  12. Epoxidation of the methamphetamine pyrolysis product, trans-phenylpropene, to trans-phenylpropylene oxide by CYP enzymes and stereoselective glutathione adduct formation

    SciTech Connect (OSTI)

    Sanga, Madhu [Department of Basic Pharmaceutical Sciences, West Virginia University, 1 Medical Center Drive, Morgantown, WV 26506 (United States); Younis, Islam R. [Department of Basic Pharmaceutical Sciences, West Virginia University, 1 Medical Center Drive, Morgantown, WV 26506 (United States); Tirumalai, Padma S. [Department of Basic Pharmaceutical Sciences, West Virginia University, 1 Medical Center Drive, Morgantown, WV 26506 (United States); Bland, Tina M. [Department of Basic Pharmaceutical Sciences, West Virginia University, 1 Medical Center Drive, Morgantown, WV 26506 (United States); Banaszewska, Monica [Department of Neurobiology and Anatomy, West Virginia University, Morgantown, WV 26506 (United States); Konat, Gregory W. [Department of Neurobiology and Anatomy, West Virginia University, Morgantown, WV 26506 (United States); Tracy, Timothy S. [Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN 55455 (United States); Gannett, Peter M. [Department of Basic Pharmaceutical Sciences, West Virginia University, 1 Medical Center Drive, Morgantown, WV 26506 (United States); Callery, Patrick S. [Department of Basic Pharmaceutical Sciences, West Virginia University, 1 Medical Center Drive, Morgantown, WV 26506 (United States)]. E-mail: pcallery@hsc.wvu.edu

    2006-03-01

    Pyrolytic products of smoked methamphetamine hydrochloride are well established. Among the various degradation products formed, trans-phenylpropene (trans-{beta}-methylstyrene) is structurally similar to styrene analogues known to be bioactivated by CYP enzymes. In human liver microsomes, trans-phenylpropene was converted to the epoxide trans-phenylpropylene oxide (trans-2-methyl-3-phenyloxirane) and cinnamyl alcohol. Incubation of trans-phenylpropene with microsomes in the presence of enzyme-specific P450 enzyme inhibitors indicated the involvement of CYP2E1, CYP1A2, and CYP3A4 enzymes. Both (R,R)-phenylpropylene oxide and (S,S)-phenylpropylene oxide were formed in human liver microsomal preparations. Enantiomers of trans-phenylpropylene oxide were stereoselectively and regioselectively conjugated in a Phase II drug metabolism reaction catalyzed by human liver cytosolic enzymes consisting of conjugation with glutathione. The structure of the phenylpropylene oxide-glutathione adduct is consistent with nucleophilic ring-opening by attack at the benzylic carbon. Exposure of cultured C6 glial cells to (S,S)-phenylpropylene oxide produced a cytotoxic response in a concentration-dependent manner based on cell degeneration and death.

  13. Biosurfactant Production by Bacteria in the Phyllosphere: Relieving the Tension of Life on a Surface

    E-Print Network [OSTI]

    Burch, Adrien Yuan

    2011-01-01

    formation and surfactin production. Plant Physiol. 134:307-controls alginate production and tolerance to environmentaled. ), Biosurfactants: production, properties, applications,

  14. Isolating Triggered Star Formation

    E-Print Network [OSTI]

    Elizabeth J. Barton; Jacob A. Arnold; Andrew R. Zentner; James S. Bullock; Risa H. Wechsler

    2007-08-21

    Galaxy pairs provide a potentially powerful means of studying triggered star formation from galaxy interactions. We use a large cosmological N-body simulation coupled with a well-tested semi-analytic substructure model to demonstrate that the majority of galaxies in close pairs reside within cluster or group-size halos and therefore represent a biased population, poorly suited for direct comparison to ``field'' galaxies. Thus, the frequent observation that some types of galaxies in pairs have redder colors than ``field'' galaxies is primarily a selection effect. We select galaxy pairs that are isolated in their dark matter halos with respect to other massive subhalos (N=2 halos) and a control sample of isolated galaxies (N=1 halos) for comparison. We then apply these selection criteria to a volume-limited subset of the 2dF Galaxy Redshift Survey with M_Bj ~ 5 above their average past value, while only 10% of isolated galaxies in the control sample show this level of enhancement. Thus, 14% (20 %) of the galaxies in these close pairs show clear triggered star formation. The isolation criteria we develop provide a means to constrain star formation and feedback prescriptions in hydrodynamic simulations and a very general method of understanding the importance of triggered star formation in a cosmological context. (Abridged.)

  15. Potential of Diazorphic, Endophytic Bacteria Associated with...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Diazorphic, Endophytic Bacteria Associated with Sugarcane for Energycane Production Potential of Diazorphic, Endophytic Bacteria Associated with Sugarcane for Energycane...

  16. EXPLOITATION AND OPTIMIZATION OF RESERVOIR PERFORMANCE IN HUNTON FORMATION, OKLAHOMA

    SciTech Connect (OSTI)

    Mohan Kelkar

    2005-02-01

    Hunton formation in Oklahoma has displayed some unique production characteristics. These include high initial water-oil and gas-oil ratios, decline in those ratios over time and temporary increase in gas-oil ratio during pressure build up. The formation also displays highly complex geology, but surprising hydrodynamic continuity. This report addresses three key issues related specifically to West Carney Hunton field and, in general, to any other Hunton formation exhibiting similar behavior: (1) What is the primary mechanism by which oil and gas is produced from the field? (2) How can the knowledge gained from studying the existing fields can be extended to other fields which have the potential to produce? (3) What can be done to improve the performance of this reservoir? We have developed a comprehensive model to explain the behavior of the reservoir. By using available production, geological, core and log data, we are able to develop a reservoir model which explains the production behavior in the reservoir. Using easily available information, such as log data, we have established the parameters needed for a field to be economically successful. We provide guidelines in terms of what to look for in a new field and how to develop it. Finally, through laboratory experiments, we show that surfactants can be used to improve the hydrocarbons recovery from the field. In addition, injection of CO{sub 2} or natural gas also will help us recover additional oil from the field.

  17. Solution mining dawsonite from hydrocarbon containing formations with a chelating agent

    DOE Patents [OSTI]

    Vinegar, Harold J. (Bellaire, TX)

    2009-07-07

    A method for treating an oil shale formation comprising dawsonite includes providing heat from one or more heaters to the formation to heat the formation. Hydrocarbon fluids are produced from the formation. At least some dawsonite in the formation is decomposed with the provided heat. A chelating agent is provided to the formation to dissolve at least some dawsonite decomposition products. The dissolved dawsonite decomposition products are produced from the formation.

  18. Peptide bond formation through gas-phase reactions in the interstellar medium: formamide and acetamide as prototypes

    SciTech Connect (OSTI)

    Redondo, Pilar; Barrientos, Carmen; Largo, Antonio, E-mail: predondo@qf.uva.es [Computational Chemistry Group, Departamento de Química Física, Facultad de Ciencias, Universidad de Valladolid, E-47011 Valladolid (Spain)

    2014-09-20

    A theoretical study of the reactions of NH{sub 4}{sup +} with formaldehyde and CH{sub 5}{sup +} with formamide is carried out. The viability of these gas-phase ion-molecule reactions as possible sources of formamide and acetamide under the conditions of interstellar medium is evaluated. We report a theoretical estimation of the reaction enthalpies and an analysis of their potential energy surfaces. Formation of protonated formamide from the reaction between ammonium cation and formaldehyde is an exothermic process, but all the channels located on the potential energy surface leading to this product present net activation energies. For the reaction between methanium and formamide, different products are possible from a thermodynamic point of view. An analysis of its potential energy surface showed that formation of protonated acetamide and amino acetaldehyde takes place through barrier-free paths. Therefore, this reaction could be a feasible source of acetamide and amino acetaldehyde in space.

  19. Potential Land Use Implications of a Global Biofuels Industry

    E-Print Network [OSTI]

    Gurgel, Angelo C.

    In this paper we investigate the potential production and implications of a global biofuels industry. We

  20. EIA - Analysis of Natural Gas Production

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    storage inventories. Categories: Prices, Production, Consumption, ImportsExports & Pipelines, Storage (Released, 792010, Html format) Natural Gas Data Collection and...

  1. Assess Current and Potential Salmonid Production in Rattlesnake Creek Associated with Restoration Efforts; US Geological Survey Reports, 2002-2003 Annual Report.

    SciTech Connect (OSTI)

    Connolly, Patrick J. (US Geological Survey, Columbia River Research Laboratory, Western Fisheries Research Center, Cook, WA)

    2003-12-01

    This project was designed to document existing habitat conditions and fish populations within the Rattlesnake Creek watershed (White Salmon River subbasin, Washington) before major habitat restoration activities are implemented and prior to the reintroduction of salmon and steelhead above Condit Dam. Returning adult salmon Oncorhynchus spp. and steelhead O. mykiss have not had access to Rattlesnake Creek since 1913. An assessment of resident trout populations should serve as a good surrogate for evaluation of factors that would limit salmon and steelhead production in the watershed. Personnel from United States Geological Survey's Columbia River Research Laboratory (USGS-CRRL) attend to three main objectives of the Rattlesnake Creek project. The first is to characterize stream and riparian habitat conditions. This effort includes measures of water quality, water quantity, stream habitat, and riparian conditions. The second objective is to determine the status of fish populations in the Rattlesnake Creek drainage. To accomplish this, we derived estimates of salmonid population abundance, determined fish species composition, assessed distribution and life history attributes, obtained tissue samples for genetic analysis, and assessed fish diseases in the watershed. The third objective is to use the collected habitat and fisheries information to help identify and prioritize areas in need of restoration. As this report covers the second year of at least a three-year study, it is largely restricted to describing our efforts and findings for the first two objectives.

  2. Assess Current and Potential Salmonid Production in Rattlesnake Creek Associated with Restoration Efforts; US Geological Survey Reports, 2001-2002 Annual Report.

    SciTech Connect (OSTI)

    Connolly, Patrick J. (US Geological Survey, Western Fisheries Research Center, Columbia River Research Laboratory, Cook, WA)

    2003-01-01

    This project was designed to document existing habitat conditions and fish populations within the Rattlesnake Creek watershed (White Salmon River subbasin, Washington) before major habitat restoration activities are implemented and prior to the reintroduction of salmon and steelhead above Condit Dam. Returning adult salmon Oncorhynchus spp. and steelhead O. mykiss have not had access to Rattlesnake Creek since 1914. An assessment of resident trout populations should serve as a good surrogate for evaluation of factors that would limit salmon and steelhead production in the watershed. Personnel from United States Geological Survey's Columbia River Research Laboratory (USGS-CRRL) attend to three main objectives of the Rattlesnake Creek project. The first is to characterize stream and riparian habitat conditions. This effort includes measures of water quality, water quantity, stream habitat, and riparian conditions. The second objective is to determine the status of fish populations in the Rattlesnake Creek drainage. To accomplish this, we derived estimates of salmonid population abundance, determined fish species composition, assessed distribution and life history attributes, obtained tissue samples for future genetic analysis, and assessed fish diseases in the watershed. The third objective is to use the collected habitat and fisheries information to help identify and prioritize areas in need of restoration. As this report covers the first year of a three-year study, this report is restricted to describing our work on the first two objectives only.

  3. Autonomous Helicopter Formation using Model Predictive Control

    E-Print Network [OSTI]

    Sastry, S. Shankar

    Autonomous Helicopter Formation using Model Predictive Control Hoam Chung and S. Shankar Sastry for teams of helicopters. However, the potential for accidents is greatly increased when helicopter teams to the problem of helicopter formations comprised of heterogenous vehicles. The disturbance attenuation property

  4. Bakken Shale Oil Production Trends 

    E-Print Network [OSTI]

    Tran, Tan

    2012-07-16

    ) database and in the format of monthly production for oil, water and gas. Additional 95 well data including daily production rate, completion, Pressure Volume Temperature (PVT), pressure data are given from companies who sponsor for this research study...

  5. DUST FORMATION IN MACRONOVAE

    SciTech Connect (OSTI)

    Takami, Hajime; Ioka, Kunihito [Institute of Particle and Nuclear Studies, KEK, 1-1, Oho, Tsukuba 305-0801 (Japan); Nozawa, Takaya, E-mail: takami@post.kek.jp, E-mail: kunihito.ioka@kek.jp, E-mail: takaya.nozawa@nao.ac.jp [National Astronomical Observatory of Japan, 2-21-1, Osawa, Mitaka, Tokyo 181-8588 (Japan)

    2014-07-01

    We examine dust formation in macronovae (as known as kilonovae), which are the bright ejecta of neutron star binary mergers and one of the leading sites of r-process nucleosynthesis. In light of information about the first macronova candidate associated with GRB 130603B, we find that dust grains of r-process elements have difficulty forming because of the low number density of the r-process atoms, while carbon or elements lighter than iron can condense into dust if they are abundant. Dust grains absorb emission from ejecta with an opacity even greater than that of the r-process elements, and re-emit photons at infrared wavelengths. Such dust emission can potentially account for macronovae without r-process nucleosynthesis as an alternative model. This dust scenario predicts a spectrum with fewer features than the r-process model and day-scale optical-to-ultraviolet emission.

  6. Sugar Beets in Southwest Texas: Production Potentials

    E-Print Network [OSTI]

    Whiteley, E. L.; Cowley, W. R.

    1969-01-01

    . Zavala County: The trial in Zavala County n.. conducted on the Joe Byrd Farm 17 miles northea5; - Crystal City. The soil type was Blanco silty loam; irrigatic- was supplied from a 1,100-foot Carrizo well. The s~te 1.1: been heavily fertilized...

  7. Biomedical device potential for robust, implantable product

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O OLaura|Bilayer GrapheneW.HelpReport)

  8. Electrolytic Hydrogen Production: Potential Impacts to Utilities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing ToolInternationalReport FY2014 -EnergyEnergy 1: systems analysis O F4May,!1 =

  9. Webinar November 19: Potential Strategies for Integrating Solar...

    Office of Environmental Management (EM)

    Webinar November 19: Potential Strategies for Integrating Solar Hydrogen Production and Concentrating Solar Power: A Systems Analysis Webinar November 19: Potential Strategies for...

  10. Cogeneration systems and processes for treating hydrocarbon containing formations

    DOE Patents [OSTI]

    Vinegar, Harold J. (Bellaire, TX); Fowler, Thomas David (Houston, TX); Karanikas, John Michael (Houston, TX)

    2009-12-29

    A system for treating a hydrocarbon containing formation includes a steam and electricity cogeneration facility. At least one injection well is located in a first portion of the formation. The injection well provides steam from the steam and electricity cogeneration facility to the first portion of the formation. At least one production well is located in the first portion of the formation. The production well in the first portion produces first hydrocarbons. At least one electrical heater is located in a second portion of the formation. At least one of the electrical heaters is powered by electricity from the steam and electricity cogeneration facility. At least one production well is located in the second portion of the formation. The production well in the second portion produces second hydrocarbons. The steam and electricity cogeneration facility uses the first hydrocarbons and/or the second hydrocarbons to generate electricity.

  11. Water Formatics Engineered formation of nanobubbles networks

    E-Print Network [OSTI]

    Jacob, Eshel Ben

    Water Formatics Engineered formation of nanobubbles networks in water and aqueous solutions We present the idea that the anomalous effects of rf-treatments of water and aqueous solution resulted from-bubble exchange interactions. These exchange interactions are mediated by the ordering of the water molecules

  12. Assessing geothermal energy potential in upstate New York. Final report

    SciTech Connect (OSTI)

    Hodge, D.S.

    1996-08-01

    The potential of geothermal energy for future electric power generation in New York State is evaluated using estimates of temperatures of geothermal reservoir rocks. Bottom hole temperatures from over 2000 oil and gas wells in the region were integrated into subsurface maps of the temperatures for specific geothermal reservoirs. The Theresa/Potsdam formation provides the best potential for extraction of high volumes of geothermal fluids. The evaluation of the Theresa/Potsdam geothermal reservoir in upstate New York suggests that an area 30 miles east of Elmira, New York has the highest temperatures in the reservoir rock. The Theresa/Potsdam reservoir rock should have temperatures about 136 {degrees}C and may have as much as 450 feet of porosity in excess of 8%. Estimates of the volumes of geothermal fluids that can be extracted are provided and environmental considerations for production from a geothermal well is discussed.

  13. 2014 Regents of the University of Minnesota. All rights reserved. University of Minnesota Extension is an equal opportunity educator and employer. In accordance with the Americans with Disabilities Act, this material is available in alternative formats u

    E-Print Network [OSTI]

    Minnesota, University of

    were obtained from the State University of New York through its controlled breeding program while Act, this material is available in alternative formats upon request. Direct requests to the Extension FOR ENERGY? Willows have been regarded to have a high biomass production potential for energy. As a Short

  14. Irregular spacing of heat sources for treating hydrocarbon containing formations

    SciTech Connect (OSTI)

    Miller, David Scott; Uwechue, Uzo Philip

    2012-06-12

    A method for treating a hydrocarbon containing formation includes providing heat input to a first section of the formation from one or more heat sources located in the first section. Fluids are produced from the first section through a production well located at or near the center of the first section. The heat sources are configured such that the average heat input per volume of formation in the first section increases with distance from the production well.

  15. Potential Implications for Cataract Formation - Redox Changes at the Sulfur

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram Guidelines This document outlines the majorL.Posters9558-E-12BAtom

  16. Effects of momentum-dependent nuclear potential on two-nucleon correlation functions and light cluster production in intermediate energy heavy-ion collisions RID A-2398-2009 

    E-Print Network [OSTI]

    Chen, LW; Ko, Che Ming; Li, Ba.

    2004-01-01

    Using an isospin- and momentum-dependent transport model, we study the effects due to the momentum dependence of isoscalar nuclear potential as well as that of symmetry potential on two-nucleon correlation functions and ...

  17. Electrochemical formation of field emitters

    SciTech Connect (OSTI)

    Bernhardt, Anthony F. (Berkeley, CA)

    1999-01-01

    Electrochemical formation of field emitters, particularly useful in the fabrication of flat panel displays. The fabrication involves field emitting points in a gated field emitter structure. Metal field emitters are formed by electroplating and the shape of the formed emitter is controlled by the potential imposed on the gate as well as on a separate counter electrode. This allows sharp emitters to be formed in a more inexpensive and manufacturable process than vacuum deposition processes used at present. The fabrication process involves etching of the gate metal and the dielectric layer down to the resistor layer, and then electroplating the etched area and forming an electroplated emitter point in the etched area.

  18. Solar Thermochemical Hydrogen Production Research (STCH): Thermochemic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the production of hydrogen and identifies the critical path challenges to the commercial potential of each cycle. Solar Thermochemical Hydrogen Production Research (STCH):...

  19. Planet formation and migration

    E-Print Network [OSTI]

    John C B Papaloizou; Caroline Terquem

    2005-11-28

    We review the observations of extrasolar planets, ongoing developments in theories of planet formation, orbital migration, and the evolution of multiplanet systems.

  20. In situ oxidation of subsurface formations

    DOE Patents [OSTI]

    Beer, Gary Lee (Houston, TX); Mo, Weijian (Sugar Land, TX); Li, Busheng (Houston, TX); Shen, Chonghui (Calgary, CA)

    2011-01-11

    Methods and systems for treating a hydrocarbon containing formation described herein include providing heat to a first portion of the formation from a plurality of heaters in the first portion, producing produced through one or more production wells in a second portion of the formation, reducing or turning off heat provided to the first portion after a selected time, providing an oxidizing fluid through one or more of the heater wells in the first portion, providing heat to the first portion and the second portion through oxidation of at least some hydrocarbons in the first portion, and producing fluids through at least one of the production wells in the second portion. The produced fluids may include at least some oxidized hydrocarbons produced in the first portion.

  1. Polymorphism control and the formation of organic molecular nanocrystals

    E-Print Network [OSTI]

    Yang, Xiaochuan, Ph. D. Massachusetts Institute of Technology

    2014-01-01

    The formation of organic molecular nanocrystals is a topic of great interest in the pharmaceutical industry because of the potential increase in dissolution rate and solubility of organic crystals below 1 ptm and their ...

  2. A Theoretical Study of the Reaction Mechanism and Product Branching Ratios of C2H + C2H4 and Related Reactions on the C4H5 Potential Energy Surface

    E-Print Network [OSTI]

    Kaiser, Ralf I.

    (T)/cc-pVQZ//B3LYP/6-311G** calculations of various stationary points on the C4H5 global potential energy surface and Related Reactions on the C4H5 Potential Energy Surface Sergey P. Krishtal and Alexander M. Mebel and absorb solar irradiation preventing Titan's atmosphere from heating up and, thus, being one

  3. Acid Fracturing Feasibility Study for Heterogeneous Carbonate Formation 

    E-Print Network [OSTI]

    Suleimenova, Assiya

    2015-03-03

    Acid fracturing is a stimulation technique that is commonly used by the industry to increase productivity or injectivity of wells in carbonate reservoirs. To determine a feasibility of acid fracturing treatment for a heterogeneous formation...

  4. Optimal Multi-Temperature delivery frequency for small format stores

    E-Print Network [OSTI]

    Barooah, Mayurpankhi

    2015-01-01

    Retailers are exploring more efficient ways to deliver to small format stores that demand frequent and small volume deliveries from Distribution Centers. The need to deliver products at different temperatures, viz. Ambient, ...

  5. An empirical examination of the role of characteristics of the format, standard setting alliance and alliance partners in the market acceptance of formats 

    E-Print Network [OSTI]

    Dan, Sujan Mathew

    2009-05-15

    New product introductions rely on technologies that are often subject to strongly contested standards wars. In an attempt to ensure that the technical formats that their products are built upon, are the ones that gain ...

  6. Colorado Potential Geothermal Pathways

    SciTech Connect (OSTI)

    Zehner, Richard E.

    2012-02-01

    Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Publication Date: 2012 Title: Colorado PRS Cool Fairways Edition: First Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains the weakened basement rocks. Isostatic gravity was utilized to identify structural basin areas, characterized by gravity low values reflecting weakened basement rocks. Together interpreted regional fault zones and basin outlines define geothermal "exploration fairways", where the potential exists for deep, superheated fluid flow in the absence of Pliocene or younger volcanic units Spatial Domain: Extent: Top: 4544698.569273 m Left: 144918.141004 m Right: 763728.391299 m Bottom: 4094070.397932 m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal Code: 80309-0216 Country: USA Contact Telephone: 303-492-6782 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS’1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System ’1984 (WGS ’1984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shape file

  7. Advanced Horizontal Well Recirculation Systems for Geothermal Energy Recovery in Sedimentary and Crystalline Formations

    SciTech Connect (OSTI)

    Bruno, Mike S.; Detwiler, Russell L.; Lao, Kang; Serajian, Vahid; Elkhoury, Jean; Diessl, Julia; White, Nicky

    2012-12-13

    There is increased recognition that geothermal energy resources are more widespread than previously thought, with potential for providing a significant amount of sustainable clean energy worldwide. Recent advances in drilling, completion, and production technology from the oil and gas industry can now be applied to unlock vast new geothermal resources, with some estimates for potential electricity generation from geothermal energy now on the order of 2 million megawatts. The primary objectives of this DOE research effort are to develop and document optimum design configurations and operating practices to produce geothermal power from hot permeable sedimentary and crystalline formations using advanced horizontal well recirculation systems. During Phase I of this research project Terralog Technologies USA and The University of California, Irvine (UCI), have completed preliminary investigations and documentation of advanced design concepts for paired horizontal well recirculation systems, optimally configured for geothermal energy recovery in permeable sedimentary and crystalline formations of varying structure and material properties. We have also identified significant geologic resources appropriate for application of such technology. The main challenge for such recirculation systems is to optimize both the design configuration and the operating practices for cost-effective geothermal energy recovery. These will be strongly influenced by sedimentary formation properties, including thickness and dip, temperature, thermal conductivity, heat capacity, permeability, and porosity; and by working fluid properties.

  8. Notes on Star Formation

    E-Print Network [OSTI]

    Krumholz, Mark R

    2015-01-01

    This book provides an introduction to the field of star formation at a level suitable for graduate students or advanced undergraduates in astronomy or physics. The structure of the book is as follows. The first two chapters begin with a discussion of observational techniques, and the basic phenomenology they reveal. The goal is to familiarize students with the basic techniques that will be used throughout, and to provide a common vocabulary for the rest of the book. The next five chapters provide a similar review of the basic physical processes that are important for star formation. Again, the goal is to provide a basis for what follows. The remaining chapters discuss star formation over a variety of scales, starting with the galactic scale and working down to the scales of individual stars and their disks. The book concludes with a brief discussion of the clearing of disks and the transition to planet formation. The book includes five problem sets, complete with solutions.

  9. Word formation in Thadou

    E-Print Network [OSTI]

    Haokip, Pauthang

    2014-01-01

    As stated above, compound words of Thadou are mostlyNote that the resulting new words are always nouns. a. b. c.bad’ (negative) Haokip: Word formation in Thadou a. â-sâa ?

  10. Formation of metal oxides by cathodic arc deposition

    SciTech Connect (OSTI)

    Anders, S.; Anders, A.; Rubin, M.; Wang, Z.; Raoux, S.; Kong, F.; Brown, I.G.

    1995-03-01

    Metal oxide thin films are of interest for a number of applications. Cathodic arc deposition, an established, industrially applied technique for formation of nitrides (e.g. TiN), can also be used for metal oxide thin film formation. A cathodic arc plasma source with desired cathode material is operated in an oxygen atmosphere, and metal oxides of various stoichiometric composition can be formed on different substrates. We report here on a series of experiments on metal oxide formation by cathodic arc deposition for different applications. Black copper oxide has been deposited on ALS components to increase the radiative heat transfer between the parts. Various metal oxides such as tungsten oxide, niobium oxide, nickel oxide and vanadium oxide have been deposited on ITO glass to form electrochromic films for window applications. Tantalum oxide films are of interest for replacing polymer electrolytes. Optical waveguide structures can be formed by refractive index variation using oxide multilayers. We have synthesized multilayers of Al{sub 2}O{sub 3}/Y{sub 2}O{sub 3}/AI{sub 2}O{sub 3}/Si as possible basic structures for passive optoelectronic integrated circuits, and Al{sub 2-x}Er{sub x}O{sub 3} thin films with a variable Er concentration which is a potential component layer for the production of active optoelectronic integrated devices such as amplifiers or lasers at a wavelength of 1.53 {mu}m. Aluminum and chromium oxide films have been deposited on a number of substrates to impart improved corrosion resistance at high temperature. Titanium sub-oxides which are electrically conductive and corrosion resistant and stable in a number of aggressive environments have been deposited on various substrates. These sub-oxides are of great interest for use in electrochemical cells.

  11. Formation of dl-limonene in used tire vacuum pyrolysis oils. [dipentene

    SciTech Connect (OSTI)

    Pakdel, H.; Roy, C.; Aubin, H.; Jean, G. ); Coulombe, S. )

    1991-09-01

    Tire recycling has become an important environmental issue recently due to the huge piles of tires that threaten the environment. Thermal decomposition of tire, a synthetic rubber material, enables the recovery of carbon black and liquid hydrocarbon oils. Both have potential economic values. Pyrolysis oils obtained under vacuum conditions contain a significant portion of a volatile, naptha-like fraction with an octane number similar to petroleum naphtha fraction, in addition, contains approximately 15% limonene. Potential applications of vacuum pyrolysis oil and carbon black have been investigated. However, the process economics is greatly influenced by the quality of the oil and carbon black products. This paper discusses limonene formation during used tire vacuum pyrolysis and its postulated reaction mechanism. The limonene separation method from pyrolysis oil, as well as its purification in laboratory scale, and structural characterization are discussed. Large-scale limonene separation and purification is under investigation.

  12. Electrochemical formation of field emitters

    DOE Patents [OSTI]

    Bernhardt, A.F.

    1999-03-16

    Electrochemical formation of field emitters, particularly useful in the fabrication of flat panel displays is disclosed. The fabrication involves field emitting points in a gated field emitter structure. Metal field emitters are formed by electroplating and the shape of the formed emitter is controlled by the potential imposed on the gate as well as on a separate counter electrode. This allows sharp emitters to be formed in a more inexpensive and manufacturable process than vacuum deposition processes used at present. The fabrication process involves etching of the gate metal and the dielectric layer down to the resistor layer, and then electroplating the etched area and forming an electroplated emitter point in the etched area. 12 figs.

  13. Adaptive Optics in Star Formation

    E-Print Network [OSTI]

    Wolfgang Brandner

    2003-09-29

    Over the past ten years, the concept of adaptive optics has evolved from early experimental stages to a standard observing tool now available at almost all major optical and near-infrared telescope facilities. Adaptive optics will also be essential in exploiting the full potential of the large optical/infrared interferometers currently under construction. Both observations with high-angular resolution and at high contrast, and with a high point source sensitivity are facilitated by adaptive optics. Among the areas which benefit most from the use of adaptive optics are studies of the circumstellar environment (envelopes, disks, outflows), substellar companions and multiple systems, and dense young stellar populations. This contribution highlights some of the recent advances in star formation studies facilitated by adaptive optics, and gives a brief tutorial on optimized observing and data reduction strategies.

  14. Coring in deep hardrock formations

    SciTech Connect (OSTI)

    Drumheller, D.S.

    1988-08-01

    The United States Department of Energy is involved in a variety of scientific and engineering feasibility studies requiring extensive drilling in hard crystalline rock. In many cases well depths extend from 6000 to 20,000 feet in high-temperature, granitic formations. Examples of such projects are the Hot Dry Rock well system at Fenton Hill, New Mexico and the planned exploratory magma well near Mammoth Lakes, California. In addition to these programs, there is also continuing interest in supporting programs to reduce drilling costs associated with the production of geothermal energy from underground sources such as the Geysers area near San Francisco, California. The overall progression in these efforts is to drill deeper holes in higher temperature, harder formations. In conjunction with this trend is a desire to improve the capability to recover geological information. Spot coring and continuous coring are important elements in this effort. It is the purpose of this report to examine the current methods used to obtain core from deep wells and to suggest projects which will improve existing capabilities. 28 refs., 8 figs., 2 tabs.

  15. Coke formation in visbreaking process

    SciTech Connect (OSTI)

    Yan, T.Y. )

    1987-04-01

    Visbreaking is a mild cracking process primarily used to reduce residual oil viscosity and thus decrease the amount of cutter stock required for blending to heavy fuels specification. It can also be used to produce incremental quantities of gasoline, middle distillates and catalytic cracker feeds. This process was widely used in the 1930s and 1940s and became obsolete until a few years ago. When the need for increased conversion of residues to light products became desirable, visbreaking offered economic advantages to many refining schemes - especially in Western Europe. Between 1978-1981, Exxon brought on stream seven visbreakers ranging from 1900 to 9100 tons/SD capacity. In January 1983, the world-wide visbreaking capacity was over 2 MM B/SD. The visbreaking process and its application in refinery operations have been well described. In general, the process economics improve as the process severity is increased but it is limited by coke formation in the process. For this reason, they have studied the kinetics of coke formation in the visbreaking process.

  16. Water issues associated with heavy oil production.

    SciTech Connect (OSTI)

    Veil, J. A.; Quinn, J. J.; Environmental Science Division

    2008-11-28

    Crude oil occurs in many different forms throughout the world. An important characteristic of crude oil that affects the ease with which it can be produced is its density and viscosity. Lighter crude oil typically can be produced more easily and at lower cost than heavier crude oil. Historically, much of the nation's oil supply came from domestic or international light or medium crude oil sources. California's extensive heavy oil production for more than a century is a notable exception. Oil and gas companies are actively looking toward heavier crude oil sources to help meet demands and to take advantage of large heavy oil reserves located in North and South America. Heavy oil includes very viscous oil resources like those found in some fields in California and Venezuela, oil shale, and tar sands (called oil sands in Canada). These are described in more detail in the next chapter. Water is integrally associated with conventional oil production. Produced water is the largest byproduct associated with oil production. The cost of managing large volumes of produced water is an important component of the overall cost of producing oil. Most mature oil fields rely on injected water to maintain formation pressure during production. The processes involved with heavy oil production often require external water supplies for steam generation, washing, and other steps. While some heavy oil processes generate produced water, others generate different types of industrial wastewater. Management and disposition of the wastewater presents challenges and costs for the operators. This report describes water requirements relating to heavy oil production and potential sources for that water. The report also describes how water is used and the resulting water quality impacts associated with heavy oil production.

  17. Pottery Production

    E-Print Network [OSTI]

    Nicholson, Paul T.

    2009-01-01

    Paul T. Nicholson. ) Pottery Production, Nicholson, UEE 2009Short Citation: Nicholson 2009, Pottery Production. UEE.Paul T. , 2009, Pottery Production. In Willeke Wendrich (

  18. Cordage Production

    E-Print Network [OSTI]

    Veldmeijer, André J.

