National Library of Energy BETA

Sample records for forest lands maryland

  1. Maryland

    U.S. Energy Information Administration (EIA) Indexed Site

    Maryland

  2. Forest Glen, Maryland: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    You can help OpenEI by expanding it. Forest Glen is a census-designated place in Montgomery County, Maryland.1 References US Census Bureau 2005 Place to 2006 CBSA...

  3. Accuracy Assessment for Forest and Land Use Maps (English version...

    Open Energy Info (EERE)

    www.leafasia.orglibraryusaid-leaf-accuracy-assessment-forest-and-lan Cost: Free Language: English Accuracy Assessment for Forest and Land Use Maps (English version)...

  4. Maryland - Compare - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    Maryland Maryland

  5. Maryland - Rankings - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    Maryland Maryland

  6. Maryland - Search - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    Maryland Maryland

  7. Before the House Subcommittee on National Parks, Forests and Public Lands -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Committee on Natural Resources | Department of Energy National Parks, Forests and Public Lands - Committee on Natural Resources Before the House Subcommittee on National Parks, Forests and Public Lands - Committee on Natural Resources Before the House Subcommittee on National Parks, Forests and Public Lands - Committee on Natural Resources By: Ingrid Kolb, Director Office of Management Subject: Proposed Manhattan Project National Historical Park PDF icon Microsoft Word - 6.28.12 MA Final

  8. Effects of climate change, land-use change, and invasive species on the ecology of the Cumberland forests

    SciTech Connect (OSTI)

    Dale, Virginia H; Lannom, Karen O.; Hodges, Donald G.; Tharp, M Lynn; Fogel, Jonah

    2009-02-01

    Effects of climate change, land-use change, and invasive species on the ecology of the Cumberland forests

  9. Greenhouse gas emissions from forest, land use and biomass burning in Tanzania

    SciTech Connect (OSTI)

    Matitu, M.R.

    1994-12-31

    Carbon dioxide (CO{sub 2}) and methane (CH{sub 4}) gases are the main contributors to the greenhouse effect that consequently results in global warming. This paper examines the sources and sinks of these gases from/to forest, land use and biomass burning and their likely contribution to climate change using IPCC/OECD methodology. Emissions have been calculated in mass units of carbon and nitrogen Emissions and uptake have been summed for each gas and the emissions converted to full molecular weights. Mismanagement of forests and land misuse have contributed much to greenhouse gas emissions in Tanzania. For example, cultivation methods, forest clearing, burning of savannah grass and indiscriminate logging (non-sustainable logging) have contributed significantly to greenhouse gas emissions. These categories contribute more than 90% of total CO{sub 2} emissions. However, the study shows that shifting cultivation, savannah burning and forest clearing for conversion to permanent crop land and pasture are the main contributors.

  10. Maryland Biodiesel | Open Energy Information

    Open Energy Info (EERE)

    Biodiesel Jump to: navigation, search Name: Maryland Biodiesel Place: Berlin, Maryland Product: Maryland Biodiesel operates the 3.7m liter biodiesel plant in Berlin, Maryland....

  11. Land cover change and remote sensing: Examples of quantifying spatiotemporal dynamics in tropical forests

    SciTech Connect (OSTI)

    Krummel, J.R.; Su, Haiping; Fox, J.; Yarnasan, S.; Ekasingh, M.

    1995-06-01

    Research on human impacts or natural processes that operate over broad geographic areas must explicitly address issues of scale and spatial heterogeneity. While the tropical forests of Southeast Asia and Mexico have been occupied and used to meet human needs for thousands of years, traditional forest management systems are currently being transformed by rapid and far-reaching demographic, political, economic, and environmental changes. The dynamics of population growth, migration into the remaining frontiers, and responses to national and international market forces result in a demand for land to produce food and fiber. These results illustrate some of the mechanisms that drive current land use changes, especially in the tropical forest frontiers. By linking the outcome of individual land use decisions and measures of landscape fragmentation and change, the aggregated results shows the hierarchy of temporal and spatial events that in summation result in global changes to the most complex and sensitive biome -- tropical forests. By quantifying the spatial and temporal patterns of tropical forest change, researchers can assist policy makers by showing how landscape systems in these tropical forests are controlled by physical, biological, social, and economic parameters.

  12. Baltimore County, Maryland: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Maryland Lutherville-Timonium, Maryland Mays Chapel, Maryland Middle River, Maryland Milford Mill, Maryland Overlea, Maryland Owings Mills, Maryland Parkville, Maryland Perry...

  13. Bio Pure Maryland LLC | Open Energy Information

    Open Energy Info (EERE)

    Bio Pure Maryland LLC Jump to: navigation, search Name: Bio-Pure Maryland LLC Place: Potomac, Maryland Product: Biodiesel plant developer in Maryland. References: Bio-Pure Maryland...

  14. Talbot County, Maryland: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Zone Subtype A. Places in Talbot County, Maryland Cordova, Maryland Easton, Maryland Oxford, Maryland Queen Anne, Maryland St. Michaels, Maryland Tilghman Island, Maryland...

  15. Charles County, Maryland: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Bryans Road, Maryland Hughesville, Maryland Indian Head, Maryland La Plata, Maryland Port Tobacco Village, Maryland Potomac Heights, Maryland St. Charles, Maryland Waldorf,...

  16. Prince George's County, Maryland: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Maryland Camp Springs, Maryland Capitol Heights, Maryland Carmody Hills-Pepper Mill Village, Maryland Cheverly, Maryland Chillum, Maryland Clinton, Maryland College Park,...

  17. Dorchester County, Maryland: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    A. Places in Dorchester County, Maryland Algonquin, Maryland Brookview, Maryland Cambridge, Maryland Church Creek, Maryland East New Market, Maryland Eldorado, Maryland...

  18. Washington County, Maryland: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Rohrersville, Maryland San Mar, Maryland Sharpsburg, Maryland Smithsburg, Maryland St. James, Maryland Williamsport, Maryland Wilson-Conococheague, Maryland Retrieved from "http:...

  19. RESTORING SUSTAINABLE FORESTS ON APPALACHIAN MINED LANDS FOR WOOD PRODUCTS, RENEWABLE ENERGY, CARBON SEQUESTRATION, AND OTHER ECOSYSTEM SERVICES

    SciTech Connect (OSTI)

    Jonathan Aggett

    2003-12-15

    The overall purpose of this project is to evaluate the biological and economic feasibility of restoring high-quality forests on mined land, and to measure carbon sequestration and wood production benefits that would be achieved from forest restoration procedures. In this segment of work, our goal was to review methods for estimating tree survival, growth, yield and value of forests growing on surface mined land in the eastern coalfields of the USA, and to determine the extent to which carbon sequestration is influenced by these factors. Public Law 95-87, the Surface Mining Control and Reclamation Act of 1977 (SMCRA), mandates that mined land be reclaimed in a fashion that renders the land at least as productive after mining as it was before mining. In the central Appalachian region, where prime farmland and economic development opportunities for mined land are scarce, the most practical land use choices are hayland/pasture, wildlife habitat, or forest land. Since 1977, the majority of mined land has been reclaimed as hayland/pasture or wildlife habitat, which is less expensive to reclaim than forest land, since there are no tree planting costs. As a result, there are now hundreds of thousands of hectares of grasslands and scrublands in various stages of natural succession located throughout otherwise forested mountains in the U.S. A literature review was done to develop the basis for an economic feasibility study of a range of land-use conversion scenarios. Procedures were developed for both mixed hardwoods and white pine under a set of low product prices and under a set of high product prices. Economic feasibility is based on land expectation values. Further, our review shows that three types of incentive schemes might be important: (1) lump sum payment at planting (and equivalent series of annual payments); (2) revenue incentive at harvest; and (3) benefit based on carbon volume.

  20. Cecil County, Maryland: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Chesapeake City, Maryland Elkton, Maryland North East, Maryland Perryville, Maryland Port Deposit, Maryland Rising Sun, Maryland Retrieved from "http:en.openei.orgw...

  1. Somerset County, Maryland: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Maryland Frenchtown-Rumbly, Maryland Mount Vernon, Maryland Princess Anne, Maryland Smith Island, Maryland West Pocomoke, Maryland Retrieved from "http:en.openei.orgw...

  2. St. Mary's County, Maryland: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Zone Subtype A. Places in St. Mary's County, Maryland California, Maryland Charlotte Hall, Maryland Golden Beach, Maryland Leonardtown, Maryland Lexington Park, Maryland...

  3. Kent County, Maryland: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Betterton, Maryland Chestertown, Maryland Galena, Maryland Millington, Maryland Rock Hall, Maryland Retrieved from "http:en.openei.orgwindex.php?titleKentCounty,Maryland&...

  4. Analysis of Renewable Energy Potential on U. S. National Forest Lands

    SciTech Connect (OSTI)

    Zvolanek, E.; Kuiper, J.; Carr, A.; Hlava, K.

    2013-12-13

    In 2005, the National Renewable Energy Laboratory (NREL) completed an assessment of the potential for solar and wind energy development on National Forest System (NFS) public lands managed by the US Department of Agriculture, U.S. Forest Service (USFS). This report provides an update of the analysis in the NREL report, and extends the analysis with additional siting factors for solar and wind energy. It also expands the scope to biomass and geothermal energy resources. Hydropower is acknowledged as another major renewable energy source on NFS lands; however, it was not analyzed in this project primarily because of the substantially different analysis that would be needed to identify suitable locations. Details about each renewable energy production technology included in the study are provided following the report introduction, including how each resource is converted to electrical power, and examples of existing power plants. The analysis approach was to use current and available Geographic Information System (GIS) data to map the distribution of the subject renewable energy resources, major siting factors, and NFS lands. For each major category of renewable energy power production, a set of siting factors were determined, including minimum levels for the renewable energy resources, and details for each of the other siting factors. Phase 1 of the analysis focused on replicating and updating the 2005 NREL analysis, and Phase 2 introduced additional siting factors and energy resources. Source data were converted to a cell-based format that helped create composite maps of locations meeting all the siting criteria. Acreages and potential power production levels for NFS units were tabulated and are presented throughout this report and the accompanying files. NFS units in the southwest United States were found to have the most potentially suitable land for concentrating solar power (CSP), especially in Arizona and New Mexico. In total, about 136,032 acres of NFS lands were found potentially suitable for CSP development, potentially yielding as much as 13,603 megawatts (MW) of electricity, assuming 10 acres per MW. For photovoltaic solar power (PV), the top NFS units were more widely distributed than CSP. Notably, more than 150,000 acres in Comanche National Grassland in Colorado were found to be potentially suitable for PV development, accounting for more than 25% of the potentially suitable NFS lands combined. In total, about 564,698 acres of NFS lands were found potentially suitable for PV development, potentially yielding as much as 56,469 MW of electricity, assuming 10 acres per MW. NFS units most suitable for wind power are concentrated in the northern Great Plains. In total, about 3,357,792 acres of NFS lands were found potentially suitable for wind development, potentially yielding as much as 67,156 MW of electricity, assuming 50 acres per MW. Of that area, 571,431 acres (11,429 MW) are located within the Bankhead-Jones Farm Tenant Act Land in Montana. NFS lands in Alaska have considerable wind resources, but other siting factors eliminated almost the entire area. The southwest coast of Chugach National Forest, near Seward, Alaska, maintains the majority of the remaining acreage. NFS units with highly suitable biomass resources are located from Idaho to Louisiana. In total, about 13,967,077 acres of NFS lands are potentially highly suitable for biomass from logging and thinning residue development. Of that, 1,542,247 acres is located in Fremont-Winema National Forest in Oregon. Not surprisingly, most NFS units have at least some level of potentially suitable biomass resources. In general, biomass resources such as these could significantly offset consumption of coal and petroleum-based fuels. NFS units deemed potentially highly suitable for enhanced geothermal system (EGS) development were distributed widely from California to Virginia, accounting for some 6,475,459 acres. Mark Twain National Forest in Missouri has the largest area of all the NFS units, with 900,637 acres. While more rigorous studies are needed for siting geothermal plants, especially those regarding the geological characteristics of specific sites, current results suggest a significant potential for geothermal power generation within many NFS units. The first phase of analysis for solar and wind resources sought to replicate the 2005 NREL methodology using updated source data.1 The total acres meeting the criteria for all NFS lands were lower in the updated assessment compared to the 2005 NREL analysis because the earlier assessment included all land that fell within NFS administrative boundaries rather than only NFS-managed land within them. Acreages were again lower when refined screening factors were added, as would be expected. These remaining areas are of greater interest because they adhere to a broader set of criteria. As this study illustrates, GIS data availability for renewable energy resources and major screening factors has reached a point where national screening level studies can effectively assess the levels and spatial distributions for potentially renewable energy technology development. More detailed siting studies, land use planning, and environmental compliance assessments are essential before individual projects can be permitted and built. However, this study can serve to inform resource managers and planners of where these technologies are most likely to be investigated and proposed; help prioritize efforts to continue informed and sustainable development of renewable power generation within the United States; and help characterize the role of the USFS in this arena. The authors caution against using the areas reported in the results as a final and definitive estimate of suitability for these technologies. The analysis is most useful for determining locations that should be examined more fully, and for identifying regional and national trends.

  5. Toward A National Early Warning System for Forest Disturbances Using Remotely Sensed Land Surface Phenology

    SciTech Connect (OSTI)

    HargroveJr., William Walter; Spruce, Joe; Gasser, Gerry; Hoffman, Forrest M

    2009-12-01

    We are using a statistical clustering method for delineating homogeneous ecoregions as a basis for identifying disturbances in forests through time over large areas, up to national and global extents. Such changes can be shown relative to past conditions, or can be predicted relative to present conditions, as with forecasts of future climatic change. This quantitative ecoregion approach can be used to predict destinations for populations whose local environments are forecast to become unsuitable and are forced to migrate as their habitat shifts, and is also useful for predicting the susceptibility of new locations to invasive species like Sudden Oak Death. EFETAC and our sister western center WWETAC, along with our NASA and ORNL collaborators, are designing a new national-scale early warning system for forest threats, called FIRST. Envisioned as a change-detection system, FIRST will identify all land surface cover changes at the MODIS observational scale, and then try to discriminate normal, expected seasonal changes from locations having unusual activity that may represent potential forest threats. As a start, we have developed new national data sets every 16 days from 2002 through 2008, based on land surface phenology, or timing of leaf-out in the spring and brown-down in the fall. Changes in such phenological maps will be shown to contain important information about vegetation health status across the United States. The standard deviation of the duration of fall can be mapped, showing places where length of fall is relatively constant or is variable in length from year to year.

  6. Land Use and Watersheds: Human Influence on Hydrology and Geomorphology in Urban and Forest Areas. Water Science and Application Series

    SciTech Connect (OSTI)

    Wigmosta, Mark S.; Burges, S J.

    2001-10-01

    What is the effect of urbanization and forest use on hydrologic and geomorphic processes? How can we develop land use policies that minimize adverse impacts on ecosystems while sustaining biodiversity? Land Use and Watersheds: Human Influence on Hydrology and Geomorphology in Urban and Forest Areas addresses these issues and more. By featuring watersheds principally in the American Pacific Northwest, and the effects of timber harvesting and road construction on stream flow, sediment yield and landslide occurrence, scientists can advance their understanding of what constitutes appropriate management of environments with similar hydro-climatic-geomorphic settings worldwide.

  7. RESTORING SUSTAINABLE FORESTS ON APPALACHIAN MINED LANDS FOR WOOD PRODUCTS, RENEWABLE ENERGY, CARBON SEQUESTRATION, AND OTHER ECOSYSTEM SERVICES

    SciTech Connect (OSTI)

    J. Burger; J. Galbraith; T. Fox; G. Amacher; J. Sullivan; C. Zipper

    2004-06-04

    The overall purpose of this project is to evaluate the biological and economic feasibility of restoring high-quality forests on mined land, and to measure carbon sequestration and wood production benefits that would be achieved from forest restoration procedures. In this quarterly report, we present a preliminary comparison of the carbon sequestration potential of forests growing on 14 mined sites in a seven-state region in the Midwestern and Eastern Coalfields. Carbon contents of these forests were compared to adjacent forests on non-mined land. The study was installed as a 3 x 3 factorial in a random complete block design with three replications at each location. The treatments include three forest types (white pine, hybrid poplar, mixed hardwood) and three silvicultural regimes (competition control, competition control plus tillage, competition control plus tillage plus fertilization). Each individual treatment plot is 0.5 acres. Each block of nine plots requires 4.5 acres, and the complete installation at each site requires 13.5 acres. The plots at all three locations have been installed and the plot corners marked with PVC stakes. GPS coordinates of each plot have been collected. Soil samples were collected from each plot to characterize the sites prior to treatment. Analysis of soil samples was completed and these data are being used to prepare fertilizer prescriptions. Fertilizer prescripts will be developed for each site. Fertilizer will be applied during the second quarter 2004. Data are included as appendices in this report. As part of our economic analysis of mined land reforestation, we focused on the implications of a shift in reforestation burden from the landowner to the mine operator. Results suggest that the reforestation of mined lands as part of the mining operation creates a viable and profitable forest enterprise for landowners with greater potential for carbon sequestration.

  8. Howard County, Maryland: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Maryland Ellicott City, Maryland Jessup, Maryland North Laurel, Maryland Savage-Guilford, Maryland Retrieved from "http:en.openei.orgwindex.php?titleHowardCounty,Maryl...

  9. Maryland Efficiency Program Options | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Maryland Efficiency Program Options Maryland Efficiency Program Options Maryland Efficiency Program Options, from the Tool Kit Framework: Small Town University Energy Program...

  10. University of Maryland | Open Energy Information

    Open Energy Info (EERE)

    Maryland Jump to: navigation, search Logo: University of Maryland Name: University of Maryland Address: College Park, MD Zip: 20742 Website: www.umd.edu Coordinates: 38.980666,...

  11. Energy Incentive Programs, Maryland

    Broader source: Energy.gov [DOE]

    Maryland utilities budgeted $150 million in 2012 across their various electric and gas programs (including those directed at residential and low-income customers) to promote customer energy efficiency.

  12. EIS-0442: Reauthorization of Permits, Maintenance, and Vegetation Management on Western Area Power Administration Transmission Lines on Forest Service Lands, Colorado, Nebraska, and Utah

    Broader source: Energy.gov [DOE]

    This EIS is being prepared jointly by DOE’s Western Area Power Administration and the U.S. Forest Service. The EIS evaluates the potential environmental impacts of Western’s proposed changes to vegetation management along its transmission line rights-of-way on National Forest System lands in Colorado, Utah, and Nebraska.

  13. Restoring Sustainable Forests on Appalachian Mined Lands for Wood Products, Renewable Energy, Carbon Sequestration, and Other Ecosystem Services

    SciTech Connect (OSTI)

    James A. Burger; J. Galbraith; T. Fox; G. Amacher; J. Sullivan; C. Zipper

    2005-12-01

    The overall purpose of this project is to evaluate the biological and economic feasibility of restoring high-quality forests on mined land, and to measure carbon sequestration and wood production benefits that would be achieved from forest restoration procedures. We are currently estimating the acreage of lands in Virginia, West Virginia, Kentucky, Ohio, and Pennsylvania mined under SMCRA and reclaimed to non-forested post-mining land uses that are not currently under active management, and therefore can be considered as available for carbon sequestration. To determine actual sequestration under different forest management scenarios, a field study was installed as a 3 x 3 factorial in a random complete block design with three replications at each of three locations, one each in Ohio, West Virginia, and Virginia. The treatments included three forest types (white pine, hybrid poplar, mixed hardwood) and three silvicultural regimes (competition control, competition control plus tillage, competition control plus tillage plus fertilization). Each individual treatment plot is 0.5 acres. Each block of nine plots is 4.5 acres, and the complete installation at each site is 13.5 acres. Regression models of chemical and physical soil properties were created in order to estimate the SOC content down the soil profile. Soil organic carbon concentration and volumetric percent of the fines decreased exponentially down the soil profile. The results indicated that one-third of the total SOC content on mined lands was found in the surface 0-13 cm soil layer, and more than two-thirds of it was located in the 0-53 cm soil profile. A relative estimate of soil density may be best in broad-scale mine soil mapping since actual D{sub b} values are often inaccurate and difficult to obtain in rocky mine soils. Carbon sequestration potential is also a function of silvicultural practices used for reforestation success. Weed control plus tillage may be the optimum treatment for hardwoods and white pine, as any increased growth resulting from fertilization may not offset the decreased survival that accompanied fertilization. Relative to carbon value, our analysis this quarter shows that although short-rotation hardwood management on reclaimed surface mined lands may have higher LEVs than traditional long-rotation hardwood management, it is only profitable in a limited set of circumstances.

  14. Maryland Smart Energy Communities Grant

    Broader source: Energy.gov [DOE]

    The Maryland Energy Administration (MEA) offers financial incentives for local governments to join its Maryland Smart Energy Communities (MSEC) initiative. The goal of the MSCE program is to have...

  15. RESTORING SUSTAINABLE FORESTS ON APPALACHIAN MINED LANDS FOR WOOD PRODUCTS, RENEWABLE ENERGY, CARBON SEQUESTRATION, AND OTHER ECOSYSTEM SERVICES

    SciTech Connect (OSTI)

    James A. Burger; J. Galbraith; T. Fox; G. Amacher; J. Sullivan; C. Zipper

    2005-06-08

    The overall purpose of this project is to evaluate the biological and economic feasibility of restoring high-quality forests on mined land, and to measure carbon sequestration and wood production benefits that would be achieved from forest restoration procedures. We are currently estimating the acreage of lands in VA, WV, KY, OH, and PA mined under SMCRA and reclaimed to non-forested post-mining land uses that are not currently under active management, and therefore can be considered as available for carbon sequestration. To determine actual sequestration under different forest management scenarios, a field study was installed as a 3 x 3 factorial in a random complete block design with three replications at each of three locations, Ohio, West Virginia, and Virginia. The treatments included three forest types (white pine, hybrid poplar, mixed hardwood) and three silvicultural regimes (competition control, competition control plus tillage, competition control plus tillage plus fertilization). Each individual treatment plot is 0.5 acres. Each block of nine plots is 4.5 acres, and the complete installation at each site is 13.5 acres. During the reporting period we compiled and evaluated all soil properties measured on the study sites. Statistical analysis of the properties was conducted, and first year survival and growth of white pine, hybrid poplars, and native hardwoods was assessed. Hardwood species survived better at all sites than white pine or hybrid poplar. Hardwood survival across treatments was 80%, 85%, and 50% for sites in Virginia, West Virginia, and Ohio, respectively, while white pine survival was 27%, 41%, and 58%, and hybrid poplar survival was 37%, 41%, and 72% for the same sites, respectively. Hybrid poplar height and diameter growth were superior to those of the other species tested, with the height growth of this species reaching 126.6cm after one year in the most intensive treatment at the site in Virginia. To determine carbon in soils on these sites, we developed a cost-effective method for partitioning total soil carbon to pedogenic carbon and geogenic carbon in mine soils. We are in the process of evaluating the accuracy and precision of the proposed carbon partitioning technique for which we are designing an experiment with carefully constructed mine soil samples. In a second effort, as part of a mined land reforestation project for carbon sequestration in southwestern Virginia we implemented the first phase of the carbon monitoring protocol that was recently delivered to DOE.

  16. Global Observation of Forest and Land Cover Dynamics (GOFC-GOLD...

    Open Energy Info (EERE)

    Cultural Organization, United Nations Environment Programme, International Council for Science, Food and Agriculture Organization of the United Nations Sector Land, Climate Focus...

  17. Maryland Offshore Wind Annual Meeting

    Broader source: Energy.gov [DOE]

    This event will provide updates on regional offshore wind projects and will help attendees understand Maryland's offshore wind project and the team members required. Participants will also learn...

  18. Restoring Sustainable Forests on Appalachian Mined Lands for Wood Product, Renewable Energy, Carbon Sequestration, and Other Ecosystem Services

    SciTech Connect (OSTI)

    Burger, James A

    2006-09-30

    Concentrations of CO{sub 2} in the Earths atmosphere have increased dramatically in the past 100 years due to deforestation, land use change, and fossil fuel combustion. These humancaused, higher levels of CO{sub 2} may enhance the atmospheric greenhouse effect and may contribute to climate change. Many reclaimed coal-surface mine areas in the eastern U.S. are not in productive use. Reforestation of these lands could provide societal benefits, including sequestration of atmospheric carbon. The goal of this project was to determine the biological and economic feasibility of restoring high-quality forests on the tens of thousands of hectares of mined land and to measure carbon sequestration and wood production benefits that would be achieved from large-scale application of forest restoration procedures. We developed a mine soil quality model that can be used to estimate the suitability of selected mined sites for carbon sequestration projects. Across the mine soil quality gradient, we tested survival and growth performance of three species assemblages under three levels of silvicultural. Hardwood species survived well in WV and VA, and survived better than the other species used in OH, while white pine had the poorest survival of all species at all sites. Survival was particularly good for the site-specific hardwoods planted at each site. Weed control plus tillage may be the optimum treatment for hardwoods and white pine, as any increased growth resulting from fertilization may not offset the decreased survival that accompanied fertilization. Grassland to forest conversion costs may be a major contributor to the lack of reforestation of previously reclaimed mine lands in the Appalachian coal-mining region. Otherwise profitable forestry opportunities may be precluded by these conversion costs, which for many combinations of factors (site class, forest type, timber prices, regeneration intensity, and interest rate) result in negative land expectation values. Improved technology and/or knowledge of reforestation practices in these situations may provide opportunities to reduce the costs of converting many of these sites as research continues into these practices. It also appears that in many cases substantial payments, non-revenue values, or carbon values are required to reach profitability under the present circumstances. It is unclear when, or in what form, markets will develop to support any of these add-on values to supplement commercial forestry revenues. However, as these markets do develop, they will only enhance the viability of forestry on reclaimed mined lands, although as we demonstrate in our analysis of carbon payments, the form of the revenue source may itself influence management, potentially mitigating some of the benefits of reforestation. For a representative mined-land resource base, reforestation of mined lands with mixed pine-hardwood species would result in an average estimated C accumulation in forms that can be harvested for use as wood products or are likely to remain in the soil C pool at ~250 Mg C ha{sup -1} over a 60 year period following reforestation. The additionality of this potential C sequestration was estimated considering data in scientific literature that defines C accumulation in mined-land grasslands over the long term. Given assumptions detailed in the text, these lands have the potential to sequester ~180 Mg C ha{sup -1}, a total of 53.5 x 10{sup 6} Mg C, over 60 years, an average of ~900,000 Mg C / yr, an amount equivalent to about 0.04% of projected US C emissions at the midpoint of a 60-year period (circa 2040) following assumed reforestation. Although potential sequestration quantities are not great relative to potential national needs should an energy-related C emissions offset requirement be developed at some future date, these lands are available and unused for other economically valued purposes and many possess soil and site properties that are well-suited to reforestation. Should such reforestation occur, it would also produce ancillary benefits by providing env

  19. Direct Energy Services (Maryland) | Open Energy Information

    Open Energy Info (EERE)

    Services (Maryland) Jump to: navigation, search Name: Direct Energy Services Place: Maryland Phone Number: 1-855-461-1926 Website: www.directenergy.commaryland Twitter: https:...

  20. Workplace Charging Challenge Partner: University of Maryland...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    UM BWMC's Green Health Committee is made up of hospital leaders, managers, nurses and ... University of Maryland Baltimore Washington Medical Center First Hospital in Maryland to ...

  1. Germantown, Maryland: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    You can help OpenEI by expanding it. Germantown is a census-designated place in Montgomery County, Maryland.1 Registered Energy Companies in Germantown, Maryland Current...

  2. RESTORING SUSTAINABLE FORESTS ON APPALACHIAN MINED LANDS FOR WOOD PRODUCTS, RENEWABLE ENERGY, CARBON SEQUESTRATION, AND OTHER ECOSYSTEM SERVICES

    SciTech Connect (OSTI)

    J. Burger; J. Galbraith; T. Fox; G. Amacher; J. Sullivan; C. Zipper

    2003-12-18

    The overall purpose of this project is to evaluate the biological and economic feasibility of restoring high-quality forests on mined land, and to measure carbon sequestration and wood production benefits that would be achieved from forest restoration procedures. In this quarterly report, we present a preliminary comparison of the carbon sequestration benefits for two forest types used to convert abandoned grasslands for carbon sequestration. Annual mixed hardwood benefits, based on total stand carbon volume present at the end of a given year, range from a minimum of $0/ton of carbon to a maximum of $5.26/ton of carbon (low prices). White pine benefits based on carbon volume range from a minimum of $0/ton of carbon to a maximum of $18.61/ton of carbon (high prices). The higher maximum white pine carbon payment can primarily be attributed to the fact that the shorter rotation means that payments for white pine carbon are being made on far less cumulative carbon tonnage than for that of the long-rotation hardwoods. Therefore, the payment per ton of white pine carbon needs to be higher than that of the hardwoods in order to render the conversion to white pine profitable by the end of a rotation. These carbon payments may seem appealingly low to the incentive provider. However, payments (not discounted) made over a full rotation may add up to approximately $17,493/ha for white pine (30-year rotation), and $18,820/ha for mixed hardwoods (60-year rotation). The literature suggests a range of carbon sequestration costs, from $0/ton of carbon to $120/ton of carbon, although the majority of studies suggest a cost below $50/ ton of carbon, with van Kooten et al. (2000) suggesting a cutoff cost of $20/ton of carbon sequestered. Thus, the ranges of carbon payments estimated for this study fall well within the ranges of carbon sequestration costs estimated in previous studies.

