Powered by Deep Web Technologies
Note: This page contains sample records for the topic "formation producing wells" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Number of Producing Gas Wells  

U.S. Energy Information Administration (EIA) Indexed Site

Producing Gas Wells Producing Gas Wells Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Area 2007 2008 2009 2010 2011 2012 View History U.S. 452,945 476,652 493,100 487,627 514,637 482,822 1989-2012 Alabama 6,591 6,860 6,913 7,026 7,063 6,327 1989-2012 Alaska 239 261 261 269 277 185 1989-2012 Arizona 7 6 6 5 5 5 1989-2012 Arkansas 4,773 5,592 6,314 7,397 8,388 8,538 1989-2012 California 1,540 1,645 1,643 1,580 1,308 1,423 1989-2012 Colorado 22,949 25,716 27,021 28,813 30,101 32,000 1989-2012 Gulf of Mexico 2,552 1,527 1,984 1,852 1,559 1,474 1998-2012 Illinois 43 45 51 50 40 40 1989-2012 Indiana 2,350 525 563 620 914 819 1989-2012 Kansas

2

Number of Producing Gas Wells (Summary)  

U.S. Energy Information Administration (EIA) Indexed Site

Count) Count) Data Series: Wellhead Price Imports Price Price of Imports by Pipeline Price of LNG Imports Exports Price Price of Exports by Pipeline Price of LNG Exports Pipeline and Distribution Use Price Citygate Price Residential Price Commercial Price Industrial Price Vehicle Fuel Price Electric Power Price Proved Reserves as of 12/31 Reserves Adjustments Reserves Revision Increases Reserves Revision Decreases Reserves Sales Reserves Acquisitions Reserves Extensions Reserves New Field Discoveries New Reservoir Discoveries in Old Fields Estimated Production Number of Producing Gas Wells Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production Natural Gas Processed NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals LNG Storage Additions LNG Storage Withdrawals LNG Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Lease Fuel Plant Fuel Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period:

3

Treating paraffin deposits in producing oil wells  

SciTech Connect

Paraffin deposition has been a problem for operators in many areas since the beginning of petroleum production from wells. An extensive literature search on paraffin problems and methods of control has been carried out, and contact was made with companies which provide chemicals to aid in the treatment of paraffin problems. A discussion of the nature of paraffins and the mechanisms of this deposition is presented. The methods of prevention and treatment of paraffin problems are summarized. Suggested procedures for handling paraffin problems are provided. Suggestions for areas of further research testing are given.

Noll, L.

1992-01-01T23:59:59.000Z

4

Systems and methods for producing hydrocarbons from tar sands formations  

DOE Patents (OSTI)

A system for treating a tar sands formation is disclosed. A plurality of heaters are located in the formation. The heaters include at least partially horizontal heating sections at least partially in a hydrocarbon layer of the formation. The heating sections are at least partially arranged in a pattern in the hydrocarbon layer. The heaters are configured to provide heat to the hydrocarbon layer. The provided heat creates a plurality of drainage paths for mobilized fluids. At least two of the drainage paths converge. A production well is located to collect and produce mobilized fluids from at least one of the converged drainage paths in the hydrocarbon layer.

Li, Ruijian (Katy, TX); Karanikas, John Michael (Houston, TX)

2009-07-21T23:59:59.000Z

5

Apparatus for operating a gas and oil producing well  

SciTech Connect

Apparatus is disclosed for automatically operating a gas and oil producing well of the plunger lift type, including a comparator for comparing casing and tubing pressures, a device for opening the gas delivery valve when the difference between casing and tubing pressure is less than a selected minimum value, a device for closing the gas discharge valve when casing pressure falls below a selected casing bleed value, an arrival sensor switch for initially closing the fluid discharge valve when the plunger reaches the upper end of the tubing, and a device for reopening the fluid discharge valve at the end of a given downtime period in the event that the level of oil in the tubing produces a pressure difference greater than the given minimum differential value, and the casing pressure is greater than lift pressure. The gas discharge valve is closed if the pressure difference exceeds a selected maximum value, or if the casing pressure falls below a selected casing bleed value. The fluid discharge valve is closed if tubing pressure exceeds a maximum safe value. In the event that the plunger does not reach the upper end of the tubing during a selected uptime period, a lockout indication is presented on a visual display device, and the well is held shut-in until the well differential is forced down to the maximum differential setting of the device. When this occurs, the device will automatically unlock and normal cycling will resume.

Wynn, S. R.

1985-07-02T23:59:59.000Z

6

Exciton formation assisted by LO phonons in quantum wells  

Science Journals Connector (OSTI)

Kinetics of exciton formation involving LO phonons is investigated in quantum wells. Considering the formation of an exciton from a free excited electron-hole pair due to LO-phonon emission, an expression is derived for the rate of formation of an exciton as a function of carrier densities, temperature, and wave vector K? of the center of mass of excitons in quantum wells, and the formation time of an exciton is also calculated. The theory is applied to GaAs quantum wells, in which it is found that the exciton formation dominantly occurs at K??0.

I.-K. Oh, Jai Singh, A. Thilagam, and A. S. Vengurlekar

2000-07-15T23:59:59.000Z

7

Estimation of static formation temperatures in geothermal wells | Open  

Open Energy Info (EERE)

Estimation of static formation temperatures in geothermal wells Estimation of static formation temperatures in geothermal wells Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Estimation of static formation temperatures in geothermal wells Abstract Stabilized formation temperatures were estimated at different depths in 40 wells from the Los Humeros geothermal field, Mexico, using the Horner and the spherical radial flow (SRF) methods. The results showed that the Horner method underestimates formation temperatures, while the SRF method gives temperatures that are closer to the true formation temperatures. This was supported by numerical simulation of a combined circulation and shut-in period in several wells, and results for well H-26 are presented. Numerical reproduction of logged temperature is more feasible if an initial

8

Power systems utilizing the heat of produced formation fluid  

DOE Patents (OSTI)

Systems, methods, and heaters for treating a subsurface formation are described herein. At least one method includes treating a hydrocarbon containing formation. The method may include providing heat to the formation; producing heated fluid from the formation; and generating electricity from at least a portion of the heated fluid using a Kalina cycle.

Lambirth, Gene Richard (Houston, TX)

2011-01-11T23:59:59.000Z

9

Electric Power Generation from Co-Produced Fluids from Oil and Gas Wells  

Open Energy Info (EERE)

Co-Produced Fluids from Oil and Gas Wells Co-Produced Fluids from Oil and Gas Wells Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Electric Power Generation from Co-Produced Fluids from Oil and Gas Wells Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Geothermal Energy Production from Low Temperature Resources, Coproduced Fluids from Oil and Gas Wells, and Geopressured Resources Project Type / Topic 3 Coproduced Fluids for Oil and Gas Wells Project Description The geothermal organic Rankine cycle (ORC) system will be installed at an oil field operated by Encore Acquisition in western North Dakota where geothermal fluids occur in sedimentary formations at depths of 10,000 feet. The power plant will be operated and monitored for two years to develop engineering and economic models for geothermal ORC energy production. The data and knowledge acquire during the O & M phase can be used to facilitate the installation of similar geothermal ORC systems in other oil and gas settings.

10

Mechanisms of formation damage in matrix permeability geothermal wells  

SciTech Connect

A laboratory study was conducted at simulated in-situ geothermal conditions to identify the mechanisms responsible for significant declines in permeability. Testing was conducted on core material retrieved from the East Mesa KGRA, (known geothermal resource area) Imperial Valley, California. In this paper, apparatus, procedures and results are described. Damage in this formation, which was not originally thought to be water sensitive, is attributed to cation exchange and the removal processes which alter the stability of the clay structures. Fluid shearing dislodges particles, which clog pore throats and irreversibly reduce permeability. The implications of these findings on operating procedures and production of the well can be significant and are discussed. 7 refs.

Bergosh, G.L.; Enniss, D.O.

1981-01-01T23:59:59.000Z

11

Development of general inflow performance relationships (IPR's) for slanted and horizontal wells producing heterogeneous solution-gas drive reservoirs  

SciTech Connect

Since 1968, the Vogel equation has been used extensively and successfully for analyzing the inflow performance relationship (IPR) of flowing vertical wells producing by solution-gas drive. Oil well productivity can be rapidly estimated by using the Vogel IPR curve and well outflow performance. With recent interests on horizontal well technology, several empirical IPRs for solution-gas drive horizontal and slanted wells have been developed under homogeneous reservoir conditions. This report presents the development of IPRs for horizontal and slanted wells by using a special vertical/horizontal/slanted well reservoir simulator under six different reservoir and well parameters: ratio of vertical to horizontal permeability, wellbore eccentricity, stratification, perforated length, formation thickness, and heterogeneous permeability. The pressure and gas saturation distributions around the wellbore are examined. The fundamental physical behavior of inflow performance for horizontal wells is described.

Cheng, A.M.

1992-04-01T23:59:59.000Z

12

Regulatory Issues Affecting Management of Produced Water from Coal Bed Methane Wells  

SciTech Connect

This paper describes the existing national discharge regulations, the ways in which CBM produced water is currently being managed, the current CBM discharge permitting practices, and how these options might change as the volume of produced water increases because of the many new wells being developed.

Veil, John A.

2003-03-03T23:59:59.000Z

13

The Implications and Flow Behavior of the Hydraulically Fractured Wells in Shale Gas Formation  

E-Print Network (OSTI)

approaches is by drilling horizontal wells and hydraulically fracturing the formation. Once the formation is fractured, different flow patterns will occur. The dominant flow regime observed in the shale gas formation is the linear flow or the transient...

Almarzooq, Anas Mohammadali S.

2012-02-14T23:59:59.000Z

14

Combination gas-producing and waste-water disposal well. [DOE patent application  

DOE Patents (OSTI)

The present invention is directed to a waste-water disposal system for use in a gas recovery well penetrating a subterranean water-containing and methane gas-bearing coal formation. A cased bore hole penetrates the coal formation and extends downwardly therefrom into a further earth formation which has sufficient permeability to absorb the waste water entering the borehole from the coal formation. Pump means are disposed in the casing below the coal formation for pumping the water through a main conduit towards the water-absorbing earth formation. A barrier or water plug is disposed about the main conduit to prevent water flow through the casing except for through the main conduit. Bypass conduits disposed above the barrier communicate with the main conduit to provide an unpumped flow of water to the water-absorbing earth formation. One-way valves are in the main conduit and in the bypass conduits to provide flow of water therethrough only in the direction towards the water-absorbing earth formation.

Malinchak, R.M.

1981-09-03T23:59:59.000Z

15

Organic substances in produced and formation water from unconventional natural gas extraction in coal and shale  

Science Journals Connector (OSTI)

Abstract Organic substances in produced and formation water from coalbed methane (CBM) and gas shale plays from across the USA were examined in this study. Disposal of produced waters from gas extraction in coal and shale is an important environmental issue because of the large volumes of water involved and the variable quality of this water. Organic substances in produced water may be environmentally relevant as pollutants, but have been little studied. Results from five CBM plays and two gas shale plays (including the Marcellus Shale) show a myriad of organic chemicals present in the produced and formation water. Organic compound classes present in produced and formation water in CBM plays include: polycyclic aromatic hydrocarbons (PAHs), heterocyclic compounds, alkyl phenols, aromatic amines, alkyl aromatics (alkyl benzenes, alkyl biphenyls), long-chain fatty acids, and aliphatic hydrocarbons. Concentrations of individual compounds range from CBM samples) range from 50 to 100 ?g/L. Total dissolved organic carbon (TOC) in CBM produced water is generally in the 1–4 mg/L range. Excursions from this general pattern in produced waters from individual wells arise from contaminants introduced by production activities (oils, grease, adhesives, etc.). Organic substances in produced and formation water from gas shale unimpacted by production chemicals have a similar range of compound classes as CBM produced water, and TOC levels of about 8 mg/L. However, produced water from the Marcellus Shale using hydraulic fracturing has TOC levels as high as 5500 mg/L and a range of added organic chemicals including, solvents, biocides, scale inhibitors, and other organic chemicals at levels of 1000 s of ?g/L for individual compounds. Levels of these hydraulic fracturing chemicals and TOC decrease rapidly over the first 20 days of water recovery and some level of residual organic contaminants remain up to 250 days after hydraulic fracturing. Although the environmental impacts of the organics in produced water are not well defined, results suggest that care should be exercised in the disposal and release of produced waters containing these organic substances into the environment because of the potential toxicity of many of these substances.

William Orem; Calin Tatu; Matthew Varonka; Harry Lerch; Anne Bates; Mark Engle; Lynn Crosby; Jennifer McIntosh

2014-01-01T23:59:59.000Z

16

Economics is a social science concerned with the economic behavior of consumers and producers as well  

E-Print Network (OSTI)

5/2013 ECONOMICS Economics is a social science concerned with the economic behavior of consumers and producers as well as the operation and evaluation of economic systems. Economists study questions like why does the price of gasoline go up and down and what can we do to improve the economy. Studying economics

17

Inflow performance relationship for perforated wells producing from solution gas drive reservoir  

SciTech Connect

The IPR curve equations, which are available today, are developed for open hole wells. In the application of Nodal System Analysis in perforated wells, an accurate calculation of pressure loss in the perforation is very important. Nowadays, the equation which is widely used is Blount, Jones and Glaze equation, to estimate pressure loss across perforation. This equation is derived for single phase flow, either oil or gas, therefore it is not suitable for two-phase production wells. In this paper, an IPR curve equation for perforated wells, producing from solution gas drive reservoir, is introduced. The equation has been developed using two phase single well simulator combine to two phase flow in perforation equation, derived by Perez and Kelkar. A wide range of reservoir rock and fluid properties and perforation geometry are used to develop the equation statistically.

Sukarno, P. [Inst. Teknologi Bandung (Indonesia); Tobing, E.L.

1995-10-01T23:59:59.000Z

18

Isopach map of black shale in the West Falls Formation (from well sample studies)  

SciTech Connect

Maps of western New York State and Lake Erie were prepared containing information on black shale deposits in the West Falls Formation from well sample studies. (DC)

Kamakaris, D.G.; Van Tyne, A.M.

1980-01-01T23:59:59.000Z

19

Isopach map of black shale in the Java Formation (from well sample studies)  

SciTech Connect

A map of western New York State and Lake Erie was prepared containing information on black shale deposits in the Java Formation from well sample studies. (DC)

Kamakaris, D.G.; Van Tyne, A.M.

1980-01-01T23:59:59.000Z

20

A Study on the Analysis of the Formation of High Water Saturation zones around Well perforations.  

E-Print Network (OSTI)

??The water produced with oil as a result of water coning is a serious problem as it decreases well productivity and increases the cost of… (more)

Alrumah, Muhammad

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "formation producing wells" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Method of producing drive fluid in situ in tar sands formations  

DOE Patents (OSTI)

Methods of treating a tar sands formation are described herein. Methods for treating a tar sands may include providing heat to at least part of a hydrocarbon layer in the formation from one or more heaters located in the formation. The heat may be allowed to transfer from the heaters to at least a portion of the formation such that a drive fluid is produced in situ in the formation. The drive fluid may move at least some mobilized, visbroken, and/or pyrolyzed hydrocarbons from a first portion of the formation to a second portion of the formation. At least some of the mobilized, visbroken, and/or pyrolyzed hydrocarbons may be produced from the formation.

Mudunuri, Ramesh Raju (Houston, TX); Jaiswal, Namit (Houston, TX); Vinegar, Harold J. (Bellaire, TX); Karanikas, John Michael (Houston, TX)

2010-03-23T23:59:59.000Z

22

Development of general inflow performance relationships (IPR`s) for slanted and horizontal wells producing heterogeneous solution-gas drive reservoirs  

SciTech Connect

Since 1968, the Vogel equation has been used extensively and successfully for analyzing the inflow performance relationship (IPR) of flowing vertical wells producing by solution-gas drive. Oil well productivity can be rapidly estimated by using the Vogel IPR curve and well outflow performance. With recent interests on horizontal well technology, several empirical IPRs for solution-gas drive horizontal and slanted wells have been developed under homogeneous reservoir conditions. This report presents the development of IPRs for horizontal and slanted wells by using a special vertical/horizontal/slanted well reservoir simulator under six different reservoir and well parameters: ratio of vertical to horizontal permeability, wellbore eccentricity, stratification, perforated length, formation thickness, and heterogeneous permeability. The pressure and gas saturation distributions around the wellbore are examined. The fundamental physical behavior of inflow performance for horizontal wells is described.

Cheng, A.M.

1992-04-01T23:59:59.000Z

23

NETL: News Release - Frio Formation Test Well Injected With Carbon Dioxide  

NLE Websites -- All DOE Office Websites (Extended Search)

19, 2004 19, 2004 Frio Formation Test Well Injected With Carbon Dioxide Researchers Perform Small Scale, Short Term Carbon Sequestration Field Test HOUSTON, TX - In the first U.S. field test to investigate the ability of brine formations to store greenhouse gasses, researchers funded by the U.S. Department of Energy are closely monitoring 1,600 tons of carbon dioxide that were injected into a mile-deep well in Texas in October. The test is providing unique data to help investigators understand the viability of geologic sequestration as a means of reducing greenhouse gas emissions. The Frio Brine Pilot experimental site is 30 miles northeast of Houston, in the South Liberty oilfield. Researchers at the University of Texas at Austin's Bureau of Economic Geology drilled a 5,753 foot injection well earlier this year, and developed a nearby observation well to study the ability of the high-porosity Frio sandstone formation to store carbon dioxide.

24

Geologic and hydrologic controls on coalbed methane producibility, Williams Fork Formation, Piceance Basin, Colorado  

SciTech Connect

Structural and depositional setting, coal rank, gas content, permeability, hydrodynamics, and reservoir heterogeneity control the producibility of coalbed methane in the Piceance Basin. The coal-rich Upper Cretaceous, Williams Fork Formation is genetically defined and regionally correlated to the genetic sequences in the Sand Wash Basin, to the north. Net coal is thickest in north-south oriented belts which accumulated on a coastal plain, behind west-east prograding shoreline sequences. Face cleats of Late Cretaceous age strike E-NE and W-NW in the southern and northern parts of the basin, respectively, normal to the Grand Hogback thrust front. Parallelism between face-cleat strike and present-day maximum horizontal stresses may enhance or inhibit coal permeability in the north and south, respectively. Geopressure and hydropressure are both present in the basin with regional hydrocarbon overpressure dominant in the central part of the basin and hydropressure limited to the basin margins. The most productive gas wells in the basin are associated with structural terraces, anticlines, and/or correspond to Cameo-Wheeler-Fairfield coal-sandstone development, reflecting basement detached thrust-faulting, fracture-enhanced permeability, and reservoir heterogeneity. Depositional heterogeneties and thrusts faults isolate coal reservoirs along the Grand Hogback from the subsurface by restricting meteoric recharge and basinward flow of ground water. An evolving coalbed methane producibility model predicts that in the Piceance Basin extraordinary coalbed methane production is precluded by low permeability and by the absence of dynamic ground-water flow.

Tyler, R.; Scott, A.R.; Kaiser, W.R.; Nance, H.S.; McMurry, R.G. [Univ. of Texas, Austin, TX (United States)

1996-12-31T23:59:59.000Z

25

Geologic and hydrologic controls on coalbed methane producibility, Williams Fork Formation, Piceance Basin, Colorado  

SciTech Connect

Structural and depositional setting, coal rank, gas content, permeability, hydrodynamics, and reservoir heterogeneity control the producibility of coalbed methane in the Piceance Basin. The coal-rich Upper Cretaceous, Williams Fork Formation is genetically defined and regionally correlated to the genetic sequences in the Sand Wash Basin, to the north. Net coal is thickest in north-south oriented belts which accumulated on a coastal plain, behind west-east prograding shoreline sequences. Face cleats of Late Cretaceous age strike E-NE and W-NW in the southern and northern parts of the basin, respectively, normal to the Grand Hogback thrust front. Parallelism between face-cleat strike and present-day maximum horizontal stresses may enhance or inhibit coal permeability in the north and south, respectively. Geopressure and hydropressure are both present in the basin with regional hydrocarbon overpressure dominant in the central part of the basin and hydropressure limited to the basin margins. The most productive gas wells in the basin are associated with structural terraces, anticlines, and/or correspond to Cameo-Wheeler-Fairfield coal-sandstone development, reflecting basement detached thrust-faulting, fracture-enhanced permeability, and reservoir heterogeneity. Depositional heterogeneties and thrusts faults isolate coal reservoirs along the Grand Hogback from the subsurface by restricting meteoric recharge and basinward flow of ground water. An evolving coalbed methane producibility model predicts that in the Piceance Basin extraordinary coalbed methane production is precluded by low permeability and by the absence of dynamic ground-water flow.

Tyler, R.; Scott, A.R.; Kaiser, W.R.; Nance, H.S.; McMurry, R.G. (Univ. of Texas, Austin, TX (United States))

1996-01-01T23:59:59.000Z

26

Stopping a water crossflow in a sour-gas producing well  

SciTech Connect

Lacq is a sour-gas field in southwest France. After maximum production of 774 MMcf/D in the 1970`s, production is now 290 MMcf/D, with a reservoir pressure of 712 psi. Despite the loss of pressure, production is maintained by adapting the surface equipment and well architecture to reservoir conditions. The original 5-in. production tubing is being replaced with 7-in. tubing to sustain production rates. During openhole cleaning, the casing collapsed in Well LA141. The primary objective was to plug all possible hydraulic communication paths into the lower zones. The following options were available: (1) re-entering the well from the top and pulling the fish before setting cement plugs; (2) sidetracking the well; and (3) drilling a relief well to intercept Well LA141 above the reservoirs. The decision was made to start with the first option and switch to a sidetrack if this option failed.

Hello, Y. Le [Elf Aquitaine Production (Norway); Woodruff, J. [John Wight Co. (United States)

1998-09-01T23:59:59.000Z

27

Drilling fluid technology for horizontal wells to protect the formations in unconsolidated sandstone heavy oil reservoirs  

Science Journals Connector (OSTI)

Major factors that cause damage in drilling in unconsolidated sandstone heavy oil reservoirs include: invasion of solids in drilling fluid, incompatibility between the liquid phase of drilling fluid and crude oil, and hydration and expansion of reservoir clay minerals. Therefore, a solid-free weak gel drilling fluid system for horizontal wells to protect the formations was developed that contains seawater + 0.1%–0.2% NaOH + 0.2% Na2CO3+ 0.7% VIS + 2.0% FLO + 2.0% JLX, weighed with \\{KCl\\} or sodium formate. The drilling fluid system has unique rheological properties, temporally independent gel strength, and excellent lubricating and inhibition performance. It is compatible with formation fluids, it not only meets the needs of horizontal well drilling, but also effectively protects the reservoir. The technique is well performed in tens of horizontal wells in offshore oilfields, such as WC13-1, BZ34-1, NP35-2, and BZ25-1 oilfields.

Yue Qiansheng; Liu Shujie; Xiang Xingjin

2010-01-01T23:59:59.000Z

28

Formation resistivity measurements from within a cased well used to quantitatively determine the amount of oil and gas present  

DOE Patents (OSTI)

Methods to quantitatively determine the separate amounts of oil and gas in a geological formation adjacent to a cased well using measurements of formation resistivity are disclosed. The steps include obtaining resistivity measurements from within a cased well of a given formation, obtaining the porosity, obtaining the resistivity of formation water present, computing the combined amounts of oil and gas present using Archie`s Equations, determining the relative amounts of oil and gas present from measurements within a cased well, and then quantitatively determining the separate amounts of oil and gas present in the formation. 7 figs.

Vail, W.B. III

1997-05-27T23:59:59.000Z

29

Formation resistivity measurements from within a cased well used to quantitatively determine the amount of oil and gas present  

DOE Patents (OSTI)

Methods to quantitatively determine the separate amounts of oil and gas in a geological formation adjacent to a cased well using measurements of formation resistivity are disclosed. The steps include obtaining resistivity measurements from within a cased well of a given formation, obtaining the porosity, obtaining the resistivity of formation water present, computing the combined amounts of oil and gas present using Archie's Equations, determining the relative amounts of oil and gas present from measurements within a cased well, and then quantitatively determining the separate amounts of oil and gas present in the formation.

Vail, III, William B. (Bothell, WA)

1997-01-01T23:59:59.000Z

30

Condensation and pattern formation in cold exciton gases in coupled quantum wells  

Science Journals Connector (OSTI)

Bound electron–hole pairs—excitons—are light Bose particles with a mass comparable to or smaller than that of the free electron. Since the quantum degeneracy temperature scales inversely with the mass, it is anticipated that Bose–Einstein condensation of an exciton gas can be achieved at temperatures of about 1?K, orders of magnitude larger than the micro-Kelvin temperatures employed in atomic condensation. High quantum degeneracy temperatures and the possibility to control exciton density by laser photoexcitation make cold excitons a model system for studies of collective states and many-body phenomena in a system of cold bosons. Experimentally, an exciton temperature well below 1?K is achieved in a gas of indirect excitons in coupled quantum-well semiconductor heterostructures. Here, we overview phenomena in the cold exciton gases: condensation, pattern formation, and macroscopically ordered exciton states.

L V Butov

2004-01-01T23:59:59.000Z

31

Measuring resistivity changes from within a first cased well to monitor fluids injected into oil bearing geological formations from a second cased well while passing electrical current between the two cased wells  

DOE Patents (OSTI)

A.C. current is conducted through geological formations separating two cased wells in an oil field undergoing enhanced oil recovery operations such as water flooding operations. Methods and apparatus are disclosed to measure the current leakage conducted into a geological formation from within a first cased well that is responsive to fluids injected into formation from a second cased well during the enhanced oil production activities. The current leakage and apparent resistivity measured within the first cased well are responsive to fluids injected into formation from the second cased well provided the distance of separation between the two cased wells is less than, or on the order of, a Characteristic Length appropriate for the problem.

Vail, W.B. III.

1993-02-16T23:59:59.000Z

32

Formation resistivity measurements from within a cased well used to quantitatively determine the amount of oil and gas present  

DOE Patents (OSTI)

Methods to quantitatively determine the separate amounts of oil and gas in a geological formation adjacent to a cased well using measurements of formation resistivity. The steps include obtaining resistivity measurements from within a cased well of a given formation, obtaining the porosity, obtaining the resistivity of formation water present, computing the combined amounts of oil and gas present using Archie's Equations, determining the relative amounts of oil and gas present from measurements within a cased well, and then quantitatively determining the separate amounts of oil and gas present in the formation. Resistivity measurements are obtained from within the cased well by conducting A.C. current from within the cased well to a remote electrode at a frequency that is within the frequency range of 0.1 Hz to 20 Hz.

Vail, III, William Banning (Bothell, WA)

2000-01-01T23:59:59.000Z

33

Formation of inhomogeneous structures of condensed phases of excitons in quantum wells  

Science Journals Connector (OSTI)

The statistical theory basis of the formation of the patterns of the condensed phases of indirect excitons in quantum wells is presented. It is assumed that a condensed phase of excitons arises due to some exciton-exciton attractive interaction and can be described by several parameters: exciton condensation energy, surface energy, and exciton density. The creation of different structures (islands or rings of the condensed phase and so on) occurs due to the nonequilibrium state of the system connected with the finite value of the exciton lifetime and the presence of pumping; therefore, the appearence of the patterns is the result of self-organization processes in a nonequilibrium system. The theory is applied to the description of different structures which were observed in luminescence spectra from quantum wells with a round window in an electrode. The evolution of the patterns with the changing temperature, pumping, and size of the window is studied. The explanation does not rely on an assumption of the Bose-Einstein condensation of the excitons.

V. I. Sugakov

2007-09-06T23:59:59.000Z

34

Integrated analysis of production potential and profitability of a horizontal well in the Lower Glen Rose Formation, Maverick County, Texas  

SciTech Connect

The U.S. Department of Energy/Morgantown Energy Technology Center (DOE/METC) awarded a contract in 1991 to Prime Energy Corporation (PEC) to demonstrate the benefit of using horizontal wells to recover gas from low permeability formations. The project area was located in the Chittim field of Maverick County, Texas. The Lower Glen Rose Formation in the Chittim field was a promising horizontal well candidate based on the heterogenous nature of the reservoir (suggested by large well-to-well variances in reserves) and the low percentage of economical vertical wells. Since there was substantial evidence of reservoir heterogeneity, it was unknown whether the selected, wellsite would penetrate a reservoir with the desired properties for a horizontal well. Thus, an integrated team was formed to combine geologic analysis, seismic interpretation, reservoir engineering, reservoir simulation, and economic assessment to analyze the production potential and profitability of completing a horizontal well in the Lower Glen Rose formation.

Ammer, J.R.; Mroz, T.H.; Zammerilli, A.M.; Yost, A.B. II [Dept. of Energy, Morgantown, WV (United States); Muncey, J.G.; Hegeman, P.S.

1995-03-01T23:59:59.000Z

35

Determination of formation permeability using back-pressure test data from hydraulically-fractured, low-permeability gas wells  

E-Print Network (OSTI)

DETERMINATION OF FORMATION PERMEABILITY USING BACX-PRESSURE TEST DATA FROM HYDRAULICALLY-FRACTURED, LOW-PERMEABILITY GAS WELLS A Thesis JOHN PAUL KRAWTZ Submitted to the Graduate College of Texas AsJ4 University in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE August 1984 Major subject: petroleum Engineering DETERMINATION OF FORMATION PERMEABILITY USING BACK-PRESSURE TEST DATA FROM HYDRAULICALLY-FRACTURED, LOW-PERMEABILITY GAS WELLS A Thesis JOHN PAUL KRAWTZ...

Krawtz, John Paul

2012-06-07T23:59:59.000Z

36

Correlation of producing Fruitland Formation coals within the western outcrop and coalbed methane leakage on the Southern Ute Reservation  

SciTech Connect

The Colorado Geological Survey and Southern Ute Indian Tribe proposed to determine the cause of several gas seeps which are occurring on the western outcrop of the coalbed methane producing Fruitland Formation on the Southern Ute Indian Reservation. Correlation between outcrop coals and subsurface coals was necessary to determine seep source in the northern part of the study area. Subsurface studies include structure and net coal isopach maps, stratigraphy was cross-sections, production maps, and a production database. Detailed coal stratigraphy was correlated through production wells near the outcrop region. These maps and cross-sections were correlated to new surface outcrop maps generated by the Colorado, Geological Survey and the Southern Ute Division of Energy Resources. Methane gas seepage has been noted historically within the study area. The total investigation may help determine if gas seepage is natural, a result of coalbed methane development, or some combination of the above.

Carroll, Christopher J. Mathews, Stephanie, Wickman, Barbara

2000-07-07T23:59:59.000Z

37

Technical Demonstration and Economic Validation of Geothermal-Produced Electricity from Coproduced Water at Existing Oil/Gas Wells in Texas  

Energy.gov (U.S. Department of Energy (DOE))

Technical Demonstration and Economic Validation of Geothermal-Produced Electricity from Coproduced Water at Existing Oil/Gas Wells in Texas.

38

Torus Formation in Neutron Star Mergers and Well-Localized Short Gamma-Ray Bursts  

E-Print Network (OSTI)

Merging neutron stars (NSs) are hot candidates for the still enigmatic sources of short gamma-ray bursts (GRBs). If the central engines of the huge energy release are accreting relic black holes (BHs) of such mergers, it is important to understand how the properties of the BH-torus systems, in particular disc masses and mass and rotation rate of the compact remnant, are linked to the characterizing parameters of the NS binaries. For this purpose we present relativistic smoothed particle hydrodynamics simulations with conformally flat approximation of the Einstein field equations and a physical, non-zero temperature equation of state. Thick disc formation is highlighted as a dynamical process caused by angular momentum transfer through tidal torques during the merging process of asymmetric systems or in the rapidly spinning triaxial post-merger object. Our simulations support the possibility that the first well-localized short and hard GRBs 050509b, 050709, 050724, 050813 have originated from NS merger events and are powered by neutrino-antineutrino annihilation around a relic BH-torus system. Using model parameters based on this assumption, we show that the measured GRB energies and durations lead to estimates for the accreted masses and BH mass accretion rates which are compatible with theoretical expectations. In particular, the low energy output and short duration of GRB 050509b set a very strict upper limit of less than 100 ms for the time interval after the merging until the merger remnant has collapsed to a BH, leaving an accretion torus with a small mass of only about 0.01 solar masses. This favors a (nearly) symmetric NS+NS binary with a typical mass as progenitor system.

R. Oechslin; H. -Th. Janka

2005-07-05T23:59:59.000Z

39

Recognition of hydrocarbon expulsion using well logs: Bakken Formation, Williston Basin  

SciTech Connect

The Upper Mississippian-Lower Devonian Bakken Formation forms a source/carrier/reservoir system in the Williston basin. Hydrocarbon expulsion within the Bakken has been identified by overlaying sonic and resistivity logs. Typically, these curves track in organically lean, water-saturated mudrocks because both respond mainly to porosity; however, in thermally mature organic-rich rocks and hydrocarbon reservoirs or carrier beds, the curves separate due to the anomalously high resistivity associated with replacement of pore water by hydrocarbons. Sonic/resistivity-log overlays for wells throughout the Montana and North Dakota parts of the Williston basin reveal significant increases and maximum in-curve separation within the middle siltstone member of the Bakken at subsurface temperatures of about 170 and 200{degree}F, respectively. Sequence-stratigraphic characteristics of the Bakken define the framework within which the expulsion process operates. The organic-rich upper and lower shale members represent the transgressive and early highstand systems tracts of two adjacent depositional sequences. A sequence boundary within the intervening middle siltstone member separates nearshore siltstone and sandstone of the late highstand systems tract in the lower sequence from cross-bedded subtidal to intertidal sandstones of the lowstand systems tract in the upper sequence. Reservoir properties vary across this sequence boundary. The authors attribute the log separation in the siltstone member to hydrocarbons expelled from the adjacent shales. Abrupt shifts in several geochemical properties of the shale members, indicative of hydrocarbon generation occur over the same subsurface temperature range as the rapid increase in log separation in the middle siltstone, thus indicating the contemporaneity of generation and expulsion.

Cunningham, R.; Zelt, F.B.; Morgan, S.R.; Passey, Q.R. (Exxon Production Research Co., Houston, TX (USA)); Snavely, P.D. III; Webster, R.L. (Exxon Co., U.S.A., Houston, TX (USA))

1990-05-01T23:59:59.000Z

40

An Evaluation of Completion Parameters and Well Performance in the Montney Formation in British Columbia, Canada  

E-Print Network (OSTI)

.................................................... 95 5.1 Conclusions ......................................................................................................... 95 5.2 Recommendation for Future Framework ............................................................ 96 REFERENCES...- Type curve- all wells-Lily .............................................................................. 127 Fig. 95- Type curve- all wells-Nig ............................................................................... 127 Fig. 96- Type curve...

Sadeghi, Simin

2013-11-21T23:59:59.000Z

Note: This page contains sample records for the topic "formation producing wells" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Depositional facies and environments of the lower Mineral Wells formation, Pennsylvanian Strawn group, north central Texas  

E-Print Network (OSTI)

formation to exclude the Thurber coal, the Mingus shale, and the Brazos River sandstone and conglomerate (Plummer and Hornberger, 1935; Hendricks, 1957). In their publication on the geology of Palo Pinto County, Plummer and Hornberger (1935) followed... boundary was lowered and redefined as the unconformity at the base of the Lake Pinto sandstone. Some workers have continued to use the earlier nomenclature followed by Sellards (1932) and Plummer and Hornberger (1935), while others use the nomenclature...

Bradshaw, Susan Elizabeth

2012-06-07T23:59:59.000Z

42

Well-Plate Formats and Microfluidics — Applications of Laminar Fluid Diffusion Interfaces to HTP Screening  

Science Journals Connector (OSTI)

Microfluidic disposables are presented that are compatible with standard well plate readers and robotic filling systems. The disposables perform extractions and sample cleanup procedures using the diffusion-ba...

Bernhard H. Weigl; Christopher J. Morris…

2001-01-01T23:59:59.000Z

43

Gas dynamic effects on formation of carbon dimers in laser-produced plasmas  

E-Print Network (OSTI)

production, carbon laser-produced plasma (LPP) research was a main focus over the last several years.1

Harilal, S. S.

44

Clay mineralogy and depositional history of the Frio Formation in two geopressured wells, Brazoria County, Texas  

SciTech Connect

Twenty-three shale samples ranging in depth from 5194 ft to 13,246 ft from Gulf Oil Corporation No. 2 Texas State Lease 53034 well and 33 shale samples ranging in depth from 2185 ft to 15,592 ft from General Crude Oil Company/Department of Energy No. 1 Pleasant Bayou well were examined by x-ray techniques to determine the mineralogy of the geopressured zone in the Brazoria Fairway. Both wells have similar weight-percent trends with depth for a portion of the mineralogy. Calcite decreases, and plagioclase, quartz and total clay increase slightly. Within the clays, illite in mixed-layer illite/smectite (I/S) increases and smectite in mixed-layer I/S decreases. Four minerals have distinctly different trends with depth for each well. In the No. 2 Texas State Lease 53034 well, potassium feldspar and mixed-layer I/S decrease, kaolinite increases, and discrete illite is constant. In the No. 1 Pleasant Bayou well, potassium feldspar and kaolinite are constant, mixed-layer I/S increases, and discrete illite decreases.

Freed, R.L.

1982-01-01T23:59:59.000Z

45

An evaluation of acid frac/matrix stimulation of a tight limestone formation in exploratory wells in Kuwait  

SciTech Connect

With the advent of Kuwait's intensive exploratory activities to locate and test deeper geologic structures, tighter and very low porosity limestone formations were progressively encountered. Most of these hydrocarbon bearing formations initially appeared to be very stubborn and hardly indicated any fluid influx into the well-bore. In certain cases the hydrostatic head was nearly completely removed by unloading the well practically down to perforations, thereby creating optimum draw-down but it either resulted in poor inflow or none at all. In the absence of currently available chemicals, equipment, job design engineering and better understanding of tight carbonate formations and their responses to various acid formulations, some of these could have slipped into unattractive categories. With the implementation of specially designed matrix and acid-frac treatments, these formation have, however, been unmasked and turned out to be highly potential finds now. This paper basically outlines the salient features of theoretical and operational aspects of stimulating and testing some of the very low porosity hard limestone formations in Kuwait recently.

Singh, J.R.

1985-03-01T23:59:59.000Z

46

Determination of formation water resistivity using shale properties in geopressured wells  

E-Print Network (OSTI)

with the equation, w w75 (13) 15 RESULTS AND DISCUSSION Two types of reservoirs were studied. The f1rst set were geopressured water wells, and the second were geopressured tight gas sands. The shale method prev1ously described was compared to several other... Oil and Minerals Prairie Cana Well Rl Lear Petroleum Keolemay '. ll Martin Exploration 2-Crown Zellerbach Shale. R w . 1277 onm-m . 049 ohm-m . 122 ohm-m . 078 ohm-m Method 12, 000 ppm 39, 000 ppm 15, 800 ppm 27, 000 ppm Lab R w . 13 ohm...

Dusenbery, Richard Allen

2012-06-07T23:59:59.000Z

47

Temporal Changes in Microbial Ecology and Geochemistry in Produced Water from Hydraulically Fractured Marcellus Shale Gas Wells  

Science Journals Connector (OSTI)

These results provide insight into the temporal trajectory of subsurface microbial communities after “fracking” and have important implications for the enrichment of microbes potentially detrimental to well infrastructure and natural gas fouling during this process. ... Interpretative modeling shows that advective transport could require up to tens of thousands of years to move contaminants to the surface, but also that fracking the shale could reduce that transport time to tens or hundreds of years. ... reflecting the significant changes caused by fracking the shale, which could allow advective transport to aquifers in less than 10 years. ...

Maryam A. Cluff; Angela Hartsock; Jean D. MacRae; Kimberly Carter; Paula J. Mouser

2014-05-06T23:59:59.000Z

48

Lithotrophic iron-oxidizing bacteria produce organic stalks to control mineral growth: implications for biosignature formation  

SciTech Connect

Neutrophilic Fe-oxidizing bacteria (FeOB) are often identified by their distinctive morphologies, such as the extracellular twisted ribbon-like stalks formed by Gallionella ferruginea or Mariprofundus ferrooxydans. Similar filaments preserved in silica are often identified as FeOB fossils in rocks. Although it is assumed that twisted iron stalks are indicative of FeOB, the stalk's metabolic role has not been established. To this end, we studied the marine FeOB M. ferrooxydans by light, X-ray and electron microscopy. Using time-lapse light microscopy, we observed cells excreting stalks during growth (averaging 2.2 {micro}m h(-1)). Scanning transmission X-ray microscopy and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy show that stalks are Fe(III)-rich, whereas cells are low in Fe. Transmission electron microscopy reveals that stalks are composed of several fibrils, which contain few-nanometer-sized iron oxyhydroxide crystals. Lepidocrocite crystals that nucleated on the fibril surface are much larger ({approx}100 nm), suggesting that mineral growth within fibrils is retarded, relative to sites surrounding fibrils. C and N 1s NEXAFS spectroscopy and fluorescence probing show that stalks primarily contain carboxyl-rich polysaccharides. On the basis of these results, we suggest a physiological model for Fe oxidation in which cells excrete oxidized Fe bound to organic polymers. These organic molecules retard mineral growth, preventing cell encrustation. This model describes an essential role for stalk formation in FeOB growth. We suggest that stalk-like morphologies observed in modern and ancient samples may be correlated confidently with the Fe-oxidizing metabolism as a robust biosignature.

Chan, Clara S; Fakra, Sirine C; Emerson, David; Fleming, Emily J; Edwards, Katrina J

2011-07-01T23:59:59.000Z

49

Statistical model for source rock maturity and organic richness using well-log data, Bakken Formation, Williston basin, United States  

SciTech Connect

A study of the Bakken Formation, the proposed source rock for much of the hydrocarbons generated in the Williston basin, was done using bulk density, neutron porosity, and resistivity logs, and formation temperatures. Principal components, cluster, and discriminant analyses indicate that the present-day distribution of organic matter controls much of the variability in the log values. Present-day total organic carbon values are high in the central part of the basin near northeastern Montana and along the east edge of the basin, and low in the area of the Nesson anticline and along the southwest edge of the basin. Using a regression of density on temperature and the analysis of residuals from this regression, hydrocarbon maturity effects were partially separated from depositional effects. These analyses suggest that original concentrations of organic matter were low near the limits of the Bakken and increased to a high in northeastern Montana. The pre-maturation distribution of total organic carbon and the present-day total organic carbon distribution, as determined by statistical analyses of well-log data, agree with the results of geochemical analyses. The distributions can be explained by a relatively simple depositional pattern and thermal history for the Bakken. 6 figures, 3 tables.

Krystinik, K.B.; Charpentier, R.R.

1987-01-01T23:59:59.000Z

50

Determining resistivity of a formation adjacent to a borehole having casing with an apparatus having all current conducting electrodes within the cased well  

DOE Patents (OSTI)

Methods of operation of different types of multiple electrode apparatus vertically disposed in a cased well to measure information useful to determine the resistivity of adjacent geological formations from within the cased well are described. The multiple electrode apparatus has a plurality of spaced apart voltage measurement electrodes that electrically engage a portion of the interior of the cased well. During measurements of information useful to determine formation resistivity, current is conducted between a first current conducting electrode in electrical contact with the interior of the cased well to a second current conducting electrode that is also in electrical contact with the interior of the cased well. The first and second current conducting electrodes are separated by a distance sufficient so that at least a portion of the current conducted between the first and second current conducting electrodes is conducted through the geological formation of interest.

