National Library of Energy BETA

Sample records for forest carbon partnership

  1. Regional Carbon Sequestration Partnerships

    Broader source: Energy.gov [DOE]

    DOE has created a network of seven Regional Carbon Sequestration Partnerships (RCSPs) to help develop the technology, infrastructure, and regulations to implement large-scale CO2 storage (also...

  2. BIG SKY CARBON SEQUESTRATION PARTNERSHIP

    SciTech Connect (OSTI)

    Susan M. Capalbo

    2004-06-30

    The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership fall into four areas: evaluation of sources and carbon sequestration sinks; development of GIS-based reporting framework; designing an integrated suite of monitoring, measuring, and verification technologies; and initiating a comprehensive education and outreach program. At the first two Partnership meetings the groundwork was put in place to provide an assessment of capture and storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research. During the third quarter, planning efforts are underway for the next Partnership meeting which will showcase the architecture of the GIS framework and initial results for sources and sinks, discuss the methods and analysis underway for assessing geological and terrestrial sequestration potentials. The meeting will conclude with an ASME workshop (see attached agenda). The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Steps have been taken to assure that the GIS-based framework is consistent among types of sinks within the Big Sky Partnership area and with the efforts of other western DOE partnerships. Efforts are also being made to find funding to include Wyoming in the coverage areas for both geological and terrestrial sinks and sources. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but all policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts begun in developing and implementing MMV technologies for geological sequestration reflect this concern. Research is also underway to identify and validate best management practices for soil C in the Partnership region, and to design a risk/cost effectiveness framework to make comparative assessments of each viable sink, taking into account economic costs, offsetting benefits, scale of sequestration opportunities, spatial and time dimensions, environmental risks, and long-term viability. Scientifically sound information on MMV is critical for public acceptance of these technologies. Two key deliverables were completed in the second quarter--a literature review/database to assess the soil carbon on rangelands, and the draft protocols, contracting options for soil carbon trading. The protocols developed for soil carbon trading are unique and provide a key component of the mechanisms that might be used to efficiently sequester GHG and reduce CO2 concentrations. While no key deliverables were due during the third quarter, progress on other deliverables is noted in the PowerPoint presentations and in this report. A series of meetings held during the second and third quarters have laid the foundations for assessing the issues surrounding carbon sequestration in this region, the need for a holistic approach to meeting energy demands and economic development potential, and the implementation of government programs or a market-based setting for soil C credits. These meetings provide a connection to stakeholders in the region and a basis on which to draw for the DOE PEIS hearings. A third Partnership meeting has been planned for August 04 in Idaho Falls; a preliminary agenda is attached.

  3. Big Sky Carbon Sequestration Partnership

    SciTech Connect (OSTI)

    Susan M. Capalbo

    2005-11-01

    The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership in Phase I fall into four areas: evaluation of sources and carbon sequestration sinks that will be used to determine the location of pilot demonstrations in Phase II; development of GIS-based reporting framework that links with national networks; designing an integrated suite of monitoring, measuring, and verification technologies and assessment frameworks; and initiating a comprehensive education and outreach program. The groundwork is in place to provide an assessment of storage capabilities for CO2 utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research agenda in Carbon Sequestration. The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Steps have been taken to assure that the GIS-based framework is consistent among types of sinks within the Big Sky Partnership area and with the efforts of other DOE regional partnerships. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but all policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts in developing and implementing MMV technologies for geological sequestration reflect this concern. Research is also underway to identify and validate best management practices for soil C in the Partnership region, and to design a risk/cost effectiveness framework to make comparative assessments of each viable sink, taking into account economic costs, offsetting benefits, scale of sequestration opportunities, spatial and time dimensions, environmental risks, and long-term viability. Scientifically sound MMV is critical for public acceptance of these technologies. Deliverables for the 7th Quarter reporting period include (1) for the geological efforts: Reports on Technology Needs and Action Plan on the Evaluation of Geological Sinks and Pilot Project Deployment (Deliverables 2 and 3), and Report on the Feasibility of Mineralization Trapping in the Snake River Plain Basin (Deliverable 14); (2) for the terrestrial efforts: Report on the Evaluation of Terrestrial Sinks and a Report of the Best Production Practices for Soil C Sequestration (Deliverables 8 and 15). In addition, the 7th Quarter activities for the Partnership included further development of the proposed activities for the deployment and demonstration phase of the carbon sequestration pilots including geological and terrestrial pilots, expansion of the Partnership to encompass regions and institutions that are complimentary to the steps we have identified, building greater collaborations with industry and stakeholders in the region, contributed to outreach efforts that spanned all partnerships, co-authorship on the Carbon Capture and Separation report, and developed a regional basis to address future energy opportunities in the region. The deliverables and activities are discussed in the following sections and appended to this report. The education and outreach efforts have resulted in a comprehensive plan which serves as a guide for implementing the outreach activities under Phase I. The public website has been expanded and integrated with the GIS carbon atlas. We have made presentations to stakeholders and policy makers including two tribal sequestration workshops, and made connections to other federal and state agencies concerned with GHG emissions, climate change, and efficient and environmental

  4. BIG SKY CARBON SEQUESTRATION PARTNERSHIP

    SciTech Connect (OSTI)

    Susan M. Capalbo

    2005-01-31

    The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership in Phase I fall into four areas: evaluation of sources and carbon sequestration sinks that will be used to determine the location of pilot demonstrations in Phase II; development of GIS-based reporting framework that links with national networks; designing an integrated suite of monitoring, measuring, and verification technologies and assessment frameworks; and initiating a comprehensive education and outreach program. The groundwork is in place to provide an assessment of storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research. Efforts are underway to showcase the architecture of the GIS framework and initial results for sources and sinks. The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Steps have been taken to assure that the GIS-based framework is consistent among types of sinks within the Big Sky Partnership area and with the efforts of other western DOE partnerships. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but all policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts in developing and implementing MMV technologies for geological sequestration reflect this concern. Research is also underway to identify and validate best management practices for soil C in the Partnership region, and to design a risk/cost effectiveness framework to make comparative assessments of each viable sink, taking into account economic costs, offsetting benefits, scale of sequestration opportunities, spatial and time dimensions, environmental risks, and long-term viability. Scientifically sound information on MMV is critical for public acceptance of these technologies.

  5. BIG SKY CARBON SEQUESTRATION PARTNERSHIP

    SciTech Connect (OSTI)

    Susan M. Capalbo

    2004-10-31

    The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership fall into four areas: evaluation of sources and carbon sequestration sinks; development of GIS-based reporting framework; designing an integrated suite of monitoring, measuring, and verification technologies; and initiating a comprehensive education and outreach program. At the first two Partnership meetings the groundwork was put in place to provide an assessment of capture and storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research. During the third quarter, planning efforts are underway for the next Partnership meeting which will showcase the architecture of the GIS framework and initial results for sources and sinks, discuss the methods and analysis underway for assessing geological and terrestrial sequestration potentials. The meeting will conclude with an ASME workshop. The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Steps have been taken to assure that the GIS-based framework is consistent among types of sinks within the Big Sky Partnership area and with the efforts of other western DOE partnerships. Efforts are also being made to find funding to include Wyoming in the coverage areas for both geological and terrestrial sinks and sources. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but all policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts begun in developing and implementing MMV technologies for geological sequestration reflect this concern. Research is also underway to identify and validate best management practices for soil C in the Partnership region, and to design a risk/cost effectiveness framework to make comparative assessments of each viable sink, taking into account economic costs, offsetting benefits, scale of sequestration opportunities, spatial and time dimensions, environmental risks, and long-term viability. Scientifically sound information on MMV is critical for public acceptance of these technologies. Two key deliverables were completed in the second quarter--a literature review/database to assess the soil carbon on rangelands, and the draft protocols, contracting options for soil carbon trading. The protocols developed for soil carbon trading are unique and provide a key component of the mechanisms that might be used to efficiently sequester GHG and reduce CO{sub 2} concentrations. While no key deliverables were due during the third quarter, progress on other deliverables is noted in the PowerPoint presentations and in this report. A series of meetings held during the second and third quarters have laid the foundations for assessing the issues surrounding carbon sequestration in this region, the need for a holistic approach to meeting energy demands and economic development potential, and the implementation of government programs or a market-based setting for soil C credits. These meetings provide a connection to stakeholders in the region and a basis on which to draw for the DOE PEIS hearings. In the fourth quarter, three deliverables have been completed, some in draft form to be revised and updated to include Wyoming. This is due primarily to some delays in funding to LANL and INEEL and the approval of a supplemental proposal to include Wyoming in much of the GIS data sets, analysis, and related materials. The de

  6. BIG SKY CARBON SEQUESTRATION PARTNERSHIP

    SciTech Connect (OSTI)

    Susan M. Capalbo

    2004-01-04

    The Big Sky Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts during the first performance period fall into four areas: evaluation of sources and carbon sequestration sinks; development of GIS-based reporting framework; designing an integrated suite of monitoring, measuring, and verification technologies; and initiating a comprehensive education and outreach program. At the first Partnership meeting the groundwork was put in place to provide an assessment of capture and storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research. The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Complementary to the efforts on evaluation of sources and sinks is the development of the Big Sky Partnership Carbon Cyberinfrastructure (BSP-CC) and a GIS Road Map for the Partnership. These efforts will put in place a map-based integrated information management system for our Partnership, with transferability to the national carbon sequestration effort. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but other policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts begun in developing and implementing MMV technologies for geological sequestration reflect this concern. Research is also underway to identify and validate best management practices for soil C in the partnership region, and to design a risk/cost effectiveness framework to make comparative assessments of each viable sink, taking into account economic costs, offsetting benefits, scale of sequestration opportunities, spatial and time dimensions, environmental risks, and long term viability. A series of meetings held in November and December, 2003, have laid the foundations for assessing the issues surrounding the implementation of a market-based setting for soil C credits. These include the impact of existing local, state, and federal permitting issues for terrestrial based carbon sequestration projects, consistency of final protocols and planning standards with national requirements, and alignments of carbon sequestration projects with existing federal and state cost-share programs. Finally, the education and outreach efforts during this performance period have resulted in a comprehensive plan which serves as a guide for implementing the outreach activities under Phase I. The primary goal of this plan is to increase awareness, understanding, and public acceptance of sequestration efforts and build support for a constituent based network which includes the initial Big Sky Partnership and other local and regional businesses and entities.

  7. BIG SKY CARBON SEQUESTRATION PARTNERSHIP

    SciTech Connect (OSTI)

    Susan M. Capalbo

    2004-06-01

    The Big Sky Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts during the second performance period fall into four areas: evaluation of sources and carbon sequestration sinks; development of GIS-based reporting framework; designing an integrated suite of monitoring, measuring, and verification technologies; and initiating a comprehensive education and outreach program. At the first two Partnership meetings the groundwork was put in place to provide an assessment of capture and storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research. The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Steps have been taken to assure that the GIS-based framework is consistent among types of sinks within the Big Sky Partnership area and with the efforts of other western DOE partnerships. Efforts are also being made to find funding to include Wyoming in the coverage areas for both geological and terrestrial sinks and sources. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but all policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts begun in developing and implementing MMV technologies for geological sequestration reflect this concern. Research is also underway to identify and validate best management practices for soil C in the partnership region, and to design a risk/cost effectiveness framework to make comparative assessments of each viable sink, taking into account economic costs, offsetting benefits, scale of sequestration opportunities, spatial and time dimensions, environmental risks, and long term viability. Scientifically sound information on MMV is critical for public acceptance of these technologies. Two key deliverables were completed this quarter--a literature review/database to assess the soil carbon on rangelands, and the draft protocols, contracting options for soil carbon trading. To date, there has been little research on soil carbon on rangelands, and since rangeland constitutes a major land use in the Big Sky region, this is important in achieving a better understanding of terrestrial sinks. The protocols developed for soil carbon trading are unique and provide a key component of the mechanisms that might be used to efficiently sequester GHG and reduce CO{sub 2} concentrations. Progress on other deliverables is noted in the PowerPoint presentations. A series of meetings held during the second quarter have laid the foundations for assessing the issues surrounding the implementation of a market-based setting for soil C credits. These meetings provide a connection to stakeholders in the region and a basis on which to draw for the DOE PEIS hearings. Finally, the education and outreach efforts have resulted in a comprehensive plan and process which serves as a guide for implementing the outreach activities under Phase I. While we are still working on the public website, we have made many presentations to stakeholders and policy makers, connections to other federal and state agencies concerned with GHG emissions, climate change, and efficient and environmentally-friendly energy production. In addition, we have laid plans for integration of our outreach efforts with the students, especially at the tribal colleges and at the universities involved in our partnership. This includes collaboration with the film and media arts departments at MSU, with outreach effort

  8. DOE's Carbon Sequestration Partnership Program Adds Canadian...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE's Carbon Sequestration Partnership Program Adds Canadian Provinces DOE's Carbon Sequestration Partnership Program Adds Canadian Provinces February 16, 2005 - 10:14am Addthis...

  9. Big Sky Carbon Sequestration Partnership

    SciTech Connect (OSTI)

    Susan Capalbo

    2005-12-31

    The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership in Phase I are organized into four areas: (1) Evaluation of sources and carbon sequestration sinks that will be used to determine the location of pilot demonstrations in Phase II; (2) Development of GIS-based reporting framework that links with national networks; (3) Design of an integrated suite of monitoring, measuring, and verification technologies, market-based opportunities for carbon management, and an economic/risk assessment framework; (referred to below as the Advanced Concepts component of the Phase I efforts) and (4) Initiation of a comprehensive education and outreach program. As a result of the Phase I activities, the groundwork is in place to provide an assessment of storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that complements the ongoing DOE research agenda in Carbon Sequestration. The geology of the Big Sky Carbon Sequestration Partnership Region is favorable for the potential sequestration of enormous volume of CO{sub 2}. The United States Geological Survey (USGS 1995) identified 10 geologic provinces and 111 plays in the region. These provinces and plays include both sedimentary rock types characteristic of oil, gas, and coal productions as well as large areas of mafic volcanic rocks. Of the 10 provinces and 111 plays, 1 province and 4 plays are located within Idaho. The remaining 9 provinces and 107 plays are dominated by sedimentary rocks and located in the states of Montana and Wyoming. The potential sequestration capacity of the 9 sedimentary provinces within the region ranges from 25,000 to almost 900,000 million metric tons of CO{sub 2}. Overall every sedimentary formation investigated has significant potential to sequester large amounts of CO{sub 2}. Simulations conducted to evaluate mineral trapping potential of mafic volcanic rock formations located in the Idaho province suggest that supercritical CO{sub 2} is converted to solid carbonate mineral within a few hundred years and permanently entombs the carbon. Although MMV for this rock type may be challenging, a carefully chosen combination of geophysical and geochemical techniques should allow assessment of the fate of CO{sub 2} in deep basalt hosted aquifers. Terrestrial carbon sequestration relies on land management practices and technologies to remove atmospheric CO{sub 2} where it is stored in trees, plants, and soil. This indirect sequestration can be implemented today and is on the front line of voluntary, market-based approaches to reduce CO{sub 2} emissions. Initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil Carbon (C) on rangelands, and forested, agricultural, and reclaimed lands. Rangelands can store up to an additional 0.05 mt C/ha/yr, while the croplands are on average four times that amount. Estimates of technical potential for soil sequestration within the region in cropland are in the range of 2.0 M mt C/yr over 20 year time horizon. This is equivalent to approximately 7.0 M mt CO{sub 2}e/yr. The forestry sinks are well documented, and the potential in the Big Sky region ranges from 9-15 M mt CO{sub 2} equivalent per year. Value-added benefits include enhanced yields, reduced erosion, and increased wildlife habitat. Thus the terrestrial sinks provide a viable, environmentally beneficial, and relatively low cost sink that is available to sequester C in the current time frame. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but all policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts in developing and implementing MMV technologies for geological and terrestrial sequestration re

  10. SOUTHWEST REGIONAL PARTNERSHIP ON CARBON SEQUESTRATION

    SciTech Connect (OSTI)

    Brian McPherson

    2005-08-01

    The Southwest Partnership on Carbon Sequestration completed several more tasks during the period of October 1, 2004--March 31, 2005. The main objective of the Southwest Partnership project is to achieve an 18% reduction in carbon intensity by 2012. Action plans for possible Phase 2 carbon sequestration pilot tests in the region are completed, and a proposal was developed and submitted describing how the Partnership may develop and carry out appropriate pilot tests. The content of this report focuses on Phase 1 objectives completed during this reporting period.

  11. SOUTHWEST REGIONAL PARTNERSHIP ON CARBON SEQUESTRATION

    SciTech Connect (OSTI)

    Brian McPherson; Rick Allis; Barry Biediger; Joel Brown; Jim Cappa; George Guthrie; Richard Hughes; Eugene Kim; Robert Lee; Dennis Leppin; Charles Mankin; Orman Paananen; Rajesh Pawar; Tarla Peterson; Steve Rauzi; Jerry Stuth; Genevieve Young

    2004-11-01

    The Southwest Partnership Region includes six whole states, including Arizona, Colorado, Kansas, New Mexico, Oklahoma, and Utah, roughly one-third of Texas, and significant portions of adjacent states. The Partnership comprises a large, diverse group of expert organizations and individuals specializing in carbon sequestration science and engineering, as well as public policy and outreach. The main objective of the Southwest Partnership project is to achieve an 18% reduction in carbon intensity by 2012. The Partnership made great progress in this first year. Action plans for possible Phase II carbon sequestration pilot tests in the region are almost finished, including both technical and non-technical aspects necessary for developing and carrying out these pilot tests. All partners in the Partnership are taking an active role in evaluating and ranking optimum sites and technologies for capture and storage of CO{sub 2} in the Southwest Region. We are identifying potential gaps in all aspects of potential sequestration deployment issues.

  12. Southeast Regional Carbon Sequestration Partnership

    SciTech Connect (OSTI)

    Kenneth J. Nemeth

    2006-08-30

    The Southeast Regional Carbon Sequestration Partnership's (SECARB) Phase I program focused on promoting the development of a framework and infrastructure necessary for the validation and commercial deployment of carbon sequestration technologies. The SECARB program, and its subsequent phases, directly support the Global Climate Change Initiative's goal of reducing greenhouse gas intensity by 18 percent by the year 2012. Work during the project's two-year period was conducted within a ''Task Responsibility Matrix''. The SECARB team was successful in accomplishing its tasks to define the geographic boundaries of the region; characterize the region; identify and address issues for technology deployment; develop public involvement and education mechanisms; identify the most promising capture, sequestration, and transport options; and prepare action plans for implementation and technology validation activity. Milestones accomplished during Phase I of the project are listed below: (1) Completed preliminary identification of geographic boundaries for the study (FY04, Quarter 1); (2) Completed initial inventory of major sources and sinks for the region (FY04, Quarter 2); (3) Completed initial development of plans for GIS (FY04, Quarter 3); (4) Completed preliminary action plan and assessment for overcoming public perception issues (FY04, Quarter 4); (5) Assessed safety, regulatory and permitting issues (FY05, Quarter 1); (6) Finalized inventory of major sources/sinks and refined GIS algorithms (FY05, Quarter 2); (7) Refined public involvement and education mechanisms in support of technology development options (FY05, Quarter 3); and (8) Identified the most promising capture, sequestration and transport options and prepared action plans (FY05, Quarter 4).

  13. Research Report Forests and carbon

    E-Print Network [OSTI]

    , baseline, carbon, climate change mitigation, forestry, quality assurance, sequestration. FCRP013/FCResearch Report Forests and carbon: a review of additionality #12;#12;Forests and carbon: a review. ISBN 978-0-85538-816-4 Valatin, G. (2011). Forests and carbon: a review of additionality. Forestry

  14. Carbon Fiber Consortium | Partnerships | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carbon Fiber Consortium SHARE Carbon Fiber Consortium Oak Ridge Carbon Fiber Composites Consortium The Oak Ridge Carbon Fiber Composites Consortium was established in 2011 to...

  15. WEST COAST REGIONAL CARBON SEQUESTRATION PARTNERSHIP

    SciTech Connect (OSTI)

    Larry Myer; Terry Surles; Kelly Birkinshaw

    2004-01-01

    The West Coast Regional Carbon Sequestration Partnership is one of seven partnerships which have been established by the US Department of Energy (DOE) to evaluate carbon dioxide capture, transport and sequestration (CT&S) technologies best suited for different regions of the country. The West Coast Region comprises Arizona, California, Nevada, Oregon, Washington, and the North Slope of Alaska. Led by the California Energy Commission, the West Coast Partnership is a consortium of over thirty five organizations, including state natural resource and environmental protection agencies; national labs and universities; private companies working on CO{sub 2} capture, transportation, and storage technologies; utilities; oil and gas companies; nonprofit organizations; and policy/governance coordinating organizations. In an eighteen month Phase I project, the Partnership will evaluate both terrestrial and geologic sequestration options. Work will focus on five major objectives: (1) Collect data to characterize major CO{sub 2} point sources, the transportation options, and the terrestrial and geologic sinks in the region, and compile and organize this data via a geographic information system (GIS) database; (2) Address key issues affecting deployment of CT&S technologies, including storage site permitting and monitoring, injection regulations, and health and environmental risks (3) Conduct public outreach and maintain an open dialogue with stakeholders in CT&S technologies through public meetings, joint research, and education work (4) Integrate and analyze data and information from the above tasks in order to develop supply curves and cost effective, environmentally acceptable sequestration options, both near- and long-term (5) Identify appropriate terrestrial and geologic demonstration projects consistent with the options defined above, and create action plans for their safe and effective implementation A kickoff meeting for the West Coast Partnership was held on Sept 30-Oct.1. Contracts were then put into place with twelve organizations which will carry out the technical work required to meet Partnership objectives.

  16. MIDWEST REGIONAL CARBON SEQUESTRATION PARTNERSHIP (MRCSP)

    SciTech Connect (OSTI)

    David Ball; Judith Bradbury; Rattan Lal; Larry Wickstrom; Neeraj Gupta; Robert Burns; Bob Dahowski

    2004-04-30

    This is the first semiannual report for Phase I of the Midwest Carbon Sequestration Partnership (MRCSP). The project consists of nine tasks to be conducted over a two year period that started in October 2003. The makeup of the MRCSP and objectives are described. Progress on each of the active Tasks is also described and where possible, for those Tasks at some point of completion, a summary of results is presented.

  17. Southeast Regional Carbon Sequestration Partnership (SECARB)

    SciTech Connect (OSTI)

    Kenneth J. Nemeth

    2005-09-30

    The Southeast Regional Carbon Sequestration Partnership (SECARB) is a diverse partnership covering eleven states involving the Southern States Energy Board (SSEB) an interstate compact; regulatory agencies and/or geological surveys from member states; the Electric Power Research Institute (EPRI); academic institutions; a Native American enterprise; and multiple entities from the private sector. Figure 1 shows the team structure for the partnership. In addition to the Technical Team, the Technology Coalition, an alliance of auxiliary participants, in the project lends yet more strength and support to the project. The Technology Coalition, with its diverse representation of various sectors, is integral to the technical information transfer, outreach, and public perception activities of the partnership. The Technology Coalition members, shown in Figure 2, also provide a breadth of knowledge and capabilities in the multiplicity of technologies needed to assure a successful outcome to the project and serve as an extremely important asset to the partnership. The eleven states comprising the multi-state region are: Alabama; Arkansas; Florida; Georgia; Louisiana; Mississippi; North Carolina; South Carolina; Tennessee; Texas; and Virginia. The states making up the SECARB area are illustrated in Figure 3. The primary objectives of the SECARB project include: (1) Supporting the U.S. Department of Energy (DOE) Carbon Sequestration Program by promoting the development of a framework and infrastructure necessary for the validation and deployment of carbon sequestration technologies. This requires the development of relevant data to reduce the uncertainties and risks that are barriers to sequestration, especially for geologic storage in the SECARB region. Information and knowledge are the keys to establishing a regional carbon dioxide (CO{sub 2}) storage industry with public acceptance. (2) Supporting the President's Global Climate Change Initiative with the goal of reducing greenhouse gas intensity by 18 percent by 2012. A corollary to the first objective, this objective requires the development of a broad awareness across government, industry, and the general public of sequestration issues and establishment of the technological and legal frameworks necessary to achieve the President's goal. The information developed by the SECARB team will play a vital role in achieving the President's goal for the southeastern region of the United States. (3) Evaluating options and potential opportunities for regional CO{sub 2} sequestration. This requires characterization of the region regarding the presence and location of sources of greenhouse gases (GHGs), primarily CO{sub 2}, the presence and location of potential carbon sinks and geological parameters, geographical features and environmental concerns, demographics, state and interstate regulations, and existing infrastructure.

  18. Southwest Regional Partnership on Carbon Sequestration

    SciTech Connect (OSTI)

    Brian McPherson

    2006-04-01

    The Southwest Partnership on Carbon Sequestration completed several more tasks during the period of April 1, 2005-September 30, 2005. The main objective of the Southwest Partnership project is to evaluate and demonstrate the means for achieving an 18% reduction in carbon intensity by 2012. While Phase 2 planning is well under way, the content of this report focuses exclusively on Phase 1 objectives completed during this reporting period. Progress during this period was focused in the three areas: geological carbon storage capacity in New Mexico, terrestrial sequestration capacity for the project area, and the Integrated Assessment Model efforts. The geologic storage capacity of New Mexico was analyzed and Blanco Mesaverde (which extends into Colorado) and Basin Dakota Pools were chosen as top two choices for the further analysis for CO{sub 2} sequestration in the system dynamics model preliminary analysis. Terrestrial sequestration capacity analysis showed that the four states analyzed thus far (Arizona, Colorado, New Mexico and Utah) have relatively limited potential to sequester carbon in terrestrial systems, mainly due to the aridity of these areas, but the large land area offered could make up for the limited capacity per hectare. Best opportunities were thought to be in eastern Colorado/New Mexico. The Integrated Assessment team expanded the initial test case model to include all New Mexico sinks and sources in a new, revised prototype model in 2005. The allocation mechanism, or ''String of Pearls'' concept, utilizes potential pipeline routes as the links between all combinations of the source to various sinks. This technique lays the groundwork for future, additional ''String of Pearls'' analyses throughout the SW Partnership and other regions as well.

  19. Southwest Regional Partnership on Carbon Sequestration

    SciTech Connect (OSTI)

    Brian McPherson

    2006-03-31

    The Southwest Partnership on Carbon Sequestration completed its Phase I program in December 2005. The main objective of the Southwest Partnership Phase I project was to evaluate and demonstrate the means for achieving an 18% reduction in carbon intensity by 2012. Many other goals were accomplished on the way to this objective, including (1) analysis of CO{sub 2} storage options in the region, including characterization of storage capacities and transportation options, (2) analysis and summary of CO{sub 2} sources, (3) analysis and summary of CO{sub 2} separation and capture technologies employed in the region, (4) evaluation and ranking of the most appropriate sequestration technologies for capture and storage of CO{sub 2} in the Southwest Region, (5) dissemination of existing regulatory/permitting requirements, and (6) assessing and initiating public knowledge and acceptance of possible sequestration approaches. Results of the Southwest Partnership's Phase I evaluation suggested that the most convenient and practical ''first opportunities'' for sequestration would lie along existing CO{sub 2} pipelines in the region. Action plans for six Phase II validation tests in the region were developed, with a portfolio that includes four geologic pilot tests distributed among Utah, New Mexico, and Texas. The Partnership will also conduct a regional terrestrial sequestration pilot program focusing on improved terrestrial MMV methods and reporting approaches specific for the Southwest region. The sixth and final validation test consists of a local-scale terrestrial pilot involving restoration of riparian lands for sequestration purposes. The validation test will use desalinated waters produced from one of the geologic pilot tests. The Southwest Regional Partnership comprises a large, diverse group of expert organizations and individuals specializing in carbon sequestration science and engineering, as well as public policy and outreach. These partners include 21 state government agencies and universities, five major electric utility companies, seven oil, gas and coal companies, three federal agencies, the Navajo Nation, several NGOs, and the Western Governors Association. This group is continuing its work in the Phase II Validation Program, slated to conclude in 2009.

  20. Regional partnerships lead US carbon sequestration efforts

    SciTech Connect (OSTI)

    NONE

    2007-07-01

    During the sixth annual conference on carbon capture and sequestration, 7-10 May 2007, a snapshot was given of progress on characterization efforts and field validation tests being carried out through the Carbon Sequestration Regional Partnership Initiative. The initiative is built on the recognition that geographical differences in fossil fuel/energy use and CO{sub 2} storage sinks across North America will dictate approaches to carbon sequestration. The first characterization phase (2003-2005) identified regional opportunities and developed frameworks to validate and deploy technologies. The validation phase (2005-2009) includes 10 enhanced oil recovery/enhanced gas recovery field tests in progress in Alberta and six US states and is applying lessons learned from these operations to sequestration in unmineable coal seams. Storage in saline formations are the focus of 10 field tests, and terrestrial sequestration will be studied in 11 other projects. 1 tab., 3 photos.

  1. This Issue: Forest Carbon Stocks and Flows

    E-Print Network [OSTI]

    Policy Framework Managing Forests because Carbon Matters: Integrating Energy, Products, and Land's Note M.T. Goergen Jr. SAF TASK FORCE REPORT Managing Forests because Carbon Matters: Integrating EnergyThis Issue: Forest Carbon Stocks and Flows Climate­Forest Interactions Biomass Use and Feedstock

  2. The Midwest Regional Carbon Sequestration Partnership (MRCSP)

    SciTech Connect (OSTI)

    James J. Dooley; Robert Dahowski; Casie Davidson

    2005-12-01

    This final report summarizes the Phase I research conducted by the Midwest regional Carbon Sequestration Partnership (MRCSP). The Phase I effort began in October 2003 and the project period ended on September 31, 2005. The MRCSP is a public/private partnership led by Battelle with the mission of identifying the technical, economic, and social issues associated with implementation of carbon sequestration technologies in its seven state geographic region (Indiana, Kentucky, Maryland, Michigan, Ohio, Pennsylvania, and West Virginia) and identifying viable pathways for their deployment. It is one of seven partnerships that together span most of the U.S. and parts of Canada that comprise the U.S. Department of Energy's (DOE's) Regional Carbon Sequestration Program led by DOE's national Energy Technology Laboratory (NETL). The MRCSP Phase I research was carried out under DOE Cooperative Agreement No. DE-FC26-03NT41981. The total value of Phase I was $3,513,513 of which the DOE share was $2,410,967 or 68.62%. The remainder of the cost share was provided in varying amounts by the rest of the 38 members of MRCSP's Phase I project. The next largest cost sharing participant to DOE in Phase I was the Ohio Coal Development Office within the Ohio Air Quality Development Authority (OCDO). OCDO's contribution was $100,000 and was contributed under Grant Agreement No. CDO/D-02-17. In this report, the MRCSP's research shows that the seven state MRCSP region is a major contributor to the U. S. economy and also to total emissions of CO2, the most significant of the greenhouse gases thought to contribute to global climate change. But, the research has also shown that the region has substantial resources for sequestering carbon, both in deep geological reservoirs (geological sequestration) and through improved agricultural and land management practices (terrestrial sequestration). Geological reservoirs, especially deep saline reservoirs, offer the potential to permanently store CO2 for literally 100s of years even if all the CO2 emissions from the region's large point sources were stored there, an unlikely scenario under any set of national carbon emission mitigation strategies. The terrestrial sequestration opportunities in the region have the biophysical potential to sequester up to 20% of annual emissions from the region's large point sources of CO2. This report describes the assumptions made and methods employed to arrive at the results leading to these conclusions. It also describes the results of analyses of regulatory issues in the region affecting the potential for deployment of sequestration technologies. Finally, it describes the public outreach and education efforts carried out in Phase I including the creation of a web site dedicated to the MRCSP at www.mrcsp.org.

  3. Annual meeting of Big Sky Carbon Sequestration Partnership to be held Oct. 28, 29 | ...

    E-Print Network [OSTI]

    ... Annual meeting of Big Sky Carbon Sequestration Partnership to be held ... meeting of the Big Sky Carbon Sequestration Partnership to be held ... science policy and technology of carbon capture and storage (CCS). Panels ...

  4. Forest Carbon Partnership Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable Urban Transport JumpFlowood,Pevafersa JV Jump to:BioFordFords,

  5. SOUTHEAST REGIONAL CARBON SEQUESTRATION PARTNERSHIP (SECARB)

    SciTech Connect (OSTI)

    Kenneth J. Nemeth

    2004-09-01

    The Southeast Regional Carbon Sequestration Partnership (SECARB) is on schedule and within budget projections for the work completed during the first year of its two year program. Work during the semiannual period (third and fourth quarter) of the project (April 1--September 30, 2004) was conducted within a ''Task Responsibility Matrix.'' Under Task 1.0 Define Geographic Boundaries of the Region, Texas and Virginia were added during the second quarter of the project and no geographical changes occurred during the third or fourth quarter of the project. Under Task 2.0 Characterize the Region, general mapping and screening of sources and sinks has been completed, with integration and Geographical Information System (GIS) mapping ongoing. The first step focused on the macro level characterization of the region. Subsequent characterization will focus on smaller areas having high sequestration potential. Under Task 3.0 Identify and Address Issues for Technology Deployment, SECARB has completed a preliminary assessment of safety, regulatory, permitting, and accounting frameworks within the region to allow for wide-scale deployment of promising terrestrial and geologic sequestration approaches. Under Task 4.0 Develop Public Involvement and Education Mechanisms, SECARB has conducted a survey and focus group meeting to gain insight into approaches that will be taken to educate and involve the public. Task 5.0 and 6.0 will be implemented beginning October 1, 2004. Under Task 5.0 Identify the Most Promising Capture, Sequestration, and Transport Options, SECARB will evaluate findings from work performed during the first year and shift the focus of the project team from region-wide mapping and characterization to a more detailed screening approach designed to identify the most promising opportunities. Under Task 6.0 Prepare Action Plans for Implementation and Technology Validation Activity, the SECARB team will develop an integrated approach to implementing and setting up measurement, monitoring and verification (MMV) programs for the most promising opportunities. During this semiannual period special attention was provided to Texas and Virginia, which were added to the SECARB region, to ensure a smooth integration of activities with the other 9 states. Milestones completed and submitted during the third and fourth quarter included: Q3-FY04--Complete initial development of plans for GIS; and Q4-FYO4--Complete preliminary action plan and assessment for overcoming public perception issues.