    2009-01-01

    294: fig. 15-3). Cordage Production, Veldmeijer, UEE 2009Short Citation: Veldmeijer, 2009, Cordage Production. UEE.André J. , 2009, Cordage Production. In Willeke Wendrich (

  19. Glass Production

    E-Print Network [OSTI]

    Shortland, Andrew

    2009-01-01

    40, pp. 162 - 186. Glass Production, Shortland, UEE 2009AINES Short Citation: Shortland 2009, Glass Production. UEE.Andrew, 2009, Glass Production. In Willeke Wendrich (ed. ),

  20. Productivity prediction model based on Bayesian analysis and productivity console 

    E-Print Network [OSTI]

    Yun, Seok Jun

    2005-08-29

    -THEN rule ....................... 91 23 Detailed KB schema on plan ...................... 96 24 Productivity console shows a project level view ............ 100 25 Productivity console shows a team level view ............. 101 26 Format of the weekly status... activities has been accomplished, deter- mine the current productivity of individual, team and project, or discover if resources are adequate. Without the correct information, it becomes impossible to actively monitor project failures and identify appropriate...

  1. Methods for synthesizing alane without the formation of adducts and free of halides

    DOE Patents [OSTI]

    Zidan, Ragaiy; Knight, Douglas A; Dinh, Long V

    2013-02-19

    A process is provided to synthesize an alane without the formation of alane adducts as a precursor. The resulting product is a crystallized .alpha.-alane and is a highly stable product and is free of halides.

  2. Pair potential for FeHe N. Juslin *, K. Nordlund

    E-Print Network [OSTI]

    Nordlund, Kai

    formation and migration. Ab initio data for short range Fe­He dimer interaction is used to describe the high collision cascades have been extensively studied with MD simulations to determine primary damage formation shows that a pair potential is enough to describe simple He defects and migration of He in iron

  3. (Non) formation of methanol by direct hydrogenation of formate on copper catalysts

    SciTech Connect (OSTI)

    Yang, Yong; Mims, Charles A.; Disselkamp, Robert S.; Kwak, Ja Hun; Peden, Charles HF; Campbell, C. T.

    2010-10-14

    We have attempted to hydrogenate adsorbed formate species on copper catalysts to probe the importance of this postulated mechanistic step in methanol synthesis. Surface formate coverages up to 0.25 were produced at temperatures between 413K and 453K on supported (Cu/SiO2) copper and unsupported copper catalysts. The adlayers were produced by various methods including (1) steady state catalytic conditions in CO2-H2 (3:1, 6 bar) atmospheres, and (2) by exposure of the catalysts to formic acid. As reported in earlier work, the catalytic surface at steady state contains bidentate formate species with coverages up to saturation levels of ~ 0.25 at the low temperatures of this study. The reactivity of these formate adlayers was investigated at relevant reaction temperatures in atmospheres containing up to 6 bar H2 partial pressure by simultaneous mass spectrometry (MS) and infrared (IR) spectroscopy measurements. The yield of methanol during the attempted hydrogenation (“titration”) of these adlayers was insignificant (<0.2 mol % of the formate adlayer) even in dry hydrogen partial pressures up to 6 bar. Hydrogen titration of formate species produced from formic acid also failed to produce significant quantities of methanol, and attempted titration in gases consisting of CO-hydrogen mixtures or dry CO2 were also unproductive. The formate decomposition kinetics, measured by IR, were also unaffected by these changes in the gas composition. Similar experiments on unsupported copper also failed to show any methanol. From these results, we conclude that methanol synthesis on copper cannot result from the direct hydrogenation of (bidentate) formate species in simple steps involving adsorbed H species alone. Furthermore, experiments performed on both supported (Cu/SiO2) and unsupported copper catalysts gave similar results implying that the methanol synthesis reaction mechanism only involves metal surface chemistry. Pre-exposure of the bidentate formate adlayer to oxidation by O2 or N2O produces a change to a monodentate configuration. Attempted titration of this monodentate formate/O coadsorbed layer in dry hydrogen produces significant quantities of methanol, although decomposition of formate to carbon dioxide and hydrogen remains the dominant reaction pathway. Simultaneous production of water is also observed during this titration as the copper surface is re-reduced. These results indicate that co-adsorbates related to surface oxygen or water-derived species may be critical to methanol production on copper, perhaps assisting in the hydrogenation of adsorbed formate to adsorbed methoxyl.

  4. Naked Singularity formation in scalar field collapse

    E-Print Network [OSTI]

    Rituparno Goswami; Pankaj S Joshi

    2004-10-28

    We construct here a class of collapsing scalar field models with a non-zero potential, which result in a naked singularity as collapse end state. The weak energy condition is satisfied by the collapsing configuration. It is shown that physically it is the rate of collapse that governs either the black hole or naked singularity formation as the final state for the dynamical evolution. It is seen that the cosmic censorship is violated in dynamical scalar field collapse.

  5. NEWS & VIEWS PATTERN FORMATION

    E-Print Network [OSTI]

    Loss, Daniel

    no apologies for investing energy into problems of specific application to a particular process in nature, and having the curiosity to want to find out how they work. The general public, and especially children flow/surface growth system in a rarely explored region of parameter space for such pattern formation

  6. Isolation, Preliminary Characterization and Preliminary Assessment of Scale-Up Potential of Photosynthetic Microalgae for the Production of Both Biofuels and Bio-Active Molecules in the U.S. and Canada: Cooperative Research and Development Final Report, CRADA Number CRD-10-372

    SciTech Connect (OSTI)

    Pienkos, P.

    2012-09-01

    Combustion flue gases are a major contributor to carbon dioxide emissions into the Earth's atmosphere, a factor that has been linked to the possible global climate change. It is, therefore, critical to begin thinking seriously about ways to reduce this influx into the atmosphere. Using carbon dioxide from fossil fuel combustion as a feedstock for the growth, photosynthetic microorganisms can provide a large sink for carbon assimilation as well as a feedstock for the production of significant levels of biofuels. Combining microalgal farming with fossil fuel energy production has great potential to diminish carbon dioxide releases into the atmosphere, as well as contribute to the production of biofuels (e.g., biodiesel, renewable diesel and gasoline and jet fuel) as well as valuable co-products such as animal feeds and green chemicals. CO2 capture may be a regulatory requirement in future new coal or natural gas power plants and will almost certainly become an opportunity for commerce, the results of such studies may provide industries in the US and Canada with both regulatory relief and business opportunities as well as the ability to meet environmental and regulatory requirements, and to produce large volumes of fuels and co-products.

  7. INTELLIGENT COMPUTING SYSTEM FOR RESERVOIR ANALYSIS AND RISK ASSESSMENT OF THE RED RIVER FORMATION

    SciTech Connect (OSTI)

    Mark A. Sippel; William C. Carrigan; Kenneth D. Luff; Lyn Canter

    2003-11-12

    Integrated software has been written that comprises the tool kit for the Intelligent Computing System (ICS). The software tools in ICS have been developed for characterization of reservoir properties and evaluation of hydrocarbon potential using a combination of inter-disciplinary data sources such as geophysical, geologic and engineering variables. The ICS tools provide a means for logical and consistent reservoir characterization and oil reserve estimates. The tools can be broadly characterized as (1) clustering tools, (2) neural solvers, (3) multiple-linear regression, (4) entrapment-potential calculator and (5) file utility tools. ICS tools are extremely flexible in their approach and use, and applicable to most geologic settings. The tools are primarily designed to correlate relationships between seismic information and engineering and geologic data obtained from wells, and to convert or translate seismic information into engineering and geologic terms or units. It is also possible to apply ICS in a simple framework that may include reservoir characterization using only engineering, seismic, or geologic data in the analysis. ICS tools were developed and tested using geophysical, geologic and engineering data obtained from an exploitation and development project involving the Red River Formation in Bowman County, North Dakota and Harding County, South Dakota. Data obtained from 3D seismic surveys, and 2D seismic lines encompassing nine prospective field areas were used in the analysis. The geologic setting of the Red River Formation in Bowman and Harding counties is that of a shallow-shelf, carbonate system. Present-day depth of the Red River formation is approximately 8000 to 10,000 ft below ground surface. This report summarizes production results from well demonstration activity, results of reservoir characterization of the Red River Formation at demonstration sites, descriptions of ICS tools and strategies for their application.

  8. Lethal synergism between organic and inorganic wood preservatives via formation of an unusual lipophilic ternary complex

    SciTech Connect (OSTI)

    Sheng, Zhi-Guo; Li, Yan; Fan, Rui-Mei; Chao, Xi-Juan; Zhu, Ben-Zhan; Linus Pauling Institute, Oregon State University, Corvallis, OR 97331

    2013-02-01

    We have shown previously that exposing bacteria to wood preservatives pentachlorophenol (PCP) and copper-containing compounds together causes synergistic toxicity. However, it is not clear whether these findings also hold true in mammalian cells; and if so, what is the underlying molecular mechanism? Here we show that PCP and a model copper complex bis-(1,10-phenanthroline) cupric (Cu(OP){sub 2}), could also induce synergistic cytotoxicity in human liver cells. By the single crystal X-ray diffraction and atomic absorption spectroscopy assay, the synergism was found to be mainly due to the formation of a lipophilic ternary complex with unusual structural and composition characteristics and subsequent enhanced cellular copper uptake, which markedly promoted cellular reactive oxygen species (ROS) production, leading to apoptosis by decreasing mitochondrial membrane potential, increasing pro-apoptotic protein expression, releasing cytochrome c from mitochondria and activating caspase-3, and -9. Analogous results were observed with other polychlorinated phenols (PCPs) and Cu(OP){sub 2}. Synergistic cytotoxicity could be induced by PCP/Cu(OP){sub 2} via formation of an unusual lipophilic complex in HepG2 cells. The formation of ternary complexes with similar lipophilic character could be of relevance as a general mechanism of toxicity, which should be taken into consideration especially when evaluating the toxicity of environmental pollutants found at currently-considered non- or sub-toxic concentrations. -- Highlights: ? The combination of PCP/Cu(OP){sub 2} induces synergistic cytotoxicity in HepG2 cells. ? The synergism is mainly due to forming a lipophilic ternary complex between them. ? The formation of lipophilic ternary complex enhances cellular copper uptake. ? PCP/Cu(OP){sub 2} stimulates the cellular ROS production. ? The ROS promoted by PCP/Cu(OP){sub 2} induces mitochondria-dependent apoptosis.

  9. Cosmic Ray production of Beryllium and Boron at high redshift

    E-Print Network [OSTI]

    Emmanuel Rollinde; David Maurin; Elisabeth Vangioni; Keith A. Olive; Susumu Inoue

    2007-07-13

    Recently, new observations of Li6 in Pop II stars of the galactic halo have shown a surprisingly high abundance of this isotope, about a thousand times higher than its predicted primordial value. In previous papers, a cosmological model for the cosmic ray-induced production of this isotope in the IGM has been developed to explain the observed abundance at low metallicity. In this paper, given this constraint on the Li6, we calculate the non-thermal evolution with redshift of D, Be, and B in the IGM. In addition to cosmological cosmic ray interactions in the IGM, we include additional processes driven by SN explosions: neutrino spallation and a low energy component in the structures ejected by outflows to the IGM. We take into account CNO CRs impinging on the intergalactic gas. Although subdominant in the galactic disk, this process is shown to produce the bulk of Be and B in the IGM, due to the differential metal enrichment between structures (where CRs originate) and the IGM. We also consider the resulting extragalactic gamma-ray background which we find to be well below existing data. The computation is performed in the framework of hierarchical structure formation considering several star formation histories including Pop III stars. We find that D production is negligible and that a potentially detectable Be and B plateau is produced by these processes at the time of the formation of the Galaxy (z ~ 3).

  10. Sustainable and efficient biohydrogen production via electrohydrogenesis

    E-Print Network [OSTI]

    Sustainable and efficient biohydrogen production via electrohydrogenesis Shaoan Cheng and Bruce E biohydrogen production past the endothermic barrier im- posed by the microbial formation of fermentation dead fuels such as natural gas. Here, we show that efficient and sustainable hydrogen production is possible

  11. STEP PRODUCT INFORMATION MODELS IN AGILE MANUFACTURING

    E-Print Network [OSTI]

    Nagi, Rakesh

    of converting product design data from Initial Graphic Exchange Specification (IGES) format into Standard to the development of the STandard for the Exchange of Product model data (STEP) standard (ISO 10303). STEP aims exchange, over the various phases of the product life cycle. Development of a new standard has introduced

  12. Emptiness Formation Probability

    E-Print Network [OSTI]

    Nicholas Crawford; Stephen Ng; Shannon Starr

    2014-12-30

    We present rigorous upper and lower bounds on the emptiness formation probability for the ground state of a spin-$1/2$ Heisenberg XXZ quantum spin system. For a $d$-dimensional system we find a rate of decay of the order $\\exp(-c L^{d+1})$ where $L$ is the sidelength of the box in which we ask for the emptiness formation event to occur. In the $d=1$ case this confirms previous predictions made in the integrable systems community, though our bounds do not achieve the precision predicted by Bethe ansatz calculations. On the other hand, our bounds in the case $d \\geq 2$ are new. The main tools we use are reflection positivity and a rigorous path integral expansion which is a variation on those previously introduced by Toth, Aizenman-Nachtergaele and Ueltschi.

  13. The Availability and Price of Petroleum and Petroleum Products...

    Gasoline and Diesel Fuel Update (EIA)

    impact demand for petroleum products. Together with robust levels of current global crude oil production, and the potential for additional Iranian exports in 2016, oil prices...

  14. Proteases Potentiate Fibrocyte Differentiation 

    E-Print Network [OSTI]

    Galvis Carvajal, Elkin David

    2013-09-27

    , and fibrosis. Currently, there is not a solid understanding of the mechanism that triggers initiation of scar tissue formation in healing wounds and fibrosing diseases such as chronic kidney disease, scleroderma, chronic asthma, and idiopathic pulmonary...

  15. Program Potential: Estimates of Federal Energy Cost Savings from Energy Efficient Procurement

    E-Print Network [OSTI]

    Taylor, Margaret

    2014-01-01

    LED Lighting .Substitute Products  LED Lighting  Currently, incandescentCFLs. Alternatively, LED lighting could potentially take on

  16. Renewable Energy Economic Potential

    Broader source: Energy.gov [DOE]

    The report describes a geospatial analysis method to estimate the economic potential of several renewable resources available for electricity generation in the United States. Economic potential, one measure of renewable generation potential, is defined in this report as the subset of the available resource technical potential where the cost required to generate the electricity (which determines the minimum revenue requirements for development of the resource) is below the revenue available in terms of displaced energy and displaced capacity.

  17. Petroleum Engineering 321 Formation Evaluation

    E-Print Network [OSTI]

    measurements to estimate hydrocarbon reserves and petrophysical properties of the formation such as porosity Description: Introduction to well-log interpretation for formation evaluation of hydrocarbon, net pay thickness, water/hydrocarbon saturation, permeability, and saturation-dependent capillary

  18. Market Trial: Selling Off-Grid Lighting Products in Rural Kenya

    E-Print Network [OSTI]

    Tracy, Jennifer

    2012-01-01

    trial of off-grid LED lighting products in Maai Mahiu, aa relatively costly LED lighting product. If market spoilageand higher quality LED lighting products. Another potential

  19. EVALUATION OF THE FLOOD POTENTIAL OF THE SOUTH HOUSE (BLINEBRY) FIELD, LEA COUNTY, NEW MEXICO

    SciTech Connect (OSTI)

    L. Stephen Melzer

    2000-12-01

    The Blinebry (Permian) formation of eastern Lea County, NM has a long history of exploitation for petroleum and continues even today to be a strong target horizon for new drilling in the Permian Basin. Because of this long-standing interest it should be classified of strategic interest to domestic oil production; however, the formation has gained a reputation as a primary production target with limited to no flooding potential. In late May of 1999, a project to examine the feasibility of waterflooding the Blinebry formation was proposed to the U.S. Department of Energy's National Petroleum Technology Office (Tulsa, OK). A new well was proposed in one region (the South House area) to examine the reputation by acquiring core and borehole logging data for the collection of formation property data in order to conduct the waterflood evaluation. Notice of the DOE award was received on August 19, 1999 and the preparations for drilling, coring and logging were immediately made for a drilling start on 9/9/99. The Blinebry formation at 6000 feet, foot depth was reached on 9/16/99 and the coring of two 60 foot intervals of the Blinebry was completed on 9/19/99 with more than 98% core recovery. The well was drilled to a total depth of 7800 feet and the Blinebry interval was logged with spectral gamma ray, photoelectric cross section, porosity, resistivity, and borehole image logs on 8/24/99. The well was determined to be likely productive from the Blinebry interval and five & 1/2 inch casing was cemented in the hole on 9/25/99. Detailed core descriptions including environment of deposition have been accomplished. Whole core (a 4-inch diameter) and plug (1.5 inch diameter) testing for formation properties has been completed and are reported. Acquisition and analysis of the borehole logging results have been completed and are reported. Perforation of the Blinebry intervals was accomplished on November 8, 1999. The intervals were acidized and hydrofraced on 11/9 and 11/11 respectively. Production of oil and gas has been established with several months of production now available to make a reserve analysis. Production histories and reserves estimation are provided. An assessment of the flood potential for the South House project area has been completed with work concentrated on South House rock property and pay thickness characterization and analog studies. For the analogs, the North Robertson area, located twenty miles to the northeast, and the Teague Field, located 20 miles to the south, have been utilized due to their readily available database and previous waterflood studies. The South House area does appear to merit further examination as the rock quality compares favorably with both analog Fields; however, current well spacings of 40-acres will provide only marginal economics based upon $23.00/barrel oil prices. Permeability and porosity relationships are provided as a conditional demonstration that rock quality may be sufficient for successful waterflooding of the project area. Further rock property work and pay continuity studies are recommended.

  20. Systems and methods for producing hydrocarbons from tar sands formations

    DOE Patents [OSTI]

    Li, Ruijian (Katy, TX); Karanikas, John Michael (Houston, TX)

    2009-07-21

    A system for treating a tar sands formation is disclosed. A plurality of heaters are located in the formation. The heaters include at least partially horizontal heating sections at least partially in a hydrocarbon layer of the formation. The heating sections are at least partially arranged in a pattern in the hydrocarbon layer. The heaters are configured to provide heat to the hydrocarbon layer. The provided heat creates a plurality of drainage paths for mobilized fluids. At least two of the drainage paths converge. A production well is located to collect and produce mobilized fluids from at least one of the converged drainage paths in the hydrocarbon layer.

  1. EIS-0249: Medical Isotopes Production Project

    Broader source: Energy.gov [DOE]

    This EIS evaluates the potential environmental impacts of a proposal to establish a production capability for molybdenum-99 (Mo-99) and related medical isotopes.

  2. Methane Digesters and Biogas Recovery - Masking the Environmental Consequences of Industrial Concentrated Livestock Production

    E-Print Network [OSTI]

    Di Camillo, Nicole G.

    2011-01-01

    Potential for Environmental Benefits and Renewable EnergyEnvironmental Benefits and Renewable Energy Production One

  3. The $?-?$ fishbone potential revisited

    E-Print Network [OSTI]

    J. P. Day; J. E. McEwen; M. Elhanafy; E. Smith; R. Woodhouse; Z. Papp

    2011-05-30

    The fishbone potential of composite particles simulates the Pauli effect by nonlocal terms. We determine the $\\alpha-\\alpha$ fishbone potential by simultaneously fitting to two-$\\alpha$ resonance energies, experimental phase shifts and three-$\\alpha$ binding energies. We found that essentially a simple gaussian can provide a good description of two-$\\alpha$ and three-$\\alpha$ experimental data without invoking three-body potentials.

  4. Field matric potential sensor

    DOE Patents [OSTI]

    Hubbell, Joel M. (Idaho Falls, ID); Sisson, James B. (Idaho Falls, ID)

    2001-01-01

    A method of determining matric potential of a sample, the method comprising placing the sample in a container, the container having an opening; and contacting the sample with a tensiometer via the opening. An apparatus for determining matric potential of a sample, the apparatus comprising a housing configured to receive a sample; a portable matric potential sensing device extending into the housing and having a porous member; and a wall closing the housing to insulate the sample and at least a portion of the matric potential sensing device including the porous member.

  5. The Effects of Reaction-Product Formation on the Reductive

    E-Print Network [OSTI]

    Saiers, James

    ) quartz by Fe(II) under conditions representative of an acid mine-drainage subsurface plume. The results in the aquifer of the Pinal Creek Basin (near Globe, Arizona), a system impacted by acid mine drainage (AMD-quality consequences, leading to the contamination of streams and drinking water wells with Mn(II) and acidity (7

  6. Fayalite Dissolution and Siderite Formation in Water-Saturated Supercritical CO2

    SciTech Connect (OSTI)

    Qafoku, Odeta; Kovarik, Libor; Kukkadapu, Ravi K.; Ilton, Eugene S.; Arey, Bruce W.; Tucek, Jiri; Felmy, Andrew R.

    2012-11-25

    Olivines, a significant constituent of basaltic rocks, have the potential to immobilize permanently CO2 after it is injected in the deep subsurface, due to carbonation reactions occurring between CO2 and the host rock. To investigate the reactions of fayalitic olivine with supercritical CO2 (scCO2) and formation of mineral carbonates, experiments were conducted at temperatures of 35 °C to 80 °C, 90 atm pressure and anoxic conditions. For every temperature, the dissolution of fayalite was examined both in the presence of liquid water and H2O-saturated scCO2. The experiments were conducted in a high pressure batch reactor at reaction time extending up to 85 days. The newly formed products were characterized using a comprehensive suite of bulk and surface characterization techniques X-ray diffraction, Transmission/Emission Mössbauer Spectroscopy, Scanning Electron Microscopy coupled with Focused Ion Beam, and High Resolution Transmission Electron Microscopy. Siderite with rhombohedral morphology was formed at 35 °C, 50 °C, and 80 °C in the presence of liquid water and scCO2. In H2O-saturated scCO2, the formation of siderite was confirmed only at high temperature (80 °C). Characterization of reacted samples in H2O-saturated scCO2 with high resolution TEM indicated that siderite formation initiated inside voids created during the initial steps of fayalite dissolution. Later stages of fayalite dissolution result in the formation of siderite in layered vertical structures, columns or pyramids with a rhombus base morphology.

  7. Production of Chemical Derivatives from Renewables

    SciTech Connect (OSTI)

    Davison, Brian; Nghiem, John; Donnelly, Mark; Tsai, Shih-Perng; Frye, John; Landucci, Ron; Griffin, Michael

    1996-06-01

    The purpose of this Cooperative Research and Development Agreement (CRADA) between Lockheed Martin Energy Research Corp., (LMER), Argonne National Laboratory (ANL), National Renewable Energy Laboratory (NREL), and Battelle Memorial Institute, operator of Pacific Northwest National Laboratory (PNNL), (collectively referred to as the 'Contractor'), and Applied Carbochemicals, Inc. (Participant) was to scale-up from bench results an economically promising and competitive process for the production of chemical derivatives from biologically produced succinic acid. The products that were under consideration for production from the succinic acid platform included 1,4-butanediol, {gamma}y-butyrolactone, 2-pyrrolidinone and N-methyl pyrrolidinone. Preliminary economic analyses indicated that this platform was competitive with the most recent petrochemical routes. The Contractors and participant are hereinafter jointly referred to as the 'Parties.' Research to date in succinic acid fermentation, separation and genetic engineering resulted in a potentially economical process based on the use of an Escherichia coli strain AFP111 with suitable characteristics for the production of succinic acid from glucose. Economic analysis has shown that higher value commodity chemicals can be economically produced from succinic acid based on preliminary laboratory findings and predicted catalytic parameters. At the time, the current need was to provide the necessary laboratory follow-up information to properly optimize, design and operate a pilot scale process. The purpose of the pilot work was to validate the integrated process, assure 'robustness' of the process, define operating conditions, and provide samples for potential customer evaluation. The data from the pilot scale process was used in design and development of a full scale production facility. A new strain, AFP111 (patented), discovered at ANL was tested and developed for process use at the Oak Ridge National Laboratory (ORNL) and ANL. The operability and product formation are attractive for this strain and effort was being directed at process development and optimization. Key to the transition from the fermentative production unit operation to the chemical catalysis is the 'clean-up' of fermentation broth, succinic acid formation from the salt, and succinic acid concentration. These steps are accomplished by a two-stage membrane ED separation process developed at AWL. Although the current process is well developed, possible modifications and optimization may be called for as development work continues in both the fermentation and catalysis areas. Research to date performed at PNNL has demonstrated that succinic acid can be converted to value added chemicals such as 1,4-butanediol, {gamma}-butyrolactone, N-methyl pyrrolidinone, and 2 pyrrolidinone with high conversion and selectivities. Continued research will be performed in catalyst development and reaction condition optimization to move this work from the bench scale to the pilot scale. All development of the process was guided by the NREL technoeconomic model. The model showed that direct aqueous phase catalysis of succinic acid to 1,4-butanediol, {gamma}-butyrolactone, and N-methyl pyrrolidinone provided significant economical advantages in the market, the margin, and the return on capital investment over existing petrochemical processes for production of these compounds. The model also provided the baseline for evaluating current laboratory research. As data from the bench and pilot work were made available the model was modified and appropriate sensitivities ran to determine impact of the process changes and optimization. The report will present the planned CRADA tasks followed by the results. The results section has an overall project summary follwed by more detailed reports from the participants. This is a nonproprietary report; additional proprietary information may be made available subject to acceptance of the appropriate proprietary information agreements.

  8. TRAINING SME'S FOR NEW PRODUCT DEVELOPMENT N. Bialis (1)

    E-Print Network [OSTI]

    Aristomenis, Antoniadis

    corporations, meaning that product innovation is one area in which smaller companies can potentially outperform suffer in the management of their product innovation process through a lack of structure. Constantly and controlling risk of potential new products, · Only 22.5% could define any formal product innovation procedures

  9. BAYESIAN ESTIMATION OF FUEL ECONOMY POTENTIAL

    E-Print Network [OSTI]

    Berger, Jim

    BAYESIAN ESTIMATION OF FUEL ECONOMY POTENTIAL DUE TO TECHNOLOGY IMPROVEMENTS by Richard W. Andrews comments. 4 #12; 1. INTRODUCTION 1.1 Background and Overview In 1975 the Energy Policy and Conservation Act average fuel economy (CAFE) standard. This legislation separates each manufacturer's production

  10. Renewable Fuel Standard Potential Economic and Environmental

    E-Print Network [OSTI]

    Renewable Fuel Standard Potential Economic and Environmental Effects of U.S. Biofuel Policy Wallace. Burke (Cochair)2--Ecology Wallace E. Tyner (Cochair)2--Energy Economics Virginia H. Dale. Miranowski--Agricultural Economics Aristides Patrinos--Renewable Fuel Production Jerald L. Schnoor3--Water

  11. Wave optics and image formation in gravitational lensing

    E-Print Network [OSTI]

    Yasusada Nambu

    2012-07-30

    We discuss image formation in gravitational lensing systems using wave optics. Applying the Fresnel-Kirchhoff diffraction formula to waves scattered by a gravitational potential of a lens object, we demonstrate how images of source objects are obtained directly from wave functions without using a lens equation for gravitational lensing.

  12. Advanced Horizontal Well Recirculation Systems for Geothermal Energy Recovery in Sedimentary Formations

    SciTech Connect (OSTI)

    Mike Bruno; Russell L. Detwiler; Kang Lao; Vahid Serajian; Jean Elkhoury; Julia Diessl; Nicky White

    2012-09-30

    There is increased recognition that geothermal energy resources are more widespread than previously thought, with potential for providing a significant amount of sustainable clean energy worldwide. Recent advances in drilling, completion, and production technology from the oil and gas industry can now be applied to unlock vast new geothermal resources, with some estimates for potential electricity generation from geothermal energy now on the order of 2 million megawatts. Terralog USA, in collaboration with the University of California, Irvine (UCI), are currently investigating advanced design concepts for paired horizontal well recirculation systems, optimally configured for geothermal energy recovery in permeable sedimentary and crystalline formations of varying structure and material properties. This two-year research project, funded by the US Department of Energy, includes combined efforts for: 1) Resource characterization; 2) Small and large scale laboratory investigations; 3) Numerical simulation at both the laboratory and field scale; and 4) Engineering feasibility studies and economic evaluations. The research project is currently in its early stages. This paper summarizes our technical approach and preliminary findings related to potential resources, small-scale laboratory simulation, and supporting numerical simulation efforts.

  13. General relativity and cosmic structure formation

    E-Print Network [OSTI]

    Julian Adamek; David Daverio; Ruth Durrer; Martin Kunz

    2015-09-05

    Numerical simulations are a versatile tool providing insight into the complicated process of structure formation in cosmology. This process is mainly governed by gravity, which is the dominant force on large scales. To date, a century after the formulation of general relativity, numerical codes for structure formation still employ Newton's law of gravitation. This approximation relies on the two assumptions that gravitational fields are weak and that they are only sourced by non-relativistic matter. While the former appears well justified on cosmological scales, the latter imposes restrictions on the nature of the "dark" components of the Universe (dark matter and dark energy) which are, however, poorly understood. Here we present the first simulations of cosmic structure formation using equations consistently derived from general relativity. We study in detail the small relativistic effects for a standard {\\Lambda}CDM cosmology which cannot be obtained within a purely Newtonian framework. Our particle-mesh N-body code computes all six degrees of freedom of the metric and consistently solves the geodesic equation for particles, taking into account the relativistic potentials and the frame-dragging force. This conceptually clean approach is very general and can be applied to various settings where the Newtonian approximation fails or becomes inaccurate, ranging from simulations of models with dynamical dark energy or warm/hot dark matter to core collapse supernova explosions.

  14. On the global economic potentials and marginal costs of non-renewable resources and the price dynamics of energy commodities

    E-Print Network [OSTI]

    Mercure, Jean-Francois

    2013-01-01

    A model is presented in this work for simulating endogenously the evolution of the marginal costs of production of energy carriers from non-renewable resources, their consumption, depletion pathways and timescales. Such marginal costs can be used to simulate the long term average price formation of energy commodities. Drawing on previous work where a global database of energy resource economic potentials was constructed, this work uses cost distributions of non-renewable resources in order to evaluate global flows of energy commodities. A mathematical framework is given to calculate endogenous flows of energy resources given an exogenous commodity price path. This framework can be used in reverse in order to calculate an exogenous marginal cost of production of energy carriers given an exogenous carrier demand. Using rigid price inelastic assumptions independent of the economy, these two approaches generate limiting scenarios that depict extreme use of natural resources. This is useful to characterise the cur...

  15. Mapping Biomass Distribution Potential

    E-Print Network [OSTI]

    Schaetzel, Michael

    2010-11-18

    stream_size 1487 stream_content_type text/plain stream_name ku_gis_day_2010_schaetzel.pdf.txt stream_source_info ku_gis_day_2010_schaetzel.pdf.txt Content-Encoding UTF-8 Content-Type text/plain; charset=UTF-8 Mapping Biomass... Distribution Potential Michael Schaetzel Undergraduate ? Environmental Studies ? University of Kansas L O C A T S I O N BIOMASS ENERGY POTENTIAL o According to DOE, Biomass has the potential to provide 14% of the nation’s power o Currently 1% of...

  16. IMPACTS OF BIOFILM FORMATION ON CELLULOSE FERMENTATION

    SciTech Connect (OSTI)

    Leschine, Susan

    2009-10-31

    This project addressed four major areas of investigation: i) characterization of formation of Cellulomonas uda biofilms on cellulose; ii) characterization of Clostridium phytofermentans biofilm development; colonization of cellulose and its regulation; iii) characterization of Thermobifida fusca biofilm development; colonization of cellulose and its regulation; and iii) description of the architecture of mature C. uda, C. phytofermentans, and T. fusca biofilms. This research is aimed at advancing understanding of biofilm formation and other complex processes involved in the degradation of the abundant cellulosic biomass, and the biology of the microbes involved. Information obtained from these studies is invaluable in the development of practical applications, such as the single-step bioconversion of cellulose-containing residues to fuels and other bioproducts. Our results have clearly shown that cellulose-decomposing microbes rapidly colonize cellulose and form complex structures typical of biofilms. Furthermore, our observations suggest that, as cells multiply on nutritive surfaces during biofilms formation, dramatic cell morphological changes occur. We speculated that morphological changes, which involve a transition from rod-shaped cells to more rounded forms, might be more apparent in a filamentous microbe. In order to test this hypothesis, we included in our research a study of biofilm formation by T. fusca, a thermophilic cellulolytic actinomycete commonly found in compost. The cellulase system of T. fusca has been extensively detailed through the work of David Wilson and colleagues at Cornell, and also, genome sequence of a T. fusca strain has been determine by the DOE Joint Genome Institute. Thus, T. fusca is an excellent subject for studies of biofilm development and its potential impacts on cellulose degradation. We also completed a study of the chitinase system of C. uda. This work provided essential background information for understanding how C. uda colonizes and degrades insoluble substrates. Major accomplishments of the project include: • Development of media containing dialysis tubing (described by the manufacturer as “regenerated cellulose”) as sole carbon and energy source and a nutritive surface for the growth of cellulolytic bacteria, and development of various microscopic methods to image biofilms on dialysis tubing. • Demonstration that cultures of C. phytofermentans, an obligate anaerobe, C. uda, a facultative aerobe, and T. fusca, a filamentous aerobe, formed microbial communities on the surface of dialysis tubing, which possessed architectural features and functional characteristics typical of biofilms. • Demonstration that biofilm formation on the nutritive surface, cellulose, involves a complex developmental processes, including colonization of dialysis tubing, formation of cell clusters attached to the nutritive surface, cell morphological changes, formation of complex structures embedded in extracellular polymeric matrices, and dispersal of biofilm communities as the nutritive surface is degraded. • Determination of surface specificity and regulatory aspects of biofilm formation by C. phytofermentans, C. uda, and T. fusca. • Demonstration that biofilm formation by T. fusca forms an integral part of the life cycle of this filamentous cellulolytic bacterium, including studies on the role of mycelial pellet formation in the T. fusca life cycle and a comparison of mycelial pellets to surface-attached T. fusca biofilms. • Characterization of T. fusca biofilm EPS, including demonstration of a functional role for EPS constituents. • Correlation of T. fusca developmental life cycle and cellulase gene expression.

