National Library of Energy BETA

Sample records for form view source

  1. June 2014 Most Viewed Documents for Renewable Energy Sources...

    Office of Scientific and Technical Information (OSTI)

    June 2014 Most Viewed Documents for Renewable Energy Sources Chapter 6. Drilling and Well Construction Culver, Gene (1998) 426 Chapter 11. Heat Exchangers Rafferty, Kevin D.; ...

  2. Sources: Energy Information Administration, Form EIA-182,

    U.S. Energy Information Administration (EIA) Indexed Site

    "Domestic Crude Oil First Purchase Report"; Form EIA-856, "Monthly Foreign Crude Oil Acquisition Report"; and Form EIA-14, "Refiners' Monthly Cost Report." 0 6 12 18 24 30 J F M A...

  3. Methods for forming particles from single source precursors

    DOE Patents [OSTI]

    Fox, Robert V.; Rodriguez, Rene G.; Pak, Joshua

    2011-08-23

    Single source precursors are subjected to carbon dioxide to form particles of material. The carbon dioxide may be in a supercritical state. Single source precursors also may be subjected to supercritical fluids other than supercritical carbon dioxide to form particles of material. The methods may be used to form nanoparticles. In some embodiments, the methods are used to form chalcopyrite materials. Devices such as, for example, semiconductor devices may be fabricated that include such particles. Methods of forming semiconductor devices include subjecting single source precursors to carbon dioxide to form particles of semiconductor material, and establishing electrical contact between the particles and an electrode.

  4. September 2013 Most Viewed Documents for Renewable Energy Sources | OSTI,

    Office of Scientific and Technical Information (OSTI)

    US Dept of Energy Office of Scientific and Technical Information September 2013 Most Viewed Documents for Renewable Energy Sources Chapter 11. Heat Exchangers Rafferty, Kevin D.; Culver, Gene (1998) 362 Wet cooling towers: rule-of-thumb design and simulation Leeper, S.A. (1981) 103 Chapter 17. Engineering cost analysis Higbee, Charles V. (1998) 79 Advanced Electric Submersible Pump Design Tool for Geothermal Applications Xuele Qi; Norman Turnquist; Farshad Ghasripoor (2012) 79 A study of

  5. September 2015 Most Viewed Documents for Renewable Energy Sources | OSTI,

    Office of Scientific and Technical Information (OSTI)

    US Dept of Energy Office of Scientific and Technical Information September 2015 Most Viewed Documents for Renewable Energy Sources Calculation of brine properties. [Above 80/sup 0/F and for salt content between 5 and 25%] Dittman, G.L. (1977) 257 Aerodynamic characteristics of seven symmetrical airfoil sections through 180-degree angle of attack for use in aerodynamic analysis of vertical axis wind turbines Sheldahl, R E; Klimas, P C (1981) 217 Thermal conductivity of aqueous NaCl solutions

  6. Most Viewed Documents for Renewable Energy Sources: December 2014 | OSTI,

    Office of Scientific and Technical Information (OSTI)

    US Dept of Energy Office of Scientific and Technical Information Most Viewed Documents for Renewable Energy Sources: December 2014 Chapter 11. Heat Exchangers Rafferty, Kevin D.; Culver, Gene (1998) 339 Generalized displacement correlation method for estimating stress intensity factors Fu, P; Johnson, S M; Settgast, R R; Carrigan, C R (2011) 107 Seventh Edition Fuel Cell Handbook NETL (2004) 96 Advanced Electric Submersible Pump Design Tool for Geothermal Applications Xuele Qi; Norman

  7. Most Viewed Documents for Renewable Energy Sources: September 2014 | OSTI,

    Office of Scientific and Technical Information (OSTI)

    US Dept of Energy Office of Scientific and Technical Information Most Viewed Documents for Renewable Energy Sources: September 2014 Chapter 11. Heat Exchangers Rafferty, Kevin D.; Culver, Gene (1998) 224 Advanced Electric Submersible Pump Design Tool for Geothermal Applications Xuele Qi; Norman Turnquist; Farshad Ghasripoor (2012) 179 Generalized displacement correlation method for estimating stress intensity factors Fu, P; Johnson, S M; Settgast, R R; Carrigan, C R (2011) 138 Hybrid Cooling

  8. Methods of forming single source precursors, methods of forming polymeric single source precursors, and single source precursors and intermediate products formed by such methods

    DOE Patents [OSTI]

    Fox, Robert V.; Rodriguez, Rene G.; Pak, Joshua J.; Sun, Chivin; Margulieux, Kelsey R.; Holland, Andrew W.

    2012-12-04

    Methods of forming single source precursors (SSPs) include forming intermediate products having the empirical formula 1/2{L.sub.2N(.mu.-X).sub.2M'X.sub.2}.sub.2, and reacting MER with the intermediate products to form SSPs of the formula L.sub.2N(.mu.-ER).sub.2M'(ER).sub.2, wherein L is a Lewis base, M is a Group IA atom, N is a Group IB atom, M' is a Group IIIB atom, each E is a Group VIB atom, each X is a Group VIIA atom or a nitrate group, and each R group is an alkyl, aryl, vinyl, (per)fluoro alkyl, (per)fluoro aryl, silane, or carbamato group. Methods of forming polymeric or copolymeric SSPs include reacting at least one of HE.sup.1R.sup.1E.sup.1H and MER with one or more substances having the empirical formula L.sub.2N(.mu.-ER).sub.2M'(ER).sub.2 or L.sub.2N(.mu.-X).sub.2M'(X).sub.2 to form a polymeric or copolymeric SSP. New SSPs and intermediate products are formed by such methods.

  9. Methods of forming single source precursors, methods of forming polymeric single source precursors, and single source precursors formed by such methods

    DOE Patents [OSTI]

    Fox, Robert V.; Rodriguez, Rene G.; Pak, Joshua J.; Sun, Chivin; Margulieux, Kelsey R.; Holland, Andrew W.

    2016-04-19

    Methods of forming single source precursors (SSPs) include forming intermediate products having the empirical formula 1/2{L.sub.2N(.mu.-X).sub.2M'X.sub.2}.sub.2, and reacting MER with the intermediate products to form SSPs of the formula L.sub.2N(.mu.-ER).sub.2M'(ER).sub.2, wherein L is a Lewis base, M is a Group IA atom, N is a Group IB atom, M' is a Group IIIB atom, each E is a Group VIB atom, each X is a Group VIIA atom or a nitrate group, and each R group is an alkyl, aryl, vinyl, (per)fluoro alkyl, (per)fluoro aryl, silane, or carbamato group. Methods of forming polymeric or copolymeric SSPs include reacting at least one of HE.sup.1R.sup.1E.sup.1H and MER with one or more substances having the empirical formula L.sub.2N(.mu.-ER).sub.2M'(ER).sub.2 or L.sub.2N(.mu.-X).sub.2M'(X).sub.2 to form a polymeric or copolymeric SSP. New SSPs and intermediate products are formed by such methods.

  10. Methods of forming single source precursors, methods of forming polymeric single source precursors, and single source precursors formed by such methods

    SciTech Connect (OSTI)

    Fox, Robert V.; Rodriguez, Rene G.; Pak, Joshua J.; Sun, Chivin; Margulieux, Kelsey R.; Holland, Andrew W.

    2014-09-09

    Methods of forming single source precursors (SSPs) include forming intermediate products having the empirical formula 1/2{L.sub.2N(.mu.-X).sub.2M'X.sub.2}.sub.2, and reacting MER with the intermediate products to form SSPs of the formula L.sub.2N(.mu.-ER).sub.2M'(ER).sub.2, wherein L is a Lewis base, M is a Group IA atom, N is a Group IB atom, M' is a Group IIIB atom, each E is a Group VIB atom, each X is a Group VIIA atom or a nitrate group, and each R group is an alkyl, aryl, vinyl, (per)fluoro alkyl, (per)fluoro aryl, silane, or carbamato group. Methods of forming polymeric or copolymeric SSPs include reacting at least one of HE.sup.1R.sup.1E.sup.1H and MER with one or more substances having the empirical formula L.sub.2N(.mu.-ER).sub.2M'(ER).sub.2 or L.sub.2N(.mu.-X).sub.2M'(X).sub.2 to form a polymeric or copolymeric SSP. New SSPs and intermediate products are formed by such methods.

  11. Forms

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Forms and Checklists Download or view forms and checklists used at WNR. IWD Forms 2100 - Integrated Work Document (IWD) Part 1, Activity Specific Information (word version) 2100_con - Integrated Work Document (IWD) Part 1, Activity Specific Information Continuation Page (word version) 2101 - Integrated Work Document (IWD) Part 2, FOD Requirements and Approval for Entry and Area Hazards and Controls, Non-Tenant Activity Form (word version) 2102 - Integrated Work Document (IWD) Part 2, FOD

  12. Sources, Composition, and Properties of Newly Formed and Regional...

    Office of Scientific and Technical Information (OSTI)

    ... development): Whybrew, L (undergraduate research assistant). 2014. "Seasonal variations and regional sources of ultrafine particulate matter at a semi-rural site on the ...

  13. SU-D-210-03: Limited-View Multi-Source Quantitative Photoacoustic Tomography

    SciTech Connect (OSTI)

    Feng, J; Gao, H

    2015-06-15

    Purpose: This work is to investigate a novel limited-view multi-source acquisition scheme for the direct and simultaneous reconstruction of optical coefficients in quantitative photoacoustic tomography (QPAT), which has potentially improved signal-to-noise ratio and reduced data acquisition time. Methods: Conventional QPAT is often considered in two steps: first to reconstruct the initial acoustic pressure from the full-view ultrasonic data after each optical illumination, and then to quantitatively reconstruct optical coefficients (e.g., absorption and scattering coefficients) from the initial acoustic pressure, using multi-source or multi-wavelength scheme.Based on a novel limited-view multi-source scheme here, We have to consider the direct reconstruction of optical coefficients from the ultrasonic data, since the initial acoustic pressure can no longer be reconstructed as an intermediate variable due to the incomplete acoustic data in the proposed limited-view scheme. In this work, based on a coupled photo-acoustic forward model combining diffusion approximation and wave equation, we develop a limited-memory Quasi-Newton method (LBFGS) for image reconstruction that utilizes the adjoint forward problem for fast computation of gradients. Furthermore, the tensor framelet sparsity is utilized to improve the image reconstruction which is solved by Alternative Direction Method of Multipliers (ADMM). Results: The simulation was performed on a modified Shepp-Logan phantom to validate the feasibility of the proposed limited-view scheme and its corresponding image reconstruction algorithms. Conclusion: A limited-view multi-source QPAT scheme is proposed, i.e., the partial-view acoustic data acquisition accompanying each optical illumination, and then the simultaneous rotations of both optical sources and ultrasonic detectors for next optical illumination. Moreover, LBFGS and ADMM algorithms are developed for the direct reconstruction of optical coefficients from the

  14. April 2013 Most Viewed Documents for Renewable Energy Sources | OSTI, US

    Office of Scientific and Technical Information (OSTI)

    Dept of Energy Office of Scientific and Technical Information April 2013 Most Viewed Documents for Renewable Energy Sources Chapter 11. Heat Exchangers Rafferty, Kevin D.; Culver, Gene (1998) 1252 Seventh Edition Fuel Cell Handbook NETL (2004) 628 Wet cooling towers: rule-of-thumb design and simulation Leeper, S.A. (1981) 290 Chapter 17. Engineering cost analysis Higbee, Charles V. (1998) 223 Geothermal Power Generation - A Primer on Low-Temperature, Small-Scale Applications Rafferty, K.

  15. December 2015 Most Viewed Documents for Renewable Energy Sources | OSTI, US

    Office of Scientific and Technical Information (OSTI)

    Dept of Energy Office of Scientific and Technical Information December 2015 Most Viewed Documents for Renewable Energy Sources Aerodynamic characteristics of seven symmetrical airfoil sections through 180-degree angle of attack for use in aerodynamic analysis of vertical axis wind turbines Sheldahl, R E; Klimas, P C (1981) 307 Calculation of brine properties. [Above 80/sup 0/F and for salt content between 5 and 25%] Dittman, G.L. (1977) 228 Temperature coefficients for PV modules and arrays:

  16. January 2013 Most Viewed Documents for Renewable Energy Sources | OSTI, US

    Office of Scientific and Technical Information (OSTI)

    Dept of Energy Office of Scientific and Technical Information January 2013 Most Viewed Documents for Renewable Energy Sources Photovoltaic Materials Duty, C.; Angelini, J.; Armstrong, B.; Bennett, C.; Evans, B.; Jellison, G. E.; Joshi, P.; List, F.; Paranthaman, P.; Parish, C.; Wereszczak, A. High Efficiency CdTe and CIGS Thin Film Solar Cells: Highlights of the Technologies Challenges (Presentation) Noufi, R. Accelerated UV Test Methods for Encapsulants of Photovoltaic Modules

  17. July 2013 Most Viewed Documents for Renewable Energy Sources | OSTI, US

    Office of Scientific and Technical Information (OSTI)

    Dept of Energy Office of Scientific and Technical Information July 2013 Most Viewed Documents for Renewable Energy Sources Chapter 11. Heat Exchangers Rafferty, Kevin D.; Culver, Gene (1998) 484 Environmental Impacts of Wind Power Development on the Population Biology of Greater Prairie-Chickens Sandercock, Brett K. [Kansas State University] (2013) 184 Wet cooling towers: rule-of-thumb design and simulation Leeper, S.A. (1981) 154 A study of lead-acid battery efficiency near top-of-charge

  18. June 2014 Most Viewed Documents for Renewable Energy Sources | OSTI, US

    Office of Scientific and Technical Information (OSTI)

    Dept of Energy Office of Scientific and Technical Information June 2014 Most Viewed Documents for Renewable Energy Sources Chapter 6. Drilling and Well Construction Culver, Gene (1998) 426 Chapter 11. Heat Exchangers Rafferty, Kevin D.; Culver, Gene (1998) 300 Seventh Edition Fuel Cell Handbook NETL (2004) 118 Chapter 17. Engineering cost analysis Higbee, Charles V. (1998) 115 Generalized displacement correlation method for estimating stress intensity factors Fu, P; Johnson, S M; Settgast, R

  19. March 2014 Most Viewed Documents for Renewable Energy Sources | OSTI, US

    Office of Scientific and Technical Information (OSTI)

    Dept of Energy Office of Scientific and Technical Information March 2014 Most Viewed Documents for Renewable Energy Sources Chapter 6. Drilling and Well Construction Culver, Gene (1998) 299 Chapter 11. Heat Exchangers Rafferty, Kevin D.; Culver, Gene (1998) 184 Chapter 17. Engineering cost analysis Higbee, Charles V. (1998) 124 Solar radiation data manual for flat-plate and concentrating collectors Dunlap, M.A. [ed.]; Marion, W.; Wilcox, S. (null) 74 Advanced Electric Submersible Pump Design

  20. March 2015 Most Viewed Documents for Renewable Energy Sources | OSTI, US

    Office of Scientific and Technical Information (OSTI)

    Dept of Energy Office of Scientific and Technical Information March 2015 Most Viewed Documents for Renewable Energy Sources Chapter 11. Heat Exchangers Rafferty, Kevin D.; Culver, Gene (1998) 386 Wet cooling towers: rule-of-thumb design and simulation Leeper, S.A. (1981) 234 Aerodynamic characteristics of seven symmetrical airfoil sections through 180-degree angle of attack for use in aerodynamic analysis of vertical axis wind turbines Sheldahl, R E; Klimas, P C (1981) 159 Calculation of

  1. Forms

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Access Procedures for New Users Deposition Request Form Exit Form Flycutting Request Form Hot Embossing Request Form Metrology Request Form Microfabrication Project Proposal Form...

  2. SEP Request for Approval Form 2 - Other Derived Energy Sources | Department

    Broader source: Energy.gov (indexed) [DOE]

    of Energy 2_Other-Derived-Energy-Sources.docx (38.18 KB) More Documents & Publications SEP Request for Approval Form 3 - Other Complex Regression Model Rationale Superior Energy Performance Enrollment and Application Forms SEP Request for Approval Form 7 - Other Situations for Consumption Adjustment

  3. June 2015 Most Viewed Documents for Renewable Energy Sources | OSTI, US

    Office of Scientific and Technical Information (OSTI)

    Dept of Energy Office of Scientific and Technical Information June 2015 Most Viewed Documents for Renewable Energy Sources Wet cooling towers: rule-of-thumb design and simulation Leeper, S.A. (1981) 240 Aerodynamic characteristics of seven symmetrical airfoil sections through 180-degree angle of attack for use in aerodynamic analysis of vertical axis wind turbines Sheldahl, R E; Klimas, P C (1981) 192 Calculation of brine properties. [Above 80/sup 0/F and for salt content between 5 and 25%]

  4. Form

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    132014 10:58 AM Submitted by Anonymous User This message was created by a Microsoft InfoPath form. The form data may be included as an attachment. Freedom of Information Act...