  3. Maryland Efficiency Program Options | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Maryland Efficiency Program Options Maryland Efficiency Program Options Maryland Efficiency Program Options, from the Tool Kit Framework: Small Town University Energy Program (STEP). PDF icon E6a Maryland Efficiency Program Options.pdf More Documents & Publications STEP Financial Incentives Summary STEP Participant Financing Options Home Performance with ENERGY STAR -- 10 Years of Continued Growth!

  4. Carroll County, Maryland: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    4 Climate Zone Subtype A. Registered Energy Companies in Carroll County, Maryland Freedom Energy Solutions LLC Places in Carroll County, Maryland Eldersburg, Maryland...

  5. Maryland's 1st congressional district: Energy Resources | Open...

    Open Energy Info (EERE)

    in Maryland. Registered Energy Companies in Maryland's 1st congressional district Gore Fuel Cell Technologies Maryland Biodiesel Retrieved from "http:en.openei.orgw...

  6. Maryland Regions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    state, county, city, or district. For more information, please visit the Middle School Coach page. Maryland Region Middle School Regional Maryland Maryland Regional Middle School...

  7. Maryland Regions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    designated for your school's state, county, city, or district. For more information, please visit the High School Coach page. Maryland Region High School Regional Maryland Maryland...

  8. Calvert County, Maryland: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Zone Number 4 Climate Zone Subtype A. Places in Calvert County, Maryland Calvert Beach-Long Beach, Maryland Chesapeake Beach, Maryland Chesapeake Ranch Estates-Drum Point,...

  9. Conectiv (Maryland) | Open Energy Information

    Open Energy Info (EERE)

    navigation, search Name: Conectiv Place: Maryland References: Energy Information Administration.1 EIA Form 861 Data Utility Id 5027 This article is a stub. You can help OpenEI...

  10. Findings of an evaluation of public involvement programs associated with the development of a Land and Resource Management Plan for the Ouachita National Forest

    SciTech Connect (OSTI)

    Holthoff, M.G.; Howell, R.E.

    1993-08-01

    Federal regulations require the United States Forest Service (USFS) to integrate public input and values into decisions concerning land and resource management planning. The USFS has typically relied on traditional methods of involving the public, whereby public access and input to policy development are unilaterally controlled by the agency. Because of the highly political nature of land and resource management planning, such technocratic forms of public involvement and decision-making appear to be proving ineffective. This paper describes and evaluates two public involvement programs associated with the Ouachita National Forest`s (ONF) lengthy forest planning process. The research consisted of personal interviews with key program leaders and knowledgeable citizen participants, collection of secondary data, and a survey of citizen participants. Because of controversial planning decisions made during an initial planning process, the ONF was forced to re-enter the planning process in order to address unresolved planning issues and to conduct a more effective public involvement program. The supplemental planning process also resulted in a considerable degree of public contention. The survey revealed that although citizen participants were somewhat more satisfied with the supplemental public involvement program relative to the initial program, neither program was viewed as satisfactory. The findings of the study suggest that in order to be more effective, USFS public involvement programs should be more responsive to public concerns and conducted in adherence to principles of collaborative planning.

  11. Hampstead, Maryland: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    This article is a stub. You can help OpenEI by expanding it. Hampstead is a town in Baltimore County and Carroll County, Maryland. It falls under Maryland's 6th congressional...

  12. Potomac, Maryland: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    a stub. You can help OpenEI by expanding it. Potomac is a census-designated place in Montgomery County, Maryland.1 Registered Research Institutions in Potomac, Maryland Knowledge...

  13. Martin's Additions, Maryland: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    is a stub. You can help OpenEI by expanding it. Martin's Additions is a village in Montgomery County, Maryland. It falls under Maryland's 8th congressional district.12...

  14. Poolesville, Maryland: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    article is a stub. You can help OpenEI by expanding it. Poolesville is a town in Montgomery County, Maryland. It falls under Maryland's 8th congressional district.12...

  15. Kensington, Maryland: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    This article is a stub. You can help OpenEI by expanding it. Kensington is a town in Montgomery County, Maryland. It falls under Maryland's 8th congressional district.12...

  16. Somerset, Maryland: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    This article is a stub. You can help OpenEI by expanding it. Somerset is a town in Montgomery County, Maryland. It falls under Maryland's 8th congressional district.12...

  17. Laytonsville, Maryland: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    article is a stub. You can help OpenEI by expanding it. Laytonsville is a town in Montgomery County, Maryland. It falls under Maryland's 4th congressional district.12...

  18. Rockville, Maryland: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    This article is a stub. You can help OpenEI by expanding it. Rockville is a city in Montgomery County, Maryland. It falls under Maryland's 4th congressional district and...

  19. Brookeville, Maryland: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    article is a stub. You can help OpenEI by expanding it. Brookeville is a town in Montgomery County, Maryland. It falls under Maryland's 4th congressional district.12...

  20. Barnesville, Maryland: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    article is a stub. You can help OpenEI by expanding it. Barnesville is a town in Montgomery County, Maryland. It falls under Maryland's 8th congressional district.12...

  1. Gaithersburg, Maryland: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    article is a stub. You can help OpenEI by expanding it. Gaithersburg is a city in Montgomery County, Maryland. It falls under Maryland's 4th congressional district and...

  2. Energy Incentive Programs, Maryland | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Maryland Energy Incentive Programs, Maryland Updated October 2015 Maryland utilities budgeted over $290 million in 2014 across their various electric and gas programs (including those directed at residential and low-income customers) to promote customer energy efficiency. What public-purpose-funded energy efficiency programs are available in my state? Maryland's electricity restructuring law, signed in 1999, mandated the creation of a Universal Service Fund that provides bill assistance and

  3. Maryland team wins Virginia/Maryland Regional Middle School Science Bowl;

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Maryland Heats Up Student Appliance Design Competition Maryland Heats Up Student Appliance Design Competition September 10, 2013 - 11:43am Addthis Students from the University of Maryland won the Max Tech and Beyond Design Competition for their heat pump clothes dryer prototype, which achieved a 59 percent energy savings compared to standard U.S. electric dryers. | Photo courtesy of the University of Maryland. Students from the University of Maryland won the Max Tech and Beyond Design

  4. Colombia-US Forest Service Program | Open Energy Information

    Open Energy Info (EERE)

    US Forest Service Program Jump to: navigation, search Name Colombia-US Forest Service Program AgencyCompany Organization United States Forest Service Sector Land Focus Area...

  5. Forest Carbon Portal | Open Energy Information

    Open Energy Info (EERE)

    Forest Trends Sector: Land Focus Area: Forestry Topics: GHG inventory Resource Type: Lessons learnedbest practices Website: www.forestcarbonportal.com Forest Carbon Portal...

  6. ,"Maryland Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...282016 11:29:40 AM" "Back to Contents","Data 1: Total Underground Storage" ... Natural Gas in Underground Storage (Base Gas) (MMcf)","Maryland Natural Gas in ...

  7. ,"Maryland Natural Gas LNG Storage Additions (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Maryland Natural Gas LNG Storage Additions (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  8. ,"Maryland Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Maryland Natural Gas LNG Storage Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  9. Maryland Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey...

  10. Maryland Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New...

  11. Westminster, Maryland: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    6th congressional district.12 Registered Energy Companies in Westminster, Maryland Freedom Energy Solutions LLC References US Census Bureau Incorporated place and minor...

  12. Elkton, Maryland: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    1st congressional district.12 Registered Energy Companies in Elkton, Maryland Gore Fuel Cell Technologies References US Census Bureau Incorporated place and minor...

  13. Maryland/Incentives | Open Energy Information

    Open Energy Info (EERE)

    (Potomac Edison) - Commercial and Industrial Energy Efficiency Rebate Program (Maryland) Utility Rebate Program Yes FirstEnergy (Potomac Edison) - ENERGY STAR New Homes Program...

  14. Maryland/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    Guidebook >> Maryland Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  15. PEPCO Energy Services (Maryland) | Open Energy Information

    Open Energy Info (EERE)

    PEPCO Energy Services Place: Maryland Phone Number: 1-877-737-2662 Website: www.pepco.comconnect-with-us Twitter: https:twitter.comPepcoConnect Facebook: https:...

  16. ,"Maryland Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Maryland Natural Gas Gross Withdrawals and Production",10,"Annual",2014,"06301967" ,"Release...

  17. Annapolis, Maryland: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    in Annapolis, Maryland EnergyWorks North America International Masonry Institute Jay Hall & Associates, Inc. Synergics UEK Corporation References US Census Bureau...

  18. Alternative Fuels Data Center: Maryland Conserves Fuel With Hybrid Trucks

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Maryland Conserves Fuel With Hybrid Trucks to someone by E-mail Share Alternative Fuels Data Center: Maryland Conserves Fuel With Hybrid Trucks on Facebook Tweet about Alternative Fuels Data Center: Maryland Conserves Fuel With Hybrid Trucks on Twitter Bookmark Alternative Fuels Data Center: Maryland Conserves Fuel With Hybrid Trucks on Google Bookmark Alternative Fuels Data Center: Maryland Conserves Fuel With Hybrid Trucks on Delicious Rank Alternative Fuels Data Center: Maryland Conserves

  19. Maryland Heats Up Student Appliance Design Competition | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Maryland Heats Up Student Appliance Design Competition Maryland Heats Up Student Appliance Design Competition September 10, 2013 - 11:43am Addthis Students from the University of ...

  20. Noble Americas Energy Solutions LLC (Maryland) | Open Energy...

    Open Energy Info (EERE)

    Maryland) Jump to: navigation, search Name: Noble Americas Energy Solutions LLC Place: Maryland Phone Number: 1 877273-6772 Website: www.noblesolutions.com Outage Hotline: 1 877...

  1. Frederick County, Maryland: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Energy Companies in Frederick County, Maryland Atlantic Biomass Conversions Inc BP Solar Emerging Energy Consultants Solarex Places in Frederick County, Maryland Ballenger Creek,...

  2. Blue Star Energy Services (Maryland) | Open Energy Information

    Open Energy Info (EERE)

    Maryland) Jump to: navigation, search Name: Blue Star Energy Services Place: Maryland References: EIA Form EIA-861 Final Data File for 2010 - File220101 EIA Form 861 Data...

  3. Maryland-National Capital Building Industry Association Regulatory...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Maryland-National Capital Building Industry Association Regulatory Burden RFI (Federal Register August 8, 2012) Maryland-National Capital Building Industry Association Regulatory ...

  4. University of Maryland Wins Architecture Prize, Pulls Into Lead...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Maryland Wins Architecture Prize, Pulls Into Lead in 2011 Solar Decathlon University of Maryland Wins Architecture Prize, Pulls Into Lead in 2011 Solar Decathlon September 28, 2011 ...

  5. Maryland's 5th congressional district: Energy Resources | Open...

    Open Energy Info (EERE)

    Energy Companies in Maryland's 5th congressional district University Park Community Solar LLC Zymetis Retrieved from "http:en.openei.orgwindex.php?titleMaryland%27s5...

  6. Maryland Summary of Reported Data | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Maryland Summary of Reported Data Maryland Summary of Reported Data Summary of data reported by Better Buildings Neighborhood Program partner Maryland. PDF icon Maryland Summary of Reported Data More Documents & Publications University Park Summary of Reported Data Energize New York

  7. Amendment to Programmatic Agreement for Maryland | Department of Energy

    Energy Savers [EERE]

    Amendment to Programmatic Agreement for Maryland Amendment to Programmatic Agreement for Maryland U.S. Department of Energy (DOE), Maryland Energy Administration (MEA), Maryland State Historic Preservation Office, Section 106 of the National Historic Preservation Act, Maryland Department of Housing and Community Development (DHCD), American Recovery and Reinvestment Act (ARRA) PDF icon md_amendment.pdf More Documents & Publications First Amendment to Programmatic Agreement for Missouri

  8. Estimating Carbon Supply Curves for Global Forests and Other Land Uses April 2001, Discussion Paper 01-19

    SciTech Connect (OSTI)

    Sedjo, Roger; Sohngen, Brent; Mendelsohn, Robert

    2001-04-05

    This study develops cumulative carbon ''supply curves'' for global forests utilizing a dynamic timber supply model for sequestration of forest carbon. Because the period of concern is the next century, and particular time points within that century, the curves are not traditional Marshallian supply curves or steady-state supply curves. Rather, the focus is on cumulative carbon cost curves (quasi-supply curves) at various points in time over the next 100 years. The research estimates a number of long-term, cumulative, carbon quasi-supply curves under different price scenarios and for different time periods. The curves trace out the relationship between an intertemporal price path for carbon, as given by carbon shadow prices, and the cumulative carbon sequestered from the initiation of the shadow prices, set at 2000, to a selected future year (2010, 2050, 2100). The timber supply model demonstrates that cumulative carbon quasi-supply curves that can be generated through forestry significantly depend on initial carbon prices and expectations regarding the time profile of future carbon prices. Furthermore, long-run quasi-supply curves generated from a constant price will have somewhat different characteristics from quasi-supply curves generated with an expectation of rising carbon prices through time.The ?least-cost? curves vary the time periods under consideration and the time profile of carbon prices. The quasi-supply curves suggest that a policy of gradually increasing carbon prices will generate the least costly supply curves in the shorter periods of a decade or so. Over longer periods of time, however, such as 50 or 100 years, these advantages appear to dissipate.

  9. Strategic Energy LLC (Maryland) | Open Energy Information

    Open Energy Info (EERE)

    kWh References "EIA Form EIA-861 Final Data File for 2010 - File22010" Retrieved from "http:en.openei.orgwindex.php?titleStrategicEnergyLLC(Maryland)&oldid788103...

  10. Maryland Residential Energy Code Field Study

    Broader source: Energy.gov [DOE]

    Lead Performer: Maryland Energy Administration – Annapolis, MDPartners:   -  Newport Partners – Davidsonville, MD  -  Edge Energy – Beltsville, MDDOE Total Funding: $610,428Cost Share: $153...

  11. GEXA Corp. (Maryland) | Open Energy Information

    Open Energy Info (EERE)

    Maryland Phone Number: 866-961-9399 Website: www.gexaenergy.com Twitter: @gexavoice Facebook: https:www.facebook.comGexaEnergy Outage Hotline: 866-961-9399 References: EIA...

  12. Maryland Renewable Electric Power Industry Statistics

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Maryland Primary Renewable Energy Capacity Source Hydro ... Hydro Conventional 590 4.7 Solar 1 * Wind 70 0.6 WoodWood ... Absolute percentage less than 0.05. - No data reported. ...

  13. Post-2015 Maryland Energy Efficiency Goals

    Broader source: Energy.gov [DOE]

     In July 2015, the Public Service Commission (PSC) in its Order 87082 established energy efficiency goals for the State. Previous state mandated energy efficiency program- EmPOWER Maryland Act is...

  14. Potential for cogeneration in Maryland. Volume 1

    SciTech Connect (OSTI)

    Not Available

    1993-03-01

    Cogeneration is a name given to energy systems that produce both electric power and useful thermal energy such as steam. While cogeneration markets have flourished in California, Texas, and some states, those in Maryland have not. A primary reason is that the industries that have been targeted in other states--e.g., oil refining, pulp and paper, chemicals, food processing--are not major elements of Maryland's industrial base. The study estimates the potential for future cogeneration in Maryland, both large units and small packaged systems, and assesses the potential impact of cogeneration systems on Maryland's energy needs between now and 2005. The study is presented in three volumes. Because of significant differences between large- and small-scale cogeneration, the analysis of these two systems was performed separately. This volume is a summary document presenting the findings from both studies.

  15. Friendship Village, Maryland: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    can help OpenEI by expanding it. Friendship Village is a census-designated place in Montgomery County, Maryland.1 References US Census Bureau 2005 Place to 2006 CBSA...

  16. Fairland, Maryland: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    stub. You can help OpenEI by expanding it. Fairland is a census-designated place in Montgomery County, Maryland.1 References US Census Bureau 2005 Place to 2006 CBSA...

  17. Hillandale, Maryland: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    You can help OpenEI by expanding it. Hillandale is a census-designated place in Montgomery County and Prince George's County, Maryland.1 References US Census Bureau 2005...

  18. Travilah, Maryland: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    stub. You can help OpenEI by expanding it. Travilah is a census-designated place in Montgomery County, Maryland.1 References US Census Bureau 2005 Place to 2006 CBSA...

  19. Calverton, Maryland: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    stub. You can help OpenEI by expanding it. Calverton is a census-designated place in Montgomery County and Prince George's County, Maryland.1 References US Census Bureau 2005...

  20. Redland, Maryland: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    a stub. You can help OpenEI by expanding it. Redland is a census-designated place in Montgomery County, Maryland.1 References US Census Bureau 2005 Place to 2006 CBSA...

  1. Cloverly, Maryland: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    stub. You can help OpenEI by expanding it. Cloverly is a census-designated place in Montgomery County, Maryland.1 References US Census Bureau 2005 Place to 2006 CBSA...

  2. Burtonsville, Maryland: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    You can help OpenEI by expanding it. Burtonsville is a census-designated place in Montgomery County, Maryland.1 References US Census Bureau 2005 Place to 2006 CBSA...

  3. Rossmoor, Maryland: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    stub. You can help OpenEI by expanding it. Rossmoor is a census-designated place in Montgomery County, Maryland.1 References US Census Bureau 2005 Place to 2006 CBSA...

  4. Clarksburg, Maryland: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    You can help OpenEI by expanding it. Clarksburg is a census-designated place in Montgomery County, Maryland.1 References US Census Bureau 2005 Place to 2006 CBSA...

  5. Montgomery Village, Maryland: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Montgomery Village is a census-designated place in Montgomery County, Maryland.1 References...

  6. Olney, Maryland: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    a stub. You can help OpenEI by expanding it. Olney is a census-designated place in Montgomery County, Maryland.1 References US Census Bureau 2005 Place to 2006 CBSA...

  7. Damascus, Maryland: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    stub. You can help OpenEI by expanding it. Damascus is a census-designated place in Montgomery County, Maryland.1 References US Census Bureau 2005 Place to 2006 CBSA...

  8. Colesville, Maryland: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    You can help OpenEI by expanding it. Colesville is a census-designated place in Montgomery County, Maryland.1 References US Census Bureau 2005 Place to 2006 CBSA...

  9. Brookmont, Maryland: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    stub. You can help OpenEI by expanding it. Brookmont is a census-designated place in Montgomery County, Maryland.1 References US Census Bureau 2005 Place to 2006 CBSA...

  10. Darnestown, Maryland: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    You can help OpenEI by expanding it. Darnestown is a census-designated place in Montgomery County, Maryland.1 References US Census Bureau 2005 Place to 2006 CBSA...

  11. ERSUG: July 11 - 12, 1994 (Rockville, Maryland)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ERSUG: July 11 - 12, 1994 (Rockville, Maryland) Dates July 11 - 12, 1994 Location Holiday Inn, Crowne Plaza Rockville, Maryland Presentations Agenda ERSUG Meeting July 11-12, 1994 Holiday Inn, Crowne Plaza Rockville, MD The Energy Research Supercomputer Users' Group (ERSUG) will meet at the Holiday Inn, Crowne Plaza in Rockville, MD on July 11-12, 1994. In the past, this meeting has combined presentations describing work-in-progress at NERSC with lively user discussions in the areas of the

  12. Estimating Carbon Supply Curves for Global Forests and Other...

    Open Energy Info (EERE)

    Estimating Carbon Supply Curves for Global Forests and Other Land Uses Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Estimating Carbon Supply Curves for Global Forests...

  13. College Park, Maryland: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. College Park is a city in Prince George's County, Maryland. It falls under Maryland's 5th...

  14. University Park, Maryland: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. University Park is a town in Prince George's County, Maryland. It falls under Maryland's 5th...

  15. Owings Mills, Maryland: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    You can help OpenEI by expanding it. Owings Mills is a census-designated place in Baltimore County, Maryland.1 Registered Energy Companies in Owings Mills, Maryland...

  16. A & N Electric Coop (Maryland) EIA Revenue and Sales - December...

    Open Energy Info (EERE)

    A & N Electric Coop for December 2008. Monthly Electric Utility Sales and Revenue Data Short Name 2008-12 Utility Company A & N Electric Coop (Maryland) Place Maryland Start Date...

  17. A & N Electric Coop (Maryland) EIA Revenue and Sales - February...

    Open Energy Info (EERE)

    A & N Electric Coop for February 2009. Monthly Electric Utility Sales and Revenue Data Short Name 2009-02 Utility Company A & N Electric Coop (Maryland) Place Maryland Start Date...

  18. Ambit Energy, L.P. (Maryland) | Open Energy Information

    Open Energy Info (EERE)

    Maryland) Jump to: navigation, search Name: Ambit Energy, L.P. Place: Maryland Phone Number: (877) 282-6248 Website: ww2.ambitenergy.com Twitter: @AmbitEnergy Facebook: https:...

  19. Allegheny Energy Supply Co LLC (Maryland) | Open Energy Information

    Open Energy Info (EERE)

    Maryland) Jump to: navigation, search Name: Allegheny Energy Supply Co LLC Place: Maryland References: EIA Form EIA-861 Final Data File for 2010 - File220101 EIA Form 861 Data...

  20. First Energy Solutions Corp. (Maryland) | Open Energy Information

    Open Energy Info (EERE)

    Maryland) Jump to: navigation, search Name: First Energy Solutions Corp. Place: Maryland Phone Number: 1-888-254-4769 or 1-888-254-6359 Website: www.firstenergycorp.comconten...

  1. American PowerNet (Maryland) | Open Energy Information

    Open Energy Info (EERE)

    Maryland) Jump to: navigation, search Name: American PowerNet Place: Maryland Phone Number: (877) 977-2636 or (610) 372-8500 Website: www.americanpowernet.com Outage Hotline:...

  2. EmPOWER Maryland Low Income Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    The Maryland Department of Housing and Community Development (DHCD) EmPOWER Maryland Low Income Energy Efficiency Program helps qualifying low-income residents increase the energy efficiency of t...

  3. Consolidated Edison Sol Inc (Maryland) | Open Energy Information

    Open Energy Info (EERE)

    Consolidated Edison Sol Inc (Maryland) Jump to: navigation, search Name: Consolidated Edison Sol Inc Place: Maryland Phone Number: 1-888-320-8991 or 1-888-320-8991 or...

  4. ,"Maryland Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:15:48 AM" "Back to Contents","Data 1: Maryland Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035MD3" "Date","Maryland...

  5. Hess Retail Natural Gas and Elec. Acctg. (Maryland) | Open Energy...

    Open Energy Info (EERE)

    Maryland) Jump to: navigation, search Name: Hess Retail Natural Gas and Elec. Acctg. Place: Maryland References: EIA Form EIA-861 Final Data File for 2010 - File220101 EIA Form...

  6. Chevy Chase Section Five, Maryland: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    stub. You can help OpenEI by expanding it. Chevy Chase Section Five is a village in Montgomery County, Maryland. It falls under Maryland's 8th congressional district.12...

  7. Garrett Park, Maryland: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    article is a stub. You can help OpenEI by expanding it. Garrett Park is a town in Montgomery County, Maryland. It falls under Maryland's 8th congressional district.12...

  8. Chevy Chase View, Maryland: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    is a stub. You can help OpenEI by expanding it. Chevy Chase View is a town in Montgomery County, Maryland. It falls under Maryland's 8th congressional district.12...

  9. Silver Spring, Maryland: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    You can help OpenEI by expanding it. Silver Spring is a census-designated place in Montgomery County, Maryland.1 Registered Energy Companies in Silver Spring, Maryland CPV Wind...

  10. Chevy Chase Section Three, Maryland: Energy Resources | Open...

    Open Energy Info (EERE)

    stub. You can help OpenEI by expanding it. Chevy Chase Section Three is a village in Montgomery County, Maryland. It falls under Maryland's 8th congressional district.12...

  11. Washington Grove, Maryland: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    is a stub. You can help OpenEI by expanding it. Washington Grove is a town in Montgomery County, Maryland. It falls under Maryland's 8th congressional district.12...

  12. Takoma Park, Maryland: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    article is a stub. You can help OpenEI by expanding it. Takoma Park is a city in Montgomery County, Maryland. It falls under Maryland's 8th congressional district.12...

  13. North Chevy Chase, Maryland: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    is a stub. You can help OpenEI by expanding it. North Chevy Chase is a village in Montgomery County, Maryland. It falls under Maryland's 8th congressional district.12...

  14. Glen Echo, Maryland: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    This article is a stub. You can help OpenEI by expanding it. Glen Echo is a town in Montgomery County, Maryland. It falls under Maryland's 8th congressional district.12...

  15. Chevy Chase Village, Maryland: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    is a stub. You can help OpenEI by expanding it. Chevy Chase Village is a town in Montgomery County, Maryland. It falls under Maryland's 8th congressional district.12...

  16. Chevy Chase, Maryland: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    article is a stub. You can help OpenEI by expanding it. Chevy Chase is a town in Montgomery County, Maryland. It falls under Maryland's 8th congressional district.12...

  17. Maryland State Historic Preservation Programmatic Agreement | Department of

    Energy Savers [EERE]

    Maryland Recovery Act State Memo Maryland Recovery Act State Memo The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Maryland are supporting a broad range of clean energy projects, from energy efficiency and smart grid to advanced battery manufacturing. Through these investments, Maryland's businesses, universities, nonprofits, and local governments are creating quality jobs

  18. Workplace Charging Challenge Partner: University of Maryland Baltimore

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Washington Medical Center | Department of Energy Maryland Baltimore Washington Medical Center Workplace Charging Challenge Partner: University of Maryland Baltimore Washington Medical Center Workplace Charging Challenge Partner: University of Maryland Baltimore Washington Medical Center Joined the Challenge: March 2014 Headquarters: Glen Burnie, MD Charging Location: Glen Burnie, MD Domestic Employees: 2,700 The University of Maryland Baltimore Washington Medical Center (UM BWMC) is an

  19. Sustainable Energy Resources for Consumers (SERC) Success Story: Maryland

    Broader source: Energy.gov [DOE]

    This document contains information on how the Maryland SERC program leverages diverse and bold energy upgrade measures to maximize savings.

  20. International Forest Policy Database | Open Energy Information

    Open Energy Info (EERE)

    Database Jump to: navigation, search Tool Summary LAUNCH TOOL Name: International Forest Policy Database AgencyCompany Organization: GTZ Sector: Land Focus Area: Forestry...

  1. University Park, Maryland, Plans to STEP Into New Communities | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy University Park, Maryland, Plans to STEP Into New Communities University Park, Maryland, Plans to STEP Into New Communities Photo of three brick buildings with flowering trees around them. Based on its success in University Park, Maryland, the Small Town Energy Program for University Park (STEP-UP) is expanding into surrounding communities to demonstrate that the program is replicable and scalable beyond University Park. In just a few weeks, the rebranded "STEP" program

  2. University of Maryland component of the Center for Multiscale Plasma

    Office of Scientific and Technical Information (OSTI)

    Dynamics: Final Technical Report (Technical Report) | SciTech Connect SciTech Connect Search Results Technical Report: University of Maryland component of the Center for Multiscale Plasma Dynamics: Final Technical Report Citation Details In-Document Search Title: University of Maryland component of the Center for Multiscale Plasma Dynamics: Final Technical Report The Center for Multiscale Plasma Dynamics (CMPD) was a five-year Fusion Science Center. The University of Maryland (UMD) and UCLA

  3. Sustainable Energy Resources for Consumers (SERC) Success Story: Maryland

    Energy Savers [EERE]

    Maryland The Maryland SERC program leverages diverse and bold energy upgrade measures to maximize savings Maryland boosts energy savings for low-income residences with wind turbines; solar photovoltaics (PV); geothermal heat pumps; mini-split ductless heat pumps; hybrid heat pump water heaters; and high-efficiency heating, ventilating, and air-conditioning (HVAC) systems. In 2007, the Energy Independence and Security Act (EISA) included a provision that in any year for which the U.S. Department

  4. Virginia, Maryland teams prepare for Regional Middle School Science Bowl |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jefferson Lab Virginia, Maryland teams prepare for Regional Middle School Science Bowl Virginia, Maryland teams prepare for Regional Middle School Science Bowl March 3, 2005 The Department of Energy's Jefferson Lab, in Newport News, Va., hosts the Virginia/Maryland Regional Middle School Science Bowl tomorrow (Saturday, March 5). A dozen schools have registered teams for the event, according to Jan Tyler, Science Education program manager. This is JLab's second year hosting the Middle School

  5. Maryland Summary of Reported Data | Department of Energy

    Energy Savers [EERE]

    PDF icon Maryland Summary of Reported Data More Documents & Publications University Park Summary of Reported Data Energize New York Summary of Reported Data Alabama -- SEP...

  6. Severna Park, Maryland: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Severna Park, Maryland: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.070388, -76.5452409 Show Map Loading map... "minzoom":false,"mapping...

  7. SSL Demonstration: Wall Washers at the University of Maryland

    SciTech Connect (OSTI)

    2015-07-31

    GATEWAY program report brief summarizing a demonstration of LED wall washers at the Clarice Smith Performing Arts Center at the University of Maryland.

  8. Baltimore County, Maryland ASHRAE 169-2006 Climate Zone | Open...

    Open Energy Info (EERE)

    Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Baltimore County, Maryland ASHRAE 169-2006 Climate Zone Jump to: navigation, search County...

  9. Maryland's 2nd congressional district: Energy Resources | Open...

    Open Energy Info (EERE)

    US Recovery Act Smart Grid Projects in Maryland's 2nd congressional district Baltimore Gas and Electric Company Smart Grid Project Registered Energy Companies in...

  10. Maryland's 7th congressional district: Energy Resources | Open...

    Open Energy Info (EERE)

    US Recovery Act Smart Grid Projects in Maryland's 7th congressional district Baltimore Gas and Electric Company Smart Grid Project Registered Energy Companies in...

  11. Baltimore City County, Maryland: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Baltimore City County, Maryland: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.2903848, -76.6121893 Show Map Loading map......