  17. Magnetic Fields in Population III Star Formation

    SciTech Connect (OSTI)

    Turk, Matthew J.; Oishi, Jeffrey S.; Abel, Tom; Bryan, Greg

    2012-02-22

    We study the buildup of magnetic fields during the formation of Population III star-forming regions, by conducting cosmological simulations from realistic initial conditions and varying the Jeans resolution. To investigate this in detail, we start simulations from identical initial conditions, mandating 16, 32 and 64 zones per Jeans length, and studied the variation in their magnetic field amplification. We find that, while compression results in some amplification, turbulent velocity fluctuations driven by the collapse can further amplify an initially weak seed field via dynamo action, provided there is sufficient numerical resolution to capture vortical motions (we find this requirement to be 64 zones per Jeans length, slightly larger than, but consistent with previous work run with more idealized collapse scenarios). We explore saturation of amplification of the magnetic field, which could potentially become dynamically important in subsequent, fully-resolved calculations. We have also identified a relatively surprising phenomena that is purely hydrodynamic: the higher-resolved simulations possess substantially different characteristics, including higher infall-velocity, increased temperatures inside 1000 AU, and decreased molecular hydrogen content in the innermost region. Furthermore, we find that disk formation is suppressed in higher-resolution calculations, at least at the times that we can follow the calculation. We discuss the effect this may have on the buildup of disks over the accretion history of the first clump to form as well as the potential for gravitational instabilities to develop and induce fragmentation.

  18. Ground potential rise monitor

    DOE Patents [OSTI]

    Allen, Zachery Warren; Zevenbergen, Gary Allen

    2012-07-17

    A device and method for detecting ground potential rise (GPR) comprising a first electrode, a second electrode, and a voltage attenuator. The first electrode and the second electrode are both electrically connected to the voltage attenuator. A means for determining the presence of a dangerous ground potential is connected to the voltage attenuator. The device and method further comprises a means for enabling one or more alarms upon the detection of the dangerous ground potential. Preferably, a first transmitter/receiver is connected to the means for enabling one or more alarms. Preferably, a second transmitter/receiver, comprising a button, is electromagnetically connected to the first transmitter/receiver. Preferably, the means for determining the presence of a dangerous ground potential comprises a means for determining the true RMS voltage at the output of the voltage attenuator, a transient detector connected to the output of the voltage attenuator, or a combination thereof.

  19. Logistic Map Potentials

    E-Print Network [OSTI]

    Thomas Curtright; Andrzej Veitia

    2010-05-27

    We develop and illustrate methods to compute all single particle potentials that underlie the logistic map, x --> sx(1-x) for 02. We illustrate the methods numerically for the cases s=5/2 and s=10/3.

  20. Sequestration of Dissolved CO2 in the Oriskany Formation

    SciTech Connect (OSTI)

    Dilmore, R.M.; Allen, D.E. (Salem State College, Salem, MA); McCarthy-Jones, J.R.; Hedges, S.W.; Soong, Yee

    2008-04-15

    Experiments were conducted to determine the solubility of CO2 in a natural brine solution of the Oriskany formation under elevated temperature and pressure conditions. These data were collected at temperatures of 22 and 75 °C and pressures between 100 and 450 bar. Experimentally determined data were compared with CO2 solubility predictions using a model developed by Duan and Sun (Chem. Geol. 2003, 193, 257-271). Model results compare well with Oriskany brine CO2 solubility data collected experimentally, suggesting that the Duan and Sun model is a reliable tool for estimating solution CO2 capacity in high salinity aquifers in the temperature and pressure range evaluated. The capacity for the Oriskany formation to sequester dissolved CO2 was calculated using results of the solubility models, estimation of the density of CO2 saturated brine, and available geographic information system (GIS) information on the formation depth and thickness. Results indicate that the Oriskany formation can hold approximately 0.36 gigatonnes of dissolved CO2 if the full basin is considered. When only the region where supercritical CO2 can exist (temperatures greater than 31° C and pressures greater than 74 bar) is considered, the capacity of the Oriskany formation to sequester dissolved CO2 is 0.31 gigatonnes. The capacity estimate considering the potential to sequester free-phase supercritical CO2 if brine were displaced from formation pore space is 8.8 gigatonnes in the Oriskany formation.

  1. DOE Seeks Applications for Tracking Carbon Dioxide Storage in Geologic Formations

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy today issued a Funding Opportunity Announcement (FOA) to enhance the capability to simulate, track, and evaluate the potential risks of carbon dioxide storage in geologic formations.

  2. DOE Research Projects to Examine Promising Geologic Formations for CO2 Storage

    Broader source: Energy.gov [DOE]

    The Department of Energy today announced 11 projects valued at $75.5 million aimed at increasing scientific understanding about the potential of promising geologic formations to safely and permanently store carbon dioxide (CO2).

  3. Investigating the Impacts of Atmospheric Aerosols on Cloud Formation Relevant to Weather and Climate 

    E-Print Network [OSTI]

    Mckeown, Megan Alexandra

    2014-12-10

    on weather, climate, visibility, air quality, and human health. In this project, the impacts of aerosols on cloud formation potential in the atmosphere have been assessed using several laboratory experimental approaches. To study the effects of atmospheric...

  4. Pore pressure within formations determines the mud weight required to build a balancing fluid pressure down-

    E-Print Network [OSTI]

    Pore pressure within formations determines the mud weight required to build a balancing fluid, then formation fluids can flow into the well, potentially leading to well blowouts if not con- trolled. Complex but not for shale. Overpressure is one of the primary concernsofexplorationists,and drilling through overpressured

  5. Exploitation and Optimization of Reservoir Performance in Hunton Formation, Oklahoma

    SciTech Connect (OSTI)

    Mohan Kelkar

    2007-06-30

    Hunton formation in Oklahoma has been the subject of attention for the last ten years. The new interest started with the drilling of the West Carney field in 1995 in Lincoln County. Subsequently, many other operators have expanded the search for oil and gas in Hunton formation in other parts of Oklahoma. These fields exhibit many unique production characteristics, including: (1) decreasing water-oil or water-gas ratio over time; (2) decreasing gas-oil ratio followed by an increase; (3) poor prediction capability of the reserves based on the log data; and (4) low geological connectivity but high hydrodynamic connectivity. The purpose of this investigation is to understand the principal mechanisms affecting the production, and propose methods by which we can optimize the production from fields with similar characteristics.

  6. Precise inversion of logged slownesses for elastic parameters in a gas shale formation

    E-Print Network [OSTI]

    Miller, Douglas E.

    Dipole sonic log data recorded in a vertical pilot well and the associated production well are analyzed over a 200×1100-ft section of a North American gas shale formation. The combination of these two wells enables angular ...

  7. A SUMMARY OF COAL IN THE FORT UNION FORMATION (TERTIARY), BIGHORN BASIN,

    E-Print Network [OSTI]

    Chapter SB A SUMMARY OF COAL IN THE FORT UNION FORMATION (TERTIARY), BIGHORN BASIN, WYOMING assessment of selected Tertiary coal beds and zones in the Northern RockyMountains and Great Plains region, U...........................................................................................................................SB-1 Coal Production History

  8. Assessment of Energy Production Potential from Tidal Streams...

    Broader source: Energy.gov (indexed) [DOE]

    Skip to main content Menu Energy.gov Office of Energy Efficiency & Renewable Energy Search Search form Search Office of Energy Efficiency & Renewable Energy Office of Energy...

  9. Potential Oil Production from the Coastal Plain of the Arctic...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    (Washington, DC, November, 1986). U.S. Department of Interior, Bureau of Land Management, Minerals Management Service. Northeast National Petroleum Reserve-Alaska Final...

  10. Potential Oil Production from the Coastal Plain of the Arctic...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    of the geology of the Coastal Plain is based on outcrops and geophysical data from seismic surveys of the area. The extrapolation of known geology and information from wells...

  11. Biomass to ethanol : potential production and environmental impacts

    E-Print Network [OSTI]

    Groode, Tiffany Amber, 1979-

    2008-01-01

    This study models and assesses the current and future fossil fuel consumption and greenhouse gas impacts of ethanol produced from three feedstocks; corn grain, corn stover, and switchgrass. A life-cycle assessment approach ...

  12. Assessment of Energy Production Potential from Ocean Currents along the

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l De p u tCorporationIt's Bike-to-WorkEnergy|4DepartmentUnited

  13. Assessment of Energy Production Potential from Ocean Currents along the

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram:Y-12Power, Inc | Department ofMarketing,1ServicesContinentaland

  14. Assessment of Energy Production Potential from Ocean Currents along the

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergy Webinar:I Due DateOpportunity |MarketWind

  15. Synthetic Reactions of MTC and MTN Bonds: Ylide Formation, Rearrangement, and 1,3-Dipolar

    E-Print Network [OSTI]

    Wang, Jianbo

    further reactions to give stable products (Figure 1). Ethers, sulfides, amines, carbonyl compounds.05.2.1.3 Miscellaneous reaction of oxonium ylides 159 11.05.2.2 Carbonyl Ylide Formation and the Subsequent Reactions 159 of carbonyl ylides 162 11.05.2.2.3 Miscellaneous reaction of carbonyl ylides 163 11.05.3 Formation of Sulfur

  16. Semiclassical wave packet study of anomalous isotope effect in ozone formation

    E-Print Network [OSTI]

    Reid, Scott A.

    Semiclassical wave packet study of anomalous isotope effect in ozone formation Evgeny Vetoshkin represent the metastable O3 * species and play a central role in the process of ozone formation.1063/1.2778432 I. INTRODUCTION Ozone O3 is formed in the stratosphere as a product of the following recombination

  17. Candida albicans Ethanol Stimulates Pseudomonas aeruginosa WspR-Controlled Biofilm Formation as Part of

    E-Print Network [OSTI]

    Dietrich, Lars

    Candida albicans Ethanol Stimulates Pseudomonas aeruginosa WspR-Controlled Biofilm Formation formation and phenazine production were strongly influenced by ethanol produced by the fungus C. albicans. Ethanol stimulated phenotypes that are indicative of increased levels of cyclic- di-GMP (c

  18. ACTION CURRENTS, INTERNODAL POTENTIALS, AND EXTRACELLULAR RECORDS OF

    E-Print Network [OSTI]

    Loeb, Gerald E.

    -third of the product of peak node cur- rent and tube resistance (center to ends). The extracellular potentials insulating medium (e.g., air, mineral oil, plastic sleeves). This facilitates the recording by stabilizing

  19. Evaluation of the Energy Saving Potential from Flue Gas Pressurization 

    E-Print Network [OSTI]

    Stanton, E. H.

    1980-01-01

    The potential for recovering energy from low pressure furnace flue products is limited when standard heat recovery equipment is utilized. Efficient energy recovery can be accomplished by providing a flue gas side pressure drop across a heat...

  20. Clustering and pattern formation in chemorepulsive active colloids

    E-Print Network [OSTI]

    Benno Liebchen; Davide Marenduzzo; Ignacio Pagonabarraga; Michael E. Cates

    2015-08-19

    We present a model for the collective dynamics of a suspension of active colloidal particles, whose motion is driven by gradients in the concentration of a chemical that they produce. For the chemorepulsive case, where particles migrate away from their chemical product, we predict two new generic mechanisms causing microphase separation and pattern formation. The first such mechanism leads to the formation of stable clusters of a finite size, and relies on an anisotropy in chemical production at the particle surface, as expected for synthetic active colloids (Janus spheres) that move by autophoresis. These clusters, whose size increases with activity, are each stabilized by a chemorepellent shell that keeps the particles in the cluster together while driving other clusters away. Our second route to pattern formation arises even in the absence of such anisotropy, through oscillations caused by a delay in the reorientation response of the active colloids to local gradients in the chemical density field. This leads to formation of dynamical clusters that often, but not always, settle into a travelling wave pattern. Finally we find that a competition of these two mechanism can create a pattern of "blinking clusters" that continuously exchange particles with each other. These new mechanisms for the formation of dynamic, finite-sized clusters in active matter might help explain recent experimental findings. More generally, they point to novel design principles for self-assembly of active colloids into spatiotemporal patterns.

  1. Amorphous Si Thin Film Based Photocathodes with High Photovoltage for Efficient Hydrogen Production

    E-Print Network [OSTI]

    Javey, Ali

    Amorphous Si Thin Film Based Photocathodes with High Photovoltage for Efficient Hydrogen Production for solar hydrogen production. With platinum as prototypical cocatalyst, a photocurrent onset potential of 0 for solar hydrogen production. KEYWORDS: Water splitting, hydrogen production, photochemistry, high

  2. Varying properties of in situ heat treatment of a tar sands formation based on assessed viscosities

    DOE Patents [OSTI]

    Karanikas, John Michael; Vinegar, Harold J

    2014-03-04

    A method for treating a tar sands formation includes providing heat to at least part of a hydrocarbon layer in the formation from a plurality of heaters located in the formation. The heat is allowed to transfer from the heaters to at least a portion of the formation. A viscosity of one or more zones of the hydrocarbon layer is assessed. The heating rates in the zones are varied based on the assessed viscosities. The heating rate in a first zone of the formation is greater than the heating rate in a second zone of the formation if the viscosity in the first zone is greater than the viscosity in the second zone. Fluids are produced from the formation through the production wells.

  3. Treating tar sands formations with karsted zones

    DOE Patents [OSTI]

    Vinegar, Harold J. (Bellaire, TX); Karanikas, John Michael (Houston, TX)

    2010-03-09

    Methods for treating a tar sands formation are described herein. The tar sands formation may have one or more karsted zones. Methods may include providing heat from one or more heaters to one or more karsted zones of the tar sands formation to mobilize fluids in the formation. At least some of the mobilized fluids may be produced from the formation.

  4. Use-driven concept formation

    E-Print Network [OSTI]

    Roberts, Jennifer M. (Jennifer Marie)

    2010-01-01

    When faced with a complex task, humans often identify domain-specific concepts that make the task more tractable. In this thesis, I investigate the formation of domain-specific concepts of this sort. I propose a set of ...

  5. Brown dwarf formation Gilles Chabrier

    E-Print Network [OSTI]

    Joergens, Viki

    : not observed ! Constraints on BD formation/ejection by disk instability: magnetic field No B (pure hydro accretion - Collapse of a cloud -> starts forming small N-body clusters of small (~10-3 Msol

  6. Cross Domain Mathematical Concept Formation 

    E-Print Network [OSTI]

    Steel, Graham; Colton, Simon; Bundy, Alan; Walsh, Toby

    2000-01-01

    Many interesting concepts in mathematics are essentially "cross-domain" in nature, relating objects from more than one area of mathematics, e.g. prime order groups. These concepts are often vital to the formation of a ...

  7. Hydrogen Production

    SciTech Connect (OSTI)

    2014-09-01

    This 2-page fact sheet provides a brief introduction to hydrogen production technologies. Intended for a non-technical audience, it explains how different resources and processes can be used to produce hydrogen. It includes an overview of research goals as well as “quick facts” about hydrogen energy resources and production technologies.

  8. LABORATORY III POTENTIAL ENERGY

    E-Print Network [OSTI]

    Minnesota, University of

    LABORATORY III POTENTIAL ENERGY Lab III - 1 In previous problems, you have been introduced to the concepts of kinetic energy, which is associated with the motion of an object, and internal energy, which is associated with the internal structure of a system. In this section, you work with another form of energy

  9. Spontaneous Superlattice Formation in Nanorods through PartialCation Exchange

    SciTech Connect (OSTI)

    Robinson, Richard D.; Sadtler, Bryce; Demchenko, Denis O.; Erdonmez, Can K.; Wang, Lin-Wang; Alivisatos, A. Paul

    2007-03-14

    Lattice mismatch strains are widely known to controlnanoscale pattern formation in heteroepitaxy, but such effects have notbeen exploited in colloidal nanocrystal growth. We demonstrate acolloidal route to synthesizing CdS-Ag2S nanorod superlattices throughpartial cation exchange. Strain induces the spontaneous formation ofperiodic structures. Ab initio calculations of the interfacial energy andmodeling of strain energies show that these forces drive theself-organization. The nanorod superlattices exhibit high stabilityagainst ripening and phase mixing. These materials are tunablenear-infrared emitters with potential applications as nanometer-scaleoptoelectronic devices.

  10. Fluid properties determine flow line blockage potential

    SciTech Connect (OSTI)

    Hunt, A.

    1996-07-15

    A thorough understanding of fluid properties helps in determining the potential of hydrates, paraffins, or asphaltenes to block subsea flow lines. Thermal, chemical, and mechanical methods are the main ways for preventing deposition. Already in both the North Sea and the Gulf of Mexico, blockages have led to significant losses in production and reserves recovery. This first article in a two-part series discusses thermal and chemical methods in overcoming fluid behavior problems caused by hydrate and other fluid constituents in subsea multiphase flow. The paper discusses subsea production, possible problems, nucleation, growth, deposition, preventing deposition, hydrate predictions, multiphase flow, and hydrate inhibition.

  11. Methods and systems for chemoautotrophic production of organic compounds

    DOE Patents [OSTI]

    Fischer, Curt R.; Che, Austin J.; Shetty, Reshma P.; Kelly, Jason R.

    2013-01-08

    The present disclosure identifies pathways, mechanisms, systems and methods to confer chemoautotrophic production of carbon-based products of interest, such as sugars, alcohols, chemicals, amino acids, polymers, fatty acids and their derivatives, hydrocarbons, isoprenoids, and intermediates thereof, in organisms such that these organisms efficiently convert inorganic carbon to organic carbon-based products of interest using inorganic energy, such as formate, and in particular the use of organisms for the commercial production of various carbon-based products of interest.

  12. Cyclic powder formation during pulsed injection of hexamethyldisiloxane in an axially asymmetric radiofrequency argon discharge

    SciTech Connect (OSTI)

    Despax, B.; Makasheva, K. [Universite de Toulouse, UPS, INPT, LAPLACE (Laboratoire Plasma et Conversion d'Energie), 118 route de Narbonne, F-31062 Toulouse 09 (France); CNRS, LAPLACE, F-31062 Toulouse cedex 09 (France); Caquineau, H. [Universite de Toulouse, UPS, INPT, LAPLACE (Laboratoire Plasma et Conversion d'Energie), 118 route de Narbonne, F-31062 Toulouse 09 (France)

    2012-11-01

    A new approach of periodic production of dusty plasma consisting of pulsed injection of hexamethyldisiloxane (HMDSO) in argon axially asymmetric radiofrequency (RF) discharge was investigated in this work. The range of plasma operating conditions in which this dusty plasma can exist was closely examined. The obtained results clearly show that a net periodicity in the formation/disappearance of dust particles in the plasma can be maintained on a very large scale of discharge duration. The significance of discharge axial asymmetry to the dust particles behaviour in the plasma is revealed by the development of an asymmetric in shape void shifted towards the powered RF electrode. The key role of the reactive gas and its pulsed injection on each stage of the oscillating process of formation/disappearance of dust particles is disclosed by optical and electrical measurements. It is shown that the period of dusty plasma formation/disappearance is inversely related to the HMDSO injection time. Moreover, the impact of time injection over short period (5 s) is examined. It indicates the conflicting role played by the HMDSO on the reduction of dusty plasma during the reactive gas injection and the reappearance of particles in the plasma during the time off. The electronegative behavior of the plasma in the presence of negatively charged particles seems to explain the energetic modifications in the discharge. A frequency analysis of the floating potential reveals all these cyclic processes. Particularly, in the 10-200 Hz frequency range, the presence and the evolution of dust particles in the plasma over one generation can be observed.

  13. SW New Mexico Oil Well Formation Tops

    SciTech Connect (OSTI)

    Shari Kelley

    2015-10-21

    Rock formation top picks from oil wells from southwestern New Mexico from scout cards and other sources. There are differing formation tops interpretations for some wells, so for those wells duplicate formation top data are presented in this file.

  14. Biomass energy: the scale of the potential resource

    E-Print Network [OSTI]

    Biomass energy: the scale of the potential resource Christopher B. Field1 , J. Elliott Campbell1 Avenue, Livermore, CA 94550, USA Increased production of biomass for energy has the potential to offset resources and decrease food security. The net effect of biomass energy agriculture on climate could

  15. Source-dependent variation in hydroxyl radical production by airborne particulate matter

    SciTech Connect (OSTI)

    Marjan Alaghmand; Neil V. Blough [University of Maryland, College Park, MD (United States). Department of Chemistry and Biochemistry

    2007-04-01

    Epidemiological studies suggest exposure to airborne particles is responsible for a wide range of adverse health effects, potentially arising from particle-induced oxidative stress. A highly sensitive fluorescence method was employed to measure the production of hydroxyl radical by a broad range of particle types including urban dust, diesel particulate matter, coal fly ash, kaolinite, and silica. Little or no production of OH was observed in the absence of an added electron donor or H{sub 2}O{sub 2}. In the presence of a biological electron donor (NADPH, 3 mM), the rate of OH production (R{sub OH}) for 3 mg/mL of these particles varied from 23 nM s{sup -1} for diesel particulate matter (SRM 2975) to 0.20 nM s{sup -1} for coal fly ash (SRM 2689). No detectable OH was produced by kaolinite or silica. Hydroxyl radical formation was eliminated under anaerobic conditions and in the presence of catalase, indicating that O{sub 2} and H{sub 2}O{sub 2} are required for its generation. Partial inhibition of OH formation by superoxide dismutase (SOD) was also observed in some cases, suggesting that superoxide is also involved. The metal chelator deferoxamine mesylate (DFX) in most cases suppressed OH formation, but diethylenetriaminepentaacetic acid (DTPA) generally enhanced it, implicating metal ion reactions in OH generation as well. The dependence of R{sub OH} on NADPH concentration further implicates particle surface reactions in OH formation. To the authors' knowledge, these measurements provide the first quantitative estimate of ROH for a broad range of particle types. 49 refs., 6 figs., 1 tab.

  16. Scalar potential model progress

    E-Print Network [OSTI]

    J. C. Hodge

    2007-04-04

    Because observations of galaxies and clusters have been found inconsistent with General Relativity (GR), the focus of effort in developing a Scalar Potential Model (SPM) has been on the examination of galaxies and clusters. The SPM has been found to be consistent with cluster cellular structure, the flow of IGM from spiral galaxies to elliptical galaxies, intergalactic redshift without an expanding universe, discrete redshift, rotation curve (RC) data without dark matter, asymmetric RCs, galaxy central mass, galaxy central velocity dispersion, and the Pioneer Anomaly. In addition, the SPM suggests a model of past expansion, past contraction, and current expansion of the universe. GR corresponds to the SPM in the limit in which the effect of the Sources and Sinks approximate a flat scalar potential field such as between clusters and on the solar system scale, which is small relative to the distance to a Source.

  17. Vacuum Structure and Potential

    E-Print Network [OSTI]

    J. X. Zheng-Johansson

    2007-04-02

    Based on overall experimental observations, especially the pair processes, I developed a model structure of the vacuum along with a basic-particle formation scheme begun in 2000 (with collaborator P-I Johansson). The model consists in that the vacuum is, briefly, filled of neutral but polarizable vacuuons, consisting each of a p-vaculeon and n- vaculeon of charges $+e$ and $-e$ of zero rest masses but with spin motions, assumed interacting each other with a Coulomb force. The model has been introduced in full in a book (Nova Sci, 2005) and referred to in a number of journal/E-print papers. I outline in this easier accessible paper the detailed derivation of the model and a corresponding quantitative determination of the vacuuon size.

  18. Organic Tandem Solar Cells: Design and Formation

    E-Print Network [OSTI]

    Chen, Chun-Chao

    2015-01-01

    Angeles Organic Tandem Solar Cells: Design and Formation AOrganic Tandem Solar Cells: Design and Formation by Chun-multi-junction tandem solar-cell design. Given this design,

  19. REGULATORY COOPERATION COUNCIL - WORK PLANNING FORMAT: Natural...

    Energy Savers [EERE]

    FORMAT: Natural Gas Use in Transportation REGULATORY COOPERATION COUNCIL - WORK PLANNING FORMAT: Natural Gas Use in Transportation RCC Workplan NGV.PDF More Documents &...

  20. Cyclic Shape Invariant Potentials

    E-Print Network [OSTI]

    U. P. Sukhatme; C. Rasinariu; A. Khare

    1997-06-08

    We formulate and study the set of coupled nonlinear differential equations which define a series of shape invariant potentials which repeats after a cycle of $p$ iterations. These cyclic shape invariant potentials enlarge the limited reservoir of known analytically solvable quantum mechanical eigenvalue problems. At large values of $x$, cyclic superpotentials are found to have a linear harmonic oscillator behavior with superposed oscillations consisting of several systematically varying frequencies. At the origin, cyclic superpotentials vanish when the period $p$ is odd, but diverge for $p$ even. The eigenvalue spectrum consists of $p$ infinite sets of equally spaced energy levels, shifted with respect to each other by arbitrary energies $\\omega_0,\\omega_1,\\...,\\omega_{p-1}$. As a special application, the energy spacings $\\omega_k$ can be identified with the periodic points generatedby the logistic map $z_{k+1}=r z_k (1 - z_k)$. Increasing the value of $r$ and following the bifurcation route to chaos corresponds to studying cyclic shape invariant potentials as the period $p$ takes values 1,2,4,8,...

  1. ORIGINAL PAPER Effect of bioconversion conditions on vanillin production

    E-Print Network [OSTI]

    Daugulis, Andrew J.

    ORIGINAL PAPER Effect of bioconversion conditions on vanillin production by Amycolatopsis sp. ATCC 39116 through an analysis of competing by-product formation Xiao-kui Ma · Andrew J. Daugulis Received addition of ferulic acid and vanillic acid, on the production of vanillin through an analysis of competing

  2. The Potential for Renewable Energy Development to Benefit Restoration of the Salton Sea. Analysis of Technical and Market Potential

    SciTech Connect (OSTI)

    Gagne, Douglas; Haase, Scott; Oakleaf, Brett; Hurlbut, David; Akar, Sertac; Wall, Anna; Turchi, Craig; Pienkos, Philip; Melius, Jennifer; Melaina, Marc

    2015-11-01

    This report summarizes the potential for renewable energy development in the Salton Sea region, as well as the potential for revenues from this development to contribute financially to Salton Sea restoration costs. It considers solar, geothermal, biofuels or nutraceutical production from algae pond cultivation, desalination using renewable energy, and mineral recovery from geothermal fluids.


  3. Hydrogen Production

    Fuel Cell Technologies Publication and Product Library (EERE)

    This 2-page fact sheet provides a brief introduction to hydrogen production technologies. Intended for a non-technical audience, it explains how different resources and processes can be used to produ

  4. Sources of biogenic methane to form marine gas hydrates: In situ production or upward migration?

    SciTech Connect (OSTI)

    Paull, C.K.; Ussler, W. III; Borowski, W.S.

    1993-09-01

    Potential sources of biogenic methane in the Carolina Continental Rise -- Blake Ridge sediments have been examined. Two models were used to estimate the potential for biogenic methane production: (1) construction of sedimentary organic carbon budgets, and (2) depth extrapolation of modern microbial production rates. While closed-system estimates predict some gas hydrate formation, it is unlikely that >3% of the sediment volume could be filled by hydrate from methane produced in situ. Formation of greater amounts requires migration of methane from the underlying continental rise sediment prism. Methane may be recycled from below the base of the gas hydrate stability zone by gas hydrate decomposition, upward migration of the methane gas, and recrystallization of gas hydrate within the overlying stability zone. Methane bubbles may also form in the sediment column below the depth of gas hydrate stability because the methane saturation concentration of the pore fluids decreases with increasing depth. Upward migration of methane bubbles from these deeper sediments can add methane to the hydrate stability zone. From these models it appears that recycling and upward migration of methane is essential in forming significant gas hydrate concentrations. In addition, the depth distribution profiles of methane hydrate will differ if the majority of the methane has migrated upward rather than having been produced in situ.

  5. An Evaluation of the Carbon Sequestration Potential of the Cambro-Ordovician Strata of the Illinois and Michigan Basins

    SciTech Connect (OSTI)

    Kirksey, Jim; Ansari, Sajjad; Malkewicz, Nick; Leetaru, Hannes

    2014-01-01

    The Knox Supergroup is a significant part of the Cambrian-Ordovician age sedimentary deposition in the Illinois Basin. While there is a very small amount of oil production associated with the upper Knox, it is more commonly used as a zone for both Class I and Class II disposal wells in certain areas around the state. Based on the three penetrations of the Knox Formation at the Illinois Basin – Decatur Project (IBDP) carbon dioxide (CO2) sequestration site in Macon County, Illinois, there is potential for certain zones in the Knox to be used for CO2 sequestration. More specifically, the Potosi member of the Knox Formation at about –3,670 feet (ft) subsea depth would be a candidate as all three penetrations had massive circulation losses while drilling through this interval. Each well required the setting of cement plugs to regain wellbore stability so that the intermediate casing could be set and successfully cemented to surface. Log and core analysis suggests significant karst porosity throughout the Potosi member. The purpose of this study is to develop a well plan for the drilling of a CO2 injection well with the capability to inject 3.5 million tons per annum (3.2 million tonnes per annum [MTPA] CO2 into the Knox Formation over a period of 30 years.

  6. Homogeneous Hydrogenation of CO? to Methyl Formate Utilizing Switchable Ionic Liquids

    SciTech Connect (OSTI)

    Yadav, Mahendra; Linehan, John C.; Karkamkar, Abhijeet J.; Van Der Eide, Edwin F.; Heldebrant, David J.

    2014-09-15

    Capture of CO? and subsequent hydrogenation allows for base/alcohol-catalyzed conversion of CO? to methylformate in one pot. The conversion of CO? proceeds via alkylcarbonates, to formate salts and then formate esters, which can be catalyzed by base and alcohol with the only byproduct being water. The system operates at mild conditions (300 psi H?, 140 °C). Reactivity is strongly influenced by temperature and choice of solvent. In the presence of excess of base (DBU) formate is predominant product while in excess of methanol methyl formate is major product. 110 °C yields formate salts, 140 °C promotes methylformate. The authors acknowledge internal Laboratory Directed Re-search and Development (LDRD) funding from Pacific Northwest National Laboratory (PNNL). PNNL is operated by Battelle for the U.S. Department of Energy.

  7. Source/Sink Matching for U.S. Ethanol Plants and Candidate Deep Geologic Carbon Dioxide Storage Formations

    SciTech Connect (OSTI)

    Dahowski, Robert T.; Dooley, James J.

    2008-09-18

    This report presents data on the 140 existing and 74 planned ethanol production facilities and their proximity to candidate deep geologic storage formations. Half of the existing ethanol plants and 64% of the planned units sit directly atop a candidate geologic storage reservoir. While 70% of the existing and 97% of the planned units are within 100 miles of at least one candidate deep geologic storage reservoir. As a percent of the total CO2 emissions from these facilities, 92% of the exiting units CO2 and 97% of the planned units CO2 emissions are accounted for by facilities that are within 100 miles of at least one potential CO2 storage reservoir.

  8. Potential effects of gallium on cladding materials

    SciTech Connect (OSTI)

    Wilson, D.F.; Beahm, E.C.; Besmann, T.M.; DeVan, J.H.; DiStefano, J.R.; Gat, U.; Greene, S.R.; Rittenhouse, P.L.; Worley, B.A.