  6. Carbon calculator tracks the climate benefits of managed private forests

    E-Print Network [OSTI]

    Stewart, William C; Sharma, Benktesh D

    2015-01-01

    to fossil fuel Regenerated forest energy used in the LoggingManaging forests because carbon matters: Integrating energy,Energy from post-consumer residues relevant private forest

  7. Increasing carbon dioxideIncreasing carbon dioxide & its effect on forest& its effect on forest

    E-Print Network [OSTI]

    Gray, Matthew

    ecosystem's natural capacity toA forest ecosystem's natural capacity to capture energy, capture energy's natural capacity toA forest ecosystem's natural capacity to capture energy, capture energy, sustain life10/13/2010 1 Increasing carbon dioxideIncreasing carbon dioxide & its effect on forest& its effect

  8. Soil Carbon Accumulation During Temperate Forest Succession

    E-Print Network [OSTI]

    Grogan, Paul

    K7L 3N6, Canada ABSTRACT Carbon sequestration in soils that have previously beendepletedoforganic the soil carbon sequestration potential of such lands by sampling adjacent mature forest and agricultural abandonment is more important than soil type in determining the potential magnitude of carbon sequestration

  9. Carbon calculator tracks the climate benefits of managed private forests

    E-Print Network [OSTI]

    Stewart, William C; Sharma, Benktesh D

    2015-01-01

    forests provide more carbon sequestration benefits than let-the relative carbon sequestration benefits of let-growlife cycle carbon sequestration benefits, averaged over 120,

  10. Partnership Logging Accidents Cornelis de Hoop, LA Forest Products Lab

    E-Print Network [OSTI]

    , · Sonny Mills, LA Dept. of Labor · Greg Honaker, OSHA #12;OSHA -- LA Logging Council Strategic Partnership startup procedures. · Safe maintenance & repair procedures. · Safe work flow. · Minimize risk to fellers

  11. Biomass Chronosequences of United States Forests: Implications for Carbon Storage

    E-Print Network [OSTI]

    Lichstein, Jeremy W.

    Management and Carbon Sequestration Forests account for a large fraction of the carbon stored in global soils for forest management aimed at carbon sequestration is controversial. On the one hand, logging diminishes of succession (Peet 1981, 1992; Shugart 1984). In the context of forest management aimed at carbon sequestration

  12. Big Sky Carbon Sequestration Partnership | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin: EnergyYorkColoradoBelcherCarbon Sequestration Partnership Jump

  13. Spring 2012 Denman Forestry Issues Series presents: Role of Forests and Forest Products in Carbon Mitigation

    E-Print Network [OSTI]

    Brown, Sally

    and Concerns "Pursuing Carbon and Forest Sustainability in Forest Biomass Energy Production" Craig PartridgeSpring 2012 Denman Forestry Issues Series presents: Role of Forests and Forest Products in Carbon Mitigation and Energy Independence May 15, 2012, 1-5:30 p.m., NHS Hall at CUH, UW Botanic Gardens School

  14. Carbon Sequestration Atlas and Interactive Maps from the Southwest Regional Partnership on Carbon Sequestration

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    McPherson, Brian

    In November of 2002, DOE announced a global climate change initiative involving joint government-industry partnerships working together to find sensible, low cost solutions for reducing GHG emissions. As a result, seven regional partnerships were formed; the Southwest Regional Partnership on Carbon Sequestration (SWP) is one of those. These groups are utilizing their expertise to assess sequestration technologies to capture carbon emissions, identify and evaluate appropriate storage locations, and engage a variety of stakeholders in order to increase awareness of carbon sequestration. Stakeholders in this project are made up of private industry, NGOs, the general public, and government entities. There are a total of 44 current organizations represented in the partnership including electric utilities, oil and gas companies, state governments, universities, NGOs, and tribal nations. The SWP is coordinated by New Mexico Tech and encompasses New Mexico, Arizona, Colorado, Oklahoma, Utah, and portions of Kansas, Nevada, Texas, and Wyoming. Field test sites for the region are located in New Mexico (San Juan Basin), Utah (Paradox Basin), and Texas (Permian Basin).[Taken from the SWP C02 Sequestration Atlas] The SWP makes available at this website their CO2 Sequestration Atlas and an interactive data map.

  15. Increasing carbon nanotube forest density

    E-Print Network [OSTI]

    McCarthy, Alexander P

    2014-01-01

    The outstanding mechanical, electrical, thermal, and morphological properties of individual carbon nanotubes (CNTs) open up exciting potential applications in a wide range of fields. One such application is replacing the ...

  16. Partnerships

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid you notHeatMaRIEdioxideUserPartnerships Partnerships Strategic

  17. DENMAN FORESTRY ISSUES SERIES Role of Forests and Forest Products in Carbon Mitigation

    E-Print Network [OSTI]

    Brown, Sally

    1 DENMAN FORESTRY ISSUES SERIES Role of Forests and Forest Products in Carbon Mitigation and Energy Professor in Sustainable Resource Sciences, UW School of Environmental and Forest Sciences PARTICIPANTS Tom Gower ­ Professor, Department of Forest Ecology and Management, University of Wisconsin,Madison, WI Rick

  18. Forest Carbon and Biomass Energy – LCA Issues and Challenges

    Office of Energy Efficiency and Renewable Energy (EERE)

    Breakout Session 2D—Building Market Confidence and Understanding II: Carbon Accounting and Woody Biofuels Forest Carbon and Biomass Energy – LCA Issues and Challenges Reid Miner, Vice President, NCASI

  19. Carbon dioxide emission during forest fires ignited by lightning

    E-Print Network [OSTI]

    Pelc, Magdalena

    2009-01-01

    In this paper we developed the model for the carbon dioxide emission from forest fire. The master equation for the spreading of the carbon dioxide to atmosphere is the hyperbolic diffusion equation. In the paper we study forest fire ignited by lightning. In that case the fores fire has the well defined front which propagates with finite velocity.

  20. Carbon dioxide emission during forest fires ignited by lightning

    E-Print Network [OSTI]

    Magdalena Pelc; Radoslaw Osuch

    2009-03-31

    In this paper we developed the model for the carbon dioxide emission from forest fire. The master equation for the spreading of the carbon dioxide to atmosphere is the hyperbolic diffusion equation. In the paper we study forest fire ignited by lightning. In that case the fores fire has the well defined front which propagates with finite velocity.

  1. Superhydrophobic Carbon Nanotube Forests Kenneth K. S. Lau*1

    E-Print Network [OSTI]

    (PTFE) coating on the surface of the nanotubes. Superhydrophobicity is achieved down to the microscopic functionalization of vertically aligned carbon nanotubes with a non-wetting polytetrafluoroethylene (PTFE) coating, our PTFE-coated carbon nanotube forests aim to mimic nature's design. By growing a forest of nanotube

  2. Increasing carbon storage in intact African tropical forests

    E-Print Network [OSTI]

    Malhi, Yadvinder

    to predictions of future levels of atmospheric carbon dioxide1,2 . The role of tropical forests is critical dioxide concentrations, may be the cause of the increase in carbon stocks13 , as some theory14 and models2 with estimates of fossil fuel emissions, ocean carbon fluxes and carbon released from land-use change, indicate

  3. Influence of stand age on the magnitude and seasonality of carbon fluxes in Canadian forests

    E-Print Network [OSTI]

    2012-01-01

    seasons lead to less carbon sequestration by a subalpineboreal forests to global carbon sequestration (Kurz et al. ,off- set point when carbon sequestration equals carbon loss

  4. Southwest Regional Partnership on Carbon Sequestration Phase II

    SciTech Connect (OSTI)

    James Rutledge

    2011-02-01

    The Southwest Regional Partnership (SWP) on Carbon Sequestration designed and deployed a medium-scale field pilot test of geologic carbon dioxide (CO2) sequestration in the Aneth oil field. Greater Aneth oil field, Utah's largest oil producer, was discovered in 1956 and has produced over 455 million barrels of oil (72 million m3). Located in the Paradox Basin of southeastern Utah, Greater Aneth is a stratigraphic trap producing from the Pennsylvanian Paradox Formation. Because it represents an archetype oil field of the western U.S., Greater Aneth was selected as one of three geologic pilots to demonstrate combined enhanced oil recovery (EOR) and CO2 sequestration under the auspices of the SWP on Carbon Sequestration, sponsored by the U.S. Department of Energy. The pilot demonstration focuced on the western portion of the Aneth Unit as this area of the field was converted from waterflood production to CO2 EOR starting in late 2007. The Aneth Unit is in the northwestern part of the field and has produced 149 million barrels (24 million m3) of the estimated 450 million barrels (71.5 million m3) of the original oil in place - a 33% recovery rate. The large amount of remaining oil makes the Aneth Unit ideal to demonstrate both CO2 storage capacity and EOR by CO2 flooding. This report summarizes the geologic characterization research, the various field monitoring tests, and the development of a geologic model and numerical simulations conducted for the Aneth demonstration project. The Utah Geological Survey (UGS), with contributions from other Partners, evaluated how the surface and subsurface geology of the Aneth Unit demonstration site will affect sequestration operations and engineering strategies. The UGS-research for the project are summarized in Chapters 1 through 7, and includes (1) mapping the surface geology including stratigraphy, faulting, fractures, and deformation bands, (2) describing the local Jurassic and Cretaceous stratigraphy, (3) mapping the Desert Creek zone reservoir, Gothic seal, and overlying aquifers, (4) characterizing the depositional environments and diagenetic events that produced significant reservoir heterogeneity, (5) describing the geochemical, petrographic, and geomechanical properties of the seal to determine the CO2 or hydrocarbon column it could support, and (6) evaluating the production history to compare primary production from vertical and horizontal wells, and the effects of waterflood and wateralternating- gas flood programs. The field monitoring demonstrations were conducted by various Partners including New Mexico Institute of Mining and Technology, University of Utah, National Institute of Advanced Industrial Science and Technology, Japan, Los Alamos National Laboratory and Cambridge Geosciences. The monitoring tests are summarized in Chapters 8 through 12, and includes (1) interwell tracer studies during water- and CO2-flood operations to characterize tracer behavoirs in anticipation of CO2-sequestration applications, (2) CO2 soil flux monitoring to measure background levels and variance and assess the sensitivity levels for CO2 surface monitoring, (3) testing the continuous monitoring of self potential as a means to detect pressure anomalies and electrochemical reaction due to CO2 injection, (4) conducting time-lapse vertical seismic profiling to image change near a CO2 injection well, and (5) monitoring microseismicity using a downhole string of seismic receivers to detect fracture slip and deformation associated with stress changes. Finally, the geologic modeling and numerical simulation study was conducted by researcher at the University of Utah. Chapter 13 summarizes their efforts which focused on developing a site-specific geologic model for Aneth to better understand and design CO2 storage specifically tailored to oil reservoirs.

  5. ORIGINAL PAPER Changes in carbon density for three old-growth forests

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    a living laboratory for studying forest carbon sequestration under natural environmental conditions that forest landscapes on Changbai Mountain are indeed carbon sinks. Keywords Carbon sequestration . China provide baselines that reveal the potential for continued carbon sequestration in many places where

  6. A Review of the World Bank Forest Carbon Partnership Facility...

    Open Energy Info (EERE)

    This working paper includes new analyses of the six R-PPs recently submitted by Argentina, Costa Rica, Kenya, Nepal, Republic of Congo and Tanzania for formal consideration...

  7. Carbon fluxes and storage in forests and landscapes

    E-Print Network [OSTI]

    Turner, Monica G.

    , as they store 45 % of the terrestrial carbon and account for ~50 % of soil calbon sequestration (Bonan 2008Chapter 6 Carbon fluxes and storage in forests and landscapes Jiquan Chen, Ranjeet John, Ge Sun this chapter with a discussion of the major carbon fluxes (e.g., gross primary ploductlon, ecosystem

  8. Historical forest baselines reveal potential for continued carbon sequestration

    E-Print Network [OSTI]

    Mladenoff, David

    Historical forest baselines reveal potential for continued carbon sequestration Jeanine M-based studies suggest that land-use history is a more important driver of carbon sequestration in these systems agricultural lands are being promoted as important avenues for future carbon sequestration (8). But the degree

  9. Isotopic composition of carbon dioxide from a boreal forest fire: Inferring carbon loss from measurements and modeling

    E-Print Network [OSTI]

    Schuur, Edward A. G; Trumbore, Susan E; Mack, Michelle C; Harden, Jennifer W

    2003-01-01

    emissions from Canadian forest fires, 1959 – 1999, Can. J.and O. N. Krankina, Forest fires in Russia: Carbon dioxideDIOXIDE FROM A BOREAL FOREST FIRE Park, R. , and S. Epstein,

  10. Remote estimation of carbon dioxide uptake by a Mediterranean forest

    E-Print Network [OSTI]

    Garbulsky, Martín

    Remote estimation of carbon dioxide uptake by a Mediterranean forest M A R T I´ N F. G A R B U L Science and Environment, University of Tuscia, 01100 Viterbo, Italy Abstract The estimation of the carbon of the ecology of global change. Current remote sensing methodologies for estimating gross primary productivity

  11. A pre-publication version of Carbon Trends in U.S. forestlands: a context for the role of soils in forest carbon sequestration. The Potential of U.S. Forest Soils to Sequester Carbon. Chapter 3

    E-Print Network [OSTI]

    in forest carbon sequestration. The Potential of U.S. Forest Soils to Sequester Carbon. Chapter 3 in: Kimble-45. Carbon Trends in U.S. Forestlands: A Context for the Role of Soils in Forest Carbon Sequestration Linda SA pre-publication version of Carbon Trends in U.S. forestlands: a context for the role of soils

  12. MINIMUM COST STRATEGIES FOR SEQUESTERING CARBON IN FORESTS Darius M. Adams

    E-Print Network [OSTI]

    McCarl, Bruce A.

    MINIMUM COST STRATEGIES FOR SEQUESTERING CARBON IN FORESTS Darius M. Adams Ralph J. Alig Bruce A the costs of meeting explicit targets for increments of carbon sequestered in forests when both forest management decisions and the area of forests can be varied. Costs are estimated as welfare losses in markets

  13. Pursuing Carbon and ForestPursuing Carbon and Forest SustainabilitySustainability

    E-Print Network [OSTI]

    Brown, Sally

    Biomass Energy ProductionIn Forest Biomass Energy Production University of WashingtonCommissioner of Public Lands PeterPeter GoldmarkGoldmark''ss Forest Biomass Energy Initiative Pilot Projects 2009Pilot BioaviationBioaviation Fuel 2011Fuel 2011 #12;3 Forest Biomass Energy InitiativeForest Biomass Energy

  14. FOREST-AIR FLUXES OF CARBON, WATER AND ENERGY OVER NON-FLAT TERRAIN

    E-Print Network [OSTI]

    Lee, Xuhui

    FOREST-AIR FLUXES OF CARBON, WATER AND ENERGY OVER NON-FLAT TERRAIN XUHUI LEE and XINZHANG HU-air exchange of carbon, water, and energy was conducted at a mid-latitude, mixed forest on non-flat terrain to address this question, we conducted a field experiment on energy and carbon exchanges in a mixed forest

  15. Carbon sequestration, optimum forest rotation and their environmental impact

    SciTech Connect (OSTI)

    Kula, Erhun, E-mail: erhun.kula@bahcesehir.edu.tr [Department of Economics, Bahcesehir University, Besiktas, Istanbul (Turkey); Gunalay, Yavuz, E-mail: yavuz.gunalay@bahcesehir.edu.tr [Department of Business Studies, Bahcesehir University, Besiktas, Istanbul (Turkey)

    2012-11-15

    Due to their large biomass forests assume an important role in the global carbon cycle by moderating the greenhouse effect of atmospheric pollution. The Kyoto Protocol recognises this contribution by allocating carbon credits to countries which are able to create new forest areas. Sequestrated carbon provides an environmental benefit thus must be taken into account in cost-benefit analysis of afforestation projects. Furthermore, like timber output carbon credits are now tradable assets in the carbon exchange. By using British data, this paper looks at the issue of identifying optimum felling age by considering carbon sequestration benefits simultaneously with timber yields. The results of this analysis show that the inclusion of carbon benefits prolongs the optimum cutting age by requiring trees to stand longer in order to soak up more CO{sub 2}. Consequently this finding must be considered in any carbon accounting calculations. - Highlights: Black-Right-Pointing-Pointer Carbon sequestration in forestry is an environmental benefit. Black-Right-Pointing-Pointer It moderates the problem of global warming. Black-Right-Pointing-Pointer It prolongs the gestation period in harvesting. Black-Right-Pointing-Pointer This paper uses British data in less favoured districts for growing Sitka spruce species.

  16. Assessment of Brine Management for Geologic Carbon Sequestration

    E-Print Network [OSTI]

    Breunig, Hanna M.

    2014-01-01

    Area Southeast  Regional  Carbon  Sequestration  PartnershipCoast  Regional  Carbon  Sequestration  Partnership Water  West  Coast  Regional  Carbon  Sequestration  Partnership  (

  17. Tropical forest soil microbial communities couple iron and carbon biogeochemistry

    SciTech Connect (OSTI)

    Dubinsky, E.A.; Silver, W.L.; Firestone, M.K.

    2009-10-15

    We report that iron-reducing bacteria are primary mediators of anaerobic carbon oxidation in upland tropical soils spanning a rainfall gradient (3500 - 5000 mm yr-1) in northeast Puerto Rico. The abundant rainfall and high net primary productivity of these tropical forests provide optimal soil habitat for iron-reducing and iron-oxidizing bacteria. Spatially and temporally dynamic redox conditions make iron-transforming microbial communities central to the belowground carbon cycle in these wet tropical forests. The exceedingly high abundance of iron-reducing bacteria (up to 1.2 x 10{sup 9} cells per gram soil) indicated that they possess extensive metabolic capacity to catalyze the reduction of iron minerals. In soils from the higher rainfall sites, measured rates of ferric iron reduction could account for up to 44 % of organic carbon oxidation. Iron reducers appeared to compete with methanogens when labile carbon availability was limited. We found large numbers of bacteria that oxidize reduced iron at sites with high rates of iron reduction and large numbers of iron-reducers. the coexistence of large populations of ironreducing and iron-oxidizing bacteria is evidence for rapid iron cycling between its reduced and oxidized states, and suggests that mutualistic interactions among these bacteria ultimately fuel organic carbon oxidation and inhibit CH4 production in these upland tropical forests.

  18. R E V I E W Effects of biological invasions on forest carbon

    E-Print Network [OSTI]

    R E V I E W Effects of biological invasions on forest carbon sequestration D . A . P E LT Z E R on the effects of some of the major drivers of global change on carbon (C) sequestration, particularly carbon that drive C sequestration. Keywords: biological invasion, carbon sequestration, community structure, forest

  19. Spatial and temporal patterns of carbon emissions from forest fires in China from 1950 to 2000

    E-Print Network [OSTI]

    Spatial and temporal patterns of carbon emissions from forest fires in China from 1950 to 2000 hydrocarbons) from forest fires in China for the time period from 1950 to 2000 by using a combination of remote of carbon emissions from forest fires in China from 1950 to 2000, J. Geophys. Res., 111, D05313, doi:10

  20. North America's forests are thought to be a significant sink for atmospheric carbon.

    E-Print Network [OSTI]

    Lawrence, Rick L.

    reflects the frequency of disturbance. In fact, one explanation for the forest sink in the eastern United carbon flux reflect a lack of detailed knowledge about the effects of forest disturbance and recovery highlighted forest disturbance as a critical factor constraining carbon dynamics [Wofsy and Harris, 2002

  1. Forest cover, carbon sequestration, and wildlife habitat: policy review and modeling of tradeoffs among land-use

    E-Print Network [OSTI]

    Rissman, Adena

    Forest cover, carbon sequestration, and wildlife habitat: policy review and modeling of tradeoffs and services, including timber production, carbon sequestration and storage, scenic amenities, and wildlife habitat. International efforts to mitigate climate change through forest carbon sequestration

  2. Estimation of biomass and carbon stocks: the case of the Atlantic Forest

    E-Print Network [OSTI]

    2008-01-01

    S.E. 2008. Estimation of biomass and carbon stocks: the casein Amazonian forest biomass. Global Change Biol. 10:545-562R. 2004b. Increasing biomass in Amazonian forest plots.

  3. Hurricane Katrina's Carbon Footprint on U.S. Gulf Coast Forests

    E-Print Network [OSTI]

    Chambers, Jeff

    Hurricane Katrina's Carbon Footprint on U.S. Gulf Coast Forests Jeffrey Q. Chambers,1 * Jeremy I carbon sink is an increase in disturbance frequency and intensity (4), which transfers bio- mass from and lower biomass stocks (5). Here, we quantify hurricane Katrina's carbon impact on Gulf Coast forests

  4. Forest biomes are major reserves for terrestrial carbon, and major components of global primary productivity.

    E-Print Network [OSTI]

    Malhi, Yadvinder

    (World Energy Council, Nature 390, p. 215) and increasing at a rate of about 0·1 Gt year­1 primary productivity. The carbon balance of forests is determined by a number of component processes in the carbon balance of each biome are also reviewed, and the evidence for a carbon sink in each forest biome

  5. Rehabilitation forestry and carbon market access on high-graded northern hardwood forests

    E-Print Network [OSTI]

    Keeton, William S.

    ARTICLE Rehabilitation forestry and carbon market access on high-graded northern hardwood forests for rehabilitation and increased carbon stores, yet few studies have examined the feasibility of using carbon markets to restore high-graded forests. We evaluated the effectiveness of rehabilitation on 391 ha of high

  6. R E V I E W Mineral soil carbon fluxes in forests and implications for

    E-Print Network [OSTI]

    Keeton, William S.

    R E V I E W Mineral soil carbon fluxes in forests and implications for carbon balance assessments and mitigate climate change. Large amounts of carbon (C) are stored in deep mineral forest soils, but are often not considered in accounting for global C fluxes because mineral soil C is commonly thought to be relatively

  7. Carbon Dioxide Exchange Between an Old-growth Forest and the

    E-Print Network [OSTI]

    Chen, Jiquan

    Carbon Dioxide Exchange Between an Old-growth Forest and the Atmosphere Kyaw Tha Paw U,1 * Matthias ABSTRACT Eddy-covariance and biometeorological methods show significant net annual carbon uptake in an old that old-growth forest eco- systems are in carbon equilibrium. The basis for differences between

  8. The legacy of harvest and fire on ecosystem carbon storage in a north temperate forest

    E-Print Network [OSTI]

    Curtis, Peter S.

    to store carbon (C) due to variation in disturbance frequency and intensity, successional status, soil: Disturbance effects on forest carbon storage Final Submission to Global Change Biology 1 #12;Summary1 2 3 4 5 this legacy of disturbance constrains forest carbon (C) storage rates by quantifying C pools and fluxes after

  9. Modeling Impacts of Management on Carbon Sequestration and Trace Gas Emissions in Forested

    E-Print Network [OSTI]

    Modeling Impacts of Management on Carbon Sequestration and Trace Gas Emissions in Forested Wetland-DNDC, was modified to enhance its capacity to predict the impacts of management practices on carbon sequestration nonnegligible roles in mitigation in comparison with carbon sequestration. Forests are recognized for having

  10. Forest Law Enforcement, Governance and Trade (FLEGT) Voluntary Partnership Agreements (VPAs)

    E-Print Network [OSTI]

    and environmental benefits." Baroness Amos, UK Government House of Lords spokesperson on international development failed to deliver ecologically and socially responsible forest management, poverty alleviation products trade and reducing Europe's ecological footprint, especially with regards to pulp and paper

  11. REGULATION OF CARBON SEQUESTRATION AND WATER USE IN A OZARK FOREST...

    Office of Scientific and Technical Information (OSTI)

    REGULATION OF CARBON SEQUESTRATION AND WATER USE IN A OZARK FOREST: PROPOSING A NEW STRATEGICALLY LOCATED AMERIFLUX TOWER SITE IN MISSOURI Pallardy, Stephen G 59 BASIC BIOLOGICAL...

  12. Seasonal patterns of forest canopy and their relevance for the global carbon cycle 

    E-Print Network [OSTI]

    Mizunuma, Toshie

    2015-06-30

    In the terrestrial biosphere forests have a significant role as a carbon sink. Under recent climate change, it is increasingly important to detect seasonal change or ‘phenology’ that can influence the global carbon cycle. ...

  13. Stimulating carbon efficient supply chains : carbon labels and voluntary public private partnerships

    E-Print Network [OSTI]

    Tan, Kwan Chong

    2009-01-01

    This thesis looks at the potential of labeling products with life cycle greenhouse gas emission information as a bottom-up, complementary alternative to carbon cap and trade systems. By improving the transparency of product ...

  14. Carbon nanotube forests growth using catalysts from atomic layer deposition

    SciTech Connect (OSTI)

    Chen, Bingan; Zhang, Can; Esconjauregui, Santiago; Xie, Rongsi; Zhong, Guofang; Robertson, John; Bhardwaj, Sunil; Cepek, Cinzia

    2014-04-14

    We have grown carbon nanotubes using Fe and Ni catalyst films deposited by atomic layer deposition. Both metals lead to catalytically active nanoparticles for growing vertically aligned nanotube forests or carbon fibres, depending on the growth conditions and whether the substrate is alumina or silica. The resulting nanotubes have narrow diameter and wall number distributions that are as narrow as those grown from sputtered catalysts. The state of the catalyst is studied by in-situ and ex-situ X-ray photoemission spectroscopy. We demonstrate multi-directional nanotube growth on a porous alumina foam coated with Fe prepared by atomic layer deposition. This deposition technique can be useful for nanotube applications in microelectronics, filter technology, and energy storage.

  15. Post-Soviet farmland abandonment, forest recovery, and carbon sequestration in western Ukraine

    E-Print Network [OSTI]

    Keeton, William S.

    Post-Soviet farmland abandonment, forest recovery, and carbon sequestration in western Ukraine T O of Forest Management, Ukrainian National Forestry University, vul. Gen. Chuprynky, 103, 79031 Lviv, Ukraine fluxes in western Ukraine (57 000 km2 ) and to assess the region's future carbon sequestration potential

  16. Seasonal controls on the exchange of carbon and water in an Amazonian rain forest

    E-Print Network [OSTI]

    Saleska, Scott

    Seasonal controls on the exchange of carbon and water in an Amazonian rain forest Lucy R. Hutyra,1 controls on the exchange of carbon and water in an Amazonian rain forest, J. Geophys. Res., 112, G03008 response to climate and weather. This study presents 4 years of eddy covariance data for CO2 and water

  17. Forest Carbon – Sustaining an Important Climate Service: Roles of Biomass Use and Markets

    Office of Energy Efficiency and Renewable Energy (EERE)

    Breakout Session 2D—Building Market Confidence and Understanding II: Carbon Accounting and Woody Biofuels Forest Carbon – Sustaining an Important Climate Service: Roles of Biomass Use and Markets David Cleaves, Climate Change Advisor to the Chief, U.S. Forest Service, U.S. Department of Agriculture

  18. O P I N I O N Biogenic vs. geologic carbon emissions and forest

    E-Print Network [OSTI]

    Keeton, William S.

    O P I N I O N Biogenic vs. geologic carbon emissions and forest biomass energy production J O H N- versities articulated a concern over equating biogenic carbon (C) emissions with fossil fuel emissions the amount of carbon in circulation. In contrast, carbon dioxide released from fossil fuels increases

  19. Do Forests Have a Say in Global Carbon Markets for Climate Stabilization Policy ? Massimo Tavoni1

    E-Print Network [OSTI]

    ., and Dev. Economics, Ohio State University While carbon sequestration was included in the Kyoto Protocol. Notwithstanding the widespread research suggesting that biological sequestration of carbon can play an important reason for the setbacks to forest sequestration regarded whether carbon sequestration would reduce carbon

  20. Interaction of ice storms and management practices on current carbon sequestration in forests with potential mitigation under future CO2

    E-Print Network [OSTI]

    Oren, Ram

    Interaction of ice storms and management practices on current carbon sequestration in forests with potential impacts on carbon sequestration. Common forest management practices, such as fertilization on current carbon sequestration in forests with potential mitigation under future CO2 atmosphere, J. Geophys

  1. Effects of afforestation and forest management on soil carbon dynamics and trace gas emissions in a Sitka spruce (Picea sitchensis (Bong) Carr.) forest 

    E-Print Network [OSTI]

    Zerva, Argyro

    The establishment and intensive management of forests for the production of timber can have significant effects on the soil carbon dynamics. The establishment of forest on organic soils under grasslands may lead to ...

  2. MIDWEST REGIONAL CARBON SEQUESTRATION PARTNERSHIP (MRCSP) MANAGING CLIMATE CHANGE AND SECURING A FUTURE FOR THE MIDWEST'S INDUSTRIAL BASE

    SciTech Connect (OSTI)

    David Ball; Robert Burns; Judith Bradbury; Bob Dahowski; Casie Davidson; James Dooley; Neeraj Gupta; Rattan Lal; Larry Wickstrom

    2005-04-29

    This is the third semiannual report for Phase I of the Midwest Carbon Sequestration Partnership (MRCSP). The project consists of nine tasks to be conducted over a two-year period that started in October 2003. The makeup of the MRCSP and objectives are described. Progress on each of the active Tasks is also described and where possible, for those Tasks at some point of completion, a summary of results is presented.

  3. Carbon emissions and sequestration in forests: Case studies from seven developing countries

    SciTech Connect (OSTI)

    Makundi, W.; Sathaye, J. (eds.) (Lawrence Berkeley Lab., CA (United States)); Cerutti, O.M.; Ordonez, M.J.; Minjarez, R.D. (Universidad Nacional Autonoma de Mexico, Mexico City (Mexico) Centro de Ecologia)

    1992-08-01

    Estimates of carbon emissions from deforestation in Mexico are derived for the year 1985 and for two contrasting scenarios in 2025. Carbon emissions are calculated through an in-depth review of the existing information on forest cover deforestation mtes and area affected by forest fires as well as on forests' carbon-related biological characteristics. The analysis covers both tropical -- evergreen and deciduous -- and temperate -- coniferous and broadleaf -- closed forests. Emissions from the forest sector are also compared to those from energy and industry. Different policy options for promoting the sustainable management of forest resources in the country are discussed. The analysis indicates that approximately 804,000 hectares per year of closed forests suffered from major perturbations in the mid 1980's in Mexico, leading to an annual deforestation mte of 668,000 hectares. Seventy five percent of total deforestation is concentrated in tropical forests. The resulting annual carbon balance is estimated in 53.4 million tons per year, and the net committed emissions in 45.5 million tons or 41% and 38%, respectively, of the country's total for 1985--87. The annual carbon balance from the forest sector in 2025 is expected to decline to 16.5 million tons in the low emissions scenario and to 22.9 million tons in the high emissions scenario. Because of the large uncertainties in some of the primary sources of information, the stated figures should be taken as preliminary estimates.

  4. Carbon emissions and sequestration in forests: Case studies from seven developing countries. Volume 4: Mexico: Draft

    SciTech Connect (OSTI)

    Makundi, W.; Sathaye, J. [eds.] [Lawrence Berkeley Lab., CA (United States); Cerutti, O.M.; Ordonez, M.J.; Minjarez, R.D. [Universidad Nacional Autonoma de Mexico, Mexico City (Mexico) Centro de Ecologia

    1992-08-01

    Estimates of carbon emissions from deforestation in Mexico are derived for the year 1985 and for two contrasting scenarios in 2025. Carbon emissions are calculated through an in-depth review of the existing information on forest cover deforestation mtes and area affected by forest fires as well as on forests` carbon-related biological characteristics. The analysis covers both tropical -- evergreen and deciduous -- and temperate -- coniferous and broadleaf -- closed forests. Emissions from the forest sector are also compared to those from energy and industry. Different policy options for promoting the sustainable management of forest resources in the country are discussed. The analysis indicates that approximately 804,000 hectares per year of closed forests suffered from major perturbations in the mid 1980`s in Mexico, leading to an annual deforestation mte of 668,000 hectares. Seventy five percent of total deforestation is concentrated in tropical forests. The resulting annual carbon balance is estimated in 53.4 million tons per year, and the net committed emissions in 45.5 million tons or 41% and 38%, respectively, of the country`s total for 1985--87. The annual carbon balance from the forest sector in 2025 is expected to decline to 16.5 million tons in the low emissions scenario and to 22.9 million tons in the high emissions scenario. Because of the large uncertainties in some of the primary sources of information, the stated figures should be taken as preliminary estimates.

  5. Recovery of Soil Carbon Stocks on Disturbed Coastal Plain Soils Through Secondary Forest SuccessionPlain Soils Through Secondary Forest Succession

    E-Print Network [OSTI]

    Post, Wilfred M.

    Recovery of Soil Carbon Stocks on Disturbed Coastal Plain Soils Through Secondary Forest SuccessionPlain Soils Through Secondary Forest Succession Recovery of soil carbon stocks in historically Contact and Environmental Research 50 µm Recovery of soil carbon stocks in historically degraded soils provides a means

  6. Simulating the Impacts of Disturbances on Forest Carbon Cycling...

    Office of Scientific and Technical Information (OSTI)

    America: Processes, Data, Models, and Challenges Disturbances disrupt the forest structures and alter forest resources, substrate availability, or the physical environment....

  7. Conceptual Design of Optimized Fossil Energy Systems with Capture and Sequestration of Carbon Dioxide

    E-Print Network [OSTI]

    Ogden, Joan

    2004-01-01

    USDOE’s Carbon Sequestration Regional Partnership program.under the Carbon Sequestration Regional Partnership Program.

  8. Carbon Dioxide Evolution from the Floor of Three Minnesota Forests Author(s): W. A. Reiners

    E-Print Network [OSTI]

    Thomas, David D.

    Carbon Dioxide Evolution from the Floor of Three Minnesota Forests Author(s): W. A. Reiners and extend access to Ecology. http://www.jstor.org #12;Late Spring 1968 CARBON DIOXIDE EVOLUTION RATES 471. Germination behavior of some halc- phytes. Bull. Res. Council Israel (D) 6: 187-188. CARBON DIOXIDE EVOLUTION

  9. Sustainability of terrestrial carbon sequestration: A case study in Duke Forest with inversion approach

    E-Print Network [OSTI]

    DeLucia, Evan H.

