National Library of Energy BETA

Sample records for foreign enrichment total

  1. EA-1255: Project Partnership Transportation of Foreign-Owned Enriched Uranium from the Republic of Georgia

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts for the proposal to transport 5.26 kilograms of enriched uranium-23 5 in the form of nuclear fuel, from the Republic of Georgia to the United Kingdom.

  2. Transportation of foreign-owned enriched uranium from the Republic of Georgia. Environmental assessment for Project Partnership

    SciTech Connect (OSTI)

    1998-03-31

    The Department of Energy (DOE) Office of Nonproliferation and National Security (NN) has prepared a classified environmental assessment to evaluate the potential environmental impact for the transportation of 5.26 kilograms of enriched uranium-235 in the form of nuclear fuel, from the Republic of Georgia to the United Kingdom. The nuclear fuel consists of primarily fresh fuel, but also consists of a small quantity (less than 1 kilogram) of partially-spent fuel. Transportation of the enriched uranium fuel would occur via US Air Force military aircraft under the control of the Defense Department European Command (EUCOM). Actions taken in a sovereign nation (such as the Republic of Georgia and the United Kingdom) are not subject to analysis in the environmental assessment. However, because the action would involve the global commons of the Black Sea and the North Sea, the potential impact to the global commons has been analyzed. Because of the similarities in the two actions, the Project Sapphire Environmental Assessment was used as a basis for assessing the potential impacts of Project Partnership. However, because Project Partnership involves a small quantity of partially-spent fuel, additional analysis was conducted to assess the potential environmental impacts and to consider reasonable alternatives as required by NEPA. The Project Partnership Environmental Assessment found the potential environmental impacts to be well below those from Project Sapphire.

  3. Domestic* Foreign* Total Alabama

    U.S. Energy Information Administration (EIA) Indexed Site

    754 6,007 Mississippi 3,603 - 3,603 Missouri 596 - 596 Montana 39,612 653 40,265 New Mexico 26,262 - 26,262 North Dakota 30,055 - 30,055 Ohio 21,155 635 21,790 Oklahoma 1,782...

  4. Total Crude by Pipeline

    U.S. Energy Information Administration (EIA) Indexed Site

    Product: Total Crude by All Transport Methods Domestic Crude by All Transport Methods Foreign Crude by All Transport Methods Total Crude by Pipeline Domestic Crude by Pipeline Foreign Crude by Pipeline Total Crude by Tanker Domestic Crude by Tanker Foreign Crude by Tanker Total Crude by Barge Domestic Crude by Barge Foreign Crude by Barge Total Crude by Tank Cars (Rail) Domestic Crude by Tank Cars (Rail) Foreign Crude by Tank Cars (Rail) Total Crude by Trucks Domestic Crude by Trucks Foreign

  5. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Floorspace (Square Feet) Total Floorspace 2 Fewer than 500... 3.2 Q 0.8 0.9 0.8 0.5 500 to 999......

  6. Total..........................................................

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2,033 1,618 1,031 791 630 401 Total Floorspace (Square Feet) Fewer than 500... 3.2 357 336 113 188 177 59 500 to 999......

  7. Total..........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    . 111.1 20.6 15.1 5.5 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500... 3.2 0.9 0.5 0.4 500 to 999......

  8. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    25.6 40.7 24.2 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500... 3.2 0.9 0.5 0.9 1.0 500 to 999......

  9. Total..........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5.6 17.7 7.9 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500... 3.2 0.5 0.3 Q 500 to 999......

  10. Total............................................................

    Gasoline and Diesel Fuel Update (EIA)

    Total................................................................... 111.1 2,033 1,618 1,031 791 630 401 Total Floorspace (Square Feet) Fewer than 500............................................... 3.2 357 336 113 188 177 59 500 to 999....................................................... 23.8 733 667 308 343 312 144 1,000 to 1,499................................................. 20.8 1,157 1,086 625 435 409 235 1,500 to 1,999................................................. 15.4 1,592

  11. Total

    U.S. Energy Information Administration (EIA) Indexed Site

    Product: Total Crude Oil Liquefied Petroleum Gases Propane/Propylene Normal Butane/Butylene Other Liquids Oxygenates Fuel Ethanol MTBE Other Oxygenates Biomass-based Diesel Fuel Other Renewable Diesel Fuel Other Renewable Fuels Gasoline Blending Components Petroleum Products Finished Motor Gasoline Reformulated Gasoline Conventional Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate Fuel Oil, 15 ppm Sulfur and Under Distillate Fuel Oil, Greater than 15 ppm to 500 ppm Sulfur

  12. Total

    U.S. Energy Information Administration (EIA) Indexed Site

    Product: Total Crude Oil Liquefied Petroleum Gases Propane/Propylene Normal Butane/Butylene Other Liquids Oxygenates Fuel Ethanol MTBE Other Oxygenates Biomass-based Diesel Other Renewable Diesel Fuel Other Renewable Fuels Gasoline Blending Components Petroleum Products Finished Motor Gasoline Reformulated Gasoline Conventional Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate Fuel Oil, 15 ppm Sulfur and Under Distillate Fuel Oil, Greater than 15 ppm to 500 ppm Sulfur

  13. Total..........................................................................

    Gasoline and Diesel Fuel Update (EIA)

    0.7 21.7 6.9 12.1 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.6 Q Q 500 to 999........................................................... 23.8 9.0 4.2 1.5 3.2 1,000 to 1,499..................................................... 20.8 8.6 4.7 1.5 2.5 1,500 to 1,999..................................................... 15.4 6.0 2.9 1.2 1.9 2,000 to 2,499..................................................... 12.2 4.1 2.1 0.7

  14. Total..........................................................................

    Gasoline and Diesel Fuel Update (EIA)

    7.1 19.0 22.7 22.3 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 2.1 0.6 Q 0.4 500 to 999........................................................... 23.8 13.6 3.7 3.2 3.2 1,000 to 1,499..................................................... 20.8 9.5 3.7 3.4 4.2 1,500 to 1,999..................................................... 15.4 6.6 2.7 2.5 3.6 2,000 to 2,499..................................................... 12.2 5.0 2.1

  15. Total................................................

    Gasoline and Diesel Fuel Update (EIA)

