Powered by Deep Web Technologies
Note: This page contains sample records for the topic "fork poplar creek" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Lower East Fork Poplar Creek  

Broader source: Energy.gov [DOE]

This document explains the cleanup activities and any use limitations for the land surrounding the Lower East Fork Poplar Creek.

2

Upper East Fork Poplar Creek  

Broader source: Energy.gov [DOE]

This document explains the cleanup activities and any use limitations for the land surrounding the Upper East Fork Poplar Creek.

3

Lower East Fork Poplar Creek  

Broader source: Energy.gov (indexed) [DOE]

is safe for limited water-contact recreational uses, such as wading in footwear. Eating fish from the creek is not recommended based upon the level of mercury in the fish. Are...

4

Best management practices plan for the Lower East Fork Poplar Creek Operable Unit, Oak Ridge, Tennessee  

SciTech Connect (OSTI)

This plan was prepared in support of the Phase II Remedial Design Report (DOE/OR/01-1449&D1) and in accordance with requirements under CERCLA to present the plan for best management practices to be followed during the remediation. This document provides the Environmental Restoration Program with information about spill prevention and control, water quality monitoring, good housekeeping practices, sediment and erosion control measures, and inspections and environmental compliance practices to be used during Phase II of the remediation project for the Lower East Fork Poplar Creek Operable Unit.

NONE

1996-04-01T23:59:59.000Z

5

Confirmatory Sampling and Analysis Plan for the Lower East Fork Poplar Creek Operable Unit, Oak Ridge, Tennessee  

SciTech Connect (OSTI)

This document describes the organization, strategy, and procedures to be used to confirm that mercury concentrations in soils in the remediated areas are statistically less than, or equal to, the cleanup standard of 400 ppm. It focuses on confirming the cleanup of the stretch of the Lower East Fork Popular Creed flowing from Lake Reality at the Y-12 Plant, through the City of Oak Ridge, to Poplar Creek on the Oak Ridge Reservation and its associated flood plain.

NONE

1996-12-01T23:59:59.000Z

6

Remedial design work plan for Lower East Fork Poplar Creek Operable Unit, Oak Ridge, Tennessee  

SciTech Connect (OSTI)

The Remedial Design Work Plan (RDWP) for Lower East Fork Poplar Creek (EFPC) Operable Unit (OU) in Oak Ridge, Tennessee. This remedial action fits into the overall Oak Ridge Reservation (ORR) cleanup strategy by addressing contaminated floodplain soil. The objective of this remedial action is to minimize the risk to human health and the environment from contaminated soil in the Lower EFPC floodplain pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and the Federal Facility Agreement (FFA) (1992). In accordance with the FFA, a remedial investigation (RI) (DOE 1994a) and a feasibility study (DOE 1994b) were conducted to assess contamination of the Lower EFPC and propose remediation alternatives. The remedial investigation determined that the principal contaminant is mercury, which originated from releases during Y-12 Plant operations, primarily between 1953 and 1963. The recommended alternative by the feasibility study was to excavate and dispose of floodplain soils contaminated with mercury above the remedial goal option. Following the remedial investigation/feasibility study, and also in accordance with the FFA, a proposed plan was prepared to more fully describe the proposed remedy.

NONE

1995-10-01T23:59:59.000Z

7

Best management practices plan for the Lower East Fork Poplar Creek remedial action project, Oak Ridge, Tennessee  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) has three major operating facilities on the DOE Oak Ridge Reservation (ORR) in Oak Ridge, Tennessee: the Oak Ridge Y-12 Plant, the K-25 Site, and the Oak Ridge National Laboratory (ORNL) managed by Lockheed Martin Environmental Research Corporation. All facilities are managed by Lockheed Martin Energy Systems, Incorporated (Energy Systems) for the DOE. The Y-12 Plant is adjacent to the city of Oak Ridge and is also upstream from Oak Ridge along East Fork Poplar Creek. The portion of the creek downstream from the Y-12 Plant is Lower East Fork Poplar Creek (LEFPC). This project will remove mercury-contaminated soils from the LEFPC floodplain, transport the soils to Industrial Landfill V (ILF-V), and restore any affected areas. This project contains areas that were designated in 1989 as a Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) site. The site includes DOE property and portions of commercial, residential, agricultural, and miscellaneous areas within the city of Oak Ridge.

NONE

1996-08-01T23:59:59.000Z

8

Investigation of increased mercury levels in the fisheries of Lower East Fork Poplar Creek (Lefpc), Oak Ridge Reservation, Tennessee  

SciTech Connect (OSTI)

The DOE Western Environmental Technology Office (WETO) is supporting remediation efforts on the U.S. Department of Energy Oak Ridge Reservation in Oak Ridge, Tennessee by performing this study. MSE Technology Applications, Inc. (MSE) has performed a series of literature reviews and bench-scale testing to further evaluate the mercury problem in the Lower East Fork Poplar Creek (LEFPC) at Oak Ridge. The primary problem is that total mercury (HgT) levels in LEFPC water decrease, while HgT levels in sunfish muscle tissue increase, with distance away from the National Security Complex (NSC), despite extensive source control efforts at the facility and within downstream riparian zones. Furthermore, dissolved methylmercury (d-MeHg) levels increase downstream from the NSC, especially during warm weather and/or high flow events. MSE performed four test series that focused on conversion of aqueous phase elemental mercury (Hg deg. A) to methyl mercury (MeHg) by algal-bacterial bio-films (periphyton) present in the stream-bed of LEFPC. Small (mg/L) quantities of un-sulphured molasses and peptone were added to some of the Hinds Creek samples to stimulate initial bacterial growth. Other Hinds Creek samples either were dosed with glutaraldehyde to preclude microbial growth, or were wrapped in aluminum foil to preclude Hg photochemical redox effects. The bench-scale testing for Phase II was completed August 2006. The final reporting and the planning for Phase III testing are in progress. (authors)

Byrne-Kelly, D.; Cornish, J.; Hart, A. [MSE Technology Applications, Inc., 200 Technology Way, Butte, MT (United States); Southworth, G. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Sims, L. [Bechtel Jacobs Company, Oak Ridge, TN (United States)

2007-07-01T23:59:59.000Z

9

Second report on the Oak Ridge Y-12 Plant Biological Monitoring and Abatement Program for East Fork Poplar Creek  

SciTech Connect (OSTI)

As stipulated in the National Pollutant Discharge Elimination System (NDPES) permit issued to the Oak Ridge Y-12 Plant on May 24, 1986, a Biological Monitoring and Abatement Program (BMAP) was developed for the receiving stream, East Fork Poplar Creek (EFPC). The objectives of BMAP are (1) to demonstrate that the current effluent limitations established for the Y-12 Plant protect the classified uses of EFPC (e.g., the growth and propagation of fish and aquatic life), as designated by the Tennessee Department of Environment and Conservation (TDEC) and (2) to document the ecological effects resulting from implementation of a Water Pollution Control Program that includes construction of several large wastewater treatment facilities. BMAP consists of four major tasks: (1) ambient toxicity testing; (2) bioaccumulation studies; (3) biological indicator studies; and (4) ecological surveys of stream communities, including periphyton (attached algae), benthic (bottom-dwelling) macroinvertebrates, and fish. This document, the second in a series of reports on the results of the Y-12 Plant BMAP, describes studies that were conducted between July 1986 and July 1988, although additional data collected outside this time period are included, as appropriate.

Hinzman, R.L. [ed.; Adams, S.M. [Oak Ridge National Lab., TN (United States); Black, M.C. [Oklahoma State Univ., Stillwater, OK (United States)] [and others

1993-06-01T23:59:59.000Z

10

Investigation of Increased Mercury Levels in the Fisheries of Lower East Fork Poplar Creek (LEFPC), Oak Ridge Reservation, Tennessee  

SciTech Connect (OSTI)

The DOE Western Environmental Technology Office (WETO) is supporting Oak Ridge's remediation efforts by performing this study. MSE Technology Applications, Inc. (MSE) has performed a series of literature reviews and bench-scale testing to further evaluate the mercury problem in the Lower East Fork Poplar Creek (LEFPC) at Oak Ridge. The primary problem is that total mercury (HgT) levels in LEFPC water decrease, while HgT levels in sunfish muscle tissue increase, with distance away from the National Security Complex (NSC), despite extensive source control efforts at the facility. Furthermore, dissolved methylmercury (d-MeHg) levels increase downstream from the NSC, especially during warm weather and/or high flow events. MSE performed four test series that focused on conversion of dissolved and colloidal forms of elemental mercury (Hg deg.A) to methyl mercury (MeHg) by algal-bacterial bio-films (periphyton) present in the stream-bed of LEFPC; MeHg production by these bio-films under anoxic versus oxic conditions was the critical measurement taken. The bench-scale testing for Phase I was completed November 2005. The final reporting and the planning for Phase II testing are in progress. (authors)

Byrne-Kelly, D.; Cornish, J.; Hart, A. [MSE Technology Applications, Inc., (United States); Southworth, G. [Oak Ridge National Laboratory (United States); Simms, L. [Bechtel Jacobs Company (United States)

2006-07-01T23:59:59.000Z

11

Final report for the pilot-scale thermal treatment of Lower East Fork Poplar Creek floodplain soils  

SciTech Connect (OSTI)

IT Corporation (IT) was contracted by Martin Marietta Energy Systems, Inc. (Energy Systems) to perform a pilot-scale demonstration of the effectiveness of thermal desorption as a remedial technology for removing mercury from the Lower East Fork Poplar Creek (LEFPC) floodplain soil. Previous laboratory studies by Energy Systems suggested that this technology could reduce mercury to very low levels. This pilot-scale demonstration study was initiated to verify on an engineering scale the performance of thermal desorption. This report includes the details of the demonstration study, including descriptions of experimental equipment and procedures, test conditions, sampling and analysis, quality assurance (QA), detailed test results, and an engineering assessment of a conceptual full-scale treatment facility. The specific project tasks addressed in this report were performed between October 1993 and June 1994. These tasks include soil receipt, preparation, and characterization; prepilot (bench-scale) desorption tests; front-end materials handling tests; pilot tests; back-end materials handling tests; residuals treatment; and engineering scale-up assessment.

NONE

1994-09-01T23:59:59.000Z

12

First report on the Oak Ridge Y-12 Plant Biological Monitoring and Abatement Program for East Fork Poplar Creek  

SciTech Connect (OSTI)

As stipulated in the National Pollutant Discharge Elimination System (NPDES) permit issued to the Oak Ridge Y-12 Plant on May 24, 1985, a Biological Monitoring and Abatement Program (BMAP) was developed for the receiving stream, East Fork Poplar Creek (EFPC). The objectives of the BMAP are (1) to demonstrate that the current effluent limitations established for the Oak Ridge Y-12 Plant protect the uses of EFPC (e.g., the growth and propagation of fish and aquatic life), as designated by the Tennessee Department of Environment and Conservation (TDEC) [formerly the Tennessee Department of Health and Environment (TDHE)], and (2) to document the ecological effects resulting from implementation of a water pollution control program that includes construction of several large wastewater treatment facilities. The BMAP consists of four major tasks: (1) ambient toxicity testing, (2) bioaccumulation studies, (3) biological indicator studies, and (4) ecological surveys of stream communities, including periphyton (attached algae), benthic macroinvertebrates, and fish. This document, the first in a series of reports on the results of the Y-12 Plant BMAP, describes studies that were conducted from May 1985 through September 1986.

Loar, J.M.; Adams, S.M.; Allison, L.J.; Boston, H.L.; Huston, M.A.; McCarthy, J.F.; Smith, J.G.; Southworth, G.R.; Stewart, A.J. (Oak Ridge National Lab., TN (United States)); Black, M.C. (Oklahoma State Univ., Stillwater, OK (United States)); Gatz, A.J. Jr. (Ohio Wesleyan Univ., Delaware, OH (United States)); Hinzman, R.L. (Oak Ridge Research Inst., TN (United States)); Jimenez, B.D. (Puerto Rico Univ.,

1992-07-01T23:59:59.000Z

13

Second report on the Oak Ridge Y-12 Plant fish kill for Upper East Fork Poplar Creek  

SciTech Connect (OSTI)

This report summarizes the monitoring of fish kills in upper East Fork Poplar Creek (EFPC) from July 1990 to June 1993. Since the opening of Lake Reality (LR) in 1988, total numbers of fish inhabiting upper EFPC have increased. However, species diversity has remained poor. Water quality data have been collected in upper EFPC during the time period covered in this report. Total residual chlorine (TRC) levels have exceeded federal and state water quality criteria over the years. However, with the installation of two dechlorination systems in late 1992, TRC levels have been substantially lowered in most portions of upper EFPC. By June 1993, concentrations of TRC were 0.04 to 0.06 mg/L at the north-south pipes (NSP) and below detection limits at sampling station AS-8 and were 0 to 0.01 mg/L at the inlet and outlet of LR. The daily chronic fish mortality in upper EFPC has been attributed to background stress resulting from the continuous discharge of chlorine into upper EFPC. Mean daily mortality rates for 22 acute fish kills were three fold or more above background and usually exceeded ten fish per day. Total number of dead fish collected per acute kill event ranged from 30 to over 1,000 fish; predominant species killed were central stonerollers (Campostoma anomalum) and striped shiners (Luxilus chrysocephalus). Spills or elevated releases of toxic chemicals, such as acids, organophosphates, aluminum nitrate, ammonia, or chlorine, were identified as possible causative agents; however, a definitive cause-effect relationship was rarely established for any acute kills. Ambient toxicity testing, in situ chemical monitoring, and streamside experiments were used to examine TRC dynamics and ambient toxicity in EFPC.

Etnier, E.L.; Opresko, D.M.; Talmage, S.S. [eds.

1994-08-01T23:59:59.000Z

14

Remedial investigation work plan for the Upper East Fork Poplar Creek characterization area, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee  

SciTech Connect (OSTI)

The Oak Ridge Y-12 Plant, located within the Oak Ridge Reservation (ORR), is owned by the US Department of Energy (DOE) and managed by Lockheed Martin Energy Systems, Inc. The entire ORR was placed on the National Priorities List (NPL) of CERCLA sites in November 1989. Following CERCLA guidelines, sites under investigation require a remedial investigation (RI) to define the nature and extent of contamination, evaluate the risks to public health and the environment, and determine the goals for a feasibility study (FS) of potential remedial actions. The need to complete RIs in a timely manner resulted in the establishment of the Upper East Fork Poplar Creek (UEFPC) Characterization Area (CA) and the Bear Creek CA. The CA approach considers the entire watershed and examines all appropriate media within it. The UEFPC CA, which includes the main Y-12 Plant area, is an operationally and hydrogeologically complex area that contains numerous contaminants and containment sources, as well as ongoing industrial and defense-related activities. The UEFPC CA also is the suspected point of origin for off-site groundwater and surface-water contamination. The UEFPC CA RI also will address a carbon-tetrachloride/chloroform-dominated groundwater plume that extends east of the DOE property line into Union Valley, which appears to be connected with springs in the valley. In addition, surface water in UEFPC to the Lower East Fork Poplar Creek CA boundary will be addressed. Through investigation of the entire watershed as one ``site,`` data gaps and contaminated areas will be identified and prioritized more efficiently than through separate investigations of many discrete units.

NONE

1995-09-01T23:59:59.000Z

15

Calendar year 1996 annual groundwater monitoring report for the Upper East Fork Poplar Creek Hydrogeologic Regime at the U.S. Department of Energy Y-12 Plant, Oak Ridge, Tennessee  

SciTech Connect (OSTI)

This annual monitoring report contains groundwater and surface water monitoring data obtained in the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime) during calendar year (CY) 1996. The East Fork Regime encompasses several confirmed and suspected sources of groundwater contamination within industrialized areas of the US Department of Energy (DOE) Oak Ridge Y-12 Plant in Bear Creek Valley (BCV) southeast of Oak Ridge, Tennessee. Groundwater and surface water monitoring in the East Fork Regime are performed under the auspices of the Y-12 Plant Groundwater Protection Program (GWPP). Included are the groundwater monitoring data obtained in compliance with the Resource Conservation and Recovery Act (RCRA) post-closure permit for the East Fork Regime issued by the Tennessee Department of Environment and Conservation (TDEC) on August 30, 1996. The post-closure permit addresses post-closure monitoring requirements for two closed RCRA-regulated surface impoundments: the S-3 Ponds and New Hope Pond.

NONE

1997-02-01T23:59:59.000Z

16

Confirmatory Sampling and Analysis Plan for the Lower East Fork Poplar Creek operable unit, Oak Ridge, Tennessee  

SciTech Connect (OSTI)

On December 21, 1989, the EPA placed the US Department of Energy`s (DOE`s) Oak Ridge Reservation (ORR) on the National Priorities List (NPL). On January 1, 1992, a Federal Facilities Agreement (FFA) between the DOE Field Office in Oak Ridge (DOE-OR), EPA Region IV, and the Tennessee Department of Environment and Conservation (TDEC) went into effect. This FFA establishes the procedural framework and schedule by which DOE-OR will develop, coordinate, implement and monitor environmental restoration activities on the ORR in accordance with applicable federal and state environmental regulations. The DOE-OR Environmental Restoration Program for the ORR addresses the remediation of areas both within and outside the ORR boundaries. This sampling and analysis plan focuses on confirming the cleanup of the stretch of EFPC flowing from Lake Reality at the Y-12 Plant through the City of Oak Ridge, to Poplar Creek on the ORR and its associated floodplain. Both EFPC and its floodplain have been contaminated by releases from the Y-12 Plant since the mid-1950s. Because the EFPC site-designated as an ORR operable unit (OU) under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) is included on the NPL, its remediation must follow the specific procedures mandated by CERCLA, as amended by the Superfund Amendments and Reauthorization Act in 1986.

NONE

1996-04-01T23:59:59.000Z

17

Evaluation of Calendar Year 1997 Groundwater and Surface Water Quality Data For The Upper East Fork Poplar Creek Hydrogeologic Regime At The U.S. Department of Energy Y-12 Plant, Oak Ridge, Tennessee  

SciTech Connect (OSTI)

1 1.0 INTRODUCTION This report presents an evaluation of the groundwater quality monitoring data reported in: Calendar Year 1997 Annual Groundwatw Monitoring Report for the Upper East Fork Poplar Creek Hydrogeologtc Rep-meat the US. Department of Energy Y-12 Plant, Oak Ridge, Tennessee (AJA Technical Services, Inc. 1998), which is hereafter referenced as the Annual Monitoring Report. Section 2.0 presents background information for the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime) that is relevant to data evaluation, including brief descriptions of the geology, the groundwater flow system, the contaminant source areas, and the extent of groundwater contamination in the regime. Section 3.0 provides an overview of the groundwater sampling and analysis activities petiormed during calendar year (CY) 1997, including monitoring well locations, sampling frequency and methods, and laboratory analyses. Evaluation and interpretation of the monitoring da% described in Section 4.0, is generally focused on an overview of data quality assurance/quality control (QA/QC), long-term concentration trends for selected inorganic, organic, and radiological contaminants, and consistency with applicable site-specific conceptual contaminant transport models described in: Report on the Remedial Investigation of the Upper East Fork Poplar Creek Characterization Area at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee (U.S. Department of Energy 1998), which is referenced hereafter as the Remedial Investigation @I) Report. Findings of the data evaluations are summarized :in Section 5.0 and a list of technical reports and regulatory documents cited for more detailed irdormation (Section 6.0) concludes the report. All of the illustrations (maps and trend graphs) and data summary tables referenced in the text are presented in Appendm A and Appendix B, respectively. Appendix C provides a summary of the analytical results that meet applicable data quality objectives (DQOS) of the Y-12 Plant Groundwater Protection Program.

Jones, S.B.

1998-09-01T23:59:59.000Z

18

Site characterization summary report for dry weather surface water sampling upper East Fork Poplar Creek characterization area Oak Ridge Y-12 Plant, Oak Ridge, Tennessee  

SciTech Connect (OSTI)

This report describes activities associated with conducting dry weather surface water sampling of Upper East Fork Poplar Creek (UEFPC) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. This activity is a portion of the work to be performed at UEFPC Operable Unit (OU) 1 [now known as the UEFPC Characterization Area (CA)], as described in the RCRA Facility Investigation Plan for Group 4 at the Oak- Ridge Y-12 Plant, Oak Ridge, Tennessee and in the Response to Comments and Recommendations on RCRA Facility Investigation Plan for Group 4 at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee, Volume 1, Operable Unit 1. Because these documents contained sensitive information, they were labeled as unclassified controlled nuclear information and as such are not readily available for public review. To address this issue the U.S. Department of Energy (DOE) published an unclassified, nonsensitive version of the initial plan, text and appendixes, of this Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) Plan in early 1994. These documents describe a program for collecting four rounds of wet weather and dry weather surface water samples and one round of sediment samples from UEFPC. They provide the strategy for the overall sample collection program including dry weather sampling, wet weather sampling, and sediment sampling. Figure 1.1 is a schematic flowchart of the overall sampling strategy and other associated activities. A Quality Assurance Project Plan (QAPJP) was prepared to specifically address four rounds of dry weather surface water sampling and one round of sediment sampling. For a variety of reasons, sediment sampling has not been conducted and has been deferred to the UEFPC CA Remedial Investigation (RI), as has wet weather sampling.

NONE

1996-08-01T23:59:59.000Z

19

Recent Approaches to Modeling Transport of Mercury in Surface Water and Groundwater - Case Study in Upper East Fork Poplar Creek, Oak Ridge, TN - 13349  

SciTech Connect (OSTI)

In this case study, groundwater/surface water modeling was used to determine efficacy of stabilization in place with hydrologic isolation for remediation of mercury contaminated areas in the Upper East Fork Poplar Creek (UEFPC) Watershed in Oak Ridge, TN. The modeling simulates the potential for mercury in soil to contaminate groundwater above industrial use risk standards and to contribute to surface water contamination. The modeling approach is unique in that it couples watershed hydrology with the total mercury transport and provides a tool for analysis of changes in mercury load related to daily precipitation, evaporation, and runoff from storms. The model also allows for simulation of colloidal transport of total mercury in surface water. Previous models for the watershed only simulated average yearly conditions and dissolved concentrations that are not sufficient for predicting mercury flux under variable flow conditions that control colloidal transport of mercury in the watershed. The transport of mercury from groundwater to surface water from mercury sources identified from information in the Oak Ridge Environmental Information System was simulated using a watershed scale model calibrated to match observed daily creek flow, total suspended solids and mercury fluxes. Mercury sources at the former Building 81-10 area, where mercury was previously retorted, were modeled using a telescopic refined mesh with boundary conditions extracted from the watershed model. Modeling on a watershed scale indicated that only source excavation for soils/sediment in the vicinity of UEFPC had any effect on mercury flux in surface water. The simulations showed that colloidal transport contributed 85 percent of the total mercury flux leaving the UEFPC watershed under high flow conditions. Simulation of dissolved mercury transport from liquid elemental mercury and adsorbed sources in soil at former Building 81-10 indicated that dissolved concentrations are orders of magnitude below a target industrial groundwater concentration beneath the source and would not influence concentrations in surface water at Station 17. This analysis addressed only shallow concentrations in soil and the shallow groundwater flow path in soil and unconsolidated sediments to UEFPC. Other mercury sources may occur in bedrock and transport though bedrock to UEFPC may contribute to the mercury flux at Station 17. Generally mercury in the source areas adjacent to the stream and in sediment that is eroding can contribute to the flux of mercury in surface water. Because colloidally adsorbed mercury can be transported in surface water, actions that trap colloids and or hydrologically isolate surface water runoff from source areas would reduce the flux of mercury in surface water. Mercury in soil is highly adsorbed and transport in the groundwater system is very limited under porous media conditions. (authors)

Bostick, Kent; Daniel, Anamary [Professional Project Services, Inc., Bethel Valley Road, Oak Ridge, TN, 37922 (United States)] [Professional Project Services, Inc., Bethel Valley Road, Oak Ridge, TN, 37922 (United States); Tachiev, Georgio [Florida International University, Applied Research Center 10555 W. Flagler St., EC 2100 Miami Florida 33174 (United States)] [Florida International University, Applied Research Center 10555 W. Flagler St., EC 2100 Miami Florida 33174 (United States); Malek-Mohammadi, Siamak [Bradley University, 413A Jobst Hall, Preoria, IL 61625 (United States)] [Bradley University, 413A Jobst Hall, Preoria, IL 61625 (United States)

2013-07-01T23:59:59.000Z

20

Remedial Investigation Work Plan for Upper East Fork Poplar Creek Operable Unit 3 at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Environmental Restoration Program  

SciTech Connect (OSTI)

Upper East Fork Popular Creek Operable Unit 3 (UEFPC OU 3) is a source term OU composed of seven sites, and is located in the western portion of the Y-12 Plant. For the most part, the UEFPC OU 3 sites served unrelated purposes and are geographically removed from one another. The seven sites include the following: Building 81-10, the S-2 Site, Salvage Yard oil storage tanks, the Salvage Yard oil/solvent drum storage area, Tank Site 2063-U, the Salvage Yard drum deheader, and the Salvage Yard scrap metal storage area. All of these sites are contaminated with at least one or more hazardous and/or radioactive chemicals. All sites have had some previous investigation under the Y-12 Plant RCRA Program. The work plan contains summaries of geographical, historical, operational, geological, and hydrological information specific to each OU 3 site. The potential for release of contaminants to receptors through various media is addressed, and a sampling and analysis plan is presented to obtain objectives for the remedial investigation. Proposed sampling activities are contingent upon the screening level risk assessment, which includes shallow soil sampling, soil borings, monitoring well installation, groundwater sampling, and surface water sampling. Data from the site characterization activities will be used to meet the above objectives. A Field Sampling Investigation Plan, Health and Safety Plan, and Waste Management Plan are also included in this work plan.

Not Available

1993-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "fork poplar creek" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Lower Watts Bar Reservoir Clinch River/Poplar Creek  

Broader source: Energy.gov [DOE]

This document explains the cleanup activities and any use limitations for the land surrounding the Lower Watts Bar Reservoir Clinch River/Poplar Creek.

22

Remedial investigation/feasibility study of the Clinch River/Poplar Creek operable unit. Volume 5  

SciTech Connect (OSTI)

This volume is in support of the findings of an investigation into contamination of the Clinch River and Poplar Creek near the Oak Ridge Reservation (for more than 50 years, various hazardous and radioactive substances have been released to the environment as a result of operations and waste management activities there). It addresses the quality assurance objectives for measuring the data, presents selected historical data, contains data from several discrete water characterization studies, provides data supporting the sediment characterization, and contains data related to several biota characterization studies.

NONE

1996-03-01T23:59:59.000Z

23

Remedial investigation/feasibility study of the Clinch River/Poplar Creek Operable Unit. Volume 5. Appendixes J, K, L, M, and N-other supporting information  

SciTech Connect (OSTI)

This report presents the findings of an investigation into contamination of the Clinch River and Poplar Creek near the U.S. Department of Energy`s (DOE`s) Oak Ridge Reservation (ORR) in eastern Tennessee. For more than 50 years, various hazardous and radioactive substances have been released to the environment as a result of operations and waste management activities at the ORR. In 1989, the ORR was placed on the National Priorities List (NPL), established and maintained under the federal Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). Under CERCLA, NPL sites must be investigated to determine the nature and extent of contamination at the site, assess the risk to human health and the environment posed by the site, and, if necessary, identify feasible remedial alternatives that could be used to clean the site and reduce risk. To facilitate the overall environmental restoration effort at the ORR, CERCLA activities are being implemented individually as distinct operable units (OUs). This document is Volume 5 of the combined Remedial Investigation and Feasibility Study Report for the Clinch River/Poplar Creek OU.

NONE

1996-06-01T23:59:59.000Z

24

Remedial investigation/feasibility study of the Clinch River/Poplar Creek operable unit. Volume 4. Information related to the feasibility study and ARARs. Appendixes G, H, I  

SciTech Connect (OSTI)

This report presents the findings of an investigation into contamination of the Clinch River and Poplar Creek near the U.S. Department of Energy`s (DOE`s) Oak Ridge Reservation (ORR) in eastern Tennessee. For more than 50 years, various hazardous and radioactive substances have been released to the environment as a result of operations and waste management activities at the ORR. In 1989, the ORR was placed on the National Priorities List (NPL), established and maintained under the federal Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). Under CERCLA, NPL sites must be investigated to determine the nature and extent of contamination at the site, assess the risk to human health and the environment posed by the site, and, if necessary, identify feasible remedial alternatives that could be used to clean the site and reduce risk. To facilitate the overall environmental restoration effort at the ORR, CERCLA activities are being implemented individually as distinct operable units (OUs). This document is the combined Remedial Investigation and Feasibility Study Report for the Clinch River/Poplar Creek OU.

NONE

1996-03-01T23:59:59.000Z

25

E-Print Network 3.0 - area middle fork Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Summary: Middle Fork Coyote Creek (8286 Acres) Santa Clara County 2205300104 Kelly Cabin Canyon (4283 Acres... Berryessa EastForkCoyote Cow Calera Penitencia LasAnimas Arroyo...

26

Remedial investigation/feasibility study of the Clinch River/Poplar Creek Operable Unit. Volume 2. Appendixes A, B, C, and D-Biota and representative concentrations of contaminants  

SciTech Connect (OSTI)

This report presents the findings of an investigation into contamination of the Clinch River and Poplar Creek near the U.S. Department of Energy`s (DOE`s) Oak Ridge Reservation (ORR) in eastern Tennessee. For more than 50 years, various hazardous and radioactive substances have been released to the environment as a result of operations and waste management activities at the ORR. In 1989, the ORR was placed on the National Priorities List (NPL), established and maintained under the federal Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). Under CERCLA, NPL sites must be investigated to determine the nature and extent of contamination at the site, assess the risk to human health and the environment posed by the site, and, if necessary, identify feasible remedial alternatives that could be used to clean the site and reduce risk. To facilitate the overall environmental restoration effort at the ORR, CERCLA activities are being implemented individually as distinct operable units (OUs). This document is Volume 2 of the combined Remedial Investigation and Feasibility Study Report for the Clinch River/Poplar Creek OU.

NONE

1996-06-01T23:59:59.000Z

27

Remedial investigation/feasibility study of the Clinch River/Poplar Creek Operable Unit. Volume 4. Appendixes G, H, and I and information related to the feasibility study and ARARs  

SciTech Connect (OSTI)

This report presents the findings of an investigation into contamination of the Clinch River and Poplar Creek near the U.S. Department of Energy`s (DOE`s) Oak Ridge Reservation (ORR) in eastern Tennessee. For more than 50 years, various hazardous and radioactive substances have been released to the environment as a result of operations and waste management activities at the ORR. In 1989, the ORR was placed on the National Priorities List (NPL), established and maintained under the federal Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). Under CERCLA, NPL sites must be investigated to determine the nature and extent of contamination at the site, assess the risk to human health and the environment posed by the site, and, if necessary, identify feasible remedial alternatives that could be used to clean the site and reduce risk. To facilitate the overall environmental restoration effort at the ORR, CERCLA activities are being implemented individually as distinct operable units (OUs). This document is Volume 4 of the combined Remedial Investigation and Feasibility Study Report for the Clinch River/Poplar Creek OU.

NONE

1996-06-01T23:59:59.000Z

28

Work plan for support to Upper East Fork Poplar Creek east end VOC plumes well installation project at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee  

SciTech Connect (OSTI)

Under the Resource Conservation and Recovery Act of 1976 guidelines and requirements from the Tennessee Department of Environment and Conservation (TDEC), the Y-12 Plant initiated investigation and monitoring of various sites within its boundaries in the mid-1980s. The entire Oak Ridge Reservation (ORR) was placed on the National Priorities List of the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) sites in November 1989. Following CERCLA guidelines, sites within the ORR require a remedial investigation (RI) to define the nature and extent of contamination, evaluate the risks to public health and the environment, and determine the goals for a feasibility study (FS) or an engineering evaluation/cost analysis (EE/CA) of potential remedial actions. Data from monitoring wells at the east end of the Y-12 Plant have identified an area of groundwater contamination dominated by the volatile organic compound (VOC) carbon tetrachloride; other VOCs include chloroform, tetrachloroethene, and trichloroethene.

NONE

1998-03-01T23:59:59.000Z

29

Oak Ridge Site Specific Advisory Board  

Office of Environmental Management (EM)

However stream postings along East Fork Poplar Creek warn against consumption of fish taken from the creek and actual human exposures and health risks are very low....

30

Sampling and analysis plan for volatile organic compounds in storm drain for the Upper East Fork Poplar Creek characterization area remedial investigation at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee  

SciTech Connect (OSTI)

The Oak Ridge Y-12 Plant, located within the Oak Ridge Reservation (ORR), is owned by the US Department of Energy and managed by Lockheed Martin Energy Systems, Inc. The Y-12 Plant is one of three major facilities on the ORR. The ORR contains both hazardous- and mixed-waste sites that are subject to regulations promulgated under the Resource Conservation and Recovery Act of 1976 (RCRA) and the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) as amended by the Superfund Amendments and Reauthorization Act of 1986. Under RCRA guidelines and requirements from the Tennessee Department of Environment and Conservation, the Y-12 Plant initiated investigation and monitoring of various sites within its boundaries in the mid-1980s. The entire ORR was placed on the National Priorities List of CERCLA sites in November 1989. Following CERCLA guidelines, sites under investigation require a remedial investigation (RI) to define the nature and extent of contamination, evaluate the risks to public health and the environment, and determine the goals for a feasibility study (FS) of potential remedial actions.

NONE

1997-03-01T23:59:59.000Z

31

Cleanup Progress Report - 2013 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Work continues to remove flush and fuel salt at MSRE Y-12 National Security Complex Mercury remediation strategy developed for Y-12, East Fork Poplar Creek Mercury Reduction...

32

Tag: STEM | Y-12 National Security Complex  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

STEM Tag: STEM Displaying 1 - 6 of 6... Category: News Kids vs. Mercury: Food fight at the creek Some young scientists visited Oak Ridge and the East Fork Poplar Creek to test...

33

JGI - Why Sequence Poplar Leaf Rust?  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Poplar Leaf Rust? Poplar Leaf Rust? The Populus (poplar tree) genome has been publicly released by the JGI, and the genomes of its symbiotic fungal associates Laccaria bicolor and Glomus intraradices are near completion. As part of the development of a broader community-based Populus genomics resource, and as a means of conducting informative comparative genomics among fungi, JGI will be sequencing Melampsora larici-populina (poplar leaf rust fungus), which causes widespread economic losses in poplar plantations worldwide and is a close relative of other economically important rusts (Uredinales), including Puccinia and other cereal rusts. There is a pressing need to develop a thorough understanding of the Melampsora species that are poplar pathogens so that new control approaches

34

Finding Fingerprints of Selection in Poplar Genomes  

SciTech Connect (OSTI)

Jerry Tuskan of Oak Ridge National Laboratory and the DOE JGI talks about poplar trees as models for selective adaptation to an environment. This video complements a study published ahead online August 24, 2014 in Nature Genetics.

Tuskan, Gerald

2014-10-02T23:59:59.000Z

35

Finding Fingerprints of Selection in Poplar Genomes  

ScienceCinema (OSTI)

Jerry Tuskan of Oak Ridge National Laboratory and the DOE JGI talks about poplar trees as models for selective adaptation to an environment. This video complements a study published ahead online August 24, 2014 in Nature Genetics.

Tuskan, Gerald

2014-10-28T23:59:59.000Z

36

Bear Creek Valley Watershed  

Broader source: Energy.gov [DOE]

This document explains the cleanup activities and any use limitations for the land surrounding the Bear Creek Valley Watershed.

37

EERE SBIR Case Study: Improving Hybrid Poplars as a Renewable...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Improving Hybrid Poplars as a Renewable Source of Ethanol Fuel EERE SBIR Case Study: Improving Hybrid Poplars as a Renewable Source of Ethanol Fuel GreenWood Resources saw...

38

Bull Trout Population and Habitat Surveys in the Middle Fork Willamette and McKenzie Rivers, Annual Report 2002.  

SciTech Connect (OSTI)

Bull trout in the Willamette River Basin were historically distributed throughout major tributaries including the Middle Fork Willamette and McKenzie rivers. Habitat degradation, over-harvest, passage barriers, fish removal by rotenone, and hybridization and competition with non-native brook trout are all likely factors that have led to the decline of bull trout in the Willamette Basin (Ratliff and Howell 1992). The U.S. Fish and Wildlife Service listed the Columbia River bull trout population segment as Threatened under the federal Endangered Species Act in 1998. Four bull trout populations were isolated in the upper Willamette River following the construction of flood control dams on the South Fork McKenzie River, McKenzie River, and Middle Fork Willamette River that created Cougar, Trail Bridge, and Hills Creek reservoirs. Buchanan et al. (1997) described the population in the main stem McKenzie as 'of special concern', the South Fork McKenzie population as 'high risk of extinction', the population above Trail Bridge Reservoir as 'high risk of extinction', and bull trout in the Middle Fork Willamette as 'probably extinct'. Various management efforts such as strict angling regulations and passage improvement projects have been implemented to stabilize and rehabilitate bull trout habitat and populations in the McKenzie River over the past 10 years. Since 1997, bull trout fry from Anderson Creek on the upper McKenzie River have been transferred to the Middle Fork Willamette basin above Hills Creek Reservoir in an attempt to re-establish a reproducing bull trout population. This project was developed in response to concerns over the population status and management of bull trout in the McKenzie and Middle Fork Willamette Rivers by the Oregon Department of Fish and Wildlife during the early 1990s. The project was conducted under measure 9.3G(2) of the Columbia Basin Fish and Wildlife Program to monitor the status, life history, habitat needs, and limiting factors for bull trout within sub basins of the Columbia River. Also, this project provides information to develop native fish recovery plans such as the Oregon Plan for Salmon and Watersheds and the U.S. Fish and Wildlife Bull Trout Recovery Plan.

Seals, Jason; Reis, Kelly

2003-10-01T23:59:59.000Z

39

Horse Creek Hot Spring Pool & Spa Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Horse Creek Hot Spring Pool & Spa Low Temperature Geothermal Facility Horse Creek Hot Spring Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Horse Creek Hot Spring Pool & Spa Low Temperature Geothermal Facility Facility Horse Creek Hot Spring Sector Geothermal energy Type Pool and Spa Location North Fork, Idaho Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

40

Jordan Creek Quadrangle Volcanics Ecoregion  

E-Print Network [OSTI]

Jordan Creek Quadrangle Volcanics Ecoregion 10m30m 0-3 3-6 6-20 20-40 40-65 65-110 >110 No Data Percent Slope Jordan Creek Quadrangle Volcanics Ecoregion Coastal Lowlands Ecoregion Volcanics Ecoregion VINEMAPLE GREENLEAF GLENBROOK KELLY BUTTE PITTSBURGH TOLEDO NORTH JORDAN CREEK SUNSET SPRING WARNICKE CREEK

Note: This page contains sample records for the topic "fork poplar creek" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Brood Year 2004: Johnson Creek Chinook Salmon Supplementation Report, June 2004 through March 2006.  

SciTech Connect (OSTI)

The Nez Perce Tribe, through funding provided by the Bonneville Power Administration, has implemented a small scale chinook salmon supplementation program on Johnson Creek, a tributary in the South Fork of the Salmon River, Idaho. The Johnson Creek Artificial Propagation Enhancement project was established to enhance the number of threatened Snake River spring/summer chinook salmon (Oncorhynchus tshawytscha) returning to Johnson Creek to spawn through artificial propagation. This was the sixth season of adult chinook broodstock collection in Johnson Creek following collections in 1998, 2000, 2001, 2002, and 2003. Weir installation was completed on June 21, 2004 with the first chinook captured on June 22, 2004 and the last fish captured on September 6, 2004. The weir was removed on September 18, 2004. A total of 338 adult chinook, including jacks, were captured during the season. Of these, 211 were of natural origin, 111 were hatchery origin Johnson Creek supplementation fish, and 16 were adipose fin clipped fish from other hatchery operations and therefore strays into Johnson Creek. Over the course of the run, 57 natural origin Johnson Creek adult chinook were retained for broodstock, transported to the South Fork Salmon River adult holding and spawning facility and held until spawned. The remaining natural origin Johnson Creek fish along with all the Johnson Creek supplementation fish were released upstream of the weir to spawn naturally. Twenty-seven Johnson Creek females were artificially spawned with 25 Johnson Creek males. Four females were diagnosed with high bacterial kidney disease levels resulting in their eggs being culled. The 27 females produced 116,598 green eggs, 16,531 green eggs were culled, with an average eye-up rate of 90.6% resulting in 90,647 eyed eggs. Juvenile fish were reared indoors at the McCall Fish Hatchery until November 2005 and then transferred to the outdoor rearing facilities during the Visual Implant Elastomer tagging operation. These fish continued rearing in the outdoor collection basin until release in March 2006. All of these fish were marked with Coded Wire Tags and Visual Implant Elastomer tags. In addition 12,056 of the smolts released were also tagged with Passive Integrated Transponder tags. Hand counts provided by marking crews were used to amend the number of juvenile salmon released from the original egg count. A total of 90,450 smolts were released directly into Johnson Creek on March 13 through 15, 2006.

Gebhards, John S.; Hill, Robert; Daniel, Mitch [Nez Perce Tribe

2009-02-19T23:59:59.000Z

42

Squeezer Creek.indd  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the property to BPA. Squeezer Creek conservation easement protects fi sh habitat in Swan Valley November 2007 Once the easement has been fi nalized, which is expected by March...

43

Investigations of the cause of fishkills in fish-rearing facilities in Raven Fork watershed  

SciTech Connect (OSTI)

An investigation was undertaken to determine the cause of fishkills in trout-rearing facilities located adjacent to Raven Fork Creek within the Cherokee Indian Reservation in North Carolina. Approximately 50,000 rainbow trout were lost at the Blankenship trout farm-a commercial facility-following eight storm events between March 31 and December 2, 1981. In addition, 524 trophy-size trout died in three ponds operated by the Cherokee tribe for stocking reservation streams. It was found fishkills in the trout farm could be prevented by adding lime to water from the creek as it was pumped into the facility; this strengthened the assumption acidity (H/sup +/) was responsible for the fishkills. Mortality of trophy trout was stopped by routing water from nearby springs to the ponds during and following rain events. Because of concern that these fishkills might be caused by acid rain, TVA was requested by the Cherokee tribe to assist in determining the cause. Limited studies were conducted during March through August 1982 to test two hypotheses: (1) concentrations of H/sup +/ and soluble aluminum in Raven Fork following storm events were high enough to kill rainbow trout and (2) atmospheric deposition was a greater source of stream H/sup +/ than acid-producing geologic formations or the forest soils.

Jones, H.C.; Noggle, J.C.; Young, R.C.; Kelly, J.M.; Olem, H.; Ruane, R.J.; Pasch, R.W.; Hyfantis, G.J.; Parkhurst, W.J.

1983-04-01T23:59:59.000Z

44

Zoomable map of poplar proteins | ornl.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

'Zoomable' map of poplar proteins offers new view of bioenergy crop 'Zoomable' map of poplar proteins offers new view of bioenergy crop January 29, 2013 An extensive molecular map of poplar tree proteins from Oak Ridge National Laboratory offers new insight into the plant's biological processes. Knowing how poplar trees alter their proteins to change and adapt to environmental surroundings could help bioenergy researchers develop plants better suited to biofuel production. The study is featured on the cover of January's Molecular and Cellular Proteomics. Researchers seeking to improve production of ethanol from woody crops have a new resource in the form of an extensive molecular map of poplar tree proteins, published by a team from the Department of Energy's Oak Ridge National Laboratory (DOE ORNL). Populus, a fast-growing perennial tree, holds potential as a bioenergy crop

45

Salt Creek Student Homepage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Salt Creek Investigation Salt Creek Investigation</2> "Whales Dying in the Pacific Ocean" "Fish Dying in Lake Michigan" Recent headlines remind us of environmental problems near and far away. Scientists have been wondering if these problems could be due to the warmer temperatures this past spring and summer or could there be other reasons? Lack of rain and near drought conditions have forced many areas to restrict water use. We know from past history that pollution affects our drinking water and marine life. Remember what we read about Lake Erie and from reading A River Ran Wild by Lynne Cherry. There are many factors affecting the environment around us . . . even in Salt Creek which runs through our area. We may not be able to investigate the Pacific Ocean and Lake Michigan

46

Salt Creek Scenario  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Scenario Scenario HELP Index Summary Scenario References Student Pages Two branches of Salt Creek run through the city of Rolling Meadows, Illinois, not far from our school. Five members of our team of eighth grade teachers from different subject areas (science, language arts, bilingual education and special education), decided to develop an interdisciplinary study of Salt Creek as a way of giving our students authentic experiences in environmental studies. The unit begins when students enter school in August, running through the third week of September, and resuming for three weeks in October. Extension activities based on using the data gathered at the creek continue throughout the school year, culminating in a presentation at a city council meeting in the spring.

47

Spanish Fork Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Wind Farm Wind Farm Jump to: navigation, search Name Spanish Fork Wind Farm Facility Spanish Fork Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Edison Mission Group Developer Edison Mission Group Energy Purchaser PacifiCorp Location Utah County near Spanish Fork UT Coordinates 40.072707°, -111.580027° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.072707,"lon":-111.580027,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

48

East Fork Biodiesel LLC | Open Energy Information  

Open Energy Info (EERE)

Fork Biodiesel LLC Fork Biodiesel LLC Jump to: navigation, search Name East Fork Biodiesel, LLC Place Algona, Iowa Sector Renewable Energy Product Biodiesel producer and co-developer, with Renewable Energy Group (REG) of a 227m biodiesel plant in Algona, Iowa. Coordinates 47.278335°, -122.248554° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.278335,"lon":-122.248554,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

49

Bull Trout (Salvelinus Confluentus) Population and Habitat Surveys in the McKenzie and Middle Fork Willamette Basins, 2000 Annual Report.  

SciTech Connect (OSTI)

Prior to 1978, Dolly Varden Salvelinus malma were classified into an anadromous and interior form. Cavender (1978) classified the interior form as a distinct species, Salvelinus confluentus, the bull trout. Bull trout are large char weighing up to 18 kg and growing to over one meter in length (Goetz 1989). They are distinguished by a broad flat head, large downward curving maxillaries that extend beyond the eye, a well developed fleshy knob and a notch in the lower terminus of the snout, and light colored spots normally smaller than the pupil of the eye (Cavender 1978). Bull trout are found throughout northwestern North America from lat. 41{sup o}N to lat. 60{sup o}N. In Oregon, bull trout were once distributed throughout 12 basins in the Klamath and Columbia River systems including the Clackamas, Santiam, McKenzie and Middle Fork Willamette sub-basins west of the Cascades (Buchanan et al. 1997). However, it is believed bull trout have been extirpated from west of the Cascades with the exception of the McKenzie sub-basin. Before 1963, bull trout in the McKenzie sub-basin were a contiguous population from the mouth to Tamolitch Falls. Following the construction of Cougar and Trail Bridge Reservoirs there are three isolated populations: (1) mainstem McKenzie and tributaries from the mouth to Trail Bridge Reservoir. (2) mainstem McKenzie and tributaries above Trail Bridge Reservoir to Tamolitch Falls. (3) South Fork McKenzie and tributaries above Cougar Reservoir. The study area includes the three aforementioned McKenzie populations, and the Middle Fork Willamette and tributaries above Hills Creek Reservoir. We monitored bull trout populations in the McKenzie and Middle Fork Willamette basins using a combination of sampling techniques including: spawning surveys, standard pool counts, juvenile trapping, radio tracking, electronic fish counters, and a modified Hankin and Reeves protocol to estimate juvenile abundance and density. In addition, we continued to reintroduce bull trout fry from Anderson Creek (McKenzie Basin) to the Middle Fork Willamette above Hills Creek Reservoir in an attempt to rehabilitate the bull trout population in the Middle Fork Willamette Basin. By monitoring population trends and determining life history characteristics of bull trout in McKenzie and Middle Fork Willamette basins we can make informed management decisions that will help maintain long term and sustainable bull trout populations in the Upper Willamette Basin.