    Sustainability of terrestrial carbon sequestration: A case study in Duke Forest with inversion of terrestrial carbon (C) sequestration is critical for the success of any policies geared toward stabilizing. Ellsworth, A. Finzi, J. Lichter, and W. H. Schlesinger, Sustainability of terrestrial carbon sequestration

  10. Using stable isotopes to investigate interactions between the forest carbon and nitrogen cycles 

    E-Print Network [OSTI]

    Nair, Richard Kiran Francis

    2015-06-30

    Nitrogen (N) fertilization due to atmospheric deposition (NDEP ) may explain some of the net carbon (C) sink (0.6-0.7 Pg y-1) in temperate forests, but estimates of the additional C uptake due to atmospheric N additions ...

  11. Influence of stand age on the magnitude and seasonality of carbon fluxes in Canadian forests

    E-Print Network [OSTI]

    2012-01-01

    energy and water ?uxes at mature and disturbed forest sites,and energy ?uxes from a boreal mixedwood forest ecosystem inforests and the atmosphere (Baldocchi, 2008) because they provide near- continuous half-hourly time series of carbon, water, and energy

  12. Forest Sensitivity to Elevated Atmospheric CO2 and its Relevance to Carbon Management Richard J. Norby

    E-Print Network [OSTI]

    the airborne fraction of CO2 from fossil fuel combustion, and, therefore, the rate of increase of CO2Forest Sensitivity to Elevated Atmospheric CO2 and its Relevance to Carbon Management Richard J the responses of forest trees to rising concentrations of atmospheric CO2 has for the past two decades been

  13. Perspectives on Carbon Capture and Sequestration in the United States

    E-Print Network [OSTI]

    Wong-Parodi, Gabrielle

    2011-01-01

    2006 Carbon sequestration: regional partnerships Accessed onCoast Carbon Sequestration Regional Partnership with supportCoast Regional Carbon Sequestration Partnership 2008 Public

  14. Mineralization of ancient carbon in the subsurface of riparian forests Noel P. Gurwick,1,2

    E-Print Network [OSTI]

    Gold, Art

    Mineralization of ancient carbon in the subsurface of riparian forests Noel P. Gurwick,1,2 Daniel M C mineralization rates can support ecosystem-relevant rates of denitrification. Buried horizons and 14 C dating of dissolved inorganic carbon revealed that ancient SOC mineralization was common

  15. Warming accelerates decomposition of decades-old carbon in forest soils

    E-Print Network [OSTI]

    (received for review January 10, 2012) Global climate carbon-cycle models predict acceleration of soilWarming accelerates decomposition of decades-old carbon in forest soils Francesca M. Hopkinsa,b,1, CA 94720; and d Energy and Resources Group, University of California, Berkeley, CA 94720 Edited

  16. Forest Restoration Carbon Analysis of Baseline Carbon Emissions and Removal in Tropical Rainforest at La Selva Central, Peru

    SciTech Connect (OSTI)

    Patrick Gonzalez; Benjamin Kroll; Carlos R. Vargas

    2006-01-10

    Conversion of tropical forest to agricultural land and pasture has reduced forest extent and the provision of ecosystem services, including watershed protection, biodiversity conservation, and carbon sequestration. Forest conservation and reforestation can restore those ecosystem services. We have assessed forest species patterns, quantified deforestation and reforestation rates, and projected future baseline carbon emissions and removal in Amazon tropical rainforest at La Selva Central, Peru. The research area is a 4800 km{sup 2} buffer zone around the Parque Nacional Yanachaga-Chemillen, Bosque de Proteccion San Matias-San Carlos, and the Reserva Comunal Yanesha. A planned project for the period 2006-2035 would conserve 4000 ha of forest in a proposed 7000 ha Area de Conservacion Municipale de Chontabamba and establish 5600 ha of natural regeneration and 1400 ha of native species plantations, laid out in fajas de enriquecimiento (contour plantings), to reforest 7000 ha of agricultural land. Forest inventories of seven sites covering 22.6 ha in primary forest and 17 sites covering 16.5 ha in secondary forest measured 17,073 trees of diameter {ge} 10 cm. The 24 sites host trees of 512 species, 267 genera, and 69 families. We could not identify the family of 7% of the trees or the scientific species of 21% of the trees. Species richness is 346 in primary forest and 257 in the secondary forest. In primary forest, 90% of aboveground biomass resides in old-growth species. Conversely, in secondary forest, 66% of aboveground biomass rests in successional species. The density of trees of diameter {ge} 10 cm is 366 trees ha{sup -1} in primary forest and 533 trees ha{sup -1} in secondary forest, although the average diameter is 24 {+-} 15 cm in primary forest and 17 {+-} 8 cm in secondary forest. Using Amazon forest biomass equations and wood densities for 117 species, aboveground biomass is 240 {+-} 30 t ha{sup -1} in the primary sites and 90 {+-} 10 t ha{sup -1} in the secondary sites. Aboveground carbon density is 120 {+-} 15 t ha{sup -1} in primary forest and 40 {+-} 5 t ha{sup -1} in secondary forest. Forest stands in the secondary forest sites range in age from 10 to 42 y. Growth in biomass (t ha{sup -1}) as a function of time (y) follows the relation: biomass = 4.09-0.017 age{sup 2} (p < 0.001). Aboveground biomass and forest species richness are positively correlated (r{sup 2} = 0.59, p < 0.001). Analyses of Landsat data show that the land cover of the 3700 km{sup 2} of non-cloud areas in 1999 was: closed forest 78%; open forest 12%, low vegetation cover 4%, sparse vegetation cover 6%. Deforestation from 1987 to 1999 claimed a net 200 km{sup 2} of forest, proceeding at a rate of 0.005 y{sup -1}. Of those areas of closed forest in 1987, only 89% remained closed forest in 1999. Consequently, closed forests experienced disruption in the time period at double the rate of net deforestation. The three protected areas experienced negligible deforestation or slight reforestation. Based on 1987 forest cover, 26,000 ha are eligible for forest carbon trading under the Clean Development Mechanism, established by the Kyoto Protocol to the United Nations Framework Convention on Climate Change. Principal components analysis showed that distance to nonforest was the factor that best explained observed patterns of deforestation while distance to forest best explained observed patterns of reforestation, more significant than elevation, distance to rivers, distance to roads, slope, and distance to towns of population > 400. Aboveground carbon in live vegetation in the project area decreased from 35 million {+-} 4 million t in 1987 to 34 million {+-} 4 million t in 1999. Projected aboveground carbon in live vegetation would fall to 33 million {+-} 4 million t in 2006, 32 million {+-} 4 million t in 2011, and 29 million {+-} 3 million t in 2035. Projected net deforestation in the research area would total 13,000 {+-} 3000 ha in the period 1999-2011, proceeding at a rate of 0.003 {+-} 0.0007 y{sup -1}, and would total 33,000 {+-} 7000

  17. Carbon calculator tracks the climate benefits of managed private forests

    E-Print Network [OSTI]

    Stewart, William C; Sharma, Benktesh D

    2015-01-01

    First Update to the Climate Change Scoping Plan: Building onManaging forests for climate change mitigation. Science 320:IPCC] Intergovernmental Panel on Climate Change. 2006. IPCC

  18. Validation and Comparison of Carbon Sequestration Project Cost Models with Project Cost Data Obtained from the Southwest Partnership

    SciTech Connect (OSTI)

    Robert Lee; Reid Grigg; Brian McPherson

    2011-04-15

    Obtaining formal quotes and engineering conceptual designs for carbon dioxide (CO{sub 2}) sequestration sites and facilities is costly and time-consuming. Frequently, when looking at potential locations, managers, engineers and scientists are confronted with multiple options, but do not have the expertise or the information required to quickly obtain a general estimate of what the costs will be without employing an engineering firm. Several models for carbon compression, transport and/or injection have been published that are designed to aid in determining the cost of sequestration projects. A number of these models are used in this study, including models by J. Ogden, MIT's Carbon Capture and Sequestration Technologies Program Model, the Environmental Protection Agency and others. This report uses the information and data available from several projects either completed, in progress, or conceptualized by the Southwest Regional Carbon Sequestration Partnership on Carbon Sequestration (SWP) to determine the best approach to estimate a project's cost. The data presented highlights calculated versus actual costs. This data is compared to the results obtained by applying several models for each of the individual projects with actual cost. It also offers methods to systematically apply the models to future projects of a similar scale. Last, the cost risks associated with a project of this scope are discussed, along with ways that have been and could be used to mitigate these risks.

  19. Evaluating the Contribution of Climate Forcing and Forest Dynamics to Accelerating Carbon Sequestration by Forest Ecosystems in the Northeastern U.S.: Final Report

    SciTech Connect (OSTI)

    Munger, J. William; Foster, David R.; Richardson, Andrew D.

    2014-10-01

    This report summarizes work to improve quantitative understanding of the terrestrial ecosystem processes that control carbon sequestration in unmanaged forests It builds upon the comprehensive long-term observations of CO2 fluxes, climate and forest structure and function at the Harvard Forest in Petersham, MA. This record includes the longest CO2 flux time series in the world. The site is a keystone for the AmeriFlux network. Project Description The project synthesizes observations made at the Harvard Forest HFEMS and Hemlock towers, which represent the dominant mixed deciduous and coniferous forest types in the northeastern United States. The 20+ year record of carbon uptake at Harvard Forest and the associated comprehensive meteorological and biometric data, comprise one of the best data sets to challenge ecosystem models on time scales spanning hourly, daily, monthly, interannual and multi-decadal intervals, as needed to understand ecosystem change and climate feedbacks.

  20. Subalpine Forest Carbon Cycling Short- and Long-Term Influence ofClimate and Species

    SciTech Connect (OSTI)

    Kueppers, L.; Harte, J.

    2005-08-23

    Ecosystem carbon cycle feedbacks to climate change comprise one of the largest remaining sources of uncertainty in global model predictions of future climate. Both direct climate effects on carbon cycling and indirect effects via climate-induced shifts in species composition may alter ecosystem carbon balance over the long term. In the short term, climate effects on carbon cycling may be mediated by ecosystem species composition. We used an elevational climate and tree species composition gradient in Rocky Mountain subalpine forest to quantify the sensitivity of all major ecosystem carbon stocks and fluxes to these factors. The climate sensitivities of carbon fluxes were species-specific in the cases of relative above ground productivity and litter decomposition, whereas the climate sensitivity of dead wood decay did not differ between species, and total annual soil CO2 flux showed no strong climate trend. Lodge pole pine relative productivity increased with warmer temperatures and earlier snowmelt, while Engelmann spruce relative productivity was insensitive to climate variables. Engelmann spruce needle decomposition decreased linearly with increasing temperature(decreasing litter moisture), while lodgepole pine and subalpine fir needle decay showed a hump-shaped temperature response. We also found that total ecosystem carbon declined by 50 percent with a 2.88C increase in mean annual temperature and a concurrent 63 percent decrease ingrowing season soil moisture, primarily due to large declines in mineral soil and dead wood carbon. We detected no independent effect of species composition on ecosystem C stocks. Overall, our carbon flux results suggest that, in the short term, any change in subalpine forest net carbon balance will depend on the specific climate scenario and spatial distribution of tree species. Over the long term, our carbon stock results suggest that with regional warming and drying, Rocky Mountain subalpine forest will be a net source of carbon to the atmosphere.

  1. R E V I E W Liana Impacts on Carbon Cycling, Storage and Sequestration in Tropical Forests

    E-Print Network [OSTI]

    Schnitzer, Stefan

    R E V I E W Liana Impacts on Carbon Cycling, Storage and Sequestration in Tropical Forests Geertje for carbon storage and sequestration. Lianas reduce tree growth, survival, and leaf productivity; however liana carbon stocks are unlikely to compensate for liana-induced losses in net carbon sequestration

  2. ESTIMATION OF FOREST CARBON VOLUME AND VALUE IN TENNESSEE

    E-Print Network [OSTI]

    Gray, Matthew

    simulation methods ¨Assess alternative management scenarios Photo Citation ¨ http://www.icis.com/energy to Sequester Carbon and Mitigate The Greenhouse Effect, eds. pp. 34­45, New York: CRC Press. ¨ Hoover, C. M., S the Economic Potential of Forestry for Carbon Sequestration under Alternative Carbon Price Paths." Journal

  3. Current and Future Carbon Budgets of Tropical Rain Forest: A Cross Scale Analysis. Final Report

    SciTech Connect (OSTI)

    Oberbauer, S. F.

    2004-01-16

    The goal of this project was to make a first assessment of the major carbon stocks and fluxes and their climatic determinants in a lowland neotropical rain forest, the La Selva Biological Station, Costa Rica. Our research design was based on the concurrent use of several of the best available approaches, so that data could be cross-validated. A major focus of our effort was to combine meteorological studies of whole-forest carbon exchange (eddy flux), with parallel independent measurements of key components of the forest carbon budget. The eddy flux system operated from February 1998 to February 2001. To obtain field data that could be scaled up to the landscape level, we monitored carbon stocks, net primary productivity components including tree growth and mortality, litterfall, woody debris production, root biomass, and soil respiration in a series of replicated plots stratified across the major environmental gradients of the forest. A second major focus of this project was on the stocks and changes of carbon in the soil. We used isotope studies and intensive monitoring to investigate soil organic stocks and the climate-driven variation of soil respiration down the soil profile, in a set of six 4m deep soil shafts stratified across the landscape. We measured short term tree growth, climate responses of sap flow, and phenology in a suite of ten canopy trees to develop individual models of tree growth to daytime weather variables.

  4. Carbon flows and economic evaluation of mitigation options in Tanzani's forest sector

    SciTech Connect (OSTI)

    Makundi, W.R.; Okinting'Ati, Aku

    1995-02-02

    This paper presents estimates of the rate of forest use, deforestation and forest degradation, as well as the corresponding carbon flows, in the Tanzanian forest sector. It is estimated that the country lost 525,000 ha of forests in 1990, with associated committed emissions of 31.5 Mt. Carbon (MtC), and 7.05 MtC of committed carbon sequestration. The paper then describes the possible response options in the forest sector to mitigate GHG emissions, and evaluates the most stable subset of these-i.e. forest conservation, woodfuel plantations and agroforestry. The conservation options were found to cost an average of U.S. $1.27 per tonne of carbon (tC) conserved. Five options for fuelwood plantations and agroforestry, with two different ownership regimes were evaluated. Each one of the options gives a positive net present value at low rates of discount, ranging from U.S. $1.06 to 3.4/1C of avoided emissions at 0 percent discount rate. At 10 percent discount, the eucalyptus and maize option has a highest PNV of U.S. $1.73 tC, and the government plantation gives a negative PNV (loss) of U.S. $0.13 tC sequestered. The options with a private/community type of ownership scheme fared better than government run options. This conclusion also held true when ranking the options by the BRAC indicator, with the government fuelwood plantation ranked the lowest, and the private agroforestry option of eucalyptus and corn performing best. The mitigation options evaluated here show that the forest sector in Tanzania has one of the most cost-effective GHG mitigation opportunities in the world, and they are within the developmental aspirations of the country.

  5. EA-1898: Southwest Regional Partnership on Carbon Sequestration Phase III Gordon Creek Project near Price, Utah in Carbon County

    Broader source: Energy.gov [DOE]

    This EA will evaluate the environmental impacts of a proposal for Phase III field deployment to demonstrate commercial-scale carbon storage technologies.This Phase III large-scale carbon dioxide injection project will combine science and engineering from many disciplines to successfully sequester and monitor carbon storage. [NOTE: This EA has been cancelled].

  6. A Review of the World Bank Forest Carbon Partnership Facility Readiness

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand Dalton JumpProgram |Recent Exploration Well Drillingand

  7. Manufacturing Energy and Carbon Footprint - Sector: Forest Products...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electricity Export 31 Combustion Emissions (MMT CO 2 e Million Metric Tons Carbon Dioxide Equivalent) Total Emissions Offsite Emissions + Onsite Emissions Energy (TBtu ...

  8. Continuous Growth of Vertically Aligned Carbon Nanotubes Forests

    E-Print Network [OSTI]

    Guzman de Villoria, Roberto

    Vertically aligned carbon nanotubes are one of the most promising materials due their numerous applications in flexible electronic devices, biosensors and multifunctional aircraft materials, among others. However, the ...

  9. Carbon balance of coniferous forests growing in contrasting climates: Model-based analysis

    E-Print Network [OSTI]

    to understand why carbon balance (or net ecosystem production, NEP) differs among forests. Here, we use-site differences in gross primary productivity (GPP), ecosystem respiration (RE) and NEP. The most important factor physiology on NEP were secondary, but still substantial. The work provides detailed quantitative evidence

  10. Ecosystem Carbon Storage Across the GrasslandForest Transition

    E-Print Network [OSTI]

    Silman, Miles R.

    of the large soil carbon stocks under an afforestation scenario exist. Key words: Peru; Manu National Park, JBF, and PM conceived of or designed this study; AG, MRS, MZ, GCD, WRF, and KCG performed re- search in the newly created carbon markets and funds (Glenday 2006). Similarly, the size and dynamics of the above

  11. Ecosystem Carbon Storage Across the GrasslandForest Transition

    E-Print Network [OSTI]

    Malhi, Yadvinder

    of the large soil carbon stocks under an afforestation scenario exist. Key words: Peru; Manu National Park 2010 Author Contributions: AG, MRS, YM, JBF, and PM conceived of or designed this study; AG, MRS, MZ in the newly created carbon markets and funds (Glenday 2006). Similarly, the size and dynamics of the above

  12. Research Article Airborne carbon deposition on a remote forested lake

    E-Print Network [OSTI]

    Pace, Michael L.

    allochthonous carbon sources and food webs (Cole et al., 2006). There are numerous pathways for terrestrial inputs of terrestrial particulate organic carbon (TPOC) were measured during summ- er stratification of TPOC were between 6:1 and 22:1 (molar), much lower than the values for terrestrial leaves which were

  13. Ford-Dow Partnership Is Linked to Carbon Fiber Research at ORNL...

    Office of Environmental Management (EM)

    Carbon Fiber Research at ORNL May 16, 2013 - 12:00am Addthis EERE provided funding to Dow Chemical, Ford Motor Company, and ORNL to demonstrate a novel polymer fiber material and...

  14. PUBLISHED ONLINE: 3 APRIL 2011 | DOI: 10.1038/NGEO1123 Mangroves among the most carbon-rich forests in

    E-Print Network [OSTI]

    Turner, Monica G.

    ­20% of global anthropogenic carbon dioxide (CO2) emissions, second only to fossil fuel combustion7,8 . Recent of coastal development, aqua- culture expansion and over-harvesting1­4 . Carbon emissions resulting from and dead wood biomass, soil carbon content, and soil depth in 25 mangrove forests across a broad area

  15. State of the Forest Carbon Markets 2009 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS ReportEurope GmbHSoloPage EditStamford,EnergyFarm InsuranceForest

  16. Potential and cost of carbon sequestration in the Tanzanian forest sector

    SciTech Connect (OSTI)

    Makundi, Willy R.

    2001-01-01

    The forest sector in Tanzania offers ample opportunities to reduce greenhouse gas emissions (GHG) and sequestered carbon (C) in terrestrial ecosystems. More than 90% of the country's demand for primary energy is obtained from biomass mostly procured unsustainably from natural forests. This study examines the potential to sequester C through expansion of forest plantations aimed at reducing the dependence on natural forest for wood fuel production, as well as increase the country's output of industrial wood from plantations. These were compared ton conservation options in the tropical and miombo ecosystems. Three sequestration options were analyzed, involving the establishment of short rotation and long rotation plantations on about 1.7 x 106 hectares. The short rotation community forest option has a potential to sequester an equilibrium amount of 197.4 x 106 Mg C by 2024 at a net benefit of $79.5 x 106, while yielding a NPV of $0.46 Mg-1 C. The long rotation options for softwood and hardwood plantations will reach an equilibrium sequestration of 5.6 and 11.8 x 106 Mg C at a negative NPV of $0.60 Mg-1 C and $0.32 Mg-1 C. The three options provide cost competitive opportunities for sequestering about 7.5 x 106 Mg C yr -1 while providing desired forest products and easing the pressure on the natural forests in Tanzania. The endowment costs of the sequestration options were all found to be cheaper than the emission avoidance cost for conservation options which had an average cost of $1.27 Mg-1 C, rising to $ 7.5 Mg-1 C under some assumptions on vulnerability to encroachment. The estimates shown here may represent the upper bound, because the actual potential will be influenced by market prices for inputs and forest products, land use policy constraints and the structure of global C transactions.

  17. RESTORING SUSTAINABLE FORESTS ON APPALACHIAN MINED LANDS FOR WOOD PRODUCTS, RENEWABLE ENERGY, CARBON SEQUESTRATION, AND OTHER ECOSYSTEM SERVICES

    SciTech Connect (OSTI)

    J. Burger; J. Galbraith; T. Fox; G. Amacher; J. Sullivan; C. Zipper

    2003-12-18

    The overall purpose of this project is to evaluate the biological and economic feasibility of restoring high-quality forests on mined land, and to measure carbon sequestration and wood production benefits that would be achieved from forest restoration procedures. In this quarterly report, we present a preliminary comparison of the carbon sequestration benefits for two forest types used to convert abandoned grasslands for carbon sequestration. Annual mixed hardwood benefits, based on total stand carbon volume present at the end of a given year, range from a minimum of $0/ton of carbon to a maximum of $5.26/ton of carbon (low prices). White pine benefits based on carbon volume range from a minimum of $0/ton of carbon to a maximum of $18.61/ton of carbon (high prices). The higher maximum white pine carbon payment can primarily be attributed to the fact that the shorter rotation means that payments for white pine carbon are being made on far less cumulative carbon tonnage than for that of the long-rotation hardwoods. Therefore, the payment per ton of white pine carbon needs to be higher than that of the hardwoods in order to render the conversion to white pine profitable by the end of a rotation. These carbon payments may seem appealingly low to the incentive provider. However, payments (not discounted) made over a full rotation may add up to approximately $17,493/ha for white pine (30-year rotation), and $18,820/ha for mixed hardwoods (60-year rotation). The literature suggests a range of carbon sequestration costs, from $0/ton of carbon to $120/ton of carbon, although the majority of studies suggest a cost below $50/ ton of carbon, with van Kooten et al. (2000) suggesting a cutoff cost of $20/ton of carbon sequestered. Thus, the ranges of carbon payments estimated for this study fall well within the ranges of carbon sequestration costs estimated in previous studies.

  18. Application of Remote Sensing Technology and Ecological Modeling of Forest Carbon Stocks in Mt. Apo Natural Park, Philippines 

    E-Print Network [OSTI]

    Leal, Ligaya Rubas

    2015-01-23

    This dissertation work explored the application of remote sensing technology for the assessment of forest carbon storage in Mt. Apo Natural Park. Biomass estimation is traditionally conducted using destructive sampling with high levels...

  19. Agricultural and Forest Meteorology 115 (2003) 91107 Post-fire carbon dioxide fluxes in the western Canadian boreal

    E-Print Network [OSTI]

    Nassar, Ray

    2003-01-01

    Agricultural and Forest Meteorology 115 (2003) 91­107 Post-fire carbon dioxide fluxes in the western Canadian boreal forest: evidence from towers, aircraft and remote sensing Brian D. Amiroa,, J. Ian ecosystem exchange by eddy covariance) and remote sens- ing/modeling (net primary productivity

  20. JOURNAL OF NATURAL RESOURCES & LIFE SCIENCES EDUCATION VOLUME 38 2009 87 exceeds the harvesting rate, forest carbon uptake during

    E-Print Network [OSTI]

    Grogan, Paul

    , and lifestyle/ social dimensions. For example, is an energy-efficient hybrid car (with regenerative braking the harvesting rate, forest carbon uptake during growth of new trees in the harvested forest or woodlot offsets, Increasing energy costs as well as concerns about climate change associated with fossil fuel use have

  1. Renewal of Collaborative Research: Economically viable Forest Harvesting Practices that Increase Carbon Sequestration

    SciTech Connect (OSTI)

    Dail, David Bryan

    2012-08-02

    This technical report covers a 3-year cooperative agreement between the University of Maine and the Northeastern Forest Experiment Station that focused on the characterization of forest stands and the assessment of forest carbon storage (see attached for detailed description of the project). The goal of this work was to compare estimates of forest C storage made via remeasurement of FIA-type plots with eddy flux measurements. In addition to relating whole ecosystem estimates of carbon storage to changes in aboveground biomass, we explored methodologies by partitioning growth estimates from periodic inventory measurements into annual estimates. In the final year, we remeasured plots that were subject to a shelterwood harvest over the winter of 2001-02 to assess the production of coarse woody debris by this harvest, to remeasure trees in a long-term stand first established by NASA, to carry out other field activities at Howland, and, to assess the importance of downed and decaying wood as well as standing dead trees to the C inputs to harvested and non harvested plots.

  2. Renewal of Collaborative Research: Economically Viable Forest Harvesting Practices That Increase Carbon Sequestration

    SciTech Connect (OSTI)

    Davidson, E.A.; Dail, D.B., Hollinger, D.; Scott, N.; Richardson, A.

    2012-08-02

    Forests provide wildlife habitat, water and air purification, climate moderation, and timber and nontimber products. Concern about climate change has put forests in the limelight as sinks of atmospheric carbon. The C stored in the global vegetation, mostly in forests, is nearly equivalent to the amount present in atmospheric CO{sub 2}. Both voluntary and government-mandated carbon trading markets are being developed and debated, some of which include C sequestration resulting from forest management as a possible tradeable commodity. However, uncertainties regarding sources of variation in sequestration rates, validation, and leakage remain significant challenges for devising strategies to include forest management in C markets. Hence, the need for scientifically-based information on C sequestration by forest management has never been greater. The consequences of forest management on the US carbon budget are large, because about two-thirds of the {approx}300 million hectare US forest resource is classified as 'commercial forest.' In most C accounting budgets, forest harvesting is usually considered to cause a net release of C from the terrestrial biosphere to the atmosphere. However, forest management practices could be designed to meet the multiple goals of providing wood and paper products, creating economic returns from natural resources, while sequestering C from the atmosphere. The shelterwood harvest strategy, which removes about 30% of the basal area of the overstory trees in each of three successive harvests spread out over thirty years as part of a stand rotation of 60-100 years, may improve net C sequestration compared to clear-cutting because: (1) the average C stored on the land surface over a rotation increases, (2) harvesting only overstory trees means that a larger fraction of the harvested logs can be used for long-lived sawtimber products, compared to more pulp resulting from clearcutting, (3) the shelterwood cut encourages growth of subcanopy trees by opening up the forest canopy to increasing light penetration. Decomposition of onsite harvest slash and of wastes created during timber processing releases CO{sub 2} to the atmosphere, thus offsetting some of the C sequestered in vegetation. Decomposition of soil C and dead roots may also be temporarily stimulated by increased light penetration and warming of the forest floor. Quantification of these processes and their net effect is needed. We began studying C sequestration in a planned shelterwood harvest at the Howland Forest in central Maine in 2000. The harvest took place in 2002 by the International Paper Corporation, who assisted us to track the fates of harvest products (Scott et al., 2004, Environmental Management 33: S9-S22). Here we present the results of intensive on-site studies of the decay of harvest slash, soil respiration, growth of the remaining trees, and net ecosystem exchange (NEE) of CO{sub 2} during the first six years following the harvest. These results are combined with calculations of C in persisting off-site harvest products to estimate the net C consequences to date of this commercial shelterwood harvest operation. Tower-based eddy covariance is an ideal method for this study, as it integrates all C fluxes in and out of the forest over a large 'footprint' area and can reveal how the net C flux, as well as gross primary productivity and respiration, change following harvest. Because the size of this experiment precludes large-scale replication, we are use a paired-airshed approach, similar to classic large-scale paired watershed experiments. Measurements of biomass and C fluxes in control and treatment stands were compared during a pre-treatment calibration period, and then divergence from pre-treatment relationships between the two sites measured after the harvest treatment. Forests store carbon (C) as they accumulate biomass. Many forests are also commercial sources of timber and wood fiber. In most C accounting budgets, forest harvesting is usually considered to cause a net release of C from the terrestrial biosphere to the at

  3. How surface fire in Siberian Scots pine forests affects soil organic carbon in the forest floor: Stocks, molecular structure, and conversion to black carbon (charcoal)

    E-Print Network [OSTI]

    Czimczik, Claudia I; Preston, Caroline M; Schmidt, Michael W. I; Schulze, Ernst-Detlef

    2003-01-01

    Ecological effects of forest fires, Bot. Rev. , 26, 483 –1 ] In boreal forests, fire is a frequent disturbance andal. , 1999]. Risk of forest fires was high during the entire

  4. Final Technical Report Interannual Variations in the Rate of Carbon Storage by a Mid-Latitude Forest

    SciTech Connect (OSTI)

    Wofsy, Steven; Munger, J W

    2012-07-31

    The time series of Net Ecosystem Exchange (NEE) of carbon by an entire forest ecosystem on time scales from hourly to decadal was measured by eddy-covariance supplemented with plot-level measurements of biomass and tree demography. The results demonstrate the response of forest carbon fluxes and long-term budgets to climatic factors and to successional change. The data from this project have been extensively used worldwide by the carbon cycle science community in support of model development and validation of remote sensing observations.

  5. OAK FOREST CARBON AND WATER SIMULATIONS: MODEL INTERCOMPARISONS AND EVALUATIONS AGAINST INDEPENDENT DATA

    SciTech Connect (OSTI)

    Hanson, Paul J; Amthor, Jeffrey S; Wullschleger, Stan D; Wilson, K.; Grant, Robert F.; Hartley, Anne; Hui, D.; HuntJr., E. Raymond; Johnson, Dale W.; Kimball, John S.; King, Anthony Wayne; Luo, Yiqi; McNulty, Steven G.; Sun, G.; Thornton, Peter; Wang, S.; Williams, M.; Baldocchi, D. D.; Cushman, Robert Michael

    2004-01-01

    Models represent our primary method for integration of small-scale, processlevel phenomena into a comprehensive description of forest-stand or ecosystem function. They also represent a key method for testing hypotheses about the response of forest ecosystems to multiple changing environmental conditions. This paper describes the evaluation of 13 stand-level models varying in their spatial, mechanistic, and temporal complexity for their ability to capture intra- and interannual components of the water and carbon cycle for an upland, oak-dominated forest of eastern Tennessee. Comparisons between model simulations and observations were conducted for hourly, daily, and annual time steps. Data for the comparisons were obtained from a wide range of methods including: eddy covariance, sapflow, chamber-based soil respiration, biometric estimates of stand-level net primary production and growth, and soil water content by time or frequency domain reflectometry. Response surfaces of carbon and water flux as a function of environmental drivers, and a variety of goodness-of-fit statistics (bias, absolute bias, and model efficiency) were used to judge model performance. A single model did not consistently perform the best at all time steps or for all variables considered. Intermodel comparisons showed good agreement for water cycle fluxes, but considerable disagreement among models for predicted carbon fluxes. The mean of all model outputs, however, was nearly always the best fit to the observations. Not surprisingly, models missing key forest components or processes, such as roots or modeled soil water content, were unable to provide accurate predictions of ecosystem responses to short-term drought phenomenon. Nevertheless, an inability to correctly capture short-term physiological processes under drought was not necessarily an indicator of poor annual water and carbon budget simulations. This is possible because droughts in the subject ecosystem were of short duration and therefore had a small cumulative impact. Models using hourly time steps and detailed mechanistic processes, and having a realistic spatial representation of the forest ecosystem provided the best predictions of observed data. Predictive ability of all models deteriorated under drought conditions, suggesting that further work is needed to evaluate and improve ecosystem model performance under unusual conditions, such as drought, that are a common focus of environmental change discussions.

  6. EA-1886: Big Sky Regional Carbon Sequestration Partnership- Phase III: Large Volume CO2 Injection-Site Characterization, Well Drilling, and Infrastructure Development, Injection, MVA, and Site Closure, Kevin Dome, Toole County, Montana

    Broader source: Energy.gov [DOE]

    This EA will evaluate the environmental impacts of a proposal for the Big Sky Carbon Sequestration Regional Partnership to demonstrate the viability and safety of CO2 storage in a regionally significant subsurface formation in Toole County, Montana and to promote the commercialization of future anthropogenic carbon storage in this region.

  7. I N F O R M A T I O N N O T E Forests, Carbon and

    E-Print Network [OSTI]

    start with an overview of global climate change and greenhouse gas (GHG) emissions. Carbon dioxide (CO2 W A N D R O B E R T M A T T H E W S O F F O R E S T R E S E A R C H FORESTS, CARBON DIOXIDE the concentrations of GHGs in the atmosphere are rising. Carbon dioxide is the most important contributor

  8. Ecosystem-Atmosphere Exchange of Carbon, Water and Energy over a Mixed Deciduous Forest in the Midwest

    SciTech Connect (OSTI)

    Danilo Dragoni; Hans Peter Schmid; C.S.B. Grimmond; J.C. Randolph; J.R. White

    2012-12-17

    During the project period we continued to conduct long-term (multi-year) measurements, analysis, and modeling of energy and mass exchange in and over a deciduous forest in the Midwestern United States, to enhance the understanding of soil-vegetation-atmosphere exchange of carbon. At the time when this report was prepared, results from nine years of measurements (1998 - 2006) of above canopy CO2 and energy fluxes at the AmeriFlux site in the Morgan-Monroe State Forest, Indiana, USA (see Table 1), were available on the Fluxnet database, and the hourly CO2 fluxes for 2007 are presented here (see Figure 1). The annual sequestration of atmospheric carbon by the forest is determined to be between 240 and 420 g C m-2 a-1 for the first ten years. These estimates are based on eddy covariance measurements above the forest, with a gap-filling scheme based on soil temperature and photosynthetically active radiation. Data gaps result from missing data or measurements that were rejected in qua)lity control (e.g., during calm nights). Complementary measurements of ecological variables (i.e. inventory method), provided an alternative method to quantify net carbon uptake by the forest, partition carbon allocation in each ecosystem components, and reduce uncertainty on annual net ecosystem productivity (NEP). Biometric datasets are available on the Fluxnext database since 1998 (with the exclusion of 2006). Analysis for year 2007 is under completion.

  9. Jointly Estimating Carbon Sequestration Supply from Forests and Agriculture Bruce A. McCarl (mccarl@tamu.edu, 979-845-1706)

    E-Print Network [OSTI]

    McCarl, Bruce A.

    Jointly Estimating Carbon Sequestration Supply from Forests and Agriculture Bruce A. McCarl (mccarl at Western Economics Association Meetings, July 5-8, 2001, San Francisco #12;2 Jointly Estimating Carbon Sequestration Supply from Forests and Agriculture Alterations in agricultural and forestry (AF) land use and

  10. Relative Content of Black Carbon in Submicron Aerosol as a Sign of the Effect of Forest Fire Smokes

    SciTech Connect (OSTI)

    Kozlov, V.S.; Panchenko, M.V.; Yauscheva, E.P.