  5. Form

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9:27 PM Submitted by Anonymous User This message was created by a Microsoft InfoPath form. The form data may be included as an attachment. Freedom of Information Act (FOIA)...

  6. Form:RRSection | Open Energy Information

    Open Energy Info (EERE)

    source History View New Pages Recent Changes All Special Pages Semantic SearchQuerying Get Involved Help Apps Datasets Community Login | Sign Up Search Form Edit History...

  7. Form

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Privacy Act must be signed and, therefore, cannot be submitted : on this form. t Name Richard van Dijk Email , Orga nizati on Mailin g Addre ss city PA State I P Pion e Ex....

  8. Special Form Testing of Sealed Source Encapsulation for High-Alpha-Activity Actinide Materials

    SciTech Connect (OSTI)

    Martinez, Oscar A

    2016-01-01

    In the United States all transportation of radioactive material is regulated by the U.S. Department of Transportation (DOT). Beginning in 2008 a new type of sealed-source encapsulation package was developed and tested by Oak Ridge National Laboratory (ORNL). These packages contain high-alpha-activity actinides and are regulated and transported in accordance with the requirements for DOT Class 7 hazardous material. The DOT provides specific regulations pertaining to special form encapsulation designs. The special form designation indicates that the encapsulated radioactive contents have a very low probability of dispersion even when subjected to significant structural events. The special form designs have been shown to simplify the delivery, transport, acceptance, and receipt processes. It is intended for these sealed-source encapsulations to be shipped to various facilities making it very advantageous for them to be certified as special form. To this end, DOT Certificates of Competent Authority (CoCAs) have been sought for the design suitable for containing high-alpha-activity actinide materials. This design consists of the high-alpha-activity material encapsulated within a triangular zirconia canister, referred to as a ZipCan, tile that is then enclosed by a spherical shell. The spherical shell design, with ZipCan tile inside, was tested for compliance with the special form regulations found in 49 CFR 173.469. The spherical enclosure was subjected to 9-m impact, 1 m percussion, and 10-minute thermal tests at the Packaging Evaluation Facility located at the National Transportation Research Center in Knoxville, TN USA and operated by ORNL. Before and after each test, the test units were subjected to a helium leak check and a bubble test. The ZipCan tiles and core were also subjected to the tests required for ISO 2919:2012(E), including a Class IV impact test and heat test and subsequently subjected to helium leakage rate tests [49 CFR 173.469(a)(4)(i)]. The impact

  9. Sources of biogenic methane to form marine gas hydrates: In situ production or upward migration?

    SciTech Connect (OSTI)

    Paull, C.K.; Ussler, W. III; Borowski, W.S.

    1993-09-01

    Potential sources of biogenic methane in the Carolina Continental Rise -- Blake Ridge sediments have been examined. Two models were used to estimate the potential for biogenic methane production: (1) construction of sedimentary organic carbon budgets, and (2) depth extrapolation of modern microbial production rates. While closed-system estimates predict some gas hydrate formation, it is unlikely that >3% of the sediment volume could be filled by hydrate from methane produced in situ. Formation of greater amounts requires migration of methane from the underlying continental rise sediment prism. Methane may be recycled from below the base of the gas hydrate stability zone by gas hydrate decomposition, upward migration of the methane gas, and recrystallization of gas hydrate within the overlying stability zone. Methane bubbles may also form in the sediment column below the depth of gas hydrate stability because the methane saturation concentration of the pore fluids decreases with increasing depth. Upward migration of methane bubbles from these deeper sediments can add methane to the hydrate stability zone. From these models it appears that recycling and upward migration of methane is essential in forming significant gas hydrate concentrations. In addition, the depth distribution profiles of methane hydrate will differ if the majority of the methane has migrated upward rather than having been produced in situ.

  10. Form:RAPID-BestPractices | Open Energy Information

    Open Energy Info (EERE)

    source History View New Pages Recent Changes All Special Pages Semantic SearchQuerying Get Involved Help Apps Datasets Community Login | Sign Up Search Form Edit History...

  11. Form:GeothermalResourceArea | Open Energy Information

    Open Energy Info (EERE)

    source History View New Pages Recent Changes All Special Pages Semantic SearchQuerying Get Involved Help Apps Datasets Community Login | Sign Up Search Form Edit History...

  12. Form:Marine and Hydrokinetic Technology Project Milestone | Open...

    Open Energy Info (EERE)

    source History View New Pages Recent Changes All Special Pages Semantic SearchQuerying Get Involved Help Apps Datasets Community Login | Sign Up Search Form Edit History...

  13. Form:Marine and Hydrokinetic Technology Project | Open Energy...

    Open Energy Info (EERE)

    source History View New Pages Recent Changes All Special Pages Semantic SearchQuerying Get Involved Help Apps Datasets Community Login | Sign Up Search Form Edit History...

  14. Jet emission in young radio sources: A Fermi large area telescope gamma-ray view

    SciTech Connect (OSTI)

    Migliori, G.; Siemiginowska, A.; Kelly, B. C.; Stawarz, ?.; Celotti, A.; Begelman, M. C.

    2014-01-10

    We investigate the contribution of the beamed jet component to the high-energy emission in young and compact extragalactic radio sources, focusing for the first time on the ?-ray band. We derive predictions on the ?-ray luminosities associated with the relativistic jet assuming a leptonic radiative model. The high-energy emission is produced via Compton scattering by the relativistic electrons in a spherical region at the considered scales (?10 kpc). Simulations show a wide range of ?-ray luminosities, with intensities up to ?10{sup 46}-10{sup 48} erg s{sup 1} depending on the assumed jet parameters. We find a highly linear relation between the simulated X-ray and ?-ray luminosities that can be used to select candidates for ?-ray detection. We compare the simulated luminosity distributions in the radio, X-ray, and ?-ray regimes with observations for the largest sample of X-ray-detected young radio quasars. Our analysis of ?4-yr Fermi Large Area Telescope (LAT) data does not yield any statistically significant detections. However, the majority of the model-predicted ?-ray fluxes for the sample are near or below the current Fermi-LAT flux threshold and compatible with the derived upper limits. Our study gives constraints on the minimum jet power (L {sub jet,} {sub kin}/L {sub disk} > 0.01) of a potential jet contribution to the X-ray emission in the most compact sources (? 1 kpc) and on the particle-to-magnetic field energy density ratio that are in broad agreement with equipartition assumptions.

  15. X-RAYS FROM THE POWER SOURCES OF THE CEPHEUS A STAR-FORMING REGION

    SciTech Connect (OSTI)

    Pravdo, Steven H.; Tsuboi, Yohko; Uzawa, Akiko; Ezoe, Yuichiro E-mail: tsuboi@phys.chuo-u.ac.j E-mail: ezoe@phys.metro-u.ac.j

    2009-10-20

    We report an observation of X-ray emission from the exciting region of Cepheus A with the Chandra/ACIS instrument. What had been an unresolved X-ray source comprising the putative power sources is now resolved into at least three point-like sources, each with similar X-ray properties and differing radio and submillimeter properties. The sources are HW9, HW3c, and a new source that is undetected at other wavelengths 'h10'. They each have inferred X-ray luminosities >= 10{sup 31} erg s{sup -1} with hard spectra, T >= 10{sup 7} K, and high low-energy absorption equivalent to tens to as much as a hundred magnitudes of visual absorption. The star usually assumed to be the most massive and energetic, HW2, is not detected with an upper limit about seven times lower than the detections. The X-rays may arise via thermal bremsstrahlung in diffuse emission regions associated with a gyrosynchrotron source for the radio emission, or they could arise from powerful stellar winds. We also analyzed the Spitzer/IRAC mid-IR observation from this star formation region and present the X-ray results and mid-IR classifications of the nearby stars. HH 168 is not as underluminous in X-rays as previously reported.

  16. Long lifetime, low intensity light source for use in nighttime viewing of equipment maps and other writings

    DOE Patents [OSTI]

    Frank, Alan M.; Edwards, William R.

    1983-01-01

    A long-lifetime light source with sufficiently low intensity to be used for reading a map or other writing at nighttime, while not obscuring the user's normal night vision. This light source includes a diode electrically connected in series with a small power source and a lens properly positioned to focus at least a portion of the light produced by the diode.

  17. Long lifetime, low intensity light source for use in nighttime viewing of equipment maps and other writings

    DOE Patents [OSTI]

    Frank, A.M.; Edwards, W.R.

    1983-10-11

    A long-lifetime light source with sufficiently low intensity to be used for reading a map or other writing at nighttime, while not obscuring the user's normal night vision is disclosed. This light source includes a diode electrically connected in series with a small power source and a lens properly positioned to focus at least a portion of the light produced by the diode. 1 fig.

  18. Long lifetime, low intensity light source for use in nighttime viewing of equipment maps and other writings

    DOE Patents [OSTI]

    Frank, A.M.; Edwards, W.R.

    1982-03-23

    A long-lifetime light source is discussed with sufficiently low intensity to be used for reading a map or other writing at nightime, while not obscuring the user's normal night vision. This light source includes a diode electrically connected in series with a small power source and a lens properly positioned to focus at least a portion of the light produced by the diode.

  19. How Argonne's Intense Pulsed Neutron Source came to life and gained its niche : the view from an ecosystem perspective.

    SciTech Connect (OSTI)

    Westfall, C.; Office of The Director

    2008-02-25

    At first glance the story of the Intense Pulsed Neutron Source (IPNS) at Argonne National Laboratory (ANL) appears to have followed a puzzling course. When researchers first proposed their ideas for an accelerator-driven neutron source for exploring the structure of materials through neutron scattering, the project seemed so promising that both Argonne managers and officials at the laboratory's funding agency, the Department of Energy (DOE), suggested that it be made larger and more expensive. But then, even though prototype building, testing, and initial construction went well a group of prominent DOE reviewers recommended in fall 1980 that it be killed, just months before it had been slated to begin operation, and DOE promptly accepted the recommendation. In response, Argonne's leadership declared the project was the laboratory's top priority and rallied to save it. In late 1982, thanks to another review panel led by the same scientist who had chaired the panel that had delivered the death sentence, the project was granted a reprieve. However, by the late 1980s, the IPNS was no longer top priority within the international materials science community, at Argonne, or within the DOE budget because prospects for another, larger materials science accelerator emerged. At just this point, the facility started to produce exciting scientific results. For the next two decades, the IPNS, its research, and its experts became valued resources at Argonne, within the U.S. national laboratory system, and within the international materials science community. Why did this Argonne project prosper and then almost suffer premature death, even though it promised (and later delivered) good science? How was it saved and how did it go on to have a long, prosperous life for more than a quarter of a century? In particular, what did an expert assessment of the quality of IPNS science have to do with its fate? Getting answers to such questions is important. The U.S. government spends a lot

  20. SOURCE?

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    on the direction and maintanence of the core code * The code base is platform- neutral ... Its core function is to allow users to merge multiple sources of building energy data into ...

  1. ThreatView

    Energy Science and Technology Software Center (OSTI)

    2007-09-25

    The ThreatView project is based on our prior work with the existing ParaView open-source scientific visualization application. Where ParaView provides a grapical client optimized scientific visualization over the VTK parallel client server architecture, ThreatView provides a client optimized for more generic visual analytics over the same architecture. Because ThreatView is based on the VTK parallel client-server architecture, data sources can reside on remote hosts, and processing and rendering can be performed in parallel. As seenmore » in Fig. 1, ThreatView provides four main methods for visualizing data: Landscape View, which displays a graph using a landscape metaphor where clusters of graph nodes produce "hills" in the landscape; Graph View, which displays a graph using a traditional "ball-and-stick" style; Table View, which displays tabular data in a standard spreadsheet; and Attribute View, which displays a tabular "histogram" of input data - for a selected table column, the Attribute View displays each unique value within the column, and the number of times that value appears in the data. There are two supplemental view types: Text View, which displays tabular data one-record-at-a-time; and the Statistics View, which displays input metadata, such as the number of vertices and edges in a graph, the number of rows in a table, etc.« less

  2. Source: U.S. Energy Information Administration, Form EIA-63B, 'Annual Photovoltaic Cell/Module Shipments Report' Note: Dollars are not

    U.S. Energy Information Administration (EIA) Indexed Site

    Modules $5,425,417 Total Modules $0.87 Table 2. Value and average value of photovoltaic module shipments, 2014 Module value, total shipments (thousand dollars) Module average value (dollars per peak watt) Source: U.S. Energy Information Administration, Form EIA-63B, 'Annual Photovoltaic Cell/Module Shipments Report' Note: Dollars are not adjusted for inflation.

  3. Forms | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Forms Forms Computer Keyboard Keyboard DOE Forms DOE's forms are developed within the Department and approved by the DOE Forms Manager. The forms provided (below) are designed to serve the needs of two (or more) DOE Headquarters or field organizations. (You must have Adobe Acrobat(R) Reader to view and print the below files. Fillable forms are identified by the "fillable" icon, and require the full version of Adobe Acrobat software.) Forms by Subject Forms by Number Management &

  4. "Source: U.S. Energy Information Administration, Form EIA-63B, 'Annual Photovoltaic Cell/Module Shipments Report.'"

    U.S. Energy Information Administration (EIA) Indexed Site

    Destination of photovoltaic module export shipments, 2014" "peak kilowatts" "Country/Continent","Total","Percent of U.S. Total" "Africa/Europe",53898,0.29 "Asia/Australia",107460,0.59 "South/Central America",11692,0.06 "Canada",4378,0.02 "Mexico",5556,0.03 "Total",182984,1 "Source: U.S. Energy Information Administration, Form EIA-63B, 'Annual Photovoltaic Cell/Module Shipments Report.'

  5. Service Forms

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Service Forms Beamtime Request Form Deposition Request Form Exposure Request Form - pdf Fly Cutting Request Form Hot Embossing Request Form Metrology Request Form

  6. DOE - NNSA/NFO -- Request Forms

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Forms NNSANFO Language Options U.S. DOENNSA - Nevada Field Office Forms Click the links below to view the form. Complete the form by filling-out the form fields online and ...

  7. Forms | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Forms Forms Computer Keyboard Keyboard DOE Forms DOE's forms are developed within the Department and approved by the DOE Forms Manager. The forms provided (below) are designed to serve the needs of two (or more) DOE Headquarters or field organizations. (You must have Adobe Acrobat(R) Reader to view and print the below files. Fillable forms are identified by the "fillable" icon, and require the full version of Adobe Acrobat software.) Forms by Subject Forms by Number Management &

  8. JLF Forms

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    jlf forms JLF Forms JLF Target Fab Request JLF Experiment Worksheet JLF-Experimental Team Registration Form JLF-LLNL Participant Registration Form JLF-External Participant Registration Form JLF-Debriefing Form

  9. GAS KINEMATICS AND THE DRAGGED MAGNETIC FIELD IN THE HIGH-MASS MOLECULAR OUTFLOW SOURCE G192.16-3.84: AN SMA VIEW

    SciTech Connect (OSTI)

    Liu Hauyu Baobab; Ho, Paul T. P.; Qiu Keping; Zhang Qizhou; Girart, Josep M.

    2013-07-01

    We report Submillimeter Array (SMA) observations of polarized 0.88 mm thermal dust emission and various molecular line transitions toward the early B-type (L{sub *} {approx} 2 Multiplication-Sign 10{sup 3} L{sub Sun }) star-forming region G192.16-3.84 (IRAS 05553+1631). The peak of the continuum Stokes-I emission coincides with a hot rotating disk/envelope (SO{sub 2} rotational temperature T{sub rot}{sup SO{sub 2}}{approx}84{sup +18}{sub -13} K), with a north-south velocity gradient. Joint analysis of the rotation curve traced by HCO{sup +} 4-3 and SO{sub 2} 19{sub 1,19}-18{sub 0,18} suggests that the dense molecular gas is undergoing a spinning-up rotation, marginally bound by the gravitational force of an enclosed mass M{sub *+gas+dust} {approx} 11.2-25.2 M{sub Sun }. Perpendicular to the rotational plane, a {approx}>100/cos (i) km s{sup -1} (i {approx} 63 Degree-Sign ) high velocity molecular jet and a {approx}15-20 km s{sup -1} expanding biconical cavity were revealed in the CO 3-2 emission. The polarization percentage of the 0.88 mm continuum emission decreases toward the central rotating disk/envelope. The polarization angle in the inner {approx}2'' (0.015 pc) disk/envelope is perpendicular to the plane of the rotation. The magnetic field lines, which are predominantly in the toroidal direction along the disk plane, are likely to be dragged by the gravitationally accelerated rotation.