Taylor, Greg

2000-11-28T23:59:59.000Z

50

South Fork Flathead Watershed Westslope Cutthroat Trout Conservation Program  

Broader source: Energy.gov (indexed) [DOE]

South Fork Flathead Watershed South Fork Flathead Watershed Westslope Cutthroat Trout Conservation Program Draft Environmental Impact Statement Responsible Agency: U.S. Department of Energy (DOE), Bonneville Power Administration (BPA) Cooperating Agencies: U.S. Department of Agriculture, Forest Service (FS) and State of Montana Fish, Wildlife, and Parks (MFWP) Department Title of Proposed Project: South Fork Flathead Watershed Westslope Cutthroat Trout Conservation Program State Involved: Montana Abstract: In cooperation with MFWP, BPA is proposing to implement a conservation program to preserve the genetic purity of the westslope cutthroat trout populations in the South Fork of the Flathead drainage. The South Fork Flathead Watershed Westslope Cutthroat Trout Conservation Program constitutes a

51

Solar Energy for Charging Fork Truck Batteries  

E-Print Network [OSTI]

this price decrease in mind and does an economic study on the feasibility of using photovoltaic cells to charge electric fork lift trucks, at different costs per peak watt. This particular idea could be used as a measure of energy conservation for industrial...

Viljoen, T. A.; Turner, W. C.

1980-01-01T23:59:59.000Z

52

Long-term lime pretreatment of poplar wood  

E-Print Network [OSTI]

Lignocellulosic biomass (e.g., poplar wood) provides a unique and sustainable resource for environmentally safe organic fuels and chemicals. The core of this study is the pretreatment step involved in bioconversion processes. Pretreatment...

Sierra Ramirez, Rocio

2006-04-12T23:59:59.000Z

53

Albeni Falls-Sand Creek  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Albeni-Falls-Sand-Creek- Sign In About | Careers | Contact | Investors | bpa.gov Search Doing Business Expand Doing Business Customer Involvement Expand Customer Involvement...

54

Protect and Restore Mill Creek Watershed : Annual Report CY 2005.  

SciTech Connect (OSTI)

The Nez Perce Tribe Department of Fisheries Resource Management, Watershed Division approaches watershed restoration with a ridge-top to ridge-top approach. The Nez Perce Tribe and the Nez Perce National Forest (NPNF) have formed a partnership in completing watershed restoration activities, and through this partnership, more work is accomplished by sharing funding and resources in our effort. The Nez Perce Tribe began watershed restoration projects within the Mill Creek watershed of the South Fork Clearwater River in 2000. Progress has been made in restoring the watershed through excluding cattle from critical riparian areas through fencing. Starting in FY 2002, continuing into 2004, trees were planted in riparian areas in the meadow of the upper watershed. In addition, a complete inventory of culverts at road-stream crossings was completed. Culverts have been prioritized for replacement to accommodate fish passage throughout the watershed, and one high priority culvert was replaced in 2004. Maintenance to the previously built fence was also completed.

McRoberts, Heidi

2006-03-01T23:59:59.000Z

55

Oxley Creek Common Brisbane, Australia  

E-Print Network [OSTI]

right about 100 m after the bridge over Oxley Creek. The gate is always open. Amenities The main and turn left before the bridge crossing Oxley Creek. If approaching from the west (Sherwood side) turn. Both Rainbow and Scaly-breasted Lorikeets fly over in small screeching flocks. Golden-headed Cisticola

Queensland, University of

56

REVIEW PLAN PINE CREEK LAKE  

E-Print Network [OSTI]

#12;REVIEW PLAN PINE CREEK LAKE McCurtain County, Oklahoma DAM SAFETY MODIFICATION STUDY TULSA LEFT BLANK #12;REVIEW PLAN Pine Creek Lake, Oklahoma Dam Safety Modification Study TABLE OF CONTENTS and Costs 17 13. Public Participation 19 14. Review Plan Approval and Updates 19 15. Review Plan Points

US Army Corps of Engineers

57

E-Print Network 3.0 - asotin creek watershed Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Units Calwater Subbasins ---(Planning Watersheds) 88,763 Acres 18060001 3304120101 Kings Creek (7770 Acres) Summary: ForemanCreek Manson Creek Mill Creek Malosky Creek...

58

E-Print Network 3.0 - asotin creek instream Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Units Calwater Subbasins ---(Planning Watersheds) 88,763 Acres 18060001 3304120101 Kings Creek (7770 Acres) Summary: Creek Malosky Creek Spring Creek Silver Creek San...

59

Johnson Creek Artificial Propagation and Enhancement Project Operations and Maintenance Program; Brood Year 2000: Johnson Creek Chinook Salmon Supplementation, Biennial Report 2000-2002.  

SciTech Connect (OSTI)

The Nez Perce Tribe, through funding provided by the Bonneville Power Administration, has implemented a small scale chinook salmon supplementation program on Johnson Creek, a tributary in the South Fork of the Salmon River, Idaho. The Johnson Creek Artificial Propagation Enhancement project was established to enhance the number of threatened Snake River summer chinook salmon (Oncorhynchus tshawytscha) returning to Johnson Creek through artificial propagation. Adult chinook salmon trapping, broodstock selection, and spawning was first implemented in 1998, did not occur in 1999, and was resumed in 2000. A total of 152 salmon were trapped in Johnson Creek in 2000, of which 73 (25 males, 16 females, and 32 jacks) fish were transported to Idaho Fish and Game=s South Fork Salmon River adult holding and spawning facility for artificial propagation purposes. The remaining 79 (29 males, 16 females, and 24 jacks) fish were released above the weir to spawn naturally. A total of 65,060 green eggs were taken from 16 female salmon and transported to the McCall Fish Hatchery for incubation and rearing. Egg counts indicated an average eye-up rate of 86.0% for 55,971 eyed eggs. Average fecundity for Johnson Creek females was 4,066 eggs per female. Juvenile fish were reared indoors at the McCall Fish Hatchery through November 2001. These fish were transferred to outdoor rearing facilities in December 2001 where they remained until release in March 2002. All of these fish were marked with Coded Wire Tags and Visual Implant Elastomer tags. In addition 9,987 were also PIT tagged. Hand counts provided by marking crews were used to amend the number of juvenile salmon released from the original egg count. A total of 57,392 smolts were released into a temporary acclimation channel in Johnson Creek on March 18, 19, 20, 2002. These fish were held in this facility until a fish screen was removed on March 22, 2002 and the fish were allowed to emigrate.

Daniel, Mitch; Gebhards, John; Hill, Robert

2003-05-01T23:59:59.000Z

60

Introduction to the quartz tuning fork  

Science Journals Connector (OSTI)

We discuss various aspects of the quartztuning fork ranging from its original purpose as a high quality factor resonator for use as a stable frequency reference to more exotic applications in sensing and scanning probe microscopy. We show experimentally how to tune the quality factor by injecting energy in phase with the current at resonance (quality factor increase) or out of phase (quality factor decrease) hence tuning the sensitivity and the response time of the probe to external disturbances. The principle of shear force scanning probe microscopy is demonstrated on a simple profiler constructed with equipment available in a teaching laboratory.

J.-M. Friedt; . Carry

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fork poplar creek" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

CREEL CENSUS AND EXPENDITURE STUDY, NORTH FORK SUN RIVER,  

E-Print Network [OSTI]

CREEL CENSUS AND EXPENDITURE STUDY, NORTH FORK SUN RIVER, MONTANA, 1951 Marine Biological STUDY, NORTH FORK SUN RIVER, MONTANA, 1951 Marine Biological Laboratory JUN16 1954 WOODS HOLE, MASS MAP CREEL CENSUS SUN RIVER MONTANA DRAWN i*^ ^ TRACED- _2£jLt:l SUBMITTED . 1 V N 01 1 VN ei

62

Bull Trout (Salvelinus Confluentus) Population and Habitat Surveys in the McKenzie and Middle Fork Willamette Basins, 2001 Annual Report.  

SciTech Connect (OSTI)

Prior to 1978, bull trout were commonly known as dolly varden (Salvelinus malma) and were classified into an anadromous and interior form. Cavender (1978) described the interior form as a distinct species, classifying it as Salvelinus confluentus, the bull trout. Bull trout are large char weighing up to 18 kg and growing to over one meter in length (Goetz 1994). They are distinguished by a broad flat head, large downward curving maxillaries that extend beyond the eye, a fleshy knob and a notch in the lower terminus of the snout, and light colored spots normally smaller than the pupil of the eye (Cavender 1978). Bull trout are found throughout northwestern North America from latitude 41{sup o}N to 60{sup o}N. In Oregon, bull trout were once distributed throughout 12 basins in the Klamath and Columbia River systems including the Clackamas, Santiam, McKenzie and Middle Fork Willamette subbasins west of the Cascades (Buchanan et al. 1997). However, it is likely that bull trout have been extirpated from west of the Cascades with the exception of the McKenzie sub-basin. McKenzie River bull trout were a contiguous population from the mouth to Tamolitch Falls prior to 1963. Three populations were isolated following the construction of Cougar and Trail Bridge Reservoirs which include the mainstem McKenzie and tributaries from the mouth to Trail Bridge Reservoir, mainstem McKenzie and tributaries above Trail Bridge Reservoir to Tamolitch Falls, and the South Fork McKenzie and tributaries above Cougar Reservoir. On June 10, 1998 the U.S. Fish and Wildlife Service (USFWS) listed the Columbia River bull trout population segment as Threatened under the federal Endangered Species Act and Buchanan et al. (1997) listed the bull trout population in the mainstem McKenzie as ''of special concern'', the South Fork McKenzie population as ''high risk of extinction,'' and the population above Trail Bridge Reservoir as ''high risk of extinction.'' Bull trout in the Middle Fork Willamette were listed as ''probably extinct.'' Our study area includes the three McKenzie populations, and a reintroduced population in the Middle Fork Willamette and tributaries above Hills Creek Reservoir. We monitored bull trout populations in the McKenzie and Middle Fork Willamette basins using a combination of sampling techniques that include spawning surveys, juvenile trapping, electronic fish counters, and night snorkeling. We continued to reintroduce bull trout fry from Anderson Creek (McKenzie Basin) to the Middle Fork Willamette above Hills Creek Reservoir in an attempt to rehabilitate the bull trout population in the Middle Fork Willamette Basin. By monitoring population trends and determining life history characteristics of bull trout in McKenzie and Middle Fork Willamette basins, we can make informed management decisions that will help maintain long term and sustainable bull trout populations in the upper Willamette Basin.

Taylor, Greg

2003-02-01T23:59:59.000Z

63

The Risk Assessment Information System  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ORR Offsite: Relative Risk Ranking Sites ORR Offsite: Relative Risk Ranking Sites These rankings are based on the EM-40 Release Site Methodology. Select a release site to receive information concering that site. Please note that not all of the listed sites are linked to further information. Animal Burial Site I Animal Burial Site II Animal Burial Site III Atomic City Auto Parts - Contaminated Creek Sediments Atomic City Auto Parts - Contaminated Soils Atomic City Auto Parts - Surface Debris Clinch River/Poplar Creek CSX Railroad David Witherspoon, Inc., 1630 Site David Witherspoon, Inc., 901 Site Low Dose Rate Irradiation Facility (LDRIF) Lower East Fork Poplar Creek - Bruner Site Lower East Fork Poplar Creek - NOAA Site Lower Watts Bar Reservoir Oak Ridge Tool Engineering, Inc. Solway Drums Site Swine Waste Lagoons

64

Restore McComas Meadows; Meadow Creek Watershed, 2005-2006 Annual Report.  

SciTech Connect (OSTI)

The Nez Perce Tribe Department of Fisheries Resource Management, Watershed Division approaches watershed restoration with a ridge-top to ridge-top approach. Watershed restoration projects within the Meadow Creek watershed are coordinated and cost shared with the Nez Perce National Forest. The Nez Perce Tribe began watershed restoration projects within the Meadow Creek watershed of the South Fork Clearwater River in 1996. Progress has been made in restoring the watershed by excluding cattle from critical riparian areas through fencing, planting trees in riparian areas within the meadow and its tributaries, prioritizing culverts for replacement to accommodate fish passage, and decommissioning roads to reduce sediment input. During this contract period work was completed on two culvert replacement projects; Doe Creek and a tributary to Meadow Creek. Additionally construction was also completed for the ditch restoration project within McComas Meadows. Monitoring for project effectiveness and trends in watershed conditions was also completed. Road decommissioning monitoring, as well as stream temperature, sediment, and discharge were completed.

McRoberts, Heidi (Nez Perce Tribe, Department of Fisheries Resource Management, Lapwai, ID)

2006-07-01T23:59:59.000Z

65

Panther Creek | Open Energy Information  

Open Energy Info (EERE)

Creek Creek Jump to: navigation, search Name Panther Creek Facility Panther Creek Sector Wind energy Facility Type Commercial Scale Wind Facility Status Under Construction Owner Affinity Wind/Suzlon Energy Limited Developer Surity Wind Location Pike County IL Coordinates 39.607275°, -90.85556° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.607275,"lon":-90.85556,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

66

Pigeon Creek | Open Energy Information  

Open Energy Info (EERE)

Pigeon Creek Pigeon Creek Jump to: navigation, search Name Pigeon Creek Facility Pigeon Creek Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Adams Electric Cooperative Developer Adams Electric Cooperative Energy Purchaser Adams Electric Cooperative Location Near Payson IL Coordinates 39.83328984°, -91.19227409° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.83328984,"lon":-91.19227409,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

67

Bennett Creek | Open Energy Information  

Open Energy Info (EERE)

Creek Creek Jump to: navigation, search Name Bennett Creek Facility Bennett Creek Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Idaho Windfarms / John Deere Developer Idaho Windfarms Location Elmore County ID Coordinates 43.0466399°, -115.485481° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.0466399,"lon":-115.485481,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

68

Meadow Creek | Open Energy Information  

Open Energy Info (EERE)

Meadow Creek Meadow Creek Jump to: navigation, search Name Meadow Creek Facility Meadow Creek Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Ridgeline Energy Developer Ridgeline Energy Energy Purchaser PacifiCorp (Rocky Mountain Power) Location Idaho Falls ID Coordinates 43.50492362°, -111.8366146° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.50492362,"lon":-111.8366146,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

69

The Lyons Creek boat remains  

E-Print Network [OSTI]

and artifacts dating to the colonial era were discovered during a dredging operation at Lyons Creek, a tributary of the Patuxent River, Calvert County, Maryland. Also recovered from the spoil area were ceramics, wine bottles, and kaolin tobacco pipes, which... Lyons Creek A Shortage of Boats 17 Ferriage 33 Lightering Tobacco Small Craft on the Patuxent River 35 Shallops and Sloops 48 Flats 61 Other Colonial-Era Small Craft 64 III ARTIFACTS AND DATING 68 A Lack of Provenience 68 Cannonballs 69...

Neyland, Robert Stephen

1990-01-01T23:59:59.000Z

70

Wood production potential in poplar plantations in Sweden  

Science Journals Connector (OSTI)

Shortage of oil, large variations in exports from Russia of wood to Europe, plenty of abandoned agriculture land, new ideas about a more intensive silviculture; these circumstances are driving forces in Sweden for planting fast-growing poplar and hybrid aspen clones on suitable land. The advantage of such trees is that the wood can be used for both energy (heat, biofuels, electricity), paper and for construction. Poplar clones bred in the USA and Belgium, and older hybrid aspen clones from Sweden, together with new poplar clones collected and selected for Swedish conditions from British Columbia, Canada, were planted during the 1990s in south and central Sweden. The stem diameters and heights of the trees have been measured during the last 10 years and the woody biomass production above ground has been calculated. MAI for all the plantations is 1031m3 or 310ton DM per hectare with the highest annual woody production of 45m3 or 15ton DM per hectare in some years in a very dense plantation in the most southern part of Sweden. All the plantations have been fenced for at least the first ten years. The damage has been caused by stem canker, insects, leaf rust and by moose after removal of the fences. The possibilities for the use of poplar plantations as energy forest and vegetation filters are discussed.

Lars Christersson

2010-01-01T23:59:59.000Z

71

Identification of Pseudomonas aeruginosa via a poplar tree model  

E-Print Network [OSTI]

for their role in biofilm formation, rhizosphere colonization, barley germination, and poplar tree killing assays. Seven previously uncharacterized virulence genes (PA1385, PA2146, PA2462, PA2463, PA2663, PA4150, and PA4295) were identified. The role of PA2663, a...

Attila, Can

2009-05-15T23:59:59.000Z

72

Big Bayou Creek and Little Bayou Creek Watershed Monitoring Program  

SciTech Connect (OSTI)

Biological monitoring of Little Bayou and Big Bayou creeks, which border the Paducah Site, has been conducted since 1987. Biological monitoring was conducted by University of Kentucky from 1987 to 1991 and by staff of the Environmental Sciences Division (ESD) at Oak Ridge National Laboratory (ORNL) from 1991 through March 1999. In March 1998, renewed Kentucky Pollutant Discharge Elimination System (KPDES) permits were issued to the US Department of Energy (DOE) and US Enrichment Corporation. The renewed DOE permit requires that a watershed monitoring program be developed for the Paducah Site within 90 days of the effective date of the renewed permit. This plan outlines the sampling and analysis that will be conducted for the watershed monitoring program. The objectives of the watershed monitoring are to (1) determine whether discharges from the Paducah Site and the Solid Waste Management Units (SWMUs) associated with the Paducah Site are adversely affecting instream fauna, (2) assess the ecological health of Little Bayou and Big Bayou creeks, (3) assess the degree to which abatement actions ecologically benefit Big Bayou Creek and Little Bayou Creek, (4) provide guidance for remediation, (5) provide an evaluation of changes in potential human health concerns, and (6) provide data which could be used to assess the impact of inadvertent spills or fish kill. According to the cleanup will result in these watersheds [Big Bayou and Little Bayou creeks] achieving compliance with the applicable water quality criteria.

Kszos, L.A.; Peterson, M.J.; Ryon; Smith, J.G.

1999-03-01T23:59:59.000Z

73

Roaring Fork Valley - Energy Smart Loan Program (Colorado) | Department of  

Broader source: Energy.gov (indexed) [DOE]

Roaring Fork Valley - Energy Smart Loan Program (Colorado) Roaring Fork Valley - Energy Smart Loan Program (Colorado) Roaring Fork Valley - Energy Smart Loan Program (Colorado) < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Design & Remodeling Windows, Doors, & Skylights Appliances & Electronics Water Heating Program Info Funding Source American Recovery and Reinvestment Act State Colorado Program Type Local Loan Program Rebate Amount $1,000 for small projects and up to $25,000 Provider Roaring Fork Valley - Energy Smart Program Residents of Eagle, Gunnison or Pitkin Counties may be eligible for financing through the Energy Smart Program. Loans as low as $1,000 with flexible terms are available for small projects, and larger projects may

74

Fermilab | Tritium at Fermilab | Ferry Creek Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

(click chart for larger version) shows the levels of tritium in Ferry Creek on the Fermilab site since April 2006. To date, Fermilab has not detected tritium in Ferry Creek. The...

75

EERE SBIR Case Study: Improving Hybrid Poplars as a Renewable Source of Ethanol Fuel  

Office of Energy Efficiency and Renewable Energy (EERE)

GreenWood Resources saw potential in growing poplar treesremarkable for their sheer biomass productivityto make ethanol.

76

Putah Creek Terrestrial Wildlife Monitoring Program  

E-Print Network [OSTI]

;#12;#12;#12;#12;#12;#12;#12;#12;#12;MAP EXHIBITS C1-36 Avian Focal Species Distribution Maps Putah Creek and Yolo-Sutter Bypass Sites, OX=Oxbow, DC=Dry Creek Confluence, WN=Winters Putah Creek Park, YH=Yolo Housing, LB=Center for Land

Todd, Brian

77

Confederated Tribes of the Umatilla Indian Reservation North Fork John Day River Basin Anadromous Fish Enhancement Project, Annual Report for FY 2000.  

SciTech Connect (OSTI)

The CTUIR North Fork John Day River Basin Anadromous Enhancement Project (NFJDAFEP) identified and prioritized stream reaches in The North Fork John day River basin for habitat improvements during the 2000 project period. Public out reach was emphasized during this first year of the project. We presented multiple funding and enhancement options to landowners. We concentrated on natural recovery methods, riparian fencing and off-stream livestock water developments. Under this BPA contract four riparian easements were signed protecting almost 5 miles of tributary streams. There are nine offstream water developments associated with these easements. Some landowners chose to participate in other programs based on Tribal outreach efforts. Two landowners chose NRCS programs for enhancement and one chose OWEB as a funding source. Two landowners implemented there own enhancement measures protecting 3 miles of stream. Cooperation between the NRCS/FSA/SWCDs and the Tribe to create joint projects and develop alternative funding scenarios for riparian enhancement was a major effort. The Tribe also worked with the North Fork John Day Watershed Council, USFS and ODFW to coordinate projects and support similar projects throughout the John Day Basin. We provided input to the John Day Summary prepared for the NWPPC by ODFW. The Tribe worked with the Umatilla National Forest on the Clear Creek Dredgetailings Rehabilitation project and coordinated regularly with USFS Fisheries, Hydrology and Range staff.

Macy, Tom L.; James, Gary A.

2003-03-01T23:59:59.000Z

78

Red Fork sandstone of Oklahoma: depositional history and reservoir distribution  

SciTech Connect (OSTI)

The Middle Pennsylvanian Red Fork sandstone formed as a result of progradation across eastern Kansas and most of Oklahoma. The Red Fork is one of several transgressive-regressive sequences (cyclothems) developed within the Desmoinesian Cherokee Group. Sea level changes, together with varying subsidence, were dominant factors controlling the general stratigraphic (correlative) characteristics of the Red Fork interval. Progradation was episodic, with sand deposition in the more active part of the basin during lower sea level stands and valley-fill deposition in the more stable areas during sea level rises. A map of Red Fork sand trends reveals an alluvial-deltaic complex covering most of Oklahoma. The Red Fork consists primarily of alluvial-valley and plain (fluvial) bodies in the northernmost part of northeastern Oklahoma, alluvial-deltaic bodies in most of the remaining parts of the shelf area, and off-shelf submarine-fan and slope basinal-floor complexes within the deeper part of the Anadarko basin. Determination of reservoir trend and genesis requires integration of rock and log data. Logs need to be calibrated to cores in order to estimate depositional environments accurately and to make a reasonable assessment of diagenetic overprints. Much of the oil and gas has been trapped in stratigraphic traps, and a significant amount of oil is in channel sandstones with trends at high angles to the structural grain. In some areas, secondary clay, in particular chloritic clay, has resulted in microporosity, high water saturation, and correspondingly low resistivities in oil reserves.

Shelton, J.W.; Fritz, R.D.; Johnson, C.

1989-03-01T23:59:59.000Z

79

E-Print Network 3.0 - area forked river Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

near .Iasper; vValnut Fork of the Piney River... of the White River are the War Eagle, Kings, BUffalo, and Little Red rivers, on the south, and the North Fork... of the Arkansas...

80

Alkali attack on a mullite refractory in the Grand Forks Energy Technology Center slagging gasifier  

Science Journals Connector (OSTI)

A mullite refractory lining in the Grand Forks Energy Technology Center slagging gasifier cracked and spoiled after intermittent exposure to...

C. R. Kennedy

1981-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "fork poplar creek" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Roaring Fork Valley - Energy Smart Program (Colorado) | Department of  

Broader source: Energy.gov (indexed) [DOE]

Roaring Fork Valley - Energy Smart Program (Colorado) Roaring Fork Valley - Energy Smart Program (Colorado) Roaring Fork Valley - Energy Smart Program (Colorado) < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Manufacturing Appliances & Electronics Water Heating Windows, Doors, & Skylights Program Info Funding Source The American Reinvestment and Recovery Act of 2009 State Colorado Program Type Local Rebate Program Rebate Amount 50% of the total costs of efficiency opportunities identified by the analyst, up to $500 $50 co-pay for energy assessments through the end of 2012, raising to $100 in 2013. Residents of Eagle, Pitkin and Gunnison Counties can participate in the Energy Smart Program. The Energy Smart Program helps residents identify,

82

Caney Fork Electric Coop, Inc | Open Energy Information  

Open Energy Info (EERE)

Caney Fork Electric Coop, Inc Caney Fork Electric Coop, Inc Jump to: navigation, search Name Caney Fork Electric Coop, Inc Place Tennessee Utility Id 2960 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial GSA 1 (less than 50 kW) Commercial Commercial GSA 2 (51-1000 kW) Commercial Commercial GSA 3 (1001-5000 kW) Commercial Industrial GSA 1 (less than 50 kW) Industrial Industrial GSA 2 (51-1000 kW) Industrial Industrial GSA 3 (1001-5000 kW) Industrial Residential Residential outdoor light (175 MV) Lighting

83

Roaring Fork Valley - Energy Efficient Appliance Program | Department of  

Broader source: Energy.gov (indexed) [DOE]

Efficient Appliance Program Efficient Appliance Program Roaring Fork Valley - Energy Efficient Appliance Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Appliances & Electronics Maximum Rebate Smart Strip: $30 Programmable Thermostats: $50 Program Info State Colorado Program Type Local Rebate Program Rebate Amount Furnaces (AFUE 92% or higher): $300 Boilers (AFUE 92% or higher): $500 Dishwashers: $100 Clothes Washers: $75 Refrigerators: $100 Smart Strip: $15 Programmable thermostats: $15 Provider Community Office for Resource Efficiency (CORE) The Aspen Community Office for Resource Efficiency (CORE) promotes renewable energy, energy efficiency and green building techniques in western Colorado's Roaring Fork Valley. For customers who install energy

84

Metagenome of an Anaerobic Microbial Community Decomposing Poplar Wood Chips  

SciTech Connect (OSTI)

This study describes the composition and metabolic potential of a lignocellulosic biomass degrading community that decays poplar wood chips under anaerobic conditions. We examined the community that developed on poplar biomass in a non-aerated bioreactor over the course of a year, with no microbial inoculation other than the naturally occurring organisms on the woody material. The composition of this community contrasts in important ways with biomass-degrading communities associated with higher organisms, which have evolved over millions of years into a symbiotic relationship. Both mammalian and insect hosts provide partial size reduction, chemical treatments (low or high pH environments), and complex enzymatic 'secretomes' that improve microbial access to cell wall polymers. We hypothesized that in order to efficiently degrade coarse untreated biomass, a spontaneously assembled free-living community must both employ alternative strategies, such as enzymatic lignin depolymerization, for accessing hemicellulose and cellulose and have a much broader metabolic potential than host-associated communities. This would suggest that such a community would make a valuable resource for finding new catalytic functions involved in biomass decomposition and gaining new insight into the poorly understood process of anaerobic lignin depolymerization. Therefore, in addition to determining the major players in this community, our work specifically aimed at identifying functions potentially involved in the depolymerization of cellulose, hemicelluloses, and lignin, and to assign specific roles to the prevalent community members in the collaborative process of biomass decomposition. A bacterium similar to Magnetospirillum was identified among the dominant community members, which could play a key role in the anaerobic breakdown of aromatic compounds. We suggest that these compounds are released from the lignin fraction in poplar hardwood during the decay process, which would point to lignin-modification or depolymerization under anaerobic conditions.

van der Lelie, D.; Taghavi, S.; McCorkle, S. M.; Li, L. L.; Malfatti, S. A.; Monteleone, D.; Donohoe, B. S.; Ding, S. Y.; Adney, W. S.; Himmel, M. E.; Tringe, S. G.

2012-05-01T23:59:59.000Z

85

Microsoft Word - Ninemile_Creek_CX.doc  

Broader source: Energy.gov (indexed) [DOE]

Tribes of the Colville Reservation for purchase of the Ninemile Creek property Fish and Wildlife Project No.: 2008-104-00, BPA-005670 Categorical Exclusion Applied (from...

86

Microsoft Word - CoyoteCreekNE_CX  

Broader source: Energy.gov (indexed) [DOE]

Project Manager - KEWM-4 Proposed Action: Coyote Creek Property Acquisition Funding Fish and Wildlife Project No.: 2011-003-00, Contract BPA-007521 Categorical Exclusion...

87

New Jersey Nuclear Profile - Oyster Creek  

U.S. Energy Information Administration (EIA) Indexed Site

Oyster Creek" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

88

Jordan Creek Flood Risk Management Project Springfield, Missouri  

E-Print Network [OSTI]

Jordan Creek Flood Risk Management Project Springfield, Missouri 29 May 2013 Abstract: The overall flow capacity along Jordan Creek. The area along Jordan Creek is heavily urbanized and includes

US Army Corps of Engineers

89

The Copper Creek Clovis Point from Hells Canyon, Northeastern Oregon  

E-Print Network [OSTI]

No. 1 (2008) | pp. 75-84 The Copper Creek Clovis Point fromside of the Snake River to the Copper Creek point discovery1 (2008) 5 cm Figure 4. The Copper Creek Clovis point (tick

Reid, Kenneth C.; Root, Matthew J.; Hughes, Richard E.

2008-01-01T23:59:59.000Z

90

EIS-0184: South Fork Tolt River Hydroelectric Project  

Broader source: Energy.gov [DOE]

This EIS analyzes the Seattle City Light, a Department of the City of Seattle proposal to construct a hydroelectric project with an installed capacity of 15 MW on the South Fork Tolt River near the town of Carnation located in King County in the State of Washington.

91

HYDROLOGY AND GEOMORPHOLOGY OF A RARE FLOOD, BLACKBURN FORK,  

E-Print Network [OSTI]

-prediction. � Discharge measurements based on boulder size appear to give more reasonable estimates of flood dischargeHYDROLOGY AND GEOMORPHOLOGY OF A RARE FLOOD, BLACKBURN FORK, PUTNAM-JACKSON COUNTIES 18 AUGUST 2010) #12;Source: NOAA 17-18 Aug 2010 #12;#12;FLOOD DAMAGE #12;#12;#12;#12;#12;#12;#12;#12;#12;4 bridges

Hart, Evan

92

DOE - Office of Legacy Management -- Hoe Creek Underground Coal...  

Office of Legacy Management (LM)

Hoe Creek Underground Coal Gasification Site - 045 FUSRAP Considered Sites Site: Hoe Creek Underground Coal Gasification Site (045) Designated Name: Alternate Name: Location:...

93

EA-1967: Hills Creek-Lookout Point Transmission Line Rebuild...  

Energy Savers [EERE]

EA-1967: Hills Creek-Lookout Point Transmission Line Rebuild, Lane County, Oregon EA-1967: Hills Creek-Lookout Point Transmission Line Rebuild, Lane County, Oregon Summary...

94

Cobb Creek Geothermal Facility | Open Energy Information  

Open Energy Info (EERE)

Cobb Creek Geothermal Facility Cobb Creek Geothermal Facility Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Cobb Creek Geothermal Facility General Information Name Cobb Creek Geothermal Facility Facility Cobb Creek Sector Geothermal energy Location Information Location The Geysers, Californi Coordinates 38.804734473609°, -122.78414726257° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.804734473609,"lon":-122.78414726257,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

95

Preliminary Functional-Structural Modeling on Poplar (Salicaceae) Dongxiang Liu1  

E-Print Network [OSTI]

. It is cultivated in plantations not only for paper, wood products and energy, but also for soil erosion control [1 of poplar at growing season [6]. These models are helpful to understand crop production and management

Paris-Sud XI, Université de

96

EERE SBIR Case Study: Improving Hybrid Poplars as a Renewable Source of Ethanol Fuel  

Broader source: Energy.gov (indexed) [DOE]

GreenWood Resources to advance GreenWood Resources to advance scientific understanding of the ways chemical traits are inherited in hybrid poplars and the extent of variations in characteristics such as lignin content and forms of lignin-enabling the best traits to be developed and significantly advancing the potential of hybrid poplars to provide a substantial, renewable source of ethanol fuel. GreenWood Resources (Portland,

97

Ecological Study of the East Fork Ridge Mesic Forest Area  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Appalachian Regional Commission/Oak Ridge National Laboratory Appalachian Regional Commission/Oak Ridge National Laboratory 2005 Math-Science-Technology Institute Oak Ridge, Tennessee Ecological Study of the East Fork Ridge Mesic Forest Area ARC Participants Darin Baugess Ben Mordan Debi Owens Yvonne Shafer Mentors Larry Pounds Harry Quarles Final Presentations Pollard Auditorium July 22, 2005 Ecological Study of the East Fork Ridge Mesic Forest Area Introduction: The Oak Ridge Reservation (ORR) consists of approximately 33,000 to 36,000 acres. This large forested area of land contains numerous unique habitats and communities that are disappearing from other areas in Tennessee and the Southeast US. In 2004 John Devereux Joslin, Jr. investigated one community in the north end of the Oak Ridge Reservation called the East

98

Grand Forks County, North Dakota: Energy Resources | Open Energy  

Open Energy Info (EERE)

Forks County, North Dakota: Energy Resources Forks County, North Dakota: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 48.0037819°, -97.3594525° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":48.0037819,"lon":-97.3594525,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

99

Coal Fork, West Virginia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Coal Fork, West Virginia: Energy Resources Coal Fork, West Virginia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 38.3176°, -81.5209534° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.3176,"lon":-81.5209534,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

100

Grand Forks, North Dakota: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Grand Forks, North Dakota: Energy Resources Grand Forks, North Dakota: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 47.9252568°, -97.0328547° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.9252568,"lon":-97.0328547,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "fork poplar creek" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Spanish Fork City Corporation (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

City Corporation (Utility Company) City Corporation (Utility Company) Jump to: navigation, search Name Spanish Fork City Corporation Place Utah Utility Id 17732 Utility Location Yes Ownership M NERC Location WECC Activity Transmission Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General service Industrial General service 2 Industrial Large Power Industrial Residential Residential yard light Lighting Average Rates Residential: $0.0892/kWh Commercial: $0.0798/kWh Industrial: $0.0602/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Spanish_Fork_City_Corporation_(Utility_Company)&oldid=411594"

102

Ash Fork, Arizona: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Ash Fork, Arizona: Energy Resources Ash Fork, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.2250114°, -112.4840675° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.2250114,"lon":-112.4840675,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

103

Salmon Creek Project Draft Environmental Impact Statement  

Broader source: Energy.gov (indexed) [DOE]

AUGUST 2004 AUGUST 2004 SALMON CREEK PROJECT Draft Environmental Impact Statement DOE/EIS-0346 Lead Agency U.S. Dept of Energy, Bonneville Power Administration Cooperating Agencies U.S. Dept of Interior, Bureau of Reclamation Confederated Tribes of the Colville Reservation Okanogan Irrigation District Salmon Creek Project Draft Environmental Impact Statement (DOE/EIS-0346) Responsible Agency: Bonneville Power Administration (BPA), U.S. Department of Energy (DOE) Cooperating Agencies: U.S. Department of Interior, Bureau of Reclamation, Confederated Tribes of the Colville Reservation, Okanogan Irrigation District. County and State Involved: Okanogan County, Washington Abstract: BPA proposes to fund activities that would restore sufficient water flows to Salmon Creek and

104

Panther Creek, Idaho, Habitat Rehabilitation, Final Report.  

SciTech Connect (OSTI)

The purpose of the project was to achieve full chinook salmon and steelhead trout production in the Panther Creek, Idaho, basin. Plans were developed to eliminate the sources of toxic effluent entering Panther Creek. Operation of a cobalt-copper mine since the 1930's has resulted in acid, metal-bearing drainage entering the watershed from underground workings and tailings piles. The report discusses plans for eliminating and/or treating the effluent to rehabilitate the water quality of Panther Creek and allow the reestablishment of salmon and trout spawning runs. (ACR)

Reiser, Dudley W.

1986-01-01T23:59:59.000Z

105

Reintroduction of Native FishReintroduction of Native Fish Species to Coal CreekSpecies to Coal Creek  

E-Print Network [OSTI]

1 Reintroduction of Native FishReintroduction of Native Fish Species to Coal CreekSpecies to Coal Control and Reclamation ActSurface Mining Control and Reclamation Act of 1977of 1977 Coal Creek Watershed Foundation (2000)Coal Creek Watershed Foundation (2000) BackgroundBackground Fish populations in Coal Creek

Gray, Matthew

106

Steel Creek fish, L-Lake/Steel Creek Biological Monitoring Program, January 1986--December 1991  

SciTech Connect (OSTI)

The Savannah River Site (SRS) encompasses 300 sq mi of the Atlantic Coastal plain in west-central South Carolina. The Savannah River forms the western boundary of the site. Five major tributaries of the Savannah River -- Upper Three Runs Creek, Four Mile Creek, Pen Branch, Steel Creek, and Lower Three Runs Creek -- drain the site. All but Upper Three Runs Creek receive, or in the past received, thermal effluents from nuclear production reactors. In 1985, L Lake, a 400-hectare cooling reservoir, was built on the upper reaches of Steel Creek to receive effluent from the restart of L-Reactor, and protect the lower reaches from thermal impacts. The lake has an average width of approximately 600 m and extends along the Steel Creek valley approximately 7000 m from the dam to the headwaters. Water level is maintained at a normal pool elevation of 58 m above mean sea level by overflow into a vertical intake tower that has multilevel discharge gates. The intake tower is connected to a horizontal conduit that passes through the dam and releases water into Steel Creek. The Steel Creek Biological Monitoring Program was designed to meet environmental regulatory requirements associated with the restart of L-Reactor and complements the Biological Monitoring Program for L Lake. This extensive program was implemented to address portions of Section 316(a) of the Clean Water Act. The Department of Energy (DOE) must demonstrate that the operation of L-Reactor will not significantly alter the established aquatic ecosystems.

Sayers, R.E. Jr.; Mealing, H.G. III [Normandeau Associates, Inc., New Ellenton, SC (United States)

1992-04-01T23:59:59.000Z

107

DOE/EIS-0353; South Fork Flathead Watershed Westslope Cutthroat Trout Conservation Program  

Broader source: Energy.gov (indexed) [DOE]

South Fork Flathead Watershed South Fork Flathead Watershed Westslope Cutthroat Trout Conservation Program Final Environmental Impact Statement Bonneville Power Administration July 2005 South Fork Flathead Watershed Westslope Cutthroat Trout Conservation Program Final Environmental Impact Statement Responsible Agency: U.S. Department of Energy (DOE), Bonneville Power Administration (BPA) Cooperating Agencies: U.S. Department of Agriculture, Forest Service (FS) and State of Montana Fish, Wildlife, and Parks (MFWP) Department Title of Proposed Project: South Fork Flathead Watershed Westslope Cutthroat Trout Conservation Program State Involved: Montana Abstract: In cooperation with MFWP, BPA is proposing to implement a conservation program to preserve the genetic

108

Clark Fork River Delta Restoration Project 1 Finding of No Significant...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Clark Fork River Delta Restoration Project Finding of No Significant Impact Bonneville Power Administration DOEEA-1969 July 2014 SUMMARY Bonneville Power Administration (BPA)...

109

Elbow Creek Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Elbow Creek Wind Farm Elbow Creek Wind Farm Jump to: navigation, search Name Elbow Creek Wind Farm Facility Elbow Creek Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Padoma Developer Padoma Location Howard County TX Coordinates 32.133515°, -101.415676° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.133515,"lon":-101.415676,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

110

Wolverine Creek Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Wolverine Creek Wind Farm Wolverine Creek Wind Farm Jump to: navigation, search Name Wolverine Creek Wind Farm Facility Wolverine Creek Wind Energy Project Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Invenergy Developer Invenergy Energy Purchaser PacifiCorp Location East of ID Falls ID Coordinates 43.422203°, -111.83439° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.422203,"lon":-111.83439,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

111

Elm Creek II | Open Energy Information  

Open Energy Info (EERE)

Elm Creek II Elm Creek II Jump to: navigation, search Name Elm Creek II Facility Elm Creek II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Iberdrola Renewables Developer Iberdrola Renewables Location Jackson and Martin County MN Coordinates 43.756372°, -94.956014° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.756372,"lon":-94.956014,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

112

Bear Creek Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Bear Creek Wind Farm Bear Creek Wind Farm Facility Bear Creek Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Babcock & Brown owns majority Developer CEI Iberdrola Energy Purchaser PPL Corp. Location Near Bear Creek Village PA Coordinates 41.1801°, -75.7216° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.1801,"lon":-75.7216,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

113

Elm Creek Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Elm Creek Wind Farm Elm Creek Wind Farm Jump to: navigation, search Name Elm Creek Wind Farm Facility Elm Creek Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Iberdrola Renewables Developer Iberdrola Renewables Energy Purchaser Great River Energy Location MN Coordinates 43.780285°, -94.845586° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.780285,"lon":-94.845586,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

114

Bull Creek Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Bull Creek Wind Farm Bull Creek Wind Farm Jump to: navigation, search Name Bull Creek Wind Farm Facility Bull Creek Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Eurus Developer Eurus Energy Purchaser Market Location Near Gail TX Coordinates 32.933099°, -101.584425° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.933099,"lon":-101.584425,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

115

Reintroduction of Lower Columbia River Chum Salmon into Duncan Creek, 2007 Annual Report.  

SciTech Connect (OSTI)

The National Marine Fisheries Service (NMFS) listed Lower Columbia River (LCR) chum salmon as threatened under the Endangered Species Act (ESA) in March, 1999 (64 FR 14508, March 25, 1999). The listing was in response to the reduction in abundance from historical levels of more than one-half million returning adults to fewer than 10,000 present-day spawners. Harvest, habitat degradation, changes in flow regimes, riverbed movement and heavy siltation have been largely responsible for this decline. The timing of seasonal changes in river flow and water temperatures is perhaps the most critical factor in structuring the freshwater life history of this species. This is especially true of the population located directly below Bonneville Dam, where hydropower operations can block access to spawning sites, dewater redds, strand fry, cause scour or fill of redds and increase sedimentation of spawning gravels. Prior to 1997, only two chum salmon populations were recognized as genetically distinct in the Columbia River, although spawning had been documented in many Lower Columbia River tributaries. The first population was in the Grays River (RKm 34), a tributary of the Columbia River, and the second was a group of spawners utilizing the mainstem Columbia River just below Bonneville Dam (RKm 235) adjacent to Ives Island and in Hardy and Hamilton creeks. Using additional DNA samples, Small et al. (2006) grouped chum salmon spawning in the mainstem Columbia River and the Washington State tributaries into three groups: the Coastal, the Cascade and the Gorge. The Coastal group comprises those spawning in the Grays River, Skamokawa Creek and the broodstock used at the Sea Resources facility on the Chinook River. The Cascade group comprises those spawning in the Cowlitz (both summer and fall stocks), Kalama, Lewis, and East Fork Lewis rivers, with most supporting unique populations. The Gorge group comprises those spawning in the mainstem Columbia River from the I-205 Bridge up to Bonneville Dam and those spawning in Hamilton and Hardy creeks. Response to the federal ESA listing has been primarily through direct-recovery actions: reducing harvest, hatchery supplementation using local broodstock for populations at catastrophic risk, habitat restoration (including construction of spawning channels) and flow agreements to protect spawning and rearing areas. Both state and federal agencies have built controlled spawning areas. In 1998, the Washington Department of Fish and Wildlife (WDFW) began a chum salmon supplementation program using native stock on the Grays River. This program was expanded during 1999 - 2001 to include reintroduction into the Chinook River using eggs from the Grays River Supplementation Program. These eggs are incubated at the Grays River Hatchery, reared to release size at the Sea Resources Hatchery on the Chinook River, and the fry are released at the mouth of the Chinook River. Native steelhead, chum, and coho salmon are present in Duncan Creek, and are recognized as subpopulations of the Lower Gorge population, and are focal species in the Lower Columbia Fish Recovery Board (LCFRB) plan. Steelhead, chum and coho salmon that spawn in Duncan Creek are listed as Threatened under the ESA. Duncan Creek is classified by the LCFRB plan as a watershed for intensive monitoring (LCFRB 2004). This project was identified in the 2004 Federal Columbia River Power System (FCRPS) revised Biological Opinion (revised BiOp) to increase survival of chum salmon, 'BPA will continue to fund the program to re-introduce Columbia River chum salmon into Duncan Creek as long as NOAA Fisheries determines it to be an essential and effective contribution to reducing the risk of extinction for this ESU'. (USACE et al. 2004, page 85-86). The Governors Forum on Monitoring and Salmon Recovery and Watershed Health recommends one major population from each ESU have adult and juvenile monitoring. Duncan Creek chum salmon are identified in this plan to be intensively monitored. Planners recommended that a combination of natural and hatchery production

Hillson, Todd D. [Washington Department of Fish and Wildlife

2009-06-12T23:59:59.000Z

116

Blasting of the Twin Creek`s highwall failure  

SciTech Connect (OSTI)

On December 26, 1994, at 1:00 a.m., the Twin Creeks Mine experienced a major highwall failure involving over 2.5 million tons. The long chain of events that led up to this failure actually started in late August when a truck driver first noticed the cracks in the highwall. Soon after, an intense survey prism monitoring program was initiated. An electronic, continuous monitor linked to Dispatch was soon in place which monitored the crack that was most likely to fail into the active pit area first. It wasn`t until early December when the graphs started showing greater increases in movement. On December 22, the acceleration curves skied-out. The 600 ft. highwall finally collapsed about three days later and left material spread 800 ft. across the bottom of the pit. Not knowing if the large overhangs above the slide would soon give away sending more material into the pit or if the numerous tension cracks on the surface would result in yet another major failure, it was only after restoring the rigid monitoring program and observing no movement that the company decided to drill and blast the overhanging material. The purpose of the blast wasn`t to cast the material into the pit, but to kick-out the toe so that the weight of material above would fall upon itself. After two months of preparation and almost three weeks of drilling and loading, the shot occurred on March 21, 1995. Approximately one million tons were successfully blasted that day, and presently they have completed mining the slough material itself and reestablished benches from the top.

Gray, C.J.; Bachmann, J.A. [Santa Fe Pacific Gold Corp., Winnemucca, NV (United States). Twin Creeks Mine

1996-12-01T23:59:59.000Z

117

Quartz Tuning Fork: Thermometer, Pressure- and Viscometer for Helium Liquids  

E-Print Network [OSTI]

Commercial quartz oscillators of the tuning-fork type with a resonant frequency of ~32 kHz have been investigated in helium liquids. The oscillators are found to have at best Q values in the range 10^5-10^6, when measured in vacuum below 1.5 K. However, the variability is large and for very low temperature operation the sensor has to be preselected. We explore their properties in the regime of linear viscous hydrodynamic response in normal and superfluid 3He and 4He, by comparing measurements to the hydrodynamic model of the sensor.