    2005-03-18

    Biomass burning occurs often in regions containing vast forest tracts and peat-bogs. These processes are accompanied by the emission of a large amount of aerosol particles and crystal carbon (black carbon [BC], soot). BC is the predominant source of solar absorption in atmospheric aerosol, which impacts climate. (Jacobson 2001; Rozenberg 1982). In this paper, we analyze the results of laboratory and field investigations that focused on the relative content of BC in aerosol particles. Main attention is given to the study of possibility using this parameter as an informative sign for estimating the effect of remote forest fire smokes on the near-ground aerosol composition.

  11. Quarterly Report for LANL Activities: FY12-Q2 National Risk Assessment Partnership (NRAP): Industrial Carbon Capture Program

    SciTech Connect (OSTI)

    Pawar, Rajesh J. [Los Alamos National Laboratory

    2012-04-17

    This report summarizes progress of LANL activities related to the tasks performed under the LANL FWP FE102-002-FY10, National Risk Assessment Partnership (NRAP): Industrial Carbon Capture Program. This FWP is funded through the American Recovery and Reinvestment Act (ARRA). Overall, the NRAP activities are focused on understanding and evaluating risks associated with large-scale injection and long-term storage of CO{sub 2} in deep geological formations. One of the primary risks during large-scale injection is due to changes in geomechanical stresses to the storage reservoir, to the caprock/seals and to the wellbores. These changes may have the potential to cause CO{sub 2} and brine leakage and geochemical impacts to the groundwater systems. While the importance of these stresses is well recognized, there have been relatively few quantitative studies (laboratory, field or theoretical) of geomechanical processes in sequestration systems. In addition, there are no integrated studies that allow evaluation of risks to groundwater quality in the context of CO{sub 2} injection-induced stresses. The work performed under this project is focused on better understanding these effects. LANL approach will develop laboratory and computational tools to understand the impact of CO{sub 2}-induced mechanical stress by creating a geomechanical test bed using inputs from laboratory experiments, field data, and conceptual approaches. The Geomechanical Test Bed will be used for conducting sensitivity and scenario analyses of the impacts of CO{sub 2} injection. The specific types of questions will relate to fault stimulation and fracture inducing stress on caprock, changes in wellbore leakage due to evolution of stress in the reservoir and caprock, and the potential for induced seismicity. In addition, the Geomechanical Test Bed will be used to investigate the coupling of stress-induced leakage pathways with impacts on groundwater quality. LANL activities are performed under two tasks: (1) develop laboratory and computational tools to understand CO{sub 2}-induced mechanical impacts and (2) use natural analog sites to determine potential groundwater impacts. We are using the Springerville-St. John Dome as a field site for collecting field data on CO{sub 2} migration through faults and groundwater impacts as well as developing and validating computational models. During the FY12 second quarter we have been working with New England Research Company to construct a tri-axial core-holder. We have built fluid control system for the coreflood system that can be ported to perform in-situ imaging of core. We have performed numerical simulations for groundwater impacts of CO{sub 2} and brine leakage using the reservoir model for Springerville-St John's Dome site. We have analyzed groundwater samples collected from Springerville site for major ion chemistry and isotopic composition. We are currently analyzing subsurface core and chip samples acquired for mineralogical composition.

  12. Estimating Carbon Supply Curves for Global Forests and Other Land Uses April 2001, Discussion Paper 01-19

    SciTech Connect (OSTI)

    Sedjo, Roger; Sohngen, Brent; Mendelsohn, Robert

    2001-04-05

    This study develops cumulative carbon ''supply curves'' for global forests utilizing a dynamic timber supply model for sequestration of forest carbon. Because the period of concern is the next century, and particular time points within that century, the curves are not traditional Marshallian supply curves or steady-state supply curves. Rather, the focus is on cumulative carbon cost curves (quasi-supply curves) at various points in time over the next 100 years. The research estimates a number of long-term, cumulative, carbon quasi-supply curves under different price scenarios and for different time periods. The curves trace out the relationship between an intertemporal price path for carbon, as given by carbon shadow prices, and the cumulative carbon sequestered from the initiation of the shadow prices, set at 2000, to a selected future year (2010, 2050, 2100). The timber supply model demonstrates that cumulative carbon quasi-supply curves that can be generated through forestry significantly depend on initial carbon prices and expectations regarding the time profile of future carbon prices. Furthermore, long-run quasi-supply curves generated from a constant price will have somewhat different characteristics from quasi-supply curves generated with an expectation of rising carbon prices through time.The ?least-cost? curves vary the time periods under consideration and the time profile of carbon prices. The quasi-supply curves suggest that a policy of gradually increasing carbon prices will generate the least costly supply curves in the shorter periods of a decade or so. Over longer periods of time, however, such as 50 or 100 years, these advantages appear to dissipate.

  13. Ecosystem carbon dioxide fluxes after disturbance in forests of North America

    E-Print Network [OSTI]

    2010-01-01

    2006), The impact of boreal forest fire on climate warming,J. , et al. (2003), Large forest fires in Canada, 1959–1997,2003; U.S. National Interagency Forest Fire Centre, http://

  14. Has fire suppression increased the amount of carbon stored in western U.S. forests?

    E-Print Network [OSTI]

    Fellows, Aaron W.; Goulden, Michael L.

    2008-01-01

    precipitation (MAP), forest type, and fire regime. [ 7 ] Thein mid-elevation conifer forests, where fire suppression is20th century fire suppression in western US forests, and a

  15. Exposure to an enriched CO2 atmosphere alters carbon assimilation and allocation in a pine forest ecosystem

    E-Print Network [OSTI]

    Oren, Ram

    to reduce the rate at which atmospheric CO2 increases, the Kyoto Protocol has transformed CO2 emissions in a future CO2-enriched world is even greater (Houghton, 1997). For example, despite some downExposure to an enriched CO2 atmosphere alters carbon assimilation and allocation in a pine forest

  16. RESTORING SUSTAINABLE FORESTS ON APPALACHIAN MINED LANDS FOR WOOD PRODUCTS, RENEWABLE ENERGY, CARBON SEQUESTRATION, AND OTHER ECOSYSTEM SERVICES

    SciTech Connect (OSTI)

    James A. Burger; J. Galbraith; T. Fox; G. Amacher; J. Sullivan; C. Zipper

    2005-06-08

    The overall purpose of this project is to evaluate the biological and economic feasibility of restoring high-quality forests on mined land, and to measure carbon sequestration and wood production benefits that would be achieved from forest restoration procedures. We are currently estimating the acreage of lands in VA, WV, KY, OH, and PA mined under SMCRA and reclaimed to non-forested post-mining land uses that are not currently under active management, and therefore can be considered as available for carbon sequestration. To determine actual sequestration under different forest management scenarios, a field study was installed as a 3 x 3 factorial in a random complete block design with three replications at each of three locations, Ohio, West Virginia, and Virginia. The treatments included three forest types (white pine, hybrid poplar, mixed hardwood) and three silvicultural regimes (competition control, competition control plus tillage, competition control plus tillage plus fertilization). Each individual treatment plot is 0.5 acres. Each block of nine plots is 4.5 acres, and the complete installation at each site is 13.5 acres. During the reporting period we compiled and evaluated all soil properties measured on the study sites. Statistical analysis of the properties was conducted, and first year survival and growth of white pine, hybrid poplars, and native hardwoods was assessed. Hardwood species survived better at all sites than white pine or hybrid poplar. Hardwood survival across treatments was 80%, 85%, and 50% for sites in Virginia, West Virginia, and Ohio, respectively, while white pine survival was 27%, 41%, and 58%, and hybrid poplar survival was 37%, 41%, and 72% for the same sites, respectively. Hybrid poplar height and diameter growth were superior to those of the other species tested, with the height growth of this species reaching 126.6cm after one year in the most intensive treatment at the site in Virginia. To determine carbon in soils on these sites, we developed a cost-effective method for partitioning total soil carbon to pedogenic carbon and geogenic carbon in mine soils. We are in the process of evaluating the accuracy and precision of the proposed carbon partitioning technique for which we are designing an experiment with carefully constructed mine soil samples. In a second effort, as part of a mined land reforestation project for carbon sequestration in southwestern Virginia we implemented the first phase of the carbon monitoring protocol that was recently delivered to DOE.

  17. Silviculture and Forest Nutrition Forestry is a vital part of the economy in Florida and the Southern United States. Recent estimates

    E-Print Network [OSTI]

    Hill, Jeffrey E.

    and changing land-use patterns have reduced timberlands in this region by about 2.5 million acres since interception, carbon allocation) and ecosystem processes (soil nutrient supply, nutrient cycling, uptake Cooperative, the Cooperative Research in Forest Fertilization (CRIFF) program and the Partnership

  18. Big Sky Carbon Atlas

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    (Acknowledgment to the Big Sky Carbon Sequestration Partnership (BSCSP); see home page at http://www.bigskyco2.org/)

  19. MECS 2006- Forest Products

    Broader source: Energy.gov [DOE]

    Manufacturing Energy and Carbon Footprint for Forest Products (NAICS 321, 322) Sector with Total Energy Input, October 2012 (MECS 2006)

  20. Carbon Isotopic Studies of Assimilated and Ecosystem Respired CO2 in a Southeastern Pine Forest. Final Report and Conference Proceedings

    SciTech Connect (OSTI)

    Conte, Maureen H

    2008-04-10

    Carbon dioxide is the major “greenhouse” gas responsible for global warming. Southeastern pine forests appear to be among the largest terrestrial sinks of carbon dioxide in the US. This collaborative study specifically addressed the isotopic signatures of the large fluxes of carbon taken up by photosynthesis and given off by respiration in this ecosystem. By measuring these isotopic signatures at the ecosystem level, we have provided data that will help to more accurately quantify the magnitude of carbon fluxes on the regional scale and how these fluxes vary in response to climatic parameters such as rainfall and air temperature. The focus of the MBL subcontract was to evaluate how processes operating at the physiological and ecosystem scales affects the resultant isotopic signature of plant waxes that are emitted as aerosols into the convective boundary layer. These wax aerosols provide a large-spatial scale integrative signal of isotopic discrimination of atmospheric carbon dioxide by terrestrial photosynthesis (Conte and Weber 2002). The ecosystem studies have greatly expanded of knowledge of wax biosynthetic controls on their isootpic signature The wax aerosol data products produced under this grant are directly applicable as input for global carbon modeling studies that use variations in the concentration and carbon isotopic composition of atmospheric carbon dioxide to quantify the magnitude and spatial and temporal patterns of carbon uptake on the global scale.

  1. Energy Technology Partnership (ETP) Energy Industry Doctorates

    E-Print Network [OSTI]

    Painter, Kevin

    Energy Technology Partnership (ETP) Energy Industry Doctorates in Low Carbon Energy Technologies for Guidance 1. Introduction The Energy Technology Partnership (ETP) has established an Energy Industry for `industry-ready', post-doctoral researchers to enhance energy industry innovation and knowledge exchange

  2. Presentation 2.3: The sustainable forest products industry, carbon and climate change Mikael Hannus

    E-Print Network [OSTI]

    emissions, the forest products industry can - become more energy efficient and increase its share of biomass International Seminar onFAO IEA ICFPA International Seminar on Energy and the Forest Products IndustryEnergy the industry. To assist in the efforts to reduce society's energy use and greenhouse gas emissions, the forest

  3. Influence of stand age on the magnitude and seasonality of carbon fluxes in Canadian forests

    E-Print Network [OSTI]

    2012-01-01

    time series of carbon, water, and energy exchange at themeasurements of carbon, water and energy exchanges betweenN. , 2006. Carbon, energy and water ?uxes at mature and

  4. Ecosystem carbon dioxide fluxes after disturbance in forests of North America

    E-Print Network [OSTI]

    2010-01-01

    2010 Ecosystem carbon dioxide fluxes after disturbance in2007), Comparison of carbon dioxide fluxes over three borealharvest influence carbon dioxide fluxes of black spruce

  5. Restoring Sustainable Forests on Appalachian Mined Lands for Wood Products, Renewable Energy, Carbon Sequestration, and Other Ecosystem Services

    SciTech Connect (OSTI)

    James A. Burger; J. Galbraith; T. Fox; G. Amacher; J. Sullivan; C. Zipper

    2005-12-01

    The overall purpose of this project is to evaluate the biological and economic feasibility of restoring high-quality forests on mined land, and to measure carbon sequestration and wood production benefits that would be achieved from forest restoration procedures. We are currently estimating the acreage of lands in Virginia, West Virginia, Kentucky, Ohio, and Pennsylvania mined under SMCRA and reclaimed to non-forested post-mining land uses that are not currently under active management, and therefore can be considered as available for carbon sequestration. To determine actual sequestration under different forest management scenarios, a field study was installed as a 3 x 3 factorial in a random complete block design with three replications at each of three locations, one each in Ohio, West Virginia, and Virginia. The treatments included three forest types (white pine, hybrid poplar, mixed hardwood) and three silvicultural regimes (competition control, competition control plus tillage, competition control plus tillage plus fertilization). Each individual treatment plot is 0.5 acres. Each block of nine plots is 4.5 acres, and the complete installation at each site is 13.5 acres. Regression models of chemical and physical soil properties were created in order to estimate the SOC content down the soil profile. Soil organic carbon concentration and volumetric percent of the fines decreased exponentially down the soil profile. The results indicated that one-third of the total SOC content on mined lands was found in the surface 0-13 cm soil layer, and more than two-thirds of it was located in the 0-53 cm soil profile. A relative estimate of soil density may be best in broad-scale mine soil mapping since actual D{sub b} values are often inaccurate and difficult to obtain in rocky mine soils. Carbon sequestration potential is also a function of silvicultural practices used for reforestation success. Weed control plus tillage may be the optimum treatment for hardwoods and white pine, as any increased growth resulting from fertilization may not offset the decreased survival that accompanied fertilization. Relative to carbon value, our analysis this quarter shows that although short-rotation hardwood management on reclaimed surface mined lands may have higher LEVs than traditional long-rotation hardwood management, it is only profitable in a limited set of circumstances.

  6. Ecosystem carbon dioxide fluxes after disturbance in forests of North America

    E-Print Network [OSTI]

    2010-01-01

    carbon dioxide, water vapor and energy flux densities, Bull.et al. (2006), Carbon, energy and water fluxes at mature and

  7. RESTORING SUSTAINABLE FORESTS ON APPALACHIAN MINED LANDS FOR WOOD PRODUCTS, RENEWABLE ENERGY, CARBON SEQUESTRATION, AND OTHER ECOSYSTEM SERVICES

    SciTech Connect (OSTI)

    James A. Burger; J. Galbraith; T. Fox; G. Amacher; J. Sullivan; C. Zipper

    2005-02-15

    The overall purpose of this project is to evaluate the biological and economic feasibility of restoring high-quality forests on mined land, and to measure carbon sequestration and wood production benefits that would be achieved from forest restoration procedures. During the reporting period (October-December 2004) we completed the validation of a forest productivity classification model for mined land. A coefficient of determination (R{sup 2}) of 0.68 confirms the model's ability to predict SI based on a selection of mine soil properties. To determine carbon sequestration under different forest management scenarios, a field study was installed as a 3 x 3 factorial in a random complete block design with three replications at each of three locations, Ohio (Figure 1), West Virginia (Figure 2), and Virginia (Figure 3). The treatments included three forest types (white pine, hybrid poplar, mixed hardwood) and three silvicultural regimes (competition control, competition control plus tillage, competition control plus tillage plus fertilization). For hybrid poplar, total plant biomass differences increased significantly with the intensity of silvicultural input. Root, stem, and foliage biomass also increased with the level of silvicultural intensity. Financial feasibility analyses of reforestation on mined lands previously reclaimed to grassland have been completed for conversion to white pine and mixed hardwood species. Examination of potential policy instruments for promoting financial feasibility also have been completed, including lump sum payments at time of conversion, annual payments through the life of the stand, and payments based on carbon sequestration that provide both minimal profitability and fully offset initial reforestation outlays. We have compiled a database containing mine permit information obtained from permitting agencies in Virginia, West Virginia, Pennsylvania, Ohio, and Kentucky. Due to differences and irregularities in permitting procedures between states, we found it necessary to utilize an alternative method to determine mined land acreages in the Appalachian region. We have initiated a proof of concept study, focused in the State of Ohio, to determine the feasibility of using images from the Landsat Thematic Mapper (TM) and/or Enhanced Thematic Mapper Plus (ETM+) to accurately identify mined lands.

  8. Modeling soil respiration based on carbon, nitrogen, and root mass across diverse Great Lake forests

    E-Print Network [OSTI]

    Chen, Jiquan

    . Introduction Linkages between atmospheric carbon dioxide and global thermal properties have forcedModeling soil respiration based on carbon, nitrogen, and root mass across diverse Great Lake the examination of biospheric carbon flows and pools. Variability in carbon storage or the net ecosystem exchange

  9. Influence of stand age on the magnitude and seasonality of carbon fluxes in Canadian forests

    E-Print Network [OSTI]

    2012-01-01

    GPP, respiration, and NEP during boreal forest succession.ecosystem productivity (NEP), gross ecosystem productivity (Mg C ha ?1 at 80 years. Peak NEP ranged from 0.9 to 2.9 Mg C

  10. Using climate policies and carbon markets to save tropical forests : the case of Costa Rica

    E-Print Network [OSTI]

    Arpels, Marisa (Marisa Carina)

    2008-01-01

    In the late 1980s and early 1990s, advocates for forest conservation thought that climate change could provide a lever to motivate developing countries to reduce deforestation. Fifteen years after the first climate change ...

  11. Supporting Online Material for: Carbon in Amazon forests: Unexpected seasonal fluxes and disturbance-

    E-Print Network [OSTI]

    seasonal variations in important climatic variables at this site: solar radiation, net radiation, air; measurements at Km 83 after that date are not included here, since we focus on the dynamics of primary forests

  12. Restoring Sustainable Forests on Appalachian Mined Lands for Wood Products, Renewable Energy, Carbon Sequestration, and Other Ecosystem Services

    SciTech Connect (OSTI)

    Burger, James A

    2005-07-20

    The overall purpose of this project is to evaluate the biological and economic feasibility of restoring high-quality forests on mined land, and to measure carbon sequestration and wood production benefits that would be achieved from forest restoration procedures. We are currently estimating the acreage of lands in Virginia, West Virginia, Kentucky, Ohio, and Pennsylvania mined under SMCRA and reclaimed to non-forested post-mining land uses that are not currently under active management, and therefore can be considered as available for carbon sequestration. To determine actual sequestration under different forest management scenarios, a field study was installed as a 3 x 3 factorial in a random complete block design with three replications at each of three locations, one each in Ohio, West Virginia, and Virginia. The treatments included three forest types (white pine, hybrid poplar, mixed hardwood) and three silvicultural regimes (competition control, competition control plus tillage, competition control plus tillage plus fertilization). Each individual treatment plot is 0.5 acres. Each block of nine plots is 4.5 acres, and the complete installation at each site is 13.5 acres. During the reporting period we determined that by grinding the soil samples to a finer particle size of less than 250 ?m (sieve No. 60), the effect of mine soil coal particle size on the extent to which these particles will be oxidized during the thermal treatment of the carbon partitioning procedure will be eliminated, thus making the procedure more accurate and precise. In the second phase of the carbon sequestration project, we focused our attention on determining the sample size required for carbon accounting on grassland mined fields in order to achieve a desired accuracy and precision of the final soil organic carbon (SOC) estimate. A mine land site quality classification scheme was developed and some field-testing of the methods of implementation was completed. The classification model has been validated for softwoods (white pine) on several reclaimed mine sites in the southern Appalachian coal region. The classification model is a viable method for classifying post-SMCRA abandoned mined lands into productivity classes for white pine. A thinning study was established as a random complete block design to evaluate the response to thinning of a 26-year-old white pine stand growing on a reclaimed surface mine in southwest Virginia. Stand parameters were projected to age 30 using a stand table projection. Site index of the stand was found to be 32.3 m at base age 50 years. Thinning rapidly increased the diameter growth of the residual trees to 0.84 cm yr{sup -1} compared to 0.58 cm yr{sup -1} for the unthinned treatment; however, at age 26, there was no difference in volume or value per hectare. At age 30, the unthinned treatment had a volume of 457.1 m{sup 3} ha{sup -1} but was only worth $8807 ha{sup -1}, while the thinned treatment was projected to have 465.8 m{sup 3} ha{sup -1}, which was worth $11265 ha{sup -1} due to a larger percentage of the volume being in sawtimber size classes.

  13. Southwestern Regional Partnership For Carbon Sequestration (Phase 2) Pump Canyon CO2- ECBM/Sequestration Demonstration, San Juan Basin, New Mexico

    SciTech Connect (OSTI)

    Advanced Resources International

    2010-01-31

    Within the Southwest Regional Partnership on Carbon Sequestration (SWP), three demonstrations of geologic CO{sub 2} sequestration are being performed -- one in an oilfield (the SACROC Unit in the Permian basin of west Texas), one in a deep, unmineable coalbed (the Pump Canyon site in the San Juan basin of northern New Mexico), and one in a deep, saline reservoir (underlying the Aneth oilfield in the Paradox basin of southeast Utah). The Pump Canyon CO{sub 2}-enhanced coalbed methane (CO{sub 2}/ECBM) sequestration demonstration project plans to demonstrate the effectiveness of CO{sub 2} sequestration in deep, unmineable coal seams via a small-scale geologic sequestration project. The site is located in San Juan County, northern New Mexico, just within the limits of the high-permeability fairway of prolific coalbed methane production. The study area for the SWP project consists of 31 coalbed methane production wells located in a nine section area. CO{sub 2} was injected continuously for a year and different monitoring, verification and accounting (MVA) techniques were implemented to track the CO{sub 2} movement inside and outside the reservoir. Some of the MVA methods include continuous measurement of injection volumes, pressures and temperatures within the injection well, coalbed methane production rates, pressures and gas compositions collected at the offset production wells, and tracers in the injected CO{sub 2}. In addition, time-lapse vertical seismic profiling (VSP), surface tiltmeter arrays, a series of shallow monitoring wells with a regular fluid sampling program, surface measurements of soil composition, CO{sub 2} fluxes, and tracers were used to help in tracking the injected CO{sub 2}. Finally, a detailed reservoir model was constructed to help reproduce and understand the behavior of the reservoir under production and injection operation. This report summarizes the different phases of the project, from permitting through site closure, and gives the results of the different MVA techniques.

  14. The combined effects of thinning and prescribed fire on carbon and nutrient budgets in a Jeffrey pine forest

    SciTech Connect (OSTI)

    Johnson, Dale W. [University of Nevada, Reno; Murphy, James D. [University of Nevada, Reno; Walker, Roger F. [University of Nevada, Reno; Miller, Watkins W. [University of Nevada, Reno; Glass, D. W. [University of Nevada, Reno; Todd Jr, Donald E [ORNL

    2008-09-01

    Both burning and harvesting cause carbon and nutrient removals from forest ecosystems, but few studies have addressed the combination of these effects. For a Pinus jeffreyii forest in the Sierra Nevada Mountains of California, we posed the question: what are the relative impacts of thinning and subsequent burning on carbon and nutrient removals? The thinning methods included whole-tree thinning (WT, where all aboveground biomass was removed) cut to length (CTL, where branches and foliage were left on site in a slash mat on top of skid trails) and no harvest (CONT). Total C and nutrient exports with thinning and burning were greater in the WT and CTL than in the CONT treatments. Total C and N removals were approximately equal for the WT and CTL treatments, although harvesting dominated exports in the WT treatment and burning dominated exports in the CTL treatment. Total removals of P, K, Ca, Mg and S were greatest in the WT treatments, where harvesting dominated removals. Comparisons of nutrient removals with ecosystem capital and calculations of potential replenishment by atmospheric deposition suggested that N is the nutrient likely to be most depleted by harvesting and burning treatments.

  15. CARBON SEQUESTRATION STRATEGIES FOR CALIFORNIA

    E-Print Network [OSTI]

    GEOLOGIC CARBON SEQUESTRATION STRATEGIES FOR CALIFORNIA: REPORT TO THE LEGISLATURE Regional Carbon Sequestration Partnership (WESTCARB) studies that we used, including Cameron Downey

  16. Effects of grazing intensity on soil carbon stocks following deforestation of a Hawaiian dry tropical forest

    E-Print Network [OSTI]

    Elmore, Andrew J.

    : carbon isotopes, elevation, Hawai'i, imaging spectroscopy, land-use change, pastures, remote sensing be addressed, future changes in ecosystem dynamics and atmospheric carbon dioxide cannot be easily predictedEffects of grazing intensity on soil carbon stocks following deforestation of a Hawaiian dry

  17. PLAINS CO2 REDUCTION (PCOR) PARTNERSHIP

    SciTech Connect (OSTI)

    Edward N. Steadman; Daniel J. Daly; Lynette L. de Silva; John A. Harju; Melanie D. Jensen; Erin M. O'Leary; Wesley D. Peck; Steven A. Smith; James A. Sorensen

    2006-01-01

    During the period of October 1, 2003, through September 30, 2005, the Plains CO2 Reduction (PCOR) Partnership, identified geologic and terrestrial candidates for near-term practical and environmentally sound carbon dioxide (CO2) sequestration demonstrations in the heartland of North America. The PCOR Partnership region covered nine states and three Canadian provinces. The validation test candidates were further vetted to ensure that they represented projects with (1) commercial potential and (2) a mix that would support future projects both dependent and independent of CO2 monetization. This report uses the findings contained in the PCOR Partnership's two dozen topical reports and half-dozen fact sheets as well as the capabilities of its geographic information system-based Decision Support System to provide a concise picture of the sequestration potential for both terrestrial and geologic sequestration in the PCOR Partnership region based on assessments of sources, sinks, regulations, deployment issues, transportation, and capture and separation. The report also includes concise action plans for deployment and public education and outreach as well as a brief overview of the structure, development, and capabilities of the PCOR Partnership. The PCOR Partnership is one of seven regional partnerships under Phase I of the U.S. Department of Energy National Energy Technology Laboratory's Regional Carbon Sequestration Partnership program. The PCOR Partnership, comprising 49 public and private sector members, is led by the Energy & Environmental Research Center at the University of North Dakota. The international PCOR Partnership region includes the Canadian provinces of Alberta, Saskatchewan, and Manitoba and the states of Montana (part), Wyoming (part), North Dakota, South Dakota, Nebraska, Missouri, Iowa, Minnesota, and Wisconsin.

  18. NSF/DOE Thermoelectrics Partnership: Purdue ? GM Partnership...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Purdue GM Partnership on Thermoelectrics for Automotive Waste Heat Recovery NSFDOE Thermoelectrics Partnership: Purdue GM Partnership on Thermoelectrics for Automotive Waste...

  19. anagin Forests because Carbon Matters: In grating Energy, Products, and Land

    E-Print Network [OSTI]

    Fried, Jeremy S.

    storage and releases, water fluxes from the soil and into the atmosphere, and solar energy copture with traditional forest products, but it may also produce benefits through competition and market efficiency. Short to heart the finding of the Intergovernmental Panel on Oimote OlOnge in its Fourth Assessment Report when

  20. A model analysis of N and P limitation on carbon accumulation in Amazonian secondary forest after

    E-Print Network [OSTI]

    alternate land-use abandonment DARRELL A. HERBERT*, MATHEW WILLIAMS and EDWARD B. RASTETTER Marine in residual fuel and belowground necromass relative to soil organic matter (SOM) N:P produced a simul- taneous- nificantly. Associated with the practice of forest conversion to alternate land-use is an export of C

  1. Using electrochemical impedance spectroscopy to characterize vertically-aligned carbon nanotube forest porosimetry

    E-Print Network [OSTI]

    Lu, Yuan, S.B. Massachusetts Institute of Technology

    2015-01-01

    Carbon nanotubes have generated much research interest and potential applications due to their unique properties such as their high tensile strength, high thermal conductivity, and unique semiconductor properties. ...

  2. Simulating boreal forest carbon dynamics after stand-replacing fire disturbance: insights from a global process-based vegetation model

    E-Print Network [OSTI]

    2013-01-01

    emissions from boreal forest fires, J. Geophys. Res. , 109,Skinner, W. R. : Large forest fires in Canada, 1959–1997, J.S. : The Impact of Bo- real Forest Fire on Climate Warming,

  3. Simulating boreal forest carbon dynamics after stand-replacing fire disturbance: insights from a global process-based vegetation model

    E-Print Network [OSTI]

    2013-01-01

    development of Boreal forests and fire regimes on the Kenaiemissions from boreal forest fires, J. Geophys. Res. , 109,Skinner, W. R. : Large forest fires in Canada, 1959–1997, J.

  4. CO2 enrichment increases carbon and nitrogen input from fine roots in a deciduous forestinput from fine roots in a deciduous forest

    E-Print Network [OSTI]

    Post, Wilfred M.

    CO2 enrichment increases carbon and nitrogen input from fine roots in a deciduous forestinput from fine roots in a deciduous forest · We assessed the effect of elevated [CO2] Contact: Richard J. Norby Research We assessed the effect of elevated [CO2] on production and mortality of short-lived fine

  5. Soil Biology & Biochemistry 39 (2007) 27012711 Carbon structure and enzyme activities in alpine and forest ecosystems

    E-Print Network [OSTI]

    Neff, Jason

    2007-01-01

    : Pyrolysis-gas chromatography/mass spectrometry; Py-GC/MS; Enzymes; Microbe; Carbon; Chemistry; Soil organicSoil Biology & Biochemistry 39 (2007) 2701­2711 Carbon structure and enzyme activities in alpine of soil organic matter fractions and its relationship to biological processes remains uncertain. We used

  6. Available online at www.sciencedirect.com The carbon balance of tropical forest regions, 19902005

    E-Print Network [OSTI]

    Malhi, Yadvinder

    the biosphere to the atmosphere, through the combustion and decomposition of vegetation biomass. The exact of knowledge of the carbon balance of the tropical bio- sphere, looking at both CO2 emissions from land use, principally because they contain the more substantial biomass carbon stocks, but also because so few data

  7. Tropical North Atlantic ocean-atmosphere interactions synchronize forest carbon losses from hurricanes and Amazon fires

    E-Print Network [OSTI]

    Chen, Y; Randerson, JT; Morton, DC

    2015-01-01

    19), 7888–7892. CHEN ET AL. HURRICANES AND AMAZON FIRES AREand G. C. Hurtt (2007), Hurricane Katrina’s carbon footprintThe 2013 Atlantic basin hurricane season: Blip or ?ip? ,

  8. Geothermal Industry Partnership Opportunities

    Broader source: Energy.gov [DOE]

    Here you'll find links to information about partnership opportunities and programs for the geothermal industry.

  9. Forest Resources and Management

    E-Print Network [OSTI]

    the forest resource. Our aim is that British forests ­ from their creation to maturity and regeneration and harvesting, and the physical properties of stands, trees and timber. Scope of our work Our research focuses expertise in forecasting forest growth is now applied to carbon assessment and management. We also work

  10. Water Challenges for Geologic Carbon Capture and Sequestration

    E-Print Network [OSTI]

    Newmark, Robin L.; Friedmann, Samuel J.; Carroll, Susan A.

    2010-01-01

    and HB 90:Carbon capture and sequestration, http://legisweb.conference on carbon capture and sequestration, Pittsburgh,The DOE’s Regional Carbon Sequestration Partnerships are

  11. Perspectives on Carbon Capture and Sequestration in the United States

    E-Print Network [OSTI]

    Wong-Parodi, Gabrielle

    2011-01-01

    West Coast Regional Carbon Sequestration Partnership 2008Community perceptions of carbon sequestration: insights fromof coal with carbon sequestration. Casper Star Tribune.

  12. Modest carbon price could save Borneo forests: study Reuters, 4 June 2009 -Tropical forests in Borneo under threat of conversion to palm oil

    E-Print Network [OSTI]

    in Borneo under threat of conversion to palm oil plantations could be more profitable left standing threat of being converted to oil palm plantations. "They are not meant to be clearing forest for palm oil development. It's pretty clear that forests are being felled for oil palm," said Venter, a conservation

  13. Fact Sheet: Energy Storage Technology Advancement Partnership...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Advancement Partnership (October 2012) Fact Sheet: Energy Storage Technology Advancement Partnership (October 2012) The Energy Storage Technology Advancement Partnership...