    .. 111.1 86.6 2,522 1,970 1,310 1,812 1,475 821 1,055 944 554 Total Floorspace (Square Feet) Fewer than 500............................. 3.2 0.9 261 336 162 Q Q Q 334 260 Q 500 to 999.................................... 23.8 9.4 670 683 320 705 666 274 811 721 363 1,000 to 1,499.............................. 20.8 15.0 1,121 1,083 622 1,129 1,052 535 1,228 1,090 676 1,500 to 1,999.............................. 15.4 14.4 1,574 1,450 945 1,628 1,327 629 1,712 1,489 808 2,000 to

  16. Total..........................................................

    Gasoline and Diesel Fuel Update (EIA)

    .. 111.1 24.5 1,090 902 341 872 780 441 Total Floorspace (Square Feet) Fewer than 500...................................... 3.1 2.3 403 360 165 366 348 93 500 to 999.............................................. 22.2 14.4 763 660 277 730 646 303 1,000 to 1,499........................................ 19.1 5.8 1,223 1,130 496 1,187 1,086 696 1,500 to 1,999........................................ 14.4 1.0 1,700 1,422 412 1,698 1,544 1,348 2,000 to 2,499........................................ 12.7

  17. Total..........................................................................

    Gasoline and Diesel Fuel Update (EIA)

    7.1 7.0 8.0 12.1 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.4 Q Q 0.5 500 to 999........................................................... 23.8 2.5 1.5 2.1 3.7 1,000 to 1,499..................................................... 20.8 1.1 2.0 1.5 2.5 1,500 to 1,999..................................................... 15.4 0.5 1.2 1.2 1.9 2,000 to 2,499..................................................... 12.2 0.7 0.5 0.8 1.4

  18. Total...........................................................

    Gasoline and Diesel Fuel Update (EIA)

    14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500.................................... 3.2 0.7 Q 0.3 0.3 0.7 0.6 0.3 Q 500 to 999........................................... 23.8 2.7 1.4 2.2 2.8 5.5 5.1 3.0 1.1 1,000 to 1,499..................................... 20.8 2.3 1.4 2.4 2.5 3.5 3.5 3.6 1.6 1,500 to 1,999..................................... 15.4 1.8 1.4 2.2 2.0 2.4 2.4 2.1 1.2 2,000 to 2,499..................................... 12.2 1.4 0.9

  19. Uranium enrichment

    SciTech Connect (OSTI)

    Not Available

    1991-04-01

    This book presents the GAO's views on the Department of Energy's (DOE) program to develop a new uranium enrichment technology, the atomic vapor laser isotope separation process (AVLIS). Views are drawn from GAO's ongoing review of AVLIS, in which the technical, program, and market issues that need to be addressed before an AVLIS plant is built are examined.

  20. Uranium enrichment

    SciTech Connect (OSTI)

    Not Available

    1991-08-01

    This paper reports that in 1990 the Department of Energy began a two-year project to illustrate the technical and economic feasibility of a new uranium enrichment technology-the atomic vapor laser isotope separation (AVLIS) process. GAO believes that completing the AVLIS demonstration project will provide valuable information about the technical viability and cost of building an AVLIS plant and will keep future plant construction options open. However, Congress should be aware that DOE still needs to adequately demonstrate AVLIS with full-scale equipment and develop convincing cost projects. Program activities, such as the plant-licensing process, that must be completed before a plant is built, could take many years. Further, an updated and expanded uranium enrichment analysis will be needed before any decision is made about building an AVLIS plant. GAO, which has long supported legislation that would restructure DOE's uranium enrichment program as a government corporation, encourages DOE's goal of transferring AVLIS to the corporation. This could reduce the government's financial risk and help ensure that the decision to build an AVLIS plant is based on commercial concerns. DOE, however, has no alternative plans should the government corporation not be formed. Further, by curtailing a planned public access program, which would have given private firms an opportunity to learn about the technology during the demonstration project, DOE may limit its ability to transfer AVLIS to the private sector.

  1. Domestic and Foreign Distribution

    U.S. Energy Information Administration (EIA) Indexed Site

    of U.S. Coal by State of Origin, 2008 Final May 2010 Domestic and Foreign Distribution of U.S. Coal by State of Origin, 2008 (Thousand Short Tons) State Region Domestic Foreign...

  2. Foreign-national Investigators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Foreign-national Investigators Foreign National Investigators must have access to B174 shown on their badge. Foreign National Investigators must notify Beth Mariotti by e-mail of their first intended presence in B174. By September 2009, it is expected that there will be no restrictions on computer use by Foreign National Investigators at JLF. However, LLNL prohibits the use of personally-owned computers on-site

  3. highly enriched uranium

    National Nuclear Security Administration (NNSA)

    and radioisotope supply capabilities of MURR and Nordion with General Atomics' selective gas extraction technology-which allows their low-enriched uranium (LEU) targets to remain...

  4. Official Foreign Travel

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2008-06-24

    The Order sets forth requirements and responsibilities governing official foreign travel by Federal and contractor employees. Cancels DOE O 551.1B.

  5. Official Foreign Travel

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2012-04-12

    The order establishes requirements and responsibilities governing official foreign travel by Federal and contractor employees. Cancels DOE O 551.1C.

  6. World enrichment services market 1990-2005

    SciTech Connect (OSTI)

    1990-08-01

    Growth in world enrichment capacity, already in oversupply, will lead to a very competitive enrichment services market by the second half of the 1990s. Three of the four primary enrichment suppliers (USDOE, Eurodif, and Urenco) already have the capacity to produce 33 million SWU per year. Explorts from the Soviet Union and the People`s Republic of China (PRC) currently make available an additional six million SWU per year, and that figure could rise substantially. With additional supply capability expected from China, the Soviet Union, Louisiana Energy Services (LES) and Isotope Technologies (ITI), and the increased capacity of Urenco, and possibly even AVLIS from DOE, enrichment supply capability could exceed 46 million SWU per year by the year 2000. Yet annual enrichment requirements are only estimated to grow from 23.5 million SWU in 1990, to 28.9 million SWU by 2000. Total unfilled enrichment requirements will rise significantly in the second half of the 1990s, particularly from US utilities, creating sales opportunities for which suppliers will compete aggressively. These factors foretell a very competitive market in which sellers will offer low prices and flexible contracts. The anticipation of such strong competition also raises the question of which enrichment technology will succeed, and puts tremendous pressure on all suppliers to find cost-effective means of production as quickly as possible.