Vail, III, William Banning (Bothell, WA)

2001-01-01T23:59:59.000Z

51

Multi-well subsurface study of the stratigraphic sequence of the Potter Formation in the Midway-Sunset Field, Kern County, California  

SciTech Connect

To understand the stratigraphic nature of the Potter Formation reservoirs, a multi-well study along a west-east cross-section was done using dipmeter, Formation MicroScanner, and FMI{trademark} (Fullbore Formation Microlmager) data. Thermal EOR wells are drilled only into the heavy oil-bearing portion of the reservoir, thus each well does not penetrate the complete Potter sequence, but penetrates successively younger sandstone and conglomerate members from west to east. Wireline logs and continuous core data were used for correlation and calibration of the dip and image data. The image data revealed detailed stratification, bedding, and sedimentary structures, identifying conglomeratic, bioturbated and stratified sequences. Correlation with continuous core clarified which features were more interpretive. The image data, available on three of the eleven wells, was then correlated to dipmeter data, both in the form of computed dip data and interpolated electrical images. Each of the eleven wells penetrated only one or two members of the Potter Formation. Using the dip data, it was possible to reconstruct a true stratigraphic thickness type log of the Potter Formation. The interpreted stratigraphic data, revealing bedded, bioturbated, and conglomeratic depositional systems was combined into a single type log of the Potter Formation. The resultant type log can be used for various sequence stratigraphic, engineering, and thermal EOR reservoir characterization applications in the Midway-Sunset Field.

Wylie, A.S. Jr. [Santa Fe Energy Resources, Bakersfield, CA (United States); Foulke, L.S. [Schlumberger Wireline and Testing, Englewood, CO (United States); Nilsen, T.H.

1996-12-31T23:59:59.000Z

52

Multi-well subsurface study of the stratigraphic sequence of the Potter Formation in the Midway-Sunset Field, Kern County, California  

SciTech Connect

To understand the stratigraphic nature of the Potter Formation reservoirs, a multi-well study along a west-east cross-section was done using dipmeter, Formation MicroScanner, and FMI[trademark] (Fullbore Formation Microlmager) data. Thermal EOR wells are drilled only into the heavy oil-bearing portion of the reservoir, thus each well does not penetrate the complete Potter sequence, but penetrates successively younger sandstone and conglomerate members from west to east. Wireline logs and continuous core data were used for correlation and calibration of the dip and image data. The image data revealed detailed stratification, bedding, and sedimentary structures, identifying conglomeratic, bioturbated and stratified sequences. Correlation with continuous core clarified which features were more interpretive. The image data, available on three of the eleven wells, was then correlated to dipmeter data, both in the form of computed dip data and interpolated electrical images. Each of the eleven wells penetrated only one or two members of the Potter Formation. Using the dip data, it was possible to reconstruct a true stratigraphic thickness type log of the Potter Formation. The interpreted stratigraphic data, revealing bedded, bioturbated, and conglomeratic depositional systems was combined into a single type log of the Potter Formation. The resultant type log can be used for various sequence stratigraphic, engineering, and thermal EOR reservoir characterization applications in the Midway-Sunset Field.

Wylie, A.S. Jr. (Santa Fe Energy Resources, Bakersfield, CA (United States)); Foulke, L.S. (Schlumberger Wireline and Testing, Englewood, CO (United States)); Nilsen, T.H.

1996-01-01T23:59:59.000Z

53

Laboratory tests to evaluate and study formation damage with low-density drill-in fluids (LDDIF) for horizontal well completions in low pressure and depleted reservoirs  

E-Print Network (OSTI)

The increasing number of open hole horizontal well completions in low-pressure and depleted reservoirs requires the use of non-damaging low-density drill-in fluids (LDDIF) to avoid formation damage and realize optimum well productivity. To address...

Chen, Guoqiang

2012-06-07T23:59:59.000Z

54

EVALUATIONS OF RADIONUCLIDES OF URANIUM, THORIUM, AND RADIUM ASSOCIATED WITH PRODUCED FLUIDS, PRECIPITATES, AND SLUDGES FROM OIL, GAS, AND OILFIELD BRINE INJECTION WELLS IN MISSISSIPPI  

SciTech Connect

Naturally occurring radioactive materials (NORM) are known to be produced as a byproduct of hydrocarbon production in Mississippi. The presence of NORM has resulted in financial losses to the industry and continues to be a liability as the NORM-enriched scales and scale encrusted equipment is typically stored rather than disposed of. Although the NORM problem is well known, there is little publically available data characterizing the hazard. This investigation has produced base line data to fill this informational gap. A total of 329 NORM-related samples were collected with 275 of these samples consisting of brine samples. The samples were derived from 37 oil and gas reservoirs from all major producing areas of the state. The analyses of these data indicate that two isotopes of radium ({sup 226}Ra and {sup 228}Ra) are the ultimate source of the radiation. The radium contained in these co-produced brines is low and so the radiation hazard posed by the brines is also low. Existing regulations dictate the manner in which these salt-enriched brines may be disposed of and proper implementation of the rules will also protect the environment from the brine radiation hazard. Geostatistical analyses of the brine components suggest relationships between the concentrations of {sup 226}Ra and {sup 228}Ra, between the Cl concentration and {sup 226}Ra content, and relationships exist between total dissolved solids, BaSO{sub 4} saturation and concentration of the Cl ion. Principal component analysis points to geological controls on brine chemistry, but the nature of the geologic controls could not be determined. The NORM-enriched barite (BaSO{sub 4}) scales are significantly more radioactive than the brines. Leaching studies suggest that the barite scales, which were thought to be nearly insoluble in the natural environment, can be acted on by soil microorganisms and the enclosed radium can become bioavailable. This result suggests that the landspreading means of scale disposal should be reviewed. This investigation also suggests 23 specific components of best practice which are designed to provide a guide to safe handling of NORM in the hydrocarbon industry. The components of best practice include both worker safety and suggestions to maintain waste isolation from the environment.

Charles Swann; John Matthews; Rick Ericksen; Joel Kuszmaul

2004-03-01T23:59:59.000Z

55

Formation damage studies of lubricants used with drill-in fluids systems on horizontal open-hole wells  

E-Print Network (OSTI)

Tests were conducted to evaluate the effect of lubricants in formation damage. Two types of lubricants were tested along with two types of drill-in fluids. The DIF's tested included a sized-calcium carbonate (SCC) and a sized-salt (SS). Also a set...

Gutierrez, Fernando A

2012-06-07T23:59:59.000Z

56

Economic Impact of Reservoir Properties, Horizontal Well Length and Orientation on Production from Shale Formations: Application to New  

E-Print Network (OSTI)

SPE 125893 Economic Impact of Reservoir Properties, Horizontal Well Length and Orientation production. Economic analyses are performed to identify and rank the impact of the above parameters. (3) The lack of dense natural fractures does not eliminate the potential for an economic fracture

Mohaghegh, Shahab

57

Potential formation in a collisionless plasma produced in an open magnetic field in presence of volume negative ion source  

SciTech Connect

The electric potential near a wall for a multi-species plasma with volume produced negative ions in presence of axially varying magnetic field is studied following an analytical-numerical approach. A constant negative ion source is assumed throughout the plasma volume, along with finite temperature positive ions and Boltzmann electrons. The particles are assumed to be guided by an open magnetic field that has its maximum at the centre, and field strength decreasing towards the walls. The one dimensional (1D) Poisson equation is derived using an analytical approach, and then solved numerically to study the potential profiles. Effect of (a) negative ion production rate, (b) magnetic field profile, and (c) negative ion temperature on the potential profile has been investigated. A potential peak appears near the wall when the negative ion temperature and density are sufficiently high. Also, the presence of negative ions further decreases the potential in the plasma region for a finite Debye Length (?{sub D})

Phukan, Ananya, E-mail: ananya.phukan26@gmail.com; Goswami, K. S.; Bhuyan, P. J. [Centre of Plasma Physics, Institute for Plasma Research Sonapur, Kamrup (M), Assam 782402 (India)

2014-08-15T23:59:59.000Z

58

Methods and apparatus for measurement of the resistivity of geological formations from within cased wells in presence of acoustic and magnetic energy sources  

DOE Patents (OSTI)

Methods and apparatus are provided for measuring the acoustically modulated electronic properties of geological formations and cement layers adjacent to cased boreholes. Current is passed from an electrode in electrical contact with the interior of the borehole casing to an electrode on the surface of the earth. Voltage measuring electrodes in electrical contact with the interior of the casing measure the voltage at various points thereon. The voltage differences between discrete pairs of the voltage measuring electrodes provide a measurement of the leakage current conducted into formation in the vicinity of those electrodes. Simultaneously subjecting the casing and formation to an acoustic source acoustically modulates the leakage current measured thereby providing a measure of the acoustically modulated electronic properties of the adjacent formation. Similarly, methods and apparatus are also described which measure the leakage current into formation while simultaneously subjecting the casing to an applied magnetic field which therefore allows measurement of the magnetically modulated electronic properties of the casing and the adjacent formation.

Vail, III, William B. (Bothell, WA)

1991-01-01T23:59:59.000Z

59

Petroleum well costs.  

E-Print Network (OSTI)

??This is the first academic study of well costs and drilling times for Australia??s petroleum producing basins, both onshore and offshore. I analyse a substantial… (more)

Leamon, Gregory Robert

2006-01-01T23:59:59.000Z

60

Data Formats  

Science Journals Connector (OSTI)

This chapter provides a taxonomy of existing data formats for power power system analysis. These include most commonly used formats of free and proprietary software packages as well as the IEC common informati...

Federico Milano

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "formation producing wells" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Environmental Assessment: Geothermal Energy Geopressure Subprogram. Gulf Coast Well Drilling and Testing Activity (Frio, Wilcox, and Tuscaloosa Formations, Texas and Louisiana)  

SciTech Connect

The Department of Energy (DOE) has initiated a program to evaluate the feasibility of developing the geothermal-geopressured energy resources of the Louisiana-Texas Gulf Coast. As part of this effort, DOE is contracting for the drilling of design wells to define the nature and extent of the geopressure resource. At each of several sites, one deep well (4000-6400 m) will be drilled and flow tested. One or more shallow wells will also be drilled to dispose of geopressured brines. Each site will require about 2 ha (5 acres) of land. Construction and initial flow testing will take approximately one year. If initial flow testing is successful, a continuous one-year duration flow test will take place at a rate of up to 6400 m{sup 3} (40,000 bbl) per day. Extensive tests will be conducted on the physical and chemical composition of the fluids, on their temperature and flow rate, on fluid disposal techniques, and on the reliability and performance of equipment. Each project will require a maximum of three years to complete drilling, testing, and site restoration.

None

1981-09-01T23:59:59.000Z

62

In situ oxidation of subsurface formations  

DOE Patents (OSTI)

Methods and systems for treating a hydrocarbon containing formation described herein include providing heat to a first portion of the formation from a plurality of heaters in the first portion, producing produced through one or more production wells in a second portion of the formation, reducing or turning off heat provided to the first portion after a selected time, providing an oxidizing fluid through one or more of the heater wells in the first portion, providing heat to the first portion and the second portion through oxidation of at least some hydrocarbons in the first portion, and producing fluids through at least one of the production wells in the second portion. The produced fluids may include at least some oxidized hydrocarbons produced in the first portion.

Beer, Gary Lee (Houston, TX); Mo, Weijian (Sugar Land, TX); Li, Busheng (Houston, TX); Shen, Chonghui (Calgary, CA)

2011-01-11T23:59:59.000Z

63

Solution mining systems and methods for treating hydrocarbon containing formations  

DOE Patents (OSTI)

A method for treating an oil shale formation comprising nahcolite is disclosed. The method includes providing a first fluid to a portion of the formation through at least two injection wells. A second fluid is produced from the portion through at least one injection well until at least two injection wells are interconnected such that fluid can flow between the two injection wells. The second fluid includes at least some nahcolite dissolved in the first fluid. The first fluid is injected through one of the interconnected injection wells. The second fluid is produced from at least one of the interconnected injection wells. Heat is provided from one or more heaters to the formation to heat the formation. Hydrocarbon fluids are produced from the formation.

Vinegar, Harold J. (Bellaire, TX); de Rouffignac, Eric Pierre (Rijswijk, NL); Schoeling, Lanny Gene (Katy, TX)

2009-07-14T23:59:59.000Z

64

Hanford wells  

SciTech Connect

Records describing wells located on or near the Hanford Site have been maintained by Pacific Northwest Laboratory and the operating contractor, Westinghouse Hanford Company. In support of the Ground-Water Surveillance Project, portions of the data contained in these records have been compiled into the following report, which is intended to be used by those needing a condensed, tabular summary of well location and basic construction information. The wells listed in this report were constructed over a period of time spanning almost 70 years. Data included in this report were retrieved from the Hanford Envirorunental Information System (HEIS) database and supplemented with information not yet entered into HEIS. While considerable effort has been made to obtain the most accurate and complete tabulations possible of the Hanford Site wells, omissions and errors may exist. This document does not include data on lithologic logs, ground-water analyses, or specific well completion details.

Chamness, M.A.; Merz, J.K.

1993-08-01T23:59:59.000Z

65

Cogeneration systems and processes for treating hydrocarbon containing formations  

DOE Patents (OSTI)

A system for treating a hydrocarbon containing formation includes a steam and electricity cogeneration facility. At least one injection well is located in a first portion of the formation. The injection well provides steam from the steam and electricity cogeneration facility to the first portion of the formation. At least one production well is located in the first portion of the formation. The production well in the first portion produces first hydrocarbons. At least one electrical heater is located in a second portion of the formation. At least one of the electrical heaters is powered by electricity from the steam and electricity cogeneration facility. At least one production well is located in the second portion of the formation. The production well in the second portion produces second hydrocarbons. The steam and electricity cogeneration facility uses the first hydrocarbons and/or the second hydrocarbons to generate electricity.

Vinegar, Harold J. (Bellaire, TX); Fowler, Thomas David (Houston, TX); Karanikas, John Michael (Houston, TX)

2009-12-29T23:59:59.000Z

66

Geologic and hydrologic controls critical to coalbed methane producibility and resource assessment: Williams Fork Formation, Piceance Basin, Northwest Colorado. Topical report, December 1, 1993-November 30, 1995  

SciTech Connect

The objectives of this report are: To further evaluate the interplay of geologic and hydrologic controls on coalbed methane production and resource assessment; to refine and validate our basin-scale coalbed methane producibility model; and to analyze the economics of coalbed methane exploration and development in the Piceance Basin.

Tyler, R.; Scott, A.R.; Kaiser, W.R.; Nance, H.S.; McMurry, R.G.

1996-03-01T23:59:59.000Z

67

Combustion Assisted Gravity Drainage (CAGD): An In-Situ Combustion Method to Recover Heavy Oil and Bitumen from Geologic Formations using a Horizontal Injector/Producer Pair  

E-Print Network (OSTI)

Combustion assisted gravity drainage (CAGD) is an integrated horizontal well air injection process for recovery and upgrading of heavy oil and bitumen from tar sands. Short-distance air injection and direct mobilized oil production are the main...

Rahnema, Hamid

2012-11-21T23:59:59.000Z

68

Produced Water R&D | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Shale Gas » Produced Water Shale Gas » Produced Water R&D Produced Water R&D Developed as a result of lessons learned from the NETL funded demonstration project, the Altela 600 water treatment system (shown above) treats about 25,000 gallons per day of produced and flowback water from hydraulic fracturing. [Photo courtesy of Altela Inc.] Developed as a result of lessons learned from the NETL funded demonstration project, the Altela 600 water treatment system (shown above) treats about 25,000 gallons per day of produced and flowback water from hydraulic fracturing. [Photo courtesy of Altela Inc.] Drilling and fracturing wells produce water along with the natural gas. Some of this water is returned fracture fluid and some is natural formation water. The actual water production of a particular well depends on the well

69

Irregular spacing of heat sources for treating hydrocarbon containing formations  

DOE Patents (OSTI)

A method for treating a hydrocarbon containing formation includes providing heat input to a first section of the formation from one or more heat sources located in the first section. Fluids are produced from the first section through a production well located at or near the center of the first section. The heat sources are configured such that the average heat input per volume of formation in the first section increases with distance from the production well.

Miller, David Scott (Katy, TX); Uwechue, Uzo Philip (Houston, TX)

2012-06-12T23:59:59.000Z

70

Report on Produced Water  

Office of Scientific and Technical Information (OSTI)

of the pond, as well as the quality of the produced water. In semiarid regions, hot, dry air moving from a land surface will result in high evaporation rates for smaller ponds. As...

71

Coalbed methane producibility from the Mannville coals in Alberta, Canada: A comparison of two areas  

E-Print Network (OSTI)

Coalbed methane producibility from the Mannville coals in Alberta, Canada: A comparison of two wells drilled at Corbett Creek. Keywords: Coalbed methane; Mannville coals; Alberta; Petrology 71 TCF of methane, the Belly River Formation coals 147 TCF, and the Ardley Formation coals about 57

Paris-Sud XI, Université de

72

Production from multiple zones of a tar sands formation  

DOE Patents (OSTI)

A method for treating a tar sands formation includes providing heat to at least part of a hydrocarbon layer in the formation from a plurality of heaters located in the formation. The heat is allowed to transfer from the heaters to at least a portion of the formation. Fluids are produced from the formation through at least one production well that is located in at least two zones in the formation. The first zone has an initial permeability of at least 1 darcy. The second zone has an initial of at most 0.1 darcy. The two zones are separated by a substantially impermeable barrier.

Karanikas, John Michael; Vinegar, Harold J

2013-02-26T23:59:59.000Z

73

Treating-pressure analysis in the Bakken formation  

SciTech Connect

The Bakken formation is an oil-producing interval in the Williston basin. Usually, commercial Bakken wells are linked to an anisotropic natural fracture network. Hydraulic fracturing treatments have been used extensively in vertical wells and to a limited extent in horizontal wells. In this paper, bottom hole treating pressure (BHTP's) are analyzed to improve understanding of hydraulic fracture propagation in the Bakken.

Cramer, D.D. (BJ Services (US))

1992-01-01T23:59:59.000Z

74

Microsoft Word - RUL_1Q2011_Gas_Samp_Results_7Wells  

Office of Legacy Management (LM)

31 March 2011 31 March 2011 Purpose: The purpose of this sample collection is to monitor for radionuclides from Project Rulison. The bottom-hole locations (BHLs) of the seven gas wells sampled are between 0.75 and 0.90 mile from the Project Rulison detonation point. All wells sampled are producing gas from the Williams Fork Formation. Background: Project Rulison was the second test under the Plowshare Program to stimulate natural-gas recovery from tight sandstone formations. On 10 September 1969, a 40-kiloton-yield nuclear device was detonated 8,426 feet (1.6 miles) below the ground surface in the Williams Fork Formation. Samples Collected: * 7 gas samples from 7 wells * 7 produced water samples from 6 wells and 1 drip tank; one well was dry Findings:

75

Performance prediction of oil wells producing water in bounded reservoirs  

E-Print Network (OSTI)

to Simulator Case 1, Brown, Fw=50 24 4 Comparison of IPR Methods to Simulator Case 1, Brown, Fw=75 26 5 Comparison of IPR Methods to Simulator Case 2, Sw=30, Np/N=. 1% 28 6 Comparison of IPR Methods to Simulator Case 2, Sw=30, Np/N=1% 30 7 Comparison... of IPR Methods to Simulator Case 2, Sw=30, Np/N=2% 32 8 Comparison of IPR Methods to Simulator Case 2, Sw=30, Np/N=4% 34 9 Comparison of IPR Methods to Simulator Case 2, Sw=30, Np/N=6% 36 10 Comparison of IPR Methods to Simulator Case 2, Sw=40, Np...

Jochen, Valerie Ann Ellis

2012-06-07T23:59:59.000Z

76

Methods of producing transportation fuel  

DOE Patents (OSTI)

Systems, methods, and heaters for treating a subsurface formation are described herein. At least one method for producing transportation fuel is described herein. The method for producing transportation fuel may include providing formation fluid having a boiling range distribution between -5.degree. C. and 350.degree. C. from a subsurface in situ heat treatment process to a subsurface treatment facility. A liquid stream may be separated from the formation fluid. The separated liquid stream may be hydrotreated and then distilled to produce a distilled stream having a boiling range distribution between 150.degree. C. and 350.degree. C. The distilled liquid stream may be combined with one or more additives to produce transportation fuel.

Nair, Vijay (Katy, TX); Roes, Augustinus Wilhelmus Maria (Houston, TX); Cherrillo, Ralph Anthony (Houston, TX); Bauldreay, Joanna M. (Chester, GB)

2011-12-27T23:59:59.000Z

77

Compositions produced using an in situ heat treatment process  

DOE Patents (OSTI)

Methods for treating a subsurface formation and compositions produced therefrom are described herein. At least one method for producing hydrocarbons from a subsurface formation includes providing heat to the subsurface formation using an in situ heat treatment process. One or more formation particles may be formed during heating of the subsurface formation. Fluid that includes hydrocarbons and the formation particles may be produced from the subsurface formation. The formation particles in the produced fluid may include cenospheres and have an average particle size of at least 0.5 micrometers.

Roes, Augustinus Wilhelmus Maria; Nair, Vijay; Munsterman, Erwin Hunh; Van Bergen, Petrus Franciscus; Van Den Berg, Franciscus Gondulfus Antonius

2013-05-28T23:59:59.000Z

78

Production Wells | Open Energy Information  

Open Energy Info (EERE)

Production Wells Production Wells (Redirected from Development Wells) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Production Wells Details Activities (13) Areas (13) Regions (0) NEPA(7) Exploration Technique Information Exploration Group: Drilling Techniques Exploration Sub Group: Development Drilling Parent Exploration Technique: Development Drilling Information Provided by Technique Lithology: Drill cuttings are analyzed to determine lithology and mineralogy Stratigraphic/Structural: Fractures, faults, and geologic formations that the well passes through are identified and mapped. Hydrological: Identify aquifers, reservoir boundaries, flow rates, fluid pressure, and chemistry Thermal: Direct temperature measurements from within the reservoir

79

Production Wells | Open Energy Information  

Open Energy Info (EERE)

Production Wells Production Wells Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Production Wells Details Activities (13) Areas (13) Regions (0) NEPA(7) Exploration Technique Information Exploration Group: Drilling Techniques Exploration Sub Group: Development Drilling Parent Exploration Technique: Development Drilling Information Provided by Technique Lithology: Drill cuttings are analyzed to determine lithology and mineralogy Stratigraphic/Structural: Fractures, faults, and geologic formations that the well passes through are identified and mapped. Hydrological: Identify aquifers, reservoir boundaries, flow rates, fluid pressure, and chemistry Thermal: Direct temperature measurements from within the reservoir Dictionary.png Production Wells:

80

Well Deepening | Open Energy Information  

Open Energy Info (EERE)

Well Deepening Well Deepening Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Well Deepening Details Activities (5) Areas (3) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Drilling Techniques Exploration Sub Group: Development Drilling Parent Exploration Technique: Development Drilling Information Provided by Technique Lithology: Drill cuttings are analyzed to determine lithology and mineralogy Stratigraphic/Structural: Fractures, faults, and geologic formations that the well passes through are identified and mapped. Hydrological: Identify aquifers, reservoir boundaries, flow rates, fluid pressure, and chemistry Thermal: Direct temperature measurements from within the reservoir Dictionary.png Well Deepening:

Note: This page contains sample records for the topic "formation producing wells" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Geological aspects of drilling horizontal wells in steam flood reservoirs, west side, southern San Joaquin Valley, California  

SciTech Connect

Shell Western E P Inc. has drilled 11 horizontal wells in four mature steam floods in the Coalinga, South Belridge, and Midway-Sunset fields. Two medium radius wells are producing from the Pliocene Etchegoin Formation in Coalinga. One medium radius well is producing from the Pleistocene Tulare Formation in South Belridge field. Three short radius and five medium radius wells are producing from the upper Miocene, Sub-Hoyt and Potter sands in Midway-Sunset field. Horizontal wells at the base of these reservoirs and/or structurally downdip near the oil-water contact are ideally suited to take advantage of the gravity drainage production mechanism. Reservoir studies and production experience have shown these horizontal wells should increase reserves, improve recovery efficiency, improve the oil-steam ratio, and improve project profitability. Geological considerations of targeting the wells vary between fields because of the different depositional environments and resulting reservoir characteristics. The thin sands and semicontinuous shales in the Tulare Formation and the Etchegoin Formation require strict structural control on the top and base of the target sand. In the Sub-Hoyt and Potter sands, irregularities of the oil-water contact and sand and shale discontinuities must be understood. Logging and measurement while drilling provide geosteering capability in medium radius wells. Teamwork between all engineering disciplines and drilling and producing operations has been critical to horizontal well success.

Crough, D.D.; Holman, M.L.; Sande, J.J. (Shell Western E P Inc., Bakersfield, CA (United States))

1994-04-01T23:59:59.000Z

82

Compositions produced using an in situ heat treatment process  

DOE Patents (OSTI)

Systems, methods, and heaters for treating a subsurface formation are described herein. At least one method for producing hydrocarbons from a subsurface formation includes providing heat to the subsurface formation using an in situ heat treatment process. One or more formation particles may be formed during heating of the subsurface formation. Fluid that includes hydrocarbons and the formation particles may be produced from the subsurface formation. The formation particles in the produced fluid may include cenospheres and have an average particle size of at least 0.5 micrometers.

Roes, Augustinus Wilhelmus Maria (Houston, TX); Nair, Vijay (Katy, TX); Munsterman, Erwin Henh (Amsterdam, NL); Van Bergen, Petrus Franciscus (Amsterdam, NL); Van Den Berg, Franciscus Gondulfus Antonius (Amsterdam, NL)

2009-10-20T23:59:59.000Z

83

Water management technologies used by Marcellus Shale Gas Producers.  

SciTech Connect

Natural gas represents an important energy source for the United States. According to the U.S. Department of Energy's (DOE's) Energy Information Administration (EIA), about 22% of the country's energy needs are provided by natural gas. Historically, natural gas was produced from conventional vertical wells drilled into porous hydrocarbon-containing formations. During the past decade, operators have increasingly looked to other unconventional sources of natural gas, such as coal bed methane, tight gas sands, and gas shales.

Veil, J. A.; Environmental Science Division

2010-07-30T23:59:59.000Z

84

Microsoft Word - RUL_4Q2010_Rpt_Gas_Samp_Results_8Wells  

Office of Legacy Management (LM)

the Project Rulison Horizon the Project Rulison Horizon U.S. Department of Energy Office of Legacy Management Grand Junction, Colorado Date Sampled: 21 October 2010 Purpose: The purpose of this sample collection is to monitor for radionuclides from Project Rulison. The bottom hole locations (BHLs) of the 8 gas wells sampled are within 0.75 and 1.0 mile of the Project Rulison detonation horizon. All wells sampled have produced or are producing gas from the Williams Fork Formation. Background: Project Rulison was the second Plowshare Program to try stimulation natural gas in tight sandstone formations using a nuclear device. On 10 September 1969, a 40- nuclear device was detonated 8,426 feet (about 1.6 miles) below ground surface in the Williams Fork Formation. Samples Collected:

85

Well Log Techniques | Open Energy Information  

Open Energy Info (EERE)

Well Log Techniques Well Log Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Well Log Techniques Details Activities (4) Areas (4) Regions (1) NEPA(0) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Well Log Techniques Parent Exploration Technique: Downhole Techniques Information Provided by Technique Lithology: depth and thickness of formations; lithology and porosity can be inferred Stratigraphic/Structural: reservoir thickness, reservoir geometry, borehole geometry Hydrological: permeability and fluid composition can be inferred Thermal: direct temperature measurements; thermal conductivity and heat capacity Dictionary.png Well Log Techniques: Well logging is the measurement of formation properties versus depth in a

86

Program solves for gas well inflow performance  

SciTech Connect

A Windows-based program, GasIPR, can solve for the gas well inflow performance relationship (IPR). The program calculates gas producing rates at various pressures and is applicable for both turbulent and non-turbulent flow. It also has the following capabilities: computes PVT properties {gamma}{sub g}, P{sub c}, T{sub c}, heating value, Z, {mu}{sub g}, B{sub g}, and {rho}{sub g} from input gas composition data; calculates the Reynolds number (N{sub Re}) and shows the gas flow rates at the sandface at which the turbulence effect must be considered; helps the user to optimize the net perforation interval (h{sub p}) so that the turbulence effect can be minimized; and helps the user to evaluate the sensitivity of formation permeability on gas flow rate for a new play. IPR is a critical component in forecasting gas well deliverability. IPRs are used for sizing optimum tubing configurations and compressors, designing gravel packs, and solving gas well loading problems. IPR is the key reference for nodal analysis.

Engineer, R. [AERA Energy LLC, Bakersfield, CA (United States); Grillete, G. [Bechtel Petroleum Operations Inc., Tupman, CA (United States)

1997-10-20T23:59:59.000Z

87

Decontaminating Flooded Wells  

E-Print Network (OSTI)

This publication explains how to decontaminate and disinfect a well, test the well water and check for well damage after a flood....

Boellstorff, Diana; Dozier, Monty; Provin, Tony; Dictson, Nikkoal; McFarland, Mark L.

2005-09-30T23:59:59.000Z

88

ARSENIC IN PRIVATE WELLS IN NH YEAR 1 FINAL REPORT  

E-Print Network (OSTI)

performed geospatial analysis of the well water arsenic estimates and survey results and produced the maps .................................................................................................. 7 Well water quality...................................................................................................... 7 Well water testing

Bucci, David J.

89

Well control procedures for extended reach wells  

E-Print Network (OSTI)

been found to be critical to the success of ERD are torque and drag, drillstring design, wellbore stability, hole cleaning, casing design, directional drilling optimization, drilling dynamics and rig sizing.4 Other technologies of vital importance... are the use of rotary steerable systems (RSS) together with measurement while drilling (MWD) and logging while drilling (LWD) to geosteer the well into the geological target.5 Many of the wells drilled at Wytch Farm would not have been possible to drill...

Gjorv, Bjorn

2004-09-30T23:59:59.000Z

90

NETL: News Release - New Projects to Help Operators See Oil, Gas Formations  

NLE Websites -- All DOE Office Websites (Extended Search)

Help Operators "See" Oil, Gas Formations More Clearly Help Operators "See" Oil, Gas Formations More Clearly Six Research Teams to Develop Advanced Diagnostics And Imaging Technologies for Oil, Gas Fields TULSA, OK - If oil and gas producers could "see" hydrocarbon-bearing formations more accurately from the surface or from nearby wellbores, they can position new wells more precisely to produce more oil or gas with less risk and ultimately, at lower costs. For many producers in the United States, especially smaller producers operating on razor-thin margins, advanced diagnostics and imaging systems can help them in business. By visualizing the barriers and pathways for the flow of oil and gas through underground rock formations, producers can avoid dry holes and increase ultimate recovery.

91

Study on the flow production characteristics of deep geothermal wells  

Science Journals Connector (OSTI)

This paper describes a study on the potential flow production characteristics of three non-producing, deep (average depth 4000 m) geothermal wells in the Cerro Prieto geothermal field. The expected production characteristics of these wells were computed in order to determine whether their inability to sustain flow was due to: (1) heat loss effects in the well; (2) the influence of casing diameters; (3) transient temperature effects during the first days of well discharge, and/or (4) the effects of secondary low-enthalpy inflows. For the study, the conservation equations of mass, momentum and energy for two-phase homogeneous flow were solved for the wellbore, since homogeneous flow provides the simplest technique for analyzing two-phase flows when the flow patterns are not well established. The formation temperature distribution was computed assuming radial transient heat conduction. The numerical model was validated by comparison with analytical solutions and with measured pressure and temperature profiles of well H-17 from the Los Humeros geothermal field, Mexico. It was found that the wells should have sustained production. The early heat losses were so large that the flow needed to be induced, and flow will be sustained only after a few days of induced discharge. For well M-202, the analysis suggests that the inflow of secondary colder fluids was responsible for stopping the flow in this well.

Alfonso Garcia-Gutierrez; Gilberto Espinosa-Paredes; Isa??as Hernandez-Ramirez

2002-01-01T23:59:59.000Z

92

Microsoft Word - RUL_3Q2010_Rpt_Gas_Samp_Results_18Wells.doc  

Office of Legacy Management (LM)

Monitoring Results Monitoring Results Natural Gas Wells near the Project Rulison Horizon U.S. Department of Energy Office of Legacy Management Grand Junction, Colorado Date Sampled: 13 July 2010 Purpose: The purpose of this sample collection is to monitor for radionuclides from Project Rulison. The bottom hole locations (BHLs) of the 18 gas wells sampled are within 1.1 miles of the Project Rulison detonation horizon. All wells sampled have produced or are producing gas from the Williams Fork Formation. Background: Project Rulison is the Plowshare Program code name for the detonation of a 40-kiloton-yield nuclear device on 10 September 1969. The detonation point was 8,426 feet (about 1.6 miles) below ground surface in the Williams Fork Formation. The purpose of the test

93

Groundwater and Wells (Nebraska)  

Energy.gov (U.S. Department of Energy (DOE))

This section describes regulations relating to groundwater protection, water wells, and water withdrawals, and requires the registration of all water wells in the state.

94

Altering Reservoir Wettability to Improve Production from Single Wells  

SciTech Connect

Many carbonate reservoirs are naturally fractured and typically produce less than 10% original oil in place during primary recovery. Spontaneous imbibition has proven an important mechanism for oil recovery from fractured reservoirs, which are usually weak waterflood candidates. In some situations, chemical stimulation can promote imbibition of water to alter the reservoir wettability toward water-wetness such that oil is produced at an economic rate from the rock matrix into fractures. In this project, cores and fluids from five reservoirs were used in laboratory tests: the San Andres formation (Fuhrman Masho and Eagle Creek fields) in the Permian Basin of Texas and New Mexico; and the Interlake, Stony Mountain, and Red River formations from the Cedar Creek Anticline in Montana and South Dakota. Solutions of nonionic, anionic, and amphoteric surfactants with formation water were used to promote waterwetness. Some Fuhrman Masho cores soaked in surfactant solution had improved oil recovery up to 38%. Most Eagle Creek cores did not respond to any of the tested surfactants. Some Cedar Creek anticline cores had good response to two anionic surfactants (CD 128 and A246L). The results indicate that cores with higher permeability responded better to the surfactants. The increased recovery is mainly ascribed to increased water-wetness. It is suspected that rock mineralogy is also an important factor. The laboratory work generated three field tests of the surfactant soak process in the West Fuhrman Masho San Andres Unit. The flawlessly designed tests included mechanical well clean out, installation of new pumps, and daily well tests before and after the treatments. Treatments were designed using artificial intelligence (AI) correlations developed from 23 previous surfactant soak treatments. The treatments were conducted during the last quarter of 2006. One of the wells produced a marginal volume of incremental oil through October. It is interesting to note that the field tests were conducted in an area of the field that has not met production expectations. The dataset on the 23 Phosphoria well surfactant soaks was updated. An analysis of the oil decline curves indicted that 4.5 lb of chemical produced a barrel of incremental oil. The AI analysis supports the adage 'good wells are the best candidates.' The generally better performance of surfactant in the high permeability core laboratory tests supports this observation. AI correlations were developed to predict the response to water-frac stimulations in a tight San Andres reservoir. The correlations maybe useful in the design of Cedar Creek Anticline surfactant soak treatments planned for next year. Nuclear Magnetic Resonance scans of dolomite cores to measure porosity and saturation during the high temperature laboratory work were acquired. The scans could not be correlated with physical measurement using either conventional or AI methods.

W. W. Weiss

2006-09-30T23:59:59.000Z

95

Plugging Abandoned Water Wells  

E-Print Network (OSTI)

. It is recommended that before you begin the process of plugging an aban- doned well that you seek advice from your local groundwater conservation district, a licensed water well driller in your area, or the Water Well Drillers Program with the Texas Department... hire a licensed water well driller or pump installer to seal and plug an abandoned well. Well contractors have the equipment and an understanding of soil condi- tions to determine how a well should be properly plugged. How can you take care...

Lesikar, Bruce J.

2002-02-28T23:59:59.000Z

96

A hybrid ED/RO process for TDS reduction of produced waters  

SciTech Connect

Large volumes of produced waters are generated from natural gas production. In the United States the prevailing management practice for produced waters is deep well injection, but this practice is costly. Therefore minimizing the need for deep well injection is desirable. A major treatment issue for produced waters is the reduction of total dissolved solids (TDS), which consist mostly of inorganic salts. A hybrid electrodialysis/reverse-osmosis (ED/RO) treatment process is being developed to concentrate the salts in produced waters and thereby reduce the volume of brine that needs to be managed for disposal. The desalted water can be used beneficially or discharged. In this study, laboratory feasibility experiments were conducted by using produced waters from multiple sites. A novel-membrane configuration approach to prevent fouling and scale formation was developed and demonstrated. Results of laboratory experiments and plans for field demonstration are discussed.

Tsai, S.P.; Datta, R.; Frank, J.R. [and others

1995-12-31T23:59:59.000Z

97

Horizontal well IPR calculations  

SciTech Connect

This paper presents the calculation of near-wellbore skin and non-Darcy flow coefficient for horizontal wells based on whether the well is drilled in an underbalanced or overbalanced condition, whether the well is completed openhole, with a slotted liner, or cased, and on the number of shots per foot and phasing for cased wells. The inclusion of mechanical skin and the non-Darcy flow coefficient in previously published horizontal well equations is presented and a comparison between these equations is given. In addition, both analytical and numerical solutions for horizontal wells with skin and non-Darcy flow are presented for comparison.

Thomas, L.K.; Todd, B.J.; Evans, C.E.; Pierson, R.G.

1996-12-31T23:59:59.000Z

98

Treating tar sands formations with karsted zones  

DOE Patents (OSTI)

Methods for treating a tar sands formation are described herein. The tar sands formation may have one or more karsted zones. Methods may include providing heat from one or more heaters to one or more karsted zones of the tar sands formation to mobilize fluids in the formation. At least some of the mobilized fluids may be produced from the formation.

Vinegar, Harold J. (Bellaire, TX); Karanikas, John Michael (Houston, TX)

2010-03-09T23:59:59.000Z

99

Underground Wells (Oklahoma)  

Energy.gov (U.S. Department of Energy (DOE))

Class I, III, IV and V injection wells require a permit issued by the Executive Director of the Department of Environmental Quality; Class V injection wells utilized in the remediation of...

100

Economic design of wells  

Science Journals Connector (OSTI)

...concepts and the general principles outlined...with wells of the general configuration shown...internal com- bustion engine. It is assumed that...analysis, consider a diesel- powered well of...modified to use either a general expression for performance...written in terms of diesel-powered wells...

R. F. Stoner; D. M. Milne; P. J. Lund

Note: This page contains sample records for the topic "formation producing wells" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Fracture characteristics and their relationships to producing...  

Open Energy Info (EERE)

area Jump to: navigation, search OpenEI Reference LibraryAdd to library Book: Fracture characteristics and their relationships to producing zones in deep wells, Raft River...

102

Method and apparatus for production of subsea hydrocarbon formations  

DOE Patents (OSTI)

A well tender system for controlling, separating, storing and offloading well fluids produced from subsea hydrocarbon formations. The system comprises a vertically aligned series of tethered cylindrical tanks which are torsionally stabilized by flexible catenary production riser and expert riser bundles, and serviced by separate catenary pipe bundles. Piles are secured to the seabed, each pile assembly being pivotally connected to a lower rigid tendon, which is in turn connected to tendons arranged about the periphery of the interconnected cylindrical tanks.

Blandford, Joseph W. (15 Mott La., Houston, TX 77024)

1992-01-01T23:59:59.000Z

103

Method and apparatus for production of subsea hydrocarbon formations  

DOE Patents (OSTI)

A well tender system for controlling, separating, storing and offloading well fluids produced from subsea hydrocarbon formations. The system comprises a vertically aligned series of tethered cylindrical tanks which are torsionally stabilized by flexible catenary production riser and export riser bundles, and serviced by separate catenary pipe bundles. Piles are secured to the seabed, each pile assembly being pivotally connected to a lower rigid tendon, which is in turn connected to tendons arranged about the periphery of the interconnected cylindrical tanks.

Blandford, Joseph W. (15 Mott La., Houston, TX 77024)

1994-01-01T23:59:59.000Z

104

BUFFERED WELL FIELD OUTLINES  

U.S. Energy Information Administration (EIA) Indexed Site

OIL & GAS FIELD OUTLINES FROM BUFFERED WELLS OIL & GAS FIELD OUTLINES FROM BUFFERED WELLS The VBA Code below builds oil & gas field boundary outlines (polygons) from buffered wells (points). Input well points layer must be a feature class (FC) with the following attributes: Field_name Buffer distance (can be unique for each well to represent reservoirs with different drainage radii) ...see figure below. Copy the code into a new module. Inputs: In ArcMap, data frame named "Task 1" Well FC as first layer (layer 0). Output: Polygon feature class in same GDB as the well points FC, with one polygon field record (may be multiple polygon rings) per field_name. Overlapping buffers for the same field name are dissolved and unioned (see figure below). Adds an attribute PCTFEDLAND which can be populated using the VBA

105

Well drilling apparatus  

SciTech Connect

A drill rig for drilling wells having a derrick adapted to hold and lower a conductor string and drill pipe string. A support frame is fixed to the derrick to extend over the well to be drilled, and a rotary table, for holding and rotating drill pipe strings, is movably mounted thereon. The table is displaceable between an active position in alignment with the axis of the well and an inactive position laterally spaced therefrom. A drill pipe holder is movably mounted on the frame below the rotary table for displacement between a first position laterally of the axis of the well and a second position in alignment with the axis of the well. The rotary table and said drill pipe holder are displaced in opposition to each other, so that the rotary table may be removed from alignment with the axis of the well and said drill pipe string simultaneously held without removal from said well.

Prins, K.; Prins, R.K.

1982-09-28T23:59:59.000Z

106

Treatment of produced water using chemical and biological unit operations.  

E-Print Network (OSTI)

??Water generated along with oil and gas during coal bed methane and oil shale operations is commonly known as produced water, formation water, or oilfield… (more)

Li, Liang

2010-01-01T23:59:59.000Z

107

Quantum well multijunction photovoltaic cell  

DOE Patents (OSTI)

A monolithic, quantum well, multilayer photovoltaic cell comprises a p-n junction comprising a p-region on one side and an n-region on the other side, each of which regions comprises a series of at least three semiconductor layers, all p-type in the p-region and all n-type in the n-region; each of said series of layers comprising alternating barrier and quantum well layers, each barrier layer comprising a semiconductor material having a first bandgap and each quantum well layer comprising a semiconductor material having a second bandgap when in bulk thickness which is narrower than said first bandgap, the barrier layers sandwiching each quantum well layer and each quantum well layer being sufficiently thin that the width of its bandgap is between said first and second bandgaps, such that radiation incident on said cell and above an energy determined by the bandgap of the quantum well layers will be absorbed and will produce an electrical potential across said junction.