  14. Carbon stocks in coffee agroforests and mixed dry tropical forests in the western highlands of Guatemala

    E-Print Network [OSTI]

    Evans, Tom

    of Guatemala Mikaela Schmitt-Harsh · Tom P. Evans · Edwin Castellanos · J. C. Randolph Received: 4 January 2012- ducted in 2007 and 2010 in the Lake Atitla´n region of Guatemala, this research examines the carbon pools Estudios Ambientales y de Biodiversidad, Universidad del Valle de Guatemala, 18 Avenida 11-95 Zona 15

  15. Comparison of coniferous forest carbon stocks between old-growth and young second-growth

    E-Print Network [OSTI]

    Sanborn, Paul

    stocks by 54%­41%. Résumé : Les stocks de carbone (C) ont été évalués pour les forêts de montagne-Britannique, au Canada. Des parcelles-échantillons ont été éta- blies dans quatre vieilles forêts (141­250 ans) et quatre jeunes forêts de seconde venue (ans) sur les deux types dominants de texture du sol, grossière

  16. Warming acceleratesQ:1 decomposition; 2 of decades-old carbon in forest soils

    E-Print Network [OSTI]

    , CA 94720; and d Energy and Resources Group, University of California, Berkeley, CA 94720 AUTHOR to distinguish the contribution of decades-old carbon to CO2 fluxes in a labo- ratory incubation study. The first- sphere, which has declined since the early 1960s when large-scale atmospheric testing of nuclear weapons

  17. GEOLOGIC CARBON SEQUESTRATION STRATEGIES FOR CALIFORNIA

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION GEOLOGIC CARBON SEQUESTRATION STRATEGIES FOR CALIFORNIA to extend our thanks to the authors of various West Coast Regional Carbon Sequestration Partnership

  18. Reduced impact logging minimally alters tropical rainforest carbon and energy exchange

    E-Print Network [OSTI]

    2011-01-01

    variations in energy and carbon exchange over forest andon tropical forest carbon, water, and energy exchange. Twothe role of forest in the water and energy cycles and

  19. Restoring Sustainable Forests on Appalachian Mined Lands for Wood Product, Renewable Energy, Carbon Sequestration, and Other Ecosystem Services

    SciTech Connect (OSTI)

    Burger, James A

    2006-09-30

    Concentrations of CO{sub 2} in the Earth’s atmosphere have increased dramatically in the past 100 years due to deforestation, land use change, and fossil fuel combustion. These humancaused, higher levels of CO{sub 2} may enhance the atmospheric greenhouse effect and may contribute to climate change. Many reclaimed coal-surface mine areas in the eastern U.S. are not in productive use. Reforestation of these lands could provide societal benefits, including sequestration of atmospheric carbon. The goal of this project was to determine the biological and economic feasibility of restoring high-quality forests on the tens of thousands of hectares of mined land and to measure carbon sequestration and wood production benefits that would be achieved from large-scale application of forest restoration procedures. We developed a mine soil quality model that can be used to estimate the suitability of selected mined sites for carbon sequestration projects. Across the mine soil quality gradient, we tested survival and growth performance of three species assemblages under three levels of silvicultural. Hardwood species survived well in WV and VA, and survived better than the other species used in OH, while white pine had the poorest survival of all species at all sites. Survival was particularly good for the site-specific hardwoods planted at each site. Weed control plus tillage may be the optimum treatment for hardwoods and white pine, as any increased growth resulting from fertilization may not offset the decreased survival that accompanied fertilization. Grassland to forest conversion costs may be a major contributor to the lack of reforestation of previously reclaimed mine lands in the Appalachian coal-mining region. Otherwise profitable forestry opportunities may be precluded by these conversion costs, which for many combinations of factors (site class, forest type, timber prices, regeneration intensity, and interest rate) result in negative land expectation values. Improved technology and/or knowledge of reforestation practices in these situations may provide opportunities to reduce the costs of converting many of these sites as research continues into these practices. It also appears that in many cases substantial payments, non-revenue values, or carbon values are required to reach “profitability” under the present circumstances. It is unclear when, or in what form, markets will develop to support any of these add-on values to supplement commercial forestry revenues. However, as these markets do develop, they will only enhance the viability of forestry on reclaimed mined lands, although as we demonstrate in our analysis of carbon payments, the form of the revenue source may itself influence management, potentially mitigating some of the benefits of reforestation. For a representative mined-land resource base, reforestation of mined lands with mixed pine-hardwood species would result in an average estimated C accumulation in forms that can be harvested for use as wood products or are likely to remain in the soil C pool at ~250 Mg C ha{sup -1} over a 60 year period following reforestation. The “additionality” of this potential C sequestration was estimated considering data in scientific literature that defines C accumulation in mined-land grasslands over the long term. Given assumptions detailed in the text, these lands have the potential to sequester ~180 Mg C ha{sup -1}, a total of 53.5 x 10{sup 6} Mg C, over 60 years, an average of ~900,000 Mg C / yr, an amount equivalent to about 0.04% of projected US C emissions at the midpoint of a 60-year period (circa 2040) following assumed reforestation. Although potential sequestration quantities are not great relative to potential national needs should an energy-related C emissions offset requirement be developed at some future date, these lands are available and unused for other economically valued purposes and many possess soil and site properties that are well-suited to reforestation. Should such reforestation occur, it would also produce ancillary benefits by providing env

  20. Modeling the effects of fire severity and climate warming on active layer thickness and soil carbon storage of black spruce forests across the landscape in interior Alaska

    SciTech Connect (OSTI)

    Genet, Helene [Institute of Arctic Biology (IAB), University of Alaska, Fairbanks (UAF)] [Institute of Arctic Biology (IAB), University of Alaska, Fairbanks (UAF); McGuire, A. David [University of Alaska] [University of Alaska; Barrett, K. [USGS Alaska Science Center] [USGS Alaska Science Center; Breen, Amy [International Arctic Research Center, SNAP, University of Alaska, Fairbanks (UAF)] [International Arctic Research Center, SNAP, University of Alaska, Fairbanks (UAF); Euskirchen, Eugenie S [University of Alaska] [University of Alaska; Johnstone, J. F. [University of Saskatchewan] [University of Saskatchewan; Kasischke, Eric S. [University of Maryland, College Park] [University of Maryland, College Park; Melvin, A. M. [University of Florida, Gainesville] [University of Florida, Gainesville; Bennett, A. [International Arctic Research Center, SNAP, University of Alaska, Fairbanks (UAF)] [International Arctic Research Center, SNAP, University of Alaska, Fairbanks (UAF); Mack, M. C. [University of Florida, Gainesville] [University of Florida, Gainesville; Rupp, Scott T. [International Arctic Research Center, SNAP, University of Alaska, Fairbanks (UAF)] [International Arctic Research Center, SNAP, University of Alaska, Fairbanks (UAF); Schuur, Edward [University of Florida] [University of Florida; Turetsky, M. R. [University of Guelph, Canada] [University of Guelph, Canada; Yuan, Fengming [ORNL] [ORNL

    2013-01-01

    There is a substantial amount of carbon stored in the permafrost soils of boreal forest ecosystems, where it is currently protected from decomposition. The surface organic horizons insulate the deeper soil from variations in atmospheric temperature. The removal of these insulating horizons through consumption by fire increases the vulnerability of permafrost to thaw, and the carbon stored in permafrost to decomposition. In this study we ask how warming and fire regime may influence spatial and temporal changes in active layer and carbon dynamics across a boreal forest landscape in interior Alaska. To address this question, we (1) developed and tested a predictive model of the effect of fire severity on soil organic horizons that depends on landscape-level conditions and (2) used this model to evaluate the long-term consequences of warming and changes in fire regime on active layer and soil carbon dynamics of black spruce forests across interior Alaska. The predictive model of fire severity, designed from the analysis of field observations, reproduces the effect of local topography (landform category, the slope angle and aspect and flow accumulation), weather conditions (drought index, soil moisture) and fire characteristics (day of year and size of the fire) on the reduction of the organic layercaused by fire. The integration of the fire severity model into an ecosystem process-based model allowed us to document the relative importance and interactions among local topography, fire regime and climate warming on active layer and soil carbon dynamics. Lowlands were more resistant to severe fires and climate warming, showing smaller increases in active layer thickness and soil carbon loss compared to drier flat uplands and slopes. In simulations that included the effects of both warming and fire at the regional scale, fire was primarily responsible for a reduction in organic layer thickness of 0.06 m on average by 2100 that led to an increase in active layer thickness of 1.1 m on average by 2100. The combination of warming and fire led to a simulated cumulative loss of 9.6 kgC m 2 on average by 2100. Our analysis suggests that ecosystem carbon storage in boreal forests in interior Alaska is particularly vulnerable, primarily due to the combustion of organic layer thickness in fire and the related increase in active layer thickness that exposes previously protected permafrost soil carbon to decomposition.

  1. Partnership Agreement Form

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Partnership Agreement Form Learn more at energy.goveereamobetter-plants The Better Buildings, Better Plants Program is a national initiative to significantly improve energy...

  2. PARTNERSHIPS INITIATIVES Partnerships Launches New Web Page with...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    INITIATIVES Partnerships Launches New Web Page with Innovative Technology Search Engine The ORNL Partnerships Directorate seeks to foster economic development and the growth of...

  3. Climate control of terrestrial carbon exchange across biomes and continents

    E-Print Network [OSTI]

    Yi, C.; Ricciuota, D.; Goulden, M. L.

    2010-01-01

    of carbon and energy exchanges Agric. Forest Meteorol. 113Agric. Forest Meteorol. Foken T 2008 The energy balance

  4. Simulating boreal forest carbon dynamics after stand-replacing fire disturbance: insights from a global process-based vegetation model

    E-Print Network [OSTI]

    2013-01-01

    NPP, GPP, respiration, and NEP during boreal forest succes-evaluated comprise GPP, NEP, TER, leaf area index (LAI),net ecosystem production or NEP, total ecosystem respiration

  5. University/NETL Student Partnership Program

    SciTech Connect (OSTI)

    Gerald Holder; Jonathan Mathews; Thomas Wilson; Steven Chuang; Cristina Amon; Turgay Ertekin; Karl Johnson; Goodarz Ahmadi; David Sholl

    2006-10-31

    The University/National Energy Technology Laboratory (NETL) Student Partnership Program stimulated basic and applied research in Energy and Environmental Science areas through NETL's Office of Science and Technology (OST). This Partnership Program supported the education of graduate students in Energy and Environmental Sciences, while fostering increased scientific interaction between NETL and the participating universities, by providing graduate student support for research at a NETL facility under the joint supervision of NETL and university faculty. Projects were intended to enhance a previously established scientific or engineering relationship or to create a new relationship. Major areas of research under the Partnership Program included CO{sub 2} sequestration, granular solids flow, multi-phase flow in porous solids, gas hydrates, nanotubes, acid-mine flow identification and remediation, water-gas shift reaction, circulating fluidized beds, slurry bubble column, fuel desulphurization, carbon fibers, and fuel cells.

  6. Testing a Mechanistic Model of Forest-Canopy Mass and Energy Exchange Using Eddy Correlation: Carbon Dioxide and Ozone Uptake by a Mixed Oak-Maple Stand

    E-Print Network [OSTI]

    Amthor, JS; Goulden, ML; Munger, JW; Wofsy, SC

    1994-01-01

    exchange of mass and energy between a forest canopy and thewater, energy, and momentum exchange between a forest andmeasurements of forest mass and energy exchange are

  7. Soil moisture dynamics in an eastern Amazonian tropical forest

    E-Print Network [OSTI]

    Bruno, RD; Bruno, RD; da Rocha, HR; de Freitas, HC; Goulden, ML; Miller, SD

    2006-01-01

    variations in energy and carbon exchange over forest andsurface energy exchange in the Amazonian terra firme forestvapour, energy, and CO 2 exchange. The rates of whole-forest

  8. Howland Forest David Hollinger, USDA Forest Service

    E-Print Network [OSTI]

    ; · An old-growth forest is a unique ecological endpoint · Long-term record of carbon is on factors that regulate long term carbon storage · Infrastructure · Topography experiment (21 ha) Canopy application, 18 kg N ha-1 y-1 (NH4NO3) C Sequestration Assessed in 3 Ways: · Eddy

  9. Site Characterization Activities with a focus on NETL MMV efforts: Southwest Regional Partnership, San Juan Basin Pilot, New Mexico

    E-Print Network [OSTI]

    Wilson, Thomas H.

    Regional Carbon Sequestration Partnership's San Juan Basin pilot site to aid in the deploymentSite Characterization Activities with a focus on NETL MMV efforts: Southwest Regional Partnership Juan Basin of northwestern New Mexico as part of the Southwest Regional Partnership's (SWP) pilot

  10. Control of Dry Season Evapotranspiration over the Amazonian Forest as Inferred from Observations at a Southern Amazon Forest Site

    E-Print Network [OSTI]

    Juárez, RIN; Hodnett, MG; Fu, R; Goulden, ML; von Randow, C

    2007-01-01

    variations in energy and carbon exchange over forest andEnergy and water dynam- ics of a central Amazonian rain forest.

  11. Thermoelectrics Partnership: Automotive Thermoelectric Modules...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Novel Nanostructured Interface Solution for Automotive Thermoelectric Modules Application Thermoelectrics Partnership: Automotive...

  12. Nuclear Waste Partnership, LLC

    Office of Environmental Management (EM)

    Nuclear Waste Partnership, LLC Waste Isolation Pilot Plant Report from the Department of Energy Voluntary Protection Program Onsite Review March 17-27, 2015 U.S. Department of...

  13. Utility and Industrial Partnerships 

    E-Print Network [OSTI]

    Sashihara, T. F.

    1989-01-01

    In the past decade, many external forces have shocked both utilities and their large industrial customers into seeking more effective ways of coping and surviving. One such way is to develop mutually beneficial partnerships optimizing the use...

  14. Federal Utility Partnership Working Group Meeting: Washington...

    Energy Savers [EERE]

    Utility Partnership Working Group Meeting: Washington Update Federal Utility Partnership Working Group Meeting: Washington Update Federal Utility Partnership Working Group Meeting:...

  15. Carbon finance, tropical forests and the state : governing international climate risk in the Democratic Republic of Congo

    E-Print Network [OSTI]

    Gray, Ian P

    2012-01-01

    This thesis examines how evolving norms of international climate change mitigation are translated into national forest governance policies and land management techniques in the Democratic Republic of Congo (DRC). The ...

  16. Global Economic Effects of Changes in Crops, Pasture, and Forests due to Changing Climate, Carbon Dioxide, and Ozone

    E-Print Network [OSTI]

    Reilly, John M.

    Multiple environmental changes will have consequences for global vegetation. To the extent that crop yields and pasture and forest productivity are affected there can be important economic consequences. We examine the ...

  17. 2014 Urban Forest Symposium Tom Hinckley

    E-Print Network [OSTI]

    Brown, Sally

    2014 Urban Forest Symposium Tom Hinckley Professor Emeritus May 24, 2014 #12;Questions, temperature, ppt, extremes) #12;Simple Model: Carbon and Stress Leaf GrowthCarbon Production Carbon Storage, solarization · Growing season ­ Soil moisture ­ Atmospheric (wind, temperature, humidity, radiation) ­ Outcomes

  18. Elevated CO2 increases tree-level intrinsic water use efficiency: insights from carbon and oxygen isotope analyses in tree rings across three forest FACE sites

    SciTech Connect (OSTI)

    Battipaglia, Giovanna [Second University of Naples; Saurer, Matthias [Paul Scherrer Institut, Villigen, Switzerland; Cherubini, Paulo [WSL Swiss Federal Institute for Forest, Snow and Landscape Research; Califapietra, Carlo [University of Tuscia; McCarthy, Heather R [Duke University; Norby, Richard J [ORNL; Cotrufo, M. Francesca [Colorado State University, Fort Collins

    2013-01-01

    Elevated CO2 increases intrinsic water use efficiency (WUEi) of forests, but the magnitude of this effect and its interaction with climate is still poorly understood. We combined tree ring analysis with isotope measurements at three Free Air CO2 Enrichment (FACE, POP-EUROFACE, in Italy; Duke FACE in North Carolina and ORNL in Tennessee, USA) sites, to cover the entire life of the trees. We used 13C to assess carbon isotope discrimination ( 13C ci/ca) and changes in WUEi, while direct CO2 effects on stomatal conductance were explored using 18O as a proxy. Across all the sites, elevated CO2 increased 13C-derived WUEi on average by 73% for Liquidambar styraciflua, 77% for Pinus taeda and 75% for Populus sp., but through different ecophysiological mechanisms. Our findings provide a robust means of predicting WUEi responses from a variety of tree species exposed to variable environmental conditions over time, and species-specific relationships that can help modeling elevated CO2 and climate impacts on forest productivity, carbon and water balances.

  19. Carbon offsets as a cost containment instrument : a case study of reducing emissions from deforestation and forest degradation

    E-Print Network [OSTI]

    Kim, Jieun, S.M. Massachusetts Institute of Technology

    2010-01-01

    Carbon offset is one type of flexibility mechanism in greenhouse gas emission trading schemes that helps nations meet their emission commitments at lower costs. Carbon offsets take advantage of lower abatement cost ...

  20. Forest Carbon Cycle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid you not find whatGasEnergyfeature

  1. Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil

    E-Print Network [OSTI]

    Sierra, C. A; Trumbore, S. E; Davidson, E. A; Frey, S. D; Savage, K. E; Hopkins, F. M

    2012-01-01

    carbon cycling in a temperate forest: radiocarbon-based es- timates of residence times, sequestration

  2. Northeast Energy Efficiency Partnerships: Advanced Lighting Controls...

    Energy Savers [EERE]

    Northeast Energy Efficiency Partnerships: Advanced Lighting Controls Northeast Energy Efficiency Partnerships: Advanced Lighting Controls Credit: Northeast Energy Efficiency...

  3. DOE Regional Partnership Successfully Demonstrates Terrestrial CO2 Storage Practices in Great Plains Region of U.S. and Canada

    Broader source: Energy.gov [DOE]

    A field test demonstrating the best approaches for terrestrial carbon dioxide storage in the heartland of North America has been successfully completed by one of the U.S. Department of Energy's seven Regional Carbon Sequestration Partnerships.

  4. Thermoelectrics Partnership: High Performance Thermoelectric...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Performance Thermoelectric Waste Heat Recovery System Based on Zintl Phase Materials with Embedded Nanoparticles Thermoelectrics Partnership: High Performance Thermoelectric...

  5. Partnerships | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid you notHeatMaRIEdioxideUserPartnerships Partnerships StrategicIn

  6. Partnerships | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid you notHeatMaRIEdioxideUserPartnerships Partnerships

  7. Detection of long-term trends in carbon accumulation by forests in Northeastern U. S. and determination of causal factors: Final report

    SciTech Connect (OSTI)

    J. William Munger; Steven C. Wofsy; David R. Foster

    2012-01-31

    The overall project goal was to quantify the trends and variability for Net ecosystem exchange of CO{sub 2}, H{sub 2}O, and energy by northeastern forests, with particular attention to the role of succession, differences in species composition, legacies of past land use, and disturbances. Measurements included flux measurements and observations of biomass accumulation using ecosystem modeling as a framework for data interpretation. Continuation of the long-term record at the Environmental Measurement Site (EMS) Tower was a priority. The final quality-assured CO{sub 2}-flux data now extend through 2010. Data through 2011 are collected but not yet finalized. Biomass observations on the plot array centered on the tower are extended to 2011. Two additional towers in a hemlock stand (HEM) and a younger deciduous stand (LPH) complement the EMS tower by focusing on stands with different species composition or age distribution and disturbance history, but comparable climate and soil type. Over the period since 1993 the forest has added 24.4 Mg-C ha{sup -1} in the living trees. Annual net carbon uptake had been increasing from about 2 Mg-C ha{sup -1}y{sup -1} in the early 1990s to nearly 6 Mg-C ha{sup -1}y{sup -1} by 2008, but declined in 2009-2010. We attribute the increasing carbon uptake to a combination of warmer temperatures, increased photosynthetic efficiency, and increased influence by subcanopy hemlocks that are active in the early spring and late autumn when temperatures are above freezing but the deciduous canopy is bare. Not all of the increased carbon accumulation was found in woody biomass. Results from a study using data to optimize parameters in an ecosystem process model indicate that significant changes in model parameters for photosynthetic capacity and shifts in allocation to slow cycling soil organic matter are necessary for the model to match the observed trends. The emerging working hypothesis is that the pattern of increasing carbon uptake over the early 2000's represents a transient pulse that will eventually end as decomposition of the accumulated carbon catches up.

  8. 2015 Carbon Storage final.pdf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from prominent storage efforts both domestic and international including the Regional Carbon Sequestration Partnership's large-scale field projects. Additional plenary sessions...

  9. Reduction of forest floor respiration by fertilization on both carbon dioxide-enriched and reference 17-year-old

    E-Print Network [OSTI]

    Oren, Ram

    be best applied to aggrading forest systems where soil resources have not been fully exploited (Mikan et affect the available C pool and impact microbial activity. When N amendments are added to peat soils, Canada. Amador JA, Jones RD (1993) Nutrient limitations on microbial respiration in peat soils

  10. Age-dependent variation in the biophysical properties of boreal forests

    E-Print Network [OSTI]

    McMillan, Andrew M. S.; Goulden, M. L.

    2008-01-01

    2000) Increased carbon sequestration by a boreal deciduouson the annual carbon sequestration by a boreal aspen forest.1996) Measurements of carbon sequestration by long-term eddy

  11. WATER ADVISORY PARTNERSHIP

    E-Print Network [OSTI]

    US Army Corps of Engineers

    COCONINO PLATEAU WATER ADVISORY COUNCIL& WATERSHED PARTNERSHIP 3624 E. Mesquite St. Gilbe~t, Arizona 85296" 1832 Participants: Arizona Department of Environmental Quality Arizona Department of Water City ofFlagstaff City of Page City of Sedona City of Williams Coconino County Doney Park Water Company

  12. Community Partnerships Impact Report

    E-Print Network [OSTI]

    Olszewski Jr., Edward A.

    . #12;Where is UNCW Making an Impact? · Teaching, Research, Service - Education and Social ServicesUNCW Community Partnerships Impact Report Gary L. Miller Chancellor Bill Kawczynski Community Impact · Developing a tool to identify impact of campus activities on: ­ Volunteerism ­ Service Learning

  13. Project Summary Partnership Inspiration

    E-Print Network [OSTI]

    Everest, Graham R

    Businesses are hunting for solutions to reduce their carbon footprint and energy spend. This project follows as they help overcome the challenges of auditing and reducing the organisational carbon footprint. A television strategy underpinning their carbon footprint understanding and slashing carbon emissions by 10

  14. Secretary Chu Announces New Partnerships Under the Energy and...

    Office of Environmental Management (EM)

    Secretary Chu Announces New Partnerships Under the Energy and Climate Partnership of the Americas Secretary Chu Announces New Partnerships Under the Energy and Climate Partnership...

  15. Large fluxes and rapid turnover of mineral-associated carbon across topographic gradients in a humid tropical forest: insights from paired 14C analysis

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hall, S. J.; McNicol, G.; Natake, T.; Silver, W. L.

    2015-04-29

    It has been proposed that the large soil carbon (C) stocks of humid tropical forests result predominantly from C stabilization by reactive minerals, whereas oxygen (O2) limitation of decomposition has received much less attention. We examined the importance of these factors in explaining patterns of C stocks and turnover in the Luquillo Experimental Forest, Puerto Rico, using radiocarbon (14C) measurements of contemporary and archived samples. Samples from ridge, slope, and valley positions spanned three soil orders (Ultisol, Oxisol, Inceptisol) representative of humid tropical forests, and differed in texture, reactive metal content, O2 availability, and root biomass. Mineral-associated C comprised themore »large majority (87 ± 2%, n = 30) of total soil C. Turnover of most mineral-associated C (66 ± 2%) was rapid (11 to 26 years; mean and SE: 18 ± 3 years) in 25 of 30 soil samples across surface horizons (0–10 and 10–20 cm depths) and all topographic positions, independent of variation in reactive metal concentrations and clay content. Passive C with centennial–millennial turnover was typically much less abundant (34 ± 3%), even at 10–20 cm depths. Carbon turnover times and concentrations significantly increased with concentrations of reduced iron (Fe(II)) across all samples, suggesting that O2 availability may have limited the decomposition of mineral-associated C over decadal scales. Steady-state inputs of mineral-associated C were statistically similar among the three topographic positions, and could represent 10–25% of annual litter production. Observed trends in mineral-associated ?14C over time could not be fit using the single-pool model used in many other studies, which generated contradictory relationships between turnover and ?14C as compared with a more realistic two-pool model. The large C fluxes in surface and near-surface soils documented here are supported by findings from paired 14C studies in other types of ecosystems, and suggest that most mineral-associated C cycles relatively rapidly (decadal scales) across ecosystems that span a broad range of state factors.« less

  16. Large fluxes and rapid turnover of mineral-associated carbon across topographic gradients in a humid tropical forest: insights from paired 14C analysis

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hall, S. J.; McNicol, G.; Natake, T.; Silver, W. L.

    2015-01-16

    It has been proposed that the large soil carbon (C) stocks of humid tropical forests result predominantly from C stabilization by reactive minerals, whereas oxygen (O2) limitation of decomposition has received much less attention. We examined the importance of these factors in explaining patterns of C stocks and turnover in the Luquillo Experimental Forest, Puerto Rico, using radiocarbon (14C) measurements of contemporary and archived samples. Samples from ridge, slope, and valley positions spanned three soil orders (Ultisol, Oxisol, Inceptisol) representative of humid tropical forests, and differed in texture, reactive metal content, O2 availability, and root biomass. Mineral-associated C comprised themore »large majority (87 ± 2%, n = 30) of total soil C. Turnover of most mineral-associated C (74 ± 4%) was rapid (9 to 29 years, mean and SE 20 ± 2 years) in 25 of 30 soil samples across surface horizons (0–10 and 10–20 cm depths) and all topographic positions, independent of variation in reactive metal concentrations and clay content. Passive C with centennial – millennial turnover was much less abundant (26%), even at 10–20 cm depths. Carbon turnover times and concentrations significantly increased with concentrations of reduced iron (Fe(II)) across all samples, suggesting that O2 availability may have limited the decomposition of mineral associated C over decadal scales. Steady-state inputs of mineral-associated C were similar among the three topographic positions, and could represent 10–30% of annual litterfall production (estimated by doubling aboveground litterfall). Observed trends in mineral-associated ?14C over time could not be fit using the single pool model used in many other studies, which generated contradictory relationships between turnover and ?14C as compared with a more realistic constrained two-pool model. The large C fluxes in surface and near-surface soils implied by our data suggest that other studies using single-pool ?14C models of mineral-associated C dynamics, unconstrained by multiple time points, may have systematically underestimated C turnover.« less

  17. Partnership in Computational Science

    SciTech Connect (OSTI)

    Huray, Paul G.

    1999-02-24

    This is the final report for the "Partnership in Computational Science" (PICS) award in an amount of $500,000 for the period January 1, 1993 through December 31, 1993. A copy of the proposal with its budget is attached as Appendix A. This report first describes the consequent significance of the DOE award in building infrastructure of high performance computing in the Southeast and then describes the work accomplished under this grant and a list of publications resulting from it.

  18. Partnerships | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics AndBeryllium Disease | DepartmentOLED StakeholderINL E-IDREnergy Partnerships Help

  19. Utility Partnerships Program Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing ToolInternationalReport FY 2009,Biofuels forDocumentsPartnerships Program Overview The

  20. Climate control of terrestrial carbon exchange across biomes and continents

    E-Print Network [OSTI]

    Yi, C.; Ricciuota, D.; Goulden, M. L.

    2010-01-01

    control, terrestrial carbon sequestration, temperature,on terrestrial carbon sequestration (Nemani et al 2003, Xiaodeposition and forest carbon sequestration Glob. Change

  1. Regional partnerships to sequester CO{sub 2} at near-commercial scale

    SciTech Connect (OSTI)

    NONE

    2008-07-01

    A summary of the keynote speech by Acting Deputy Secretary of Energy, Jeffrey Kupfer, is given, as well as details about new agreements on CO{sub 2} injection. These include the West Coast Regional Carbon Sequestration Partnership agreement to locate CO{sub 2} injection with a 50 mw clean energy systems plant in Kumberlina, California, and the Plains CO{sub 2} Reduction Partnership and Southeast Regional Carbon Sequestration PARTNERSHIP plans to inject CO{sub 2} derived from post combustion capture at power plants. 3 photos.

  2. Utility Partnerships Program Overview (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-07-01

    Program overview brochure for the Utility Partnerships Program within the U.S. Department of Energy (DOE) Federal Energy Management Program (FEMP).

  3. Partnerships | OpenEI Community

    Open Energy Info (EERE)

    Partner to Expand Natural Gas Highway clean energy Clean Energy Fuels energy Environment Fuel GE Innovation Partnerships Technology Innovation & Solutions Transportation Trucking...

  4. NEW SOLAR HOMES PARTNERSHIP DRAFTGUIDEBOOK

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION NEW SOLAR HOMES PARTNERSHIP DRAFTGUIDEBOOK SEPTEMBER 2006 CEC-300 .................................................................. 4 A. Technology and System Ownership ................................................... 6 G. Estimated Performance Using Commission PV Calculator .................................. 6 H

  5. NEW SOLAR HOMES PARTNERSHIP COMMITTEEFINALGUIDEBOOK

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION NEW SOLAR HOMES PARTNERSHIP COMMITTEEFINALGUIDEBOOK NOVEMBER 2006 CEC .................................................................. 8 A. Technology and System Ownership ................................................. 10 G. Estimated Performance Using Commission PV Calculator ................................ 10 H

  6. Nuclear Waste Partnership Contract Modifications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Waste Partnership Contract DE-EM0001971 Modifications NWP Modification Index Description Modification 001 Modification 002 Modification 003 Modification 004 Modification 005...

  7. PARTNERSHIPS DIRECTORATE PEOPLE TECHNOLOGY EVENTS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DIRECTORATE PEOPLE TECHNOLOGY EVENTS (continued on page 8) (continued on page 3) Rogers, Thompson Named New Directors The ORNL Partnerships Directorate seeks to foster economic...

  8. Thermoelectrics Partnership: Automotive Thermoelectric Modules...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ace067goodson2011o.pdf More Documents & Publications Thermoelectrics Partnership: Automotive Thermoelectric Modules with Scalable Thermo- and Electro-Mechanical Interfaces Novel...

  9. Lee, McCarl, and Gillig The Dynamic Competitiveness of U.S. Agricultural and Forest Carbon Sequestration

    E-Print Network [OSTI]

    McCarl, Bruce A.

    the emissions efficiency of fossil fuel usage, or 3 #12;Lee, McCarl, and Gillig · actions reducing the dependence on fossil fuel sources by switching fuels. The costs of such actions were a prominent argument can play an important role but that the relative importance of strategies depends on carbon price

  10. Partnership Opportunities | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid you notHeatMaRIEdioxideUser Careers/ResearchParkingPartnership

  11. Sandia Energy - Partnership Opportunities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II)Geothermal Energy &WaterNew CREWOnlineParticulate andPartnership

  12. Southeast Regional Carbon Sequestration Partnership (SECARB)

    SciTech Connect (OSTI)

    Kathryn A. Baskin

    2004-03-31

    Work during the first six months of the project mainly concentrated on contracts execution and collection of data to characterize the region and input of that data into the geographical information system (GIS) system. Data was collected for source characterization, transportation options and terrestrial options. In addition, discussions were held to determine the extent of the geologic information that would be needed for the project. In addition, activities associated with the regulatory, permitting and safety issues were completed. Outreach activities are in the formative stages.

  13. WEST COAST REGIONAL CARBON SEQUESTRATION PARTNERSHIP

    E-Print Network [OSTI]

    , development, and demonstration (RD&D) projects to benefit California's electricity and natural gas ratepayers energy research and development that will help improve the quality of life in California by bringing

  14. Tribal Renewable Energy Solutions and Partnerships: Collaborating...

    Energy Savers [EERE]

    Tribal Renewable Energy Solutions and Partnerships: Collaborating Through the Headwinds of Change Tribal Renewable Energy Solutions and Partnerships: Collaborating Through the...

  15. Obama Administration Announces New Partnership on Unconventional...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Partnership on Unconventional Natural Gas and Oil Research Obama Administration Announces New Partnership on Unconventional Natural Gas and Oil Research April 13, 2012 - 3:01pm...

  16. Federal Utility Partnership Working Group Meeting: Washington...

    Energy Savers [EERE]

    Federal Utility Partnership Working Group Meeting: Washington Update Federal Utility Partnership Working Group Meeting: Washington Update Presentation-given at the Fall 2012...

  17. Eight National Labs Offer Streamlined Partnership Agreements...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Eight National Labs Offer Streamlined Partnership Agreements to Help Industry Bring New Technologies to Market Eight National Labs Offer Streamlined Partnership Agreements to Help...

  18. Algenol Announces Commercial Algal Ethanol Fuel Partnership ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Algenol Announces Commercial Algal Ethanol Fuel Partnership Algenol Announces Commercial Algal Ethanol Fuel Partnership October 21, 2015 - 10:35am Addthis An error occurred. Try...

  19. Algenol Announces Commercial Algal Ethanol Fuel Partnership ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Algenol Announces Commercial Algal Ethanol Fuel Partnership Algenol Announces Commercial Algal Ethanol Fuel Partnership October 2, 2015 - 11:28am Addthis An error occurred. Try...

  20. Sustainable Business Models: Utilities and Efficiency Partnerships

    Broader source: Energy.gov [DOE]

    Residential Energy Efficiency Solutions Conference: Session 1 -– Sustainable Business Models: Utilities and Efficiency Partnerships, July 10, 2012. Provides an overview and lessons learned on Energize Phoenix's utility partnership.

  1. Understanding the carbon and greenhouse gas balance

    E-Print Network [OSTI]

    Understanding the carbon and greenhouse gas balance of forests in Britain Research Report #12;#12;Research Report Understanding the carbon and greenhouse gas balance of forests in Britain Forestry., White, M. and Yamulki, S. (2012). Understanding the carbon and greenhouse gas balance of forests

  2. NEW SOLAR HOMES PARTNERSHIP FINALGUIDEBOOK

    E-Print Network [OSTI]

    ............................................................................................... 5 1. How to get reservation funding for a Housing Development with 6 or more units installing solarCALIFORNIA ENERGY COMMISSION NEW SOLAR HOMES PARTNERSHIP FINALGUIDEBOOK DECEMBER 2006 CEC-300 Executive Director Payam Narvand Program Lead NEW SOLAR HOMES PARTNERSHIP Bill Blackburn Supervisor EMERGING

  3. Tanzania Partnership Program An Overview

    E-Print Network [OSTI]

    Tanzania Partnership Program An Overview PartnershipsforSustainableCommunityDevelopment Michigan The Tanzania Partnership Program (TPP) provides an opportunity to develop, test, and refine the PSCD model. Tanzania was selected as the initial location for PSCD based on demonstrated need, potential for success

  4. What are Improvement Partnerships? "VCHIPisaperfectexampleofhowstategroupscancometogetheraroundacommongoaland

    E-Print Network [OSTI]

    Hayden, Nancy J.

    ; and · Informing policy. improvement partnerships inform health policy By collaborating to share resources and family health, measure performance, and develop and disseminate tools. Practice-level support and a focus Partnerships (IP) are a durable state or regional collaboration of public and private partners that uses

  5. DRAFT Carbon Storage R&D Project Review Meeting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Management (BOEM) Melissa Batum, U.S. DOI, BOEM 1 DRAFT PLENARY SESSION - Regional Carbon Sequestration Partnerships Saline Injection Large-Scale Field Projects Moderator:...

  6. 2015 carbon storage rd | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Verification, and Accounting (MVA); and CO2 UseRe-Use), Infrastructure (Regional Carbon Sequestration Partnership's (RCSPs) Large-Scale Field Projects; other Small-Scale...

  7. Carbon Capture and Storage, 2008

    SciTech Connect (OSTI)

    2009-03-19

    The U.S. Department of Energy is researching the safe implementation of a technology called carbon sequestration, also known as carbon capture and storage, or CCS. Based on an oilfield practice, this approach stores carbon dioxide, or CO2 generated from human activities for millennia as a means to mitigate global climate change. In 2003, the Department of Energys National Energy Technology Laboratory formed seven Regional Carbon Sequestration Partnerships to assess geologic formations suitable for storage and to determine the best approaches to implement carbon sequestration in each region. This video describes the work of these partnerships.