    1997-10-01

    This paper identifies and examines issues concerning the incorporation of gallium in weapons derived plutonium in light water reactor (LWR) MOX fuels. Particular attention is given to the more likely effects of the gallium on the behavior of the cladding material. The chemistry of weapons grade (WG) MOX, including possible consequences of gallium within plutonium agglomerates, was assessed. Based on the calculated oxidation potentials of MOX fuel, the effect that gallium may have on reactions involving fission products and possible impact on cladding performance were postulated. Gallium transport mechanisms are discussed. With an understanding of oxidation potentials and assumptions of mechanisms for gallium transport, possible effects of gallium on corrosion of cladding were evaluated. Potential and unresolved issues and suggested research and development (R and D) required to provide missing information are presented.

  9. Kazakhstan's potential provides Western opportunities

    SciTech Connect (OSTI)

    Darnell, R. )

    1993-01-01

    While crude oil production continues to drop in the Russian Federation at a rate of 15% to 20% per year, Kazakhstan's output rose from 440,000 bopd in 1991 to 446,000 bopd, as of November 1992. Much of this increase was exported to the Russian Federation to supplement the latter's declining production. while Kazakhstan received needed Russian goods in exchange for this oil, it isn't getting the hard currency that will be required to upgrade its petroleum industry. This is a serious problem for Kazakh officials, since they are counting on revenues from petroleum exports to invigorate their overall plan for economic growth in this newly independent country. In order to convert Kazakhstan's hydrocarbon potential into economic reality, two critical issues must be addressed immediately. First, Kazakhstan must develop a tax and minerals law that gives multinational petroleum companies an incentive to invest in opening a dedicated crude oil export route through Russia, and at least one alternate export route to the Caspian Sea or Persian Gulf. At present, even the most successful petroleum venture inside Kazakhstan would have to weave its way through the Russian bureaucracy to utilize that existing and inadequate export pipeline system. This quandary, of course, has recently become the undoing of several Western petroleum operations that have managed to actually produce exportable oil inside the Russian Federation itself, but they can't get it out. In addition, three other variables should be considered by any party that is evaluating Kazakhstan as a future area (see map for current fields) of interest for petroleum operations. These are political stability, field operating conditions, and the country's natural gas crisis. Each of these factors, though not as critical as the legal regime and export access, can radically affect how an operator might approach negotiating the terms of its particular project.

  10. Max Tech Appliance Design: Potential for Maximizing U.S. Energy Savings through Standards

    E-Print Network [OSTI]

    Garbesi, Karina

    2011-01-01

    Reduction in Primary Energy Use for Best-on-market Product30-year Best-on-market Primary Energy Savings Potential (Reduction in Primary Energy Use for Best-on-market Product

  11. Methods of cracking a crude product to produce additional crude products

    DOE Patents [OSTI]

    Mo, Weijian (Sugar Land, TX); Roes, Augustinus Wilhelmus Maria (Houston, TX); Nair, Vijay (Katy, TX)

    2009-09-08

    A method for producing a crude product is disclosed. Formation fluid is produced from a subsurface in situ heat treatment process. The formation fluid is separated to produce a liquid stream and a first gas stream. The first gas stream includes olefins. The liquid stream is fractionated to produce one or more crude products. At least one of the crude products has a boiling range distribution from 38.degree. C. and 343.degree. C. as determined by ASTM Method D5307. The crude product having the boiling range distribution from 38.degree. C. and 343.degree. C. is catalytically cracked to produce one or more additional crude products. At least one of the additional crude products is a second gas stream. The second gas stream has a boiling point of at most 38.degree. C. at 0.101 MPa.

  12. Heating hydrocarbon containing formations in a line drive staged process

    DOE Patents [OSTI]

    Miller, David Scott (Katy, TX)

    2009-07-21

    Method for treating a hydrocarbon containing formation are described herein. Methods may include providing heat to a first section of the formation with one or more first heaters in the first section. First hydrocarbons may be heated in the first section such that at least some of the first hydrocarbons are mobilized. At least some of the mobilized first hydrocarbons may be produced through a production well located in a second section of the formation. The second section may be located substantially adjacent to the first section. A portion of the second section may be provided some heat from the mobilized first hydrocarbons, but is not conductively heated by heat from the first heaters. Heat may be provided to the second section with one or more second heaters in the second section to further heat the second section.

  13. Summertime photochemistry during CAREBeijing-2007: ROx budgets and O3 formation

    SciTech Connect (OSTI)

    Liu, Zhen; Wang, Y.; Gu, Dasa; Zhao, Chun; Huey, L. G.; Stickel, Robert; Liao, Jin; Shao, Min; Zhu, T.; Zeng, Limin; Amoroso, Antonio; Costabile, Francesa; Chang, Chih-Chung; Liu, Shaw C.

    2012-08-28

    We analyze summertime photochemistry near the surface in Beijing, China, using a 1-D photochemical model (Regional chEmical and trAnsport Model, REAM-1D) constrained by in situ observations, focusing on the budgets of ROx (OH + HO2 + RO2) radicals and O3 formation. While the modeling analysis focuses on near-surface photochemical budgets, the implications for the budget of O3 in the planetary boundary layer are also discussed. In terms of daytime average, the total ROx primary production rate near the surface in Beijing is 6.6 ppbv per hour (ppbv h{sup 1}, among the highest found in urban atmospheres. The largest primary ROx source in Beijing is photolysis of oxygenated volatile organic compounds (OVOCs), which produces HO2 and RO2 at 2.5 ppbv h{sup 1}1 and 1.7 ppbv h{sup 1}, respectively. Photolysis of excess HONO from an unknown heterogeneous source is the predominant primary OH source at 2.2 ppbv h{sup 1}, much larger than that of O1D+H2O (0.4 ppbv h{sup 1}). The largest ROx sink is via OH + NO2 reaction (1.6 ppbv h{sup 1}), followed by formation of RO2NO2 (1.0 ppbv h{sup 1}) and RONO2 (0.7 ppbv h{sup 1}). Due to the large aerosol surface area, aerosol uptake of HO2 appears to be another important radical sink, although the estimate of its magnitude is highly variable depending on the uptake coefficient value used. The daytime average O3 production and loss rates near the surface are 32 ppbv h{sup 1} and 6.2 ppbv h{sup 1}, respectively. Assuming NO2 to be the source of excess HONO, the NO2 to HONO transformation leads to considerable O3 loss and reduction of its lifetime. Our observation-constrained modeling analysis suggests that oxidation of VOCs (especially aromatics) and heterogeneous reactions (e.g. HONO formation and aerosol uptake HO2) play potentially critical roles in the primary radical budget and O3 formation in Beijing. One important ramification is that O3 production is neither NOx nor VOC limited, but in a transition regime where reduction of either NOx or VOCs could result in reduction of O3 production. The transition regime implies more flexibility in the O3 control strategies than a binary system of either NOx or VOC limited regime. The co-benefit of concurrent reduction of both NOx and VOCs in reducing column O3 production integrated in the planetary boundary layer is significant. Further research on the spatial extent of the transition regime over the polluted eastern China is critically important for controlling regional O3 pollution.

  14. Reservoir characterization of the Smackover Formation in southwest Alabama

    SciTech Connect (OSTI)

    Kopaska-Merkel, D.C.; Hall, D.R.; Mann, S.D.; Tew, B.H.

    1993-02-01

    The Upper Jurassic Smackover Formation is found in an arcuate belt in the subsurface from south Texas to panhandle Florida. The Smackover is the most prolific hydrocarbon-producing formation in Alabama and is an important hydrocarbon reservoir from Florida to Texas. In this report Smackover hydrocarbon reservoirs in southwest Alabama are described. Also, the nine enhanced- and improved-recovery projects that have been undertaken in the Smackover of Alabama are evaluated. The report concludes with recommendations about potential future enhanced- and improved-recovery projects in Smackover reservoirs in Alabama and an estimate of the potential volume of liquid hydrocarbons recoverable by enhanced- and improved-recovery methods from the Smackover of Alabama.

  15. Formation of porous gas hydrates

    E-Print Network [OSTI]

    Salamatin, Andrey N

    2015-01-01

    Gas hydrates grown at gas-ice interfaces are examined by electron microscopy and found to have a submicron porous texture. Permeability of the intervening hydrate layers provides the connection between the two counterparts (gas and water molecules) of the clathration reaction and makes further hydrate formation possible. The study is focused on phenomenological description of principal stages and rate-limiting processes that control the kinetics of the porous gas hydrate crystal growth from ice powders. Although the detailed physical mechanisms involved in the porous hydrate formation still are not fully understood, the initial stage of hydrate film spreading over the ice surface should be distinguished from the subsequent stage which is presumably limited by the clathration reaction at the ice-hydrate interface and develops after the ice grain coating is finished. The model reveals a time dependence of the reaction degree essentially different from that when the rate-limiting step of the hydrate formation at...

  16. Energy Resource Potential

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansasCommunities EnergyU.S. DOE Office of99 Diagram4th, 2014Resource Potential

  17. Alaska's renewable energy potential.

    SciTech Connect (OSTI)

    Not Available

    2009-02-01

    This paper delivers a brief survey of renewable energy technologies applicable to Alaska's climate, latitude, geography, and geology. We first identify Alaska's natural renewable energy resources and which renewable energy technologies would be most productive. e survey the current state of renewable energy technologies and research efforts within the U.S. and, where appropriate, internationally. We also present information on the current state of Alaska's renewable energy assets, incentives, and commercial enterprises. Finally, we escribe places where research efforts at Sandia National Laboratories could assist the state of Alaska with its renewable energy technology investment efforts.

  18. Formation of superheavy nuclei in cold fusion reactions

    E-Print Network [OSTI]

    Feng, Zhao-Qing; Li, Jun-Qing; Scheid, Werner

    2007-01-01

    Within the concept of the dinuclear system (DNS), a dynamical model is proposed for describing the formation of superheavy nuclei in complete fusion reactions by incorporating the coupling of the relative motion to the nucleon transfer process. The capture of two heavy colliding nuclei, the formation of the compound nucleus and the de-excitation process are calculated by using an empirical coupled channel model, solving a master equation numerically and applying statistical theory, respectively. Evaporation residue excitation functions in cold fusion reactions are investigated systematically and compared with available experimental data. Maximal production cross sections of superheavy nuclei in cold fusion reactions with stable neutron-rich projectiles are obtained. Isotopic trends in the production of the superheavy elements Z=110, 112, 114, 116, 118 and 120 are analyzed systematically. Optimal combinations and the corresponding excitation energies are proposed.

  19. Formation of superheavy nuclei in cold fusion reactions

    E-Print Network [OSTI]

    Zhao-Qing Feng; Gen-Ming Jin; Jun-Qing Li; Werner Scheid

    2007-10-17

    Within the concept of the dinuclear system (DNS), a dynamical model is proposed for describing the formation of superheavy nuclei in complete fusion reactions by incorporating the coupling of the relative motion to the nucleon transfer process. The capture of two heavy colliding nuclei, the formation of the compound nucleus and the de-excitation process are calculated by using an empirical coupled channel model, solving a master equation numerically and applying statistical theory, respectively. Evaporation residue excitation functions in cold fusion reactions are investigated systematically and compared with available experimental data. Maximal production cross sections of superheavy nuclei in cold fusion reactions with stable neutron-rich projectiles are obtained. Isotopic trends in the production of the superheavy elements Z=110, 112, 114, 116, 118 and 120 are analyzed systematically. Optimal combinations and the corresponding excitation energies are proposed.

  20. Constructing Hydraulic Barriers in Deep Geologic Formations

    SciTech Connect (OSTI)

    Carter, E.E.; Carter, P.E. [Technologies Co, Texas (United States); Cooper, D.C. [Ph.D. Idaho National Laboratory, Idaho Falls, ID (United States)

    2008-07-01

    Many construction methods have been developed to create hydraulic barriers to depths of 30 to 50 meters, but few have been proposed for depths on the order of 500 meters. For these deep hydraulic barriers, most methods are potentially feasible for soil but not for hard rock. In the course of researching methods of isolating large subterranean blocks of oil shale, the authors have developed a wax thermal permeation method for constructing hydraulic barriers in rock to depths of over 500 meters in competent or even fractured rock as well as soil. The technology is similar to freeze wall methods, but produces a permanent barrier; and is potentially applicable in both dry and water saturated formations. Like freeze wall barriers, the wax thermal permeation method utilizes a large number of vertical or horizontal boreholes around the perimeter to be contained. However, instead of cooling the boreholes, they are heated. After heating these boreholes, a specially formulated molten wax based grout is pumped into the boreholes where it seals fractures and also permeates radially outward to form a series of columns of wax-impregnated rock. Rows of overlapping columns can then form a durable hydraulic barrier. These barriers can also be angled above a geologic repository to help prevent influx of water due to atypical rainfall events. Applications of the technique to constructing containment structures around existing shallow waste burial sites and water shutoff for mining are also described. (authors)

  1. FED, the Font "EDitor" and Font Formats

    E-Print Network [OSTI]

    Cohen, Joseph D.

    This memo describes FED, a program used for compiling and inspecting fonts: AST font format, a text format which can be used to create and edit fonts: and KST font format, the binary format used by SCRIMP, TJ6, and PUB.

  2. ARTIFACT FORMATION DURING NEUTRALIZATION OF TANK 50 SAMPLES

    SciTech Connect (OSTI)

    Crump, S.; Young, J.

    2014-08-01

    Degradation products have been identified in the extracts of Tank 50 samples analyzed by semivolatile organic compound analysis (SVOA) using gas chromatography/mass spectrometry (GC/MS). These materials, identified as short chain alkyl alcohols, were formed by acidification during sample preparation. A number of questions were raised about the formation of these and other materials reported in Tank 50 surface samples, and this report serves to address these questions.

  3. The Epoch of Galaxy Formation

    E-Print Network [OSTI]

    Raul Jimenez

    2001-10-09

    I present a biased review of when the epoch of formation of galaxies (both disks and ellipticals) maybe took place. I base my arguments in simple (mostly) analytic models that have been recently developed to reproduce most of the observed photometric, chemical and dynamical properties of galaxies both at low and high redshift.

  4. Earth and Terrestrial Planet Formation

    E-Print Network [OSTI]

    Jacobson, Seth A

    2015-01-01

    The growth and composition of Earth is a direct consequence of planet formation throughout the Solar System. We discuss the known history of the Solar System, the proposed stages of growth and how the early stages of planet formation may be dominated by pebble growth processes. Pebbles are small bodies whose strong interactions with the nebula gas lead to remarkable new accretion mechanisms for the formation of planetesimals and the growth of planetary embryos. Many of the popular models for the later stages of planet formation are presented. The classical models with the giant planets on fixed orbits are not consistent with the known history of the Solar System, fail to create a high Earth/Mars mass ratio, and, in many cases, are also internally inconsistent. The successful Grand Tack model creates a small Mars, a wet Earth, a realistic asteroid belt and the mass-orbit structure of the terrestrial planets. In the Grand Tack scenario, growth curves for Earth most closely match a Weibull model. The feeding zon...

  5. Cloud Formation, Evolution and Destruction

    E-Print Network [OSTI]

    Estalella, Robert

    Chapter 4 Cloud Formation, Evolution and Destruction We now begin to trace the journey towards a star. How long does this take? The answer is surprisingly short: a good many clouds already contain new stars and these stars tend to be young. The typical cloud cannot spend long, if any time at all

  6. Treating tar sands formations with dolomite

    DOE Patents [OSTI]

    Vinegar, Harold J.; Karanikas, John Michael

    2010-06-08

    Methods for treating a tar sands formation are described herein. The tar sands formation may include dolomite and hydrocarbons. Methods may include providing heat at less than the decomposition temperature of dolomite from one or more heaters to at least a portion of the formation. At least some of the hydrocarbon fluids are mobilized in the formation. At least some of the hydrocarbon fluids may be produced from the formation.

  7. Ground potential rise monitor

    DOE Patents [OSTI]

    Allen, Zachery W. (Mandan, ND); Zevenbergen, Gary A. (Arvada, CO)

    2012-04-03

    A device and method for detecting ground potential rise (GPR) comprising positioning a first electrode and a second electrode at a distance from each other into the earth. The voltage of the first electrode and second electrode is attenuated by an attenuation factor creating an attenuated voltage. The true RMS voltage of the attenuated voltage is determined creating an attenuated true RMS voltage. The attenuated true RMS voltage is then multiplied by the attenuation factor creating a calculated true RMS voltage. If the calculated true RMS voltage is greater than a first predetermined voltage threshold, a first alarm is enabled at a local location. If user input is received at a remote location acknowledging the first alarm, a first alarm acknowledgment signal is transmitted. The first alarm acknowledgment signal is then received at which time the first alarm is disabled.

  8. Reducing carbon dioxide to products

    DOE Patents [OSTI]

    Cole, Emily Barton; Sivasankar, Narayanappa; Parajuli, Rishi; Keets, Kate A

    2014-09-30

    A method reducing carbon dioxide to one or more products may include steps (A) to (C). Step (A) may bubble said carbon dioxide into a solution of an electrolyte and a catalyst in a divided electrochemical cell. The divided electrochemical cell may include an anode in a first cell compartment and a cathode in a second cell compartment. The cathode may reduce said carbon dioxide into said products. Step (B) may adjust one or more of (a) a cathode material, (b) a surface morphology of said cathode, (c) said electrolyte, (d) a manner in which said carbon dioxide is bubbled, (e), a pH level of said solution, and (f) an electrical potential of said divided electrochemical cell, to vary at least one of (i) which of said products is produced and (ii) a faradaic yield of said products. Step (C) may separate said products from said solution.

  9. J. Phys. Chem. Solids Pergamon Press 1967. Vol. 28, pp. 2061-2065. Printed in Great Britain. RELATION OF VACANCY FORMATION AND MIGRATION

    E-Print Network [OSTI]

    Glyde, Henry R.

    . RELATION OF VACANCY FORMATION AND MIGRATION ENERGIES TO THE DEBYE TEMPERATURE IN SOLIDS H. R. GLYDE School) Abstract-A derivation of the relation between the vacancy formation energy E,, the migration energy E of the potential, to a property E,, which depends on the absolute magnitude or depth of the potential. (q

  10. Decommissioning of U.S. Uranium Production Facilities

    Reports and Publications (EIA)

    1995-01-01

    This report analyzes the uranium production facility decommissioning process and its potential impact on uranium supply and prices. 1995 represents the most recent publication year.

  11. Accelerated Depletion: Assessing Its Impacts on Domestic Oil and Natural Gas Prices and Production

    Reports and Publications (EIA)

    2000-01-01

    Analysis of the potential impacts of accelerated depletion on domestic oil and natural gas prices and production.

  12. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    SciTech Connect (OSTI)

    Richard Sigal; Kent Newsham; Thomas Williams; Barry Freifeld; Timothy Kneafsey; Carl Sondergeld; Shandra Rai; Jonathan Kwan; Stephen Kirby; Robert Kleinberg; Doug Griffin

    2005-02-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. The work scope drilled and cored a well The Hot Ice No. 1 on Anadarko leases beginning in FY 2003 and completed in 2004. An on-site core analysis laboratory was built and utilized for determining the physical characteristics of the hydrates and surrounding rock. The well was drilled from a new Anadarko Arctic Platform that has a minimal footprint and environmental impact. The final efforts of the project are to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists developing reservoir models. No gas hydrates were encountered in this well; however, a wealth of information was generated and is contained in this report. The Hot Ice No. 1 well was drilled from the surface to a measured depth of 2300 ft. There was almost 100% core recovery from the bottom of surface casing at 107 ft to total depth. Based on the best estimate of the bottom of the methane hydrate stability zone (which used new data obtained from Hot Ice No. 1 and new analysis of data from adjacent wells), core was recovered over its complete range. Approximately 580 ft of porous, mostly frozen, sandstone and 155 of conglomerate were recovered in the Ugnu Formation and approximately 215 ft of porous sandstone were recovered in the West Sak Formation. There were gas shows in the bottom part of the Ugnu and throughout the West Sak. No hydrate-bearing zones were identified either in recovered core or on well logs. The base of the permafrost was found at about 1260 ft. With the exception of the deepest sands in the West Sak and some anomalous thin, tight zones, all sands recovered (after thawing) are unconsolidated with high porosity and high permeability. At 800 psi, Ugnu sands have an average porosity of 39.3% and geometrical mean permeability of 3.7 Darcys. Average grain density is 2.64 g/cc. West Sak sands have an average porosity of 35.5%, geometrical mean permeability of 0.3 Darcys, and average grain density of 2.70 g/cc. There were several 1-2 ft intervals of carbonate-cemented sandstone recovered from the West Sak. These intervals have porosities of only a few percent and very low permeability. On a well log they appear as resistive with a high sonic velocity. In shallow sections of other wells these usually are the only logs available. Given the presence of gas in Hot Ice No. 1, if only resistivity and sonic logs and a mud log had been available, tight sand zones may have been interpreted as containing hydrates. Although this finding does not imply that all previously mapped hydrate zones are merely tight sands, it does add a note of caution to the practice of interpreting the presence of hydrates from old well information. The methane hydrate stability zone below the Hot Ice No. 1 location includes thick sections of sandstone and conglomerate which would make excellent reservoir rocks for hydrates and below the permafrost zone shallow gas. The Ugnu formation comprises a more sand-rich section than does the West Sak formation, and the Ugnu sands when cleaned and dried are slightly more porous and significantly more permeable than the West Sak.

  13. Dynamics of assembly production flow

    E-Print Network [OSTI]

    Ezaki, Takahiro; Nishinari, Katsuhiro

    2015-01-01

    Despite recent developments in management theory, maintaining a manufacturing schedule remains difficult because of production delays and fluctuations in demand and supply of materials. The response of manufacturing systems to such disruptions to dynamic behavior has been rarely studied. To capture these responses, we investigate a process that models the assembly of parts into end products. The complete assembly process is represented by a directed tree, where the smallest parts are injected at leaves and the end products are removed at the root. A discrete assembly process, represented by a node on the network, integrates parts, which are then sent to the next downstream node as a single part. The model exhibits some intriguing phenomena, including overstock cascade, phase transition in terms of demand and supply fluctuations, nonmonotonic distribution of stockout in the network, and the formation of a stockout path and stockout chains. Surprisingly, these rich phenomena result from only the nature of distr...

  14. Ethanol production method and system

    DOE Patents [OSTI]

    Chen, M.J.; Rathke, J.W.

    1983-05-26

    Ethanol is selectively produced from the reaction of methanol with carbon monoxide and hydrogen in the presence of a transition metal carbonyl catalyst. Methanol serves as a solvent and may be accompanied by a less volatile co-solvent. The solution includes the transition metal carbonyl catalysts and a basic metal salt such as an alkali metal or alkaline earth metal formate, carbonate or bicarbonate. A gas containing a high carbon monoxide to hydrogen ratio, as is present in a typical gasifer product, is contacted with the solution for the preferential production of ethanol with minimal water as a byproduct. Fractionation of the reaction solution provides substantially pure ethanol product and allows return of the catalysts for reuse.

  15. Methanol production method and system

    DOE Patents [OSTI]

    Chen, Michael J. (Darien, IL); Rathke, Jerome W. (Bolingbrook, IL)

    1984-01-01

    Ethanol is selectively produced from the reaction of methanol with carbon monoxide and hydrogen in the presence of a transition metal carbonyl catalyst. Methanol serves as a solvent and may be accompanied by a less volatile co-solvent. The solution includes the transition metal carbonyl catalysts and a basic metal salt such as an alkali metal or alkaline earth metal formate, carbonate or bicarbonate. A gas containing a high carbon monoxide to hydrogen ratio, as is present in a typical gasifer product, is contacted with the solution for the preferential production of ethanol with minimal water as a byproduct. Fractionation of the reaction solution provides substantially pure ethanol product and allows return of the catalysts for reuse.

  16. EXPLOITATION AND OPTIMIZATION OF RESERVOIR PERFORMANCE IN HUNTON FORMATION, OKLAHOMA

    SciTech Connect (OSTI)

    Mohan Kelkar

    2002-09-30

    The main objectives of the proposed study are as follows: (1) To understand and evaluate an unusual primary oil production mechanism which results in decreasing (retrograde) oil cut (ROC) behavior as reservoir pressure declines. (2) To improve calculations of initial oil in place so as to determine the economic feasibility of completing and producing a well. (3) To optimize the location of new wells based on understanding of geological and petrophysical properties heterogeneities. (4) To evaluate various secondary recovery techniques for oil reservoirs producing from fractured formations. (5) To enhance the productivity of producing wells by using new completion techniques. These objectives are important for optimizing field performance from West Carney Field located in Lincoln County, Oklahoma. The field, which was discovered in 1980, produces from Hunton Formation in a shallow-shelf carbonate reservoir. The early development in the field was sporadic. Many of the initial wells were abandoned due to high water production and constraints in surface facilities for disposing excess produced water. The field development began in earnest in 1995 by Altex Resources. They had recognized that production from this field was only possible if large volumes of water can be disposed. Being able to dispose large amounts of water, Altex aggressively drilled several producers. With few exceptions, all these wells exhibited similar characteristics. The initial production indicated trace amount of oil and gas with mostly water as dominant phase. As the reservoir was depleted, the oil cut eventually improved, making the overall production feasible. The decreasing oil cut (ROC) behavior has not been well understood. However, the field has been subjected to intense drilling activity because of prior success of Altex Resources. In this work, we will investigate the primary production mechanism by conducting several core flood experiments. After collecting cores from representative wells, we will study the wettability of the rock and simulate the depletion behavior by mimicking such behavior under controlled lab conditions.

  17. Rapid gas hydrate formation process

    DOE Patents [OSTI]

    Brown, Thomas D.; Taylor, Charles E.; Unione, Alfred J.

    2013-01-15

    The disclosure provides a method and apparatus for forming gas hydrates from a two-phase mixture of water and a hydrate forming gas. The two-phase mixture is created in a mixing zone which may be wholly included within the body of a spray nozzle. The two-phase mixture is subsequently sprayed into a reaction zone, where the reaction zone is under pressure and temperature conditions suitable for formation of the gas hydrate. The reaction zone pressure is less than the mixing zone pressure so that expansion of the hydrate-forming gas in the mixture provides a degree of cooling by the Joule-Thompson effect and provides more intimate mixing between the water and the hydrate-forming gas. The result of the process is the formation of gas hydrates continuously and with a greatly reduced induction time. An apparatus for conduct of the method is further provided.

  18. Controlled Irradiative Formation of Penitentes

    E-Print Network [OSTI]

    V. Bergeron; C. Berger; M. D. Betterton

    2006-01-24

    Spike-shaped structures are produced by light-driven ablation in very different contexts. Penitentes 1-4 m high are common on Andean glaciers, where their formation changes glacier dynamics and hydrology. Laser ablation can produce cones 10-100 microns high with a variety of proposed applications in materials science. We report the first laboratory generation of centimeter-scale snow and ice penitentes. Systematically varying conditions allows identification of the essential parameters controlling the formation of ablation structures. We demonstrate that penitente initiation and coarsening requires cold temperatures, so that ablation leads to sublimation rather than melting. Once penitentes have formed, further growth of height can occur by melting. The penitentes intially appear as small structures (3 mm high) and grow by coarsening to 1-5 cm high. Our results are an important step towards understanding and controlling ablation morphologies.

  19. Laser beam pulse formatting method

    DOE Patents [OSTI]

    Daly, T.P.; Moses, E.I.; Patterson, R.W.; Sawicki, R.H.

    1994-08-09

    A method for formatting a laser beam pulse using one or more delay loops is disclosed. The delay loops have a partially reflective beam splitter and a plurality of highly reflective mirrors arranged such that the laser beam pulse enters into the delay loop through the beam splitter and circulates therein along a delay loop length defined by the mirrors. As the laser beam pulse circulates within the delay loop a portion thereof is emitted upon each completed circuit when the laser beam pulse strikes the beam splitter. The laser beam pulse is thereby formatted into a plurality of sub-pulses. The delay loops are used in combination to produce complex waveforms by combining the sub-pulses using additive waveform synthesis. 8 figs.

  20. Shock Formation in Lovelock Theories

    E-Print Network [OSTI]

    Harvey S. Reall; Norihiro Tanahashi; Benson Way

    2014-09-12

    We argue that Lovelock theories of gravity suffer from shock formation, unlike General Relativity. We consider the propagation of (i) a discontinuity in curvature, and (ii) weak, high frequency, gravitational waves. Such disturbances propagate along characteristic hypersurfaces of a "background" spacetime and their amplitude is governed by a transport equation. In GR the transport equation is linear. In Lovelock theories, it is nonlinear and its solutions can blow up, corresponding to the formation of a shock. We show that this effect is absent in some simple cases e.g. a flat background spacetime, and demonstrate its presence for a plane wave background. We comment on weak cosmic censorship, the evolution of shocks, and the nonlinear stability of Minkowski spacetime, in Lovelock theories.

  1. The EHEC Type III Effector NleL Is an E3 Ubiquitin Ligase That Modulates Pedestal Formation

    E-Print Network [OSTI]

    Piscatelli, Heather

    Enterohemorrhagic Escherichia coli (EHEC) O157:H7 causes hemorrhagic colitis and may result in potentially fatal hemolytic uremia syndrome in humans. EHEC colonize the intestinal mucosa and promote the formation of actin-rich ...

  2. Annual Logging Symposium, June 21-24, 2009 Wireline and While-Drilling Formation-Tester Sampling with Oval, Focused,

    E-Print Network [OSTI]

    Torres-Verdín, Carlos

    sampling remains acquiring clean reservoir fluid samples wi about the potential of developing new fluid sampling methods with probe-type formation testers has. Extending the existing wireline technology requires a new pumping system capable of removing invasion fluids

  3. Membrane adhesion and domain formation

    E-Print Network [OSTI]

    Thomas R. Weikl; Reinhard Lipowsky

    2007-09-23

    We review theoretical results for the adhesion-induced phase behavior of biomembranes. The focus is on models in which the membranes are represented as discretized elastic sheets with embedded adhesion molecules. We present several mechanism that lead to the formation of domains during adhesion, and discuss the time-dependent evolution of domain patterns obtained in Monte-Carlo simulations. The simulated pattern dynamics has striking similarities to the pattern evolution observed during T cell adhesion.

  4. Biomass Energy Crops: Massachusetts' Potential

    E-Print Network [OSTI]

    Schweik, Charles M.

    plant fuel. We examine potential biomass energy demand in the 5-county area, and then review cropBiomass Energy Crops: Massachusetts' Potential Prepared for: Massachusetts Division of Energy is thought to have significantly more potential than forest biomass energy (Perlack, Wright et al. 2005). One

  5. Potential Impacts of CLIMATE CHANGE

    E-Print Network [OSTI]

    Sheridan, Jennifer

    Potential Impacts of CLIMATE CHANGE on U.S. Transportation Potential Impacts of CLIMATE CHANGE on U.S. Transportation TRANSPORTATION RESEARCH BOARD SPECIAL REPORT 290 #12;#12;Committee on Climate Change and U Washington, D.C. 2008 www.TRB.org Potential Impacts of CLIMATE CHANGE on U.S. Transportation TRANSPORTATION

  6. RANGELAND SEQUESTRATION POTENTIAL ASSESSMENT

    SciTech Connect (OSTI)

    Lee Spangler; George F. Vance; Gerald E. Schuman; Justin D. Derner

    2012-03-31

    Rangelands occupy approximately half of the world's land area and store greater than 10% of the terrestrial biomass carbon and up to 30% of the global soil organic carbon. Although soil carbon sequestration rates are generally low on rangelands in comparison to croplands, increases in terrestrial carbon in rangelands resulting from management can account for significant carbon sequestration given the magnitude of this land resource. Despite the significance rangelands can play in carbon sequestration, our understanding remains limited. Researchers conducted a literature review to identify sustainably management practices that conserve existing rangeland carbon pools, as well as increase or restore carbon sequestration potentials for this type of ecosystem. The research team also reviewed the impact of grazing management on rangeland carbon dynamics, which are not well understood due to heterogeneity in grassland types. The literature review on the impact of grazing showed a wide variation of results, ranging from positive to negative to no response. On further review, the intensity of grazing appears to be a major factor in controlling rangeland soil organic carbon dynamics. In 2003, researchers conducted field sampling to assess the effect of several drought years during the period 1993-2002. Results suggested that drought can significantly impact rangeland soil organic carbon (SOC) levels, and therefore, carbon sequestration. Resampling was conducted in 2006; results again suggested that climatic conditions may have overridden management effects on SOC due to the ecological lag of the severe drought of 2002. Analysis of grazing practices during this research effort suggested that there are beneficial effects of light grazing compared to heavy grazing and non-grazing with respect to increased SOC and nitrogen contents. In general, carbon storage in rangelands also increases with increased precipitation, although researchers identified threshold levels of precipitation where sequestration begins to decrease.