  7. Foreign National New Hires

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Foreign Nationals Foreign National New Hires All foreign nationals including students and postdocs must complete this process. Contact (505) 667-4451, Option 6 Email The new-hire process, including the official pre-arrival period, does not begin until you receive and accept your written offer letter. Pre-Arrival New Hire Process Benefit Options New Employee App For your convenience, download the New Employee App from iTunes (IOS devices) or Google Play (Android devices). You can access new hire

  8. Foreign Affairs Specialist

    Broader source: Energy.gov [DOE]

    The incumbent serves as a Foreign Affairs Specialist in the U.S. Embassy in Tokyo, Japan supporting the Department of Energy's and the National Nuclear Security Administration's programs by...

  9. Official Foreign Travel

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-08-25

    To establish Department of Energy (DOE) and National Nuclear Security Administration (NNSA) requirements and responsibilities governing official foreign travel by Federal and contractor employees. Cancels DOE O 551.1. Canceled by DOE O 551.1B.

  10. Official Foreign Travel

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2003-08-19

    To establish Department of Energy (DOE) and National Nuclear Security Administration (NNSA) requirements and responsibilities governing official foreign travel by Federal and contractor employees. Cancels DOE O 551.1A. Canceled by DOE O 551.1C.

  11. Official Foreign Travel

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-01-31

    Establishes Department of Energy (DOE) requirements and responsibilities governing official foreign travel by Federal and contract employees. Cancels DOE O 1500.3. Canceled by DOE O 551.1A.

  12. Official Foreign Travel

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2002-11-08

    To establish Department of Energy (DOE) and National Nuclear Security Administration (NNSA) requirements and responsibilities governing official foreign travel by Federal and contractor employees. The Page Change 1 to the CRD issued 11-8-02, will expand the requirements for country clearance for contractors to include all official foreign travel, including travel to nonsensitive countries. Cancels DOE O 551.1. Canceled by DOE O 551.1B.

  13. Laser and gas centrifuge enrichment

    SciTech Connect (OSTI)

    Heinonen, Olli

    2014-05-09

    Principles of uranium isotope enrichment using various laser and gas centrifuge techniques are briefly discussed. Examples on production of high enriched uranium are given. Concerns regarding the possibility of using low end technologies to produce weapons grade uranium are explained. Based on current assessments commercial enrichment services are able to cover the global needs of enriched uranium in the foreseeable future.

  14. Conversion and enrichment in the Soviet Union

    SciTech Connect (OSTI)

    1991-04-01

    In the Soviet Union, just as in the West, the civilian nuclear industry emerged from research work undertaken for nuclear weapons development. At first, researchers tried various techniques for physical separation of uranium isotopes: electromagnetic and molecular-kinetic thermo-diffusion methods; gaseous diffusion; and centrifuge methods. All of those methods, which are based primarily on differences in the atomic mass of uranium isotopes, called for extensive research and the development of new, technically unprecedented equipment. Gradually gaseous diffusion and gas centrifuge technology became recognized as most feasible for industrial use, so research on other methods was terminated. Industrial-scale uranium enrichment in the Soviet Union began in 1949 using the gaseous diffusion method; by the early 1960s, centrifuge technology was in use on an industrial scale. All Soviet production of highly-enriched, weapons-grade uranium was halted in 1987. The Soviet Union now has four enrichment plants in operation (at classified locations), solely for civilian nuclear power needs. All four enrichment plants have centrifuge modules, and enrichment provided by gaseous diffusion accounts for less than 5% of their total output. Two of the four enrichment plants also incorporate facilities for conversion to uranium hexafluoride (UF{sub 6}).

  15. Documents for Foreign Nationals

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Documents for Foreign Nationals Print All foreign nationals (non-U.S. citizens) intending to work at the ALS must ensure that they have all relevant travel and visa documents completed and approved before they will be permitted to work at Berkeley Lab. Owing to increased security measures, it is particularly important to begin the visa application process early in order to avoid delays that may result in lost beamtime, etc. NOTE: Researchers who are citizens of, or were born in, T4 countries

  16. Documents for Foreign Nationals

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Documents for Foreign Nationals Print All foreign nationals (non-U.S. citizens) intending to work at the ALS must ensure that they have all relevant travel and visa documents completed and approved before they will be permitted to work at Berkeley Lab. Owing to increased security measures, it is particularly important to begin the visa application process early in order to avoid delays that may result in lost beamtime, etc. NOTE: Researchers who are citizens of, or were born in, T4 countries

  17. Domestic and Foreign Distribution of U.S. Coal by State of Origin...

    U.S. Energy Information Administration (EIA) Indexed Site

    1 " "State Region ","Domestic ","Foreign ","Total "," " "Alabama ",14828,4508,19336," " "Alaska ",825,698,1524," " "Arizona ",13143,"-",13143," " "Arkansas ",13,"-",13," "...

  18. Domestic and Foreign Distribution of U.S. Coal by State of Origin...

    U.S. Energy Information Administration (EIA) Indexed Site

    4 (Thousand Short Tons) " "State Region ","Domestic ","Foreign ","Total "," " "Alabama",18367,3744,22111," " "Alaska",957,546,1502," " "Arizona",13041,"-",13041," "...

  19. The Enriched Xenon Observatory

    SciTech Connect (OSTI)

    Dolinski, M. J. [Stanford University Physics Department, 382 Via Pueblo Mall, Stanford, CA 94305-4060 (United States)

    2009-12-17

    The Enriched Xenon Observatory (EXO) experiment will search for neutrinoless double beta decay of {sup 136}Xe. The EXO Collaboration is actively pursuing both liquid-phase and gas-phase Xe detector technologies with scalability to the ton-scale. The search for neutrinoless double beta decay of {sup 136}Xe is especially attractive because of the possibility of tagging the resulting Ba daughter ion, eliminating all sources of background other than the two neutrino decay mode. EXO-200, the first phase of the project, is a liquid Xe time projection chamber with 200 kg of Xe enriched to 80% in {sup 136}Xe. EXO-200, which does not include Ba-tagging, will begin taking data in 2009, with two-year sensitivity to the half-life for neutrinoless double beta decay of 6.4x10{sup 25} years. This corresponds to an effective Majorana neutrino mass of 0.13 to 0.19 eV.