R. Blaauwgeers; M. Blazkova; M. Clovecko; V. B. Eltsov; R. de Graaf; J. Hosio; M. Krusius; D. Schmoranzer; W. Schoepe; L. Skrbek; P. Skyba; R. E. Solntsev; D. E. Zmeev

2006-08-17T23:59:59.000Z

118

Mapping Poplar Tree Proteins | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Mapping Poplar Tree Proteins Mapping Poplar Tree Proteins Biological and Environmental Research (BER) BER Home About Research Facilities Science Highlights Searchable Archive of BER Highlights External link Benefits of BER Funding Opportunities Biological & Environmental Research Advisory Committee (BERAC) News & Resources Contact Information Biological and Environmental Research U.S. Department of Energy SC-23/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3251 F: (301) 903-5051 E: sc.ber@science.doe.gov More Information » October 2012 Mapping Poplar Tree Proteins Proteome atlas offers new view of bioenergy crop's molecular machinery. Print Text Size: A A A Subscribe FeedbackShare Page Click to enlarge photo. Enlarge Photo Image courtesy of Oak Ridge National Laboratory

119

Production of hybrid poplar under short-term, intensive culture in Western Colorado  

Science Journals Connector (OSTI)

An irrigated study was conducted at the Western Colorado Research Center at Fruita for 6 years to evaluate eight hybrid poplar clones under short-term, intensive culture. The eight clones included in the study were Populus nigra x P. maximowiczii (NM6), P. trichocarpa x P. deltoides (52225, OP367), and P. deltoides x P. nigra (Norway, Noreaster, Raverdaus, 14274, 14272). Data were collected for growth, aerial biomass yield, dry matter partitioning, carbon sequestration, and insect and disease infestation. OP367 and 52225 consistently had larger tree diameters than other hybrids for each of the 6 years. Averaged across clones, yield was 58.4Mgha?1. OP367 had the highest yield at 72.2Mgha?1 and 14274 had the lowest yield at 41.0Mgha?1. The yield of OP367 was 1.8 times greater than that of 14274. Carbon yield over the 6 years of testing was highest for OP367 at 33.4MgCha?1 and lowest for 14274 at 18.8MgCha?1. Of the eight clones tested, OP367 was the most adapted and productive clone in this short-term, intensive culture system in the arid environment of the Grand Valley of western Colorado as evidenced by its productive growth, yield, insect resistance, winterhardiness, and tree architecture. Several insect species infested the poplar clones over the course of the rotation. Best management practices for growers who produce hybrid poplar under short-term, intensive culture should include the following: (1) plant highly productive clones, (2) poplar clones with suitable tree architecture for production and market objectives should be used, (3) if carbon sequestration is an important production objective, plant a suitable clone, (4) some poplar clones develop chlorosis when planted in high pH soils and should be avoided, and (5) use poplar clones that have been shown to exhibit resistance to specific insect species.

C.H. Pearson; A.D. Halvorson; R.D. Moench; R.W. Hammon

2010-01-01T23:59:59.000Z

120

TR-025 Geomorphology March 2003 Schmidt Creek Sediment Sources  

E-Print Network [OSTI]

TR-025 Geomorphology March 2003 Schmidt Creek Sediment Sources and the Johnstone Strait Killer, Thomas. 2003. Schmidt Creek Sediment Sources and the Johnstone Strait Killer Whale Rubbing Beach. Res.................................................................................................................... 2 3. Sediment Sources - Natural and Logging Related

Note: This page contains sample records for the topic "fork poplar creek" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Crane Creek Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Crane Creek Wind Farm Crane Creek Wind Farm Facility Crane Creek Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner EnXco Developer EnXco Energy Purchaser Wisconsin P ublic Service Group Location Northeast of Riceville IA Coordinates 43.410108°, -92.51652° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.410108,"lon":-92.51652,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

122

Crane Creek Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Crane Creek Geothermal Area Crane Creek Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Crane Creek Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (1) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.3064,"lon":-116.7447,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

123

Edwards Creek Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Edwards Creek Geothermal Project Edwards Creek Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Edwards Creek Geothermal Project Project Location Information Coordinates 39.617222222222°, -117.67166666667° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.617222222222,"lon":-117.67166666667,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

124

Reedy Creek Improvement Dist | Open Energy Information  

Open Energy Info (EERE)

Reedy Creek Improvement Dist Reedy Creek Improvement Dist Jump to: navigation, search Name Reedy Creek Improvement Dist Place Florida Utility Id 15776 Utility Location Yes Ownership M NERC Location FRCC NERC FRCC Yes Operates Generating Plant Yes Activity Generation Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png GS General Service GSD General Service Demand RS Residential Service Residential Average Rates Residential: $0.1240/kWh Commercial: $0.1130/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a"

125

Separation Creek Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Separation Creek Geothermal Area Separation Creek Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Separation Creek Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (1) 10 References Area Overview Geothermal Area Profile Location: Oregon Exploration Region: Cascades GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant Developing Power Projects: 0

126

Cherry Creek Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Cherry Creek Geothermal Area Cherry Creek Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Cherry Creek Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.85,"lon":-114.905,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

127

Willow Creek Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Willow Creek Wind Farm Willow Creek Wind Farm Facility Willow Creek Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Invenergy Developer Invenergy Location Morrow County OR Coordinates 45.828458°, -119.795537° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.828458,"lon":-119.795537,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

128

Lava Creek Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Lava Creek Geothermal Area Lava Creek Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Lava Creek Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":65.2283,"lon":-162.894,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

129

Recommendation 195: Mitigation of Contamination in Bear Creek Burial Grounds  

Broader source: Energy.gov [DOE]

The ORSSAB requests DOE provide possible remedial actions to mitigate releases of contamination from Bear Creek Burial Grounds.

130

The importance of tidal creek ecosystems Keywords: Estuary; Tidal creek; Pollution  

E-Print Network [OSTI]

systems such as the rocky intertidal of the northeast United States and eastern Canada, the open beaches rarely exceeds 3.0 m at high tide, and some tidal creeks contain broad intertidal sand or mud flats

Mallin, Michael

131

Biomass production and stool mortality in hybrid poplar coppiced twice a year  

E-Print Network [OSTI]

Note Biomass production and stool mortality in hybrid poplar coppiced twice a year D Auclair L Bouvarel 1 INRA, Station de Sylviculture; 2INRA, Unité expérimentale biomasse forestière et forêt paysanne biomass production, and to high stool mortality. Some aspects of the physiology of coppicing are discussed

Paris-Sud XI, Université de

132

Depositional environment of Red Fork sandstones, deep Anadarko Basin, western Oklahoma  

E-Print Network [OSTI]

Moore (1979) and Evans (1979) Page Regional structure on top of the Red Fork Formation in the deep Anadarko basin of west-central Oklahoma showing locations of cored wells and fields. Typical gamma-ray log character of the two main Red Fork... Clinton Field, Custer County, Oklahoma. Line A-A' is the location of the stratigraphic cross section (Fig. 18) . Contour interval 50 ft (15. 7 m) 48 17 Net sand isopach of the upper part of the Red Fork sandstones snowing the channel-like trends...

Whiting, Philip Howard

2012-06-07T23:59:59.000Z

133

Papalote Creek II | Open Energy Information  

Open Energy Info (EERE)

Papalote Creek II Papalote Creek II Jump to: navigation, search Name Papalote Creek II Facility Papalote Creek II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner E.ON Climate & Renewables North America Developer E.ON Climate & Renewables North America Energy Purchaser Lower Colorado River Authority Location 30 miles north of Corpus Christi in San Patricio County TX Coordinates 28.254569°, -97.40015° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":28.254569,"lon":-97.40015,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

134

Stony Creek Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Stony Creek Wind Farm Stony Creek Wind Farm Jump to: navigation, search Name Stony Creek Wind Farm Facility Stony Creek Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner E.ON Climate and Renewables Developer E.ON Climate and Renewables Location Somerset County PA Coordinates 40.039256°, -78.781979° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.039256,"lon":-78.781979,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

135

Eva Creek Wind Project | Open Energy Information  

Open Energy Info (EERE)

Eva Creek Wind Project Eva Creek Wind Project Jump to: navigation, search Name Eva Creek Wind Project Facility Eva Creek Wind Project Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Golden Valley Electric Association Developer Golden Valley Electric Association Energy Purchaser Golden Valley Electric Association Location NE corner of Denali Natl Park AK Coordinates 64.0602°, -148.9054° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":64.0602,"lon":-148.9054,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

136

Lost Creek Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Lost Creek Wind Farm Lost Creek Wind Farm Jump to: navigation, search Name Lost Creek Wind Farm Facility Lost Creek Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Wind Capital Group Developer Wind Capital Group Energy Purchaser Associated Electric Cooperative Location DeKalb County MO Coordinates 39.98080324°, -94.55009937° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.98080324,"lon":-94.55009937,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

137

Papalote Creek Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Papalote Creek Wind Farm Papalote Creek Wind Farm Jump to: navigation, search Name Papalote Creek Wind Farm Facility Papalote Creek Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner E.On Climate & Renewables Developer E.On Climate & Renewables Energy Purchaser CPS San Antonio Location San Patricio County TX Coordinates 27.925458°, -97.394686° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":27.925458,"lon":-97.394686,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

138

Forest Creek Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Creek Wind Farm Creek Wind Farm Jump to: navigation, search Name Forest Creek Wind Farm Facility Forest Creek Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner E.On Climate & Renewables Developer E.On Climate & Renewables/RGI Energy Purchaser Luminant Location Glasscock and Sterling Counties TX Coordinates 31.937348°, -101.312513° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.937348,"lon":-101.312513,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

139

Prairie Creek Ethanol LLC | Open Energy Information  

Open Energy Info (EERE)

Creek Ethanol LLC Creek Ethanol LLC Jump to: navigation, search Name Prairie Creek Ethanol LLC Place Goldfield, Iowa Zip 50542 Product Prairie Creek Ethanol, LLC had planned to build a 55m gallon (208m litre) per year ethanol plant in Wesley, Iowa, but, as of 23 May 2008, the board of directors voted to recommend to the members of the company to dissolve the company as soon as possible. Coordinates 37.707559°, -117.233459° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.707559,"lon":-117.233459,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

140

City of East Grand Forks, Minnesota (Utility Company) | Open Energy  

Open Energy Info (EERE)

Minnesota (Utility Company) Minnesota (Utility Company) Jump to: navigation, search Name East Grand Forks City of Place Minnesota Utility Id 5575 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Activity Distribution Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Large Commercial Rate Commercial Off Peak Rates Commercial Residential Electric Heat Residential Residential General Electric Residential Small Commercial Rate Residential Average Rates Residential: $0.0943/kWh Commercial: $0.0740/kWh Industrial: $0.0789/kWh

Note: This page contains sample records for the topic "fork poplar creek" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

The Risk Assessment Information System  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Risk Assessment Documents - ORR Risk Assessment Documents - ORR Bullet Baseline Risk Assessments Bullet Remedial Investigation/Feasibility Study Environmental Assessment Report South Campus Facility, Oak Ridge Tenn [DOE/OR/02-1274&D] Bullet Baseline Risk Assessment for Lower East Fork Poplar Creek [DOE/OR/1119 & D2 & V2] Bullet Remedial Investigation/ Feasibility Study Report for Lower Watts Bar Reservoir Operable Unit [DOE/OR/01 1282 & D1] [ORNL/ER-2] Bullet The Utility of Existing Data Conducting a CERCLA Baseline Risk Assessment for Lower Watts Bar Reservoir (draft) [ORNL/ER-?] Bullet East Fork Poplar Creek Sewer Line Beltway Remedial Investigation Report [DOE/OR/02-1119&D2] Bullet Screening Risk Assessments Bullet Preliminary Assessment of Radiation Doses to the Public from Cesium

142

EA-0956: South Fork Snake River/Palisades Wildlife Mitigation Project, Bonneville County, Idaho  

Broader source: Energy.gov [DOE]

This EA evaluates the environmental impacts of the U.S. Department of Energy's Bonneville Power Administration proposal to fund the implementation of the South Fork Snake River Programmatic...

143

EA-1969: Clark Fork River Delta Restoration Project, Bonner County, Idaho  

Broader source: Energy.gov [DOE]

Bonneville Power Administration is preparing an environmental assessment to analyze the potential effects of a proposal to restore wetland and riparian (riverbank) habitat and to reduce erosion in the Clark Fork River delta located in Bonner County, Idaho.

144

STRATAL PATTERNS OF THE WILLIAMS FORK (HUNTER CANYON) FORMATION, PICEANCE BASIN, COLORADO  

E-Print Network [OSTI]

in the style of accommodation. The Williams Fork Formation contains stratal packages and was chosen for detailed study because of extensive exposures and a noticeable vertical change in lithology and sandstone-to-shale (net-to-gross) ratios. Ages... by Hancock (1925) and then eventually traced from the Grand Hogback to the Colorado-Utah state line by Fisher et al. (1960) and Collins (1976). The Williams Fork Formation is a gas producing formation (Cumella and Ostby, 2003), and previous study has...

Ost, Rebekah Corrie

2010-12-31T23:59:59.000Z

145

Microsoft Word - Coyote Creek CX.docx  

Broader source: Energy.gov (indexed) [DOE]

3, 2013 3, 2013 REPLY TO ATTN OF: KEC-4 SUBJECT: Environmental Clearance Memorandum Dorie Welch Project Manager - KEWM-4 Proposed Action: Provision of funds to acquire a conservation easement over the 310-acre Coyote Creek property. Fish and Wildlife Project No.: 2011-003-00, Contract # BPA-006468 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.25 Real Property transfers for cultural protection, habitat preservation and wildlife management. Location: Veneta and West Eugene quadrangles, in Lane County, Oregon (near Eugene, Oregon). Proposed by: Bonneville Power Administration (BPA) Description of the Proposed Action: The BPA is proposing to fund The Nature Conservancy's (Conservancy) purchase of the Coyote Creek property, a 310-acre parcel of land located just west of the

146

Blue Creek Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Farm Farm Jump to: navigation, search Name Blue Creek Wind Farm Facility Blue Creek Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Iberdrola Renewables Developer Iberdrola Renewables Energy Purchaser First Energy Solutions Location Van Wert County OH Coordinates 41.018286°, -84.615355° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.018286,"lon":-84.615355,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

147

Microsoft Word - Soos_Creek_CX.docx  

Broader source: Energy.gov (indexed) [DOE]

Timothy Wicks Timothy Wicks Realty Specialist - TERR-COVINGTON Proposed Action: Soos Creek Water & Sewer District Land Use Review Request Case No. 20120040 Budget Information: 184006 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B 4.9 - Multiple use of powerline rights-of-way Location: Covington, King County, Washington Proposed by: Bonneville Power Administration (BPA) Description of the Proposed Action: BPA proposes to approve a land use review request from Soos Creek Water & Sewer District (District) to construct a new sewer line that would cross under an existing road on BPA fee-owned property near structures 1/2 and 1/3 of the Covington-Maple Valley No. 2 230-kilovolt (kV) transmission line. The proposed sewer line

148

Steel Creek primary producers: Periphyton and seston, L-Lake/Steel Creek Biological Monitoring Program, January 1986--December 1991  

SciTech Connect (OSTI)

The Savannah River Site (SRS) encompasses 300 sq mi of the Atlantic Coastal Plain in west-central South Carolina. Five major tributaries of the Savannah River -- Upper Three Runs Creek, Four Mile Creek, Pen Branch, Steel Creek, and Lower Three Runs Creek -- drain the site. In 1985, L Lake, a 400-hectare cooling reservoir, was built on the upper reaches of Steel Creek to receive effluent from the restart of L-Reactor and to protect the lower reaches from thermal impacts. The Steel Creek Biological Monitoring Program was designed to assess various components of the system and identify and changes due to the operation of L-Reactor or discharge from L Lake. An intensive ecological assessment program prior to the construction of the lake provided baseline data with which to compare data accumulated after the lake was filled and began discharging into the creek. The Department of Energy must demonstrate that the operation of L-Reactor will not significantly alter the established aquatic ecosystems. This report summarizes the results of six years` data from Steel Creek under the L-Lake/Steel Creek Monitoring Program. L Lake is discussed separately from Steel Creek in Volumes NAI-SR-138 through NAI-SR-143.

Bowers, J.A. [Westinghouse Savannah River Co., Aiken, SC (United States); Toole, M.A.; van Duyn, Y. [Normandeau Associates Inc., New Ellenton, SC (United States)

1992-02-01T23:59:59.000Z

149

Trout Creek Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Trout Creek Geothermal Area Trout Creek Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Trout Creek Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.18822,"lon":-118.37756,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

150

The Patroon Creek Contamination Migration Investigation  

SciTech Connect (OSTI)

Shaw performed a Site Investigation (SI) for sediment within the Unnamed Tributary of the Patroon Creek, a section of the Patroon Creek, and the Three Mile Reservoir as part of the overall contract with the United States Army Corps of Engineers (USACE) to remediate the Colonie Formerly Utilized Sites Remedial Action Program (FUSRAP) Site. The Unnamed Tributary formerly flowed through the former Patroon Lake, which was located on the main site property and was used as a landfill for radiological and chemical wastes. The objective of the investigation was to determine the absence/presence of radioactive contamination within the three Areas of Concern (AOC). In order to accomplish this objective, Shaw assembled a team to produce a Technical Memorandum that provided an in-depth understanding of the environmental conditions related to the Patroon Creek. Upon completion and analysis of the Technical Memorandum, a Conceptual Site Model (CSM) was constructed and a Technical Planning Program (TPP) was held to develop a Sediment Investigation Work Plan and Sediment Investigation Sampling and Analysis Plan. A total of 32 sample locations were analyzed using on-site direct gamma scans with a Pancake Geiger-Mueller (PGM) instrument for screening purposes and samples were analyzed at on-site and off-site laboratories. The highest interval from each core scan was selected for on-site analysis utilizing a High Purity Germanium (HPGe) detector. Eight of these samples were sent off-site for gamma/alpha spectroscopy confirmation. The data collected during the SI indicated that the U-238 cleanup criterion was exceeded in sediment samples collected from two locations within the Unnamed Tributary but not in downstream sections of Patroon Creek or Three Mile Reservoir. Future actions for impacted sediment in the Unnamed Tributary will be further evaluated. Concentrations of U-238 and Th-232 in all other off-site sediment samples collected from the Unnamed Tributary, Patroon Creek, and the Three Mile Reservoir indicate that no further action is required in these areas. The data was also compared to ecological screening criteria. None of the contaminants of concern (U-238, Th-232, and U-235) had concentrations exceeding the screening values. The evaluation indicates no adverse impacts to ecological receptors. (authors)

Dufek, K.; Zafran, A. [Shaw Environmental and Infrastructure, Colonie FUSRAP Site, 1130 Central Avenue, Colonie, New York 12205 (United States); Moore, J.T. [United States Army Corps of Engineers-New York District, 26 Federal Plaza, Room 1811, New York, NY 10278-0090 (United States)

2006-07-01T23:59:59.000Z

151

Direct analysis of cellulose in poplar stem by matrixassisted laser desorption/ionization imaging mass spectrometry  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

analysis analysis of cellulose in poplar stem by matrix- assisted laser desorption/ionization imaging mass spectrometry Seokwon Jung 1,3 , Yanfeng Chen 3 , M. Cameron Sullards 1,3 and Arthur J. Ragauskas 1,2,3 * 1 BioEnergy Science Center, Georgia Institute of Technology, 500 10 th St., Atlanta, GA 30332, USA 2 Institute of Paper Science and Technology, Georgia Institute of Technology, 500 10 th St., Atlanta, GA 30332, USA 3 School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, GA 30332, USA Received 10 July 2010; Revised 9 August 2010; Accepted 23 August 2010 Matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-IMS) was applied to the analysis of the spatial distribution of cellulose on a cross-section of juvenile poplar (Populus deltoids) stems. Microcrystalline cellulose (MCC) was used to optimize matrix (2,5-dihydroxybenzoic

152

DOE - Office of Legacy Management -- Hoe Creek Underground Coal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hoe Creek Underground Coal Hoe Creek Underground Coal Gasification Site - 045 FUSRAP Considered Sites Site: Hoe Creek Underground Coal Gasification Site (045) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: The Hoe Creek Underground Gasification site occupies 80 acres of land located in Campbell County, Wyoming. The site was used to investigate the process and environmental parameters of underground coal gasification technologies in the 1970s. The Department of Energy¿s (DOE) current mission is limited to completing environmental remediation activities at the site. This property is owned by the Bureau of Land Management (BLM),

153

Microsoft Word - Trimble_Creek_Acquisition_CX.doc  

Broader source: Energy.gov (indexed) [DOE]

funds to the Kalispel Tribe (Kalispel) for purchase of Trimble Creek (Doramus) Property Fish and Wildlife Project No.: 1992-061-00, Contract BPA-004991 Categorical Exclusion...

154

Field Algae Measurements Using Empirical Correlations at Deer Creek Reservoir.  

E-Print Network [OSTI]

??Deer Creek Reservoir in Utah has a history of high algae concentrations. Despite recent nutrient reduction efforts, seasonal algae continue to present problems. Cost effective, (more)

Stephens, Ryan A.

2011-01-01T23:59:59.000Z

155

New Jersey Nuclear Profile - PSEG Hope Creek Generating Station  

U.S. Energy Information Administration (EIA) Indexed Site

PSEG Hope Creek Generating Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License...

156

Water column oxygen demand and sediment oxygen flux: patterns of oxygen depletion in tidal creeks  

Science Journals Connector (OSTI)

Five study sites were chosen in Futch Creek, Hewletts Creek and Pages Creek,...1). Sites were chosen to reflect a range in the values of dissolved oxygen levels, chlorophyll a concentrations and nutrient (nitroge...

Tara A. MacPherson; Lawrence B. Cahoon; Michael A. Mallin

2007-07-01T23:59:59.000Z

157

E-Print Network 3.0 - abernathy creek washington Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Watersheds) 88,763 Acres 18060001 3304120101 Kings Creek (7770 Acres) Summary: Kings Creek (7770 Acres) 35,920 Hectares 4th Field HUC 3304120102 Castlerock Falls (7371...

158

E-Print Network 3.0 - allens creek nuclear Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Units Calwater Subbasins ---(Planning Watersheds) 88,763 Acres 18060001 3304120101 Kings Creek (7770 Acres) Summary: Kings Creek (7770 Acres) 35,920 Hectares 4th Field HUC...

159

E-Print Network 3.0 - asotin creek fencing Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Watersheds) 88,763 Acres 18060001 3304120101 Kings Creek (7770 Acres) Summary: Kings Creek (7770 Acres) 35,920 Hectares 4th Field HUC 3304120102 Castlerock Falls (7371...

160

E-Print Network 3.0 - asotin creek model Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Units Calwater Subbasins ---(Planning Watersheds) 88,763 Acres 18060001 3304120101 Kings Creek (7770 Acres) Summary: Kings Creek (7770 Acres) 35,920 Hectares 4th Field HUC...

Note: This page contains sample records for the topic "fork poplar creek" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Depositional framework and reservoir distribution of Red Fork sandstone in Oklahoma  

SciTech Connect (OSTI)

The Middle Pennsylvanian Red Fork sandstone formed as a result of southward progradation across most of Oklahoma. The Red Fork is one of several cyclothemic (transgressive-regressive) sequences developed within the Desmoinesian Cherokee Group. Sea level changes and stability of the depositional area were dominant factors in determining the general stratigraphic characteristics of the Red Fork interval. Progradation was episodic, with sand deposition in the distal, more subsident part of the basin during lower sea level stands, and valley-fill deposition in the more stable areas during sea level rises. Red Fork sandstone trends depict an alluvial-deltaic complex covering most of Oklahoma. The Red Fork consists primarily of alluvial-valley and plain (fluvial) bodies in the northern part of northeastern Oklahoma, alluvial-deltaic bodies in most of the remaining parts of the shelf area, and off-shelf submarine-fan and slope/basin-floor complexes within the deeper part of the Anadarko basin. Determination of reservoir trend and genesis requires integration of rock data and log data, with logs calibrated to cores for estimating depositional environments and assessing diagenetic overprints. Much of the oil and gas has been trapped in stratigraphic traps, some of which represent channelized sandstones with trends at high angles to the structural grain. Secondary chlorite, in particular, is associated locally with development of productive reservoirs showing microporosity, high water saturation, and correspondingly low resistivities.

Shelton, J.W.; Fritz, R.D.; Johnson, C. (Masera Corp., Tulsa, OK (USA))

1989-08-01T23:59:59.000Z

162

Big Canyon Creek Ecological Restoration Strategy.  

SciTech Connect (OSTI)

He-yey, Nez Perce for steelhead or rainbow trout (Oncorhynchus mykiss), are a culturally and ecologically significant resource within the Big Canyon Creek watershed; they are also part of the federally listed Snake River Basin Steelhead DPS. The majority of the Big Canyon Creek drainage is considered critical habitat for that DPS as well as for the federally listed Snake River fall chinook (Oncorhynchus tshawytscha) ESU. The Nez Perce Soil and Water Conservation District (District) and the Nez Perce Tribe Department of Fisheries Resources Management-Watershed (Tribe), in an effort to support the continued existence of these and other aquatic species, have developed this document to direct funding toward priority restoration projects in priority areas for the Big Canyon Creek watershed. In order to achieve this, the District and the Tribe: (1) Developed a working group and technical team composed of managers from a variety of stakeholders within the basin; (2) Established geographically distinct sub-watershed areas called Assessment Units (AUs); (3) Created a prioritization framework for the AUs and prioritized them; and (4) Developed treatment strategies to utilize within the prioritized AUs. Assessment Units were delineated by significant shifts in sampled juvenile O. mykiss (steelhead/rainbow trout) densities, which were found to fall at fish passage barriers. The prioritization framework considered four aspects critical to determining the relative importance of performing restoration in a certain area: density of critical fish species, physical condition of the AU, water quantity, and water quality. It was established, through vigorous data analysis within these four areas, that the geographic priority areas for restoration within the Big Canyon Creek watershed are Big Canyon Creek from stream km 45.5 to the headwaters, Little Canyon from km 15 to 30, the mainstem corridors of Big Canyon (mouth to 7km) and Little Canyon (mouth to 7km). The District and the Tribe then used data collected from the District's stream assessment and inventory, utilizing the Stream Visual Assessment Protocol (SVAP), to determine treatment necessary to bring 90% of reaches ranked Poor or Fair through the SVAP up to good or excellent. In 10 year's time, all reaches that were previously evaluated with SVAP will be reevaluated to determine progress and to adapt methods for continued success. Over 400 miles of stream need treatment in order to meet identified restoration goals. Treatments include practices which result in riparian habitat improvements, nutrient reductions, channel condition improvements, fish habitat improvements, invasive species control, water withdrawal reductions, improved hydrologic alterations, upland sediment reductions, and passage barrier removal. The Nez Perce Soil and Water Conservation District (District) and the Nez Perce Tribe Department of Fisheries Resource Management Watershed Division (Tribe) developed this document to guide restoration activities within the Big Canyon Creek watershed for the period of 2008-2018. This plan was created to demonstrate the ongoing need and potential for anadromous fish habitat restoration within the watershed and to ensure continued implementation of restoration actions and activities. It was developed not only to guide the District and the Tribe, but also to encourage cooperation among all stakeholders, including landowners, government agencies, private organizations, tribal governments, and elected officials. Through sharing information, skills, and resources in an active, cooperative relationships, all concerned parties will have the opportunity to join together to strengthen and maintain a sustainable natural resource base for present and future generations within the watershed. The primary goal of the strategy is to address aquatic habitat restoration needs on a watershed level for resident and anadromous fish species, promoting quality habitat within a self-sustaining watershed. Seven objectives have been developed to support this goal: (1) Identify factors limiting quality

Rasmussen, Lynn; Richardson, Shannon

2007-10-01T23:59:59.000Z

163

FEA OF THE HORSETAIL CREEK BRIDGE STRENGTHENED WITH FRP LAMINATES  

E-Print Network [OSTI]

FEA OF THE HORSETAIL CREEK BRIDGE STRENGTHENED WITH FRP LAMINATES Kasidit Chansawat, Damian I. Kachlakev, Thomas H. Miller, and Solomon C.S. Yim ABSTRACT A three-dimensional finite element (FE) model is developed to examine the structural behavior of the Horsetail Creek Bridge in Oregon both before and after

Yim, Solomon C.

164

Tons of Heavy Metals in Mill Creek Sediments Heather Freeman  

E-Print Network [OSTI]

objectives for this summer research were to: 1.) determine how much heavy metal pollution has accumulatedTons of Heavy Metals in Mill Creek Sediments Heather Freeman 8/30/99 Geology Department Advisors: Dr. Kees DeJong Dr. Barry Manyard Dr. David Nash #12;Tons of heavy metals in Mill Creek sediments

Maynard, J. Barry

165

Burnup verification at Arkansas Nuclear One-unit 1 using the Fork measurement system  

SciTech Connect (OSTI)

The Fork measurement system, designed at Los Alamos National Laboratory for the International Atomic Energy Agency safeguards program, has been used for several years to examine spent fuel assemblies at nuclear reactors around the world. The objective of the test program described here is to demonstrate the ability of the Fork system to verify the records for assembly burnup at U.S. nuclear utilities. The measurements described here were performed at Arkansas Nuclear One, operated by Energy Operations, Inc. The Fork system was used to examine 34 assemblies in the storage pool of Arkansas Nuclear One-Unit 1. The correlation between the neutron measurements and the reactor records produced an average random deviation in burnup of 3.0% from the calibration, which translates into an average variation of 2.2% in the reactor records for burnup. The system proved to be compatible with utility operations.

Ewing, R.I. [Sandia National Lab., Albuquerque, NM (United States); Bosler, G.E. [Los Alamos National Lab., Los Alamos, NM (United States); Priore, J. [Entergy Oerations, Inc., Russellville, AR (United States)

1995-12-01T23:59:59.000Z

166

Remedial investigation/feasibility study for the Clinch River/Poplar Creek operable unit. Volume 5. Appendixes G, H, I, J  

SciTech Connect (OSTI)

The Quality Assurance/Quality Control (QA/QC) Program for Phase 2 of the Clinch River Remedial Investigation (CRRI) was designed to comply with both Department of Energy (DOE) Order 5700.6C and Environmental Protection Agency (EPA) QAMS-005/80 (EPA 1980a) guidelines. QA requirements and the general QA objectives for Phase 2 data were defined in the Phase 2 Sampling and Analysis Plan (SAP)-Quality Assurance Project Plan, and scope changes noted in the Phase 2 Sampling and Analysis Plan Addendum. The QA objectives for Phase 2 data were the following: (1) Scientific data generated will withstand scientific and legal scrutiny. (2) Data will be gathered using appropriate procedures for sample collection, sample handling and security, chain of custody (COC), laboratory analyses, and data reporting. (3) Data will be of known precision and accuracy. (4) Data will meet data quality objectives (DQOs) defined in the Phase 2 SAP.

NONE

1995-09-01T23:59:59.000Z

167

The metagenome of an anaerobic microbial community decomposing poplar wood chips  

SciTech Connect (OSTI)

This study describes the composition and metabolic potential of a lignocellulosic biomass degrading community that decays poplar wood chips under anaerobic conditions. We examined the community that developed on poplar biomass in a non-aerated bioreactor over the course of a year, with no microbial inoculation other than the naturally occurring organisms on the woody material. The composition of this community contrasts in important ways with biomass-degrading communities associated with higher organisms, which have evolved over millions of years into a symbiotic relationship. Both mammalian and insect hosts provide partial size reduction, chemical treatments (low or high pH environments), and complex enzymatic 'secretomes' that improve microbial access to cell wall polymers. We hypothesized that in order to efficiently degrade coarse untreated biomass, a spontaneously assembled free-living community must both employ alternative strategies, such as enzymatic lignin depolymerization, for accessing hemicellulose and cellulose and have a much broader metabolic potential than host-associated communities. This would suggest that such a community would make a valuable resource for finding new catalytic functions involved in biomass decomposition and gaining new insight into the poorly understood process of anaerobic lignin depolymerization. Therefore, in addition to determining the major players in this community, our work specifically aimed at identifying functions potentially involved in the depolymerization of cellulose, hemicelluloses, and lignin, and to assign specific roles to the prevalent community members in the collaborative process of biomass decomposition. A bacterium similar to Magnetospirillum was identified among the dominant community members, which could play a key role in the anaerobic breakdown of aromatic compounds. We suggest that these compounds are released from the lignin fraction in poplar hardwood during the decay process, which would point to lignin-modification or depolymerization under anaerobic conditions.

van der Lelie D.; Taghavi, S.; McCorkle, S. M.; Li, L.-L.; Malfatti, S. A.; Monteleone, D.; Donohoe, B. S.; Ding, S.-Y.; Adney, W. S.; Himmel, M. E.; Tringe, S. G.

2012-05-01T23:59:59.000Z

168

Geology of the Upper Schep Creek area, Mason County, Texas  

E-Print Network [OSTI]

of the Llano uplift in Central Texas. The location and shape of tbe area are shown in Figure l. As the nano inplies, the upper part of Schep creek, as well as ths west branch of Panther Creek, &re within the area, ACCESSIBILITY Accessibility by road... is oausod by two internittont streans that aro deeply inoised into this plateau. The west branob of Panther Creek, which is the eastern nest stress, has developed a network of very short steep lateral oanyons in the areas of resistant Iinestone outorops...

Marshall, Hollis Dale

2012-06-07T23:59:59.000Z

169

Wind power for the Creek Nation. Final report  

SciTech Connect (OSTI)

An Enertech 1800 horizontal-axis wind powered electric generator was purchased and interphased with the electric utility system provided to the Creek Nation by the Public Service Company of Oklahoma. Objectives of the work include: to determine the economic feasibility of wind power for the Creek Nation region; to educate the Creek Nation and other Indian tribes about the potential use of wind power; and to accumulate valuable climatic data through an on-site wind survey at a height of 60' over a long period of time. (LEW)

Not Available

1982-01-01T23:59:59.000Z

170

Clear Creek Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Geothermal Area Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Clear Creek Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":64.85,"lon":-162.3,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

171

Smith Creek Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Geothermal Project Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Smith Creek Geothermal Project Project Location Information Coordinates 39.311388888889°, -117.55083333333° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.311388888889,"lon":-117.55083333333,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

172

Granite Creek Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Geothermal Project Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Granite Creek Geothermal Project Project Location Information Coordinates 41.058611111111°, -117.22777777778° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.058611111111,"lon":-117.22777777778,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

173

An insoluble residue study of the Cretaceous Cow Creek Limestone of Central Texas  

E-Print Network [OSTI]

Regional Stratigr chy. Local Stratigrapby 14 14 Honeycut Bend. Cyoress Creek. Hickory Creek. Cox Crossing Hamilton Pool. IB 19 2O 21 21 Rebecca Creek. PALEONTOLOGY MINERALOGY 23 25 Page Introduction 27 Constituents of the Sand... in Central Texas 17 5. Feldspar and. chert-quartz ratios and averages plotted for each section 37 6. Zonation and suggested field correlation of the Hickory Creek, Cox Crossing, Hamilton Pool, and Rebecca Creek sections 41 7. Zonation and suggested...

Morton, William Rogers

2012-06-07T23:59:59.000Z

174

Birch Creek Village Elec Util | Open Energy Information  

Open Energy Info (EERE)

Birch Creek Village Elec Util Birch Creek Village Elec Util Jump to: navigation, search Name Birch Creek Village Elec Util Place Alaska Utility Id 1747 Utility Location Yes Ownership M NERC Location AK Operates Generating Plant Yes Activity Generation Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Residential: $0.6070/kWh Commercial: $0.6150/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Birch_Creek_Village_Elec_Util&oldid=409048" Categories:

175

Panther Creek III Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Panther Creek III Wind Farm Panther Creek III Wind Farm Jump to: navigation, search Name Panther Creek III Wind Farm Facility Panther Creek III Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner E.On Climate & Renewables Developer E.On Climate & Renewables Location TX Coordinates 31.9685988°, -99.9018131° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.9685988,"lon":-99.9018131,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

176

Upper Hot Creek Ranch Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Upper Hot Creek Ranch Geothermal Area Upper Hot Creek Ranch Geothermal Area (Redirected from Upper Hot Creek Ranch Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Upper Hot Creek Ranch Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Northern Basin and Range Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure

177

Ophir Creek Space Heating Low Temperature Geothermal Facility | Open Energy  

Open Energy Info (EERE)

Ophir Creek Space Heating Low Temperature Geothermal Facility Ophir Creek Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Ophir Creek Space Heating Low Temperature Geothermal Facility Facility Ophir Creek Sector Geothermal energy Type Space Heating Location SW, Alaska Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

178

Silver Creek Farms Aquaculture Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Creek Farms Aquaculture Low Temperature Geothermal Facility Creek Farms Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name Silver Creek Farms Aquaculture Low Temperature Geothermal Facility Facility Silver Creek Farms Sector Geothermal energy Type Aquaculture Location Twin Falls, Idaho Coordinates 42.5629668°, -114.4608711° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

179

RFC Sand Creek Development LLC | Open Energy Information  

Open Energy Info (EERE)

RFC Sand Creek Development LLC RFC Sand Creek Development LLC Jump to: navigation, search Name RFC Sand Creek Development LLC Place Aurora, Colorado Zip 80014 Product Subsidiary of Republic Financial Corporation set up to invest in Sand Creek Energy LLC, a planned gas to liquid facility. Coordinates 39.325162°, -79.54975° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.325162,"lon":-79.54975,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

180

Workplace Charging Challenge Partner: ClipperCreek, Inc.  

Broader source: Energy.gov [DOE]

ClipperCreek is a leading manufacturer of Electric Vehicle Supply Equipment (EVSE). The company strives to advance the plug-in electric vehicle (PEV) market by helping to provide convenient PEV...

Note: This page contains sample records for the topic "fork poplar creek" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

White Creek and Nine Canyon wind farms Fact Sheet  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

(MW) of wind storage and shaping service to help integrate power from the proposed White Creek Wind Project in Klickitat Co., Wash., into the Northwest power system. BPA also...

182

HYDROLOGY OF BISHOP CREEK, CALIFORNIA: AN ISOTOPIC ANALYSIS 1  

E-Print Network [OSTI]

diverting Bishop creek water for hydroelectric power for many years. Recently there has been concern that must be released from the hydroelectric power plants to the channel, during certain times of the year

Standiford, Richard B.

183

Hot Creek Hatchery Aquaculture Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Hot Creek Hatchery Aquaculture Low Temperature Geothermal Facility Hot Creek Hatchery Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name Hot Creek Hatchery Aquaculture Low Temperature Geothermal Facility Facility Hot Creek Hatchery Sector Geothermal energy Type Aquaculture Location Mammoth Lakes, California Coordinates 37.648546°, -118.972079° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

184

Mantle Helium And Carbon Isotopes In Separation Creek Geothermal Springs,  

Open Energy Info (EERE)

Mantle Helium And Carbon Isotopes In Separation Creek Geothermal Springs, Mantle Helium And Carbon Isotopes In Separation Creek Geothermal Springs, Three Sisters Area, Central Oregon- Evidence For Renewed Volcanic Activity Or A Long Term Steady State System(Question) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Mantle Helium And Carbon Isotopes In Separation Creek Geothermal Springs, Three Sisters Area, Central Oregon- Evidence For Renewed Volcanic Activity Or A Long Term Steady State System(Question) Details Activities (1) Areas (1) Regions (0) Abstract: Here we present the helium and carbon isotope results from the initial study of a fluid chemistry-monitoring program started in the summer of 2001 near the South Sister volcano in central Oregon. The Separation Creek area which is several miles due west of the volcano is the locus of

185

Fourche Creek Wastewater Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Fourche Creek Wastewater Biomass Facility Fourche Creek Wastewater Biomass Facility Jump to: navigation, search Name Fourche Creek Wastewater Biomass Facility Facility Fourche Creek Wastewater Sector Biomass Facility Type Non-Fossil Waste Location Pulaski County, Arkansas Coordinates 34.7538615°, -92.2236667° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.7538615,"lon":-92.2236667,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

186

Panther Creek I Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Panther Creek I Wind Farm Panther Creek I Wind Farm Jump to: navigation, search Name Panther Creek I Wind Farm Facility Panther Creek I Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner E.On Climate & Renewables Developer E.On Climate & Renewables Location TX Coordinates 32.201592°, -101.406391° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.201592,"lon":-101.406391,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

187

Decreasing aqueous mercury concentrations to achieve safe levels in fish: examining the water-fish relationship in two point-source contaminated streams  

SciTech Connect (OSTI)

East Fork Poplar Creek (EFPC) and White Oak Creek (WOC) are two mercury-contaminated streams located on the Department of Energy s Oak Ridge Reservation in east Tennessee. East Fork Poplar Creek is the larger and more contaminated of the two, with average aqueous mercury (Hg) concentrations exceeding those in reference streams by several hundred-fold. Remedial actions over the past 20 years have decreased aqueous Hg concentrations in EFPC by 85 %. Fish fillet concentrations, however, have not responded to this decrease in aqueous Hg and remain above the U.S. Environmental Protection Agency s ambient water quality criterion (AWQC) of 0.3 mg/kg. The lack of correlation between aqueous and fish tissue Hg concentrations in this creek has led to questions regarding the usefulness of target aqueous Hg concentrations and strategies for future remediation efforts. White Oak Creek has a similar contamination history but aqueous Hg concentrations in WOC are an order of magnitude lower than in EFPC. Despite the lower aqueous Hg concentrations, fish fillet concentrations in WOC have also been above the AWQC, making the most recent aqueous Hg target of 200 ng/L in EFPC seem unlikely to result in an effective decrease in fillet Hg concentrations. Recent monitoring efforts in WOC, however, suggest an aqueous total Hg threshold above which Hg bioaccumulation in fish may not respond. This new information could be useful in guiding remedial actions in EFPC and in other point-source contaminated streams.

Mathews, Teresa J [ORNL; Southworth, George R [ORNL; Peterson, Mark J [ORNL; Roy, W Kelly [ORNL; Ketelle, Richard H [ORNL; Valentine, Charles S [ORNL; Gregory, Scott M [ORNL

2013-01-01T23:59:59.000Z

188

Cedar Creek: a significant paleotectonic feature of Williston basin  

SciTech Connect (OSTI)

Cedar Creek is the major anticlinal structure demarcating the southwest flank of the Williston basin. This pronounced fold developed through a geologic history of recurrent tectonic movements along a northwest-southeast striking fault zone. The four major periods of tectonism documentable in the Cedar Creek area from early Paleozoic through mid-Tertiary affected the local and regional distribution, erosion, and/or preservation, and, though moderately, the depositional facies of sedimentary strata since Ordovician time.

Clement, J.H.

1983-08-01T23:59:59.000Z

189

Effects of Cellulase and Xylanase Enzymes on the Deconstruction of Solids from Pretreatment of Poplar by Leading Technologies  

E-Print Network [OSTI]

Effects of Cellulase and Xylanase Enzymes on the Deconstruction of Solids from Pretreatment mass loadings of 5.8­116 mg/g of glucan in poplar wood prior to pretreat- ment. In addition, the enzyme by enzymes for all pretreatments, xylanase leverage on glucan removal decreased at high cellulase loadings

California at Riverside, University of

190

Effects of polyethylene mulch in a short-rotation, poplar plantation vary with weed-control strategies,  

E-Print Network [OSTI]

Effects of polyethylene mulch in a short-rotation, poplar plantation vary with weed polyethylene mulch (poly mulch) across a range of site conditions, weed-control treatments and genotypes rights reserved. Keywords: Polyethylene mulch; Woody crops; Weed control Forest Ecology and Management

Green, Scott

191

South Fork Flathead Watershed Westslope Cutthroat Trout Conservation Program (DOE/EIS-0353) (05/01/06)  

Broader source: Energy.gov (indexed) [DOE]

South Fork Flathead Watershed South Fork Flathead Watershed Westslope Cutthroat Trout Conservation Program RECORD OF DECISION Summary The Bonneville Power Administration (BPA) has decided to fund Montana Fish, Wildlife, and Parks Department's (MFWP) South Fork Flathead Watershed Westslope Cutthroat Trout Conservation Program. This program is the Proposed Action in the South Fork Flathead Watershed Westslope Cutthroat Trout Conservation Program EIS (DOE/EIS- 0353, July 2005). BPA will fund the program pursuant to its authority under the Pacific Northwest Electric Power Planning and Conservation Act (Northwest Power Act) to protect, mitigate, and enhance fish affected by the Federal Columbia River Power System (FCRPS) in the Columbia River Basin. The project constitutes a portion of the Hungry

192

Basement/cover rock relations of the Dry Fork Ridge Anticline termination, northeastern Bighorn Mountains, Wyoming and Montana  

E-Print Network [OSTI]

BASEMENT/COVER ROCK RELATIONS OF THE DRY FORK RIDGE ANTICLINE TERMINATION, NORTHEASTERN BIGHORN MOUNTAINS, WYOMING AND MONTANA A Thesis by PETER HILL HENNINGS Submitted to the Graduate College of Texas ARM University in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE August 1986 Major Subject: Geology BASEMENT/COVER ROCK RELATIONS OF THE DRY FORK RIDGE ANTICLINE TERMINATION, NORTHEASTERN BIGHORN MOUNTAINS, WYOMING AND MONTANA A Thesis by PETER HILL HENNINGS Approved...

Hennings, Peter Hill

1986-01-01T23:59:59.000Z

193

Carbon Sequestration Rates in Organic Layers of Soils Under the Grey Poplar (Populus x canescens) Stands Impacted by Heavy Metal Pollution  

Science Journals Connector (OSTI)

To describe carbon sequestration processes in organic layers of forest soils ... limit-value method was used to estimate C sequestration rate in poplar litters. A two-year ... using the ignition method. Input of ...

Agnieszka Medy?ska-Juraszek; Leszek Kuchar

2013-01-01T23:59:59.000Z

194

Ecological effects of contaminants and remedial actions in Bear Creek  

SciTech Connect (OSTI)

Ecological studies of the Bear Creek watershed, which drains the area surrounding several Oak Ridge Y-12 Plant waste disposal facilities, were initiated in May 1984 and are continuing at present. These studies consisted of an initial, detailed characterization of the benthic invertebrate and fish communities in Bear Creek, and they were followed by a presently ongoing monitoring phase that involves reduced sampling intensities. The characterization phase utilized two approaches: (1) instream sampling of benthic invertebrate and fish communities in Bear Creek to identify spatial and temporal patterns in distribution and abundance and (2) laboratory bioassays on water samples from Bear Creek and selected tributaries to identify potential sources of toxicity to biota. The monitoring phase of the ecological program relates to the long-term goals of identifying and prioritizing contaminant sources and assessing the effectiveness of remedial actions. It continues activities of the characterization phase at less frequent intervals. The Bear Greek Valley is a watershed that drains the area surrounding several closed Oak Ridge Y-12 Plant waste disposal facilities. Past waste disposal practices in Bear Creek Valley resulted in contamination of Bear Creek and consequent ecological damage. Extensive remedial actions have been proposed at waste sites, and some of the have been implemented or are now underway. The proposed study plan consists of an initial, detailed characterization of the benthic invertebrate and fish communities in Bear Creek in the first year followed by a reduction in sampling intensity during the monitoring phase of the plan. The results of sampling conducted from May 1984 through early 1989 are presented in this report.