  7. Approaches to identifying reservoir heterogeneity and reserve growth opportunities from subsurface data: The Oficina Formation, Budare field, Venezuela

    SciTech Connect (OSTI)

    Hamilton, D.S.; Raeuchle, S.K.; Holtz, M.H.

    1997-08-01

    We applied an integrated geologic, geophysical, and engineering approach devised to identify heterogeneities in the subsurface that might lead to reserve growth opportunities in our analysis of the Oficina Formation at Budare field, Venezuela. The approach involves 4 key steps: (1) Determine geologic reservoir architecture; (2) Investigate trends in reservoir fluid flow; (3) Integrate fluid flow trends with reservoir architecture; and (4) Estimate original oil-in-place, residual oil saturation, and remaining mobile oil, to identify opportunities for reserve growth. There are three main oil-producing reservoirs in the Oficina Formation that were deposited in a bed-load fluvial system, an incised valley-fill, and a barrier-strandplain system. Reservoir continuity is complex because, in addition to lateral facies variability, the major Oficina depositional systems were internally subdivided by high-frequency stratigraphic surfaces. These surfaces define times of intermittent lacustrine and marine flooding events that punctuated the fluvial and marginal marine sedimentation, respectively. Syn and post depositional faulting further disrupted reservoir continuity. Trends in fluid flow established from initial fluid levels, response to recompletion workovers, and pressure depletion data demonstrated barriers to lateral and vertical fluid flow caused by a combination of reservoir facies pinchout, flooding shale markers, and the faults. Considerable reserve growth potential exists at Budare field because the reservoir units are highly compartment by the depositional heterogeneity and structural complexity. Numerous reserve growth opportunities were identified in attics updip of existing production, in untapped or incompletely drained compartments, and in field extensions.

  8. HIERARCHICAL STRUCTURE FORMATION AND MODES OF STAR FORMATION IN HICKSON COMPACT GROUP 31

    SciTech Connect (OSTI)

    Gallagher, S. C. [Department of Physics and Astronomy, University of Western Ontario, London, ON N6A 3K7 (Canada); Durrell, P. R. [Department of Physics and Astronomy, Youngstown State University, Youngstown, OH 44555 (United States); Elmegreen, D. M. [Department of Physics and Astronomy, Vassar College, Poughkeepsie, NY 12604 (United States); Chandar, R. [Department of Physics and Astronomy, University of Toledo, Toledo, OH 43606-3390 (United States); English, J. [Department of Physics and Astronomy, University of Manitoba, Winnipeg, MN R3T 2N2 (Canada); Charlton, J. C.; Gronwall, C.; Young, J. [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States); Tzanavaris, P.; Hornschemeier, A. E. [Laboratory for X-ray Astrophysics, NASA's Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Johnson, K. E. [Department of Astronomy, University of Virginia, Charlottesville, VA 22904-4325 (United States); Mendes de Oliveira, C. [Instituto de Astronomia, Geofisica, e Ciencias Atmosfericas da Universidade de Sao Paulo, Sao Paulo (Brazil); Whitmore, B.; Maybhate, Aparna [Space Telescope Science Institute, Baltimore, MD 21218-2463 (United States); Zabludoff, Ann [Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States)], E-mail: sgalla4@uwo.ca

    2010-02-15

    The handful of low-mass, late-type galaxies that comprise Hickson Compact Group 31 (HCG 31) is in the midst of complex, ongoing gravitational interactions, evocative of the process of hierarchical structure formation at higher redshifts. With sensitive, multicolor Hubble Space Telescope imaging, we characterize the large population of < 10 Myr old star clusters (SCs) that suffuse the system. From the colors and luminosities of the young SCs, we find that the galaxies in HCG 31 follow the same universal scaling relations as actively star-forming galaxies in the local universe despite the unusual compact group environment. Furthermore, the specific frequency of the globular cluster system is consistent with the low end of galaxies of comparable masses locally. This, combined with the large mass of neutral hydrogen and tight constraints on the amount of intragroup light, indicate that the group is undergoing its first epoch of interaction-induced star formation. In both the main galaxies and the tidal-dwarf candidate, F, stellar complexes, which are sensitive to the magnitude of disk turbulence, have both sizes and masses more characteristic of z = 1-2 galaxies. After subtracting the light from compact sources, we find no evidence for an underlying old stellar population in F-it appears to be a truly new structure. The low-velocity dispersion of the system components, available reservoir of H I, and current star formation rate of {approx}10 M {sub sun} yr{sup -1} indicate that HCG 31 is likely to both exhaust its cold gas supply and merge within {approx}1 Gyr. We conclude that the end product will be an isolated, X-ray-faint, low-mass elliptical.

  9. Harmonic potential and hadron spectroscopy

    E-Print Network [OSTI]

    Rafael Tumanyan

    2009-05-28

    The quark-gluon sea in the hadrons is considered as periodically correlated. Energy levels of Shrodinger equation with harmonic potential is used for describing of the spectrum of hadron masses. In the considered cases the effective potential operating on each particle of ensemble, under certain conditions becomes square-law on displacement from a equilibrium point. It can become an explanation of popularity of oscillator potential for the description of a spectrum of masses of elementary particles. The analysis shows that levels of periodic potential better agreed to the spectrum of hadron masses, than levels of other potentials used for an explanation of a spectrum of masses.

  10. Potential underground risks associated with CAES.

    SciTech Connect (OSTI)

    Kirk, Matthew F.; Webb, Stephen Walter; Broome, Scott Thomas; Pfeifle, Thomas W.; Grubelich, Mark Charles; Bauer, Stephen J.

    2010-10-01

    CAES in geologic media has been proposed to help 'firm' renewable energy sources (wind and solar) by providing a means to store energy when excess energy was available, and to provide an energy source during non-productive renewable energy time periods. Such a storage media may experience hourly (perhaps small) pressure swings. Salt caverns represent the only proven underground storage used for CAES, but not in a mode where renewable energy sources are supported. Reservoirs, both depleted natural gas and aquifers represent other potential underground storage vessels for CAES, however, neither has yet to be demonstrated as a functional/operational storage media for CAES.

  11. Surfactant process for promoting gas hydrate formation and application of the same

    DOE Patents [OSTI]

    Rogers, Rudy E. (Starkville, MS); Zhong, Yu (Brandon, MS)

    2002-01-01

    This invention relates to a method of storing gas using gas hydrates comprising forming gas hydrates in the presence of a water-surfactant solution that comprises water and surfactant. The addition of minor amounts of surfactant increases the gas hydrate formation rate, increases packing density of the solid hydrate mass and simplifies the formation-storage-decomposition process of gas hydrates. The minor amounts of surfactant also enhance the potential of gas hydrates for industrial storage applications.

  12. Structure formation: Models, Dynamics and Status

    E-Print Network [OSTI]

    T. Padmanabhan

    1995-08-25

    The constraints on the models for the structure formation arising from various cosmological observations at different length scales are reviewed. The status of different models for structure formation is examined critically in the light of these observations.

  13. XML Format for SESAME and LEOS

    SciTech Connect (OSTI)

    Durrenberger, J K; Neely, J R; Sterne, P A

    2009-04-29

    The objective of this document is to describe the XML format used by LLNL and LANL to represent the equation-of-state and related material information in the LEOS and SESAME data libraries. The primary purpose of this document is to describe a specific XML format for representing EOS data that is tailored to the nature of the underlying data and is amenable to conversion to both legacy SESAME and LEOS binary formats. The secondary purpose is to describe an XML format that lends itself to a 'natural' representation in a binary file format of the SESAME, pdb or hdf5 form so that this format and related tools can be used for the rapid and efficient development and implementation of prototype data structures. This document describes the XML format only. A working knowledge of LEOS and SESAME formats is assumed.

  14. Dynamics and control of electromagnetic satellite formations

    E-Print Network [OSTI]

    Ahsun, Umair, 1972-

    2007-01-01

    Satellite formation flying is an enabling technology for many space missions, especially for space-based telescopes. Usually there is a tight formation-keeping requirement that may need constant expenditure of fuel or at ...

  15. La cl informatique Formation Word XP

    E-Print Network [OSTI]

    Vellend, Mark

    La clé informatique Formation Word XP Aide-mémoire Hiver 2004 #12;#12;Formation Word XP Hiver 2004 1. PRÉSENTATION DE L'INTERFACE DE MICROSOFT WORD XP................ 1 1.1. L'interface générale

  16. Proportional structural effects of formative indicators

    E-Print Network [OSTI]

    Franke, George R.; Preacher, Kristopher J.; Rigdon, Ed E.

    2009-03-15

    that are proportional to their effects on the formative construct itself. This constraint has important implications for developing and testing formative models. This study demonstrates the existence of the constraint, shows that researchers must consider...

  17. Hydrogen Production

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,ExecutiveFinancingR Walls -Hydro-Pac Inc.,1 DOE HydrogenProduction Hydrogen is

  18. 1 potential, 2 potentials, 3 potentials4: Untangling the UV photodissociation spectra of HI and DI

    E-Print Network [OSTI]

    Le Roy, Robert J.

    1 potential, 2 potentials, 3 potentials­4: Untangling the UV photodissociation spectra of HI and DI coefficient and branching-ratio data for the UV photodissociation spectra of HI and DI has been used.1063/1.1513303 I. INTRODUCTION The UV photochemical decomposition of HI has been studied for more than a century,1

  19. Treating nahcolite containing formations and saline zones

    DOE Patents [OSTI]

    Vinegar, Harold J

    2013-06-11

    A method for treating a nahcolite containing subsurface formation includes removing water from a saline zone in or near the formation. The removed water is heated using a steam and electricity cogeneration facility. The heated water is provided to the nahcolite containing formation. A fluid is produced from the nahcolite containing formation. The fluid includes at least some dissolved nahcolite. At least some of the fluid is provided to the saline zone.

  20. Electromagnetic Formation Flight of Satellite Arrays

    E-Print Network [OSTI]

    Electromagnetic Formation Flight of Satellite Arrays Daniel W. Kwon and David W. Miller February 2005 SSL # 2-05 #12;#12;Electromagnetic Formation Flight of Satellite Arrays By DANIEL W. KWON S;#12;Electromagnetic Formation Flight of Satellite Arrays by DANIEL W. KWON Submitted to the Department of Aeronautics

  1. Chapter 20: Electric Potential and Electric Potential Energy

    E-Print Network [OSTI]

    Kioussis, Nicholas

    1 Chapter 20: Electric Potential and Electric Potential Energy 2. A 4.5 µC charge moves in a uniform electric field ( )5 ^4.1 10 N/C= ×E x . The change in electric potential energy of a charge that moves against an electric field is given by equation 20-1, 0U q Ed = . If the charge moves in the same

  2. Biogas Potential in the United States (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-10-01

    Biogas has received increased attention as an alternative energy source in the United States. The factsheet provides information about the biogas (methane) potential from various sources in the country (by county and state) and estimates the power generation and transportation fuels production (renewable natural gas) potential from these biogas sources. It provides valuable information to the industry, academia and policy makers in support of their future decisions.

  3. Geomechanical Study of Bakken Formation for Improved Oil Recovery

    SciTech Connect (OSTI)

    Ling, Kegang; Zeng, Zhengwen; He, Jun; Pei, Peng; Zhou, Xuejun; Liu, Hong; Huang, Luke; Ostadhassan, Mehdi; Jabbari, Hadi; Blanksma, Derrick; Feilen, Harry; Ahmed, Salowah; Benson, Steve; Mann, Michael; LeFever, Richard; Gosnold, Will

    2013-12-31

    On October 1, 2008 US DOE-sponsored research project entitled “Geomechanical Study of Bakken Formation for Improved Oil Recovery” under agreement DE-FC26-08NT0005643 officially started at The University of North Dakota (UND). This is the final report of the project; it covers the work performed during the project period of October 1, 2008 to December 31, 2013. The objectives of this project are to outline the methodology proposed to determine the in-situ stress field and geomechanical properties of the Bakken Formation in Williston Basin, North Dakota, USA to increase the success rate of horizontal drilling and hydraulic fracturing so as to improve the recovery factor of this unconventional crude oil resource from the current 3% to a higher level. The success of horizontal drilling and hydraulic fracturing depends on knowing local in-situ stress and geomechanical properties of the rocks. We propose a proactive approach to determine the in-situ stress and related geomechanical properties of the Bakken Formation in representative areas through integrated analysis of field and well data, core sample and lab experiments. Geomechanical properties are measured by AutoLab 1500 geomechanics testing system. By integrating lab testing, core observation, numerical simulation, well log and seismic image, drilling, completion, stimulation, and production data, in-situ stresses of Bakken formation are generated. These in-situ stress maps can be used as a guideline for future horizontal drilling and multi-stage fracturing design to improve the recovery of Bakken unconventional oil.

  4. Characterization of Most Promising Sequestration Formations in the Rocky Mountain Region (RMCCS)

    SciTech Connect (OSTI)

    McPherson, Brian; Matthews, Vince

    2013-09-30

    The primary objective of the “Characterization of Most Promising Carbon Capture and Sequestration Formations in the Central Rocky Mountain Region” project, or RMCCS project, is to characterize the storage potential of the most promising geologic sequestration formations within the southwestern U.S. and the Central Rocky Mountain region in particular. The approach included an analysis of geologic sequestration formations under the Craig Power Station in northwestern Colorado, and application or extrapolation of those local-scale results to the broader region. A ten-step protocol for geologic carbon storage site characterization was a primary outcome of this project.

  5. MINERALOGICAL MAGAZINE .VOLUME 62A Potential formation of secondary hydrotalcite-iike precipitates

    E-Print Network [OSTI]

    Sparks, Donald L.

    of Delaware, D . L . S p a r k s N e w a r k , D E 1 9 7 1 7 - 1 3 0 3 U S A The long term fate and mobility and Co to a l u m i n u m o x i d e a n d a l u m i n o s i l i c a t e s u r f a c e s (Scheidegger et a t e r i a l s a n d m e t h o d s Copper or Zn sorption onto pyrophyilite was m o n i t o r e d

  6. Identifying soils with potential of expanding sulfate mineral formation using electromagnetic induction 

    E-Print Network [OSTI]

    Fox, Miranda Lynn

    2004-11-15

    Sulfate-bearing soils are a problem in highway construction as they combine with materials used for lime stabilization to form minerals, particularly ettringite, that expand and induce heave in the stabilized soil. This ...

  7. Ultralow frequency acoustic resonances and its potential for mitigating tsunami wave formation

    E-Print Network [OSTI]

    Estrada, Hector

    2012-01-01

    Bubbles display astonishing acoustical properties since they are able to absorb and scatter large amounts of energy coming from waves whose wavelengths are two orders of magnitude larger than the bubble size. Thus, as the interaction distance between bubbles is much larger than the bubble size, clouds of bubbles exhibit collective oscillations which can scatter acoustic waves three orders magnitude larger than the bubble size. Here we propose bubble based systems which resonate at frequencies that match the time scale relevant for seismogenic tsunami wave generation and may mitigate the devastating effects of tsunami waves. Based on a linear approximation, our na\\"ive proposal may open new research paths towards the mitigation of tsunami waves generation.

  8. Commercial Building Toplighting: Energy Saving Potential and Potential Paths Forward

    SciTech Connect (OSTI)

    Lawrence, Tyson; Roth, Kurt W.

    2008-06-01

    This report documents the energy-saving potential of toplighting, a form of daylighting that combines skylights and electric lighting controls.

  9. Petrophysical evaluation of subterranean formations

    DOE Patents [OSTI]

    Klein, James D; Schoderbek, David A; Mailloux, Jason M

    2013-05-28

    Methods and systems are provided for evaluating petrophysical properties of subterranean formations and comprehensively evaluating hydrate presence through a combination of computer-implemented log modeling and analysis. Certain embodiments include the steps of running a number of logging tools in a wellbore to obtain a variety of wellbore data and logs, and evaluating and modeling the log data to ascertain various petrophysical properties. Examples of suitable logging techniques that may be used in combination with the present invention include, but are not limited to, sonic logs, electrical resistivity logs, gamma ray logs, neutron porosity logs, density logs, NRM logs, or any combination or subset thereof.

  10. Formation Flying and Deformable Instruments

    SciTech Connect (OSTI)

    Rio, Yvon

    2009-05-11

    Astronomers have always attempted to build very stable instruments. They fight all that can cause mechanical deformation or image motion. This has led to well established technologies (autoguide, active optics, thermal control, tip/tilt correction), as well as observing methods based on the use of controlled motion (scanning, micro scanning, shift and add, chopping and nodding). Formation flying disturbs this practice. It is neither possible to reduce the relative motion to very small amplitudes, nor to control it at will. Some impacts on Simbol-X instrument design, and operation are presented.

  11. Two-Stage, Integrated, Geothermal-CO2 Storage Reservoirs: An Approach for Sustainable Energy Production, CO2-Sequestration Security, and Reduced Environmental Risk

    SciTech Connect (OSTI)

    Buscheck, T A; Chen, M; Sun, Y; Hao, Y; Elliot, T R

    2012-02-02

    We introduce a hybrid two-stage energy-recovery approach to sequester CO{sub 2} and produce geothermal energy at low environmental risk and low cost by integrating geothermal production with CO{sub 2} capture and sequestration (CCS) in saline, sedimentary formations. Our approach combines the benefits of the approach proposed by Buscheck et al. (2011b), which uses brine as the working fluid, with those of the approach first suggested by Brown (2000) and analyzed by Pruess (2006), using CO{sub 2} as the working fluid, and then extended to saline-formation CCS by Randolph and Saar (2011a). During stage one of our hybrid approach, formation brine, which is extracted to provide pressure relief for CO{sub 2} injection, is the working fluid for energy recovery. Produced brine is applied to a consumptive beneficial use: feedstock for fresh water production through desalination, saline cooling water, or make-up water to be injected into a neighboring reservoir operation, such as in Enhanced Geothermal Systems (EGS), where there is often a shortage of a working fluid. For stage one, it is important to find economically feasible disposition options to reduce the volume of brine requiring reinjection in the integrated geothermal-CCS reservoir (Buscheck et al. 2012a). During stage two, which begins as CO{sub 2} reaches the production wells; coproduced brine and CO{sub 2} are the working fluids. We present preliminary reservoir engineering analyses of this approach, using a simple conceptual model of a homogeneous, permeable CO{sub 2} storage formation/geothermal reservoir, bounded by relatively impermeable sealing units. We assess both the CO{sub 2} sequestration capacity and geothermal energy production potential as a function of well spacing between CO{sub 2} injectors and brine/CO{sub 2} producers for various well patterns and for a range of subsurface conditions.

  12. Heating tar sands formations while controlling pressure

    DOE Patents [OSTI]

    Stegemeier, George Leo (Houston, TX) [Houston, TX; Beer, Gary Lee (Houston, TX) [Houston, TX; Zhang, Etuan (Houston, TX) [Houston, TX

    2010-01-12

    Methods for treating a tar sands formation are described herein. Methods may include heating at least a section of a hydrocarbon layer in the formation from a plurality of heaters located in the formation. A pressure in the majority of the section may be maintained below a fracture pressure of the formation. The pressure in the majority of the section may be reduced to a selected pressure after the average temperature reaches a temperature that is above 240.degree. C. and is at or below pyrolysis temperatures of hydrocarbons in the section. At least some hydrocarbon fluids may be produced from the formation.

  13. A General Systems Theory for Rain Formation in Warm Clouds

    E-Print Network [OSTI]

    A. M. Selvam

    2014-08-15

    A cumulus cloud model which can explain the observed characteristics of warm rain formation in monsoon clouds is presented. The model is based on classical statistical physical concepts and satisfies the principle of maximum entropy production. Atmospheric flows exhibit selfsimilar fractal fluctuations that are ubiquitous to all dynamical systems in nature, such as physical, chemical, social, etc and are characterized by inverse power law form for power (eddy energy) spectrum signifying long-range space-time correlations. A general systems theory model for atmospheric flows developed by the author is based on the concept that the large eddy energy is the integrated mean of enclosed turbulent (small scale) eddies. This model gives scale-free universal governing equations for cloud growth processes. The model predicted cloud parameters are in agreement with reported observations, in particular, the cloud dropsize distribution. Rain formation can occur in warm clouds within 30minutes lifetime under favourable conditions of moisture supply in the environment.

  14. DUST FORMATION, EVOLUTION, AND OBSCURATION EFFECTS IN THE VERY HIGH-REDSHIFT UNIVERSE

    SciTech Connect (OSTI)

    Dwek, Eli; Benford, Dominic J. [Observational Cosmology Lab., Code 665, NASA at Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Staguhn, Johannes; Su, Ting [Also at Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218, USA. (United States); Arendt, Richard G. [Also at CRESST, University of Maryland Baltimore County, Baltimore, MD 21250, USA. (United States); Kovacks, Attila, E-mail: eli.dwek@nasa.gov [Also at Astronomy Department, CalTech, Pasadena, CA 90025, USA. (United States)

    2014-06-20

    The evolution of dust at redshifts z ? 9, and consequently the dust properties, differs greatly from that in the local universe. In contrast to the local universe, core collapse supernovae (CCSNe) are the only source of thermally condensed dust. Because of the low initial dust-to-gas mass ratio, grain destruction rates are low, so that CCSNe are net producers of interstellar dust. Galaxies with large initial gas mass or high mass infall rate will therefore have a more rapid net rate of dust production compared to galaxies with lower gas mass, even at the same star formation rate. The dust composition is dominated by silicates, which exhibit a strong rise in the UV opacity near the Lyman break. This ''silicate-UV break'' may be confused with the Lyman break, resulting in a misidentification of a galaxy's photometric redshift. In this Letter we demonstrate these effects by analyzing the spectral energy distribution of MACS1149-JD, a lensed galaxy at z = 9.6. A potential 2 mm counterpart of MACS1149-JD has been identified with GISMO. While additional observations are required to corroborate this identification, we use this possible association to illustrate the physical processes and the observational effects of dust in the very high-redshift universe.

  15. An Integrated Modeling and Data Management Strategy for Cellulosic Biomass Production Decisions

    SciTech Connect (OSTI)

    David J. Muth Jr.; K. Mark Bryden; Joshua B. Koch

    2012-07-01

    Emerging cellulosic bioenergy markets can provide land managers with additional options for crop production decisions. Integrating dedicated bioenergy crops such as perennial grasses and short rotation woody species within the agricultural landscape can have positive impacts on several environmental processes including increased soil organic matter in degraded soils, reduced sediment loading in watersheds, lower green house gas (GHG) fluxes, and reduced nutrient loading in watersheds. Implementing this type of diverse bioenergy production system in a way that maximizes potential environmental benefits requires a dynamic integrated modeling and data management strategy. This paper presents a strategy for designing diverse bioenergy cropping systems within the existing row crop production landscape in the midwestern United States. The integrated model developed quantifies a wide range environmental processes including soil erosion from wind and water, soil organic matter changes, and soil GHG fluxes within a geospatial data management framework. This framework assembles and formats information from multiple spatial and temporal scales. The data assembled includes yield and productivity data from harvesting equipment at the 1m scale, surface topography data from LiDAR mapping at the less than 1m scale, soil data from US soil survey databases at the 10m to 100m scale, and climate data at the county scale. These models and data tools are assembled into an integrated computational environment that is used to determine sustainable removal rates for agricultural residues for bioenergy production at the sub-field scale under a wide range of land management practices. Using this integrated model, innovative management practices including cover cropping are then introduced and evaluated for their impact on bioenergy production and important environmental processes. The impacts of introducing dedicated energy crops onto high-risk landscape positions currently being manage in row crop production are also investigated.

  16. Communication: Separable potential energy surfaces from multiplicative artificial neural networks

    SciTech Connect (OSTI)

    Koch, Werner, E-mail: wkoch@thethirdrock.net; Zhang, Dong H. [State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian (China)

    2014-07-14

    We present a potential energy surface fitting scheme based on multiplicative artificial neural networks. It has the sum of products form required for efficient computation of the dynamics of multidimensional quantum systems with the multi configuration time dependent Hartree method. Moreover, it results in analytic potential energy matrix elements when combined with quantum dynamics methods using Gaussian basis functions, eliminating the need for a local harmonic approximation. Scaling behavior with respect to the complexity of the potential as well as the requested accuracy is discussed.

  17. Site characterization of the highest-priority geologic formations for CO2 storage in Wyoming

    SciTech Connect (OSTI)

    Surdam, Ronald C.; Bentley, Ramsey; Campbell-Stone, Erin; Dahl, Shanna; Deiss, Allory; Ganshin, Yuri; Jiao, Zunsheng; Kaszuba, John; Mallick, Subhashis; McLaughlin, Fred; Myers, James; Quillinan, Scott

    2013-12-07

    This study, funded by U.S. Department of Energy National Energy Technology Laboratory award DE-FE0002142 along with the state of Wyoming, uses outcrop and core observations, a diverse electric log suite, a VSP survey, in-bore testing (DST, injection tests, and fluid sampling), a variety of rock/fluid analyses, and a wide range of seismic attributes derived from a 3-D seismic survey to thoroughly characterize the highest-potential storage reservoirs and confining layers at the premier CO2 geological storage site in Wyoming. An accurate site characterization was essential to assessing the following critical aspects of the storage site: (1) more accurately estimate the CO2 reservoir storage capacity (Madison Limestone and Weber Sandstone at the Rock Springs Uplift (RSU)), (2) evaluate the distribution, long-term integrity, and permanence of the confining layers, (3) manage CO2 injection pressures by removing formation fluids (brine production/treatment), and (4) evaluate potential utilization of the stored CO2

  18. Modeling jet and outflow feedback during star cluster formation

    SciTech Connect (OSTI)

    Federrath, Christoph; Schrön, Martin; Banerjee, Robi; Klessen, Ralf S.

    2014-08-01

    Powerful jets and outflows are launched from the protostellar disks around newborn stars. These outflows carry enough mass and momentum to transform the structure of their parent molecular cloud and to potentially control star formation itself. Despite their importance, we have not been able to fully quantify the impact of jets and outflows during the formation of a star cluster. The main problem lies in limited computing power. We would have to resolve the magnetic jet-launching mechanism close to the protostar and at the same time follow the evolution of a parsec-size cloud for a million years. Current computer power and codes fall orders of magnitude short of achieving this. In order to overcome this problem, we implement a subgrid-scale (SGS) model for launching jets and outflows, which demonstrably converges and reproduces the mass, linear and angular momentum transfer, and the speed of real jets, with ?1000 times lower resolution than would be required without the SGS model. We apply the new SGS model to turbulent, magnetized star cluster formation and show that jets and outflows (1) eject about one-fourth of their parent molecular clump in high-speed jets, quickly reaching distances of more than a parsec, (2) reduce the star formation rate by about a factor of two, and (3) lead to the formation of ?1.5 times as many stars compared to the no-outflow case. Most importantly, we find that jets and outflows reduce the average star mass by a factor of ? three and may thus be essential for understanding the characteristic mass of the stellar initial mass function.

  19. Analysis of laboratory nucleosynthesis products

    E-Print Network [OSTI]

    S. V. Adamenko; A. S. Adamenko

    2003-07-11

    We present the results of the experimental study on synthesis of a wide range of isotopes in a superdense plasma. The initial conditions necessary for plasma bunch formation were provided by specially organized coherent impact on a solid target with a total energy up to 1 kJ. More than 4000 shots were performed with various targets made of light, medium, and heavy elements. Subsequent analysis of the products of the target explosion reveals the presence of a wide range of elements absent in the initial materials. Elements with nuclei three and more times heavier than the nucleus of the target main element are detected in the products. The isotopic composition of the produced elements significantly differs from the natural one. The presence of unknown superheavy elements at the border of the periodic table and beyond it was detected by several different spectroscopic methods of elemental and isotopic analyzes.

  20. Quantification of the Potential Energy

    E-Print Network [OSTI]

    Columbia University

    Quantification of the Potential Energy from Residuals (EfR) in the UK Commissioned, by virtue of its biomass content, it can make a valuable contribution towards our renewable energy targets1 waste up to 2020. To determine the potential2 contribution that energy recovery from residual

  1. Scalar field potentials for cosmology

    E-Print Network [OSTI]

    Victor H. Cardenas; Sergio del Campo

    2004-01-05

    We discuss different aspects of modern cosmology through a scalar field potential construction method. We discuss the case of negative potential cosmologies and its relation with oscillatory cosmic evolution, models with a explicit interaction between dark energy and dark matter which address the coincidence problem and also the case of non-zero curvature space.

  2. Formation of helical ion chains

    E-Print Network [OSTI]

    Ramil Nigmatullin; Adolfo del Campo; Gabriele De Chiara; Giovanna Morigi; Martin B. Plenio; Alex Retzker

    2015-08-25

    We study the nonequilibrium dynamics of the linear to zigzag structural phase transition exhibited by an ion chain confined in a trap with periodic boundary conditions. The transition is driven by reducing the transverse confinement at a finite quench rate, which can be accurately controlled. This results in the formation of zigzag domains oriented along different transverse planes. The twists between different domains can be stabilized by the topology of the trap and under laser cooling the system has a chance to relax to a helical chain with nonzero winding number. Molecular dynamics simulations are used to obtain a large sample of possible trajectories for different quench rates. The scaling of the average winding number with different quench rates is compared to the prediction of the Kibble-Zurek theory, and a good quantitative agreement is found.

  3. In situ secondary organic aerosol formation from ambient pine forest air using an oxidation flow reactor

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Palm, B. B.; Campuzano-Jost, P.; Ortega, A. M.; Day, D. A.; Kaser, L.; Jud, W.; Karl, T.; Hansel, A.; Hunter, J. F.; Cross, E. S.; et al

    2015-11-04

    Ambient air was oxidized by OH radicals in an oxidation flow reactor (OFR) located in a montane pine forest during the BEACHON-RoMBAS campaign to study biogenic secondary organic aerosol (SOA) formation and aging. High OH concentrations and short residence times allowed for semi-continuous cycling through a large range of OH exposures ranging from hours to weeks of equivalent (eq.) atmospheric aging. A simple model is derived and used to account for the relative time scales of condensation of low volatility organic compounds (LVOCs) onto particles, condensational loss to the walls, and further reaction to produce volatile, non-condensing fragmentation products. Moremore »SOA production was observed in the OFR at nighttime (average 4 ?g m-3 when LVOC fate corrected) compared to daytime (average 1 ?g m-3 when LVOC fate corrected), with maximum formation observed at 0.4–1.5 eq. days of photochemical aging. SOA formation followed a similar diurnal pattern to monoterpenes, sesquiterpenes, and toluene + p-cymene concentrations, including a substantial increase just after sunrise at 07:00 LT. Higher photochemical aging (> 10 eq. days) led to a decrease in new SOA formation and a loss of preexisting OA due to heterogeneous oxidation followed by fragmentation and volatilization. When comparing two different commonly used methods of OH production in OFRs (OFR185 and OFR254), similar amounts of SOA formation were observed. We recommend the OFR185 mode for future forest studies. Concurrent gas-phase measurements of air after OH oxidation illustrate the decay of primary VOCs, production of small oxidized organic compounds, and net production at lower ages followed by net consumption of terpenoid oxidation products as photochemical age increased. New particle formation was observed in the reactor after oxidation, especially during times when precursor gas concentrations and SOA formation were largest. Approximately 6 times more SOA was formed in the reactor from OH oxidation than could be explained by the VOCs measured in ambient air. Several recently-developed instruments quantified ambient semi- and intermediate-volatility organic compounds (S/IVOCs) that were not detected by a PTR-TOF-MS. An SOA yield of 24–80 % from those compounds can explain the observed SOA, suggesting that these typically unmeasured S/IVOCs play a substantial role in ambient SOA formation. Our results allow ruling out condensation sticking coefficients much lower than 1. Our measurements help clarify the magnitude of SOA formation in forested environments, and demonstrate methods for interpretation of ambient OFR measurements.« less

  4. Methanol Masers and Star Formation

    E-Print Network [OSTI]

    A. M. Sobolev; A. B. Ostrovskii; M. S. Kirsanova; O. V. Shelemei; M. A. Voronkov; A. V. Malyshev

    2006-01-12

    Methanol masers which are traditionally divided into two classes provide possibility to study important parts of the star forming regions: Class~II masers trace vicinities of the massive YSOs while class~I masers are likely to trace more distant parts of the outflows where newer stars can form. There are many methanol transitions which produce observed masers. This allows to use pumping analysis for estimation of the physical parameters in the maser formation regions and its environment, for the study of their evolution. Extensive surveys in different masing transitions allow to conclude on the values of the temperatures, densities, dust properties, etc. in the bulk of masing regions. Variability of the brightest masers is monitored during several years. In some cases it is probably caused by the changes of the dust temperature which follow variations in the brightness of the central YSO reflecting the character of the accretion process. A unified catalogue of the class II methanol masers consisting of more than 500 objects is compiled. Analysis of the data shows that: physical conditions within the usual maser source vary considerably; maser brightness is determined by parameters of some distinguished part of the object - maser formation region; class II methanol masers are formed not within the outflows but in the regions affected by their propagation. It is shown that the "near" solutions for the kinematic distances to the sources can be used for statistical analysis. The luminosity function of the 6.7 GHz methanol masers is constructed. It is shown that improvement of the sensitivity of surveys can increase number of detected maser sources considerably.