  20. Reporting Unofficial Foreign Travel

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-12-15

    Establishes requirements for the reporting of unofficial travel to foreign countries by DOE and DOE contractor employees that hold an access authorization (personnel security clearances). DOE N 251.40, dated 5/3/01, extended this directive until 12/31/01.

  1. Official Foreign Travel

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2012-04-02

    The order establishes DOE requirements and responsibilities governing official foreign travel by Federal and contractor employees. The Pg Chg removes the requirement to surrender official passports and replaces it with a process that requires travelers be responsible for safeguarding theirown official passports. Supersedes DOE O 551.1D, dated 4-12-12.

  2. Foreign National Access Request Form

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ANL Foreign National Access Request Form Information indicated below must be supplied by all foreign nationals requesting access to Argonne National Laboratory. No foreign national will be allowed access to the ANL facility prior to approval by the Security and Counterintelligence Division. The visitor must have a valid passport and visa (or supplemental documentation) listed below. Foreign National Personal Data: 1) Name of Visitor (First, Middle [if no middle initial, write NMI] Last): Name

  3. Reformulated Gasoline Foreign Refinery Rules

    Gasoline and Diesel Fuel Update (EIA)

    Reformulated Gasoline Foreign Refinery Rules Contents * Introduction o Table 1. History of Foreign Refiner Regulations * Foreign Refinery Baseline * Monitoring Imported Conventional Gasoline * Endnotes Related EIA Short-Term Forecast Analysis Products * Areas Participating in the Reformulated Gasoline Program * Environmental Regulations and Changes in Petroleum Refining Operations * Oxygenate Supply/Demand Balances in the Short-Term Integrated Forecasting Model * Refiners Switch to Reformulated

  4. Unclassified Foreign Visits and Assignments

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2004-06-18

    To define a program for unclassified foreign national access to Department of Energy sites, information, and technologies. This Order cancels DOE P 142.1, Unclassified Foreign Visits and Assignments, dated 7-14-99; DOE N 142.1, Unclassified Foreign Visits and Assignments, dated 7-14-99; Secretarial Memorandum Unclassified Foreign Visits and Assignments, dated 7-14-99; Memorandum from Francis S. Blake, Departmental Use of Foreign Access Central Tracking System, dated 11-05-01; Memorandum from Kyle E. McSlarrow, Interim Guidance for Implementation of the Department's Unclassified Foreign Visits and Assignments Program, dated 12-17-02; and Secretarial Memorandum, Policy Exclusion for Unclassified Foreign National's Access to Department of Energy Facilities in Urgent or Emergency Medical Situations, dated 4-10-01. Cancels: DOE P 142.1 and DOE N 142.1

  5. Thermal breeder fuel enrichment zoning

    DOE Patents [OSTI]

    Capossela, Harry J. (Schenectady, NY); Dwyer, Joseph R. (Albany, NY); Luce, Robert G. (Schenectady, NY); McCoy, Daniel F. (Latham, NY); Merriman, Floyd C. (Rotterdam, NY)

    1992-01-01

    A method and apparatus for improving the performance of a thermal breeder reactor having regions of higher than average moderator concentration are disclosed. The fuel modules of the reactor core contain at least two different types of fuel elements, a high enrichment fuel element and a low enrichment fuel element. The two types of fuel elements are arranged in the fuel module with the low enrichment fuel elements located between the high moderator regions and the high enrichment fuel elements. Preferably, shim rods made of a fertile material are provided in selective regions for controlling the reactivity of the reactor by movement of the shim rods into and out of the reactor core. The moderation of neutrons adjacent the high enrichment fuel elements is preferably minimized as by reducing the spacing of the high enrichment fuel elements and/or using a moderator having a reduced moderating effect.

  6. Overview of enrichment plant safeguards

    SciTech Connect (OSTI)

    Swindle, D.W. Jr.; Wheeler, L.E.

    1982-01-01

    The relationship of enrichment plant safeguards to US nonproliferation objectives and to the operation and management of enrichment facilities is reviewed. During the review, the major components of both domestic and international safeguards systems for enrichment plants are discussed. In discussing domestic safeguards systems, examples of the technology currently in use to support nuclear materials accountability are described including the measurement methods, procedures and equipment used for weighing, sampling, chemical and isotopic analyses and nondestructive assay techniques. Also discussed is how the information obtained as part of the nuclear material accountancy task is useful to enrichment plant operations. International material accountancy verification and containment/surveillance concepts for enrichment plants are discussed, and the technologies presently being developed for international safeguards in enrichment plants are identified and the current development status is reported.

  7. Highly Enriched Uranium Materials Facility

    National Nuclear Security Administration (NNSA)

    Appropriations Subcommittee, is shown some of the technology in the Highly Enriched Uranium Materials Facility by Warehousing and Transportation Operations Manager Byron...

  8. Foreign Travel | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Foreign Travel The Department of Energy has established requirements and responsibilities governing official foreign travel by Federal and contractor employees to ensure that the Department's official foreign travel activities are consistent with its mission and objectives as well as with prudent business practice. These requirements apply to: Anyone whose salary is paid, in full or in part, by Ames Laboratory at the time of the trip (in order for this NOT to apply, arrangements must be made

  9. highly enriched uranium

    National Nuclear Security Administration (NNSA)

    NorthStar Medical Radioisotopes to further develop its technology to produce Mo-99 via neutron capture, bringing the total NNSA support to this project to the maximum of 25...