  12. DOE - Office of Legacy Management -- Maryland Disposal Site ...

    Office of Legacy Management (LM)

    under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Baltimore - Vicinity , Maryland MD.05-1 Evaluation Year: 1989 MD.05-1 Site Operations:...

  13. Baltimore City County, Maryland ASHRAE 169-2006 Climate Zone...

    Open Energy Info (EERE)

    Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Baltimore City County, Maryland ASHRAE 169-2006 Climate Zone Jump to: navigation, search...

  14. A & N Electric Coop (Maryland) EIA Revenue and Sales - August...

    Open Energy Info (EERE)

    Sales and Revenue Data 1 Previous | Next Retrieved from "http:en.openei.orgwindex.php?titleA%26NElectricCoop(Maryland)EIARevenueandSales-August2008&oldid1732...

  15. Maryland's 6th congressional district: Energy Resources | Open...

    Open Energy Info (EERE)

    in Maryland's 6th congressional district Atlantic Biomass Conversions Inc BP Solar Freedom Energy Solutions LLC Solarex Retrieved from "http:en.openei.orgw...

  16. ,"Maryland Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Maryland Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)",1,"Monthly","102015" ,"Release Date:","12...

  17. Jared Hertzberg > Postdoc - Univeristy of Maryland > Center Alumni...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    materials, nanofabrication of MEMSNEMS mechanical resonators, superconducting circuits, and Josephson-junction devices. He has returned to the University of Maryland where...

  18. Clover Hill, Maryland: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hill, Maryland: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.4562128, -77.4288745 Show Map Loading map... "minzoom":false,"mappingservice...

  19. Microsoft Word - Final Rpt for the State of Maryland FORMATTED

    Energy Savers [EERE]

    ... of tools and equipment; storage of weatherization materials; and liability insurance. ... of Finding as the Regional Greenhouse Gas Initiative, Maryland Energy Assistance ...

  20. Frederick County (Maryland) Department of Permits and Inspections (FCDPI)

    Broader source: Energy.gov [DOE]

    The Frederick County (Maryland) Department of Permits and Inspections (FCDPI) is currently reviewing two proposed amendments to the 2012 International Energy Conservation Code (IECC), copies of...

  1. Maryland DC Virginia Solar Energy Industries Association MDV...

    Open Energy Info (EERE)

    DC Virginia Solar Energy Industries Association MDV SEIA Jump to: navigation, search Name: Maryland-DC-Virginia Solar Energy Industries Association (MDV-SEIA) Place: Bethesda,...

  2. ,"Maryland Natural Gas Vehicle Fuel Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Maryland Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release...

  3. ,"Maryland Natural Gas Imports Price All Countries (Dollars per...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Maryland Natural Gas Imports Price All Countries (Dollars per Thousand Cubic Feet)",1,"Annual",2014...

  4. Maryland Working Natural Gas Underground Storage Capacity (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Maryland Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  5. Union Bridge, Maryland: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Union Bridge, Maryland: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.5689895, -77.176927 Show Map Loading map... "minzoom":false,"mapping...

  6. Savage-Guilford, Maryland: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Savage-Guilford, Maryland: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.144487, -76.8317325 Show Map Loading map... "minzoom":false,"mapp...

  7. ,"Maryland Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Maryland...

  8. Discovery-Spring Garden, Maryland: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Discovery-Spring Garden, Maryland: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.4614398, -77.358284 Show Map Loading map......

  9. Green Haven, Maryland: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Haven, Maryland: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.1395536, -76.5477413 Show Map Loading map... "minzoom":false,"mappingservic...

  10. Green Valley, Maryland: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Maryland: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.3092707, -77.2972065 Show Map Loading map... "minzoom":false,"mappingservice":"goo...

  11. Save Energy Now for Maryland Industry Project Fact Sheet

    Broader source: Energy.gov [DOE]

    This fact sheet contains details regarding a Save Energy Now industrial energy efficiency project that the U.S. Department of Energy funded in Maryland.

  12. National Science Bowl Update: Middle School Teams from Maryland...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The teams remaining are: Indiana Creekside Middle School, Carmel Maryland Takoma Park Middle School, Silver Spring The top eight middle school teams in the academic competition ...

  13. Anne Arundel County, Maryland: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    LLC a groSolar company EnergyWorks North America International Masonry Institute Jay Hall & Associates, Inc. Synergics UEK Corporation Places in Anne Arundel County, Maryland...

  14. Maryland Recovery Act State Memo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Maryland are ...

  15. Microsoft Word - DOE-ID-15-027 Maryland EC B3-6.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 SECTION A. Project Title: Enhancement of the Extraction of Uranium from Seawater - University of Maryland SECTION B. Project Description The University of Maryland proposes to...

  16. Maryland Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Maryland Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 12,516 100.0 Total Net Summer Renewable Capacity 799 6.4 Geothermal - - Hydro Conventional 590 4.7 Solar 1 * Wind 70 0.6 Wood/Wood Waste 3 * MSW/Landfill Gas 135 1.1 Other Biomass - - Generation (thousand megawatthours) Total Electricity Net Generation 43,607 100.0 Total Renewable

  17. Maryland Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Maryland" "Primary Renewable Energy Capacity Source","Hydro Conventional" "Primary Renewable Energy Generation Source","Hydro Conventional" "Capacity (megawatts)","Value","Percent of State Total" "Total Net Summer Electricity Capacity",12516,100 "Total Net Summer Renewable Capacity",799,6.4 " Geothermal","-","-" " Hydro Conventional",590,4.7 "

  18. Maryland Natural Gas Repressuring (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Repressuring (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: Natural Gas Used for Repressuring Maryland Natural Gas Gross Withdrawals and Production Natural Gas Used for Repressuring

  19. University of Maryland Wins Max Tech and Beyond Competition for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ultra-Efficient Clothes Dryer | Department of Energy University of Maryland Wins Max Tech and Beyond Competition for Ultra-Efficient Clothes Dryer University of Maryland Wins Max Tech and Beyond Competition for Ultra-Efficient Clothes Dryer September 10, 2013 - 12:00pm Addthis The Energy Department announced today that the University of Maryland won the second annual Max Tech and Beyond design competition for ultra-low energy use appliances and equipment for the second year in a row. The

  20. Alternative Fuels Data Center: Maryland County Fleet Uses Wide Variety of

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuels Maryland County Fleet Uses Wide Variety of Alternative Fuels to someone by E-mail Share Alternative Fuels Data Center: Maryland County Fleet Uses Wide Variety of Alternative Fuels on Facebook Tweet about Alternative Fuels Data Center: Maryland County Fleet Uses Wide Variety of Alternative Fuels on Twitter Bookmark Alternative Fuels Data Center: Maryland County Fleet Uses Wide Variety of Alternative Fuels on Google Bookmark Alternative Fuels Data Center: Maryland County

  1. I think that I shall never see {hor_ellipsis} a lovely forestry policy: Land use programs for conservation of forests

    SciTech Connect (OSTI)

    Rayner, S.F.; Richards, K.R.

    1994-01-01

    Forestry programs are frequently invoked as having potential for mitigation of greenhouse gas emissions. Most studies have attempted to quantify the potential impact of forest programs on carbon uptake and the potential costs of such programs. In this paper, we will attempt instead to focus on the institutional issues of the implementation of forestry programs for carbon sequestration. In particular, we explore the challenges for implementing forest programs that are: of increasing technological complexity; and in settings that depart significantly from the idealized conditions of economic models. We start in Section 1 by examining a suite of instruments that are commonly employed to implement a given policy. Section 2 examines a relatively simple case -- a tree-planting program in the US -- and demonstrates that there are significant difficulties involved in implementing a carbon sequestration program, even in a well-developed market economy. Section 3 focuses on other technologies in the US and why the choice of policy instruments and program design is more difficult than for the simple tree-planting case. Section 4 considers implementation of forestry policies in other countries where the economies may bear less resemblance to the ideal market economy than the US. In those settings, the choice of policy instruments may be very sensitive to non-market considerations that are often missed in conventional policy and cost analysis.

  2. Brooklyn Park, Maryland: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Brooklyn Park is a census-designated place in Anne Arundel County, Maryland.1 References US...

  3. Washington Gas Energy Services (Maryland) | Open Energy Information

    Open Energy Info (EERE)

    Washington Gas Energy Services Place: Maryland Phone Number: 1-844-427-5945 Website: www.wges.com Outage Hotline: 1-844-427-5945 References: EIA Form EIA-861 Final Data File for...

  4. EECBG Success Story: Learning is Now Much 'Cooler' for Maryland...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    is Now Much 'Cooler' for Maryland School Students New 26 kW solar energy system to be part of curriculum at Norton Middle School. | Photo courtesy of Norton Public Schools. ...

  5. Maryland Natural Gas in Underground Storage (Working Gas) (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Working Gas) (Million Cubic Feet) Maryland Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 4,303 ...

  6. Maryland Natural Gas Withdrawals from Gas Wells (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Withdrawals from Gas Wells (Million Cubic Feet) Maryland Natural Gas Withdrawals from Gas Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 5 ...

  7. Maryland Natural Gas Number of Gas and Gas Condensate Wells ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas and Gas Condensate Wells (Number of Elements) Maryland Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  8. Energy Plus Holdings LLC (Maryland) | Open Energy Information

    Open Energy Info (EERE)

    Energy Plus Holdings LLC Place: Maryland Phone Number: 1-877-580-3915 or 1-877-826-9931 Website: www.energypluscompany.comserv Twitter: @EnergyPlusCo Facebook: https:...

  9. Suez Energy Resources North America (Maryland) | Open Energy...

    Open Energy Info (EERE)

    Maryland Phone Number: 888.232.6206 Website: www.gdfsuezna.com Twitter: @GDFSUEZNA Facebook: https:twitter.comGDFSUEZNA Outage Hotline: 888.232.6206 References: EIA Form...

  10. Maryland Natural Gas Number of Industrial Consumers (Number of...

    Gasoline and Diesel Fuel Update (EIA)

    Industrial Consumers (Number of Elements) Maryland Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  11. The Potomac Edison Co (Maryland) | Open Energy Information

    Open Energy Info (EERE)

    The Potomac Edison Co Place: Maryland Twitter: @PotomacEdison Outage Map: outages.firstenergycorp.commd References: EIA Form EIA-861 Final Data File for 2010 - File220101 EIA...

  12. ,"Maryland Natural Gas Price Sold to Electric Power Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"03282016 11:40:52 AM" "Back to Contents","Data 1: Maryland Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)" ...

  13. Geothermal System Saves Dollars, Makes Sense for Maryland Family

    Broader source: Energy.gov [DOE]

    Derwood, Maryland resident Chris Gearon shares how he used a tax credit from the Recovery Act to help upgrade the heating and cooling system in his home to a geothermal one helping him save money and energy.

  14. A & N Electric Coop (Maryland) EIA Revenue and Sales - October...

    Open Energy Info (EERE)

    A & N Electric Coop (Maryland) EIA Revenue and Sales - October 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for A & N Electric Coop for...

  15. A & N Electric Coop (Maryland) EIA Revenue and Sales - January...

    Open Energy Info (EERE)

    A & N Electric Coop (Maryland) EIA Revenue and Sales - January 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for A & N Electric Coop for...

  16. A & N Electric Coop (Maryland) EIA Revenue and Sales - November...

    Open Energy Info (EERE)

    A & N Electric Coop (Maryland) EIA Revenue and Sales - November 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for A & N Electric Coop for...

  17. South Kensington, Maryland: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    can help OpenEI by expanding it. South Kensington is a census-designated place in Montgomery County, Maryland.1 References US Census Bureau 2005 Place to 2006 CBSA...

  18. North Kensington, Maryland: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    can help OpenEI by expanding it. North Kensington is a census-designated place in Montgomery County, Maryland.1 References US Census Bureau 2005 Place to 2006 CBSA...

  19. Ashton-Sandy Spring, Maryland: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    can help OpenEI by expanding it. Ashton-Sandy Spring is a census-designated place in Montgomery County, Maryland.1 References US Census Bureau 2005 Place to 2006 CBSA...

  20. Montgomery County, Maryland: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Montgomery County is a county in Maryland. Its FIPS County Code is 031. It is classified as...

  1. Cabin John, Maryland: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    You can help OpenEI by expanding it. Cabin John is a census-designated place in Montgomery County, Maryland.1 References US Census Bureau 2005 Place to 2006 CBSA...

  2. North Potomac, Maryland: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    You can help OpenEI by expanding it. North Potomac is a census-designated place in Montgomery County, Maryland.1 References US Census Bureau 2005 Place to 2006 CBSA...

  3. Kemp Mill, Maryland: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    stub. You can help OpenEI by expanding it. Kemp Mill is a census-designated place in Montgomery County, Maryland.1 References US Census Bureau 2005 Place to 2006 CBSA...

  4. Wheaton-Glenmont, Maryland: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    can help OpenEI by expanding it. Wheaton-Glenmont is a census-designated place in Montgomery County, Maryland.1 References US Census Bureau 2005 Place to 2006 CBSA...

  5. North Bethesda, Maryland: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    You can help OpenEI by expanding it. North Bethesda is a census-designated place in Montgomery County, Maryland.1 References US Census Bureau 2005 Place to 2006 CBSA...

  6. White Oak, Maryland: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    stub. You can help OpenEI by expanding it. White Oak is a census-designated place in Montgomery County, Maryland.1 References US Census Bureau 2005 Place to 2006 CBSA...

  7. Aspen Hill, Maryland: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    You can help OpenEI by expanding it. Aspen Hill is a census-designated place in Montgomery County, Maryland.1 References US Census Bureau 2005 Place to 2006 CBSA...

  8. EECBG Success Story: Learning is Now Much 'Cooler' for Maryland...

    Broader source: Energy.gov (indexed) [DOE]

    57 percent more energy efficient than the previous roof. | U.S. Department of Energy Learning is Now Much 'Cooler' for Maryland School Students New 26 kW solar energy system to be...

  9. Developing Effective Forest Policy-A Guide | Open Energy Information

    Open Energy Info (EERE)

    Developing Effective Forest Policy-A Guide AgencyCompany Organization: Food and Agriculture Organization of the United Nations Sector: Land Focus Area: Forestry Topics:...

  10. Before the House Subcommittee on National Parks, Forests and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Before the House Subcommittee on National Parks, Forests and Public Lands - Committee on Natural Resources By: Ingrid Kolb, Director Office of Management Subject: Proposed ...

  11. Vermont FPR: Land and Water Conservation Fund | Open Energy Informatio...

    Open Energy Info (EERE)

    provides information on the Vermont Department of Forest, Parks and Recreation's administration of the Land and Water Conservation Fund. Published Publisher Not Provided, Date...

  12. Forest County Potawatomi Community- 2010 Project

    Broader source: Energy.gov [DOE]

    The Forest County Potawatomi Community ("FCPC" or "Tribe") owns a six-story parking facility that consists of two separate buildings located on fee land adjacent to its Milwaukee Bingo Casino operation.

  13. A & N Electric Coop (Maryland) EIA Revenue and Sales - June 2008...

    Open Energy Info (EERE)

    A & N Electric Coop for June 2008. Monthly Electric Utility Sales and Revenue Data Short Name 2008-06 Utility Company A & N Electric Coop (Maryland) Place Maryland Start Date...

  14. MARYLAND HELPS RESIDENTS AND BUSINESSES TO BE SMART | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    MARYLAND HELPS RESIDENTS AND BUSINESSES TO BE SMART MARYLAND HELPS RESIDENTS AND BUSINESSES TO BE SMART MARYLAND HELPS RESIDENTS AND BUSINESSES TO BE SMART While the historic downtowns of cities throughout Maryland are known for their charming mix of quaint shops and picturesque homes, many of the older buildings are not energy efficient. Spurred by these historic commercial centers to launch a statewide energy efficiency campaign, the state's Department of Housing and Community Development

  15. EIS-0465: Mid-Atlantic Power Pathway Transmission Line Project in Maryland

    Energy Savers [EERE]

    and Delaware | Department of Energy 5: Mid-Atlantic Power Pathway Transmission Line Project in Maryland and Delaware EIS-0465: Mid-Atlantic Power Pathway Transmission Line Project in Maryland and Delaware March 4, 2011 EIS-0465: Notice of Intent to Prepare an Environmental Impact Statement Construction of Phase II of the Mid-Atlantic Power Pathway Transmission Line Project, in Maryland and Delaware February 4, 2011 EIS-0465: Announcement of Public Scoping Meetings Construction of Phase II of

  16. University of Maryland Wins Architecture Prize, Pulls Into Lead in 2011

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Decathlon | Department of Energy Maryland Wins Architecture Prize, Pulls Into Lead in 2011 Solar Decathlon University of Maryland Wins Architecture Prize, Pulls Into Lead in 2011 Solar Decathlon September 28, 2011 - 6:04pm Addthis The University of Maryland's "WaterShed" house won first prize in the 2011 Solar Decathlon architecture contest. | Photo courtesy of the <a href="http://2011.solarteam.org">University of Maryland team<a/>. The University of

  17. University of Maryland's "WaterShed" Wins 2011 Solar Decathlon | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Maryland's "WaterShed" Wins 2011 Solar Decathlon University of Maryland's "WaterShed" Wins 2011 Solar Decathlon October 3, 2011 - 2:02pm Addthis The University of Maryland's “WaterShed” won the 2011 Solar Decathlon. The school from College Park, Maryland competed against 18 other collegiate teams to build an aesthetically pleasing, architecturally innovative and well-engineered energy efficient living space that generates its energy from solar power. |

  18. University of Maryland Solar Decathlon Team Celebrates with a "Shed Raising"

    Broader source: Energy.gov [DOE]

    The University of Maryland 2011 Solar Decathlon Team is using one element -- water -- as a major component of their home. Here's how.

  19. Classifying forest productivity at different scales

    SciTech Connect (OSTI)

    Graham, R.L.

    1991-01-01

    Spatial scale is an important consideration when evaluating, using, or constructing forest productivity classifications. First, the factors which dominate spatial variability in forest productivity are scale dependent. For example, within a stand, spatial variability in productivity is dominated by microsite differences; within a national forest such as the Cherokee National Forest, spatial variability is dominated by topography and land-use history (e.g., years since harvest); within a large region such as the southeast, spatial variability is dominated by climatic patterns. Second, classifications developed at different spatial scales are often used for different purposes. For example, stand-level classifications are often keys or rules used in the field to judge the quality or potential of a site. National-forest classifications are often presented as maps or tables and may be used in forest land planning. Regional classifications may be maps or tables and may be used to quantify or predict resource availability. These scale-related differences in controlling factors and purposes will affect both the methods and the data used to develop classifications. In this paper, I will illustrate these points by describing and comparing three forest productivity classifications, each developed for a specific purpose at a specific scale. My objective is not to argue for or against any of these particular classifications but rather to heighten awareness of the critical role that spatial scale plays in the use and development of forest productivity classifications. 8 refs., 2 figs., 1 tab.

  20. Maryland Renewable Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Maryland" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",2104,1652,1974,1889,1667 "Solar","-","-","-","-","s" "Wind","-","-","-","-",1 "Wood/Wood Waste",218,203,198,175,165 "MSW Biogenic/Landfill Gas",408,400,415,376,407 "Other

  1. Maryland Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Maryland" "Energy Source",2006,2007,2008,2009,2010 "Fossil",32091,33303,29810,26529,27102 " Coal",29408,29699,27218,24162,23668 " Petroleum",581,985,406,330,322 " Natural Gas",1770,2241,1848,1768,2897 " Other Gases",332,378,338,269,215 "Nuclear",13830,14353,14679,14550,13994 "Renewables",2730,2256,2587,2440,2241 "Pumped Storage","-","-","-","-","-"

  2. Maryland Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Coalbed Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: Natural Gas Gross Withdrawals from Coalbed Wells Maryland Natural Gas Gross Withdrawals and Production Natural Gas Gross Withdrawals from Coalbed

  3. Maryland Natural Gas Imports Price All Countries (Dollars per Thousand

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Price All Countries (Dollars per Thousand Cubic Feet) Maryland Natural Gas Imports Price All Countries (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's -- 2000's -- -- -- 4.69 6.21 8.57 7.51 7.25 9.09 4.05 2010's 5.37 5.30 13.82 15.29 8.34 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date:

  4. Maryland Natural Gas Input Supplemental Fuels (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Input Supplemental Fuels (Million Cubic Feet) Maryland Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 484 498 984 352 332 373 155 136 743 899 1990's 24 72 126 418 987 609 882 178 80 498 2000's 319 186 48 160 124 382 41 245 181 170 2010's 115 89 116 107 809 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  5. Maryland Natural Gas LNG Storage Withdrawals (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Withdrawals (Million Cubic Feet) Maryland Natural Gas LNG Storage Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,851 623 581 394 500 867 616 480 771 760 1990's 377 531 715 610 529 540 691 252 29 221 2000's 1,023 3,687 3,912 2,648 452 499 3,418 881 370 371 2010's 378 352 359 466 563 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  6. Maryland Natural Gas Lease Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption (Million Cubic Feet) Maryland Natural Gas Lease Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1 2 1 1 2 1 1 1990's 1 0 0 1 1 1 3 3 1 1 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: Natural Gas Lease Fuel Consumption

  7. Maryland Quantity of Production Associated with Reported Wellhead Value

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Maryland Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 31 60 39 20 44 29 34 1990's 22 29 33 28 26 22 0 118 63 18 2000's 34 32 22 48 34 46 NA NA NA NA 2010's NA - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  8. Forest County Potawatomi Community- 2010 Energy Efficiency Lighting Project

    Broader source: Energy.gov [DOE]

    The Forest County Potawatomi Community ("FCPC" or "Tribe") owns a six-story parking facility that consists of two separate buildings located on fee land adjacent to its Milwaukee Bingo Casino operation.

  9. Project Reports for Forest County Potawatomi Community- 2010 Project

    Broader source: Energy.gov [DOE]

    The Forest County Potawatomi Community ("FCPC" or "Tribe") owns a six-story parking facility that consists of two separate buildings located on fee land adjacent to its Milwaukee Bingo Casino operation.

  10. Sustainable Forest Bioenergy Initiative

    SciTech Connect (OSTI)

    Breger, Dwayne; Rizzo, Rob

    2011-09-20

    In the state’s Electricity Restructuring Act of 1998, the Commonwealth of Massachusetts recognized the opportunity and strategic benefits to diversifying its electric generation capacity with renewable energy. Through this legislation, the Commonwealth established one of the nation’s first Renewable Energy Portfolio Standard (RPS) programs, mandating the increasing use of renewable resources in its energy mix. Bioenergy, meeting low emissions and advanced technology standards, was recognized as an eligible renewable energy technology. Stimulated by the state’s RPS program, several project development groups have been looking seriously at building large woody biomass generation units in western Massachusetts to utilize the woody biomass resource. As a direct result of this development, numerous stakeholders have raised concerns and have prompted the state to take a leadership position in pursuing a science based analysis of biomass impacts on forest and carbon emissions, and proceed through a rulemaking process to establish prudent policy to support biomass development which can contribute to the state’s carbon reduction commitments and maintain safeguards for forest sustainability. The Massachusetts Sustainable Forest Bioenergy Initiative (SFBI) was funded by the Department of Energy and started by the Department of Energy Resources before these contentious biomass issues were fully raised in the state, and continued throughout the substantive periods of this policy development. Thereby, while SFBI maintained its focus on the initially proposed Scope of Work, some aspects of this scope were expanded or realigned to meet the needs for groundbreaking research and policy development being advanced by DOER. SFBI provided DOER and the Commonwealth with a foundation of state specific information on biomass technology and the biomass industry and markets, the most comprehensive biomass fuel supply assessment for the region, the economic development impact associated with biomass usage, an understanding of forest management trends including harvesting and fuel processing methods, and the carbon profile of utilizing forest based woody biomass for the emerging biomass markets. Each of the tasks and subtasks have provided an increased level of understanding to support new directives, policies and adaptation of existing regulations within Massachusetts. The project has provided the essential information to allow state policymakers and regulators to address emerging markets, while ensuring forest sustainability and understanding the complex science on CO2 accounting and impacts as a result of biomass harvesting for power generation. The public at large and electricity ratepayers in Massachusetts will all benefit from the information garnered through this project. This is a result of the state’s interest to provide financial incentives to only biomass projects that demonstrate an acceptable carbon profile, an efficient use of the constrained supply of fuel, and the harvest of biomass to ensure forest sustainability. The goals of the Massachusetts Sustainable Forest Bioenergy Initiative as proposed in 2006 were identified as: increase the diversity of the Massachusetts energy mix through biomass; promote economic development in the rural economy through forest industry job creation; help fulfill the state’s energy and climate commitments under the Renewable Energy Portfolio Standard and Climate Protection Plan; assist the development of a biomass fuel supply infrastructure to support energy project demands; provide education and outreach to the public on the benefits and impacts of bioenergy; improve the theory and practice of sustainable forestry in the Commonwealth. Completed project activities summarized below will demonstrate the effectiveness of the project in meeting the above goals. In addition, as discussed above, Massachusetts DOER needed to make some modifications to its work plan and objectives during the term of this project due to changing public policy demands brought forth in the course of the public discourse on this topic. We found that some tasks needed to be adjusted to meet changed conditions. Shortly after the start of SFBI, DOER recognized that establishing demonstration plots within state owned lands was not possible as the state enacted a temporary freeze on all timber harvesting on state lands, to allow for the completion of an assessment of current impacts of this activity and time to develop prudent policies on land conservation. Even more significantly, the state’s energy and environmental Secretary asked DOER to place a “sustainability” criterion for biomass in the RPS regulations, and the passage of the landmark Global Warming Solutions Act in 2008 committed DOER to very carefully consider and assure that biomass energy supported by the RPS met carbon reduction thresholds aligned with the state’s reduction commitments. These needs led to some adjustment of the SFBI scope and objectives to meet the policy challenges. Most notably was the funding and commissioning of the report by the Manomet Center for Conservation Sciences which provided the sustainability and carbon impact framework necessary for DOER to move policy forward prudently. The “Manomet Study” has moved this emerging policy issue substantially forward, gained national and international significance, and provided a new look at how the forest sequesters carbon and the effect of the removal of growing stock for energy on future carbon sequestration and atmospheric flux. This activity provided information that supports the objectives of SFBI but to accommodate this work, several subtasks were combined and addressed within the framework of the Manomet research study. The expected outcomes of the SFBI include the development of biomass energy systems that support sustainable forest management, new investment in forestry and fuel supply infrastructure, biomass energy generation that contributes to greenhouse gas mitigation, and job creation in project development and operation and in the rural forestry sector.

  11. BLM and Forest Service Consider Large-Scale Geothermal Leasing

    Broader source: Energy.gov [DOE]

    In an effort to encourage appropriate geothermal energy development on public lands, the Bureau of Land Management (BLM) and the U.S. Forest Service have prepared a Draft Programmatic Environmental Impact Statement (PEIS) for geothermal leasing in the West, including Alaska.

  12. Maryland Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Net Withdrawals (Million Cubic Feet) Maryland Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's -2,408 91 95 -159 150 -81 153 2 -7 -62 1990's 392 126 89 85 410 1,291 4,190 1,186 785 494 2000's -339 -761 -98 -1,789 -1,705 -2,703 3,122 -250 632 4,488 2010's -13 42 27 -5 41 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release

  13. Maryland State information handbook: formerly utilized sites remedial action program

    SciTech Connect (OSTI)

    1980-12-31

    This volume is one of a series produced under contract with the DOE, by Politech Corporation to develop a legislative and regulatory data base to assist the FUSRAP management in addressing the institutional and socioeconomic issues involved in carrying out the Formerly Utilized Handbook Series Remedial Action Program. This Information Handbook series contains information about all relevant government agencies at the Federal and state levels, the pertinent programs they administer, each affected state legislature, and current Federal and state legislative and regulatory initiatives. This volume is a compilation of information about the State of Maryland. It contains: a description of the state executive branch structure; a summary of relevant state statutes and regulations; a description of the structure of the state legislature, identification of the officers and committee chairmen, and a summary of recent relevant legislative action; and the full text of relevant statutes and regulations.