  8. Carbon Capture and Storage, 2008

    ScienceCinema (OSTI)

    None

    2010-01-08

    The U.S. Department of Energy is researching the safe implementation of a technology called carbon sequestration, also known as carbon capture and storage, or CCS. Based on an oilfield practice, this approach stores carbon dioxide, or CO2 generated from human activities for millennia as a means to mitigate global climate change. In 2003, the Department of Energys National Energy Technology Laboratory formed seven Regional Carbon Sequestration Partnerships to assess geologic formations suitable for storage and to determine the best approaches to implement carbon sequestration in each region. This video describes the work of these partnerships.

  9. Age-dependent variation in the biophysical properties of boreal forests

    E-Print Network [OSTI]

    McMillan, Andrew M. S.; Goulden, M. L.

    2008-01-01

    for long term energy flux data sets. Agricultural and ForestBOREAL FOREST atmosphere exchange of both carbon and energy.forests account for a large portion of terrestrial biomass and their rates of mass and energy

  10. High-latitude cooling associated with landscape changes from North American boreal forest fires

    E-Print Network [OSTI]

    Rogers, B. M; Randerson, J. T; Bonan, G. B

    2013-01-01

    C. S. : The impact of boreal forest fire on climate warming,W. : Climate change and forest fire poten- tial in Russianflight measurements of forest-fire effects on carbon diox-

  11. The effect of post-fire stand age on the boreal forest energy balance

    E-Print Network [OSTI]

    2006-01-01

    emissions from Canadian forest fires, 1959–1999. Can. J.W.R. , 2002. Large forest fires in Canada, 1959– 1997. J.flight measurements of forest-fire effects on carbon dioxide

  12. Fire effects on net radiation and energy partitioning: Contrasting responses of tundra and boreal forest ecosystems

    E-Print Network [OSTI]

    Chambers, S. D; Randerson , J. T.; Beringer, J.; Chapin , F. S

    2005-01-01

    at Fourth Symposium on Forest and Fire Meteorology, Am.flight measurements of forest-fire effects on carbon dioxideNorth American boreal forest, in Fire, Climate Change and

  13. Instructions for use Eurasian J. For. Res. 15-1: 9-17 , 2012 Hokkaido University Forests, EFRC

    E-Print Network [OSTI]

    Tachizawa, Kazuya

    .yamagata-u.ac.jp Forest Fires Effects on Carbon Stocks and Soil Chemistry in Central Yakutia, Eastern Siberia LOPEZ C. M sites. Salt content increased in the active layer following forest fires, but a decade later, the salt: Black carbon, Forest fires, Permafrost, Soil chemistry, Soil organic carbon Introduction Boreal forests

  14. ORIGINAL PAPER Influence of tree species on carbon and nitrogen

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    and for carbon sequestration (Jandl et al. 2007). Soil acidification and carbon sequestration are influ- encedORIGINAL PAPER Influence of tree species on carbon and nitrogen transformation patterns in forest carbon release under broadleaved forest floors may explain this difference. Spruce forest floor exhibited

  15. The Economic Importance of New Hampshire's Forest-Based Economy FOREST-BASED

    E-Print Network [OSTI]

    New Hampshire, University of

    recreational opportunities and store carbon, all while providing us a valuable renewable resource and important forest products, it also provides an economic motivation for forest landowners to keep their land products manufacturing, pulp and paper manufacturing, wood energy, and the forest-based recreational

  16. Patterns of water and heat flux across a biome gradient from tropical forest to savanna in Brazil

    E-Print Network [OSTI]

    2009-01-01

    variations in energy and carbon exchange over forest andexample, the energy stored in tropical forest biomass variedforest (JRU) and that illustrates the control that available energy

  17. Tropical forest responses to increasing atmospheric CO2: current knowledge and opportunities for future research

    E-Print Network [OSTI]

    Bermingham, Eldredge

    their representation in Earth system models. Tropical forests play a significant role in the global carbon cycle

  18. CEC- New Solar Homes Partnership

    Broader source: Energy.gov [DOE]

    Launched on January 2, 2007, the New Solar Homes Partnership (NSHP) is a 10-year, $400 million program to encourage solar in new homes by working with builders and developers to incorporate into ...

  19. Genetic Analysis in Populus Reveals Potential to Enhance Soil Carbon Sequestration In a paper published in the August, 2005 issue of Canadian Journal of Forest Research, scientists

    E-Print Network [OSTI]

    Genetic Analysis in Populus Reveals Potential to Enhance Soil Carbon Sequestration In a paper carbon sequestration by an estimated 0.35Gt carbon/year. This represents ca. 4% of global carbon in terrestrial ecosystems. This work is supported by research funded through the Carbon Sequestration Program

  20. NSF PARTNERSHIPS FOR INNOVATION: BUILDING INNOVATION Directorate for Engineering, Division of Industrial Innovation and Partnerships

    E-Print Network [OSTI]

    Finley Jr., Russell L.

    NSF PARTNERSHIPS FOR INNOVATION: BUILDING INNOVATION Directorate for Engineering, Division of Industrial Innovation and Partnerships Program Solicitation: NSF 12-578 Replaces document(s): NSF 12 be translated to innovations. This program solicitation, Partnerships for Innovation: Building Innovation

  1. The Global Nuclear Energy Partnership | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Global Nuclear Energy Partnership The Global Nuclear Energy Partnership An article describing the small scale reactors in the GNEP. The Global Nuclear Energy Partnership More...

  2. PP-206 Frontera Generation Limited Partnership | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PP-206 Frontera Generation Limited Partnership PP-206 Frontera Generation Limited Partnership Presidential permit authorizing Frontera Generation Limited Partnership to construct,...

  3. Wood density in forests of Brazil's `arc of deforestation': Implications for biomass and flux of carbon from land-use change in Amazonia

    E-Print Network [OSTI]

    Camara, Gilberto

    Wood density in forests of Brazil's `arc of deforestation': Implications for biomass and flux form 25 April 2007; accepted 29 April 2007 Abstract Wood density is an important variable in estimates of forest biomass and greenhouse-gas emissions from land-use change. The mean wood density used in estimates

  4. FOREST INVENTORY Managing Forest Ecosystems

    E-Print Network [OSTI]

    #12;FOREST INVENTORY #12;Managing Forest Ecosystems Volume 10 Series Editors: Klaus von Gadow Georg Superior de Agronomía, Lisbon, Portugal Aims & Scope: Well-managed forests and woodlands are a renewable resource, producing essential raw material with minimum waste and energy use. Rich in habitat and species

  5. Register by Oct. 21 for annual carbon sequestration meeting | EurekAlert! Science News

    E-Print Network [OSTI]

    ... by Oct. 21 for annual carbon sequestration meeting ... meeting of the Big Sky Carbon Sequestration Partnership to be held ... science policy and technology of carbon capture and storage (CCS). Panels ...

  6. Effects of selective logging on tropical forest tree growth

    E-Print Network [OSTI]

    2008-01-01

    exchange of carbon and water in an Amazonian rain forest, J.water content cannot explain the increases in diameter observed before the onset of rains.

  7. Energy Technology Solutions: Public-Private Partnerships Transforming...

    Energy Savers [EERE]

    Energy Technology Solutions: Public-Private Partnerships Transforming Industry, November 2010 Energy Technology Solutions: Public-Private Partnerships Transforming Industry,...

  8. NSF/DOE Thermoelectics Partnership: Thermoelectrics for Automotive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermoelectics Partnership: Thermoelectrics for Automotive Waste Heat Recovery NSFDOE Thermoelectics Partnership: Thermoelectrics for Automotive Waste Heat Recovery 2011 DOE...

  9. Aboveground carbon biomass of plantation-grown American chestnut (Castanea dentata) in absence of blight

    E-Print Network [OSTI]

    ). Forested ecosystems may help contribute toward carbon sequestration by capturing and storing atmospheric CO forests for carbon sequestration. Forest Ecology and Management 258 (2009) 288­294 A R T I C L E I N F O Keywords: Afforestation Carbon sequestration Competition Forest restoration Plantation establishment A B

  10. NEW SOLAR HOMES PARTNERSHIP DRAFTSTAFFPROPOSALMAY 2006

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION NEW SOLAR HOMES PARTNERSHIP DRAFTSTAFFPROPOSALMAY 2006 CEC-300 of the information in this paper. #12;TABLE OF CONTENTS NEW SOLAR HOMES PARTNERSHIP .......................................................................................................2 Current Solar Incentive Programs

  11. Saturn, The GM/UAW Partnership

    E-Print Network [OSTI]

    Rubinstein, Saul

    2002-06-06

    Designed and implemented as a partnership between GM and the UAW, Saturn breaks new ground in firm governance,management and industrial relations. Through detailed study of Saturn?s partnership arrangements we have found ...

  12. Long-run Implications of a Forest-based Carbon Sequestration Policy on the United States Economy: A Computable General Equilibrium (CGE) Modeling Approach 

    E-Print Network [OSTI]

    Monge, Juan

    2012-10-19

    The economic impacts of a government-funded, forest-based sequestration program were analyzed under two different payment schemes. The impacts were obtained by developing a regional, static CGE model built to accommodate a modified IMPLAN SAM for a...

  13. National Clean Fleets Partnership (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-03-01

    Describes Clean Cities' National Clean Fleets Partnership, an initiative that helps large private fleets reduce petroleum use.

  14. Northeast Energy Efficiency Partnerships | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Lead Performer: Northeast Energy Efficiency Partnerships, Lexington, MA Partners: Burlington Electric Department, Cape Light Compact, Connecticut Light and Power, Efficiency...

  15. Income tax problems of partnerships 

    E-Print Network [OSTI]

    Harrell, Clyde Wallace

    1951-01-01

    the revenue laws. The fundamental 1ncpcizy concerns the intention of the ysrties ss disclosed by theM agreement and by their conduct. Xn deciding whether s business entity is a psrtmership or an association, the decision often turns on 1X. a. C. , Sec... return. Partnerihi s The so-cslle4 "fsmiIy partnership" is a partnership vhose members sre closely related, The Bureau oi' Internal Revenue refuses to recognise such partnershiys vhen they represent tax avoidance schemes vithout bona fide partners...

  16. Carbon Accounting and Economic Model Uncertainty of Emissions from Biofuels-Induced Land Use Change

    E-Print Network [OSTI]

    Plevin, Richard J; Beckman, Jayson; Golub, Alla A; Witcover, Julie; O'??Hare, Michael

    2015-01-01

    uncertainty of full carbon accounting of forest ecosystemsA. ; Hopson, E. , Proper accounting for time increases crop-use change modeling in GTEM: Accounting for forest sinks.

  17. NEW SOLAR HOMES PARTNERSHIP REVISED SECONDTHIRD EDITION

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION NEW SOLAR HOMES PARTNERSHIP REVISED SECONDTHIRD EDITION of 15 Attachment 1 ERRATA TO THE NEW SOLAR HOMES PARTNERSHIP COMMITTEE DRAFT GUIDEBOOK The following list of Errata was adopted as part of the proposed revisions to the New Solar Homes Partnership

  18. Energy Department Awards $66.7 Million for Large-Scale Carbon...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    recent awards through the Department of Energy's (DOE) Regional Carbon Sequestration Partnership Program, DOE today awarded 66.7 million to the Midwest Geological Sequestration...

  19. Carbon mitigation potential and costs of forestry options in Brazil, China, India, Indonesia, Mexico, the Phillippines and Tanzania

    E-Print Network [OSTI]

    Sathaye, J.

    2008-01-01

    potential for carbon sequestration and emission reductionForestry Options on Carbon Sequestration in India, Workinggas emissions and carbon sequestration in the forest sector

  20. The North American Forest Sector Outlook Study

    E-Print Network [OSTI]

    to consumption patterns for wood products and bioenergy. Markets for wood products, which mainly are destined in the forest sector of North America 21 3.1 Forest inventory 21 3.2 Aggregate production, consumption, Canada, carbon sequestration, climate change, consumption, demand, econometric, EFSOS, export, fellings

  1. Rethinking Forest Partnerships and Benefit Sharing | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg,EnergyEast Jump to: navigation,Report

  2. Research Report Forests and carbon

    E-Print Network [OSTI]

    mitigation, discounting, emissions trading, forestry, quality assurance, risk management, sequestration

  3. A long-term record of carbon exchange in a boreal black spruce forest: means, responses to interannual variability, and decadal trends

    E-Print Network [OSTI]

    Dunn, AL; Barford, CC; Wofsy, SC; Goulden, ML; Daube, BC

    2007-01-01

    the growing season (OGS and EGS, respectively) as the firstthe influence of OGS, EGS, and LGS on the annual carbon

  4. Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997-2009)

    E-Print Network [OSTI]

    2010-01-01

    K. G. : Direct carbon emissions from Canadian forest fires,O. , and Merlet, P. : Emission of trace gases and aerosolsEstimating direct carbon emissions from Canadian wildland

  5. SCHOOL OF FOREST RESOURCES UNIVERSITY OF WASHINGTON

    E-Print Network [OSTI]

    Brown, Sally

    , and Carbon, and Fuel Consumption in Shrub-dominated Ecosystems Royce Anderson Microarthropod Distribution: an Assessment of Regional Streamflow Response to Climate Change Jessica Farmer Variations in Types of Major Funding Partnerships in College and University Gardens Justina Harris Urbanization and Picea sitchensis

  6. PLAINS CO2 REDUCTION PARTNERSHIP

    SciTech Connect (OSTI)

    Edward N. Steadman; John A. Harju; Erin M. O'Leary; James A. Sorensen; Daniel J. Daly; Melanie D. Jensen; Thea E. Reikoff

    2005-04-01

    The Plains CO{sub 2} Reduction (PCOR) Partnership continues to make great progress. Task 2 (Technology Deployment) focused on developing information regarding deployment issues to support Task 5 (Modeling and Phase II Action Plans) and provided information to be used to assess CO{sub 2} sequestration opportunities in the PCOR Partnership region. Task 2 efforts also included preparation of a draft topical report entitled ''Deployment Issues Related to Geologic CO{sub 2} Sequestration in the PCOR Partnership Region'', which is nearing completion. Task 3 (Public Outreach) focused on developing an informational video about CO{sub 2} sequestration. The video will be completed and aired on Prairie Public Television in the next quarter. Progress in Task 4 (Sources, Sinks, and Infrastructure) included the continued collection of data regarding CO{sub 2} sources and sinks and data on the performance and costs for CO{sub 2} separation, capture, treatment, and compression for pipeline transportation. The addition of the Canadian province of Alberta to the PCOR Partnership region expanded the decision support system (DSS) geographic information system database. Task 5 screened and qualitatively assessed sequestration options. Task 5 activities also continue to be useful in structuring data collection and other activities in Tasks 2, 3, and 5.

  7. EPSRC and TSB Partnership in

    E-Print Network [OSTI]

    Berzins, M.

    that can compete successfully in domestic and global markets. In addition, jobs generated in manufacturing create additional employment in the wider economy. Investment in High Value Manufacturing activitiesEPSRC and TSB Partnership in High Value Manufacturing Image credit: istockphoto #12;The Government

  8. USDA Regional Conservation Partnership Program

    Broader source: Energy.gov [DOE]

    The U.S. Department of Agriculture is accepting applications for the Regional Conservation Partnership Program to identify and address natural resource objectives in balance with operational goals in order to benefit soil, water, wildlife, and related natural resources locally, regionally, and nationally.

  9. 11 March 2014 SENT TO LSU AGCENTER/LOUISIANA FOREST PRODUCTS DEVELOPMENT CENTER -FOREST SECTORT/FORESTY PRODUCTS INTEREST GROUP

    E-Print Network [OSTI]

    market signals for forest products, including energy. As stated by the Intergovernmental Panel on Climate11 March 2014 SENT TO LSU AGCENTER/LOUISIANA FOREST PRODUCTS DEVELOPMENT CENTER - FOREST SECTORT it's time to get the policy right on biomass energy carbon accounting The clock is ticking

  10. Sustainable Forest Bioenergy Initiative

    SciTech Connect (OSTI)

    Breger, Dwayne; Rizzo, Rob

    2011-09-20

    In the state’s Electricity Restructuring Act of 1998, the Commonwealth of Massachusetts recognized the opportunity and strategic benefits to diversifying its electric generation capacity with renewable energy. Through this legislation, the Commonwealth established one of the nation’s first Renewable Energy Portfolio Standard (RPS) programs, mandating the increasing use of renewable resources in its energy mix. Bioenergy, meeting low emissions and advanced technology standards, was recognized as an eligible renewable energy technology. Stimulated by the state’s RPS program, several project development groups have been looking seriously at building large woody biomass generation units in western Massachusetts to utilize the woody biomass resource. As a direct result of this development, numerous stakeholders have raised concerns and have prompted the state to take a leadership position in pursuing a science based analysis of biomass impacts on forest and carbon emissions, and proceed through a rulemaking process to establish prudent policy to support biomass development which can contribute to the state’s carbon reduction commitments and maintain safeguards for forest sustainability. The Massachusetts Sustainable Forest Bioenergy Initiative (SFBI) was funded by the Department of Energy and started by the Department of Energy Resources before these contentious biomass issues were fully raised in the state, and continued throughout the substantive periods of this policy development. Thereby, while SFBI maintained its focus on the initially proposed Scope of Work, some aspects of this scope were expanded or realigned to meet the needs for groundbreaking research and policy development being advanced by DOER. SFBI provided DOER and the Commonwealth with a foundation of state specific information on biomass technology and the biomass industry and markets, the most comprehensive biomass fuel supply assessment for the region, the economic development impact associated with biomass usage, an understanding of forest management trends including harvesting and fuel processing methods, and the carbon profile of utilizing forest based woody biomass for the emerging biomass markets. Each of the tasks and subtasks have provided an increased level of understanding to support new directives, policies and adaptation of existing regulations within Massachusetts. The project has provided the essential information to allow state policymakers and regulators to address emerging markets, while ensuring forest sustainability and understanding the complex science on CO2 accounting and impacts as a result of biomass harvesting for power generation. The public at large and electricity ratepayers in Massachusetts will all benefit from the information garnered through this project. This is a result of the state’s interest to provide financial incentives to only biomass projects that demonstrate an acceptable carbon profile, an efficient use of the constrained supply of fuel, and the harvest of biomass to ensure forest sustainability. The goals of the Massachusetts Sustainable Forest Bioenergy Initiative as proposed in 2006 were identified as: increase the diversity of the Massachusetts energy mix through biomass; promote economic development in the rural economy through forest industry job creation; help fulfill the state’s energy and climate commitments under the Renewable Energy Portfolio Standard and Climate Protection Plan; assist the development of a biomass fuel supply infrastructure to support energy project demands; provide education and outreach to the public on the benefits and impacts of bioenergy; improve the theory and practice of sustainable forestry in the Commonwealth. Completed project activities summarized below will demonstrate the effectiveness of the project in meeting the above goals. In addition, as discussed above, Massachusetts DOER needed to make some modifications to its work plan and objectives during the term of this project due to changing public policy demands brought forth in the course of the public discours

  11. PLAINS CO2 REDUCTION PARTNERSHIP

    SciTech Connect (OSTI)

    Edward N. Steadman; John A. Harju; Erin M. O'Leary; James A. Sorensen; Daniel J. Daly; Melanie D. Jensen; Thea E. Reikoff

    2005-01-01

    The Plains CO{sub 2} Reduction (PCOR) Partnership continues to make great progress. Task 2 (Technology Deployment) focused on developing information regarding deployment issues to support Task 5 (Modeling and Phase II Action Plans) by providing information to be used to assess CO{sub 2} sequestration opportunities in the PCOR Partnership region. Task 3 (Public Outreach) focused on developing an informational video about CO{sub 2} sequestration. Progress in Task 4 (Sources, Sinks, and Infrastructure) included the continued collection of data regarding CO{sub 2} sources and sinks and data on the performance and costs for CO{sub 2} separation, capture, treatment, and compression for pipeline transportation. Task 5 focused on screening and qualitatively assessing sequestration options. Task 5 activities also continue to be useful in structuring data collection and other activities in Tasks 2, 3, and 5.

  12. PLAINS CO2 REDUCTION PARTNERSHIP

    SciTech Connect (OSTI)

    Edward N. Steadman; John A. Harju; Erin M. O'Leary; James A. Sorensen; Daniel J. Daly; Melanie D. Jensen; Thea E. Reikoff

    2004-10-01

    The Plains CO{sub 2} Reduction (PCOR) Partnership continues to make great progress. Task 2 (Technology Deployment) focused on developing information regarding deployment issues to support Task 5 (Modeling and Phase II Action Plans) by providing information to be used to assess CO{sub 2} sequestration opportunities in the PCOR Partnership region. Task 3 (Public Outreach) focused on developing an informational video about CO{sub 2} sequestration. Progress in Task 4 (Sources, Sinks, and Infrastructure) included the continued collection of data regarding CO{sub 2} sources and sinks and data on the performance and costs for CO{sub 2} separation, capture, treatment, and compression for pipeline transportation. Task 5 focused on screening and qualitatively assessing sequestration options. Task 5 activities also continue to be useful in structuring data collection and other activities in Tasks 2, 3, and 5.

  13. CHINA AND FOREST TRADE IN THE ASIA-PACIFIC REGION: IMPLICATIONS FOR FORESTS AND LIVELIHOODS

    E-Print Network [OSTI]

    in Endangered Species. For further information please contact: R. Juge Gregg, Washington, DC, rjgregg for ecosystem services provided by forests such as watershed protection, biodiversity and carbon storage. Forest NGOs and investment institutions. For further information, please contact: Kerstin Canby, kcanby

  14. Industry/Utility Partnerships: Formula for Success 

    E-Print Network [OSTI]

    Smith, W. R.; Spriggs, H. D.

    1995-01-01

    /UTILITY PARTNERSHIPS: FORMULA FOR SUCCESS William R. Smith, PE, Business Development, Houston Lighting & Power Company, Houston, TX 77046 H. D. Spriggs, PhD, President, Matrix 2000, Leesburg, VA 22075 ABSTRACT Industry/utility partnerships are created when... be a strong partnership between HL&P and its customers. HL&P must help them to find real solutions to their most pressing problems and both parties must win. HL&P's customers must keep their costs low, maintain operating flexibility, meet...

  15. Better Buildings Residential Network Case Study: Partnerships...

    Office of Environmental Management (EM)

    from the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy. BBRN Case Study: Partnerships More Documents & Publications Better Buildings Network...

  16. Spotlight on Seattle, Washington: Community Partnerships Work...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Revised July 2011 Version 2 Spotlight on Seattle, Washington: Community Partnerships Work to Extend Program Reach Getting Started 1 Seattle Moves the Needle With the Help of Its...

  17. Federal Utility Partnership Working Group Utility Partners

    Broader source: Energy.gov [DOE]

    Federal Utility Partnership Working Group (FUPWG) utility partners are eager to work closely with Federal agencies to help achieve energy management goals.

  18. Welcome and Advanced Manufacturing Partnership (Text Version)

    Broader source: Energy.gov [DOE]

    This is a text version of the Welcome and Advanced Manufacturing Partnership video, originally presented on March 12, 2012 at the MDF Workshop held in Chicago, Illinois.

  19. Testimonials - Partnerships in LED Lighting - Philips Lumileds...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LED Lighting - Philips Lumileds Lighting, LLC Testimonials - Partnerships in LED Lighting - Philips Lumileds Lighting, LLC Addthis An error occurred. Try watching this video on...

  20. Federal Utility Partnership Working Group - Utility Interconnection...

    Energy Savers [EERE]

    Federal Utility Partnership Working Group (FUPWG) meeting-discusses solarphotovoltaic (PV) projects to connect with utility in California and their issues. fupwgfall12jewell.pd...

  1. Reducing uncertainty in predictions of the response of Amazonian forests to climate change 

    E-Print Network [OSTI]

    Rowland, Lucy Miranda

    2013-07-01

    Amazonia contains the largest expanse of tropical forest in the world and is globally significant as a store of carbon, a regulator of climate and an area of high species diversity. The ability of the Amazonian forests ...

  2. FORESTS AND WATER. effects of forest

    E-Print Network [OSTI]

    FORESTS AND WATER. effects of forest management on floods, sedimentation, and water supply HENRY FOREST SERVICE GENERAL TECHNICAL REPORT PSW- 18I1976 #12;CONTENTS Page Introduction ................................ 6 Water Inputs .........................................6 Precipitation Measurement

  3. DOE Publishes Best Practices Manual for Public Outreach and Education for Carbon Storage Projects

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy's Regional Carbon Sequestration Partnerships program has released a new manual to recommend best practices for public outreach and education for carbon dioxide storage projects.

  4. Poland becoming a member of the Global Nuclear Energy Partnership, Vol. 2.

    SciTech Connect (OSTI)

    Koritarov, V. K.; Conzelmann, G.; Cirillo, R. R.; Goldberg, S. M.

    2007-03-26

    Within a constrained carbon environment, the risks of future natural gas supply, and the need to move to market-based electricity prices, the study team found: (1) the deployment of new nuclear energy in Poland itself is very competitive in the next decade or two; (2) if such generation could be made available to Poland prior to deployment of its own nuclear generation facilities, Poland would benefit from partnering with its Baltic neighbors to import electricity derived from new nuclear generation facilities sited in Lithuania; and (3) Poland appears to be a good candidate for a partnership in the Global Nuclear Energy Partnership (GNEP) as an emerging nuclear energy country.

  5. Poland becoming a member of the Global Nuclear Energy Partnership, Vol. 1.

    SciTech Connect (OSTI)

    Koritarov, V. K.; Conzelmann, G.; Cirillo, R. R.; Goldberg, S. M.

    2007-03-26

    Within a constrained carbon environment, the risks of future natural gas supply, and the need to move to market-based electricity prices, the study team found: (1) the deployment of new nuclear energy in Poland itself is very competitive in the next decade or two; (2) if such generation could be made available to Poland prior to deployment of its own nuclear generation facilities, Poland would benefit from partnering with its Baltic neighbors to import electricity derived from new nuclear generation facilities sited in Lithuania; and (3) Poland appears to be a good candidate for a partnership in the Global Nuclear Energy Partnership (GNEP) as an emerging nuclear energy country.

  6. Forests 2012, 3, 370-397; doi:10.3390/f3020370 ISSN 1999-4907

    E-Print Network [OSTI]

    DeLucia, Evan H.

    for bioenergy without compromising the carbon sink is uncertain. Using past literature and previously validated that could be used for biomass production. Greater carbon storage was estimated to result from partial.mdpi.com/journal/forests Review Harvesting Carbon from Eastern US Forests: Opportunities and Impacts of an Expanding Bioenergy

  7. Fire-related carbon emissions from land use transitions in southern Amazonia

    E-Print Network [OSTI]

    2008-01-01

    2008 Fire-related carbon emissions from land use transitionsto atmospheric carbon emissions, including forest conversionthe major sources of emissions from fires in this region.

  8. NREL Technology Partnership Agreement Process

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on771/6/14 Contact:News Releases |NREL Technology Partnership

  9. NREL: Energy Systems Integration - Partnerships

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on771/6/14RecentGeospatial AnalysisPartnerships Watch how NREL is

  10. NETL Partnership and Licensing Agreements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJessework usesof Energy Moving Basic NERSC TrainingPartnerships and

  11. Sandia National Laboratories: Partnership Opportunities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation ofAlbuquerque Albuquerque Housing EducationImage Gallery MembersPartnership

  12. Nuclear Waste Partnership (NWP) Quality Assurance Program Description...

    Office of Environmental Management (EM)

    Waste Partnership (NWP) Quality Assurance Program Description (QAPD) Nuclear Waste Partnership (NWP) Quality Assurance Program Description (QAPD) The documents included in this...

  13. Sandia Energy - The National Algae Testbed Public-Private Partnership...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The National Algae Testbed Public-Private Partnership Kick-Off Meeting at Arizona State University Home Renewable Energy Energy Biofuels Partnership News News & Events Systems...

  14. 21st Century Truck Partnership Roadmap Roadmap and Technical...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1st Century Truck Partnership Roadmap Roadmap and Technical White Papers - 21CTP-0003, December 2006 21st Century Truck Partnership Roadmap Roadmap and Technical White Papers -...

  15. 21st Century Truck Partnership - Roadmap and Technical White...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    21st Century Truck Partnership - Roadmap and Technical White Papers Appendix of Supporting Information - 21CTP-0003, December 2006 21st Century Truck Partnership - Roadmap and...

  16. February 5, 2014 Webinar - The Cementitious Barriers Partnership...

    Energy Savers [EERE]

    - The Cementitious Barriers Partnership Toolbox, Version 2.0 February 5, 2014 Webinar - Tools and Capabilities of the Cementitious Barriers Partnership Toolbox, Version 2.0 David...

  17. Global Nuclear Energy Partnership Fact Sheet - Demonstrate Small...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Global Nuclear Energy Partnership Fact Sheet - Demonstrate Small-Scale Reactors Global Nuclear Energy Partnership Fact Sheet - Demonstrate Small-Scale Reactors GNEP will provide...

  18. Energy Department Announces New Private Sector Partnership to...

    Energy Savers [EERE]

    Energy Department Announces New Private Sector Partnership to Accelerate Renewable Energy Projects Energy Department Announces New Private Sector Partnership to Accelerate...

  19. Energy Department Announces New Private Sector Partnership to...

    Energy Savers [EERE]

    New Private Sector Partnership to Accelerate Renewable Energy Projects Energy Department Announces New Private Sector Partnership to Accelerate Renewable Energy Projects October 9,...

  20. Innovation and Coordination at the Callifornia Fuel Cell Partnership...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Innovation and Coordination at the Callifornia Fuel Cell Partnership Innovation and Coordination at the Callifornia Fuel Cell Partnership Presented at Refueling Infrastructure for...

  1. Global Nuclear Energy Partnership Inaugural Steering Group Meeting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Global Nuclear Energy Partnership Inaugural Steering Group Meeting Makes Marked Progress Global Nuclear Energy Partnership Inaugural Steering Group Meeting Makes Marked Progress...

  2. Federal Utility Partnership Working Group 2011 Meeting: Washington...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2011 Meeting: Washington Update Federal Utility Partnership Working Group 2011 Meeting: Washington Update Presentation-given at the Fall 2011 Federal Utility Partnership Working...

  3. Energy Department to Award $6 Million to State Partnerships to...

    Energy Savers [EERE]

    to Award 6 Million to State Partnerships to Increase Energy Efficiency Energy Department to Award 6 Million to State Partnerships to Increase Energy Efficiency September 19, 2006...

  4. Shared Value in Utility and Efficiency Partnerships | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Residential Energy Efficiency Solutions Conference: Shared Value in Utility and Efficiency Partnerships, July 10, 2012. Presents four case studies highlighting partnerships between...

  5. New Energy Department Partnership Creates Solar Bridges to Energy...

    Energy Savers [EERE]

    New Energy Department Partnership Creates Solar Bridges to Energy Security New Energy Department Partnership Creates Solar Bridges to Energy Security July 7, 2015 - 3:21pm Addthis...

  6. Knowledge Partnership for Measuring Air Pollution and Greenhouse...

    Open Energy Info (EERE)

    Knowledge Partnership for Measuring Air Pollution and Greenhouse Gas Emissions in Asia Jump to: navigation, search Name Knowledge Partnership for Measuring Air Pollution and...

  7. DOE NSF Partnership to Address Critical Challenges in Hydrogen...

    Office of Environmental Management (EM)

    NSF Partnership to Address Critical Challenges in Hydrogen Production from Solar Water Splitting DOE NSF Partnership to Address Critical Challenges in Hydrogen Production from...

  8. Energy Smart Federal Partnership: Program Partners and Resources

    Broader source: Energy.gov [DOE]

    Presentation covers program partners and resources for the Energy Smart Partnership and is given at the Spring 2011 Federal Utility Partnership Working Group (FUPWG) meeting.

  9. Annual Report: National Risk Assessment Partnership (30 September...

    Office of Scientific and Technical Information (OSTI)

    National Risk Assessment Partnership (30 September 2012) Citation Details In-Document Search Title: Annual Report: National Risk Assessment Partnership (30 September 2012) The U.S....

  10. Renewing America's Nuclear Power Partnership for Energy Security...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewing America's Nuclear Power Partnership for Energy Security and Economic Growth Renewing America's Nuclear Power Partnership for Energy Security and Economic Growth October 8,...

  11. FreedomCAR and Fuel Partnership 2009 Highlights of Technical...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications FreedomCAR and Fuel Partnership 2008 Highlights of Technical Accomplishments FreedomCAR and Fuel Partnership 2006 Highlights of Technical...

  12. FreedomCAR and Fuel Partnership 2004 Highlights of Technical...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications FreedomCAR and Fuel Partnership 2006 Highlights of Technical Accomplishments FreedomCAR Partnership 2003 Highlights of Technical Accomplishments...

  13. FreedomCAR and Fuel Partnership 2007 Highlights of Technical...

    Broader source: Energy.gov (indexed) [DOE]

    7. 2007fcfpaccomplishmentsrpt.pdf More Documents & Publications FreedomCAR and Fuel Partnership 2008 Highlights of Technical Accomplishments FreedomCAR and Fuel Partnership 2006...

  14. FreedomCAR and Fuel Partnership 2005 Highlights of Technical...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications FreedomCAR Partnership 2003 Highlights of Technical Accomplishments FreedomCAR and Fuel Partnership 2004 Highlights of Technical...

  15. Funding Opportunity Coming Soon: Building America Industry Partnership...

    Office of Environmental Management (EM)

    Building America Industry Partnerships Funding Opportunity Coming Soon: Building America Industry Partnerships October 28, 2015 - 11:51am Addthis The Building Technologies Office...

  16. The Advanced Manufacturing Partnership and the Advanced Manufacturing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Advanced Manufacturing Partnership and the Advanced Manufacturing National Program Office The Advanced Manufacturing Partnership and the Advanced Manufacturing National Program...