  10. Uranium enrichment: investment options for the long term

    SciTech Connect (OSTI)

    Not Available

    1983-01-01

    The US government supplies a major portion of the enriched uranium used to fuel most of the nuclear power plants that furnish electricity in the free world. As manager of the US uranium enrichment concern, the Department of Energy (DOE) is investigating a number of technological choices to improve enrichment service and remain a significant world supplier. The Congress will ultimately select a strategy for federal investment in the uranium enrichment enterprise. A fundamental policy choice between possible future roles - that of the free world's main supplier of enrichment services, and that of a mainly domestic supplier - will underlie any investment decision the Congress makes. The technological choices are gaseous diffusion, gas centrifuge, and atomic vapor laser isotope separation (AVLIS). A base plan and four alternatives were examined by DOE and the Congressional Budget Office. In terms of total enterprise costs, Option IV, ultimately relying on advanced gas centrifuges for enrichment services, would offer the most economic approach, with costs over the full projection period totaling $123.5 billion. Option III, ultimately relying on AVLIS without gas centrifuge enrichment or gaseous diffusion, falls next in the sequence, with costs of $128.2 billion. Options I and II, involving combinations of the gas centrifuge and AVLIS technologies, follow closely with costs of $128.7 and $129.6 billion. The base plan has costs of $136.8 billion over the projection period. 1 figure, 22 tables.

  11. Unclassified Foreign National Visits & Assignments Questionnaire |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Services » Calibration Facilities » Unclassified Foreign National Visits & Assignments Questionnaire Unclassified Foreign National Visits & Assignments Questionnaire Visitors who are foreign nationals must complete and submit the Unclassified Foreign National Visits & Assignments Questionnaire 30 days before accessing facilities. Microsoft Office document icon Unclassified Foreign National Visits & Assignments Questionnaire More Documents &

  12. New generation enrichment monitoring technology for gas centrifuge enrichment plants

    SciTech Connect (OSTI)

    Ianakiev, Kiril D; Alexandrov, Boian S.; Boyer, Brian D.; Hill, Thomas R.; Macarthur, Duncan W.; Marks, Thomas; Moss, Calvin E.; Sheppard, Gregory A.; Swinhoe, Martyn T.

    2008-06-13

    The continuous enrichment monitor, developed and fielded in the 1990s by the International Atomic Energy Agency, provided a go-no-go capability to distinguish between UF{sub 6} containing low enriched (approximately 4% {sup 235}U) and highly enriched (above 20% {sup 235}U) uranium. This instrument used the 22-keV line from a {sup 109}Cd source as a transmission source to achieve a high sensitivity to the UF{sub 6} gas absorption. The 1.27-yr half-life required that the source be periodically replaced and the instrument recalibrated. The instrument's functionality and accuracy were limited by the fact that measured gas density and gas pressure were treated as confidential facility information. The modern safeguarding of a gas centrifuge enrichment plant producing low-enriched UF{sub 6} product aims toward a more quantitative flow and enrichment monitoring concept that sets new standards for accuracy stability, and confidence. An instrument must be accurate enough to detect the diversion of a significant quantity of material, have virtually zero false alarms, and protect the operator's proprietary process information. We discuss a new concept for advanced gas enrichment assay measurement technology. This design concept eliminates the need for the periodic replacement of a radioactive source as well as the need for maintenance by experts. Some initial experimental results will be presented.

  13. Classified Visits Involving Foreign Nationals

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2004-01-13

    The Order establishes a program to manage the Department-wide program to facilitate, document, and assure accountability when approving foreign national access to classified DOE programs and facilities. Cancels portions of Chapter VIII, of DOE O 470.1 that pertain to foreign nationals who visit DOE sitess and require access to classified information. Canceled by DOE O 470.4B.

  14. Enrichment Assay Methods for a UF6 Cylinder Verification Station

    SciTech Connect (OSTI)

    Smith, Leon E.; Jordan, David V.; Misner, Alex C.; Mace, Emily K.; Orton, Christopher R.

    2010-11-30

    International Atomic Energy Agency (IAEA) inspectors currently perform periodic inspections at uranium enrichment plants to verify UF6 cylinder enrichment declarations. Measurements are typically performed with handheld high-resolution sensors on a sampling of cylinders taken to be representative of the facilitys entire cylinder inventory. These enrichment assay methods interrogate only a small fraction of the total cylinder volume, and are time-consuming and expensive to execute for inspectors. Pacific Northwest National Laboratory (PNNL) is developing an unattended measurement system capable of automated enrichment measurements over the full volume of Type 30B and Type 48 cylinders. This Integrated Cylinder Verification System (ICVS) could be located at key measurement points to positively identify each cylinder, measure its mass and enrichment, store the collected data in a secure database, and maintain continuity of knowledge on measured cylinders until IAEA inspector arrival. The focus of this paper is the development of nondestructive assay (NDA) methods that combine traditional enrichment signatures (e.g. 185-keV emission from U-235) and more-penetrating non-traditional signatures (e.g. high-energy neutron-induced gamma rays spawned primarily from U-234 alpha emission) collected by medium-resolution gamma-ray spectrometers (i.e. sodium iodide or lanthanum bromide). The potential of these NDA methods for the automated assay of feed, tail and product cylinders is explored through MCNP modeling and with field measurements on a cylinder population ranging from 0.2% to 5% in U-235 enrichment.

  15. Uranium Mining, Conversion, and Enrichment Industries

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Analysis of Potential Impacts of Uranium Transfers on the Domestic Uranium Mining, Conversion, and Enrichment Industries May 1, 2015 ii EXECUTIVE SUMMARY: The Department of Energy ("Department" or "DOE") plans to transfer the equivalent of up to 2,100 metric tons ("MTU") of natural uranium per year (with a higher total for calendar year 2015, mainly because of transfers already executed or under way before today's determination). These transfers would include 1,600

  16. The uranium cylinder assay system for enrichment plant safeguards

    SciTech Connect (OSTI)

    Miller, Karen A; Swinhoe, Martyn T; Marlow, Johnna B; Menlove, Howard O; Rael, Carlos D; Iwamoto, Tomonori; Tamura, Takayuki; Aiuchi, Syun

    2010-01-01

    Safeguarding sensitive fuel cycle technology such as uranium enrichment is a critical component in preventing the spread of nuclear weapons. A useful tool for the nuclear materials accountancy of such a plant would be an instrument that measured the uranium content of UF{sub 6} cylinders. The Uranium Cylinder Assay System (UCAS) was designed for Japan Nuclear Fuel Limited (JNFL) for use in the Rokkasho Enrichment Plant in Japan for this purpose. It uses total neutron counting to determine uranium mass in UF{sub 6} cylinders given a known enrichment. This paper describes the design of UCAS, which includes features to allow for unattended operation. It can be used on 30B and 48Y cylinders to measure depleted, natural, and enriched uranium. It can also be used to assess the amount of uranium in decommissioned equipment and waste containers. Experimental measurements have been carried out in the laboratory and these are in good agreement with the Monte Carlo modeling results.