  14. Maryland Natural Gas Underground Storage Capacity (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    from All Countries (Million Cubic Feet) Maryland Natural Gas Imports from All Countries (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0 2000's 0 0 0 66,078 209,294 221,689 116,613 148,231 25,894 72,339 2010's 43,431 13,981 2,790 5,366 11,585 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages:

  15. Maryland Natural Gas Imports from All Countries (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    from All Countries (Million Cubic Feet) Maryland Natural Gas Imports from All Countries (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0 2000's 0 0 0 66,078 209,294 221,689 116,613 148,231 25,894 72,339 2010's 43,431 13,981 2,790 5,366 11,585 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages:

  16. Maryland Natural Gas LNG Storage Additions (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Additions (Million Cubic Feet) Maryland Natural Gas LNG Storage Additions (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 443 714 676 235 650 786 769 482 764 697 1990's 769 657 804 696 939 1,831 4,881 1,439 813 715 2000's 684 2,926 3,814 4,437 2,157 3,203 296 631 1,002 4,859 2010's 366 394 386 461 604 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  17. Maryland Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Maryland Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 51,252 53,045 54,740 1990's 55,576 61,878 62,858 63,767 64,698 66,094 69,991 69,056 67,850 69,301 2000's 70,671 70,691 71,824 72,076 72,809 73,780 74,584 74,856 75,053 75,771 2010's 75,192 75,788 75,799 77,117 77,846 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  18. Maryland Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Maryland Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 755,294 760,754 767,219 1990's 774,707 782,373 894,677 807,204 824,137 841,772 871,012 890,195 901,455 939,029 2000's 941,384 959,772 978,319 987,863 1,009,455 1,024,955 1,040,941 1,053,948 1,057,521 1,067,807 2010's 1,071,566 1,077,168 1,078,978 1,099,272 1,101,292 - = No Data Reported; -- = Not

  19. Maryland Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Maryland Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 3,124 2,968 3,207 2000's 3,239 2,765 2,511 2,743 2,483 2,173 2,346 2,339 2,454 2,521 2010's 6,332 6,065 7,397 4,125 6,327 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages:

  20. Maryland Natural Gas Total Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Consumption (Million Cubic Feet) Maryland Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 212,017 188,552 196,350 2000's 212,133 178,376 196,276 197,024 194,725 202,509 182,294 201,053 196,067 196,510 2010's 212,020 193,986 208,946 197,356 207,527 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next

  1. Maryland Natural Gas Injections into Underground Storage (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 0 0 0 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 0 0 0 0 0 0 0 0 0 0 0 0 2012 0 0 0 0 0 0 0 0 0 0 0 0 2013 0 0 0 0 0 0 0 0 0 0 0 0 2014 NA NA NA NA NA NA NA NA NA NA NA NA 2015 NA NA NA NA NA NA NA NA NA NA NA NA 2016 NA NA Cubic Feet)

    Price All Countries (Dollars per Thousand Cubic Feet) Maryland Natural Gas Imports Price All Countries (Dollars per Thousand Cubic

  2. Maryland Natural Gas Vented and Flared (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2010 17 16 17 17 17 17 17 17 17 17 17 17 2011 19 17 19 18 19 18 19 19 18 19 18 19 2012 19 17 19 18 19 18 19 19 18 19 18 19 2013 17 15 17 17 17 17 17 17 17 17 17 17 2014 20 18 20 19 20 19 20 20 19 20 19 20 2015 21 19 21 20 21 19 20 20 19 20 19 20 2016 22 2

    Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Maryland Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6

  3. Small Wind Electric Systems: A Maryland Consumer's Guide (Revised)

    SciTech Connect (OSTI)

    Not Available

    2009-08-01

    Small Wind Electric Systems: A Maryland Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a regional wind resource map and a list of incentives and contacts for more information.

  4. Small Wind Electric Systems: A Maryland Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2007-01-01

    Small Wind Electric Systems: A Maryland Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  5. Climate change cripples forests

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Climate Change Cripples Forests Climate change cripples forests A team of scientists concluded that in the warmer and drier Southwest of the near future, widespread tree mortality...

  6. Climate change cripples forests

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Climate change cripples forests Climate change cripples forests A team of scientists concluded that in the warmer and drier Southwest of the near future, widespread tree mortality ...

  7. Climate change cripples forests

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Climate Change Cripples Forests Climate change cripples forests A team of scientists concluded that in the warmer and drier Southwest of the near future, widespread tree mortality ...

  8. Maryland-National Capital Building Industry Association Regulatory Burden RFI (Federal Register August 8, 2012)

    Broader source: Energy.gov [DOE]

    On behalf of the Maryland-National Capital Building Industry Association, I am providing the following comments and information in response to DOE’s request. The Association represents residential...

  9. EECBG Success Story: Learning is Now Much 'Cooler' for Maryland School Students

    Broader source: Energy.gov [DOE]

    The Harford County Board of Education in Maryland received $500,000, as part of the Energy Efficiency and Conservation Block Grant (EECBG), to install a new ENERGY STAR-rated roof.Learn more.

  10. The University of Maryland | OSTI, US Dept of Energy, Office of Scientific

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Technical Information The University of Maryland Spotlights Home DOE Applauds UMD Science and Technical Programs Nanostructures for Electrical Energy Storage (NEES) The University of Maryland's NEES is a multi-institutional research center, one of 46 Energy Frontier Research Centers (EFRC) established by the U.S. Department of Energy. The group's focus is developing highly ordered nanostructures that offer a unique testbed for investigating the underpinnings of storing electrical energy.

  11. AmeriFlux US-MMS Morgan Monroe State Forest

    SciTech Connect (OSTI)

    Philip, Rich; Novick, Kim

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-MMS Morgan Monroe State Forest. Site Description - Owned by the Indiana Department of Natural Resources (IDNR), the Morgan Monroe State Forest, the site's namesake, is operated thanks to the long-term agreement between Indiana University and IDNR. The first settlers cleared the surrounding ridges for farming, but were largely unsuccessful. The state of Indiana purchased the land in 1929, creating the Morgan Monroe State Forest. Many of the trees in the tower footprint are 60-80 years old, surviving selective logging that ended over the past 10 years. Today, the forest is a secondary successional broadleaf forest within the maple-beech to oak hickory transition zone of the eastern deciduous forest.

  12. Environmental geophysics at Beach Point, Aberdeen Proving Ground, Maryland

    SciTech Connect (OSTI)

    McGinnis, L.D.; Daudt, C.R.; Thompson, M.D.; Miller, S.F.; Mandell, W.A.; Wrobel, J.

    1994-07-01

    Geophysical studies at Beach Point Peninsula, in the Edgewood area of Aberdeen Proving Ground, Maryland, provide diagnostic signatures of the hydrogeologic framework and possible contaminant pathways. These studies permit construction of the most reasonable scenario linking dense, nonaqueous-phase liquid contaminants introduced at the surface with their pathway through the surficial aquifer. Subsurface geology and contaminant presence were identified by drilling, outcrop mapping, and groundwater sampling and analyses. Suspected sources of near-surface contaminants were defined by magnetic and conductivity measurements. Negative conductivity anomalies may be associated with unlined trenches. Positive magnetic and conductivity anomalies outline suspected tanks and pipes. The anomalies of greatest concern are those spatially associated with a concrete slab that formerly supported a mobile clothing impregnating plant. Resistivity and conductivity profiling and depth soundings were used to identify an electrical anomaly extending through the surficial aquifer to the basal pleistocene unconformity, which was mapped by using seismic reflection methods. The anomaly may be representative of a contaminant plume connected to surficial sources. Major activities in the area included liquid rocket fuel tests, rocket fuel fire suppression tests, pyrotechnic material and smoke generator tests, and the use of solvents at a mobile clothing impregnating plant.

  13. Maryland Natural Gas Underground Storage Volume (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Storage Volume (Million Cubic Feet) Maryland Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 50,980 47,820 48,924 49,656 52,214 53,271 55,370 58,030 60,465 61,702 59,577 58,586 1991 55,450 52,159 50,537 51,458 52,941 54,594 55,998 58,233 60,342 61,017 61,304 61,207 1992 56,350 51,413 48,752 47,855 51,162 53,850 55,670 58,057 60,123 61,373 61,882 59,775 1993 56,503 52,155 50,240 49,746 51,939 53,114 54,206 55,924

  14. Maryland Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet) Maryland Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.26 0.26 0.25 1970's 0.25 0.24 0.21 0.23 0.24 0.27 0.32 0.39 0.61 1.04 1980's 0.46 0.48 0.78 0.55 0.55 0.59 0.65 0.55 0.93 0.85 1990's 1.14 1.55 1.91 2.44 1.37 1.42 2.23 2.60 2.73 2000's 3.75 4.15 5.98 4.50 6.25 7.43 NA NA NA NA 2010's NA - = No Data Reported; -- = Not Applicable; NA = Not

  15. Maryland Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,041 1,037 1,032 1,027 1,037 1,042 1,060 1,056 1,062 1,059 1,061 1,059 2014 1,053 1,048 1,045 1,049 1,047 1,052 1,051 1,051 1,049 1,052 1,057 1,057 2015 1,059 1,061 1,058 1,051 1,058 1,057 1,055 1,049 1,050 1,053 1,049 1,050 2016 1,061

    % of Total Residential Deliveries (Percent) Maryland Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's

  16. Maryland Natural Gas Pipeline and Distribution Use Price (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Maryland Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.20 0.19 0.19 1970's 0.19 0.22 0.24 0.25 0.27 0.38 0.50 0.69 0.84 1.25 1980's 2.41 2.74 3.08 3.28 3.29 3.17 3.19 2.37 2.27 2.72 1990's 2.15 1.94 1.94 2.08 2.01 1.81 2.48 2.98 2.41 2.30 2000's 3.30 4.75 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA

  17. Nexus EnergyHomes, Frederick, Maryland (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-02-01

    With this new home - which achieved the highest rating possible under the National Green Building Standard - Nexus EnergyHomes demonstrated that green and affordable can go hand in hand. The mixed-humid climate builder, along with the U.S. Department of Energy Building America team Partnership for Home Innovation, embraced the challenge to create a new duplex home in downtown Frederick, Maryland, that successfully combines affordability with state-of-the-art efficiency and indoor environmental quality. To limit costs, the builder designed a simple rectangular shape and kept interesting architectural features such as porches outside the building's structure. This strategy avoided the common pitfall of creating potential air leakage where architectural features are connected to the structure before the building is sealed against air infiltration. To speed construction and limit costs, the company chose factory-assembled components such as structural insulated panel walls and floor and roof trusses. Factory-built elements were key in achieving continuous insulation around the entire structure. Open-cell spray foam at the rim joist and attic roofline completed the insulation package, and kept the heating, ventilating, and air-conditioning system in conditioned space.

  18. Maryland's efforts to develop regulations creating an air emissions offset trading program

    SciTech Connect (OSTI)

    Guy, D.M.; Zaw-Mon, M.

    1999-07-01

    Under the federal Clean Air Act's New Source Review program, many companies located in or planning to locate in areas that do not meet federal air quality standards or in the Northeast Ozone Transport Region (northern Virginia to Maine) must obtain emission reductions (called offsets) of volatile organic compounds and nitrogen oxides that are greater than the new emissions that will be released. This offset requirement allows growth in industry while protecting air quality against deterioration. Despite the federal offset requirement, a formal banking and trading program is not mandated by the Clean Air Act Amendments of 1990. Still, a mechanism is needed to ensure that emission reduction credits (ERCs) are available for sources to use to meet the offset requirement. Currently, Maryland does not have regulations covering the sale or transfer of ERCs from one facility to another. Maryland works with industry on a case-by-case basis to identify potential sources of ERCs and to assist in obtaining them. Then, the offset requirement and the ERCs used to meet the offsets are incorporated into individual permits using various permitting mechanisms. Desiring certainty and stability in the banking and trading process, Maryland's business community has pressed for regulations to formalize Maryland's procedures. Working over several years through a stakeholder process, Maryland has developed concepts for a trading program and a draft regulation. This paper describes Maryland's current case-by-case banking and trading procedure and traces efforts to develop a regulation to formalize the process. The paper discusses complex policy issues related to establishing a banking and trading program, describes the principal elements of Maryland's draft regulation, and summarizes elements of other states' emissions banking and trading programs.

  19. Climate Effects of Global Land Cover Change

    SciTech Connect (OSTI)

    Gibbard, S G; Caldeira, K; Bala, G; Phillips, T; Wickett, M

    2005-08-24

    There are two competing effects of global land cover change on climate: an albedo effect which leads to heating when changing from grass/croplands to forest, and an evapotranspiration effect which tends to produce cooling. It is not clear which effect would dominate in a global land cover change scenario. We have performed coupled land/ocean/atmosphere simulations of global land cover change using the NCAR CAM3 atmospheric general circulation model. We find that replacement of current vegetation by trees on a global basis would lead to a global annual mean warming of 1.6 C, nearly 75% of the warming produced under a doubled CO{sub 2} concentration, while global replacement by grasslands would result in a cooling of 0.4 C. These results suggest that more research is necessary before forest carbon storage should be deployed as a mitigation strategy for global warming. In particular, high latitude forests probably have a net warming effect on the Earth's climate.

  20. Land Use and Land Cover Change

    SciTech Connect (OSTI)

    Brown, Daniel; Polsky, Colin; Bolstad, Paul V.; Brody, Samuel D.; Hulse, David; Kroh, Roger; Loveland, Thomas; Thomson, Allison M.

    2014-05-01

    A contribution to the 3rd National Climate Assessment report, discussing the following key messages: 1. Choices about land-use and land-cover patterns have affected and will continue to affect how vulnerable or resilient human communities and ecosystems are to the effects of climate change. 2. Land-use and land-cover changes affect local, regional, and global climate processes. 3. Individuals, organizations, and governments have the capacity to make land-use decisions to adapt to the effects of climate change. 4. Choices about land use and land management provide a means of reducing atmospheric greenhouse gas levels.

  1. Learning is Now Much 'Cooler' for Maryland School Students | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Learning is Now Much 'Cooler' for Maryland School Students Learning is Now Much 'Cooler' for Maryland School Students September 21, 2010 - 4:30pm Addthis Ring Factory Elementary School has installed a new ENERGY STAR-rated "cool" roof that is estimated to be 57 percent more energy efficient than the previous roof. | U.S. Department of Energy Ring Factory Elementary School has installed a new ENERGY STAR-rated "cool" roof that is estimated to be 57 percent more

  2. Assessment of Offshore Wind Energy Leasing Areas for the BOEM Maryland Wind Energy Area

    SciTech Connect (OSTI)

    Musial, W.; Elliott, D.; Fields, J.; Parker, Z.; Scott, G.; Draxl, C.

    2013-06-01

    The National Renewable Energy Laboratory (NREL), under an interagency agreement with the Bureau of Ocean Energy Management (BOEM), is providing technical assistance to identify and delineate leasing areas for offshore wind energy development within the Atlantic Coast Wind Energy Areas (WEAs) established by BOEM. This report focuses on NREL's evaluation of the delineation proposed by the Maryland Energy Administration (MEA) for the Maryland (MD) WEA and two alternative delineations. The objectives of the NREL evaluation were to assess MEA's proposed delineation of the MD WEA, perform independent analysis, and recommend how the MD WEA should be delineated.

  3. TRIDEC Land TRIDEC Land Transfer REQUEST Transfer REQUEST

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Area TRIDEC Land TRIDEC Land Transfer REQUEST Transfer REQUEST 300 Acres 300 Acres Additional Lands Additional Lands Identified for Identified for EA Analysis EA Analysis 2,772...

  4. Los Alamos National Laboratory Investigates Fenton Hill to Support Future Land Use

    Broader source: Energy.gov [DOE]

    LOS ALAMOS, N.M. – Supporting future land use for the U.S. Forest Service, Los Alamos National Laboratory’s Corrective Actions Program (CAP) completed sampling soil at Fenton Hill in the Jemez Mountains this month.

  5. Paddy field, groundwater and land subsidence

    SciTech Connect (OSTI)

    Wen, L.J.

    1995-12-31

    Through many years of research and technical interchange both at home and abroad, it is commonly recognized that paddy fields possess the functions of micro-climate adjustment, flood detection and prevention, soil and water conservation, river-flow stabilization, soil salinization prevention, water purification, groundwater recharge, rural area beautification and environmental protection which are all beneficial to the public. In recent years, the global environmental problems have become a series concern throughout the world. These include the broken ozone layer, green house effects, acid rain, land desertion, tropical rain forest disappearing etc. Among them, rain forest disappearing draws great attention. Both rain forests and paddy fields are in tropical areas. They have similar functions and are disappearing because of economic pressure. This paper describes the special functions of paddy fields on water purification, ground water recharge and prevention of land subsidence, and reiterates groundwater utilization and land subsidence prevention measures. In view of the importance of groundwater resources, paddy fields, which can not be replaced by any other artificial groundwater recharge facilities, should not be reduced in acreage, nor can they be left idle. Paddy fields shall be properly maintained and managed in order to strengthen their special functions in the years to come even under heavy pressure from foreign countries.

  6. Global Forest Resource Assessment | Open Energy Information

    Open Energy Info (EERE)

    Assessment 2010 (FRA 2010) covers all seven thematic elements of sustainable forest management: Extent of forest resources Forest biological diversity Forest health and...

  7. University of Maryland Nuclear Chemistry annual progress report, [January 1991--January 1992

    SciTech Connect (OSTI)

    Mignerey, A.C.

    1992-01-01

    This report discusses: mass and charge distributions in Cl-induced heavy-ion reactions; comparison of mass and charge distributions to model predictions in deep inelastic reactions; the decay of hot nuclei formed in La-induced reactions at intermediate energies; and the Maryland very forward array.

  8. University of Maryland Nuclear Chemistry annual progress report, (January 1991--January 1992)

    SciTech Connect (OSTI)

    Mignerey, A.C.

    1992-01-01

    This report discusses: mass and charge distributions in Cl-induced heavy-ion reactions; comparison of mass and charge distributions to model predictions in deep inelastic reactions; the decay of hot nuclei formed in La-induced reactions at intermediate energies; and the Maryland very forward array.

  9. Land Management - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Land Management About Us About Hanford Cleanup Hanford History Hanford Site Wide Programs Contact Us Land Management Email Email Page | Print Print Page |Text Increase Font Size...

  10. Climate change cripples forests

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Climate change cripples forests Climate change cripples forests A team of scientists concluded that in the warmer and drier Southwest of the near future, widespread tree mortality will cause forest and species distributions to change substantially. October 1, 2012 A dead pinon at the edge of the Grand Canyon, harbinger of the future for trees in the Southwest United States. Photo courtesy A. Park Williams. A dead pinon at the edge of the Grand Canyon, harbinger of the future for trees in the

  11. Bibliography of the Maryland Power Plant Research Program, fifteenth edition

    SciTech Connect (OSTI)

    McLean, R.I.

    1994-02-01

    The Power Plant Siting Act of 1971 established the Power Plant Research Program to insure that demands for electric power would be met in a timely manner at a reasonable cost while assuring that the associated environmental impact would be acceptable. The scope of the Program extends to estimating the impact of proposed new generating facilities, evaluating the acceptability of proposed tranmission line routes, assessing the impact of existing generation facilities, and investigating generic issues related to power plant site evaluation and associated environmental and land use considerations. The bibliography is a compilation of all the studies performed for and or by the Power Plant and Environmental Review Division since its inception.

  12. Forest Products (2010 MECS)

    Broader source: Energy.gov [DOE]

    Manufacturing Energy and Carbon Footprint for Forest Products Sector (NAICS 321, 322) Energy use data source: 2010 EIA MECS (with adjustments) Footprint Last Revised: February 2014

  13. Montage Builders - Northern Forest

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Montage Builders - Northern Forest SUNY College of Environmental Science and Forestry, Syracuse University, Onondaga Community College A 1,925 Square Foot Single Family Home: * 2 ...

  14. ARM - Black Forest News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Campaign Images Black Forest News ARM Mobile Facility Completes Field Campaign in Germany January 15, 2008 Microwave Radiometers Put to the Test in Germany September 15, 2007...

  15. United States Forest Service - Forest Service Environmental Appeals...

    Open Energy Info (EERE)

    Responses Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: United States Forest Service - Forest Service Environmental Appeals Responses Abstract...

  16. United States Forest Service - Forest Service Schedule of Proposed...

    Open Energy Info (EERE)

    Actions Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: United States Forest Service - Forest Service Schedule of Proposed Actions Abstract The...

  17. AMF Deployment, Black Forest, Germany

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Germany Black Forest Deployment AMF Home Black Forest Home Data Plots and Baseline Instruments CERA COPS Data University of Hohenheim COPS Website COPS Update, April 2009...

  18. U.S. Energy Information Administration (EIA) Indexed Site

    Maryland Maryland

  19. Oregon Department of Land Conservation and Department - Forest...

    Open Energy Info (EERE)

    Oregon. State of Oregon. cited 20140929. Available from: http:www.oregon.govLCDpagesforlandprot.aspx Retrieved from "http:en.openei.orgwindex.php?titleOregonDe...

  20. Experimental Design for CMIP6: Aerosol, Land Use, and Future Scenarios Final Report

    SciTech Connect (OSTI)

    Arnott, James

    2015-10-30

    The Aspen Global Change Institute hosted a technical science workshop entitled, “Experimental design for CMIP6: Aerosol, Land Use, and Future Scenarios,” on August 3-8, 2014 in Aspen, CO. Claudia Tebaldi (NCAR) and Brian O’Neill (NCAR) served as co-chairs for the workshop. The Organizing committee also included Dave Lawrence (NCAR), Jean-Francois Lamarque (NCAR), George Hurtt (University of Maryland), & Detlef van Vuuren (PBL Netherlands Environmental Change). The meeting included the participation of 22 scientists representing many of the major climate modeling centers for a total of 110 participant days.

  1. Forest products technologies

    SciTech Connect (OSTI)

    None, None

    2006-07-18

    Report highlights DOE Industrial Technology Program co-funded R&D resulting in commercial energy-efficient technologies and emerging technologies helping the forest products industry save energy.

  2. Archaeology on Lab Land

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Archaeology on Lab Land Archaeology on Lab Land People have lived in this area for more than 5,000 years. Lab archaeologists are studying and preserving the ancient human occupation of the Pajarito Plateau. Archaeology on Lab Land exhibit Environmental Research & Monitoring Visit our exhibit and find out how Los Alamos researchers are studying our rich cultural diversity. READ MORE Nake'muu archaeological site Unique Archaeology The thousands of Ancestral Pueblo sites identified on Lab land

  3. USDA Forest Products Laboratory | Open Energy Information

    Open Energy Info (EERE)

    Forest Products Laboratory Jump to: navigation, search Name: USDA Forest Products Laboratory Place: Madison, WI Website: www.fpl.fs.fed.us References: USDA Forest Products...

  4. United States Forest Service - Forest Service NEPA Procedures...

    Open Energy Info (EERE)

    and Guidance Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: United States Forest Service - Forest Service NEPA Procedures and Guidance Abstract This...

  5. Maryland Renewable Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Maryland" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",566,590,590,590,590 "Solar","-","-","-","-",1 "Wind","-","-","-","-",70 "Wood/Wood Waste",2,3,3,3,3 "MSW/Landfill Gas",126,130,132,135,135 "Other

  6. Maryland Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Maryland" "Energy Source",2006,2007,2008,2009,2010 "Fossil",10071,10028,10125,10050,10012 " Coal",4958,4958,4944,4876,4886 " Petroleum",3140,2965,2991,2986,2933 " Natural Gas",1821,1953,2038,2035,2041 " Other Gases",152,152,152,152,152 "Nuclear",1735,1735,1735,1705,1705 "Renewables",693,723,725,727,799 "Pumped Storage","-","-","-","-","-"

  7. Maryland Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    and Plant Fuel Consumption (Million Cubic Feet) Maryland Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 257 310 381 1970's 319 451 67 474 392 277 415 342 889 2,488 1980's 0 0 1 1 2 1 1 2 1 1 1990's 1 0 0 1 1 1 3 3 1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016

  8. ,"Maryland Dry Natural Gas Production (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Production (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Maryland Dry Natural Gas Production (Million Cubic Feet)",1,"Monthly","12/2013" ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File

  9. ,"Maryland Natural Gas Underground Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Underground Storage Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Maryland Natural Gas Underground Storage Withdrawals (MMcf)",1,"Monthly","2/2016" ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File

  10. ,"Maryland Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Maryland Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)",1,"Monthly","2/2016" ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File

  11. ,"Maryland Natural Gas Underground Storage Capacity (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Maryland Natural Gas Underground Storage Capacity (MMcf)",1,"Monthly","2/2016" ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File Name:","n5290md2m.xls"

  12. ,"Maryland Natural Gas Underground Storage Net Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Net Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Maryland Natural Gas Underground Storage Net Withdrawals (MMcf)",1,"Monthly","2/2016" ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File

  13. ,"Maryland Natural Gas Vehicle Fuel Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Vehicle Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Maryland Natural Gas Vehicle Fuel Consumption (MMcf)",1,"Monthly","2/2016" ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File

  14. ,"Maryland Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Maryland Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)",1,"Annual",2010 ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File

  15. Management of Philippine tropical forests: Implications to global warming

    SciTech Connect (OSTI)

    Lasco, R.D.

    1997-12-31

    The first part of the paper presents the massive changes in tropical land management in the Philippines as a result of a {open_quotes}paradigm shift{close_quotes} in forestry. The second part of the paper analyzes the impacts of the above management strategies on global warming, in general, preserved forests are neither sinks not sources of greenhouse gasses (GHG). Reforestation activities are primarily net sinks of carbon specially the use of fast growing reforestation species. Estimates are given for the carbon-sequestering ability of some commonly used species. The last part of the paper policy recommendations and possible courses of action by the government to maximize the role of forest lands in the mitigation of global warming. Private sector initiatives are also explored.

  16. Can land management and biomass utilization help mitigate global warming?

    SciTech Connect (OSTI)

    Schlamadinger, B.; Lauer, M.

    1996-12-31

    With rising concern about the increase of the CO{sub 2} concentration in the earth`s atmosphere there is considerable interest in various land-use based mitigation options, like afforestation of surplus agricultural land with or without subsequent harvest; improved forest management; strategies that rely on wood plantations managed in short rotation or agricultural crops with high yields to produce bioenergy, timber and other biomass products. In the first step of this study, the net carbon benefits of such strategies will be calculated per unit of land, i.e., per hectare, because it is assumed that land is the limiting resource for such strategies in the future, and thus, the benefits per unit land need to be optimized. For these calculations a computer model has been developed. The results take into account the time dependence of carbon storage in the biosphere and are shown graphically both for land and for plantation systems with constant output of biomass over time. In the second step, these results will be combined with data on available land for Austria. The potential contribution of each of the above strategies towards mitigating the Austrian CO{sub 2} emissions will be demonstrated. A comparison to other renewable mitigation options, like solar thermal or photovoltaics, will be drawn in terms of available land resources and overall CO{sub 2} reductions.

  17. Proposed Conveyance of Land

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    environmental effects of conveying approximately 1,641 acres of Hanford Site land to a local economic development organization (https:federalregister.gova2012-23099). The...

  18. Integrated Forest Management Charter

    SciTech Connect (OSTI)

    Hansen, Leslie A.

    2015-08-24

    The purpose of this charter is to establish, maintain, and implement programs for the protection, preservation, and enhancement of the land and water resources of Los Alamos National Laboratory in a changing climate.

  19. Ecological survey of M-Field, Edgewood Area Aberdeen Proving Ground, Maryland

    SciTech Connect (OSTI)

    Downs, J.L.; Eberhardt, L.E.; Fitzner, R.E.; Rogers, L.E.

    1991-12-01

    An ecological survey was conducted on M-Field, at the Edgewood Area, Aberdeen Proving Ground, Maryland. M-Field is used routinely to test army smokes and obscurants, including brass flakes, carbon fibers, and fog oils. The field has been used for testing purposes for the past 40 years, but little documented history is available. Under current environmental regulations, the test field must be assessed periodically to document the presence or potential use of the area by threatened and endangered species. The M-Field area is approximately 370 acres and is part of the US Army's Edgewood Area at Aberdeen Proving Ground in Harford County, Maryland. The grass-covered field is primarily lowlands with elevations from about 1.0 to 8 m above sea level, and several buildings and structures are present on the field. The ecological assessment of M-Field was conducted in three stages, beginning with a preliminary site visit in May to assess sampling requirements. Two field site visits were made June 3--7, and August 12--15, 1991, to identify the biota existing on the site. Data were gathered on vegetation, small mammals, invertebrates, birds, large mammals, amphibians, and reptiles.

  20. Ecological survey of M-Field, Edgewood Area Aberdeen Proving Ground, Maryland

    SciTech Connect (OSTI)

    Downs, J.L.; Eberhardt, L.E.; Fitzner, R.E.; Rogers, L.E.

    1991-12-01

    An ecological survey was conducted on M-Field, at the Edgewood Area, Aberdeen Proving Ground, Maryland. M-Field is used routinely to test army smokes and obscurants, including brass flakes, carbon fibers, and fog oils. The field has been used for testing purposes for the past 40 years, but little documented history is available. Under current environmental regulations, the test field must be assessed periodically to document the presence or potential use of the area by threatened and endangered species. The M-Field area is approximately 370 acres and is part of the US Army`s Edgewood Area at Aberdeen Proving Ground in Harford County, Maryland. The grass-covered field is primarily lowlands with elevations from about 1.0 to 8 m above sea level, and several buildings and structures are present on the field. The ecological assessment of M-Field was conducted in three stages, beginning with a preliminary site visit in May to assess sampling requirements. Two field site visits were made June 3--7, and August 12--15, 1991, to identify the biota existing on the site. Data were gathered on vegetation, small mammals, invertebrates, birds, large mammals, amphibians, and reptiles.

  1. Legal obstacles and incentives to the development of small scale hydroelectric power in Maryland

    SciTech Connect (OSTI)

    None,

    1980-05-01

    The legal and institutional obstacles to the development of small-scale hydroelectric energy at the state level in Maryland are described. The Federal government also exercises extensive regulatory authority in the area. The dual regulatory system is examined with the aim of creating a more orderly understanding of the vagaries of the system, focusing on the appropriate legal doctrine, the law of pre-emption, application of the law to the case of hydroelectric development, and an inquiry into the practical use of the doctrine by the FERC. In Maryland, by common law rule, title to all navigable waters and to the soil below the high-water mark of those waters is vested in the state as successor to the Lord Proprietary who had received it by grant from the Crown. Rights to non-navigable water, public trust doctrine, and eminent domain are also discussed. Direct and indirect regulations, continuing obligations, loan programs, and regional organizations are described in additional sections.

  2. AmeriFlux US-Ha1 Harvard Forest EMS Tower (HFR1)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Munger, J. William [Harvard University

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Ha1 Harvard Forest EMS Tower (HFR1). Site Description - The Harvard Forest tower is on land owned by Harvard University. The site is designated as an LTER site. Most of the surrounding area was cleared for agrigulture during European settlement in 1600-1700. The site has been regrowing since before 1900 (based on tree ring chronologies) and is now predominantly red oak and red maple, with patches of mature hemlock stand and individual white pine. Overstory trees were uprooted by hurricane in 1938. Climate measurements have been made at Harvard Forest since 1964.

  3. how much land | OpenEI Community

    Open Energy Info (EERE)

    how much land Home Sfomail's picture Submitted by Sfomail(48) Member 25 June, 2013 - 12:10 Solar Land Use Data on OpenEI acres csp land use how much land land requirements pv land...