Southworth, G.R.; Loar, J.M.; Ryon, M.G.; Smith, J.G.; Stewart, A.J. [Oak Ridge National Lab., TN (United States); Burris, J.A. [C. E. Environmental, Inc., Tallahassee, FL (United States)

1992-01-01T23:59:59.000Z

195

DoE/..A South Fork Snake RiverPalisades Wildlife Mitigation Project  

Broader source: Energy.gov (indexed) [DOE]

..A ..A -- South Fork Snake RiverPalisades Wildlife Mitigation Project Final Environmental Assessment ig of No Significant Impact and Findi RECEIVED @ S T 1 JAN 3 1 DOEIEA-0956 September 1995 SOUTH FORK SNAKE RIVER / PALISADES WILDLIFE MITIGATION PROJECT ENVIRONMENTAL ASSESSMENT DOE EA # 0956 DECLAIMER This report was prepared as an a m u n t of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their ' employees, makes any warranty, express or implied, or assumes any legal liability or responsi- , bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Refer-

196

External Cavity Quantum Cascade Laser for Quartz Tuning Fork Photoacoustic Spectroscopy of Broad Absorption Features  

SciTech Connect (OSTI)

We demonstrate mid-infrared spectroscopy of large molecules with broad absorption features using a tunable external cavity quantum cascade laser. Absorption spectra for two different Freons are measured over the range 1130-1185 cm-1 with 0.2 cm-1 resolution via laser photoacoustic spectroscopy with quartz tuning forks as acoustic transducers. The measured spectra are in excellent agreement with published reference absorption spectra.

Phillips, Mark C.; Myers, Tanya L.; Wojcik, Michael D.; Cannon, Bret D.

2007-05-01T23:59:59.000Z

197

Diagenesis of the Clear Fork Formation (Leonardian) in the Monahans field, west Texas  

E-Print Network [OSTI]

, 1985; Ruppel and Gander, 1988). Silver and Todd (1969) discussed Leonardian sedimentation in the northern Midland Basin. They suggested that the Clear Fork platform margin consists of oolitic and skeletal sand banks, while inner platform facies... dolomite (planar-e fabric of Sibley and Gregg, 1987; Fig. SE). Mosaics of coarse, euhedral to subhedral crystals with cloudy cores and clear rims commonly replace skeletal grains. With increasing depositional depth, euhedral crystals are not restricted...

Hedrick, Carroll Lee

2012-06-07T23:59:59.000Z

198

Two poplar methyl salicylate esterases display comparable biochemical properties but divergent expression patterns  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Two Two poplar methyl salicylate esterases display comparable biochemical properties but divergent expression patterns Nan Zhao a , Ju Guan a , Farhad Forouhar b , Timothy J. Tschaplinski c , Zong-Ming Cheng a , Liang Tong b , Feng Chen a, * a Department of Plant Sciences, University of Tennessee, 252 Ellington Plant Science Bldg., 2431 Joe Johnson Drive, Knoxville, TN 37996, USA b Department of Biological Sciences, Northeast Structural Genomics Consortium, Columbia University, New York, NY 10027, USA c Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA a r t i c l e i n f o Article history: Received 3 June 2008 Received in revised form 27 October 2008 Available online 10 January 2009 Keywords: Black cottonwood Populus trichocarpa Methyl esterase SABP2 Methyl salicylate Salicylic acid Gene family Molecular modeling a b s t r a c t Two genes encoding proteins

199

Wolf Creek Nuclear Operating Corporation | Open Energy Information  

Open Energy Info (EERE)

Wolf Creek Nuclear Operating Corporation Wolf Creek Nuclear Operating Corporation Jump to: navigation, search Name Wolf Creek Nuclear Operating Corporation Place Burlington, Kansas Zip 66839-0411 Product Wolf Creek Nuclear Operating Corporation operates the Wolf Creek Generating Station, Kansas' first nuclear power generating station, for three utility owners in Kansas and Missouri. Coordinates 44.446275°, -108.431704° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.446275,"lon":-108.431704,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

200

EA-1219: Hoe Creek Underground Coal Gasification Test Site Remediation, Campbell County, Wyoming  

Broader source: Energy.gov [DOE]

This EA evaluates the environmental impacts for the proposed Hoe Creek Underground Coal Gasification Test Site Remediation that would be performed at the Hoe Creek site in Campbell County, Wyoming.

Note: This page contains sample records for the topic "fork poplar creek" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Town of Oak Creek, Colorado (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Creek Creek Place Colorado Utility Id 14054 Utility Location Yes Ownership M NERC Location WECC NERC SPP Yes NERC WECC Yes Operates Generating Plant Yes Activity Generation Yes Activity Buying Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Rate 101: Residential Residential Rate 110: Commercial Commercial Rate 202: General Service Three Phase Commercial Average Rates Residential: $0.0965/kWh Commercial: $0.0842/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Town_of_Oak_Creek,_Colorado_(Utility_Company)&oldid=411791

202

Oak Creek Energy Systems Wind Farm I | Open Energy Information  

Open Energy Info (EERE)

I I Facility Oak Creek Energy Systems Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Oak Creek Energy Systems Developer Oak Creek Energy Systems Energy Purchaser Southern California Edison Co Location Tehachapi CA Coordinates 35.07665°, -118.25529° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.07665,"lon":-118.25529,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

203

DOE - Office of Legacy Management -- Lost Creek - WY 01  

Office of Legacy Management (LM)

Lost Creek - WY 01 Lost Creek - WY 01 FUSRAP Considered Sites Site: Lost Creek (WY.01 ) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: This site is one of a group of 77 FUSRAP considered sites for which few, if any records are available in their respective site files to provide an historical account of past operations and their relationship, if any, with MED/AEC operations. Reviews of contact lists, accountable station lists, health and safety records and other documentation of the period do not provide sufficient information to warrant further search of historical records for information on these sites. These site files remain "open" to

204

Panther Creek II Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Creek II Wind Farm Creek II Wind Farm Facility Panther Creek II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner E.On Climate & Renewables Developer E.On Climate & Renewables Energy Purchaser N/a Location TX Coordinates 32.201592°, -101.406391° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.201592,"lon":-101.406391,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

205

Oak Creek Energy Systems Wind Farm III | Open Energy Information  

Open Energy Info (EERE)

III III Facility Oak Creek Energy Systems Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Oak Creek Energy Systems Developer Oak Creek Energy Systems Energy Purchaser Southern California Edison Co Location Tehachapi CA Coordinates 35.07665°, -118.25529° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.07665,"lon":-118.25529,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

206

Oak Creek Energy Systems Wind Farm II | Open Energy Information  

Open Energy Info (EERE)

II II Facility Oak Creek Energy Systems Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Oak Creek Energy Systems Developer Oak Creek Energy Systems Energy Purchaser Southern California Edison Co Location Tehachapi CA Coordinates 35.07665°, -118.25529° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.07665,"lon":-118.25529,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

207

Upper Hot Creek Ranch Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Upper Hot Creek Ranch Geothermal Area Upper Hot Creek Ranch Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Upper Hot Creek Ranch Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Northern Basin and Range Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

208

Microsoft Word - SilverCreek-Fiber-CX.doc  

Broader source: Energy.gov (indexed) [DOE]

John Brank John Brank Customer Service Engineer - TPC-OLYMPIA Proposed Action: Silver Creek Substation fiber project Budget Information: Work Order 253198, Task 03 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B4.7 Adding fiber optic cable to transmission structures or burying fiber optic cable in existing transmission line rights of way. Locations: Silver Creek Substation, Lewis County, Washington (T12N R2E SEC17) Proposed by: Bonneville Power Administration (BPA) and Lewis County Public Utility District (PUD) Description of the Proposed Action: BPA proposes to connect a fiber optic cable from an existing Lewis County PUD transmission line into the BPA Silver Creek Substation in Lewis County, Washington. The fiber project is needed to increase transmission system

209

Fast-growing willow shrub named `Fish Creek`  

DOE Patents [OSTI]

A distinct male cultivar of Salix purpurea named `Fish Creek`, characterized by rapid stem growth producing greater than 30% more woody biomass than either of its parents (`94001` and `94006`) and 20% more biomass than a current production cultivar (`SV1`). `Fish Creek` can be planted from dormant stem cuttings, produces multiple stems after coppice, and the stem biomass can be harvested when the plant is dormant. In the spring following harvest, the plant will re-sprout very vigorously, producing new stems that can be harvested after two to four years of growth. This harvest cycle can be repeated several times. The stem biomass can be chipped and burned as a source of renewable energy, generating heat and/or electricity. `Fish Creek` displays a low incidence of rust disease or damage by beetles or sawflies.

Abrahamson, Lawrence P. (Marcellus, NY); Kopp, Richard F. (Marietta, NY); Smart, Lawrence B. (Geneva, NY); Volk, Timothy A. (Syracuse, NY)

2007-05-08T23:59:59.000Z

210

Protect and Restore Lolo Creek Watershed : Annual Report CY 2005.  

SciTech Connect (OSTI)

The Nez Perce Tribe Department of Fisheries Resource Management, Watershed Division approaches watershed restoration with a ridge-top to ridge-top approach. Watershed restoration projects within the Lolo Creek watershed are coordinated with the Clearwater National Forest and Potlatch Corporation. The Nez Perce Tribe began watershed restoration projects within the Lolo Creek watershed of the Clearwater River in 1996. Fencing to exclude cattle for stream banks, stream bank stabilization, decommissioning roads, and upgrading culverts are the primary focuses of this effort. The successful completion of the replacement and removal of several passage blocking culverts represent a major improvement to the watershed. These projects, coupled with other recently completed projects and those anticipated in the future, are a significant step in improving habitat conditions in Lolo Creek.

McRoberts, Heidi

2006-03-01T23:59:59.000Z

211

White Creek Wind Power Project | Open Energy Information  

Open Energy Info (EERE)

White Creek Wind Power Project White Creek Wind Power Project Facility White Creek Wind Power Project Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Last Mile Electric Cooperative Developer Last Mile Electric Cooperative Energy Purchaser Last Mile Electric Cooperative Location Klickitat County Coordinates 45.853153°, -120.289578° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.853153,"lon":-120.289578,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

212

Alameda Creek Alliance P.O. Box 2626 Niles, CA 94536 (510) 499-9185  

E-Print Network [OSTI]

Alameda Creek Alliance P.O. Box 2626 · Niles, CA · 94536 · (510) 499-9185 e-mail: alamedacreek@hotmail.com web site: www.alamedacreek.org Alameda Creek Alliance Annual Membership Dinner Presentation Alliance. Join the Alameda Creek Alliance for a presentation by Robin Grossinger of the San Francisco

213

Geology of the Salt Creek area, Mason County, Texas  

E-Print Network [OSTI]

and to the entrapment of. surface water in the fractures. GEOLXiBPBOLOGY The Salt Creek area in @aeon County, Texas is located on the southwestern flank of the Llano Uplift, a structural dome which has been reduced to a topographic basin by erosional processes.... STSUCT "SALCEOL00Y IIegional Structure The Llano region, which includes the Salt Creek area, is a structural dome which has been reduced to a topographic basin by erosional processes. The dose is roughly elliptical with a maximum diameter...

Harwood, William Eugene

1959-01-01T23:59:59.000Z

214

Gas Phase Photoacoustic Sensor at 8.41 mu m Using Quartz Tuning Forks and Amplitude Modulated Quantum Cascade Lasers  

SciTech Connect (OSTI)

We demonstrate the performance of a novel long-wave infrared photoacoustic laser absorbance spectrometer for gas-phase species using an amplitude modulated (AM) quantum cascade (QC) laser and a quartz tuning fork microphone. Photoacoustic signal was generated by focusing the output of a Fabry-Perot QC laser operating at 8.41 ?m between the legs of a quartz tuning fork which served as a transducer for the transient acoustic pressure wave. The QC laser was modulated at the resonant frequency of the tuning fork (32.8 kHz) and delivered a modest 5.3 mW at the tuning fork. This spectrometer was calibrated using the infrared absorber Freon-134a by performing a simultaneous absorption measurement using a 35 cm absorption cell. The NEAS of this instrument was determined to be 2 x 10{sup -8} W cm-1 Hz{sup -1/2}. A corresponding theoretical analysis of the instrument sensitivity is presented and is capable of quantitatively reproducing the experimental NEAS, indicating that the fundamental sensitivity of this technique is limited by the noise floor of the tuning fork itself.

Wojcik, Michael D.; Phillips, Mark C.; Cannon, Bret D.; Taubman, Matthew S.

2006-10-01T23:59:59.000Z

215

Cedar Creek Wind Farm II (GE) | Open Energy Information  

Open Energy Info (EERE)

Cedar Creek Wind Farm II (GE) Cedar Creek Wind Farm II (GE) Jump to: navigation, search Name Cedar Creek Wind Farm II (GE) Facility Cedar Creek II (GE) Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner BP Wind Energy Developer BP Wind Energy Energy Purchaser Xcel Energy Location Weld County CO Coordinates 40.868652°, -104.092398° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.868652,"lon":-104.092398,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

216

Oak Creek - Phase 2A | Open Energy Information  

Open Energy Info (EERE)

Phase 2A Phase 2A Jump to: navigation, search Name Oak Creek - Phase 2A Facility Oak Creek - Phase 2A Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Oak Creek Energy Systems Developer M&N Wind Power/Oak Creek Energy Systems Energy Purchaser Southern California Edison Co Location Tehachapi CA Coordinates 35.07665°, -118.25529° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.07665,"lon":-118.25529,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

217

Oak Creek Phase I Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Wind Farm Wind Farm Jump to: navigation, search Name Oak Creek Phase I Wind Farm Facility Oak Creek Phase I Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Nichimen America/Oak Creek Energy Systems Developer M&N Wind Power/Oak Creek Energy Systems Energy Purchaser Southern California Edison Co Location Tehachapi CA Coordinates 35.07665°, -118.25529° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.07665,"lon":-118.25529,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

218

The geoarchaeology of Buttermilk Creek, Bell County, Texas  

E-Print Network [OSTI]

was conducted. Buttermilk Creek is a 13 km stream incised into limestone bedrock with a drainage basin size of 43 kM2 , a stream gradient of 8.5 m/km, and a sinuosity of 1.26. This project was undertaken with two objectives in mind-, to create a...

Gibson, Brandy Deanne

2012-06-07T23:59:59.000Z

219

EIS-0415: Deer Creek Station Energy Facility Project, South Dakota  

Broader source: Energy.gov [DOE]

This EIS analyzes WAPA's decision to approve the interconnection request made by Basin Electric Power Cooperative (Basin Electric) with the USDA Rural Utilities Service (RUS) proposing to provide financial assistance, for the Deer Creek Station Project, a proposed 300-megawatt (MW) natural gas-fired generation facility.

220

Tillman Creek Mitigation Site As-Build Report.  

SciTech Connect (OSTI)

This as-built report describes site conditions at the Tillman Creek mitigation site in South Cle Elum, Washington. This mitigation site was constructed in 2006-2007 to compensate for wetland impacts from the Yakama Nation hatchery. This as-built report provides information on the construction sequence, as-built survey, and establishment of baseline monitoring stations.

Gresham, Doug [Otak, Inc.

2009-05-29T23:59:59.000Z

Note: This page contains sample records for the topic "fork poplar creek" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

PRE-DESIGN INVESTIGATION WORK PLAN FOR COLDWATER CREEK FROM  

E-Print Network [OSTI]

Formerly Utilized Sites Remedial Action Program #12;#12;REVISION 0 PRE-DESIGN INVESTIGATION WORK PLANREVISION 0 PRE-DESIGN INVESTIGATION WORK PLAN FOR COLDWATER CREEK FROM FROST AVENUE TO ST. DENIS.S. Army Corps of Engineers, St. Louis District Office, Formerly Utilized Sites Remedial Action Program

US Army Corps of Engineers

222

Evidence of Streamflow and Sediment Effects on Juvenile Coho and Benthic Macroinvertebrates of Lagunitas Creek and San Geronimo Creek, Marin County, California  

E-Print Network [OSTI]

Resh. 2008. Quantitative linkages among sediment supply,streambed fine sediment, and benthic macroinvertebrates inData: Lagunitas Creek Sediment and Riparian Management Plan,

Ball, Joanie; Diver, Sibyl; Hwan, Jason

2009-01-01T23:59:59.000Z

223

Thermoelastic investigation of a quartz tuning fork used in infrared spectroscopy  

SciTech Connect (OSTI)

The performances of quartz tuning forks (QTF) used in infrared spectroscopy for pollutant detection are investigated. The transduction between light and QTF vibration is elucidated, thanks to QTF encapsulation under vacuum. From the sensitivity enhancement which is obtained, we conclude that their interaction is photo-thermoelastic rather than photo-thermoacoustic. A mapping of the local sensitivity of the QTF is obtained by scanning its faces with the excitation probe beam. The comparison between the signal mapping and the theoretical strain mapping indicates that the most efficient areas of the QTF correspond to the areas where the strain or stress is the highest.

Spajer, M., E-mail: michel.spajer@univ-fcomte.fr; Cavallier, B.; Euphrasie, S.; Matten, G.; Vacheret, X.; Vairac, P.; Vernier, D. [Institut FEMTO-ST, Universit de Franche-Comt, CNRS, ENSMM, UTBM, 32 avenue de l'Observatoire, F-25044 Besanon cedex (France)] [Institut FEMTO-ST, Universit de Franche-Comt, CNRS, ENSMM, UTBM, 32 avenue de l'Observatoire, F-25044 Besanon cedex (France); Jalocha, A. [CILAS, Dpartement de Photonique, 8 avenue Buffon, BP 6319, F-45000 Orlans (France)] [CILAS, Dpartement de Photonique, 8 avenue Buffon, BP 6319, F-45000 Orlans (France)

2013-11-11T23:59:59.000Z

224

Oxbow Conservation Area; Middle Fork John Day River, Annual Report 2001-2002.  

SciTech Connect (OSTI)

In early 2001, the Confederated Tribes of Warm Springs, through their John Day Basin Office, concluded the acquisition of the Middle Fork Oxbow Ranch. Under a memorandum of agreement with the Bonneville Power Administration (BPA), the Tribes are required to provided BPA an 'annual written report generally describing the real property interests in the Project, HEP analyses undertaken or in progress, and management activities undertaken or in progress'. This report is to be provided to the BPA by 30 April of each year. This is the first annual report filed for the Oxbow Ranch property.

Robertson, Shaun; Smith, Brent; Cochran, Brian

2003-04-01T23:59:59.000Z

225

A National Assessment of Promising Areas for Switchgrass, Hybrid Poplar, or Willow Energy Crop Production  

SciTech Connect (OSTI)

The objective of this paper is to systematically assess the cropland acreage that could support energy crops and the expected farm gate and delivered prices of energy crops. The assessment is based on output from two modeling approaches: (1) the Oak Ridge County-Level Energy Crop (ORECCL) database (1996 version) and (2) the Oak Ridge Integrated Bioenergy Analysis System (ORIBAS). The former provides county-level estimates of suitable acres, yields, and farmgate prices of energy crops (switchgrass, hybrid poplar, willow) for all fifty states. The latter estimates delivered feedstock prices and quantities within a state at a fine resolution (1 km2) and considers the interplay between transportation costs, farmgate prices, cropland density, and facility demand. It can be used to look at any type of feedstock given the appropriate input parameters. For the purposes of this assessment, ORIBAS has been used to estimate farmgate and delivered switchgrass prices in 11 states (AL, FL, GA, IA, M N, MO, ND, NE, SC, SD, and TN). Because the potential for energy crop production can be considered from several perspectives, and is evolving as policies, economics and our basic understanding of energy crop yields and production costs change, this assessment should be viewed as a snapshot in time.

Graham, R.L.; Walsh, M.E.

1999-02-01T23:59:59.000Z

226

Water extraction kinetics of metals, arsenic and dissolved organic carbon from industrial contaminated poplar leaves  

Science Journals Connector (OSTI)

Abstract In industrial areas, tree leaves contaminated by metals and metalloids could constitute a secondary source of pollutants. In the present study, water extraction kinetics of inorganic elements (IE: Pb, Zn, Cd, As, Fe and Mn), dissolved organic carbon, pH and biological activity were studied for industrial contaminated poplar leaves. Moreover, the distribution of the IE through the size fractions of the associated top soil was measured. High quantities of Mn, Zn and As and polysaccharides were released in the solution from the strongly contaminated leaves. The kinetic of release varied with time and metal type. The solution pH decreased while dissolved organic contents increased with time after 30 days. Therefore, these contaminated leaves could constitute a source of more available organic metals and metalloids than the initial inorganic process particles. However, the distribution of the IE through the size fractions of the top soil suggested that a great part of the released IE was adsorbed, reducing in consequence their transfers and bioavailability. It's concluded that mobility/bioavailability and speciation of metals and metalloids released from the decomposition of polluted tree leaves depends on soil characteristics, pollutant type and litter composition, with consequences for environmental risk assessment.

Muhammad Shahid; Tiantian Xiong; Maryse Castrec-Rouelle; Tibo Leveque; Camille Dumat

2013-01-01T23:59:59.000Z

227

Volunteers begin transforming Rock Creek-Clark Fork land back to prairie http://missoulian.com/news/state-and-regional/volunteers-begin-process-of-transforming-rock-creek-clark-fork-land/article_0a662764-afa2-11e2-bfb5-0019bb2963f4.html[4/28/2013 8:41:30  

E-Print Network [OSTI]

and Wildlife Conservation Trust, Trout Unlimited, Resources Legacy Fund and private donors. But getting is only recorded a telephone conversation in 2011 in which one of the Boston bombing s... Bangladesh Factory Collapse Death Toll Nears 350 Police in Bangladesh took six people into custody in connection

Vonessen, Nikolaus

228

Seismic expression of Red Fork channels in Major and Kay Counties, Oklahoma  

SciTech Connect (OSTI)

This paper investigates the application of regional seismic to exploration and development Red Fork sands of the Cherokee Group, in Major and Kay Counties, Oklahoma. A computer-aided exploration system (CAEX) was used to justify the subtle seismic expressions with the geological interpretation. Modeling shows that the low-velocity shales are the anomalous rock in the Cherokee package, which is most represented by siltstone and thin sands. Because the Red Fork channel sands were incised into or deposited with laterally time-equivalent siltstones, no strong reflection coefficient is associated with the top of the sands. The objective sands become a seismic anomaly only when they cut into and replace a low-velocity shale. This knowledge allows mapping the channel thickness by interpreting the shale thickness from seismic data. A group shoot line in Major County, Oklahoma, has been tied to the geologic control, and the channel thicknesses have been interpreted assuming a detectable vertical resolution of 10 ft. A personal computer-based geophysical work station is used to construct velocity logs representative of the geology to produce forward-modeled synthetic seismic sections, and to display, in color, the seismic trace attributes. These synthetic sections are used as tools to compare with and interpret the seismic line and to evaluate the interpretative value of lowest cost, lesser quality data versus reprocessing or new data acquisition.

Hanoch, C.A.

1987-08-01T23:59:59.000Z

229

Mesquite Creek, Arizona: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Mesquite Creek, Arizona: Energy Resources Mesquite Creek, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.9666691°, -114.568575° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.9666691,"lon":-114.568575,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

230

Microsoft Word - CX-Wautoma-Rock Creek_WEB.doc  

Broader source: Energy.gov (indexed) [DOE]

3, 2010 3, 2010 REPLY TO ATTN OF: KEP-4 SUBJECT: Environmental Clearance Memorandum Corinn Castro Project Manager - TELM-TPP-3 Proposed Action: Replace spacer dampers along the Wautoma-Rock Creek No. 1 500-kV Transmission Line. Budget Information: Work Order # 00234527 PP&A Project No.: PP&A 1507 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.3, Routine maintenance activities...for structures, rights-of-way, infrastructures such as roads, equipment...routine maintenance activities, corrective....are required to maintain... infrastructures...in a condition suitable for a facility to be used for its designed purpose. Location: Wautoma-Rock Creek No. 1 500-kV Transmission Line. The proposed project is

231

Microsoft Word - CLT_Tide_Creek_Land_Acquisition_CX.docx  

Broader source: Energy.gov (indexed) [DOE]

Jason Karnezis Jason Karnezis Project Manager - KEWL-4 Proposed Action: Tide Creek Property Funding Fish and Wildlife Project No. & Contract No.: 2010-073-00, BPA-006247 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.25 Real property transfers for cultural resources protection, habitat preservation, and wildlife management Location: T6N, R2W, S25 in Columbia County, Oregon Proposed by: Bonneville Power Administration (BPA) Description of the Proposed Action: BPA proposes to fund Columbia Land Trust (CLT) for the purchase of approximately 41 acres of historic Columbia River floodplain in Columbia County, Oregon. The CLT will own and manage the Tide Creek property for fish and wildlife conservation purposes and BPA will receive a conservation easement to ensure that the habitat

232

Cave Creek, Arizona: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Cave Creek, Arizona: Energy Resources Cave Creek, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.8333716°, -111.9507042° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.8333716,"lon":-111.9507042,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

233

Cedar Creek Wind Farm I (Mitsubishi) | Open Energy Information  

Open Energy Info (EERE)

Mitsubishi) Mitsubishi) Jump to: navigation, search Name Cedar Creek Wind Farm I (Mitsubishi) Facility Cedar Creek Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Babcock & Brown/BP America Developer Babcock & Brown/BP America Energy Purchaser Xcel Energy Location Weld County east of Grover CO Coordinates 40.873578°, -104.07825° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.873578,"lon":-104.07825,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

234

Swartz Creek, Michigan: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Swartz Creek, Michigan: Energy Resources Swartz Creek, Michigan: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.9572508°, -83.8305144° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.9572508,"lon":-83.8305144,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

235

Clear Creek County, Colorado: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Clear Creek County, Colorado: Energy Resources Clear Creek County, Colorado: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.6904464°, -105.6412527° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.6904464,"lon":-105.6412527,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

236

Cedar Creek Wind Farm I (GE) | Open Energy Information  

Open Energy Info (EERE)

GE) GE) Jump to: navigation, search Name Cedar Creek Wind Farm I (GE) Facility Cedar Creek Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Babcock & Brown/BP America Developer Babcock & Brown/BP America Energy Purchaser Xcel Energy Location Weld County east of Grover CO Coordinates 40.873578°, -104.07825° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.873578,"lon":-104.07825,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

237

Cedar Creek Wind Farm II (Nordex) | Open Energy Information  

Open Energy Info (EERE)

Farm II (Nordex) Farm II (Nordex) Jump to: navigation, search Name Cedar Creek Wind Farm II (Nordex) Facility Cedar Creek II (Nordex) Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner BP Wind Energy Developer BP Wind Energy Energy Purchaser Xcel Energy Location Weld County CO Coordinates 40.874623°, -104.092569° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.874623,"lon":-104.092569,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

238

Coconut Creek, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Coconut Creek, Florida: Energy Resources Coconut Creek, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 26.2517482°, -80.1789351° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":26.2517482,"lon":-80.1789351,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

239

Blue Creek Winter Range: Wildlife Mitigation Project Final Environmental Assessment  

Broader source: Energy.gov (indexed) [DOE]

Creek Winter Range: Creek Winter Range: Wildlife Mitigation Project Final Environmental Assessment I F 8 - Spokane Tribe of Indians Bonneville POWER ADMINISTRATION B r n u r r o N aF THIS D O C ~ I H ~ E E 1% utifi_;'iUzi: w DOVEA-0939 November1 994 Bureay of Indian Affairs DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best available original document. DISCLAIMER This report was .prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or

240

Ballenger Creek, Maryland: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Ballenger Creek, Maryland: Energy Resources Ballenger Creek, Maryland: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.3726022°, -77.4352636° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.3726022,"lon":-77.4352636,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "fork poplar creek" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Grape Creek, Texas: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Grape Creek, Texas: Energy Resources Grape Creek, Texas: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 31.5793231°, -100.5475979° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.5793231,"lon":-100.5475979,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

242

Fritz Creek, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Fritz Creek, Alaska: Energy Resources Fritz Creek, Alaska: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 59.7361111°, -151.2952778° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":59.7361111,"lon":-151.2952778,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

243

Burnt Creek-Riverview, North Dakota: Energy Resources | Open Energy  

Open Energy Info (EERE)

Burnt Creek-Riverview, North Dakota: Energy Resources Burnt Creek-Riverview, North Dakota: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 46.9583751°, -100.7982422° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":46.9583751,"lon":-100.7982422,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

244

Cantua Creek, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Cantua Creek, California: Energy Resources Cantua Creek, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 36.50134°, -120.3162666° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.50134,"lon":-120.3162666,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

245

MHK Projects/Coal Creek Project | Open Energy Information  

Open Energy Info (EERE)

Creek Project Creek Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.3617,"lon":-101.094,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

246

Two Creeks, Wisconsin: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Creeks, Wisconsin: Energy Resources Creeks, Wisconsin: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.3022186°, -87.5631378° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.3022186,"lon":-87.5631378,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

247

Microsoft Word - Delrio_ChiefJo_FosterCreek_CX.docx  

Broader source: Energy.gov (indexed) [DOE]

6, 2012 6, 2012 REPLY TO ATTN OF: KEC-4 SUBJECT: Environmental Clearance Memorandum Ben Deschuytter Project Manager -TEP-CSB-1 Proposed Action: D Analog Communications Retirement at Del Rio, Chief Joseph, and Foster Creek Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.19 Microwave, meteorological, and radio towers Location: Douglas County, Washington Proposed by: Bonneville Power Administration (BPA) Description of the Proposed Action: BPA proposes to upgrade communication equipment at three existing facilities in Douglas County, Washington. The work would occur at two of BPA's substations, Del Rio and Chief Joseph, and at BPA's Foster Creek radio site. Activities at these sites are in connection with the retirement of BPA's D analog communication system. At Del Rio, activities would

248

Willow Creek Wildlife Mitigation- Project Final Environmental Assessment  

Broader source: Energy.gov (indexed) [DOE]

Willow Creek Wildlife Mitigation- Project Willow Creek Wildlife Mitigation- Project Final Environmental Assessment DOE-EA-1 023 Bonneville POWER ADMINISTRATION April 1995 DISCLAIMER This report w a s prepared a s an account of work sponsored by an agency of t h e United States Government. Neither t h e United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or a s s u m e s any legal liability or responsibility for t h e accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents t h a t its use would not infringe privately owned rights. Reference herein to any specific commercial, product, process, or service by trade name, trademark, manufacturer, or otherwise d o e s not necessarily constitute or imply its

249

Francis Creek, Wisconsin: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Creek, Wisconsin: Energy Resources Creek, Wisconsin: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.199439°, -87.7214755° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.199439,"lon":-87.7214755,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

250

City of Battle Creek, Nebraska (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

City of Battle Creek City of Battle Creek Place Nebraska Utility Id 1346 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes Activity Distribution Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png City Accounts Commercial Commercial All Electric Commercial Commercial- Single Phase Commercial Commercial- Three Phase Commercial Commercial- Three Phase School Commercial Farm- Three Phase Commercial Large Commercial Electric Heating Commercial Large Power Industrial Residential Residential Residential All Electric Residential Rural Residential Residential

251

Gas Phase Photoacoustic Spectroscopy in the long-wave IR using Quartz Tuning Forks and Amplitude Modulated Quantum Cascade Lasers  

SciTech Connect (OSTI)

A paper to accompany a 20 minute talk about the progress of a DARPA funded project called LPAS. ABSTRACT: We demonstrate the performance of a novel long-wave infrared photoacoustic laser absorbance spectrometer for gas-phase species using an amplitude modulated (AM) quantum cascade (QC) laser and a quartz tuning fork microphone. Photoacoustic signal was generated by focusing the output of a Fabry-Perot QC laser operating at 8.41 micron between the legs of a quartz tuning fork which served as a transducer for the transient acoustic pressure wave. The QC laser was modulated at the resonant frequency of the tuning fork (32.8 kHz). This sensor was calibrated using the infrared absorber Freon-134a by performing a simultanious absorption measurement using a 35 cm absorption cell. The NEAS of this instrument was determined to be 2 x 10^-8 W cm^-1 /Hz^1/2 and the fundamental sensitivity of this technique is limited by the noise floor of the tuning fork itself.

Wojcik, Michael D.; Phillips, Mark C.; Cannon, Bret D.

2006-12-31T23:59:59.000Z

252

Asotin Creek Instream Habitat Alteration Projects: 1998 Habitat Evaluation Surveys.  

SciTech Connect (OSTI)

The Asotin Creek Model Watershed Master Plan was completed 1994. The plan was developed by a landowner steering committee for the Asotin County Conservation District (ACCD), with technical support from the various Federal, State and local entities. Actions identified within the plan to improve the Asotin Creek ecosystem fall into four main categories, (1) Stream and Riparian, (2) Forestland, (3) Rangeland, and (4) Cropland. Specific actions to be carried out within the stream and in the riparian area to improve fish habitat were, (a) create more pools, (b) increase the amount of large organic debris (LOD), (c) increase the riparian buffer zone through tree planting, and (d) increase fencing to limit livestock access; additionally, the actions are intended to stabilize the river channel, reduce sediment input, and protect private property. Fish species of main concern in Asotin Creek are summer steelhead (Oncorhynchus mykiss), spring chinook (Oncorhynchus tshawytscha), and bull trout (Salvelinus confluentus). Spring chinook in Asotin Creek are considered extinct (Bumgarner et al. 1998); bull trout and summer steelhead are below historical levels and are currently as ''threatened'' under the ESA. In 1998, 16 instream habitat projects were planned by ACCD along with local landowners. The ACCD identified the need for a more detailed analysis of these instream projects to fully evaluate their effectiveness at improving fish habitat. The Washington Department of Fish and Wildlife's (WDFW) Snake River Lab (SRL) was contracted by the ACCD to take pre-construction measurements of the existing habitat (pools, LOD, width, depth, etc.) within each identified site, and to eventually evaluate fish use within these sites. All pre-construction habitat measurements were completed between 6 and 14 July, 1998. 1998 was the first year that this sort of evaluation has occurred. Post construction measurements of habitat structures installed in 1998, and fish usage evaluation, will be conducted in 1999. As such, this report is confined to 1998 habitat data summaries for each site, with no analytical evaluation.

Bumgarner, Joseph D.

1999-03-01T23:59:59.000Z

253

AVTA: Clipper Creek AC Level 2 Charging System Testing Results  

Broader source: Energy.gov [DOE]

The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following report describes results from testing done on the ClipperCreek AC Level 2 charging system for plug-in electric vehicles. This research was conducted by Idaho National Laboratory.

254

Climate & Environmental Sciences | Clean Energy | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Climate Change Science Institute Earth and Aquatic Sciences Ecosystem Science Environmental Data Science and Systems Energy, Water and Ecosystem Engineering Human Health Risk and Environmental Analysis Renewable Energy Systems Manufacturing Fossil Energy Sensors & Measurement Sustainable Electricity Systems Biology Transportation Clean Energy Home | Science & Discovery | Clean Energy | Research Areas | Climate & Environment SHARE Climate and Environmental Sciences Scientists Scott Brooks and Carrie Miller collect water quality data, East Fork Poplar Creek, November 15, 2012. Sampling site for mercury. Climate and environmental scientists at ORNL conduct research, develop technology and perform analyses to understand and predict how environmental systems respond to global and regional changes - including

255

Slate Creek Hot Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Slate Creek Hot Springs Geothermal Area Slate Creek Hot Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Slate Creek Hot Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.171,"lon":-114.624,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

256

East Basin Creek Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

East Basin Creek Geothermal Area East Basin Creek Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: East Basin Creek Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.2633,"lon":-114.811,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

257

Smith Creek Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Smith Creek Valley Geothermal Area Smith Creek Valley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Smith Creek Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.3128,"lon":-117.5493,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

258

Deer Creek Hot Spring Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Deer Creek Hot Spring Geothermal Area Deer Creek Hot Spring Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Deer Creek Hot Spring Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.09167,"lon":-116.05,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

259

Foote Creek Rim I Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Foote Creek Rim I Wind Farm Foote Creek Rim I Wind Farm Facility Foote Creek Rim I Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner PacifiCorp/Eugene Water & Electric Board Developer SeaWest/Tomen Energy Purchaser PacifiCorp/Eugene Water & Electric Board Location Carbon County WY Coordinates 41.652605°, -106.189914° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.652605,"lon":-106.189914,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

260

Big Creek Hot Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Creek Hot Springs Geothermal Area Creek Hot Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Big Creek Hot Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.3067,"lon":-114.3375,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "fork poplar creek" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Indian Creek Hot Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Creek Hot Springs Geothermal Area Creek Hot Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Indian Creek Hot Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.8129,"lon":-115.1229,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

262

Isotopic Analysis At Separation Creek Area (Van Soest, Et Al., 2002) | Open  

Open Energy Info (EERE)

Isotopic Analysis At Separation Creek Area (Van Soest, Et Al., 2002) Isotopic Analysis At Separation Creek Area (Van Soest, Et Al., 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Separation Creek Area (Van Soest, Et Al., 2002) Exploration Activity Details Location Separation Creek Area Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness useful DOE-funding Unknown References M. C. van Soest, B. M. Kennedy, W. C. Evans, R. H. Mariner (2002) Mantle Helium And Carbon Isotopes In Separation Creek Geothermal Springs, Three Sisters Area, Central Oregon- Evidence For Renewed Volcanic Activity Or A Long Term Steady State System(Question) Retrieved from "http://en.openei.org/w/index.php?title=Isotopic_Analysis_At_Separation_Creek_Area_(Van_Soest,_Et_Al.,_2002)&oldid=687475"

263

Microsoft Word - ProvisionsFundsColvilleConfederatedTribesPurchaseLoupLoupCreekAeneasCreekProperties_CX.doc  

Broader source: Energy.gov (indexed) [DOE]

7, 2011 7, 2011 REPLY TO ATTN OF: KEC-4 SUBJECT: Environmental Clearance Memorandum Dave Roberts Project Manager - KEWU-4 Proposed Action: Provisions of funds to the Colville Confederated Tribes for purchase of the Loup Loup Creek and Aeneas Creek properties. Fish and Wildlife Project No.: 2008-104-00 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.25 Transfer, lease, disposition or acquisition of interests in uncontaminated land for habitat preservation or wildlife management, and only associated buildings that support these purposes. Uncontaminated means that there would be no potential for release of substances at a level, or in a form, that would pose a threat to public health or the environment.

264

A Watershed Approach to Urban River Restoration: A Conceptual Restoration Plan for Sausal Creek  

E-Print Network [OSTI]

be sustainable considering the hydrologic processes remainprocess of applying the WFD to Sausal Creek, we identified opportunities to improve the sustainable

Ippolito, Teresa; Podolak, Kristen

2008-01-01T23:59:59.000Z

265

E-Print Network 3.0 - area battlement creek Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Units Calwater Subbasins ---(Planning Watersheds) 88,763 Acres 18060001 3304120101 Kings Creek (7770 Acres) Summary: Area Hydrologic Units Calwater Subbasins --- (Planning...

266

E-Print Network 3.0 - area battle creek Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Units Calwater Subbasins ---(Planning Watersheds) 88,763 Acres 18060001 3304120101 Kings Creek (7770 Acres) Summary: Area Hydrologic Units Calwater Subbasins --- (Planning...

267

Microsoft Word - Wolf Fork CX-Environ Clearance Memo-CX 021511.doc  

Broader source: Energy.gov (indexed) [DOE]

Sarah Branum Sarah Branum Project Manager, KEWM-4 Proposed Action: Provide funds for the Blue Mountain Land Trust (BMLT) to purchase a conservation easement on the Wolf Fork property. Fish and Wildlife Project No.: 1996-046-01, Reference Number BPA-005911. Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.25 Transfer, lease, disposition or acquisition of interests in uncontaminated land for habitat preservation or wildlife management, and only associated buildings that support these purposes. Uncontaminated means that there would be no potential for release of substances at a level, or in a form, that would pose a threat to public health or the environment. Location: Township 9 North, Range 39 East, Section 11 T of the Dayton Quadrangle, in

268

Diagenesis of sandstones from the Douglas Creek member of the Green River Formation (Eocene) at Red Wash field, Uintay County, Utah  

E-Print Network [OSTI]

, sandstone and some limestone and dolomite beds. The Garden Creek Member at Red Wash Field is about 550 ft (168 m) thick. The Parachute Creek Member, overlying the Garden Creek, is largely oil shale, gray shale, and limestone and dolomite beds..., sandstone and some limestone and dolomite beds. The Garden Creek Member at Red Wash Field is about 550 ft (168 m) thick. The Parachute Creek Member, overlying the Garden Creek, is largely oil shale, gray shale, and limestone and dolomite beds...

Ray, Earl Scott

2012-06-07T23:59:59.000Z

269

Hydrogeologic aspects of brine disposal in the East Poplar oil field, Fort Peck Indian Reservation, northeastern Montana  

SciTech Connect (OSTI)

The East Poplar Oil Field encompasses about 70 square miles in the south-central part of the Fort Peck Indian Reservation. Oil production began in 1952 from the Mississippian Madison Group. Production depths range from about 5,500 to 6,000 feet below land surface. Large quantities of brine (water having a dissolved-solids concentration greater than 35,000 milligrams per liter) have been produced with the oil. The brine has a dissolved-solids concentration of as much as 160,000 milligrams per liter. Most of the brine has been disposed of by injection into shallower subsurface formations (mainly the Lower Cretaceous Dakota Sandstone at depths of about 3,300 feet and the Upper Cretaceous Judith River Formation at depths of about 1,000 feet). Smaller quantities of brine have been directed to storage and evaporation pits. Handling, transport, and disposal of the brine have resulted in its movement into and migration through shallow Quaternary alluvial and glacial deposits along the Poplar River valley. Locally, domestic water supplies are obtained from these deposits. The major point, sources of shallow ground-water contamination probably is leakage of brine from corroded disposal-well casing and pipelines. Using electromagnetic geophysical techniques and auger drilling, three saline-water plumes in alluvial deposits and one plum in glacial deposits have been delineated. Dominant constituents in plume areas are sodium and chloride, whereas those in nonplume areas are sodium and bicarbonate.

Craigg, S.D.; Thamke, J.N. (Geological Survey, Helena, MT (United States))

1993-04-01T23:59:59.000Z

270

Analysis of stream bed sediments of Four Mile Creek  

SciTech Connect (OSTI)

Until 1988, solutions containing nitric acid, odium hydroxide, low levels of radionuclides (mostly tritiated water) and some metals were discharged to unlined seepage basins at the F and H Areas of the Savannah River Site (SRS) as part of normal operations. The basins are now being closed according to the Resource Conservation and Recovery Act (RCA). As part of the closure, a Part B Post-Closure Care Permit is being prepared. The Part B permit requires information on contaminant concentrations in stream bed sediments in the adjacent Four Mile Creek, which are reported herein. 5 refs., 1 fig., 2 tabs.

Haselow, J.S.

1990-08-13T23:59:59.000Z

271

Knowledge-Intensive Case-Based Reasoning in CREEK Agnar Aamodt  

E-Print Network [OSTI]

Knowledge-Intensive Case-Based Reasoning in CREEK Agnar Aamodt Department of Computer.aamodt@idi.ntnu.no Abstract. Knowledge-intensive CBR assumes that cases are enriched with general domain knowledge. In CREEK, there is a very strong coupling between cases and general domain knowledge, in that cases are embedded within

Aamodt, Agnar

272

Microbiology and geochemistry of Little Hot Creek, a hot spring environment in the Long Valley Caldera  

E-Print Network [OSTI]

Microbiology and geochemistry of Little Hot Creek, a hot spring environment in the Long Valley springs located within the Long Valley Caldera, Little Hot Creek (LHC) 1, 3, and 4. All three springs were that springs associated with the Long Valley Caldera contain microbial populations that show some similarities

Ahmad, Sajjad

273

Exploration Of The Upper Hot Creek Ranch Geothermal Resource, Nye County,  

Open Energy Info (EERE)

Of The Upper Hot Creek Ranch Geothermal Resource, Nye County, Of The Upper Hot Creek Ranch Geothermal Resource, Nye County, Nevada Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Exploration Of The Upper Hot Creek Ranch Geothermal Resource, Nye County, Nevada Details Activities (2) Areas (1) Regions (0) Abstract: The Upper Hot Creek Ranch (UHCR) geothermal system had seen no significant exploration activity prior to initiation of this GRED III project. Geochemical geothermometers calculated from previously available but questionable quality analyses of the UHCR hot spring waters indicated possible subsurface temperatures of +320 oF. A complex Quaternary and Holocene faulting pattern associated with a six mile step over of the Hot Creek Range near the UHCR also indicated that this area was worthy of some

274

Reclamation of abandoned coal refuse piles and underground adit entries in the Big South Fork National River and Recreation Area  

SciTech Connect (OSTI)

This paper reviews reclamation activities conducting during 1984-85 in the Big South Fork National River and Recreational Area, Kentucky, and Tennessee. Under this integrated reclamation project, four sites comprising 14 acres of highly acidic abandoned coal refuse were treated and 43 abandoned adit underground mine entries were closed. The techniques used were cost-effective and could be applied in reclaiming other coal minesites in Appalachia. 9 references, 4 figures, 1 table.

Muncy, J.A.; Buckner, E.R.

1985-12-01T23:59:59.000Z

275

Owl Creek Hot Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Owl Creek Hot Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Owl Creek Hot Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.3439,"lon":-114.4631,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

276

Landslide assessment of Newell Creek Canyon, Oregon City, Oregon  

SciTech Connect (OSTI)

A study has been conducted in Newell Creek Canyon near Oregon City, Oregon, T3S, T2S, R2E. A landslide inventory has located 53 landslides in the 2.8 km[sup 2] area. The landslides range in area from approximately 15,000m[sup 2] to 10m[sup 2]. Past slides cover an approximate 7% of the canyon area. Landslide processes include: slump, slump-translational, slump-earthflow and earthflow. Hard, impermeable clay-rich layers in the Troutdale Formation form the failure planes for most of the slides. Slopes composed of Troutdale material may seem to be stable, but when cuts and fills are produced, slope failure is common because of the perched water tables and impermeable failure planes. Good examples of cut and fill failures are present on Highway 213 which passes through Newell Creek Canyon. Almost every cut and fill has failed since the road construction began. The latest failure is in the fill located at mile-post 2.1. From data gathered, a slope stability risk map was generated. Stability risk ratings are divided into three groups: high, moderate and low. High risk of slope instability is designated to all landslides mapped in the slide inventory. Moderate risk is designated to slopes in the Troutdale Formation greater than 8[degree]. Low risk is designated to slopes in the Troutdale Formation less than 8[degree].

Growney, L.; Burris, L.; Garletts, D.; Walsh, K. (Portland State Univ., OR (United States). Dept. of Geology)

1993-04-01T23:59:59.000Z

277

Asotin Creek Model Watershed Plan: Asotin County, Washington, 1995.  