  17. Uranium Enrichment Decontamination and Decommissioning Fund's...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Uranium Enrichment Decontamination and Decommissioning Fund's Fiscal Year 2008 and 2007 Financial Statement Audit, OAS-FS-10-05 Uranium Enrichment Decontamination and...

  18. Unclassified Foreign Visits and Assignments

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-07-14

    To provide interim Department of Energy (DOE) requirements and responsibilities for unclassified visits and assignment by foreign nationals to DOE facilities for unclassified activities. This Notice supplements DOE P 142.1 dated 7-14-99, which sets overall Departmental policy on unclassified foreign visits and assignments. It is a complement to existing counterintelligence and security orders and policies. DOE N 251.53, dated 05/14/03, extends this directive until canceled. Cancels: DOE 1240.2B

  19. Enrichment of light hydrocarbon mixture

    DOE Patents [OSTI]

    Yang; Dali (Los Alamos, NM); Devlin, David (Santa Fe, NM); Barbero, Robert S. (Santa Cruz, NM); Carrera, Martin E. (Naperville, IL); Colling, Craig W. (Warrenville, IL)

    2010-08-10

    Light hydrocarbon enrichment is accomplished using a vertically oriented distillation column having a plurality of vertically oriented, nonselective micro/mesoporous hollow fibers. Vapor having, for example, both propylene and propane is sent upward through the distillation column in between the hollow fibers. Vapor exits neat the top of the column and is condensed to form a liquid phase that is directed back downward through the lumen of the hollow fibers. As vapor continues to ascend and liquid continues to countercurrently descend, the liquid at the bottom of the column becomes enriched in a higher boiling point, light hydrocarbon (propane, for example) and the vapor at the top becomes enriched in a lower boiling point light hydrocarbon (propylene, for example). The hollow fiber becomes wetted with liquid during the process.

  20. Enrichment of light hydrocarbon mixture

    DOE Patents [OSTI]

    Yang, Dali (Los Alamos, NM); Devlin, David (Santa Fe, NM); Barbero, Robert S. (Santa Cruz, NM); Carrera, Martin E. (Naperville, IL); Colling, Craig W. (Warrenville, IL)

    2011-11-29

    Light hydrocarbon enrichment is accomplished using a vertically oriented distillation column having a plurality of vertically oriented, nonselective micro/mesoporous hollow fibers. Vapor having, for example, both propylene and propane is sent upward through the distillation column in between the hollow fibers. Vapor exits neat the top of the column and is condensed to form a liquid phase that is directed back downward through the lumen of the hollow fibers. As vapor continues to ascend and liquid continues to countercurrently descend, the liquid at the bottom of the column becomes enriched in a higher boiling point, light hydrocarbon (propane, for example) and the vapor at the top becomes enriched in a lower boiling point light hydrocarbon (propylene, for example). The hollow fiber becomes wetted with liquid during the process.

  1. AVLIS enrichment of medical isotopes

    SciTech Connect (OSTI)

    Haynam, C.A.; Scheibner, K.F.; Stern, R.C.; Worden, E.F.

    1996-12-31

    Under the Sponsorship of the United states Enrichment Corporation (USEC), we are currently investigating the large scale separation of several isotopes of medical interest using atomic vapor isotope separation (AVLIS). This work includes analysis and experiments in the enrichment of thallium 203 as a precursor to the production of thallium 201 used in cardiac imaging following heart attacks, on the stripping of strontium 84 from natural strontium as precursor to the production of strontium 89, and on the stripping of lead 210 from lead used in integrated circuits to reduce the number of alpha particle induced logic errors.

  2. Foreign Obligations Implementation Status Presentation

    National Nuclear Security Administration (NNSA)

    January 13, 2004 Crowne Plaza Ravinia Atlanta, January 13, 2004 Crowne Plaza Ravinia Atlanta, Georgia Georgia Obligations Accounting Implementation Workshop Obligations Accounting Implementation Workshop Foreign Obligations Implementation Status Brian G. Horn U.S. Nuclear Regulatory Commission January 13, 2004 Obligations Accounting Implementation Workshop January 13, 2 Obligations Accounting Implementation Workshop January 13, 2004 Crowne Plaza Ravinia Atlanta, GA 004 Crowne Plaza Ravinia

  3. Problems with packaged sources in foreign countries

    SciTech Connect (OSTI)

    Abeyta, Cristy L; Matzke, James L; Zarling, John; Tompkin, J. Andrew

    2010-01-01

    The Global Threat Reduction Initiative's (GTRI) Off-Site Source Recovery Project (OSRP), which is administered by the Los Alamos National Laboratory (LANL), removes excess, unwanted, abandoned, or orphan radioactive sealed sources that pose a potential threat to national security, public health, and safety. In total, GTRI/OSRP has been able to recover more than 25,000 excess and unwanted sealed sources from over 825 sites. In addition to transuranic sources, the GTRI/OSRP mission now includes recovery of beta/gamma emitting sources, which are of concern to both the U.S. government and the International Atomic Energy Agency (IAEA). This paper provides a synopsis of cooperative efforts in foreign countries to remove excess and unwanted sealed sources by discussing three topical areas: (1) The Regional Partnership with the International Atomic Energy Agency; (2) Challenges in repatriating sealed sources; and (3) Options for repatriating sealed sources.

  4. Barge Truck Total

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Barge Truck Total delivered cost per short ton Shipments with transportation rates over total shipments Total delivered cost per short ton Shipments with transportation rates over...

  5. Uranium mineralization in fluorine-enriched volcanic rocks

    SciTech Connect (OSTI)

    Burt, D.M.; Sheridan, M.F.; Bikun, J.; Christiansen, E.; Correa, B.; Murphy, B.; Self, S.