  5. Wave function of classical particle in linear potential

    E-Print Network [OSTI]

    A. S. Avanesov; V. I. Manko

    2013-04-03

    The problem of classical particle in linear potential is studied by using the formalism of Hilbert space and tomographic probability distribution. The Liouville equation for this problem is solved by finding the density matrix satisfying von Newmann-like equation in the form of product of wave functions. The relation to quantum mechanics is discussed.

  6. Role of the nuclear vector potential in deep inelastic scattering

    E-Print Network [OSTI]

    W. Detmold; G. A. Miller; J. R. Smith

    2005-09-15

    We study the influence of the strong nuclear vector potential, treated using the mean-field approximation, in deep inelastic scattering. A consistent treatment of the electromagnetic current operator, combined with the use of the operator product expansion is presented and discussed.

  7. Tritium Formation and Mitigation in High Temperature Reactors

    SciTech Connect (OSTI)

    Piyush Sabharwall; Carl Stoots

    2012-08-01

    Tritium is a radiologically active isotope of hydrogen. It is formed in nuclear reactors by neutron absorption and ternary fission events and can subsequently escape into the environment. In order to prevent the tritium contamination of proposed reactor buildings and surrounding sites, this paper examines the root causes and potential solutions for the production of this radionuclide, including materials selection and inert gas sparging. A model is presented that can be used to predict permeation rates of hydrogen through metallic alloys at temperatures from 450–750°C. Results of the diffusion model are presented for one steadystate value of tritium production in the reactor.

  8. Language Production General Points about Speech Production

    E-Print Network [OSTI]

    Coulson, Seana

    Language Production #12;General Points about Speech Production 15 speech sounds per second => 2, shall I say `t' or `d'' (Levelt) Production side has gotten less attention in Psycholinguistics than the comprehension side. Evidence for speech production behaviour has until recently relied heavily on speech errors

  9. A study of algal biomass potential in selected Canadian regions.

    SciTech Connect (OSTI)

    Passell, Howard David; Roach, Jesse Dillon; Klise, Geoffrey T.

    2011-11-01

    A dynamic assessment model has been developed for evaluating the potential algal biomass and extracted biocrude productivity and costs, using nutrient and water resources available from waste streams in four regions of Canada (western British Columbia, Alberta oil fields, southern Ontario, and Nova Scotia). The purpose of this model is to help identify optimal locations in Canada for algae cultivation and biofuel production. The model uses spatially referenced data across the four regions for nitrogen and phosphorous loads in municipal wastewaters, and CO{sub 2} in exhaust streams from a variety of large industrial sources. Other data inputs include land cover, and solar insolation. Model users can develop estimates of resource potential by manipulating model assumptions in a graphic user interface, and updated results are viewed in real time. Resource potential by location can be viewed in terms of biomass production potential, potential CO{sub 2} fixed, biocrude production potential, and area required. The cost of producing algal biomass can be estimated using an approximation of the distance to move CO{sub 2} and water to the desired land parcel and an estimation of capital and operating costs for a theoretical open pond facility. Preliminary results suggest that in most cases, the CO{sub 2} resource is plentiful compared to other necessary nutrients (especially nitrogen), and that siting and prospects for successful large-scale algae cultivation efforts in Canada will be driven by availability of those other nutrients and the efficiency with which they can be used and re-used. Cost curves based on optimal possible siting of an open pond system are shown. The cost of energy for maintaining optimal growth temperatures is not considered in this effort, and additional research in this area, which has not been well studied at these latitudes, will be important in refining the costs of algal biomass production. The model will be used by NRC-IMB Canada to identify promising locations for both demonstration and pilot-scale algal cultivation projects, including the production potential of using wastewater, and potential land use considerations.

  10. Formation of adhesion domains in stressed and confined membranes

    E-Print Network [OSTI]

    Dharan, Nadiv

    2015-01-01

    The adhesion bonds connecting a lipid bilayer to an underlying surface may undergo a condensation transition resulting from an interplay between a short range attractive potential between them, and a long range fluctuation-induced potential of mean force. Here, we use computer simulations of a coarse-grained molecular model of supported lipid bilayers to study this transition in confined membranes, and in membranes subjected to a non-vanishing surface tension. Our results show that confinement may alter significantly the condensation transition of the adhesion bonds, whereas the application of surface tension has a very minor effect on it. We also investigate domain formation in membranes under negative tension which, in free membranes, causes enhancement of the amplitude of the membrane thermal undulations. Our results indicate that in supported membranes, this effect of a negative surface tension on the fluctuation spectrum is largely eliminated by the pressure resulting from the mixing entropy of the adhes...

  11. Organic Tandem Solar Cells: Design and Formation

    E-Print Network [OSTI]

    Chen, Chun-Chao

    2015-01-01

    status and future potential,? Solar Energy, 2005, 79(1), 78-Organic solar cells: their developments and potentials,?Therefore, organic solar cells, with potential in low-cost

  12. Radio Triggered Star Formation in Cooling Flows

    E-Print Network [OSTI]

    B. R. McNamara

    1999-11-08

    The giant galaxies located at the centers of cluster cooling flows are frequently sites of vigorous star formation. In some instances, star formation appears to have been triggered by the galaxy's radio source. The colors and spectral indices of the young populations are generally consistent with short duration bursts or continuous star formation for durations much less than 1 Gyr, which is less than the presumed ages of cooling flows. The star formation properties are inconsistent with fueling by a continuously accreting cooling flow, although the prevalence of star formation is consistent with repeated bursts and periodic refueling. Star formation may be fueled, in some cases, by cold material stripped from neighboring cluster galaxies.

  13. Comparison of methods for geologic storage of carbon dioxide in saline formations

    SciTech Connect (OSTI)

    Goodman, Angela L. [U.S. DOE; Bromhal, Grant S. [U.S. DOE; Strazisar, Brian [U.S. DOE; Rodosta, Traci D. [U.S. DOE; Guthrie, William J. [U.S. DOE; Allen, Douglas E. [ORISE; Guthrie, George D. [U.S. DOE

    2013-01-01

    Preliminary estimates of CO{sub 2} storage potential in geologic formations provide critical information related to Carbon Capture, Utilization, and Storage (CCUS) technologies to mitigate CO{sub 2} emissions. Currently multiple methods to estimate CO{sub 2} storage and multiple storage estimates for saline formations have been published, leading to potential uncertainty when comparing estimates from different studies. In this work, carbon dioxide storage estimates are compared by applying several commonly used methods to general saline formation data sets to assess the impact that the choice of method has on the results. Specifically, six CO{sub 2} storage methods were applied to thirteen saline formation data sets which were based on formations across the United States with adaptations to provide the geologic inputs required by each method. Methods applied include those by (1) international efforts – the Carbon Sequestration Leadership Forum (Bachu et al., 2007); (2) United States government agencies – U.S. Department of Energy – National Energy Technology Laboratory (US-DOE-NETL, 2012) and United States Geological Survey (Brennan et al., 2010); and (3) the peer-reviewed scientific community – Szulczewski et al. (2012) and Zhou et al. (2008). A statistical analysis of the estimates generated by multiple methods revealed that assessments of CO{sub 2} storage potential made at the prospective level were often statistically indistinguishable from each other, implying that the differences in methodologies are small with respect to the uncertainties in the geologic properties of storage rock in the absence of detailed site-specific characterization.

  14. Floating insulated conductors for heating subsurface formations

    DOE Patents [OSTI]

    Burns, David; Goodwin, Charles R.

    2014-07-29

    A heating system for a subsurface formation includes a conduit located in a first opening in the subsurface formation. Three electrical conductors are located in the conduit. A return conductor is located inside the conduit. The return conductor is electrically coupled to the ends of the electrical conductors distal from the surface of the formation. Insulation is located inside the conduit. The insulation electrically insulates the three electrical conductors, the return conductor, and the conduit from each other.

  15. Completeness for sparse potential scattering

    SciTech Connect (OSTI)

    Shen, Zhongwei

    2014-01-15

    The present paper is devoted to the scattering theory of a class of continuum Schrödinger operators with deterministic sparse potentials. We first establish the limiting absorption principle for both modified free resolvents and modified perturbed resolvents. This actually is a weak form of the classical limiting absorption principle. We then prove the existence and completeness of local wave operators, which, in particular, imply the existence of wave operators. Under additional assumptions on the sparse potential, we prove the completeness of wave operators. In the context of continuum Schrödinger operators with sparse potentials, this paper gives the first proof of the completeness of wave operators.

  16. Hydrocracking to achieve product flexibility

    SciTech Connect (OSTI)

    George, S.E. (Criterion Catalyst Co., Houston, TX (United States)); Boardman, S.R. (Criterion Catalyst Co., Fareham (United Kingdom)); Foley, R.M. (Zeolyst International, Houston, TX (United States)) (and others)

    1994-01-01

    Hydrocracking has demonstrated a broad diversity in upgrading a wide range of feedstocks ranging from atmospheric gas oil through heavy vacuum gas oil; conversion products from cat crackers and cokers; and product streams from lube plants and deasphalters. The 90's bring many challenges to the refining industry with more stringent environmental specifications on fuels and a general trend for conversion units such as hydrocrackers to process more difficult/low value feedstocks at higher throughputs. These changes are making hydrogen availability and catalyst stability a limiting factor in many refineries. There is an ever increasing incentive to develop catalyst technology to meet the challenges of the 1990's. The formation of Zeolyst International combined Shell's considerable hydrocracking catalyst technology with the zeolite powder R D and manufacturing expertise of PQ Corporation. Shell utilizes this catalyst technology in all 12 of their advised hydrocrackers world-wide, including 7 units in North America. This level of utilization exceeds the internal use of most process licensors. Criterion Catalyst Co. manufacturers and markets Zeolyst International zeolitic hydrocracking catalyst product line worldwide. This paper discusses the wide range of applications of Criterion/Zeolyst hydrocracking catalyst systems under a variety of feedstocks, operating conditions, and unit configurations with multiple product performance targets. Commercial feedback customers on the performance of Criterion/Zeolyst hydrocracking catalysts discussed in this paper demonstrates the flexibility and value added benefits of the systems.

  17. Formation of super-heavy elements in astrophysical nucleosynthesis

    SciTech Connect (OSTI)

    Zagrebaev, V. I.; Karpov, A. V.; Mishustin, I. N.; Greiner, Walter

    2012-10-20

    The unexplored area of heavy neutron-rich nuclides is extremely important for the understanding of the r process of astrophysical nucleogenesis. For elements with Z>100 only neutron deficient isotopes (located to the left of the stability line) have been synthesized so far. The 'north-east' area of the nuclear map can be reached neither in fusion reactions nor in fragmentation processes. Low energy multi-nucleon transfer reactions are quite promising for the production and study of neutron-rich heavy nuclei including those located at the superheavy (SH) island of stability [1]. The neutron capture process is considered here as an alternative method for the production of SH nuclei. Requirements for the pulsed reactors of the next generation that could be used for the synthesis of long-living neutron rich SH nuclei are formulated. Formation of SH nuclei in supernova explosions is also discussed and the abundance of SH elements in nature is estimated.

  18. Heating systems for heating subsurface formations

    DOE Patents [OSTI]

    Nguyen, Scott Vinh (Houston, TX); Vinegar, Harold J. (Bellaire, TX)

    2011-04-26

    Methods and systems for heating a subsurface formation are described herein. A heating system for a subsurface formation includes a sealed conduit positioned in an opening in the formation and a heat source. The sealed conduit includes a heat transfer fluid. The heat source provides heat to a portion of the sealed conduit to change phase of the heat transfer fluid from a liquid to a vapor. The vapor in the sealed conduit rises in the sealed conduit, condenses to transfer heat to the formation and returns to the conduit portion as a liquid.

  19. Treating tar sands formations with dolomite

    DOE Patents [OSTI]

    Vinegar, Harold J.; Karanikas, John Michael

    2013-10-15

    A method for treating a karsted formation containing heavy hydrocarbons and dolomite includes providing heat to at least part of one or more karsted layers in the formation from one or more heaters located in the karsted layers. A temperature in at least one of the karsted layers is allowed to reach a decomposition temperature of dolomite in the formation. The dolomite is allowed to decompose and at least some hydrocarbons are produced from at least one of the karsted layers of the formation.

  20. New Particle Formation Study Final Campaign Report

    SciTech Connect (OSTI)

    Smith, JN; McMurry, PH

    2015-01-01

    The scientific foci of the New Particle Formation Study were the formation and evolution of atmospheric aerosols and the impacts of newly formed particles on cloud processes. Specifically, we planned to: (1) to identify the species and mechanisms responsible for the initial steps of new particle formation, i.e., the formation of thermodynamically stable clusters; (2) investigate the role of acid-base chemistry in new particle growth through measurements of ammonia and amines as well as organic and inorganic acids in both atmospheric nanoparticles and the gas phase; (3) investigate the contribution of other surface area or volume-controlled processes to nanoparticle formation and growth; (4) create a comprehensive dataset related to new particle formation and growth that can be used as input for our own thermodynamic models as well as the modeling efforts by our Department of Energy (DOE) Aerosol Life Cycle working group collaborators; (5) characterize the increase of the number and activity of cloud condensation nuclei (CCN) due to particle formation and growth; (6) determine the regional extent of new particle formation to address the role that atmospheric transport plays in determining the impacts, if any, of new particle formation on cloud number and properties.

  1. Hydrogen Adsorption Induces Interlayer Carbon Bond Formation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen Adsorption Induces Interlayer Carbon Bond Formation in Supported Few-Layer Graphene Friday, February 28, 2014 Among the allotropes of carbon, diamond has some of the most...

  2. Heating tar sands formations to visbreaking temperatures

    DOE Patents [OSTI]

    Karanikas, John Michael (Houston, TX); Colmenares, Tulio Rafael (Houston, TX); Zhang, Etuan (Houston, TX); Marino, Marian (Houston, TX); Roes, Augustinus Wilhelmus Maria (Houston, TX); Ryan, Robert Charles (Houston, TX); Beer, Gary Lee (Houston, TX); Dombrowski, Robert James (Houston, TX); Jaiswal, Namit (Houston, TX)

    2009-12-22

    Methods for treating a tar sands formation are described herein. Methods may include heating at least a section of a hydrocarbon layer in the formation from a plurality of heaters located in the formation. The heat may be controlled so that at least a majority of the section reaches an average temperature of between 200.degree. C. and 240.degree. C., which results in visbreaking of at least some hydrocarbons in the section. At least some visbroken hydrocarbon fluids may be produced from the formation.

  3. Standard Format and Content for Emergency Plans

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-08-21

    This volume addresses recommended emergency plan format and content for Operational Emergency Base Programs and Operational Emergency Hazardous Material Programs. Canceled by DOE G 151.1-3.

  4. Large Scale U.S. Unconventional Fuels Production and the Role of Carbon Dioxide Capture and Storage Technologies in Reducing Their Greenhouse Gas Emissions

    SciTech Connect (OSTI)

    Dooley, James J.; Dahowski, Robert T.

    2008-11-18

    This paper examines the role that carbon dioxide capture and storage technologies could play in reducing greenhouse gas emissions if a significant unconventional fuels industry were to develop within the United States. Specifically, the paper examines the potential emergence of a large scale domestic unconventional fuels industry based on oil shale and coal-to-liquids (CTL) technologies. For both of these domestic heavy hydrocarbon resources, this paper models the growth of domestic production to a capacity of 3 MMB/d by 2050. For the oil shale production case, we model large scale deployment of an in-situ retorting process applied to the Eocene Green River formation of Colorado, Utah, and Wyoming where approximately 75% of the high grade oil shale resources within the United States lies. For the CTL case, we examine a more geographically dispersed coal-based unconventional fuel industry. This paper examines the performance of these industries under two hypothetical climate policies and concludes that even with the wide scale availability of cost effective carbon dioxide capture and storage technologies, these unconventional fuels production industries would be responsible for significant increases in CO2 emissions to the atmosphere. The oil shale production facilities required to produce 3MMB/d would result in net emissions to the atmosphere of between 3000-7000 MtCO2 in addition to storing potentially 1000 to 5000 MtCO2 in regional deep geologic formations in the period up to 2050. A similarly sized domestic CTL industry could result in 4000 to 5000 MtCO2 emitted to the atmosphere in addition to potentially 21,000 to 22,000 MtCO2 stored in regional deep geologic formations over the same period up to 2050. Preliminary analysis of regional CO2 storage capacity in locations where such facilities might be sited indicates that there appears to be sufficient storage capacity, primarily in deep saline formations, to accommodate the CO2 from these industries. However, additional analyses plus detailed regional and site characterization is needed, along with a closer examination of competing storage demands.

  5. Analysis of Renewable Energy Potential on U. S. National Forest Lands

    SciTech Connect (OSTI)

    Zvolanek, E.; Kuiper, J.; Carr, A.; Hlava, K.

    2013-12-13

    In 2005, the National Renewable Energy Laboratory (NREL) completed an assessment of the potential for solar and wind energy development on National Forest System (NFS) public lands managed by the US Department of Agriculture, U.S. Forest Service (USFS). This report provides an update of the analysis in the NREL report, and extends the analysis with additional siting factors for solar and wind energy. It also expands the scope to biomass and geothermal energy resources. Hydropower is acknowledged as another major renewable energy source on NFS lands; however, it was not analyzed in this project primarily because of the substantially different analysis that would be needed to identify suitable locations. Details about each renewable energy production technology included in the study are provided following the report introduction, including how each resource is converted to electrical power, and examples of existing power plants. The analysis approach was to use current and available Geographic Information System (GIS) data to map the distribution of the subject renewable energy resources, major siting factors, and NFS lands. For each major category of renewable energy power production, a set of siting factors were determined, including minimum levels for the renewable energy resources, and details for each of the other siting factors. Phase 1 of the analysis focused on replicating and updating the 2005 NREL analysis, and Phase 2 introduced additional siting factors and energy resources. Source data were converted to a cell?based format that helped create composite maps of locations meeting all the siting criteria. Acreages and potential power production levels for NFS units were tabulated and are presented throughout this report and the accompanying files. NFS units in the southwest United States were found to have the most potentially suitable land for concentrating solar power (CSP), especially in Arizona and New Mexico. In total, about 136,032 acres of NFS lands were found potentially suitable for CSP development, potentially yielding as much as 13,603 megawatts (MW) of electricity, assuming 10 acres per MW. For photovoltaic solar power (PV), the top NFS units were more widely distributed than CSP. Notably, more than 150,000 acres in Comanche National Grassland in Colorado were found to be potentially suitable for PV development, accounting for more than 25% of the potentially suitable NFS lands combined. In total, about 564,698 acres of NFS lands were found potentially suitable for PV development, potentially yielding as much as 56,469 MW of electricity, assuming 10 acres per MW. NFS units most suitable for wind power are concentrated in the northern Great Plains. In total, about 3,357,792 acres of NFS lands were found potentially suitable for wind development, potentially yielding as much as 67,156 MW of electricity, assuming 50 acres per MW. Of that area, 571,431 acres (11,429 MW) are located within the Bankhead?Jones Farm Tenant Act Land in Montana. NFS lands in Alaska have considerable wind resources, but other siting factors eliminated almost the entire area. The southwest coast of Chugach National Forest, near Seward, Alaska, maintains the majority of the remaining acreage. NFS units with highly suitable biomass resources are located from Idaho to Louisiana. In total, about 13,967,077 acres of NFS lands are potentially highly suitable for biomass from logging and thinning residue development. Of that, 1,542,247 acres is located in Fremont?Winema National Forest in Oregon. Not surprisingly, most NFS units have at least some level of potentially suitable biomass resources. In general, biomass resources such as these could significantly offset consumption of coal and petroleum?based fuels. NFS units deemed potentially highly suitable for enhanced geothermal system (EGS) development were distributed widely from California to Virginia, accounting for some 6,475,459 acres. Mark Twain National Forest in Missouri has the largest area of all the NFS units, with 900,637 acres. While more rigorous studies are needed

  6. Economical Production of Pu-238

    SciTech Connect (OSTI)

    Steven D. Howe; Douglas Crawford; Jorge Navarro; Terry Ring

    2013-02-01

    All space exploration missions traveling beyond Jupiter must use radioisotopic power sources for electrical power. The best isotope to power these sources is plutonium-238. The US supply of Pu-238 is almost exhausted and will be gone within the next decade. The Department of Energy has initiated a production program with a $10M allocation from NASA but the cost is estimated at over $100 M to get to production levels. The Center for Space Nuclear Research has conceived of a potentially better process to produce Pu-238 earlier and for significantly less cost. The new process will also produce dramatically less waste. Potentially, the front end costs could be provided by private industry such that the government only had to pay for the product produced. Under a NASA Phase I NIAC grant, the CSNR has evaluated the feasibility of using a low power, commercially available nuclear reactor to produce at least 1.5 kg of Pu-238 per year. The impact on the neutronics of the reactor have been assessed, the amount of Neptunium target material estimated, and the production rates calculated. In addition, the size of the post-irradiation processing facility has been established. In addition, a new method for fabricating the Pu-238 product into the form used for power sources has been identified to reduce the cost of the final product. In short, the concept appears to be viable, can produce the amount of Pu-238 needed to support the NASA missions, can be available within a few years, and will cost significantly less than the current DOE program.

  7. Cassava, a potential biofuel crop in China

    E-Print Network [OSTI]

    Jansson, C.

    2010-01-01

    cassava-derived bioethanol production has been increasingof cassava for bioethanol production. 1. Introduction 1.1.a direct comparison of bioethanol production from different

  8. Mechanistic Studies on the Formation of Trifluoromethyl Sulfur Pentafluoride, SF5CF3sa Greenhouse Gas

    E-Print Network [OSTI]

    Kaiser, Ralf I.

    Mechanistic Studies on the Formation of Trifluoromethyl Sulfur Pentafluoride, SF5CF3sa Greenhouse that a source for this potentially dangerous greenhouse gas might be the recombination of SF5(X2A1) and CF3(X2A1 the strongest greenhouse gas trifluoromethyl sulfur pentafluoride (SF5CF3) with a radiative force of 0.59 W m-2

  9. Application-specific network management for energy-aware streaming of popular multimedia formats

    E-Print Network [OSTI]

    Vahdat, Amin

    Application-specific network management for energy-aware streaming of popular multimedia formats requirements, they do not offer any energy savings for multimedia streams over 56 kbps. The potential energy, an application-specific server side traffic shaping mech- anism can offer good energy saving for all the stream

  10. Cloud Formation in the Plumes of Solar Chimney Power Generation Facilities: A Modeling Study

    E-Print Network [OSTI]

    Nenes, Athanasios

    the potential impacts on plant capacity resulting from cloud formation within or downwind of the solar chimney. Ideally, renewable energy power plants convert energy from naturally occurring thermal or kinetic sources technology for converting solar energy into electricity that has shown promise in recent years is the so

  11. The Formation of Nonzonal Jets over Sloped Topography EMMA J. D. BOLAND

    E-Print Network [OSTI]

    Thompson, Andrew

    The Formation of Nonzonal Jets over Sloped Topography EMMA J. D. BOLAND The University of Cambridge, in final form 26 March 2012) ABSTRACT Coherent jets are ubiquitous features of the ocean's circulation tilted nonzonal jets that are aligned per- pendicular to the barotropic potential vorticity (PV) gradient

  12. Hertz Potentials and Differential Geometry 

    E-Print Network [OSTI]

    Bouas, Jeffrey David

    2011-08-08

    , and I present techniques for introducing gauge terms of arbitrary order. Finally, I give a treatment of one application of Hertz potentials, namely calculating electromagnetic Casimir interactions for a couple of systems....

  13. Groundwater Contamination Potential from Stormwater

    E-Print Network [OSTI]

    Clark, Shirley E.

    1 Groundwater Contamination Potential from Stormwater Infiltration Robert Pitt, University (CSOs). Introduction (cont.) · Scattered information is available addressing groundwater impacts cities · EPA 1983 NURP work on groundwater beneath Fresno and Long Island infiltration basins · NRC 1994

  14. Format requirements of thermal neutron scattering data in a nuclear data format to succeed the ENDF format

    SciTech Connect (OSTI)

    Brown, D. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2014-03-31

    In November 2012, the Working Party on Evaluation Cooperation Subgroup 38 (WPEC-SG38) began with the task of developing a nuclear data format and supporting infrastructure to replace the now nearly 50 year old ENDF format. The first step in this process is to develop requirements for the new format and infrastructure. In this talk, I will review the status of ENDF's Thermal Scattering Law (TSL) formats as well as support for this data in the GND format (from which the new format is expected to evolve). Finally, I hope to begin a dialog with members of the thermal neutron scattering community so that their data needs can be accurately and easily accommodated by the new format and tools, as captured by the requirements document. During this discussion, we must keep in mind that the new tools and format must; Support what is in existing data files; Support new things we want to put in data files; and Be flexible enough for us to adapt it to future unanticipated challenges.

  15. Coalbed Methane Procduced Water Treatment Using Gas Hydrate Formation at the Wellhead

    SciTech Connect (OSTI)

    BC Technologies

    2009-12-30

    Water associated with coalbed methane (CBM) production is a significant and costly process waste stream, and economic treatment and/or disposal of this water is often the key to successful and profitable CBM development. In the past decade, advances have been made in the treatment of CBM produced water. However, produced water generally must be transported in some fashion to a centralized treatment and/or disposal facility. The cost of transporting this water, whether through the development of a water distribution system or by truck, is often greater than the cost of treatment or disposal. To address this economic issue, BC Technologies (BCT), in collaboration with Oak Ridge National Laboratory (ORNL) and International Petroleum Environmental Consortium (IPEC), proposed developing a mechanical unit that could be used to treat CBM produced water by forming gas hydrates at the wellhead. This process involves creating a gas hydrate, washing it and then disassociating hydrate into water and gas molecules. The application of this technology results in three process streams: purified water, brine, and gas. The purified water can be discharged or reused for a variety of beneficial purposes and the smaller brine can be disposed of using conventional strategies. The overall objectives of this research are to develop a new treatment method for produced water where it could be purified directly at the wellhead, to determine the effectiveness of hydrate formation for the treatment of produced water with proof of concept laboratory experiments, to design a prototype-scale injector and test it in the laboratory under realistic wellhead conditions, and to demonstrate the technology under field conditions. By treating the water on-site, producers could substantially reduce their surface handling costs and economically remove impurities to a quality that would support beneficial use. Batch bench-scale experiments of the hydrate formation process and research conducted at ORNL confirmed the feasibility of the process. However, researchers at BCT were unable to develop equipment suitable for continuous operation and demonstration of the process in the field was not attempted. The significant achievements of the research area: Bench-scale batch results using carbon dioxide indicate >40% of the feed water to the hydrate formation reactor was converted to hydrate in a single pass; The batch results also indicate >23% of the feed water to the hydrate formation reactor (>50% of the hydrate formed) was converted to purified water of a quality suitable for discharge; Continuous discharge and collection of hydrates was achieved at atmospheric pressure. Continuous hydrate formation and collection at atmospheric conditions was the most significant achievement and preliminary economics indicate that if the unit could be made operable, it is potentially economic. However, the inability to continuously separate the hydrate melt fraction left the concept not ready for field demonstration and the project was terminated after Phase Two research.

  16. Drifting potential humps in ionization zones: The “propeller blades” of high power impulse magnetron sputtering

    SciTech Connect (OSTI)

    Anders, André; Ni, Pavel; Panjan, Matjaž; Jožef Stefan Institute, Jamova 39, 1000 Ljubljana ; Franz, Robert; Montanuniversität Leoben, Franz-Josef-Strasse 18, 8700 Leoben ; Andersson, Joakim; Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, 117543 Singapore

    2013-09-30

    Ion energy distribution functions measured for high power impulse magnetron sputtering show features, such as a broad peak at several 10 eV with an extended tail, as well as asymmetry with respect to E×B, where E and B are the local electric and magnetic field vectors, respectively. Here it is proposed that those features are due to the formation of a potential hump of several 10 V in each of the traveling ionization zones. Potential hump formation is associated with a negative-positive-negative space charge that naturally forms in ionization zones driven by energetic drifting electrons.

  17. Zombie Apocalypse and GIS Potential

    E-Print Network [OSTI]

    Siegel, Daniel

    2013-01-15

    Zombie Apocalypse and GIS Potential Daniel Siegel Senior in Environmental Studies Minor in GIS KU GIS Day 2012 Playing Movie Director Point of infection (POI): Haworth Hall Zombies • Attracted to population centers • Move Easily... Zombie Apocalypse and GIS Potential Daniel Siegel Senior in Environmental Studies Minor in GIS KU GIS Day 2012 Playing Movie Director Point of infection (POI): Haworth Hall Zombies • Attracted to population centers • Move Easily...

  18. Chaos in Terrestrial Planet Formation

    E-Print Network [OSTI]

    Volker Hoffmann; Simon L. Grimm; Ben Moore; Joachim Stadel

    2015-08-04

    Terrestrial planets are thought to be the result of a vast number of gravitational interactions and collisions between smaller bodies. We use numerical simulations to show that practically identical initial conditions result in a wide array of final planetary configurations. This highly chaotic behaviour questions the predictability of different scenarios for the formation and evolution of our solar system and planetary systems in general. However, multiple realisations of the same initial conditions can be used to predict certain global statistics. We present two sets of numerical experiments that quantify this behaviour. Firstly, we demonstrate that simulations with slightly displaced particles are completely divergent after ~500 years, irrespective of initial displacement, particle number, and code accuracy. If a single planetesimal is moved by less than one millimetre, then a different set of planets results -- this timescale for chaotic divergence decreases with increasing particle number. Secondly, we show final planetary configurations of initially similar simulations with and without giant planets after evolving them for ~148 Myr. We find that the same simulations including giant planets tend to generate higher mass planets at lower semi-major axes than simulations without gas giants. This prediction can be tested with forthcoming observational programs. By extracting outliers in the observations, we cautiously predict that Kepler-10, Kepler-9, 61 Vir, HD 134060, and HD 51608 may host as yet undetected giant planets.

  19. Geological and production characteristics of strandplain/barrier island reservoirs in the United States

    SciTech Connect (OSTI)

    Cole, E.L.; Fowler, M.; Jackson, S.; Madden, M.P.; Reeves, T.K.; Salamy, S.P.; Young, M.A.

    1994-12-01

    The Department of Energy`s (DOE`s) primary mission in the oil research program is to maximize the economically and environmentally sound recovery of oil from domestic reservoirs and to preserve access to this resource. The Oil Recovery Field Demonstration Program supports DOE`s mission through cost-shared demonstrations of improved Oil Recovery (IOR) processes and reservoir characterization methods. In the past 3 years, the DOE has issued Program Opportunity Notices (PONs) seeking cost-shared proposals for the three highest priority, geologically defined reservoir classes. The classes have been prioritized based on resource size and risk of abandonment. This document defines the geologic, reservoir, and production characteristics of the fourth reservoir class, strandplain/barrier islands. Knowledge of the geological factors and processes that control formation and preservation of reservoir deposits, external and internal reservoir heterogeneities, reservoir characterization methodology, and IOR process application can be used to increase production of the remaining oil-in-place (IOR) in Class 4 reservoirs. Knowledge of heterogeneities that inhibit or block fluid flow is particularly critical. Using the TORIS database of 330 of the largest strandplain/barrier island reservoirs and its predictive and economic models, the recovery potential which could result from future application of IOR technologies to Class 4 reservoirs was estimated to be between 1.0 and 4.3 billion barrels, depending on oil price and the level of technology advancement. The analysis indicated that this potential could be realized through (1) infill drilling alone and in combination with polymer flooding and profile modification, (2) chemical flooding (sufactant), and (3) thermal processes. Most of this future potential is in Texas, Oklahoma, and the Rocky Mountain region. Approximately two-thirds of the potentially recoverable resource is at risk of abandonment by the year 2000.