SciTech Connect (OSTI)

The Northwest Power Planning Council completed its ``Strategy for Salmon'' in 1992. This is a plan, composed of four specific elements,designed to double the present production of 2.5 million salmon in the Columbia River watershed. These elements have been called the ``four H's'': (1) improve harvest management; (2) improve hatcheries and their production practices; (3) improve survival at hydroelectric dams; and (4) improve and protect fish habitat. The Asotin Creek Model Watershed Plan is the first to be developed in Washington State which is specifically concerned with habitat protection and restoration for salmon and trout. The plan is consistent with the habitat element of the ``Strategy for Salmon''. Asotin Creek is similar in many ways to other salmon-bearing streams in the Snake River system. Its watershed has been significantly impacted by human activities and catastrophic natural events, such as floods and droughts. It supports only remnant salmon and trout populations compared to earlier years. It will require protection and restoration of its fish habitat and riparian corridor in order to increase its salmonid productivity.

Browne, Dave

1995-04-01T23:59:59.000Z

278

Vegetation survey of Four Mile Creek wetlands. [Savannah River Plant  

SciTech Connect (OSTI)

A survey of forested wetlands along upper Four Mile Creek was conducted. The region from Road 3 to the creek headwaters was sampled to evaluate the composition of woody and herbaceons plant communities. All sites were found to fall into either the Nyssa sylvatica (Black Gum) -- Persea borbonia (Red Bay) or Nyssa sylvatica -- Acer rubrum (Red Maple) types. These community types are generally species-rich and diverse. Previous studies (Greenwood et al., 1990; Mackey, 1988) demonstrated contaminant stress in areas downslope from the F- and H-Area seepage basins. In the present study there were some indications of contaminant stress. In the wetland near H-Area, shrub basal area, ground cover stratum species richness, and diversity were low. In the area surrounding the F-Area tree kill zone, ground cover stratum cover and shrub basal area were low and ground cover stratum species richness was low. The moderately stressed site at F-Area also showed reduced overstory richness and diversity and reduced ground cover stratum richness. These results could, however, be due to the very high basal area of overstory trees in both stressed F-Area sites that would reduce light availability to understory plants. No threatened or endangered plant species were found in the areas sampled. 40 refs., 4 figs., 8 tabs.

Loehle, C.

1990-11-01T23:59:59.000Z

279

South Fork Flathead Watershed Westslope Cutthroat Trout Conservation Program, Annual Report 2002.  

SciTech Connect (OSTI)

In 1999, Montana Fish, Wildlife & Parks (MFWP) began a program aimed at conserving the genetically pure populations of westslope cutthroat trout in the South Fork Flathead River drainage. The objective of this program is to eliminate all of the exotic and hybrid trout that threaten the genetically pure westslope cutthroat populations in the South Fork Flathead. The exotic and hybrid trout populations occur in several headwater lakes and their outflow streams. In 2001 MFWP released a draft environmental assessment, pursuant to the Montana Environmental Policy Act (MEPA), that addressed the use of motorized equipment to deliver personnel and materials to some of these lakes in the Bob Marshall and Great Bear Wildernesses (Grisak 2001). After a 30-day public comment period, MFWP determined that the complexity of issues was too great and warranted a more detailed analysis. These issues included transportation options for personnel, equipment and materials, the use of motorized equipment in wilderness, fish removal methods, fish stocking, and the status and distribution of amphibian populations in the project area. Because the program also involves the U.S. Forest Service (USFS) and Bonneville Power Administration (BPA), the environmental analysis needs to comply with the National Environmental Policy Act (NEPA). In October 2001, pursuant to NEPA, MFWP, along with the USFS and BPA initiated an environmental assessment to address these issues. In June 2002, the three agencies determined that the scope of these issues warranted an Environmental Impact Statement. This specialist report describes the logistical, technical and biological issues associated with this project and provides an analysis of options for fish removal, transportation and fish stocking. It further analyzes issues and concerns associated with amphibian populations and creating new domesticated stocks of westslope cutthroat trout. Finally, this document provides a description of each lake, the best method of fish removal that would achieve the goals of the project, logistics for carrying out the fish removal, and the immediate management direction for each lake following fish removal. The USFS is preparing a specialist report detailing land management issues that relate to National Forest, designated Hiking Areas, and Wilderness. Information from these two documents will be used by BPA to prepare an Environmental Impact Statement.

Grisak, Grant; Marotz, Brian

2003-06-01T23:59:59.000Z

280

Water Conservation Study for Manastash Creek Water Users, Kittias County, Washington, Final Report 2002.  

SciTech Connect (OSTI)

Manastash Creek is tributary of the Yakima River and is located southwest and across the Yakima River from the City of Ellensburg. The creek drains mountainous terrain that ranges in elevation from 2,000 feet to over 5,500 feet and is primarily snowmelt fed, with largest flows occurring in spring and early summer. The creek flows through a narrow canyon until reaching a large, open plain that slopes gently toward the Yakima River and enters the main stem of the Yakima River at river mile 154.5. This area, formed by the alluvial fan of the Creek as it leaves the canyon, is the subject of this study. The area is presently dominated by irrigated agriculture, but development pressures are evident as Ellensburg grows and develops as an urban center. Since the mid to late nineteenth century when irrigated agriculture was established in a significant manner in the Yakima River Basin, Manastash Creek has been used to supply irrigation water for farming in the area. Adjudicated water rights dating back to 1871 for 4,465 acres adjacent to Manastash Creek allow appropriation of up to 26,273 acre-feet of creek water for agricultural irrigation and stock water. The diversion of water from Manastash Creek for irrigation has created two main problems for fisheries. They are low flows or dewatered reaches of Manastash Creek and fish passage barriers at the irrigation diversion dams. The primary goal of this study, as expressed by Yakama Nation and BPA, is to reestablish safe access in tributaries of the Yakima River by removing physical barriers and unscreened diversions and by adding instream flow where needed for fisheries. The goal expressed by irrigators who would be affected by these projects is to support sustainable and profitable agricultural use of land that currently uses Manastash Creek water for irrigation. This study provides preliminary costs and recommendations for a range of alternative projects that will partially or fully meet the goal of establishing safe access for fisheries in Manastash Creek by reducing or eliminating diversions and eliminating fish passage barriers. Further study and design will be necessary to more fully develop the alternatives, evaluate their environmental benefits and impacts and determine the effect on Manastash Creek water users. Those studies will be needed to determine which alternative has the best combination of benefits and costs, and meets the goal of the Manastash Creek water users.

Montgomery Watson Harza (Firm)

2002-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "fork poplar creek" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Sequence stratigraphy, depositional environments, and regional mapping of the late Devonian interval, upper Three Forks Formation, Sanish Member, and lower Bakken Shale, U.S. portion of the Williston Basin.  

E-Print Network [OSTI]

??Cores of the Late Devonian upper Three Forks, Sanish, and lower Bakken units from eight wells were examined and described at the North Dakota core (more)

Sesack, Steven A.

2011-01-01T23:59:59.000Z

282

Geologic and hydrologic controls on coalbed methane producibility, Williams Fork Formation, Piceance Basin, Colorado  

SciTech Connect (OSTI)

Structural and depositional setting, coal rank, gas content, permeability, hydrodynamics, and reservoir heterogeneity control the producibility of coalbed methane in the Piceance Basin. The coal-rich Upper Cretaceous, Williams Fork Formation is genetically defined and regionally correlated to the genetic sequences in the Sand Wash Basin, to the north. Net coal is thickest in north-south oriented belts which accumulated on a coastal plain, behind west-east prograding shoreline sequences. Face cleats of Late Cretaceous age strike E-NE and W-NW in the southern and northern parts of the basin, respectively, normal to the Grand Hogback thrust front. Parallelism between face-cleat strike and present-day maximum horizontal stresses may enhance or inhibit coal permeability in the north and south, respectively. Geopressure and hydropressure are both present in the basin with regional hydrocarbon overpressure dominant in the central part of the basin and hydropressure limited to the basin margins. The most productive gas wells in the basin are associated with structural terraces, anticlines, and/or correspond to Cameo-Wheeler-Fairfield coal-sandstone development, reflecting basement detached thrust-faulting, fracture-enhanced permeability, and reservoir heterogeneity. Depositional heterogeneties and thrusts faults isolate coal reservoirs along the Grand Hogback from the subsurface by restricting meteoric recharge and basinward flow of ground water. An evolving coalbed methane producibility model predicts that in the Piceance Basin extraordinary coalbed methane production is precluded by low permeability and by the absence of dynamic ground-water flow.

Tyler, R.; Scott, A.R.; Kaiser, W.R.; Nance, H.S.; McMurry, R.G. [Univ. of Texas, Austin, TX (United States)

1996-12-31T23:59:59.000Z

283

Geologic and hydrologic controls on coalbed methane producibility, Williams Fork Formation, Piceance Basin, Colorado  

SciTech Connect (OSTI)

Structural and depositional setting, coal rank, gas content, permeability, hydrodynamics, and reservoir heterogeneity control the producibility of coalbed methane in the Piceance Basin. The coal-rich Upper Cretaceous, Williams Fork Formation is genetically defined and regionally correlated to the genetic sequences in the Sand Wash Basin, to the north. Net coal is thickest in north-south oriented belts which accumulated on a coastal plain, behind west-east prograding shoreline sequences. Face cleats of Late Cretaceous age strike E-NE and W-NW in the southern and northern parts of the basin, respectively, normal to the Grand Hogback thrust front. Parallelism between face-cleat strike and present-day maximum horizontal stresses may enhance or inhibit coal permeability in the north and south, respectively. Geopressure and hydropressure are both present in the basin with regional hydrocarbon overpressure dominant in the central part of the basin and hydropressure limited to the basin margins. The most productive gas wells in the basin are associated with structural terraces, anticlines, and/or correspond to Cameo-Wheeler-Fairfield coal-sandstone development, reflecting basement detached thrust-faulting, fracture-enhanced permeability, and reservoir heterogeneity. Depositional heterogeneties and thrusts faults isolate coal reservoirs along the Grand Hogback from the subsurface by restricting meteoric recharge and basinward flow of ground water. An evolving coalbed methane producibility model predicts that in the Piceance Basin extraordinary coalbed methane production is precluded by low permeability and by the absence of dynamic ground-water flow.

Tyler, R.; Scott, A.R.; Kaiser, W.R.; Nance, H.S.; McMurry, R.G. (Univ. of Texas, Austin, TX (United States))

1996-01-01T23:59:59.000Z

284

Couse/Tenmile Creeks Watershed Project Implementation : 2007 Conservtion Projects. [2007 Habitat Projects Completed].  

SciTech Connect (OSTI)

The Asotin County Conservation District (ACCD) is the primary entity coordinating habitat projects on private lands within Asotin County watersheds. The Tenmile Creek watershed is a 42 square mile tributary to the Snake River, located between Asotin Creek and the Grande Ronde River. Couse Creek watershed is a 24 square mile tributary to the Snake River, located between Tenmile Creek and the Grande Ronde River. Both watersheds are almost exclusively under private ownership. The Washington Department of Fish and Wildlife has documented wild steelhead and rainbow/redband trout spawning and rearing in Tenmile Creek and Couse Creek. The project also provides Best Management Practice (BMP) implementation throughout Asotin County, but the primary focus is for the Couse and Tenmile Creek watersheds. The ACCD has been working with landowners, Bonneville Power Administration (BPA), Washington State Conservation Commission (WCC), Natural Resource Conservation Service (NRCS), Farm Service Agency (FSA), Salmon Recovery Funding Board (SRFB), Washington Department of Fish and Wildlife (WDFW), U.S. Forest Service, Pomeroy Ranger District (USFS), Nez Perce Tribe (NPT), Washington Department of Ecology (DOE), National Marine Fisheries Service (NOAA Fisheries), and U.S. Fish and Wildlife Service (USFWS) to address habitat projects in Asotin County. The Asotin Subbasin Plan identified priority areas and actions for ESA listed streams within Asotin County. Couse Creek and Tenmile Creek are identified as protection areas in the plan. The Conservation Reserve Enhancement Program (CREP) has been successful in working with landowners to protect riparian areas throughout Asotin County. Funding from BPA and other agencies has also been instrumental in protecting streams throughout Asotin County by utilizing the ridge top to ridge top approach.

Asotin County Conservation District

2008-12-10T23:59:59.000Z

285

EA-1988: NFSC (Northwest Fisheries Science Center) Earthen Drainage Channel, Burley Creek Hatchery, Port Orchard, Washington  

Broader source: Energy.gov [DOE]

The National Oceanic and Atmospheric Administration (NOAA), with DOEs Bonneville Power Administration (BPA) as a cooperating agency, prepared an EA that assesses the potential environmental impacts of a NOAA Northwest Fisheries Science Center proposal to construct an earthen drainage channel at its Burley Creek Hatchery in Kitsap County, Washington. The project would facilitate increased discharge of treated effluent from the hatchery facility into the adjacent Burley Creek. BPAs proposal is to fund the project. The project website is http://efw.bpa.gov/environmental_services/Document_Library/Burley_Creek/.

286

Microsoft Word - MissionCreek_Kingston_Acquisition_CX_final.doc  

Broader source: Energy.gov (indexed) [DOE]

purchase purchase of the Mission Creek Property. Fish and Wildlife Project No.: 2002-003-00, Contract # BPA-44646 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.25 Transfer, lease, disposition or acquisition of interests in uncontaminated land for habitat preservation or wildlife management, and only associated buildings that support these purposes. Uncontaminated means that there would be no potential for release of substances at a level, or in a form, that would pose a threat to public health or the environment. Location: Township 19 North, Range 21 West, Section 33 of the Dixon Quad, in Lake County, Montana Proposed by: Bonneville Power Administration (BPA) and CSKT Description of the Proposed Action: BPA proposes to fund the acquisition of 12 acres of property

287

Foote Creek Rim II Wind Farm | Open Energy Information  

Open Energy Info (EERE)

II Wind Farm II Wind Farm Facility Foote Creek Rim II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Caithness Developer SeaWest Energy Purchaser Bonneville Power Admin Location Carbon County WY Coordinates 41.663881°, -106.186001° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.663881,"lon":-106.186001,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

288

Microsoft Word - CX_PistolCreek_Final.doc  

Broader source: Energy.gov (indexed) [DOE]

25, 2011 25, 2011 REPLY TO ATTN OF: KEC-4 SUBJECT: Environmental Clearance Memorandum Cecilia Brown Project Manager - KEWM-4 Proposed Action: Provision of funds to the Confederated Salish and Kootenai Tribes for purchase of the Pistol Creek Property. Fish and Wildlife Project No.: 2002-003-00 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.25 Transfer, lease, disposition or acquisition of interests in uncontaminated land for habitat preservation or wildlife management, and only associated buildings that support these purposes. Uncontaminated means that there would be no potential for release of substances at a level, or in a form, that would pose a threat to public health or the environment. Location: Township 17 North, Range 18 West, Sections 30 and 31, Lake County, MT.

289

Foote Creek Rim IV Wind Farm | Open Energy Information  

Open Energy Info (EERE)

IV Wind Farm IV Wind Farm Facility Foote Creek Rim IV Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Caithness Developer SeaWest Energy Purchaser Bonneville Power Admin Location Carbon County WY Coordinates 41.626456°, -106.202095° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.626456,"lon":-106.202095,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

290

Foote Creek Rim III Wind Farm | Open Energy Information  

Open Energy Info (EERE)

III Wind Farm III Wind Farm Facility Foote Creek Rim III Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Caithness Developer SeaWestM&N Wind Power Energy Purchaser Xcel Energy Location Carbon County WY Coordinates 41.643488°, -106.198876° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.643488,"lon":-106.198876,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

291

Microsoft Word - CX_Beaver Creek.doc  

Broader source: Energy.gov (indexed) [DOE]

Clearance Memorandum Clearance Memorandum Jay Marcotte Project Manager - KEWU-4 Proposed Action: Bonneville Power Administration (BPA) funding to acquire the Beaver Creek property and to maintain this property for fish and wildlife habitat protection. Budget Information: Work Order # 00225478 Fish and Wildlife Project No.: 2009-003-00, 43451 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.25 Transfer, lease, disposition or acquisition of interests in uncontaminated land for habitat preservation or wildlife management, and only associated buildings that support these purposes. Uncontaminated means that there would be no potential for release of substances at a level, or in a form, that would pose a threat to public health or the environment.

292

Town of Black Creek, North Carolina (Utility Company) | Open Energy  

Open Energy Info (EERE)

North Carolina (Utility Company) North Carolina (Utility Company) Jump to: navigation, search Name Town of Black Creek Place North Carolina Utility Id 202 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png EP-I Renewable Energy Industrial Industrial GS3 Electric GS4 Gov Office GS5 Commercial/Demand Commercial GS5 Commercial/Demand(with Renewable Portfolio Standards) Commercial RS 1 Residential Residential RS 1 Residential(with Renewable Portfolio Standards) Residential

293

Microsoft Word - CX_ThorneCreek_Final.doc  

Broader source: Energy.gov (indexed) [DOE]

1 1 REPLY TO ATTN OF: KEC-4 SUBJECT: Environmental Clearance Memorandum Cecilia Brown Project Manager - KEWM-4 Proposed Action: Provision of funds to the Confederated Salish and Kootenai Tribes for purchase of the Thorne Creek Property. Fish and Wildlife Project No.: 2002-003-00, Contract CR-201269 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.25 Transfer, lease, disposition or acquisition of interests in uncontaminated land for habitat preservation or wildlife management, and only associated buildings that support these purposes. Uncontaminated means that there would be no potential for release of substances at a level, or in a form, that would pose a threat to public health or the environment.

294

Panther Creek: A flexible approach to plant enhancement  

SciTech Connect (OSTI)

The Panther Creek Energy Facility (PCEF), an 83 MW waste coal-fired Independent Power Producer in Nesquehoning, Pennsylvania, offers an excellent education on project turnaround. Managed by Panther Creek Partners and operated and maintained by Constellation Operating Services, the facility, designed and built by Bechtel Power Corporation, consists of two Pyroflow Circulating Fluidized Bed Boilers each rated 380,000 lbs/hr, 1500 psig, 955{degrees}F, supplying steam to a GEC-Alsthom turbine generator. Since the beginning of commercial operation in October 1992, PCEF was plagued by numerous operational and reliability problems with the fuel- and ash-handling systems, primarily due to the use of below-design specification fuel. The facility was designed to burn 1488 tons per day of anthracite waste fuel (culm) specified at 7760 Btu/lb, sized 1/4 inch minus and 10% moisture. Unfortunately, miscalculations of the supply of this fuel in the vicinity made this level impossible to achieve without considerable transportation expenses. Contractual and permit obligations also required the plant to utilize the on-site culm. Nonetheless, the use of the on-site culm meant that the plant would face other expenditures because of its loss of efficiency. Given the below-design fuel, PCEF faced a 51% increase in fuel consumption, 113% increase in ash generation, and a 50% increase in limestone usage. Likewise, due to the increased demand on the material-handling facilities, the plant was incapable of achieving full load on a daily basis. PCEF had a lost capacity of 5.7% (6.4% overall when accounting for planned outages) during the period of 1993 and 1994.

Gawel, R. [Panther Creek Energy Facility, Nesquehoning, PA (United States)

1995-12-31T23:59:59.000Z

295

Biomonitoring of fish communities, using the Index of Biotic Integrity (IBI) in Rabbit Creek-Cat Creek Watershed, Summer 1992  

SciTech Connect (OSTI)

The Index of Biotic Integrity (IBI) is a method for evaluating the health of water bodies and watersheds by analyzing sample catches of fishes. Sites are scored on a numerical scale of 12--60 and on that basis assigned to a ``bioclass`` ranging from ``very poor`` to ``excellent.`` Overall, the major causes of depressed IBI scores in the Rabbit Creek watershed would appear to be: Organic pollution, mostly from livestock, but also from agricultural runoff and possible septic tank failures; sedimentation, principally from stream bank damage by cattle, also possibly from agriculture and construction; toxic pollution from agrochemicals applied to Holly Springs Golf course and agricultural fields` and Warming of water and evaporation loss due to elimination of shade on stream banks and construction of ponds.

Not Available

1993-08-01T23:59:59.000Z

296

Geothermometry At Upper Hot Creek Ranch Area (Benoit & Blackwell, 2006) |  

Open Energy Info (EERE)

Geothermometry At Upper Hot Creek Ranch Area (Benoit & Blackwell, 2006) Geothermometry At Upper Hot Creek Ranch Area (Benoit & Blackwell, 2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Upper Hot Creek Ranch Area (Benoit & Blackwell, 2006) Exploration Activity Details Location Upper Hot Creek Ranch Area Exploration Technique Geothermometry Activity Date Usefulness useful DOE-funding Unknown Notes Ten water samples were collected for chemical analysis and interpretation. Analyses of three samples of the UHCR thermal give predicted subsurface temperatures ranging from 317 to 334 oF from the Na-K-Ca, silica (quartz), and Na-Li geothermometers. The fact that all three thermometers closely agree gives the predictions added credibility. References Dick Benoit, David Blackwell (2006) Exploration Of The Upper Hot

297

DOE - Office of Legacy Management -- Dow Chemical Co - Walnut Creek - CA 02  

Office of Legacy Management (LM)

Dow Chemical Co - Walnut Creek - CA Dow Chemical Co - Walnut Creek - CA 02 FUSRAP Considered Sites Site: Dow Chemical Co. - Walnut Creek (CA.02 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: 2800 Mitchell Drive , Walnut Creek , California CA.02-1 Evaluation Year: 1987 CA.02-2 CA.02-3 Site Operations: From 1947 to 1957, conducted process studies and experimental investigations on different uranium and thorium-bearing ores; pilot-scale solvent extraction of uranium from phosphoric acid; liquid waste disposal studies CA.02-1 CA.02-4 CA.02-5 Site Disposition: Eliminated - Radiation levels below criteria CA.02-6 CA.02-7 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Uranium, Thorium CA.02-1 CA.02-4

298

Cement Creek Ranch Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Cement Creek Ranch Pool & Spa Low Temperature Geothermal Facility Cement Creek Ranch Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Cement Creek Ranch Pool & Spa Low Temperature Geothermal Facility Facility Cement Creek Ranch Sector Geothermal energy Type Pool and Spa Location Crested Butte, Colorado Coordinates 38.8697146°, -106.9878231° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

299

Kids vs. Mercury: Food fight at the creek | Y-12 National Security...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Kids vs. Mercury: Food ... Kids vs. Mercury: Food fight at the creek Posted: May 7, 2014 - 5:26pm | Y-12 Report | Volume 10, Issue 2 | 2014 For years Y-12 has dealt with...

300

Tribal Decision-Making and Intercultural Relations: Crow Creek Agency, 1863-1885  

E-Print Network [OSTI]

Lower Yanktonai residents experienced great change during the first two decades at the Crow Creek agency in Dakota Territory. This essay traces the evolution of relations between tribal members, federal agents, and ...

Galler, Robert

2002-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "fork poplar creek" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Hydrocarbon trapping mechanisms in the Miller Creek area of the Powder River Basin, Wyoming  

E-Print Network [OSTI]

'' 1975 43'W'79 ABSTRACT Hydrocarbon Trapoing Mechanisms in the Miller Creek Area of the Powder River Basin, Wyoming. (May 1975) Jennifer Ann Armstrong, B. S. , University of Texas at Austin Chairman of Advisory Committee: 17r. Robert. R. Berg...

Armstrong, Jennifer Ann

1975-01-01T23:59:59.000Z

302

Thermal Gradient Holes At Upper Hot Creek Ranch Area (Benoit & Blackwell,  

Open Energy Info (EERE)

Hot Creek Ranch Area (Benoit & Blackwell, Hot Creek Ranch Area (Benoit & Blackwell, 2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Upper Hot Creek Ranch Area (Benoit & Blackwell, 2006) Exploration Activity Details Location Upper Hot Creek Ranch Area Exploration Technique Thermal Gradient Holes Activity Date Usefulness not useful DOE-funding Unknown Notes Ten temperature gradient holes up to 500' deep were initially planned but higher than anticipated drilling and permitting costs within a fixed budget reduced the number of holes to five. Four of the five holes drilled to depths of 300 to 400' encountered temperatures close to the expected regional thermal background conditions. These four holes failed to find any evidence of a large thermal anomaly surrounding the UHCR hot springs. The

303

EA-1895: Lolo Creek Permanent Weir Construction near town of Weippe,  

Broader source: Energy.gov (indexed) [DOE]

5: Lolo Creek Permanent Weir Construction near town of 5: Lolo Creek Permanent Weir Construction near town of Weippe, Clearwater County, Idaho EA-1895: Lolo Creek Permanent Weir Construction near town of Weippe, Clearwater County, Idaho Summary DOE's Bonneville Power Administration is preparing this EA to evaluate the potential environmental impacts of replacing an existing seasonal fish weir with a permanent weir, which would be used to monitor federally-listed Snake River steelhead and collect spring Chinook salmon adults to support ongoing supplementation programs in the watershed. The Bureau of Land Management, a cooperating agency, preliminarily determined Lolo Creek to be suitable for Congressional designation into the Wild and Scenic River System. The EA includes a Wild and Scenic River Section 7 analysis.

304

Trout Creek, Oregon Watershed Assessment; Findings, Condition Evaluation and Action Opportunities, 2002 Technical Report.  

SciTech Connect (OSTI)

The purpose of the assessment is to characterize historical and current watershed conditions in the Trout Creek Watershed. Information from the assessment is used to evaluate opportunities for improvements in watershed conditions, with particular reference to improvements in the aquatic environment. Existing information was used, to the extent practicable, to complete this work. The assessment will aid the Trout Creek Watershed Council in identifying opportunities and priorities for watershed restoration projects.

Runyon, John

2002-08-01T23:59:59.000Z

305

Geology of the Middle Beaver Creek area, Mason and Gillespie Counties, Texas  

E-Print Network [OSTI]

AREA, NASGR AEG GILhNPIR COGRTIES, TEIAB ABSTRACT The Middle Beaver Creek area is situated on the soutlwsst flank of the Llano ?plift region in Mason and Gillespie Counties, Texas Hooks of Presa?brian, Psleosoie, Mesosois, and Genosois age... ' Figure 1. ? Map of' part of Mason and Gillespie Counties, Texass showing location of' the Middle Beaver Creek Area, on aoetats oosered aerial photographs. In order to aoourateIp locate and plot the oontaots asd faults, the photographs vere studies...

Peterson, Don Hamilton

2012-06-07T23:59:59.000Z

306

The investigation of the Caney Creek shipwreck archaeological site 41MG32  

E-Print Network [OSTI]

in Matagorda, Texas, 1860, Produced by Ed Lang. . . . , , . . . . . . . . . . . . . . . 18 Figure 7. Figure 8. Figure 9. Fitnire 10. Location of Caney Creek in Southeast Texas. . Soil types of Matagorda County. Portrait of J. B. Hawkins. Map showing... of the Caney Creek Shipwreck Archaeological Site 4 IMG32. (August 1998) David Layne Hedrick, B. A. , University of North Texas Chair of Advisory Committee: Dr. Frederick M Hocker The history of river transportation in the interior of Texas has received...

Hedrick, David Layne

2012-06-07T23:59:59.000Z

307

South Fork Tolt River Hydroelectric Project : Adopted Portions of a 1987 Federal Energy Regulatory Commission`s Final Environmental Impact Statement.  

SciTech Connect (OSTI)

The South Fork Tolt River Hydroelectric Project that world produce 6.55 average megawatts of firm energy per year and would be sited in the Snohomish River Basin, Washington, was evaluated by the Federal Energy Regulatory commission (FERC) along with six other proposed projects for environmental effects and economic feasibility Based on its economic analysis and environmental evaluation of the project, the FERC staff found that the South Fork Tolt River Project would be economically feasible and would result in insignificant Impacts if sedimentation issues could be resolved. Upon review, the BPA is adopting portions of the 1987 FERC FEIS that concern the South Fork Tolt River Hydroelectric Project and updating specific sections in an Attachment.

United States. Bonneville Power Administration.

1992-07-01T23:59:59.000Z

308

Log-derived evaluation of gas-bearing Cherokee, Red Fork, and Morrow formations, Custer County, OK  

SciTech Connect (OSTI)

Medium to low porosity and rather tight Cherokee, Red Fork and Morrow sands, located in Oklahoma, contain significant hydrocarbon resources. To evaluate the commercial importance of wells drilled in Custer County, Oklahoma, an innovative digital shaly sand analysis approach (CLASS - Epilog) has been applied, which provides information on total and effective reservoir porosity, total and effective fluid distribution based on the Waxman-Smits equation, shaliness, clay typing, and reservoir productivity. Several field case examples are presented and discussed based on (1) open hole logging suite, consisting of induction, compensated density/neutron and Spectralog, (2) CLASS analysis, (3) well completion and stimulation data, and (4) the resulting production test results.

Busch, E.A.; Fertl, W.H.; Neill, B.E.; Sinha, A.K.; Sobkowich, K.N.

1985-03-01T23:59:59.000Z

309

NORTH HILL CREEK 3-D SEISMIC EXPLORATION PROJECT  

SciTech Connect (OSTI)

Wind River Resources Corporation (WRRC) received a DOE grant in support of its proposal to acquire, process and interpret fifteen square miles of high-quality 3-D seismic data on non-allotted trust lands of the Uintah and Ouray (Ute) Indian Reservation, northeastern Utah, in 2000. Subsequent to receiving notice that its proposal would be funded, WRRC was able to add ten square miles of adjacent state and federal mineral acreage underlying tribal surface lands by arrangement with the operator of the Flat Rock Field. The twenty-five square mile 3-D seismic survey was conducted during the fall of 2000. The data were processed through the winter of 2000-2001, and initial interpretation took place during the spring of 2001. The initial interpretation identified multiple attractive drilling prospects, two of which were staked and permitted during the summer of 2001. The two initial wells were drilled in September and October of 2001. A deeper test was drilled in June of 2002. Subsequently a ten-well deep drilling evaluation program was conducted from October of 2002 through March 2004. The present report discusses the background of the project; design and execution of the 3-D seismic survey; processing and interpretation of the data; and drilling, completion and production results of a sample of the wells drilled on the basis of the interpreted survey. Fifteen wells have been drilled to test targets identified on the North Hill Creek 3-D Seismic Survey. None of these wildcat exploratory wells has been a dry hole, and several are among the best gas producers in Utah. The quality of the data produced by this first significant exploratory 3-D survey in the Uinta Basin has encouraged other operators to employ this technology. At least two additional 3-D seismic surveys have been completed in the vicinity of the North Hill Creek Survey, and five additional surveys are being planned for the 2004 field season. This project was successful in finding commercial oil, natural gas and natural gas liquids production on a remote part of the Uintah & Ouray Reservation. Much of the natural gas and natural gas liquids are being produced from the Wingate Formation, which to our knowledge has never produced commercially anywhere. Another large percentage of the natural gas is being produced from the Entrada Formation which has not previously produced in this part of the Uinta Basin. In all, at least nine geologic formations are contributing hydrocarbons to these wells. This survey has clearly established the fact that high-quality data can be obtained in this area, despite the known obstacles.

Marc T. Eckels; David H. Suek; Denise H. Harrison; Paul J. Harrison

2004-05-06T23:59:59.000Z

310

Fracture history of the Northern Piceance Creek Basin, Northwestern Colorado  

SciTech Connect (OSTI)

The fracture pattern of the Northern Piceance Creek Basin, in Rio Blanco and Garfield Counties of Northwestern Colorado, evolved during at least four periods of brittle failure in Eocene rocks of the Green River and overlying Uinta Formations. Fractures in these rocks of are interest to hydrologists because matrix permeabilities in both formations are low, due either to poor sorting and interstitial calcite cement (Uinta sandstones) or to low pore volume and growth of authigenic minerals (Green River oil shales). Ground water at shallow to intermediate depths thus circulates mostly through secondary openings such as fractures and through voids created by the dissolution of nahcolite and halite. Fracture-induced permeabilities probably dominate most at shallow depths, where fractures are most abundant, apertures of fracture walls are greates, and solution openings are least common. Shallow, fracture-dominated aquifers are strongly anisotropic. At deeper levels, in leached zones of the ''saline facies'' of the lower part of the Green River Formation, solution openings contribute greatly to fluid flow and permeabilities probably are less direction dependent.

Verbeek, E.R.; Grout, M.A.

1983-04-01T23:59:59.000Z

311

Silver Creek-Morton Transmission Project: Environmental assessment  

SciTech Connect (OSTI)

Bonneville Power Administration (BPA) will in 1989, replace the Silver Creek-Morton 69-kV transmission line with a line of 115-kV construction and, in the late 1990's, add capacitors at Morton Substation. Portions of the new line would be constructed on new right-of-way adjacent to the old 69-kV line and portions would be constructed on the same right-of-way. Construction on adjacent right-of-way would require new right-of-way up to 50 feet wide on one side of the present right-of-way. BPA would then release to private ownership right-of-way up to 50 feet wide on the opposite side, after the old line has been removed. Parts of the new line would be constructed on H-frame wood-pole sructures and parts on single wood-pole structures, depending on land use constraints. 16 refs., 3 figs., 3 tabs.

Not Available

1986-06-01T23:59:59.000Z

312

West Foster Creek Expansion Project 2007 HEP Report.  

SciTech Connect (OSTI)

During April and May 2007, the Columbia Basin Fish and Wildlife Authority's (CBFWA) Regional HEP Team (RHT) conducted baseline Habitat Evaluation Procedures (HEP) (USFWS 1980, 1980a) analyses on five parcels collectively designated the West Foster Creek Expansion Project (3,756.48 acres). The purpose of the HEP analyses was to document extant habitat conditions and to determine how many baseline/protection habitat units (HUs) to credit Bonneville Power Administration (BPA) for funding maintenance and enhancement activities on project lands as partial mitigation for habitat losses associated with construction of Grand Coulee and Chief Joseph Dams. HEP evaluation models included mule deer (Odocoileus hemionus), western meadowlark (Sturnella neglecta), sharp-tailed grouse, (Tympanuchus phasianellus), Bobcat (Lynx rufus), mink (Neovison vison), mallard (Anas platyrhynchos), and black-capped chickadee (Parus atricapillus). Combined 2007 baseline HEP results show that 4,946.44 habitat units were generated on 3,756.48 acres (1.32 HUs per acre). HEP results/habitat conditions were generally similar for like cover types at all sites. Unlike crediting of habitat units (HUs) on other WDFW owned lands, Bonneville Power Administration received full credit for HUs generated on these sites.

Ashley, Paul R.

2008-02-01T23:59:59.000Z

313

Blue Creek Winter Range : Wildlife Mitigation Project : Final Environmental Assessment.  

SciTech Connect (OSTI)

Bonneville Power Administration (BPA) proposes to fund that portion of the Washington Wildlife Agreement pertaining to the Blue Creek Winter Range Wildlife Mitigation Project (Project) in a cooperative effort with the Spokane Tribe, Upper Columbia United Tribes, and the Bureau of Indian Affairs (BIA). If fully implemented, the proposed action would allow the sponsors to protect and enhance 2,631 habitat units of big game winter range and riparian shrub habitat on 2,185 hectares (5,400 acres) of Spokane Tribal trust lands, and to conduct long term wildlife management activities within the Spokane Indian Reservation project area. This Final Environmental Assessment (EA) examines the potential environmental effects of securing land and conducting wildlife habitat enhancement and long term management activities within the boundaries of the Spokane Indian Reservation. Four proposed activities (habitat protection, habitat enhancement, operation and maintenance, and monitoring and evaluation) are analyzed. The proposed action is intended to meet the need for mitigation of wildlife and wildlife habitat adversely affected by the construction of Grand Coulee Dam and its reservoir.

United States. Bonneville Power Administration; United States. Bureau of Indian Affairs; Spokane Tribe of the Spokane Reservation, Washington

1994-11-01T23:59:59.000Z

314

Floods on Nottely River and Martin, Peachtree, and Slow Creeks in Cherokee County, North Carolina. Flood report  

SciTech Connect (OSTI)

This report describes the flood situation along the Nottely River from the North Carolina-Georgia State line, at stream mile 18.72, downstream to the head of Hiwassee Reservoir backwater, stream mile 6.50; Martin Creek from mile 6.12 downstream to mile 1.38; Peachtree Creek from Ammon Bottom at mile 4.78 downstream to its mouth at Hiwassee River mile 100,68; and Slow Creek from mile 3.15 downstream to its mouth at Peachtree Creek mile 1.98.

Not Available

1985-09-01T23:59:59.000Z

315

A Conceptual Restoration Plan and Tidal Hydrology Assessment for Reconnecting Spring Branch Creek to Suisun Marsh, Solano County, California  

E-Print Network [OSTI]

EDAW 2007. Potrero Hills Landfill FEIR Volume 1. Solanothe headwaters at Potrero Hills Landfill is the headwatersBranch Creek, Potrero Hills Landfill and a private rancher

Olson, Jessica J.

2012-01-01T23:59:59.000Z

316

Stream migration and sediment movement on Lower Cache Creek from Capay Dam to Interstate 5 at Yolo, CA.  

E-Print Network [OSTI]

??The geomorphology of waterways like Cache Creek has been modified not only by natural flooding events, but also by human activity. Aggregate mining, agriculture and (more)

Leathers, Tami

2010-01-01T23:59:59.000Z

317

Simulation of contaminated sediment transport in White Oak Creek basin  

SciTech Connect (OSTI)

This paper presents a systematic approach to management of the contaminated sediments in the White Oak Creek watershed at Oak Ridge National Laboratory near Oak Ridge, Tennessee. The primary contaminant of concern is radioactive cesium-137 ({sup 137}Cs), which binds to soil and sediment particles. The key components in the approach include an intensive sampling and monitoring system for flood events; modeling of hydrological processes, sediment transport, and contaminant flux movement; and a decision framework with a detailed human health risk analysis. Emphasis is placed on modeling of watershed rainfall-runoff and contaminated sediment transport during flooding periods using the Hydrologic Simulation Program- Fortran (HSPF) model. Because a large number of parameters are required in HSPF modeling, the major effort in the modeling process is the calibration of model parameters to make simulation results and measured values agree as closely as possible. An optimization model incorporating the concepts of an expert system was developed to improve calibration results and efficiency. Over a five-year simulation period, the simulated flows match the observed values well. Simulated total amount of sediment loads at various locations during storms match with the observed values within a factor of 1.5. Simulated annual releases of {sup 137}Cs off-site locations match the data within a factor of 2 for the five-year period. The comprehensive modeling approach can provide a valuable tool for decision makers to quantitatively analyze sediment erosion, deposition, and transport; exposure risk related to radionuclides in contaminated sediment; and various management strategies.

Bao, Y.; Clapp, R.B.; Brenkert, A.L. [Oak Ridge National Lab., TN (United States); Moore, T.D. [Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN (United States); Fontaine, T.A. [Department of Civil and Environmental Engineering, South Dakota School of Mines and Technology, Rapid City, SD (United States)

1995-12-31T23:59:59.000Z

318

Dissolved Oxygen in Allen CreekDissolved Oxygen in Allen Creek Dissolved oxygen (DO) enters the water by diffusion from air, as a by-product of photosynthesis and  

E-Print Network [OSTI]

Dissolved Oxygen in Allen CreekDissolved Oxygen in Allen Creek Dissolved oxygen (DO) enters and rapids. There is an inverse relationship between temperature and DO, i.e. colder water holds more oxygen it supplies oxygen to aquatic organisms. Higher DO levels also give the water a better taste. Figure 2. During

Tyler, Christy

319

Granite Creek Hot Spring Pool & Spa Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Granite Creek Hot Spring Pool & Spa Low Temperature Geothermal Facility Granite Creek Hot Spring Pool & Spa Low Temperature Geothermal Facility Facility Granite Creek Hot Spring Sector Geothermal energy Type Pool and Spa Location Teton County, Wyoming Coordinates 43.853632°, -110.6314491° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

320

EA-1957: Cabin Creek Biomass Facility, Place County, CA | Department of  

Broader source: Energy.gov (indexed) [DOE]

7: Cabin Creek Biomass Facility, Place County, CA 7: Cabin Creek Biomass Facility, Place County, CA EA-1957: Cabin Creek Biomass Facility, Place County, CA SUMMARY DOE is proposing to provide funding to Placer County, California to construct and operate a two-megawatt wood-to-energy biomass facility at the Eastern Regional Materials Recovery Facility (MRF) and Landfill in unincorporated Placer County. The wood-to-energy biomass facility would use a gasification technology. The fuel supply for the proposed project would be solely woody biomass, derived from a variety of sources including hazardous fuels residuals, forest thinning and harvest residuals, and Wildland Urban Interface sourced waste materials from residential and commercial property defensible space clearing and property management activities

Note: This page contains sample records for the topic "fork poplar creek" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Biological monitoring of Upper Three Runs Creek, Savannah River Plant, Aiken County, South Carolina  

SciTech Connect (OSTI)

In anticipation of the fall 1988 start up of effluent discharges into Upper Three Creek by the F/H Area Effluent Treatment Facility of the Savannah River Site, Aiken, SC, a two and one half year biological study was initiated in June 1987. Upper Three Runs Creek is an intensively studied fourth order stream known for its high species richness. Designed to assess the potential impact of F H area effluent on the creek, the study includes qualitative and quantitative macroinvertebrate stream surveys at five sites, chronic toxicity testing of the effluent, water chemistry and bioaccumulation analysis. This final report presents the results of both pre-operational and post-operational qualitative and quantitative (artificial substrate) macroinvertebrate studies. Six quantitative and three qualitative studies were conducted prior to the initial release of the F/H ETF effluent and five quantitative and two qualitative studies were conducted post-operationally.

Specht, W.L.

1991-10-01T23:59:59.000Z

322

Furnace Creek Ranch Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Furnace Creek Ranch Pool & Spa Low Temperature Geothermal Facility Furnace Creek Ranch Pool & Spa Low Temperature Geothermal Facility Facility Furnace Creek Ranch Sector Geothermal energy Type Pool and Spa Location Death Valley, California Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

323

Boiling Water at Hot Creek--The Dangerous and Dynamic Thermal Springs in California's Long Valley Caldera  

E-Print Network [OSTI]

Boiling Water at Hot Creek--The Dangerous and Dynamic Thermal Springs in California's Long Valley.S. Geological Survey USGS Fact Sheet 2007-3045 2007 T Hot Creek flows through the Long Valley Caldera Airport Fish hatchery CH-10B 44-16 Well Well Long Valley C aldera Area of Map Californ i a The thermal

Torgersen, Christian

324

The prehistory of the Little Pin Oak Creek Site (41FY53), Fayette County, Texas  

E-Print Network [OSTI]

-H. Scallorn points; I. Unidentified Style A. 213 46 Ceramics from Little Pin Oak Creek: A. Sherd HC13-A, Leon Plain; B. Sherd HC13-B, Leon Plain; C. Sherd HF11, Leon Plain. 219 47 Organic Artifacts from Little Pin Oak Creek: A. Bone button; B-C. Shell... this period (Frison 1978). PaleoIndian cultures tend to be extremely widespread; the Clovis culture appears to extend throughout the North American continent, while Folsom is limited to the Great Plains region, which stretches from Canada down into South...

Largent, Floyd Brisco

2012-06-07T23:59:59.000Z

325

Depth-gradient analysis of the Colony Creek Cycle (late Pennsylvanian) of north Texas  

E-Print Network [OSTI]

Creek Cycle in the Brazos River valley (Brad locality). . . . . . . . . . . . . . 31 2-9 Stratigraph1c section of the upper part of the Colony Creek Cycle in the Brazos River valley (North locality) . . . . . ~ . . ~ . ~ . . . . 32 5-2 Schematic...-1 Fusulinid Association (BRAD01). 5-2 Permophorus Association (LAKE09). 5-3 Linoproductus Association (PARK09). 5-4 Crurithyris Association (PARKOB). 5-5 Hemi zyga Association (NRTH09). 5-6 Nuculoid Association (NRTH01). 5-7 Ammonoid Association (PARK01...

Kennedy, Noel Lynne

2012-06-07T23:59:59.000Z

326

Atmospheric Mercury Concentrations Near Salmon Falls Creek Reservoir - Phase 1  

SciTech Connect (OSTI)

Elemental and reactive gaseous mercury (EGM/RGM) were measured in ambient air concentrations over a two-week period in July/August 2005 near Salmon Falls Creek Reservoir, a popular fishery located 50 km southwest of Twin Falls, Idaho. A fish consumption advisory for mercury was posted at the reservoir in 2002 by the Idaho Department of Health and Welfare. The air measurements were part of a multi-media (water, sediment, precipitation, air) study initiated by the Idaho Department of Environmental Quality and the U.S. Environmental Protection Agency (EPA) Region 10 to identify potential sources of mercury contamination to the reservoir. The sampling site is located about 150 km northeast of large gold mining operations in Nevada, which are known to emit large amounts of mercury to the atmosphere (est. 2,200 kg/y from EPA 2003 Toxic Release Inventory). The work was co-funded by the Idaho National Laboratorys Community Assistance Program and has a secondary objective to better understand mercury inputs to the environment near the INL, which lies approximately 230 km to the northeast. Sampling results showed that both EGM and RGM concentrations were significantly elevated (~ 30 70%, P<0.05) compared to known regional background concentrations. Elevated short-term RGM concentrations (the primary form that deposits) were likely due to atmospheric oxidation of high EGM concentrations, which suggests that EGM loading from upwind sources could increase Hg deposition in the area. Back-trajectory analyses indicated that elevated EGM and RGM occurred when air parcels came out of north-central and northeastern Nevada. One EGM peak occurred when the air parcels came out of northwestern Utah. Background concentrations occurred when the air was from upwind locations in Idaho (both northwest and northeast). Based on 2003 EPA Toxic Release Inventory data, it is likely that most of the observed peaks were from Nevada gold mine sources. Emissions from known large natural mercury sources in that area cannot account for the observed EGM peaks due to their diffuse source geometry and the large (170 km) transport distance involved. The EGM peak originating from northwestern Utah air may be from three known mercury sources west of Salt Lake City (Kennecott, US Magnesium, Clean Harbors Aragonite) and/or the 1600 MW coal-fired Intermountain Power plant near Delta. However, the relative importance of these short-term peaks for long-term watershed mercury loading (critical factor affecting fish concentrations) is not known, and there is a need to better quantify the annual frequency and magnitude of these different inputs over a longer period of time.

M. L. Abbott

2005-10-01T23:59:59.000Z

327

Figure 1: ATA 42 antenna array at Hat Creek ********ADAPTIVE REAL TIME IMAGING FOR RADIO ASTRONOMY*******  

E-Print Network [OSTI]

Figure 1: ATA 42 antenna array at Hat Creek ********ADAPTIVE REAL TIME IMAGING FOR RADIO ASTRONOMY --------------------------­ · Astronomers primarily interested in astronomy. ­ Data reduction preoccupies radio astronomy specialists,f,p Bandpass( )f PolCal( )f,p Gains( )s,f,p S Beam Imager Astronomy Solver I2 ( ) )^(^, 2sVpfV - å ¹kj X Solver

Militzer, Burkhard

328

AN INVESTIGATION OF DEWATERING FOR THE MODIFIED IN-SITU RETORTING PROCESS, PICEANCE CREEK BASIN, COLORADO  

E-Print Network [OSTI]

c:es .B~l:JJ:. }eti. ',~, Colorado School of Mines, VoL 2'1,v Piceance Creek Basin v Colorado r and 9 p' 1974. Pc:u:~tBetween 'che White and Colorado Rivers, '! \\lo:ci:hwegt:ern

Mehran, M.

2013-01-01T23:59:59.000Z

329

OAK GROVE C OAL D EGAS CEDAR COVE COAL D EGAS BLU E CREEK COAL...  