Chaffin, Roger J. (Albuquerque, NM); Osbourn, Gordon C. (Albuquerque, NM)

1987-01-01T23:59:59.000Z

108

well | OpenEI  

Open Energy Info (EERE)

43 43 Varnish cache server Browse Upload data GDR 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142280543 Varnish cache server well Dataset Summary Description The California Division of Oil, Gas, and Geothermal Resources contains oil, gas, and geothermal data for the state of California. Source California Division of Oil, Gas, and Geothermal Resources Date Released February 01st, 2011 (3 years ago) Date Updated Unknown Keywords California data gas geothermal oil well Data application/vnd.ms-excel icon California district 1 wells (xls, 10.1 MiB) application/vnd.ms-excel icon California district 2 wells (xls, 4 MiB) application/vnd.ms-excel icon California district 3 wells (xls, 3.8 MiB) application/zip icon California district 4 wells (zip, 11.2 MiB)

109

Method and apparatus for production of subsea hydrocarbon formations  

DOE Patents (OSTI)

A system for controlling, separating, processing and exporting well fluids produced from subsea hydrocarbon formations is disclosed. The subsea well tender system includes a surface buoy supporting one or more decks above the water surface for accommodating equipment to process oil, gas and water recovered from the subsea hydrocarbon formation. The surface buoy includes a surface-piercing central flotation column connected to one or more external flotation tanks located below the water surface. The surface buoy is secured to the sea bed by one or more tendons which are anchored to a foundation with piles imbedded in the sea bed. The system accommodates multiple versions on the surface buoy configuration. 20 figures.

Blandford, J.W.

1995-01-17T23:59:59.000Z

110

Method and apparatus for production of subsea hydrocarbon formations  

DOE Patents (OSTI)

A system for controlling, separating, processing and exporting well fluids produced from subsea hydrocarbon formations is disclosed. The subsea well tender system includes a surface buoy supporting one or more decks above the water surface for accommodating equipment to process oil, gas and water recovered from the subsea hydrocarbon formation. The surface buoy includes a surface-piercing central flotation column connected to one or more external floatation tanks located below the water surface. The surface buoy is secured to the seabed by one or more tendons which are anchored to a foundation with piles imbedded in the seabed. The system accommodates multiple versions on the surface buoy configuration.

Blandford, Joseph W. (15 Mott La., Houston, TX 77024)

1995-01-01T23:59:59.000Z

111

Method of protecting a permeable formation  

SciTech Connect

This patent describes a method of drilling a well bore through subsurface formations including a permeable formation. It comprises: drilling a well bore through the permeable formation to at least the lower boundary thereof; filling the bore in the permeable formation with liquid composition capable of gelling, the liquid composition containing a gel breaker; allowing the gel to mature; drilling through the gel so as to open the well bore in the permeable formation, some of the gel remaining to plug the permeable formation in the well bore; installing a casing in the well bore in the permeable formation; and allowing the remaining gel to revert to a liquid.

Falk, D.O.

1990-06-05T23:59:59.000Z

112

1982 geothermal well drilling summary  

SciTech Connect

This summary lists all geothermal wells spudded in 1982, which were drilled to a depth of at least 2,000 feet. Tables 1 and 2 list the drilling information by area, operator, and well type. For a tabulation of all 1982 geothermal drilling activity, including holes less than 2,000 feet deep, readers are referred to the February 11, 1983, issue of Petroleum Information's ''National Geothermal Service.'' The number of geothermal wells drilled in 1982 to 2,000 feet or more decreased to 76 wells from 99 ''deep'' wells in 1981. Accordingly, the total 1982 footage drilled was 559,110 feet of hole, as compared to 676,127 feet in 1981. Most of the ''deep'' wells (49) completed were drilled for development purposes, mainly in The Geysers area of California. Ten field extension wells were drilled, of which nine were successful. Only six wildcat wells were drilled compared to 13 in 1980 and 20 in 1981, showing a slackening of exploration compared to earlier years. Geothermal drilling activity specifically for direct use projects also decreased from 1981 to 1982, probably because of the drastic reduction in government funding and the decrease in the price of oil. Geothermal power generation in 1982 was highlighted by (a) an increase of 110 Mw geothermal power produced at The Geysers (to a total of 1,019 Mw) by addition of Unit 17, and (b) by the start-up of the Salton Sea 10 Mw single flash power plant in the Imperial Valley, which brought the total geothermal electricity generation in this area to 31 Mw.

Parmentier, P.P.

1983-08-01T23:59:59.000Z

113

Phenomenal well-being  

E-Print Network (OSTI)

rated against the experience of the individualÂ?s other possible lives. Unlike well-being, PWB is guaranteed to track more robust experiential benefits that a person gets out of living a life. In this work, I discuss the concept of well-being, including...

Campbell, Stephen Michael

2006-08-16T23:59:59.000Z

114

Producing hydrogen using nuclear energy  

Science Journals Connector (OSTI)

The earliest means of separating hydrogen from water was by electrolysis using electrical energy that usually had been produced by low-efficiency thermodynamic processes. Substitution of thermal energy for electrical energy in high-temperature electrolysis gives a somewhat higher overall efficiency, but significantly complicates the process. Today, the vast majority of hydrogen is produced by steam methane reforming (SMR) followed by a water-shift reaction. A well-designed SMR plant will yield hydrogen having 75â??80% of the energy of the methane used. Recent work in Japan has demonstrated the feasibility of substituting high-temperature heat from a gas-cooled nuclear reactor to replace the heat supplied in SMR by the combustion of methane. Using high-temperature heat from nuclear plants to drive thermochemical processes for producing hydrogen has been studied extensively. Bench-scale tests have been carried out in Japan demonstrating the sulphur-iodine (SI) process to produce hydrogen.

Robert E. Uhrig

2008-01-01T23:59:59.000Z

115

T-F and S/DOE Gladys McCall No. 1 well, Cameron Parish, Louisiana. Geopressured-geothermal well report, Volume II. Well workover and production testing, February 1982-October 1985. Final report. Part 1  

SciTech Connect

The T-F and S/DOE Gladys McCall No. 1 well was the fourth in a series of wells in the DOE Design Wells Program that were drilled into deep, large geopressured-geothermal brine aquifers in order to provide basic data with which to determine the technological and economic viability of producing energy from these unconventional resources. This brine production well was spudded on May 27, 1981 and drilling operations were completed on November 2, 1981 after using 160 days of rig time. The well was drilled to a total depth of 16,510 feet. The target sands lie at a depth of 14,412 to 15,860 feet in the Fleming Formation of the lower Miocene. This report covers well production testing operations and necessary well workover operations during the February 1982 to October 1985 period. The primary goals of the well testing program were: (1) to determine reservoir size, shape, volume, drive mechanisms, and other reservoir parameters, (2) to determine and demonstrate the technological and economic viability of producing energy from a geopressured-geothermal brine aquifer through long-term production testing, and (3) to determine problem areas associated with such long-term production, and to develop solutions therefor.

Not Available

1985-01-01T23:59:59.000Z

116

Soda Lake Well Lithology Data and Geologic Cross-Sections  

SciTech Connect

Comprehensive catalogue of drill?hole data in spreadsheet, shapefile, and Geosoft database formats. Includes XYZ locations of well heads, year drilled, type of well, operator, total depths, well path data (deviations), lithology logs, and temperature data. Plus, 13 cross?sections in Adobe Illustrator format.

Faulds, James E.

2013-12-31T23:59:59.000Z

117

Spontaneous Potential Well Log | Open Energy Information  

Open Energy Info (EERE)

Spontaneous Potential Well Log Spontaneous Potential Well Log Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Spontaneous Potential Well Log Details Activities (2) Areas (2) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Well Log Techniques Parent Exploration Technique: Well Log Techniques Information Provided by Technique Lithology: SP technique originally applied to locating sulfide ore-bodies. Stratigraphic/Structural: -Formation bed thickness and boundaries -Detection and tracing of faults -Permeability and porosity Hydrological: Determination of fluid flow patterns: electrochemical coupling processes due to variations in ionic concentrations, and electrokinetic coupling processes due to fluid flow in the subsurface.

118

BUFFERED WELL FIELD OUTLINES  

U.S. Energy Information Administration (EIA) Indexed Site

drainage radii) ...see figure below. Copy the code into a new module. Inputs: In ArcMap, data frame named "Task 1" Well FC as first layer (layer 0). Output: Polygon feature class...

119

Shock Chlorination of Wells  

E-Print Network (OSTI)

Shock chlorination is a method of disinfecting a water well. This publication gives complete instructions for chlorinating with bleach or with dry chlorine. It is also available in Spanish as publication L-5441S...

McFarland, Mark L.; Dozier, Monty

2003-06-11T23:59:59.000Z

120

Acoustic well cleaner  

DOE Patents (OSTI)

A method and apparatus are disclosed for cleaning the wellbore and the near wellbore region. A sonde is provided which is adapted to be lowered into a borehole and which includes a plurality of acoustic transducers arranged around the sonde. Electrical power provided by a cable is converted to acoustic energy. The high intensity acoustic energy directed to the borehole wall and into the near wellbore region, redissolves or resuspends the material which is reducing the permeability of the formation and/or restricting flow in the wellbore.

Maki, Jr., Voldi E. (11904 Bell Ave., Austin, TX 78759-2415); Sharma, Mukul M. (Dept. of Petroleum Engr. Univ. of Texas, Austin, TX 78712)

1997-01-21T23:59:59.000Z

Note: This page contains sample records for the topic "formation producing wells" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Well test analysis for wells with finite conductivity vertical fractures: application to the Upper Clearfork Formation  

E-Print Network (OSTI)

fracture in an infinite-acting, homogeneous reservoir as follows; pp p? (n Clp ) = pp ?t(u Cjp)- pp ?t(Q Cpi =~ ) + pp, p~(u, xp = f (Clp)) (2. 11) where xp = f (Cjp) means xp is a function of Cfp. For this work, Cfp = ~ is approximated by Cjp = x x... 106. The correlation of xp and Cfg, xp = f (Cfp), is given by [au+atln(C )+a2ln(C ) + 4bln(C ) + a4ln(C ) ] Zp [1 + biln (Crp) + b2ln (Clp) + bsln (Crp)s + b4ln (Cai) ] (2. 12) where, values of the coefficients ap - a4 and bl -b4 are given as ap...

Santivongskul, Monton

2012-06-07T23:59:59.000Z

122

Eat Well for Less.  

E-Print Network (OSTI)

planned, balanced meal: which are appetizing and ltiilate and less expensive pose a task for the homemaker, but I are possible with wise buying, careful storing, clever planning lmaginative cooking. I BOW TO BUY I Select vegetables with little waste.... For Vegetables Not Needing Refrigeration 9 Store potatoes, onions, topless carrots, beets and winter squ:! in a cool, dry, ventilated place. -0 (1 . L Da ir-y Produc fs Store fresh milk and cream in their container in the coldest l! of the refrigerator...

Cox, Maeona; Mason, Louise; Reasonover, Frances L.; Tribble, Marie; Gibson, G. G.

1955-01-01T23:59:59.000Z

123

Varying properties of in situ heat treatment of a tar sands formation based on assessed viscosities  

DOE Patents (OSTI)

A method for treating a tar sands formation includes providing heat to at least part of a hydrocarbon layer in the formation from a plurality of heaters located in the formation. The heat is allowed to transfer from the heaters to at least a portion of the formation. A viscosity of one or more zones of the hydrocarbon layer is assessed. The heating rates in the zones are varied based on the assessed viscosities. The heating rate in a first zone of the formation is greater than the heating rate in a second zone of the formation if the viscosity in the first zone is greater than the viscosity in the second zone. Fluids are produced from the formation through the production wells.

Karanikas, John Michael; Vinegar, Harold J

2014-03-04T23:59:59.000Z

124

Economic design of wells  

Science Journals Connector (OSTI)

...year, c is the cost per lb of diesel fuel, and Co is the cost per...program was written in terms of diesel-powered wells, modifications...charac- teristics of pump-engine combinations and are again...water encountered. There is a fundamental difference between the design...

R. F. Stoner; D. M. Milne; P. J. Lund

125

Testing geopressured geothermal reservoirs in existing wells: Pauline Kraft Well No. 1, Nueces County, Texas. Final report  

SciTech Connect

The Pauline Kraft Well No. 1 was originally drilled to a depth of 13,001 feet and abandoned as a dry hole. The well was re-entered in an effort to obtain a source of GEO/sup 2/ energy for a proposed gasohol manufacturing plant. The well was tested through a 5-inch by 2-3/8 inch annulus. The geological section tested was the Frio-Anderson sand of Mid-Oligocene age. The interval tested was from 12,750 to 12,860 feet. A saltwater disposal well was drilled on the site and completed in a Micocene sand section. The disposal interval was perforated from 4710 to 4770 feet and from 4500 to 4542 feet. The test well failed to produce water at substantial rates. Initial production was 34 BWPD. A large acid stimulation treatment increased productivity to 132 BWPD, which was still far from an acceptable rate. During the acid treatment, a failure of the 5-inch production casing occurred. The poor production rates are attributed to a reservoir with very low permeability and possible formation damage. The casing failure is related to increased tensile strain resulting from cooling of the casing by acid and from the high surface injection pressure. The location of the casing failure is now known at this time, but it is not at the surface. Failure as a result of a defect in a crossover joint at 723 feet is suspected.

Not Available

1981-01-01T23:59:59.000Z

126

New look for gas in Forbes formation, Sacramento Valley, California  

SciTech Connect

The Forbes formation of upper Cretaceous age consists of marine shale, siltstone, and interbedded sandstone, and lies stratigraphically between the younger Kione Deltaic sandstone facies and the older Dobbins shale. On the west side of the Sacramento Valley, the Kione formation is truncated and the Forbes formation is overlain by the Capay (Eocene) and/or Tehama (post-Eocene) formations. In the Sacramento to Red Bluff area, the Forbes formation attains a thickness of up to 5000 ft (1524 m). The importance of the Forbes formation as a source of gas production in the Sacramento Valley is well established. Gas was first produced from the Forbes formation near the south edge of the Marysville Buttes in 1953. The formation is now productive in over 20 fields in the Sacramento Valley with cumulative production to January 1, 1980, of 1.23 billion MCF of gas. As a result of new CDP seismic reflection profiling, drilling for gas from the Forbes formation has increased dramatically since 1978.

Lindblom, R.G.; Mosier, W.C.; Jacobson, J.B.

1981-05-01T23:59:59.000Z

127

Formation damage in underbalanced drilling operations  

E-Print Network (OSTI)

Formation damage has long been recognized as a potential source of reduced productivity and injectivity in both horizontal and vertical wells. From the moment that the pay zone is being drilled until the well is put on production, a formation...

Reyes Serpa, Carlos Alberto

2012-06-07T23:59:59.000Z

128

Well Testing Techniques | Open Energy Information  

Open Energy Info (EERE)

Well Testing Techniques Well Testing Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Well Testing Techniques Details Activities (0) Areas (0) Regions (0) NEPA(17) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Well Testing Techniques Parent Exploration Technique: Downhole Techniques Information Provided by Technique Lithology: Enable estimation of in-situ reservoir elastic parameters Stratigraphic/Structural: Fracture distribution, formation permeability, and ambient tectonic stresses Hydrological: provides information on permeability, location of permeable zones recharge rates, flow rates, fluid flow direction, hydrologic connections, storativity, reservoir pressures, fluid chemistry, and scaling.

129

Completion Report for Well ER-EC-5  

SciTech Connect

Well ER-EC-5 was drilled for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office in support of the Nevada Environmental Restoration Project at the Nevada Test Site, Nye County, Nevada. This well was drilled in the summer of 1999 as part of the U.S. Department of Energy's hydrogeologic investigation program in the Western Pahute Mesa - Oasis Valley region just west of the Nevada Test Site. A 44.5-centimeter surface hole was drilled and cased off to a depth of 342.6 meters below ground surface. The borehole diameter was then decreased to 31.1 centimeters for drilling to a total depth of 762.0 meters. One completion string with three isolated slotted intervals was installed in the well. A preliminary composite, static water level was measured at the depth of 309.9 meters, 40 days after installation of the completion string. Detailed lithologic descriptions with stratigraphic assignments are included in the report. These are based on composite drill cuttings collected every 3 meters, and 18 sidewall samples taken at various depths below 349.6 meters, supplemented by geophysical log data and results from detailed chemical and mineralogical analyses of rock samples. The well penetrated Tertiary-age tuffs of the Thirsty Canyon Group, caldera moat-filling sedimentary deposits, lava of the Beatty Wash Formation, and landslide breccia and tuffs of the Timber Mountain Group. The well reached total depth in welded ashflow tuff of the Ammonia Tanks Tuff after penetrating 440.1 meters of this unit, which is also the main water-producing unit in the well. The geologic interpretation of data from this well constrains the western margin of the Ammonia Tanks caldera to the west of the well location.

Bechtel Nevada

2004-10-01T23:59:59.000Z

130

Water management practices used by Fayetteville shale gas producers.  

SciTech Connect

Water issues continue to play an important role in producing natural gas from shale formations. This report examines water issues relating to shale gas production in the Fayetteville Shale. In particular, the report focuses on how gas producers obtain water supplies used for drilling and hydraulically fracturing wells, how that water is transported to the well sites and stored, and how the wastewater from the wells (flowback and produced water) is managed. Last year, Argonne National Laboratory made a similar evaluation of water issues in the Marcellus Shale (Veil 2010). Gas production in the Marcellus Shale involves at least three states, many oil and gas operators, and multiple wastewater management options. Consequently, Veil (2010) provided extensive information on water. This current study is less complicated for several reasons: (1) gas production in the Fayetteville Shale is somewhat more mature and stable than production in the Marcellus Shale; (2) the Fayetteville Shale underlies a single state (Arkansas); (3) there are only a few gas producers that operate the large majority of the wells in the Fayetteville Shale; (4) much of the water management information relating to the Marcellus Shale also applies to the Fayetteville Shale, therefore, it can be referenced from Veil (2010) rather than being recreated here; and (5) the author has previously published a report on the Fayetteville Shale (Veil 2007) and has helped to develop an informational website on the Fayetteville Shale (Argonne and University of Arkansas 2008), both of these sources, which are relevant to the subject of this report, are cited as references.

Veil, J. A. (Environmental Science Division)

2011-06-03T23:59:59.000Z

131

NETL: News Release - DOE's Oil and Gas Produced-Water Program Logs Key  

NLE Websites -- All DOE Office Websites (Extended Search)

July 20, 2007 July 20, 2007 DOE's Oil and Gas Produced-Water Program Logs Key Milestones Cost-Effectively Treating Coproduced Water Boosts U.S. Energy, Water Supplies MORGANTOWN, WV - A research program funded by the U.S. Department of Energy (DOE) is making significant progress in developing new ways to treat and use water coproduced with oil and natural gas. The ultimate benefit is a two-for-one solution that expects to boost domestic energy supplies while enhancing the Nation's water supply. Coproduced water-some of which occurs naturally in subsurface formations, and some that is recovered following injection of water into an oil or gas reservoir to boost production-accounts for 98 percent of all waste generated by U.S. oil and natural gas operations. Produced-water volumes average nine barrels for each barrel of oil produced. Handling, treating, and safely disposing of this produced water has been a tough, costly challenge for oil and natural gas producers for decades. Much of the produced water has high concentrations of minerals or salts that make it unsuitable for beneficial use or surface discharge. An oilfield operator often must reinject such produced water into deep formations, sometimes resorting to costly trucking of the water to deep-injection well sites specially designated by the U.S. Environmental Protection Agency.

132

Spatially indirect excitons in coupled quantum wells  

SciTech Connect

Microscopic quantum phenomena such as interference or phase coherence between different quantum states are rarely manifest in macroscopic systems due to a lack of significant correlation between different states. An exciton system is one candidate for observation of possible quantum collective effects. In the dilute limit, excitons in semiconductors behave as bosons and are expected to undergo Bose-Einstein condensation (BEC) at a temperature several orders of magnitude higher than for atomic BEC because of their light mass. Furthermore, well-developed modern semiconductor technologies offer flexible manipulations of an exciton system. Realization of BEC in solid-state systems can thus provide new opportunities for macroscopic quantum coherence research. In semiconductor coupled quantum wells (CQW) under across-well static electric field, excitons exist as separately confined electron-hole pairs. These spatially indirect excitons exhibit a radiative recombination time much longer than their thermal relaxation time a unique feature in direct band gap semiconductor based structures. Their mutual repulsive dipole interaction further stabilizes the exciton system at low temperature and screens in-plane disorder more effectively. All these features make indirect excitons in CQW a promising system to search for quantum collective effects. Properties of indirect excitons in CQW have been analyzed and investigated extensively. The experimental results based on time-integrated or time-resolved spatially-resolved photoluminescence (PL) spectroscopy and imaging are reported in two categories. (i) Generic indirect exciton systems: general properties of indirect excitons such as the dependence of exciton energy and lifetime on electric fields and densities were examined. (ii) Quasi-two-dimensional confined exciton systems: highly statistically degenerate exciton systems containing more than tens of thousands of excitons within areas as small as (10 micrometer){sup 2} were observed. The spatial and energy distributions of optically active excitons were used as thermodynamic quantities to construct a phase diagram of the exciton system, demonstrating the existence of distinct phases. Optical and electrical properties of the CQW sample were examined thoroughly to provide deeper understanding of the formation mechanisms of these cold exciton systems. These insights offer new strategies for producing cold exciton systems, which may lead to opportunities for the realization of BEC in solid-state systems.

Lai, Chih-Wei Eddy

2004-03-01T23:59:59.000Z

133

Economic analysis of shale gas wells in the United States  

E-Print Network (OSTI)

Natural gas produced from shale formations has increased dramatically in the past decade and has altered the oil and gas industry greatly. The use of horizontal drilling and hydraulic fracturing has enabled the production ...

Hammond, Christopher D. (Christopher Daniel)

2013-01-01T23:59:59.000Z

134

Basic Data Report for Monitor Well AEC-7 Reconfiguration  

SciTech Connect

The New Mexico Office of the State Engineer (OSE) permitted well AEC-7 as C-2742. This well has been part of the far-field monitoring network since 1974. The well was used to obtain water level elevations and hydraulic parameters from both the Bell Canyon Formation and the Culebra Member of the Rustler Formation. This basic data report provides a historical account of the well from the original installation to the current configuration.

Washington Regulatory and Environmental Services

2005-01-20T23:59:59.000Z

135

Three-dimensional seismic stratigraphic study of Minnelusa Formation, Powder River basin, Campbell County, Wyoming  

E-Print Network (OSTI)

and synthetic seismic traces indicate that the anomalous reflection event probably results from the high impedance contrast between the low-velocity oil-producing interval and the surrounding high-velocity zones. Other occurrences of similar anomalies may... Stratigraphy. Eagle Rock Field . MATERIALS AND METHODS Seismic Data Well Data Synthetic Seismic Traces Interpretation Procedure Upper Minnelusa Formation Interpretation Methods RESULTS Anomalous Minnelusa Formation Reflection Event Importance...

Walters, Donna Lynn

2012-06-07T23:59:59.000Z

136

Fluid-Rock Characterization and Interactions in NMR Well Logging  

SciTech Connect

The objective of this project was to characterize the fluid properties and fluid-rock interactions which are needed for formation evaluation by NMR well logging. NMR well logging is finding wide use in formation evaluation. The formation parameters commonly estimated were porosity, permeability, and capillary bound water. Special cases include estimation of oil viscosity, residual oil saturation, location of oil/water contact, and interpretation on whether the hydrocarbon is oil or gas.

Hirasaki, George J.; Mohanty, Kishore K.

2003-02-10T23:59:59.000Z

137

File Formats  

NLE Websites -- All DOE Office Websites (Extended Search)

Home Page Home Page File Formats MODIS Product Subsets Output Data File Format Descriptions The MODIS product subsets for North America and Worldwide are available in several formats, which are described in the following text. MODIS Land Product ASCII Data Image Data Files in ASCII Grid Format QC-Filtered Data and Statistics Generated for this Request Land Cover Data in ASCII Grid Format Statistical Data for MODIS Land Products in Comma Separated Format Underlying BRDF Parameters Used in Generating this Request (available with Albedo MOD43B and MCD43B only) MODIS Land Product ASCII Data Description of File File Content: Data as read from MODIS Land Product HDF-EOS data files. These data are the starting point for deriving the other subset data products. Data Type: As indicated by Land Product Code (e.g., MOD15A2).

138

Third invitational well-testing symposium: well testing in low permeability environments  

SciTech Connect

The testing of low permeability rocks is common to waste disposal, fossil energy resource development, underground excavation, and geothermal energy development. This document includes twenty-six papers and abstracts, divided into the following sessions: opening session, case histories and related phenomena, well test design in low permeability formations, analysis and interpretation of well test data, and instrumentation for well tests. Separate abstracts were prepared for 15 of the 16 papers; the remaining paper has been previously abstracted. (DLC)

Doe, T.W.; Schwarz, W.J. (eds.)

1981-03-01T23:59:59.000Z

139

Step-out Well | Open Energy Information  

Open Energy Info (EERE)

Step-out Well Step-out Well Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Step-out Well Details Activities (5) Areas (5) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Drilling Techniques Exploration Sub Group: Exploration Drilling Parent Exploration Technique: Exploration Drilling Information Provided by Technique Lithology: Drill cuttings are analyzed to determine lithology and mineralogy Stratigraphic/Structural: Fractures, faults, and geologic formations that the well passes through are identified and mapped Hydrological: Identify aquifers, reservoir boundaries, flow rates, fluid pressure, and chemistry Thermal: Direct temperature measurements from within the reservoir Dictionary.png Step-out Well: A well drilled outside of the proven reservoir boundaries to investigate a

140

Utility Formation  

NLE Websites -- All DOE Office Websites (Extended Search)

amounts See detailed discussion of these standards. For more information regarding tribal utility formation, contact the Power Service Line Account Executives: Eastern Power...

Note: This page contains sample records for the topic "formation producing wells" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Formation of atmospheric particles from organic acids produced by forests  

Science Journals Connector (OSTI)

... Ljungstrom, E. Atmospheric fate of carbonyl oxidation products originating from ?-pinene and ?3-carene: Determination of rate of reaction with OH and NO3radicals, UV absorption cross sections, ...

Ilias G. Kavouras; Nikolaos Mihalopoulos; Euripides G. Stephanou

1998-10-15T23:59:59.000Z

142

Natural Gas Wells Near Project Rulison  

Office of Legacy Management (LM)

for for Natural Gas Wells Near Project Rulison Second Quarter 2013 U.S. Department of Energy Office of Legacy Management Grand Junction, Colorado Date Sampled: April 3, 2013 Background: Project Rulison was the second underground nuclear test under the Plowshare Program to stimulate natural-gas recovery from deep, low-permeability formations. On September 10, 1969, a 40-kiloton-yield nuclear device was detonated 8,426 feet (1.6 miles) below the ground surface in the Williams Fork Formation, at what is now the Rulison, Colorado, Site. Following the detonation, a series of production tests were conducted. Afterward, the site was shut down and then remediated, and the emplacement well (R-E) and the reentry well (R-Ex) were plugged. Purpose: As part of the U.S. Department of Energy (DOE) Office of Legacy Management (LM) mission

143

Report on Produced Water  

NLE Websites -- All DOE Office Websites (Extended Search)

September 2009 Produced Water Volumes and Management Practices Page 3 Table of Contents Executive Summary ........................................................................................................................ 7 Chapter 1 - Introduction ............................................................................................................. 11 1.1 Purpose .......................................................................................................................... 11 1.2 Background ................................................................................................................... 11 1.3 Overview ....................................................................................................................... 11

144

Method of gravel packing a subterranean well  

SciTech Connect

This patent describes a method of gravel packing a well bore penetrating a subterranean formation. It comprises blocking a first group of apertures in a liner with an immobile gel; positioning the liner within the well bore thereby defining a first annulus between the liner and the well bore; transporting a slurry comprised of gravel suspended in a fluid into the first annulus, the fluid flowing through a second group of apertures in the liner while the gravel is deposited within the first annulus to form a gravel pack; and thereafter removing substantially all of the gel from the first group of apertures.

Not Available

1991-11-05T23:59:59.000Z

145

Fluid Inclusion Stratigraphy: Interpretation of New Wells in the Coso  

Open Energy Info (EERE)

Stratigraphy: Interpretation of New Wells in the Coso Stratigraphy: Interpretation of New Wells in the Coso Geothermal Field Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Fluid Inclusion Stratigraphy: Interpretation of New Wells in the Coso Geothermal Field Details Activities (1) Areas (1) Regions (0) Abstract: This paper focuses on the interpretation of the additional wells (4 bore holes) and comparison to the previous wells. Preliminary correlation between wells is also presented. Analyses from multiple boreholes show fluid stratigraphy that correlates from well to well. The wells include large producers, small to moderate producers, problem producers, injectors, and non producers Author(s): Dilley, L.M.; Newman, D.L. ; McCulloch, J.; Wiggett, G. Published: Geothermal Resource Council Transactions 2005, 1/1/2005

146

Fully Coupled Well Models for Fluid Injection and Production...  

NLE Websites -- All DOE Office Websites (Extended Search)

reservoirs. Wells provide a conduit for injecting greenhouse gases and producing reservoirs fluids, such as brines, natural gas, and crude oil, depending on the target...

147

Numerical studies of enthalpy and CO2 transients in two-phase wells  

E-Print Network (OSTI)

Similarity Method for Geothermal Well Test Analysis", Waterbut in most cases geothermal wells are produced at constantwith data from many geothermal wells. Radial variations in

Bodvarsson, Gudmundur S.

1984-01-01T23:59:59.000Z

148

Single-Well And Cross-Well Seismic Imaging | Open Energy Information  

Open Energy Info (EERE)

Single-Well And Cross-Well Seismic Imaging Single-Well And Cross-Well Seismic Imaging (Redirected from Single-Well And Cross-Well Seismic) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Single-Well And Cross-Well Seismic Imaging Details Activities (2) Areas (2) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Borehole Seismic Techniques Parent Exploration Technique: Borehole Seismic Techniques Information Provided by Technique Lithology: Rock unit density influences elastic wave velocities. Stratigraphic/Structural: Structural geology- faults, folds, grabens, horst blocks, sedimentary layering, discontinuities, etc. Hydrological: Combining compressional and shear wave results can indicate the presence of fluid saturation in the formation.

149

Method of fracturing a geological formation  

DOE Patents (OSTI)

An improved method of fracturing a geological formation surrounding a well bore is disclosed. A relatively small explosive charge is emplaced in a well bore and the bore is subsequently hydraulically pressurized to a pressure less than the formation breakdown pressure and preferably greater than the fracture propagation pressure of the formation. The charge is denoted while the bore is so pressurized, resulting in the formation of multiple fractures in the surrounding formation with little or no accompanying formation damage. Subsequent hydraulic pressurization can be used to propagate and extend the fractures in a conventional manner. The method is useful for stimulating production of oil, gas and possibly water from suitable geologic formations.

Johnson, James O. (2679-B Walnut, Los Alamos, NM 87544)

1990-01-01T23:59:59.000Z

150

Ultra Thin Quantum Well Materials  

SciTech Connect

This project has enabled Hi-Z technology Inc. (Hi-Z) to understand how to improve the thermoelectric properties of Si/SiGe Quantum Well Thermoelectric Materials. The research that was completed under this project has enabled Hi-Z Technology, Inc. (Hi-Z) to satisfy the project goal to understand how to improve thermoelectric conversion efficiency and reduce costs by fabricating ultra thin Si/SiGe quantum well (QW) materials and measuring their properties. In addition, Hi-Z gained critical new understanding on how thin film fabrication increases the silicon substrate's electrical conductivity, which is important new knowledge to develop critical material fabrication parameters. QW materials are constructed with alternate layers of an electrical conductor, SiGe and an electrical insulator, Si. Film thicknesses were varied, ranging from 2nm to 10nm where 10 nm was the original film thickness prior to this work. The optimum performance was determined at a Si and SiGe thickness of 4nm for an electrical current and heat flow parallel to the films, which was an important conclusion of this work. Essential new information was obtained on how the Si substrate electrical conductivity increases by up to an order of magnitude upon deposition of QW films. Test measurements and calculations are accurate and include both the quantum well and the substrate. The large increase in substrate electrical conductivity means that a larger portion of the electrical current passes through the substrate. The silicon substrate's increased electrical conductivity is due to inherent impurities and thermal donors which are activated during both molecular beam epitaxy and sputtering deposition of QW materials. Hi-Z's forward looking cost estimations based on future high performance QW modules, in which the best Seebeck coefficient and electrical resistivity are taken from separate samples predict that the electricity cost produced with a QW module could be achieved at <$0.35/W. This price would open many markets for waste heat recovery applications. By installing Hi-Z's materials in applications in which electricity could be produced from waste heat sources could result in significant energy savings as well as emissions reductions. For example, if QW thermoelectric generators could be introduced commercially in 2015, and assuming they could also capture an additional 0.1%/year of the available waste heat from the aluminum, steel, and iron industries, then by 2020, their use would lead to a 2.53 trillion Btu/year reduction in energy consumption. This translates to a $12.9 million/year energy savings, and 383.6 million lb's of CO2 emissions reduction per year. Additionally, Hi-Z would expect that the use of QW TE devices in the automotive, manufacturing, and energy generation industries would reduce the USA's petroleum and fossil fuel dependence, and thus significantly reduce emissions from CO2 and other polluting gasses such as NOx, SOx, and particulate matter (PM), etc.

Dr Saeid Ghamaty

2012-08-16T23:59:59.000Z

151

Raser Receives Third Party Analysis on Well Field | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

GeothermEx reported that well 24-34 indicated 3.6 megawatts (MW) net at the well depth level Raser plans to produce, with temperatures in excess of 280 degrees F. GeothermEx's...

152

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

153

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

9 9 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

154

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

9 9 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

155

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 7,279 6,446 3,785 3,474 3,525 Total................................................................... 7,279 6,446 3,785 3,474 3,525 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 7,279 6,446 3,785 3,474 3,525 Nonhydrocarbon Gases Removed ..................... 788 736 431

156

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

5 5 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 15,206 15,357 16,957 17,387 18,120 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 463,929 423,672 401,396 369,624 350,413 From Oil Wells.................................................. 63,222 57,773 54,736 50,403 47,784 Total................................................................... 527,151 481,445 456,132 420,027 398,197 Repressuring ...................................................... 896 818 775 714 677 Vented and Flared.............................................. 527 481 456 420 398 Wet After Lease Separation................................

157

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 9 8 7 9 6 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 368 305 300 443 331 From Oil Wells.................................................. 1 1 0 0 0 Total................................................................... 368 307 301 443 331 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 368 307 301 443 331 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

158

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 98 96 106 109 111 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 869 886 904 1,187 1,229 From Oil Wells.................................................. 349 322 288 279 269 Total................................................................... 1,218 1,208 1,193 1,466 1,499 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 5 12 23 Wet After Lease Separation................................ 1,218 1,208 1,188 1,454 1,476 Nonhydrocarbon Gases Removed .....................

159

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

9 9 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 4 4 4 4 4 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 7 7 6 6 5 Total................................................................... 7 7 6 6 5 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 7 7 6 6 5 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

160

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

Note: This page contains sample records for the topic "formation producing wells" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

5 5 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

162

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

163

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

164

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

165

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

166

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 380 350 400 430 280 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 1,150 2,000 2,050 1,803 2,100 Total................................................................... 1,150 2,000 2,050 1,803 2,100 Repressuring ...................................................... NA NA NA 0 NA Vented and Flared.............................................. NA NA NA 0 NA Wet After Lease Separation................................ 1,150 2,000 2,050 1,803 2,100 Nonhydrocarbon Gases Removed .....................

167

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

5 5 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

168

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 1,502 1,533 1,545 2,291 2,386 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 899 1,064 1,309 1,464 3,401 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 899 1,064 1,309 1,464 3,401 Repressuring ...................................................... NA NA NA 0 NA Vented and Flared.............................................. NA NA NA 0 NA Wet After Lease Separation................................ 899 1,064 1,309 1,464 3,401 Nonhydrocarbon Gases Removed .....................

169

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

9 9 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

170

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

171

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

172

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 7 7 5 7 7 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 34 32 22 48 34 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 34 32 22 48 34 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 34 32 22 48 34 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

173

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

174

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ......................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells...................................................... 0 0 0 0 0 From Oil Wells........................................................ 0 0 0 0 0 Total......................................................................... 0 0 0 0 0 Repressuring ............................................................ 0 0 0 0 0 Vented and Flared .................................................... 0 0 0 0 0 Wet After Lease Separation...................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed............................ 0 0 0 0 0 Marketed Production

175

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

176

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

177

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 17 20 18 15 15 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 1,412 1,112 837 731 467 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 1,412 1,112 837 731 467 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 1,412 1,112 837 731 467 Nonhydrocarbon Gases Removed ..................... 198 3 0 0 0 Marketed Production

178

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

179

Producing bulk residual stresses in gas turbine blades  

Science Journals Connector (OSTI)

Inhomogeneous plastic strain has been used to produce a pattern of bulk compressive stresses that counteract macrodefect formation and growth in machine components, which increases the working life. Studies ha...

V. A. Boguslaev; A. P. Lopatenko; N. B. Makarenko; N. I. Obodan

1993-02-01T23:59:59.000Z

180

Producing computer facial animation  

E-Print Network (OSTI)

animation. A description of current state of the art provides current achievements by academic and industrial labs as well as individual artists. A tutorial focusing on modeling, texturing, and setting up animation controls for a facial model offers step...

Koehlert, Erik Wulf

1998-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "formation producing wells" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Geological well log analysis. Third ed  

SciTech Connect

Until recently, well logs have mainly been used for correlation, structural mapping, and quantitive evaluation of hydrocarbon bearing formations. This third edition of Geologic Well Log Analysis, however, describes how well logs can be used for geological studies and mineral exploration. This is done by analyzing well logs for numerous parameters and indices of significant mineral accumulation, primarily in sediments. Contents are: SP and Eh curves as redoxomorphic logs; sedimentalogical studies by log curve shapes; exploration for stratigraphic traps; continuous dipmeter as a structural tool; continuous dipmeter as a sedimentation tool; Paleo-facies logging and mapping; hydrogeology 1--hydrodynamics of compaction; hydrogeology 2--geostatic equilibrium; and hydrogeology 3--hydrodynamics of infiltration. Appendixes cover: Computer program for calculating the dip magnitude, azimuth, and the degree and orientation of the resistivity anisotrophy; a lithology computer program for calculating the curvature of a structure; and basic log analysis package for HP-41CV programmable calculator.

Pirson, S.J.

1983-01-01T23:59:59.000Z

182

Slim wells for exploration purposes in Mexico  

SciTech Connect

To invest in the construction of wells with definitive designs considerably increases the cost of a geothermal electric project in its analysis and definition stage. The Federal Commission for Electricity (Comision Federal de Electricidad, CFE) has concentrated on the task to design wells which casing and cementing programs would provide the minimum installation necessary to reach the structural objective, to confirm the existence of geothermal reservoirs susceptible to commercial exploitation, to check prior geological studies, to define the stratigraphic column and to obtain measurements of pressure, temperature and permeability. Problems of brittle, hydratable and permeable formations with severe circulation losses, must be considered within the design and drilling programs of the wells. This work explains the slim wells designs used in the exploration of three geothermal zones in Mexico: Las Derrumbadas and Acoculco in the State of Puebla and Los Negritos in the State of Michoacan.

Vaca Serrano, J.M.E.; Soto Alvarez, M.

1996-12-31T23:59:59.000Z

183

Hydrocarbon potential of Spearfish Formation in eastern Williston basin  

SciTech Connect

More than 36 million bbl of oil have been produced from stratigraphic traps in sandstones of the Triassic-Jurassic Spearfish Formation in the eastern part of the Williston basin. Newburg field has produced 32 million bbl of oil and Waskada field, discovered in 1980, is estimated to have over 10 million bbl of oil in reserves. A binocular microscopic and petrographic examination of cores from each of the fields has revealed considerable differences in the characteristics of producing sandstones. Cores and sample cuttings from 30 wells in the US and Canada form the basis for this comparison of the two fields. The Spearfish Formation consists of porous, permeable, well-sorted, very fine-grained sandstones with a sucrosic dolomite matrix that are interbedded with impermeable sandstones, siltstones, and shale. The environment of deposition is believed to be the intertidal zone (tidal flat). Sediments of the Spearfish Formation were deposited by a transgressive sea on an eroded Mississippian carbonate section. Oil found in the Spearfish sandstones is derived from the Mississippian.

Dodge C.J.N.; Reid, F.S.

1986-08-01T23:59:59.000Z

184

Solid fuel volatilization to produce synthesis gas  

DOE Patents (OSTI)

A method comprising contacting a carbon and hydrogen-containing solid fuel and a metal-based catalyst in the presence of oxygen to produce hydrogen gas and carbon monoxide gas, wherein the contacting occurs at a temperature sufficiently high to prevent char formation in an amount capable of stopping production of the hydrogen gas and the carbon monoxide gas is provided. In one embodiment, the metal-based catalyst comprises a rhodium-cerium catalyst. Embodiments further include a system for producing syngas. The systems and methods described herein provide shorter residence time and high selectivity for hydrogen and carbon monoxide.

Schmidt, Lanny D.; Dauenhauer, Paul J.; Degenstein, Nick J.; Dreyer, Brandon J.; Colby, Joshua L.

2014-07-29T23:59:59.000Z

185

Trends in water quality variability for coalbed methane produced water  

Science Journals Connector (OSTI)

Abstract Energy production from unconventional natural gas resources, such as coalbed methane, has the potential to generate significant water quantities for use in water-stressed areas to augment existing water supplies. Coalbed methane (CBM) produced water is generated from shallower formations than traditional oil and gas resources where water quality may be influenced by fresh water supplies in the area. Variability in produced water quality between wells and across geologic basins must be characterized in order to categorize water types appropriate for beneficial use. Principal component analysis (PCA) was applied to a composite geochemical database to identify indicators of variability in water composition and quality. Component analysis revealed that water quality indicators of variability were related to: (i) aquifer recharge that dilutes constituent concentrations (37%), (ii) dissolution of soluble aquifer minerals such as sodium and exchange of calcium and magnesium (13.8%), and (iii) coal depositional environment influence on chloride and trace metal fractions (14% of variability). Ternary relationships between Na–Cl–HCO3 and Na–Ca–Mg correlate to marine influence in the coal depositional environment and well proximity to recharge, respectively. Relationships identified in this study highlight water quality compositions with opportunities for beneficial use.

Katharine G. Dahm; Katie L. Guerra; Junko Munakata-Marr; Jörg E. Drewes

2014-01-01T23:59:59.000Z

186

Additional Reserve Recovery Using New Polymer Treatment on High Water Oil Ratio Wells in Alameda Field, Kingman County, Kansas  

SciTech Connect

The Chemical Flooding process, like a polymer treatment, as a tertiary (enhanced) oil recovery process can be a very good solution based on the condition of this field and its low cost compared to the drilling of new wells. It is an improved water flooding method in which high molecular-weight (macro-size molecules) and water-soluble polymers are added to the injection water to improve the mobility ratio by enhancing the viscosity of the water and by reducing permeability in invaded zones during the process. In other words, it can improve the sweep efficiency by reducing the water mobility. This polymer treatment can be performed on the same active oil producer well rather than on an injector well in the existence of strong water drive in the formation. Some parameters must be considered before any polymer job is performed such as: formation temperature, permeability, oil gravity and viscosity, location and formation thickness of the well, amount of remaining recoverable oil, fluid levels, well productivity, water oil ratio (WOR) and existence of water drive. This improved oil recovery technique has been used widely and has significant potential to extend reservoir life by increasing the oil production and decreasing the water cut. This new technology has the greatest potential in reservoirs that are moderately heterogeneous, contain moderately viscous oils, and have adverse water-oil mobility ratios. For example, many wells in Kansas's Arbuckle formation had similar treatments and we have seen very effective results. In addition, there were previous polymer treatments conducted by Texaco in Alameda Field on a number of wells throughout the Viola-Simpson formation in the early 70's. Most of the treatments proved to be very successful.