    1980-09-01

    Several uranium and other lithophile element deposits are located within or adjacent to small middle to late Cenozoic, fluorine-rich rhyolitic dome complexes. Examples studied include Spor Mountain, Utah (Be-U-F), the Honeycomb Hills, Utah (Be-U), the Wah Wah Mountains, Utah (U-F), and the Black Range-Sierra Cuchillo, New Mexico (Sn-Be-W-F). The formation of these and similar deposits begins with the emplacement of a rhyolitic magma, enriched in lithophile metals and complexing fluorine, that rises to a shallow crustal level, where its roof zone may become further enriched in volatiles and the ore elements. During initial explosive volcanic activity, aprons of lithicrich tuffs are erupted around the vents. These early pyroclastic deposits commonly host the mineralization, due to their initial enrichment in the lithophile elements, their permeability, and the reactivity of their foreign lithic inclusions (particularly carbonate rocks). The pyroclastics are capped and preserved by thick topaz rhyolite domes and flows that can serve as a source of heat and of additional quantities of ore elements. Devitrification, vapor-phase crystallization, or fumarolic alteration may free the ore elements from the glassy matrix and place them in a form readily leached by percolating meteoric waters. Heat from the rhyolitic sheets drives such waters through the system, generally into and up the vents and out through the early tuffs. Secondary alteration zones (K-feldspar, sericite, silica, clays, fluorite, carbonate, and zeolites) and economic mineral concentrations may form in response to this low temperature (less than 200 C) circulation. After cooling, meteoric water continues to migrate through the system, modifying the distribution and concentration of the ore elements (especially uranium).

  6. Unclassified Foreign Visits and Assignments

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-07-14

    International cooperation and collaboration is an important element in the effective planning and implementation of many Department of Energy (DOE) programs. DOE and its international partners benefit from the exchange of information that results from a managed process of unclassified visits and assignments by foreign nationals. These visits and assignments must be conducted in a manner consistent with U.S. and DOE national security policies, requirements, and objectives including export control laws and regulations. Canceled by DOE O 142.3. Does not cancel other directives.

  7. Unclassified Foreign Visits and Assignments Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2004-06-18

    The order defines a program for unclassified foreign national access to Department of Energy sites, information, and technologies. The page change streamlines the HQs Management Panel review process to include reviews by HSS, IN, and a representative of the cognizant under secretary for access requests involving foreign nationals. Cancels Secretarial Memorandum, Unclassified Foreign Visits and Assignments, dated 7-14-99; Memorandum from Francis S. Blake, Departmental Use of Foreign Access Central Tracking System, dated 11-05-01; Memorandum from Kyle E. McSlarrow, Interim Guidance for Implementation of the Department's Unclassified Foreign Visits and Assignments Program, dated 12-17-02; and Secretarial Memorandum, Policy Exclusion for Unclassified Foreign National's Access to Department of Energy Facilities in Urgent or Emergency Medical Situations, dated 4-10-01. Cancels: DOE P 142.1 and DOE N 142.1

  8. Briefing, Transclassified Foreign Nuclear Information - June 2014 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Transclassified Foreign Nuclear Information - June 2014 Briefing, Transclassified Foreign Nuclear Information - June 2014 June 2014 This briefing gives an overview of Transclassified Foreign Nuclear Information on the following questions: What is TFNI? What is transclassification? What do persons with access to documents containing TFNI need to know? What do persons who classify documents containing TFNI need to know? How are documents containing TFNI marked? PDF icon

  9. Oxygen-Enriched Combustion | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oxygen-Enriched Combustion Oxygen-Enriched Combustion This tip sheet discusses how an increase in oxygen in combustion air can reduce the energy loss in the exhaust gases and increase process heating system efficiency. PROCESS HEATING TIP SHEET #3 PDF icon Oxygen-Enriched Combustion (September 2005) More Documents & Publications Save Energy Now in Your Process Heating Systems Waste Heat Reduction and Recovery for Improving Furnace Efficiency, Productivity and Emissions Performance: A

  10. Management and Control of Foreign Intelligence

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1992-01-15

    The order provides for the management of and assign responsibilities for foreign intelligence activities of DOE. Supersedes DOE 5670.1.

  11. Our addiction to foreign oil and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    addiction to foreign oil and fossil fuels puts our economy, our environment, and ultimately our national security at risk. Furthermore, there is a growing recognition of the...

  12. Foreign Travel Health & Wellness Information | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Foreign Travel Checklist MEDEX Plus Travel Information from the Office of Management Related Links World Health Organization Centers for Disease Control & Prevention Department of ...

  13. Foreign WMD Proliferation Detection | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    WMD Proliferation Detection Foreign WMD Proliferation Detection NNSA develops the tools, technologies, techniques, and expertise to address the most challenging problems...

  14. Unclassified Foreign Visits and Assignments Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2010-10-14

    The order defines a program for unclassified foreign national access to DOE sites, information, technologies, and equipment. Supersedes DOE O 142.3.

  15. Categorical Exclusion 4577: Lithium Isotope Separation & Enrichment...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lithium Isotope Separation & Enrichment Technologies (4577) Program or Field Office: Y-12 Site Office Location(s) (CityCountyState): Oak Ridge, Anderson County, Tennessee...

  16. Uranium Enrichment Decontamination and Decommissioning Fund's...

    Broader source: Energy.gov (indexed) [DOE]

    Uranium Enrichment Decontamination and Decommissioning Fund's Fiscal Year 2011 Financial ... Dear Mr. Friedman: We have audited the financial statements of the Department of Energy's ...

  17. Headquarters Facilities Master Security Plan - Chapter 6, Foreign

    Energy Savers [EERE]

    Interaction | Department of Energy 6, Foreign Interaction Headquarters Facilities Master Security Plan - Chapter 6, Foreign Interaction 2016 Headquarters Facilities Master Security Plan - Chapter 6, Foreign Interaction DOE has adopted significant controls over the interaction of its employees and contractors with foreign nationals. When authorized by a treaty or international agreement, some DOE classified information can be shared with foreign government representatives. Unclassified

  18. ,"Total Natural Gas Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Consumption (billion cubic feet)",,,,,"Natural Gas Energy Intensity (cubic feetsquare foot)" ,"Total ","Space Heating","Water Heating","Cook- ing","Other","Total ","Space...