  17. 4, 99123, 2007 Amazon carbon

    E-Print Network [OSTI]

    Boyer, Edmond

    , suggested much larger estimates for tropical forest carbon sequestration in the Ama- zon BasinBGD 4, 99­123, 2007 Amazon carbon balanc J. Lloyd et al. Title Page Abstract Introduction Discussions is the access reviewed discussion forum of Biogeosciences An airborne regional carbon balance

  18. NEW SOLAR HOMES PARTNERSHIP Fourth Edition

    E-Print Network [OSTI]

    NEW SOLAR HOMES PARTNERSHIP GUIDEBOOK Fourth Edition CALIFORNIA ENERGY COMMISSION Edmund The New Solar Homes Partnership (NSHP) Program is part of a statewide solar program known as the California Solar Initiative (CSI). The NSHP provides financial incentives for installing solar energy

  19. Creating and Sustaining a PK-16 Partnership

    E-Print Network [OSTI]

    Deng, Bo

    ) masters program that educates and supports teams of outstanding middle level math teachers who will become, Lincoln Public Schools Jim Harrington, Omaha Public Schools Julie Thomas, University of Nebrska Partnership proposal to the National Science Foundation to create the Math in the Middle Institute Partnership

  20. NEW SOLAR HOMES PARTNERSHIP DRAFT GUIDEBOOK

    E-Print Network [OSTI]

    NEW SOLAR HOMES PARTNERSHIP DRAFT GUIDEBOOK Fourth Edition JANUARY 2012 CEC3002011006CMD2 The New Solar Homes Partnership (NSHP) Program is part of a statewide solar program known as the California Solar Initiative (CSI). The NSHP provides financial incentives for installing solar energy

  1. Hollings Manufacturing Extension Partnership: A Commercialization Collaborator

    E-Print Network [OSTI]

    bottom-line efficiencies through the employment of lean manufacturing techniques and other productivityHollings Manufacturing Extension Partnership: A Commercialization Collaborator MEP · MANUFACTURING Manufacturing Extension Partnership (MEP) works with small and mid-sized U.S. manufacturers to help them create

  2. PLAINS CO2 REDUCTION PARTNERSHIP

    SciTech Connect (OSTI)

    Edward N. Steadman; John A. Harju; Erin M. O'Leary; James A. Sorensen; Daniel J. Daly; Melanie D. Jensen; Lisa S. Botnen

    2005-07-01

    The Plains CO{sub 2} Reduction (PCOR) Partnership characterization work is nearing completion, and most remaining efforts are related to finalizing work products. Task 2 (Technology Deployment) has developed a Topical Report entitled ''Deployment Issues Related to Geologic CO{sub 2} Sequestration in the PCOR Partnership Region''. Task 3 (Public Outreach) has developed an informational Public Television program entitled ''Nature in the Balance'', about CO{sub 2} sequestration. The program was completed and aired on Prairie Public Television in this quarter. Task 4 (Sources, Sinks, and Infrastructure) efforts are nearing completion, and data regarding CO{sub 2} sources and sinks and data on the performance and costs for CO{sub 2} separation, capture, treatment, and compression for pipeline transportation are being incorporated into a series of topical reports. The expansion of the Decision Support System Geographic Information System database has continued with the development of a ''save bookmark'' feature that allows users to save a map from the system easily. A feature that allows users to develop a report that summarizes CO{sub 2} sequestration parameters was also developed. Task 5 (Modeling and Phase II Action Plans) focused on screening and qualitatively assessing sequestration options and developing economic estimates for important regional CO{sub 2} sequestration strategies.

  3. RESULTS FROM THE U.S. DOE 2006 SAVE ENERGY NOW ASSESSMENT INITIATIVE: DOE's Partnership with U.S. Industry to Reduce Energy Consumption, Energy Costs, and Carbon Dioxide Emissions

    SciTech Connect (OSTI)

    Wright, Anthony L; Martin, Michaela A; Gemmer, Bob; Scheihing, Paul; Quinn, James

    2007-09-01

    In the wake of Hurricane Katrina and other severe storms in 2005, natural gas supplies were restricted, prices rose, and industry sought ways to reduce its natural gas use and costs. In October 2005, U.S. Department of Energy (DOE) Energy Secretary Bodman launched his Easy Ways to Save Energy campaign with a promise to provide energy assessments to 200 of the largest U.S. manufacturing plants. A major thrust of the campaign was to ensure that the nation's natural gas supplies would be adequate for all Americans, especially during home heating seasons. In a presentation to the National Press Club on October 3, 2005, Secretary Bodman said: 'America's businesses, factories, and manufacturing facilities use massive amounts of energy. To help them during this period of tightening supply and rising costs, our Department is sending teams of qualified efficiency experts to 200 of the nation's most energy-intensive factories. Our Energy Saving Teams will work with on-site managers on ways to conserve energy and use it more efficiently.' DOE's Industrial Technologies Program (ITP) responded to the Secretary's campaign with its Save Energy Now initiative, featuring a new and highly cost-effective form of energy assessments. The approach for these assessments drew heavily on the existing resources of ITP's Technology Delivery component. Over the years, ITP-Technology Delivery had worked with industry partners to assemble a suite of respected software decision tools, proven assessment protocols, training curricula, certified experts, and strong partnerships for deployment. Because of the program's earlier activities and the resources that had been developed, ITP was prepared to respond swiftly and effectively to the sudden need to promote improved industrial energy efficiency. Because of anticipated supply issues in the natural gas sector, the Save Energy Now initiative strategically focused on natural gas savings and targeted the nation's largest manufacturing plants--those that consume a total of 1 trillion British thermal units (Btu) or more annually. The approximately 6800 U.S. facilities that fall into this category collectively account for about 53% of all energy consumed by industry in the United States. The 2006 Save Energy Now energy assessments departed from earlier DOE plant assessments by concentrating solely on steam and process heating systems, which are estimated to account for approximately 74% of all natural gas use for manufacturing. The assessments also integrated a strong training component designed to teach industrial plant personnel how to use DOE's steam or process heating opportunity assessment software tools. This approach had the advantages of promoting strong buy-in of plant personnel for the assessment and its outcomes and preparing them better to independently replicate the assessment process at the company's other facilities. The Save Energy Now initiative also included provisions to help plants that applied for but did not qualify for assessments (based on the 1 trillion Btu criterion). Services offered to these plants included (1) an assessment by one of DOE's 26 university-based Industrial Assessment Centers (IACs), (2) a telephone consultation with a systems expert at the DOE's Energy Efficiency and Renewable Energy Information Center, or (3) other technical materials and services available through ITP (e.g., the Save Energy Now CD). By the end of 2006, DOE had completed all 200 of the promised assessments, identifying potential natural gas savings of more than 50 trillion Btu and energy cost savings of about $500 million. These savings, if fully implemented, could reduce CO2 emissions by 4.04 million metric tons annually. These results, along with the fact that a large percentage of U.S. energy is used by a relatively small number of very large plants, clearly suggest that assessments are an expedient and cost-effective way to significantly affect large amounts of energy use. Building on the success of the 2006 initiative, ITP has expanded the effort in 2007 with the goal of conducting 250 more asse

  4. Partnerships

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Email Astrophysics & Cosmology Ed Fenimore Email Climate Manvendra K. Dubey Email Geophysics W. Scott Baldridge Email Space Physics Josef Koller Email Collaborations between Los...

  5. Partnerships

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid you notHeatMaRIEdioxideUser

  6. Partnerships

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesseworkSURVEYI/O StreamsParticipantsParties agree to settlePartnering

  7. WESTCARB Carbon Atlas

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The West Coast Regional Carbon Sequestration Partnership (known as WESTCARB) was established in Fall 2003. It is one of seven research partnerships co-funded by DOE to characterize regional carbon sequestration opportunities and conduct pilot-scale validation tests. The California Energy Commission manages WESTCARB and is a major co-funder. WESTCARB is characterizing the extent and capacity of geologic formations capable of storing CO2, known as sinks. Results are entered into a geographic information system (GIS) database, along with the location of major CO2-emitting point sources in each of the six WESTCARB states, enabling researchers and the public to gauge the proximity of candidate CO2 storage sites to emission sources and the feasibility of linking them via pipelines. Specifically, the WESTCARB GIS database (also known as the carbon atlas) stores layers of geologic information about potential underground storage sites, such as porosity and nearby fault-lines and aquifers. Researchers use these data, along with interpreted geophysical data and available oil and gas well logs to estimate the region's potential geologic storage capacity. The database also depicts existing pipeline routes and rights-of-way and lands that could be off-limits, which can aid the development of a regional carbon management strategy. The WESTCARB Carbon Atlas, which is accessible to the public, provides a resource for public discourse on practical solutions for regional CO2 management. A key WESTCARB partner, the Utah Automated Geographic Reference Center, has developed data serving procedures to enable the WESTCARB Carbon Atlas to be integrated with those from other regional partnerships, thereby supporting the U.S. Department of Energy's national carbon atlas, NATCARB

  8. Federal Utility Partnership Working Group Seminar: Washington Update

    Broader source: Energy.gov [DOE]

    Presentation covers the Federal Utility Partnership Working Group Seminar: Washington Update on May 22, 2013.

  9. Research & Strategic Partnerships www.pdx.edu/research

    E-Print Network [OSTI]

    Bertini, Robert L.

    Research & Strategic Partnerships www.pdx.edu/research Research & Strategic Partnerships 3rd Year Report Page 1 Research and Strategic Partnerships Third Year Review: ReTHINKing Research at PSU J. Fink of the Research and Strategic Partnerships (RSP) Office, we provide an over- view of the organization's current

  10. Partnerships | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid you notHeatMaRIEdioxideUserPartnerships PartnershipsPartnerships

  11. NATCARB Interactive Maps and the National Carbon Explorer: a National Look at Carbon Sequestration

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    NATCARB is a national look at carbon sequestration. The NATCARB home page, National Carbon Explorer (http://www.natcarb.org/) provides access to information and interactive maps on a national scale about climate change, DOE's carbon sequestration program and its partnerships, CO2 emissions, and sinks. This portal provides access to interactive maps based on the Carbon Sequestration Atlas of the United States and Canada.

  12. Public-Private Partnerships for Energy Efficiency Programming, Successes of the Massachusetts Energy Efficiency Partnership 

    E-Print Network [OSTI]

    Winkler, E.

    2005-01-01

    stream_source_info ESL-IE-05-05-40.pdf.txt stream_content_type text/plain stream_size 3457 Content-Encoding UTF-8 stream_name ESL-IE-05-05-40.pdf.txt Content-Type text/plain; charset=UTF-8 Public-Private Partnerships... for Energy Efficiency Programming, Successes of the Massachusetts Energy Efficiency Partnership Eric Winkler, University of Massachusetts The Massachusetts Energy Efficiency Partnership is a public-private partnership between State and Federal energy...

  13. Toward a consistency cross-check of eddy covariance flux–based and biometric estimates of ecosystem carbon balance

    E-Print Network [OSTI]

    2009-01-01

    estimates of annual carbon sequestration in a Sitka spruce (carbon cycling in a temperate forest: Radiocarbon-based estimates of residence times, sequestration

  14. Public private partnership in infrastructure financing

    E-Print Network [OSTI]

    Ahmed, Anas

    2014-01-01

    The global financial crisis, which was unique in its magnitude and after effects, has generated significant interest in Public Private Partnership (PPP). Lack of investments and deteriorated infrastructure challenges ...

  15. Canadian Art Partnership Program in Finland

    E-Print Network [OSTI]

    Ketovuori, Mikko Mr.

    2011-01-01

    of arts education, Finland and Canada? An integrated view.Partnership Program in Finland In the UNESCO’s “Wow Factor”Bamford suggests that Finland has a special relationship to

  16. National Clean Fleets Partnership (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-01-01

    Provides an overview of Clean Cities National Clean Fleets Partnership (NCFP). The NCFP is open to large private-sector companies that have fleet operations in multiple states. Companies that join the partnership receive customized assistance to reduce petroleum use through increased efficiency and use of alternative fuels. This initiative provides fleets with specialized resources, expertise, and support to successfully incorporate alternative fuels and fuel-saving measures into their operations. The National Clean Fleets Partnership builds on the established success of DOE's Clean Cities program, which reduces petroleum consumption at the community level through a nationwide network of coalitions that work with local stakeholders. Developed with input from fleet managers, industry representatives, and Clean Cities coordinators, the National Clean Fleets Partnership goes one step further by working with large private-sector fleets.

  17. Superconducting Partnership with Readiness Review Update

    E-Print Network [OSTI]

    1 Superconducting Partnership with Industry: Readiness Review Update Mike Gouge, ORNL Steve Ashworth, LANL Paul Bakke, DOE-Golden DOE 2004 Superconductivity Peer Review July 27-29, 2004 #12;2 SPI

  18. Research Grant Funds The Accountability Partnership

    E-Print Network [OSTI]

    Kavanagh, Karen L.

    sources; and reimbursements for expenditures received from other sources or institutions must be disclosed Accountability Partnership Grant Holders Institutions Agencies Parliament Tax payers #12;The Memorandum information Clear, concise requirements for fund use Timely response to inquiries Consultation on major

  19. The Building America Industrialized Housing Partnership (BAIHP) 

    E-Print Network [OSTI]

    Chandra, S.; McCloud, M.; Moyer, N.; Beal, D.; Chasar, D.; McIlvaine, J.; Parker, D.; Sherwin, J.; Martin, E.; Fonorow, K.; Mullens, M.; Lubliner, M.; McSorley, M.

    2002-01-01

    The Building America Industrialized Housing Partnership (BAIHP) is one of five competitively selected U.S. DOE Building America teams and began work on 9/1/99. BAIHP focuses on improving the energy efficiency, durability ...

  20. Review: Forest Economics

    E-Print Network [OSTI]

    Helman, Daniel S.

    2015-01-01

    Review: Forest Economics By Daowei Zhang and Peter H. PearsePearse, Peter H. Forest Economics. Vancouver, BC: UBC Press,Zhang and Pearse's Forest Economics presents a clear and

  1. Leaf traits and foliar CO2 exchange in a Peruvian tropical montane cloud forest 

    E-Print Network [OSTI]

    Van de Weg, Marjan

    2011-06-28

    Tropical montane cloud forests (TMCF) are one of the most fascinating, but least understood ecosystems in the world, and the interest in the carbon (C) cycle of TMCFs with regard to carbon sequestration and storage ...

  2. Research Summary The EU Emissions Trading System: Opportunities for Forests?

    E-Print Network [OSTI]

    Research Summary The EU Emissions Trading System: Opportunities for Forests? European forestry has sequestration provided by European forests has not been recognised by markets. The EU Emissions Trading System as part of a wider review covering emerging carbon markets. Background The EU Emissions Trading Scheme

  3. UBC Social Ecological Economic Development Studies (SEEDS) Student Report Climate Action Partnership. Contribution of Food Greenhouse Gas Emissions

    E-Print Network [OSTI]

    similar to the Land and Food Systems (LFS) Orchard Garden, 0.019 tons of Carbon Dioxide (CO2) emissions an external source. This study attempts to quantify the GHG emissions from the transportation of the food Partnership. Contribution of Food Greenhouse Gas Emissions Reductions: Moving UBC Beyond Climate Neutral

  4. Reynolda Campus Wake Forest

    E-Print Network [OSTI]

    Anderson, Paul R.

    Reynolda Campus Wake Forest University Wake Forest University Reynolda Campus Office of Research than NIH and NSF, such as the Departments of Commerce, Energy, Homeland Security, and State

  5. Climate change cripples forests

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Climate Change Cripples Forests Climate change cripples forests A team of scientists concluded that in the warmer and drier Southwest of the near future, widespread tree mortality...

  6. Climate change cripples forests

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Climate change cripples forests Climate change cripples forests A team of scientists concluded that in the warmer and drier Southwest of the near future, widespread tree mortality...

  7. FACTS II (Aspen FACE) Facility and Harshaw Forest Experimental Farm Facility

    E-Print Network [OSTI]

    ;Project Name: Forest Atmosphere Carbon Transfer and Storage (FACTS-II) The Aspen Free-air CO2 and O3 Enrichment (FACE) Project. Project Number: Site: Harshaw Forest Experimental Farm (HFEF) USDA Forest ServiceUniversity Brookhaven National Laboratory Proposed Dates Beginning Date: May 1998 of Project: Ending Date: October 15

  8. The AMTEX Partnership Quarterly report

    SciTech Connect (OSTI)

    Not Available

    1994-03-01

    The AMTEX Partnership is a collaborative research and development program among the U.S. Integrated Textile Industry, the Department of Energy, The DOE laboratories, other federal agencies and laboratories, and universities. The goal of AMTEX is to strengthen the competitiveness of this vital U.S. industry and thereby preserve and create American jobs. The AMTEX Operating committee met on March 17, 1994 and approved the general direction and scope of the Industry R&D Road Map. All the Cooperative Research and Development Agreements (CRADAs) for the Demand Activated Manufacturing Project were completed and all nine labs were funded and underway by the end of March, 1994. Work was also initiated for three additional projects: Computer Aided Fabric Evaluation (CAFE), Textile Resource Conservation (TReC), and Sensors for Agile Manufacturing (SFAM). The plan for a Cotton Biotechnology project was completed and reviewed by the Industry Technical Advisory Committee. In addition, an `impact study` on the topic of flexible fiber production was conducted by an industry group led by the fiber manufacturers.

  9. CUTTING SOLAR RED TAPECUTTING SOLAR RED TAPE Evergreen State Solar PartnershipEvergreen State Solar Partnership

    E-Print Network [OSTI]

    READY BUILDINGS Solar access, easements, rights now and future Technical design ­ rCUTTING SOLAR RED TAPECUTTING SOLAR RED TAPE Evergreen State Solar PartnershipEvergreen State Solar Partnership Rooftop Solar Challenge 1 Sunshot #12;WASHINGTON PV CONTEXTWASHINGTON PV CONTEXT 285 cities, 39

  10. Estimation of tropical forest structural characteristics using large-footprint lidar

    E-Print Network [OSTI]

    Weishampel, John F.

    Estimation of tropical forest structural characteristics using large-footprint lidar Jason B in identifying the amount of carbon in terrestrial vegetation pools and is central to global carbon cycle studies. Although current remote sensing techniques recover such tropical forest structure poorly, new large-footprint

  11. ELSEVIER Agricultural and Forest Meteorology 90 (1998)291-306 AGRICULTURAL

    E-Print Network [OSTI]

    1998-01-01

    Forest-atmosphere carbon dioxide exchange in eastern Siberia D.Y. ~ o l l i n ~ e r ~ . ~ ? ' ,EM at a remote Siberian site during July and August of 1993. Our goal was to measure and partitton total C02; Stornatal control, Carbon balance; Boreal forest *Co~rc\\pondingauthor. Fax: 1 603 868 7604 0168

  12. The influence of warm-season precipitation on the diel cycle of the surface energy balance and carbon dioxide at a Colorado subalpine forest site

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Burns, S. P.; Blanken, P. D.; Turnipseed, A. A.; Hu, J.; Monson, R. K.

    2015-12-15

    Precipitation changes the physical and biological characteristics of an ecosystem. Using a precipitation-based conditional sampling technique and a 14 year data set from a 25 m micrometeorological tower in a high-elevation subalpine forest, we examined how warm-season precipitation affected the above-canopy diel cycle of wind and turbulence, net radiation Rnet, ecosystem eddy covariance fluxes (sensible heat H, latent heat LE, and CO2 net ecosystem exchange NEE) and vertical profiles of scalars (air temperature Ta, specific humidity q, and CO2 dry mole fraction ?c). This analysis allowed us to examine how precipitation modified these variables from hourly (i.e., the diel cycle)more »to multi-day time-scales (i.e., typical of a weather-system frontal passage). During mid-day we found the following: (i) even though precipitation caused mean changes on the order of 50–70 % to Rnet, H, and LE, the surface energy balance (SEB) was relatively insensitive to precipitation with mid-day closure values ranging between 90 and 110 %, and (ii) compared to a typical dry day, a day following a rainy day was characterized by increased ecosystem uptake of CO2 (NEE increased by ≈ 10 %), enhanced evaporative cooling (mid-day LE increased by ≈ 30 W m?2), and a smaller amount of sensible heat transfer (mid-day H decreased by ≈ 70 W m?2). Based on the mean diel cycle, the evaporative contribution to total evapotranspiration was, on average, around 6 % in dry conditions and between 15 and 25 % in partially wet conditions. Furthermore, increased LE lasted at least 18 h following a rain event. At night, even though precipitation (and accompanying clouds) reduced the magnitude of Rnet, LE increased from ≈ 10 to over 20 W m?2 due to increased evaporation. Any effect of precipitation on the nocturnal SEB closure and NEE was overshadowed by atmospheric phenomena such as horizontal advection and decoupling that create measurement difficulties. Above-canopy mean ?c during wet conditions was found to be about 2–3 ?mol mol?1 larger than ?c on dry days. This difference was fairly constant over the full diel cycle suggesting that it was due to synoptic weather patterns (different air masses and/or effects of barometric pressure). Finally, the effect of clouds on the timing and magnitude of daytime ecosystem fluxes is described.« less

  13. The effect of warm-season precipitation on the diel cycle of the surface energy balance and carbon dioxide at a Colorado subalpine forest site

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Burns, S. P.; Blanken, P. D.; Turnipseed, A. A.; Monson, R. K.

    2015-06-16

    Precipitation changes the physical and biological characteristics of an ecosystem. Using a precipitation-based conditional sampling technique and a 14 year dataset from a 25 m micrometeorological tower in a high-elevation subalpine forest, we examined how warm-season precipitation affected the above-canopy diel cycle of wind and turbulence, net radiation Rnet, ecosystem eddy covariance fluxes (sensible heat H, latent heat LE, and CO2 net ecosystem exchange NEE) and vertical profiles of scalars (air temperature Ta, specific humidity q, and CO2 dry mole fraction ?c). This analysis allowed us to examine how precipitation modified these variables from hourly (i.e., the diel cycle) tomore »multi-day time-scales (i.e., typical of a weather-system frontal passage). During mid-day we found: (i) even though precipitation caused mean changes on the order of 50–70% to Rnet, H, and LE, the surface energy balance (SEB) was relatively insensitive to precipitation with mid-day closure values ranging between 70–80%, and (ii) compared to a typical dry day, a day following a rainy day was characterized by increased ecosystem uptake of CO2 (NEE increased by ≈ 10%), enhanced evaporative cooling (mid-day LE increased by ≈ 30 W m-2), and a smaller amount of sensible heat transfer (mid-day H decreased by ≈ 70 W m-2). Based on the mean diel cycle, the evaporative contribution to total evapotranspiration was, on average, around 6% in dry conditions and 20% in wet conditions. Furthermore, increased LE lasted at least 18 h following a rain event. At night, precipitation (and accompanying clouds) reduced Rnet and increased LE. Any effect of precipitation on the nocturnal SEB closure and NEE was overshadowed by atmospheric phenomena such as horizontal advection and decoupling that create measurement difficulties. Above-canopy mean ?c during wet conditions was found to be about 2–3 ?mol mol-1 larger than ?c on dry days. This difference was fairly constant over the full diel cycle suggesting that it was due to synoptic weather patterns (different air masses and/or effects of barometric pressure). In the evening hours during wet conditions, weakly stable conditions resulted in smaller vertical ?c differences compared to those in dry conditions. Finally, the effect of clouds on the timing and magnitude of daytime ecosystem fluxes is described.« less

  14. PACIFIC SOUTHWEST FOREST SERVICE

    E-Print Network [OSTI]

    Columbia, Canada. ACKNOWLEDGMENTS I thank Lula E. Greene, Pacific Southwest Forest and Range Experi ment

  15. Forest soil CO2 flux: uncovering the contribution and environmental responses of ectomycorrhizas

    E-Print Network [OSTI]

    of human-induced climate change is critically dependent on the carbon (C) sequestration potential carbon cycle, being considered an important and continuing carbon sink. However, the response of carbon sequestration in forests to global climate change remains a major uncertainty, with a particularly poor under

  16. Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997-2009)

    E-Print Network [OSTI]

    2010-01-01

    John- stone, J. F. : Quantifying fire severity, carbon, andfrom Canadian forest fires, 1959– 1999, Can. J. Forestwildland fires1, Int. J. Wildland Fire, 16, 593–606, doi:

  17. Development and analysis of a 12-year daily 1-km forest fire dataset across North America from NOAA/AVHRR data

    E-Print Network [OSTI]

    Li, Zhanqing

    Development and analysis of a 12-year daily 1-km forest fire dataset across North America from NOAA Forest Service, Fire Sciences Laboratory, P.O. Box 8089, Missoula, MT 59807, United States g NOAA forests play a significant role in the global carbon cycle. While forest fires in North America (NA) have

  18. LANL Deliverable to the Big Sky Carbon Sequestration Partnership...

    Office of Scientific and Technical Information (OSTI)

    of Publication: United States Language: English Subject: Earth Sciences; Energy Sciences; Energy Conservation, Consumption, & Utilization(32); Environmental Sciences(54);...

  19. LANL Deliverable to the Big Sky Carbon Sequestration Partnership...

    Office of Scientific and Technical Information (OSTI)

    Carey, James W. Los Alamos National Laboratory Earth Sciences; Energy Sciences; Energy Conservation, Consumption, & Utilization(32); Environmental Sciences(54);...

  20. Big Sky Regional Carbon Sequestration Partnership--Validation Phase

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O OLaura| National2.11DESERTWaterSharingBeyondBang orBigProgram

  1. Midwest Regional Carbon Sequestration Partnership-Validation Phase

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on77 PAGE OFDetection ofOctober10MidSchoolMathFuelProgram Technology

  2. Southwest Regional Partnership for Carbon Sequestration--Validation Phase

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effect Photovoltaics -7541C. TemperatureThousand Cubic Feet)InvestmentProgram

  3. LANL Deliverable to the Big Sky Carbon Sequestration Partnership:

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfate Reducing(Journalspectroscopy of aerosols in(JournalTechnicalConnectArticle)!

  4. Celebrating a Decade of Carbon Storage Research Through Partnership |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a lCaribElectricSouthApplying caulk to a window frameDayDepartment of

  5. LANL Deliverable to the Big Sky Carbon Sequestration Partnership:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousand Cubic Feet)MultimaterialforLAESFGetting

  6. DOE's Carbon Sequestration Partnership Program Adds Canadian Provinces |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-in electricLaboratory | DepartmentDOEDepartment Approves ProjectDepartment of

  7. Federal-Contractor Partnership Allows Continued Waste Processing...

    Office of Environmental Management (EM)

    Federal-Contractor Partnership Allows Continued Waste Processing in Oak Ridge Federal-Contractor Partnership Allows Continued Waste Processing in Oak Ridge July 29, 2015 - 12:00pm...

  8. Departments of State and Energy Establish Global Partnership...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    State and Energy Establish Global Partnership to Green U.S. Embassies and Consulates Departments of State and Energy Establish Global Partnership to Green U.S. Embassies and...

  9. NaturallyProduced CarbonSources

    E-Print Network [OSTI]

    (e.g., methane) to generate electricity, drive a petroleum-powered car, or cut down a forest, CO2 element in our universe. Carbon dioxide, or CO2, is the most abundant car- bon bearing gas, and plays a special role in Earth's carbon cycle. From an atmospheric perspective, sources emit or release carbon

  10. THE COMPARATIVE VALUE OF BIOLOGICAL CARBON SEQUESTRATION

    E-Print Network [OSTI]

    McCarl, Bruce A.

    THE COMPARATIVE VALUE OF BIOLOGICAL CARBON SEQUESTRATION 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 sequestration and between 1 and 49 percent for forest based carbon sequestration. Value adjustments 18 19 20 21 22 BRUCE A. MCCARL, BRIAN C. MURRAY, AND UWE A. SCHNEIDER Abstract Carbon sequestered via

  11. THE COMPARATIVE VALUE OF BIOLOGICAL CARBON SEQUESTRATION

    E-Print Network [OSTI]

    McCarl, Bruce A.

    THE COMPARATIVE VALUE OF BIOLOGICAL CARBON SEQUESTRATION BRUCE A. MCCARL, BRIAN C. MURRAY, AND UWE A. SCHNEIDER A. Abstract Carbon sequestration via forests and agricultural soils saturates over time to sequestration because of (1) an ecosystems limited ability to take up carbon which we will call saturation

  12. Auto/Steel Partnership: Hydroforming Materials and Lubricant...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydroforming Materials and Lubricant Lightweight Rear Chassis Structures Future Generation Passenger Compartment AutoSteel Partnership: Hydroforming Materials and Lubricant...

  13. Federal Utility Partnership Working Group: Welcome to Portland

    Broader source: Energy.gov [DOE]

    Presentation covers welcoming attendees to Portland at the Spring 2011 Federal Utility Partnership Working Group (FUPWG) meeting.

  14. NSF/DOE Thermoelectrics Partnership: Thermoelectrics for Automotive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermoelectrics for Automotive Waste Heat Recovery NSFDOE Thermoelectrics Partnership: Thermoelectrics for Automotive Waste Heat Recovery Development for commercialization of...

  15. Partnerships with Purpose INDUSTRY-LED RESEARCH COLLABORATIONS

    E-Print Network [OSTI]

    Wapstra, Erik

    of Revolution Design Gary Davidson at the Incat shipyard in Hobart. 2 PARTNERSHIPS WITH PURPOSE 2014 #12

  16. 27 Jan 2003 Smart Optics Faraday Partnership 1 Smart Optics

    E-Print Network [OSTI]

    Greenaway, Alan

    27 Jan 2003 Smart Optics Faraday Partnership 1 Smart Optics Technologies, Techniques and Space Applications Alan Greenaway Physics, EPS Heriot-Watt University #12;27 Jan 2003 Smart Optics Faraday Partnership 2 Smart? · The Smart Optics Faraday Partnership interprets `Smart Optics' to mean: ­ `... includes

  17. Comprehensive Monitoring of CO2 Sequestration in Subalpine Forest Ecosystems

    E-Print Network [OSTI]

    Han, Richard Y.

    , carbon sequestration, ecosystem, multi-tier, multi-modal, multi-scale, self organized, sensor array to comprehensively monitor ecosystem carbon sequestration. The network consists of CO2, Weather (pressureComprehensive Monitoring of CO2 Sequestration in Subalpine Forest Ecosystems and Its Relation

  18. Final report on the project entitled "The Effects of Disturbance & Climate on Carbon Storage & the Exchanges of CO2 Water Vapor & Energy Exchange of Evergreen Coniferous Forests in the Pacific Northwest: Integration of Eddy Flux, Plant and Soil Measurements at a Cluster of Supersites"

    SciTech Connect (OSTI)

    Beverly E. Law , Christoph K. Thomas

    2011-09-20

    This is the final technical report containing a summary of all findings with regard to the following objectives of the project: (1) To quantify and understand the effects of wildfire on carbon storage and the exchanges of energy, CO2, and water vapor in a chronosequence of ponderosa pine (disturbance gradient); (2) To investigate the effects of seasonal and interannual variation in climate on carbon storage and the exchanges of energy, CO2, and water vapor in mature conifer forests in two climate zones: mesic 40-yr old Douglas-fir and semi-arid 60-yr old ponderosa pine (climate gradient); (3) To reduce uncertainty in estimates of CO2 feedbacks to the atmosphere by providing an improved model formulation for existing biosphere-atmosphere models; and (4) To provide high quality data for AmeriFlux and the NACP on micrometeorology, meteorology, and biology of these systems. Objective (1): A study integrating satellite remote sensing, AmeriFlux data, and field surveys in a simulation modeling framework estimated that the pyrogenic carbon emissions, tree mortality, and net carbon exchange associated with four large wildfires that burned ~50,000 hectares in 2002-2003 were equivalent to 2.4% of Oregon statewide anthropogenic carbon emissions over the same two-year period. Most emissions were from the combustion of the forest floor and understory vegetation, and only about 1% of live tree mass was combusted on average. Objective (2): A study of multi-year flux records across a chronosequence of ponderosa pine forests yielded that the net carbon uptake is over three times greater at a mature pine forest compared with young pine. The larger leaf area and wetter and cooler soils of the mature forest mainly caused this effect. A study analyzing seven years of carbon and water dynamics showed that interannual and seasonal variability of net carbon exchange was primarily related to variability in growing season length, which was a linear function of plant-available soil moisture in spring and early summer. A multi-year drought (2001-2003) led to a significant reduction of net ecosystem exchange due to carry-over effects in soil moisture and carbohydrate reserves in plant-tissue. In the same forest, the interannual variability in the rate carbon is lost from the soil and forest floor is considerable and related to the variability in tree growth as much as it is to variability in soil climatic conditions. Objective (3): Flux data from the mature ponderosa pine site support a physical basis for filtering nighttime data with friction velocity above the canopy. An analysis of wind fields and heat transport in the subcanopy at the mesic 40-year old Douglas site yielded that the non-linear structure and behavior of spatial temperature gradients and the flow field require enhanced sensor networks to estimate advective fluxes in the subcanopy of forest to close the surface energy balance in forests. Reliable estimates for flux uncertainties are needed to improve model validation and data assimilation in process-based carbon models, inverse modeling studies and model-data synthesis, where the uncertainties may be as important as the fluxes themselves. An analysis of the time scale dependence of the random and flux sampling error yielded that the additional flux obtained by increasing the perturbation timescale beyond about 10 minutes is dominated by random sampling error, and therefore little confidence can be placed in its value. Artificial correlation between gross ecosystem productivity (GEP) and ecosystem respiration (Re) is a consequence of flux partitioning of eddy covariance flux data when GEP is computed as the difference between NEE and computed daytime Re (e.g. using nighttime Re extrapolated into daytime using soil or air temperatures). Tower-data must be adequately spatially averaged before comparison to gridded model output as the time variability of both is inherently different. The eddy-covariance data collected at the mature ponderosa pine site and the mesic Douglas fir site were used to develop and evaluate a new method to extra

  19. COMMISSION GUIDEBOOK NEW SOLAR HOMES PARTNERSHIP

    E-Print Network [OSTI]

    Partnership provides financial incentives for installing solar energy systems on new residential buildings for solar homes that incorporate high levels of energy efficiency and highperforming solar energy systems, Energy Commission, PV, solar energy system, energy efficiency, standards, Title 24 Part 6, tier

  20. NEW SOLAR HOMES PARTNERSHIP DRAFT GUIDEBOOK

    E-Print Network [OSTI]

    for installing solar energy systems on new residential buildings. The expected performance of the solar energy of energy efficiency and high performing solar energy systems. This Guidebook details the eligibility: New Solar Homes Partnership, NSHP, Energy Commission, PV, Solar energy system, energy efficiency

  1. Strategic Partnership for Sustainable Energy Innovation

    E-Print Network [OSTI]

    ecando Strategic Partnership for Sustainable Energy Innovation and Climate Change Mitigation www.eit-energy and innovators developing sustainable energy solutions eCANDO sets out to achieving the following major outputs: Sustainable energy solutions independent of nuclear energy Highly qualified innovators that will be global

  2. Industrial Partnership Prosperity Game{trademark}

    SciTech Connect (OSTI)

    Boyak, K.; Berman, M.; Beck, D.