James Spillane

2005-10-01T23:59:59.000Z

187

Well Permits (District of Columbia)  

Energy.gov (U.S. Department of Energy (DOE))

Well permits are required for the installation of wells in private and public space. Wells are defined as any trest hole, shaft, or soil excavation created by any means including, but not limited...

188

Borehole stability analysis at the Coporo-1 well, Colombia  

E-Print Network (OSTI)

-density window for Coporo-1 and future wells in the area. Repeated sections of the Carbonera formation, high in-situ stresses, abnormal pore pressure in some intervals, high temperature, and micro-fractured formations make drilling in this region both...

Arias, Henry

2012-06-07T23:59:59.000Z

189

Method for producing superconductors  

SciTech Connect

A method for producing a V3Al superconductor is disclosed which comprises making a composite composed of a sheath portion of a copper alloy containing 1 to 15 atomic percent of germanium, 1 to 15 atomic percent of silicon or 2 to 25 atomic percent of gallium and surrounded by the sheath portion, at least one core portion of a vanadium-aluminum alloy containing 0.5 to 20 atomic percent of aluminum; elongating the composite; and then heat-treating the elongated composite thereby to form a V3(Al, Ge), V3(Al, Si) or V3(Al, Ga) layer between the sheath portion and the core portion.

Inoue, K.; Tachikawa, K.; Togano, K.

1982-03-30T23:59:59.000Z

190

Single-Well and Cross-Well Seismic At Salt Wells Area (Bureau of Land  

Open Energy Info (EERE)

Single-Well and Cross-Well Seismic At Salt Wells Area (Bureau of Land Single-Well and Cross-Well Seismic At Salt Wells Area (Bureau of Land Management, 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Single-Well and Cross-Well Seismic At Salt Wells Area (Bureau of Land Management, 2009) Exploration Activity Details Location Salt Wells Geothermal Area Exploration Technique Single-Well And Cross-Well Seismic Activity Date 2008 - 2008 Usefulness not indicated DOE-funding Unknown Exploration Basis Vulcan increased exploration efforts in the summer and fall of 2008, during which time the company drilled two temperature gradient holes (86-15 O on Pad 1 and 17-16 O on Pad 3); conducted seismic, gravity and magnetotelluric surveys; and drilled deep exploration wells at Pads 6 and 8 and binary

191

Treating nahcolite containing formations and saline zones  

DOE Patents (OSTI)

A method for treating a nahcolite containing subsurface formation includes removing water from a saline zone in or near the formation. The removed water is heated using a steam and electricity cogeneration facility. The heated water is provided to the nahcolite containing formation. A fluid is produced from the nahcolite containing formation. The fluid includes at least some dissolved nahcolite. At least some of the fluid is provided to the saline zone.

Vinegar, Harold J

2013-06-11T23:59:59.000Z

192

Heating hydrocarbon containing formations in a line drive staged process  

DOE Patents (OSTI)

Method for treating a hydrocarbon containing formation are described herein. Methods may include providing heat to a first section of the formation with one or more first heaters in the first section. First hydrocarbons may be heated in the first section such that at least some of the first hydrocarbons are mobilized. At least some of the mobilized first hydrocarbons may be produced through a production well located in a second section of the formation. The second section may be located substantially adjacent to the first section. A portion of the second section may be provided some heat from the mobilized first hydrocarbons, but is not conductively heated by heat from the first heaters. Heat may be provided to the second section with one or more second heaters in the second section to further heat the second section.

Miller, David Scott (Katy, TX)

2009-07-21T23:59:59.000Z

193

Single-Well And Cross-Well Seismic Imaging | Open Energy Information  

Open Energy Info (EERE)

Single-Well And Cross-Well Seismic Imaging Single-Well And Cross-Well Seismic Imaging Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Single-Well And Cross-Well Seismic Imaging Details Activities (2) Areas (2) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Borehole Seismic Techniques Parent Exploration Technique: Borehole Seismic Techniques Information Provided by Technique Lithology: Rock unit density influences elastic wave velocities. Stratigraphic/Structural: Structural geology- faults, folds, grabens, horst blocks, sedimentary layering, discontinuities, etc. Hydrological: Combining compressional and shear wave results can indicate the presence of fluid saturation in the formation. Thermal: High temperatures and pressure impact the compressional and shear wave velocities.

194

Well-pump alignment system  

DOE Patents (OSTI)

An improved well-pump for geothermal wells, an alignment system for a well-pump, and to a method for aligning a rotor and stator within a well-pump are disclosed, wherein the well-pump has a whistle assembly formed at a bottom portion thereof, such that variations in the frequency of the whistle, indicating misalignment, may be monitored during pumping. 6 figs.

Drumheller, D.S.

1998-10-20T23:59:59.000Z

195

Well-test data from geothermal reservoirs  

SciTech Connect

Extensive well testing in geothermal resources has been carried out throughout the western United States and in northern Mexico since 1975. Each resource tested and each well test conducted by LBL during the eight-year period are covered in brief. The information, collected from published reports and memoranda, includes test particulars, special instrumentation, data interpretation when available, and plots of actual data. Brief geologic and hydrologic descriptions of the geothermal resources are also presented. The format is such that well test descriptions are grouped, in the order performed, into major sections according to resource, each section containing a short resource description followed by individual test details. Additional information regarding instrumentation is provided. Source documentation is provided throughout to facilitate access to further information and raw data.

Bodvarsson, M.G.; Benson, S.M.

1982-09-01T23:59:59.000Z

196

Process for producing ethanol  

SciTech Connect

A process is described for producing ethanol from raw materials containing a high dry solid mash level having fermentable sugars or constituents which can be converted into sugars, comprising the steps of: (a) liquefaction of the raw materials in the presence of an alpha amylase to obtain liquefied mash; (b) saccharification of the liquefied mash in the presence of a glucoamylase to obtain hydrolysed starch and sugars; (c) fermentation of the hydrolysed starch and sugars by yeast to obtain ethanol; and (d) recovering the obtained ethanol, wherein an acid fungal protease is introduced to the liquefied mash during the saccharification and/or to the hydrolysed starch and sugars during the fermentation, thereby increasing the rate of production of ethanol as compared to a substantially similar process conducted without the introduction of the protease.

Lantero, O.J.; Fish, J.J.

1993-07-27T23:59:59.000Z

197

Health And Wellness Department Of Health And Wellness  

E-Print Network (OSTI)

Health And Wellness Department Of Health And Wellness Lutchmie Narine, Chair, 315-443-9630 426 The Department of Health and Wellness offers a 123-credit Bachelor of Science degree (B.S.) in public health. Our graduates are prepared to work in community health education and health promotion in public health agencies

McConnell, Terry

198

Exploratory Well | Open Energy Information  

Open Energy Info (EERE)

Exploratory Well Exploratory Well Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Exploratory Well Details Activities (8) Areas (3) Regions (0) NEPA(5) Exploration Technique Information Exploration Group: Drilling Techniques Exploration Sub Group: Exploration Drilling Parent Exploration Technique: Exploration Drilling Information Provided by Technique Lithology: Can provide core or cuttings Stratigraphic/Structural: Identify stratigraphy and structural features within a well Hydrological: -Water samples can be used for geochemical analysis -Fluid pressures can be used to estimate flow rates Thermal: -Temperatures can be measured within the hole -Information about the heat source Dictionary.png Exploratory Well: An exploratory well is drilled for the purpose of identifying the

199

Creating and maintaining a gas cap in tar sands formations  

DOE Patents (OSTI)

Methods for treating a tar sands formation are disclosed herein. Methods for treating a tar sands formation may include providing heat to at least part of a hydrocarbon layer in the formation from one or more heaters located in the formation. Pressure may be allowed to increase in an upper portion of the formation to provide a gas cap in the upper portion. At least some hydrocarbons are produced from a lower portion of the formation.

Vinegar, Harold J. (Bellaire, TX); Karanikas, John Michael (Houston, TX); Dinkoruk, Deniz Sumnu (Houston, TX); Wellington, Scott Lee (Bellaire, TX)

2010-03-16T23:59:59.000Z

200

Major Energy Producers  

Gasoline and Diesel Fuel Update (EIA)

206(92) 206(92) Performance Profiles of Major Energy Producers 1992 January 1994 Elk. I nergy Information dministration This publication and other Energy Information Administration (EIA) publications may be purchased from the Superintendent of Documents, U.S. Government Printing Office. All telephone orders should be directed to: U.S. Government Printing Office Superintendent of Documents McPherson Square Bookstore U.S. Government Printing Office 1510 H Street, N.W. Washington, DC 20402 Washington, DC 20005 (202)783-3238 (202)653-2050 FAX (202)512-2233 FAX (202)376-5055 8 a.m. to 4 p.m., eastern time, M-F 9 a.m. to 4:30 p.m., eastern time, M-F All mail orders should be directed to: U.S. Government Printing Office P.O. Box 371954 Pittsburgh, PA 15250-7954 Complimentary subscriptions and single issues are available to certain groups of subscribers, such as

Note: This page contains sample records for the topic "formation producing wells" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Method for producing superconductors  

SciTech Connect

In a method for producing v/sub 3/Ga superconductors which comprises forming a composite of a core portion and a sheath portion surrounding said core portion, said sheath portion being composed of a gallium-containing alloy selected from the group consisting of copper-gallium and copper-silver-gallium alloys, and said core portion being composed of a vanadium metal, elongating said composite, and heat-treating the resulting elongated composite to form a v/sub 3/Ga layer between said sheath and core portions; the improvement wherein the gallium-containing alloy has a gallium content of 0.1 to 30 atomic percent and additionally contains at least one metal selected from the group consisting of 0.05 to 5 atomic percent of magnesium, 0.5 to 10 atomic percent of aluminum , 0.1 to 10 atomic percent of cerium and 0.05 to 10 atomic percent of sodium, and the vanadium metal is a vanadium alloy containing 0.1 to 15 atomic percent of gallium.

Asano, T.; Tachikawa, K.; Tanaka, Y.; Yoshida, Y.

1981-06-23T23:59:59.000Z

202

Well Monitoring Systems for EGS  

Energy.gov (U.S. Department of Energy (DOE))

Well Monitoring Systems for EGS presentation at the April 2013 peer review meeting held in Denver, Colorado.

203

Cement fatigue and HPHT well integrity with application to life of well prediction  

E-Print Network (OSTI)

In order to keep up with the world’s energy demands, oil and gas producing companies have taken the initiative to explore offshore reserves or drill deeper into previously existing wells. The consequence of this, however, has to deal with the high...

Ugwu, Ignatius Obinna

2009-05-15T23:59:59.000Z

204

Low temperature barriers with heat interceptor wells for in situ processes  

DOE Patents (OSTI)

A system for reducing heat load applied to a frozen barrier by a heated formation is described. The system includes heat interceptor wells positioned between the heated formation and the frozen barrier. Fluid is positioned in the heat interceptor wells. Heat transfers from the formation to the fluid to reduce the heat load applied to the frozen barrier.

McKinzie, II, Billy John (Houston, TX)

2008-10-14T23:59:59.000Z

205

Solution mining dawsonite from hydrocarbon containing formations with a chelating agent  

DOE Patents (OSTI)

A method for treating an oil shale formation comprising dawsonite includes providing heat from one or more heaters to the formation to heat the formation. Hydrocarbon fluids are produced from the formation. At least some dawsonite in the formation is decomposed with the provided heat. A chelating agent is provided to the formation to dissolve at least some dawsonite decomposition products. The dissolved dawsonite decomposition products are produced from the formation.

Vinegar, Harold J. (Bellaire, TX)

2009-07-07T23:59:59.000Z

206

Apparatus for use in rejuvenating oil wells  

SciTech Connect

A sub incorporating a check valve is connected into the lower end of a well pipestring. This valve will pass hot steam injected down the pipestring to the formations to loosen up the thick crude oil. The check valve prevents back flow and thus will hold the high pressure steam. To resume production, the production pump can then be lowered through the pipestring. The pump itself is provided with an extended probe member which will unseat the check valve when the pump is in proper position so that production pumping can resume.

Warnock, C.E. Sr.

1983-07-19T23:59:59.000Z

207

Well performance under solutions gas drive  

SciTech Connect

A fully implicit black-oil simulator was written to predict the drawdown and buildup responses for a single well under Solution Gas Drive. The model is capable of handling the following reservoir behaviors: Unfractured reservoir, Double-Porosity system, and Double Permeability-Double Porosity model of Bourdet. The accuracy of the model results is tested for both single-phase liquid flow and two-phase flow. The results presented here provide a basis for the empirical equations presented in the literature. New definitions of pseudopressure and dimensionless time are presented. By using these two definitions, the multiphase flow solutions correlate with the constant rate liquid flow solution for both transient and boundary-dominated flow. For pressure buildup tests, an analogue for the liquid solution is constructed from the drawdown pseudopressure, similar to the reservoir integral of J. Jones. The utility of using the producing gas-oil ration at shut in to compute pseudopressures and pseudotimes is documented. The influence of pressure level and skin factor on the Inflow Performance Relationship (IPR) of wells producing solution gas drive systems is examined. A new definition of flow efficiency that is based on the structure of the deliverability equations is proposed. This definition avoids problems that result when the presently available methods are applied to heavily stimulated wells. The need for using pseudopressures to analyze well test data for fractured reservoirs is shown. Expressions to compute sandface saturations for fractured systems are presented.

Camacho-Velazquez, R.G.

1987-01-01T23:59:59.000Z

208

Wellness Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program Program Wellness Program Workers spend 200 hours per month at work, and keeping a healthy work-life balance is essential. The Headquarters Wellness Program provides support and assistance to DOE employees through a variety of programs and resources geared toward enhancing their mental and physical well-being. Wellness programs include: Accommodations, the Child Development Centers, the Employee Assistance Program (EAP), the Forrestal (FOHO) and Germantown (GOHO) Fitness Centers, the Occupational Health Clinics and the DOE WorkLife4You Program. Programs Disability Services Child Development Centers Headquarters Employee Assistance Program (EAP) Headquarters Occupational Health Clinics Headquarters Accommodation Program DOE Worklife4You Program Health Foreign Travel Health & Wellness Tips

209

Observation Wells | Open Energy Information  

Open Energy Info (EERE)

Observation Wells Observation Wells Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Observation Wells Details Activities (7) Areas (7) Regions (0) NEPA(15) Exploration Technique Information Exploration Group: Drilling Techniques Exploration Sub Group: Development Drilling Parent Exploration Technique: Development Drilling Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Total dissolved solids, fluid pressure, flow rates, and flow direction Thermal: Monitors temperature of circulating fluids Dictionary.png Observation Wells: An observation well is used to monitor important hydrologic parameters in a geothermal system that can indicate performance, longevity, and transient processes. Other definitions:Wikipedia Reegle

210

well records | OpenEI  

Open Energy Info (EERE)

well records well records Dataset Summary Description The Alabama State Oil and Gas Board publishes well record permits to the public as they are approved. This dataset is comprised of 50 recent well record permits from 2/9/11 - 3/18/11. The dataset lists the well name, county, operator, field, and date approved, among other fields. State's make oil and gas data publicly available for a range of topics. Source Geological Survey of Alabama Date Released February 09th, 2011 (3 years ago) Date Updated March 18th, 2011 (3 years ago) Keywords Alabama board gas oil state well records Data application/vnd.ms-excel icon Well records 2/9/11 - 3/18/11 (xls, 28.7 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period License License Open Data Commons Attribution License

211

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

5 5 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 21,507 32,672 33,279 34,334 35,612 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 1,473,792 1,466,833 1,476,204 1,487,451 1,604,709 From Oil Wells.................................................. 139,097 148,551 105,402 70,704 58,439 Total................................................................... 1,612,890 1,615,384 1,581,606 1,558,155 1,663,148 Repressuring ...................................................... NA NA NA 0 NA Vented and Flared.............................................. NA NA NA 0 NA Wet After Lease Separation................................

212

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 94 95 100 117 117 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 13,527 13,846 15,130 14,524 15,565 From Oil Wells.................................................. 42,262 44,141 44,848 43,362 43,274 Total................................................................... 55,789 57,987 59,978 57,886 58,839 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 3,290 3,166 2,791 2,070 3,704 Wet After Lease Separation................................ 52,499 54,821 57,187 55,816 55,135

213

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 997 1,143 979 427 437 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 109,041 131,608 142,070 156,727 171,915 From Oil Wells.................................................. 5,339 5,132 5,344 4,950 4,414 Total................................................................... 114,380 136,740 147,415 161,676 176,329 Repressuring ...................................................... 6,353 6,194 5,975 6,082 8,069 Vented and Flared.............................................. 2,477 2,961 3,267 3,501 3,493 Wet After Lease Separation................................

214

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

9 9 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 42,475 42,000 45,000 46,203 47,117 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 264,139 191,889 190,249 187,723 197,217 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 264,139 191,889 190,249 187,723 197,217 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 264,139 191,889 190,249 187,723 197,217 Nonhydrocarbon Gases Removed

215

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 9,907 13,978 15,608 18,154 20,244 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 1,188,657 1,467,331 1,572,728 1,652,504 1,736,136 From Oil Wells.................................................. 137,385 167,656 174,748 183,612 192,904 Total................................................................... 1,326,042 1,634,987 1,747,476 1,836,115 1,929,040 Repressuring ...................................................... 50,216 114,407 129,598 131,125 164,164 Vented and Flared.............................................. 9,945 7,462 12,356 16,685 16,848

216

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

5 5 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 71 68 69 61 61 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 648 563 531 550 531 From Oil Wells.................................................. 10,032 10,751 9,894 11,055 11,238 Total................................................................... 10,680 11,313 10,424 11,605 11,768 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 1,806 2,043 1,880 2,100 2,135 Wet After Lease Separation................................ 8,875 9,271 8,545 9,504 9,633 Nonhydrocarbon Gases Removed

217

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

9 9 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 60,577 63,704 65,779 68,572 72,237 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 5,859,358 4,897,366 4,828,188 4,947,589 5,074,067 From Oil Wells.................................................. 999,624 855,081 832,816 843,735 659,851 Total................................................................... 6,858,983 5,752,446 5,661,005 5,791,324 5,733,918 Repressuring ...................................................... 138,372 195,150 212,638 237,723 284,491 Vented and Flared.............................................. 32,010 26,823 27,379 23,781 26,947

218

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

9 9 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 15,700 16,350 17,100 16,939 20,734 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 4,260,529 1,398,981 1,282,137 1,283,513 1,293,204 From Oil Wells.................................................. 895,425 125,693 100,324 94,615 88,209 Total................................................................... 5,155,954 1,524,673 1,382,461 1,378,128 1,381,413 Repressuring ...................................................... 42,557 10,838 9,754 18,446 19,031 Vented and Flared.............................................. 20,266 11,750 10,957 9,283 5,015 Wet After Lease Separation................................

219

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

9 9 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 36,000 40,100 40,830 42,437 44,227 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 150,000 130,853 157,800 159,827 197,217 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 150,000 130,853 157,800 159,827 197,217 Repressuring ...................................................... NA NA NA 0 NA Vented and Flared.............................................. NA NA NA 0 NA Wet After Lease Separation................................ 150,000 130,853 157,800 159,827 197,217

220

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year.................................... 4,359 4,597 4,803 5,157 5,526 Production (million cubic feet) Gross Withdrawals From Gas Wells ................................................ 555,043 385,915 380,700 365,330 333,583 From Oil Wells .................................................. 6,501 6,066 5,802 5,580 5,153 Total................................................................... 561,544 391,981 386,502 370,910 338,735 Repressuring ...................................................... 13,988 12,758 10,050 4,062 1,307 Vented and Flared .............................................. 1,262 1,039 1,331 1,611 2,316 Wet After Lease Separation................................

Note: This page contains sample records for the topic "formation producing wells" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

5 5 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 3,321 4,331 4,544 4,539 4,971 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 61,974 71,985 76,053 78,175 87,292 From Oil Wells.................................................. 8,451 9,816 10,371 8,256 10,546 Total................................................................... 70,424 81,802 86,424 86,431 97,838 Repressuring ...................................................... 1 0 0 2 5 Vented and Flared.............................................. 488 404 349 403 1,071 Wet After Lease Separation................................ 69,936 81,397 86,075 86,027 96,762

222

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

5 5 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 3,051 3,521 3,429 3,506 3,870 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 71,545 71,543 76,915 R 143,644 152,495 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 71,545 71,543 76,915 R 143,644 152,495 Repressuring ...................................................... NA NA NA 0 NA Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 71,545 71,543 76,915 R 143,644 152,495 Nonhydrocarbon Gases Removed

223

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

5 5 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 33,948 35,217 35,873 37,100 38,574 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 1,484,269 1,484,856 1,432,966 1,391,916 1,397,934 From Oil Wells.................................................. 229,437 227,534 222,940 224,263 246,804 Total................................................................... 1,713,706 1,712,390 1,655,906 1,616,179 1,644,738 Repressuring ...................................................... 15,280 20,009 20,977 9,817 8,674 Vented and Flared.............................................. 3,130 3,256 2,849 2,347 3,525 Wet After Lease Separation................................

224

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 5,775 5,913 6,496 5,878 5,781 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 17,741 27,632 36,637 35,943 45,963 From Oil Wells.................................................. 16 155 179 194 87 Total................................................................... 17,757 27,787 36,816 36,137 46,050 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 17,757 27,787 36,816 36,137 46,050 Nonhydrocarbon Gases Removed

225

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

9 9 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 4,000 4,825 6,755 7,606 3,460 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 156,333 150,972 147,734 157,039 176,221 From Oil Wells.................................................. 15,524 16,263 14,388 12,915 11,088 Total................................................................... 171,857 167,235 162,122 169,953 187,310 Repressuring ...................................................... 8 0 0 0 0 Vented and Flared.............................................. 206 431 251 354 241 Wet After Lease Separation................................ 171,642 166,804

226

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 4,178 4,601 3,005 3,220 3,657 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 244,826 264,809 260,554 254,488 259,432 From Oil Wells.................................................. 36,290 36,612 32,509 29,871 31,153 Total................................................................... 281,117 301,422 293,063 284,359 290,586 Repressuring ...................................................... 563 575 2,150 1,785 1,337 Vented and Flared.............................................. 1,941 1,847 955 705 688 Wet After Lease Separation................................

227

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 7,068 7,425 7,700 8,600 8,500 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 241,776 224,560 224,112 194,121 212,276 From Oil Wells.................................................. 60,444 56,140 56,028 48,530 53,069 Total................................................................... 302,220 280,700 280,140 242,651 265,345 Repressuring ...................................................... 2,340 2,340 2,340 2,340 2,340 Vented and Flared.............................................. 3,324 3,324 3,324 3,324 3,324 Wet After Lease Separation................................

228

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 13,487 14,370 14,367 12,900 13,920 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 81,545 81,723 88,259 87,608 94,259 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 81,545 81,723 88,259 87,608 94,259 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 81,545 81,723 88,259 87,608 94,259 Nonhydrocarbon Gases Removed

229

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 33,897 33,917 34,593 33,828 33,828 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 98,551 97,272 97,154 87,993 85,018 From Oil Wells.................................................. 6,574 2,835 6,004 5,647 5,458 Total................................................................... 105,125 100,107 103,158 93,641 90,476 Repressuring ...................................................... NA NA NA 0 NA Vented and Flared.............................................. NA NA NA 0 NA Wet After Lease Separation................................ 105,125 100,107 103,158

230

Microsoft Word - RBL_3Q2010_Rpt_Gas_Samp_Results_3Wells  

Office of Legacy Management (LM)

near the Project Rio Blanco Horizon near the Project Rio Blanco Horizon U.S. Department of Energy Office of Legacy Management Grand Junction, Colorado Date Sampled: 13 September 2010 Purpose: The purpose of this sample collection is to monitor natural gas wells for radionuclides from Project Rio Blanco. The bottom-hole locations (BHLs) of the 3 gas wells sampled are within 1.4 miles of the Project Rio Blanco detonation horizon. All wells sampled have produced or are producing gas from the Mesaverde Group. Background: Project Rio Blanco is the Plowshare Program code name for the near-simultaneous detonation of a three 33-kiloton-yield nuclear devices in one emplacement well (RB-E-01) on 17 May 1973. The devices were detonated at 5,839-feet, 6,230-feet, and 6,689-feet below the ground surface. The shallowest device (at 5,839 feet) was detonated in the lower part of the Fort Union Formation, the

231

Snubdrilling a new well in Venezuela  

SciTech Connect

A new well was successfully drilled using a snubbing jack. The drill bit was rotated using a rotary table, downhole motors and combination of the two. Expected high-pressure zones prompted this use of ``snubdrilling.`` The primary objective was to drill a vertical well through underlying sands and gain information about formation pressures. This data would aid in the drilling of a relief well using a conventional drilling rig. The secondary objective was to relieve pressure by putting this new well on production. In addition to special high-pressure drilling jobs, there are other drilling applications where snubbing jacks are a feasible alternative to conventional rotary drilling rigs or coiled tubing units. Slimhole, underbalanced and flow drilling, and sidetracking of existing wells are excellent applications for snubdrilling. Advantages of snubdrilling vs. coiled tubing drilling, include ability to rotate drillstrings, use high-torque downhole motors, pump at high rates and pressures, apply significant overpull in case of stuck pipe, and run casing and liners without rigging down. Shortcomings of drilling with snubbing jacks compared to coiled tubing are the need to stop circulation while making new connections and inability to run continuous cable inside workstrings.

Aasen, J.

1995-12-01T23:59:59.000Z

232

Well Log Data At Dixie Valley Geothermal Area (Barton, Et Al...  

Open Energy Info (EERE)

Borehole televiewer, temperature and flowmeter data was recorded in the wells. Fracture and fluid flow data from wells within and outside of the active producing reservoir...

233

Microsoft Word - RUL_2Q2011_Gas_Samp_Results_7Wells_23June2011  

Office of Legacy Management (LM)

23 June 2011 23 June 2011 Purpose: The purpose of this environmental sample collection is to monitor natural gas and production water from natural gas wells drilled near the Project Rulison test site. As part of the DOE's directive to protect human health and the environment, sample are collected and analyzed from producing gas wells to ensure no Rulison related radionuclides have migrated outside the DOE institution control boundary. Using the DOE Rulison Monitoring Plan as guidance, samples are collected on a frequency based on their respective distance from the site. The monitoring plan also specifies the type of analysis and the reporting thresholds. Background: Project Rulison was the second test under the Plowshare Program to stimulate natural-gas recovery from tight sandstone formations.

234

Data from selected Almond Formation outcrops -- Sweetwater County, Wyoming  

SciTech Connect

The objectives of this research program are to: (1) determine the reservoir characteristics and production problems of shoreline barrier reservoirs; and (2) develop methods and methodologies to effectively characterize shoreline barrier reservoirs to predict flow patterns of injected and produced fluids. Two reservoirs were selected for detailed reservoir characterization studies -- Bell Creek field, Carter County, Montana, that produces from the Lower Cretaceous (Albian-Cenomanian) Muddy Formation, and Patrick Draw field, Sweetwater County, Wyoming that produces from the Upper Cretaceous (Campanian) Almond Formation of the Mesaverde Group. An important component of the research project was to use information from outcrop exposures of the producing formations to study the spatial variations of reservoir properties and the degree to which outcrop information can be used in the construction of reservoir models. A report similar to this one presents the Muddy Formation outcrop data and analyses performed in the course of this study (Rawn-Schatzinger, 1993). Two outcrop localities, RG and RH, previously described by Roehler (1988) provided good exposures of the Upper Almond shoreline barrier facies and were studied during 1990--1991. Core from core well No. 2 drilled approximately 0.3 miles downdip of outcrop RG was obtained for study. The results of the core study will be reported in a separate volume. Outcrops RH and RG, located about 2 miles apart were selected for detailed description and drilling of core plugs. One 257-ft-thick section was measured at outcrop RG, and three sections {approximately}145 ft thick located 490 and 655 feet apart were measured at the outcrop RH. Cross-sections of these described profiles were constructed to determine lateral facies continuity and changes. This report contains the data and analyses from the studied outcrops.

Jackson, S.R.; Rawn-Schatzinger, V.

1993-12-01T23:59:59.000Z

235

Horizontal natural gas storage caverns and methods for producing same  

DOE Patents (OSTI)

The invention provides caverns and methods for producing caverns in bedded salt deposits for the storage of materials that are not solvents for salt. The contemplated salt deposits are of the bedded, non-domed variety, more particularly salt found in layered formations that are sufficiently thick to enable the production of commercially usefully sized caverns completely encompassed by walls of salt of the formation. In a preferred method, a first bore hole is drilled into the salt formation and a cavity for receiving insolubles is leached from the salt formation. Thereafter, at a predetermined distance away from the first bore hole, a second bore hole is drilled towards the salt formation. As this drill approaches the salt, the drill assumes a slant approach and enters the salt and drills through it in a horizontal direction until it intersects the cavity for receiving insolubles. This produces a substantially horizontal conduit from which solvent is controlledly supplied to the surrounding salt formation, leaching the salt and producing a concentrated brine which is removed through the first bore hole. Insolubles are collected in the cavity for receiving insolubles. By controlledly supplying solvent, a horizontal cavern is produced with two bore holes extending therefrom.

Russo, Anthony (Albuquerque, NM)

1995-01-01T23:59:59.000Z

236

Upper Mission Canyon coated-grain producing facies in Williston basin  

SciTech Connect

The upper Mission Canyon formation, along the northeastern flank of the Williston basin, is a regressive carbonate and evaporite sequence, which has been informally divided into log-defined intervals. Oil production locally occurs at the transition from anhydrite to carbonate for each of the regressive intervals. These carbonate shoreline reservoirs are limestones dominated by coated grains. Porosity is intergranular and vuggy, and production from these reservoirs locally exceeds 400,000 bbl of oil/well. Upper Mission Canyon beds are also productive in island-shoal reservoirs, which developed basinward of of shorelines. These limestone reservoirs are also dominated by coated grains and porosity is intergranular and vuggy. Oil production from these reservoirs is variable, but wells within the Sherwood field along the US-Canadian border have produced over 2.0 MMbbl of oil/well.

Hendricks, M.L. (Hendricks and Associates, Inc., Denver, CO (USA))

1989-08-01T23:59:59.000Z

237

Financial News for Major Energy Producers, Third Quarter 2010  

Gasoline and Diesel Fuel Update (EIA)

Producers, Third Quarter 2010 Producers, Third Quarter 2010 Release Date: January 5, 2011 Next Release Date: To Be Determined Report Sections: Corporate and Petroleum Net Income Worldwide Oil and Gas Production Operations Worldwide Refining/Marketing Operations Worldwide Petroleum Capital Expenditures Worldwide Downstream Natural Gas and Power, and Chemicals Operations Supplemental Figures Supplemental Tables Download this Report: Full Report in PDF-Format Past Issues in PDF-Format Additional Information FRS Home Financial Terms Glossary Contacts Notes: The "Financial News for Major Energy Producers" is issued quarterly to report recent trends in the financial performance of the major energy producers. "Major energy producers" are respondents to Form EIA-28 (Financial Reporting System). All U.S.-based respondent companies that

238

Well Monitoring System for EGS  

Energy.gov (U.S. Department of Energy (DOE))

EGS well monitoring tools offer a unique set of solutions which will lower costs and increase confidence in future geothermal projects.

239

Thermal well-test method  

DOE Patents (OSTI)

A well-test method involving injection of hot (or cold) water into a groundwater aquifer, or injecting cold water into a geothermal reservoir is disclosed. By making temperature measurements at various depths in one or more observation wells, certain properties of the aquifer are determined. These properties, not obtainable from conventional well test procedures, include the permeability anisotropy, and layering in the aquifer, and in-situ thermal properties. The temperature measurements at various depths are obtained from thermistors mounted in the observation wells.

Tsang, C.F.; Doughty, C.A.

1984-02-24T23:59:59.000Z

240

Oil removal for produced water treatment and micellar cleaning of ultrafiltration membranes.  

E-Print Network (OSTI)

??Produced water is a major waste produced from oil and natural gas wells in the state of Texas. This water could be a possible source… (more)

Beech, Scott Jay

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "formation producing wells" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Heating tar sands formations while controlling pressure  

DOE Patents (OSTI)

Methods for treating a tar sands formation are described herein. Methods may include heating at least a section of a hydrocarbon layer in the formation from a plurality of heaters located in the formation. A pressure in the majority of the section may be maintained below a fracture pressure of the formation. The pressure in the majority of the section may be reduced to a selected pressure after the average temperature reaches a temperature that is above 240.degree. C. and is at or below pyrolysis temperatures of hydrocarbons in the section. At least some hydrocarbon fluids may be produced from the formation.

Stegemeier, George Leo (Houston, TX) [Houston, TX; Beer, Gary Lee (Houston, TX) [Houston, TX; Zhang, Etuan (Houston, TX) [Houston, TX

2010-01-12T23:59:59.000Z

242

Kinetics of acrylamide formation in potato chips  

E-Print Network (OSTI)

in potato chips. Seven potato cultivars were analyzed to determine their influence on acrylamide formation during traditional and vacuum frying. The White Rose cultivar produced the highest level of acrylamide during both traditional and vacuum frying...

Granda, Claudia Esthela

2006-08-16T23:59:59.000Z

243

Development Wells At Fenton Hill HDR Geothermal Area (Dreesen...  

Open Energy Info (EERE)

into EE-2 at an average flow rate of 100 Ls and downhole pressure of 83 MPa, the fracture pattern produced again failed to connect the two wells. A third attempt to fracture...

244

Fraced horizontal well shows potential of deep tight gas  

SciTech Connect

Successful completion of a multiple fraced, deep horizontal well demonstrated new techniques for producing tight gas sands. In Northwest Germany, Mobil Erdgas-Erdoel GmbH drilled, cased, and fraced the world`s deepest horizontal well in the ultra-tight Rotliegendes ``Main`` sand at 15,687 ft (4,783 m) true vertical depth. The multiple frac concept provides a cost-efficient method to economically produce significant gas resources in the ultra-tight Rotliegendes ``Main`` sand. Besides the satisfactory initial gas production rate, the well established several world records, including deepest horizontal well with multiple fracs, and proved this new technique to develop ultra-tight sands.

Schueler, S. [Mobil Erdgas-Erdoel GmbH, Celle (Germany); Santos, R. [Mobil Erdgas-Erdoel GmbH, Hamburg (Germany)

1996-01-08T23:59:59.000Z

245

Definition: Stepout-Deepening Wells | Open Energy Information  

Open Energy Info (EERE)

Stepout-Deepening Wells Stepout-Deepening Wells Jump to: navigation, search Dictionary.png Stepout-Deepening Wells A well drilled at a later time over remote, undeveloped portions of a partially developed continuous reservoir rock. A deepening well is reentering a well and drilling to a deeper reservoir. Often referred to as an "infield exploration well" in the oil and gas industry.[1] Also Known As delayed development well References ↑ http://www.answers.com/topic/step-out-well Ste LikeLike UnlikeLike You like this.Sign Up to see what your friends like. p-out-well: a well drilled in the expected extent of a reservoir that is being developed but at a significant distance, usually two or more drilling and spacing units, from the nearest producer in that reservoir. A step-out

246

Testa Produce | Open Energy Information  

Open Energy Info (EERE)

Testa Produce Testa Produce Jump to: navigation, search Name Testa Produce Facility Testa Produce Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Testa Produce Developer Testa Produce Energy Purchaser Testa Produce Location Chicago IL Coordinates 41.81065982°, -87.65433311° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.81065982,"lon":-87.65433311,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

247

Consortium for Petroleum & Natural Gas Stripper Wells  

SciTech Connect

The Pennsylvania State University, under contract to the U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL), established a national industry-driven Stripper Well Consortium (SWC) that is focused on improving the production performance of domestic petroleum and/or natural gas stripper wells. The SWC represents a partnership between U.S. petroleum and natural gas producers, trade associations, state funding agencies, academia, and the NETL. This document serves as the twelfth quarterly technical progress report for the SWC. Key activities for this reporting period included: (1) Drafting and releasing the 2007 Request for Proposals; (2) Securing a meeting facility, scheduling and drafting plans for the 2007 Spring Proposal Meeting; (3) Conducting elections and announcing representatives for the four 2007-2008 Executive Council seats; (4) 2005 Final Project Reports; (5) Personal Digital Assistant Workshops scheduled; and (6) Communications and outreach.

Joel L. Morrison; Sharon L. Elder

2007-03-31T23:59:59.000Z

248

GAS INJECTION/WELL STIMULATION PROJECT  

SciTech Connect

Driver Production proposes to conduct a gas repressurization/well stimulation project on a six well, 80-acre portion of the Dutcher Sand of the East Edna Field, Okmulgee County, Oklahoma. The site has been location of previous successful flue gas injection demonstration but due to changing economic and sales conditions, finds new opportunities to use associated natural gas that is currently being vented to the atmosphere to repressurize the reservoir to produce additional oil. The established infrastructure and known geological conditions should allow quick startup and much lower operating costs than flue gas. Lessons learned from the previous project, the lessons learned form cyclical oil prices and from other operators in the area will be applied. Technology transfer of the lessons learned from both projects could be applied by other small independent operators.

John K. Godwin

2005-12-01T23:59:59.000Z

249

Pressure analysis for horizontal wells  

SciTech Connect

This paper presents horizontal-well test design and interpretation methods. Analytical solutions are developed that can be handled easily by a desktop computer to carry out design as well as interpretation with semilog and log-log analysis. These analytical solutions point out the distinctive behavior of horizontal wells: (1) at early time, there is a circular radial flow in a vertical plane perpendicular to the well, and (2) at late time, there is a horizontal pseudoradial flow. Each type of flow is associated with a semilog straight line to which semilog analysis has to be adapted. The horizontal pseudoradial flow takes into account a pseudoskin depending on system geometry, which is a priori defined and estimated. Practical time criteria are proposed to determine the beginning and the end of each type of flow and to provide a guide to semilog analysis and well test design. The authors study the behavior of uniform-flux or infinite-conductivity horizontal wells, with wellbore storage and skin. The homogeneous reservoir is infinite or limited by impermeable or constant-pressure boundaries. A method is also outlined to transform all our solutions for homogeneous reservoirs into corresponding solutions for double-porosity reservoirs.

Davlau, F.; Mouronval, G.; Bourdarot, G.; Curutchet, P.

1988-12-01T23:59:59.000Z

250

Horizontal oil well applications and oil recovery assessment. Volume 1: Success of horizontal well technology, Final report  

SciTech Connect

Horizontal technology has been applied in over 110 formations in the USA. Volume I of this study addresses the overall success of horizontal technology, especially in less-publicized formations, i.e., other than the Austin Chalk, Bakken, and Niobrara. Operators in the USA. and Canada were surveyed on a formation-by-formation basis by means of a questionnaire. Response data were received describing horizontal well projects in 58 formations in the USA. and 88 in Canada. Operators responses were analyzed for trends in technical and economic success based on lithology (clastics and carbonates) and resource type (light oil, heavy oil, and gas). The potential impact of horizontal technology on reserves was also estimated. A forecast of horizontal drilling activity over the next decade was developed.

Deskins, W.G.; McDonald, W.J.; Knoll, R.G.; Springer, S.J.

1995-03-01T23:59:59.000Z

251

Optimization of fractured well performance of horizontal gas wells  

E-Print Network (OSTI)

................................................24 3.4 Ideal Number of Transverse Fractures..........................................26 3.5 Constant Volume Transverse Fractures ........................................32 3.6... of a longitudinal fracture..............................................10 2.5 Example of horizontal well with longitudinal fracture performance .............11 2.6 DVS representation of transverse fractures...

Magalhaes, Fellipe Vieira

2009-06-02T23:59:59.000Z

252

Varying heating in dawsonite zones in hydrocarbon containing formations  

SciTech Connect

A method for treating an oil shale formation comprising dawsonite includes assessing a dawsonite composition of one or more zones in the formation. Heat from one or more heaters is provided to the formation such that different amounts of heat are provided to zones with different dawsonite compositions. The provided heat is allowed to transfer from the heaters to the formation. Fluids are produced from the formation.

Vinegar, Harold J. (Bellaire, TX); Xie, Xueying (Houston, TX); Miller, David Scott (Katy, TX)

2009-07-07T23:59:59.000Z

253

Well record | OpenEI  

Open Energy Info (EERE)

Well record Well record Dataset Summary Description This dataset contains oil and gas drilling and permit records for February 2011. State oil and gas boards and commissions make oil and gas data and information open to the public. To view the full range of data contained at the Alaska Oil and Gas Conservation Commission, visit http://doa.alaska.gov/ogc/ Source Alaska Oil and Gas Conservation Commission Date Released February 28th, 2011 (3 years ago) Date Updated Unknown Keywords Alaska Commission gas oil Well record Data application/vnd.ms-excel icon http://doa.alaska.gov/ogc/drilling/dindex.html (xls, 34.3 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Monthly Time Period License License Open Data Commons Public Domain Dedication and Licence (PDDL)

254

General inflow performance relationship for solution-gas reservoir wells  

SciTech Connect

Two equations are developed to describe the inflow performance relationship (IPR) of wells producing from solution-gas drive reservoirs. These are general equations (extensions of the currently available IPR's) that apply to wells with any drainage-area shape at any state of completion flow efficiency and any stage of reservoir depletion. 7 refs.

Dias-Couto, L.E.; Golan, M.

1982-02-01T23:59:59.000Z

255

Method of producing submicron size particles and product produced thereby  

DOE Patents (OSTI)

Submicron size particles are produced by using a sputtering process to deposit particles into a liquid. The liquid is processed to recover the particles therefrom, and the particles have sizes in the range of twenty to two hundred Angstroms. Either metallic or non-metallic particles can be produced, and the metallic particles can be used in ''metallic inks.'' 4 figs.

Bourne, R.S.; Eichman, C.C.; Welbon, W.W.

1988-05-11T23:59:59.000Z

256

Discharge produces hydrocarbons from coal  

Science Journals Connector (OSTI)

Discharge produces hydrocarbons from coal ... Studies of the reactions of coal in electric discharges by two chemists at the U.S. Bureau of Mines' Pittsburgh Coal Research Center may lead to improved ways of producing acetylene and other useful chemicals from coal. ... Other workers have produced high yields of acetylene from coal by extremely rapid pyrolysis using energy sources such as plasma jets, laser beams, arc-image reactors, and flash heaters. ...

1968-01-22T23:59:59.000Z

257

Method for producing high quality thin layer films on substrates  

DOE Patents (OSTI)

A method for producing high quality, thin layer films of inorganic compounds upon the surface of a substrate is disclosed. The method involves condensing a mixture of preselected molecular precursors on the surface of a substrate and subsequently inducing the formation of reactive species using high energy photon or charged particle irradiation. The reactive species react with one another to produce a film of the desired compound upon the surface of the substrate.