Gasoline and Diesel Fuel Update (EIA)

OAK GROVE C OAL D EGAS CEDAR COVE COAL D EGAS BLU E CREEK COAL DEGAS BR OOKWOOD C OAL D EGAS ST AR ROBIN SONS BEND COAL D EGAS BLU FF COR INNE MOU NDVILLE COAL D EGAS BLU EGU T CR...

330

NAME: Old Place Creek Berm Removal Project LOCATION: Staten Island, Richmond County, New York  

E-Print Network [OSTI]

, particularly pesticides, and their removal from the system is an additional benefit of the project. In additionNAME: Old Place Creek Berm Removal Project LOCATION: Staten Island, Richmond County, New York ACRES Island, New York. Restoration will be accomplished through removal of an earthen berm, restoring

US Army Corps of Engineers

331

Site Formation Processes at the Buttermilk Creek Site (41BL1239), Bell County, Texas  

E-Print Network [OSTI]

August 2009 Major Subject: Anthropology iii ABSTRACT Site Formation Processes at the Buttermilk Creek Site (41BL1239), Bell County, Texas. (August 2009) Joshua Lake Keene, B.A., Eastern Washington University Chair of Advisory Committee: Dr... ................................................................................................................... 94 APPENDIX B ................................................................................................................. 105 APPENDIX C...

Keene, Joshua L.

2010-10-12T23:59:59.000Z

332

Urban Influences on Stream Chemistry and Biology in the Big Brushy Creek Watershed, South Carolina  

E-Print Network [OSTI]

and rural sites. Discharge of wastewater treatment plant effluent at one rural location caused an increase land cover. wastewater treatment plant 1 Introduction The expansion of urban land areas affects between urban and rural sites may indicate that urban development in the Big Brushy Creek watershed has

333

EA-1967: Hills Creek-Lookout Point Transmission Line Rebuild, Lane County, Oregon  

Broader source: Energy.gov [DOE]

Bonneville Power Administration is preparing an EA to assess potential environmental impacts of the proposed rebuild of its 26-mile 115 kilovolt (kV) wood-pole Hills Creek-Lookout Point transmission line, which is generally located between Lowell and Oakridge, in Lane County, Oregon.

334

EIS-0134: Charlie Creek-Belfield Transmission Line Project, North Dakota  

Broader source: Energy.gov [DOE]

The Western Area Power Administration developed this EIS to assess the environmental impact of constructing a high voltage transmission line between Charlie Creek and Belfield, North Dakota, and a new substation near Belfield to as a means of adding transmission capacity to the area.

335

Seneca Creek Associates, LLC Wood Resources International, LLC "Illegal" Logging and Global Wood Markets  

E-Print Network [OSTI]

Seneca Creek Associates, LLC Wood Resources International, LLC SUMMARY "Illegal" Logging and Global Wood Markets: The Competitive Impacts on the U.S. Wood Products Industry Prepared for: American Forest Phone: 1-202-463-2713 Fax: 1-202- 463-4703 E-mail: agoetzl@sencreek.com Wood Resources International

336

Pataha Creek Model Watershed : January 2000-December 2002 Habitat Conservation Projects.  

SciTech Connect (OSTI)

The projects outlined in detail on the attached project reports were implemented from calendar year 2000 through 2002 in the Pataha Creek Watershed. The Pataha Creek Watershed was selected in 1993, along with the Tucannon and Asotin Creeks, as model watersheds by NPPC. In previous years, demonstration sites using riparian fencing, off site watering facilities, tree and shrub plantings and upland conservation practices were used for information and education and were the main focus of the implementation phase of the watershed plan. These practices were the main focus of the watershed plan to reduce the majority of the sediment entering the stream. Prior to 2000, several bank stabilization projects were installed but the installation costs became prohibitive and these types of projects were reduced in numbers over the following years. The years 2000 through 2002 were years where a focused effort was made to work on the upland conservation practices to reduce the sedimentation into Pataha Creek. Over 95% of the sediment entering the stream can be tied directly to the upland and riparian areas of the watershed. The Pataha Creek has steelhead in the upper reaches and native and planted rainbow trout in the mid to upper portion. Suckers, pikeminow and shiners inhabit the lower portion because of the higher water temperatures and lack of vegetation. The improvement of riparian habitat will improve habitat for the desired fish species. The lower portion of the Pataha Creek could eventually develop into spawning and rearing habitat for chinook salmon if some migration barriers are removed and habitat is restored. The upland projects completed during 2000 through 2002 were practices that reduce erosion from the cropland. Three-year continuous no-till projects were finishing up and the monitoring of this particular practice is ongoing. Its direct impact on soil erosion along with the economical aspects is being studied. Other practices such as terrace, waterway, sediment basin construction and the installation of strip systems are also taking place. The years 2000 through 2002 were productive years for the Pataha Creek Model Watershed but due to the fact that most of the cooperators in the watershed have reached their limitation allowed for no-till and direct seed/ two pass of 3 years with each practice, the cost share for these practices is lower than the years of the late 90's. All the upland practices that were implemented have helped to further reduce erosion from the cropland. This has resulted in a reduction of sedimentation into the spawning and rearing area of the fall chinook salmon located in the lower portion of the Tucannon River. The tree planting projects have helped in reducing sedimentation and have also improved the riparian zone of desired locations inside the Pataha Creek Watershed. The CREP (Conservation Reserve Enhancement Program) along with the CCRP (Continuous Conservation Reserve Program) are becoming more prevalent in the watershed and are protecting the riparian areas along the Pataha Creek at an increasing level every year. Currently roughly 197 acres of riparian has been enrolled along the Pataha Creek in the CREP program.

Bartels, Duane G.

2003-04-01T23:59:59.000Z

337

DOE/EA-1544: Environmental Assessment for the Proposed Anadarko/Veritas Salt Creek 3D Vibroseis Project (June 2005)  

Broader source: Energy.gov (indexed) [DOE]

___________________________ ___________________________ Salt Creek 3D Vibroseis Project Environmental Assessment BLM Casper Field Office June 2005 Page 1 ENVIRONMENTAL ASSESSMENT FOR THE PROPOSED ANADARKO / VERITAS SALT CREEK 3D VIBROSEIS PROJECT DOE EA No. EA-1544 BLM Case No. WYW-163071 BLM EA No. WY- 060-EA05-95 WOGCC Permit No. 025-05-015G _________________________________________________________________________________________________ Salt Creek 3D Vibroseis Project Environmental Assessment BLM Casper Field Office June 2005 Page 2 TABLE OF CONTENTS 1.0 PURPOSE AND NEED 1.1 Introduction 3 1.2 Purpose and need for action 3 1.3 Conformance with land use plan 3 1.4 Relationship to statutes, regulations, 4

338

Confederated Tribes of the Umatilla Indian Reservation North Fork John Day River Basin Anadromous Fish Enhancement Project, Annual Report for FY 2001.  

SciTech Connect (OSTI)

The CTUIR North Fork John Day River Basin Anadromous Enhancement Project (NFJDAFEP) identified and prioritized stream reaches in The North Fork John day River basin for habitat improvements during the 2000 project period. Public outreach was emphasized during this first year of the project. During the past year we concentrated on satisfying landowner needs, providing cost share alternatives, providing joint projects and starting implementation. We presented multiple funding and enhancement options to landowners. We concentrated on natural recovery methods, riparian fencing and offstream livestock water developments. Under this BPA contract four riparian easements have been signed protecting almost 5 miles of tributary streams. There are nine offstream water developments associated with these easements. Some landowners chose to participate in other programs based on Tribal outreach efforts. Some landowners chose NRCS programs for enhancement and others chose OWEB as a funding source. The exact amount of stream protection due to other funding sources probably exceeds that by BPA, however most would not have entered any program without initial Tribal outreach. Cooperation between the NRCS/FSA/SWCDs and the Tribe to create joint projects and develop alternative funding scenarios for riparian enhancement was a major effort. The Tribe also worked with the North Fork John Day Watershed Council, USFS and ODFW to coordinate projects and support similar projects throughout the John Day Basin.

Macy, Tom L.; James, Gary A.

2003-03-01T23:59:59.000Z

339

INTEGRATED OUTCROP AND SUBSURFACE STUDIES OF THE INTERWELL ENVIRONMENT OF CARBONATE RESERVOIRS: CLEAR FORK (LEONARDIAN-AGE) RESERVOIRS, WEST TEXAS AND NEW MEXICO  

SciTech Connect (OSTI)

This is the final report of the project ''Integrated Outcrop and Subsurface Studies of the Interwell Environment of Carbonate Reservoirs: Clear Fork (Leonardian-Age) Reservoirs, West Texas and New Mexico'', Department of Energy contract no. DE-AC26-98BC15105 and is the third in a series of similar projects funded jointly by the U.S. Department of Energy and The University of Texas at Austin, Bureau of Economic Geology, Reservoir Characterization Research Laboratory for Carbonates. All three projects focus on the integration of outcrop and subsurface data for the purpose of developing improved methods for modeling petrophysical properties in the interwell environment. The first project, funded by contract no. DE-AC22-89BC14470, was a study of San Andres outcrops in the Algerita Escarpment, Guadalupe Mountains, Texas and New Mexico, and the Seminole San Andres reservoir, Permian Basin. This study established the basic concepts for constructing a reservoir model using sequence-stratigraphic principles and rock-fabric, petrophysical relationships. The second project, funded by contract no. DE-AC22-93BC14895, was a study of Grayburg outcrops in the Brokeoff Mountains, New Mexico, and the South Cowden Grayburg reservoir, Permian Basin. This study developed a sequence-stratigraphic succession for the Grayburg and improved methods for locating remaining hydrocarbons in carbonate ramp reservoirs. The current study is of the Clear Fork Group in Apache Canyon, Sierra Diablo Mountains, West Texas, and the South Wasson Clear Fork reservoir, Permian Basin. The focus was on scales of heterogeneity, imaging high- and low-permeability layers, and the impact of fractures on reservoir performance. In this study (1) the Clear Fork cycle stratigraphy is defined, (2) important scales of petrophysical variability are confirmed, (3) a unique rock-fabric, petrophysical relationship is defined, (4) a porosity method for correlating high-frequency cycles and defining rock-fabric flow layers is described, (5) Clear Fork fractures are described and geomechanical modeling of fractures is investigated, and (6) most importantly, new statistical methods are developed for scaleup of petrophysical properties from the core to the layer scale and for retaining stratigraphic layering in simulation models.

F. Jerry Lucia

2002-01-31T23:59:59.000Z

340

Measurements on spent-fuel assemblies at Arkansas Nuclear One using the Fork system. Final report, January 1995  

SciTech Connect (OSTI)

The Fork measurement system has been used to examine spent-fuel assemblies at the two reactors of Arkansas Nuclear One, operated by Entergy Operations, Inc. The Unit 1 reactor is a Babcock and Wilcox (B and W) design, and the Unit 2 reactor is a Combustion Engineering (CE) design. The neutron and gamma-ray emissions from individual spent-fuel assemblies were measured in the storage pools by raising each assembly pathway out of the storage rack and performing a measurement near the center of the assembly. The overall accuracy of the measurements after corrections is about 2%. Thirty-four assemblies were examined at Unit 1, and forty-one assemblies at Unit 2. The average deviation of the burnup measurements from the calibration was 3.0% at Unit 1 and 3.5% at Unit 2, indicating 2 to 3% random variation among the reactor records. There was no indication of clearly anomalous assemblies. Axial Scans of the variation in neutron and gamma ray emission were obtained by collecting data at several locations along the length of three assemblies at Unit 2. Two of these assemblies were nonstandard in that each contained a small neutron source. The sources were detected by the axial scans. The test program was a cooperative effort involving Sandia National Laboratories, Los Alamos National Laboratory, Entergy Operations, Inc., the Electric Power Research Institute, and the Office of Civilian Radioactive Waste Management of the US Department of Energy.

Ewing, R.I.; Bronowski, D.R. [Sandia National Labs., Albuquerque, NM (United States); Bosler, G.E.; Siebelist, R. [Los Alamos National Lab., NM (United States); Priore, J.; Hansford, C.H.; Sullivan, S. [Entergy Operations, Inc., Russellville, AR (United States). Arkansas Nuclear One

1997-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "fork poplar creek" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

The Cane Creek clastic interval of the Pennsylvanian Paradox formation - an exciting new horizontal target; Part I: Regional Geology  

SciTech Connect (OSTI)

The Cane Creek is a fractured, abnormally pressured, self-sourcing reservoir, making it a good candidate for exploitation through horizontal technology. This concept was successfully applied to the Cane Creek in 1991 when Columbia Gas Development and Exxon Company USA, on an Enserch farmout, completed the Kane Springs Federal 27-1 for 914 BOPD. Since that time, two additional horizontal discoveries have potentialed for 1158 and 1325 BOPD, respectively. The Cane Creek was deposited in a partly restricted evaporitic environment in the Paradox basin during the Pennsylvanian. The Cane Creek consists of fifth-order shoaling-upward cycles within the transgressive to early highstand systems tracts. The reservoir comprises 20-30 ft of organic-rich, dolomitic siltstone and shale directly overlain and underlain by interbedded anhydrite, shale, and siltstone. In most areas, the Cane Creek is sealed above and below by halite, which maintains the abnormal pressure in the reservoir. Core information and reservoir engineering data indicate the Cane Creek produces from fracture porosity with minor contribution from the matrix. Initial fracture development may have occurred as a result of movement along basement-involved faults during the Pennsylvanian, followed by or coincident with salt mobilization from Pennsylvania-Jurassic. Hydrocarbon generation and overpressuring during maximum burial in the Late Cretaceous-early Tertiary created additional fractures or enhanced existing ones. The dominant fracture orientation is northeast-southwest to north-south, which is consistent with the regional stress regime during Late Cretaceous-early Tertiary.

Rawlins, D.M. (Exxon Company USA, Midland, TX (United States))

1993-08-01T23:59:59.000Z

342

Hot Creek Pool & Spa Low Temperature Geothermal Facility | Open Energy  

Open Energy Info (EERE)

Pool & Spa Low Temperature Geothermal Facility Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Hot Creek Pool & Spa Low Temperature Geothermal Facility Facility Hot Creek Sector Geothermal energy Type Pool and Spa Location Mammoth Lakes Park Area, California Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

343

Microsoft Word - CX-SwanValley-Goshen_GraniteCreekBoxCulvert_WEB.doc  

Broader source: Energy.gov (indexed) [DOE]

4 4 SUBJECT: Environmental Clearance Memorandum Joe Johnson Natural Resource Specialist - TFBV-Kalispell Proposed Action: Replace existing bridge with a concrete box culvert at Granite Creek along Bonneville Power Administration's (BPA) Swan Valley-Goshen 161-kV transmission line. Budget Information: Work Order # 189268-01 PP&A Project No.: PP&A 2047 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.3, Routine maintenance activities for structures, rights-of-way, and infrastructures, (such as roads), that are required to maintain infrastructures in a condition suitable for a facility to be used for its designated purpose. Location: The proposed project is located on Granite Creek along BPA's Swan Valley-Goshen

344

Categorical Exclusion (CX) Determination Proposed Action: Expansion of O'Fallon Creek Substation Yard  

Broader source: Energy.gov (indexed) [DOE]

Expansion of O'Fallon Creek Substation Yard Expansion of O'Fallon Creek Substation Yard Description of Proposed Action: The Western Area Power Administration (Western) is proposing to expand the current yard to accommodate an additional bay for a dedicated electrical feed to a future oil pumping station that will be part of the Keystone XL project. Number and Title of Categorical Exclusions Being Applied: 10 CFR 10210410 Subpmi D, Appendix B, B4.11: Construction of electric power substations ... or modification of existing substations and support facilities. Regulatory Requirements for CX Determination: The DOE Guidelines for Compliance with the Regulatory Requirements for the National Environmental Policy Act at 10 CFR 1021AI0(b), require the following determinations be made in order for a proposed action to be categorically

345

Microsoft Word - CX-SpringCreek-WineCountry-TowerRelocationFY13_WEB.doc  

Broader source: Energy.gov (indexed) [DOE]

November 29, 2012 November 29, 2012 REPLY TO ATTN OF: KEPR-4 SUBJECT: Environmental Clearance Memorandum Justin Estes Project Manager - TELM-TPP-3 Proposed Action: Spring Creek - Wine County No. 1 Transmission Tower Relocation Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B4.6 Additions and modifications to transmission facilities Location: Multnomah County, OR Proposed by: Bonneville Power Administration (BPA) Description of the Proposed Action: BPA is proposing to relocate one transmission tower, located on private agricultural land, which has been damaged by farm equipment. Currently, tower 29/3 on BPA's Spring Creek - Wine Country No. 1 transmission line, resides on an agricultural access road that is bordered on both sides by active agricultural fields. This

346

Microsoft Word - Spring Creek Final Draft CX 7-15-2013.docx  

Broader source: Energy.gov (indexed) [DOE]

6, 2013 6, 2013 REPLY TO ATTN OF: KEC-4 SUBJECT: Environmental Clearance Memorandum Cecilia Brown Project Manager - KEWM-4 Proposed Action: Spring Creek Property funding Fish and Wildlife Project No. and Contract No.: 2002-003-00, BPA-007168 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.25 Real property transfers for cultural resources protection, habitat preservation, and wildlife management Location: Township 17 North, Range 20 West, Section 26, Lake County, MT Proposed by: Bonneville Power Administration (BPA) Description of the Proposed Action: BPA proposes to fund the Salish and Kootenai Tribes for the purchase of 10 acres of property, referred to as the Spring Creek Land Acqusition in Lake

347

Furnace Creek Inn Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Inn Pool & Spa Low Temperature Geothermal Facility Inn Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Furnace Creek Inn Pool & Spa Low Temperature Geothermal Facility Facility Furnace Creek Inn Sector Geothermal energy Type Pool and Spa Location Death Valley, California Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

348

Campbell Creek TVA 2010 First Year Performance Report July 1, 2009 August 31, 2010  

SciTech Connect (OSTI)

This research project was initiated by TVA in March 2008 and encompasses three houses that are of similar size, design and located within the same community - Campbell Creek, Farragut TN with simulated occupancy. This report covers the performance period from July 1, 2009 to August 31, 2010. It is the intent of TVA that this Valley Data will inform electric utilities future residential retrofit incentive program.

Christian, Jeffrey E [ORNL; Gehl, Anthony C [ORNL; Boudreaux, Philip R [ORNL; New, Joshua Ryan [ORNL

2010-10-01T23:59:59.000Z

349

Environmental assessment for the Hoe Creek underground, Coal Gasification Test Site Remediation, Campbell County, Wyoming  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) has prepared this EA to assess environmental and human health Issues and to determine potential impacts associated with the proposed Hoe Creek Underground Coal Gasification Test Site Remediation that would be performed at the Hoe Creek site in Campbell County, Wyoming. The Hoe Creek site is located south-southwest of the town of Gillette, Wyoming, and encompasses 71 acres of public land under the stewardship of the Bureau of Land Management. The proposed action identified in the EA is for the DOE to perform air sparging with bioremediation at the Hoe Creek site to remove contaminants resulting from underground coal gasification (UCG) experiments performed there by the DOE in the late 1970s. The proposed action would involve drilling additional wells at two of the UCG test sites to apply oxygen or hydrogen peroxide to the subsurface to volatilize benzene dissolved in the groundwater and enhance bioremediation of non-aqueous phase liquids present in the subsurface. Other alternatives considered are site excavation to remove contaminants, continuation of the annual pump and treat actions that have been used at the site over the last ten years to limit contaminant migration, and the no action alternative. Issues examined in detail in the EA are air quality, geology, human health and safety, noise, soils, solid and hazardous waste, threatened and endangered species, vegetation, water resources, and wildlife. Details of mitigative measures that could be used to limit any detrimental effects resulting from the proposed action or any of the alternatives are discussed, and information on anticipated effects identified by other government agencies is provided.

NONE

1997-10-01T23:59:59.000Z

350

Correlation of stratigraphy with revegetation conditions at the Gibbons Creek Lignite Mine, Grimes County, Texas  

E-Print Network [OSTI]

. Correlation of Geochemistry with Environments of Deposition . Cross-Sections and Maps . GIBBONS CREEK LIGNITE MINE . 1 5 7', 7 8: 8 8 9'' 10 Location and Geologic Setting . Previous Studies 11, ' 13 High-wall Stability Hydrogeology... of each of these environments. As a result of her geologic study, she named the four lignite seams as 1, 2, 3 and 4 from oldest to youngest (Figure 5). This knowledge of the environment of deposition gave her a better understanding of the units...

Parisot, Laurence D.

1991-01-01T23:59:59.000Z

351

Poplar Chap 1.indd  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Populus: A Premier Pioneer System for Plant Genomics 1 Populus: A Premier Pioneer System for Plant Genomics 1 1 Populus: A Premier Pioneer System for Plant Genomics Stephen P. DiFazio, 1,a, * Gancho T. Slavov 1,b and Chandrashekhar P. Joshi 2 ABSTRACT The genus Populus has emerged as one of the premier systems for studying multiple aspects of tree biology, combining diverse ecological characteristics, a suite of hybridization complexes in natural systems, an extensive toolbox of genetic and genomic tools, and biological characteristics that facilitate experimental manipulation. Here we review some of the salient biological characteristics that have made this genus such a popular object of study. We begin with the taxonomic status of Populus, which is now a subject of ongoing debate, though it is becoming

352

Oak Creek Wind Power Phase 2 Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Phase 2 Wind Farm Phase 2 Wind Farm Jump to: navigation, search Name Oak Creek Wind Power Phase 2 Wind Farm Facility Oak Creek Wind Power Phase 2 Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Caithness Developer M&N Wind Power/Oak Creek Energy Systems Energy Purchaser Southern California Edison Co Location Tehachapi CA Coordinates 35.07665°, -118.25529° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.07665,"lon":-118.25529,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

353

Reservoir heterogeneity in Carter Sandstone, North Blowhorn Creek oil unit and vicinity, Black Warrior Basin, Alabama  

SciTech Connect (OSTI)

This report presents accomplishments made in completing Task 3 of this project which involves development of criteria for recognizing reservoir heterogeneity in the Black Warrior basin. The report focuses on characterization of the Upper Mississippian Carter sandstone reservoir in North Blowhorn Creek and adjacent oil units in Lamar County, Alabama. This oil unit has produced more than 60 percent of total oil extracted from the Black Warrior basin of Alabama. The Carter sandstone in North Blowhorn Creek oil unit is typical of the most productive Carter oil reservoirs in the Black Warrior basin of Alabama. The first part of the report synthesizes data derived from geophysical well logs and cores from North Blowhorn Creek oil unit to develop a depositional model for the Carter sandstone reservoir. The second part of the report describes the detrital and diagenetic character of Carter sandstone utilizing data from petrographic and scanning electron microscopes and the electron microprobe. The third part synthesizes porosity and pore-throat-size-distribution data determined by high-pressure mercury porosimetry and commercial core analyses with results of the sedimentologic and petrographic studies. The final section of the report discusses reservoir heterogeneity within the context of the five-fold classification of Moore and Kugler (1990).

Kugler, R.L.; Pashin, J.C.

1992-05-01T23:59:59.000Z

354

Environmental geophysics at Kings Creek Disposal Site and 30th Street Landfill, Aberdeen Proving Ground, Maryland  

SciTech Connect (OSTI)

Geophysical studies on the Bush River Peninsula in the Edgewood Area of Aberdeen Proving Ground, Maryland, delineate landfill areas and provide diagnostic signatures of the hydrogeologic framework and possible contaminant pathways. These studies indicate that, during the Pleistocene Epoch, alternating stands of high and low seal levels resulted in a complex pattern of shallow channel-fill deposits in the Kings Creek area. Ground-penetrating radar studies reveal a paleochannel greater than 50 ft deep, with a thalweg trending offshore in a southwest direction into Kings Creek. Onshore, the ground-penetrating radar data indicate a 35-ft-deep branch to the main channel, trending to the north-northwest directly beneath the 30th Street Landfill. Other branches are suspected to meet the offshore paleochannel in the wetlands south and east of the 30th Street Landfill. This paleochannel depositional system is environmentally significant because it may control the shallow groundwater flow regime beneath the site. Electromagnetic surveys have delineated the pre-fill lowland area currently occupied by the 30th Street Landfill. Magnetic and conductive anomalies outline surficial and buried debris throughout the study area. On the basis of geophysical data, large-scale dumping has not occurred north of the Kings Creek Disposal Site or east of the 30th Street Landfill.

Davies, B.E.; Miller, S.F.; McGinnis, L.D.; Daudt, C.R.; Thompson, M.D.; Stefanov, J.E.; Benson, M.A.; Padar, C.A.

1995-01-01T23:59:59.000Z

355

Environmental Assessment Proposed Changes to the Sanitary Biosolids Land Application Program on the Oak Ridge Reservation Oak Ridge, Tennessee  

Broader source: Energy.gov (indexed) [DOE]

56 56 Environmental Assessment Proposed Changes to the Sanitary Biosolids Land Application Program on the Oak Ridge Reservation Oak Ridge, Tennessee February 2003 U.S. Department of Energy Oak Ridge Operations i ACRONYMS AND ABBREVIATIONS ac acres ALARA as low as reasonably achievable AMSA American Metropolitan Sewer Association CEQ Council on Environmental Quality CSF cancer slope factor DOE U.S. Department of Energy EA environmental assessment EFPC East Fork Poplar Creek EPA U.S. Environmental Protection Agency EPS Effluent Polishing System (West End Treatment Facility) FONSI Finding of No Significant Impact g gram ha hectares HEAST Health Effects Assessment Summary Tables HI hazard index HQ hazard quotient IDP Industrial Discharge Permit IRIS Integrated Risk Information System kg kilogram

356

Mercury abatement report on the U.S. Department of Energy`s Oak Ridge Y-12 Plant. Fiscal year 1996  

SciTech Connect (OSTI)

This report summarizes the status of activities and the levels of mercury contamination in Upper East Fork Poplar Creek (UEFPC) resulting from activities at the Department of Energy`s (DOE`s) Y-12 Facility during fiscal year 1996 (FY96). The report outlines the status of ongoing and new project activities in support of project goals, the results of sampling and characterization efforts conducted during FY 1996, biological monitoring activities, and our conclusions relative to the progress in demonstrating compliance with the National Pollutant Discharge Elimination (NPDES) permit. Although the pace of mercury remediation activities at DOE`s Y-12 Plant is ahead of the compliance schedule established in the NPDES permit, the resulting level of mercury in UEFPC is higher than predicted based on the projects completed. Fortunately, recently recognized opportunities are being pursued for implementation in the next two years to assist in meeting permit requirements.

NONE

1996-11-01T23:59:59.000Z

357

Final technical report; Mercury Release from Organic matter (OM) and OM-Coated Mineral Surfaces  

SciTech Connect (OSTI)

This document is the final technical report for a project designed to address fundamental processes controlling the release of mercury from flood plain soils associated with East Fork Poplar Creek, Tennessee near the U.S. Department of Energy Oak Ridge facility. The report summarizes the activities, findings, presentations, and publications resulting from an award to the U.S. Geological that were part of a larger overall effort including Kathy Nagy (University of Illinois, Chicago, Ill) and Joseph Ryan (University of Colorado, Boulder, CO). The specific charge for the U.S.G.S. portion of the study was to provide analytical support for the larger group effort (Nagy and Ryan), especially with regard to analyses of Hg and dissolved organic matter, and to provide information about the release of mercury from the floodplain soils.

Aiken, George

2014-10-02T23:59:59.000Z

358

Concentrations of Triclosan in the City of Denton Wastewater Treatment Plant, Pecan Creek, and the Influent and Effluent of an Experimental Constructed Wetland.  

E-Print Network [OSTI]

??The Pecan Creek Waste Reclamation Plant in Denton, Texas, an activated sludge WWTP, was sampled monthly for ten months to determine seasonal and site variation (more)

Waltman, Elise Lyn

2004-01-01T23:59:59.000Z

359

Depositional and diagenetic controls on reservoir quality and their petrophysical predictors within the Upper Cretaceous (Cenomanian) Doe Creek Member of the Kaskapau Formation at Valhalla Field, Northwest Alberta.  

E-Print Network [OSTI]

??Valhalla Field, discovered in 1979 and located in northwest Alberta, produces from the Upper Cretaceous Doe Creek Member of the Kaskapau Formation. Original reserves in (more)

Ball, Nathaniel H.

2009-01-01T23:59:59.000Z

360

Generating Economic Development from a Wind Power Plant in Spanish Fork Canyon, Utah: A Case Study and Analysis of State-Level Economic Impacts  

Wind Powering America (EERE)

Generating Economic Development from a Wind Power Generating Economic Development from a Wind Power Project in Spanish Fork Canyon, Utah: A Case Study and Analysis of State-Level Economic Impacts Sandra Reategui Edwin R. Stafford, Ph.D. Cathy L. Hartman, Ph.D. Center for the Market Diffusion of Renewable Energy and Clean Technology Jon M. Huntsman School of Business Utah State University 3560 Old Main Hill Logan, Utah 84322-3560 January 2009 DOE/GO-102009-2760 Acknowledgements ....................................................................................................................... 1 Introduction ................................................................................................................................... 2 Report Overview ......................................................................................................................... 2

Note: This page contains sample records for the topic "fork poplar creek" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Remedial investigation work plan for Bear Creek Valley Operable Unit 4 (shallow groundwater in Bear Creek Valley) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee  

SciTech Connect (OSTI)

The enactment of the Resource Conservation and Recovery Act (RCRA) in 1976 and the Hazardous and Solid Waste Amendments (HSWA) to RCRA in 1984 created management requirements for hazardous waste fadities. The facilities within the Oak Ridge Reservation (ORR) were in the process of meeting the RCRA requirements when ORR was placed on the Comprehensive Environmental Response, Compensation, and Liability Act (CERCIA) National Priorities List (NPL) on November 21, 1989. Under RCRA, the actions typically follow the RCRA Facility Assessment (RIFA)/RCRA Facility Investigation (RFI)/Coffective Measures Study (CMS)/Corrective Measures Implementation process. Under CERCLA, the actions follow the Pre@ary Assessment/Site Investigation (PA/Sl) Remedial Investigation Feasibility Study (RI/FS)/Remedial Design/Remedial Action process. The development of this document will incorporate requirements under both RCRA and CERCIA into an RI Work Plan for the lint phase of characterization of Bear Creek Valley (BCV) Operable Unit (OU) 4.

Not Available

1992-12-01T23:59:59.000Z

362

Characterization of DOE reference oil shales: Mahogany Zone, Parachute Creek Member, Green River Formation Oil Shale, and Clegg Creek Member, New Albany Shale  

SciTech Connect (OSTI)

Measurements have been made on the chemical and physical properties of two oil shales designated as reference oil shales by the Department of Energy. One oil shale is a Green River Formation, Parachute Creek Member, Mahogany Zone Colorado oil shale from the Exxon Colony mine and the other is a Clegg Creek Member, New Albany shale from Kentucky. Material balance Fischer assays, carbon aromaticities, thermal properties, and bulk mineralogic properties have been determined for the oil shales. Kerogen concentrates were prepared from both shales. The measured properties of the reference shales are comparable to results obtained from previous studies on similar shales. The western reference shale has a low carbon aromaticity, high Fischer assay conversion to oil, and a dominant carbonate mineralogy. The eastern reference shale has a high carbon aromaticity, low Fischer assay conversion to oil, and a dominant silicate mineralogy. Chemical and physical properties, including ASTM distillations, have been determined for shale oils produced from the reference shales. The distillation data were used in conjunction with API correlations to calculate a large number of shale oil properties that are required for computer models such as ASPEN. There was poor agreement between measured and calculated molecular weights for the total shale oil produced from each shale. However, measured and calculated molecular weights agreed reasonably well for true boiling point distillate fractions in the temperature range of 204 to 399/sup 0/C (400 to 750/sup 0/F). Similarly, measured and calculated viscosities of the total shale oils were in disagreement, whereas good agreement was obtained on distillate fractions for a boiling range up to 315/sup 0/C (600/sup 0/F). Thermal and dielectric properties were determined for the shales and shale oils. The dielectric properties of the reference shales and shale oils decreased with increasing frequency of the applied frequency. 42 refs., 34 figs., 24 tabs.

Miknis, F. P.; Robertson, R. E.

1987-09-01T23:59:59.000Z

363

DOE/EIS-0265-SA-168: Supplement Analysis for the Watershed Management Program EIS - Protect and Restore Lolo Creek Watershed - Jim Brown Creek Streambank Stabilization (08/10/04)  

Broader source: Energy.gov (indexed) [DOE]

Supplement Analysis for the Watershed Management Program EIS (DOE/EIS-0265/SA-168) Sabrina Keen Fish and Wildlife Project Manager, KEWU-4 Proposed Action: Protect and Restore Lolo Creek Watershed - Jim Brown Creek Streambank Stabilization Project No: 1996-077-02 Wildlife Management Techniques or Actions Addressed Under This Supplement Analysis (See App. A of the Wildlife Mitigation Program EIS): 1.8 Bank Protection through Vegetation Management, 1.9 Structural Bank Protection using Bioengineering Methods Location: Clearwater County, Idaho Proposed by: Bonneville Power Administration (BPA) and the Nez Perce Tribe Description of the Proposed Action: The Bonneville Power Administration, Nez Perce Tribe, and Potlatch Corporation are proposing to stabilize streambanks along Jim Brown Creek near

364

Y-12 Groundwater Protection Program Monitoring Well Inspection and Maintenance Plan  

SciTech Connect (OSTI)

This document is the third revision of the 'Monitoring Well Inspection and Maintenance Plan' for groundwater wells associated with the US Department of Energy (DOE) Y-12 National Security Complex (Y-12) in Oak Ridge, Tennessee. This plan describes the systematic approach for: (1) inspecting the physical condition of monitoring wells at Y-12; (2) identifying maintenance needs that extend the life of the well and assure well-head protection is in place, and (3) identifying wells that no longer meet acceptable monitoring-well design or well construction standards and require plugging and abandonment. The inspection and maintenance of groundwater monitoring wells is one of the primary management strategies of the Y-12 Groundwater Protection Program (GWPP) Management Plan, 'proactive stewardship of the extensive monitoring well network at Y-12' (BWXT 2004a). Effective stewardship, and a program of routine inspections of the physical condition of each monitoring well, ensures that representative water-quality monitoring and hydrologic data are able to be obtained from the well network. In accordance with the Y-12 GWPP Monitoring Optimization Plan (MOP) for Groundwater Monitoring Wells at the Y-12 National Security Complex, Oak Ridge, Tennessee (BWXT 2006b), the status designation (active or inactive) for each well determines the scope and extent of well inspections and maintenance activities. This plan, in conjunction with the above document, formalizes the GWPP approach to focus available resources on monitoring wells which provide the most useful data. This plan applies to groundwater monitoring wells associated with Y-12 and related waste management facilities located within the three hydrogeologic regimes: (1) the Bear Creek Hydrogeologic Regime (Bear Creek Regime); (2) the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime); and (3) the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Bear Creek Regime encompasses a section of the Bear Creek Valley (BCV) immediately west of Y-12. The East Fork Regime encompasses most of the Y-12 process, operations, and support facilities in BCV east of scarboro Road. The Chestnut Ridge Regime is directly south of Y-12 and encompasses a section of Chestnut Ridge that is bound to the west by a surface drainage feature (Dunaway Branch) and by Scarboro Road to the east. The GWPP maintains an extensive database of construction details and related information for the monitoring wells in each hydrogeologic regime in the 'Updated Subsurface Database for Bear Creek Valley, Chestnut Ridge, and parts of Bethel Valley on the US DOE Oak Ridge Reservation (BWXT 2003a). A detailed description of the hydrogeologic framework at Y-12 can be found in the GWPP Management Plan (BWXT 2004a).

None

2006-12-01T23:59:59.000Z

365

Sediment and radionuclide transport in rivers: radionuclide transport modeling for Cattaraugus and Buttermilk Creeks, New York  

SciTech Connect (OSTI)

SERATRA, a transient, two-dimensional (laterally-averaged) computer model of sediment-contaminant transport in rivers, satisfactorily resolved the distribution of sediment and radionuclide concentrations in the Cattaraugus Creek stream system in New York. By modeling the physical processes of advection, diffusion, erosion, deposition, and bed armoring, SERATRA routed three sediment size fractions, including cohesive soils, to simulate three dynamic flow events. In conjunction with the sediment transport, SERATRA computed radionuclide levels in dissolved, suspended sediment, and bed sediment forms for four radionuclides (/sup 137/Cs, /sup 90/Sr, /sup 239/ /sup 240/Pu, and /sup 3/H). By accounting for time-dependent sediment-radionuclide interaction in the water column and bed, SERATA is a physically explicit model of radionuclide fate and migration. Sediment and radionuclide concentrations calculated by SERATA in the Cattaraugus Creek stream system are in reasonable agreement with measured values. SERATRA is in the field performance phase of an extensive testing program designed to establish the utility of the model as a site assessment tool. The model handles not only radionuclides but other contaminants such as pesticides, heavy metals and other toxic chemicals. Now that the model has been applied to four field sites, including the latest study of the Cattaraugus Creek stream system, it is recommended that a final model be validated through comparison of predicted results with field data from a carefully controlled tracer test at a field site. It is also recommended that a detailed laboratory flume be tested to study cohesive sediment transport, deposition, and erosion characteristics. The lack of current understanding of these characteristics is one of the weakest areas hindering the accurate assessment of the migration of radionuclides sorbed by fine sediments of silt and clay.

Onishi, Y.; Yabusaki, S.B.; Kincaid, C.T.; Skaggs, R.L.; Walters, W.H.

1982-12-01T23:59:59.000Z

366

EA-1895: Lolo Creek Permanent Weir Construction near town of Weippe, Clearwater County, Idaho  

Broader source: Energy.gov [DOE]

DOEs Bonneville Power Administration is preparing this EA to evaluate the potential environmental impacts of replacing an existing seasonal fish weir with a permanent weir, which would be used to monitor federally-listed Snake River steelhead and collect spring Chinook salmon adults to support ongoing supplementation programs in the watershed. The Bureau of Land Management, a cooperating agency, preliminarily determined Lolo Creek to be suitable for Congressional designation into the Wild and Scenic River System. The EA includes a Wild and Scenic River Section 7 analysis.

367

Overview of GRI research at the Rock Creek Site, Black Warrior Basin. Overview of GRI research at Rock Creek: Eight years of cooperative research, coalbed methane shortcourse. Held in Abingdon, Virginia on October 23, 1992. Topical report  

SciTech Connect (OSTI)

The presentation slides from the October 23, 1992 workshop on coalbed methane exploration and production are assembled in this volume. They illustrate the following discussions: Overview of GRI Research at Rock Creek: Eight Years of Cooperative Research, Drilling and Completing Coalbed Methane Wells: Techniques for Fragile Formations, Connecting the Wellborne to the Formation: Perforations vs. Slotting, Coalbed Methane Well Testing in the Warrior Basin, Reservoir Engineering: A Case Study at Rock Creek, Fraccing of Multiple Thin Seams: Considerations and Constraints, Implementing Coal Seam Stimulations: Requirements for Successful Treatments, Coal-Fluid Interactions, Mine-Through Observations of Coal Seam Stimulations: Reality vs. Theory, and Recompleting Coalbed Methane Wells: The Second Try at Success.

Schraufnagel, R.

1992-10-01T23:59:59.000Z

368

Improvement of Anadromous Fish Habitat and Passage in Omak Creek, 2008 Annual Report : February 1, 2008 to January 31, 2009.  

SciTech Connect (OSTI)

During the 2008 season, projects completed under BPA project 2000-100-00 included installation of riparian fencing, maintenance of existing riparian fencing, monitoring of at-risk culverts and installation of riparian vegetation along impacted sections of Omak Creek. Redd and snorkel surveys were conducted in Omak Creek to determine steelhead production. Canopy closure surveys were conducted to monitor riparian vegetation recovery after exclusion of cattle since 2000 from a study area commonly known as the Moomaw property. Additional redd and fry surveys were conducted above Mission Falls and in the lower portion of Stapaloop Creek to try and determine whether there has been successful passage at Mission Falls. Monitoring adult steelhead trying to navigate the falls resulted in the discovery of shallow pool depth at an upper pool that is preventing many fish from successfully navigating the entire falls. The Omak Creek Habitat and Passage Project has worked with NRCS to obtain additional funds to implement projects in 2009 that will address passage at Mission Falls, culvert replacement, as well as additional riparian planting. The Omak Creek Technical Advisory Group (TAG) is currently revising the Omak Creek Watershed Assessment. In addition, the group is revising strategy to focus efforts in targeted areas to provide a greater positive impact within the watershed. In 2008 the NRCS Riparian Technical Team was supposed to assess areas within the watershed that have unique problems and require special treatments to successfully resolve the issues involved. The technical team will be scheduled for 2009 to assist the TAG in developing strategies for these special areas.

Dasher, Rhonda; Fisher, Christopher [Colville Confederated Tribes

2009-06-09T23:59:59.000Z

369

Analysis of standard sieving method for milled biomass through image processing. Effects of particle shape and size for poplar and corn stover  

Science Journals Connector (OSTI)

Abstract Particle size distribution, obtained under standard sieving method, is usually given as a function of a single characteristic length of the particle. It is fully characterized for spherical particles, but it presents uncertainties when the particle has more complex morphologies as it is the case of biomass powders. The aim of this work is to characterize the standard sieving method in order to determine which particle dimension is being measured, as well as the repercussions of non-spherical shapes on a correct size classification. For this purpose, samples of milled poplar and corn stover have been classified in six size ranges between 0 and 5mm. Each group of particles has been studied by means of scanned imaging to characterize their real 2D dimensions (width and length) and their shapes according to six different categories: circle, square, rectangle, rectangle fibrous, hook and hook fibrous. Results from image analysis show that sieve size corresponds mostly with particle width (shorter dimension), finding a sieving efficiency around 70%. Most wrongly classified particles showed a high aspect ratio, a hook shape or silhouette irregularities at fracture section, thus proving the importance of particle shape in the classifying process.

Miguel Gil; Enrique Teruel; Inmaculada Arauzo

2014-01-01T23:59:59.000Z

370

B I OENV I RONMENTAL FEATURES OF THE OGOTORUK CREEK AREA, CAPE THOMPSON, ALASKA  

Office of Legacy Management (LM)

B I OENV I RONMENTAL FEATURES B I OENV I RONMENTAL FEATURES OF THE OGOTORUK CREEK AREA, CAPE THOMPSON, ALASKA A First Summary by The Committee on Environmental Studies for Project Chariot . . December 1960 r Division of Biology and Medicine, AEC Washington, D. C. IT U S WEGWS LIBIA3"b This page intentionally left blank NUCLEAR EXPLOSIONS -PEACE UL APPLICATIONS . . BIOLOGY AND MEDICINE BIOENVIRONMENTAL FEATURES OF THE OGOTORUK CREEK AREA . . CAPE THOMPSON, ALASKA A F i r s t Sumnary The C o d t t e e on E n v i r o n m e n t a l S t u d i e s for P r o j e c t C h a r i o t PLllWSHARE PROGRAM THE UNITED STATES ATOMIC ENERGY COMMISSION December, 1 9 6 0 MAP OF ALASKA - CHARIOT LOCATION SCALE IN MILES . 111*1.1) , FOREWORD . . This summary is based on the reports on more than 30 bioenvironmental investigations carried out' in the Cape Thompson area in Alaska since

371

Camas Creek (Meyers Cove) Anadromous Species Habitat Improvement: Annual Report 1989.  

SciTech Connect (OSTI)

Historical agricultural practices and natural events contributed to severe degradation of riparian zones and instream fish habitat in the Meyers Cove area of Camas Creek. In 1984, Salmon National Forest personnel began implementing specific management activities in riparian areas and the stream channel to accelerate habitat recovery. In 1987--88, 4.3 miles of fence was constructed establishing a riparian livestock exclosure in the Meyers Cove area of Camas Creek. One end-gap and two water-crossing corridors were constructed in 1989 to complete the fence system. The riparian exclosure has been fertilized with phosphorous-rich fertilizer to promote root growth. A stream crossing ford was stabilized with angular cobble. Streambank stabilization/habitat cover work was completed at three sites and three additional habitat structures were placed. Extensive habitat inventories were completed to identify quality/quantity of habitat available to anadromous fish. The work accomplished was designed to promote natural revegetation of the riparian area to improve rearing habitat cover and streambank stability. Streambank work was limited to extremely unstable sites. Enhancement activities will improve spawning, incubation, and rearing habitat for wild populations of steelhead trout and chinook salmon. Anadromous species population increases resulting from these enhancement activities will provide partial compensation for downstream losses resulting from hydroelectric developments on the Columbia River system. 9 refs., 6 figs., 7 tabs.

Hardy, Terry

1989-12-01T23:59:59.000Z

372

Deposition and diagenesis of a cratonic Silurian platform reef, Pipe Creek Jr. , Indiana  

SciTech Connect (OSTI)

Petrographic and geochemical characteristics of the Pipe Creek Jr. paragenesis record the stratigraphic and burial evolution of the cratonic Silurian platform of Indiana during Late Silurian to Pennsylvanian. A variety of several diagenetic fluids acting over geological time affected the reef. The paragenetic sequence is as follows: (1) precipitation of turbid, fibrous, blotchy cathodoluminescent (CL) cement; (2) dolomitization of mud-rich facies; (3) precipitation of clear, zoned CL equant calcite cements; (4) fracturing and karst formation, partially filled by geopetal silt and sandstone; (5) precipitation of clear, dull CL, ferroan to nonferroan equant calcite cement, ferroan dolomite overgrowth and equant dolomite cement in moldic porosity, caves and fractures; (6) microdissolution and hydrocarbon emplacement; and (7) stylolitization. The New Albany Shale was both the hydrocarbon source and top seal to the fossil Pipe Creek Jr. oil field with original oil in place estimated at 11 million bbl. The level of organic metamorphism of the New Albany Shale, the oil residue, and the two-phase fluid inclusions in the burial cements suggest that sediments accumulated on the platform throughout Mississippian time.

Simo, A.; Lehmann, P.

1988-02-01T23:59:59.000Z

373

Case study of the 9 April 2009 `brown' cloud: Observations and modeling of convective clouds in Saudi Arabia, David J Delene and Jeffrey S Tilley, University of North Dakota, Grand Forks, ND  

E-Print Network [OSTI]

was funded by the Kingdom of Saudi Arabia through a contract with Weather Modification Inc (WMI). We also in Saudi Arabia, David J Delene and Jeffrey S Tilley, University of North Dakota, Grand Forks, ND Terry Krauss, Weather Modification, Inc., Fargo, ND ` Introduction Photographs of ice accumulation

Delene, David J.

374

ARCHAEOLOGY, LATE-QUATERNARY LANDSCAPE EVOLUTION, AND ENVIRONMENTAL CHANGE IN THE UPPER DRIFTWOOD CREEK BASIN, BARBER COUNTY, KANSAS  

E-Print Network [OSTI]

and D) . 26 Donovan Ranch Fan. 33 Blunk Ranch Location.. 37 Sterling Ranch Section.. 48 VI. CONCLUSIONS 53 Paleo... of the study area within the upper Driftwood Creek basin 2 3. Location of archaeological sites discussed in the text.. 12 4. Location of the Vincent-Donovan site and the Donovan Ranch Fan ... 29 5. Terrace remnant and soil...