  10. Method for forming ammonia

    DOE Patents [OSTI]

    Kong, Peter C.; Pink, Robert J.; Zuck, Larry D.

    2008-08-19

    A method for forming ammonia is disclosed and which includes the steps of forming a plasma; providing a source of metal particles, and supplying the metal particles to the plasma to form metal nitride particles; and providing a substance, and reacting the metal nitride particles with the substance to produce ammonia, and an oxide byproduct.

  11. Online Forms

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Microfabrication | Safety Online Forms, Guidelines & Policies Questions of How to Get Started? - Click here! User Forms: Beamtime Request Form - pdf CAMD Gas Cylinder Request Form - pdf Compressed Gas Purchase Order - pdf Exposure Request Form - pdf (How To Fill the Exposure Request Form?) Format for Annual User Reports - pdf Microfabrication Project Proposal Form - pdf Synchrotron Project Proposal Form - pdf Registration & Test Application for Facility Access & Radiation Badge - pdf

  12. "Source: U.S. Energy Information Administration, Form EIA-63B, 'Annual Photovoltaic Cell/Module Shipments Report.' Note: Includes both U.S. Shipments and Exports."

    U.S. Energy Information Administration (EIA) Indexed Site

    Annual photovoltaic module shipments, 2004-2014 (peak kilowatts)" "Year","Modules" 2004,143274 2005,204996 2006,320208 2007,494148 2008,920693 2009,1188879 2010,2644498 2011,3772075 2012,4655005 2013,4984881 2014,6237524 "Source: U.S. Energy Information Administration, Form EIA-63B, 'Annual Photovoltaic Cell/Module Shipments Report.' Note: Includes both U.S. Shipments and Exports.

  13. ION SOURCE

    DOE Patents [OSTI]

    Martina, E.F.

    1958-04-22

    An improved ion source particularly adapted to provide an intense beam of ions with minimum neutral molecule egress from the source is described. The ion source structure includes means for establishing an oscillating electron discharge, including an apertured cathode at one end of the discharge. The egress of ions from the source is in a pencil like beam. This desirable form of withdrawal of the ions from the plasma created by the discharge is achieved by shaping the field at the aperture of the cathode. A tubular insulator is extended into the plasma from the aperture and in cooperation with the electric fields at the cathode end of the discharge focuses the ions from the source,

  14. ARM - Forms

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Send Forms To assist researchers in the conduct of field campaigns or required administrative procedures (such as Baseline Change Requests), we provide a number of...

  15. JOBAID-VIEWING USER RECORDS

    Broader source: Energy.gov [DOE]

    In this job aid you will View To-Do List using Filter and View options, View Completed Work, and View Curriculum Status and Detials areas. 

  16. False color viewing device

    DOE Patents [OSTI]

    Kronberg, J.W.

    1992-10-20

    A viewing device for observing objects in near-infrared false-color comprising a pair of goggles with one or more filters in the apertures, and pads that engage the face for blocking stray light from the sides so that all light reaching the user's eyes come through the filters. The filters attenuate most visible light and pass near-infrared (having wavelengths longer than approximately 700 nm) and a small amount of blue-green and blue-violet (having wavelengths in the 500 to 520 nm and shorter than 435 nm, respectively). The goggles are useful for looking at vegetation to identify different species and for determining the health of the vegetation, and to detect some forms of camouflage. 7 figs.

  17. False color viewing device

    DOE Patents [OSTI]

    Kronberg, J.W.

    1991-05-08

    This invention consists of a viewing device for observing objects in near-infrared false-color comprising a pair of goggles with one or more filters in the apertures, and pads that engage the face for blocking stray light from the sides so that all light reaching, the user`s eyes come through the filters. The filters attenuate most visible light and pass near-infrared (having wavelengths longer than approximately 700 nm) and a small amount of blue-green and blue-violet (having wavelengths in the 500 to 520 nm and shorter than 435 nm, respectively). The goggles are useful for looking at vegetation to identify different species and for determining the health of the vegetation, and to detect some forms of camouflage.

  18. False color viewing device

    DOE Patents [OSTI]

    Kronberg, James W.

    1992-01-01

    A viewing device for observing objects in near-infrared false-color comprising a pair of goggles with one or more filters in the apertures, and pads that engage the face for blocking stray light from the sides so that all light reaching the user's eyes come through the filters. The filters attenuate most visible light and pass near-infrared (having wavelengths longer than approximately 700 nm) and a small amount of blue-green and blue-violet (having wavelengths in the 500 to 520 nm and shorter than 435 nm, respectively). The goggles are useful for looking at vegetation to identify different species and for determining the health of the vegetation, and to detect some forms of camouflage.

  19. ION SOURCE

    DOE Patents [OSTI]

    Leland, W.T.

    1960-01-01

    The ion source described essentially eliminater the problem of deposits of nonconducting materials forming on parts of the ion source by certain corrosive gases. This problem is met by removing both filament and trap from the ion chamber, spacing them apart and outside the chamber end walls, placing a focusing cylinder about the filament tip to form a thin collimated electron stream, aligning the cylinder, slits in the walls, and trap so that the electron stream does not bombard any part in the source, and heating the trap, which is bombarded by electrons, to a temperature hotter than that in the ion chamber, so that the tendency to build up a deposit caused by electron bombardment is offset by the extra heating supplied only to the trap.

  20. Administrator References and Logins | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Central User Facility Registration Form Access to user registration form. User Database CAT Admin Login Access to the beamline user administrators' view of the APS User Database....

  1. Form Approved

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    OGE Form 450, 5 CFR Part 2634, Subpart I U.S. Office of Government Ethics (January 2007) (Replaces September 2002 edition) Form Approved OMB NO. 3209-0006 CONFIDENTIAL FINANCIAL DISCLOSURE REPORT Executive Branch Why Must I File? The duties and responsibilities of your position require you to file the Confidential Financial Disclosure Report to avoid involvement in a real or apparent conflict of interest. The purpose of this report is to assist employees and their agencies in avoiding conflicts

  2. Method for forming materials

    DOE Patents [OSTI]

    Tolle, Charles R.; Clark, Denis E.; Smartt, Herschel B.; Miller, Karen S.

    2009-10-06

    A material-forming tool and a method for forming a material are described including a shank portion; a shoulder portion that releasably engages the shank portion; a pin that releasably engages the shoulder portion, wherein the pin defines a passageway; and a source of a material coupled in material flowing relation relative to the pin and wherein the material-forming tool is utilized in methodology that includes providing a first material; providing a second material, and placing the second material into contact with the first material; and locally plastically deforming the first material with the material-forming tool so as mix the first material and second material together to form a resulting material having characteristics different from the respective first and second materials.

  3. Methods for forming particles

    DOE Patents [OSTI]

    Fox, Robert V.; Zhang, Fengyan; Rodriguez, Rene G.; Pak, Joshua J.; Sun, Chivin

    2016-06-21

    Single source precursors or pre-copolymers of single source precursors are subjected to microwave radiation to form particles of a I-III-VI.sub.2 material. Such particles may be formed in a wurtzite phase and may be converted to a chalcopyrite phase by, for example, exposure to heat. The particles in the wurtzite phase may have a substantially hexagonal shape that enables stacking into ordered layers. The particles in the wurtzite phase may be mixed with particles in the chalcopyrite phase (i.e., chalcopyrite nanoparticles) that may fill voids within the ordered layers of the particles in the wurtzite phase thus produce films with good coverage. In some embodiments, the methods are used to form layers of semiconductor materials comprising a I-III-VI.sub.2 material. Devices such as, for example, thin-film solar cells may be fabricated using such methods.

  4. Administrative Forms/Policies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Administrative Forms Microfab Project Proposal Form Exit Form After Hours Request Form

  5. CONSENT FORM

    Office of Legacy Management (LM)

    fly, zz--2 ~32n7 -3.27.2 / / . ' . 5" . CONSENT FORM Employees, contractor personnel, and agents of the U. S. Department of Energy are hereby given permission to enter upon the property described below in order to perform the radiation survey described in the attached letter dated . . June-11 , 1980. . . i Property Description: Staten Island Warehouse 2393 Richmond Terrace Port Richmond, New York ,Property identified as Block / j/ 0 ,i . Lot zG Name A Signature by owner(s) of property - or

  6. Forms | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Forms Forms The following are the official Y-12 forms needed by the public. Forms are provided in one or more of three formats: PDF fillable, Word, and HTML. Select a category to see available forms. Then click the link in the "Format" column to open or download a copy of the form. Procurement-Related Forms Property-Related Forms Miscellaneous Forms UPF-Related Forms If you have questions about these forms, please contact WebSource. Library Forms Procurement-Related Forms

  7. ExRep_form.indd

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Report Submit all experiment reports using this fillable pdf form and upload the saved file using the LANSCE proposals Websi After logging in, click the "Upload Experiment Report" link in the proposal actions view table. Local contact Flight path/instrument Proposal number Title Authors and Affiliations Experiment report

  8. "Sources: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report."" U.S. Energy Information Administration, Form EIA-861,""Annual Electric Power Industry Report."" U.S. Energy Information Administration, Form EIA-923, ""Power Plant Operations Report"" and predecessor forms."

    U.S. Energy Information Administration (EIA) Indexed Site

    Oklahoma" "Item","Value","Rank" "Primary energy source","Coal", "Net summer capacity (megawatts)",24048,17 " Electric Utilities",17045,17 " IPP & CHP",7003,16 "Net generation (megawatthours)",70155504,22 " Electric Utilities",48096026,19 " IPP & CHP",22059478,14 "Emissions (thousand metric tons)",, " Sulfur Dioxide (short tons)",78556,18 " Nitrogen

  9. "Sources: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report."" U.S. Energy Information Administration, Form EIA-861,""Annual Electric Power Industry Report."" U.S. Energy Information Administration, Form EIA-923, ""Power Plant Operations Report"" and predecessor forms."

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota" "Item","Value","Rank" "Primary energy source","Hydroelectric", "Net summer capacity (megawatts)",3948,45 " Electric Utilities",3450,36 " IPP & CHP",499,48 "Net generation (megawatthours)",10995240,45 " Electric Utilities",9344872,38 " IPP & CHP",1650368,48 "Emissions (thousand metric tons)",, " Sulfur Dioxide (short tons)",13852,35 " Nitrogen

  10. "Sources: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report."" U.S. Energy Information Administration, Form EIA-861,""Annual Electric Power Industry Report."" U.S. Energy Information Administration, Form EIA-923, ""Power Plant Operations Report"" and predecessor forms."

    U.S. Energy Information Administration (EIA) Indexed Site

    Washington" "Item","Value","Rank" "Primary energy source","Hydroelectric", "Net summer capacity (megawatts)",30949,10 " Electric Utilities",27376,5 " IPP & CHP",3573,26 "Net generation (megawatthours)",116334363,11 " Electric Utilities",102294256,5 " IPP & CHP",14040107,24 "Emissions (thousand metric tons)",, " Sulfur Dioxide (short tons)",13716,36 "

  11. "Sources: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report."" U.S. Energy Information Administration, Form EIA-861,""Annual Electric Power Industry Report."" U.S. Energy Information Administration, Form EIA-923, ""Power Plant Operations Report"" and predecessor forms."

    U.S. Energy Information Administration (EIA) Indexed Site

    Wisconsin" "Item","Value","Rank" "Primary energy source","Coal", "Net summer capacity (megawatts)",17166,23 " Electric Utilities",14377,18 " IPP & CHP",2788,32 "Net generation (megawatthours)",61064796,25 " Electric Utilities",47301782,20 " IPP & CHP",13763014,26 "Emissions (thousand metric tons)",, " Sulfur Dioxide (short tons)",81239,17 " Nitrogen

  12. "Sources: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report."" U.S. Energy Information Administration, Form EIA-861,""Annual Electric Power Industry Report."" U.S. Energy Information Administration, Form EIA-923, ""Power Plant Operations Report"" and predecessor forms."

    U.S. Energy Information Administration (EIA) Indexed Site

    Arizona" "Item","Value","Rank" "Primary energy source","Coal", "Net summer capacity (megawatts)",28249,13 " Electric utilities",21311,11 " IPP & CHP",6938,17 "Net generation (megawatthours)",112257187,13 " Electric utilities",94847135,8 " IPP & CHP",17410053,19 "Emissions (thousand metric tons)",, " Sulfur dioxide (short tons)",22597,32 " Nitrogen

  13. "Sources: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report."" U.S. Energy Information Administration, Form EIA-861,""Annual Electric Power Industry Report."" U.S. Energy Information Administration, Form EIA-923, ""Power Plant Operations Report"" and predecessor forms."

    U.S. Energy Information Administration (EIA) Indexed Site

    California" "Item","Value","Rank" "Primary energy source","Natural gas", "Net summer capacity (megawatts)",74646,2 " Electric utilities",28201,4 " IPP & CHP",46446,2 "Net generation (megawatthours)",198807622,5 " Electric utilities",71037135,14 " IPP & CHP",127770487,4 "Emissions (thousand metric tons)",, " Sulfur dioxide (short tons)",3102,46 "

  14. "Sources: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report."" U.S. Energy Information Administration, Form EIA-861,""Annual Electric Power Industry Report."" U.S. Energy Information Administration, Form EIA-923, ""Power Plant Operations Report"" and predecessor forms."

    U.S. Energy Information Administration (EIA) Indexed Site

    Colorado" "Item","Value","Rank" "Primary energy source","Coal", "Net summer capacity (megawatts)",14933,29 " Electric utilities",10204,28 " IPP & CHP",4729,18 "Net generation (megawatthours)",53847386,30 " Electric utilities",43239615,26 " IPP & CHP",10607771,30 "Emissions (thousand metric tons)",, " Sulfur dioxide (short tons)",28453,30 " Nitrogen

  15. "Sources: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report."" U.S. Energy Information Administration, Form EIA-861,""Annual Electric Power Industry Report."" U.S. Energy Information Administration, Form EIA-923, ""Power Plant Operations Report"" and predecessor forms."

    U.S. Energy Information Administration (EIA) Indexed Site

    Connecticut" "Item","Value","Rank" "Primary energy source","Nuclear", "Net summer capacity (megawatts)",8832,35 " Electric utilities",161,45 " IPP & CHP",8671,12 "Net generation (megawatthours)",33676980,38 " Electric utilities",54693,45 " IPP & CHP",33622288,11 "Emissions (thousand metric tons)",, " Sulfur dioxide (short tons)",1897,47 " Nitrogen

  16. "Sources: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report."" U.S. Energy Information Administration, Form EIA-861,""Annual Electric Power Industry Report."" U.S. Energy Information Administration, Form EIA-923, ""Power Plant Operations Report"" and predecessor forms."

    U.S. Energy Information Administration (EIA) Indexed Site

    Delaware" "Item","Value","Rank" "Primary energy source","Natural gas", "Net summer capacity (megawatts)",3086,46 " Electric utilities",102,46 " IPP & CHP",2984,31 "Net generation (megawatthours)",7703584,47 " Electric utilities",49050,46 " IPP & CHP",7654534,35 "Emissions (thousand metric tons)",, " Sulfur dioxide (short tons)",824,48 " Nitrogen

  17. "Sources: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report."" U.S. Energy Information Administration, Form EIA-861,""Annual Electric Power Industry Report."" U.S. Energy Information Administration, Form EIA-923, ""Power Plant Operations Report"" and predecessor forms."

    U.S. Energy Information Administration (EIA) Indexed Site

    District of Columbia" "Item","Value","Rank" "Primary energy source","Natural gas", "Net summer capacity (megawatts)",9,51 " Electric utilities",, " IPP & CHP",9,51 "Net generation (megawatthours)",67612,51 " Electric utilities",, " IPP & CHP",67612,51 "Emissions (thousand metric tons)",, " Sulfur dioxide (short tons)",0,51 " Nitrogen oxide (short

  18. "Sources: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report."" U.S. Energy Information Administration, Form EIA-861,""Annual Electric Power Industry Report."" U.S. Energy Information Administration, Form EIA-923, ""Power Plant Operations Report"" and predecessor forms."