Strongin, Myron (Center Moriches, NY); Ruckman, Mark (Middle Island, NY); Strongin, Daniel (Port Jefferson, NY)

1994-01-01T23:59:59.000Z

258

Method for producing high quality thin layer films on substrates  

DOE Patents (OSTI)

A method for producing high quality, thin layer films of inorganic compounds upon the surface of a substrate is disclosed. The method involves condensing a mixture of preselected molecular precursors on the surface of a substrate and subsequently inducing the formation of reactive species using high energy photon or charged particle irradiation. The reactive species react with one another to produce a film of the desired compound upon the surface of the substrate. 4 figures.

Strongin, M.; Ruckman, M.; Strongin, D.

1994-04-26T23:59:59.000Z

259

ANAEROBIC BIOLOGICAL TREATMENT OF PRODUCED WATER  

SciTech Connect

During the production of oil and gas, large amounts of water are brought to the surface and must be disposed of in an environmentally sensitive manner. This is an especially difficult problem in offshore production facilities where space is a major constraint. The chief regulatory criterion for produced water is oil and grease. Most facilities have little trouble meeting this criterion using conventional oil-water separation technologies. However, some operations have significant amounts of naphthenic acids in the water that behave as oil and grease but are not well removed by conventional technologies. Aerobic biological treatment of naphthenic acids in simulated-produced water has been demonstrated by others; however, the system was easily overloaded by the large amounts of low-molecular-weight organic acids often found in produced waters. The objective of this research was to determine the ability of an anaerobic biological system to treat these organic acids in a simulated produced water and to examine the potential for biodegradation of the naphthenic acids in the anaerobic environment. A small fixed-film anaerobic biological reactor was constructed and adapted to treat a simulated produced water. The bioreactor was tubular, with a low-density porous glass packing material. The inocula to the reactor was sediment from a produced-water holding pond from a municipal anaerobic digester and two salt-loving methanogenic bacteria. During start-up, the feed to the reactor contained glucose as well as typical produced-water components. When glucose was used, rapid gas production was observed. However, when glucose was eliminated and the major organic component was acetate, little gas was generated. Methane production from acetate may have been inhibited by the high salt concentrations, by sulfide, or because of the lack, despite seeding, of microbes capable of converting acetate to methane. Toluene, a minor component of the produced water (0.1 g/L) was removed in the reactor. Batch tests were conducted to examine naphthenic acid biodegradability under several conditions. The conditions used were seed from the anaerobic reactor, wetland sediments under aerobic and anaerobic conditions, and a sterile control. The naphthenic acid was from a commercial source isolated from Gulf Coast petroleum as was dosed at 2 mg/mL. The incubations were for 30 days at 30 C. The results showed that the naphthenic acids were not biodegraded under anaerobic conditions, but were degraded under aerobic conditions. Despite poor performance of the anaerobic reactor, it remains likely that anaerobic treatment of acetate, toluene, and, potentially, other produced-water components is feasible.

John R. Gallagher

2001-07-31T23:59:59.000Z

260

Conductivity heating a subterranean oil shale to create permeability and subsequently produce oil  

SciTech Connect

This patent describes an improvement in a process in which oil is produced from a subterranean oil shale deposit by extending at least one each of heat-injecting and fluid-producing wells into the deposit, establishing a heat-conductive fluid-impermeable barrier between the interior of each heat-injecting well and the adjacent deposit, and then heating the interior of each heat-injecting well at a temperature sufficient to conductively heat oil shale kerogen and cause pyrolysis products to form fractures within the oil shale deposit through which the pyrolysis products are displaced into at least one production well. The improvement is for enhancing the uniformity of the heat fronts moving through the oil shale deposit. Also described is a process for exploiting a target oil shale interval, by progressively expanding a heated treatment zone band from about a geometric center of the target oil shale interval outward, such that the formation or extension of vertical fractures from the heated treatment zone band to the periphery of the target oil shale interval is minimized.

Van Meurs, P.; DeRouffignac, E.P.; Vinegar, H.J.; Lucid, M.F.

1989-12-12T23:59:59.000Z

Note: This page contains sample records for the topic "formation producing wells" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Interference well testing—variable fluid flow rate  

Science Journals Connector (OSTI)

At present when conducting an interference well test a constant flow rate (at the 'active' well) is utilized and the type-curve matching technique (where only 2–3 values of pressure drops are matched) is used to estimate the porosity–total compressibility product and formation permeability. For oil and geothermal reservoirs with low formation permeability the duration of the test may require a long period of time and it can be difficult to maintain a constant flow rate. The qualitative term 'long' period of time means that (at a given distance between the 'active' and 'observational' well) more test time (for low permeability formations) is needed to obtain tangible pressure drops in the 'observational' well. In this study we present working equations which will allow us to process field data when the flow rate at the 'active' well is a function of time. The shut-in period is also considered. A new method of field data processing, where all measured pressure drops are utilized, is proposed. The suggested method allows us to make use of the statistical theory to obtain error estimates on the regression parameters. It is also shown that when high precision (resolution) pressure gauges are employed the pressure time derivative equations can be used for the determination of formation hydraulic diffusivity. An example is presented to demonstrate the data processing procedure.

I M Kutasov; L V Eppelbaum; M Kagan

2008-01-01T23:59:59.000Z

262

Generalized IPR curves for predicting well behavior. [Inflow Performance Relation  

SciTech Connect

Oil well productivity calculations are required to relate surface measured oil rate to the pressure drawdown of the well in order to predict well behavior. The productivity index concept and the inflow performance relation concept can be combined to derive a workable form of a well's deliverability which covers the entire pressure range above and below the bubble point. A procedure for predicting well behavior is presented using equations to determine the relationship between shut-in bottom-hole pressure, bubble point pressure, and bottom-hole producing pressure. An example calculation is provided comparing 2 wells. The conclusion is that one set of production test data (rate and bottom-hole producing pressure) together with the shut-in bottom-hole pressure (or average reservoir pressure) and bubble point pressure are enough to construct a reliable inflow performance relation.

Patton, L.D.; Goland, M.

1980-06-01T23:59:59.000Z

263

Geohydrologic feasibility study of the Piceance Basin of Colorado for the potential applicability of Jack W. McIntyre`s patented gas/produced water separation process  

SciTech Connect

Geraghty & Miller, Inc. of Midland, Texas conducted geologic and hydrologic feasibility studies of the potential applicability of Jack McIntyre`s patented process for the recovery of natural gas from coalbed/sand formations in the Piceance Basin through literature surveys. Jack McIntyre`s tool separates produced water from gas and disposes of the water downhole into aquifers unused because of poor water quality, uneconomic lifting costs or poor aquifer deliverability. The beneficial aspects of this technology are two fold. The process increases the potential for recovering previously uneconomic gas resources by reducing produced water lifting, treatment and disposal costs. Of greater importance is the advantage of lessening the environmental impact of produced water by downhole disposal. Results from the survey indicate that research in the Piceance Basin includes studies of the geologic, hydrogeologic, conventional and unconventional recovery oil and gas technologies. Available information is mostly found centered upon the geology and hydrology for the Paleozoic and Mesozoic sediments. Lesser information is available on production technology because of the limited number of wells currently producing in the basin. Limited information is available on the baseline geochemistry of the coal/sand formation waters and that of the potential disposal zones. No determination was made of the compatibility of these waters. The study also indicates that water is often produced in variable quantities with gas from several gas productive formations which would indicate that there are potential applications for Jack McIntyre`s patented tool in the Piceance Basin.

Kieffer, F.

1994-02-01T23:59:59.000Z

264

Investigation and evaluation of geopressured-geothermal wells  

SciTech Connect

Over the life of the project, 1143 wildcat wells were screened for possible use. Although many did not meet the program's requirement for sand development, a surprisingly large number were abandoned because of downhole mechanical problems. Only 94 of these wells were completed as commercial hydrocarbon producers. Five wells of opportunity were funded for testing. Of these, two were evaluated for their hydraulic energy, thermal energy, and recoverable methane, and three were abandoned because of mechanical problems. (MHR)

Hartsock, J.H.; Rodgers, J.A.

1980-09-01T23:59:59.000Z

265

Method for producing a borohydride  

DOE Patents (OSTI)

A method for producing a borohydride is described and which includes the steps of providing a source of borate; providing a material which chemically reduces the source of the borate to produce a borohydride; and reacting the source of borate and the material by supplying heat at a temperature which substantially effects the production of the borohydride.

Kong, Peter C. (Idaho Falls, ID)

2008-09-02T23:59:59.000Z

266

Heating tar sands formations to visbreaking temperatures  

DOE Patents (OSTI)

Methods for treating a tar sands formation are described herein. Methods may include heating at least a section of a hydrocarbon layer in the formation from a plurality of heaters located in the formation. The heat may be controlled so that at least a majority of the section reaches an average temperature of between 200.degree. C. and 240.degree. C., which results in visbreaking of at least some hydrocarbons in the section. At least some visbroken hydrocarbon fluids may be produced from the formation.

Karanikas, John Michael (Houston, TX); Colmenares, Tulio Rafael (Houston, TX); Zhang, Etuan (Houston, TX); Marino, Marian (Houston, TX); Roes, Augustinus Wilhelmus Maria (Houston, TX); Ryan, Robert Charles (Houston, TX); Beer, Gary Lee (Houston, TX); Dombrowski, Robert James (Houston, TX); Jaiswal, Namit (Houston, TX)

2009-12-22T23:59:59.000Z

267

Recovery of bypassed oil in the Dundee Formation using horizontal drains. Annual report, March 1996--March 1997  

SciTech Connect

This Class II field project has demonstrated that economic quantities of hydrocarbons can be produced from abandoned or nearly abandoned fields in the Dundee Formation of Central Michigan using horizontal drilling technology. The site selected for the demonstration horizontal well was Crystal Field, a nearly abandoned Dundee oil field in Montcalm County, Michigan. This field had produced over 8 million barrels of oil, mostly in the 1930`s and 1940`s. At the height of development, Crystal Field produced from 193 wells, but by 1995, only seven producing wells remained, each producing less than 10 bbls/day. A horizontal well, the TOW 1-3, drilled as a field demonstration pilot was successful, producing at rate of 100 bbls of oil per day with a zero water cut. Although the well is capable of producing at a of 500+ bbls/day, the production rate is being kept low deliberately to try to prevent premature water coning. Cumulative production exceeded 50,000 bbls of oil by the end of April, 1997 and lead to the permitting and licensing of several dozen Dundee wells by project end. Twelve of these permits were for continued development of Crystal Field. Two long horizontal wells were drilled successfully in Crystal after the TOW 1-3, but were disappointing economically. Core and logs from the Dundee interval were recovered from a vertical borehole at the same surface location. The addition of several horizontal wells will likely add another 2 million bbls (or more) to the cumulative production of the field over the next few years. If other abandoned Dundee fields are re-developed in a similar manner, the additional oil produced could exceed 80 million barrels.

NONE

1998-04-01T23:59:59.000Z

268

The Effect of Cement Mechanical Properties and Reservoir Compaction on HPHT Well Integrity  

E-Print Network (OSTI)

in maintaining wellbore integrity. During the production process in HPHT wells, the pressure differential inside the casing and the surrounding formation is larger than the conventional wells. The stress induced by fluid withdrawal in highly compact reservoirs...

Yuan, Zhaoguang

2012-11-15T23:59:59.000Z

269

Borehole completion data package for well 199-N-81  

SciTech Connect

Well 199-N-81 was drilled in 1993 as a RCRA groundwater monitoring for the 1324-N network. The well is completed at the top of the uppermost aquifer, in the Ringold Formation. This data package includes information on drilling, construction, development, and aquifer testing. Copies of forms, notes, and diagrams completed in the field comprise the bulk of this document. Few interpretations are included. Lithologic contacts were picked by the site geologist. An attempt was made to interpret aquifer test data.

Hartman, M.J.

1994-05-05T23:59:59.000Z

270

OPTICAL EMISSION DIAGNOSTICS OF LASER PRODUCED PLASMA FROM  

E-Print Network (OSTI)

OPTICAL EMISSION DIAGNOSTICS OF LASER PRODUCED PLASMA FROM GRAPHITE AND YBa2Cu30 7 HARILAL. s irradiances, ionization occurs which leads to the plasma formation. Spectroscopic studies of optical emission and the resulting plasma. Optical emission spectroscopy is a technique which analyzes the light emitted from

Harilal, S. S.

271

Productivity and Injectivity of Horizontal Wells  

SciTech Connect

A general wellbore flow model is presented to incorporate not only frictional, accelerational and gravitational pressure drops, but also the pressure drop caused by inflow. Influence of inflow or outflow on the wellbore pressure drop is analyzed. New friction factor correlations accounting for both inflow and outflow are also developed. The greatest source of uncertainty is reservoir description and how it is used in simulators. Integration of data through geostatistical techniques leads to multiple descriptions that all honor available data. The reality is never known. The only way to reduce this uncertainty is to use more data from geological studies, formation evaluation, high resolution seismic, well tests and production history to constrain stochastic images. Even with a perfect knowledge about reservoir geology, current models cannot do routine simulations at a fine enough scale. Furthermore, we normally don't know what scale is fine enough. Upscaling introduces errors and masks some of the physical phenomenon that we are trying to model. The scale at which upscaling is robust is not known and it is probably smaller in most cases than the scale actually used for predicting performance. Uncertainties in the well index can cause errors in predictions that are of the same magnitude as those caused by reservoir heterogeneities. Simplified semi-analytical models for cresting behavior and productivity predictions can be very misleading.

Khalid Aziz; Sepehr Arababi; Thomas A. Hewett

1997-04-29T23:59:59.000Z

272

Coke formation during pyrolysis of 1,2-dichloroethane  

SciTech Connect

Most processes involving hydrocarbons or carbon oxides at high temperatures suffer from the disadvantage of coke formation. The formation of coke deposits during pyrolysis of hydrocarbons or chlorinated hydrocarbons is of significant practical importance. Examples of such processes are the steam cracking of alkanes to produce olefins and the thermal decomposition of 1,2-dichloroethane (EDC) for the production of vinyl chloride monomer (VCM). Even id the rate of coke production is low, the cumulative nature of the solid product will result in reactor fouling. The present work deals with the thermal decomposition of EDC. Coke formation has been studied on metal surfaces in a quartz tubular reactor. The rate of coke deposition was measures on metal foils hanging from one arm of a microbalance. A complete analysis of the product gas was accomplished using on-line gas chromatography. The results show that coke deposition during thermal decomposition of EDC depends on the composition of the feed as well as on the nature of the surface of the metal foil. Small amounts of other components (contamination with other chlorinated hydrocarbons as an example) may have a large influence on the rate of coke formation. The results are discussed in terms of surface composition/morphology of the metal foil and the free radical mechanism for thermal decomposition of FDC.

Holmen, A. [Norwegian Institute of Technology, Trondheim (Norway); Lindvag, O.A. [SINTEF Applied Chemistry, Trondheim (Norway)

1995-12-31T23:59:59.000Z

273

Methods and systems for producing fluid from an in situ conversion process  

DOE Patents (OSTI)

A system configured to heat a portion of a formation includes a plurality of heat sources. At least one production well is in the formation. A bottom portion of the production well is a sump in an underburden of the formation below the heated portion of the formation. Fluids from the heated portion of the formation are allowed to flow into the sump. A pump system has an inlet in the sump. A production conduit is coupled to the pump system. The production conduit is configured to transport fluids in the sump out of the formation.

Fairbanks, Michael David (Katy, TX); Keltner, Thomas Joseph (Spring, TX); McKinzie, II, Billy John (Houston, TX); Hirshblond, Stephen Palmer (Houston, TX)

2012-07-31T23:59:59.000Z

274

A new well surveying tool  

E-Print Network (OSTI)

directional well was to tip the entire rig, then block up one side of the rotary table so as to incline the uppermost joint of the drill pipe. The accuracy obtained by this method left much to be desired. The technique of controlled directional drilling... by Surveying Device for S and 19 , N and 41 . 21 3. Comparison of Measured Angles and Angles Indicated by Surveying Device for NE snd 9 , W and 45 . . . . . . . ~ 22 ABSTRNl T Ever since the advent of rotary drilling the petroleum industry has been...

Haghighi, Manuchehr Mehdizabeh

1966-01-01T23:59:59.000Z

275

Cellulase producing microorganism ATCC 55702  

DOE Patents (OSTI)

Bacteria which produce large amounts of cellulase--containing cell-free fermentate have been identified. The original bacterium (ATCC 55703) was genetically altered using nitrosoguanidine (MNNG) treatment to produce the enhanced cellulase producing bacterium (ATCC 55702), which was identified through replicate plating. ATCC 55702 has improved characteristics and qualifies for the degradation of cellulosic waste materials for fuel production, food processing, textile processing, and other industrial applications. ATCC 55702 is an improved bacterial host for genetic manipulations using recombinant DNA techniques, and is less likely to destroy genetic manipulations using standard mutagenesis techniques.

Dees, H. Craig (Lenoir City, TN)

1997-01-01T23:59:59.000Z

276

Microorganisms for producing organic acids  

DOE Patents (OSTI)

Organic acid-producing microorganisms and methods of using same. The organic acid-producing microorganisms comprise modifications that reduce or ablate AcsA activity or AcsA homolog activity. The modifications increase tolerance of the microorganisms to such organic acids as 3-hydroxypropionic acid, acrylic acid, propionic acid, lactic acid, and others. Further modifications to the microorganisms increase production of such organic acids as 3-hydroxypropionic acid, lactate, and others. Methods of producing such organic acids as 3-hydroxypropionic acid, lactate, and others with the modified microorganisms are provided. Methods of using acsA or homologs thereof as counter-selectable markers are also provided.

Pfleger, Brian Frederick; Begemann, Matthew Brett

2014-09-30T23:59:59.000Z

277

Cellulase producing microorganism ATCC 55702  

DOE Patents (OSTI)

Bacteria which produce large amounts of cellulase--containing cell-free fermentate have been identified. The original bacterium (ATCC 55703) was genetically altered using nitrosoguanidine (MNNG) treatment to produce the enhanced cellulase producing bacterium (ATCC 55702), which was identified through replicate plating. ATCC 55702 has improved characteristics and qualifies for the degradation of cellulosic waste materials for fuel production, food processing, textile processing, and other industrial applications. ATCC 55702 is an improved bacterial host for genetic manipulations using recombinant DNA techniques, and is less likely to destroy genetic manipulations using standard mutagenesis techniques. 5 figs.

Dees, H.C.

1997-12-30T23:59:59.000Z

278

Health Education & Wellness - HPMC Occupational Health Services  

NLE Websites -- All DOE Office Websites (Extended Search)

Wellness Health Education & Wellness Health Education & Wellness Downloads & Patient Materials Health & Productivity Health Calculators & Logs Health Coaching Health Fairs and...

279

NETL: News Release - Regional Partnership Completes 8,000-foot Well for  

NLE Websites -- All DOE Office Websites (Extended Search)

4, 2007 4, 2007 Regional Partnership Completes 8,000-foot Well for Critical Carbon Sequestration Assessment Midwest Regional Carbon Sequestration Partnership Prepares for Test of Geologic Carbon Sequestration in Appalachian Basin WASHINGTON, DC - The Midwest Regional Carbon Sequestration Partnership (MRCSP) has completed an 8,000-foot well at FirstEnergy's R. E. Burger Plant near Shadyside, Ohio, in preparation for a geologic sequestration field test. Sponsored by the Office of Fossil Energy's National Energy Technology Laboratory, the field test will determine the feasibility of storing CO2 in deep saline formations in the Appalachian Basin. "The carbon sequestration field test in the Appalachian Basin is an important step in turning the promise of carbon sequestration into a reality," said Acting Assistant Secretary for Fossil Energy Tom Shope. "By assessing carbon storage in an area of the country that produces 20 percent of the nation's electricity, the test helps pave the way toward a future in which America's abundant fossil resources can be used to produce energy without contributing to global climate change."

280

Remote system for subsea wells tested  

SciTech Connect

At its experimental submarine station in the Grondin field offshore the West African state of Gabon, Societe Nationale Elf-Aquitaine has run a series of inspection, repair, and maintenance tests on two producing wells using a robot controlled from the surface. Designed for water depths beyond the range of divers, the TIM robot has a pair of manipulator arms and a rotating telescopic crane installed on a 14 by 7.6 ft carriage. Five television cameras fitted at various spots on the robot allow surface operators to direct TIM in such tasks as (1) installing a jumper pipe between a Christmas tree and the manifold, (2) connecting a jumper electric cable and hydraulic hose, (3) locally operating a safety valve, and (4) removing a guide line. During 104 hr of seabed experience, TIM outperformed divers, particularly in jobs requiring great strength.

Vielvoye, R.

1981-05-04T23:59:59.000Z

Note: This page contains sample records for the topic "formation producing wells" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Category:Production Wells | Open Energy Information  

Open Energy Info (EERE)

Production Wells page? For detailed information on Production Wells, click here. Category:Production Wells Add.png Add a new Production Wells Technique Pages in category...

282

System for stabbing well casing  

SciTech Connect

Apparatus for stabbing well casing to join casing sections to each other, includes a rotary table assembly for supporting a casing section in a well bore, a derrick over the rotary table assembly, a crown block at the top of the derrick, a first piston and cylinder subassembly pivotally mounted on one side of the derrick over the rotary table assembly and below the crown block for pivotation about a horizontal axis, a second piston and cylinder subassembly pivotally mounted on a second side of the derrick for pivotation about a horizontal axis. The second piston and cylinder subassembly is located over the rotary table assembly and below the crown block and extends substantially normal to the direction of extension of the first piston and cylinder subassembly. The cooperating casing clamping elements are carried on the piston rods of the first and second piston and cylinder subassemblies, and counter balancing subassemblies are connected to the first and second piston and cylinder subassemblies for pivoting the first and second piston and cylinder subassemblies to a vertically extending inoperative position.

McArthur, J.R.

1984-04-03T23:59:59.000Z

283

Cost analysis of oil, gas, and geothermal well drilling  

Science Journals Connector (OSTI)

Abstract This paper evaluates current and historical drilling and completion costs of oil and gas wells and compares them with geothermal wells costs. As a starting point, we developed a new cost index for US onshore oil and gas wells based primarily on the API Joint Association Survey 1976–2009 data. This index describes year-to-year variations in drilling costs and allows one to express historical drilling expenditures in current year dollars. To distinguish from other cost indices we have labeled it the Cornell Energy Institute (CEI) Index. This index has nine sub-indices for different well depth intervals and has been corrected for yearly changes in drilling activity. The CEI index shows 70% higher increase in well cost between 2003 and 2008 compared to the commonly used Producer Price Index (PPI) for drilling oil and gas wells. Cost trends for various depths were found to be significantly different and explained in terms of variations of oil and gas prices, costs, and availability of major well components and services at particular locations. Multiple methods were evaluated to infer the cost-depth correlation for geothermal wells in current year dollars. In addition to analyzing reported costs of the most recently completed geothermal wells, we investigated the results of the predictive geothermal well cost model WellCost Lite. Moreover, a cost database of 146 historical geothermal wells has been assembled. The CEI index was initially used to normalize costs of these wells to current year dollars. A comparison of normalized costs of historical wells with recently drilled ones and WellCost Lite predictions shows that cost escalation rates of geothermal wells were considerably lower compared to hydrocarbon wells and that a cost index based on hydrocarbon wells is not applicable to geothermal well drilling. Besides evaluating the average well costs, this work examined economic improvements resulting from increased drilling experience. Learning curve effects related to drilling multiple similar wells within the same field were correlated.

Maciej Z. Lukawski; Brian J. Anderson; Chad Augustine; Louis E. Capuano Jr.; Koenraad F. Beckers; Bill Livesay; Jefferson W. Tester

2014-01-01T23:59:59.000Z

284

CONVERT 15 WELLS TO BORS PUMPING UNITS AND TEST/COMPARE TO CONVENTIONAL UNITS  

SciTech Connect

A new type of fluid lifting equipment called Balanced Oil Recovery System (trade named BORS Lift{trademark}) was installed on several idle oil wells to demonstrate the operating efficiency of this innovative equipment technology. The BORS Lift system is designed to bring oil to the surface without the accompanying formation water. The BORS Lift system uses an innovative strap mechanism that takes oil from the top of the downhole oilwater column and lifts it to the surface, eliminating production of the formation water. Eliminating salt water production could potentially increase oil production, reduce operational costs, benefit the environment, and cut salt water disposal costs. Although the BORS Lift units did not function as intended, lessons learned during the course of the field demonstration project resulted in improvements in the technology and redesign of subsequent generation BORS Lift units which are reported to have significantly improved their performance characteristics. BORS Lift units were installed on 15 temporarily abandoned wells which had been shut down due to low oil production, high water production, and uneconomic operating conditions. The wells had been producing with artificial lift at a high watercut from a shallow (850-900 feet), pressure depleted oil sand reservoir prior to being shut down. The electrical motor driven BORS Lift units provided a possible approach for economically returning the shallow, low-volume oil wells to production. The BORS Lift units used in this field demonstration were designed to recover up to roughly 22 barrels of fluid per day from depths ranging to 1,700 feet, ideal for many marginal stripper well operations. The BORS units were first-production-model test units, operated under oil field conditions for the first time, and were naturally expected to experience some design problems. From the onset, the operator experienced mechanical, design, and operational problems with the BORS Lift units and was unable to maintain un-interrupted production operations. The inventor provided considerable on-site technical support in an ongoing effort to correct the problems with the units and the inventor worked extensively with the operator to make design and manufacturing changes to the units to try to improve their reliability and performance. The operational problems were mostly related to the durability of the various components under oil field operating conditions such as inadequate mechanical, electrical, and electronic design for rough service, extended operation, and severe weather conditions. During the course of the demonstration project, it further appeared that the producing formation lacked sufficient reservoir energy and/or favorable oil properties to mobilize and displace oil from the formation into the well bore in order to recharge the oil column in the well. The BORS Lift units were then moved to a second lease which appeared to have more favorable WTI quality oil properties. Eight of these units were reported to have been installed and placed in operation on the second lease, however, operational difficulties continued. It was determined that the units were inadequately designed and would need to be replace by improved second generation units. Due to the lack of success with the first generation units and the extra cost to replace them with the redesigned units, the operators decided not to continue with the project and the project was terminated at that point.

Walter B. North

2003-02-04T23:59:59.000Z

285

Conceptual study of thermal stimulation in shale gas formations  

Science Journals Connector (OSTI)

Abstract Shale gas formations have become a major source of energy in recent years. Developments in hydraulic fracturing technology have made these reservoirs more accessible and productive. Apart from other dissimilarities from conventional gas reservoirs, one major difference is that a considerable amount of gas produced from these shale gas formations comes from desorption. Up to 85% of the total gas within shale can be found as an adsorbed phase on clay and kerogen, so how much adsorbed gas can be produced will have significant impact on ultimate gas recovery. The Langmuir isotherm has been widely used in industry to describe the pressure dependence of adsorbed gas. However, temperature dependent adsorption behavior and its major implications for evaluating thermal stimulation as a recovery method for shale reservoirs have not been thoroughly explored. Therefore, in order to design and analyze the thermal treatment of shale gas formations successfully, it is crucial to understand the effects of fracture heating on the shale gas adsorption and desorption phenomenon, and how can we exploit such effects to enhance shale gas recovery from hydraulically fractured reservoirs. Even though numerous research efforts have been focused on thermal recovery of shale oil, its possible application to shale gas has not been investigated. In this research, we propose a method to evaluate desorbed gas as a function of pressure and temperature in shale formations, by regression of a Bi-Langmuir model on Langmuir isotherm data. We have developed a fully coupled unconventional reservoir simulator, which is capable of capturing real gas flow in the shale matrix and in the hydraulic fracture by accounting for the effects of gas desorption and diffusion, as well as the temperature diffusion process within the matrix. This simulator enables us to investigate the effects of fracture heating on the shale gas desorption phenomenon on the global well performance and recovery. The results of this study show, for the first time in a rigorous way, that by increasing the temperature within the fracture, shale gas recovery can be improved. We have rationalized and quantified relations between the adsorption/desorption fundamental phenomena and stimulation temperature, fracture spacing, reservoir permeability and bottom hole pressure. The thermal properties of shale formations only have limited impacts on long term production. The results of this study can provide a guidance to develop a strategy to design thermal treatment in hydraulically fractured shale formations and propose the degree of thermal stimulation temperature required in a fracture to promote an economically viable return on production.

HanYi Wang; Omobola Ajao; Michael J. Economides

2014-01-01T23:59:59.000Z

286

Completion Report for Well ER-2-1  

SciTech Connect

Well ER-2-1 was drilled for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (formerly Nevada Operations Office), in support of the Nevada Environmental Restoration Project at the Nevada Test Site, Nye County, Nevada. This well was drilled in February and March of 2003, as part of a hydrogeologic investigation program for the Yucca Flat/Climax Mine Corrective Action Unit in the northeastern portion of the Nevada Test Site. Well ER-2-1 was drilled as part of the Yucca Flat Corrective Action Unit Phase I drilling initiative. The well is located in north central Yucca Flat within Area 2 of the Nevada Test Site, and provided information regarding the radiological and physical environment near underground nuclear tests conducted in a saturated volcanic aquifer setting. Detailed lithologic descriptions with stratigraphic assignments are included in this report. These are based on composite drill cuttings collected every 3 meters and 83 sidewall samples taken at various depths between 113.7 and 754.4 meters, supplemented by geophysical log data. Detailed petrographic, chemical, and mineralogical studies of rock samples were conducted on 27 samples of drill cuttings. The well was collared in tuffaceous alluvium, and penetrated Tertiary-age tuffs of the Timber Mountain and Paintbrush Groups, Calico Hills and Wahmonie Formations, Crater Flat Group, Grouse Canyon Formation, before reaching total depth in the Tunnel Bed Formation.

Bechtel Nevada

2004-10-01T23:59:59.000Z

287

Two wells drilled from one surface bore with downhole splitter  

SciTech Connect

A downhole multiwell drilling template, called a downhole splitter, allows two wells to be drilled, cased, and completed from one well bore. After completion, each well can be produced, serviced, and worked over independently of the other. The downhole splitter was successfully field tested in Wyoming. The downhole splitter is suitable for use on offshore platforms, subsea completions, offshore exploitation and delineation wells, inland waters, and onshore in environmentally sensitive areas. It is also ideal for planned multilateral or multivertical completions. The paper describes the downholds splitter and its development, then discusses the field test: casing program, directional procedure, and results.

Collins, G. (Marathon Oil Co., Houston, TX (United States)); Bennett, R. (Baker Oil Tools, Houston, TX (United States))

1994-10-03T23:59:59.000Z

288

Monitoring Results Natural Gas Wells Near Project Rulison  

Office of Legacy Management (LM)

Natural Gas Wells Near Project Rulison Third Quarter 2013 U.S. Department of Energy Office of Legacy Management Grand Junction, Colorado Date Sampled: June 12, 2013 Background: Project Rulison was the second Plowshare Program test to stimulate natural-gas recovery from deep and low permeability formations. On September 10, 1969, a 40-kiloton-yield nuclear device was detonated 8,426 feet (1.6 miles) below the ground surface in the Williams Fork Formation at what is now the Rulison, Colorado, Site. Following the detonation, a series of production tests were conducted. Afterwards, the site was shut down, then remediated and the emplacement well (R-E) and reentry well (R-Ex) plugged. Purpose: As part of the U.S. Department of Energy (DOE) Office of Legacy Management (LM) mission

289

Visualizing motion in potential wells  

Science Journals Connector (OSTI)

The concept of potential-energy diagrams is of fundamental importance in the study of quantum physics. Yet students are rarely exposed to this powerful alternative description in introductory classes and thus have difficulty comprehending its significance when they encounter it in beginning-level quantum courses. We describe a learning unit that incorporates a sequence of computer-interfaced experiments using dynamics or air-track systems. This unit is designed to make the learning of potential-energy diagrams less abstract. Students begin by constructing the harmonic or square-well potential diagrams using either the velocity data and assuming conservation of energy or the force-displacement graph for the elasticinteraction of an object constrained by springs or bouncing off springy blocks. Then they investigate the motion of a rider magnetinteracting with a configuration of field magnets and plot directly the potential-energy diagrams using a magnetic field sensor. The ease of measurement allows exploring the motion in a large variety of potential shapes in a short duration class.

Pratibha Jolly; Dean Zollman; N. Sanjay Rebello; Albena Dimitrova

1998-01-01T23:59:59.000Z

290

Production Well Performance Enhancement using Sonication Technology  

SciTech Connect

The objective of this project was to develop a sonic well performance enhancement technology that focused on near wellbore formation damage. In order to successfully achieve this objective, a three-year project was defined. The entire project was broken into four tasks. The overall objective of all this was to foster a better understanding of the mechanisms involved in sonic energy interactions with fluid flow in porous media and adapt such knowledge for field applications. The fours tasks are: • Laboratory studies • Mathematical modeling • Sonic tool design and development • Field demonstration The project was designed to be completed in three years; however, due to budget cuts, support was only provided for the first year, and hence the full objective of the project could not be accomplished. This report summarizes what was accomplished with the support provided by the US Department of Energy. Experiments performed focused on determining the inception of cavitation, studying thermal dissipation under cavitation conditions, investigating sonic energy interactions with glass beads and oil, and studying the effects of sonication on crude oil properties. Our findings show that the voltage threshold for onset of cavitation is independent of transducer-hydrophone separation distance. In addition, thermal dissipation under cavitation conditions contributed to the mobilization of deposited paraffins and waxes. Our preliminary laboratory experiments suggest that waxes are mobilized when the fluid temperature approaches 40°C. Experiments were conducted that provided insights into the interactions between sonic wave and the fluid contained in the porous media. Most of these studies were carried out in a slim-tube apparatus. A numerical model was developed for simulating the effect of sonication in the nearwellbore region. The numerical model developed was validated using a number of standard testbed problems. However, actual application of the model for scale-up purposes was limited due to funding constraints. The overall plan for this task was to perlorm field trials with the sonication tooL These trials were to be performed in production and/or injection wells located in Pennsylvania, New York, and West Virginia. Four new wells were drilled in preparation for the field demonstration. Baseline production data were collected and reservoir simulator tuned to simulate these oil reservoirs. The sonication tools were designed for these wells. However, actual field testing could not be carried out because of premature termination of the project.

Adewumi, Michael A; Ityokumbul, M Thaddeus; Watson, Robert W; Eltohami, Eltohami; Farias, Mario; Heckman, Glenn; Houlihan, Brendan; Karoor, Samata Prakash; Miller, Bruce G; Mohammed, Nazia; Olanrewaju, Johnson; Ozdemir, Mine; Rejepov, Dautmamed; Sadegh, Abdallah A; Quammie, Kevin E; Zaghloul, Jose; Hughes, W Jack; Montgomery, Thomas C

2005-12-31T23:59:59.000Z

291

Diesel exhaust treatment produces cyanide  

Science Journals Connector (OSTI)

Diesel exhaust treatment produces cyanide ... Studies at the Swiss Federal Technical Institute (ETH), Zurich, have produced results that, if confirmed by further research, could pose problems for the developers of catalytic converters that reduce emissions from diesel and leanburn gasoline engines. ... Use of low molecular weight olefins as reductants for selective removal of nitrogen oxides from exhaust gases, either by bleeding the olefins into the exhaust stream or blending them into the fuel itself, has attracted the interest of engine makers and regulatory agencies. ...

JOSEPH HAGGIN

1994-05-02T23:59:59.000Z

292

Performance profiles of major energy producers 1989  

SciTech Connect

Performance Profiles of Major Energy Producers 1989 is the thirteenth annual report of the Energy Information Administration's (EIA) Financial Reporting System (FRS). The report examines financial and operating developments, with particular reference to the 23 major energy companies (the FRS companies'') required to report annually on Form EIA-28. Financial information is reported by major lines of business including oil and gas production, petroleum refining and marketing, and other energy operations. Domestic and international operations are examined separately in this report. It also traces key developments affecting the financial performance of major energy companies in 1989, as well as review of important trends.

Not Available

1991-01-23T23:59:59.000Z

293

Organic geochemistry of Gadvan and Kazhdumi formations (Cretaceous) in South Pars field, Persian Gulf, Iran  

Science Journals Connector (OSTI)

In Southern Iran, Gadvan (Barremian-early Aptian) and Kazhdumi (Albian) formations are the most effective source rocks and have produced the majority of hydrocarbons reserved in the Zagros Basin especially in Dezful Embayment and Persian Gulf area. In this article, hydrocarbon potential of Gadvan and Kazhdumi formations is investigated in the South Pars field which is southern extension of the North field of Qatar Country. This field is located in Persian Gulf waters and is actually the northern extension of Qatar Arc Paleohigh where geological history of Gadvan and Kazhdumi formations is different from nearby area regarding depositional setting, burial history and source rock maturity. In this study, Gadvan and Kazhdumi formations as source rock candidates, which underlay Upper Dariyan and Mauddud members, respectively, were sampled in two drilled wells of the South Pars field for routine geochemical analysis to investigate hydrocarbon potential of these formations and source rock identification of trapped oil in the Upper Dariyan and Mauddud members. Several samples from top to the bottom of the formations were taken and analyzed by Rock-Eval pyrolysis. The average TOC content of Gadvan and Kazhdumi formations is 0.79 wt. % and 0.49 wt. %, respectively. Rock-Eval results (e.g. HI vs. Tmax) represent that TOC content of these formations contains type II-III kerogens which haven't suffered sufficient thermal maturity (Ro < 0.5%) in this study area. Moreover calculated S2/S3 ratio implies that these formations in central part of Qatar Arc, South Pars field couldn't produce noticeable liquid hydrocarbon. As it is believed, Gadvan and Kazhdumi formations to be source of trapped oil in the system, therefore, in the South Pars field reserved hydrocarbon in Upper Dariyan (Aptian) and Mauddud (late Albian) members which overlie Gadvan and Kazhdumi formations, respectively, are probably generated from Gadvan and Kazhdumi formations of the nearby through and flanks of the Qatar Arc where the burial depth and temperature increase then generated hydrocarbons in downdip area are migrated to the upper carbonate reservoirs in the crest part of the Qatar Arc. Long path migration of the hydrocarbon and source rock with lower organic matter are caused hydrocarbon accumulation in the South Pars Oil Layer (Al-Shaheen) which is approved by professional petrophysical and geological studies of the field.

Omeid Rahmani; Jafar Aali; Hassan Mohseni; Hossein Rahimpour-Bonab; Seddighe Zalaghaie

2010-01-01T23:59:59.000Z

294

Isopach map of black shale in the Sonyea Group (from well sample studies)  

SciTech Connect

A map containing information on black shale deposits in the Sonyea Group in Western New York State was produced from well sample studies. (DC)

Kamakaris, D.G.; Van Tyne, A.M.

1980-01-01T23:59:59.000Z

295

Well Log Data At Dixie Valley Geothermal Area (Mallan, Et Al...  

Open Energy Info (EERE)

mapping such as large scale and small scale producing fractures in and around geothermal wells. The overall goal of this effort was to provide experience and insight toward...

296

Coal seam natural gas producing areas (Louisiana) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Coal seam natural gas producing areas (Louisiana) Coal seam natural gas producing areas (Louisiana) Coal seam natural gas producing areas (Louisiana) < Back Eligibility Commercial Construction Developer Industrial Investor-Owned Utility Municipal/Public Utility Utility Program Info State Louisiana Program Type Environmental Regulations Siting and Permitting Provider Louisiana Department of Natural Resources In order to prevent waste and to avoid the drilling of unnecessary wells and to encourage the development of coal seam natural gas producing areas in Louisiana, the commissioner of conservation is authorized, as provided in this law, to establish a single unit to be served by one or more wells for a coal seam natural gas producing area. Without in any way modifying the authority granted to the commissioner to establish a drilling unit or

297

Beneficial Reuse of San Ardo Produced Water  

SciTech Connect

This DOE funded study was performed to evaluate the potential for treatment and beneficial reuse of produced water from the San Ardo oilfield in Monterey County, CA. The potential benefits of a successful full-scale implementation of this project include improvements in oil production efficiency and additional recoverable oil reserves as well as the addition of a new reclaimed water resource. The overall project was conducted in two Phases. Phase I identified and evaluated potential end uses for the treated produced water, established treated water quality objectives, reviewed regulations related to treatment, transport, storage and use of the treated produced water, and investigated various water treatment technology options. Phase II involved the construction and operation of a small-scale water treatment pilot facility to evaluate the process's performance on produced water from the San Ardo oilfield. Cost estimates for a potential full-scale facility were also developed. Potential end uses identified for the treated water include (1) agricultural use near the oilfield, (2) use by Monterey County Water Resources Agency (MCWRA) for the Salinas Valley Water Project or Castroville Seawater Intrusion Project, (3) industrial or power plant use in King City, and (4) use for wetlands creation in the Salinas Basin. All of these uses were found to have major obstacles that prevent full-scale implementation. An additional option for potential reuse of the treated produced water was subsequently identified. That option involves using the treated produced water to recharge groundwater in the vicinity of the oil field. The recharge option may avoid the limitations that the other reuse options face. The water treatment pilot process utilized: (1) warm precipitation softening to remove hardness and silica, (2) evaporative cooling to meet downstream temperature limitations and facilitate removal of ammonia, and (3) reverse osmosis (RO) for removal of dissolved salts, boron, and organics. Pilot study results indicate that produced water from the San Ardo oilfield can be treated to meet project water quality goals. Approximately 600 mg/l of caustic and 100 mg/l magnesium dosing were required to meet the hardness and silica goals in the warm softening unit. Approximately 30% of the ammonia was removed in the cooling tower; additional ammonia could be removed by ion exchange or other methods if necessary. A brackish water reverse osmosis membrane was effective in removing total dissolved solids and organics at all pH levels evaluated; however, the boron treatment objective was only achieved at a pH of 10.5 and above.

Robert A. Liske

2006-07-31T23:59:59.000Z

298

Process for producing chalcogenide semiconductors  

DOE Patents (OSTI)

A process for producing chalcogenide semiconductor material is disclosed. The process includes forming a base metal layer and then contacting this layer with a solution having a low pH and containing ions from at least one chalcogen to chalcogenize the layer and form the chalcogenide semiconductor material.

Noufi, R.; Chen, Y.W.

1985-04-30T23:59:59.000Z

299

Additive manufacturing method of producing  

E-Print Network (OSTI)

Additive manufacturing method of producing silver or copper tracks on polyimide film Problem/stripping) using an additive process support by a novel bio- degradable photo-initiator package. technology. Building on previous work by Hoyd- Gigg Ng et al. [1,2], Heriot-Watt has developed an additive film

Painter, Kevin

300

Electrically Conductive Bacterial Nanowires Produced by Shewanella...  

NLE Websites -- All DOE Office Websites (Extended Search)

Conductive Bacterial Nanowires Produced by Shewanella Oneidensis Strain MR-1 and Other Microorganisms . Electrically Conductive Bacterial Nanowires Produced by Shewanella...