Kessler, Nicholas Victor

2010-12-09T23:59:59.000Z

375

The area of North King County was once forested with deep woods and braided with creeks, where wild-  

E-Print Network [OSTI]

The area of North King County was once forested with deep woods and braided with creeks, where wild distinct identities, of the historic communities of North King County. www.ci.woodinville.wa.us www and a jumping-off point for the Burke-Gilman trail. Tracy Owen was a King county council mem- ber from 1969

Yetisgen-Yildiz, Meliha

376

Biological monitoring of Upper Three Runs Creek, Savannah River Site, Aiken County, South Carolina, March 1990--July 1991  

SciTech Connect (OSTI)

In anticipation of the fall 1988 start up of effluent discharges into Upper Three Runs Creek by the F/H Area Effluent Treatment Facility of the Savannah River Site, Aiken, SC, a two and one half year biological study was initiated in June 1987. Upper Three Runs Creek is an intensively studied fourth order stream known for its high species richness. Designed to assess the potential impact of F/H area effluent on the creek, the study included qualitative and quantitative macroinvertebrate stream surveys at five sites (see map), chronic toxicity testing of the effluent, water chemistry and bioaccumulation analysis. In a March 1990 study of the potential impact of F/H Area effluent on the macroinvertebrate communities of Upper Three Runs Creek was extended, with reductions in the number of sites to be sampled and in the frequency of water chemistry sampling. This report presents the results of macroinvertebrate stream surveys at three sites, chronic toxicity testing of the effluent and water chemistry analysis of the three stream sites and the effluent from March 1990 to July 1991.

Not Available

1991-12-01T23:59:59.000Z

377

Analysis of soil and water at the Four Mile Creek seepline near the F- and H-Areas of SRS  

SciTech Connect (OSTI)

Several soil and water samples were collected along the Four Mile Creek (FMC) seepline at the F and H Areas of the Savannah River Site. The samples were analyzed for concentrations of metals, radionuclides, and inorganic constituents. The results of the analyses are summarized for the soil and water samples.

Haselow, J.S.

2000-05-24T23:59:59.000Z

378

Y-12 Groundwater Protection Program Groundwater and Surface Water Sampling and Analysis Plan For Calendar Year 2009  

SciTech Connect (OSTI)

This plan provides a description of the groundwater and surface water quality monitoring activities planned for calendar year (CY) 2009 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) that will be managed by the Y-12 Groundwater Protection Program (GWPP). Groundwater and surface water monitoring performed by the GWPP during CY 2009 will be in accordance with DOE Order 540.1 requirements and the following goals: (1) to protect the worker, the public, and the environment; (2) to maintain surveillance of existing and potential groundwater contamination sources; (3) to provide for the early detection of groundwater contamination and determine the quality of groundwater and surface water where contaminants are most likely to migrate beyond the Oak Ridge Reservation property line; (4) to identify and characterize long-term trends in groundwater quality at Y-12; and (5) to provide data to support decisions concerning the management and protection of groundwater resources. Groundwater and surface water monitoring during CY 2009 will be performed primarily in three hydrogeologic regimes at Y-12: the Bear Creek Hydrogeologic Regime (Bear Creek Regime), the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), and the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Bear Creek and East Fork regimes are located in Bear Creek Valley, and the Chestnut Ridge Regime is located south of Y-12 (Figure A.1). Additional surface water monitoring will be performed north of Pine Ridge, along the boundary of the Oak Ridge Reservation. Modifications to the CY 2009 monitoring program may be necessary during implementation. Changes in programmatic requirements may alter the analytes specified for selected monitoring wells or may add or remove wells from the planned monitoring network. All modifications to the monitoring program will be approved by the Y-12 GWPP manager and documented as addenda to this sampling and analysis plan. The following sections of this report provide details regarding the CY 2009 groundwater and surface water monitoring activities. Section 2 describes the monitoring locations in each regime and the processes used to select the sampling locations. A description of the field measurements and laboratory analytes is provided in Section 3; sample collection methods and procedures are described in Section 4; and Section 5 lists the documents cited for more detailed operational and technical information.

Elvado Environmental LLC

2008-12-01T23:59:59.000Z

379

Camas Creek (Meyers Cove) Anadromous Species Habitat Improvement: Annual Report 1990.  

SciTech Connect (OSTI)

Populations of wild salmon and steelhead in the Middle Fork of the Salmon River are at historical lows. Until passage and flow problems associated with Columbia River dams are corrected to reduce mortalities of migrating smolts, continuance of habitat enhancements that decrease sediment loads, increase vegetative cover, remove passage barriers, and provide habitat diversity is imperative to maintain surviving populations of these specially adapted fish. In 1987-1988, 4.3 miles of fence was constructed establishing a riparian livestock exclosure. One end-gap and two water-crossing corridors were constructed in 1989 to complete the fence system. Areas within the exclosure have been fertilized to promote tree and shrub root growth and meadow recovery. A stream crossing ford was stabilized with angular cobble. Streambank stabilization/habitat cover work was completed at three sites and three additional habitat structures were placed. Extensive inventories were completed to identify habitat available to anadromous fish. Streambank stabilization work was limited to extremely unstable banks, minimizing radical alterations to an active stream channel. Enhancement activities will improve spawning, incubation, and rearing habitat for wild populations of steelhead trout and chinook salmon. Anadromous species population increases resulting from these enhancement activities will provide partial compensation for downstream losses resulting from hydroelectric developments on the Columbia River system. 10 refs., 11 figs., 5 tabs.

Seaberg, Glen

1990-06-01T23:59:59.000Z

380

White Oak Creek watershed: Melton Valley area Remedial Investigation report, at the Oak Ridge National Laboratory, Oak Ridge, Tennessee: Volume 2, Appendixes A and B  

SciTech Connect (OSTI)

This document contains Appendixes A ``Source Inventory Information for the Subbasins Evaluated for the White Oak Creek Watershed`` and B ``Human Health Risk Assessment for White Oak Creek / Melton Valley Area`` for the remedial investigation report for the White Oak Creek Watershed and Melton Valley Area. Appendix A identifies the waste types and contaminants for each subbasin in addition to the disposal methods. Appendix B identifies potential human health risks and hazards that may result from contaminants present in the different media within Oak Ridge National Laboratory sites.

NONE

1996-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "fork poplar creek" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

DOEIJEA-1219 ENVIRONMENTAL ASSESSMENT HOE CREEK UNDERGROUND COAL GASIFICATION TEST SITE REMEDIATION  

Broader source: Energy.gov (indexed) [DOE]

DOEIJEA-1219 DOEIJEA-1219 ENVIRONMENTAL ASSESSMENT HOE CREEK UNDERGROUND COAL GASIFICATION TEST SITE REMEDIATION CAMPBELL COUNTY, WYOMING October 1997 U.S. DEPARTMENT OF ENERGY FEDERAL ENERGY TECHNOLOGY CENTER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or use- fulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any spe- cific commercial product, process. or service by trade name, trademark, manufac-

382

Microsoft Word - CX_PerryCreek_4.29.11.doc  

Broader source: Energy.gov (indexed) [DOE]

, 2011 , 2011 REPLY TO ATTN OF: KEC-4 SUBJECT: Environmental Clearance Memorandum Cecilia Brown Project Manager - KEWM-4 Proposed Action: Provision of funds to Montana Fish, Wildlife and Parks for purchase of the Perry Creek Property. Fish and Wildlife Project No.: 2008-800-00, Contract 45235 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.25 Transfer, lease, disposition or acquisition of interests in uncontaminated land for habitat preservation or wildlife management, and only associated buildings that support these purposes. Uncontaminated means that there would be no potential for release of substances at a level, or in a form, that would pose a threat to public health or the environment. Location: Township 24 North, Range 17 West, Section 31, Lake County, Montana

383

Microsoft Word - 2012_Rapid_Lightening_Creek_Easement_CX_Rev2.doc  

Broader source: Energy.gov (indexed) [DOE]

24, 2012 24, 2012 REPLY TO ATTN OF: KEC-4 SUBJECT: Environmental Clearance Memorandum Virgil Lee Watts Project Manager - KEWM-4 Proposed Action: AMENDED Provision of funds to the Idaho Department of Fish and Game (IDFG) to purchase the Rapid Lightning Creek Property. Fish and Wildlife Project No.: 1992-061-00 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B 1.25 Real property transfers for cultural resources protection, habitat preservation, and wildlife management. Location: Township 58 North, Range 1 West, Section 24 of Bonner County, Idaho Proposed by: Bonneville Power Administration (BPA) and IDFG Description of the Proposed Action: BPA proposes to provide funds to IDFG for a fee-simple title acquisition of an approximately 27-acre parcel of land adjacent to the Rapid Lightning and

384

Microsoft Word - CX-HillsCreek-LookoutPointWoodPolesFY12_WEB.docx  

Broader source: Energy.gov (indexed) [DOE]

REPLY TO ATTN OF: KEP-Alvey SUBJECT: Environmental Clearance Memorandum Chad Hamel Project Manager - TEP-TPP-1 Proposed Action: Hills Creek-Lookout Point No. 1 wood pole replacements PP&A Project No.: 2315 (WO# 297311) Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.3 Routine maintenance Location: Lane County, Oregon Proposed by: Bonneville Power Administration (BPA), Alvey District Description of the Proposed Action: BPA proposes to replace four deteriorating wood pole structures and associated structural/electrical components (e.g. cross arms, insulators, guy anchors) along the subject transmission line. The poles are located on private residential and US Forest Service land. Landowners will be notified prior to replacement activities. Replacement will be in-

385

Supplying LNG markets using nitrogen rejection units at Exxon Shute Creek Facility  

SciTech Connect (OSTI)

Interest is growing in the United States for using Liquid Natural Gas (LNG) as an alternative transportation fuel for diesel and as a source of heating fuel. For gas producers, LNG offers a premium price opportunity versus conventional natural gas sales. To supply this developing market, two existing Nitrogen Rejection Units (NRU) at the Exxon Shute Creek Facility in Wyoming were modified allowing LNG extraction and truck loading for transport to customers. The modifications involved adding heat exchanger capacity to the NRUs to compensate for the refrigeration loss when LNG is removed. Besides allowing for LNG extraction, the modifications also debottlenecked the NRUs resulting in higher methane recovery and lower compression costs. With the modifications, the NRUs are capable of producing for sale 60,000 gpd (5 MMscfd gas equivalent) of high purity LNG. Total investment has been $5 million with initial sales of LNG occurring in September 1994.

Hanus, P.M.; Kimble, E.L. [Exxon Co. USA, Midland, TX (United States)

1995-11-01T23:59:59.000Z

386

Examination of eastern oil shale disposal problems - the Hope Creek field study  

SciTech Connect (OSTI)

A field-based study of problems associated with the disposal of processed Eastern oil shale was initiated in mid-1983 at a private research site in Montgomery County, Kentucky. The study (known as the Hope Creek Spent Oil Shale Disposal Project) is designed to provide information on the geotechnical, revegetation/reclamation, and leachate generation and composition characteristics of processed Kentucky oil shales. The study utilizes processed oil shale materials (retorted oil shale and reject raw oil shale fines) obtained from a pilot plant run of Kentucky oil shale using the travelling grate retort technology. Approximately 1000 tons of processed oil shale were returned to Kentucky for the purpose of the study. The study, composed of three components, is described. The effort to date has concentrated on site preparation and the construction and implementation of the field study research facilities. These endeavors are described and the project direction in the future years is defined.

Koppenaal, D.W.; Kruspe, R.R.; Robl, T.L.; Cisler, K.; Allen, D.L.

1985-02-01T23:59:59.000Z

387

Microsoft Word - JockoSpringCreek_Scott_Acquisition_CX_Final.doc  

Broader source: Energy.gov (indexed) [DOE]

purchase of Jocko Spring Creek Property. Fish and Wildlife Project No.: 2002-003-00, Contract # BPA-44646 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.25 Transfer, lease, disposition or acquisition of interests in uncontaminated land for habitat preservation or wildlife management, and only associated buildings that support these purposes. Uncontaminated means that there would be no potential for release of substances at a level, or in a form, that would pose a threat to public health or the environment. Location: Township 17 North, Range 20 West, Section 26 of the Arlee Quad, in Lake County, Montana Proposed by: Bonneville Power Administration (BPA) and CSKT Description of the Proposed Action: BPA proposes to fund the acquisition of 126 acres of

388

Microsoft Word - CX-Rock_Creek-John_Day_No1_Spacer_WEB.doc  

Broader source: Energy.gov (indexed) [DOE]

9, 2010 9, 2010 REPLY TO ATTN OF: KEP-4 SUBJECT: Environmental Clearance Memorandum Corinn Castro Project Manager - TELM-TPP-3 Proposed Action: Replace spacer dampers along the Rock Creek-John Day No. 1 500-kV transmission line; structures 1/1 to 4/2 and 6/4 to 11/2 Budget Information: Work Order #00234528 PP&A Project No.: PP&A 1167 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.3, Routine maintenance activities...for structures, rights-of-way, infrastructures such as roads, equipment...routine maintenance activities, corrective....are required to maintain... infrastructures...in a condition suitable for a facility to be used for its designed purpose. Proposed by: Bonneville Power Administration (BPA)

389

Microsoft Word - CX-BB3-Dragoon-Creek_WEB.doc  

Broader source: Energy.gov (indexed) [DOE]

1, 2010 1, 2010 REPLY TO ATTN OF: KEPR-Bell-1 SUBJECT: Environmental Cleareance Memorandum Jason Moon - TELF-TPP-3 Project Manager Proposed Action: Provide heavy vehicular access across Dragoon Creek to maintain and service Bonneville Power Administration's (BPA) Bell-Boundary No.3 transmission line by replacing the existing wood stringer bridge with a precast or modular steel bridge. PP&A Project No.: PP&A 1574 Budget Information: 247745 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.3 Routine maintenance/custodial services for buildings, structures, infrastructures (e.g., pathways, roads, and railroads), equipment. B1.13 Construction, acquisition, and relocation of onsite pathways and short onsite access roads

390

Structural characterization of terrestrial microbial Mn oxides from Pinal Creek, AZ  

SciTech Connect (OSTI)

The microbial catalysis of Mn(II) oxidation is believed to be a dominant source of abundant sorption- and redox-active Mn oxides in marine, freshwater, and subsurface aquatic environments. In spite of their importance, environmental oxides of known biogenic origin have generally not been characterized in detail from a structural perspective. Hyporheic zone Mn oxide grain coatings at Pinal Creek, Arizona, a metals-contaminated stream, have been identified as being dominantly microbial in origin and are well studied from bulk chemistry and contaminant hydrology perspectives. This site thus presents an excellent opportunity to study the structures of terrestrial microbial Mn oxides in detail. XRD and EXAFS measurements performed in this study indicate that the hydrated Pinal Creek Mn oxide grain coatings are layer-type Mn oxides with dominantly hexagonal or pseudo-hexagonal layer symmetry. XRD and TEM measurements suggest the oxides to be nanoparticulate plates with average dimensions on the order of 11 nm thick x 35 nm diameter, but with individual particles exhibiting thickness as small as a single layer and sheets as wide as 500 nm. The hydrated oxides exhibit a 10-A basal-plane spacing and turbostratic disorder. EXAFS analyses suggest the oxides contain layer Mn(IV) site vacancy defects, and layer Mn(III) is inferred to be present, as deduced from Jahn-Teller distortion of the local structure. The physical geometry and structural details of the coatings suggest formation within microbial biofilms. The biogenic Mnoxides are stable with respect to transformation into thermodynamically more stable phases over a time scale of at least 5 months. The nanoparticulate layered structural motif, also observed in pure culture laboratory studies, appears to be characteristic of biogenic Mn oxides and may explain the common occurrence of this mineral habit in soils and sediments.

Bargar, John; Fuller, Christopher; Marcus, Matthew A.; Brearley, Adrian J.; Perez De la Rosa, M.; Webb, Samuel M.; Caldwell, Wendel A.

2008-03-19T23:59:59.000Z

391

DOE/EA-1371; Integrated Natural Resources Management Plan, Environmental Assessment, and Finding of No Significant Impacts for Rock Creek Reserve (5/2001)  

Broader source: Energy.gov (indexed) [DOE]

Finding of No Significant Impact Finding of No Significant Impact Integrated Natural Resources Management Plan and Environmental Assessment for Rock Creek Reserve Summary: The Department of Energy (DOE) with the assistance and cooperation of the US. Fish and Wildlife Service, prepared an Integrated Natural Resources Management Plan and Environmental Assessment (Plan)(DOE/EA-1371) for the Rock Creek Reserve at the Rocky Flats Environmental Technology Site (Site) located north of Golden, Colorado. The Rock Creek Reserve was established in May 1999 in recognition of the area's biological significance. Although still under the ownership of the DOE, the Rock Creek Reserve will be co- managed with the U. S. Fish and Wildlife Service as part of an interagency agreement signed by these two

392

Notice of Availability of the Record of Decision for the Goodnoe Hills and White Creek Wind Energy Projects, Business Plan EIS (DOE/EIS-0183) (October 2005)  

Broader source: Energy.gov (indexed) [DOE]

13 Federal Register 13 Federal Register / Vol. 70, No. 226 / Friday, November 25, 2005 / Notices DEPARTMENT OF ENERGY Bonneville Power Administration Goodnoe Hills and White Creek Wind Energy Projects, October 2005 AGENCY: Bonneville Power Administration (BPA), Department of Energy (DOE). ACTION: Notice of availability of Record of Decision (ROD). SUMMARY: BPA has decided to offer contract terms for interconnection of the Goodnoe Hills and White Creek Wind Energy Projects into the Federal Columbia River Transmission System (FCRTS) at the Rock Creek substation in Klickitat County, Washington. The Large Generation Interconnection Agreement (LGIA) provides for interconnection of the Wind Projects with the FCRTS, the operation of Goodnoe Hills and White Creek Wind Energy Projects in the BPA Control Area

393

Microsoft Word - CX-Alvey-FairviewAlvey-MartinCreek-DrainWoodPolesFY12_WEB.doc  

Broader source: Energy.gov (indexed) [DOE]

Wood pole replacements on the Alvey-Fairview No. 1 230-kV, Alvey- Wood pole replacements on the Alvey-Fairview No. 1 230-kV, Alvey- Martin Creek 115-kV, and Martin Creek-Drain #1 115-kV transmission line rights-of-way (ROW) PP&A Project No.: 2308 (WO# 297303), 2310 (WO# 297305), 2319 (WO# 297996) Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.3 Routine maintenance Location: Alvey and Douglas counties, Oregon Proposed by: Bonneville Power Administration (BPA) Description of the Proposed Action: BPA proposes to replace 18 deteriorating wood poles and associated structural/electrical components (e.g. cross arms, insulators, guy anchors, etc.) as well as cross arms on three other structures along the subject transmission lines. Replacement will be in-kind and will utilize the existing holes to minimize ground disturbance. If necessary, an auger

394

Re-Introduction of Lower Columbia River Chum Salmon into Duncan Creek, 2002-2003 Annual Report.  

SciTech Connect (OSTI)

The National Marine Fisheries Service (NMFS) listed Lower Columbia River chum as threatened under the auspices of the Endangered Species Act (ESA) in March of 1999 (64 FR 14508, March 25, 1999). The listing was in response to reduction in abundance from historical levels of more than half a million returning adults to fewer than 10,000 present day spawners. Harvest, loss of habitat, changes in flow regimes, riverbed movement and heavy siltation have been largely responsible for the decline of Columbia River chum salmon. The timing of seasonal changes in river flow and water temperatures is perhaps the most critical factor in structuring the freshwater life history of this species. This is especially true of the population located directly below Bonneville Dam where hydropower operations can block access to spawning sites, dewater redds, strand fry, cause scour or fill of redds and increase sedimentation of spawning gravels. Currently, only two main populations are recognized as genetically distinct in the Columbia River, although spawning has been documented in most lower Columbia River tributaries. The first is located in the Grays River (RKm 34) (Grays population), a tributary of the Columbia, and the second is a group of spawners that utilize the Columbia River just below Bonneville Dam (RKm 235) adjacent to Ives Island and in Hardy and Hamilton creeks (Lower Gorge population). A possible third population of mainstem spawners, found in the fall of 1999, were located spawning above the I-205 bridge (approximately RKm 182), this aggregation is referred to as the Woods Landing/Rivershore population or the I-205 group. The recovery strategy for Lower Columbia River (LCR) chum as outlined in Hatchery Genetic Management Plans (HGMP) has three main tasks. First, determine if remnant populations of LCR chum salmon exist in LCR tributaries. Second, if such populations exist, develop stock-specific recovery plans involving habitat restoration including the creation of spawning refugias, supplementation if necessary and a habitat and fish monitoring and evaluation plan. If chum have been extirpated from previously utilized streams, develop re-introduction plans that utilize appropriate genetic donor stock(s) of LCR chum salmon and integrate habitat improvement and fry-to-adult survival evaluations. Third, reduce extinction risks to the Grays River chum salmon population by randomly capturing adults in the basin for use in a supplementation program and reintroduction into the Chinook River basin. The Duncan Creek project was developed using the same recovery strategy implemented for LCR chum. Biologists with the WDFW and Pacific States Marine Fisheries Commission (PSMFC) identified Duncan Creek as an ideal upriver location below Bonneville Dam for chum re-introduction. It has several attributes that make it a viable location for a re-introduction project: historically chum salmon were present, the creek is low gradient, has numerous springs/seeps, has a low potential for future development and is located close to a donor population of Lower Gorge chum. The Duncan Creek project has two goals: (1) re-introduction of chum into Duncan Creek by providing off channel high-quality spawning and incubation areas, and (2) to simultaneously evaluate natural recolonization and a supplementation strategy where adults are collected and spawned artificially at a hatchery. For supplementation, eggs are incubated and the fry reared at the Washougal Hatchery to be released back into Duncan Creek. The tasks associated with re-establishing a naturally self-sustaining population include: (1) removing mud, sand and organics present in four of the creek branches and replace with gravels expected to provide maximum egg-to-fry survival rates to a depth of at least two feet; (2) armoring the sides of these channels to reduce importation of sediment by fish spawning on the margins; (3) planting native vegetation adjacent to the channels to stabilize the banks, trap silt and provide shade; (4) annual sampling of gravel in the spawning channels to detect cha

Hillson, Todd D. (Washington Department of Fish and Wildlife, Olympia, WA)

2003-10-15T23:59:59.000Z

395

Asotin Creek Instream Habitat Alteration Projects : Habitat Evaluation, Adult and Juvenile Habitat Utilization and Water Temperature Monitoring : 2001 Progress Report.  

SciTech Connect (OSTI)

Asotin Creek originates from a network of deeply incised streams on the slopes of the Blue Mountains of southeastern Washington. The watershed drains an area of 322 square miles that provides a mean annual flow of 74 cfs. The geomorphology of the watershed exerts a strong influence on biologic conditions for fish within the stream. Historic and contemporary land-use practices have had a profound impact on the kind, abundance, and distribution of anadromous salmonids in the watershed. Fish habitat in Asotin Creek and other local streams has been affected by agricultural development, grazing, tilling practices, logging, recreational activities and implementation of flood control structures (Neilson 1950). The Asotin Creek Model Watershed Master Plan was completed in 1994. The plan was developed by a landowner steering committee for the Asotin County Conservation District (ACCD), with technical support from various Federal, State and local entities. Actions identified within the plan to improve the Asotin Creek ecosystem fall into four main categories: (1) Stream and Riparian, (2) Forestland, (3) Rangeland, and (4) Cropland. Specific actions to be carried out within the stream and in the riparian area to improve fish habitat were: (1) create more pools, (2) increase the amount of large organic debris (LOD), (3) increase the riparian buffer zone through tree planting, and (4) increase fencing to limit livestock access. All of these actions, in combination with other activities identified in the Plan, are intended to stabilize the river channel, reduce sediment input, increase the amount of available fish habitat (adult and juvenile) and protect private property. Evaluation work described within this report was to document the success or failure of the program regarding the first two items listed (increasing pools and LOD). Beginning in 1996, the ACCD, with cooperation from local landowners and funding from Bonneville Power Administration began constructing instream projects to improve fish habitat. In 1998, the ACCD identified the need for a more detailed analysis of these instream projects to fully evaluate their effectiveness at improving fish habitat. Therefore, ACCD contracted with WDFW's Snake River Lab (SRL) to take pre- and post-construction measurements of the habitat (i.e., pools, LOD, width, depth) at each site, and to evaluate fish use within some of the altered sites. These results have been published annually as progress reports to the ACCD (Bumgarner et al. 1999, Wargo et al. 2000, and Bumgarner and Schuck 2001). The ACCD also contracted with the WDFW SRL to conduct other evaluation and monitoring in the stream such as: (1) conduct snorkel surveys at habitat alteration sites to document fish usage following construction, (2) deploy temperature monitors throughout the basin to document summer water temperatures, and (3) attempt to document adult fish utilization by documenting the number of steelhead redds associated with habitat altered areas. This report provides a summary of pre-construction measurements taken on three proposed Charley Creek habitat sites during 2001, two sites in main Asotin Creek, and one site in George Creek, a tributary that enters in the lower Asotin Creek basin. Further, it provides a comparison of measurements taken pre- and post-construction on three 1999 habitat sites taken two years later, but at similar river flows. It also presents data collected from snorkel surveys, redd counts, and temperature monitoring.

Bumgarner, Joseph D.

2002-01-01T23:59:59.000Z

396

DOE/EIS-0415: Final Environmental Impact Statement Deer Creek Station Energy Facility Project Brookings County, South Dakota (April 2010)  

Broader source: Energy.gov (indexed) [DOE]

ENVIRONMENTAL IMPACT STATEMENT Deer Creek Station Energy Facility Project Brookings County, South Dakota U.S. Department of Energy Western Area Power Administration Upper Great Plains Region Billings, Montana DOE/EIS-0415 April 2010 Final Environmental Impact Statement Cover Sheet i COVER SHEET Lead Federal Agency: U.S. Department of Energy, Western Area Power Administration Cooperating Agency: U.S. Department of Agriculture, Rural Utilities Service

397

Sediment and radionuclide transport in rivers. Phase 2. Field sampling program for Cattaraugus and Buttermilk Creeks, New York  

SciTech Connect (OSTI)

As part of a study on sediment and radionuclide transport in rivers, Pacific Northwest Laboratory (PNL) is investigating the effect of sediment on the transport of radionuclides in Cattaraugus and Buttermilk Creeks, New York. A source of radioactivity in these creeks is the Western New York Nuclear Service Center which consists of a low-level waste disposal site and a nuclear fuel reprocessing plant. Other sources of radioactivity include fallout from worldwide weapons testing and natural background radioactivity. The major objective of the PNL Field Sampling Program is to provide data on sediment and radionuclide characteristics in Cattaraugus and Buttermilk Creeks to verify the use of the Sediment and Radionuclide Transport model, SERATRA, for nontidal rivers. This report covers the results of field data collection conducted during September 1978. Radiological analysis of sand, silt, and clay size fractions of suspended and bed sediment, and water were performed. Results of these analyses indicate that the principal radionuclides occurring in these two water courses, with levels significantly higher than background levels, during the Phase 2 sampling program were Cesium-137 and Strontium-90. These radionuclides had significantly higher activity levels above background in the bed sediment, suspended sediment, and water samples. Other radionuclides that are possibly being released into the surface water environment by the Nuclear Fuel Services facilities are Plutonium-238, 239, and 240, Americium-241, Curium-244, and Tritium. More radionuclides were consistently found in the bed sediment as compared to suspended sediment. The fewest radionuclides were found in the water of Buttermilk and Cattaraugus Creeks. The higher levels were found in the bed sediments for the gamma-emitters and in the suspended sediment for the alpha and beta-emitters (not including Tritium).

Walters, W.H.; Ecker, R.M.; Onishi, Y.

1982-04-01T23:59:59.000Z

398

EM SSAB NATIONAL CHAIRS MEETING Deer Creek State Park, Mt. Sterling, Ohio  

Broader source: Energy.gov (indexed) [DOE]

EM SSAB NATIONAL CHAIRS MEETING EM SSAB NATIONAL CHAIRS MEETING Deer Creek State Park, Mt. Sterling, Ohio November 5-7, 2013 DAY 1 - Tuesday, November 5, 2013 8:00 a.m. - 8:20 a.m. Welcome and Opening Remarks Cate Alexander, EM SSAB Designated Federal Officer Will Henderson, Chair, Portsmouth Site Specific Advisory Board William Murphie, Manager, Portsmouth Paducah Project Office, DOE-EM 8:20 a.m. - 8:30 a.m. Overview of Meeting Eric Roberts, Facilitator 8:30 a.m. - 9:30 a.m. EM Program Update Alice Williams, Associate Principal Deputy Assistant Secretary for Environmental Management 9:30 a.m. - 10:20 a.m. Round Robin (Chairs' Site Reports) 5 minutes each 10:20 a.m. - 10:30 a.m. Recognition of Departing Chairs 10:30 a.m. - 10:45 a.m. Break 10:45 a.m. - 12:00

399

Deposition and diagenesis of a cratonic Silurian platform reef, Pipe Creek Jr. , Indiana  

SciTech Connect (OSTI)

Petrographic and geochemical characteristics of the Pipe Creek Jr. paragenesis record the stratigraphic and burial evolution of the cratonic Silurian platform of Indiana during Late Silurian to Pennsylvanian. A variety of several diagenetic fluids acting over geological time affected the reef. The paragenetic sequence is as follows: (1) precipitation of turbid, fibrous, blotchy cathodoluminescent (CL) cement; (2) dolomitization of mud-rich facies; (3) precipitation of clear, zoned CL equant calcite cements; (4) fracturing and karst formation, partially filled by geopetal silt and sandstone; (5) precipitation of clear, dull CL, ferroan to nonferroan equant calcite cement, ferroan dolomite overgrowth and equant dolomite cement in moldic porosity, caves and fractures; (6) microdissolution and hydrocarbon emplacement; and (7) stylolitization. Carbonate grew and fibrous cements precipitated in an open marine environment. During Late Silurian an increasingly restricted environment stopped reef growth and dolomite replaced mud-rich faces. The reefs were then subaerially exposed and two meteoric cement sequences, non-luminescent to bright luminescent, precipitated prior to Mid-Devonian fracture-controlled karsting. Caves and fractures crosscut former cement stages and were filled by sandstones. Later, the platform was buried by the late Mid-Devonian organic-rich New Albany Shale, and clear, dull CL calcite cement and ferroan dolomite precipitated. Hydrocarbon migration postdates all cements and created minor moldic porosity and predates stylolitization.

Simo, A.; Lehmann, P.

1988-01-01T23:59:59.000Z

400

Vegetation trends in reclaimed areas at Gibbons Creek Lignite Mine, Grimes County, Texas  

SciTech Connect (OSTI)

Vegetation productivity and cover studies have been conducted annually at the Gibbons Creek Lignite Mine since 1989, and multiple annual clippings have been collected since 1991. The primary purpose of these studies was to examine revegetation success, in terms of herbaceous productivity, for various post-mine soil types. However, the studies also contain detailed information on species composition. For the years in which multiple annual clippings have been collected (1991 through 1996), total vegetation cover increased, with the mean proportion of bare ground dropping from 12% in 1991 to 1% in 1996. Relative proportions of most introduced and native grasses were virtually static from 1991 through 1994; in 1995, however, herbicide applications to reduce clover cover resulted in a dramatic increase in total grass cover, especially in bahiagrass (Paspalum notatum) and Indiangrass (Sorgastrum nutans). In contrast to the trends of other introduced and native grasses, bahiagrass increased in cover throughout the study period, increasing from 7% in 1991 to 21 % in 1996. Annual and weedy grass species decreased in cover throughout the study period, falling from 12% cover in 1991 to 2% in 1996. This trend of displacement of annuals by perennials is typically observed during ecological succession in natural vegetation communities, and appears to have been accelerated by the herbicide application.

Westerman, C.A. [Morrison Knudsen Corp., San Antonio, TX (United States)

1997-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "fork poplar creek" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

A study of post-thermal recovery of the macroinvertebrate community of Four Mile Creek, June 1985--September 1987. [Savannah River Plant  

SciTech Connect (OSTI)

Four Mile Creek is one of several streams at the Savannah River Site which has received thermal effluents ({le}70{degrees}C water) from nuclear production operations. From 1955--mid-1985, Four Mile Creek received thermal effluent from C-Reactor as well as non-thermal discharges from F and H Separation Areas. Total discharges from all of these facilities was about ten times higher than the natural flow of the creek (Firth et al. 1986). All water being discharged into Four Mile Creek was originally pumped from the Savannah River. This study reports the results of the artificial substrate sampling of macroinvertebrate communities of Four Mile Creek from June 1985 through September 1987, when sampling was terminated. Macroinvertebrate taxa richness, densities, and biomass data from this study are compared to Four Mile data collected prior to the shutdown of C-Reactor (Kondratieff and Kondratieff 1985 and Firth et al. 1986), and to comparable macroinvertebrate data from other Savannah River Site streams. 29 refs., 11 figs., 4 tabs.

Lauritsen, D.; Starkel, W.; Specht, W.

1989-11-01T23:59:59.000Z

402

Flow Characteristics Analysis of Widows' Creek Type Control Valve for Steam Turbine Control  

SciTech Connect (OSTI)

The steam turbine converts the kinetic energy of steam to mechanical energy of rotor blades in the power conversion system of fossil and nuclear power plants. The electric output from the generator of which the rotor is coupled with that of the steam turbine depends on the rotation velocity of the steam turbine bucket. The rotation velocity is proportional to the mass flow rate of steam entering the steam turbine through valves and nozzles. Thus, it is very important to control the steam mass flow rate for the load following operation of power plants. Among various valves that control the steam turbine, the control valve is most significant. The steam flow rate is determined by the area formed by the stem disk and the seat of the control valve. While the ideal control valve linearly controls the steam mass flow rate with its stem lift, the real control valve has various flow characteristic curves pursuant to the stem lift type. Thus, flow characteristic curves are needed to precisely design the control valves manufactured for the operating conditions of nuclear power plants. OMEGA (Optimized Multidimensional Experiment Geometric Apparatus) was built to experimentally study the flow characteristics of steam flowing inside the control valve. The Widows' Creek type control valve was selected for reference. Air was selected as the working fluid in the OMEGA loop to exclude the condensation effect in this simplified approach. Flow characteristic curves were plotted by calculating the ratio of the measured mass flow rate versus the theoretical mass flow rate of the air. The flow characteristic curves are expected to be utilized to accurately design and operate the control valve for fossil as well as nuclear plants. (authors)

Yoo, Yong H.; Sohn, Myoung S.; Suh, Kune Y. [PHILOSOPHIA, Inc., Seoul National University, San 56-1 Sillim-dong, Gwanak-gu, Seoul, 151-742 (Korea, Republic of)

2006-07-01T23:59:59.000Z

403

Sedimentology and depositional environments of part of the Walden Creek Group, central east Tennessee  

SciTech Connect (OSTI)

Recent questions concerning the age of the Walden Creek Group (WCG), Ocoee Supergroup have increased interest in the depositional history of these rocks. This study focuses on the sedimentology and local stratigraphy of rocks in exposures of the lithologically diverse late Precambrian and/or lower Paleozoic WCG occurring within the Kinzel Springs and Wear Cove quadrangles. Units exposed in the structurally complex Alleghenian thrust setting include the Licklog, Shields, and Wilhite formations. These rocks are divided into twelve lithofacies composed of shale, siltstone, sandstone, conglomerate and carbonate rock. The lithofacies are grouped into seven facies associations indicating deposition below storm wave base in a deep-water, probably marine, environment. Within the study area, rocks of the Wilhite Formation represent deposition in basin plain, lower slope, slope, base of slope, and sandy channel environments. Rocks of the Shields Formation are coarse channel and related overbank deposits of the inner to middle parts of a deep water fan environment. The Licklog Formation contains rocks deposited as lobe and outer-fan or fan-fringe deposits in a middle- to lower-fan environment. These formations can be placed within a single depositional system composed of a submarine slope transitional with a basin plain, and of proximal channels and distal lobes in a sand-rich submarine fan system. Inferred depositional components (associations) compare well with general models of deep-water deposits associated with high gradient fan-delta-fed margins. The basin was bounded by an uplifted, most likely block faulted, margin composed of crystalline basement located to the northwest. Local sedimentologic and stratigraphic relationships suggest an overall progradational sequence during the deposition of these rocks.

Lewis, R.F. III (Louisiana State Univ., Baton Rouge, LA (United States). Dept. of Geology and Geophysics); Miller, J.M.G. (Vanderbilt Univ., Nashville, TN (United States). Dept. of Geology)

1993-03-01T23:59:59.000Z

404

Installation restoration program preliminary assessment/site inspection report. W.K. Kellogg, Battle Creek, MI. Final report  

SciTech Connect (OSTI)

Preliminary Assessment/Site Inspection Report of Areas Of concern (AOC) A thru F at WK Kellogg, Battle Creek, MI. A Preliminary Assessment/Site Inspection was performed on 6 AOC`s at WK Kellogg to confirm or deny the presence of contamination a the AOC`s. The AOC`s involved in this investigation include. AOC A, Waste Accumulation Area; AOC B, Motor Pool Drainage Ditch; AOC C, Fire Training Area South; AOC D, Fire Training Area West; AOC E, Old Hanger (Building 6900); AOC F, New Hanger (Building 6901). The recommendation is for AOC`s A and B continue to the RI/FS stage.

NONE

1996-04-01T23:59:59.000Z

405

Stratigraphic variations and secondary porosity within the Maynardville Limestone in Bear Creek Valley, Y-12 Plant, Oak Ridge, Tennessee  

SciTech Connect (OSTI)

To evaluate groundwater and surface water contamination and migration near the Oak Ridge Y-12 plant, a Comprehensive Groundwater Monitoring Plan was developed. As part of the Maynardville exit pathways monitoring program, monitoring well clusters were ii installed perpendicular to the strike of the Maynardville Limestone, that underlies the southern part of the Y-12 Plant and Bear Creek Valley (BCV). The Maynardville Project is designed to locate potential exit pathways of groundwater, study geochemical characteristics and factors affecting the occurrence and distribution of water-bearing intervals, and provide hydrogeologic information to be used to reduce the potential impacts of contaminants entering the Maynardville Limestone.

Goldstrand, P.M. [Univ. of Nevada, Reno, NV (United States)

1995-05-01T23:59:59.000Z

406

DOE/EA-1371; Integrated Natural Resources Management Plan, Environmental Assessment, and Finding of No Significant Impacts for Rock Creek Reserve (5/2001)  

Broader source: Energy.gov (indexed) [DOE]

INTEGRATED NATURAL RESOURCES MANAGEMENT PLAN, ENVIRONMENTAL ASSESSMENT and Finding Of No Significant Impacts for ROCK CREEK RESERVE 2001-Closure DOE/EA - 1371 Department of Energy Rocky Flats Environmental Technology Site and The U.S. Fish & Wildlife Service May, 2001 Dear Stakeholder: Enclosed is the Final Rock Creek Reserve Integrated Natural Resources Management Plan (Plan), Environmental Assessment (EA), and Finding Of No Significant Impacts (FONSI). The Rock Creek Reserve was dedicated on May 17, 1999, to be jointly managed by the US Fish and Wildlife Service and US Department of Energy. This Plan/EA was developed in accordance with the National Environmental Policy Act (NEPA) process. Through cooperation with the U.S. Fish and Wildlife Service for joint

407

Calendar Year 1997 Annual Groundwater Monitoring Report For The Bear Creek Hydrogeologic Regime at the U.S. Department of Energy Y-12 Plant, Oak Ridge, Tennessee  

SciTech Connect (OSTI)

This report contains the groundwater and surface water monitoring data obtained during calendar year (CY) 1997 in compliance with the Resource Conservation and Recovery Act (RCIU) post- closure permit (PCP) for the Bear Creek Hydrogeologic Regime (Bear Creek Regime), and as otherwise required by U.S. Department of Energy (DOE) Order 5400.1. In July 1997, the Temessee Department of Environment and Conservation (TDEC) approved several modifications to the RCRA post-closure corrective action monitoring requirements specified in the PCP. This report has been prepared in accordimce with these modified requirements.

Jones, S.B.

1998-02-01T23:59:59.000Z

408

Advanced stimulation technology deployment program, Williston Basin Interstate Pipeline Company, Eagle Gas Sands, Cedar Creek Anticline, Southeastern Montana. Topical report, August-December 1996  

SciTech Connect (OSTI)

In 1996, Williston Basin Interstate Pipeline Company (WBI) implemented an AST pilot program to improve production from wells completed in the Eagle formation along the Cedar Creek Anticline in southeastern Montana. Extensive pre- and post-fracture Absolute Open Flow Testing was used to evaluate the benefits of stimulation. Additional, gas production doubled when compared to direct offsets completed in previous years. This report summarizes the documentation of AST methodologies applied by WBI to an infill drilling program in the Eagle formation along the Cedar Creek Anticline.

Green, T.W.; Zander, D.M.; Bessler, M.R.

1997-02-01T23:59:59.000Z

409

Phase 1 report on the Bear Creek Valley treatability study, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee  

SciTech Connect (OSTI)

Bear Creek Valley (BCV) is located within the US Department of Energy (DOE) Oak Ridge Reservation and encompasses multiple waste units containing hazardous and radioactive wastes associated with past operations at the adjacent Oak Ridge Y-12 Plant. The BCV Remedial Investigation determined that disposal of wastes at the S-3 Site, Boneyard/Burnyard (BYBY), and Bear Creek Burial Grounds (BCBG) has caused contamination of both deep and shallow groundwater. The primary contaminants include uranium, nitrate, and VOCs, although other metals such as aluminum, magnesium, and cadmium persist. The BCV feasibility study will describe several remedial options for this area, including both in situ and ex situ treatment of groundwater. This Treatability Study Phase 1 Report describes the results of preliminary screening of treatment technologies that may be applied within BCV. Four activities were undertaken in Phase 1: field characterization, laboratory screening of potential sorbents, laboratory testing of zero valent iron products, and field screening of three biological treatment systems. Each of these activities is described fully in technical memos attached in Appendices A through G.

NONE

1997-04-01T23:59:59.000Z

410

Fisheries Enhancement on the Coeur d'Alene Indian Reservation; Hangman Creek, Annual Report 2001-2002.  

SciTech Connect (OSTI)

Historically, Hangman Creek produced Chinook salmon (Oncorhynchus tshawytscha) and Steelhead trout (Oncorhynchus mykiss) for the Upper Columbia Basin Tribes. One weir, located at the mouth of Hangman Creek was reported to catch 1,000 salmon a day for a period of 30 days a year (Scholz et al. 1985). The current town of Tekoa, Washington, near the state border with Idaho, was the location of one of the principle anadromous fisheries for the Coeur d'Alene Tribe (Scholz et al. 1985). The construction, in 1909, of Little Falls Dam, which was not equipped with a fish passage system, blocked anadromous fish access to the Hangman Watershed. The fisheries were further removed with the construction of Chief Joseph and Grand Coulee Dams. As a result, the Coeur d'Alene Indian Tribe was forced to rely more heavily on native fish stocks such as Redband trout (Oncorhynchus mykiss gairdneri), Westslope Cutthroat trout (O. clarki lewisii), Bull trout (Salvelinus confluentus) and other terrestrial wildlife. Historically, Redband and Cutthroat trout comprised a great deal of the Coeur d'Alene Tribe's diet (Power 1997).

Peters, Ronald; Kinkead, Bruce; Stanger, Mark

2003-07-01T23:59:59.000Z

411

Assess Current and Potential Salmonid Production in Rattlesnake Creek in Association with Restoration Efforts, US Geological Survey Report, 2004-2005 Annual Report.  

SciTech Connect (OSTI)

This project was designed to document existing habitat conditions and fish populations within the Rattlesnake Creek watershed (White Salmon River subbasin, Washington) before major habitat restoration activities are implemented and prior to the reintroduction of salmon and steelhead above Condit Dam. Returning adult salmon Oncorhynchus spp. and steelhead O. mykiss have not had access to Rattlesnake Creek since 1913. An assessment of resident trout populations should serve as a good surrogate for evaluation of factors that would limit salmon and steelhead production in the watershed. Personnel from United States Geological Survey's Columbia River Research Laboratory (USGS-CRRL) attended to three main objectives of the Rattlesnake Creek project. The first objective was to characterize stream and riparian habitat conditions. This effort included measures of water quality, water quantity, stream habitat, and riparian conditions. The second objective was to determine the status of fish populations in the Rattlesnake Creek drainage. To accomplish this, we derived estimates of salmonid population abundance, determined fish species composition, assessed distribution and life history attributes, obtained tissue samples for genetic analysis, and assessed fish diseases in the watershed. The third objective was to use the collected habitat and fisheries information to help identify and prioritize areas in need of restoration. As this report covers the fourth year of a five-year study, it is largely restricted to describing our efforts and findings for the first two objectives.

Allen, M. Brady; Connolly, Patrick J.; Jezorek, Ian G. (US Geological Survey, Western Fisheries Research Center, Columbia River Research Laboratory, Cook, WA)

2006-06-01T23:59:59.000Z

412

Pinole Creek Watershed Sediment Source Assessment: A sediment budget approach highlighting watershed-scale sediment-related processes and supply to the Bay  

E-Print Network [OSTI]

Pinole Creek Watershed Sediment Source Assessment: A sediment budget approach highlighting watershed-scale sediment-related processes and supply to the Bay Pearce,S.1 ,McKee,L.1 ,Arnold,C.2 ,and,landowners,stakeholders,agencies and regula- tors are facing many watershed-scale sediment-related issues such as erosion,degraded water

413

Johns creek valley: a mountainous catchment for long-term interdisciplinary human-environment system research in Upper Styria (Austria)  

Science Journals Connector (OSTI)

The Johns creek valley (Johnsbachtal) is presented as a long-term, interdisciplinary cooperation platform in upper Styria...2...with elevations between 600 and 700 m in the valley to over 2,300m in the ...C i...

U. Strasser; T. Marke; O. Sass; S. Birk; G. Winkler

2013-05-01T23:59:59.000Z

414

Reconstructing the timing of flash floods using 10Be surface exposure dating at Leidy Creek alluvial fan and valley, White Mountains, CaliforniaNevada, USA  

Science Journals Connector (OSTI)

Abstract Large alluvial fans characterize the piedmonts of the White Mountains, CaliforniaNevada, USA, with large boulders strewn across their surfaces. The boulders are interpreted as flash floods deposits with an unclear trigger for the transport process. Several triggers are possible, including glacial lake outburst floods (GLOFs), thunderstorms or rainfall on snow cover. From a paleoenvironmental perspective, the origin of the flash floods is of fundamental importance. The alluvial fans that flank the White Mountains at Leidy Creek display particularly impressive examples of these deposits. The boulder deposits and the source catchment at Leidy Creek were examined using 10Be terrestrial cosmogenic nuclide (TCN) surface exposure dating to help elucidate their age and origin. All boulders dated on the alluvial fans date to the Holocene. This is in accordance with the geomorphic analyses of the Leidy Creek catchment and its terraces and sediment ridges, which were also dated to the Holocene using optically stimulated luminescence (OSL) and 10Be surface exposure. The results suggest that the boulders on the alluvial fan were deposited by flash floods during thunderstorm events affecting the catchment of the Leidy Creek valley. Paleomonsoonal-induced mid-Holocene flash floods are the most plausible explanation for the discharges needed for these boulder aggradations, but a regional dataset is needed to confirm this explanation.