  4. csp land use | OpenEI Community

    Open Energy Info (EERE)

    csp land use Home Sfomail's picture Submitted by Sfomail(48) Member 25 June, 2013 - 12:10 Solar Land Use Data on OpenEI acres csp land use how much land land requirements pv land...

  5. Bureau of Land Management - Land Use Planning Handbook | Open...

    Open Energy Info (EERE)

    to library PermittingRegulatory Guidance - GuideHandbook: Bureau of Land Management - Land Use Planning HandbookPermittingRegulatory GuidanceGuideHandbook Abstract...

  6. Colorado State Land Board Land Survey Requirements | Open Energy...

    Open Energy Info (EERE)

    Colorado State Land Board Land Survey Requirements Jump to: navigation, search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - GuideHandbook: Colorado...

  7. Hawaii Land Study Bureau's Land Classification Finder | Open...

    Open Energy Info (EERE)

    Not Provided DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Hawaii Land Study Bureau's Land Classification Finder Citation Hawaii State...

  8. Uni Land | Open Energy Information

    Open Energy Info (EERE)

    search Name: Uni Land Place: Bologna, Italy Zip: 40063 Sector: Solar Product: Italian property company, which buys land without permits and develops it for residential and...

  9. Rich land Operations Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rich land Operations Office P.O. Box 550 July 10, 2009 CERTIFIED MAIL Mr. Ryan Jarvis Heart of America Northwest 1314 N.E. 56h" Street Suite 100 Seattle, Washington 98105 Dear Mr....

  10. Method of determining forest production from remotely sensed forest parameters

    DOE Patents [OSTI]

    Corey, J.C.; Mackey, H.E. Jr.

    1987-08-31

    A method of determining forest production entirely from remotely sensed data in which remotely sensed multispectral scanner (MSS) data on forest 5 composition is combined with remotely sensed radar imaging data on forest stand biophysical parameters to provide a measure of forest production. A high correlation has been found to exist between the remotely sensed radar imaging data and on site measurements of biophysical 10 parameters such as stand height, diameter at breast height, total tree height, mean area per tree, and timber stand volume.

  11. Maryland Natural Gas Delivered to Commercial Consumers for the Account of

    Gasoline and Diesel Fuel Update (EIA)

    Others (Million Cubic Feet) Delivered to Commercial Consumers for the Account of Others (Million Cubic Feet) Maryland Natural Gas Delivered to Commercial Consumers for the Account of Others (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 262 800 1,010 1990's 1,052 1,308 1,692 1,497 1,291 1,469 3,734 16,394 36,375 38,722 2000's 33,880 40,313 44,577 48,105 47,747 46,440 43,744 50,220 49,545 48,717 2010's 48,000 49,053 48,271 52,494

  12. Maryland Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Maryland Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 3.57 3.76 3.06 3.82 3.58 3.09 3.05 2000's 5.58 5.40 4.20 6.53 8.67 8.65 12.83 11.40 14.66 11.20 2010's 5.99 5.09 -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date:

  13. Maryland Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) Indexed Site

    Same Month Previous Year (Million Cubic Feet) Million Cubic Feet) Maryland Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 -862 -85 724 658 416 -1,091 -1,477 -807 2,724 -222 -1,505 5,333 1991 4,470 4,339 1,613 1,801 727 1,324 628 202 -123 -686 1,727 2,620 1992 900 -745 -1,784 -3,603 -1,779 -745 -328 -176 -219 356 579 -1,431 1993 153 742 1,488 1,891 777 -736 -1,464 -2,133

  14. HUD consumer market profile for the states of Florida, Delaware and Maryland

    SciTech Connect (OSTI)

    Jack, M.C.; Denny, W.M.

    1981-01-01

    Data obtained on persons who purchased solar water heaters with HUD grants from 1977 to 1979 in the states of Florida, Delaware and Maryland are compiled. A total of more than 2600 consumers are profiled. The following variables are included in the consumer profile: type of present hot water system, site location by county, family composition and type of installation. This study represents the largest marketing profile of solar hot water system purchasers to date. It has significance both to private industry and the government for it details what type of person participated in the HUD grant program. It is found that the largest number of solar installations cluster around large metropolitan areas in neighborhoods that are predominantly white, upper-class, and less than five persons in the household.

  15. MECS 2006 - Forest Products | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Forest Products MECS 2006 - Forest Products Manufacturing Energy and Carbon Footprint for Forest Products (NAICS 321, 322) Sector with Total Energy Input, October 2012 (MECS 2006) All available footprints and supporting documents Manufacturing Energy and Carbon Footprint PDF icon Forest Products More Documents & Publications Forest Products (2010 MECS) MECS 2006 - Cement MECS 2006 - Transportation Equipment

  16. Economic and Physical Modeling of Land Use in GCAM 3.0 and an Application to Agricultural Productivity, Land, and Terrestrial Carbon

    SciTech Connect (OSTI)

    Wise, Marshall A.; Calvin, Katherine V.; Kyle, G. Page; Luckow, Patrick; Edmonds, James A.

    2014-09-01

    We explore the impact of changes in agricultural productivity on global land use and terrestrial carbon using the new agriculture and land use modeling approach developed for Global Change Assessment Model (GCAM) version 3.0. This approach models economic land use decisions with regional, physical, and technological specificity while maintaining economic and physical integration with the rest of the GCAM model. Physical land characteristics and quantities are tracked explicitly, and crop production practices are modeled discretely to facilitate coupling with physical models. Economic land allocation is modeled with non-linear functions in a market equilibrium rather than through a constrained optimization. In this paper, we explore three scenarios of future agriculture productivity in all regions of the globe over this century, ranging from a high growth to a zero growth level. The higher productivity growth scenario leads to lower crop prices, increased production of crops in developing nations, preservation of global forested lands and lower terrestrial carbon emissions. The scenario with no productivity improvement results in higher crop prices, an expansion of crop production in the developed world, loss of forested lands globally, and higher terrestrial carbon emissions.

  17. Environmental and economic development consequences of forest and agricultural sector policies in Latin America (a synthesis of case studies of Costa Rica, Ecuador, and Bolivia)

    SciTech Connect (OSTI)

    Stewart, R.; Gibson, D.

    1994-04-15

    This paper draws heavily on the results of case studies in Bolivia, Costa Rica, and Ecuador to explain how sectoral policies have tilted land use decisions against forestry and in favor of agriculture, and to present estimates of the economic development effects of those decisions. The paper summarizes information on forests and forest industries of the three countries, and it describes the framework within which policies are designed. It presents the effects of sectoral policies on land use and forest management, and then quantifies and discusses economic costs of relevant sectoral policies. Conclusions and recommendations for policy reform are offered.

  18. Career Map: Land Acquisition Specialist

    Broader source: Energy.gov [DOE]

    The Wind Program's Career Map provides job description information for Land Acquisition Specialist positions.

  19. Tax Credit for Forest Derived Biomass

    Broader source: Energy.gov [DOE]

    Forest-derived biomass includes tree tops, limbs, needles, leaves, and other woody debris leftover from activities such as timber harvesting, forest thinning, fire suppression, or forest health m...

  20. Future land use plan

    SciTech Connect (OSTI)

    1995-08-31

    The US Department of Energy`s (DOE) changing mission, coupled with the need to apply appropriate cleanup standards for current and future environmental restoration, prompted the need for a process to determine preferred Future Land Uses for DOE-owned sites. DOE began the ``Future Land Use`` initiative in 1994 to ensure that its cleanup efforts reflect the surrounding communities` interests in future land use. This plan presents the results of a study of stakeholder-preferred future land uses for the Brookhaven National Laboratory (BNL), located in central Long Island, New York. The plan gives the Laboratory`s view of its future development over the next 20 years, as well as land uses preferred by the community were BNL ever to cease operations as a national laboratory (the post-BNL scenario). The plan provides an overview of the physical features of the site including its history, topography, geology/hydrogeology, biological inventory, floodplains, wetlands, climate, and atmosphere. Utility systems and current environmental operations are described including waste management, waste water treatment, hazardous waste management, refuse disposal and ground water management. To complement the physical descriptions of the site, demographics are discussed, including overviews of the surrounding areas, laboratory population, and economic and non-economic impacts.

  1. Land-use Leakage

    SciTech Connect (OSTI)

    Calvin, Katherine V.; Edmonds, James A.; Clarke, Leon E.; Bond-Lamberty, Benjamin; Kim, Son H.; Wise, Marshall A.; Thomson, Allison M.; Kyle, G. Page

    2009-12-01

    Leakage occurs whenever actions to mitigate greenhouse gas emissions in one part of the world unleash countervailing forces elsewhere in the world so that reductions in global emissions are less than emissions mitigation in the mitigating region. While many researchers have examined the concept of industrial leakage, land-use policies can also result in leakage. We show that land-use leakage is potentially as large as or larger than industrial leakage. We identify two potential land-use leakage drivers, land-use policies and bioenergy. We distinguish between these two pathways and run numerical experiments for each. We also show that the land-use policy environment exerts a powerful influence on leakage and that under some policy designs leakage can be negative. International offsets are a potential mechanism to communicate emissions mitigation beyond the borders of emissions mitigating regions, but in a stabilization regime designed to limit radiative forcing to 3.7 2/m2, this also implies greater emissions mitigation commitments on the part of mitigating regions.

  2. Energy and land use

    SciTech Connect (OSTI)

    Not Available

    1981-12-01

    This report addresses the land use impacts of past and future energy development and summarizes the major federal and state legislation which influences the potential land use impacts of energy facilities and can thus influence the locations and timing of energy development. In addition, this report describes and presents the data which are used to measure, and in some cases, predict the potential conflicts between energy development and alternative uses of the nation's land resources. The topics section of this report is divided into three parts. The first part describes the myriad of federal, state and local legislation which have a direct or indirect impact upon the use of land for energy development. The second part addresses the potential land use impacts associated with the extraction, conversion and combustion of energy resources, as well as the disposal of wastes generated by these processes. The third part discusses the conflicts that might arise between agriculture and energy development as projected under a number of DOE mid-term (1990) energy supply and demand scenarios.

  3. land requirements | OpenEI Community

    Open Energy Info (EERE)

    land requirements Home Sfomail's picture Submitted by Sfomail(48) Member 25 June, 2013 - 12:10 Solar Land Use Data on OpenEI acres csp land use how much land land requirements pv...

  4. Black Forest Partners | Open Energy Information

    Open Energy Info (EERE)

    Black Forest Partners Jump to: navigation, search Name: Black Forest Partners Place: San Francisco, California Zip: 94111 Product: San Francisco-based project developer focused on...

  5. Supporting Small Forest Enterprises: A Facilitator's Toolkit...

    Open Energy Info (EERE)

    Small Forest Enterprises: A Facilitator's Toolkit Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Supporting Small Forest Enterprises: A Facilitator's Toolkit Agency...

  6. Forest Carbon Index | Open Energy Information

    Open Energy Info (EERE)

    Forest Carbon Index Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Forest Carbon Index AgencyCompany Organization: Resources for the Future Partner: United Nations...

  7. Community Renewable Energy Deployment: Forest County Potawatomi...

    Open Energy Info (EERE)

    Forest County Potawatomi Tribe Jump to: navigation, search Name Community Renewable Energy Deployment: Forest County Potawatomi Tribe AgencyCompany Organization US Department of...

  8. The Land | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Land The Land April 12, 2016 Over the past nearly two years, there has been enormous activity, a burst of construction, close to the laboratory. For example we see the opening of the retail center dubbed Market Place@Tech Center and a flurry of other building very close to the laboratory. What is going on? What does this mean for the lab? What does this mean for the electron-ion collider? These are a few of the questions that I am sure you have been asking yourselves, and they are certainly

  9. AmeriFlux US-Blo Blodgett Forest

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Goldstein, Allen [University of California, Berkeley

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Blo Blodgett Forest. Site Description - The flux tower site at Blodgett Forest is on a 1200 ha parcel of land owned by Sierra Pacific Industries in the Sierra Nevada range near Georgetown, California. The field site was established in May 1997 with continuous operation since May 1999. The site is situated in a ponderosa pine plantation, mixed-evergreen coniferous forest, located adjacent to Blodgett Forest Research Station. The Mediterranean-type climate of California is characterized by a protracted summer drought, with precipitation occurring mainly from October through May. The infrastructure for the ecosystem scale flux measurements includes a walkup measurement tower, two temperature controlled instrument buildings, and an electrical generation system powered by a diesel generator. Typical wind patterns at the site include upslope flow during the day (from the west) and downslope flow at night (from the east). The plantation is relatively flat, and contains a homogenous mixture of evenly aged ponderosa pine with other trees and shrubs scattered throughout the ecosystem making up less than 30% of the biomass. The daytime fetch for the tower measurements extends approximately 200 m to the southwest of the tower (this region contributes ~90% of the daytime flux), thus remote sensing images to be used for modeling should probably be centered approximately 100 m from the tower at an angle of 225 deg.

  10. A review of the new ISC-PRIME model and implications for power plant licensing in Maryland

    SciTech Connect (OSTI)

    Gill, S.; Garrison, M.; Sherwell, J.

    1999-07-01

    The Maryland Department of Natural Resources (DNR) Power Plant Research Program (PPRP) manages the consolidated review of environmental, engineering, socioeconomic, cost, and need issues that new and modified power plants in Maryland must address as part of the power plant licensing process. Power plant licensing cases in Maryland have included the addition or replacement of small diesel or combustion turbine electrical generation units, or the addition of new, larger simple-cycle combustion turbine units. Air quality modeling, including an assessment of the effects of building downwash, is often a part of the licensing process. The Electric Power Research Institute (EPRI) has sponsored the development of an improved building downwash model through its PRIME (Plume Rise Model Enhancements) project, involving the design and development of algorithms intended to address deficiencies in the widely used ISCST3. EPA recently provided a version of ISC that incorporates the PRIME model (ISC-PRIME) for review and comment by the public prior to deciding on the suitability and regulatory status of ISC-PRIME. The present paper focuses on a systematic evaluation of ISC-PRIME as it relates to short stacks with exhaust characteristics similar to diesel generators and combustion turbines, using both routine hourly meteorology and synthesized meteorological data covering a wide variety of stability and wind speed combinations. The goals of the paper are two-fold: first, to understand and explain the implications of this new model for power plant licensing decisions in the State of Maryland; and second, to broaden the experience base of the potential ISC-PRIME user community with information on model performance details that are not otherwise readily available.

  11. Navajo-Hopi Land Commission

    Energy Savers [EERE]

    Renewable Power at the Paragon-Bisti Ranch DOE TEP Review, Golden, CO May 7, 2015   THE NAVAJO-HOPI LAND SETTLEMENT ACT  Navajo-Hopi Land Settlement Act passed 1974  Required relocation of Navajo and Hopi families living on land partitioned to other tribe.  Set aside lands for the benefit of relocates  Proceeds from RE development for Relocatee Project Background   Paragon-Bisti Ranch is selected lands :  Located in northwestern New Mexico.  22,000 acres of land

  12. Bureau of Land Management - Land Use Planning | Open Energy Informatio...

    Open Energy Info (EERE)

    Planning Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Bureau of Land Management - Land Use Planning Abstract The BLM's Resource Management Plans...

  13. Remedial investigation report for J-Field, Aberdeen Proving Ground, Maryland. Volume 1: Remedial investigation results

    SciTech Connect (OSTI)

    Yuen, C. R.; Martino, L. E.; Biang, R. P.; Chang, Y. S.; Dolak, D.; Van Lonkhuyzen, R. A.; Patton, T. L.; Prasad, S.; Quinn, J.; Rosenblatt, D. H.; Vercellone, J.; Wang, Y. Y.

    2000-03-14

    This report presents the results of the remedial investigation (RI) conducted at J-Field in the Edgewood Area of Aberdeen Proving Ground (APG), a U.S. Army installation located in Harford County, Maryland. Since 1917, activities in the Edgewood Area have included the development, manufacture, and testing of chemical agents and munitions and the subsequent destruction of these materials at J-Field by open burning and open detonation. These activities have raised concerns about environmental contamination at J-Field. This RI was conducted by the Environmental Conservation and Restoration Division, Directorate of Safety, Health and Environmental Division of APG, pursuant to requirements outlined under the Comprehensive Environmental Response, Compensation, and Liability Act, as amended (CERCLA). The RI was accomplished according to the procedures developed by the U.S. Environmental Protection Agency (EPA 1988). The RI provides a comprehensive evaluation of the site conditions, nature of contaminants present, extent of contamination, potential release mechanisms and migration pathways, affected populations, and risks to human health and the environment. This information will be used as the basis for the design and implementation of remedial actions to be performed during the remedial action phase, which will follow the feasibility study (FS) for J-Field.

  14. Maryland Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Base Gas) (Million Cubic Feet) Maryland Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 46,677 46,677 46,677 46,677 46,677 46,677 46,677 46,677 46,677 46,677 46,677 46,677 1991 46,677 46,677 46,677 46,677 46,677 46,677 46,677 46,677 46,677 46,677 46,677 46,677 1992 46,677 46,677 46,677 46,677 46,677 46,677 46,677 46,677 46,677 46,677 46,677 46,677 1993 46,677 46,677 46,677 46,677 46,677 46,677 46,677 46,677 46,677

  15. Maryland Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) Indexed Site

    Same Month Previous Year (Percent) Percent) Maryland Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 103.9 379.8 71.8 60.5 13.1 20.1 7.2 1.8 -0.9 -4.6 13.4 22.0 1992 10.3 -13.6 -46.2 -75.4 -28.4 -9.4 -3.5 -1.5 -1.6 2.5 4.0 -9.9 1993 1.6 15.7 71.7 160.6 17.3 -10.3 -16.3 -18.7 -12.6 -1.8 -2.5 -8.9 1994 -45.2 -46.8 -3.2 53.1 28.2 27.5 36.9 27.2 13.4 4.6 -3.5 10.5 1995 103.8 130.7 91.8

  16. New Whole-House Solutions Case Study: Nexus EnergyHomes, Frederick, Maryland

    SciTech Connect (OSTI)

    2014-02-01

    With this new home—which achieved the highest rating possible under the National Green Building Standard—Nexus EnergyHomes demonstrated that green and affordable can go hand in hand. The mixed-humid climate builder, along with the U.S. Department of Energy Building America team Partnership for Home Innovation, embraced the challenge to create a new duplex home in downtown Frederick, Maryland, that successfully combines affordability with state-of-the-art efficiency and indoor environmental quality. To limit costs, the builder designed a simple rectangular shape and kept interesting architectural features such as porches outside the building’s structure. This strategy avoided the common pitfall of creating potential air leakage where architectural features are connected to the structure before the building is sealed against air infiltration. To speed construction and limit costs, the company chose factory-assembled components such as structural insulated panel walls and floor and roof trusses. Factory-built elements were key in achieving continuous insulation around the entire structure. Open-cell spray foam at the rim joist and attic roofline completed the insulation package, and kept the heating, ventilating, and air-conditioning system in conditioned space.

  17. Environmental geophysics at the Southern Bush River Peninsula, Aberdeen Proving Ground, Maryland

    SciTech Connect (OSTI)

    Davies, B.E.; Miller, S.F.; McGinnis, L.D.

    1995-05-01

    Geophysical studies have been conducted at five sites in the southern Bush River Peninsula in the Edgewood Area of Aberdeen Proving Ground, Maryland. The goals of the studies were to identify areas containing buried metallic objects and to provide diagnostic signatures of the hydrogeologic framework of the site. These studies indicate that, during the Pleistocene Epoch, alternating stands of high and low sea level resulted in a complex pattern of channel-fill deposits. Paleochannels of various sizes and orientations have been mapped throughout the study area by means of ground-penetrating radar and EM-31 techniques. The EM-31 paleochannel signatures are represented onshore either by conductivity highs or lows, depending on the depths and facies of the fill sequences. A companion study shows the features as conductivity highs where they extend offshore. This erosional and depositional system is environmentally significant because of the role it plays in the shallow groundwater flow regime beneath the site. Magnetic and electromagnetic anomalies outline surficial and buried debris throughout the areas surveyed. On the basis of geophysical measurements, large-scale (i.e., tens of feet) landfilling has not been found in the southern Bush River Peninsula, though smaller-scale dumping of metallic debris and/or munitions cannot be ruled out.

  18. Contamination source review for Building E3180, Edgewood Area, Aberdeen Proving Ground, Maryland

    SciTech Connect (OSTI)

    Zellmer, S.D.; Smits, M.P.; Rueda, J.; Zimmerman, R.E.

    1995-09-01

    This report was prepared by Argonne National Laboratory (ANL) to document the results of a contamination source review of Building E3180 at the Aberdeen Proving Ground (APG) in Maryland. The report may be used to assist the US Army in planning for the future use or disposition of this building. The review included a historical records search, physical inspection, photographic documentation, geophysical investigation, collection of air samples, and review of available records regarding underground storage tanks associated with Building E3180. The field investigations were performed by ANL during 1994. Building,E3180 (current APG designation) is located near the eastern end of Kings Creek Road, north of Kings Creek, and about 0.5 miles east of the airstrip within APG`s Edgewood Area. The building was constructed in 1944 as a facsimile of a Japanese pillbox and used for the development of flame weapons systems until 1957 (EAI Corporation 1989). The building was not used from 1957 until 1965, when it was converted and used as a flame and incendiary laboratory. During the 1970s, the building was converted to a machine (metal) shop and used for that purpose until 1988.

  19. Contamination source review for Building E3163, Edgewood Area, Aberdeen Proving Ground, Maryland

    SciTech Connect (OSTI)

    Draugelis, A.K.; Muir-Ploense, K.L.; Glennon, M.A.; Zimmerman, R.E.

    1995-09-01

    This report was prepared by Argonne National Laboratory (ANL) to document the results of a contamination source review for Building E3163 at the Aberdeen Proving Ground (APG) in Maryland. This report may be used to assist the US Army in planning for the future use or disposition of this building. The review included a historical records search, physical inspection, photographic documentation, and geophysical investigation. The field investigations were performed by ANL during 1994 and 1995. Building E3163 (APG designation) is part of the Medical Research Laboratories E3160 Complex. This research laboratory complex is located west of Kings Creek, east of the airfield and Ricketts Point Road, and south of Kings Creek Road in the Edgewood Area of APG. The original structures in the E3160 Complex were constructed during World War II. The complex was originally used as a medical research laboratory. Much of the research involved wound assessment. Building E3163, constructed in 1946, was used for toxicological studies on animals until 1965. All agent testing was done using laboratory-scale quantities of agents. All operational data were destroyed; total quantities and types of agents used during the testing are unknown. No experimentation has been conducted in the building since 1965. However, the building was used as overflow office space until the late 1980s. Since that time, the building has been unoccupied.

  20. Contamination source review for Building E1489, Edgewood Area, Aberdeen Proving Ground, Maryland

    SciTech Connect (OSTI)

    Billmark, K.A.; Hayes, D.C.; Draugelis, A.K.

    1995-09-01

    This report was prepared by Argonne National Laboratory (ANL) to document the results of a contamination source review of Building E1489 at the Aberdeen Proving Ground (APG) in Maryland. This report may be used to assist the U.S. Army-in planning for the future use or disposition of this building. The review included a historical records search, physical inspection, photographic documentation, and geophysical investigation. The field investigations were performed in 1994-1995. Building E1489 located in J-Field on the Gunpowder Peninsula in APG`s Edgewood Area housed a power generator that supplied electricity to a nearby observation tower. Building E1489 and the generator were abandoned in 1974, demolished by APG personnel and removed from real estate records. A physical inspection and photographic documentation of Building E1489 were completed by ANL staff during November 1994. In 1994, ANL staff conducted geophysical surveys in the immediate vicinity of Building E1489 by using several nonintrusive methods. Survey results suggest the presence of some underground objects near Building E1489, but they do not provide conclusive evidence of the source of geophysical anomalies observed during the survey. No air monitoring was conducted at the site, and no information on underground storage tanks associated with Building E1489 was available.

  1. California State Lands Commission | Open Energy Information

    Open Energy Info (EERE)

    Lands Commission Jump to: navigation, search Logo: California State Lands Commission Name: California State Lands Commission Abbreviation: CSLC Address: 100 Howe Ave., Suite 100...

  2. Texas General Land Office | Open Energy Information

    Open Energy Info (EERE)

    Land Office Jump to: navigation, search Logo: Texas General Land Office Name: Texas General Land Office Address: 1700 Congress Ave Place: Austin, Texas Zip: 78701 Website:...

  3. IDRISI Land Change Modeler | Open Energy Information

    Open Energy Info (EERE)

    IDRISI Land Change Modeler Jump to: navigation, search Tool Summary LAUNCH TOOL Name: IDRISI Land Change Modeler AgencyCompany Organization: Clark Labs Sector: Land Focus Area:...

  4. LANL Land Transfers 2015

    Office of Energy Efficiency and Renewable Energy (EERE)

    Land transfer activities are planned to occur fiscal year 2016 which will require independent verification of Los Alamos National Laboratory (LANL)’s sampling protocol and analyses. The former Sewage Treatment Plant within land tract A-16-D and the southern portion of A-16-E are on track for MARSSIM final status survey. The remainder of TA-21 will require verification once final D&D of structures is complete. The sampling activities for these tracts must undergo soil surveys/sampling and analysis by Los Alamos National Security (LANS) using the MARSSIM-style process as required by DOE-O-458.1 to obtain technically defensible data for determining the disposition of this property.

  5. Forest Products Industry Technology Roadmap

    SciTech Connect (OSTI)

    none,

    2010-04-01

    This document describes the forest products industry's research and development priorities. The original technology roadmap published by the industry in 1999 and was most recently updated in April 2010.

  6. Data Archive of the Harvard Forest, a Long Term Ecological Research (LTER) Site

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Since 1907 research and education have been the mission of the Harvard Forest is one of the oldest and most intensively studied forests in North America. Located in Petersham, Massachusetts, its 3000 acres of land have been a center of research and education since 1907. The Long Term Ecological Research (LTER) program, established in 1988 and funded by the National Science Foundation, provides a framework for much of this activity. An understanding of forest responses to natural and human disturbance and environmental change over broad spatial and temporal scales pulls together research topics including biodiversity studies, the effects of invasive organisms, large experiments and permanent plot studies, historical and retrospective studies, soil nutrient dynamics, and plant population and community ecological interactions. Major research in forest-atmosphere exchange, hydrology, and regional studies places the work in regional and global context, aided by modeling tools. Conservation and management research and linkages to policy have been part of the Forest since its beginning, and the approaches used in New England can often apply to international studies. [Copied from http://harvardforest.fas.harvard.edu/research.html] In addition to more than 150 datasets, the Visual Information Access system at Harvard University Library makes nearly 900 images pertaining to Harvard Forest research available online to the public.

  7. ,"Maryland Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Maryland Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)",1,"Monthly","2/2016" ,"Release Date:","4/29/2016" ,"Next Release

  8. Existing Whole-House Solutions Case Study: Bay Ridge Gardens - Mixed Humid Affordable Multifamily Housing Deep Energy Retrofit, Annapolis, Maryland

    SciTech Connect (OSTI)

    2013-10-01

    Under this project, the BA-PIRC research team evaluated the installation, measured performance, and cost-effectiveness of efficiency upgrade measures for a tenant-in-place deep energy retrofit at the Bay Ridge multifamily development in Annapolis, Maryland. The design and construction phase of the Bay Ridge project was completed in August 2012. This case study summarizes system commissioning, short-term test results, utility bill data analysis, and analysis of real-time data collected over a one-year period after the retrofit was complete.

  9. Carbon Sequestration on Surface Mine Lands

    SciTech Connect (OSTI)

    Donald Graves; Christopher Barton; Richard Sweigard; Richard Warner; Carmen Agouridis

    2006-03-31

    Since the implementation of the federal Surface Mining Control and Reclamation Act of 1977 (SMCRA) in May of 1978, many opportunities have been lost for the reforestation of surface mines in the eastern United States. Research has shown that excessive compaction of spoil material in the backfilling and grading process is the biggest impediment to the establishment of productive forests as a post-mining land use (Ashby, 1998, Burger et al., 1994, Graves et al., 2000). Stability of mine sites was a prominent concern among regulators and mine operators in the years immediately following the implementation of SMCRA. These concerns resulted in the highly compacted, flatly graded, and consequently unproductive spoils of the early post-SMCRA era. However, there is nothing in the regulations that requires mine sites to be overly compacted as long as stability is achieved. It has been cultural barriers and not regulatory barriers that have contributed to the failure of reforestation efforts under the federal law over the past 27 years. Efforts to change the perception that the federal law and regulations impede effective reforestation techniques and interfere with bond release must be implemented. Demonstration of techniques that lead to the successful reforestation of surface mines is one such method that can be used to change perceptions and protect the forest ecosystems that were indigenous to these areas prior to mining. The University of Kentucky initiated a large-scale reforestation effort to address regulatory and cultural impediments to forest reclamation in 2003. During the three years of this project 383,000 trees were planted on over 556 acres in different physiographic areas of Kentucky (Table 1, Figure 1). Species used for the project were similar to those that existed on the sites before mining was initiated (Table 2). A monitoring program was undertaken to evaluate growth and survival of the planted species as a function of spoil characteristics and reclamation practice. In addition, experiments were integrated within the reforestation effort to address specific questions pertaining to sequestration of carbon (C) on these sites.

  10. Land Energy | Open Energy Information

    Open Energy Info (EERE)

    Energy Jump to: navigation, search Name: Land Energy Place: North Yorkshire, United Kingdom Zip: YO62 5DQ Sector: Biomass, Renewable Energy Product: A renewable-energy company...

  11. Forest County Potawatomi Community- 2014 Project

    Office of Energy Efficiency and Renewable Energy (EERE)

    Forest County Potawatomi Community (FCPC), in collaboration with a selected contractor, will install and operate approximately 875 kilowatts (kW) of solar photovoltaic (PV) systems at a minimum of eight tribal facilities in Milwaukee and Forest Counties.