  20. THE POTENTIAL OF SOLAR ELECTRIC

    E-Print Network [OSTI]

    Delaware, University of

    A Renewable Energy Applications for Delaware Yearly (READY) Project Center for Energy FOR DELAWARE'S POULTRY FARMS Final Report A Renewable Energy Applications for Delaware Yearly (READY) Project.5 Energy and the Costs of Production.............................................................5 2

  1. Potential for Materials and Energy RecoveryPotential for Materials and Energy Recovery the Municipal Solid Wastes (the Municipal Solid Wastes (MSWMSW) of Beograd) of Beograd

    E-Print Network [OSTI]

    Columbia University

    Potential for Materials and Energy RecoveryPotential for Materials and Energy Recovery fromfrom anaerobically (in absence of O2).to form methane gas · Recovery of soil nutrients: By aerobic composting (in-ferrous metal scrap) · Use of mixed paper for production of brown paper and cardboard · Recycling of selected

  2. EXPLOITATION AND OPTIMIZATION OF RESERVOIR PERFORMANCE IN HUNTON FORMATION, OKLAHOMA

    SciTech Connect (OSTI)

    Mohan Kelkar

    2003-04-01

    West Carney Field produces from Hunton Formation. All the wells produce oil, water and gas. The main objective of this study is to understand the unique behavior observed in the field. This behavior includes: (1) Decrease in WOR over time; (2) Decrease in GOR at initial stages; (3) High decline rates of oil and gas; and (4) strong hydrodynamic connectivity between wells. This report specifically addresses two issues relevant to our understanding of the West Carney reservoir. By using core and log data as well as fluorescence information, we demonstrate that our hypothesis of how the reservoir is formed is consistent with these observations. Namely, oil migrated in water wet reservoir, over time, oil changed the wettability of some part of the reservoir, oil eventually leaked to upper formations prompting re-introduction of water into reservoir. Because of change in wettability, different pore size distributions responded differently to water influx. This hypothesis is consistent with fluorescence and porosity data, as we explain it in this quarterly report. The second issue deals with how to best calculate connected oil volume in the reservoir. The log data does not necessarily provide us with relevant information regarding oil in place. However, we have developed a new material balance technique to calculate the connected oil volume based on observed pressure and production data. By using the technique to four different fields producing from Hunton formation, we demonstrate that the technique can be successfully applied to calculate the connected oil in place.

  3. Source of methane and methods to control its formation in single chamber microbial electrolysis cells

    E-Print Network [OSTI]

    Source of methane and methods to control its formation in single chamber microbial electrolysis online 31 March 2009 Keywords: Hydrogen Microbial electrolysis cell (MEC) Methane Single chamber Exoelectrogenic a b s t r a c t Methane production occurs during hydrogen gas generation in microbial electrolysis

  4. Observations of nighttime new particle formation in the troposphere Shan-Hu Lee,1

    E-Print Network [OSTI]

    Lee, Shan-Hu

    , atmospheric composition and human health, atmospheric aerosol formation mechanisms are poorly understood uncertainties because they are not rigorously tested by experiments. For example, model-predicted nucleation sources are the photochemical production of ozone and water under ultraviolet (UV) radiation, nighttime

  5. Formation of the intermediate baryon systems in hadron-nuclear and nuclear-nuclear interactions

    E-Print Network [OSTI]

    M. K. Suleymanov; E. U. Khan; A Kravchakova; Mahnaz Q. Haseeb; S. M. Saleem; Y. H. Huseynaliyev; S Vokal; A. S. Vodopianov; O. B. Abdinov

    2007-12-17

    The centrality experiments indicate regime change and saturation in the behavior of some characteristics of the secondary particles emitted in hadron-nuclear and nuclear-nuclear interactions at high energies. The phenomenon has a critical character. The simple models do not explain the effect. We suppose that the responsible mechanism to explain the phenomenon could be the formation and decay of the intermediate baryon systems. Such systems could be formed as a result of nucleon percolation in compressed baryonic matter. Formation of big percolation cluster may change the properties of the medium, e.g., it could lead to the changing its transparency. This could be used to get a signal of the intermediate baryonic system formation. We consider two signals to identify the formation of the intermediate baryon systems: the critical changing of transparency of the strongly interacting matter and the enhancement of light nuclei production with increase in centrality.

  6. Cogeneration development and market potential in China

    SciTech Connect (OSTI)

    Yang, F.; Levine, M.D.; Naeb, J.; Xin, D.

    1996-05-01

    China`s energy production is largely dependent on coal. China currently ranks third in global CO{sub 2} emissions, and rapid economic expansion is expected to raise emission levels even further in the coming decades. Cogeneration provides a cost-effective way of both utilizing limited energy resources and minimizing the environmental impacts from use of fossil fuels. However, in the last 10 years state investments for cogeneration projects in China have dropped by a factor of 4. This has prompted this study. Along with this in-depth analysis of China`s cogeneration policies and investment allocation is the speculation that advanced US technology and capital can assist in the continued growth of the cogeneration industry. This study provides the most current information available on cogeneration development and market potential in China.

  7. The Formation of IRIS Diagnostics. VII. The Formation of the OI 135.56 nm Line in the Solar Atmosphere

    E-Print Network [OSTI]

    Lin, Hsiao-Hsuan

    2015-01-01

    The O I 135.56 nm line is covered by NASA's Interface Region Imaging Spectrograph (IRIS) small explorer mission which studies how the solar atmosphere is energized. We here study the formation and diagnostic potential of this line by means of non-LTE modelling employing both 1D semi-empirical and 3D radiation-Magneto Hydrodynamic (RMHD) models. We study the basic formation mechanisms and derive a quintessential model atom that incorporates the essential atomic physics for the formation of the O I 135.56 nm line. This atomic model has 16 levels and describes recombination cascades through highly excited levels by effective recombination rates. The ionization balance O I/O II is set by the hydrogen ionization balance through charge exchange reactions. The emission in the O I 135.56 nm line is dominated by a recombination cascade and the line is optically thin. The Doppler shift of the maximum emission correlates strongly with the vertical velocity in its line forming region, which is typically located at 1.0 - ...

  8. FAINT RADIO SOURCES AND STAR FORMATION HISTORY

    E-Print Network [OSTI]

    Waddington, Ian

    FAINT RADIO SOURCES AND STAR FORMATION HISTORY Deborah B. Haarsma 1 , R. Bruce Partridge 1 , Ian 85287­1504 USA Abstract. Faint extragalactic radio sources provide important information about the global history of star formation. Sensitive radio observations of the Hubble Deep Field and other fields

  9. Methods for forming wellbores in heated formations

    DOE Patents [OSTI]

    Guimerans, Rosalvina Ramona; Mansure, Arthur James

    2012-09-25

    A method for forming a wellbore in a heated formation includes flowing liquid cooling fluid to a bottom hole assembly in a wellbore in a heated formation. At least a portion of the liquid cooling fluid is vaporized at or near a region to be cooled. Vaporizing the liquid cooling fluid absorbs heat from the region to be cooled.

  10. Robot Behavior Adaptation for Formation Maintenance

    E-Print Network [OSTI]

    López-Sánchez, Maite

    1 Robot Behavior Adaptation for Formation Maintenance Maite López-Sánchez maite@maia.ub.es WAI): ­1 or 2 reference robots to follow ­keeping fixed angle (formation property) ­and fixed distance d (separation distance) · related to robot visibility range, speed or reaction capabilities Basic behaviors I

  11. First Structure Formation and the First Stars

    E-Print Network [OSTI]

    Michael L. Norman; Tom Abel; Greg Bryan

    2000-05-11

    We discuss the results of recent 3D simulations of first structure formation in relationship to the formation of the first stars. On the basis of a new, high-resolution AMR simulation (spatial dynamic range = 30,000,000), we conclude that the first stars are likely to be massive.

  12. Influence of temperature and process duration on composition of products of butane aromatization on zeolitic catalyst

    SciTech Connect (OSTI)

    Vorob`ev, B.L.; Trishin, P.Yu.; Koshelev, Yu.N.

    1995-06-10

    A study has been made of the influence of catalyst deactivation in the course of its service. The composition of products of butane aromatization on zeolitic catalyst and on selectivity of formation of target products and by-products is reported.

  13. Pollution Prevention Through Productivity Improvement Harry W. Edwards, Michael F. Kostrzewa, and Cynthia K. Ketzenberger

    E-Print Network [OSTI]

    1 Pollution Prevention Through Productivity Improvement 99-151 Harry W. Edwards, Michael F that recommended productivity improvement practices can also prevent formation of wastes and polluting emissions. A total of 61 productivity improvement recommendations were made, 14 of which provide pollution prevention

  14. CO2 SEQUESTRATION POTENTIAL OF TEXAS LOW-RANK COALS

    SciTech Connect (OSTI)

    Duane A. McVay; Walter B. Ayers Jr; Jerry L. Jensen

    2004-11-01

    The objectives of this project are to evaluate the feasibility of carbon dioxide (CO{sub 2}) sequestration in Texas low-rank coals and to determine the potential for enhanced coalbed methane (CBM) recovery as an added benefit of sequestration. there were two main objectives for this reporting period. first, they wanted to collect wilcox coal samples from depths similar to those of probable sequestration sites, with the objective of determining accurate parameters for reservoir model description and for reservoir simulation. The second objective was to pursue opportunities for determining permeability of deep Wilcox coal to use as additional, necessary data for modeling reservoir performance during CO{sub 2} sequestration and enhanced coalbed methane recovery. In mid-summer, Anadarko Petroleum Corporation agreed to allow the authors to collect Wilcox Group coal samples from a well that was to be drilled to the Austin Chalk, which is several thousand feet below the Wilcox. In addition, they agreed to allow them to perform permeability tests in coal beds in an existing shut-in well. Both wells are in the region of the Sam K. Seymour power station, a site that they earlier identified as a major point source of CO{sub 2}. They negotiated contracts for sidewall core collection and core analyses, and they began discussions with a service company to perform permeability testing. To collect sidewall core samples of the Wilcox coals, they made structure and isopach maps and cross sections to select coal beds and to determine their depths for coring. On September 29, 10 sidewall core samples were obtained from 3 coal beds of the Lower Calvert Bluff Formation of the Wilcox Group. The samples were desorbed in 4 sidewall core canisters. Desorbed gas samples were sent to a laboratory for gas compositional analyses, and the coal samples were sent to another laboratory to measure CO{sub 2}, CH{sub 4}, and N{sub 2} sorption isotherms. All analyses should be finished by the end of December. A preliminary report shows methane content values for the desorbed coal samples ranged between 330 and 388 scf/t., on ''as received'' basis. Residual gas content of the coals was not included in the analyses, which results in an approximate 5-10% underestimation of in-situ gas content. Coal maps indicate that total coal thickness is 40-70 ft in the Lower Calvert Bluff Formation of the Wilcox Group in the vicinity of the Sam K. Seymour power plant. A conservative estimate indicates that methane in place for a well on 160-acre spacing is approximately 3.5 Bcf in Lower Calvert Bluff coal beds. When they receive sorption isotherm data from the laboratory, they will determine the amount of CO{sub 2} that it may be possible to sequester in Wilcox coals. In December, when the final laboratory and field test data are available, they will complete the reservoir model and begin to simulate CO{sub 2} sequestration and enhanced CH{sub 4} production.

  15. Ionized gas kinematics and massive star formation in NGC 1530

    E-Print Network [OSTI]

    A. Zurita; M. Relano; J. E. Beckman; J. H. Knapen

    2003-07-11

    We present emission line mapping of the strongly barred galaxy NGC 1530 obtained from Fabry-Perot interferometry in Halpha, at significantly enhanced angular resolution compared with published studies. The main point of the work is to examine in detail the non-circular components of the velocity field of the gas, presumably induced by the strongly non-axisymmetric gravitational potential of the bar. These reveal quasi-elliptical motions with speeds of order 100 km/s aligned with the bar. It also shows how these flows swing in towards and around the nucleus as they cross a circumnuclear resonance, from the dominant "x1 orbits" outside the resonance to "x2 orbits" within it. Comparing cross-sections of the residual velocity map along and across the bar with the Halpha intensity map indicates a systematic offset between regions of high non-circular velocity and massive star formation. To investigate further we produce velocity gradient maps along and across the bar. These illustrate very nicely the shear compression of the gas, revealed by the location of the dust lanes along loci of maximum velocity gradient perpendicular to the bar. They also show clearly how shear acts to inhibit massive star formation, whereas shocks act to enhance it. Although the inhibiting effect of gas shear flow on star formation has long been predicted, this is the clearest observational illustration so far of the effect. It is also the clearest evidence that dust picks out shock-induced inflow along bars. These observations should be of considerable interest to those modelling massive star formation in general.

  16. Anode film formation and control

    DOE Patents [OSTI]

    Koski, O.; Marschman, S.C.

    1990-05-01

    A protective film is created about the anode within a cryolite-based electrolyte during electrolytic production of aluminum from alumina. The film functions to minimize corrosion of the anode by the cryolitic electrolyte and thereby extend the life of the anode. Various operating parameters of the electrolytic process are controlled to maintain the protective film about the anode in a protective state throughout the electrolytic reduction of alumina. Such parameters include electrolyte temperature, electrolyte ratio, current density, and Al[sub 2]O[sub 3] concentration. An apparatus is also disclosed to enable identification of the onset of anode corrosion due to disruption of the film to provide real time information regarding the state of the film. 3 figs.

  17. A NEW CLASS MESOPOROUS ALUMINOPHOSPHATES AS POTENTIAL CATALYSTS IN THE UPGRADING PETROLEUM FEEDSTOCKS

    SciTech Connect (OSTI)

    Conrad Ingram; Mark Mitchell

    2005-08-31

    A comprehensive investigation was conducted towards the synthesis and catalytic evaluation of high surface areas, uniform pore size, mesoporous aluminophosphates (AlPO{sub 4}) as potential catalysts for the upgrading of heavy petroleum feedstock, such as heavy crudes and petroleum residuum. The influence of several synthesis variables (including, the nature of the reactants, chemical composition of reaction mixtures, time and temperature) on the synthesis and physicochemical characteristics of the resulting products was explored. Phosphoric acid and three different aluminum sources, namely, aluminum hydroxide, aluminum isopropoxide and psuedobohemite alumina, were used as the inorganic precursors. Cetyltrimethylammonium chloride (C{sub 16}TACl) surfactant was used as charge compensating cation and structure directing agent in the surfactant-micellar-mediated synthesis pathway employed. Synthesis were conducted from reaction mixtures within the following typical molar composition range: xAl{sub 2}O{sub 3}:P{sub 2}O{sub 5}:yC{sub 16}TMACl: zTHMAOH: wH{sub 2}O, where x = 0.29-2.34, y = 0.24-0.98, z = 0.34-1.95, w = 86-700. Selected materials were evaluated for the conversion of isopropylbenzene (cumene) in order to understand the nature of any acid sites created. The synthesis products obtained depended strongly on the molar composition of the synthesis mixture. A lamellar (layered) phase was favored by synthesis mixtures comprised of low Al/P ratios (<0.33), low TMAOH content, high C{sub 16}TACl concentrations and high synthesis temperature (110 C). Formation of the desired hexagonal (tubular) phase was favored by higher Al/P ratios and TMAOH content, pH range between 8-10, low C{sub 16}TACl concentration and ambient temperature. The aluminum source had significant influence on the products obtained. With aluminum hydroxide (A1(OH){sub 3}) as the hydroxide source, the resulting hexagonal phase in the ''as-synthesized'' form demonstrated well defined ordered mesoporous structure for synthesis mixtures of Al/P ratios in the range of 0.47-1.25, above which increasingly disordered products were observed. The products were however unstable to calcination in air above 400 C to remove the organic template, under which structural collapsed was observed. Products formed using pseudoboehmite alumina (catapal B), were more thermally stable than those formed with aluminum isopropoxide, though all products experienced some degree of structural collapsed on calcination and yielded micro- or micro-mesoporous materials ranging from low (<500 m{sup 2}/g) to high surface areas (>500 m{sup 2}/g) and pore sizes ranging from microporous (< 1.5 nm) in some products to mesoporous (up to 3.6 nm) in other. Improvement in thermal stability was not observed when Mg and Co or bridging organic functional groups were incorporated with the mesoporous framework. The products showed negligible activity for the conversion of cumene at 300 C. Further research is necessary to investigate alternative synthesis strategies to strengthen and improve the thermal stabilities of these aluminophosphates.

  18. 1.6 Policy Development & Format Page 1 of 3 Policy Development & Format

    E-Print Network [OSTI]

    Hung, I-Kuai

    1.6 Policy Development & Format Page 1 of 3 Policy Development & Format Original Implementation: July 16, 2013 Last Revision: None A. POLICY FORMAT Each policy will have a title that is concise but descriptive. Each policy is indexed with a numeric indicator which indicates the position of the entry within

  19. Sequentially Triggered Star Formation in OB Associations

    E-Print Network [OSTI]

    Thomas Preibisch; Hans Zinnecker

    2006-10-27

    We discuss observational evidence for sequential and triggered star formation in OB associations. We first review the star formation process in the Scorpius-Centaurus OB association, the nearest OB association to the Sun, where several recent extensive studies have allowed us to reconstruct the star formation history in a rather detailed way. We then compare the observational results with those obtained for other OB associations and with recent models of rapid cloud and star formation in the turbulent interstellar medium. We conclude that the formation of whole OB subgroups (each consisting of several thousand stars) requires large-scale triggering mechanisms such as shocks from expanding wind and supernova driven superbubbles surrounding older subgroups. Other triggering mechanisms, like radiatively driven implosion of globules, also operate, but seem to be secondary processes, forming only small stellar groups rather than whole OB subgroups with thousands of stars.

  20. Data from selected Almond Formation outcrops -- Sweetwater County, Wyoming

    SciTech Connect (OSTI)

    Jackson, S.R.; Rawn-Schatzinger, V.

    1993-12-01

    The objectives of this research program are to: (1) determine the reservoir characteristics and production problems of shoreline barrier reservoirs; and (2) develop methods and methodologies to effectively characterize shoreline barrier reservoirs to predict flow patterns of injected and produced fluids. Two reservoirs were selected for detailed reservoir characterization studies -- Bell Creek field, Carter County, Montana, that produces from the Lower Cretaceous (Albian-Cenomanian) Muddy Formation, and Patrick Draw field, Sweetwater County, Wyoming that produces from the Upper Cretaceous (Campanian) Almond Formation of the Mesaverde Group. An important component of the research project was to use information from outcrop exposures of the producing formations to study the spatial variations of reservoir properties and the degree to which outcrop information can be used in the construction of reservoir models. A report similar to this one presents the Muddy Formation outcrop data and analyses performed in the course of this study (Rawn-Schatzinger, 1993). Two outcrop localities, RG and RH, previously described by Roehler (1988) provided good exposures of the Upper Almond shoreline barrier facies and were studied during 1990--1991. Core from core well No. 2 drilled approximately 0.3 miles downdip of outcrop RG was obtained for study. The results of the core study will be reported in a separate volume. Outcrops RH and RG, located about 2 miles apart were selected for detailed description and drilling of core plugs. One 257-ft-thick section was measured at outcrop RG, and three sections {approximately}145 ft thick located 490 and 655 feet apart were measured at the outcrop RH. Cross-sections of these described profiles were constructed to determine lateral facies continuity and changes. This report contains the data and analyses from the studied outcrops.

  1. Dirac Equations with Confining Potentials

    E-Print Network [OSTI]

    J. H. Noble; U. D. Jentschura

    2015-02-06

    This paper is devoted to a study of relativistic eigenstates of Dirac particles which are simultaneously bound by a static Coulomb potential and added linear confining potentials. It has recently been shown that, despite the addition of radially symmetric, linear confining potentials, some specific bound-state energies surprisingly retain their exact Dirac--Coulomb values (in the sense of an "exact symmetry"). This observation raises pertinent questions as to the generality of the cancellation mechanism. A Foldy-Wouthuysen transformation is used to find the relevant nonrelativistic physical degrees of freedom, which include additional spin-orbit couplings induced by the linear confining potentials. The matrix elements of the effective operators obtained from the scalar, and time-like confining potentials mutually cancel for specific ratios of the prefactors of the effective operators, which must be tailored to the cancellation mechanism. The result of the Foldy-Wouthuysen transformation is used to explicitly show that the cancellation is accidental and restricted (for a given Hamiltonian) to only one reference state, rather than traceable to a more general relationship among the obtained effective low-energy operators. Furthermore, we show that the cancellation mechanism does not affect anti-particle (negative-energy) states.

  2. Biological production of products from waste gases

    DOE Patents [OSTI]

    Gaddy, James L. (Fayetteville, AR)

    2002-01-22

    A method and apparatus are designed for converting waste gases from industrial processes such as oil refining, and carbon black, coke, ammonia, and methanol production, into useful products. The method includes introducing the waste gases into a bioreactor where they are fermented to various products, such as organic acids, alcohols, hydrogen, single cell protein, and salts of organic acids by anaerobic bacteria within the bioreactor. These valuable end products are then recovered, separated and purified.

  3. Chemical production from industrial by-product gases: Final report

    SciTech Connect (OSTI)

    Lyke, S.E.; Moore, R.H.

    1981-04-01

    The potential for conservation of natural gas is studied and the technical and economic feasibility and the implementation of ventures to produce such chemicals using carbon monoxide and hydrogen from byproduct gases are determined. A survey was performed of potential chemical products and byproduct gas sources. Byproduct gases from the elemental phosphorus and the iron and steel industries were selected for detailed study. Gas sampling, preliminary design, market surveys, and economic analyses were performed for specific sources in the selected industries. The study showed that production of methanol or ammonia from byproduct gas at the sites studied in the elemental phosphorus and the iron and steel industries is technically feasible but not economically viable under current conditions. Several other applications are identified as having the potential for better economics. The survey performed identified a need for an improved method of recovering carbon monoxide from dilute gases. A modest experimental program was directed toward the development of a permselective membrane to fulfill that need. A practical membrane was not developed but further investigation along the same lines is recommended. (MCW)

  4. Life Cycle Assessment and Sustainability of Chemical Products 

    E-Print Network [OSTI]

    Sahnoune, A.

    2014-01-01

    Applications Photos used are representative of potential product applications only ESL-IE-14-05-38 Proceedings of the Thrity-Sixth Industrial Energy Technology Conference New Orleans, LA. May 20-23, 2014 • In 2008, global sales exceeded $3 trillion1 • Four main... categories • Chemical products use approximately 6% of hydrocarbon resources (product content and manufacturing)2 • Demand for chemical products continues to grow, as does energy demand to produce them 1 “The Global Petrochemical Industry”, Nexant, (2008...

  5. Freeze concentration of dairy products Phase 2. Final report

    SciTech Connect (OSTI)

    Best, D.E.; Vasavada, K.C.

    1993-09-01

    An efficient, electrically driven freeze concentration system offers potential for substantially increasing electricity demand while providing the mature dairy industry with new products for domestic and export markets together with enhanced production efficiencies. Consumer tests indicate that dairy products manufactured from freeze-concentrated ingredients are either preferred or considered equivalent in quality to fresh milk-based products. Economic analyses indicate that this technology should be competitive with thermal evaporation processes on a commercial basis.

  6. Production of titanium from ilmenite: a review

    SciTech Connect (OSTI)

    Kohli, R.

    1981-12-01

    The general principles for beneficiation of titanium ores are reviewed and the specific processes used in individual units in various countries are discussed. This is followed by a critical evaluation of various current and potential reduction methods for the production of titanium metal from the processed concentrates. Finally, the report outlines a research program for the development of a commercially viable alternative method for the production of titanium metal.

  7. ? Production in Heavy Ion Collisions at LHC

    E-Print Network [OSTI]

    Kai Zhou; Nu Xu; Pengfei Zhuang

    2014-08-19

    We investigate the {\\Upsilon} production in heavy ion collisions at LHC energy in the frame of a dynamical transport approach. Both the initial production and in-medium regeneration and both the cold and hot nuclear matter effects are included in the calculations. In comparison with the ground state {\\Upsilon}(1s), the excited state {\\Upsilon}(2s) is much more sensitive to the heavy quark potential at finite temperature.

  8. Covered Product Category: Cool Roof Products

    Broader source: Energy.gov [DOE]

    FEMP provides acquisition guidance across a variety of product categories, including cool roof products, which are an ENERGY STAR®-qualified product category. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

  9. Study of the electric field formation in a multi-cusped magnetic field

    SciTech Connect (OSTI)

    Liu, Hui, E-mail: hlying@gmail.com; Yu, Daren, E-mail: yudaren@hit.edu.cn [Lab of Plasma Propulsion, Mail Box 458, Harbin Institute of Technology (HIT), Harbin 150001 (China); Wu, Huan; Zhao, Yinjian; Ma, Chengyu; Wang, Di; Wei, Haoyu [School of Energy Science and Engineering, Harbin Institute of Technology (HIT), Harbin 150001 (China)

    2014-09-15

    The multi-cusped field thruster is a kind of electric thruster adopting a cusped magnetic field to achieve a potentially longer lifetime. It is observed in some experiments that the main electric potential drop forms near the exhaust plane, but the formation mechanism of the electric field in this kind of thrusters is not fully clear yet. Based on the analysis of the electron movement, a 2D Particle-in-Cell plus Monte Carlo model is built to reveal the difference of the constraint to electrons between the central leak path and the lateral region of the thruster. Electron trajectories from cathode are analyzed furthermore. It is found that the central leak path inside the discharge channel may play a significant role in the formation of the main electric potential drop near the exhaust plane.

  10. Generalized Stillinger--David Potential

    E-Print Network [OSTI]

    Igor Zhyganiuk

    2012-02-20

    We present an improved version of the Stillinger--David polarization potential of the intermolecular interaction in water. A clear algorithm of construction of a function describing the oxygen-hydrogen interaction in water molecules is formulated. A new approach to the modeling of a function screening the charge-dipole interaction on small distances is developed. To describe the long-range asymptotics of the intermolecular potential, the bare Stillinger--David potential is supplemented by a term related to the interaction of dipole moments of oxygen ions. In addition, we introduce a term involving a deformation of the electron shells of oxygen ions to the polarization component. These corrections allow us to successfully reproduce all essential results of quantum mechanical calculations of the interaction energy for water molecules obtained by Clementi. Analyzing the behavior of the dipole moment of a water molecule as a function of the intermolecular distance, we obtain the estimate of irreducible two-particle effects in water.

  11. Marine renewable energy: potential benefits to biodiversity? An urgent call for research

    E-Print Network [OSTI]

    Exeter, University of

    Marine renewable energy: potential benefits to biodiversity? An urgent call for research Richard 1 Centre for Ecology and Conservation and Peninsula Research Institute for Marine Renewable Energy driver. In response, many governments have initiated programmes of energy production from renewable

  12. An Assessment of Energy Potential at Non-Powered Dams in the United States

    SciTech Connect (OSTI)

    Hadjerioua, Boualem

    2012-04-01

    This document provides results from a nation-scale analysis to determine the potential capacity and generation available from adding power production capability to U.S. non-powered dams.

  13. ACTION CURRENTS, INTERNODAL POTENTIALS, A N D EXTRACELLULAR RECORDS O F

    E-Print Network [OSTI]

    Meng, Ellis

    -third of the product of peak node cur- rent and tube resistance (center to ends). The extracellular potentials insulating medium (e.g., air, mineral oil, plastic sleeves). This facilitates the recording by stabilizing

  14. Magnetism in Lithium–Oxygen Discharge Product

    SciTech Connect (OSTI)

    Lu, Jun; Jung, Hun-Ji; Lau, Kah Chun; Zhang, Zhengcheng; Schlueter, John A.; Du, Peng; Assary, Rajeev S.; Greeley, Jeffrey P.; Ferguson, Glen A.; Wang, Hsien-Hau; Hassoun, Jusef; Iddir, Hakim; Zhou, Jigang; Zuin, Lucia; Hu, Yongfeng; Sun, Yang-Kook; Scrosati, Bruno; Curtiss, Larry A.; Amine, Khalil

    2013-05-13

    Nonaqueous lithium–oxygen batteries have a much superior theoretical gravimetric energy density compared to conventional lithium-ion batteries, and thus could render long-range electric vehicles a reality. A molecular-level understanding of the reversible formation of lithium peroxide in these batteries, the properties of major/minor discharge products, and the stability of the nonaqueous electrolytes is required to achieve successful lithium–oxygen batteries. We demonstrate that the major discharge product formed in the lithium–oxygen cell, lithium peroxide, exhibits a magnetic moment. These results are based on dc-magnetization measurements and a lithium– oxygen cell containing an ether-based electrolyte. The results are unexpected because bulk lithium peroxide has a significant band gap. Density functional calculations predict that superoxide- type surface oxygen groups with unpaired electrons exist on stoichiometric lithium peroxide crystalline surfaces and on nanoparticle surfaces; these computational results are consistent with the magnetic measurement of the discharged lithium peroxide product as well as EPR measurements on commercial lithium peroxide. The presence of superoxide-type surface oxygen groups with spin can play a role in the reversible formation and decomposition of lithium peroxide as well as the reversible formation and decomposition of electrolyte molecules.

  15. Kähler potentials for Planck inflation

    SciTech Connect (OSTI)

    Roest, Diederik; Scalisi, Marco; Zavala, Ivonne E-mail: m.scalisi@rug.nl

    2013-11-01

    We assess which Kähler potentials in supergravity lead to viable single-field inflationary models that are consistent with Planck. We highlight the role of symmetries, such as shift, Heisenberg and supersymmetry, in these constructions. Also the connections to string theory are pointed out. Finally, we discuss a supergravity model for arbitrary inflationary potentials that is suitable for open string inflation and generalise it to the case of closed string inflation. Our model includes the recently discussed supergravity reformulation of the Starobinsky model of inflation as well as an interesting alternative with comparable predictions.

  16. Exotic static 3-body potentials

    E-Print Network [OSTI]

    P. Bicudo; M. Cardoso; O. Oliveira

    2008-11-06

    We study exotic static 3-body potentials, utilizing generalized Wilson Loops in SU(3) lattice QCD. For the quark-antiquark-gluon techniques we address the angles of 0, 45, 60, 90, 120, 135 and 180 degrees, between the quark-gluon and the antiquark-gluon segments. We calculate the form of the static potential and discuss whether, or not, two-body interactions exist between the three different bodies, and study the existence of repulsion between the strings. We also perform a first study of the interactions in the system of three gluon.

  17. Quantum dot formation on a strain-patterned epitaxial thin film S. M. Wise, J. S. Lowengrub, and J. S. Kim

    E-Print Network [OSTI]

    Lowengrub, John

    Quantum dot formation on a strain-patterned epitaxial thin film S. M. Wise, J. S. Lowengrub, and J. Voorhees Materials Science and Engineering Department, Northwestern University, Evanston, Illinois 60208 as a potential pathway for the formation of ordered quantum dot QD arrays. Recent experimental work has suggested

  18. Water-related Issues Affecting Conventional Oil and Gas Recovery and Potential Oil-Shale Development in the Uinta Basin, Utah

    SciTech Connect (OSTI)

    Michael Vanden Berg; Paul Anderson; Janae Wallace; Craig Morgan; Stephanie Carney

    2012-04-30

    Saline water disposal is one of the most pressing issues with regard to increasing petroleum and natural gas production in the Uinta Basin of northeastern Utah. Conventional oil fields in the basin provide 69 percent of Utah?s total crude oil production and 71 percent of Utah?s total natural gas, the latter of which has increased 208% in the past 10 years. Along with hydrocarbons, wells in the Uinta Basin produce significant quantities of saline water ? nearly 4 million barrels of saline water per month in Uintah County and nearly 2 million barrels per month in Duchesne County. As hydrocarbon production increases, so does saline water production, creating an increased need for economic and environmentally responsible disposal plans. Current water disposal wells are near capacity, and permitting for new wells is being delayed because of a lack of technical data regarding potential disposal aquifers and questions concerning contamination of freshwater sources. Many companies are reluctantly resorting to evaporation ponds as a short-term solution, but these ponds have limited capacity, are prone to leakage, and pose potential risks to birds and other wildlife. Many Uinta Basin operators claim that oil and natural gas production cannot reach its full potential until a suitable, long-term saline water disposal solution is determined. The enclosed project was divided into three parts: 1) re-mapping the base of the moderately saline aquifer in the Uinta Basin, 2) creating a detailed geologic characterization of the Birds Nest aquifer, a potential reservoir for large-scale saline water disposal, and 3) collecting and analyzing water samples from the eastern Uinta Basin to establish baseline water quality. Part 1: Regulators currently stipulate that produced saline water must be disposed of into aquifers that already contain moderately saline water (water that averages at least 10,000 mg/L total dissolved solids). The UGS has re-mapped the moderately saline water boundary in the subsurface of the Uinta Basin using a combination of water chemistry data collected from various sources and by analyzing geophysical well logs. By re-mapping the base of the moderately saline aquifer using more robust data and more sophisticated computer-based mapping techniques, regulators now have the information needed to more expeditiously grant water disposal permits while still protecting freshwater resources. Part 2: Eastern Uinta Basin gas producers have identified the Birds Nest aquifer, located in the Parachute Creek Member of the Green River Formation, as the most promising reservoir suitable for large-volume saline water disposal. This aquifer formed from the dissolution of saline minerals that left behind large open cavities and fractured rock. This new and complete understanding the aquifer?s areal extent, thickness, water chemistry, and relationship to Utah?s vast oil shale resource will help operators and regulators determine safe saline water disposal practices, directly impacting the success of increased hydrocarbon production in the region, while protecting potential future oil shale production. Part 3: In order to establish a baseline of water quality on lands identified by the U.S. Bureau of Land Management as having oil shale development potential in the southeastern Uinta Basin, the UGS collected biannual water samples over a three-year period from near-surface aquifers and surface sites. The near-surface and relatively shallow groundwater quality information will help in the development of environmentally sound water-management solutions for a possible future oil shale and oil sands industry and help assess the sensitivity of the alluvial and near-surface bedrock aquifers. This multifaceted study will provide a better understanding of the aquifers in Utah?s Uinta Basin, giving regulators the tools needed to protect precious freshwater resources while still allowing for increased hydrocarbon production.