    U.S. Energy Information Administration (EIA) Indexed Site

    Florida" "Item","Value","Rank" "Primary energy source","Natural Gas", "Net summer capacity (megawatts)",59440,3 " Electric utilities",51775,1 " IPP & CHP",7665,15 "Net generation (megawatthours)",230015937,2 " Electric utilities",211970587,1 " IPP & CHP",18045350,15 "Emissions (thousand metric tons)",, " Sulfur dioxide (short tons)",126600,10 "

  19. "Sources: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report."" U.S. Energy Information Administration, Form EIA-861,""Annual Electric Power Industry Report."" U.S. Energy Information Administration, Form EIA-923, ""Power Plant Operations Report"" and predecessor forms."

    U.S. Energy Information Administration (EIA) Indexed Site

    Georgia" "Item","Value","Rank" "Primary energy source","Coal", "Net summer capacity (megawatts)",38250,7 " Electric utilities",28873,3 " IPP & CHP",9377,10 "Net generation (megawatthours)",125837224,10 " Electric utilities",109523336,4 " IPP & CHP",16313888,20 "Emissions (thousand metric tons)",, " Sulfur dioxide (short tons)",105998,11 " Nitrogen

  20. "Sources: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report."" U.S. Energy Information Administration, Form EIA-861,""Annual Electric Power Industry Report."" U.S. Energy Information Administration, Form EIA-923, ""Power Plant Operations Report"" and predecessor forms."

    U.S. Energy Information Administration (EIA) Indexed Site

    Hawaii" "Item","Value","Rank" "Primary energy source","Petroleum", "Net summer capacity (megawatts)",2672,47 " Electric utilities",1732,40 " IPP & CHP",939,45 "Net generation (megawatthours)",10204158,46 " Electric utilities",5517389,39 " IPP & CHP",4686769,40 "Emissions (thousand metric tons)",, " Sulfur dioxide (short tons)",21670,33 " Nitrogen

  1. "Sources: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report."" U.S. Energy Information Administration, Form EIA-861,""Annual Electric Power Industry Report."" U.S. Energy Information Administration, Form EIA-923, ""Power Plant Operations Report"" and predecessor forms."

    U.S. Energy Information Administration (EIA) Indexed Site

    Idaho" "Item","Value","Rank" "Primary energy source","Hydroelectric", "Net summer capacity (megawatts)",4944,42 " Electric utilities",3413,37 " IPP & CHP",1531,39 "Net generation (megawatthours)",15184417,43 " Electric utilities",9628016,37 " IPP & CHP",5556400,39 "Emissions (thousand metric tons)",, " Sulfur dioxide (short tons)",5777,42 " Nitrogen

  2. "Sources: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report."" U.S. Energy Information Administration, Form EIA-861,""Annual Electric Power Industry Report."" U.S. Energy Information Administration, Form EIA-923, ""Power Plant Operations Report"" and predecessor forms."

    U.S. Energy Information Administration (EIA) Indexed Site

    Illinois" "Item","Value","Rank" "Primary energy source","Nuclear", "Net summer capacity (megawatts)",44727,4 " Electric utilities",5263,35 " IPP & CHP",39464,4 "Net generation (megawatthours)",202143878,4 " Electric utilities",10457398,36 " IPP & CHP",191686480,3 "Emissions (thousand metric tons)",, " Sulfur dioxide (short tons)",187536,6 " Nitrogen

  3. "Sources: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report."" U.S. Energy Information Administration, Form EIA-861,""Annual Electric Power Industry Report."" U.S. Energy Information Administration, Form EIA-923, ""Power Plant Operations Report"" and predecessor forms."

    U.S. Energy Information Administration (EIA) Indexed Site

    Indiana" "Item","Value","Rank" "Primary energy source","Coal", "Net summer capacity (megawatts)",27499,14 " Electric utilities",23319,7 " IPP & CHP",4180,23 "Net generation (megawatthours)",115395392,12 " Electric utilities",100983285,6 " IPP & CHP",14412107,22 "Emissions (thousand metric tons)",, " Sulfur dioxide (short tons)",332396,3 " Nitrogen

  4. "Sources: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report."" U.S. Energy Information Administration, Form EIA-861,""Annual Electric Power Industry Report."" U.S. Energy Information Administration, Form EIA-923, ""Power Plant Operations Report"" and predecessor forms."

    U.S. Energy Information Administration (EIA) Indexed Site

    Iowa" "Item","Value","Rank" "Primary energy source","Coal", "Net summer capacity (megawatts)",16507,24 " Electric utilities",12655,20 " IPP & CHP",3852,25 "Net generation (megawatthours)",56853282,28 " Electric utilities",43021954,27 " IPP & CHP",13831328,25 "Emissions (thousand metric tons)",, " Sulfur dioxide (short tons)",74422,19 " Nitrogen oxide

  5. "Sources: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report."" U.S. Energy Information Administration, Form EIA-861,""Annual Electric Power Industry Report."" U.S. Energy Information Administration, Form EIA-923, ""Power Plant Operations Report"" and predecessor forms."

    U.S. Energy Information Administration (EIA) Indexed Site

    Kansas" "Item","Value","Rank" "Primary energy source","Coal", "Net summer capacity (megawatts)",14227,31 " Electric utilities",11468,24 " IPP & CHP",2759,33 "Net generation (megawatthours)",49728363,31 " Electric utilities",39669629,29 " IPP & CHP",10058734,31 "Emissions (thousand metric tons)",, " Sulfur dioxide (short tons)",31550,29 " Nitrogen

  6. "Sources: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report."" U.S. Energy Information Administration, Form EIA-861,""Annual Electric Power Industry Report."" U.S. Energy Information Administration, Form EIA-923, ""Power Plant Operations Report"" and predecessor forms."

    U.S. Energy Information Administration (EIA) Indexed Site

    Kentucky" "Item","Value","Rank" "Primary energy source","Coal", "Net summer capacity (megawatts)",20878,21 " Electric utilities",19473,15 " IPP & CHP",1405,40 "Net generation (megawatthours)",90896435,17 " Electric utilities",90133403,10 " IPP & CHP",763032,49 "Emissions (thousand metric tons)",, " Sulfur dioxide (short tons)",204873,5 " Nitrogen

  7. "Sources: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report."" U.S. Energy Information Administration, Form EIA-861,""Annual Electric Power Industry Report."" U.S. Energy Information Administration, Form EIA-923, ""Power Plant Operations Report"" and predecessor forms."

    U.S. Energy Information Administration (EIA) Indexed Site

    Louisiana" "Item","Value","Rank" "Primary energy source","Natural gas", "Net summer capacity (megawatts)",26657,15 " Electric utilities",18120,16 " IPP & CHP",8537,13 "Net generation (megawatthours)",104229402,15 " Electric utilities",58518271,17 " IPP & CHP",45711131,8 "Emissions (thousand metric tons)",, " Sulfur dioxide (short tons)",96240,14 "

  8. "Sources: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report."" U.S. Energy Information Administration, Form EIA-861,""Annual Electric Power Industry Report."" U.S. Energy Information Administration, Form EIA-923, ""Power Plant Operations Report"" and predecessor forms."

    U.S. Energy Information Administration (EIA) Indexed Site

    Maine" "Item","Value","Rank" "Primary energy source","Natural gas", "Net summer capacity (megawatts)",4470,43 " Electric utilities",10,49 " IPP & CHP",4460,20 "Net generation (megawatthours)",13248710,44 " Electric utilities",523,49 " IPP & CHP",13248187,27 "Emissions (thousand metric tons)",, " Sulfur dioxide (short tons)",10990,38 " Nitrogen oxide

  9. "Sources: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report."" U.S. Energy Information Administration, Form EIA-861,""Annual Electric Power Industry Report."" U.S. Energy Information Administration, Form EIA-923, ""Power Plant Operations Report"" and predecessor forms."

    U.S. Energy Information Administration (EIA) Indexed Site

    Maryland" "Item","Value","Rank" "Primary energy source","Coal", "Net summer capacity (megawatts)",12264,33 " Electric utilities",85,47 " IPP & CHP",12179,8 "Net generation (megawatthours)",37833652,35 " Electric utilities",20260,47 " IPP & CHP",37813392,9 "Emissions (thousand metric tons)",, " Sulfur dioxide (short tons)",41370,26 " Nitrogen oxide

  10. "Sources: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report."" U.S. Energy Information Administration, Form EIA-861,""Annual Electric Power Industry Report."" U.S. Energy Information Administration, Form EIA-923, ""Power Plant Operations Report"" and predecessor forms."

    U.S. Energy Information Administration (EIA) Indexed Site

    Massachusetts" "Item","Value","Rank" "Primary energy source","Natural gas", "Net summer capacity (megawatts)",13128,32 " Electric utilities",971,42 " IPP & CHP",12157,9 "Net generation (megawatthours)",31118591,40 " Electric utilities",679986,43 " IPP & CHP",30438606,12 "Emissions (thousand metric tons)",, " Sulfur dioxide (short tons)",6748,41 "

  11. "Sources: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report."" U.S. Energy Information Administration, Form EIA-861,""Annual Electric Power Industry Report."" U.S. Energy Information Administration, Form EIA-923, ""Power Plant Operations Report"" and predecessor forms."

    U.S. Energy Information Administration (EIA) Indexed Site

    Michigan" "Item","Value","Rank" "Primary energy source","Coal", "Net summer capacity (megawatts)",30435,12 " Electric utilities",22260,9 " IPP & CHP",8175,14 "Net generation (megawatthours)",106816991,14 " Electric utilities",84075322,12 " IPP & CHP",22741669,13 "Emissions (thousand metric tons)",, " Sulfur dioxide (short tons)",173521,7 " Nitrogen

  12. "Sources: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report."" U.S. Energy Information Administration, Form EIA-861,""Annual Electric Power Industry Report."" U.S. Energy Information Administration, Form EIA-923, ""Power Plant Operations Report"" and predecessor forms."

    U.S. Energy Information Administration (EIA) Indexed Site

    Minnesota" "Item","Value","Rank" "Primary energy source","Coal", "Net summer capacity (megawatts)",15621,28 " Electric utilities",11557,22 " IPP & CHP",4064,24 "Net generation (megawatthours)",56998330,27 " Electric utilities",45963271,22 " IPP & CHP",11035059,29 "Emissions (thousand metric tons)",, " Sulfur dioxide (short tons)",39272,27 " Nitrogen

  13. "Sources: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report."" U.S. Energy Information Administration, Form EIA-861,""Annual Electric Power Industry Report."" U.S. Energy Information Administration, Form EIA-923, ""Power Plant Operations Report"" and predecessor forms."

    U.S. Energy Information Administration (EIA) Indexed Site

    Mississippi" "Item","Value","Rank" "Primary energy source","Natural gas", "Net summer capacity (megawatts)",16090,26 " Electric utilities",13494,19 " IPP & CHP",2597,34 "Net generation (megawatthours)",55127092,29 " Electric utilities",47084382,21 " IPP & CHP",8042710,34 "Emissions (thousand metric tons)",, " Sulfur dioxide (short tons)",101093,13 "

  14. "Sources: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report."" U.S. Energy Information Administration, Form EIA-861,""Annual Electric Power Industry Report."" U.S. Energy Information Administration, Form EIA-923, ""Power Plant Operations Report"" and predecessor forms."

    U.S. Energy Information Administration (EIA) Indexed Site

    Missouri" "Item","Value","Rank" "Primary energy source","Coal", "Net summer capacity (megawatts)",21790,19 " Electric utilities",20538,13 " IPP & CHP",1252,42 "Net generation (megawatthours)",87834468,18 " Electric utilities",85271253,11 " IPP & CHP",2563215,46 "Emissions (thousand metric tons)",, " Sulfur dioxide (short tons)",149842,9 " Nitrogen

  15. "Sources: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report."" U.S. Energy Information Administration, Form EIA-861,""Annual Electric Power Industry Report."" U.S. Energy Information Administration, Form EIA-923, ""Power Plant Operations Report"" and predecessor forms."

    U.S. Energy Information Administration (EIA) Indexed Site

    Montana" "Item","Value","Rank" "Primary energy source","Coal", "Net summer capacity (megawatts)",6330,41 " Electric utilities",3209,38 " IPP & CHP",3121,30 "Net generation (megawatthours)",30257616,41 " Electric utilities",12329411,35 " IPP & CHP",17928205,16 "Emissions (thousand metric tons)",, " Sulfur dioxide (short tons)",14426,34 " Nitrogen

  16. "Sources: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report."" U.S. Energy Information Administration, Form EIA-861,""Annual Electric Power Industry Report."" U.S. Energy Information Administration, Form EIA-923, ""Power Plant Operations Report"" and predecessor forms."

    U.S. Energy Information Administration (EIA) Indexed Site

    Nebraska" "Item","Value","Rank" "Primary energy source","Coal", "Net summer capacity (megawatts)",8732,36 " Electric utilities",7913,30 " IPP & CHP",819,46 "Net generation (megawatthours)",39431291,34 " Electric utilities",36560960,30 " IPP & CHP",2870331,45 "Emissions (thousand metric tons)",, " Sulfur dioxide (short tons)",63994,22 " Nitrogen oxide

  17. "Sources: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report."" U.S. Energy Information Administration, Form EIA-861,""Annual Electric Power Industry Report."" U.S. Energy Information Administration, Form EIA-923, ""Power Plant Operations Report"" and predecessor forms."

    U.S. Energy Information Administration (EIA) Indexed Site

    Nevada" "Item","Value","Rank" "Primary energy source","Natural gas", "Net summer capacity (megawatts)",10485,34 " Electric utilities",8480,29 " IPP & CHP",2006,35 "Net generation (megawatthours)",36000537,37 " Electric utilities",27758728,33 " IPP & CHP",8241809,33 "Emissions (thousand metric tons)",, " Sulfur dioxide (short tons)",10229,40 "

  18. "Sources: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report."" U.S. Energy Information Administration, Form EIA-861,""Annual Electric Power Industry Report."" U.S. Energy Information Administration, Form EIA-923, ""Power Plant Operations Report"" and predecessor forms."

    U.S. Energy Information Administration (EIA) Indexed Site

    Hampshire" "Item","Value","Rank" "Primary energy source","Nuclear", "Net summer capacity (megawatts)",4418,44 " Electric utilities",1121,41 " IPP & CHP",3297,28 "Net generation (megawatthours)",19538395,42 " Electric utilities",2085585,41 " IPP & CHP",17452810,18 "Emissions (thousand metric tons)",, " Sulfur dioxide (short tons)",3107,45 " Nitrogen

  19. "Sources: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report."" U.S. Energy Information Administration, Form EIA-861,""Annual Electric Power Industry Report."" U.S. Energy Information Administration, Form EIA-923, ""Power Plant Operations Report"" and predecessor forms."

    U.S. Energy Information Administration (EIA) Indexed Site

    Jersey" "Item","Value","Rank" "Primary energy source","Nuclear", "Net summer capacity (megawatts)",19399,22 " Electric utilities",544,43 " IPP & CHP",18854,7 "Net generation (megawatthours)",68051086,23 " Electric utilities",-117003,50 " IPP & CHP",68168089,7 "Emissions (thousand metric tons)",, " Sulfur dioxide (short tons)",3369,44 " Nitrogen oxide

  20. "Sources: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report."" U.S. Energy Information Administration, Form EIA-861,""Annual Electric Power Industry Report."" U.S. Energy Information Administration, Form EIA-923, ""Power Plant Operations Report"" and predecessor forms."

    U.S. Energy Information Administration (EIA) Indexed Site

    Mexico" "Item","Value","Rank" "Primary energy source","Coal", "Net summer capacity (megawatts)",8072,39 " Electric utilities",6094,33 " IPP & CHP",1978,37 "Net generation (megawatthours)",32306210,39 " Electric utilities",26422867,34 " IPP & CHP",5883343,38 "Emissions (thousand metric tons)",, " Sulfur dioxide (short tons)",12064,37 " Nitrogen oxide

  1. "Sources: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report."" U.S. Energy Information Administration, Form EIA-861,""Annual Electric Power Industry Report."" U.S. Energy Information Administration, Form EIA-923, ""Power Plant Operations Report"" and predecessor forms."

    U.S. Energy Information Administration (EIA) Indexed Site

    York" "Item","Value","Rank" "Primary energy source","Natural gas", "Net summer capacity (megawatts)",40404,6 " Electric utilities",10989,27 " IPP & CHP",29416,5 "Net generation (megawatthours)",137122202,7 " Electric utilities",34082856,31 " IPP & CHP",103039347,5 "Emissions (thousand metric tons)",, " Sulfur dioxide (short tons)",31878,28 " Nitrogen

  2. "Sources: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report."" U.S. Energy Information Administration, Form EIA-861,""Annual Electric Power Industry Report."" U.S. Energy Information Administration, Form EIA-923, ""Power Plant Operations Report"" and predecessor forms."