    1998-02-01

    Prosperity Games TM are an outgrowth and adaptation move/countermove and seminar War Games. Prosperity Games TM are simulations that explore complex issues in a variety of areas including economics, politics, sociology, environment, education, and research. These issues can be examined from a variety of perspectives ranging from a global, macroeconomic and geopolitical viewpoint down to the details of customer/supplier/market interactions in specific industries. All Prosperity Games TM are unique in that both the game format and the player contributions vary from game to game. This report documents the Industry Partnership Prosperity Game sponsored by the Technology Partnerships and Commercialization Center at Sandia National Laboratories. Players came from the Sandia line organizations, the Sandia business development and technology partnerships organizations, the US Department of Energy, academia, and industry The primary objectives of this game were to: explore ways to increase industry partnerships to meet long-term Sandia goals; improve Sandia business development and marketing strategies and tactics; improve the process by which Sandia develops long-term strategic alliances. The game actions and recommendations of these players provided valuable insights as to what Sandia can do to meet these objectives.

  3. Testimonials- Partnerships in Fuel Efficiency- Cummins Inc.

    Broader source: Energy.gov [DOE]

    Wayne Eckerle, VP of Corporate Research and Technology at Cummins Inc., talks about how its partnership with EERE has helped move waste heat recovery advances for vehicles into production and will help them reach fuel consumption reductions of 20-30% over the next decade.

  4. Reaching Wider South West Wales Partnership Strategy

    E-Print Network [OSTI]

    Martin, Ralph R.

    1 Reaching Wider South West Wales Partnership Strategy 2011-14 #12;2 `Poverty is when someone patterns, customs and activities.' Joseph Rowntree Foundation Monitoring poverty and social exclusion in Communities First areas of high relative poverty. It interlocks with higher education strategic approaches

  5. FreedomCAR and Fuel Partnership

    E-Print Network [OSTI]

    CAR and Fuel Partnership is a collaborative effort among the Department of Energy (DOE), energy companies (BP and advance the pre-competitive, high-risk research needed to develop the component and infrastructure multiple options in each technology area (e.g., hydrogen production, hydrogen delivery, hydrogen storage

  6. Securing a low-carbon future for the UK -EOR Joint Industry Project

    E-Print Network [OSTI]

    Painter, Kevin

    Petroleum UK Ltd and Shell. About SCCS and our partners Scottish Carbon Capture & Storage (SCCS) is an independent research partnership of British Geological Survey (BGS), Heriot-Watt University, the University

  7. Protecting climate with forests.

    E-Print Network [OSTI]

    2008-01-01

    Changing feedbacks in the climate–biosphere system Front.313–32 Bonan G B 2008 Forests and climate change: forcings,feedbacks, and the climate benefits of forests Science

  8. Carbon Storage in Young Growth Coast Redwood Stands

    E-Print Network [OSTI]

    Abstract Carbon sequestration is an emerging forest management objective within California and around the dynamics of carbon sequestration and to accurately measure carbon storage is essential to insure successful per acre making the argument for use of the species in long-term carbon sequestration projects self

  9. Linkage of MIKE SHE to Wetland-DNDC for carbon budgeting and anaerobic biogeochemistry

    E-Print Network [OSTI]

    . Introduction Increasing emissions of carbon dioxide, methane, and other greenhouse gases (GHGs) are believed 2004 Key words: Biogeochemical modeling, Carbon dynamics, Forest wetland, Greenhouse gases emission and forest management practices on GHGs emissions and carbon dynamics to test the capabilities of the models

  10. Carbon storage and sequestration by trees in urban and community areas of the United States

    E-Print Network [OSTI]

    Carbon storage and sequestration by trees in urban and community areas of the United States David J forestry Tree cover Forest inventory a b s t r a c t Carbon storage and sequestration by urban trees to determine total urban forest carbon storage and annual sequestration by state and nationally. Urban whole

  11. Global Forests Syllabus -1 GLOBAL FORESTS

    E-Print Network [OSTI]

    Hill, Jeffrey E.

    , and conservation. Another explores ongoing strategies that seek to sustain forests through markets and other (environmental, socioeconomic and political) under which forest products are harvested and transformed. A variety stakeholders & power Reading comments 18 Changing scenarios Reading comments 20 Costs, benefits

  12. High surface area diamond-like carbon electrodes grown on vertically aligned carbon nanotubes

    E-Print Network [OSTI]

    Bristol, University of

    High surface area diamond-like carbon electrodes grown on vertically aligned carbon nanotubes H packed forests of vertically aligned multiwall carbon nanotubes (VACNTs). The DLC:VACNT composite film and high corrosion resistance [13,14]. Other type of dopants, including nickel and boron, also result

  13. Forest Research Coporate Plan

    E-Print Network [OSTI]

    Forest Research Coporate Plan 2006­2009 The research agency of the Forestry Commission #12;Forest Research Corporate Plan 2006­2009 1Corporate Plan 2006­2009 #12;Chief Executive Professor Jim Lynch Forest Research Alice Holt Lodge Farnham Surrey GU10 4LH Tel: 01420 22255 E-mail: research

  14. Forest Research Annual Report

    E-Print Network [OSTI]

    Forest Research Annual Report and Accounts 2000-2001 An agency of the Forestry Commission #12-SMITH Chief Research Officer Forest Research Members DR A.R. GRIFFIN Renewable Resources Division Shell Research Organisation Spring 2001 Advisory Committee on Forest Research Chief Executive Chief Research

  15. Forest Research: Climate Change

    E-Print Network [OSTI]

    Forest Research: Climate Change projects Forest Research is part of the Forestry Commission of climate change-related research is wide-ranging, covering impact assessment and monitoring, adaptation around a quarter of its research budget with Forest Research on climate change and related programmes

  16. Prince George Forest Region

    E-Print Network [OSTI]

    Coxson, Darwyn

    Prince George Forest Region Forest Resources & Practices Team May 1999 Note #PG-20 · ExtensionAssociate,UniversityofNorthern BritishColumbia 2 MSc, RPBio, Silvifauna Research, Prince George, BC 3 PhD, R.M. Sagar and Associates, Prince George, BC #12;Ministry of Forests, 5th Floor, 1011 - 4th Avenue, Prince George, BC V2L 3H9

  17. Protecting climate with forests.

    E-Print Network [OSTI]

    2008-01-01

    much more than carbon sequestration does, and often in abiophysics, carbon sequestration, climate change, climatethe accompanying carbon sequestration does—and sometimes in

  18. Overview of the United States Priorities and Research Programs on Carbon Sequestration

    E-Print Network [OSTI]

    ' Department of Energy established a Carbon Sequestration Program in 1998, Regional Carbon SequestrationOverview of the United States Priorities and Research Programs on Carbon Sequestration M. Karmis Partnerships in 2003, and FutureGen, the Integrated Sequestration and Hydrogen Research Initiative, in 2003

  19. Lacunarity as a texture measure for a tropical forest landscape

    SciTech Connect (OSTI)

    Su, Haiping; Krummel, J.

    1996-01-01

    Fragmentation and loss of tropical forest cover alters terrestrial plant and animal population dynamics, reduces biodiversity and carbon storage capacity, and, as a global phenomenon could affect regional and global climate patterns. Lacunarity as a texture measure can offer a simple solution to characterize the texture of tropical forest landscape and determine spatial patterns associated with ecological processes. Lacunarity quantifies the deviation from translational invariance by describing the distribution of gaps within a binary image at multiple scales. As lacunarity increases, the spatial arrangement of tropical forest gaps will also increase. In this study, we used the Spatial Modeler in Imagine as a graphic programming tool to calculate lacunarity indices for a tropical forest landscape in Southern Mexico and Northern Guatemala. Lacunarity indices were derived from classified Landsat MSS images acquired in 1974 and 1984. Random-generated binary images were also used to derive lacunarity indices and compared with the lacunarity of forest patterns derived from the classified MSS images. Tropical forest area declined about 17%, with most of the forest areas converted into pasture/grassland for grazing. During this period, lacunarity increased about 25%. Results of this study suggest that tropical forest fragmentation could be quantified with lacunarity measures. The study also demonstrated that the Spatial Modeler can be useful as a programming tool to quantify spatial patterns of tropical forest landscape by using remotely sensed data.

  20. National Clean Fleets Partnership (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-01-01

    Clean Cities' National Clean Fleets Partnership establishes strategic alliances with large fleets to help them explore and adopt alternative fuels and fuel economy measures to cut petroleum use. The initiative leverages the strength of nearly 100 Clean Cities coalitions, nearly 18,000 stakeholders, and more than 20 years of experience. It provides fleets with top-level support, technical assistance, robust tools and resources, and public acknowledgement to help meet and celebrate fleets' petroleum-use reductions.

  1. ARPA-E University- Strategic Military Partnerships

    Broader source: Energy.gov [DOE]

    This webinar will provide an inside look at how one ARPA-E project team, led by Primus Power, formed a strategic partnership with a major defense contractor to demonstrate its innovative energy storage system. Don’t miss the chance to learn more about Primus Power’s innovative EnergyPod and how the company has worked with Raytheon to advance the technology.

  2. European Partnerships and Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeVehicleDepartmentMedia AdvisoriesProgramEuropean Partnerships

  3. PLANAR MEMS SUPERCAPACITOR USING CARBON NANOTUBE FORESTS

    E-Print Network [OSTI]

    Lin, Liwei

    for the energy suppliers in pulse-power applications such as solid-state sensors. Supercapacitors have simple

  4. Forest Carbon Index | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA Jump to:ofEnia SpAFlex Fuels Energy JumpVyncke Jump

  5. Forest Carbon Portal | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdistoWhiskeyFootprint Ventures Jump to: navigation,Portal Jump to:

  6. Age of riverine carbon suggests rapid export of terrestrial primary production in tropics

    E-Print Network [OSTI]

    2013-01-01

    exchange of carbon and water in an Amazonian rain forest, J.rains. The lack of variability in ? 14 C VP values between the rising water

  7. forestry.gov.uk/carboncode The Woodland Carbon Code is an initiative led by the

    E-Print Network [OSTI]

    carbon from these projects brings many benefits in addition to carbon sequestration. is effectivelyforestry.gov.uk/carboncode ® The Woodland Carbon Code is an initiative led by the Forestry Commission and supported by a Carbon Advisory Group of UK forest industry and carbon market experts. A buyers

  8. University Partnerships | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Multidisciplinary Simulation Center for High Efficiency Electric Power Generation with Carbon Capture," an MSC University of Illinois-Urbana-Champaign,...

  9. Devolution, School/Community/Family Partnerships, and Inclusive Education

    E-Print Network [OSTI]

    Sailor, Wayne

    2002-01-01

    Devolution and Partnerships 7 CHAPTER 1 Devolution, School/Community/Family Partnerships, and Inclusive Education Wayne Sailor 7 Whole-School Success and Inclusive Education. Copyright © 2002 by Teachers College, Columbia University. All rights... in special education, and its present focus in general education. Next, the chapter examines the implications of the devolution revolution. It then reviews school/community partnership models and how these models affect, and in turn are affected by...

  10. LEAD COMMISSIONER DRAFT GUIDEBOOK NEW SOLAR HOMES PARTNERSHIP

    E-Print Network [OSTI]

    LEAD COMMISSIONER DRAFT GUIDEBOOK NEW SOLAR HOMES PARTNERSHIP GUIDEBOOK Seventh Edition Lead COMMISSION Edmund G. Brown, Jr., Governor #12;CALIFORNIA ENERGY COMMISSION Andrew McAllister Lead

  11. Testimonials - Partnerships in R&D - Air Products and Chemicals...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Air Products and Chemicals Incorporated Testimonials - Partnerships in R&D - Air Products and Chemicals Incorporated Addthis An error occurred. Try watching this video on...

  12. 12th Annual Bridging Partnerships Small Business Symposium

    Broader source: Energy.gov [DOE]

    You’re Invited: Join the U.S. Department of Energy and Hanford Site Prime Contractors for the Bridging Partnerships Small Business Symposium!

  13. Testimonials - Partnerships in Fuel Cells - GE Global Research...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuel Cells - GE Global Research Testimonials - Partnerships in Fuel Cells - GE Global Research Addthis An error occurred. Try watching this video on www.youtube.com, or enable...

  14. Auto/Steel Partnership: AHSS Stamping, Strain Rate Characterization...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AHSS Stamping, Strain Rate Characterization, Sheet Steel Fatigue, AHSS Joining AutoSteel Partnership: AHSS Stamping, Strain Rate Characterization, Sheet Steel Fatigue, AHSS...

  15. Auto/Steel Partnership: Fatigue of AHSS Strain Rate Characterization...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fatigue of AHSS Strain Rate Characterization AutoSteel Partnership: Fatigue of AHSS Strain Rate Characterization 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual...

  16. Using Partnerships to Drive Demand and Provide Services in Communities...

    Broader source: Energy.gov (indexed) [DOE]

    Program Multifamily and Low-Income Peer Exchange Call: Using Partnerships to Drive Demand and Provide Services in Communities, February 2, 2012. Call Slides and Discussion...

  17. Utility Partnership Program Agency Partners | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    agencies are partners in the Utility Partnership Program or have engaged in a utility energy service contract project. Agricultural Research Service Bureau of Prisons Bureau of...

  18. Nuclear Waste Partnership (NWP) Corrective Action Plan Addendum...

    Office of Environmental Management (EM)

    Addendum Radiological Release Event Phase II Nuclear Waste Partnership (NWP) Corrective Action Plan Addendum Radiological Release Event Phase II On Friday, February 14, 2014 there...

  19. Nuclear Waste Partnership (NWP) Corrective Action Plan - Truck...

    Office of Environmental Management (EM)

    - Truck Fire and Radiological Release Phase I Nuclear Waste Partnership (NWP) Corrective Action Plan - Truck Fire and Radiological Release Phase I Submittal of the Underground Salt...

  20. Cooley joins Y-12's Global Security and Strategic Partnerships...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to have someone with Jill's depth and breadth of expertise on our staff," said Morris Hassler of Global Security and Strategic Partnerships. "Her international experience...

  1. Departments of Energy and Commerce Announce New Partnership to...

    Energy Savers [EERE]

    Departments of Energy and Commerce Announce New Partnership to Further Cooperation on Renewable Energy Modeling and Forecasting Departments of Energy and Commerce Announce New...

  2. NREL Partnerships to Help the Grid Accommodate More Renewable...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL Partnerships to Help the Grid Accommodate More Renewable Energy June 15, 2015 The Energy Department's National Renewable Energy Laboratory (NREL) announces five new...

  3. Testimonials- Partnerships in Battery Technologies- Capstone Turbine Corporation

    Broader source: Energy.gov [DOE]

    Robert Gleason, Senior Vice President of Product Development for Capstone Turbine Corporation describes the benefits of a strategic partnership with the U.S. Department of Energy.

  4. Testimonials - Partnerships in Combined Heat and Power Technologies...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Combined Heat and Power Technologies - Cummins Inc. Testimonials - Partnerships in Combined Heat and Power Technologies - Cummins Inc. Addthis An error occurred. Try watching this...

  5. Sandia Energy - Standards and Industry Outreach/Partnerships

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Security for Electric Infrastructure National Supervisory Control and Data Acquisition (SCADA) Standards and Industry OutreachPartnerships Standards and Industry Outreach...

  6. Exploring Partnerships to Further Building Code Compliance Enhancement

    Broader source: Energy.gov [DOE]

    This presentation, given through the DOE's Technical Assitance Program (TAP), identifies opportunities for municipal and state partnerships to ensure better building code compliance.

  7. Federal Utility Partnership Working Group: Atlanta Gas Light Resources

    Broader source: Energy.gov [DOE]

    Presentation—given at the April 2012 Federal Utility Partnership Working Group (FUPWG) meeting—lists Altanta Gas Light (AGL) resources and features a map of its footprint.

  8. University-Industry-National Laboratory Partnership to Improve...

    Office of Environmental Management (EM)

    University-Industry-National Laboratory Partnership to Improve Building Efficiency by Equipment Health Monitoring with Virtual Intelligent Sensing University-Industry-National...

  9. 2nd Global Nuclear Energy Partnership Ministerial Opening Session...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in May, I said I hoped we would be "laying the groundwork for a new global nuclear power partnership; an international approach that allows developed and developing nations...

  10. Secretary Chu Announces New Partnerships Under the Energy and...

    Energy Savers [EERE]

    by developing clean energy resources, increasing energy security and reducing energy poverty. ECPA is part an innovative approach to regional partnerships that includes the...

  11. NREL Success Stories - SkyFuel Partnership Reflects Bright Future

    ScienceCinema (OSTI)

    Jorgensen, Gary; Gee, Randy

    2013-05-29

    NREL Scientists and SkyFuel share a story about how their partnership has resulted in a revolutionary concentrating solar power technology ReflecTech Mirror Film.

  12. ENERGY INVESTMENT PARTNERSHIPS: HOW STATE AND LOCAL GOVERNMENTS...

    Energy Savers [EERE]

    AND LOCAL GOVERNMENTS ARE ENGAGING PRIVATE CAPITAL TO DRIVE CLEAN ENERGY INVESTMENTS Energy Investment Partnerships-sometimes referred to as Green Banks--are newly emerging...

  13. Global Nuclear Energy Partnership Fact Sheet - Develop Advanced...

    Broader source: Energy.gov (indexed) [DOE]

    on the design, development, and demonstration of ABRs as part of the GNEP. Global Nuclear Energy Partnership Fact Sheet - Develop Advanced Burner Reactors More Documents &...

  14. Global Nuclear Energy Partnership Fact Sheet - Demonstrate More...

    Office of Environmental Management (EM)

    Demonstrate More Proliferation-Resistant Recycling Global Nuclear Energy Partnership Fact Sheet - Demonstrate More Proliferation-Resistant Recycling Under GNEP, the U.S. will work...

  15. Federal-Tribal Partnership on Climate Change Action Rounds Corner...

    Broader source: Energy.gov (indexed) [DOE]

    Federal-Tribal Partnership on Climate Change Action Rounds Corner, Shifts Into High Gear at 2013 Tribal Nations Conference David Conrad David Conrad Deputy Director, Office of...

  16. New partnership uses advanced computer science modeling to address...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    partnership uses advanced computer science modeling to address climate change | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing...

  17. Utility Energy Service Contract Partnership Meetings and Training...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    how to: Successfully complete a utility partnership Determine the appropriate funding mechanism Perform and review audits and the proposal process Measure and verify energy...

  18. Voluntary Initiative: Partnership Toolkit, from the U.S. Department...

    Energy Savers [EERE]

    201402f7gvsuinterviewformatted1-28-13.pdf Case Study - EnergyWorks in Philadelphia, Pennsylvania, video about faith-based partnerships: https:www.youtube.com...

  19. Establishing & Maintaining a Strategic Partnership with the Chief...

    Office of Environmental Management (EM)

    Chief Financial Officer Neal Elliot of the American Council for an Energy-Efficient Economy shares insights on how to establish and maintain a partnership with the Chief...

  20. The 21st Century Truck Partnership | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2002deerhowden.pdf More Documents & Publications 21st Century Truck Partnership Roadmap Roadmap and Technical White Papers - 21CTP-0003, December 2006 Roadmap and Technical...

  1. Global Nuclear Energy Partnership Inaugural Steering Group Meeting...

    Energy Savers [EERE]

    Inaugural Steering Group Meeting Makes Marked Progress Global Nuclear Energy Partnership Inaugural Steering Group Meeting Makes Marked Progress December 19, 2007 - 4:58pm Addthis...

  2. Global Nuclear Energy Partnership Steering Group Members Approve...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Steering Group Members Approve Transformation to the International Framework for Nuclear Energy Cooperation Global Nuclear Energy Partnership Steering Group Members Approve...

  3. Florida Solar Energy Center (Building America Partnership for...

    Open Energy Info (EERE)

    Florida Solar Energy Center (Building America Partnership for Improved Residential Construction Jump to: navigation, search Name: Florida Solar Energy Center (Building America...

  4. Energy Department Launches Public-Private Partnership to Deploy...

    Broader source: Energy.gov (indexed) [DOE]

    to support more transportation energy options for U.S. consumers, including fuel cell electric vehicles (FCEVs). The new partnership brings together automakers,...

  5. Strengthening Public-Private Partnerships to Accelerate Global...

    Open Energy Info (EERE)

    Strengthening Public-Private Partnerships to Accelerate Global Electricity Technology Deployment Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Strengthening...

  6. Global Nuclear Energy Partnership Fact Sheet - Develop Enhanced...

    Office of Environmental Management (EM)

    Develop Enhanced Nuclear Safeguards Global Nuclear Energy Partnership Fact Sheet - Develop Enhanced Nuclear Safeguards GNEP will help prevent misuse of civilian nuclear facilities...

  7. FreedomCAR and Fuel Partnership 2006 Highlights of Technical...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Technical Accomplishments FreedomCAR and Fuel Partnership 2006 Highlights of Technical Accomplishments Report containing brief summaries of key technical...

  8. FreedomCAR and Fuel Partnership 2010 Highlights of Technical...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Technical Accomplishments FreedomCAR and Fuel Partnership 2010 Highlights of Technical Accomplishments This report summarizes key technical accomplishments achieved in...

  9. FreedomCAR Partnership 2003 Highlights of Technical Accomplishments...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2003 Highlights of Technical Accomplishments FreedomCAR Partnership 2003 Highlights of Technical Accomplishments Report highlighting specific accomplishments that the FreedomCAR...

  10. FreedomCAR and Fuel Partnership 2008 Highlights of Technical...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Technical Accomplishments FreedomCAR and Fuel Partnership 2008 Highlights of Technical Accomplishments Report containing brief summaries of key technical...

  11. NSF/DOE Thermoelectric Partnership: High-Performance Thermoelectric...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Performance Thermoelectric Devices Based on Abundant Silicide Materials for Vehicle Waste Heat Recovery NSFDOE Thermoelectric Partnership: High-Performance Thermoelectric...

  12. NSF/DOE Thermoelectric Partnership: Inorganic-Organic Hybrid...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Inorganic-Organic Hybrid Thermoelectrics NSFDOE Thermoelectric Partnership: Inorganic-Organic Hybrid Thermoelectrics 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle...

  13. DOE/NSF Thermoelectric Partnership Project SEEBECK Saving Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research and Sharing Knowledge DOENSF Thermoelectric Partnership Project SEEBECK Saving Energy Effectively By Engaging in Collaborative Research and Sharing Knowledge 2012 DOE...

  14. DOE/NSF Thermoelectric Partnership Project SEEBECK Saving Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    research and sharing Knowledge DOENSF Thermoelectric Partnership Project SEEBECK Saving Energy Effectively By Engaging in Collaborative research and sharing Knowledge 2011 DOE...

  15. Private-Public Partnerships for U.S. Advanced Manufacturing

    Broader source: Energy.gov (indexed) [DOE]

    Workshop Crystal City January 13, 2014 Private-Public Partnerships for U.S. Advanced Manufacturing Dr. Frank W. Gayle Advanced Manufacturing National Program Office...

  16. Forest Trends Report Series Forest Trade and Finance April 2014

    E-Print Network [OSTI]

    Forest Trends Report Series Forest Trade and Finance April 2014 Forest Products Trade between China. Whiletheglobaleconomicdownturnaffectedconsumptioninmanycountries,China'stradewithAfricaremained mostly unaffected. In particular, commodities, such as oil and gas

  17. United States Forest Service - Forest Service Environmental Appeals...

    Open Energy Info (EERE)

    Appeals Responses Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: United States Forest Service - Forest Service Environmental Appeals Responses...

  18. Global Carbon Budget from the Carbon Dioxide Information Analysis Center (CDIAC)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Global Carbon Project (GCP) was established in 2001 in recognition of the scientific challenge and critical importance of the carbon cycle for Earth's sustainability. The growing realization that anthropogenic climate change is a reality has focused the attention of the scientific community, policymakers and the general public on the rising concentration of greenhouse gases, especially carbon dioxide (CO2) in the atmosphere, and on the carbon cycle in general. Initial attempts, through the United Nations Framework Convention on Climate Change and its Kyoto Protocol, are underway to slow the rate of increase of greenhouse gases in the atmosphere. These societal actions require a scientific understanding of the carbon cycle, and are placing increasing demands on the international science community to establish a common, mutually agreed knowledge base to support policy debate and action. The Global Carbon Project is responding to this challenge through a shared partnership between the International Geosphere-Biosphere Programme (IGBP), the International Human Dimensions Programme on Global Environmental Change (IHDP), the World Climate Research Programme (WCRP) and Diversitas. This partnership constitutes the Earth Systems Science Partnership (ESSP). This CDIAC collection includes datasets, images, videos, presentations, and archived data from previous years.

  19. Available online at www.sciencedirect.com Interactions of the carbon cycle, human activity, and the climate

    E-Print Network [OSTI]

    Jackson, Robert B.

    and regional carbon budgets, including its attribution of variability and trends to underlying drivers. In particular, the Global Carbon Project was established by the Earth System Science Partnership 10 years agoAvailable online at www.sciencedirect.com Interactions of the carbon cycle, human activity

  20. Estimating the above-ground biomass of mangrove forests in Kenya 

    E-Print Network [OSTI]

    Cohen, Rachel

    2014-11-27

    Robust estimates of forest above-ground biomass (AGB) are needed in order to constrain the uncertainty in regional and global carbon budgets, predictions of global climate change and remote sensing efforts to monitor ...

  1. Building America Industrialized Housing Partnership (BAIHP II)

    SciTech Connect (OSTI)

    Abernethy, Bob; Chandra, Subrato; Baden, Steven; Cummings, Jim; Cummings, Jamie; Beal, David; Chasar, David; Colon, Carlos; Dutton, Wanda; Fairey, Philip; Fonorow, Ken; Gil, Camilo; Gordon, Andrew; Hoak, David; Kerr, Ryan; Peeks, Brady; Kosar, Douglas; Hewes, Tom; Kalaghchy, Safvat; Lubliner, Mike; Martin, Eric; McIlvaine, Janet; Moyer, Neil; Liguori, Sabrina; Parker, Danny; Sherwin, John; Stroer, Dennis; Thomas-Rees, Stephanie; Daniel, Danielle; McIlvaine, Janet

    2010-11-30

    This report summarizes the work conducted by the Building America Industrialized Housing Partnership (BAIHP - www.baihp.org) during the final budget period (BP5) of our contract, January 1, 2010 to November 30, 2010. Highlights from the four previous budget periods are included for context. BAIHP is led by the Florida Solar Energy Center (FSEC) of the University of Central Florida. With over 50 Industry Partners including factory and site builders, work in BP5 was performed in six tasks areas: Building America System Research Management, Documentation and Technical Support; System Performance Evaluations; Prototype House Evaluations; Initial Community Scale Evaluations; Project Closeout, Final Review of BA Communities; and Other Research Activities.

  2. NREL Technology Partnerships: Fiscal Year 2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on771/6/14 Contact:News Releases |NREL Technology6 New Partnership

  3. People, partnerships and path to success

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid you notHeatMaRIEdioxideUserPartnershipsNews >

  4. ORISE: Partnership Development in Health Communication

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesseworkSURVEY UNIVERSE TheForensic ScienceHowNewsPartnership Development The

  5. Energy Smart Federal Partnership: Partnering to Provide Technical Assistance, Financial Incentives, and More

    Broader source: Energy.gov [DOE]

    Presentation covers technical and financial incentives for the Energy Smart Federal Partnership and is given at the Spring 2011 Federal Utility Partnership Working Group (FUPWG) meeting.

  6. Energy Department Invests $600,000 in University-Industry Partnerships...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Invests 600,000 in University-Industry Partnerships to Enhance Building Efficiency Energy Department Invests 600,000 in University-Industry Partnerships to Enhance Building...

  7. Department of Forest Resource Management Annual Report 2009

    E-Print Network [OSTI]

    Ecosystem Modeling 14 Forest Planning 15 Forest Techology 16 Forest in Rural Studies 17 International

  8. Department of Forest Resource Management Annual Report 2010

    E-Print Network [OSTI]

    Sensing 13 Forest Inventory and Empirical Ecosystem Modeling 14 Forest Planning 15 Forest Techology 16

  9. Strategic Plan 2012-2017: Partnerships for a

    E-Print Network [OSTI]

    Huang, Haiying

    1 Strategic Plan 2012-2017: Partnerships for a Just Society #12;A Letter of Support Dear Friends of the School. In our strategic plan we have created a living document that points to an exciting collective Century academic enterprise. The "Strategic Plan 2012-2017: Partnerships for a Just Society", is a road

  10. Partnerships for Energy-Water Research Bob Goldstein Mike Hightower

    E-Print Network [OSTI]

    Keller, Arturo A.

    Partnerships for Energy-Water Research Bob Goldstein Mike Hightower Electric Power Research Institute Sandia National Laboratories Partnerships for Energy-Water Research Bob Goldstein Mike Hightower Electric Power Research Institute Sandia National Laboratories #12;Big PictureBig Picture · Water

  11. Foiling the Flu Bug Global Partnerships for Nuclear Energy

    E-Print Network [OSTI]

    1 1663 Foiling the Flu Bug Global Partnerships for Nuclear Energy Dark Universe Mysteries WILL NOT NEED TESTING Expanding Nuclear Energy the Right Way GLOBAL PARTNERSHIPS AND AN ADVANCED FUEL CYCLE sense.The Laboratory is operated by Los Alamos National Security, LLC, for the Department of Energy

  12. Airborne LiDAR Detects Selectively Logged Tropical Forest Even in an Advanced Stage of Recovery

    E-Print Network [OSTI]

    Kent, Rafi; Lindsell, Jeremy A.; Laurin, Gaia Vaglio; Valentini, Riccardo; Coomes, David A.

    2015-01-01

    logged tropical forests: the attained and the attainable. Conserv. Lett. 2012, 5, 296–303. 10. Silver, W. L.; Ostertag, R.; Lugo, a. E. The Potential for Carbon Sequestration Through Reforestation of Abandoned Tropical Agricultural and Pasture Lands... be of high conservation value [2,7–9] and act as globally-important carbon sinks [9–12]. However, there is much uncertainty regarding the changing extent of regenerating forests, their rate and stage of recovery, and the influence of recovery on further...

  13. Forest Research Annual Report

    E-Print Network [OSTI]

    Forest Research Annual Report and Accounts 2005­2006 The research agency of the Forestry Commission #12;Forest Research Annual Report and Accounts I 2005­2006 Together with the Comptroller and Auditor to be printed 24 July 2006 HC 1407 The research agency of the Forestry Commission Edinburgh: The Stationery

  14. CERTIFIED FOREST PRODUCTS MARKETS

    E-Print Network [OSTI]

    industry sectors with PEFC C-o-C certification June 2003 Construction 1% Pulp & paper 4% Wood manufacturing% Sawnwood 13% Panels 9% RW & primary 5% Windows & doors 5% Pulp & paper 5% DIY products 6% Trade & retailers 5% Other primary forest industries 6% Sawmilling 39% Timber trade 43% #12;Forest industry sectors

  15. Water Resources Forests & Water

    E-Print Network [OSTI]

    Water Resources Forests & Water More than half of the nation's freshwater supply originates on forestland. Healthy and sustainable forests can help ensure a continuous supply of clean and abundant water. Not only does forestland provide the cleanest water of any land use, it also helps absorb rainfall

  16. Federal Utility Partnership Working Group Agency Participants...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Service Forest Service U.S. Department of Commerce U.S. Department of Defense Defense Logistics Agency U.S. Air Force U.S. Army U.S. Army National Guard U.S. Navy U.S. Department...

  17. Comprehensive carbon footprint analysis of the value chains

    E-Print Network [OSTI]

    greenhouse gas emissions (e.g. CO2 and CH4) · Results are reported as carbon dioxide equivalents · Can be calculated for products or companies #12;SHOK Summit 20.4.2010 Carbon footprint of wood supply 1.EmissionsComprehensive carbon footprint analysis of the value chains of forest industry SHOK Summit 20

  18. Climate change and forests in India: note from the guest editors

    SciTech Connect (OSTI)

    Ravindtranath, N.H.; Aaheim, Asbjporn

    2010-12-23

    Forestry is one of the most important sectors in the context of climate change. It lies at the center-stage of global mitigation and adaptation efforts. Yet, it is one of the least understood sectors, especially in tropical zones, which constitute a significant portion of the global forests. Recently, there has been a growing interest in forests in addressing global climate change. The IPCC Assessment Report 4 (2007) Chapters related to forests have highlighted the limited number of studies on the impact of climate change on forests at the regional, national and sub-national level, while policy makers need information at these scales. Further, implication of projected climate change on mitigation potential of forest sector is only briefly mentioned in the IPCC report, with limited literature to support the conclusions. India is one among the top ten nations in the world in terms of forest cover. It is also sixth among the tropical countries in terms of forested area. As IPCC Assessment Report 5 work is about to be initiated soon, studies on the impact of climate change on forests as well as the mitigation potential of the forest sector, particularly at regional and national level, will be of great interest to the scientific and policy community. In order to conserve the carbon stored in forests and to reduce CO2 emissions from the forest sector, the Reduced Emissions from Deforestation and Degradation (REDD) mechanism is now being finalized under the UNFCCC. In this context, climate change itself may affect the mitigation potential significantly, and it is important to understand how vulnerable the forest carbon stock (biomass and soil) in the tropics is to the projected climate change. In fact, there is a need to study the impact of climate change on forests for all the major forested countries

  19. Forest Estate Modelling (Part 2) Forest Research Institute, Rotorua

    E-Print Network [OSTI]

    García, Oscar

    adequate models of growth and yield, and data on costs and prices, it is not too difficult to find "optiForest Estate Modelling (Part 2) O. Garcia Forest Research Institute, Rotorua The Problem Given after centuries of continued forest management, exist in Europe. Some countries still base their forest

  20. Lodgepole Pine Forest Ecology A foundation for future forest management

    E-Print Network [OSTI]

    is Very large patches of even-aged forests varying in composition from Fire Regimes in Lodgepole Pine Forests The historic fire regime is dominated by severe, stand-replacing fires. These fires occur at longLodgepole Pine Forest Ecology A foundation for future forest management Claudia Regan ­ Regional