Note: This page contains sample records for the topic "formation producing wells" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Hydrologic Tests at Characterization Well R-14  

SciTech Connect

Well R-14 is located in Ten Site Canyon and was completed at a depth of 1316 ft below ground surface (bgs) in August 2002 within unassigned pumiceous deposits located below the Puye Formation (fanglomerate). The well was constructed with two screens positioned below the regional water table. Individual static depths measured for each isolated screen after the Westbay{trademark} transducer monitoring system was installed in mid-December 2002 were nearly identical at 1177 ft bgs, suggesting only horizontal subsurface flow at this time, location, and depth. Screen 1 straddles the geologic contact between the Puye fanglomerate and unassigned pumiceous deposits. Screen 2 is located about 50 ft deeper than screen 1 and is only within the unassigned pumiceous deposits. Constant-rate, straddle-packer, injection tests were conducted at screen 2, including two short tests and one long test. The short tests were 1 minute each but at different injection rates. These short tests were used to select an appropriate injection rate for the long test. We analyzed both injection and recovery data from the long test using the Theis, Theis recovery, Theis residual-recovery, and specific capacity techniques. The Theis injection, Theis recovery, and specific capacity methods correct for partial screen penetration; however, the Theis residual-recovery method does not. The long test at screen 2 involved injection at a rate of 10.1 gallons per minute (gpm) for 68 minutes and recovery for the next 85 minutes. The Theis analysis for screen 2 gave the best fit to residual recovery data. These results suggest that the 158-ft thick deposits opposite screen 2 have a transmissivity (T) equal to or greater than 143 ft{sup 2}/day, and correspond to a horizontal hydraulic conductivity (K) of at least 0.9 ft/day. The specific capacity method yielded a T value equal to or greater than 177 ft{sup 2}/day, and a horizontal K of at least 1.1 ft/day. Results from the injection and recovery phases of the test at screen 2 were similar to those from the residual-recovery portion of the test, but were lower by a factor of about two. The response to injection was typical for a partially penetrating well screen in a very thick aquifer.

S. McLin; W. Stone

2004-08-01T23:59:59.000Z

302

Effects of Additive Elements on the Phase Formation and Morphological Stability of Nickel Monosilicide Films  

SciTech Connect

Alloying elements can substantially affect the formation and morphological stability of nickel monosilicide. A comprehensive study of phase formation was performed on 24 Ni alloys with varying concentrations of alloying elements. Silicide films have been used for more than 15 years to contact the source, drain and gate of state-of-the-art complementary-metal-oxide-semiconductor (CMOS) devices. In the past, the addition of alloying elements was shown to improve the transformation from the high resistivity C49 to the low resistivity C54-TiSi{sub 2} phase and to allow for the control of surface and interface roughness of CoSi{sub 2} films as well as produce significant improvements with respect to agglomeration of the films. Using simultaneous time-resolved X-ray diffraction (XRD), resistance and light scattering measurements, we follow the formation of the silicide phases in real time during rapid thermal annealing. Additions to the Ni-Si system lead to modifications in the phase formation sequence at low temperatures (metal-rich phases), to variations in the formation temperatures of NiSi and NiSi{sub 2}, and to changes in the agglomeration behavior of the films formed. Of the 24 elements studied, additions of Mo, Re, Ta and W are amongst the most efficient to retard agglomeration while elements such as Pd, Pt and Rh are most efficient to retard the formation of NiSi{sub 2}.

Lavoie,C.; Detavernier, C.; Cabral, Jr. , C.; d'Heurle, F.; Kellock, A.; Jordan-Sweet, J.; Harper, J.

2006-01-01T23:59:59.000Z

303

Newly Installed Alaska North Slope Well Will Test Innovative Hydrate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Newly Installed Alaska North Slope Well Will Test Innovative Newly Installed Alaska North Slope Well Will Test Innovative Hydrate Production Technologies Newly Installed Alaska North Slope Well Will Test Innovative Hydrate Production Technologies May 17, 2011 - 1:00pm Addthis Washington, DC - A fully instrumented well that will test innovative technologies for producing methane gas from hydrate deposits has been safely installed on the North Slope of Alaska. As a result, the "Iġnik Sikumi" (Iñupiaq for "fire in the ice") gas hydrate field trial well will be available for field experiments as early as winter 2011-12. The well, the result of a partnership between ConocoPhillips and the Office of Fossil Energy's (FE) National Energy Technology Laboratory, will test a technology that involves injecting carbon dioxide (CO2) into sandstone

304

Investigation of the Effect of Non-Darcy Flow and Multi-Phase Flow on the Productivity of Hydraulically Fractured Gas Wells  

E-Print Network (OSTI)

Hydraulic fracturing has recently been the completion of choice for most tight gas bearing formations. It has proven successful to produce these formations in a commercial manner. However, some considerations have to be taken into account to design...

Alarbi, Nasraldin Abdulslam A.

2011-10-21T23:59:59.000Z

305

The Star Formation History of NGC 6822  

E-Print Network (OSTI)

Images of five fields in the Local Group dwarf irregular galaxy NGC 6822 obtained with the {\\it Hubble Space Telescope} in the F555W and F814W filters are presented. Photometry for the stars in these images was extracted using the Point-Spread-Function fitting program HSTPHOT/MULTIPHOT. The resulting color-magnitude diagrams reach down to $V\\approx26$, a level well below the red clump, and were used to solve quantitatively for the star formation history of NGC 6822. Assuming that stars began forming in this galaxy from low-metallicity gas and that there is little variation in the metallicity at each age, the distribution of stars along the red giant branch is best fit with star formation beginning in NGC 6822 12-15 Gyr ago. The best-fitting star formation histories for the old and intermediate age stars are similar among the five fields and show a constant or somewhat increasing star formation rate from 15 Gyr ago to the present except for a possible dip in the star formation rate from 3 to 5 Gyr ago. The main differences among the five fields are in the higher overall star formation rate per area in the bar fields as well as in the ratio of the recent star formation rate to the average past rate. These variations in the recent star formation rate imply that stars formed within the past 0.6 Gyr are not spatially very well mixed throughout the galaxy.

Ted K. Wyder

2001-07-31T23:59:59.000Z

306

Geothermal-Reservoir Well-Stimulation Program. Program status report  

SciTech Connect

Seven experimental fracture stimulation treatments completed to date and the laboratory work performed to develop the stimulation technology are described. A discussion of the pre-stimulation and post-stimulation data and their evaluation is provided for each experiment. Six of the seven stimulation experiments were at least technically successful in stimulating the wells. The two fracture treatments in East Mesa 58-30 more than doubled the producing rate of the previously marginal producer. The two fracture treatments in Raft River and the two in Baca were all successful in obtaining significant production from previously nonproductive intervals. However, these treatments failed to establish commercial production due to deficiencies in either fluid temperature or flow rate. The acid etching treatment in the well at The Geysers did not have any material effect on producing rate.

Not Available

1982-05-01T23:59:59.000Z

307

E-Print Network 3.0 - amino acid producer Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

OF AMINO ACID FORMATION IN INTERSTELLAR ICE ANALOGS Jamie E. Elsila,1,2 Summary: ). Ice chemistry can produce the type of deuterium enrichments seen in the Murchison amino...

308

Thermogenic and secondary biogenic gases, San Juan Basin, Colorado and New Mexico - Implications for coalbed gas producibility  

SciTech Connect

The objectives of this paper are to (1) describe the types and the major components of coalbed gases, (2) evaluate the variability of Fruitland coalbed gas composition across the basin, (3) assess factors affecting coalbed gas origin and composition, (4) determine the timing and extent of gas migration and entrapment, and (5) suggest application of these results to coalbed gas producibility. Data from more than 750 Fruitland coalbed gas wells were used to make gas-composition maps and to evaluate factors controlling gas origin. The gas data were divided into overpressured, underpressured, and transitional categories based on regional pressure regime. Also, [delta][sup 13]C isotopic values from 41 methane, 7 ethane and propane, 13 carbon dioxide, and 10 formation-water bicarbonate samples were evaluated to interpret gas origin. The data suggests that only 25-50% of the gas produced in the high-productivity fairway was generated in situ during coalification. 82 refs., 14 figs., 3 tabs.

Scott, A.R.; Kaiser, W.R. (Univ. of Texas, Austin, TX (United States)); Ayers, W.B. Jr. (Taurus Exploration, Inc., Birmingham, AL (United States))

1994-08-01T23:59:59.000Z

309

Flow tests of the Gladys McCall well. Appendix A, Gladys McCall Site (Cameron Parish, LA): Final report, October 1985--October 1990  

SciTech Connect

This report pulls together the data from all of the geopressured-geothermal field research conducted at the Gladys McCall well. The well produced geopressured brine containing dissolved natural gas from the Lower Miocene sands at a depth of 15,150 to 16,650 feet. More than 25 million barrels of brine and 727 million standard cubic feet of natural gas were produced in a series of flow tests between December 1982 and October 1987 at various brine flow rates up to 28,000 barrels per day. Initial short-term flow tests for the Number 9 Sand found the permeability to be 67 to 85 md (millidarcies) for a brine volume of 85 to 170 million barrels. Initial short-term flow tests for the Number 8 Sand found a permeability of 113 to 132 md for a reservoir volume of 430 to 550 million barrels of brine. The long-term flow and buildup test of the Number 8 Sand found that the high-permeability reservoir connected to the wellbore (measured by the short-term flow test) was connected to a much larger, low-permeability reservoir. Numerical simulation of the flow and buildup tests required this large connected reservoir to have a volume of about 8 billion barrels (two cubic miles of reservoir rock) with effective permeabilities in the range of 0.2 to 20 md. Calcium carbonate scale formation in the well tubing and separator equipment was a problem. During the first 2 years of production, scale formation was prevented in the surface equipment by injection of an inhibitor upstream of the choke. Starting in 1985, scale formation in the production tubing was successfully prevented by injecting inhibitor ``pills`` directly into the reservoir. Corrosion and/or erosion of surface piping and equipment, as well as disposal well tubing, was also significant.

Randolph, P.L.; Hayden, C.G.; Rogers, L.A. [Institute of Gas Technology, Chicago, IL (United States)

1992-04-01T23:59:59.000Z

310

Geohydrologic study of the Michigan Basin for the applicability of Jack W. McIntyre`s patented process for simultaneous gas recovery and water disposal in production wells  

SciTech Connect

Geraghty & Miller, Inc. of Midland, Texas conducted a geohydrologic study of the Michigan Basin to evaluate the applicability of Jack McIntyre`s patented process for gas recovery and water disposal in production wells. A review of available publications was conducted to identify, (1) natural gas reservoirs which generate large quantities of gas and water, and (2) underground injection zones for produced water. Research efforts were focused on unconventional natural gas formations. The Antrim Shale is a Devonian gas shale which produces gas and large quantities of water. Total 1992 production from 2,626 wells was 74,209,916 Mcf of gas and 25,795,334 bbl of water. The Middle Devonian Dundee Limestone is a major injection zone for produced water. ``Waterless completion`` wells have been completed in the Antrim Shale for gas recovery and in the Dundee Limestone for water disposal. Jack McIntyre`s patented process has potential application for the recovery of gas from the Antrim Shale and simultaneous injection of produced water into the Dundee Limestone.

Maryn, S.

1994-03-01T23:59:59.000Z

311

Radiotracers currently produced at Brookhaven  

NLE Websites -- All DOE Office Websites (Extended Search)

Radiotracers currently produced at Brookhaven. Note that other radiotracers that are described in the literature can Radiotracers currently produced at Brookhaven. Note that other radiotracers that are described in the literature can also be transferred to our laboratory. Molecular Target/use Radiotracer Name Structure Chemical Name Hexokinase/glucose metabolism, cancer, brain function 18 FDG 2-deoxy-2-[ 18 F]fluoro-D-glucose Dopamine D2/D3 receptors/addiction, psychiatric disorders [ 11 C]raclopride 3,5-dichloro-N-{[(2S)-1-ethylpyrrolidin- 2-yl]methyl}-2-hydroxy-6- [ 11 C]methoxybenzamide Dopamine transporters / cocaine pharmacokinetics, addiction, neurological disorders [ 11 C]cocaine methyl (1R,2R,3S,5S)-3-s(benzoyloxy)- 8-[ 11 C]methyl-8-azabicyclo[3.2.1] octane-2-carboxylate Blood flow/nicotine pharmacokinetics [ 11 C]nicotine 3-[(2S)-1-[ 11 C]methylpyrrolidin-2-

312

NM WAIDS: A PRODUCED WATER QUALITY AND INFRASTRUCTURE GIS DATABASE FOR NEW MEXICO OIL PRODUCERS  

SciTech Connect

The New Mexico Water and Infrastructure Data System (NM WAIDS) seeks to alleviate a number of produced water-related issues in southeast New Mexico. The project calls for the design and implementation of a Geographical Information System (GIS) and integral tools that will provide operators and regulators with necessary data and useful information to help them make management and regulatory decisions. The major components of this system are: (1) databases on produced water quality, cultural and groundwater data, oil pipeline and infrastructure data, and corrosion information, (2) a web site capable of displaying produced water and infrastructure data in a GIS or accessing some of the data by text-based queries, (3) a fuzzy logic-based, site risk assessment tool that can be used to assess the seriousness of a spill of produced water, and (4) a corrosion management toolkit that will provide operators with data and information on produced waters that will aid them in deciding how to address corrosion issues. The various parts of NM WAIDS will be integrated into a website with a user-friendly interface that will provide access to previously difficult-to-obtain data and information. Primary attention during the first six months of this project has been focused on creating the water quality databases for produced water and surface water, along with collection of corrosion information and building parts of the corrosion toolkit. Work on the project to date includes: (1) Creation of a water quality database for produced water analyses. The database was compiled from a variety of sources and currently has over 4000 entries for southeast New Mexico. (2) Creation of a web-based data entry system for the water quality database. This system allows a user to view, enter, or edit data from a web page rather than having to directly access the database. (3) Creation of a semi-automated data capturing system for use with standard water quality analysis forms. This system improves the accuracy and speed of water quality data entry. (4) Acquisition of ground water data from the New Mexico State Engineer's office, including chloride content and TDS (Total Dissolved Solids) for over 30,000 data points in southeast New Mexico. (5) Creation of a web-based scale prediction tool, again with a web-based interface, that uses two common scaling indices (Stiff-Davis and Oddo-Thomson) to predict the likelihood of scaling. This prediction tool can either run from user input data, or the user can select samples from the water analysis database. (6) Creation of depth-to-groundwater maps for the study area. (7) Analysis of water quality data by formation. (8) Continuation of efforts to collect produced water quality information from operators in the southeast New Mexico area. (9) Qualitative assessment of produced water from various formations regarding corrosivity. (10) Efforts at corrosion education in the region through operator visits. Future work on this project will include: (11) Development of an integrated web and GIS interface for all the information collected in this effort. (12) Continued development of a fuzzy logic spill risk assessment tool that was initially developed prior to this project. Improvements will include addition of parameters found to be significant in determining the impact of a brine spill at a specific site. (13) Cleanup and integration of water quality databases. (14) Compilation of both hard copy and online corrosion toolkit material.

Martha Cather; Robert Lee; Ibrahim Gundiler; Andrew Sung; Naomi Davidson; Ajeet Kumar Reddy; Mingzhen Wei

2003-04-01T23:59:59.000Z

313

NM WAIDS: A PRODUCED WATER QUALITY AND INFRASTRUCTURE GIS DATABASE FOR NEW MEXICO OIL PRODUCERS  

SciTech Connect

The New Mexico Water and Infrastructure Data System (NM WAIDS) seeks to alleviate a number of produced water-related issues in southeast New Mexico. The project calls for the design and implementation of a Geographical Information System (GIS) and integral tools that will provide operators and regulators with necessary data and useful information to help them make management and regulatory decisions. The major components of this system are: (1) Databases on produced water quality, cultural and groundwater data, oil pipeline and infrastructure data, and corrosion information. (2) A web site capable of displaying produced water and infrastructure data in a GIS or accessing some of the data by text-based queries. (3) A fuzzy logic-based, site risk assessment tool that can be used to assess the seriousness of a spill of produced water. (4) A corrosion management toolkit that will provide operators with data and information on produced waters that will aid them in deciding how to address corrosion issues. The various parts of NM WAIDS will be integrated into a website with a user-friendly interface that will provide access to previously difficult-to-obtain data and information. Primary attention during the first six months of this project was focused on creating the water quality databases for produced water and surface water, along with collecting of corrosion information and building parts of the corrosion toolkit. Work on the project to date includes: (1) Creation of a water quality database for produced water analyses. The database was compiled from a variety of sources and currently has over 7000 entries for New Mexico. (2) Creation of a web-based data entry system for the water quality database. This system allows a user to view, enter, or edit data from a web page rather than having to directly access the database. (3) Creation of a semi-automated data capturing system for use with standard water quality analysis forms. This system improves the accuracy and speed of water quality data entry. (4) Acquisition of ground water data from the New Mexico State Engineer's office, including chloride content and TDS (Total Dissolved Solids) for over 30,000 data points in southeast New Mexico. (5) Creation of a web-based scale prediction tool, again with a web-based interface, that uses two common scaling indices to predict the likelihood of scaling. This prediction tool can either run from user input data, or the user can select samples from the water analysis database. (6) Creation of depth-to-groundwater maps for the study area. (7) Analysis of water quality data by formation. (8) Continuation of efforts to collect produced water quality information from operators in the southeast New Mexico area. (9) Qualitative assessment of produced water from various formations regarding corrosivity. (10) Efforts at corrosion education in the region through operator visits. Future work on this project will include: (1) Development of an integrated web and GIS interface for all the information collected in this effort. (2) Continued development of a fuzzy logic spill risk assessment tool that was initially developed prior to this project. Improvements will include addition of parameters found to be significant in determining the impact of a brine spill at a specific site. (3) Compilation of both hard copy and online corrosion toolkit material.

Martha Cather; Robert Lee; Ibrahim Gundiler; Andrew Sung

2003-09-24T23:59:59.000Z

314

Autogenous electrolyte, non-pyrolytically produced solid capacitor structure  

DOE Patents (OSTI)

A solid electrolytic capacitor having a solid electrolyte comprising manganese dioxide dispersed in an aromatic polyamide capable of further cure to form polyimide linkages, the solid electrolyte being disposed between a first electrode made of valve metal covered by an anodic oxide film and a second electrode opposite the first electrode. The electrolyte autogenously produces water, oxygen, and hydroxyl groups which act as healing substances and is not itself produced pyrolytically. Reduction of the manganese dioxide and the water molecules released by formation of imide linkages result in substantially improved self-healing of anodic dielectric layer defects.

Sharp, Donald J. (Albuquerque, NM); Armstrong, Pamela S. (Abingdon, MD); Panitz, Janda Kirk G. (Edgewood, NM)

1998-01-01T23:59:59.000Z

315

Autogenous electrolyte, non-pyrolytically produced solid capacitor structure  

DOE Patents (OSTI)

A solid electrolytic capacitor is described having a solid electrolyte comprising manganese dioxide dispersed in an aromatic polyamide capable of further cure to form polyimide linkages, the solid electrolyte being disposed between a first electrode made of valve metal covered by an anodic oxide film and a second electrode opposite the first electrode. The electrolyte autogenously produces water, oxygen, and hydroxyl groups which act as healing substances and is not itself produced pyrolytically. Reduction of the manganese dioxide and the water molecules released by formation of imide linkages result in substantially improved self-healing of anodic dielectric layer defects. 2 figs.

Sharp, D.J.; Armstrong, P.S.; Panitz, J.K.G.

1998-03-17T23:59:59.000Z

316

EXPLOITATION AND OPTIMIZATION OF RESERVOIR PERFORMANCE IN HUNTON FORMATION, OKLAHOMA  

SciTech Connect

This report presents the work done so far on Hunton Formation in West Carney Field in Lincoln County, Oklahoma. West Carney Field produces oil and gas from the Hunton Formation. The field was developed starting in 1995. Some of the unique characteristics of the field include decreasing water oil ratio over time, decreasing gas-oil ratio at the beginning of production, inability to calculate oil reserves in the field based on log data, and sustained oil rates over long periods of time. To understand the unique characteristics of the field, an integrated evaluation was undertaken. Production data from the field were meticulously collected, and over forty wells were cored and logged to better understand the petrophysical and engineering characteristics. Based on the work done in this budget period so far, some of the preliminary conclusions can be listed as follows: (1) Based on PVT analysis, the field most likely contains volatile oil with bubble point close to initial reservoir pressure of 1,900 psia. (2) The initial oil in place, which is contact with existing wells, can be determined by newly developed material balance technique. The oil in place, which is in communication, is significantly less than determined by volumetric analysis, indicating heterogeneous nature of the reservoir. The oil in place, determined by material balance, is greater than determined by decline curve analysis. This difference may lead to additional locations for in fill wells. (3) The core and log evaluation indicates that the intermediate pores (porosity between 2 and 6 %) are very important in determining production potential of the reservoir. These intermediate size pores contain high oil saturation. (4) The limestone part of the reservoir, although low in porosity (mostly less than 6 %) is much more prolific in terms of oil production than the dolomite portion of the reservoir. The reason for this difference is the higher oil saturation in low porosity region. As the average porosity increases, the remaining oil saturation decreases. This is evident from log and core analysis. (5) Using a compositional simulator, we are able to reproduce the important reservoir characteristics by assuming a two layer model. One layer is high permeability region containing water and the other layer is low permeability region containing mostly oil. The results are further verified by using a dual porosity model. Assuming that most of the volatile oil is contained in the matrix and the water is contained in the fractures, we are able to reproduce important reservoir performance characteristics. (6) Evaluation of secondary mechanisms indicates that CO{sub 2} flooding is potentially a viable option if CO{sub 2} is available at reasonable price. We have conducted detailed simulation studies to verify the effectiveness of CO{sub 2} huff-n-puff process. We are in the process of conducting additional lab tests to verify the efficacy of the same displacement. (7) Another possibility of improving the oil recovery is to inject surfactants to change the near well bore wettability of the rock from oil wet to water wet. By changing the wettability, we may be able to retard the water flow and hence improve the oil recovery as a percentage of total fluid produced. If surfactant is reasonably priced, other possibility is also to use huff-n-puff process using surfactants. Laboratory experiments are promising, and additional investigation continues. (8) Preliminary economic evaluation indicates that vertical wells outperform horizontal wells. Future work in the project would include: (1) Build multi-well numerical model to reproduce overall reservoir performance rather than individual well performance. Special emphasis will be placed on hydrodynamic connectivity between wells. (2) Collect data from adjacent Hunton reservoirs to validate our understanding of what makes it a productive reservoir. (3) Develop statistical methods to rank various reservoirs in Hunton formation. This will allow us to evaluate other Hunton formations based on old well logs, and determine, apriori, if

Mohan Kelkar

2003-10-01T23:59:59.000Z

317

Thermal extraction analysis of five Los Azufres production wells  

SciTech Connect

Thermal energy extraction from five wells supplying 5-MWe wellhead generators in three zones of the Los Azufres geothermal field has been examined from production and chemical data compiled over 14-years of operation. The data, as annual means, are useful in observing small-scale changes in reservoir performance with continuous production. The chemical components are chloride for quality control and the geothermometer elements for reservoir temperatures. The flowrate and fluid enthalpy data are used to calculate the thermal extraction rates. Integration of these data provides an estimate of the total energy extracted from the zone surrounding the well. The combined production and chemical geothermometer data are used to model the produced fluid as coming from just-penetrating wells for which the annual produced mass originates from a series of concentric hemispheric shells moving out into the reservoir. Estimates are made of the drawdown distance into the reservoir and the far-field conditions.

Kruger, Paul; Quijano, Luis

1995-01-26T23:59:59.000Z

318

Formation Flying and Deformable Instruments  

SciTech Connect

Astronomers have always attempted to build very stable instruments. They fight all that can cause mechanical deformation or image motion. This has led to well established technologies (autoguide, active optics, thermal control, tip/tilt correction), as well as observing methods based on the use of controlled motion (scanning, micro scanning, shift and add, chopping and nodding). Formation flying disturbs this practice. It is neither possible to reduce the relative motion to very small amplitudes, nor to control it at will. Some impacts on Simbol-X instrument design, and operation are presented.

Rio, Yvon [CEA/IRFU/Sap, CEA Saclay, 91191 Gif sur Yvette (France)

2009-05-11T23:59:59.000Z

319

Bar Formation, Evolution and Destruction  

E-Print Network (OSTI)

I review the various mechanisms for creating bars in rotating stellar disks, and conclude that the swing-amplified feed-back loop, which produces rapidly tumbling bars, remains the most probable. The bar continues to evolve after its formation in a number of ways; here I discuss what appears to be inevitable thickening normal to the plane, continued spiral activity in the outer disk and also underscore the increasingly important problem presented by angular momentum loss to the halo. Finally, I examine possible means, excluding interaction, by which bars in galaxies could be destroyed.

J A Sellwood

1995-08-25T23:59:59.000Z

320

Methods for determining vented volumes during gas well blowouts  

SciTech Connect

Several methods are presented for determining vented volumes during gas well blowouts. The methods described apply to gas production in which no liquids phase(s), hydrocarbon and/or water, are present in the gas. Each method is illustrated with a numerical example. Sensitivity analyses provide estimates of probable errors. The method of crossplotting formation and flow string resistances is the only one which does not require special measurements. It is therefore applicalbe to cratered wells and underwater blowouts. The report includes several suggestions for investigations which might lead to better methods.

Hawkins, M.F. Jr.

1980-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "formation producing wells" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Tests show production logging problems in horizontal gas wells  

SciTech Connect

A study has concluded that production logging tools employed to evaluate multiphase horizontal well production behavior should be carefully screened as to their response characteristics in fully-segregated, two-phase flow. The study, performed at Marathon Oil Co.'s petroleum technology center in Littleton, Colo., indicated that gas in highly deviated well bores segregates rapidly in the presence of water, creating a downhole environment that produces sporadic responses from full bore and diverter spinners as well as density and holdup tools. Gas Research Institute (GRI), as part of its horizontal gas well completion technology program, initiated the full-scale laboratory study to determine the severity and consequences of multiphase flow on tool response from horizontal well production. The paper discusses background of the problem, the test objectives, test facility, experimental procedures, single-phase flow, two-phase flow, and recommendations.

Branagan, P. (Branagan and Associates, Las Vegas, NV (United States)); Knight, B.L. (Marathon Oil Co., Littleton, CO (United States)); Aslakson, J. (Gas Research Inst., Chicago, IL (United States)); Middlebrook, M.L. (CER Corp., Las Vegas, NV (United States))

1994-01-10T23:59:59.000Z

322

Health and Wellness Guide for Students Introduction  

E-Print Network (OSTI)

dimensions of health and wellness. The 7 dimensions are: Physical Wellness � Taking care of your body Wellness � Taking care of what's around you 2Health andWellness Guide for Students #12;Physical Wellness � Communicate with your partner if you have questions or concerns � Meet with a Health Care Provider on campus

323

Method of producing nanopatterned articles, and articles produced thereby  

DOE Patents (OSTI)

A nanopatterned surface is prepared by forming a block copolymer film on a miscut crystalline substrate, annealing the block copolymer film, then reconstructing the surface of the annealed block copolymer film. The method creates a well-ordered array of voids in the block copolymer film that is maintained over a large area. The nanopatterned block copolymer films can be used ina variety of different applications, including the fabrication of high density data storage media.

Russell, Thomas P; Park, Soojin; Xu, Ting

2013-11-12T23:59:59.000Z

324

NETL: E&P Technologies - Improved Recovery - Stripper Well Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Exploration & Production Technologies Improved Recovery - Stripper Well Technology image of a well linking to Stripper Well Consortium “Stripper well" is a term used to describe wells that produce natural gas or oil at very low rates—less than 10 barrels per day of oil or less than 60 thousand cubic feet per day of gas. Despite their small output, stripper oil and gas wells make a significant contribution to the Nation’s energy supply—and they are the lifeblood of thousands of small, independent oil and gas operating companies. About 80 percent of the roughly 500,000 producing oil wells in the United States are classified as stripper wells. Despite their small volumes, they add up. The >400,000 stripper oil wells in the United States produce, in aggregate, nearly 1 million barrels per day of oil, which represents almost 19% of domestic oil production.

325

Constructing Hydraulic Barriers in Deep Geologic Formations  

SciTech Connect

Many construction methods have been developed to create hydraulic barriers to depths of 30 to 50 meters, but few have been proposed for depths on the order of 500 meters. For these deep hydraulic barriers, most methods are potentially feasible for soil but not for hard rock. In the course of researching methods of isolating large subterranean blocks of oil shale, the authors have developed a wax thermal permeation method for constructing hydraulic barriers in rock to depths of over 500 meters in competent or even fractured rock as well as soil. The technology is similar to freeze wall methods, but produces a permanent barrier; and is potentially applicable in both dry and water saturated formations. Like freeze wall barriers, the wax thermal permeation method utilizes a large number of vertical or horizontal boreholes around the perimeter to be contained. However, instead of cooling the boreholes, they are heated. After heating these boreholes, a specially formulated molten wax based grout is pumped into the boreholes where it seals fractures and also permeates radially outward to form a series of columns of wax-impregnated rock. Rows of overlapping columns can then form a durable hydraulic barrier. These barriers can also be angled above a geologic repository to help prevent influx of water due to atypical rainfall events. Applications of the technique to constructing containment structures around existing shallow waste burial sites and water shutoff for mining are also described. (authors)

Carter, E.E.; Carter, P.E. [Technologies Co, Texas (United States); Cooper, D.C. [Ph.D. Idaho National Laboratory, Idaho Falls, ID (United States)

2008-07-01T23:59:59.000Z

326

INVITATIONAL WELL-TESTING SYMPOSIUM PROCEEDINGS  

E-Print Network (OSTI)

Oil, Gas, • . . 81 and Geothermal Well Tests (abstract) W.has been testing geothermal wells for about three years, andof Oil, Gas, and Geothermal Well Tests W. E. Brigham

Authors, Various

2011-01-01T23:59:59.000Z

327

Nebraska shows potential to produce biofuel crops | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nebraska shows potential to produce biofuel crops Nebraska shows potential to produce biofuel crops Nebraska shows potential to produce biofuel crops December 9, 2009 - 11:12am Addthis Joshua DeLung What are the key facts? Utilizing sites in Nevada that are currently used as buffers around roads for biofuel production instead could meet up to 22 percent of the state's energy requirements. That's 11 times the energy the state currently produces from biomass. Nebraska is known for its rolling cornfields in America's heartland, and agriculture is so thick in the state that people there can smell the fresh produce in the air. Many more in the U.S. might end up tasting the hearty vegetables as well. But one concern about new technologies that use crops for fuel is that those crops, and the land on which they're grown,

328

Nebraska shows potential to produce biofuel crops | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nebraska shows potential to produce biofuel crops Nebraska shows potential to produce biofuel crops Nebraska shows potential to produce biofuel crops December 9, 2009 - 11:12am Addthis Joshua DeLung What are the key facts? Utilizing sites in Nevada that are currently used as buffers around roads for biofuel production instead could meet up to 22 percent of the state's energy requirements. That's 11 times the energy the state currently produces from biomass. Nebraska is known for its rolling cornfields in America's heartland, and agriculture is so thick in the state that people there can smell the fresh produce in the air. Many more in the U.S. might end up tasting the hearty vegetables as well. But one concern about new technologies that use crops for fuel is that those crops, and the land on which they're grown,

329

Capping of Water Wells for Future Use  

E-Print Network (OSTI)

in determining the condition of your well, contact: S your local groundwater conservation dis- trict http://www.tceq.state.tx.us/permitting/ water_supply/groundwater/districts.html S a licensed water well driller in your area S the Water Well Drillers Program... are the steps in capping a well? The landowner, a licensed well driller or a licensed pump installer may cap a well. There are several steps involved. The well casing should extend above the ground surface to limit the risk of water entering the well...

Lesikar, Bruce J.; Mechell, Justin

2007-09-04T23:59:59.000Z

330

Functionalized Graphene Nanoroads for Quantum Well Device. |...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nanoroads for Quantum Well Device. Functionalized Graphene Nanoroads for Quantum Well Device. Abstract: Using density functional theory, a series of calculations of structural and...

331

Observation Wells (Ozkocak, 1985) | Open Energy Information  

Open Energy Info (EERE)

Observation Wells Activity Date Usefulness useful DOE-funding Unknown Notes Reinjection test wells can be used to obtain quite precise measurements of reservoir permeability....

332

EPA - UIC Well Classifications | Open Energy Information  

Open Energy Info (EERE)

Well Classifications Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: EPA - UIC Well Classifications Author Environmental Protection Agency Published...

333

Helicopter magnetic survey conducted to locate wells  

SciTech Connect

A helicopter magnetic survey was conducted in August 2007 over 15.6 sq mi at the Naval Petroleum Reserve No. 3’s (NPR-3) Teapot Dome Field near Casper, Wyoming. The survey’s purpose was to accurately locate wells drilled there during more than 90 years of continuous oilfield operation. The survey was conducted at low altitude and with closely spaced flight lines to improve the detection of wells with weak magnetic response and to increase the resolution of closely spaced wells. The survey was in preparation for a planned CO2 flood for EOR, which requires a complete well inventory with accurate locations for all existing wells. The magnetic survey was intended to locate wells missing from the well database and to provide accurate locations for all wells. The ability of the helicopter magnetic survey to accurately locate wells was accomplished by comparing airborne well picks with well locations from an intense ground search of a small test area.

Veloski, G.A.; Hammack, R.W.; Stamp, V. (Rocky Mountain Oilfield Testing Center); Hall, R. (Rocky Mountain Oilfield Testing Center); Colina, K. (Rocky Mountain Oilfield Testing Center)

2008-07-01T23:59:59.000Z

334

Fluid-Rock Characterization and Interactions in NMR Well Logging  

SciTech Connect

The objective of this report is to characterize the fluid properties and fluid-rock interactions that are needed for formation evaluation by NMR well logging. The advances made in the understanding of NMR fluid properties are summarized in a chapter written for an AAPG book on NMR well logging. This includes live oils, viscous oils, natural gas mixtures, and the relation between relaxation time and diffusivity. Oil based drilling fluids can have an adverse effect on NMR well logging if it alters the wettability of the formation. The effect of various surfactants on wettability and surface relaxivity are evaluated for silica sand. The relation between the relaxation time and diffusivity distinguishes the response of brine, oil, and gas in a NMR well log. A new NMR pulse sequence in the presence of a field gradient and a new inversion technique enables the T{sub 2} and diffusivity distributions to be displayed as a two-dimensional map. The objectives of pore morphology and rock characterization are to identify vug connectivity by using X-ray CT scan, and to improve NMR permeability correlation. Improved estimation of permeability from NMR response is possible by using estimated tortuosity as a parameter to interpolate between two existing permeability models.

George J. Hirasaki; Kishore K. Mohanty

2005-09-05T23:59:59.000Z

335

Leucoagaricus gongylophorus Produces Diverse Enzymes for the...  

NLE Websites -- All DOE Office Websites (Extended Search)

Leucoagaricus gongylophorus Produces Diverse Enzymes for the Degradation of Recalcitrant Plant Polymers in Leaf-Cutter Ant Leucoagaricus gongylophorus Produces Diverse Enzymes for...

336

Characterization of uraninite nanoparticles produced by Shewanella...  

NLE Websites -- All DOE Office Websites (Extended Search)

uraninite nanoparticles produced by Shewanella oneidensis MR-1 . Characterization of uraninite nanoparticles produced by Shewanella oneidensis MR-1 . Abstract: The reduction of...

337

Monitoring polymer properties in production wells of Chateaurenard oilfield  

SciTech Connect

A polymer flooding test was conducted in the Chateaurenard field (France) from 1985 to 1989. The test was run on a ten-acre inverted five-spot. A total of 240,000 m{sup 3} of partially hydrolyzed polyacrylamide at a concentration of 1000 ppm was injected followed by an equal volume of solution but at a tapered concentration. A strong response in oil recovery for three of the four producers was observed. This paper reports on an original methodology that was designed for sampling and analyzing the polymer in the effluents of the producing wells. Concentrations and main characteristics of produced polyacrylamide were determined versus injected volume. No degradation of the polymer was detected. A molecular weight fractionation during polymer slug propagation into the reservoir due to adsorption/retention chromatography was observed. The low-polymer concentration of the effluents could be explained by a strong retention of the polymer in the low permeability zones of the reservoir.

Putz, A.G. (Elf Aquitaine, Avenue Larribau, Pau (FR)); Lecourtier, J. (Inst. Francais du Petrole, Avenue Bois-Preau, 92500 Rueil-Malmaison (FR))

1991-01-01T23:59:59.000Z

338

Rapid Gas Hydrate Formation Process Opportunity  

NLE Websites -- All DOE Office Websites (Extended Search)

Gas Hydrate Formation Process Gas Hydrate Formation Process Opportunity The Department of Energy's National Energy Technology Laboratory (NETL) is seeking collaborative research and licensing partners interested in implementing United States Non-provisional Patent Application entitled "Rapid Gas Hydrate Formation Process." Disclosed in this application is a method and device for producing gas hydrates from a two-phase mixture of water and a hydrate forming gas such as methane (CH 4 ) or carbon dioxide (CO 2 ). The two-phase mixture is created in a mixing zone, which may be contained within the body of the spray nozzle. The two-phase mixture is subsequently sprayed into a reaction vessel, under pressure and temperature conditions suitable for gas hydrate formation. The reaction

339

Thank you for joining: 360WELLNESS  

E-Print Network (OSTI)

shortly. If you are experiencing technical difficulties with Adobe Connect, please call 1 March 22, 2012 12 pm ­ 1pm ET #12;360° WELLNESS: Achieving Wellness At Work And At Home Workshop & Self-Assessment © Joe Rosenlicht, Certified Coach 3 #12;8 Wellness Areas Wellness Nutrition Brain Power Fitness Sleep

Vertes, Akos

340

Track 4: Employee Health and Wellness  

Energy.gov (U.S. Department of Energy (DOE))

ISM Workshop Presentations Knoxville Convention Center, Knoxville, TN August 2009 Track 4: Employee Health and Wellness

Note: This page contains sample records for the topic "formation producing wells" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Definition: Artesian Well | Open Energy Information  

Open Energy Info (EERE)

Well Well Jump to: navigation, search Dictionary.png Artesian Well An artesian well is a water well that doesn't require a pump to bring water to the surface; this occurs when there is enough pressure in the aquifer. The pressure causes hydrostatic equilibrium and if the pressure is high enough the water may even reach the ground surface in which case the well is called a flowing artesian well.[1] View on Wikipedia Wikipedia Definition See Great Artesian Basin for the water source in Australia. An artesian aquifer is a confined aquifer containing groundwater under positive pressure. This causes the water level in a well to rise to a point where hydrostatic equilibrium has been reached. This type of well is called an artesian well. Water may even reach the ground surface if the natural

342

Geopressured Geothermal Resource and Recoverable Energy Estimate for the Wilcox and Frio Formations, Texas (Presentation)  

SciTech Connect

An estimate of the total and recoverable geopressured geothermal resource of the fairways in the Wilcox and Frio formations is made using the current data available. The flow rate of water and methane for wells located in the geopressured geothermal fairways is simulated over a 20-year period utilizing the TOUGH2 Reservoir Simulator and research data. The model incorporates relative permeability, capillary pressure, rock compressibility, and leakage from the bounding shale layers. The simulations show that permeability, porosity, pressure, sandstone thickness, well spacing, and gas saturation in the sandstone have a significant impact on the percent of energy recovered. The results also predict lower average well production flow rates and a significantly higher production of natural gas relative to water than in previous studies done from 1975 to 1980. Previous studies underestimate the amount of methane produced with hot brine. Based on the work completed in this study, multiphase flow processes and reservoir boundary conditions greatly influence the total quantity of the fluid produced as well as the ratio of gas and water in the produced fluid.

Esposito, A.; Augustine, C.

2011-10-01T23:59:59.000Z

343

A Comprehensive Placement and Diversion Model for Matrix Acidizing in Vertical Wells in Heterogeneous Thick Formations  

E-Print Network (OSTI)

coefficient ? = specific gravity, dimensionless ?p = pressure drop, mLt-2, psi ?pball = pressure drop due to ball sealer blockage, mLt -2, psi ?pF = frictional pressure drop, mLt -2, psi ?pKE = kinetic energy pressure drop, mLt -2, psi ?p... ????? s pipec f cc dW dg dLvf dZ g g g vdv p dp ................................................ (2.2) If the fluid is incompressible (? is constant) and there is no shaft work device in the pipeline, this equation can be readily integrated...

Nozaki, Manabu

2012-07-16T23:59:59.000Z

344

96-well Format DNA Extraction Protocol for Freeze-dried Maize Seedling Leaves  

E-Print Network (OSTI)

Cat# T100-30). Add ~ 1 cM of glass beads* or three 3 mm metal beads (3 mm Tungsten Carbide Beads of the youngest leaf. * Note that glass beads are not compatible all extraction methods. Metal beads are necessary for MagAttract. If tissue may be used for other methods, use metal beads. b. Cover tubes with air pore

Wurtele, Eve Syrkin

345

2009138th Annual Meeting & Exhibition noticeable. Crack formation is well investigated in theory and many techniques  

E-Print Network (OSTI)

horizontal single belt casting machines (HSBC). The purpose of this paper was to investigate the surface quality of the strip by casting Aluminum AA6111 alloy on an HSBC simulator using a copper mould

Zabaras, Nicholas J.

346

Reservoir characterization of Yates Formation (Permian, Guadalupian), South Ward field, Ward County, Texas  

E-Print Network (OSTI)

The Yates Formation is a prominent hydrocarbon producing unit in the Permian Basin of west Texas. Production is predominantly from very fine grained sandstones and siltstones that are interbedded with carbonates. The producing clastics have...

Dronamraju, Sharma

2012-06-07T23:59:59.000Z

347

Notices Accessible Format: Individuals with  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

472 Federal Register 472 Federal Register / Vol. 77, No. 83 / Monday, April 30, 2012 / Notices Accessible Format: Individuals with disabilities can obtain this document in an accessible format (e.g., braille, large print, audiotape, or computer diskette) on request to the program contact person listed under FOR FURTHER INFORMATION CONTACT. Electronic Access to This Document: The official version of this document is the document published in the Federal Register. Free Internet access to the official edition of the Federal Register and the Code of Federal Regulations is available via the Federal Digital System at: www.gpo.gov/fdsys. At this site you can view this document, as well as all other documents of this Department published in the Federal Register, in text or Adobe Portable Document

348

A statistical analysis of well production rates from UK oil and gas fields – Implications for carbon capture and storage  

Science Journals Connector (OSTI)

Abstract The number of wells required to dispose of global CO2 emissions by injection into geological formations is of interest as a key indicator of feasible deployment rate, scale and cost. Estimates have largely been driven by forecasts of sustainable injection rate from mathematical modelling of the CO2 injection process. Recorded fluid production rates from oil and gas fields can be considered an observable analogue in this respect. The article presents statistics concerning Cumulative average Bulk fluid Production (CBP) rates per well for 104 oil and gas fields from the UK offshore region. The term bulk fluid production is used here to describe the composite volume of oil, gas and water produced at reservoir conditions. Overall, the following key findings are asserted: (1) CBP statistics for UK offshore oil and gas fields are similar to those observed for CO2 injection projects worldwide. (2) 50% probability of non-exceedance (PNE) for CBP for oil and gas fields without water flood is around 0.35 Mt/yr/well of CO2 equivalent. (3) There is negligible correlation between reservoir transmissivity and CBP. (4) Study of net and gross CBP for water flood fields suggest a 50% PNE that brine co-production during CO2 injection could lead to a 20% reduction in the number of wells required.