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina" "Item","Value","Rank" "Primary energy source","Coal", "Net summer capacity (megawatts)",30498,11 " Electric utilities",26941,6 " IPP & CHP",3557,27 "Net generation (megawatthours)",128143588,9 " Electric utilities",119432144,2 " IPP & CHP",8711444,32 "Emissions (thousand metric tons)",, " Sulfur dioxide (short tons)",64168,21 " Nitrogen

  3. "Sources: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report."" U.S. Energy Information Administration, Form EIA-861,""Annual Electric Power Industry Report."" U.S. Energy Information Administration, Form EIA-923, ""Power Plant Operations Report"" and predecessor forms."

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota" "Item","Value","Rank" "Primary energy source","Coal", "Net summer capacity (megawatts)",6790,40 " Electric utilities",5516,34 " IPP & CHP",1274,41 "Net generation (megawatthours)",36462508,36 " Electric utilities",32088446,32 " IPP & CHP",4374062,42 "Emissions (thousand metric tons)",, " Sulfur dioxide (short tons)",52716,23 " Nitrogen oxide

  4. "Sources: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report."" U.S. Energy Information Administration, Form EIA-861,""Annual Electric Power Industry Report."" U.S. Energy Information Administration, Form EIA-923, ""Power Plant Operations Report"" and predecessor forms."

    U.S. Energy Information Administration (EIA) Indexed Site

    Ohio" "Item","Value","Rank" "Primary energy source","Coal", "Net summer capacity (megawatts)",31507,9 " Electric utilities",11134,26 " IPP & CHP",20372,6 "Net generation (megawatthours)",134476405,8 " Electric utilities",43290512,25 " IPP & CHP",91185893,6 "Emissions (thousand metric tons)",, " Sulfur dioxide (short tons)",355108,1 " Nitrogen oxide

  5. "Sources: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report."" U.S. Energy Information Administration, Form EIA-861,""Annual Electric Power Industry Report."" U.S. Energy Information Administration, Form EIA-923, ""Power Plant Operations Report"" and predecessor forms."

    U.S. Energy Information Administration (EIA) Indexed Site

    Oregon" "Item","Value","Rank" "Primary energy source","Hydroelectric", "Net summer capacity (megawatts)",15884,27 " Electric utilities",11175,25 " IPP & CHP",4709,19 "Net generation (megawatthours)",60119907,26 " Electric utilities",44565239,24 " IPP & CHP",15554668,21 "Emissions (thousand metric tons)",, " Sulfur dioxide (short tons)",10595,39 "

  6. "Sources: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report."" U.S. Energy Information Administration, Form EIA-861,""Annual Electric Power Industry Report."" U.S. Energy Information Administration, Form EIA-923, ""Power Plant Operations Report"" and predecessor forms."

    U.S. Energy Information Administration (EIA) Indexed Site

    Pennsylvania" "Item","Value","Rank" "Primary energy source","Coal", "Net summer capacity (megawatts)",42723,5 " Electric utilities",39,48 " IPP & CHP",42685,3 "Net generation (megawatthours)",221058365,3 " Electric utilities",90994,44 " IPP & CHP",220967371,2 "Emissions (thousand metric tons)",, " Sulfur dioxide (short tons)",297598,4 " Nitrogen

  7. "Sources: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report."" U.S. Energy Information Administration, Form EIA-861,""Annual Electric Power Industry Report."" U.S. Energy Information Administration, Form EIA-923, ""Power Plant Operations Report"" and predecessor forms."

    U.S. Energy Information Administration (EIA) Indexed Site

    Rhode Island" "Item","Value","Rank" "Primary energy source","Natural gas", "Net summer capacity (megawatts)",1810,49 " Electric utilities",8,50 " IPP & CHP",1803,38 "Net generation (megawatthours)",6281748,49 " Electric utilities",10670,48 " IPP & CHP",6271078,36 "Emissions (thousand metric tons)",, " Sulfur dioxide (short tons)",100,49 " Nitrogen

  8. "Sources: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report."" U.S. Energy Information Administration, Form EIA-861,""Annual Electric Power Industry Report."" U.S. Energy Information Administration, Form EIA-923, ""Power Plant Operations Report"" and predecessor forms."

    U.S. Energy Information Administration (EIA) Indexed Site

    South Carolina" "Item","Value","Rank" "Primary energy source","Nuclear", "Net summer capacity (megawatts)",22824,18 " Electric utilities",20836,12 " IPP & CHP",1988,36 "Net generation (megawatthours)",97158465,16 " Electric utilities",93547004,9 " IPP & CHP",3611461,43 "Emissions (thousand metric tons)",, " Sulfur dioxide (short tons)",43659,25 "

  9. "Sources: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report."" U.S. Energy Information Administration, Form EIA-861,""Annual Electric Power Industry Report."" U.S. Energy Information Administration, Form EIA-923, ""Power Plant Operations Report"" and predecessor forms."

    U.S. Energy Information Administration (EIA) Indexed Site

    Tennessee" "Item","Value","Rank" "Primary energy source","Coal", "Net summer capacity (megawatts)",20998,20 " Electric utilities",20490,14 " IPP & CHP",508,47 "Net generation (megawatthours)",79506886,20 " Electric utilities",76986629,13 " IPP & CHP",2520257,47 "Emissions (thousand metric tons)",, " Sulfur dioxide (short tons)",89357,16 " Nitrogen

  10. "Sources: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report."" U.S. Energy Information Administration, Form EIA-861,""Annual Electric Power Industry Report."" U.S. Energy Information Administration, Form EIA-923, ""Power Plant Operations Report"" and predecessor forms."

    U.S. Energy Information Administration (EIA) Indexed Site

    Texas" "Item","Value","Rank" "Primary energy source","Natural gas", "Net summer capacity (megawatts)",112914,1 " Electric utilities",29113,2 " IPP & CHP",83800,1 "Net generation (megawatthours)",437629668,1 " Electric utilities",94974953,7 " IPP & CHP",342654715,1 "Emissions (thousand metric tons)",, " Sulfur dioxide (short tons)",349245,2 " Nitrogen

  11. "Sources: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report."" U.S. Energy Information Administration, Form EIA-861,""Annual Electric Power Industry Report."" U.S. Energy Information Administration, Form EIA-923, ""Power Plant Operations Report"" and predecessor forms."

    U.S. Energy Information Administration (EIA) Indexed Site

    Utah" "Item","Value","Rank" "Primary energy source","Coal", "Net summer capacity (megawatts)",8325,38 " Electric utilities",7296,31 " IPP & CHP",1029,44 "Net generation (megawatthours)",43784526,33 " Electric utilities",40741425,28 " IPP & CHP",3043101,44 "Emissions (thousand metric tons)",, " Sulfur dioxide (short tons)",23646,31 " Nitrogen oxide

  12. "Sources: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report."" U.S. Energy Information Administration, Form EIA-861,""Annual Electric Power Industry Report."" U.S. Energy Information Administration, Form EIA-923, ""Power Plant Operations Report"" and predecessor forms."

    U.S. Energy Information Administration (EIA) Indexed Site

    Vermont" "Item","Value","Rank" "Primary energy source","Nuclear", "Net summer capacity (megawatts)",650,50 " Electric utilities",337,44 " IPP & CHP",313,49 "Net generation (megawatthours)",7031394,48 " Electric utilities",868079,42 " IPP & CHP",6163315,37 "Emissions (thousand metric tons)",, " Sulfur dioxide (short tons)",70,50 " Nitrogen oxide

  13. "Sources: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report."" U.S. Energy Information Administration, Form EIA-861,""Annual Electric Power Industry Report."" U.S. Energy Information Administration, Form EIA-923, ""Power Plant Operations Report"" and predecessor forms."

    U.S. Energy Information Administration (EIA) Indexed Site

    Virginia" "Item","Value","Rank" "Primary energy source","Nuclear", "Net summer capacity (megawatts)",26292,16 " Electric utilities",22062,10 " IPP & CHP",4231,22 "Net generation (megawatthours)",77137438,21 " Electric utilities",62966914,16 " IPP & CHP",14170524,23 "Emissions (thousand metric tons)",, " Sulfur dioxide (short tons)",68550,20 "

  14. "Sources: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report."" U.S. Energy Information Administration, Form EIA-861,""Annual Electric Power Industry Report."" U.S. Energy Information Administration, Form EIA-923, ""Power Plant Operations Report"" and predecessor forms."

    U.S. Energy Information Administration (EIA) Indexed Site

    West Virginia" "Item","Value","Rank" "Primary energy source","Coal", "Net summer capacity (megawatts)",16276,25 " Electric utilities",11981,21 " IPP & CHP",4295,21 "Net generation (megawatthours)",81059577,19 " Electric utilities",63331833,15 " IPP & CHP",17727743,17 "Emissions (thousand metric tons)",, " Sulfur dioxide (short tons)",102406,12 "

  15. "Sources: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report."" U.S. Energy Information Administration, Form EIA-861,""Annual Electric Power Industry Report."" U.S. Energy Information Administration, Form EIA-923, ""Power Plant Operations Report"" and predecessor forms."

    U.S. Energy Information Administration (EIA) Indexed Site

    Wyoming" "Item","Value","Rank" "Primary energy source","Coal", "Net summer capacity (megawatts)",8458,37 " Electric utilities",7233,32 " IPP & CHP",1225,43 "Net generation (megawatthours)",49696183,32 " Electric utilities",45068982,23 " IPP & CHP",4627201,41 "Emissions (thousand metric tons)",, " Sulfur dioxide (short tons)",45704,24 " Nitrogen oxide

  16. "Sources: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report."" U.S. Energy Information Administration, Form EIA-861,""Annual Electric Power Industry Report."" U.S. Energy Information Administration, Form EIA-923, ""Power Plant Operations Report"" and predecessor forms."

    U.S. Energy Information Administration (EIA) Indexed Site

    United States" "Item","Value" "Primary energy source","Coal" "Net summer capacity (megawatts)",1068422 " Electric utilities",616632 " IPP & CHP",451791 "Net generation (megawatthours)",4093606005 " Electric utilities",2382473495 " IPP & CHP",1711132510 "Emissions (thousand metric tons)", " Sulfur dioxide (short tons)",3842005 " Nitrogen oxide (short

  17. Building the World's Most Advanced Light Source

    SciTech Connect (OSTI)

    2012-08-03

    View this time-lapse video showing construction of the National Synchrotron Light Source II at Brookhaven National Laboratory. Construction is shown from 2009-2012.

  18. Taking the long view

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Taking the long view Taking the long view on environmental stewardship A newly articulated mission for environmental stewardship at the Laboratory can be summed up in a simple phrase: clean up the past, control current operations, and create a sustainable future. March 20, 2012 Los Alamos Aerial Aerial view of a canyon in Los Alamos, New Mexico. Contact Environmental Communication & Public Outreach P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email "The future viability of

  19. Nucleon Electromagnetic Form Factors

    SciTech Connect (OSTI)

    Marc Vanderhaeghen; Charles Perdrisat; Vina Punjabi

    2007-10-01

    There has been much activity in the measurement of the elastic electromagnetic proton and neutron form factors in the last decade, and the quality of the data has greatly improved by performing double polarization experiments, in comparison with previous unpolarized data. Here we review the experimental data base in view of the new results for the proton, and neutron, obtained at JLab, MAMI, and MIT-Bates. The rapid evolution of phenomenological models triggered by these high-precision experiments will be discussed, including the recent progress in the determination of the valence quark generalized parton distributions of the nucleon, as well as the steady rate of improvements made in the lattice QCD calculations.

  20. Taking the long view

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2012 Los Alamos Aerial Aerial view of a canyon in Los Alamos, New Mexico. Contact Environmental Communication & Public Outreach P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505)...

  1. ParaView

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... program in step 4 above. 1. Open ParaView and select File->Connect from the menu. 5. The server config script will start an xterm allowing you to login to the selected system. ...

  2. APPENDIX A: Forms and Instructions Form Form R93D-44 Form R93D...

    U.S. Energy Information Administration (EIA) Indexed Site

    and Instructions Form Form R93D-44 Form R93D-03 Form R93D-59 Instructions Form RT94-02 Form RT94-04 Form RT94-0 Form RT94-03 Form RT94-05 Form RT94-06 Instructions Form...

  3. The Linac Coherent Light Source

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    White, William E.; Robert, Aymeric; Dunne, Mike

    2015-05-01

    The Linac Coherent Light Source (LCLS) at the SLAC National Accelerator Laboratory was the first hard X-ray free-electron laser (FEL) to operate as a user facility. After five years of operation, LCLS is now a mature FEL user facility. Our personal views about opportunities and challenges inherent to these unique light sources are discussed.

  4. BloombergBusiness: Viewed from space: less corn

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Viewed from space: less corn Viewed from space: less corn U.S. corn production is 2.8 percent smaller than government estimates, according to a daily analysis of infrared satellite images taken of more than 1 million corn fields. September 13, 2015 Domestic corn production will be 13.34 billion bushels, Descartes Labs forecast. Source: Descartes Labs via Bloomberg Domestic corn production will be 13.34 billion bushels, Descartes Labs forecast. Source: Descartes Labs via Bloomberg Corn crop

  5. Densified waste form and method for forming

    SciTech Connect (OSTI)

    Garino, Terry J.; Nenoff, Tina M.; Sava Gallis, Dorina Florentina

    2015-08-25

    Materials and methods of making densified waste forms for temperature sensitive waste material, such as nuclear waste, formed with low temperature processing using metallic powder that forms the matrix that encapsulates the temperature sensitive waste material. The densified waste form includes a temperature sensitive waste material in a physically densified matrix, the matrix is a compacted metallic powder. The method for forming the densified waste form includes mixing a metallic powder and a temperature sensitive waste material to form a waste form precursor. The waste form precursor is compacted with sufficient pressure to densify the waste precursor and encapsulate the temperature sensitive waste material in a physically densified matrix.

  6. Densified waste form and method for forming

    DOE Patents [OSTI]

    Garino, Terry J.; Nenoff, Tina M.; Sava Gallis, Dorina Florentina

    2016-05-17

    Materials and methods of making densified waste forms for temperature sensitive waste material, such as nuclear waste, formed with low temperature processing using metallic powder that forms the matrix that encapsulates the temperature sensitive waste material. The densified waste form includes a temperature sensitive waste material in a physically densified matrix, the matrix is a compacted metallic powder. The method for forming the densified waste form includes mixing a metallic powder and a temperature sensitive waste material to form a waste form precursor. The waste form precursor is compacted with sufficient pressure to densify the waste precursor and encapsulate the temperature sensitive waste material in a physically densified matrix.

  7. Methods of forming semiconductor devices and devices formed using such methods

    DOE Patents [OSTI]

    Fox, Robert V; Rodriguez, Rene G; Pak, Joshua

    2013-05-21

    Single source precursors are subjected to carbon dioxide to form particles of material. The carbon dioxide may be in a supercritical state. Single source precursors also may be subjected to supercritical fluids other than supercritical carbon dioxide to form particles of material. The methods may be used to form nanoparticles. In some embodiments, the methods are used to form chalcopyrite materials. Devices such as, for example, semiconductor devices may be fabricated that include such particles. Methods of forming semiconductor devices include subjecting single source precursors to carbon dioxide to form particles of semiconductor material, and establishing electrical contact between the particles and an electrode.

  8. Colorado Air Pollutant Emission Notice (APEN) Form | Open Energy...

    Open Energy Info (EERE)

    Department of Public Health and Environment of the construction of a new source of pollution. Form Type ApplicationNotice Form Topic Air Pollutant Emission Notice &...

  9. REACTOR VIEWING APPARATUS

    DOE Patents [OSTI]

    Monk, G.S.

    1959-01-13

    An optical system is presented that is suitable for viewing objects in a region of relatively high radioactivity, or high neutron activity, such as a neutronic reactor. This optical system will absorb neutrons and gamma rays thereby protecting personnel fronm the harmful biological effects of such penetrating radiations. The optical system is comprised of a viewing tube having a lens at one end, a transparent solid member at the other end and a transparent aqueous liquid completely filling the tube between the ends. The lens is made of a polymerized organic material and the transparent solid member is made of a radiation absorbent material. A shield surrounds the tube betwcen the flanges and is made of a gamma ray absorbing material.

  10. Stereoscopic optical viewing system

    DOE Patents [OSTI]

    Tallman, C.S.