  19. Radioactive Materials Product Stewardship

    E-Print Network [OSTI]

    Radioactive Materials Product Stewardship ABackground Report for the National Dialogue...................................................................................................26 Low Level Waste (LLW) Disposal Regulations on Radioactive Materials Product Stewardship Prepared by the: Product Stewardship Institute University

  20. Forensic Proteomics of Poxvirus Production

    SciTech Connect (OSTI)

    Wunschel, David S.; Tulman, Edan; Engelmann, Heather E.; Clowers, Brian H.; Geary, Steven J.; Robinson, Aaron C.; Liao, Xiaofen

    2013-08-27

    The field of microbial forensics has recently sought to develop methods to discern biological signatures to indicate production methods for biological agents. Viral agents have received less attention to date. Their obligate propagation in living cells makes purification from cellular material a challenge. This leads to potential carryover of protein-rich signature of their production system. Here we have explored a proteomic analysis of Vaccinia virus as a model poxvirus system in which to compare samples of virus propagated in different cell lines and subjected to different purification schemes. The proteomic data sets indicated viral, host cell and culture medium proteins, and several layers of data analysis were applied to build confidence in the peptide identification and capture information on the taxonomic utility of each. The analysis showed clear shifts in protein profiles with virus purification, with successive gradient purification steps showing different levels of viral protein enrichment. Peptides from cellular proteins, including those present in purified virus preparations, provided signatures which enabled discrimination of cell line substrates, including distinguishing between cells derived from different primate species. The ability to discern multiple aspects of viral production demonstrates the potential value of proteomic analysis as tool for microbial forensics.

  1. Formation of water and methanol in star forming molecular clouds

    E-Print Network [OSTI]

    Ankan Das; Kinsuk Acharyya; Sonali Chakrabarti; Sandip Kumar Chakrabarti

    2008-06-29

    We study the formation of water and methanol in the dense cloud conditions to find the dependence of its production rate on the binding energies, reaction mechanisms, temperatures, and grain site number. We wish to find the effective grain surface area available for chemical reaction and the effective recombination timescales as functions of grain and gas parameters. We used a Monte Carlo simulation to follow the chemical processes occurring on the grain surface. We find that the formation rate of various molecules is strongly dependent on the binding energies. When the binding energies are high, it is very difficult to produce significant amounts of the molecular species. Instead, the grain is found to be full of atomic species. The production rates are found to depend on the number density in the gas phase. We show that the concept of the effective grain surface area, which we introduced in our earlier work, plays a significant role in grain chemistry. We compute the abundance of water and methanol and show that the results strongly depend on the density and composition in the gas phase, as well as various grain parameters. In the rate equation, it is generally assumed that the recombination efficiencies are independent of the grain parameters, and the surface coverage. Presently, our computed parameter $\\alpha$ for each product is found to depend on the accretion rate, the grain parameters and the surface coverage of the grain. We compare our results obtained from the rate equation and the one from the effective rate equation, which includes $\\alpha$. At the end we compare our results with the observed abundances.

  2. Measurements and modeling of HO2 formation in the reactions of n-C3H7 and i-C3H7 radicals with O2.

    SciTech Connect (OSTI)

    Taatjes, Craig A.; Estupinan, Edgar Garcia; Klippenstein, Stephen J.

    2004-08-01

    The formation of HO{sub 2} in the reactions of C{sub 2}H{sub 5}, n-C{sub 3}H{sub 7}, and i-C{sub 3}H{sub 7} radicals with O{sub 2} is investigated using the technique of laser photolysis/long-path frequency-modulation spectroscopy. The alkyl radicals are formed by 266 nm photolysis of alkyl iodides. The formation of HO{sub 2} from the subsequent reaction of the alkyl radicals with O{sub 2} is followed by infrared frequency-modulation spectroscopy. The concentration of I atoms is simultaneously monitored by direct absorption of a second laser probe on the spin?orbit transition. The measured profiles are compared to a kinetic model taken from time-resolved master-equation results based on previously published ab initio characterizations of the relevant stationary points on the potential-energy surface. The ab initio energies are adjusted to produce agreement with the present experimental data and with available literature studies. The isomer specificity of the present results enables refinement of the model for i-C{sub 3}H{sub 7} + O{sub 2} and improved agreement with experimental measurements of HO{sub 2} production in propane oxidation.

  3. Method for producing flame retardant porous products and products produced thereby

    DOE Patents [OSTI]

    Salyer, Ival O. (Dayton, OH)

    1998-08-04

    A method for fire retarding porous products used for thermal energy storage and products produced thereby is provided. The method includes treating the surface of the phase change material-containing porous products with a urea fire-retarding agent. Upon exposure to a flame, the urea forms an adduct with the phase change material which will not sustain combustion (is self-extinguishing) in air. No halogens or metal oxides are contained in the fire retardant, so no potentially noxious halide smoke or fumes are emitted if the product is continuously exposed to a flame.

  4. Method for Producing Flame Retardant Porous Products and Products Produced Thereby

    DOE Patents [OSTI]

    Salyer, Ival O. (Dayton, OH)

    1998-08-04

    A method for fire retarding porous products used for thermal energy storage and products produced thereby is provided. The method includes treating the surface of the phase change material-containing porous products with a urea fire-retarding agent. Upon exposure to a flame, the urea forms an adduct with the phase change material which will not sustain combustion (is self-extinguishing) in air. No halogens or metal oxides are contained in the fire retardant, so no potentially noxious halide smoke or fumes are emitted if the product is continuously exposed to a flame.

  5. Method for producing flame retardant porous products and products produced thereby

    DOE Patents [OSTI]

    Salyer, I.O.

    1998-08-04

    A method for fire retarding porous products used for thermal energy storage and products produced thereby is provided. The method includes treating the surface of the phase change material-containing porous products with a urea fire-retarding agent. Upon exposure to a flame, the urea forms an adduct with the phase change material which will not sustain combustion (is self-extinguishing) in air. No halogens or metal oxides are contained in the fire retardant, so no potentially noxious halide smoke or fumes are emitted if the product is continuously exposed to a flame. 1 fig.

  6. Renewable Hydrogen Potential from Biogas in the United States

    SciTech Connect (OSTI)

    Saur, G.; Milbrandt, A.

    2014-07-01

    This analysis updates and expands upon previous biogas studies to include total potential and net availability of methane in raw biogas with respect to competing demands and includes a resource assessment of four sources of biogas: (1) wastewater treatment plants, including domestic and a new assessment of industrial sources; (2) landfills; (3) animal manure; and (4) a new assessment of industrial, institutional, and commercial sources. The results of the biogas resource assessment are used to estimate the potential production of renewable hydrogen from biogas as well as the fuel cell electric vehicles that the produced hydrogen might support.

  7. Technical Potential for Solar Photovoltaics

    E-Print Network [OSTI]

    Branoff, Theodore J.

    Technical Potential for Solar Photovoltaics in Illinois May 2013 #12;Authors ...................................................................................................... 1.1 Utility-Scale Solar Photovoltaic Systems in the U.S. ........................... 1.2 Previous ...................................................................................................... 3.1 Optimization Matrix for Large-Scale PV System Applications ......... 3.2 Photovoltaic

  8. POTENTIAL OF CLOUD-BASED

    E-Print Network [OSTI]

    Lee, Jason R.

    .!! Cover!photos!courtesy!of!the!National!Energy!Research!Scientific!Computing!Center!and!Google.! #12;! ! ! The Energy Efficiency Potential of Cloud-Based Software: A U.S. Case Study ! Lawrence Berkeley National Laboratory June, 2013 Research Team Eric!Masanet! Arman!Shehabi! Jiaqi!Liang! Lavanya!Ramakrishnan! Xiao

  9. Three-loop static potential

    E-Print Network [OSTI]

    Alexander V. Smirnov; Vladimir A. Smirnov; Matthias Steinhauser

    2010-04-12

    We compute the three-loop corrections to the potential of two heavy quarks. In particular we consider in this Letter the purely gluonic contribution which provides in combination with the fermion corrections of Ref. \\cite{Smirnov:2008pn} the complete answer at three loops.

  10. Quantum mechanics without potential function

    E-Print Network [OSTI]

    A. D. Alhaidari; M. E. H. Ismail

    2015-06-26

    In the standard formulation of quantum mechanics, one starts by proposing a potential function that models the physical system. The potential is then inserted into the Schr\\"odinger equation, which is solved for the wave function, bound states energy spectrum and/or scattering phase shift. In this work, however, we propose an alternative formulation in which the potential function does not appear. The aim is to obtain a set of analytically realizable systems, which is larger than in the standard formulation and may or may not be associated with any given or previously known potential functions. We start with the wavefunction, which is written as a bounded infinite sum of elements of a complete basis with polynomial coefficients that are orthogonal on an appropriate domain in the energy space. Using the asymptotic properties of these polynomials, we obtain the scattering phase shift, bound states and resonances. This formulation enables one to handle not only the well-known quantum systems but also previously untreated ones. Illustrative examples are given for two- and there-parameter systems.

  11. A knowledge of the potential

    E-Print Network [OSTI]

    Sali, Andrej

    is as important for understanding protein folding as is the potential surface for the H H2 reaction. estimated to protein folding, in which thousands of atoms take part. The under- standing of a reaction is based of experimental developments and theoretical advances.[1] By contrast, protein folding is so complex that even

  12. Star Formation in the Local Milky Way

    E-Print Network [OSTI]

    Lada, Charles J

    2015-01-01

    Studies of molecular clouds and young stars near the sun have provided invaluable insights into the process of star formation. Indeed, much of our physical understanding of this topic has been derived from such studies. Perhaps the two most fundamental problems confronting star formation research today are: 1) determining the origin of stellar mass and 2) deciphering the nature of the physical processes that control the star formation rate in molecular gas. As I will briefly outline here, observations and studies of local star forming regions are making particularly significant contributions toward the solution of both these important problems.

  13. Loop formation in polymers in crowded environment

    E-Print Network [OSTI]

    K. Haydukivska; V. Blavatska

    2015-11-12

    We analyze the probability of a single loop formation in a long flexible polymer chain in disordered environment in $d$ dimensions. The structural defects are considered to be correlated on large distances $r$ according to a power law $\\sim r^{-a}$. Working within the frames of continuous chain model and applying the direct polymer renormalization scheme, we obtain the values of critical exponents governing the scaling of probabilities of loop formation with various positions along the chain as function of loops length. Our results quantitatively reveal that the presence of structural defects in environment decreases the probability of loop formation in polymer macromolecules.

  14. Carbon nanotube formation by laser direct writing

    SciTech Connect (OSTI)

    Wu, Y.-T.; Su, H.-C.; Tsai, C.-M.; Liu, K.-L.; Chen, G.-D.; Huang, R.-H.; Yew, T.-R.

    2008-07-14

    This letter presents carbon nanotube (CNT) formation by laser direct writing using 248 nm KrF excimer pulsed laser in air at room temperature, which was applied to irradiate amorphous carbon (a-C) assisted by Ni catalysts underneath for the transformation of carbon species into CNTs. The CNTs were synthesized under appropriate combination of laser energy density and a-C thickness. The growth mechanism and key parameters to determine the success of CNT formation were also discussed. The demonstration of the CNT growth by laser direct writing in air at room temperature opens an opportunity of in-position CNT formation at low temperatures.

  15. Synthesis of oxygenate products for high volume fuels applications. Quarterly status report No. 3 for the period April through June 1995

    SciTech Connect (OSTI)

    Not Available

    1995-09-26

    A rudimentary process variables study of the reaction of acetylene with methanol indicates high activity for the formation of ethanol, n- propanol, and i-butanol with a pure low temperature activated MgO catalyst. Initial results indicate that higher conversions and space- time yields may be obtainable by operation at higher temperatures and reactant feed rates, respectively. Also, ethanol formation was consistently observed to rise with decreasing reaction temperature between 454{degrees}C and 370{degrees}C. A 10% Al{sub 2}O{sub 3}/MgO catalyst exhibited high activity for methanol-dimethyl ether interconversion but was not very active for the condensation of these reactants to either the product alcohols or their methyl ethers. Neither catalyst exhibited significant activity for the condensation to dimethyl ether/water with acetylene to form such products. This lack of activity in the ether systems is attributed to insufficient hydrolysis of dimethyl ether to methanol, and it is expected that feeds containing additional water or methanol (which produces water via condensation) will exhibit higher activity. The aluminum- containing catalyst exhibited diminished condensation activity possibly as a result of deactivation of Mg sites by Al sites. The overall objective of this project is to develop catalyst and process technology for evaluation as potential routes for the production of high volume fuel oxygenates.

  16. Synthesis of oxygenate products for high volume fuels applications. Quarterly status report No. 4 for the period July through September 1995

    SciTech Connect (OSTI)

    Not Available

    1995-12-29

    A rudimentary process variables study of the reaction of acetylene with methanol indicates high activity for the formation of ethanol, n- propanol, and i-butanol with a pure low temperature activated MgO catalyst. Initial results indicate that higher conversions and space- time yields may be obtainable by operation at higher temperatures and reactant feed rates, respectively. Also, ethanol formation was consistently observed to rise with decreasing reaction temperature between 454{degrees}C and 370{degrees}C. A 10% Al{sub 2}O{sub 3}/MgO catalyst exhibited high activity for methanol-dimethyl ether interconversion but was not very active for the condensation of these reactants to either the product alcohols or their methyl ethers. Neither catalyst exhibited significant activity for the condensation of dimethyl ether/water with acetylene to form such products. This lack of activity in the ether systems us attributed to insufficient hydrolysis of dimethyl ether to methanol, and it is expected that feeds containing additional water or methanol (which produces water via condensation) will exhibit higher activity. The aluminum- containing catalyst exhibited diminished condensation activity possibly as the result of deactivation of Mg sites by Al sites. The overall objective of this project is to develop catalyst and process technology for evaluation as potential routes for the production of high volume fuel oxygenates.

  17. EFFECTS OF SODIUM AND CALCIUM IN LIGNITE ON THE PERFORMANCE OF ACTIVATED CARBON PRODUCTS

    SciTech Connect (OSTI)

    Edwin S. Olson; Kurt E. Eylands; Daniel J. Stepan

    2001-12-01

    New federal drinking water regulations have been promulgated to restrict the levels of disinfection by-products (DBPs) in finished public water supplies. DBPs are suspected carcinogens and are formed when organic material is partially oxidized by disinfectants commonly used in the water treatment industry. Additional federal mandates are expected in the near future that will also affect public water suppliers with respect to DBPs. These new federal drinking water regulations may require public water suppliers to adjust treatment practices or incorporate additional treatment operations into their existing treatment trains. Many options have been identified, including membrane processes, granular activated carbon, powered activated carbon (PAC), enhanced coagulation and/or softening, and alternative disinfectants (e.g., chlorine dioxide, ozone, and chloramines). Of the processes being considered, PAC appears to offer an attractive benefit-to-cost advantage for many water treatment plants, particularly small systems (those serving fewer than 10,000 customers). PAC has traditionally been used by the water treatment industry for the removal of compounds contributing to taste and odor problems. PAC also has the potential to remove naturally occurring organic matter (NOM) from raw waters prior to disinfection, thus controlling the formation of regulated DBPs. Many small water systems are currently using PAC for taste and odor control and have the potential to use PAC for controlling DBPs. Activated carbons can be produced from a variety of raw materials, including wood, peat, coconut husks, and numerous types of coal. The Energy & Environmental Research Center (EERC) has been working on the development of a PAC product to remove NOM from surface water supplies to prevent the formation of carcinogenic DBPs during chlorination. During that study, the sodium and calcium content of the lignites showed a significant effect on the sorption capacity of the activated carbon product. As much as a 130% increase in the humic acid sorption capacity of a PAC produced from a high-sodium-content lignite was observed. We hypothesize that the sodium and calcium content of the coal plays a significant role in the development of pore structures and pore-size distribution, ultimately producing activated carbon products that have greater sorption capacity for specific contaminants, depending on molecular size.

  18. Mild Catalytic methods for Alkyl-Alkyl Bond Formation

    SciTech Connect (OSTI)

    Vicic, David A

    2009-08-10

    Overview of Research Goals and Accomplishments for the Period 07/01/06 – 06/30/07: Our overall research goal is to transform the rapidly emerging synthetic chemistry involving alkyl-alkyl cross-couplings into more of a mechanism-based field so that that new, rationally-designed catalysts can be performed under energy efficient conditions. Our specific objectives for the previous year were 1) to obtain a proper electronic description of an active catalyst for alkyl-alkyl cross-coupling reactions and 2) to determine the effect of ligand structure on the rate, scope, selectivity, and functional group compatibility of C(sp3)-C(sp3) cross-coupling catalysis. We have completed both of these initial objectives and established a firm base for further studies. The specific significant achievements of the current grant period include: 1) we have performed magnetic and computational studies on (terpyridine)NiMe, an active catalyst for alkyl-alkyl cross couplings, and have discovered that the unpaired electron resides heavily on the terpyridine ligand and that the proper electronic description of this nickel complex is a Ni(II)-methyl cation bound to a reduced terpyridine ligand; 2) we have for the first time shown that alkyl halide reduction by terpyridyl nickel catalysts is substantially ligand based; 3) we have shown by isotopic labeling studies that the active catalyst (terpyridine)NiMe is not produced via a mechanism that involves the formation of methyl radicals when (TMEDA)NiMe2 is used as the catalyst precursor; 4) we have performed an extensive ligand survey for the alkyl-alkyl cross-coupling reactions and have found that electronic factors only moderately influence reactivity in the terpyridine-based catalysis and that the most dramatic effects arise from steric and solubility factors; 5) we have found that the use of bis(dialkylphosphino)methanes as ligands for nickel does not produce active catalysts for cross-coupling but rather leads to bridging hydride complexes of varying geometries; 6) we have determined that the geometry of aforementioned bridging hydride complexes is largely determined by external forces such as hydrogen bonding interactions and crystal packing forces; 7) we have found that the rate of reductive elimination of alkane from a (pyridyl-2-pyrrolide)AuMe2 complex is severely inhibited due to the rigid geometry of the pyridyl-2-pyrrolide ligand; 8) we have prepared, structurally characterized, and explored the reactivity of 1-adamantylzinc reagents as model nucleophiles for sterically challenging alkyl-alkyl cross-coupling reactions. The continued success of this work will lead to alkyl-alkyl cross-coupling catalysts with broad scope and selectivities. The work has potential to significantly impact science and technologies of interest to the DOE as the chemistry is focused on developing useful reactions using reagents that can be directly prepared from petroleum and natural gas feedstocks. Moreover, the developing synthetic chemistry can profoundly affect the way materials, fine chemicals, and drugs are made. Since the methodology we are developing can shorten existing synthetic protocols, proceed at room temperature, and operate under environmentally benign conditions, it can greatly reduce energy expenditures, especially considering the contribution of the chemical manufacturing field to the gross domestic product.

  19. Method and system for ethanol production

    DOE Patents [OSTI]

    Feder, H.M.; Chen, M.J.

    1980-05-21

    A transition metal carbonyl and a tertiary amine are employed as a homogeneous catalytic system in methanol or a less volatile solvent to react methanol with carbon monoxide and hydrogen gas producing ethanol and carbon dioxide. The gas contains a high carbon monoxide to hydrogen ratio as is present in a typical gasifier product. The reaction has potential for anhydrous ethanol production as carbon dioxide rather than water is produced. The only other significant by-product is methane. Selected transition metal carbonyls include those of iron, ruthenium and possibly manganese and osmium. Selected amines include trimethylamine, N-Methylpyrrolidine, 24-diazabicyclooctane, dimethyneopentylamine and 2-pryidinol.

  20. Method and system for ethanol production

    DOE Patents [OSTI]

    Feder, Harold M. (Darien, IL); Chen, Michael J. (Darien, IL)

    1981-01-01

    A transition metal carbonyl and a tertiary amine are employed as a homogeneous catalytic system in methanol or a less volatile solvent to react methanol with carbon monoxide and hydrogen gas producing ethanol and carbon dioxide. The gas contains a high carbon monoxide to hydrogen ratio as is present in a typical gasifier product. The reaction has potential for anhydrous ethanol production as carbon dioxide rather than water is produced. The only other significant by product is methane. Selected transition metal carbonyls include those of iron, ruthenium and possibly manganese and osmium. Selected amines include trimethylamine, N-Methylpyrrolidine, 24-diazabicyclooctane, dimethyneopentylamine and 2-pryidinol.

  1. BAROCLINIC VORTICITY PRODUCTION IN PROTOPLANETARY DISKS. II. VORTEX GROWTH AND LONGEVITY

    E-Print Network [OSTI]

    Julien, Keith

    -- instabilities -- methods: numerical -- solar system: formation -- turbulence Online material: color figures 1. Here the decrease in solar insolation from the equator to the pole causes colder temperatures and ocean convert the potential energ

  2. Evaluation of potential geothermal reservoirs in central and western New York state. Final report

    SciTech Connect (OSTI)

    Not Available

    1983-06-01

    Computer processes geophysical well logs from central and western New York State were analyzed to evaluate the potential of subsurface formations as a source for low-temperature geothermal water. The analysis indicated that porous sandstone sections at the top of the Ordovician Theresa Formation and at the base of the Cambrian Potsdam Formation have the required depth, porosity, and permeability to act as a source for geothermal fluids over a relatively large area in the central part of the state. The fluid potential plus an advantageous geothermal gradient and the results of the test well drilled in the city of Auburn in Cayuga County suggest that low temperature geothermal energy may be a viable alternative to other more conventional forms of energy that are not indigenous to New York State.

  3. Evaluation of potential geothermal reservoirs in central and western New York State. Volume 3. Final report

    SciTech Connect (OSTI)

    Not Available

    1983-06-01

    Computer processed geophysical well logs from central and western New York State were analysed to evaluate the potential of subsurface formations as a source for low-temperature geothermal water. The analysis indicated that porous sandstone sections at the top of the Ordovician Theresa Formation and at the base of the Cambrian Potsdam Formation have the required depth, porosity, and permeability to act as a source for geothermal fluids over a relatively large area in the central part of the state. The fluid potential plus an advantageous geothermal gradient and the results of the test well drilled in the city of Auburn in Cayuga County suggest that low temperature geothermal energy may ba a viable alternative to other more conventional forms of energy that not indigenous to New York State.

  4. Time development of fieldaligned currents, potential drops, and plasma associated with an auroral poleward

    E-Print Network [OSTI]

    Fillingim, Matthew

    . Central to the formation of the arc system is the depletion of ionospheric plasma through a regionClick Here for Full Article Time development of fieldaligned currents, potential drops, and plasma study of the plasma and fields measured by the Cluster spacecraft fleet at the highaltitude auroral zone

  5. The NeXus data format

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Könnecke, Mark; Akeroyd, Frederick A.; Bernstein, Herbert J.; Brewster, Aaron S.; Campbell, Stuart I.; Clausen, Björn; Cottrell, Stephen; Hoffmann, Jens Uwe; Jemian, Pete R.; Männicke, David; et al

    2015-01-30

    NeXus is an effort by an international group of scientists to define a common data exchange and archival format for neutron, X-ray and muon experiments. NeXus is built on top of the scientific data format HDF5 and adds domain-specific rules for organizing data within HDF5 files, in addition to a dictionary of well defined domain-specific field names. The NeXus data format has two purposes. First, it defines a format that can serve as a container for all relevant data associated with a beamline. This is a very important use case. Second, it defines standards in the form of application definitionsmore »for the exchange of data between applications. NeXus provides structures for raw experimental data as well as for processed data.« less

  6. Mechanisms and Geochemical Models of Core Formation

    E-Print Network [OSTI]

    Rubie, David C

    2015-01-01

    The formation of the Earth's core is a consequence of planetary accretion and processes in the Earth's interior. The mechanical process of planetary differentiation is likely to occur in large, if not global, magma oceans created by the collisions of planetary embryos. Metal-silicate segregation in magma oceans occurs rapidly and efficiently unlike grain scale percolation according to laboratory experiments and calculations. Geochemical models of the core formation process as planetary accretion proceeds are becoming increasingly realistic. Single stage and continuous core formation models have evolved into multi-stage models that are couple to the output of dynamical models of the giant impact phase of planet formation. The models that are most successful in matching the chemical composition of the Earth's mantle, based on experimentally-derived element partition coefficients, show that the temperature and pressure of metal-silicate equilibration must increase as a function of time and mass accreted and so m...

  7. Electromagnetic formation flight dipole solution planning

    E-Print Network [OSTI]

    Schweighart, Samuel A. (Samuel Adam), 1977-

    2005-01-01

    Electromagnetic Formation Flight (EMFF) describes the concept of using electromagnets (coupled with reaction wheels) to provide all of the necessary forces and torques needed to maintain a satellite's relative position and ...

  8. Modeling deposit formation in diesel injector nozzle

    E-Print Network [OSTI]

    Sudhiesh Kumar, Chintoo

    2009-01-01

    Formation of deposit in the diesel injector nozzle affects the injection behavior and hinders performance. Under running condition, deposit precursors are washed away by the ensuing injection. However, during the cool down ...

  9. Electromagnetic formation flight of satellite arrays

    E-Print Network [OSTI]

    Kwon, Daniel W., 1980-

    2005-01-01

    Proposed methods of actuating spacecraft in sparse aperture arrays use propellant as a reaction mass. For formation flying systems, propellant becomes a critical consumable which can be quickly exhausted while maintaining ...

  10. Kinetics of acrylamide formation in potato chips 

    E-Print Network [OSTI]

    Granda, Claudia Esthela

    2006-08-16

    Acrylamide is considered a carcinogen in animals and a possible carcinogen in humans. It has been found in starch rich foods cooked at high temperatures. Vacuum frying (10 Torr) was studied as a possible alternative to reduce acrylamide formation...

  11. HYDROCARBON FORMATION ON POLYMER-SUPPORTED COBALT

    E-Print Network [OSTI]

    Benner, Linda S.

    2013-01-01

    NV~ August 25-29, 1980 HYDROCARBON FORMATION ON POLYMER-catalyzed reduction of CO to hydrocarbons Tropscb. Among theof CO to saturated linear hydrocarbons and appears to retain

  12. Evidence of Reopened Microfractures in Production Data of Hydraulically Fractured Shale Gas Wells 

    E-Print Network [OSTI]

    Apiwathanasorn, Sippakorn

    2012-10-19

    the presence of reopened natural fracture network can be observed in pressure and production data of shale gas wells producing from two shale formations with different well and reservoir properties. Homogeneous, dual porosity and triple porosity models...

  13. Coiled tubing helps gas production

    SciTech Connect (OSTI)

    Matheny, S.L. Jr.

    1980-08-11

    To boost production from its gas fields in Lake Erie, Consumers' Gas Co., Toronto, used a giant reel holding a 33,000-ft coil of 1-in. polypropylene-coated steel tubing to lay about 44 miles of control lines that now service 20 wells 17 miles offshore. As the forward motion of the boat unwound the tubing, the reel rig's hydraulic motor served as a brake to maintain the proper tension. This innovative method of laying the lines eliminated more than 80% of the pipe joints, correspondingly reduced the installation labor time, and improved the system's reliability. The two hydraulic-control lines that were laid actuate the gas-gathering line valves, while a hydrate-control line injects each well with methyl alcohol to inhibit hydrate formation.

  14. CHARACTERIZATION OF CENTRAL APPALACHIAN BASIN CBM DEVELOPMENT: POTENTIAL FOR CARBON SEQUESTRATION

    E-Print Network [OSTI]

    including those areas where CBM production has previously been developed. The enhanced coalbed methane (ECBM0625 CHARACTERIZATION OF CENTRAL APPALACHIAN BASIN CBM DEVELOPMENT: POTENTIAL FOR CARBON of the carbon sequestration potential of the Pennsylvanian-age coalbeds in the Central Appalachian Basin

  15. Modelling and control of satellite formations 

    E-Print Network [OSTI]

    Vaddi, Veera Venkata Sesha Sai

    2004-09-30

    ®erent satellites in a formation. To achieve the various mission objectives it is necessary for a formation to recon¯gure itself periodically. An analytical impulsive control scheme has been developed for this purpose. This control scheme has the distinct advantage... . . . . . . . . . . . . . . . . . . 15 1.4.2 Impulsive Control . . . . . . . . . . . . . . . . . . . 16 1.5 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 1.6 Nonlinearity and Eccentricity Perturbations . . . . . . . . 18 1.7 Linear and Nonlinear Controllers...

  16. Situ microbial plugging process for subterranean formations

    DOE Patents [OSTI]

    McInerney, Michael J. (Norman, OK); Jenneman, Gary E. (Norman, OK); Knapp, Roy M. (Norman, OK); Menzie, Donald E. (Norman, OK)

    1985-12-17

    Subterranean paths of water flow are impeded or changed by the facilitation of microbial growth therein. Either indigenous bacterial growth may be stimulated with nutrients or the formation may be first seeded with bacteria or their spores which inhibit fluid flow after proliferation. These methods and bacteria are usable to alter the flow of water in a waterflooded oil formation and to impede the outflow of contaminated water.

  17. Potential for Coal-to-Liquids Conversion in the U.S.-Resource Base

    E-Print Network [OSTI]

    Patzek, Tadeusz W.

    Potential for Coal-to-Liquids Conversion in the U.S.-Resource Base Gregory D. Croft1 and Tad W the multi-Hubbert curve analysis to coal production in the United States, we demonstrate that anthracite production of this highest-rank coal. The pro- duction of bituminous coal from existing mines is about 80

  18. Geological Sequestration of CO2 by Hydrous Carbonate Formation with Reclaimed Slag

    SciTech Connect (OSTI)

    Von L. Richards; Kent Peaslee; Jeffrey Smith

    2008-02-06

    The concept of this project is to develop a process that improves the kinetics of the hydrous carbonate formation reaction enabling steelmakers to directly remove CO2 from their furnace exhaust gas. It is proposed to bring the furnace exhaust stream containing CO2 in contact with reclaimed steelmaking slag in a reactor that has an environment near the unit activity of water resulting in the production of carbonates. The CO2 emissions from the plant would be reduced by the amount sequestered in the formation of carbonates. The main raw materials for the process are furnace exhaust gases and specially prepared slag.

  19. A Recipe for Galaxy Formation Shaun Cole

    E-Print Network [OSTI]

    Alfonso Aragon-Salamanca; Carlos S. Frenk; Julio F. Navarro; Stephen E. Zepf

    1994-02-01

    We present a detailed prescription for how galaxy formation can be modelled in hierarchical theories of structure formation. Our model incorporates the formation and merging of dark matter halos, the shock heating and radiative cooling of baryonic gas gravitationally confined in these halos, the formation of stars regulated by the energy released by evolving stars and supernovae, the merging of galaxies within dark matter halos, and the spectral evolution of the stellar populations that are formed. The procedure that we describe is very flexible and can be applied to any hierarchical clustering theory. We explore the effects of varying the stellar initial mass function, star formation rates and galaxy merging. The results we compare with an extensive range of observational data, including the B and K galaxy luminosity functions, galaxy colours, the Tully-Fisher relation and galaxy number counts.These data strongly constrain the models and enable the relative importance of each of the physical process to be assessed. We present a broadly successful model defined by a plausible choice of parameters. This fiducial model produces a much more acceptable luminosity function than most previous studies. This is achieved through a modest rate of galaxy mergers and strong suppression of star formation in halos of low circular velocity. However, it fails to produce galaxies as red as many observed ellipticals and, compared with the observed Tully-Fisher relation, the model galaxies have circular velocities which are too large. ** uuencoded compressed postscript file containing all text and figures.**

  20. Star formation relations in nearby molecular clouds

    SciTech Connect (OSTI)

    Evans, Neal J. II; Heiderman, Amanda; Vutisalchavakul, Nalin

    2014-02-20

    We test some ideas for star formation relations against data on local molecular clouds. On a cloud by cloud basis, the relation between the surface density of star formation rate and surface density of gas divided by a free-fall time, calculated from the mean cloud density, shows no significant correlation. If a crossing time is substituted for the free-fall time, there is even less correlation. Within a cloud, the star formation rate volume and surface densities increase rapidly with the corresponding gas densities, faster than predicted by models using the free-fall time defined from the local density. A model in which the star formation rate depends linearly on the mass of gas above a visual extinction of 8 mag describes the data on these clouds, with very low dispersion. The data on regions of very massive star formation, with improved star formation rates based on free-free emission from ionized gas, also agree with this linear relation.