Simon A. Mathias; Jon G. Gluyas; Eric J. Mackay; Ward H. Goldthorpe

2013-01-01T23:59:59.000Z

349

New well control companies stress planning, engineering  

SciTech Connect

The technology for capping a blowing well has not changed during the last 50 years. Still, operators are finding new ways of using well control companies' expertise to help avoid potentially disastrous situations. This trend is especially critical given the current environmentally sensitive and cost-cutting times facing the oil industry. While regulatory agencies world-wide continue to hinder well control efforts during an offshore event, well control companies are focusing on technologies to make their job easier. Some of the most exciting are the hydraulic jet cutter, which gained fame in Kuwait, and electromagnetic ranging for drilling more accurate relief wells. With the number of subsea wells increasing, subsea intervention is a major target for future innovations. Well control companies are experiencing a change in their role to the offshore oil industry. Well control professionals discuss this expanded responsibility as well as other aspects of offshore blowouts including regulatory hindrances, subsea intervention and future technologies.

Bell, S.; Wright, R.

1994-04-01T23:59:59.000Z

350

Pahute Mesa Well Development and Testing Analyses for Wells ER-20-7, ER-20-8 #2, and ER-EC-11, Revision 1  

SciTech Connect

This report analyzes the following data collected from ER-20-7, ER-20-8 No.2, and ER-EC-11 during WDT operations: (1) Chemical indicators of well development (Section 2.0); (2) Static hydraulic head (Section 3.0); (3) Radiochemistry and geochemistry (Section 4.0); (4) Drawdown observed at locations distal to the pumping well (Section 5.0); and (5) Drilling water production, flow logs, and temperature logs (Section 6.0). The new data are further considered with respect to existing data as to how they enhance or change interpretations of groundwater flow and transport, and an interim small-scale conceptual model is also developed and compared to Phase I concepts. The purpose of well development is to remove drilling fluids and drilling-associated fines from the formation adjacent to a well so samples reflecting ambient groundwater water quality can be collected, and to restore hydraulic properties near the well bore. Drilling fluids can contaminate environmental samples from the well, resulting in nonrepresentative measurements. Both drilling fluids and preexisting fines in the formation adjacent to the well can impede the flow of water from the formation to the well, creating artifacts in hydraulic response data measured in the well.

Greg Ruskauff

2011-12-01T23:59:59.000Z

351

Characterization and interwell connectivity evaluation of Green Rver reservoirs, Wells Draw study area, Uinta Basin, Utah  

E-Print Network (OSTI)

and seal rocks of the Green River petroleum system. Datum is Mahoganey oil shale bed (1). 49 27 Fig. 11?Cross-section of thermal maturity of oil accumulations in the Green River petroleum system. 49 28 Fig. 12? Lake Uinta depositional... This petroleum system has produced more than 450 MMBO mainly from two formations, the Green River and Colton Formations. 7 The Green River Formation contains the source rock and most of the reservoir and seal rocks (Fig. 10). 49 Most of the kerogen-rich oil...

Abiazie, Joseph Uchechukwu

2009-05-15T23:59:59.000Z

352

Vapor port and groundwater sampling well  

DOE Patents (OSTI)

A method and apparatus has been developed for combining groundwater monitoring wells with unsaturated-zone vapor sampling ports. The apparatus allows concurrent monitoring of both the unsaturated and the saturated zone from the same well at contaminated areas. The innovative well design allows for concurrent sampling of groundwater and volatile organic compounds (VOCs) in the vadose (unsaturated) zone from a single well, saving considerable time and money. The sample tubes are banded to the outer well casing during installation of the well casing.

Hubbell, Joel M. (Idaho Falls, ID); Wylie, Allan H. (Idaho Falls, ID)

1996-01-01T23:59:59.000Z

353

Geothermal/Well Field | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Geothermal/Well Field < Geothermal(Redirected from Well Field) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Leasing Exploration Well Field Power Plant Transmission Environment Water Use Print PDF Geothermal Well Fields and Reservoirs General Techniques Tree Techniques Table Regulatory Roadmap NEPA (45) Geothermal energy plant at The Geysers near Santa Rosa in Northern California, the world's largest electricity-generating hydrothermal geothermal development. Copyright © 1995 Warren Gretz Geothermal Well Fields discussion Groups of Well Field Techniques

354

Rabi Waves and Peculiarities of Raman Scattering in Carbon Nanotubes, Produced by High Energy Ion Beam Modification of Diamond Single Crystals  

E-Print Network (OSTI)

QED-model for multichain coupled qubit system, proposed in \\cite{Part1}, was confirmed by Raman scattering studies of carbon zigzag-shaped nanotubes, produced by high energy ion beam modification of natural diamond single crystals. New quantum optics phenomenon - Rabi waves - has been experimentally identified for the first time. Raman spectra in perfect quasi-1D carbon nanotubes are quite different in comparison with well known Raman spectra in 2D carbon nanotubes of larger diameter. They characterized by vibronic mode of Su-Schriffer-Heeger $\\sigma$-polaron lattice and its revival part in frequency representation, which is the consequence of Rabi wave packet formation.

Dmitry Yearchuck; Alla Dovlatova

2011-03-06T23:59:59.000Z

355

Water Formatics Engineered formation of nanobubbles networks  

E-Print Network (OSTI)

of nanobubbles [3,4,11,14]. 2. A decrease in surface tension from 72 to 68 dyn/cm [11]. 3. Increase nanobubble network is the out come of a self organization process due to the collective effect of bubble-bubble term stability of water structure is resulted from the formation of dense array of stable gas

Jacob, Eshel Ben

356

Pressure and temperature drawdown well testing: similarities and differences  

Science Journals Connector (OSTI)

Temperature and pressure are the most frequently observed physical parameters in boreholes. The same differential diffusivity equation describes the transient flow of incompressible fluid in porous media and heat conduction in solids. The similarities and differences in the techniques of pressure and temperature well testing are discussed. It is shown that the mathematical model of pressure well tests based on the presentation of the borehole as an infinitely long linear source with a constant fluid flow rate in an infinite-acting homogeneous reservoir cannot be used in temperature well testing. A new technique has been developed for the determination of the formation thermal conductivity, initial temperature, skin factor and contact thermal resistance. It is assumed that the volumetric heat capacity of formations is known and the instantaneous heater's wall temperature and time data are available for a cylindrical probe with a constant heat flow rate placed in a borehole. A semi-analytical equation is used to approximate the dimensionless wall temperature of the heater. A simulated example is presented to demonstrate the data processing procedure.

L V Eppelbaum; I M Kutasov

2006-01-01T23:59:59.000Z

357

Characterization of cement from a well at Teapot Dome Oil Field: Implications for geological sequestration  

Science Journals Connector (OSTI)

Wellbores represent the weakest link in terms of CO2 storage permanence. As a result, special attention to the numerous existing wells that perforate storage formations is needed. The pre-injection condition of the cement can influence the rate (and type) of alteration by the injected CO2 plume. The condition of the existing well cement depends on a variety of factors including wellbore/formation and wellbore/brine interactions as well as the composition and type of cement placed in the well (i.e. type of admixtures used, water/solids ratio, sulfate resistant mixes, etc.). In this paper, the details of recovering wellbore cement from an older well to determine pre-injection seal integrity are described. Petrographical and chemical analyses are presented for samples of cement that were retrieved from a 19-year-old well at Teapot Dome in Wyoming. Examination revealed that the retrieved cement had altered as a result of original slurry composition and with respect to the local downhole wellbore environment. Although samples were obtained from a single well, significant differences were observed in their alteration and condition. Sulfate attack resulted in abundant ettringite formation in a cement sample taken adjacent to the Wall Creek sandstone (3060 ft), while cement taken adjacent to the Tensleep formation (5478 ft) was decalcified and enriched in magnesium, owing to reaction of calcium hydroxide in the cement with the dolomitic formation.

George W. Scherer; Barbara Kutchko; Niels Thaulow; Andrew Duguid; Bryant Mook

2011-01-01T23:59:59.000Z

358

Completion report for Well Cluster ER-20-5  

SciTech Connect

The Well Cluster ER-20-5 drilling and completion project was conducted for the US Department of Energy, Nevada Operations Office (DOE/NV), in support of the Nevada Environmental Restoration Project at the Nevada Test Site (NTS) in Nye County, Nevada. Its primary tasks include collecting geological, geophysical, hydrological, and water chemistry data from new and existing wells to define groundwater quality in addition to pathways and rates of groundwater migration. A program of drilling wells near the sites of selected underground nuclear tests (near-field drilling) was implemented to obtain site-specific data about the nature and extent of migration of radionuclides that might have been produced by an underground nuclear explosion. Well Cluster ER-20-5 is the first near-field drilling project initiated at the NTS. This document presents construction data and summarizes the scientific data gathered during the drilling and well-installation phases for all three holes drilled at Well Cluster ER-20-5. Some of this information is preliminary and unprocessed, but was released so that drilling, geotechnical, well design, and completion data could be rapidly disseminated. Additional information about water levels, aquifer testing, and groundwater sampling will be reported after any of this work is performed. Any additional geologic and/or geophysical investigations conducted for this project is described in one or more analysis and interpretation reports. The lithologic and stratigraphic logs, however, are provided in final form.

NONE

1997-03-01T23:59:59.000Z

359

Integrated Geothermal Well Testing: Test Objectives and Facilities  

SciTech Connect

A new and highly integrated geothermal well test program was designed for three geothermal operators in the US (MCR, RGI and Mapco Geothermal). This program required the design, construction and operation of new well test facilities. The main objectives of the test program and facilities are to investigate the critical potential and worst problems associated with the well and produced fluids in a period of approximately 30 days. Field and laboratory investigations are required to determine and quantify the problems of fluid production, utilization and reinjection. The facilities are designed to handle a flow rate from a geothermal well of one million pounds per hour at a wellhead temperature of approximately 268 C (515 F). The facilities will handle an entire spectrum of temperature and rate conditions up to these limits. All pertinent conditions for future fluid exploitations can be duplicated with these facilities, thus providing critical information at the very early stages of field development. The new well test facilities have been used to test high temperature, liquid-dominated geothermal wells in the Imperial Valley of California. The test facilities still have some problems which should be solvable. The accomplishments of this new and highly integrated geothermal well test program are described in this paper.

Nicholson, R. W.; Vetter, O. J.

1981-01-01T23:59:59.000Z

360

Geothermal/Well Field | Open Energy Information  

Open Energy Info (EERE)

Geothermal/Well Field Geothermal/Well Field < Geothermal Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Leasing Exploration Well Field Power Plant Transmission Environment Water Use Print PDF Geothermal Well Fields and Reservoirs General Techniques Tree Techniques Table Regulatory Roadmap NEPA (42) Geothermal energy plant at The Geysers near Santa Rosa in Northern California, the world's largest electricity-generating hydrothermal geothermal development. Copyright © 1995 Warren Gretz Geothermal Well Fields discussion Groups of Well Field Techniques There are many different techniques that are utilized in geothermal well field development and reservoir maintenance depending on the region's geology, economic considerations, project maturity, and other considerations such as land access and permitting requirements. Well field

Note: This page contains sample records for the topic "formation producing wells" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

RFI Well Integrity 06 JUL 1400  

Energy.gov (U.S. Department of Energy (DOE))

This PowerPoint report entitled "Well Integrity During Shut - In Operations: DOE/DOI Analyses" describes risks and suggests risk management recommendations associated with shutting in the well.

362

Well Owner's Guide To Water Supply  

E-Print Network (OSTI)

's groundwater and guidelines, including national drinking water standards, to test well water to insure safe drinking water in private wells. National drinking water standards and common methods of home water .....................22 Contaminants in Water........................................23 Drinking Water Guidelines

Fay, Noah

363

Essays on Well-Being in Japan.  

E-Print Network (OSTI)

??This dissertation is comprised of four papers on well-being in Japan and aims to examine three important measures of well-being: perceptions of job insecurity, self-reported… (more)

Kuroki, Masanori

2011-01-01T23:59:59.000Z

364

A Producer-Consumer Model with Stoichiometric Elimination Mechanisms  

E-Print Network (OSTI)

, and the efficiency of the consumer's conversion of producer biomass to its own biomass. The elimination model we, or equivalently, the stoichiometric ratio of nutrient to biomass, as well as the biomass, is of interest on the flow of a single currency, such as energy stored in carbon compounds or biomass. This point of view

Peckham, Bruce B.

365

Meteoritical and dynamical constraints on the growth mechanisms and formation times of asteroids and Jupiter  

E-Print Network (OSTI)

Peak temperatures inside meteorite parent bodies are closely linked to accretion times. Most iron meteorites come from bodies that accreted 3-5 Myr after CAIs formed. This precludes formation of Jupiter via a gravitational instability <1 Myr after the solar nebula formed, and strongly favors core accretion. Shocks formed by gravitational instabilities in the disk, proto-Jupiter, or by planetary embryos may have produced some chondrules. The minimum lifetime for the solar nebula of 3-5 Myr inferred from CAI and chondrule ages may exceed the median 3 Myr lifetime for protoplanetary disks, but is well within the total 1-10 Myr range. Shorter formation times for extrasolar planets may help to explain why their orbits are unlike those of solar giant planets.

Edward R. D. Scott

2006-07-13T23:59:59.000Z

366

Evaluation of Membrane Treatment Technology to Optimize and Reduce Hypersalinity Content of Produced Brine for Reuse in Unconventional Gas Wells  

E-Print Network (OSTI)

scale were performed using pretreatment, microfiltration and nanofiltration processes. Membrane performance was selected based on high flux separation efficiency, high tolerance for solids and fluid treatments. Over 95 % solids rejection and greater...

Eboagwu, Uche

2012-10-19T23:59:59.000Z

367

Volume 22, Part 1-September 1975 P"$P".hdpk of the Sunailand Formation, an ~-pm&chg  

E-Print Network (OSTI)

of the Sunniland Formation, an Oil-producing 17ormat1on in South Florida ................................. Helen C to the geology of Utah for beginn~ngstudents and laymen. Distributed September 30, 1975 Price $5.00 (Subject to change without notice) #12;Petrographic Analysis of the Sunniland Formation, an Oil-producing Formation

Seamons, Kent E.

368

Effect of well pattern and injection well type on the CO2-assisted gravity drainage enhanced oil recovery  

Science Journals Connector (OSTI)

Fundamental understanding and application of process parameters in numerical simulation that leads to optimized gravity drainage oil recovery at field scale is still a major challenge. Reservoir simulations studying the effects of well patterns and type of gas injection wells have not been reported so far. In first ever attempt, the mechanistic benefits of production strategy on gravity drainage oil recovery are identified in this paper. Effects of irregular and regular well patterns and vertical and horizontal gas injection wells are investigated using a fully compositional 3D reservoir model in secondary immiscible and miscible modes under the conditions of voidage balance, constant pressure of injection and production wells and injection rates below the critical rate. Regular well pattern provided longer oil production time at a constant rate until CO2 breakthrough compared to irregular well pattern. It then dropped almost vertically at the same cumulative oil recovery even at higher production rates. However, gravity drainage oil recovery was higher at higher rate combination after CO2 breakthrough. Results also suggested that the regular pattern could result in horizontal CO2 floodfront parallel to the horizontal producers, maintaining reservoir pressure, thus optimizing the oil recovery by additional 2.5% OOIP. Vertical injection and horizontal production wells in both the immiscible and miscible modes provided nearly identical cumulative gravity drainage oil recovery compared to the combination of horizontal injection and production wells in the regular well pattern. This suggests that the type of injection wells may not be a significant factor to impact the CO2-assisted gravity drainage mechanism. Results obtained herein would help in the optimization of CO2-assisted gravity drainage EOR process.

P.S. Jadhawar; H.K. Sarma

2012-01-01T23:59:59.000Z

369

Method for the magnetization of well casing  

SciTech Connect

A well casing is magnetized by traversing an internal magnetizer along and within the well casing while periodically reversing the direction of the magnetic field of the magnetizer to create a plurality of magnetic flux leakage points along the well casing.

Hoehn, G.L. Jr.

1984-08-14T23:59:59.000Z

370

Calculator program aids well cost management  

SciTech Connect

A TI-59 calculator program designed to track well costs on daily and weekly bases can dramatically facilitate the task of monitoring well expenses. The program computes the day total, cumulative total, cumulative item-row totals, and day-week total. For carrying these costs throughout the drilling project, magnetic cards can store the individual and total cumulative well expenses.

Doyle, C.J.

1982-01-18T23:59:59.000Z

371

The integrity of oil and gas wells  

Science Journals Connector (OSTI)

...Analyses of 8,000 offshore wells in the Gulf of Mexico show that 11–12% of wells developed pressure in the outer...underground gas storage, and even geothermal energy (16–20). We...to learn about how often wells fail, when and why they...

Robert B. Jackson

2014-01-01T23:59:59.000Z

372

Financial News for Major Energy Producers, Third Quarter 2010  

Gasoline and Diesel Fuel Update (EIA)

for Major for Major Energy Producers > Company List Financial News for Major Energy Producers, Third Quarter 2010 What is FRS? | Contacts | FRS Home Corporate and Petroleum Net Income Worldwide Oil and Gas Production Operations Worldwide Refining/Marketing Operations Worldwide Petroleum Capital Expenditures Worldwide Downstream Natural Gas and Power Operations, Supplemental Figures Supplemental Tables Download this Report: pdf icon Full Report in PDF-format pdf icon Past issues in PDF-format Additional Information FRS Home Financial Terms Glossary Contacts Company List for the Financial News for Major Energy Producers Links to the press releases of 21 companies are provided below, which is the number of companies that are included in this report. Only 20 of the companies are included in compilation of corporate revenue and corporate net income because the U.S. operations of BP are included in the results of the U.S. lines of business, but not in the foreign or corporate results because it is foreign based and does not report the overall revenues and net income of its U.S. affiliate.

373

Experimental studies of spheromak formation  

Science Journals Connector (OSTI)

Studies in the PS?1 spheromak configuration can be effectively formed by a combined z? and ??pinch technique on both a fast (?formation??Alfvén) and a much slower timescale. The gross tilt and shift instability of the toroid can be suppressed by a combination of conduction walls shaping the separatrix by externally applied fields and the use of ‘‘figure?eight’’ coils. Optimum stabilty is obtained for almost spherical toroids. Maximum field?reversal times for stable well?confined toroids are ?40 /?sec consistent with resistive decay. Temperatures during the stable decay are 5–10 eV; impurity radiation is an important energy?loss mechanism.

H. Bruhns; C. Chin?Fatt; Y. P. Chong; A. W. DeSilva; G. C. Goldenbaum; H. R. Griem; G. W. Hart; R. A. Hess; J. H. Irby; R. S. Shaw

1983-01-01T23:59:59.000Z

374

Zonal flow as pattern formation  

SciTech Connect

Zonal flows are well known to arise spontaneously out of turbulence. We show that for statistically averaged equations of the stochastically forced generalized Hasegawa-Mima model, steady-state zonal flows, and inhomogeneous turbulence fit into the framework of pattern formation. There are many implications. First, the wavelength of the zonal flows is not unique. Indeed, in an idealized, infinite system, any wavelength within a certain continuous band corresponds to a solution. Second, of these wavelengths, only those within a smaller subband are linearly stable. Unstable wavelengths must evolve to reach a stable wavelength; this process manifests as merging jets.

Parker, Jeffrey B.; Krommes, John A. [Princeton Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543 (United States)] [Princeton Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543 (United States)

2013-10-15T23:59:59.000Z

375

Electrochemical formation of field emitters  

DOE Patents (OSTI)

Electrochemical formation of field emitters, particularly useful in the fabrication of flat panel displays. The fabrication involves field emitting points in a gated field emitter structure. Metal field emitters are formed by electroplating and the shape of the formed emitter is controlled by the potential imposed on the gate as well as on a separate counter electrode. This allows sharp emitters to be formed in a more inexpensive and manufacturable process than vacuum deposition processes used at present. The fabrication process involves etching of the gate metal and the dielectric layer down to the resistor layer, and then electroplating the etched area and forming an electroplated emitter point in the etched area.

Bernhardt, Anthony F. (Berkeley, CA)

1999-01-01T23:59:59.000Z

376

Alternative Fuels Data Center: Biodiesel Producer Requirements  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biodiesel Producer Biodiesel Producer Requirements to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Producer Requirements on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Producer Requirements on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Producer Requirements on Google Bookmark Alternative Fuels Data Center: Biodiesel Producer Requirements on Delicious Rank Alternative Fuels Data Center: Biodiesel Producer Requirements on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Producer Requirements on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel Producer Requirements Biodiesel is defined as a fuel that is composed of mono-alkyl esters of long-chain fatty acids derived from plant or animal matter, meets the

377

Decision matrix for liquid loading in gas wells for cost/benefit analyses of lifting options  

E-Print Network (OSTI)

rotation using an electric motor at the surface. Fig. 2.9 – PCP system (Schlumberger, 2007). Applications PCP can be applied to the wells producing sand-laden heavy oil and bitumen, high water-cut wells, and in the gas wells that require...

Park, Han-Young

2008-10-10T23:59:59.000Z

378

Well correction factors for three-dimensional reservoir simulation  

E-Print Network (OSTI)

with no formation damage, a fine grid radial simulation model with r-z geometry was run with different fractions of well penetration. The model was used to calculate accurate reference values of flowing bottomhole pressure, Pwf ~ The results are tabulated... equals the steady-state flowing pressure at a radial distance r 0 0. 2 ax, where ax is the dimension of a square cell. Based on this observation, Peaceman derived a new equation for the build-up time at' to be used in the matching process (see Fig. 6...

Fjerstad, Paul Albert

1985-01-01T23:59:59.000Z

379

Regulations of Wells (Florida) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Regulations of Wells (Florida) Regulations of Wells (Florida) Regulations of Wells (Florida) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Florida Program Type Environmental Regulations Siting and Permitting Provider Florida Department of Environmental Protection The Department of Environmental Protection regulates the construction, repair, and abandonment of wells, as well as the persons and businesses undertaking such practices. Governing boards of water management districts

380

TIDAL TAILS OF MINOR MERGERS: STAR FORMATION EFFICIENCY IN THE WESTERN TAIL OF NGC 2782  

SciTech Connect

While major mergers and their tidal debris are well studied, they are less common than minor mergers (mass ratios {approx}< 0.3). The peculiar spiral NGC 2782 is the result of a merger between two disk galaxies with a mass ratio of {approx}4: 1 occurring {approx}200 Myr ago. This merger produced a molecular and H I-rich, optically bright eastern tail and an H I-rich, optically faint western tail. Non-detection of CO in the western tail by Braine et al. suggested that star formation had not yet begun to occur in that tidal tail. However, deep H{alpha} narrowband images show evidence of recent star formation in the western tail. Across the entire western tail, we find the global star formation rate per unit area ({Sigma}{sub SFR}) to be several orders of magnitude less than expected from the total gas density. Together with extended FUV+NUV emission from Galaxy Evolution Explorer along the tail, this indicates a low global star formation efficiency in the tidal tail producing lower mass star clusters. The H II region that we observed has a local (few-kiloparsec scale) {Sigma}{sub SFR} from H{alpha} that is less than that expected from the total gas density, which is consistent with other observations of tidal debris. The star formation efficiency of this H II region inferred from the total gas density is low, but normal when inferred from the molecular gas density. These results suggest the presence of a very small, locally dense region in the western tail of NGC 2782 or of a low-metallicity and/or low-pressure star-forming region.

Knierman, Karen; Scowen, Paul; Jansen, Rolf A. [School of Earth and Space Exploration, Arizona State University, 550 East Tyler Mall, Room PSF-686 (P.O. Box 871404), Tempe, AZ 85287-1404 (United States); Knezek, Patricia M. [WIYN Consortium, Inc., 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Wehner, Elizabeth, E-mail: karen.knierman@asu.edu, E-mail: paul.scowen@asu.edu, E-mail: rolf.jansen@asu.edu, E-mail: pknezek@noao.edu, E-mail: ewehner@haverford.edu [Department of Astronomy, Haverford College, Haverford, PA 19041 (United States)

2012-04-10T23:59:59.000Z

Note: This page contains sample records for the topic "formation producing wells" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Basic Data Report for Well Plugging and Abandonment and Reconfiguration Activities for Fiscal Year 2005  

SciTech Connect

The FY 2005 program was initiated on March 31, 2005, and concluded on July 16, 2005. The FY 2005 program initially included 25 wells requiring workover (P&A, Magenta reconfiguration, cleaning and keeping). During the process, the U.S. Bureau of Land Management (BLM) requested transfer of two wells (H-7c and H-8c) to their ownership for future livestock watering. These wells were transferred to the BLM through execution of Form wr-03, Declaration of Owner of Underground Water Rights, between the New Mexico Office of the State Engineer (NMOSE), the BLM, and the DOE Carlsbad Field Office (CBFO). One well (H-2b2) was cleaned and retained as a Culebra monitor well for continued use. One well (H-3d) was converted to a shallow well to monitor the formational contact between the Dewey Lake Redbeds Formation and the Santa Rosa Formation in support of the DP-831 discharge permit monitoring program. Nine dual-completion wells were reconfigured as Magenta-only monitor wells, and 12 wells were plugged and abandoned permanently. This report presents the summary in the same order that the wells were worked in the field.

Washington Regulatory and Environmental Services

2006-03-13T23:59:59.000Z

382

Fracture characteristics and their relationships to producing zones in deep  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Fracture characteristics and their relationships to producing zones in deep wells, Raft River geothermal area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Book: Fracture characteristics and their relationships to producing zones in deep wells, Raft River geothermal area Details Activities (1) Areas (1) Regions (0) Abstract: Fracture characteristics in the sedimentary and metamorphic rocks in the Raft River KGRA of Idaho are analyzed using geological, hydrological and borehole geophysical data from five deep geothermal production wells. Particular emphasis is placed on fracture identification using borehole

383

Horizontal well improves oil recovery from polymer flood--  

SciTech Connect

Horizontal drilling associated with an injection scheme appears to be highly promising for obtaining additional oil recovery. Horizontal well CR 163H, in the Chateaurenard field is discussed. It demonstrated that a thin unconsolidated sand can be successfully drilled and cased. The productivity index (PI) of the well was much greater than vertical wells, and an unproduced oil bank was successfully intersected. On the negative side, it was necessary to pump low in a very deviated part of the well, and the drilling cost was high compared to an onshore vertical well. CR 163H was the fifth and probably most difficult horizontal well drilled by Elf Aquitaine. Located within a polymer-flood project, the target was a 7-m thick sand reservoir at a vertical depth of 590:0080 m. In this inverted seven-spot configuration with one injector in the center and six producers at a distance of 400 m, a polymer solution was injected from 1977 to 1983, followed by water injection.

Bruckert, L. (Elf Aquitaine, Boussens, (FR))

1989-12-18T23:59:59.000Z

384

Chapter 10 - Use of beam pumps to deliquify gas wells  

Science Journals Connector (OSTI)

Publisher Summary Beam pump installations typically carry high costs relative to other deliquifying methods. The initial cost of a beam pump unit can be high if a surplus unit is not available. In addition, electric costs can be high when electric motors are used to power the prime movers, and high maintenance costs often are associated with beam pumping operations. Due to the expense, alternative methods to deliquify gas wells should be considered before installing beam pumps. In addition, beam pumps are likely the most common method used to remove liquids from gas wells. They can be used to pump liquids up the tubing and allow gas production to flow up the casing. Their ready availability and ease of operation have promoted their use in a variety of applications. If beam pumps are to be used for gas well liquid production, the beam system often will produce smaller volumes of liquids. Because of the usually low volumes required to deliquify gas wells and the fact that beam pumps do not have a lower limit for production and efficiency, as do other pumping systems such as ESPs, they often are used for gas well liquid production. The presence of high gas volumes when deliquifying gas wells means that measures often are required to keep gas from entering the down hole pump or to allow the pump to fill and function with some gas present. Pump-off control and gas separation to keep gas out of the pump are briefly discussed in this chapter.

James F. Lea; Henry V. Nickens; Mike R. Wells

2008-01-01T23:59:59.000Z

385

Quantifying the parameters of successful agricultural producers  

E-Print Network (OSTI)

The primary purpose of the study was to quantify the parameters of successful agricultural producers. Through the use of the Financial and Risk Management (FARM) Assistance database, this study evaluated economic measures for row-crop producers...

Kaase, Gregory Herman

2006-08-16T23:59:59.000Z

386

Biomass Producer or Collector Tax Credit (Oregon)  

Energy.gov (U.S. Department of Energy (DOE))

 The Oregon Department of Energy provides a tax credit for agricultural producers or collectors of biomass.  The credit can be used for eligible biomass used to produce biofuel; biomass used in...

387

Experiments with Wind to Produce Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Nat EXPERIMENTS WITH WIND TO PRODUCE ENERGY Curriculum: Wind Power (simple machines, weatherclimatology, aerodynamics, leverage, mechanics, atmospheric pressure, and energy...

388

Well purge and sample apparatus and method  

DOE Patents (OSTI)

The present invention specifically permits purging and/or sampling of a well but only removing, at most, about 25% of the fluid volume compared to conventional methods and, at a minimum, removing none of the fluid volume from the well. The invention is an isolation assembly with a packer, pump and exhaust, that is inserted into the well. The isolation assembly is designed so that only a volume of fluid between the outside diameter of the isolation assembly and the inside diameter of the well over a fluid column height from the bottom of the well to the top of the active portion (lower annulus) is removed. The packer is positioned above the active portion thereby sealing the well and preventing any mixing or contamination of inlet fluid with fluid above the packer. Ports in the wall of the isolation assembly permit purging and sampling of the lower annulus along the height of the active portion.

Schalla, Ronald (Kennewick, WA); Smith, Ronald M. (Richland, WA); Hall, Stephen H. (Kennewick, WA); Smart, John E. (Richland, WA); Gustafson, Gregg S. (Redmond, WA)

1995-01-01T23:59:59.000Z

389

Well purge and sample apparatus and method  

DOE Patents (OSTI)

The present invention specifically permits purging and/or sampling of a well but only removing, at most, about 25% of the fluid volume compared to conventional methods and, at a minimum, removing none of the fluid volume from the well. The invention is an isolation assembly with a packer, pump and exhaust, that is inserted into the well. The isolation assembly is designed so that only a volume of fluid between the outside diameter of the isolation assembly and the inside diameter of the well over a fluid column height from the bottom of the well to the top of the active portion (lower annulus) is removed. The packer is positioned above the active portion thereby sealing the well and preventing any mixing or contamination of inlet fluid with fluid above the packer. Ports in the wall of the isolation assembly permit purging and sampling of the lower annulus along the height of the active portion. 8 figs.

Schalla, R.; Smith, R.M.; Hall, S.H.; Smart, J.E.; Gustafson, G.S.

1995-10-24T23:59:59.000Z

390

Geothermal Well Completion Tests | Open Energy Information  

Open Energy Info (EERE)

Geothermal Well Completion Tests Geothermal Well Completion Tests Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Geothermal Well Completion Tests Abstract This paper reviews the measurements that are typically made in a well immediately after drilling is completed - the Completion Tests. The objective of these tests is to determine the properties of the reservoir, and of the reservoir fluid near the well. A significant amount of information that will add to the characterisation of the reservoir and the well, can only be obtained in the period during and immediately after drilling activities are completed. Author Hagen Hole Conference Petroleum Engineering Summer School; Dubrovnik, Croatia; 2008/06/09 Published N/A, 2008 DOI Not Provided Check for DOI availability: http://crossref.org

391

Method of condensing vaporized water in situ to treat tar sands formations  

DOE Patents (OSTI)

Methods for treating a tar sands formation are described herein. Methods may include heating at least a section of a hydrocarbon layer in the formation from a plurality of heaters located in the formation. Heat may be allowed to transfer from the heaters to at least a first portion of the formation. Conditions may be controlled in the formation so that water vaporized by the heaters in the first portion is selectively condensed in a second portion of the formation. At least some of the fluids may be produced from the formation.

Hsu, Chia-Fu (Rijswijk, NL)

2010-03-16T23:59:59.000Z

392

MIMO Control during Oil Well Drilling  

Science Journals Connector (OSTI)

Abstract A drilling system consists of a rotating drill string, which is placed into the well. The drill fluid is pumped through the drill string and exits through the choke valve. An important scope of the drill fluid is to maintain a certain pressure gradient along the length of the well. Well construction is a complex job in which annular pressures must be kept inside the operational window (limited by fracture and pore pressure). Monitoring bottom hole pressure to avoid fluctuations out of operational window limits is an extremely important job, in order to guarantee safe conditions during drilling. Under a conventional oil well drilling task, the pore pressure (minimum limit) and the fracture pressure (maximum limit) define mud density range and pressure operational window. During oil well drilling, several disturbances affect bottom hole pressure; for example, as the length of the well increases, the bottom hole pressure varies for growing hydrostatic pressure levels. In addition, the pipe connection procedure, performed at equal time intervals, stopping the drill rotation and mud injection, mounting a new pipe segment, restarting the drill fluid pump and rotation, causes severe fluctuations in well fluids flow, changing well pressure. Permeability and porous reservoir pressure governs native reservoir fluid well influx, affecting flow patterns inside the well and well pressure. In this work, a non linear mathematical model (gas-liquid-solid), representing an oil well drilling system, was developed, based on mass and momentum balances. Besides, for implementing classic control (PI), alternative control schemes were analyzed using mud pump flow rate, choke opening index and weight on bit as manipulated variables in order to control annulus bottomhole pressure and rate of penetration. Classic controller tuning was performed for servo and regulatory control studies, under MIMO frameworks.

Márcia Peixoto Vega; Marcela Galdino de Freitas; André Leibsohn Martins

2014-01-01T23:59:59.000Z

393

41.4: Discontinuous Alignment Thin-Film Formation by Self-Organized Dewetting  

E-Print Network (OSTI)

41.4: Discontinuous Alignment Thin-Film Formation by Self-Organized Dewetting Chung-Yung Lee, Man alignment layer [4]. In this paper, we study the formation of a discontinuous alignment film by a dewetting be produced. The alignments produced are robust. Moreover, the processing window is also maximized. 2

394

Stimulation Technologies for Deep Well Completions  

SciTech Connect

The Department of Energy (DOE) is sponsoring the Deep Trek Program targeted at improving the economics of drilling and completing deep gas wells. Under the DOE program, Pinnacle Technologies conducted a study to evaluate the stimulation of deep wells. The objective of the project was to review U.S. deep well drilling and stimulation activity, review rock mechanics and fracture growth in deep, high-pressure/temperature wells and evaluate stimulation technology in several key deep plays. This report documents results from this project.

Stephen Wolhart

2005-06-30T23:59:59.000Z

395

Hawaii Well Construction & Pump Installation Standards Webpage...  

Open Energy Info (EERE)

Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Hawaii Well Construction & Pump Installation Standards Webpage Abstract This webpage provides...

396

Hydrological and geochemical monitoring for a CO2 sequestration pilot in a brine formation  

SciTech Connect

Hydrological and geochemical monitoring are key components of site characterization and CO2 plume monitoring for a pilot test to inject CO2 into a brine-bearing sand of the fluvial-deltaic Frio formation in the upper Texas Gulf Coast. In situ, injected CO2 forms a supercritical phase that has gas-like properties (low density and viscosity) compared to the surrounding brine, while some CO2 dissolves in the brine. The pilot test employs one injection well and one monitor well, with continuous pressure and flow-rate monitoring in both wells, and continuous surface fluid sampling and periodic down-hole fluid sampling from the monitor well. Pre-injection site-characterization includes pump tests with pressure-transient analysis to estimate single-phase flow properties, establish hydraulic connectivity between the wells, determine appropriate boundary conditions, and analyze ambient phase conditions within the formation. Additionally, a pre-injection tracer test furnishes estimates of kinematic porosity and the geometry of flow paths between injection and monitor wells under single-phase conditions. Pre-injection geochemical sampling provides a baseline for subsequent geochemical monitoring and helps determine the optimal tracers to accompany CO2 injection. During CO2 injection, hydrological monitoring enables estimation of two-phase flow properties and helps track the movement of the injected CO2 plume, while geochemical sampling provides direct evidence of the arrival of CO2 and tracers at the monitor well. Furthermore, CO2-charged water acts as a weak acid, and reacts to some extent with the minerals in the aquifer, producing a distinct chemical signature in the water collected at the monitor well. Comparison of breakthrough curves for the single-phase tracer test and the CO2 (and its accompanying tracers) illuminates two-phase flow processes between the supercritical CO2 and native brine, an area of current uncertainty that must be better understood to effectively sequester CO2 in saline aquifers.

Doughty, Christine; Pruess, Karsten; Benson, Sally M.; Freifeld, Barry M.; Gunter, William D.

2004-05-17T23:59:59.000Z

397

In situ heat treatment of a tar sands formation after drive process treatment  

DOE Patents (OSTI)

A method for treating a tar sands formation includes providing a drive fluid to a hydrocarbon containing layer of the tar sands formation to mobilize at least some hydrocarbons in the layer. At least some first hydrocarbons from the layer are produced. Heat is provided to the layer from one or more heaters located in the formation. At least some second hydrocarbons are produced from the layer of the formation. The second hydrocarbons include at least some hydrocarbons that are upgraded compared to the first hydrocarbons produced by using the drive fluid.

Vinegar, Harold J. (Bellaire, TX); Stanecki, John (Blanco, TX)

2010-09-21T23:59:59.000Z

398

Green River Formation Water Flood Demonstration Project. Annual report, April 1, 1994--March 31, 1995  

SciTech Connect

The successful water flood of the Green River Formation in the Monument Butte unit was analyzed in detail in the last yearly report. It was shown that primary recovery and the water flood in the unit were typical of oil production from an undersaturated oil reservoir close its bubble point. The reservoir performance of the smaller Travis unit was also analyzed. The Monument Butte unit is currently producing at around 300 barrels per day of oil. Two of the new wells drilled in the unit had zones pressurized by the water flood. The third well produced from pressurized as well as from zones which were unaffected by the water flood. The water flood response of the Travis unit is slow possibly due to problems of reservoir continuity. Plans for water flooding the Boundary unit were drawn. Core description and Formation Micro Imaging log of well 14a-28 provided insight about the important Lower Douglas Creek sandstone. It was determined that this sandstone was extensively fractured and detailed fracture characteristics were obtained through comprehensive interpretation of the FMI log. Reservoir modeling and simulation studies of all the three units were also continued. A larger, more detailed model of the Monument Butte unit was built in order to study the performance of the new development wells being drilled. Three alternate models developed to explain the performance of the Travis flood revealed that intersecting hydraulic fractures may have also provided paths for water channeling observed in this unit. The reservoir characterization activities identified new reservoirs in the Travis unit. Reservoir simulations helped design an injection program in Travis, unit expansion plans on the west and north sides of the Monument Butte until and to evaluate the infill drilling. The reservoir simulations are being used to examine the role of the aquifer underlying the oil bearing D2 sandstone in Boundary on water flood strategies and injection patterns.

Lomax, J.

1995-09-01T23:59:59.000Z

399

6 - Fundamentals of ferrite formation in steels  

Science Journals Connector (OSTI)

Abstract: The diffusional formation of ferrite at low undercoolings has, historically, been extensively researched, which has led to well-established mechanisms for nucleation and growth. These have been verified against experimental data to allow modelling with good agreement to experiment, often as transformation diagrams. These mechanisms are summarised here and opportunities for improvement through advances in experimentation and computation are highlighted.

M. Strangwood

2012-01-01T23:59:59.000Z

400

SAFETY & WELLNESS Annual Report 2012-2013  

E-Print Network (OSTI)

HEALTH, SAFETY & WELLNESS Annual Report 2012-2013 #12;HEALTH, SAFETY & WELLNESS UPDATE ON SAFETY PROGRAMS The professionals working in the Health and Safety team and Rehabilitation Services group have had a very successful year in supporting individuals to take accountability for their own safety and health

Sinnamon, Gordon J.

Note: This page contains sample records for the topic "formation producing wells" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Record geothermal well drilled in hot granite  

Science Journals Connector (OSTI)

Record geothermal well drilled in hot granite ... Researchers there have completed the second of two of the deepest and hottest geothermal wells ever drilled. ... It may become the energy source for a small electrical generating power station serving nearby communities in New Mexico. ...

1981-09-07T23:59:59.000Z

402

Definition: Independent Power Producer | Open Energy Information  

Open Energy Info (EERE)

Producer Producer Jump to: navigation, search Dictionary.png Independent Power Producer Any entity that owns or operates an electricity generating facility that is not included in an electric utility's rate base. This term includes, but is not limited to, cogenerators and small power producers and all other nonutility electricity producers, such as exempt wholesale generators, who sell electricity.[1] View on Wikipedia Wikipedia Definition An Independent Power Producer is an entity, which is not a public utility, but which owns facilities to generate electric power for sale to utilities and end users. NUGs may be privately held facilities, corporations, cooperatives such as rural solar or wind energy producers, and non-energy industrial concerns capable of feeding excess energy into

403

Salt Wells Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Salt Wells Geothermal Area Salt Wells Geothermal Area (Redirected from Salt Wells Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Salt Wells Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Future Plans 5 Exploration History 6 Well Field Description 7 Research and Development Activities 8 Technical Problems and Solutions 9 Geology of the Area 9.1 Regional Setting 9.2 Stratigraphy 9.3 Structure 10 Hydrothermal System 11 Heat Source 12 Geofluid Geochemistry 13 NEPA-Related Analyses (9) 14 Exploration Activities (28) 15 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Northwest Basin and Range Geothermal Region GEA Development Phase: Operational"Operational" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

404

Salt Wells Geothermal Exploratory Drilling Program EA  

Open Energy Info (EERE)

Salt Wells Geothermal Exploratory Drilling Program EA Salt Wells Geothermal Exploratory Drilling Program EA (DOI-BLM-NV-C010-2009-0006-EA) Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Salt Wells Geothermal Exploratory Drilling Program EA (DOI-BLM-NV-C010-2009-0006-EA) Abstract No abstract available. Author Bureau of Land Management Published U.S. Department of the Interior- Bureau of Land Management, Carson City Field Office, Nevada, 09/14/2009 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Salt Wells Geothermal Exploratory Drilling Program EA (DOI-BLM-NV-C010-2009-0006-EA) Citation Bureau of Land Management. Salt Wells Geothermal Exploratory Drilling Program EA (DOI-BLM-NV-C010-2009-0006-EA) [Internet]. 09/14/2009. Carson City, NV. U.S. Department of the Interior- Bureau of Land Management,

405

Geopressured-geothermal well activities in Louisiana  

SciTech Connect

Since September 1978, microseismic networks have operated continuously around US Department of Energy (DOE) geopressured-geothermal well sites to monitor any microearthquake activity in the well vicinity. Microseismic monitoring is necessary before flow testing at a well site to establish the level of local background seismicity. Once flow testing has begun, well development may affect ground elevations and/or may activate growth faults, which are characteristic of the coastal region of southern Louisiana and southeastern Texas where these geopressured-geothermal wells are located. The microseismic networks are designed to detest small-scale local earthquakes indicative of such fault activation. Even after flow testing has ceased, monitoring continues to assess any microearthquake activity delayed by the time dependence of stress migration within the earth. Current monitoring shows no microseismicity in the geopressured-geothermal prospect areas before, during, or after flow testing.

John, C.J.