    1986-05-02

    An improved optical system which provides the operator with a stereoscopic viewing field and depth of vision, particularly suitable for use in various machines such as electron or laser beam welding and drilling machines. The system features two separate but independently controlled optical viewing assemblies from the eyepiece to a spot directly above the working surface. Each optical assembly comprises a combination of eye pieces, turning prisms, telephoto lenses for providing magnification, achromatic imaging relay lenses and final stage pentagonal turning prisms. Adjustment for variations in distance from the turning prisms to the workpiece, necessitated by varying part sizes and configurations and by the operator's visual accuity, is provided separately for each optical assembly by means of separate manual controls at the operator console or within easy reach of the operator.

  11. Stereoscopic optical viewing system

    DOE Patents [OSTI]

    Tallman, Clifford S.

    1987-01-01

    An improved optical system which provides the operator a stereoscopic viewing field and depth of vision, particularly suitable for use in various machines such as electron or laser beam welding and drilling machines. The system features two separate but independently controlled optical viewing assemblies from the eyepiece to a spot directly above the working surface. Each optical assembly comprises a combination of eye pieces, turning prisms, telephoto lenses for providing magnification, achromatic imaging relay lenses and final stage pentagonal turning prisms. Adjustment for variations in distance from the turning prisms to the workpiece, necessitated by varying part sizes and configurations and by the operator's visual accuity, is provided separately for each optical assembly by means of separate manual controls at the operator console or within easy reach of the operator.

  12. Forms | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Forms Forms The following interactive Web-based forms in Adobe Acrobat Portable Document Format (PDF) are designed for online completion with Acrobat Reader. Input data will ...

  13. Energy Sources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sources Energy Sources Renewable Energy Renewable Energy Learn more about energy from solar, wind, water, geothermal and biomass. Read more Nuclear Nuclear Learn more about how we use nuclear energy. Read more Electricity Electricity Learn more about how we use electricity as an energy source. Read more Fossil Fossil Learn more about our fossil energy sources: coal, oil and natural gas. Read more Primary energy sources take many forms, including nuclear energy, fossil energy -- like oil, coal

  14. Seeding Coherent Radiation Sources with Sawtooth Modulation ...

    Office of Scientific and Technical Information (OSTI)

    HARMONICS; INSTABILITY; MODULATION; PERFORMANCE; PHASE SPACE; POLARIZATION; RADIATION SOURCES; SATURATION; SEEDS; WAVE FORMS; WAVELENGTHS Accelerators,ACCPHY, SYNCHRAD, XFEL

  15. Bipolar pulse forming line

    DOE Patents [OSTI]

    Rhodes, Mark A.

    2008-10-21

    A bipolar pulse forming transmission line module for linear induction accelerators having first, second, third, fourth, and fifth planar conductors which form an interleaved stack with dielectric layers between the conductors. Each conductor has a first end, and a second end adjacent an acceleration axis. The first and second planar conductors are connected to each other at the second ends, the fourth and fifth planar conductors are connected to each other at the second ends, and the first and fifth planar conductors are connected to each other at the first ends via a shorting plate adjacent the first ends. The third planar conductor is electrically connectable to a high voltage source, and an internal switch functions to short a high voltage from the first end of the third planar conductor to the first end of the fourth planar conductor to produce a bipolar pulse at the acceleration axis with a zero net time integral. Improved access to the switch is enabled by an aperture through the shorting plate and the proximity of the aperture to the switch.

  16. September 2015 Most Viewed Documents for Renewable Energy Sources...

    Office of Scientific and Technical Information (OSTI)

    Final technical report, July 1, 1996--June 30, 1998 Gorlov, A. (1998) 83 Seventh Edition Fuel Cell Handbook NETL (2004) 83 Advanced Electric Submersible Pump Design Tool for ...

  17. March 2016 Most Viewed Documents for Renewable Energy Sources...

    Office of Scientific and Technical Information (OSTI)

    AND PERFORMANCE OF CEMENT-BASED GROUTS FOR GEOTHERMAL HEAT PUMP APPLICATIONS. ALLAN,M.L. (1999) 156 Analysis of crude oil vapor pressures at the U.S. Strategic Petroleum Reserve. ...

  18. December 2015 Most Viewed Documents for Renewable Energy Sources...

    Office of Scientific and Technical Information (OSTI)

    Final report, April 1, 1978-June 30, 1982 Blount, C.W.; Price, L.C. (1982) 99 Seventh Edition Fuel Cell Handbook NETL (2004) 91 Analysis of crude oil vapor pressures at the U.S. ...

  19. June 2015 Most Viewed Documents for Renewable Energy Sources...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biomass to Gasoline and DIesel Using Integrated Hydropyrolysis and Hydroconversion Marker, Terry; Roberts, Michael; Linck, Martin; Felix, Larry; Ortiz-Toral, Pedro; Wangerow, Jim; ...

  20. September 2013 Most Viewed Documents for Renewable Energy Sources...

    Office of Scientific and Technical Information (OSTI)

    OF CEMENT-BASED GROUTS FOR GEOTHERMAL HEAT PUMP APPLICATIONS. ALLAN,M.L. (1999) 70 Solar radiation data manual for flat-plate and concentrating collectors Dunlap, M.A. ed.; ...

  1. Most Viewed Documents for Renewable Energy Sources: September...

    Office of Scientific and Technical Information (OSTI)

    difficulties, and results King, D.L.; Kratochvil, J.A.; Boyson, W.E. (1997) 66 Solar radiation data manual for flat-plate and concentrating collectors Dunlap, M.A. ed.; ...

  2. July 2013 Most Viewed Documents for Renewable Energy Sources...

    Office of Scientific and Technical Information (OSTI)

    Above 80sup 0F and for salt content between 5 and 25% Dittman, G.L. (1977) 112 Solar radiation data manual for flat-plate and concentrating collectors Dunlap, M.A. ed.; ...

  3. March 2014 Most Viewed Documents for Renewable Energy Sources...

    Office of Scientific and Technical Information (OSTI)

    analysis Higbee, Charles V. (1998) 124 Solar radiation data manual for flat-plate and ... (1999) 35 THERMOCHEMICAL HEAT STORAGE FOR CONCENTRATED SOLAR POWER PROJECT STAFF (2011) 35

  4. April 2013 Most Viewed Documents for Renewable Energy Sources...

    Office of Scientific and Technical Information (OSTI)

    difficulties, and results King, D.L.; Kratochvil, J.A.; Boyson, W.E. (1997) 159 Solar radiation data manual for flat-plate and concentrating collectors Dunlap, M.A. ed.; ...

  5. January 2013 Most Viewed Documents for Renewable Energy Sources...

    Office of Scientific and Technical Information (OSTI)

    Musial, W. Tidal Energy System for On-Shore Power Generation Bruce, Allan J The Solar Energy Consortium of New York Photovoltaic Research and Development Center Klein, Petra M. ...

  6. December 2015 Most Viewed Documents for Renewable Energy Sources...

    Office of Scientific and Technical Information (OSTI)

    Ronnen; Berdahl, Paul (2003) 80 Detailed and global chemical kinetics model for hydrogen Marinov, N.M.; Westbrook, C.K.; Pitz, W.J. (1995) 78 Reaction mechanisms in cellulose ...

  7. Most Viewed Documents for Renewable Energy Sources: December...

    Office of Scientific and Technical Information (OSTI)

    Dunlap, M.A. ed.; Marion, W.; Wilcox, S. (null) 60 Chapter 13. Absorption Refrigeration Rafferty, Kevin D. (1998) 59 Development of the helical reaction hydraulic turbine. ...

  8. March 2015 Most Viewed Documents for Renewable Energy Sources...

    Office of Scientific and Technical Information (OSTI)

    Health and environmental effects document on geothermal energy: 1981 Layton, D.W.; Anspaugh, L.R.; O'Banion, K.D. (1981) 95 Development of the helical reaction hydraulic turbine. ...

  9. September 2013 Most Viewed Documents for Renewable Energy Sources...

    Office of Scientific and Technical Information (OSTI)

    Energy Program, Olympia, WA; (3) Idaho National Engineering and Environmental Laboratory, Idaho Falls, ID (0001) 49 Development of the helical reaction hydraulic turbine. ...

  10. September 2015 Most Viewed Documents for Renewable Energy Sources...

    Office of Scientific and Technical Information (OSTI)

    F. Rice; David P. Mann (2007) 102 Development of the helical reaction hydraulic turbine. ... T.F. (1977) 54 ADVANCED COMPOSITE WIND TURBINE BLADE DESIGN BASED ON DURABILITY AND ...

  11. Most Viewed Documents for Renewable Energy Sources: September...

    Office of Scientific and Technical Information (OSTI)

    (2000) 62 Calculation of brine properties. Above 80sup 0F and for salt content between 5 and 25% Dittman, G.L. (1977) 54 Development of the helical reaction hydraulic turbine. ...

  12. March 2014 Most Viewed Documents for Renewable Energy Sources...

    Office of Scientific and Technical Information (OSTI)

    Energy Program, Olympia, WA; (3) Idaho National Engineering and Environmental Laboratory, Idaho Falls, ID (0001) 46 Development of the helical reaction hydraulic turbine. ...

  13. July 2013 Most Viewed Documents for Renewable Energy Sources...

    Office of Scientific and Technical Information (OSTI)

    Charles V. (1998) 68 Flammability characteristics of combustible gases and vapors. 249 refs Zabetakis, M.G. (1964) 68 Development of the helical reaction hydraulic turbine. ...

  14. June 2014 Most Viewed Documents for Renewable Energy Sources...

    Office of Scientific and Technical Information (OSTI)

    W.J. (1996) 54 Geothermal Power Generation - A Primer on Low-Temperature, Small-Scale Applications Rafferty, K. (2000) 54 Development of the helical reaction hydraulic turbine. ...

  15. Most Viewed Documents for Renewable Energy Sources: December...

    Office of Scientific and Technical Information (OSTI)

    Mark R.; Rowley, Steven; Nesse, Ronald J. (2010) 42 Chapter 6. Drilling and Well Construction Culver, Gene (1998) 40 Advanced Thermal Storage for Central Receivers with ...

  16. January 2013 Most Viewed Documents for Renewable Energy Sources...

    Office of Scientific and Technical Information (OSTI)

    Highlights of the Technologies Challenges (Presentation) Noufi, R. Accelerated UV Test Methods for Encapsulants of Photovoltaic Modules (Presentation) Kempe, M. D. Module ...

  17. March 2016 Most Viewed Documents for Renewable Energy Sources...

    Office of Scientific and Technical Information (OSTI)

    J.A. (1997) 191 Wet cooling towers: rule-of-thumb design and simulation Leeper, S.A. (1981) 188 Solubility of methane in water under natural conditions: a laboratory study. ...

  18. April 2013 Most Viewed Documents for Renewable Energy Sources...

    Office of Scientific and Technical Information (OSTI)

    Higbee, Charles V. (1998) 223 Geothermal Power Generation - A Primer on Low-Temperature, ... Kratochvil, J.A.; Boyson, W.E. (1997) 159 Solar radiation data manual for flat-plate and ...

  19. March 2015 Most Viewed Documents for Renewable Energy Sources...

    Office of Scientific and Technical Information (OSTI)

    5 and 25% Dittman, G.L. (1977) 140 Thermal conductivity of aqueous NaCl solutions ... Farshad Ghasripoor (2012) 81 Geothermal Power Generation - A Primer on Low-Temperature, ...

  20. June 2015 Most Viewed Documents for Renewable Energy Sources...

    Office of Scientific and Technical Information (OSTI)

    difficulties, and results King, D.L.; Kratochvil, J.A.; Boyson, W.E. (1997) 95 Water-lithium bromide double-effect absorption cooling analysis Vliet, G.C.; Lawson, M.B.; ...

  1. June 2016 Most Viewed Documents for Renewable Energy Sources...

    Office of Scientific and Technical Information (OSTI)

    (1977) 240 Solubility of methane in water under natural conditions: a laboratory study. ... APACHE TRIBE John D. Jones (2004) 140 Water-lithium bromide double-effect absorption ...

  2. The View from HQ

    National Nuclear Security Administration (NNSA)

    A publication of the Office of Advanced Simulation & Computing, NNSA Defense Programs NA-ASC-500-07-Issue 3 May 2007 The View from HQ by Dimitri Kusnezov I have been spending much of my time these days thinking about science, technology and engineering and the role of the laboratories and how that will be reflected in the Complex of the future. This is on my mind for two reasons: one is my responsibility to produce a science and technology roadmap for Complex 2030-Defense Program's vision

  3. The BetterBuildings View

    Broader source: Energy.gov [DOE]

    The BetterBuildings View Newsletter, April 2011, from the U.S. Department of Energy's Better Buildings Neighborhood Program.

  4. Science Brief Submission Form

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Brief Submission Form Science Brief Submission Form Print Tuesday, 01 May 2007 00:00 Loading... < Prev

  5. Radiation source

    DOE Patents [OSTI]

    Thode, Lester E.

    1981-01-01

    A device and method for relativistic electron beam heating of a high-density plasma in a small localized region. A relativistic electron beam generator or accelerator produces a high-voltage electron beam which propagates along a vacuum drift tube and is modulated to initiate electron bunching within the beam. The beam is then directed through a low-density gas chamber which provides isolation between the vacuum modulator and the relativistic electron beam target. The relativistic beam is then applied to a high-density target plasma which typically comprises DT, DD, or similar thermonuclear gas at a density of 10.sup.17 to 10.sup.20 electrons per cubic centimeter. The target gas is ionized prior to application of the relativistic electron beam by means of a laser or other preionization source to form a plasma. Utilizing a relativistic electron beam with an individual particle energy exceeding 3 MeV, classical scattering by relativistic electrons passing through isolation foils is negligible. As a result, relativistic streaming instabilities are initiated within the high-density target plasma causing the relativistic electron beam to efficiently deposit its energy into a small localized region of the high-density plasma target.

  6. Microwave ion source

    DOE Patents [OSTI]

    Leung, Ka-Ngo; Reijonen, Jani; Thomae, Rainer W.

    2005-07-26

    A compact microwave ion source has a permanent magnet dipole field, a microwave launcher, and an extractor parallel to the source axis. The dipole field is in the form of a ring. The microwaves are launched from the middle of the dipole ring using a coaxial waveguide. Electrons are heated using ECR in the magnetic field. The ions are extracted from the side of the source from the middle of the dipole perpendicular to the source axis. The plasma density can be increased by boosting the microwave ion source by the addition of an RF antenna. Higher charge states can be achieved by increasing the microwave frequency. A xenon source with a magnetic pinch can be used to produce intense EUV radiation.

  7. Protective laser beam viewing device

    DOE Patents [OSTI]

    Neil, George R.; Jordan, Kevin Carl

    2012-12-18

    A protective laser beam viewing system or device including a camera selectively sensitive to laser light wavelengths and a viewing screen receiving images from the laser sensitive camera. According to a preferred embodiment of the invention, the camera is worn on the head of the user or incorporated into a goggle-type viewing display so that it is always aimed at the area of viewing interest to the user and the viewing screen is incorporated into a video display worn as goggles over the eyes of the user.

  8. Plasma formed ion beam projection lithography system

    DOE Patents [OSTI]

    Leung, Ka-Ngo; Lee, Yung-Hee Yvette; Ngo, Vinh; Zahir, Nastaran

    2002-01-01

    A plasma-formed ion-beam projection lithography (IPL) system eliminates the acceleration stage between the ion source and stencil mask of a conventional IPL system. Instead a much thicker mask is used as a beam forming or extraction electrode, positioned next to the plasma in the ion source. Thus the entire beam forming electrode or mask is illuminated uniformly with the source plasma. The extracted beam passes through an acceleration and reduction stage onto the resist coated wafer. Low energy ions, about 30 eV, pass through the mask, minimizing heating, scattering, and sputtering.

  9. The view from Kiev

    SciTech Connect (OSTI)

    Kiselyov, S.

    1993-11-01

    This article reports the observations of correspondents for the Bulletin (two Russian journalists, one based in Moscow, the other in Kiev) who investigated the status of the Soviet Union's Black Sea Fleet and Ukraine's status as a non-nuclear-weapons state. After two years of wrangling and two earlier failed settlements, Russian President Boris Yeltsin met with Ukrainian President Leonid Kravchuk at Massandra in Crimea. On September 3, the leaders announced that Russia would buy out Ukraine's interest in the fleet and lease the port at Sevastopol. The Massandra summit was also supposed to settle Ukraine's status as a non-nuclear-weapons state. Described here are the Kiev-based correspondent's views on the Massandra summit (and its major topics), which was to have been called off by the Russian foreign ministry when Ukrainian Prime Minister Leonid Kuchma resigned.

  10. Mountain View Grand | Open Energy Information

    Open Energy Info (EERE)

    Mountain View Grand Jump to: navigation, search Name Mountain View Grand Facility Mountain View Grand Sector Wind energy Facility Type Small Scale Wind Facility Status In Service...