  12. Potential and cost of carbon sequestration in the Tanzanian forest sector

    SciTech Connect (OSTI)

    Makundi, Willy R.

    2001-01-01

    The forest sector in Tanzania offers ample opportunities to reduce greenhouse gas emissions (GHG) and sequestered carbon (C) in terrestrial ecosystems. More than 90% of the country's demand for primary energy is obtained from biomass mostly procured unsustainably from natural forests. This study examines the potential to sequester C through expansion of forest plantations aimed at reducing the dependence on natural forest for wood fuel production, as well as increase the country's output of industrial wood from plantations. These were compared ton conservation options in the tropical and miombo ecosystems. Three sequestration options were analyzed, involving the establishment of short rotation and long rotation plantations on about 1.7 x 106 hectares. The short rotation community forest option has a potential to sequester an equilibrium amount of 197.4 x 106 Mg C by 2024 at a net benefit of $79.5 x 106, while yielding a NPV of $0.46 Mg-1 C. The long rotation options for softwood and hardwood plantations will reach an equilibrium sequestration of 5.6 and 11.8 x 106 Mg C at a negative NPV of $0.60 Mg-1 C and $0.32 Mg-1 C. The three options provide cost competitive opportunities for sequestering about 7.5 x 106 Mg C yr -1 while providing desired forest products and easing the pressure on the natural forests in Tanzania. The endowment costs of the sequestration options were all found to be cheaper than the emission avoidance cost for conservation options which had an average cost of $1.27 Mg-1 C, rising to $ 7.5 Mg-1 C under some assumptions on vulnerability to encroachment. The estimates shown here may represent the upper bound, because the actual potential will be influenced by market prices for inputs and forest products, land use policy constraints and the structure of global C transactions.

  13. Forest Products Industry Profile | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Forest Products Industry Profile Forest Products Industry Profile Wood and paper products meet the everyday needs of consumers and businesses. They provide materials essential for communication, education, packaging, construction, shelter, sanitation, and protection. The U.S. forest products industry is based on a renewable and sustainable raw material: wood. It practices recovery and recycling in its operations. Its forests help the global carbon balance by taking up carbon dioxide from the

  14. US Forest Service | Open Energy Information

    Open Energy Info (EERE)

    US Forest Service Jump to: navigation, search Retrieved from "http:en.openei.orgwindex.php?titleUSForestService&oldid442004...

  15. Soil carbon sequestration and land use change associated with biofuel production: Empirical evidence

    SciTech Connect (OSTI)

    Qin, Zhangcai; Dunn, Jennifer B.; Kwon, Hoyoung; Mueller, Steffen; Wander, Michelle M.

    2016-01-01

    Soil organic carbon (SOC) change can be a major impact of land use change (LUC) associated with biofuel feedstock production. By collecting and analyzing data from worldwide field observations with major LUCs from cropland, grassland and forest to lands producing biofuel crops (i.e., corn, switchgrass, Miscanthus, poplar and willow), we were able to estimate SOC response ratios and sequestration rates and evaluate the effects of soil depth and time scale on SOC change. Both the amount and rate of SOC change were highly dependent on the specific land transition. Irrespective of soil depth or time horizon, cropland conversions resulted in an overall SOC gain of 6-14% relative to initial SOC level, while conversion from grassland or forest to corn (without residue removal) or poplar caused significant carbon loss (9-35%). No significant SOC changes were observed in land converted from grasslands or forests to switchgrass, Miscanthus or willow. The SOC response ratios were similar in both 0-30 and 0-100 cm soil depths in most cases, suggesting SOC changes in deep soil and that use of top soil only for SOC accounting in biofuel life cycle analysis (LCA) might underestimate total SOC changes. Soil carbon sequestration rates varied greatly among studies and land transition types. Generally, the rates of SOC change tended to be the greatest during the 10 years following land conversion, and had declined to approach 0 within about 20 years for most LUCs. Observed trends in SOC change were generally consistent with previous reports. Soil depth and duration of study significantly influence SOC change rates and so should be considered in carbon emission accounting in biofuel LCA. High uncertainty remains for many perennial systems, field trials and modeling efforts are needed to determine the site- and system-specific rates and direction of change associated with their production.

  16. Sustainable Nanomaterials from Forest Products: Umaine Perspective |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Sustainable Nanomaterials from Forest Products: Umaine Perspective Sustainable Nanomaterials from Forest Products: Umaine Perspective PDF icon Sustainable Nanomaterials from Forest Products - Douglas Gardner, University of Maine More Documents & Publications Sustainable Nanomaterials Workshop Grand Challenges of Characterization & Modeling of Cellulose Nanomaterials Cellulose Nanomaterials: The Sustainable Material of Choice for the 21st Century

  17. Forest Restoration Carbon Analysis of Baseline Carbon Emissions and Removal in Tropical Rainforest at La Selva Central, Peru

    SciTech Connect (OSTI)

    Patrick Gonzalez; Benjamin Kroll; Carlos R. Vargas

    2006-01-10

    Conversion of tropical forest to agricultural land and pasture has reduced forest extent and the provision of ecosystem services, including watershed protection, biodiversity conservation, and carbon sequestration. Forest conservation and reforestation can restore those ecosystem services. We have assessed forest species patterns, quantified deforestation and reforestation rates, and projected future baseline carbon emissions and removal in Amazon tropical rainforest at La Selva Central, Peru. The research area is a 4800 km{sup 2} buffer zone around the Parque Nacional Yanachaga-Chemillen, Bosque de Proteccion San Matias-San Carlos, and the Reserva Comunal Yanesha. A planned project for the period 2006-2035 would conserve 4000 ha of forest in a proposed 7000 ha Area de Conservacion Municipale de Chontabamba and establish 5600 ha of natural regeneration and 1400 ha of native species plantations, laid out in fajas de enriquecimiento (contour plantings), to reforest 7000 ha of agricultural land. Forest inventories of seven sites covering 22.6 ha in primary forest and 17 sites covering 16.5 ha in secondary forest measured 17,073 trees of diameter {ge} 10 cm. The 24 sites host trees of 512 species, 267 genera, and 69 families. We could not identify the family of 7% of the trees or the scientific species of 21% of the trees. Species richness is 346 in primary forest and 257 in the secondary forest. In primary forest, 90% of aboveground biomass resides in old-growth species. Conversely, in secondary forest, 66% of aboveground biomass rests in successional species. The density of trees of diameter {ge} 10 cm is 366 trees ha{sup -1} in primary forest and 533 trees ha{sup -1} in secondary forest, although the average diameter is 24 {+-} 15 cm in primary forest and 17 {+-} 8 cm in secondary forest. Using Amazon forest biomass equations and wood densities for 117 species, aboveground biomass is 240 {+-} 30 t ha{sup -1} in the primary sites and 90 {+-} 10 t ha{sup -1} in the secondary sites. Aboveground carbon density is 120 {+-} 15 t ha{sup -1} in primary forest and 40 {+-} 5 t ha{sup -1} in secondary forest. Forest stands in the secondary forest sites range in age from 10 to 42 y. Growth in biomass (t ha{sup -1}) as a function of time (y) follows the relation: biomass = 4.09-0.017 age{sup 2} (p < 0.001). Aboveground biomass and forest species richness are positively correlated (r{sup 2} = 0.59, p < 0.001). Analyses of Landsat data show that the land cover of the 3700 km{sup 2} of non-cloud areas in 1999 was: closed forest 78%; open forest 12%, low vegetation cover 4%, sparse vegetation cover 6%. Deforestation from 1987 to 1999 claimed a net 200 km{sup 2} of forest, proceeding at a rate of 0.005 y{sup -1}. Of those areas of closed forest in 1987, only 89% remained closed forest in 1999. Consequently, closed forests experienced disruption in the time period at double the rate of net deforestation. The three protected areas experienced negligible deforestation or slight reforestation. Based on 1987 forest cover, 26,000 ha are eligible for forest carbon trading under the Clean Development Mechanism, established by the Kyoto Protocol to the United Nations Framework Convention on Climate Change. Principal components analysis showed that distance to nonforest was the factor that best explained observed patterns of deforestation while distance to forest best explained observed patterns of reforestation, more significant than elevation, distance to rivers, distance to roads, slope, and distance to towns of population > 400. Aboveground carbon in live vegetation in the project area decreased from 35 million {+-} 4 million t in 1987 to 34 million {+-} 4 million t in 1999. Projected aboveground carbon in live vegetation would fall to 33 million {+-} 4 million t in 2006, 32 million {+-} 4 million t in 2011, and 29 million {+-} 3 million t in 2035. Projected net deforestation in the research area would total 13,000 {+-} 3000 ha in the period 1999-2011, proceeding at a rate of 0.003 {+-} 0.0007 y{sup -1}, and would total 33,000 {+-} 7000

  18. Land reclamation beautifies coal mines

    SciTech Connect (OSTI)

    Coblentz, B.

    2009-07-15

    The article explains how the Mississippi Agricultural and Forestry Experiments station, MAFES, has helped prepare land exploited by strip mining at North American Coal Corporation's Red Hills Mine. The 5,800 acre lignite mine is over 200 ft deep and uncovers six layers of coal. About 100 acres of land a year is mined and reclaimed, mostly as pine plantations. 5 photos.

  19. EIS-0105: Conversion to Coal, Baltimore Gas & Electric Company, Brandon Shores Generating Station Units 1 and 2, Anne Arundel County, Maryland

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy’s Economic Regulatory Administration Office of Fuels Program, Coal and Electricity Division prepared this statement to assess the potential environmental and socioeconomic impacts associated with prohibiting the use of petroleum products as a primary energy source for Units 1 and 2 of the Brandon Shores Generating Station, located in Anne Arundel County, Maryland.

  20. File:03-TX-f - Lease of Land Trade Lands.pdf | Open Energy Information

    Open Energy Info (EERE)

    TX-f - Lease of Land Trade Lands.pdf Jump to: navigation, search File File history File usage Metadata File:03-TX-f - Lease of Land Trade Lands.pdf Size of this preview: 463 599...

  1. File:03CAAStateLandLeasingProcessAndLandAccessROWs.pdf | Open...

    Open Energy Info (EERE)

    03CAAStateLandLeasingProcessAndLandAccessROWs.pdf Jump to: navigation, search File File history File usage Metadata File:03CAAStateLandLeasingProcessAndLandAccessROWs.pdf Size of...

  2. File:03-CO-b - ROW Process for State Land Board Land.pdf | Open...

    Open Energy Info (EERE)

    CO-b - ROW Process for State Land Board Land.pdf Jump to: navigation, search File File history File usage Metadata File:03-CO-b - ROW Process for State Land Board Land.pdf Size of...

  3. AG Land 5 | Open Energy Information

    Open Energy Info (EERE)

    5 Jump to: navigation, search Name AG Land 5 Facility AG Land 5 Sector Wind energy Facility Type Community Wind Facility Status In Service Owner AG Land Energy LLC Developer...

  4. Montana State Land Board | Open Energy Information

    Open Energy Info (EERE)

    Land Board Jump to: navigation, search Name: Montana State Land Board Place: Helena, Montana Website: dnrc.mt.govLandBoardStaff.as References: Webpage1 This article is a stub....

  5. Geothermal/Land Use | Open Energy Information

    Open Energy Info (EERE)

    GeothermalLand Use < Geothermal(Redirected from Land Use) Redirect page Jump to: navigation, search REDIRECT GeothermalLand Use Planning Retrieved from "http:en.openei.orgw...

  6. LDK Uni Land JV | Open Energy Information

    Open Energy Info (EERE)

    Uni Land JV Jump to: navigation, search Name: LDK & Uni Land JV Place: Italy Product: Italy-based JV to develop and construct PV projects. References: LDK & Uni Land JV1 This...

  7. Carbon Dioxide Effects Research and Assessment Program. The role of tropical forests on the world carbon cycle

    SciTech Connect (OSTI)

    Brown, S.; Lugo, A. E.; Liegel, B.

    1980-08-01

    Tropical forests constitute about half of the world's forest and are characterized by rapid rates of organic matter turnover and high storages of organic matter. Tropical forests are considered to be one of the most significant terrestrial elements in the equation that balances the carbon cycle of the world. As discussed in the paper by Tosi, tropical and subtropical latitudes are more complex in terms of climate and vegetation composition than temperate and boreal latitudes. The implications of the complexity of the tropics and the disregard of this complexity by many scientists is made evident in the paper by Brown and Lugo which shows that biomass estimates for tropical ecosystems have been overestimated by at least 100%. The paper by Brown shows that that rates of succession in the tropics are extremely rapid in terms of the ability of moist and wet forests to accumulate organic matter. Yet, in arid tropical Life Zones succession is slow. This leads to the idea that the question of whether tropical forests are sinks or sources of carbon must be analyzed in relation to Life Zones and to intensities of human activity in these Zones. The paper by Lugo presents conceptual models to illustrate this point and the paper by Tosi shows how land uses in the tropics also correspond to Life Zone characteristics. The ultimate significance of land use to the question of the carbon balance in a large region is addressed in the paper by Detwiler and Hall.

  8. Project risk and appeals in U.S. Forest Service planning

    SciTech Connect (OSTI)

    Stern, Marc J.; Predmore, S. Andrew; Morse, Wayde C.; Seesholtz, David N.

    2013-09-15

    The National Environmental Policy Act (NEPA) requires U.S. Forest Service planning processes to be conducted by interdisciplinary teams of resource specialists to analyze and disclose the likely environmental impacts of proposed natural resource management actions on Forest Service lands. Multiple challenges associated with these processes have been a source of frustration for the agency. One of these challenges involves administrative appeals through which public entities can challenge a Forest Service decision following a NEPA process. These appeals instigate an internal review process and can result in an affirmation of the Forest Service decision, a reversal of that decision, or additional work that re-initiates all or part of the NEPA process. We examine the best predictors of appeals and their outcomes on a representative sample of 489 Forest Service NEPA processes that were decided between 2007 and 2009. While certain factors associated with pre-existing social contexts (such as a history of controversy) or pre-determined elements of a proposed action (such as the extraction of forest products) predispose certain processes to a higher risk of appeals, other practices and process-related strategies within the control of the agency also appear to bear meaningful influence on the occurrence of appeals and their outcomes. Appeals and their outcomes were most strongly related to programmatic, structural (turnover of personnel in particular), and relationship risks (both internal and external) within the processes, suggesting the need for greater focus within the agency on cultivating positive internal and external relationships to manage the risk of appeals. -- Highlights: ? We examined appeals and their outcomes on 489 U.S. Forest Service NEPA processes. ? Project type, context, team turnover, and personal relationships predicted appeals. ? External relationship management and staff turnover best predicted appeal outcomes. ? Positive internal and external relationships appear to reduce appeal risks.

  9. EA-365 Centre Land Trading Limited | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Centre Land Trading Limited EA-365 Centre Land Trading Limited Order Authorizing Centre Land Trading Limited to export electric energy to Canada PDF icon EA-365 Centre Land ...

  10. Colorado State Board of Land Commissioners Strategic Plan | Open...

    Open Energy Info (EERE)

    Reference LibraryAdd to library Land Use Plan: Colorado State Board of Land Commissioners Strategic Plan Abstract The Colorado State Board of Land Commissioners (State Land Board)...

  11. Summary of Information Presented at an NRC-Sponsored Low-Power Shutdown Public Workshop, April 27, 1999, Rockville, Maryland

    SciTech Connect (OSTI)

    Wheeler, Timothy A.; Whitehead, Donnie W.; Lois, Erasmia

    1999-07-01

    This report summarizes a public workshop that was held on April 27, 1999, in Rockville, Maryland. The workshop was conducted as part of the US Nuclear Regulatory Commission's (NRC) efforts to further develop its understanding of the risks associated with low power and shutdown operations at US nuclear power plants. A sufficient understanding of such risks is required to support decision-making for risk-informed regulation, in particular Regulatory Guide 1.174, and the development of a consensus standard. During the workshop the NRC staff discussed and requested feedback from the public (including representatives of the nuclear industry, state governments, consultants, private industry, and the media) on the risk associated with low-power and shutdown operations.

  12. Arizona State Land Department | Open Energy Information

    Open Energy Info (EERE)

    Department Jump to: navigation, search Logo: Arizona State Land Department Name: Arizona State Land Department Abbreviation: ASLD Address: 1616 W. Adams St. Place: Phoenix, AZ Zip:...

  13. Ewing Land Development Services | Open Energy Information

    Open Energy Info (EERE)

    Ewing Land Development Services Jump to: navigation, search Name: Ewing Land Development & Services Place: Pella, Iowa Zip: 50219 Product: Real estate development company...

  14. Elektra Basel Land EBL | Open Energy Information

    Open Energy Info (EERE)

    Basel Land EBL Jump to: navigation, search Name: Elektra Basel Land (EBL) Place: Liestal, Switzerland Zip: 4410 Product: Swiss utility with a possible investment interest in...

  15. State Land Commission FAQ | Open Energy Information

    Open Energy Info (EERE)

    Land Commission FAQ Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: State Land Commission FAQ Abstract Frequently Asked Questions, California State...

  16. Quantitative Analysis of Biofuel Sustainability, Including Land...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Quantitative Analysis of Biofuel Sustainability, Including Land Use Change GHG Emissions Quantitative Analysis of Biofuel Sustainability, Including Land Use Change GHG Emissions ...

  17. Remedial investigation sampling and analysis plan for J-Field, Aberdeen Proving Ground, Maryland. Volume 1: Field Sampling Plan

    SciTech Connect (OSTI)

    Benioff, P.; Biang, R.; Dolak, D.; Dunn, C.; Martino, L.; Patton, T.; Wang, Y.; Yuen, C.

    1995-03-01

    The Environmental Management Division (EMD) of Aberdeen Proving Ground (APG), Maryland, is conducting a remedial investigation and feasibility study (RI/FS) of the J-Field area at APG pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), as amended. J-Field is within the Edgewood Area of APG in Harford County, Maryland (Figure 1. 1). Since World War II activities in the Edgewood Area have included the development, manufacture, testing, and destruction of chemical agents and munitions. These materials were destroyed at J-Field by open burning and open detonation (OB/OD). Considerable archival information about J-Field exists as a result of efforts by APG staff to characterize the hazards associated with the site. Contamination of J-Field was first detected during an environmental survey of the Edgewood Area conducted in 1977 and 1978 by the US Army Toxic and Hazardous Materials Agency (USATHAMA) (predecessor to the US Army Environmental Center [AEC]). As part of a subsequent USATHAMA -environmental survey, 11 wells were installed and sampled at J-Field. Contamination at J-Field was also detected during a munitions disposal survey conducted by Princeton Aqua Science in 1983. The Princeton Aqua Science investigation involved the installation and sampling of nine wells and the collection and analysis of surficial and deep composite soil samples. In 1986, a Resource Conservation and Recovery Act (RCRA) permit (MD3-21-002-1355) requiring a basewide RCRA Facility Assessment (RFA) and a hydrogeologic assessment of J-Field was issued by the US Environmental Protection Agency (EPA). In 1987, the US Geological Survey (USGS) began a two-phased hydrogeologic assessment in data were collected to model, groundwater flow at J-Field. Soil gas investigations were conducted, several well clusters were installed, a groundwater flow model was developed, and groundwater and surface water monitoring programs were established that continue today.

  18. Energy Corridors on Federal Lands

    Office of Energy Efficiency and Renewable Energy (EERE)

    To improve energy delivery and enhance the electric transmission grid for the future, several government agencies currently are working together to establish a coordinated network of Federal energy corridors on Federal lands throughout the United States.

  19. Land and Facility Use Planning

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1996-07-09

    The Land and Facility Use Planning process provides a way to guide future site development and reuse based on the shared long-term goals and objectives of the Department, site and its stakeholders. Does not cancel other directives.

  20. Tribal Lands Student Internship Program

    Energy Savers [EERE]

    Lands Student Internship Program Sandia National Laboratories National Renewable Energy Laboratories Department of Energy The Navajo Tribal Utility Authority 2003 Tribal Lands Program Interns * Shaun Tsabetsaye - Zuni - University of New Mexico - Electrical Engineering * Velissa Sandoval - Navajo/Zuni - University of Denver - Electrical Engineering * Keith Candelaria - Jemez/San Felipe - Dartmouth College - Environmental/Earth Science Several research methods used to understanding NTUA's O&M

  1. Sustainable Nanomaterials from Forest Products: Umaine Perspective

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    cellulose electrospun cellulose cellulose nanocrystals U.S. Forest Products Nanotechnology Research Roadmaps - Needs www.nanotechforest.org www.agenda2020.org http:...

  2. Tropical Forest Foundation | Open Energy Information

    Open Energy Info (EERE)

    Virginia. About "The Tropical Forest Foundation (TFF) is an international, non-profit, educational institution committed to advancing environmental stewardship, economic...

  3. CRiSTAL Forests | Open Energy Information

    Open Energy Info (EERE)

    of Use: Simple Website: www.iisd.orgcristaltooldownload.aspxcristal-forests Cost: Free Related Tools CRED: A New Model of Climate and Development Applied Dynamic Analysis of...

  4. Tradewinds Forest Products | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: Tradewinds Forest Products Place: Hawaii Product: Firm developing a cogeneration plant for a sugar mill in Hawaii. References: Tradewinds...

  5. Forest City Enterprises | Open Energy Information

    Open Energy Info (EERE)

    Enterprises Jump to: navigation, search Name: Forest City Enterprises Place: Denver, CO Zip: 80238 Website: www.forestcity.net Coordinates: 39.7564482, -104.8863279 Show Map...

  6. Forest County Potawatomi Community- 2011 Project

    Broader source: Energy.gov [DOE]

    The Forest County Potawatomi Community (FCPC) will conduct an energy efficiency feasibility study at Potawatomi Carter Casino Hotel (PCCH) in Northern Wisconsin.

  7. Mitigation Options in Forestry, Land-Use, Change and Biomass Burning in Africa

    SciTech Connect (OSTI)

    Makundi, Willy R.

    1998-06-01

    Mitigation options to reduce greenhouse gas emissions and sequester carbon in land use sectors are describe in some detail. The paper highlights those options in the forestry sector, which are more relevant to different parts of Africa. It briefly outlines a bottom-up methodological framework for comprehensively assessing mitigation options in land use sectors. This method emphasizes the application of end-use demand projections to construct a baseline and mitigation scenarios and explicitly addresses the carbon storage potential on land and in wood products, as well as use of wood to substitute for fossil fuels. Cost-effectiveness indicators for ranking mitigation options are proposed, including those, which account for non-carbon monetary benefits such as those derived from forest products, as well as opportunity cost of pursuing specific mitigation option. The paper finally surveys the likely policies, barriers and incentives to implement such mitigation options in African countries .

  8. Stable water isotope simulation by current land-surface schemes:Results of IPILPS phase 1

    SciTech Connect (OSTI)

    Henderson-Sellers, A.; Fischer, M.; Aleinov, I.; McGuffie, K.; Riley, W.J.; Schmidt, G.A.; Sturm, K.; Yoshimura, K.; Irannejad, P.

    2005-10-31

    Phase 1 of isotopes in the Project for Intercomparison of Land-surface Parameterization Schemes (iPILPS) compares the simulation of two stable water isotopologues ({sup 1}H{sub 2} {sup 18}O and {sup 1}H{sup 2}H{sup 16}O) at the land-atmosphere interface. The simulations are off-line, with forcing from an isotopically enabled regional model for three locations selected to offer contrasting climates and ecotypes: an evergreen tropical forest, a sclerophyll eucalypt forest and a mixed deciduous wood. Here we report on the experimental framework, the quality control undertaken on the simulation results and the method of intercomparisons employed. The small number of available isotopically-enabled land-surface schemes (ILSSs) limits the drawing of strong conclusions but, despite this, there is shown to be benefit in undertaking this type of isotopic intercomparison. Although validation of isotopic simulations at the land surface must await more, and much more complete, observational campaigns, we find that the empirically-based Craig-Gordon parameterization (of isotopic fractionation during evaporation) gives adequately realistic isotopic simulations when incorporated in a wide range of land-surface codes. By introducing two new tools for understanding isotopic variability from the land surface, the Isotope Transfer Function and the iPILPS plot, we show that different hydrological parameterizations cause very different isotopic responses. We show that ILSS-simulated isotopic equilibrium is independent of the total water and energy budget (with respect to both equilibration time and state), but interestingly the partitioning of available energy and water is a function of the models' complexity.

  9. National Forest Management Act of 1976 | Open Energy Information

    Open Energy Info (EERE)

    The National Forest Management Act of 1976 is a federal law that governs the administration of national forests. This act requires the United States Forest Service to use a...

  10. Laboratory Dynamos Professor Cary Forest

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dynamos Professor Cary Forest University of Wisconsin - Madison Wednesday, June 5, 2013 - 4:15PM MBG AUDITORIUM Refreshments at 4:00PM The PrinceTon Plasma Physics laboraTory is a U.s. DeParTmenT of energy faciliTy One of the most fundamental tenets of astrophysical plasma physics is that magnetic fields can be stretched and amplified by flowing plasmas. In the right geometry, this can even lead to the self-generation of magnetic fields from flow through the dynamo process, a positive feedback

  11. Final Report for ''SOURCES AND SINKS OF CARBON FROM LAND-USE CHANGE AND MANAGEMENT: A GLOBAL SYNTHESIS'' Project Period September 15, 2001--September 14, 2003

    SciTech Connect (OSTI)

    Houghton, R.A.

    2003-12-12

    Land management and land-use change can either release carbon (as CO{sub 2}) to the atmosphere, for example when forests are converted to agricultural lands, or withdraw carbon from the atmosphere as forests grow on cleared lands or as management practices sequester carbon in soil. The purpose of this work was to calculate the annual sources and sinks of carbon from changes in land use and management, globally and for nine world regions, over the period 1850 to 2000. The approach had three components. First, rates of land-use change were reconstructed from historical information on the areas of croplands, pastures, forests, and other lands and from data on wood harvests. In most regions, land-use change included the conversion of natural ecosystems to cultivated lands and pastures, including shifting cultivation, harvest of wood (for timber and fuel), and the establishment of tree plantations. In the U.S., woody encroachment and woodland thickening as a result of fire suppression were also included. Second, the amount of carbon per hectare in vegetation and soils and changes in that carbon as a result of land-use change were determined from data obtained in the ecological and forestry literature. These data on land-use change and carbon stocks were then used in a bookkeeping model (third component) to calculate regional and global changes in terrestrial carbon. The results indicate that for the period 1850-2000 the net flux of carbon from changes in land use was 156 PgC. For comparison, emissions of carbon from combustion of fossil fuels were approximately 280 PgC during the same interval. Annual emissions from land-use change exceeded emissions from fossil fuels before about 1920. Somewhat more that half (60%) of the long-term flux was from the tropics. Average annual fluxes during the 1980s and 1990s were 2.0 and 2.2 ({+-}0.8) PgC yr{sup -1} (30-40% of fossil fuel emissions), respectively. In these decades, the global sources of carbon were almost entirely from the tropics. Outside the tropics, the average net flux of carbon attributable to land-use change and management decreased from a source of 0.06 PgC yr{sup -1} during the 1980s to a sink of 0.03 PgC yr{sup -1} during the 1990s. According to these analyses, changes in land use were responsible for sinks in North America and Europe and for small sources in other non-tropical regions.

  12. Focused feasibility study for surface soil at the main pits and pushout area, J-field toxic burning pits area, Aberdeen Proving Ground, Maryland

    SciTech Connect (OSTI)

    Patton, T.; Benioff, P.; Biang, C.; Butler, J.

    1996-06-01

    The Environmental Management Division of Aberdeen Proving Ground (APG), Maryland, is conducting a remedial investigation and feasibility study of the J-Field area at APG pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act, as amended (CERCLA). J-Field is located within the Edgewood Area of APG in Harford County, Maryland. Since World War II, activities in the Edgewood Area have included the development, manufacture, testing, and destruction of chemical agents and munitions. These materials were destroyed at J-Field by open burning/open detonation. Portions of J-Field continue to be used for the detonation and disposal of unexploded ordnance (UXO) by open burning/open detonation under authority of the Resource Conservation and Recovery Act.

  13. Superfund Record of Decision (EPA Region 2): Forest Glen Subdivision, Niagara Falls, NY. (First remedial action), December 1989

    SciTech Connect (OSTI)

    Not Available

    1989-12-29

    The Forest Glen Subdivision site consists of 21 acres of developed residential properties and undeveloped land in Niagara Fall, Niagara County, New York. Land in the area surrounding the Forest Glen subdivision is used for residential and industrial purposes, including a mobile home park, small shopping mall, and the CECOS Landfill. Chemical companies reportedly disposed of wastes onsite from the early 1950s to the early 1970s. Sampling by EPA's Field Investigation Team revealed the presence of high concentrations of unknown and tentatively identified compounds (TICs) in August 1987, and further soil sampling was conducted to identify the TICs. EPA has executed interim measures to stabilize site conditions including collecting, staging, and securing drums in areas north and east of the subdivision and temporarily covering visibily contaminated soil with concrete. The remedial activity is the first of two planned operable units and addresses resident relocation only. A subsequent operable unit will address the remediation of site contamination once the relocation is complete.

  14. Norway-Indonesia-Forest Management Agreement | Open Energy Information

    Open Energy Info (EERE)

    Norway-Indonesia-Forest Management Agreement Jump to: navigation, search Name Norway-Indonesia-Forest Management Agreement AgencyCompany Organization Government of Norway,...

  15. Tools for Forest Carbon Inventory, Management, and Reporting...

    Open Energy Info (EERE)

    of carbon in forests are crucial for forest carbon management, carbon credit trading, national reporting of greenhouse gas inventories to the United Nations Framework...