Markus Fuchs; Rebecca Reverman; Lewis A. Owen; Kurt L. Frankel

2014-01-01T23:59:59.000Z

415

RADIONUCLIDE INVENTORY AND DISTRIBUTION: FOURMILE BRANCH, PEN BRANCH, AND STEEL CREEK IOUS  

SciTech Connect (OSTI)

As a condition to the Department of Energy (DOE) Low Level Waste Disposal Federal Facility Review Group (LFRG) review team approving the Savannah River Site (SRS) Composite Analysis (CA), SRS agreed to follow up on a secondary issue, which consisted of the consolidation of several observations that the team concluded, when evaluated collectively, could potentially impact the integration of the CA results. This report addresses secondary issue observations 4 and 21, which identify the need to improve the CA sensitivity and uncertainty analysis specifically by improving the CA inventory and the estimate of its uncertainty. The purpose of the work described herein was to be responsive to these secondary issue observations by re-examining the radionuclide inventories of the Integrator Operable Units (IOUs), as documented in ERD 2001 and Hiergesell, et. al. 2008. The LFRG concern has been partially addressed already for the Lower Three Runs (LTR) IOU (Hiergesell and Phifer, 2012). The work described in this investigation is a continuation of the effort to address the LFRG concerns by re-examining the radionuclide inventories associated with Fourmile Branch (FMB) IOU, Pen Branch (PB) IOU and Steel Creek (SC) IOU. The overall approach to computing radionuclide inventories for each of the IOUs involved the following components: Defining contaminated reaches of sediments along the IOU waterways Identifying separate segments within each IOU waterway to evaluate individually Computing the volume and mass of contaminated soil associated with each segment, or compartment Obtaining the available and appropriate Sediment and Sediment/Soil analytical results associated with each IOU Standardizing all radionuclide activity by decay-correcting all sample analytical results from sample date to the current point in time, Computing representative concentrations for all radionuclides associated with each compartment in each of the IOUs Computing the radionuclide inventory of each DOE-added radionuclide for the compartments of each IOU by applying the representative, central value concentration to the mass of contaminated soil Totaling the inventory for all compartments associated with each of the IOUs Using this approach the 2013 radionuclide inventories for each sub-compartment associated with each of the three IOUs were computed, by radionuclide. The inventories from all IOU compartments were then rolled-up into a total inventory for each IOU. To put the computed estimate of radionuclide activities within FMB, PB, and SC IOUs into context, attention was drawn to Cs-137, which was the radionuclide with the largest contributor to the calculated dose to a member of the public at the perimeter of SRS within the 2010 SRS CA (SRNL 2010). The total Cs-137 activity in each of the IOUs was calculated to be 9.13, 1.5, and 17.4 Ci for FMB, PB, and SC IOUs, respectively. Another objective of this investigation was to address the degree of uncertainty associated with the estimated residual radionuclide activity that is calculated for the FMB, PB, and SC IOUs. Two primary contributing factors to overall uncertainty of inventory estimates were identified and evaluated. The first related to the computation of the mass of contaminated material in a particular IOU compartment and the second to the uncertainty associated with analytical counting errors. The error ranges for the mass of contaminated material in each IOU compartment were all calculated to be approximately +/- 9.6%, or a nominal +/-10%. This nominal value was added to the uncertainty associated with the analytical counting errors that were associated with each radionuclide, individually. This total uncertainty was then used to calculate a maximum and minimum estimated radionuclide inventories for each IOU.

Hiergesell, R.; Phifer, M.

2014-04-29T23:59:59.000Z

416

DOE/EA-1508: Environmental Assessment for the Beaver Creek-Hoyt-Erie Transmission Line Rebuild Project  

Broader source: Energy.gov (indexed) [DOE]

BC-HT-EE Mitigation Action Plan Nov. 2005 1 BC-HT-EE Mitigation Action Plan Nov. 2005 1 Mitigation Action Plan To Implement Mitigation Requirements for Beaver Creek-Hoyt-Erie Transmission Line Upgrade Project Morgan and Weld Counties, Colorado November 2005 BC-HT-EE Mitigation Action Plan Nov. 2005 2 Action Plan for Standard Project Practices and Mitigation Mitigation Action Identifier Responsible Party for Implementing Mitigation Action Party Responsible for Monitoring and Ensuring Compliance Construction Contractor Western Maintenance The contractor shall limit the movement of crews and equipment to the ROW, including access routes. The contractor shall limit movement on the ROW to minimize damage to residential yards, grazing land, crops, orchards, and property, and shall avoid marring the lands.

417

Distribution of anthropogenic fill material within the Y-12 plant area, Oak Ridge, Tennessee  

SciTech Connect (OSTI)

Widespread groundwater contamination in the vicinity of the Oak Ridge Y-12 Plant has been documented through a variety of monitoring efforts since the late 1970s. Various contaminants, most notably volatile organic compounds (VOCs), have migrated through the subsurface and formed extensive contaminant plumes within the Knox Aquifer/Maynardville Limestone, the primary exit pathway for groundwater transport within the Bear Creek Valley. In 1991, an integrated, comprehensive effort (Upper East Fork Poplar Creek [UEFPC] Phase I monitoring network) was initiated in order to (1) identify contaminant source areas within the industrialized portions of the plant and (2) define contamination migration pathways existing between the source areas and the Knox Aquifer/Maynardville Limestone. Data obtained during previous studies have indicated that extensive zones of fill and buried utility trenches may serve as preferred migration pathways. In addition, portions of UEFPC were rerouted, with several of its tributaries being filled during the initial construction of the plant. These filled surface drainage features are also believed to serve as preferred migration pathways. The identification of preferred contaminant migration pathways within the Y-12 Plant area is essential and required to refine the current Bear Creek Valley groundwater conceptual model and to assist in the selection of technically feasible and cost effective remedial strategies. This report presents the results of an initial investigation of the occurrence of manmade (anthropogenic) fill and its effect upon groundwater movement within the plant area. These interpretations are subject to revision and improvement as further investigation of the effects of the fill upon contaminant migration progresses.

Sutton, G.E. Jr. [Tennessee Technological Univ., Cookeville, TN (United States)]|[Oak Ridge Institute for Science and Education, TN (United States); Field, S.M. [Oak Ridge Institute for Science and Education, TN (United States)

1995-10-01T23:59:59.000Z

418

Minthorn Springs Creek Summer Juvenile Release and Adult Collection Facility; 1992 Annual Report.  

SciTech Connect (OSTI)

The Confederated Tribes of the Umatilla Indian Reservation (CT'UIR) and Oregon Department of Fish and Wildlife (ODFW) are cooperating in a joint effort to supplement steelhead and re-establish salmon runs in the Umatilla River Basin. As an integral part of this program, Bonifer and Minthorn Acclimation Facilities are operated for holding and spawning adult steelhead and fall chinook salmon and acclimation and release of juvenile salmon and steelhead. Acclimation of 109,101 spring chinook salmon and 19,977 summer steelhead was completed at Bonifer in the spring of 1992. At Minthorn, 47,458 summer steelhead were acclimated and released. Control groups of spring chinook salmon were released instream concurrent with the acclimated releases to evaluate the effects of acclimation on adult returns to the Umatilla River. Acclimation studies with summer steelhead were not conducted in 1992. A total of 237 unmarked adult steelhead were collected for broodstock at Three Mile Dam from October 18, 1991 through April 24, 1992 and held at Minthorn. Utilizing a 3 x 3 spawning matrix, a total of 476,871 green eggs were taken from 86 females. The eggs were transferred to Umatilla Hatchery for incubation, rearing, and later release into the Umatilla River. A total of 211 fall chinook salmon were also collected for broodstock at Three Mile Dam and held at Minthorn. Using a 1:1 spawning ratio, a total of 195,637 green eggs were taken from 58 females. They were also transferred to Umatilla Hatchery for incubation, rearing, and later release into the Umatilla River. Personnel from the ODFW Eastern Oregon Fish Pathology Laboratory in La Grande took samples of tissues and reproductive fluids from Umatilla River summer steelhead and fall chinook salmon broodstock for monitoring and evaluation purposes. Cell culture assays for replicating agents, including IHNV virus, on all spawned fish were negative. One of 60 summer steelhead tested positive for EIBS virus, while all fall chinook tested we re negative for inclusions. One of 73 summer steelhead sampled for BKD had a high level of antigen, while all others had very low or negative antigen levels. All fall chinook tested had low or negative antigen levels. Regularly-scheduled maintenance of pumps, equipment and facilities was performed in 1992. The progress of outmigration for juvenile releases was monitored at the Westland Canal fish trapping facility by CTUIR and ODFW personnel. Coho and spring chinook yearlings were released in mid-March at Umatilla rivermile (RM) 56 and 60. The peak outmigration period past Westland (RM 27) was mid-April to early May, approximately four to seven weeks after release. Groups of summer steelhead were released from Minthorn (RM 63) and Bonifer (RM 81) in late March and into Meacham Creek near Bonifer in late April. The peak outmigration period past Westland for all groups appeared to be the first two to three weeks in May. Spring chinook yearlings released in mid-April from Bonifer and at Umatilla RM 89, migrated rapidly downriver and the peak outmigration period past Westland appeared to be within a week or two after release. Fall and spring chinook subyearlings released in mid-May at RM 42 and 60, respectively, also migrated rapidly downriver and the peak outmigration period was within days after release. Coded-wire tag recovery information was accessed to determine the contribution of Umatilla River releases to the ocean, Columbia River and Umatilla River fisheries. Total estimated summer steelhead survival have ranged from 0.03 to 0.61% for releases in which recovery information is complete. Coho survival rates have ranged from 0.15 to 4.14%, and spring chinook yearling survival rates from spring releases have ranged from 0.72 to 0.74%. Survival rates of fall chinook yearlings have ranged from 0.08 to 3.01%, while fall chinook subyearling survival rates have ranged from 0.25 to 0.87% for spring released groups.

Rowan, Gerald D.

1993-08-01T23:59:59.000Z

419

A river runs through it: impact of acid mine drainage on the geochemistry of West Little Sugar Creek pre- and post-reclamation at the Green Valley coal mine, Indiana, USA  

Science Journals Connector (OSTI)

...Acid mine drainage (AMD) associated with coal waste material at the abandoned Green Valley mine in Indiana discharges into West Little Sugar Creek, a nearby steam....4, Fe3+, Al, Fe2+, Ca, Mg, Na, Cl, Mn, K, S...

S. Brake; K. Connors; S. Romberger

2001-10-01T23:59:59.000Z

420

Wildlife Impact Assessment and Summary of Previous Mitigation Related to Hydroelectric Projects in Montana, Phase I, Volume Two (A), Clark Fork Projects, Thompson Falls Dam, Operator, Montana Power Company.  

SciTech Connect (OSTI)

The Thompson Falls Dam inundated approximately 347 acres of wildlife habitat that likely included conifer forests, deciduous bottoms, mixed conifer-deciduous forests and grassland/hay meadows. Additionally, at least one island, and several gravel bars were inundated when the river was transformed into a reservoir. The loss of riparian and riverine habitat adversely affected the diverse wildlife community inhabiting the lower Clark Fork River area. Quantitative loss estimates were determined for selected target species based on best available information. The loss estimates were based on inundation of the habitat capable of supporting the target species. Whenever possible, loss estimates bounds were developed by determining ranges of impacts based on density estimates and/or acreage loss estimates. Of the twelve target species or species groups, nine were assessed as having net negative impacts. 86 refs., 2 figs., 5 tabs.

Wood, Marilyn

1984-03-27T23:59:59.000Z

Note: This page contains sample records for the topic "fork poplar creek" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

DOE/EIS-0265-SA-162: Supplement Analysis for the Watershed Management Program EIS -Libby Creek Lower Cleveland Stabilization Project (07/29/04)  

Broader source: Energy.gov (indexed) [DOE]

29, 2004 29, 2004 REPLY TO ATTN OF: KEC-4 SUBJECT: Supplement Analysis for the Watershed Management Program EIS (DOE/EIS-0265/SA-162) Ron Morinaka (KEWU - 4) Fish and Wildlife Project Manager - COTR Proposed Action: Libby Creek (Lower Cleveland) Stabilization Project Project No: 199500400 Watershed Management Program (See App. A : Available Management Techniques): 1.6 Install Large Woody Debris Structures; 1.7 Install Other Habitat Complexity Structures; 1.9 Structural Bank Protection using Bioengineering Methods; 1.16 Spawning Habitat Enhancements; 1.17 Rearing Habitat Enhancements; 2.1 Maintain Healthy Riparian Plant Communities. Location: On Libby Creek, located about 18 miles southwest of the town of Libby, Montana

422

Proposed modifications to the RCRA post-closure permit for the Bear Creek Hydrogeologic Regime at the US Department of Energy Y-12 Plant, Oak Ridge, Tennessee  

SciTech Connect (OSTI)

This report presents proposed modifications to several conditions of the Resource Conservation and Recovery Act (RCRA) Post-Closure Permit (PCP) for the Bear Creek Hydrogeologic Regime (BCHR). These permit conditions define the requirements for RCRA post-closure corrective action groundwater monitoring at the S-3 Ponds, the Oil Landfarm, and the Bear Creek Burial Grounds (units A, C-West, and Walk-in Pits). Modification of these PCP conditions is requested to: (1) clarify the planned integration of RCRA post-closure corrective action groundwater monitoring with the monitoring program to be established in the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Record of Decision (ROD) for the Bear Creek Valley (BCV) Watershed, (2) revise several of the current technical requirements for groundwater monitoring based on implementation of the RCRA post-closure corrective action monitoring program during 1996, and (3) update applicable technical procedures with revised versions recently issued by the Y-12 Plant Groundwater Protection Program (GWPP). With these modifications, the Y-12 Plant will continue to meet the full intent of all regulatory obligations for post-closure care of these facilities. Section 2.0 provides the technical justification for each proposed permit modification. The proposed changes to permit language are provided in Section 3.0 (S-3 Ponds), Section 4.0 (Oil Landfarm), and Section 5.0 (Bear Creek Burial Grounds). Sections 6.0 and 7.0 reference updated and revised procedures for groundwater sampling, and monitoring well plugging and abandonment, respectively. Appendix A includes all proposed revisions to the PCP Attachments.

NONE

1997-05-01T23:59:59.000Z

423

Third report on the Oak Ridge National Laboratory Biological Monitoring and Abatement Program for White Oak Creek Watershed and the Clinch River  

SciTech Connect (OSTI)

As a condition of the National Pollutant Discharge Elimination System (NPDES) permit issued to Oak Ridge National Laboratory (ORNL) on April 1, 1985, a Biological Monitoring and Abatement Program (BMAP) was developed for White Oak Creek (WOC); selected tributaries of WOC, including Fifth Creek, First Creek, Melton Branch, and Northwest Tributary; and the Clinch River. The BMAP currently consists of six major tasks that address both radiological and nonradiological contaminants in the aquatic and terrestrial environs at ORNL. These are (1) toxicity monitoring, (2) bioaccumulation monitoring of nonradiological contaminants in aquatic biota, (3) biological indicator studies, (4) instream ecological monitoring, (5) assessment of contaminants in the terrestrial environment, and (6) radioecology of WOC and White Oak Lake (WOL). The investigation of contaminant transport, distribution, and fate in the WOC embayment-Clinch River-Watts Bar Reservoir system was originally a task of the BMAP but, in 1988, was incorporated into the Resource Conservation and Recovery Act Facility Investigation for the Clinch River, a separate study to assess offsite contamination from all three Department of Energy facilities in Oak Ridge.

Loar, J.M. [ed.] [ed.; Adams, S.M.; Bailey, R.D. [and others] [and others

1994-03-01T23:59:59.000Z

424

White Oak Creek Watershed: Melton Valley Area Remedial Investigation Report, Oak Ridge National Laboratory, Oak Ridge, Tennessee: Volume 3 Appendix C  

SciTech Connect (OSTI)

This report provides details on the baseline ecological risk assessment conducted in support of the Remedial Investigation (RI) Report for the Melton Valley areas of the White Oak Creek watershed (WOCW). The RI presents an analysis meant to enable the US Department of Energy (DOE) to pursue a series of remedial actions resulting in site cleanup and stabilization. The ecological risk assessment builds off of the WOCW screening ecological risk assessment. All information available for contaminated sites under the jurisdiction of the US Department of Energy`s Comprehensive Environmental Response, Compensation, and Liability Act Federal Facilities Agreement within the White Oak Creek (WOC) RI area has been used to identify areas of potential concern with respect to the presence of contamination posing a potential risk to ecological receptors within the Melton Valley area of the White Oak Creek watershed. The risk assessment report evaluates the potential risks to receptors within each subbasin of the watershed as well as at a watershed-wide scale. The WOC system has been exposed to contaminant releases from Oak Ridge National Laboratory and associated operations since 1943 and continues to receive contaminants from adjacent waste area groupings.

NONE

1996-11-01T23:59:59.000Z

425

Sampling and analysis plan for the Bear Creek Valley Boneyard/Burnyard Accelerated Action Project, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee  

SciTech Connect (OSTI)

In the Bear Creek Valley Watershed Remedial Investigation, the Boneyard/Burnyard was identified as the source of the largest releases of uranium into groundwater and surface water in Bear Creek Valley. The proposed action for remediation of this site is selective excavation and removal of source material and capping of the remainder of the site. The schedule for this action has been accelerated so that this is the first remedial action planned to be implemented in the Bear Creek Valley Record of Decision. Additional data needs to support design of the remedial action were identified at a data quality objectives meeting held for this project. Sampling at the Boneyard/Burnyard will be conducted through the use of a phased approach. Initial or primary samples will be used to make in-the-field decisions about where to locate follow-up or secondary samples. On the basis of the results of surface water, soil, and groundwater analysis, up to six test pits will be dug. The test pits will be used to provide detailed descriptions of source materials and bulk samples. This document sets forth the requirements and procedures to protect the personnel involved in this project. This document also contains the health and safety plan, quality assurance project plan, waste management plan, data management plan, implementation plan, and best management practices plan for this project as appendices.

NONE

1998-03-01T23:59:59.000Z

426

Tag: careers | Y-12 National Security Complex  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

College of Law make a strong case for collaboration. More... Category: News Kids vs. Mercury: Food fight at the creek Some young scientists visited Oak Ridge and the East Fork...

427

Appendix 42 Streams in the Flathead Subbasin that contain brook trout as of  

E-Print Network [OSTI]

Creek Meadow Creek Miller Creek Nelson Creek Paul Creek Plume Creek Potter Creek Reid Creek Robertson

428

FISCAL YEAR 1997 WELL INSTALLATION, PLUGGING AND ABANDONMENT, AND REDEVELOPMENT SUMMARY REPORT Y-12 PLANT, OAK RIDGE, TENNESSEE  

SciTech Connect (OSTI)

This report summarizes the well installation, plugging and abandonment and redevelopment activities conducted during the federal fiscal year (FY) 1997 at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. No new groundwater monitoring wells were installed during FY 1997. However, 13 temporary piezometers were installed around the Upper East Fork Poplar Creek (UEFPC) in the Y-12 Plant. An additional 36 temporary piezometers, also reported in this document, were installed in FY 1996 and, subsequently, assigned GW-series identification. A total of 21 monitoring wells at the Y-12 Plant were decommissioned in FY 1997. Three existing monitoring wells underwent redevelopment during FY 1997. All well installation and development (including redevelopment) was conducted following industry-standard methods and approved procedures in the Environmental Surveillance Procedures Quality Control Program (Energy Systems 1988), the {ital Resource Conservation and Recovery Act (RCRA) Groundwater Monitoring Technical Enforcement Guidance Document} (EPA 19?6), and {ital Guidelines for Installation of Monitoring Wells at the Y-12 Plant} (Geraghty & Miller 1985). All wells were plugged and abandoned in accordance with the Monitoring Well Plugging and Abandonment Plan for the U.S. Department of Energy, Y-12 Plant, Oak Ridge, Tennessee (HSW, Inc. 1991). Health and safety monitoring and field screening of drilling returns and development waters were conducted in accordance with approved Lockheed Martin Energy Systems, Inc. (Energy Systems) guidelines.

SCIENCE APPLICATIONS INTERNATIONAL CORPORATION

1997-09-01T23:59:59.000Z

429

Remedial investigation report on the abandoned nitric acid pipeline at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee  

SciTech Connect (OSTI)

Upper East Fork Poplar Creek OU-2 consists of the Abandoned Nitric Acid Pipeline. This pipeline was installed in 1951 to transport liquid wastes {approximately} 4,800 ft from Buildings 9212, 9215, and 9206 to the S-3 Ponds. Materials known to have been discharged through the pipeline include nitric acid, depleted and enriched uranium, various metal nitrates, salts, and lead skimmings. A total of nineteen locations were chosen to be investigated along the pipeline for the first phase of this Remedial Investigation. Sampling consisted of drilling down to obtain a soil sample at a depth immediately below the pipeline. Additional samples were obtained deeper in the subsurface depending upon the depth of the pipeline, the depth of the water table, and the point of auger refusal. The nineteen samples collected below the pipeline were analyzed by the Y-12 Plant laboratory for metals, nitrate/nitrite, and isotopic uranium. Samples collected from three boreholes were also analyzed for volatile organic compounds because these samples produced a response with organic vapor monitoring equipment. The results of the baseline human health risk assessment for the Abandoned Nitric Acid Pipeline contaminants of potential concern show no unacceptable risks to human health via incidental ingestion of soil, inhalation of dust, dermal contact with the soil, or external exposure to radionuclides in the ANAP soils, under the construction worker and/or the residential land-use scenarios.

Not Available

1993-12-01T23:59:59.000Z

430

Monitoring Fish Contaminant Responses to Abatement Actions: Factors that Affect Recovery  

SciTech Connect (OSTI)

Monitoring of contaminant accumulation in fish has been conducted in East Fork Poplar Creek (EFPC) in Oak Ridge, Tennessee since 1985. Bioaccumulation trends are examined over a twenty year period coinciding with major pollution abatement actions by a Department of Energy facility at the stream s headwaters. Although EFPC is enriched in many contaminants relative to other local streams, only polychlorinated biphenyls (PCBs) and mercury (Hg) were found to accumulate in the edible portions of fish to levels of human health concern. Mercury concentrations in redbreast sunfish were found to vary with season of collection, sex and size of individual fish. Over the course of the monitoring, waterborne Hg concentrations were reduced[80%; however, this did not translate into a comparable decrease in Hg bioaccumulation at most sites. Mercury bioaccumulation in fish did respond to decreased inputs in the industrialized headwater reach, but paradoxically increased in the lowermost reach of EFPC. As a result, the downstream pattern of Hg concentration in fish changed from one resembling dilution of a headwater point source in the 1980s to a uniform distribution in the 2000s. The reason for this remains unknown, but is hypothesized to involve changes in the chemical form and reactivity of waterborne Hg associated with the removal of residual chlorine and the addition of suspended particulates to the streamflow. PCB concentrations in fish varied greatly from year-to-year, but always exhibited a pronounced downstream decrease, and appeared to respond to management practices that limited episodic inputs from legacy sources within the facility.

Southworth, George R [ORNL; Peterson, Mark J [ORNL; Roy, W Kelly [ORNL; Mathews, Teresa J [ORNL

2011-01-01T23:59:59.000Z

431

ENTOMOLOGICAL SOCIETY OF WASHINGTON, DECEMBER 2, 1897  

Science Journals Connector (OSTI)

...stream which enters the north fork of the Umpqua and...course is dry in summer. Camas Swale and much of the...Calapooya once flowed through Camas Swale, 923 and by way of Wilbur Creek entered the north fork of the Umpqua. Why...the Calapooya. Along Camas Swale the two were originally...

L. O. HOWARD

1897-12-17T23:59:59.000Z

432

Y-12 National Security Complex Biological Monitoring and Abatement Program 2007 Calendar Yeare Report  

SciTech Connect (OSTI)

The National Pollutant Discharge Elimination System (NPDES) permit issued for the Oak Ridge Y-12 National Security Complex (Y-12 Complex) which became effective May 1, 2006, continued a requirement for a Biological Monitoring and Abatement Program (BMAP). The BMAP was originally developed in 1985 to demonstrate that the effluent limitations established for the Y-12 Complex protected the classified uses of the receiving stream (East Fork Poplar Creek: EFPC), in particular, the growth and propagation of aquatic life (Loar et al. 1989). The objectives of the current BMAP are similar, specifically to assess stream ecological conditions relative to regulatory limits and criteria, to assess ecological impacts as well as recovery in response to Y-12 operations, and to investigate the causes of continuing impacts. The BMAP consists of three tasks that reflect complementary approaches to evaluating the effects of the Y-12 Complex discharges on the biotic integrity of EFPC. These tasks include: (1) bioaccumulation monitoring, (2) benthic macroinvertebrate community monitoring, and (3) fish community monitoring. As required by the NPDES permit, the BMAP benthic macroinvertebrate community monitoring task includes studies to annually evaluate the receiving stream's biological integrity in comparison to TN Water Quality Criteria. BMAP monitoring is currently being conducted at five primary EFPC sites, although sites may be excluded or added depending upon the specific objectives of the various tasks. Criteria used in selecting the sites include: (1) location of sampling sites used in other studies, (2) known or suspected sources of downstream impacts, (3) proximity to U.S. Department of Energy (DOE) Oak Ridge Reservation (ORR) boundaries, (4) appropriate habitat distribution, and (5) access. The primary sampling sites include upper EFPC at kilometers (EFKs) 24.4 and 23.4 [upstream and downstream of Lake Reality (LR) respectively]; EFK 18.7 (also EFK 18.2 and 19), located off the ORR and below an area of intensive commercial and light industrial development; EFK 13.8, located upstream from the Oak Ridge Wastewater Treatment Facility (ORWTF); and EFK 6.3 located approximately 1.4 km below the ORR boundary (Fig. 1.1). Actual sampling locations on EFPC may differ slightly by task according to specific requirements of the task. Brushy Fork (BF) at kilometer (BFK) 7.6 and Hinds Creek at kilometer (HCK) 20.6 are the most commonly used reference sites for the Y-12 BMAP. Additional sites off the ORR are also occasionally used for reference, including Beaver Creek, Bull Run, Cox Creek, and Paint Rock Creek (Fig. 1.2). Summaries of the sampling designs for the three primary tasks of the Y-12 Complex BMAP for EFPC are presented in Tables 1.1-1.3. This report covers the 2007 study period, although data collected outside this time period are included as appropriate. To address the biological monitoring requirements for Bear Creek and McCoy Branch, CERCLA-funded data is summarized in Appendix A (for Bear Creek) and Appendix B (for McCoy Branch). Data for these two watersheds is provided herein to address Section IX of the NPDES Permit for Y-12, where 'Results of these CERCLA programs can be used to meet the biological monitoring requirements of this permit'. For potential comparison with instream biological measures, a summary of the toxicity testing results for Y-12 outfalls into upper EFPC is provided in Appendix C (these results have been previously reported).

Peterson, M.J.; Greeley, M. S. Jr.; Morris, G. W.; Roy, W. K.; Ryan, M. G.; Smith, J. G.; Southworth, G. R.

2008-07-01T23:59:59.000Z

433

Y-12 Groundwater Protection Program Monitoring Optimization Plan for Groundwater Monitoring Wells at the U.S. Department of Energy Y-12 National Security Complex  

SciTech Connect (OSTI)

This document is the monitoring optimization plan for groundwater monitoring wells associated with the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) in Oak Ridge, Tennessee (Figure A.1). The plan describes the technical approach that will be implemented under the Y-12 Groundwater Protection Program (GWPP) to focus available resources on the monitoring wells at Y-12 that provide the most useful hydrologic and water-quality monitoring data. The technical approach is based on the GWPP status designation for each well (Section 2.0). Under this approach, wells granted ''active'' status are used by the GWPP for hydrologic monitoring and/or groundwater quality sampling (Section 3.0), whereas wells granted ''inactive'' status are not used for either purpose. The status designation also defines the frequency at which the GWPP will inspect applicable wells, the scope of these well inspections, and extent of any maintenance actions initiated by the GWPP (Section 3.0). Details regarding the ancillary activities associated with implementation of this plan (e.g., well inspection) are deferred to the referenced GWPP plans and procedures (Section 4.0). This plan applies to groundwater wells associated with Y-12 and related waste management areas and facilities located within three hydrogeologic regimes (Figure A.1): the Bear Creek Hydrogeologic Regime (Bear Creek Regime), the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), and the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Bear Creek Regime encompasses a section of Bear Creek Valley (BCV) immediately west of Y-12. The East Fork Regime encompasses most of the Y-12 process, operations, and support facilities in BCV and, for the purposes of this plan, includes a section of Union Valley east of the DOE Oak Ridge Reservation (ORR) boundary along Scarboro Road. The Chestnut Ridge Regime encompasses a section of Chestnut Ridge directly south of Y-12 that is bound on the west by a surface drainage feature (Dunaway Branch) and on the east by Scarboro Road. For this plan, the Chestnut Ridge Regime includes an area known as the South Campus Facility that is located west of Scarboro Road and south of Bethel Valley Road. The GWPP maintains an extensive database of construction details and related information for the monitoring wells in each hydrogeologic regime (including wells that have been destroyed or intentionally plugged and abandoned); the most recent hardcopy version of the database was issued in February 2003 (BWXT Y-12, L.L.C. [BWXT] 2003). This plan does not apply to temporary piezometers or other specialized groundwater monitoring/sampling devices that have been or may be installed for research purposes, hydrologic tests, pilot studies, or short-term investigations. This plan will be reviewed and updated every three years, as specified in the ''Y-12 GWPP Management Plan'' (BWXT 2004). Between scheduled updates of this plan, addenda issued by the GWPP Manager (or authorized designee) will document any substantial changes or modifications to the plan, including changes in the GWPP status designation for each monitoring well identified in the plan. The addenda, numbered in consecutive ascending order, will be forwarded to all personnel included on the distribution list for this plan. The addenda are inserted in Appendix C pending the next scheduled update of the plan, which will incorporate the information included in the addenda.

None

2006-12-01T23:59:59.000Z

434

Y-12 Groundwater Protection Program Groundwater And Surface Water Sampling And Analysis Plan For Calendar Year 2010  

SciTech Connect (OSTI)

This plan provides a description of the groundwater and surface water quality monitoring activities planned for calendar year (CY) 2010 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) that will be managed by the Y-12 Groundwater Protection Program (GWPP). Groundwater and surface water monitoring performed by the GWPP during CY 2010 will be in accordance with requirements of DOE Order 540.1A and the following goals: (1) to protect the worker, the public, and the environment; (2) to maintain surveillance of existing and potential groundwater contamination sources; (3) to provide for the early detection of groundwater contamination and determine the quality of groundwater and surface water where contaminants are most likely to migrate beyond the Oak Ridge Reservation property line; (4) to identify and characterize long-term trends in groundwater quality at Y-12; and (5) to provide data to support decisions concerning the management and protection of groundwater resources. Groundwater and surface water monitoring during CY 2010 will be performed primarily in three hydrogeologic regimes at Y-12: the Bear Creek Hydrogeologic Regime (Bear Creek Regime), the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), and the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Bear Creek and East Fork regimes are located in Bear Creek Valley, and the Chestnut Ridge Regime is located south of Y-12 (Figure A.1). Additional surface water monitoring will be performed north of Pine Ridge, along the boundary of the Oak Ridge Reservation. Modifications to the CY 2010 monitoring program may be necessary during implementation. Changes in programmatic requirements may alter the analytes specified for selected monitoring wells or may add or remove wells from the planned monitoring network. All modifications to the monitoring program will be approved by the Y-12 GWPP manager and documented as addenda to this sampling and analysis plan. The following sections of this report provide details regarding the CY 2010 groundwater and surface water monitoring activities. Section 2 describes the monitoring locations in each regime and the processes used to select the sampling locations. A description of the field measurements and laboratory analytes is provided in Section 3. Sample collection methods and procedures are described in Section 4, and Section 5 lists the documents cited for more detailed operational and technical information. The narrative sections of the report reference several appendices. Figures (maps and diagrams) and tables (excluding data summary tables presented in the narrative sections) are in Appendix A and Appendix B, respectively. Groundwater Monitoring Schedules (when issued throughout CY 2010) will be inserted in Appendix C, and addenda to this plan (if issued) will be inserted in Appendix D. Laboratory requirements (bottle lists, holding times, etc.) are provided in Appendix E, and an approved Waste Management Plan is provided in Appendix F.

Elvado Environmental LLC

2009-09-01T23:59:59.000Z

435

Y-12 Groundwater Protection Program Groundwater And Surface Water Sampling And Analysis Plan For Calendar Year 2011  

SciTech Connect (OSTI)

This plan provides a description of the groundwater and surface water quality monitoring activities planned for calendar year (CY) 2011 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) that will be managed by the Y-12 Groundwater Protection Program (GWPP). Groundwater and surface water monitoring performed by the GWPP during CY 2011 will be in accordance with requirements of DOE Order 540.1A and the following goals: (1) to protect the worker, the public, and the environment; (2) to maintain surveillance of existing and potential groundwater contamination sources; (3) to provide for the early detection of groundwater contamination and determine the quality of groundwater and surface water where contaminants are most likely to migrate beyond the Oak Ridge Reservation property line; (4) to identify and characterize long-term trends in groundwater quality at Y-12; and (5) to provide data to support decisions concerning the management and protection of groundwater resources. Groundwater and surface water monitoring during CY 2011 will be performed primarily in three hydrogeologic regimes at Y-12: the Bear Creek Hydrogeologic Regime (Bear Creek Regime), the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), and the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Bear Creek and East Fork regimes are located in Bear Creek Valley and the Chestnut Ridge Regime is located south of Y-12 (Figure A.1). Additional surface water monitoring will be performed north of Pine Ridge along the boundary of the Oak Ridge Reservation. Modifications to the CY 2011 monitoring program may be necessary during implementation. Changes in programmatic requirements may alter the analytes specified for selected monitoring wells or may add or remove wells from the planned monitoring network. All modifications to the monitoring program will be approved by the Y-12 GWPP manager and documented as addenda to this sampling and analysis plan. The following sections of this report provide details regarding the CY 2011 groundwater and surface water monitoring activities. Section 2 describes the monitoring locations in each regime and the processes used to select the sampling locations. A description of the field measurements and laboratory analytes is provided in Section 3. Sample collection methods and procedures are described in Section 4, and Section 5 lists the documents cited for more detailed operational and technical information. The narrative sections of the report reference several appendices. Figures (maps and diagrams) and tables (excluding data summary tables presented in the narrative sections) are in Appendix A and Appendix B, respectively. Groundwater Monitoring Schedules (when issued throughout CY 2011) will be inserted in Appendix C, and addenda to this plan (if issued) will be inserted in Appendix D. Laboratory requirements (bottle lists, holding times, etc.) are provided in Appendix E, and an approved Waste Management Plan is provided in Appendix F.

Elvado Environmental LLC

2010-12-01T23:59:59.000Z

436

Y-12 Groundwater Protection Program Groundwater And Surface Water Sampling And Analysis Plan For Calendar Year 2012  

SciTech Connect (OSTI)

This plan provides a description of the groundwater and surface water quality monitoring activities planned for calendar year (CY) 2012 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) that will be managed by the Y-12 Groundwater Protection Program (GWPP). Groundwater and surface water monitoring performed by the GWPP during CY 2012 is in accordance with the following goals: (1) to protect the worker, the public, and the environment; (2) to maintain surveillance of existing and potential groundwater contamination sources; (3) to provide for the early detection of groundwater contamination and determine the quality of groundwater and surface water where contaminants are most likely to migrate beyond the Oak Ridge Reservation property line; (4) to identify and characterize long-term trends in groundwater quality at Y-12; and (5) to provide data to support decisions concerning the management and protection of groundwater resources. Groundwater and surface water monitoring will be performed in three hydrogeologic regimes at Y-12: the Bear Creek Hydrogeologic Regime (Bear Creek Regime), the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), and the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Bear Creek and East Fork regimes are located in Bear Creek Valley and the Chestnut Ridge Regime is located south of Y-12 (Figure A.1). Additional surface water monitoring will be performed north of Pine Ridge along the boundary of the Oak Ridge Reservation. Modifications to the CY 2012 monitoring program may be necessary during implementation. Changes in programmatic requirements may alter the analytes specified for selected monitoring wells or may add or remove wells from the planned monitoring network. Each modification to the monitoring program will be approved by the Y-12 GWPP manager and documented as an addendum to this sampling and analysis plan. The following sections of this report provide details regarding the CY 2012 groundwater and surface water monitoring activities. Section 2 describes the monitoring locations in each regime and the processes used to select the sampling locations. A description of the field measurements and laboratory analytes is provided in Section 3. Sample collection methods and procedures are described in Section 4, and Section 5 lists the documents cited for more detailed operational and technical information. The narrative sections of the report reference several appendices. Figures (maps and diagrams) and tables (excluding a data summary table presented in Section 4) are in Appendix A and Appendix B, respectively. Groundwater Monitoring Schedules (when issued throughout CY 2012) will be inserted in Appendix C, and addenda to this plan (if issued) will be inserted in Appendix D. Laboratory requirements (bottle lists, holding times, etc.) are provided in Appendix E, and an approved Waste Management Plan is provided in Appendix F.

Elvado Environmental, LLC

2011-09-01T23:59:59.000Z

437

Changes in Habitat and Populations of Steelhead Trout, Coho Salmon, and Chinook Salmon in Fish Creek, Oregon; Habitat Improvement, 1983-1987 Final Report.  

SciTech Connect (OSTI)

Construction and evaluation of salmonid habitat improvements on Fish Creek, a tributary of the upper Clackamas River, began in 1982 as a cooperative venture between the Estacada Ranger District, Mt. Hood National Forest, and the Anadromous Fish Habitat Research Unit of the Pacific Northwest Research Station (PNW), USDA Forest Service. The project was initially conceived as a 5-year effort (1982-1987) to be financed with Forest Service funds. The habitat improvement program and the evaluation of improvements were both expanded in mid-1983 when the Bonneville Power Administration (BPA) entered into an agreement with the Mt. Hood National Forest to cooperatively fund work on Fish Creek. Habitat improvement work in the basin is guided by the Fish Creek Habitat Rehabilitation-Enhancement Framework developed cooperatively by the Estacada Ranger District, the Oregon Department of Fish and Wildlife, and the Pacific Northwest Research Station. The framework examines potential factors limiting production of salmonids in the basin, and the appropriate habitat improvement measures needed to address the limiting factors. Habitat improvement work in the basin has been designed to: (1) improve quantity, quality, and distribution of spawning habitat for coho and spring chinook salmon and steelhead trout, (2) increase low flow rearing habitat for steelhead trout and coho salmon, (3) improve overwintering habitat for coho salmon and steelhead trout, (4) rehabilitate riparian vegetation to improve stream shading to benefit all species, and (5) evaluate improvement projects from a drainage wide perspective. The objectives of the evaluation include: (1) Drainage-wide evaluation and quantification of changes in salmonid spawning and rearing habitat resulting from a variety of habitat improvements. (2) Evaluation and quantification of changes in fish populations and biomass resulting from habitat improvements. (3) Benefit-cost analysis of habitat improvements.

Everest, Fred H. (Oregon State University, Pacific Northwest Forest and Range Experiment Station, Corvallis, OR); Hohler, David B.; Cain, Thomas C. (Mount Hood National Forest, Clackamas River Ranger District, Estacada, OR)

1988-03-01T23:59:59.000Z

438

Biological monitoring of Upper Three Runs Creek, Savannah River Plant, Aiken County, South Carolina. Final report on macroinvertebrate stream assessments for F/H area ETF effluent discharge, July 1987--February 1990  

SciTech Connect (OSTI)

In anticipation of the fall 1988 start up of effluent discharges into Upper Three Creek by the F/H Area Effluent Treatment Facility of the Savannah River Site, Aiken, SC, a two and one half year biological study was initiated in June 1987. Upper Three Runs Creek is an intensively studied fourth order stream known for its high species richness. Designed to assess the potential impact of F?H area effluent on the creek, the study includes qualitative and quantitative macroinvertebrate stream surveys at five sites, chronic toxicity testing of the effluent, water chemistry and bioaccumulation analysis. This final report presents the results of both pre-operational and post-operational qualitative and quantitative (artificial substrate) macroinvertebrate studies. Six quantitative and three qualitative studies were conducted prior to the initial release of the F/H ETF effluent and five quantitative and two qualitative studies were conducted post-operationally.

Specht, W.L.

1991-10-01T23:59:59.000Z

439

Economics and analysis of the miscible CO/sub 2/ injection project, Granny's Creek field, West Virginia  

SciTech Connect (OSTI)

The use of carbon dioxide (CO/sub 2/) in a tertiary oil recovery pilot in the Granny's Creek field, West Virginia, was started in 1976. At first the CO/sub 2/ was injected into the Pocono Big Injun sand at four wells at the corners of an approximately square area of 6.7 acres. The CO/sub 2/ was injected as a liquid, and the pilot portion of the reservoir was maintained at or above miscible pressure. Production was taken from a well inside the square pilot area and from eight wells outside the area. The test began with injection of water to increase reservoir pressure to more than the miscibility pressure. Injection started with CO/sub 2/ alone, then alternate slugs of CO/sub 2/ and water, then CO/sub 2/, alone, and finally water alone was injected. The additional oil recovery was 8,681 bbl for an injection total of 19.76 million lb of CO/sub 2/ for a ratio of 19,626 cu ft per bbl. A second or minipilot in which the injection was in the lower or C zone of the Big Injun sand resulted in 2,007.9 bbl of additional oil through September 1980 from the injection of 4.24 million lb of CO/sub 2/ for a ratio of 18,192 cu ft per bbl. The CO/sub 2/ spread quickly across the southern 350 acres of the field and confinement was not attained. The sales price of the oil after royalty and taxes is probably about equal to the most optimistic cost of the CO/sub 2/ per barrel of additional oil at the present time and far less than a more reasonable cost for the CO/sub 2/. Production of additional oil in each case decreased sharply after injection of CO/sub 2/ was stopped so there appeared to be no benefits over an extended period of time from the injection of CO/sub 2/.

Smith, R.V.; Watts, R.J.; Burtch, F.W.

1983-04-01T23:59:59.000Z

440

Water quality in the vicinity of Mosquito Creek Lake, Trumbull County, Ohio, in relation of the chemistry of locally occurring oil, natural gas, and brine  

SciTech Connect (OSTI)

The purpose of this report is to describe current water quality and the chemistry of oil, natural gas, and brine in the Mosquito Creek Lake area. Additionally, these data are used to characterize water quality in the Mosquito Creek Lake area in relation to past oil and natural gas well drilling and production. To meet the overall objective, several goals for this investigation were established. These include (1) collect water-quality and subsurface-gas data from shallow sediments and rock that can be used for future evaluation of possible effects of oil and natural gas well drilling and production on water supplies, (2) characterize current surface-water and ground-water quality as it relates to the natural occurrence and (or) release of oil, gas, and brine (3) sample and chemically characterize the oil in the shallow Mecca Oil Pool, gas from the Berea and Cussewago Sandstone aquifers, and the oil, gas, and brine from the Clinton sandstone, and (4) identify areas where aquifers are vulnerable to contamination from surface spills at oil and natural gas drilling and production sites.

Barton, G.J.; Burruss, R.C.; Ryder, R.T.

1998-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "fork poplar creek" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Sedimentological, mineralogical and geochemical definition of oil-shale facies in the lower Parachute Creek Member of Green River Formation, Colorado  

SciTech Connect (OSTI)

Sedimentological, mineralogical and geochemical studies of two drill cores penetrating the lower Saline zone of the Parachute Creek Member (middle L-4 oil-shale zone through upper R-2 zone) of the Green River Formation in north-central Piceance Creek basin, Colorado, indicate the presence of two distinct oil-shale facies. The most abundant facies has laminated stratification and frequently occurs in the L-4, L-3 and L-2 oil-shale zones. The second, and subordinate facies, has ''streaked and blebby'' stratification and is most abundant in the R-4, R-3 and R-2 zones. Laminated oil shale originated by slow, regular sedimentation during meromictic phases of ancient Lake Uinta, whereas streaked and blebby oil shale was deposited by episodic, non-channelized turbidity currents. Laminated oil shale has higher contents of nahcolite, dawsonite, quartz, K-feldspar and calcite, but less dolomite/ankerite and albite than streaked and blebby oil shale. Ca-Mg-Fe carbonate minerals in laminated oil shale have more variable compositions than those in streaked and blebby shales. Streaked and blebby oil shale has more kerogen and a greater diversity of kerogen particles than laminated oil shale. Such variations may produce different pyrolysis reactions when each shale type is retorted.

Cole, R.D.

1984-04-01T23:59:59.000Z

442

Report on the remedial investigation of Bear Creek Valley at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Volume 6: Appendix G -- Baseline ecological risk assessment report  

SciTech Connect (OSTI)

This Remedial Investigation (RI) Report characterizes the nature and extent of contamination, evaluates the fate and transport of contaminants, and assesses risk to human health and the environment resulting from waste disposal and other US Department of Energy (DOE) operations in Bear Creek Valley (BCV). BCV, which is located within the DOE Oak Ridge Reservation (ORR) encompasses multiple waste units containing hazardous and radioactive wastes arising from operations at the adjacent Oak Ridge Y-12 Plant. The primary waste units discussed in this RI Report are the S-3 Site, Oil Landfarm (OLF), Boneyard/Burnyard (BYBY), Sanitary Landfill 1 (SL 1), and Bear Creek Burial Grounds (BCBG). These waste units, plus the contaminated media resulting from environmental transport of the wastes from these units, are the subject of this RI. This BCV RI Report represents the first major step in the decision-making process for the BCV watershed. The RI results, in concert with the follow-on FS will form the basis for the Proposed Plan and Record of Decision for all BCV sites. This comprehensive decision document process will meet the objectives of the watershed approach for BCV. Appendix G contains ecological risks for fish, benthic invertebrates, soil invertebrates, plants, small mammals, deer, and predator/scavengers (hawks and fox). This risk assessment identified significant ecological risks from chemicals in water, sediment, soil, and shallow ground water. Metals and PCBs are the primary contaminants of concern.

NONE

1996-09-01T23:59:59.000Z

443

Pipeline corridors through wetlands -- Impacts on plant communities: Little Timber Creek Crossing, Gloucester County, New Jersey. Topical report, August 1991--January 1993  

SciTech Connect (OSTI)

The goal of the Gas Research Institute Wetland Corridors Program is to document impacts of existing pipelines on the wetlands they traverse. To accomplish this goal, 12 existing wetland crossings were surveyed. These sites varied in elapsed time since pipeline construction, wetland type, pipeline installation techniques, and right-of-way (ROW) management practices. This report presents results of a survey conducted over the period of August 5--7, 1991, at the Little Timber Creek crossing in Gloucester County, New Jersey, where three pipelines, constructed in 1950, 1960, and 1990, cross the creek and associated wetlands. The old sid