1992-10-01T23:59:59.000Z

406

GRR/Section 19-WA-f - Water Well NOI for Replacement or Additional Wells |  

Open Energy Info (EERE)

GRR/Section 19-WA-f - Water Well NOI for Replacement or Additional Wells GRR/Section 19-WA-f - Water Well NOI for Replacement or Additional Wells < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 19-WA-f - Water Well NOI for Replacement or Additional Wells 19-WA-f - Water Well NOI for Replacement or Additional Wells.pdf Click to View Fullscreen Contact Agencies Washington State Department of Ecology Regulations & Policies Revised Code of Washington 90.44.100 Revised Code of Washington 18.104.048 Washington Administrative Code 173-160-151 Triggers None specified A developer seeking to use ground water for an activity may need to drill a new well in a different location than a previous well, drill an additional well at an existing location, or drill a replacement well at the same

407

What is the SEAP Website? The SEAP Guide is no longer produced in printed format  

E-Print Network (OSTI)

: Frank Fenner Building (#42) E: science.enquiries@anu.edu.au W: http://cos.anu.edu.au Graduate Entry

408

Unloading using auger tool and foam and experimental identification of liquid loading of low rate natural gas wells  

E-Print Network (OSTI)

Low-pressure, low-producing natural gas wells commonly encounter liquid loading during production. Because of the decline in the reservoir pressure and the flow capacity, wells can fall below terminal velocity. Identifying and predicting the onset...

Bose, Rana

2007-09-17T23:59:59.000Z

409

Production-systems analysis for fractured wells  

SciTech Connect

Production-systems analysis has been in use for many years to design completion configurations on the basis of an expected reservoir capacity. The most common equations used for the reservoir calculations are for steady-state radial flow. Most hydraulically fractured wells require the use of an unsteady-state production simulator to predict the higher flow rates associated with the stimulated well. These high flow rates may present problems with excessive pressure drops through production tubing designed for radial-flow production. Therefore, the unsteady-state nature of fractured-well production precludes the use of steady-state radial-flow inflow performance relationships (IPR's) to calculate reservoir performance. An accurate prediction of fractured-well production must be made to design the most economically efficient production configuration. It has been suggested in the literature that a normalized reference curve can be used to generate the IPR's necessary for production-systems analysis. However, this work shows that the reference curve for fractured-well response becomes time-dependent when reservoir boundaries are considered. A general approach for constructing IPR curves is presented, and the use of an unsteady-state fractured-well-production simulator coupled with the production-systems-analysis approach is described. A field case demonstrates the application of this method to fractured wells.

Hunt, J.L. (Halliburton Services (US))

1988-11-01T23:59:59.000Z

410

Horizontal oil well applications and oil recovery assessment. Volume 2: Applications overview, Final report  

SciTech Connect

Horizontal technology has been applied in over 110 formations in the USA. Volume 1 of this study addresses the overall success of horizontal technology, especially in less-publicized formations, i.e., other than the Austin Chalk, Bakken, and Niobrara. Operators in the USA and Canada were surveyed on a formation-by-formation basis by means of a questionnaire. Response data were received describing horizontal well projects in 58 formations in the USA and 88 in Canada. Operators` responses were analyzed for trends in technical and economic success based on lithology (clastics and carbonates) and resource type (light oil, heavy oil, and gas). The potential impact of horizontal technology on reserves was also estimated. A forecast of horizontal drilling activity over the next decade was developed.

Deskins, W.G.; McDonald, W.J.; Knoll, R.G.; Springer, S.J.

1995-03-01T23:59:59.000Z

411

Completion Report for Well ER-18-2  

SciTech Connect

Well ER-18-2 was drilled for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office in support of the Nevada Environmental Restoration Project at the Nevada Test Site, Nye County, Nevada. This well, located on Buckboard Mesa in the western part of the Nevada Test Site, was drilled in the spring of 1999 as part of the U.S. Department of Energy's hydrogeologic investigation well program in the Western Pahute Mesa - Oasis Valley region just west of the Test Site. A 44.5-centimeter surface hole was drilled and cased off to the depth 408.1 meters below the surface. The hole diameter was then decreased to 31.1 centimeters for drilling to a total depth of 762.0 meters. A preliminary composite, static, water level was measured at the depth of approximately 369.7 meters approximately two months after the completion string was installed. One completion string with three isolated, slotted intervals was installed in the well. Detailed lithologic descriptions with preliminary stratigraphic assignments are included in the report. These are based on composite drill cuttings collected every 3 meters and 15 sidewall samples taken at various depths below 420 meters, supplemented by geophysical log data and results of detailed chemical and mineralogical studies of rock samples. The upper part of the well penetrated Tertiary-age basalt, underlain by tuffaceous moat-filling sediments interbedded with ash-flow tuff units of the Thirsty Canyon Group and the Beatty Wash Formation. The lower half of the drill hole penetrated ash-flow tuff of the mafic-rich Ammonia Tanks Tuff. The geologic interpretation of data from Well ER-18-2 indicates that this site is located inside the structural margin of the Ammonia Tanks caldera.

Bechtel Nevada

2003-09-01T23:59:59.000Z

412

Completion Report for Well ER-12-2  

SciTech Connect

Well ER-12-2 was drilled for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, in support of the Nevada Environmental Restoration Project at the Nevada Test Site, Nye County, Nevada. The well was drilled from November 2002 to January 2003 as part of a hydrogeologic investigation program for the Yucca Flat Corrective Action Unit. The overall purpose of the well was to gather subsurface data to better characterize the hydrogeology in the northwestern portion of Yucca Flat. The well was drilled to total measured depth of 2,097.9 meters. The 131.1-centimeter-diameter borehole was left open (i.e., uncased) below the base of the intermediate casing at 901.6 meters. A piezometer string was installed outside the surface casing to a depth of 176.4 meters to monitor a zone of perched water. Data gathered during and shortly after hole construction include composite drill cuttings samples collected every 3 meters, sidewall core samples from 7 depths, various geophysical logs, and water level measurements. These data indicate that the well penetrated, in descending order, 137.5 meters of Quaternary and Tertiary alluvium, 48.8 meters of Tertiary volcanic rocks, 289.6 meters of Mississippian Chainman Shale, and 1,622.5 meters of Mississippian and Upper Devonian Eleana Formation consisting of shale, argillite, sandstone, quartzite, and limestone. Forty-seven days after the well was drilled the water level inside the main hole was tagged at the depth of 65.43 meters, and the water level inside the piezometer string was tagged at 127.14 meters.

Bechtel Nevada

2004-11-01T23:59:59.000Z

413

Completion Report for Well ER-EC-1  

SciTech Connect

Well ER-EC-1 was drilled for the U.S. Department of Energy, Nevada Operations Office in support of the Nevada Environmental Restoration Project at the Nevada Test Site, Nye County, Nevada. This well was drilled in the spring of 1999 as part of the U.S. Department of Energy's hydrogeologic investigation well program in the Western Pahute Mesa - Oasis Valley region just west of the Test Site. A 44.5-centimeter surface hole was drilled and cased off to the depth 675.1 meters below the surface. The hole diameter was then decreased to 31.1 centimeters for drilling to a total depth of 1,524.0 meters. A preliminary composite, static, water level was measured at the depth of approximately 566.3 meters prior to installation of the completion string. One completion string with three isolated, slotted intervals was installed in the well. Detailed lithologic descriptions with preliminary stratigraphic assignments are included in the report. These are based on composite drill cuttings collected every 3 meters and 31 sidewall samples taken at various depths below 680 meters, supplemented by geophysical log data. Detailed chemical and mineralogical studies of rock samples are in progress. The well penetrated Tertiary-age lava and tuff of the Timber Mountain Group, the Paintbrush Group, the Calico Hills Formation, the Crater Flat Group, and the Volcanics of Quartz Mountain. The preliminary geologic interpretation of data from Well ER-EC-1 indicates the presence of a structural trough or bench filled with a thick section of post-Rainier Mesa lava. These data also suggest that this site is located on a buried structural ridge that may separate the Silent Canyon and Timber Mountain caldera complexes.

Townsend, M.J.

2000-12-01T23:59:59.000Z

414

Discussion of productivity of a horizontal well  

SciTech Connect

The authors of this paper has been using several of the analytical equations and numerical simulation to evaluate the productivity of horizontal wells that have near-wellbore damage. Through this evaluation, the author found that here are inconsistencies in the way the skin factor is introduced into the analytical equations. This discussion shows the corrections needed in various analytical equations to obtain consistency with numerical simulation. In the numerical simulation shown here, skin factor is simulated by assignment of a reduced permeability to nodes near the well. The author would appreciate any comments Babu and Odeh could make on this aspect of horizontal wells.

Gilman, J.R. (Marathon Oil Company (US))

1991-02-01T23:59:59.000Z

415

Definition: Single-Well And Cross-Well Seismic Imaging | Open Energy  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon » Definition: Single-Well And Cross-Well Seismic Imaging (Redirected from Definition:Single-Well And Cross-Well Seismic) Jump to: navigation, search Dictionary.png Single-Well And Cross-Well Seismic Imaging Single well seismic imaging (SWSI) is the application of borehole seismic sources and receivers on the same string within a single borehole in order to acquire CMP type shot gathers. Cross well seismic places sources and receivers in adjacent wells in order to image the interwell volume.[1] Also Known As SWSI References ↑ http://library.seg.org/ Ret LikeLike UnlikeLike You like this.Sign Up to see what your friends like. rieved from "http://en.openei.org/w/index.php?title=Definition:Single-Well_And_Cross-Well_Seismic_Imaging&oldid=690246"

416

Exploratory Well At Salt Wells Area (Bureau of Land Management, 2009) |  

Open Energy Info (EERE)

Exploratory Well At Salt Wells Area (Bureau of Land Management, 2009) Exploratory Well At Salt Wells Area (Bureau of Land Management, 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Exploratory Well At Salt Wells Area (Bureau of Land Management, 2009) Exploration Activity Details Location Salt Wells Geothermal Area Exploration Technique Exploratory Well Activity Date 2008 - 2008 Usefulness not indicated DOE-funding Unknown Exploration Basis Vulcan increased exploration efforts in the summer and fall of 2008, during which time the company drilled two temperature gradient holes (86-15 O on Pad 1 and 17-16 O on Pad 3); conducted seismic, gravity and magnetotelluric surveys; and drilled deep exploration wells at Pads 6 and 8 and binary wells at Pads 1, 2, 4, and 7. Notes Data from these wells is proprietary, and so were unavailable for inclusion

417

GRR/Section 19-WA-e - Water Well Notice of Intent for New Well | Open  

Open Energy Info (EERE)

GRR/Section 19-WA-e - Water Well Notice of Intent for New Well GRR/Section 19-WA-e - Water Well Notice of Intent for New Well < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 19-WA-e - Water Well Notice of Intent for New Well 19-WA-e - Water Well Notice of Intent for New Well.pdf Click to View Fullscreen Contact Agencies Washington State Department of Ecology Regulations & Policies Revised Code of Washington 18.104.048 Washington Administrative Code 173-160-151 Triggers None specified A developer seeking to use ground water for an activity may need to drill a new well to access the ground water. When a developer needs to drill a new well, the developer must complete the Notice of Intent (NOI) to Drill a Well form and submit the form to the Washington State Department of Ecology

418

Stabilization of External Filter Cake by Colloidal Forces in a “Well–Reservoir” System  

Science Journals Connector (OSTI)

Similar processes occur during drilling of oil, geothermal, and artesian wells: first drilling mud invades the formation, and then the drilling particles form an external filter cake that stabilizes with time due to particle dislodgement. ... However, to the best of our knowledge, the reliable predictive model for stabilized cake is not available in the literature. ... Figure 2. Matching the field data by the analytical model for well injectivity decline: (a) well A (Campos Basin, Brazil); (b) well B (Gulf of Mexico, U.S.A.); (c) well C (LSU, Wyoming, U.S.A.). ...

A. Kalantariasl; P. Bedrikovetsky

2013-11-18T23:59:59.000Z

419

Salt Wells Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Salt Wells Geothermal Area Salt Wells Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Salt Wells Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Future Plans 5 Exploration History 6 Well Field Description 7 Research and Development Activities 8 Technical Problems and Solutions 9 Geology of the Area 9.1 Regional Setting 9.2 Stratigraphy 9.3 Structure 10 Hydrothermal System 11 Heat Source 12 Geofluid Geochemistry 13 NEPA-Related Analyses (9) 14 Exploration Activities (28) 15 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Northwest Basin and Range Geothermal Region GEA Development Phase: Operational"Operational" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

420

Maazama Well Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Maazama Well Geothermal Area Maazama Well Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Maazama Well Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.8965,"lon":-121.9865,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "formation producing wells" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Willow Well Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Well Geothermal Area Well Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Willow Well Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":61.6417,"lon":-150.095,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

422

Wellness & Additional Benefits | Careers | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Working at ORNL Working at ORNL Benefits Wellness and Other Incentives View Open Positions View Postdoctoral Positions Create A Profile Internal applicants please apply here View or update your current application or profile. External applicants Internal applicants Internet Explorer Browser preferred for ORNL applicants. Chrome is not currently supported. For more information about browser compatibility please refer to the FAQs. If you have difficulty using the online application system or need an accommodation to apply due to a disability, please email ORNLRecruiting@ornl.gov or phone 1-866-963-9545 Careers Home | ORNL | Careers | Working at ORNL | Wellness and Other Incentives SHARE Wellness & Additional Benefits Wellness Program Employees have many opportunities to maintain and improve their health

423

6981 well-provided recreation facility [n  

Science Journals Connector (OSTI)

recr. (Well-provisioned recreation installation and equipment);s instalación [f] de recreo intensivo (Equipamiento recreacional de gran variedad y de gran calidad);f équipement [m] de loisirs lourd (...

2010-01-01T23:59:59.000Z

424

Two-phase flow in horizontal wells  

SciTech Connect

Flow in horizontal wells and two-phase flow interaction with the reservoir were investigated experimentally and theoretically. Two-phase flow behavior has been recognized as one of the most important problems in production engineering. The authors designed and constructed a new test facility suitable for acquiring data on the relationship between pressure drop and liquid holdup along the well and fluid influx from the reservoir. For the theoretical work, an initial model was proposed to describe the flow behavior in a horizontal well configuration. The model uses the inflow-performance-relationship (IPR) approach and empirical correlations or mechanistic models for wellbore hydraulics. Although good agreement was found between the model and experimental data, a new IPR apart from the extension of Darcy`s law must be investigated extensively to aid in the proper design of horizontal wells.

Ihara, Masaru [Japan National Oil Corp., Chiba (Japan); Yanai, Koji [Nippon Kokan Corp., Yokohama (Japan); Yanai, Koji

1995-11-01T23:59:59.000Z

425

Well Record or History | Open Energy Information  

Open Energy Info (EERE)

History Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- OtherOther: Well Record or HistoryLegal Published NA Year Signed or Took Effect 2013...

426

Groundwater well with reactive filter pack  

DOE Patents (OSTI)

A method and apparatus for the remediation of contaminated soil and ground water wherein a reactive pack material is added to the annular fill material utilized in standard well construction techniques.

Gilmore, Tyler J. (Pasco, WA); Holdren, Jr., George R. (Kennewick, WA); Kaplan, Daniel I. (Richland, WA)

1998-01-01T23:59:59.000Z

427

Groundwater well with reactive filter pack  

DOE Patents (OSTI)

A method and apparatus are disclosed for the remediation of contaminated soil and ground water wherein a reactive pack material is added to the annular fill material utilized in standard well construction techniques. 3 figs.

Gilmore, T.J.; Holdren, G.R. Jr.; Kaplan, D.I.

1998-09-08T23:59:59.000Z

428

Polariton dispersion of periodic quantum well structures  

Science Journals Connector (OSTI)

We studied the polariton dispersion relations of a periodic quantum-well structure with a period in the vicinity of half the exciton resonance wavelength, i.e., the Bragg structure. We classified polariton mod...

A. V. Mintsev; L. V. Butov; C. Ell; S. Mosor…

2002-11-01T23:59:59.000Z

429

California Water Well Standards | Open Energy Information  

Open Energy Info (EERE)

Legal Document- OtherOther: California Water Well StandardsLegal Published NA Year Signed or Took Effect 2104 Legal Citation Not provided DOI Not Provided Check for DOI...

430

Inflatable kill packers used in working over Kuwaiti wells  

SciTech Connect

This paper reports on inflatable packers which are being used with great success in post-well capping workover operations in Kuwait oil fields. In mid-January, about one kill packer was being run per day. Use is expected to increase in March when a second post-capping crew arrives. Of several thousand unconventional ideas submitted to Kuwait Oil Co. (KOC) for controlling the well fires left in the aftermath of lst year's Gulf War, only about a dozen were actually used. Inflatable kill packers, designed and manufactured by Baker Service Tools and marketed by Baker Oil Tools, were one of the ideas that proved effective. The kill packers are modifications of Baker's inflatable packers that have successfully been used in capping producers on many blowouts throughout the world, including the Piper Alpha disaster in the North Sea and the Saga blowout offshore Norway.

Miller, D. (Baker Oil Tools, Houston, TX (US)); Conover, G. (Baker Service Tools, Houston, TX (US))

1992-03-09T23:59:59.000Z

431

Florida Project Produces Nation's First Cellulosic Ethanol at  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Florida Project Produces Nation's First Cellulosic Ethanol at Florida Project Produces Nation's First Cellulosic Ethanol at Commercial-Scale Florida Project Produces Nation's First Cellulosic Ethanol at Commercial-Scale July 31, 2013 - 1:37pm Addthis News Media Contact (202) 586-4940 WASHINGTON - The Energy Department today recognized the nation's first commercial-scale cellulosic ethanol production at INEOS Bio's Indian River BioEnergy Center in Vero Beach, Florida. Developed through a joint venture between INEOS Bio and New Planet Energy, the project uses a unique hybrid of gasification and fermentation technology - originally developed with Energy Department support starting in the 1990's - to convert wood scraps, grass clippings and other waste materials into transportation fuels as well as energy for heat and power.

432

Florida Project Produces Nation's First Cellulosic Ethanol at  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Florida Project Produces Nation's First Cellulosic Ethanol at Florida Project Produces Nation's First Cellulosic Ethanol at Commercial-Scale Florida Project Produces Nation's First Cellulosic Ethanol at Commercial-Scale July 31, 2013 - 1:37pm Addthis News Media Contact (202) 586-4940 WASHINGTON - The Energy Department today recognized the nation's first commercial-scale cellulosic ethanol production at INEOS Bio's Indian River BioEnergy Center in Vero Beach, Florida. Developed through a joint venture between INEOS Bio and New Planet Energy, the project uses a unique hybrid of gasification and fermentation technology - originally developed with Energy Department support starting in the 1990's - to convert wood scraps, grass clippings and other waste materials into transportation fuels as well as energy for heat and power.

433

Formation of a flux core spheromak  

Science Journals Connector (OSTI)

An alternate design for compact tori specifically of the spheromak type is studied. In this design the ‘‘flux core spheromak’’ [Nucl. Fusion 29 219 (1989)] the externally imposed bias field links the confinement region of closed flux surfaces. The advantages of this configuration are: (i) it enjoys greater stability to magnetohydrodynamic (MHD) modes particularly the tilt and shift; (ii) it has a poloidal divertor and an amount of poloidal flux separating the closed flux surface region from the walls; and (iii) it might be sustained by helicity injection. Results are presented showing the dependence of the geometry on the distribution of bias flux on the conducting walls and showing the optimization of the 2?D formation scheme to minimize the contact of the plasma with coils electrodes and walls. This last topic involves taking advantage of current sheet formation and subsequent tearing as in formation of the MS spheromak [Phys. Fluids 28 3154 (1985)]. The parameters which can be varied to produce this favorable formation scheme via tearing rather than a formation that proceeds off the reversal coils are explored. In addition it is found that there is strong viscous heating of the ions in this early reconnection phase.

John M. Finn; Parvez N. Guzdar

1991-01-01T23:59:59.000Z

434

Formation of Colloidal Shells on Acidic Droplets Undergoing Neutralization in Marine Diesel Engine Cylinder Oils  

Science Journals Connector (OSTI)

In this study, a novel colloidal shell formation phenomenon was observed when sulfuric acid droplets underwent neutralization in marine cylinder lubricant at 115 ± 5 °C ... the formation of well-known deposits fo...

Miguel Garcia-Bermudes; Riccardo Rausa; Kyriakos Papadopoulos

2013-07-01T23:59:59.000Z

435

Ocean Currents Produced by Evaporation and Precipitation  

Science Journals Connector (OSTI)

1 September 1933 research-article Ocean Currents Produced by Evaporation and Precipitation G. R. Goldsbrough The Royal Society is collaborating with JSTOR to digitize, preserve...

1933-01-01T23:59:59.000Z

436

On Ocean Currents Produced by Winds  

Science Journals Connector (OSTI)

1 January 1935 research-article On Ocean Currents Produced by Winds G. R. Goldsbrough The Royal Society is collaborating with JSTOR to digitize, preserve, and extend access...

1935-01-01T23:59:59.000Z

437

Lead in Maple Syrup Produced in Connecticut  

Science Journals Connector (OSTI)

Lead in Maple Syrup Produced in Connecticut ... Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, P.O. ... Box 1106, New Haven, Connecticut 06504 ...

David E. Stilwell; Craig L. Musante

1996-10-17T23:59:59.000Z

438

California: Agricultural Residues Produce Renewable Fuel | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

that validated the viability of this technology platform for producing cellulosic ethanol from corn stover at reasonable yields. The California Energy Commission has awarded...

439

Hydrogenase mimic produces hydrogen under the light  

NLE Websites -- All DOE Office Websites (Extended Search)

about Center Center Video Library Bisfuel Picture Gallery Hydrogenase mimic produces hydrogen under the light 24 Jan 2013 Researchers from the laboratory of Giovanna Ghirlanda...

440

Scientists produce transparent, light-harvesting material  

NLE Websites -- All DOE Office Websites (Extended Search)

Transparent, light-harvesting material Scientists produce transparent, light-harvesting material The material could be used in development of transparent solar panels. November 3,...

Note: This page contains sample records for the topic "formation producing wells" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

A Simple Method of Producing Wide-Band Frequency Modulation  

Science Journals Connector (OSTI)

... THE resistance-capacity tuned oscillator is well known as a very good generator of audio-frequency oscillations. In a recent communication by Rakshit and Bhattacharyya1 it was pointed out ... out that the conventional circuit of a three-phase system, with components selected for producing audio-frequency oscillations, invariably generates radio-frequencies by virtue of the unavoidable stray and inter- ...

H. RAKSHIT; N. SARKAR

1949-04-09T23:59:59.000Z

442

Long-Term Testing of Geothermal Wells in the Coso Hot Springs KGRA | Open  

Open Energy Info (EERE)

Long-Term Testing of Geothermal Wells in the Coso Hot Springs KGRA Long-Term Testing of Geothermal Wells in the Coso Hot Springs KGRA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Long-Term Testing of Geothermal Wells in the Coso Hot Springs KGRA Details Activities (3) Areas (2) Regions (0) Abstract: Three wells have been drilled by the Los Angeles Department of Water and Power at the Coso Hot Springs KGRA. A long-term flow test was conducted involving one producing well (well 43-7), one injector (well 88-1), and two observation wells (well 66-6 and California Energy Co's well 71A-7). This paper presents the equipment and techniques involved and the results from the long-term test conducted between December 1985 and February 1986. Author(s): Sanyal, S.; Menzies, A.; Granados, E.; Sugine, S.;

443

Completion Report for Well ER-EC-8  

SciTech Connect

Well ER-EC-8 was drilled for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office in support of the Nevada Environmental Restoration Project at the Nevada Test Site, Nye County, Nevada. This well was drilled in the summer of 1999 as part of the U.S. Department of Energy's hydrogeologic investigation program in the Western Pahute Mesa - Oasis Valley region just west of the Nevada Test Site. A 44.5-centimeter surface hole was drilled and cased off to a depth of 129.8 meters below the surface. The hole diameter was then decreased to 31.1 centimeters for drilling to a total depth of 609.6 meters. One completion string with three isolated slotted intervals was installed in the well. A preliminary composite, static water level was measured at the depth of 98.4 meters, 24 days after installation of the completion string. Detailed lithologic descriptions with stratigraphic assignments are included in the report. These are based on evaluation of composite drill cuttings collected every 3 meters, and 20 sidewall samples taken at various depths below 157.9 meters, supplemented by geophysical log data and results of detailed chemical and mineralogical studies of rock samples. Drilling began in Tertiary-age tuff of the Thirsty Canyon Group, and penetrated tuffs of the Beatty Wash Formation, tuff of Buttonhook Wash, and the upper portion of the Ammonia Tanks Tuff. The geologic interpretation of data from this well helps define the location of the western margin of the Timber Mountain caldera complex in the southwestern Nevada volcanic field. Geologic and hydrologic data from the well will aid in development of models to predict groundwater flow and contaminant migration within and near the Nevada Test Site.

Bechtel Nevada

2004-10-01T23:59:59.000Z

444

Significance of Semivolatile Diesel Exhaust Organics for Secondary HONO Formation  

Science Journals Connector (OSTI)

The atmospheric origin of nitrous acid (HONO) is largely unknown despite its estimated importance as an OH source during daytime due to its rapid photolysis. Recently, primary HONO contained in automobile exhaust as well as secondary HONO formation on ...

Lukas Gutzwiller; Frank Arens; Urs Baltensperger; Heinz W. Gäggeler; Markus Ammann

2002-01-12T23:59:59.000Z

445

Project management improves well control events  

SciTech Connect

During a well control operation, the efficient use of personnel and equipment, through good project management techniques, contributes to increased safety and ensures a quality project. The key to a successful blowout control project is to use all resources in the most efficient manner. Excessive use of resources leads to unnecessary expenditures and delays in bringing the project under control. The Kuwait well control project, which involved more than 700 blowouts, was accomplished in a much shorter time (8 months) than first estimated (5 years). This improvement partly resulted from the application of sound project management techniques. These projects were prime examples of the need for a formal project management approach to handling wild well projects. There are many examples of projects that were successful in controlling wells but were economic disasters. Only through the effective application of project management can complex well control projects be completed in reasonable time frames at reasonable cost. The paper describes team management, project scope, organizational structures, scheduling, tracking models, critical path method, and decision trees.

Oberlender, G.D. [Oklahoma State Univ., Stillwater, OK (United States); Abel, L.W. [Wild Well Control Inc., Spring, TX (United States)

1995-07-10T23:59:59.000Z

446

Definition: Single-Well And Cross-Well Seismic Imaging | Open Energy  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon » Definition: Single-Well And Cross-Well Seismic Imaging Jump to: navigation, search Dictionary.png Single-Well And Cross-Well Seismic Imaging Single well seismic imaging (SWSI) is the application of borehole seismic sources and receivers on the same string within a single borehole in order to acquire CMP type shot gathers. Cross well seismic places sources and receivers in adjacent wells in order to image the interwell volume.[1] Also Known As SWSI References ↑ http://library.seg.org/ Ret LikeLike UnlikeLike You like this.Sign Up to see what your friends like. rieved from "http://en.openei.org/w/index.php?title=Definition:Single-Well_And_Cross-Well_Seismic_Imaging&oldid=690246" Category:

447

Ship-produced cloud line of 13 July 1991  

SciTech Connect

Steaming ships can produce long linear cloud lines in regions of fog and broken stratus as well as in marine stratus layers. The lines are not always detected in 0.63 {mu}m satellite images, but are often detected in the corresponding 3.7 {mu}m images because the lines contain smaller and more numerous droplets than the stratus in which they are embedded as deduced by Coakley, et al. and measured by Radke, et al. They postulate cloud condensation nuclei (CCN) from steaming ships produced the more numerous and, hence, smaller cloud droplets. The ship-produced clouds are not always detected in 0.63 {mu}m images because this wavelength is not as sensitive to changes in droplet size as is 3.7 {mu}m. On 13 July 1991 a dramatic, ship-produced cloud line formed offshore of Baja California. The authors present satellite images of the line and corresponding photographs from the R/V EGABRAG III which passed under the line. The images and photos reveal the structure of the line. The EGABRAG was a source of CCN but did not produce a cloud line; they attempt to explain this important finding.

Hindman, E.E. [City Coll. of New York, NY (US); Porch, W.M. [Los Alamos National Lab., NM (US); Hudson, J.G. [Desert Research Inst., Reno, NV (US); Durkee, P.A. [Navel Postgraduate School, Monterey, CA (US)

1992-12-31T23:59:59.000Z

448

Ship-produced cloud line of 13 July 1991  

SciTech Connect

Steaming ships can produce long linear cloud lines in regions of fog and broken stratus as well as in marine stratus layers. The lines are not always detected in 0.63 [mu]m satellite images, but are often detected in the corresponding 3.7 [mu]m images because the lines contain smaller and more numerous droplets than the stratus in which they are embedded as deduced by Coakley, et al. and measured by Radke, et al. They postulate cloud condensation nuclei (CCN) from steaming ships produced the more numerous and, hence, smaller cloud droplets. The ship-produced clouds are not always detected in 0.63 [mu]m images because this wavelength is not as sensitive to changes in droplet size as is 3.7 [mu]m. On 13 July 1991 a dramatic, ship-produced cloud line formed offshore of Baja California. The authors present satellite images of the line and corresponding photographs from the R/V EGABRAG III which passed under the line. The images and photos reveal the structure of the line. The EGABRAG was a source of CCN but did not produce a cloud line; they attempt to explain this important finding.

Hindman, E.E. (City Coll. of New York, NY (United States)); Porch, W.M. (Los Alamos National Lab., NM (United States)); Hudson, J.G. (Desert Research Inst., Reno, NV (United States)); Durkee, P.A. (Navel Postgraduate School, Monterey, CA (United States))

1992-01-01T23:59:59.000Z

449

Salt Wells Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Salt Wells Geothermal Project Salt Wells Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Salt Wells Geothermal Project Project Location Information Coordinates 39.580833333333°, -118.33444444444° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.580833333333,"lon":-118.33444444444,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

450

GeoWells International | Open Energy Information  

Open Energy Info (EERE)

GeoWells International GeoWells International Jump to: navigation, search Name GeoWells International Place Nairobi, Kenya Sector Geothermal energy, Solar, Wind energy Product Kenya-based geothermal driller. The company also supplies and installs wind and solar units. Coordinates -1.277298°, 36.806261° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":-1.277298,"lon":36.806261,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

451

Downhole Temperature Prediction for Drilling Geothermal Wells  

SciTech Connect

Unusually high temperatures are encountered during drilling of a geothermal well. These temperatures affect every aspect of drilling, from drilling fluid properties to cement formulations. Clearly, good estimates of downhole temperatures during drilling would be helpful in preparing geothermal well completion designs, well drilling plans, drilling fluid requirements, and cement formulations. The thermal simulations in this report were conducted using GEOTEMP, a computer code developed under Sandia National Laboratories contract and available through Sandia. Input variables such as drilling fluid inlet temperatures and circulation rates, rates of penetration, and shut-in intervals were obtained from the Imperial Valley East Mesa Field and the Los Alamos Hot Dry Rock Project. The results of several thermal simulations are presented, with discussion of their impact on drilling fluids, cements, casing design, and drilling practices.

Mitchell, R. F.

1981-01-01T23:59:59.000Z

452

Apparatus for stringing well pipe of casing  

SciTech Connect

An apparatus for use in running a string of threaded well pipe or casing in a vertical configuration in a deep well bore which is adapted to convert a top head drive drilling rig for use in running each length of pipe into the well bore. A drive spindle adaptor is provided which may be securely attached in a removably mounted manner to the rotary drive spindle or sub of a top head drive drilling rig. The drive spindle includes a pair of opposing, outwardly extending lugs disposed at a right angle to the axial direction of the spindle and a true centering guide means. A collar is included which is provided with frictional gripping members for removably securing the collar to one end of a length of conventional pipe and a pair of axially extending, spaced ears which cooperate upon engagement with said lugs on said spindle adaptor to transfer rotary motion of said spindle to said length of pipe.

Sexton, J.L.

1984-04-17T23:59:59.000Z

453

Apparatus for rotating and reciprocating well pipe  

SciTech Connect

This patent describes an apparatus for simultaneously rotating and reciprocating well pipe, having an upper end, and mechanically utilizing a rotary table attached to a drilling rig, comprising: a rotating pipe clamp assembly having an irregular cross-sectional mid-member and clamp members for releasably gripping the well pipe connected to the ends of the mid-member for rotation therewith; a square block for fitting to the rotary table square and having a selected grooved interior configuration; a torque transmitting means fitted into the grooves having openings therethrough having the same irregular cross-section as the mid-member cross-section; and a torque limiting means connecting the torque transmitting means and the block for limiting torque applied through the well pipe via the clamp assembly and the torque transmitting means.

Davis, K.D.

1988-04-12T23:59:59.000Z

454

GIANT MOLECULAR CLOUD FORMATION IN DISK GALAXIES: CHARACTERIZING SIMULATED VERSUS OBSERVED CLOUD CATALOGS  

SciTech Connect

We present the results of a study of simulated giant molecular clouds (GMCs) formed in a Milky Way-type galactic disk with a flat rotation curve. This simulation, which does not include star formation or feedback, produces clouds with masses ranging between 10{sup 4} M{sub ?} and 10{sup 7} M{sub ?}. We compare our simulated cloud population to two observational surveys: the Boston University-Five College Radio Astronomy Observatory Galactic Ring Survey and the BIMA All-Disk Survey of M33. An analysis of the global cloud properties as well as a comparison of Larson's scaling relations is carried out. We find that simulated cloud properties agree well with the observed cloud properties, with the closest agreement occurring between the clouds at comparable resolution in M33. Our clouds are highly filamentary—a property that derives both from their formation due to gravitational instability in the sheared galactic environment, as well as to cloud-cloud gravitational encounters. We also find that the rate at which potentially star-forming gas accumulates within dense regions—wherein n{sub thresh} ? 10{sup 4} cm{sup –3}—is 3% per 10 Myr, in clouds of roughly 10{sup 6} M{sub ?}. This suggests that star formation rates in observed clouds are related to the rates at which gas can be accumulated into dense subregions within GMCs via filamentary flows. The most internally well-resolved clouds are chosen for listing in a catalog of simulated GMCs—the first of its kind. The cataloged clouds are available as an extracted data set from the global simulation.

Benincasa, Samantha M.; Pudritz, Ralph E.; Wadsley, James [Department of Physics and Astronomy, McMaster University, Hamilton, ON L8S 4M1 (Canada); Tasker, Elizabeth J. [Department of Physics, Faculty of Science, Hokkaido University, Kita-ku, Sapporo 060-0810 (Japan)

2013-10-10T23:59:59.000Z

455

PRODUCER -SCROUNGER GAME n-Person Game  

E-Print Network (OSTI)

size, ESS frequency of scrounging Assumptions of Producer-Scrounger Game Fix group (or population size Producer invades Scrounger n-Person Game with ESS q* : 0 ESS ** q P q S dq dW dq dW ESS frequency of scrounger

Caraco, Thomas

456

The effect of grain size distribution on H$_2$ formation rate in the interstellar medium  

E-Print Network (OSTI)

The formation of molecular hydrogen in the interstellar medium takes place on the surfaces of dust grains. Hydrogen molecules play a role in gas-phase reactions that produce other molecules, some of which serve as coolants during gravitational collapse and star formation. Thus, the evaluation of the roduction rate of hydrogen molecules and its dependence on the physical conditions in the cloud are of great importance. Interstellar dust grains exhibit a broad size distribution in which the small grains capture most of the surface area. Recent studies have shown that the production efficiency strongly depends on the grain composition and temperature as well as on its size. In this paper we present a formula which provides the total production rate of H$_2$ per unit volume in the cloud, taking into account the grain composition and temperature as well as the grain size distribution. The formula agrees very well with the master equation results. It shows that for a physically relevant range of grain temperatures, the production rate of H$_2$ is significantly enhanced due to their broad size distribution.

Azi Lipshtat; Ofer Biham

2005-08-01T23:59:59.000Z

457

Resonator-quantum well infrared photodetectors  

SciTech Connect

We applied a recent electromagnetic model to design the resonator-quantum well infrared photodetector (R-QWIP). In this design, we used an array of rings as diffractive elements to diffract normal incident light into parallel propagation and used the pixel volume as a resonator to intensify the diffracted light. With a proper pixel size, the detector resonates at certain optical wavelengths and thus yields a high quantum efficiency (QE). To test this detector concept, we fabricated a number of R-QWIPs with different quantum well materials and detector geometries. The experimental result agrees satisfactorily with the prediction, and the highest QE achieved is 71%.

Choi, K. K., E-mail: kwong.k.choi.civ@mail.mil; Sun, J.; Olver, K. [Electro-Optics and Photonics Division, U.S. Army Research Laboratory, Adelphi, Maryland 20783 (United States)] [Electro-Optics and Photonics Division, U.S. Army Research Laboratory, Adelphi, Maryland 20783 (United States); Jhabvala, M. D.; Jhabvala, C. A.; Waczynski, A. [Instrument Systems and Technology Division, NASA Goddard Space Flight Center, Greenbelt, Maryland 20771 (United States)] [Instrument Systems and Technology Division, NASA Goddard Space Flight Center, Greenbelt, Maryland 20771 (United States)

2013-11-11T23:59:59.000Z

458

Electrochemical formation of field emitters  

DOE Patents (OSTI)

Electrochemical formation of field emitters, particularly useful in the fabrication of flat panel displays is disclosed. The fabrication involves field emitting points in a gated field emitter structure. Metal field emitters are formed by electroplating and the shape of the formed emitter is controlled by the potential imposed on the gate as well as on a separate counter electrode. This allows sharp emitters to be formed in a more inexpensive and manufacturable process than vacuum deposition processes used at present. The fabrication process involves etching of the gate metal and the dielectric layer down to the resistor layer, and then electroplating the etched area and forming an electroplated emitter point in the etched area. 12 figs.

Bernhardt, A.F.

1999-03-16T23:59:59.000Z

459

Neural networks predict well inflow performance  

E-Print Network (OSTI)

runs for case 1 depicted in Fig. 9. The IPR curves for the remaining cases are in Appendix. 20 0 500 1000 1500 2000 2500 0 50 100 150 200 q o , STB/D p wf , psia Np/N = 1% Np/N = 5% Np/N = 8% Np/N = 10% Np/N = 14% Fig. 9 IPR curves for case 1... produced (Np). The reservoir model didn?t reach constant productivity index to achieve the boundary dominated flow condition, but for practical purposes, I assumed the condition was reached when I get a relative change in the productivity index less than...

Alrumah, Muhammad K.

2004-09-30T23:59:59.000Z

460

Introduction Format Proprietaire -Standard  

E-Print Network (OSTI)

Code for Information Interchange) 4. Unicode IFT-1215 Stefan Monnier 7 #12;BCD IFT-1215 Stefan MonnierSOMMAIRE Introduction Format Propri´etaire -Standard Code Alphanum´erique Entr´ee Alphanum : !, ?, ", (, . . . · Caract`eres sp´eciaux : *, $, ¿, . . . Quelques standards utilis´es pour les coder en binaires 1. BCD

Monnier, Stefan

Note: This page contains sample records for the topic "formation producing wells" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Hierarchical galaxy formation  

Science Journals Connector (OSTI)

......such as the cooling of gas in haloes, the formation...effects on interstellar gas of energy released by young stars, the production of heavy elements, the...dynamics of the cooling gas are calculated in full...relatively small computational cost. The major disadvantage......

Shaun Cole; Cedric G. Lacey; Carlton M. Baugh; Carlos S. Frenk

2000-11-21T23:59:59.000Z

462

CORRELATIONS BETWEEN VAPOR SATURATION, FLUID COMPOSITION, AND WELL DECLINE IN LARDERELLO  

SciTech Connect

A large body of field data from Larderello shows striking temporal correlations between decline of well flow-rate, produced gas/steam ratio, chloride concentration and produced vapor fraction. The latter is inferred from measured concentrations of non-condensible gases in samples of well fluid, using chemical phase equilibrium principles. Observed temporal changes in the vapor fractions can be interpreted in term of a ''multiple source'' model, as suggested by D'Amore and Truesdell (1979). This provides clues to the dynamics of reservoir depletion, and to the evaluation of well productivity and longevity.

D'Amore, F.; Pruess, K.

1985-01-22T23:59:59.000Z

463

Economic evaluation of smart well technology  

E-Print Network (OSTI)

. At this pivotal time the role of emerging technologies is of at most importance. Smart or intelligent well technology is one of the up and coming technologies that have been developed to assist improvements in field development outcome. In this paper a...

Al Omair, Abdullatif A.

2007-09-17T23:59:59.000Z

464

ATHLETICS AND RECREATION Health, Wellness and Recreation  

E-Print Network (OSTI)

ATHLETICS AND RECREATION Health, Wellness and Recreation 5 July 1.00pm ­ 4.00pm Attendees: Louise and recreation for UBC. Anticipating this `work in progress' outcome from our initial discussion, the approach and recreation as it is currently structured? 2 Closer attention to level/degree of competition vs other drivers

Handy, Todd C.

465

Flow tests of the Willis Hulin well  

SciTech Connect

The Hulin well was tested between 20,100 and 20,700 feet down in layers of brine-saturated clean sand with occasional intervening layers of shale. The characteristics of the brine and gas were determined in this interval and an initial determination of the reservoir properties were made.

Randolph, P.L.; Hayden, C.G.; Rogers, L.A.

1992-02-01T23:59:59.000Z

466

The integrity of oil and gas wells  

Science Journals Connector (OSTI)

...oil and natural gas wells passing through drinking-water aquifers (1–4). In PNAS, Ingraffea et al. (5) examine one of...Jackson RB ( 2014 ) The environmental costs and benefits of fracking. Annu Rev Environ Resour, in press . 12 Nicot JP Scanlon...

Robert B. Jackson

2014-01-01T23:59:59.000Z

467

T2WELL/ECO2N  

Energy Science and Technology Software Center (OSTI)

002966IBMPC00 T2Well/ECO2N Version 1.0: Multiphase and Non-Isothermal Model for Coupled Wellbore-Reservoir Flow of Carbon Dioxide and Variable Salinity Water  http:..esd.lbl.gov/tough/licensing.html 

468

Single-Well and Cross-Well Resistivity | Open Energy Information  

Open Energy Info (EERE)

Single-Well and Cross-Well Resistivity Single-Well and Cross-Well Resistivity Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Single-Well and Cross-Well Resistivity Details Activities (14) Areas (13) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Well Log Techniques Parent Exploration Technique: Well Log Techniques Information Provided by Technique Lithology: Identify different lithological layers, rock composition, mineral, and clay content Stratigraphic/Structural: -Fault and fracture identification -Rock texture, porosity, and stress analysis -determine dip and structural features in vicinity of borehole -Detection of permeable pathways, fracture zones, faults Hydrological: Resistivity influenced by porosity, grain size distribution, permeability, fluid saturation, fluid type and phase state of the pore water

469

Fracturing pressures and near-well fracture geometry of arbitrarily oriented and horizontal wells  

SciTech Connect

The hydraulic fracturing of arbitrarily oriented and horizontal wells is made challenging by the far more complicated near-well fracture geometry compared to that of conventional vertical wells. This geometry is important both for hydraulic fracture propagation and the subsequent post-treatment well performance. Fracture tortuosity of arbitrarily oriented and horizontal wells is likely to cause large initiation pressures and reduction in the fracture widths. This paper presents a comprehensive study of the effects of important variables, including the principal stresses, wellbore orientation, and perforation configuration on fracture geometry. Initiation pressures, the contact between arbitrarily oriented wells and the fracture plane, and the near-well fracture geometry are determined and discussed. This study also shows that because of the near-well stress concentration the fracture width at the wellbore is always smaller than the maximum fracture width. This can have important consequences during hydraulic fracturing.

Chen, Z.; Economides, M.J.

1995-12-31T23:59:59.000Z