  16. Forest Monitoring for Action (FORMA) | Open Energy Information

    Open Energy Info (EERE)

    online maps of tropical forest clearing, providing useful information for local and national forest conservation programs, as well as international efforts to curb greenhouse...

  17. Evaluating the Contribution of Climate Forcing and Forest Dynamics...

    Office of Scientific and Technical Information (OSTI)

    and PAR) records from Harvard Forest (Massachusetts) and Tapajos National Forest (Brazil) to establish empirical relationships among directly measured cloud type and cover...

  18. Vietnam-Lowering Emissions in Asia's Forests (LEAF) | Open Energy...

    Open Energy Info (EERE)

    assessing, improving, and implementing REDD+- related forest policies; improving forest management; and encouraging equitable sharing of REDD+ benefits. The program will tailor...

  19. Malaysia-Lowering Emissions in Asia's Forests (LEAF) | Open Energy...

    Open Energy Info (EERE)

    assessing, improving, and implementing REDD+- related forest policies; improving forest management; and encouraging equitable sharing of REDD+ benefits. The program will tailor...

  20. Papua New Guinea-Lowering Emissions in Asia's Forests (LEAF)...

    Open Energy Info (EERE)

    assessing, improving, and implementing REDD+- related forest policies; improving forest management; and encouraging equitable sharing of REDD+ benefits. The program will tailor...

  1. Laos-Lowering Emissions in Asia's Forests (LEAF) | Open Energy...

    Open Energy Info (EERE)

    assessing, improving, and implementing REDD+- related forest policies; improving forest management; and encouraging equitable sharing of REDD+ benefits. The program will tailor...

  2. Thailand-Lowering Emissions in Asia's Forests (LEAF) | Open Energy...

    Open Energy Info (EERE)

    assessing, improving, and implementing REDD+- related forest policies; improving forest management; and encouraging equitable sharing of REDD+ benefits. The program will tailor...

  3. Forest City High School Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    High School Energy Purchaser Forest City Community School District Location Forest City IA Coordinates 43.266011, -93.653378 Show Map Loading map... "minzoom":false,"mappings...

  4. Forest Carbon and Biomass Energy - LCA Issues and Challenges...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Forest Carbon and Biomass Energy - LCA Issues and Challenges Forest Carbon and Biomass Energy - LCA Issues and Challenges Breakout Session 2D-Building Market Confidence and ...

  5. A Design-Builder's Perspective: Anaerobic Digestion, Forest County...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Design-Builder's Perspective: Anaerobic Digestion, Forest County Potawatomi Community - A Case Study A Design-Builder's Perspective: Anaerobic Digestion, Forest County Potawatomi...

  6. Cambodia-Lowering Emissions in Asia's Forests (LEAF) | Open Energy...

    Open Energy Info (EERE)

    for GHG reductions, Build and institutionalize technical capacity for economic valuation of forest ecosystem services and monitoring changes in forest carbon stocks, and...

  7. USFS Humboldt-Toiyabe National Forest | Open Energy Information

    Open Energy Info (EERE)

    USFS Humboldt-Toiyabe National Forest Jump to: navigation, search Name: USFS Humboldt-Toiyabe National Forest Abbreviation: Humbolt-Toiyabe NF Address: 1200 Franklin Way Place:...

  8. Brazil-US Forest Service Climate Change Technical Cooperation...

    Open Energy Info (EERE)

    Forest Service Climate Change Technical Cooperation Jump to: navigation, search Name Brazil-US Forest Service Climate Change Technical Cooperation AgencyCompany Organization...

  9. Forests and Climate Change Toolbox | Open Energy Information

    Open Energy Info (EERE)

    Forests and Climate Change Toolbox Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Forests and Climate Change Toolbox AgencyCompany Organization: Center for...

  10. Indonesia-US Forest Service Climate Change Technical Cooperation...

    Open Energy Info (EERE)

    US Forest Service Climate Change Technical Cooperation Jump to: navigation, search Name Indonesia-US Forest Service Climate Change Technical Cooperation AgencyCompany...

  11. Jordan-US Forest Service Climate Change Technical Cooperation...

    Open Energy Info (EERE)

    US Forest Service Climate Change Technical Cooperation Jump to: navigation, search Name Jordan-US Forest Service Climate Change Technical Cooperation AgencyCompany Organization...

  12. Mexico-US Forest Service Climate Change Technical Cooperation...

    Open Energy Info (EERE)

    US Forest Service Climate Change Technical Cooperation Jump to: navigation, search Name Mexico-US Forest Service Climate Change Technical Cooperation AgencyCompany Organization...

  13. Russia-US Forest Service Climate Change Technical Cooperation...

    Open Energy Info (EERE)

    US Forest Service Climate Change Technical Cooperation Jump to: navigation, search Name Russia-US Forest Service Climate Change Technical Cooperation AgencyCompany Organization...

  14. Liberia-US Forest Service Climate Change Technical Cooperation...

    Open Energy Info (EERE)

    US Forest Service Climate Change Technical Cooperation Jump to: navigation, search Name Liberia-US Forest Service Climate Change Technical Cooperation AgencyCompany Organization...

  15. Nature Climate Change features Los Alamos forest research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nature Climate Change Features Forest Research Nature Climate Change features Los Alamos forest research The print issue features as its cover story the tree-stress research of...

  16. Forest City Military Communities, Hawaii | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search Name: Forest City Military Communities, Hawaii Place: Honolulu, HI Website: www.fcnavyhawaii.com References: Solar Technical Assistance Provided to Forest...

  17. Simulating the Impacts of Disturbances on Forest Carbon Cycling...

    Office of Scientific and Technical Information (OSTI)

    America: Processes, Data, Models, and Challenges Disturbances disrupt the forest structures and alter forest resources, substrate availability, or the physical environment....

  18. Community-Based Forest (Natural) Resource Management: A Path...

    Open Energy Info (EERE)

    Based Forest (Natural) Resource Management: A Path to Sustainable Environment and Development Jump to: navigation, search Name Community-Based Forest (Natural) Resource Management:...

  19. How Communities Manage Forests | Open Energy Information

    Open Energy Info (EERE)

    FORZA Sector: Land Focus Area: Forestry Topics: Background analysis Resource Type: Lessons learnedbest practices Website: www.rightsandresources.orgdocumentsfiles...

  20. Bureau of Land Management - Table 1.4-1 - Land Use Planning Process...

    Open Energy Info (EERE)

    LibraryAdd to library PermittingRegulatory Guidance - Instructions: Bureau of Land Management - Table 1.4-1 - Land Use Planning Process StepsPermittingRegulatory...

  1. Figure 1. Project Area, Focused Study Area, Potential Access Agreement Land, and Land Not

    Energy Savers [EERE]

    Page 4 of 8 Figure 1. Project Area, Focused Study Area, Potential Access Agreement Land, and Land Not Suitable for Conveyance

  2. Land Use Planning Handbook | Open Energy Information

    Open Energy Info (EERE)

    Handbook H-1601-1 released by the United States Department of the Interior Bureau of Land Management (BLM). "This Handbook provides supplemental guidance to the Bureau of Land...

  3. Solar Land Use | Open Energy Information

    Open Energy Info (EERE)

    Solar Land Use Jump to: navigation, search (The following text is derived from a National Renewable Energy Laboratory report on solar land use in the United States.)1 One concern...

  4. Discriminant forest classification method and system

    DOE Patents [OSTI]

    Chen, Barry Y.; Hanley, William G.; Lemmond, Tracy D.; Hiller, Lawrence J.; Knapp, David A.; Mugge, Marshall J.

    2012-11-06

    A hybrid machine learning methodology and system for classification that combines classical random forest (RF) methodology with discriminant analysis (DA) techniques to provide enhanced classification capability. A DA technique which uses feature measurements of an object to predict its class membership, such as linear discriminant analysis (LDA) or Andersen-Bahadur linear discriminant technique (AB), is used to split the data at each node in each of its classification trees to train and grow the trees and the forest. When training is finished, a set of n DA-based decision trees of a discriminant forest is produced for use in predicting the classification of new samples of unknown class.

  5. Forest succession at elevated CO2

    SciTech Connect (OSTI)

    Clark, James S.; Schlesinger, William H.

    2002-02-01

    We tested hypotheses concerning the response of forest succession to elevated CO2 in the FACTS-1 site at the Duke Forest. We quantified growth and survival of naturally recruited seedlings, tree saplings, vines, and shrubs under ambient and elevated CO2. We planted seeds and seedlings to augment sample sites. We augmented CO2 treatments with estimates of shade tolerance and nutrient limitation while controlling for soil and light effects to place CO2 treatments within the context of natural variability at the site. Results are now being analyzed and used to parameterize forest models of CO2 response.

  6. High-tech tool predicts fire behavior in bark beetle-ravaged forests

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Better computer models High-tech tool predicts fire behavior in bark beetle-ravaged forests A high-tech computer model called HIGRAD/FIRETEC provides insights that are essential for front-line fire fighters. August 9, 2012 Researchers from LANL and the French Space Agency examine data from the Mars Science Laboratory Curiosity rover from inside the ChemCam Operations Center at NASA's Jet Propulsion Laboratory on Monday, Aug. 6, 2012, less than a day after the rover landed on Mars. The ChemCam

  7. Marine One Landing Exercise at Argonne

    SciTech Connect (OSTI)

    2013-03-20

    Marine One and its support helicopters conduct a landing exercise at Argonne prior to the President's visit.

  8. LANDS WITH WILDERNESS CHARACTERISTICS, RESOURCE MANAGEMENT PLAN

    Office of Scientific and Technical Information (OSTI)

    CONSTRAINTS, AND LAND EXCHANGES: CROSS-JURISDICTIONAL MANAGEMENT AND IMPACTS ON UNCONVENTIONAL FUEL DEVELOPMENT IN UTAH'S UINTA BASIN (Technical Report) | SciTech Connect LANDS WITH WILDERNESS CHARACTERISTICS, RESOURCE MANAGEMENT PLAN CONSTRAINTS, AND LAND EXCHANGES: CROSS-JURISDICTIONAL MANAGEMENT AND IMPACTS ON UNCONVENTIONAL FUEL DEVELOPMENT IN UTAH'S UINTA BASIN Citation Details In-Document Search Title: LANDS WITH WILDERNESS CHARACTERISTICS, RESOURCE MANAGEMENT PLAN CONSTRAINTS, AND

  9. LANDS WITH WILDERNESS CHARACTERISTICS, RESOURCE MANAGEMENT PLAN

    Office of Scientific and Technical Information (OSTI)

    CONSTRAINTS, AND LAND EXCHANGES: CROSS-JURISDICTIONAL MANAGEMENT AND IMPACTS ON UNCONVENTIONAL FUEL DEVELOPMENT IN UTAH'S UINTA BASIN (Technical Report) | SciTech Connect LANDS WITH WILDERNESS CHARACTERISTICS, RESOURCE MANAGEMENT PLAN CONSTRAINTS, AND LAND EXCHANGES: CROSS-JURISDICTIONAL MANAGEMENT AND IMPACTS ON UNCONVENTIONAL FUEL DEVELOPMENT IN UTAH'S UINTA BASIN Citation Details In-Document Search Title: LANDS WITH WILDERNESS CHARACTERISTICS, RESOURCE MANAGEMENT PLAN CONSTRAINTS, AND

  10. Hawaii State Land Use Commission | Open Energy Information

    Open Energy Info (EERE)

    Hawaii State Land Use Commission Jump to: navigation, search Name: State Land Use Commission Abbreviation: LUC Place: Honolulu, Hawaii References: State Land Use Commission -...

  11. Mined Land Reclamation on DOE's Uranium Lease Tracts, Southwestern...

    Office of Environmental Management (EM)

    Mined Land Reclamation on DOE's Uranium Lease Tracts, Southwestern Colorado Mined Land Reclamation on DOE's Uranium Lease Tracts, Southwestern Colorado Mined Land Reclamation on...

  12. Geothermal/Land Use Planning | Open Energy Information

    Open Energy Info (EERE)

    Land Use Planning < Geothermal(Redirected from GeothermalLand Use) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Planning Leasing Exploration Well Field...

  13. RCW 79.13 Land Leases | Open Energy Information

    Open Energy Info (EERE)

    RCW 79.13 Land LeasesLegal Abstract Washington statute governing the administration of land leases for state trust lands. Published NA Year Signed or Took Effect...

  14. Webtrends Archives by Fiscal Year - Topic Landing Pages | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Topic Landing Pages Webtrends Archives by Fiscal Year - Topic Landing Pages From the EERE Web Statistics Archive: Corporate sites, Webtrends archives for the topic landing pages by ...

  15. Land-Use Change and Bioenergy

    SciTech Connect (OSTI)

    2011-07-01

    This publication describes the Biomass Program’s efforts to examine the intersection of land-use change and bioenergy production. It describes legislation requiring land-use change assessments, key data and modeling challenges, and the research needs to better assess and understand the impact of bioenergy policy on land-use decisions.

  16. From land use to land cover: Restoring the afforestation signal in a coupled integrated assessment - earth system model and the implications for CMIP5 RCP simulations

    SciTech Connect (OSTI)

    Di Vittorio, Alan; Chini, Louise M.; Bond-Lamberty, Benjamin; Mao, Jiafu; Shi, Xiaoying; Truesdale, John E.; Craig, Anthony P.; Calvin, Katherine V.; Jones, Andrew D.; Collins, William D.; Edmonds, James A.; Hurtt, George; Thornton, Peter E.; Thomson, Allison M.

    2014-11-27

    Climate projections depend on scenarios of fossil fuel emissions and land use change, and the IPCC AR5 parallel process assumes consistent climate scenarios across Integrated Assessment and Earth System Models (IAMs and ESMs). To facilitate consistency, CMIP5 used a novel land use harmonization to provide ESMs with seamless, 1500-2100 land use trajectories generated by historical data and four IAMs. However, we have identified and partially addressed a major gap in the CMIP5 land coupling design. The CMIP5 Community ESM (CESM) global afforestation is only 22% of RCP4.5 afforestation from 2005 to 2100. Likewise, only 17% of the Global Change Assessment Models (GCAMs) 2040 RCP4.5 afforestation signal, and none of the pasture loss, were transmitted to CESM within a newly integrated model. This is a critical problem because afforestation is necessary for achieving the RCP4.5 climate stabilization. We attempted to rectify this problem by modifying only the ESM component of the integrated model, enabling CESM to simulate 66% of GCAMs afforestation in 2040, and 94% of GCAMs pasture loss as grassland and shrubland losses. This additional afforestation increases vegetation carbon gain by 19 PgC and decreases atmospheric CO2 gain by 8 ppmv from 2005 to 2040, implying different climate scenarios between CMIP5 GCAM and CESM. Similar inconsistencies likely exist in other CMIP5 model results, primarily because land cover information is not shared between models, with possible contributions from afforestation exceeding model-specific, potentially viable forest area. Further work to harmonize land cover among models will be required to adequately rectify this problem.

  17. Baselines For Land-Use Change In The Tropics: Application ToAvoided Deforestation Projects

    SciTech Connect (OSTI)

    Brown, Sandra; Hall, Myrna; Andrasko, Ken; Ruiz, Fernando; Marzoli, Walter; Guerrero, Gabriela; Masera, Omar; Dushku, Aaron; Dejong,Ben; Cornell, Joseph

    2007-06-01

    Although forest conservation activities particularly in thetropics offer significant potential for mitigating carbon emissions,these types of activities have faced obstacles in the policy arena causedby the difficulty in determining key elements of the project cycle,particularly the baseline. A baseline for forest conservation has twomain components: the projected land-use change and the correspondingcarbon stocks in the applicable pools such as vegetation, detritus,products and soil, with land-use change being the most difficult toaddress analytically. In this paper we focus on developing and comparingthree models, ranging from relatively simple extrapolations of pasttrends in land use based on simple drivers such as population growth tomore complex extrapolations of past trends using spatially explicitmodels of land-use change driven by biophysical and socioeconomicfactors. The three models of the latter category used in the analysis atregional scale are The Forest Area Change (FAC) model, the Land Use andCarbon Sequestration (LUCS) model, and the Geographical Modeling (GEOMOD)model. The models were used to project deforestation in six tropicalregions that featured different ecological and socioeconomic conditions,population dynamics, and uses of the land: (1) northern Belize; (2) SantaCruz State, Bolivia; (3) Parana State in Brazil; (4) Campeche, Mexico;(5) Chiapas, Mexico; and (6) Michoacan, Mexico. A comparison of all modeloutputs across all six regions shows that each model produced quitedifferent deforestation baseline. In general, the simplest FAC model,applied at the national administrative-unit scale, projected the highestamount of forest loss (four out of six) and the LUCS model the leastamount of loss (four out of five). Based on simulations of GEOMOD, wefound that readily observable physical and biological factors as well asdistance to areas of past disturbance were each about twice as importantas either sociological/demographic or economic/infrastructure factors(less observable) in explaining empirical land-use patterns. We proposefrom the lessons learned, a methodology comprised of three main steps andsix tasks can be used to begin developing credible baselines. We alsopropose that the baselines be projected over a 10-year period because,although projections beyond 10 years are feasible, they are likely to beunrealistic for policy purposes. In the first step, an historic land-usechange and deforestation estimate is made by determining the analyticdomain (size of the region relative to the size of proposed project),obtaining historic data, analyzing candidate historic baseline drivers,and identifying three to four major drivers. In the second step, abaseline of where deforestation is likely to occur --a potential land-usechange (PLUC) map is produced using a spatial model such as GEOMOD thatuses the key drivers from step one. Then rates of deforestation areprojected over a 10-year baseline period using any of the three models.Using the PLUC maps, projected rates of deforestation, and carbon stockestimates, baselineprojections are developed that can be used for projectGHG accounting and crediting purposes: The final step proposes that, atagreed interval (eg, +10 years), the baseline assumptions about baselinedrivers be re-assessed. This step reviews the viability of the 10-yearbaseline in light of changes in one or more key baseline drivers (e.g.,new roads, new communities, new protected area, etc.). The potentialland-use change map and estimates of rates of deforestation could beredone at the agreed interval, allowing the rates and changes in spatialdrivers to be incorporated into a defense of the existing baseline, orderivation of a new baseline projection.

  18. Evaluating the Contribution of Climate Forcing and Forest Dynamics to

    Office of Scientific and Technical Information (OSTI)

    Accelerating Carbon Sequestration by Forest Ecosystems in the Northeastern U.S. (Technical Report) | SciTech Connect SciTech Connect Search Results Technical Report: Evaluating the Contribution of Climate Forcing and Forest Dynamics to Accelerating Carbon Sequestration by Forest Ecosystems in the Northeastern U.S. Citation Details In-Document Search Title: Evaluating the Contribution of Climate Forcing and Forest Dynamics to Accelerating Carbon Sequestration by Forest Ecosystems in the

  19. U.S. Forest Service - Biomass Activities and Tribal Projects

    Energy Savers [EERE]

    Opportunities for Partnership with the USDA Forest Service Faline Haven Office of Tribal Relations USDA Forest Service fhaven@fs.fed.us 202-205-1520 Forest Service/Tribal Relationship * "We envision a future where the Forest Service and Indian Tribes work collaboratively through government-to-government relationships to manage the resources entrusted to their care, a future where the Forest Service has the organizational structure, skills and policies to redeem our responsibilities in this

  20. Forest fire near Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Forest fire near Los Alamos National Laboratory Forest fire near Los Alamos National Laboratory The Las Conchas fire burning in the Jemez Mountains approximately 12 miles southwest of the boundary of LANL has not entered Lab property at this time. June 26, 2011 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma

  1. Wind Development on Tribal Lands

    SciTech Connect (OSTI)

    Ken Haukaas; Dale Osborn; Belvin Pete

    2008-01-18

    Background: The Rosebud Sioux Tribe (RST) is located in south central South Dakota near the Nebraska border. The nearest community of size is Valentine, Nebraska. The RST is a recipient of several Department of Energy grants, written by Distributed Generation Systems, Inc. (Disgen), for the purposes of assessing the feasibility of its wind resource and subsequently to fund the development of the project. Disgen, as the contracting entity to the RST for this project, has completed all the pre-construction activities, with the exception of the power purchase agreement and interconnection agreement, to commence financing and construction of the project. The focus of this financing is to maximize the economic benefits to the RST while achieving commercially reasonable rates of return and fees for the other parties involved. Each of the development activities required and its status is discussed below. Land Resource: The Owl Feather War Bonnet 30 MW Wind Project is located on RST Tribal Trust Land of approximately 680 acres adjacent to the community of St. Francis, South Dakota. The RST Tribal Council has voted on several occasions for the development of this land for wind energy purposes, as has the District of St. Francis. Actual footprint of wind farm will be approx. 50 acres. Wind Resource Assessment: The wind data has been collected from the site since May 1, 2001 and continues to be collected and analyzed. The latest projections indicate a net capacity factor of 42% at a hub height of 80 meters. The data has been collected utilizing an NRG 9300 Data logger System with instrumentation installed at 30, 40 and 65 meters on an existing KINI radio tower. The long-term annual average wind speed at 65-meters above ground level is 18.2 mph (8.1 mps) and 18.7 mph (8.4 mps) at 80-meters agl. The wind resource is excellent and supports project financing.

  2. Building America Case Study: Greenbelt Homes, Inc. Pilot Retrofit Project, Greenbelt, Maryland (Fact Sheet), Whole-House Solutions for Existing Homes, Energy Efficiency & Renewable Energy (EERE)

    Energy Savers [EERE]

    Greenbelt Homes, Inc. Pilot Retrofit Project Greenbelt, Maryland PROJECT INFORMATION Construction: Existing homes Builder: Greenbelt Homes, Inc., ghi.coop Type: Single-family, configured primarily in sets of 2, 4, or 6 attached homes Pilot Retrofit Project: Envelope upgrade study based on 7 4-unit buildings Size: 800-1,200 ft 2 Price Range: About $70,000-$300,000 Study Period: 2010-2014 Climate Zone: Mixed-humid (IECC climate zone 4A) PERFORMANCE DATA Average per Pilot Home, Normalized Season

  3. TCP Final Report: Measuring the Effects of Stand Age and Soil Drainage on Boreal Forest

    SciTech Connect (OSTI)

    Michael L. Goulden

    2007-05-02

    This was a 6-year research project in the Canadian boreal forest that focused on using field observations to understand how boreal forest carbon balance changes during recovery from catastrophic forest fire. The project began with two overarching goals: (1) to develop techniques that would all the year round operation of 7 eddy covariance sites in a harsh environment at a much lower cost than had previously been possible, and (2) to use these measurements to determine how carbon balance changes during secondary succession. The project ended in 2006, having accomplished its primary objectives. Key contributions to DOE during the study were: (1) Design, test, and demonstrate a lightweight, fully portable eddy flux system that exploits several economies of scale to allow AmeriFlux-quality measurements of CO{sub 2} exchange at many sites for a large reduction in cost (Goulden et al. 2006). (2) Added seven year-round sites to AmeriFlux, at a relatively low per site cost using the Eddy Covariance Mesonet approach (Goulden et al. 2006). These data are freely available on the AmeriFlux web site. (3) Tested and rejected the conventional wisdom that forests lose large amounts of carbon during the first decade after disturbance, then accumulate large amounts of carbon for {approx}several decades, and then return to steady state in old age. Rather, we found that boreal forests recovers quickly from fire and begins to accumulate carbon within {approx}5 years after disturbance. Additionally, we found no evidence that carbon accumulation declines in old stands (Goulden et al. 2006, Goulden et al. in prep). (4) Tested and rejected claims based on remote sensing observations (for example, Myneni et al 1996 using AVHRR) that regions of boreal forest have changed markedly in the last 20 years. Rather, we assembled a much richer data set than had been used in the past (eddy covariance observations, tree rings, biomass, NPP, AVHRR, and LandSat), which we used to establish that the forests in our study region have remained largely constant over the last 20 years after accounting for the effects of stand age and succession (McMillen et al. in review).

  4. ENHANCEMENT OF TERRESTRIAL CARBON SINKS THROUGH RECLAMATION OF ABANDONED MINE LANDS IN THE APPALACHIAN REGION

    SciTech Connect (OSTI)

    Gary D. Kronrad

    2002-12-01

    The U.S.D.I. Office of Surface Mining (OSM) estimates that there are approximately 1 million acres of abandoned mine land (AML) in the Appalachian region. AML lands are classified as areas that were inadequately reclaimed or were left unreclaimed prior to the passage of the 1977 Surface Mining Control and Reclamation Act, and where no federal or state laws require any further reclamation responsibility to any company or individual. Reclamation and afforestation of these sites have the potential to provide landowners with cyclical timber revenues, generate environmental benefits to surrounding communities, and sequester carbon in the terrestrial ecosystem. Through a memorandum of understanding, the OSM and the U.S. Department of Energy (DOE) have decided to investigate reclaiming and afforesting these lands for the purpose of mitigating the negative effects of anthropogenic carbon dioxide in the atmosphere. This study determined the carbon sequestration potential of northern red oak (Quercus rubra L.), one of the major reclamation as well as commercial species, planted on West Virginia AML sites. Analyses were conducted to (1) calculate the total number of tons that can be stored, (2) determine the cost per ton to store carbon, and (3) calculate the profitability of managing these forests for timber production alone and for timber production and carbon storage together. The Forest Management Optimizer (FORMOP) was used to simulate growth data on diameter, height, and volume for northern red oak. Variables used in this study included site indices ranging from 40 to 80 (base age 50), thinning frequencies of 0, 1, and 2, thinning percentages of 20, 25, 30, 35, and 40, and a maximum rotation length of 100 years. Real alternative rates of return (ARR) ranging from 0.5% to 12.5% were chosen for the economic analyses. A total of 769,248 thinning and harvesting combinations, net present worths, and soil expectation values were calculated in this study. Results indicate that the cost per ton to sequester carbon ranges from $6.54 on site index 80 land at a 12.5% ARR to $36.68 on site index 40 land at an ARR of 0.5%. Results also indicate that the amount of carbon stored during one rotation ranges between 38 tons per acre on site index 40 land to 58 tons per acre on site index 80 land. The profitability of afforestation on these AML sites in West Virginia increases as the market price for carbon increases from $0 to $100 per ton.

  5. Impact of post-mining subsidence on nitrogen transformation in southern tropical dry deciduous forest, India

    SciTech Connect (OSTI)

    Tripathi, N.; Singh, R.S.; Singh, J.S.

    2009-04-15

    The goal of our research was to assess the impact of post-mining land subsidence, caused due to underground coal mining operations, on fine root biomass and root tips count; plant available nutrient status, microbial biomass N (MBN) and N-mineralization rates of a Southern tropical dry deciduous forest of Singareni Coalfields of India. The changes were quantified in all the three (rainy, winter and summer) seasons, in slope and depression microsites of the subsided land and an adjacent undamaged forest microsite. Physico-chemical characteristics were found to be altered after subsidence, showing a positive impact of subsidence on soil moisture, bulk density, water holding capacity, organic carbon content, total N and total P. The increase in all the parameters was found in depression microsites, while in slope microsites, the values were lower. Fine root biomass and root tips count increased in the subsided depression microsites, as demonstrated by increases of 62% and 45%, respectively. Soil nitrate-N and phosphate-P concentrations were also found to be higher in depression microsite, showing an increase of 35.68% and 24.74%, respectively. Depression microsite has also shown the higher MBN value with an increase over control. Net nitrification, net N-mineralization and MBN were increased in depression microsite by 29.77%, 25.72% and 34%, respectively. There was a positive relation of microbial N with organic C, fine root biomass and root tips.

  6. Renewal of Collaborative Research: Economically Viable Forest Harvesting Practices That Increase Carbon Sequestration

    SciTech Connect (OSTI)

    Davidson, E.A.; Dail, D.B., Hollinger, D.; Scott, N.; Richardson, A.