  11. High current ion source

    DOE Patents [OSTI]

    Brown, Ian G.; MacGill, Robert A.; Galvin, James E.

    1990-01-01

    An ion source utilizing a cathode and anode for producing an electric arc therebetween. The arc is sufficient to vaporize a portion of the cathode to form a plasma. The plasma leaves the generation region and expands through another regon. The density profile of the plasma may be flattened using a magnetic field formed within a vacuum chamber. Ions are extracted from the plasma to produce a high current broad on beam.

  12. Microfabricated diffusion source

    DOE Patents [OSTI]

    Oborny, Michael C.; Frye-Mason, Gregory C.; Manginell, Ronald P.

    2008-07-15

    A microfabricated diffusion source to provide for a controlled diffusion rate of a vapor comprises a porous reservoir formed in a substrate that can be filled with a liquid, a headspace cavity for evaporation of the vapor therein, a diffusion channel to provide a controlled diffusion of the vapor, and an outlet to release the vapor into a gas stream. The microfabricated diffusion source can provide a calibration standard for a microanalytical system. The microanalytical system with an integral diffusion source can be fabricated with microelectromechanical systems technologies.

  13. CALUTRON ION SOURCE

    DOE Patents [OSTI]

    Lofgren, E.J.

    1959-02-17

    An improvement is described in ion source mechanisms whereby the source structure is better adapted to withstanid the ravages of heat, erosion, and deterioration concomitant with operation of an ion source of the calutron type. A pair of molybdenum plates define the exit opening of the arc chamber and are in thermal contact with the walls of the chamber. These plates are maintained at a reduced temperature by a pair of copper blocks in thermal conducting contact therewith to form subsequent diverging margins for the exit opening.

  14. Page 8, Benefit Forms

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Form - 853 Kb - Allows an employee to enroll or waive health insurance coverage. SF-2817 - Life Insurance Election Form (Federal Employee Group Life Insurance) - 120 Kb - ...

  15. Form OE-417

    U.S. Energy Information Administration (EIA) Indexed Site

    Electricity Delivery and Energy Reliability Form OE-417 ELECTRIC EMERGENCY INCIDENT AND DISTURBANCE REPORT Form Approved OMB No. 1901-0288 Approval Expires 03312018 Burden Per...

  16. Method of forming a chemical composition

    DOE Patents [OSTI]

    Bingham, Dennis N.; Wilding, Bruce M.; Klingler, Kerry M.; Zollinger, William T.; Wendt, Kraig M.

    2007-10-09

    A method of forming a chemical composition such as a chemical hydride is described and which includes the steps of selecting a composition having chemical bonds and which is capable of forming a chemical hydride; providing a source of hydrogen; and exposing the selected composition to an amount of ionizing radiation to encourage the changing of the chemical bonds of the selected composition, and chemically reacting the selected composition with the source of hydrogen to facilitate the formation of a chemical hydride.

  17. Fermilab | Tritium at Fermilab | Ferry Creek Aerial View

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ferry Creek Aerial View Ferry Creek Aerial View

  18. Fermilab | Tritium at Fermilab | Kress Creek Aerial View

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Kress Creek Aerial View Kress Creek Aerial View

  19. Light Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a Light Source Data and Analysis Framework at NERSC Jack Deslippe, Shane Canon, Eli Dart, Abdelilah Essiari, Alexander Hexemer, Dula Parkinson, Simon Patton, Craig Tull + Many More The ALS Data Needs September 21, 2010 - NIST (MD) Light source data volumes are growing many times faster than Moore's law. ● Light source luminosity ● Detector resolution & rep-rates ● Sample automation BES user facilities serve 10,000 scientists and engineers every year. Mostly composed of many small

  20. Ion source

    DOE Patents [OSTI]

    Leung, Ka-Ngo; Ehlers, Kenneth W.

    1984-01-01

    A magnetic filter for an ion source reduces the production of undesired ion species and improves the ion beam quality. High-energy ionizing electrons are confined by the magnetic filter to an ion source region, where the high-energy electrons ionize gas molecules. One embodiment of the magnetic filter uses permanent magnets oriented to establish a magnetic field transverse to the direction of travel of ions from the ion source region to the ion extraction region. In another embodiment, low energy 16 eV electrons are injected into the ion source to dissociate gas molecules and undesired ion species into desired ion species.

  1. Form:SampleForm | Open Energy Information

    Open Energy Info (EERE)

    SampleForm Jump to: navigation, search Input the name of a Test Page below. If the resource already exists, you will be able to edit its information. AddEdit a Test Page The text...

  2. Highland View school | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Highland View school Highland View school Aerial showing Highland View school and surrounding homes

  3. EIA Electric Power Forms

    U.S. Energy Information Administration (EIA) Indexed Site

    Electric Power Forms EIA Electric Power Forms Listing of Publicly Available and Confidential Data EIA's statistical surveys encompass each significant electric supply and demand activity in the United States. Most of the electric power survey forms resulting data elements are published, but respondent confidentiality is required. The chart below shows the data elements for each survey form and how each data element is treated in regard to confidentiality. Data Categories Data collection forms

  4. Radiation View Factor With Shadowing

    Energy Science and Technology Software Center (OSTI)

    1992-02-24

    FACET calculates the radiation geometric view factor (alternatively called shape factor, angle factor, or configuration factor) between surfaces for axisymmetric, two-dimensional planar and three-dimensional geometries with interposed third surface obstructions. FACET was developed to calculate view factors as input data to finite element heat transfer analysis codes.

  5. Heat Source Lire,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Total Consumption Electric Power Other Sectors Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2010 2011 2012 2013 2014 2015 View History U.S. 1,023 1,022 1,024 1,027 1,030 1,037 2003-2015 Alabama 1,018 1,018 1,016 1,017 1,025 1,030 2007-2015 Alaska 1,005 1,013 1,012 1,002 1,002 1,001 2007-2015 Arizona 1,016 1,015 1,021 1,025 1,029 1,039 2007-2015 Arkansas 1,012 1,017 1,015

  6. 2015 Electricity Form Proposals

    Gasoline and Diesel Fuel Update (EIA)

    (Photovoltaic) Survey Forms November 19, 2015 In early 2016 the U.S. Energy Information ... Details will be provided closer to that date. Proposed changes as of December 2015 Forms ...

  7. DVU Training News Form

    Broader source: Energy.gov (indexed) [DOE]

    Training News Form Please complete this form in its entirety and email to ... For Web Team Only NODE DOE F 360.9 (092014) Guidance for Posting to "Training News" ...

  8. FOIA Request Form

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DOEID Home > FOIA > FOIA Request Form U.S. Department of Energy Idaho (DOE-ID) Operations Office Electronic FOIA Request Form* To make an Electronic FOIA (E-FOIA) request, please...

  9. Standard Form 120

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 OF STANDARD FORM 120 REV. APRIL 1957 GEN. SERV. ADMIN. FPMR (41 CFR) 101-43.311 ... NUMBER FAIR % ITEM DESCRIPTION PER UNIT TOTAL NO. (a) (b) (f) (g) STANDARD FORM 120 REV. ...

  10. Form OE-417

    U.S. Energy Information Administration (EIA) Indexed Site

    | U.S. Department of Energy Electricity Delivery and Energy Reliability Form OE-417|ELECTRIC EMERGENCY INCIDENT AND DISTURBANCE REPORT|Form Approved OMB No. 1901-0288 Approval...

  11. Source: Energy Information Administration, Form EIA-782A,

    U.S. Energy Information Administration (EIA) Indexed Site

    20 40 60 80 100 120 J F M A M J J A S O N D 1999 Cents per Gallon Excluding Taxes Motor Gasoline No. 2 Distillate Residual Fuel Oil Figure 2. U.S. Refiner Retail Petroleum Product...

  12. Source: Energy Information Administration, Form EIA-782A, "Refiners...

    U.S. Energy Information Administration (EIA) Indexed Site

    2. U.S. Refiner Retail Petroleum Product Prices Figure J F M A M J J A S O N D 0 20 40 60 80 100 120 1995 Cents per Gallon Excluding Taxes Kero-jet Propane No. 1 Distillate No. 4...

  13. Source: Energy Information Administration, Form EIA-782A, "Refiners...

    U.S. Energy Information Administration (EIA) Indexed Site

    4. U.S. Refiner Wholesale Petroleum Product Prices Figure J F M A M J J A S O N D 0 20 40 60 80 100 120 1997 Cents per Gallon Excluding Taxes Kero-jet Propane No. 1 Distillate No....

  14. Source: Energy Information Administration, Form EIA-782A,

    U.S. Energy Information Administration (EIA) Indexed Site

    10 20 30 40 50 60 70 J F M A M J J A S O N D 1999 Million Gallons per Day Motor Gasoline No. 2 Distillate Residual Fuel Oil Figure 3. U.S. Refiner Retail Petroleum Product Volumes...

  15. Source: Energy Information Administration, Form EIA-782A, "Refiners...

    U.S. Energy Information Administration (EIA) Indexed Site

    4. U.S. Refiner Wholesale Petroleum Product Prices Figure J F M A M J J A S O N D 0 20 40 60 80 100 120 1995 Cents per Gallon Excluding Taxes Kero-jet Propane No. 1 Distillate No....

  16. Source: Energy Information Administration, Form EIA-782A, "Refiners...

    U.S. Energy Information Administration (EIA) Indexed Site

    2. U.S. Refiner Retail Petroleum Product Prices Figure J F M A M J J A S O N D 0 20 40 60 80 100 120 1996 Cents per Gallon Excluding Taxes Kero-jet Propane No. 1 Distillate No. 4...

  17. Source: Energy Information Administration, Form EIA-782A, "Refiners...

    U.S. Energy Information Administration (EIA) Indexed Site

    Prices J F M A M J J A S O N D 0 10 20 30 40 50 60 70 1995 Cents per Gallon Excluding Taxes Retail < or 1% Wholesale < or 1% Retail > 1% Wholesale > 1% 7. U.S. Refiner Residual...

  18. Source: Energy Information Administration, Form EIA-782A, "Refiners...

    U.S. Energy Information Administration (EIA) Indexed Site

    4. U.S. Refiner Wholesale Petroleum Product Prices Figure J F M A M J J A S O N D 0 20 40 60 80 100 120 1996 Cents per Gallon Excluding Taxes Kero-jet Propane No. 1 Distillate No....

  19. Source: Energy Information Administration, Form EIA-782A, "Refiners...

    U.S. Energy Information Administration (EIA) Indexed Site

    2. U.S. Refiner Retail Petroleum Product Prices Figure J F M A M J J A S O N D 0 20 40 60 80 100 120 1997 Cents per Gallon Excluding Taxes Kero-jet Propane No. 1 Distillate No. 4...

  20. Source: Energy Information Administration, Form EIA-782A, "Refiners...

    U.S. Energy Information Administration (EIA) Indexed Site

    Motor Gasoline No. 2 Distillate Residual Fuel Oil 5. U.S. Refiner Wholesale Petroleum Product Volumes Figure Percentages of Refiner Wholesale Volumes 1995 Annual Averages Motor...

  1. Source: Energy Information Administration, Form EIA-782A, "Refiners...

    U.S. Energy Information Administration (EIA) Indexed Site

    Day Motor Gasoline No. 2 Distillate Residual Fuel Oil 3. U.S. Refiner Retail Petroleum Product Volumes Figure Percentages of Refiner Retail Volumes 1997 Annual Averages Motor...

  2. Source: Energy Information Administration, Form EIA-782A, "Refiners...

    U.S. Energy Information Administration (EIA) Indexed Site

    Motor Gasoline No. 2 Distillate Residual Fuel Oil 5. U.S. Refiner Wholesale Petroleum Product Volumes Figure Percentages of Refiner Wholesale Volumes 1997 Annual Averages Motor...

  3. Source: Energy Information Administration, Form EIA-782A, "Refiners...

    U.S. Energy Information Administration (EIA) Indexed Site

    Day Motor Gasoline No. 2 Distillate Residual Fuel Oil 3. U.S. Refiner Retail Petroleum Product Volumes Figure Percentages of Refiner Retail Volumes 1995 Annual Averages Motor...

  4. Source: Energy Information Administration, Form EIA-782A, "Refiners...

    U.S. Energy Information Administration (EIA) Indexed Site

    Day Motor Gasoline No. 2 Distillate Residual Fuel Oil 3. U.S. Refiner Retail Petroleum Product Volumes Figure Percentages of Refiner Retail Volumes 1996 Annual Averages Motor...

  5. Source: Energy Information Administration, Form EIA-782A, "Refiners...

    U.S. Energy Information Administration (EIA) Indexed Site

    Motor Gasoline No. 2 Distillate Residual Fuel Oil 5. U.S. Refiner Wholesale Petroleum Product Volumes Figure Percentages of Refiner Wholesale Volumes 1996 Annual Averages Motor...

  6. Sources, Composition, and Properties of Newly Formed and Regional...

    Office of Scientific and Technical Information (OSTI)

    Close Cite: Bibtex Format Close 0 pages in this document matching the terms "" Search For Terms: Enter terms in the toolbar above to search the full text of this document for ...

  7. Forming of metal components for radioisotope heat sources

    SciTech Connect (OSTI)

    Johnson, E.W.

    1984-01-01

    Flight-quality iridium components can be fabricated from iridium alloys by modifying standard production processes. A large quantity of metrological and NDE data support the quality of these devices, which, in turn, justify their use in containing plutonium fuel for space system applications.

  8. Nanoeletromechanical switch and logic circuits formed therefrom

    SciTech Connect (OSTI)

    Nordquist, Christopher D.; Czaplewski, David A.

    2010-05-18

    A nanoelectromechanical (NEM) switch is formed on a substrate with a source electrode containing a suspended electrically-conductive beam which is anchored to the substrate at each end. This beam, which can be formed of ruthenium, bows laterally in response to a voltage applied between a pair of gate electrodes and the source electrode to form an electrical connection between the source electrode and a drain electrode located near a midpoint of the beam. Another pair of gate electrodes and another drain electrode can be located on an opposite side of the beam to allow for switching in an opposite direction. The NEM switch can be used to form digital logic circuits including NAND gates, NOR gates, programmable logic gates, and SRAM and DRAM memory cells which can be used in place of conventional CMOS circuits, or in combination therewith.

  9. OCPR Forms | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    OCPR Forms OCPR Forms Technology Transfer Reporting Form Agreement to Mediate Form Instructions: Fill out the form and e-mail the completed document to Office of Conflict ...

  10. ORSSAB Membership Application Form

    Broader source: Energy.gov [DOE]

    Resident interested in joining the Oak Ridge Site Specific Advisory Board should complete and submit the included form.

  11. NEUTRON SOURCES

    DOE Patents [OSTI]

    Richmond, J.L.; Wells, C.E.

    1963-01-15

    A neutron source is obtained without employing any separate beryllia receptacle, as was formerly required. The new method is safer and faster, and affords a source with both improved yield and symmetry of neutron emission. A Be container is used to hold and react with Pu. This container has a thin isolating layer that does not obstruct the desired Pu--Be reaction and obviates procedures previously employed to disassemble and remove a beryllia receptacle. (AEC)

  12. Paperwork Reductin Act Form

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PAPERWORK REDUCTION ACT COLLECTION DISCONTINUATION FORM Agency/Subagency OMB Control Number __ __ __ __ - __ __ __ __ Title of Collection: Current Expiration Date Month/Year Requested Expiration Date to Discontinue Collection Month/Year Reason for Discontinuation: Signature of Senior Official or Designee: Date: For OIRA Use ________________________ ________________________ OMB FORM 83-D, 10/04 Reset Form

  13. MailedForm.pptx

    National Nuclear Security Administration (NNSA)

    Businesses using high-activity radioactive sources (Cesium-137, Cobalt-60, Americium-241, ... to: Kristina Hatcher, U.S. Department of Energy, 1000 Independence Ave., S.W., ...

  14. FORM EIA-846(F)

    U.S. Energy Information Administration (EIA) Indexed Site

    packing materials, etc.) Pulping or black liquor Waste oils and tars Biomass Hydrogen Other combustible energy sources: (List separately), K? Census use only sv(2) 216...

  15. Methods of forming steel

    DOE Patents [OSTI]

    Branagan, Daniel J.; Burch, Joseph V.

    2001-01-01

    In one aspect, the invention encompasses a method of forming a steel. A metallic glass is formed and at least a portion of the glass is converted to a crystalline steel material having a nanocrystalline scale grain size. In another aspect, the invention encompasses another method of forming a steel. A molten alloy is formed and cooled the alloy at a rate which forms a metallic glass. The metallic glass is devitrified to convert the glass to a crystalline steel material having a nanocrystalline scale grain size. In yet another aspect, the invention encompasses another method of forming a steel. A first metallic glass steel substrate is provided, and a molten alloy is formed over the first metallic glass steel substrate to heat and devitrify at least some of the underlying metallic glass of the substrate.

  16. Plasma Sources Sci. Technol.

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sources Sci. Technol. 6 (1997) 492-498. Printed in the UK PII: S0963-0252(97)87196-4 Impurities, temperature and density in a miniature electrostatic plasma and current source D J Den Hartog†, D J Craig†, G Fiksel‡ and J S Sarff‡ † Department of Physics, University of Wisconsin-Madison, 1150 University Avenue, Madison, WI 53706, USA ‡ Sterling Scientific, Inc., 1415 Rutledge Street, Madison, WI 53703, USA Received 23 October 1996, in final form 25 July 1997 Abstract. We have

  17. Page 10, Security Forms and Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    10 of 11 Previous Page Security Forms and Information Building Access and DOE Badges Employees entering DOE facilities must have either a DOE photo identification Security Badge or a DOE Temporary Badge. Either badge must be displayed above the waist in plain view at all times while in DOE facilities. Employees must present said badges to Protective Force personnel for inspection prior to entry into the facilities. You should have been provided instruction by email regarding training that must

  18. Vermont Source Testing Review | Open Energy Information

    Open Energy Info (EERE)

    ReviewLegal Abstract This form initiates the review and approval process for required studies and testing to be conducted on source(s) to serve Proposed or Existing Public...

  19. Unsplit bipolar pulse forming line

    DOE Patents [OSTI]

    Rhodes, Mark A.

    2011-05-24

    A bipolar pulse forming transmission line module and system for linear induction accelerators having first, second, third, and fourth planar conductors which form a sequentially arranged interleaved stack having opposing first and second ends, with dielectric layers between the conductors. The first and second planar conductors are connected to each other at the first end, and the first and fourth planar conductors are connected to each other at the second end via a shorting plate. The third planar conductor is electrically connectable to a high voltage source, and an internal switch functions to short at the first end a high voltage from the third planar conductor to the fourth planar conductor to produce a bipolar pulse at the acceleration axis with a zero net time integral. Improved access to the switch is enabled by an aperture through the shorting plate and the proximity of the aperture to the switch.

  20. Neutron source

    DOE Patents [OSTI]

    Cason, J.L. Jr.; Shaw, C.B.

    1975-10-21

    A neutron source which is particularly useful for neutron radiography consists of a vessel containing a moderating media of relatively low moderating ratio, a flux trap including a moderating media of relatively high moderating ratio at the center of the vessel, a shell of depleted uranium dioxide surrounding the moderating media of relatively high moderating ratio, a plurality of guide tubes each containing a movable source of neutrons surrounding the flux trap, a neutron shield surrounding one part of each guide tube, and at least one collimator extending from the flux trap to the exterior of the neutron source. The shell of depleted uranium dioxide has a window provided with depleted uranium dioxide shutters for each collimator. Reflectors are provided above and below the flux trap and on the guide tubes away from the flux trap.

  1. NEUTRON SOURCE

    DOE Patents [OSTI]

    Reardon, W.A.; Lennox, D.H.; Nobles, R.G.

    1959-01-13

    A neutron source of the antimony--beryllium type is presented. The source is comprised of a solid mass of beryllium having a cylindrical recess extending therein and a cylinder containing antimony-124 slidably disposed within the cylindrical recess. The antimony cylinder is encased in aluminum. A berylliunn plug is removably inserted in the open end of the cylindrical recess to completely enclose the antimony cylinder in bsryllium. The plug and antimony cylinder are each provided with a stud on their upper ends to facilitate handling remotely.

  2. Compact ion accelerator source

    DOE Patents [OSTI]

    Schenkel, Thomas; Persaud, Arun; Kapadia, Rehan; Javey, Ali

    2014-04-29

    An ion source includes a conductive substrate, the substrate including a plurality of conductive nanostructures with free-standing tips formed on the substrate. A conductive catalytic coating is formed on the nanostructures and substrate for dissociation of a molecular species into an atomic species, the molecular species being brought in contact with the catalytic coating. A target electrode placed apart from the substrate, the target electrode being biased relative to the substrate with a first bias voltage to ionize the atomic species in proximity to the free-standing tips and attract the ionized atomic species from the substrate in the direction of the target electrode.

  3. SGP Shipment Notification Form

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PlainsShipment Notification Form SGP Related Links Virtual Tour Facilities and Instruments Central Facility Boundary Facility Extended Facility Intermediate Facility Radiometric...

  4. Form W-4 (2015

    Office of Environmental Management (EM)

    ... Generally, tax returns and return information are confidential, as required by Code section 6103. The average time and expenses required to complete and file this form will vary ...

  5. Procurement Forms | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    RFPs relating to construction projects require additional documentation and are located in the "Construction Specific Forms" tab. Representations and Certifications Representations ...

  6. OFFSITE USE FORM

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    OFFSITE USE FORM Fill form out in triplicate, send original to Property Control, m/s 85A, give a copy to the Gate Guard and keep a copy for your files. This form needs to be updated once a year. Stanford Linear Accelerator Center Authorization Record Form: Stanford University Removal of Government Property from SLAC PO Box 4349 premises for Official Use Elsewhere (*) Date: To: Property Control, m/s 85A From: Name E Mail Address Group and Mail Stop SLAC Extension This is to notify you that I have

  7. User Financial Account Form

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    22013 User Financial Account Form Establish a user financial account at SLAC to procure gases, chemicals, supplies or services to support your experiment at SLAC's user ...

  8. User Financial Account Form

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    102115 User Financial Account Form Establish a user financial account at SLAC to procure gases, chemicals, supplies or services to support your experiment at SLAC's user ...

  9. 2013 Electricity Form Proposals

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Form EIA-861, "Annual Electric Power Industry Report" The EIA-861 survey has historically collected retail sales, revenue, and a variety of information related to demand response ...

  10. " Row: NAICS Codes; Column: Energy Sources...

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Sources","Row" "Code(a)","Subsector and ... 324,"Petroleum and Coal ... Division, Form EIA-810, 'Monthly Refinery Report' for 2002.

  11. Technology Transfer Reporting Form

    Broader source: Energy.gov (indexed) [DOE]

    ... Laboratory or Facility: AMES ANL BNL LBNL INL KCP LANL NREL LLNL NBL NETL PNNL NNSS ORNL PXSO SRNL PPPL SLAC SNL Other ... TJ Y-12 FERMI Source of ...

  12. Method of forming nanodielectrics

    DOE Patents [OSTI]

    Tuncer, Enis [Knoxville, TN; Polyzos, Georgios [Oak Ridge, TN

    2014-01-07

    A method of making a nanoparticle filled dielectric material. The method includes mixing nanoparticle precursors with a polymer material and reacting the nanoparticle mixed with the polymer material to form nanoparticles dispersed within the polymer material to form a dielectric composite.

  13. Paperwork Reduction Act Forms

    Office of Energy Efficiency and Renewable Energy (EERE)

    You may need to fill out one or several of these forms depending on the nature of your survey or usability project. See the Paperwork Reduction Act Web page for more information about the process. Contact the Web Usability Coordinator if you have questions about which forms to complete.

  14. ION SOURCE

    DOE Patents [OSTI]

    Bell, W.A. Jr.; Love, L.O.; Prater, W.K.

    1958-01-28

    An ion source is presented capable of producing ions of elements which vaporize only at exceedingly high temperatures, i.e.,--1500 degrees to 3000 deg C. The ion source utilizes beams of electrons focused into a first chamber housing the material to be ionized to heat the material and thereby cause it to vaporize. An adjacent second chamber receives the vaporized material through an interconnecting passage, and ionization of the vaporized material occurs in this chamber. The ionization action is produced by an arc discharge sustained between a second clectron emitting filament and the walls of the chamber which are at different potentials. The resultant ionized material egresses from a passageway in the second chamber. Using this device, materials which in the past could not be processed in mass spectometers may be satisfactorily ionized for such applications.

  15. ION SOURCE

    DOE Patents [OSTI]

    Brobeck, W.M.

    1959-04-14

    This patent deals with calutrons and more particularly to an arrangement therein whereby charged bottles in a calutron source unit may be replaced without admitting atmospheric air to the calutron vacuum chamber. As described, an ion unit is disposed within a vacuum tank and has a reservoir open toward a wall of the tank. A spike projects from thc source into the reservoir. When a charge bottle is placed in the reservoir, the spike breaks a frangible seal on the bottle. After the contents of the bottle are expended the bottle may be withdrawn and replaced with another charge bottle by a varuum lock arrangement in conjunction with an arm for manipulating the bottle.

  16. Directory of energy data collection forms: Forms in use as of October 1994

    SciTech Connect (OSTI)

    Not Available

    1994-12-15

    This 18th edition directory provides an overview of DOE`s energy information collection programs for decisionmakers in Government and industry; selected public use forms currently used as basic energy information gathering tools by DOE are covered. For each form, an abstract is included that describes the form`s uses, its respondents, and the data collected. Also shown are frequently requested items: energy sources and functions covered by the form, general categories of respondents, collection frequency, public laws and regulations, reporting requirement, name and phone number of the data collection manager, and the publications resulting from the data collection. Indexes, arranged according to energy source/function, publications, respondent categories, former EIA form number designations, and collection authorities, are provided.

  17. Montana MPDES General Information Form (MDEQ Form 1) | Open Energy...

    Open Energy Info (EERE)

    (MDEQ Form 1) Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: Montana MPDES General Information Form (MDEQ Form 1) Abstract Completion of form allows...

  18. ORPS Facility Registration Form

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ORPS FACILITY REGISTRATION FORM Submit completed form to: U.S. Department of Energy AU User Support EMAIL: ORPSsupport@hq.doe.gov PHONE: 800-473-4375 FAX: 301-903-9823 Note:  Only one facility per form  Type or print all entries 1. TYPE OF CHANGE  Add a Facility (Complete Section 1.A, then go to Section 2)  Change a Facility (Complete Section 1.B, then go to Section)  Delete a Facility (Complete Section 1.C, then go to Section 2) A. Add a New Facility Use this section if you are

  19. Wide field of view telescope

    DOE Patents [OSTI]

    Ackermann, Mark R.; McGraw, John T.; Zimmer, Peter C.

    2008-01-15

    A wide field of view telescope having two concave and two convex reflective surfaces, each with an aspheric surface contour, has a flat focal plane array. Each of the primary, secondary, tertiary, and quaternary reflective surfaces are rotationally symmetric about the optical axis. The combination of the reflective surfaces results in a wide field of view in the range of approximately 3.8.degree. to approximately 6.5.degree.. The length of the telescope along the optical axis is approximately equal to or less than the diameter of the largest of the reflective surfaces.

  20. Image forming apparatus

    DOE Patents [OSTI]

    Satoh, Hisao (Hachioji, JP); Haneda, Satoshi (Hachioji, JP); Ikeda, Tadayoshi (Hachioji, JP); Morita, Shizuo (Hachioji, JP); Fukuchi, Masakazu (Hachioji, JP)

    1996-01-01

    In an image forming apparatus having a detachable process cartridge in which an image carrier on which an electrostatic latent image is formed, and a developing unit which develops the electrostatic latent image so that a toner image can be formed, both integrally formed into one unit. There is provided a developer container including a discharge section which can be inserted into a supply opening of the developing unit, and a container in which a predetermined amount of developer is contained, wherein the developer container is provided to the toner supply opening of the developing unit and the developer is supplied into the developing unit housing when a toner stirring screw of the developing unit is rotated.

  1. Supplier, Vendor Forms

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LANL seeks to do business with qualified companies that offer value and high quality products and services. Contact Small Business Office (505) 667-4419 Email Form No. Name...

  2. STANDARD FORM NO. 64

    Office of Legacy Management (LM)

    qz-5 STANDARD FORM NO. 64 rl . . .' . , G Ojice Memoawl crl LA STATES GOVER pi,+ ip; ; (' , TO : F. M . Belmore, M remtor, Produution Division DATE: Deomnber FROM : R. F. Van Wy ...

  3. User Financial Account Form

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2/20/13 User Financial Account Form Establish a user financial account at SLAC to procure gases, chemicals, supplies or services to support your experiment at SLAC's user facilities and to send samples, dewars, or other equipment between SLAC and your institution. To open or renew your SLAC user financial account, complete and submit this form along with a Purchase Order (PO) from your institution. The PO should be made to SLAC National Accelerator Laboratory for the amount of estimated

  4. Compute Reservation Request Form

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Compute Reservation Request Form Compute Reservation Request Form Users can request a scheduled reservation of machine resources if their jobs have special needs that cannot be accommodated through the regular batch system. A reservation brings some portion of the machine to a specific user or project for an agreed upon duration. Typically this is used for interactive debugging at scale or real time processing linked to some experiment or event. It is not intended to be used to guarantee fast

  5. Annual Electric Utility Data - Form EIA-906 Database

    U.S. Energy Information Administration (EIA) Indexed Site

    Detailed data files > Historic Form EIA-906 Historic Form EIA-906 Detailed Data with previous form data (EIA-759) Historic electric utility data files include information on net generation, fuel consumption, fuel stocks, prime mover and fuel type. Data sources are surveys -- Form EIA-906, "Power Plant Report" and Form EIA-759, "Monthly Power Plant Report." Beginning with 1996, two separate files are available for each year: Monthly (M) data submitted by those respondents

  6. High intensity, pulsed thermal neutron source

    DOE Patents [OSTI]

    Carpenter, J.M.

    1973-12-11

    This invention relates to a high intensity, pulsed thermal neutron source comprising a neutron-producing source which emits pulses of fast neutrons, a moderator block adjacent to the last neutron source, a reflector block which encases the fast neutron source and the moderator block and has a thermal neutron exit port extending therethrough from the moderator block, and a neutron energy- dependent decoupling reflector liner covering the interior surfaces of the thermal neutron exit port and surrounding all surfaces of the moderator block except the surface viewed by the thermal neutron exit port. (Official Gazette)

  7. Realtime Queue Request Form

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Realtime Queue Request Form Realtime Queue Request Form NERSC now supports realtime queues on Cori and Edison. Users can request a small number of on-demand nodes if their jobs have special needs that cannot be accommodated through the regular batch system. The real-time queue enables immediate access to a set of nodes, for jobs that are under the realtime wallclock limit (currently 6 hours). Typically this is used for real time processing linked to some experiment or event. It is not intended

  8. ARM - VAP Suggestion Form

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Suggestion Form Showcase Data ARM Best Estimate Data Products (ARMBE) This is a collection of data products that represents "best estimates" derived from several instruments and/or VAPs. We are interested in your feedback; please contact us. VAP Update Information on new, existing, and future value-added products for July l-September 30, 2015 is now available. Have a VAP idea? Use this form to let us know. Datastream Status Further details on the status of VAPs being processed or

  9. Improved information analysis - views and actions

    SciTech Connect (OSTI)

    Sheely, K.B.; Manatt, D.R.

    1995-07-01

    The IAEA continues to assess, develop, and test recommendations for strengthening the cost effectiveness of safeguards. The IAEA`s investigation has focused on ways to increase Agency access to data, including access to sites and site data, export/import data, environmental data, open-source data, and other expanded data sources. Although the acquisition of this raw data is essential to strengthening safeguards, the effectiveness of the system is going to be judged by what the Agency does with the data once they have acquired it. Therefore, the IAEA must have the capability to organize, analyze and present the data in a timely manner for internal management evaluation and external dissemination. The United States Department of Energy has established a Safeguards Information Management Systems (SIMS) Initiative to provide support and equipment which will improve the IAEA`s capability to utilize this expanded data to analyze State`s nuclear activities. This paper will present views on steps to improve information analysis and discuss the status of actions undertaken by the SIMS initiative.

  10. Newtonian Hydrodynamics with Arbitrary Volumetric Sources

    SciTech Connect (OSTI)

    Lowrie, Robert Byron

    2015-11-12

    In this note, we derive how to handle mass, momentum, and energy sources for Newtonian hydrodynamics. Much of this is classic, although we’re unaware of a reference that treats mass sources, necessary for certain physics and the method of manufactured solutions. In addition, we felt it important to emphasize that the integral form of the governing equations results in a straightforward treatment of the sources. With the integral form, we’ll demonstrate that there’s no ambiguity between the Lagrangian and Eulerian form of the equations, which is less clear with the differential forms.