    2012-08-02

    Forests provide wildlife habitat, water and air purification, climate moderation, and timber and nontimber products. Concern about climate change has put forests in the limelight as sinks of atmospheric carbon. The C stored in the global vegetation, mostly in forests, is nearly equivalent to the amount present in atmospheric CO{sub 2}. Both voluntary and government-mandated carbon trading markets are being developed and debated, some of which include C sequestration resulting from forest management as a possible tradeable commodity. However, uncertainties regarding sources of variation in sequestration rates, validation, and leakage remain significant challenges for devising strategies to include forest management in C markets. Hence, the need for scientifically-based information on C sequestration by forest management has never been greater. The consequences of forest management on the US carbon budget are large, because about two-thirds of the {approx}300 million hectare US forest resource is classified as 'commercial forest.' In most C accounting budgets, forest harvesting is usually considered to cause a net release of C from the terrestrial biosphere to the atmosphere. However, forest management practices could be designed to meet the multiple goals of providing wood and paper products, creating economic returns from natural resources, while sequestering C from the atmosphere. The shelterwood harvest strategy, which removes about 30% of the basal area of the overstory trees in each of three successive harvests spread out over thirty years as part of a stand rotation of 60-100 years, may improve net C sequestration compared to clear-cutting because: (1) the average C stored on the land surface over a rotation increases, (2) harvesting only overstory trees means that a larger fraction of the harvested logs can be used for long-lived sawtimber products, compared to more pulp resulting from clearcutting, (3) the shelterwood cut encourages growth of subcanopy trees by opening up the forest canopy to increasing light penetration. Decomposition of onsite harvest slash and of wastes created during timber processing releases CO{sub 2} to the atmosphere, thus offsetting some of the C sequestered in vegetation. Decomposition of soil C and dead roots may also be temporarily stimulated by increased light penetration and warming of the forest floor. Quantification of these processes and their net effect is needed. We began studying C sequestration in a planned shelterwood harvest at the Howland Forest in central Maine in 2000. The harvest took place in 2002 by the International Paper Corporation, who assisted us to track the fates of harvest products (Scott et al., 2004, Environmental Management 33: S9-S22). Here we present the results of intensive on-site studies of the decay of harvest slash, soil respiration, growth of the remaining trees, and net ecosystem exchange (NEE) of CO{sub 2} during the first six years following the harvest. These results are combined with calculations of C in persisting off-site harvest products to estimate the net C consequences to date of this commercial shelterwood harvest operation. Tower-based eddy covariance is an ideal method for this study, as it integrates all C fluxes in and out of the forest over a large 'footprint' area and can reveal how the net C flux, as well as gross primary productivity and respiration, change following harvest. Because the size of this experiment precludes large-scale replication, we are use a paired-airshed approach, similar to classic large-scale paired watershed experiments. Measurements of biomass and C fluxes in control and treatment stands were compared during a pre-treatment calibration period, and then divergence from pre-treatment relationships between the two sites measured after the harvest treatment. Forests store carbon (C) as they accumulate biomass. Many forests are also commercial sources of timber and wood fiber. In most C accounting budgets, forest harvesting is usually considered to cause a net release of C from the terrestrial biosphere to the at

  7. Agriculture, Land Use, Energy and Carbon Emission Impacts of Global Biofuel Mandates to Mid-Century

    SciTech Connect (OSTI)

    Wise, Marshall A.; Dooley, James J.; Luckow, Patrick; Calvin, Katherine V.; Kyle, G. Page

    2014-02-01

    Three potential future scenarios of expanded global biofuel production are presented here utilizing the GCAM integrated assessment model. These scenarios span a range that encompasses on the low end a continuation of existing biofuel production policies to two scenarios that would require an expansion of current targets as well as an extension of biofuels targets to other regions of the world. Conventional oil use is reduced by 4-8% in the expanded biofuel scenarios, which results in a decrease of in CO2 emissions on the order of 1-2 GtCO2/year by mid-century from the global transportation sector. The regional distribution of crop production is relatively unaffected, but the biofuels targets do result in a marked increase in the production of conventional crops used for energy. Producer prices of sugar and corn reach levels about 12% and 7% above year 2005 levels, while the increased competition for land causes the price of food crops such as wheat, although not used for bioenergy in this study, to increase by 1 to 2%. The amount of land devoted to growing all food crops and dedicated bioenergy crops is increased by about 10% by 2050 in the High biofuel case, with concurrent decreases in other uses of land such as forest and pasture. In both of the expanded biofuels cases studied, there is an increase in net cumulative carbon emissions for the first couple of decades due to these induced land use changes. However, the difference in net cumulative emissions from the biofuels expansion decline by about 2035 as the reductions in energy system emissions exceed further increases in emissions from land use change. Even in the absence of a policy that would limit emissions from land use change, the differences in net cumulative emissions from the biofuels scenarios reach zero by 2050, and are decreasing further over time in both cases.

  8. Bureau of Land Management - Final Programmatic Environmental...

    Open Energy Info (EERE)

    to: navigation, search OpenEI Reference LibraryAdd to library Report: Bureau of Land Management - Final Programmatic Environmental Impact Statement for Geothermal Leasing in the...

  9. GCAM Bioenergy and Land Use Modeling

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    GCAM Bioenergy and Land Use Modeling March 25, 2015 Analysis and Sustainability PI: Marshall Wise Pacific Northwest National Laboratory This presentation does not contain any ...

  10. Renewable Energy Development on Tribal Lands

    SciTech Connect (OSTI)

    Not Available

    2006-10-01

    Brochure describes the Tribal Energy Program, which provides American Indian tribes with financial and technical assistance for developing renewable energy projects on tribal land.

  11. Renewable Energy Development on Tribal Lands (Brochure)

    SciTech Connect (OSTI)

    2009-01-18

    Brochure describes the Tribal Energy Program, which provides American Indian tribes with financial and technical assistance for developing renewable energy projects on tribal land.

  12. Agriculture, land use, and commercial biomass energy

    SciTech Connect (OSTI)

    Edmonds, J.A.; Wise, M.A.; Sands, R.D.; Brown, R.A.; Kheshgi, H.

    1996-06-01

    In this paper we have considered commercial biomass energy in the context of overall agriculture and land-use change. We have described a model of energy, agriculture, and land-use and employed that model to examine the implications of commercial biomass energy or both energy sector and land-use change carbon emissions. In general we find that the introduction of biomass energy has a negative effect on the extent of unmanaged ecosystems. Commercial biomass introduces a major new land use which raises land rental rates, and provides an incentive to bring more land into production, increasing the rate of incursion into unmanaged ecosystems. But while the emergence of a commercial biomass industry may increase land-use change emissions, the overall effect is strongly to reduce total anthropogenic carbon emissions. Further, the higher the rate of commercial biomass energy productivity, the lower net emissions. Higher commercial biomass energy productivity, while leading to higher land-use change emissions, has a far stronger effect on fossil fuel carbon emissions. Highly productive and inexpensive commercial biomass energy technologies appear to have a substantial depressing effect on total anthropogenic carbon emissions, though their introduction raises the rental rate on land, providing incentives for greater rates of deforestation than in the reference case.

  13. Land-Use Change Data Analysis

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Objective Develop innovative and science-based approaches to estimate changes in land use pattern using data mining and machine learning techniques on satellite data. History- Two ...

  14. Project Reports for Forest County Potawatomi Community- 2014 Project

    Broader source: Energy.gov [DOE]

    Forest County Potawatomi Community (FCPC), in collaboration with a selected contractor, will install and operate approximately 875 kilowatts (kW) of solar photovoltaic (PV) systems at a minimum of eight tribal facilities in Milwaukee and Forest Counties.

  15. Town of Forest City, North Carolina (Utility Company) | Open...

    Open Energy Info (EERE)

    Forest City, North Carolina (Utility Company) Jump to: navigation, search Name: Town of Forest City Place: North Carolina Phone Number: 828-245-0149 Website: www.townofforestcity.c...

  16. Benefits of Tropical Forest Management Under the New Climate...

    Open Energy Info (EERE)

    of Tropical Forest Management Under the New Climate Change Agreement-A Case Study in Cambodia Jump to: navigation, search Name Benefits of Tropical Forest Management Under the New...

  17. Forests and climate change focus of Frontiers in Science lectures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Frontiers in Science lectures Forests and climate change focus of Frontiers in Science lectures LANL researcher Nate McDowell will discuss climate change and its effects on forest ...

  18. MAJOR FOREST COMMUNITY TYPES OF THE SAVANNAH RIVER PLANT: AFIELD

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MAJOR FOREST COMMUNITY TYPES OF THE SAVANNAH RIVER PLANT: AFIELD GUIDE BY STEVEN M. JONES, DAVID H. VAN LEAR, AND S. KNIGHT COX JULY 1981 l1Research Forester, Professor, and ...

  19. Carbon Flux to the Atmosphere from Land-Use Changes: 1850 to 1990

    SciTech Connect (OSTI)

    Houghton, R.A.

    2001-02-22

    The database documented in this numeric data package, a revision to a database originally published by the Carbon Dioxide Information Analysis Center (CDIAC) in 1995, consists of annual estimates, from 1850 through 1990, of the net flux of carbon between terrestrial ecosystems and the atmosphere resulting from deliberate changes in land cover and land use, especially forest clearing for agriculture and the harvest of wood for wood products or energy. The data are provided on a year-by-year basis for nine regions (North America, South and Central America, Europe, North Africa and the Middle East, Tropical Africa, the Former Soviet Union, China, South and Southeast Asia, and the Pacific Developed Region) and the globe. Some data begin earlier than 1850 (e.g., for six regions, areas of different ecosystems are provided for the year 1700) or extend beyond 1990 (e.g., fuelwood harvest in South and Southeast Asia, by forest type, is provided through 1995). The global net flux during the period 1850 to 1990 was 124 Pg of carbon (1 petagram = 10{sup 15} grams). During this period, the greatest regional flux was from South and Southeast Asia (39 Pg of carbon), while the smallest regional flux was from North Africa and the Middle East (3 Pg of carbon). For the year 1990, the global total net flux was estimated to be 2.1 Pg of carbon.

  20. Is the northern high latitude land-based CO2 sink weakening?

    SciTech Connect (OSTI)

    Mcguire, David; Kicklighter, David W.; Gurney, Kevin R; Burnside, Todd; Melillo, Jerry

    2011-01-01

    Studies indicate that, historically, terrestrial ecosystems of the northern high latitude region may have been responsible for up to 60% of the global net land-based sink for atmospheric CO2. However, these regions have recently experienced remarkable modification of the major driving forces of the carbon cycle, including surface air temperature warming that is significantly greater than the global average and associated increases in the frequency and severity of disturbances. Whether arctic tundra and boreal forest ecosystems will continue to sequester atmospheric CO2 in the face of these dramatic changes is unknown. Here we show the results of model simulations that estimate a 41 Tg C yr-1 sink in the boreal land regions from 1997 to 2006, which represents a 73% reduction in the strength of the sink estimated for previous decades in the late 20th Century. Our results suggest that CO2 uptake by the region in previous decades may not be as strong as previously estimated. The recent decline in sink strength is the combined result of 1) weakening sinks due to warming-induced increases in soil organic matter decomposition and 2) strengthening sources from pyrogenic CO2 emissions as a result of the substantial area of boreal forest burned in wildfires across the region in recent years. Such changes create positive feedbacks to the climate system that accelerate global warming, putting further pressure on emission reductions to achieve atmospheric stabilization targets.

  1. From land use to land cover: Restoring the afforestation signal in a

    Office of Scientific and Technical Information (OSTI)

    coupled integrated assessment - earth system model and the implications for CMIP5 RCP simulations (Journal Article) | SciTech Connect From land use to land cover: Restoring the afforestation signal in a coupled integrated assessment - earth system model and the implications for CMIP5 RCP simulations Citation Details In-Document Search Title: From land use to land cover: Restoring the afforestation signal in a coupled integrated assessment - earth system model and the implications for CMIP5

  2. Navajo Hopi Land Commission Office (NHLCO): Navajo Hopi Land Commission Office (NHLCO)- 2012 Project

    Broader source: Energy.gov [DOE]

    The Navajo Hopi Land Commission (NHLCO), together with its partners, will conduct a feasibility study (FS) of a program to develop renewable energy on the Paragon-Bisti ranch lands in northwestern New Mexico, which were set aside under the Navajo-Hopi Land Settlement Act for the benefit of relocatees (defined as Navajo families living on Hopi Partitioned Lands as of December 22, 1974).

  3. Forest County Potawatomi Tribe Cuts Emissions, Promotes Green Growth |

    Energy Savers [EERE]

    Department of Energy Tribe Cuts Emissions, Promotes Green Growth Forest County Potawatomi Tribe Cuts Emissions, Promotes Green Growth February 23, 2012 - 6:29pm Addthis The Forest County Potawatomi Tribe's solar system is providing heating, cooling, and electricity to the Tribe's administration building in Milwaukee, Wisconsin. Photo from the Forest County Potawatomi Tribe. The Forest County Potawatomi Tribe's solar system is providing heating, cooling, and electricity to the Tribe's

  4. State of the Forest Carbon Markets 2009 | Open Energy Information

    Open Energy Info (EERE)

    analysis Resource Type: Publications Website: moderncms.ecosystemmarketplace.comrepositorymoderncmsdocumentsSFCM State of the Forest Carbon Markets 2009 Screenshot...

  5. Composition of carbonaceous smoke particles from prescribed burning of a Canadian boreal forest: 1. Organic aerosol characterization by gas chromatography

    SciTech Connect (OSTI)

    Mazurek, M.A.; Laterza, C.; Newman, L.; Daum, P.; Cofer, W.R. III; Levine, J.S.; Winstead, E.L.

    1995-06-01

    In this study we examine the molecular organic constituents (C8 to C40 lipid compounds) collected as smoke particles from a Canadian boreal forest prescribed burn. Of special interest are (1) the molecular identity of polar organic aerosols, and (2) the amount of polar organic matter relative to the total mass of aerosol particulate carbon. Organic extracts of smoke aerosol particles show complex distributions of the lipid compounds when analyzed by capillary gas chromatography/mass spectrometry. The molecular constituents present as smoke aerosol are grouped into non-polar (hydrocarbons) and polar {minus}2 oxygen atoms) subtractions. The dominant chemical species found in the boreal forest smoke aerosol are unaltered resin compounds (C20 terpenes) which are abundant in unburned conifer wood, plus thermally altered wood lignins and other polar aromatic hydrocarbons. Our results show that smoke aerosols contain molecular tracers which are related to the biofuel consumed. These smoke tracers can be related structurally back to the consumed softwood and hardwood vegetation. In addition, combustion of boreal forest materials produces smoke aerosol particles that are both oxygen-rich and chemically complex, yielding a carbonaceous aerosol matrix that is enriched in polar substances. As a consequence, emissions of carbonaceous smoke particles from large-scale combustion of boreal forest land may have a disproportionate effect on regional atmospheric chemistry and on cloud microphysical processes.

  6. Oak Ridge reservation land-use plan

    SciTech Connect (OSTI)

    Bibb, W. R.; Hardin, T. H.; Hawkins, C. C.; Johnson, W. A.; Peitzsch, F. C.; Scott, T. H.; Theisen, M. R.; Tuck, S. C.

    1980-03-01

    This study establishes a basis for long-range land-use planning to accommodate both present and projected DOE program requirements in Oak Ridge. In addition to technological requirements, this land-use plan incorporates in-depth ecological concepts that recognize multiple uses of land as a viable option. Neither environmental research nor technological operations need to be mutually exclusive in all instances. Unique biological areas, as well as rare and endangered species, need to be protected, and human and environmental health and safety must be maintained. The plan is based on the concept that the primary use of DOE land resources must be to implement the overall DOE mission in Oak Ridge. This document, along with the base map and overlay maps, provides a reasonably detailed description of the DOE Oak Ridge land resources and of the current and potential uses of the land. A description of the land characteristics, including geomorphology, agricultural productivity and soils, water courses, vegetation, and terrestrial and aquatic animal habitats, is presented to serve as a resource document. Essentially all DOE land in the Oak Ridge area is being fully used for ongoing DOE programs or has been set aside as protected areas.

  7. Future Mobility in Maryland

    National Nuclear Security Administration (NNSA)

    ... repair costs and increased fuel consumption and tire wear. * In the Las Vegas ... development of environmentally-friendly energy sources (NSTPRSC). * Speed up project ...

  8. Empower Maryland Efficiency Act

    Broader source: Energy.gov [DOE]

    NOTE: In July 2015, the Public Service Commission (PSC) Order 87082 set post-2015 electric energy efficiency goal of 2% of annual retail sales beginning from 2018. The order initiates proceedings...

  9. Maryland Natural Gas Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    Production (Million Cubic Feet) Gross Withdrawals NA NA NA NA NA NA 1991-2015 From Gas Wells NA NA NA NA NA NA 1991-2015 From Oil Wells NA NA NA NA NA NA 1991-2015 From Shale Gas ...

  10. Maryland Natural Gas Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead NA 1967-2010 Imports 5.37 5.30 13.82 15.29 8.34 1999-2014 Pipeline and Distribution Use 1967-2005 Citygate 6.49 6.26 5.67 5.37 6.36 4.99 1984-2015 Residential 12.44 12.10 12.17 11.67 12.21 12.05 1967-2015 Commercial 9.87 10.29 10.00 10.06 10.52 10.00 1967-2015 Industrial 9.05 8.61 8.01 8.47 9.94 NA 1997-2015 Vehicle Fuel 5.99 5.09 -- 1993-2012 Electric Power 5.77 5.44 W W 5.35 4.06 1997-2015 Production (Million Cubic Feet) Number of Producing Gas Wells 7 8 9 7 7 1989-2014 Gross

  11. Maryland Natural Gas Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    50 7.38 8.78 7.19 4.07 4.26 1989-2015 Residential Price 18.35 18.44 19.08 19.39 13.51 12.72 1989-2015 Percentage of Total Residential Deliveries included in Prices 70.3 70.8 71.7...

  12. Maryland Natural Gas Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    Pipeline and Distribution Use Price 1967-2005 Citygate Price 6.49 6.26 5.67 5.37 6.36 4.99 1984-2015 Residential Price 12.44 12.10 12.17 11.67 12.21 12.05 1967-2015 Percentage of ...

  13. ,"Maryland Natural Gas Prices"

    U.S. Energy Information Administration (EIA) Indexed Site

    Date:","04292016" ,"Excel File Name:","ngprisumdcusmdm.xls" ,"Available from Web Page:","http:www.eia.govdnavngngprisumdcusmdm.htm" ,"Source:","Energy ...

  14. ,"Maryland Natural Gas Summary"

    U.S. Energy Information Administration (EIA) Indexed Site

    5,"Monthly","22016","1151989" ,"Data 2","Production",10,"Monthly","22016","1151991" ,"Data 3","Underground Storage",7,"Monthly","22016","1151990" ,"Data ...

  15. Directory of Tennessee's forest industries 1980

    SciTech Connect (OSTI)

    Not Available

    1980-09-01

    A directory of primary and secondary forest industries is presented. Firm names and addresses are listed by county in alphabetical order. The following information is listed for each industry: type of plant, production and employee size class, products manufactured, and equipment. For the primary industries, the major species of trees used are listed. (MHR)

  16. Forest floor community metatranscriptomes identify fungal and bacterial responses to N deposition in two maple forests

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hesse, Cedar N.; Mueller, Rebecca C.; Vuyisich, Momchilo; Gallegos-Graves, La Verne; Gleasner, Cheryl D.; Zak, Donald R.; Kuske, Cheryl R.

    2015-04-23

    Anthropogenic N deposition alters patterns of C and N cycling in temperate forests, where forest floor litter decomposition is a key process mediated by a diverse community of bacteria and fungi. To track forest floor decomposer activity we generated metatranscriptomes that simultaneously surveyed the actively expressed bacterial and eukaryote genes in the forest floor, to compare the impact of N deposition on the decomposers in two natural maple forests in Michigan, USA, where replicate field plots had been amended with N for 16 years. Site and N amendment responses were compared using about 74,000 carbohydrate active enzyme transcript sequences (CAZymes)more » in each metatranscriptome. Parallel ribosomal RNA (rRNA) surveys of bacterial and fungal biomass and taxonomic composition showed no significant differences in either biomass or OTU richness between the two sites or in response to N. Site and N amendment were not significant variables defining bacterial taxonomic composition, but they were significant for fungal community composition, explaining 17 and 14% of the variability, respectively. The relative abundance of expressed bacterial and fungal CAZymes changed significantly with N amendment in one of the forests, and N-response trends were also identified in the second forest. Although the two ambient forests were similar in community biomass, taxonomic structure and active CAZyme profile, the shifts in active CAZyme profiles in response to N-amendment differed between the sites. One site responded with an over-expression of bacterial CAZymes, and the other site responded with an over-expression of both fungal and different bacterial CAZymes. Both sites showed reduced representation of fungal lignocellulose degrading enzymes in N-amendment plots. The metatranscriptome approach provided a holistic assessment of eukaryote and bacterial gene expression and is applicable to other systems where eukaryotes and bacteria interact.« less

  17. Forest floor community metatranscriptomes identify fungal and bacterial responses to N deposition in two maple forests

    SciTech Connect (OSTI)

    Hesse, Cedar N.; Mueller, Rebecca C.; Vuyisich, Momchilo; Gallegos-Graves, La Verne; Gleasner, Cheryl D.; Zak, Donald R.; Kuske, Cheryl R.

    2015-04-23

    Anthropogenic N deposition alters patterns of C and N cycling in temperate forests, where forest floor litter decomposition is a key process mediated by a diverse community of bacteria and fungi. To track forest floor decomposer activity we generated metatranscriptomes that simultaneously surveyed the actively expressed bacterial and eukaryote genes in the forest floor, to compare the impact of N deposition on the decomposers in two natural maple forests in Michigan, USA, where replicate field plots had been amended with N for 16 years. Site and N amendment responses were compared using about 74,000 carbohydrate active enzyme transcript sequences (CAZymes) in each metatranscriptome. Parallel ribosomal RNA (rRNA) surveys of bacterial and fungal biomass and taxonomic composition showed no significant differences in either biomass or OTU richness between the two sites or in response to N. Site and N amendment were not significant variables defining bacterial taxonomic composition, but they were significant for fungal community composition, explaining 17 and 14% of the variability, respectively. The relative abundance of expressed bacterial and fungal CAZymes changed significantly with N amendment in one of the forests, and N-response trends were also identified in the second forest. Although the two ambient forests were similar in community biomass, taxonomic structure and active CAZyme profile, the shifts in active CAZyme profiles in response to N-amendment differed between the sites. One site responded with an over-expression of bacterial CAZymes, and the other site responded with an over-expression of both fungal and different bacterial CAZymes. Both sites showed reduced representation of fungal lignocellulose degrading enzymes in N-amendment plots. The metatranscriptome approach provided a holistic assessment of eukaryote and bacterial gene expression and is applicable to other systems where eukaryotes and bacteria interact.

  18. Forest carbon and biomass energy … LCA issues and challenges

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... of land owners in face of increased demand and a variety of policies affecting forestry - Competition for land (crop prices) - The health of the pulp and paper industry - ...

  19. Accounting for radiative forcing from albedo change in future global land-use scenarios

    SciTech Connect (OSTI)

    Jones, Andrew D.; Calvin, Katherine V.; Collins, William D.; Edmonds, James A.

    2015-08-01

    We demonstrate the effectiveness of a new method for quantifying radiative forcing from land use and land cover change (LULCC) within an integrated assessment model, the Global Change Assessment Model (GCAM). The method relies on geographically differentiated estimates of radiative forcing from albedo change associated with major land cover transitions derived from the Community Earth System Model. We find that conversion of 1 km² of woody vegetation (forest and shrublands) to non-woody vegetation (crops and grassland) yields between 0 and –0.71 nW/m² of globally averaged radiative forcing determined by the vegetation characteristics, snow dynamics, and atmospheric radiation environment characteristic within each of 151 regions we consider globally. Across a set of scenarios designed to span a range of potential future LULCC, we find LULCC forcing ranging from –0.06 to –0.29 W/m² by 2070 depending on assumptions regarding future crop yield growth and whether climate policy favors afforestation or bioenergy crops. Inclusion of this previously uncounted forcing in the policy targets driving future climate mitigation efforts leads to changes in fossil fuel emissions on the order of 1.5 PgC/yr by 2070 for a climate forcing limit of 4.5 Wm–2, corresponding to a 12–67 % change in fossil fuel emissions depending on the scenario. Scenarios with significant afforestation must compensate for albedo-induced warming through additional emissions reductions, and scenarios with significant deforestation need not mitigate as aggressively due to albedo-induced cooling. In all scenarios considered, inclusion of albedo forcing in policy targets increases forest and shrub cover globally.

  20. Idaho State Board of Land Commissioners | Open Energy Information

    Open Energy Info (EERE)

    Board of Land Commissioners Jump to: navigation, search Logo: Idaho State Board of Land Commissioners Name: Idaho State Board of Land Commissioners Address: 300 N. 6th St, Suite...

  1. Nevada Division of State Lands | Open Energy Information

    Open Energy Info (EERE)

    State Lands Jump to: navigation, search Logo: Nevada Division of State Lands Name: Nevada Division of State Lands Address: 901 S. Stewart St., Suite 5003 Place: Carson City, Nevada...

  2. Sustainable Land Lab Tour | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sustainable Land Lab Tour Sustainable Land Lab Tour PARC researchers and guests were taken on a tour of the new Sustainable land lab and shown the rennovations going on in North...

  3. VOCALS: The VAMOS Ocean-Cloud-Atmosphere-Land Study () | Data...

    Office of Scientific and Technical Information (OSTI)

    VOCALS: The VAMOS Ocean-Cloud-Atmosphere-Land Study Title: VOCALS: The VAMOS Ocean-Cloud-Atmosphere-Land Study VOCALS (VAMOS* Ocean-Cloud-Atmosphere-Land Study) is an international ...

  4. Opportunities in African power generation: A business briefing for industry and investment executives. Held in Baltimore, Maryland, June 21-22, 1995. Export trade information

    SciTech Connect (OSTI)

    1995-06-21

    The report, prepared by the Institute of International Education, was funded by the U.S. Trade and Development Agency. The information contained in the report was compiled in part for a power generation conference held in Baltimore, Maryland. The focus of the report is the market created by electric power projects financed by multilateral development banks. The study contains country information and project profiles related to the energy sector for eleven countries: Benin, Botswana, Cote D`Ivoire, Ethiopia, Ghana, Malawi, Morocoo, Senegal, Tanzania, Zambia, and Zimbabwe. The report also outlines the range of service opportunities in the region such as consulting, engineering, construction and project management, and equipment procurement. It is divided into the following sections: (1) Agenda/Program; (2) African Energy Sector Overview; (3) Project Profiles; (4) Country Information; and (5) Attendees.

  5. Transactions of the twenty-third water reactor safety information meeting to be held at Bethesda Marriott Hotel, Bethesda, Maryland, October 23--25, 1995

    SciTech Connect (OSTI)

    Monteleone, S.

    1995-09-01

    This report contains summaries of papers on reactor safety research to be presented at the 23rd Water Reactor Safety Information Meeting at the Bethesda Marriott Hotel, Bethesda, Maryland, October 23--25, 1995. The summaries briefly describe the programs and results of nuclear safety research sponsored by the Office of Nuclear Regulatory, Research, US NRC. Summaries of invited papers concerning nuclear safety issues from US government laboratories, the electric utilities, the nuclear industry, and from foreign governments and industry are also included. The summaries have been compiled in one report to provide a basis for meaningful discussion and information exchange during the course of the meeting and are given in the order of their presentation in each session.

  6. RAPID/Geothermal/Land Access/New Mexico | Open Energy Information

    Open Energy Info (EERE)

    Mexico State Land Office Competitive Land Leasing: Yes, New Mexico State Land Office issues geothermal leases through competitive auction. Noncompetitive Land Leasing: No Royalty...

  7. Webtrends Archives by Fiscal Year - Topic Landing Pages | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Topic Landing Pages Webtrends Archives by Fiscal Year - Topic Landing Pages From the EERE Web Statistics Archive: Corporate sites, Webtrends archives for the topic landing pages by fiscal year. Microsoft Office document icon Topic Landing Pages FY10 Microsoft Office document icon Topic Landing Pages FY11 PDF icon Topic Landing Pages FY12-FY13 More Documents & Publications Webtrends Archives by Fiscal Year - Commercialization Webtrends Archives by Fiscal Year - Social Media Site

  8. EA-1856: Conveyance of Land and Facilities at the Portsmouth...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    56: Conveyance of Land and Facilities at the Portsmouth Gaseous Diffusion Plant for Economic Development Purposes, Piketon, Ohio EA-1856: Conveyance of Land and Facilities at the...

  9. Title 16 USC 818 Public Lands Included in Project - Reservation...

    Open Energy Info (EERE)

    Entry (1996). Retrieved from "http:en.openei.orgwindex.php?titleTitle16USC818PublicLandsIncludedinProject-ReservationofLandsFromEntry&oldid722800" ...

  10. Vectorizing the Community Land Model (CLM) (Journal Article)...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Vectorizing the Community Land Model (CLM) Citation Details In-Document Search Title: Vectorizing the Community Land Model (CLM) In this paper we describe our...

  11. Agriculture and Land Use National Greenhouse Gas Inventory Software...

    Open Energy Info (EERE)

    Agriculture and Land Use National Greenhouse Gas Inventory Software Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Agriculture and Land Use National Greenhouse Gas...

  12. ORS Chapter 273 State Lands Generally | Open Energy Information

    Open Energy Info (EERE)

    ORS Chapter 273 State Lands GenerallyLegal Abstract Oregon statute setting forth rules and procedures related to state land. Published NA Year Signed or Took Effect...

  13. Utah Public Lands Policy Coordination Office | Open Energy Information

    Open Energy Info (EERE)

    Lands Policy Coordination Office Jump to: navigation, search Name: Governor's Public Lands Policy Coordination Office Address: 5110 State Office Building Place: Salt Lake City,...

  14. CleanEnergyProjectsonTribalLands_Project_Descriptions_072011...

    Broader source: Energy.gov (indexed) [DOE]

    CleanEnergyProjectsonTribalLandsProjectDescriptions072011.pdf More Documents & Publications CleanEnergyProjectsonTribalLandsProjectDescriptions072011.pdf...

  15. Idaho - Idaho Dept. of Lands - Application for Easement | Open...

    Open Energy Info (EERE)

    Easement. Boise, Idaho. Idaho Department of Lands. Easement Application Instructions; 4p. Retrieved from "http:en.openei.orgwindex.php?titleIdaho-IdahoDept.ofLands-A...

  16. RAPID/Geothermal/Land Use/Federal | Open Energy Information

    Open Energy Info (EERE)

    RAPIDGeothermalLand UseFederal < RAPID | Geothermal | Land Use Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk...

  17. RAPID/Geothermal/Land Access/Colorado | Open Energy Information

    Open Energy Info (EERE)

    RAPIDGeothermalLand AccessColorado < RAPID | Geothermal | Land Access Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About...

  18. RAPID/Geothermal/Land Access/Oregon | Open Energy Information

    Open Energy Info (EERE)

    RAPIDGeothermalLand AccessOregon < RAPID | Geothermal | Land Access Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk...

  19. RAPID/Geothermal/Land Access/Alaska | Open Energy Information

    Open Energy Info (EERE)

    RAPIDGeothermalLand AccessAlaska < RAPID | Geothermal | Land Access Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk...

  20. Approaches used for Clearance of Lands from Nuclear Facilities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Approaches used for Clearance of Lands from Nuclear Facilities among Several Countries: Evaluation for Regulatory Input Approaches used for Clearance of Lands from Nuclear ...