  19. Foreign Visits & Assignments Guidelines | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Foreign Visits & Assignments Guidelines Foreign Visits and Assignments Requests (473's) and Specific Security Plans Please use the following links to reach Form 473, the Foreign Visits and Assignments Request Form, as well as the Ames Laboratory Specific Security Plan Form. Form 473 Foreign Visits and Assignments Request Form Specific Security Plan Program Overview. The USDOE considers hosting foreign visitors a critical responsibility. This is especially true when the foreign national is

  20. Secretary Moniz's Testimony Before the Senate Foreign affairs...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Testimony Before the Senate Foreign affairs Committee on the Iran Deal -- As Prepared Secretary Moniz's Testimony Before the Senate Foreign affairs Committee on the Iran Deal -- As ...

  1. Before the House Foreign Affairs Subcommittee on Asia, the Pacific...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Foreign Affairs Subcommittee on Asia, the Pacific and the Global Environment Before the House Foreign Affairs Subcommittee on Asia, the Pacific and the Global Environment Before...

  2. Headquarters Facilities Master Security Plan - Chapter 6, Foreign...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6, Foreign Interaction Headquarters Facilities Master Security Plan - Chapter 6, Foreign Interaction June 2015 2015 Headquarters Facilities Master Security Plan - Chapter 6,...

  3. Uranium enrichment: heading for a cliff

    SciTech Connect (OSTI)

    Norman, C.

    1987-05-22

    Thanks to drastic cost cutting in the past 2 years, US enrichment plants now have the lowest cost production in the world, but US prices are still higher than those of overseas competitors because the business is paying for past mistakes. The most serious difficulty is that the Department of Energy (DOE), which owns and operates the US enrichment enterprise, is paying more than $500 million a year to the Tennessee Valley Authority (TVA) for electricity it once thought it would need but no longer requires. Another is that billions of dollars were spent in the 1970s and early 1980s to build new capacity that is now not needed. As a result, the enrichment enterprise has accumulated a debt to the US Treasury that the General Accounting Office (GAO) estimates at $8.8 billion. This paper presents the background and current debate in Congress about the difficulties facing the enrichment industry. In the midst of this debate over the future of the enterprise, the development of the next generation of enrichment technology is being placed in jeopardy. Known as atomic vapor laser isotope separation, or AVLIS, the process was viewed as the key to the long-term competitiveness of US enrichment. As the federal deficit mounted, however, funding for the AVLIS program was cut back and the timetable was stretched out. The US enrichment program has reached the point at which Congress will be forced to make some politically difficult decisions.

  4. Toxic Substances Control Act Uranium Enrichment Federal Facility Compliance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Agreement | Department of Energy Toxic Substances Control Act Uranium Enrichment Federal Facility Compliance Agreement Toxic Substances Control Act Uranium Enrichment Federal Facility Compliance Agreement Toxic Substances Control Act (TSCA) Uranium Enrichment Federal Facility Compliance Agreement establishes a plan to bring DOE's Uranium Enrichment Plants (and support facilities) located in Portsmouth, Ohio and Paducah, Kentucky and DOE's former Uranium Enrichment Plant (and support

  5. Aseismic design criteria for uranium enrichment plants

    SciTech Connect (OSTI)

    Beavers, J.E.

    1980-01-01

    In this paper technological, economical, and safety issues of aseismic design of uranium enrichment plants are presented. The role of management in the decision making process surrounding these issues is also discussed. The resolution of the issues and the decisions made by management are controlling factors in developing aseismic design criteria for any facility. Based on past experience in developing aseismic design criteria for the GCEP various recommendations are made for future enrichment facilities, and since uranium enrichment plants are members of the nuclear fuel cycle the discussion and recommendations presented herein are applicable to other nonreactor nuclear facilities.

  6. Council on Foreign Relations | Department of Energy

    Energy Savers [EERE]

    Council on Foreign Relations Council on Foreign Relations January 13, 2005 - 9:47am Addthis Remarks Prepared for Energy Secretary Abraham Thank you. It's an honor to be here with you today. For over 80 years the Council has played a leading role in guiding American foreign policy. As Leslie Gelb once said, "If the Council as a body has stood for anything ... it has been for American internationalism based on American interests." This body has not just stood for American

  7. Foreign Ownership, Control, or Influence Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1993-06-14

    To establish the policies, responsibilities, and authorities for implementing the Department of Energy (DOE) Foreign Ownership, Control, or Influence (FOCI) program, which is designed to obtain information that indicates whether DOE offerors/bidders or contractors/subcontractors are owned, controlled, or influenced by foreign individuals, governments, or organizations, and whether that foreign involvement may pose an undue risk to the common defense and security. This directive does not cancel another directive. Canceled by DOE O 470.1 of 9-28-1995.

  8. Robotic Enrichment Processing of Roche 454 Titanium Emlusion PCR at the DOE Joint Genome Institute

    SciTech Connect (OSTI)

    Hamilton, Matthew; Wilson, Steven; Bauer, Diane; Miller, Don; Duffy-Wei, Kecia; Hammon, Nancy; Lucas, Susan; Pollard, Martin; Cheng, Jan-Fang

    2010-05-28

    Enrichment of emulsion PCR product is the most laborious and pipette-intensive step in the 454 Titanium process, posing the biggest obstacle for production-oriented scale up. The Joint Genome Institute has developed a pair of custom-made robots based on the Microlab Star liquid handling deck manufactured by Hamilton to mediate the complexity and ergonomic demands of the 454 enrichment process. The robot includes a custom built centrifuge, magnetic deck positions, as well as heating and cooling elements. At present processing eight emulsion cup samples in a single 2.5 hour run, these robots are capable of processing up to 24 emulsion cup samples. Sample emulsions are broken using the standard 454 breaking process and transferred from a pair of 50ml conical tubes to a single 2ml tube and loaded on the robot. The robot performs the enrichment protocol and produces beads in 2ml tubes ready for counting. The robot follows the Roche 454 enrichment protocol with slight exceptions to the manner in which it resuspends beads via pipette mixing rather than vortexing and a set number of null bead removal washes. The robotic process is broken down in similar discrete steps: First Melt and Neutralization, Enrichment Primer Annealing, Enrichment Bead Incubation, Null Bead Removal, Second Melt and Neutralization and Sequencing Primer Annealing. Data indicating our improvements in enrichment efficiency and total number of bases per run will also be shown.

  9. Stable Isotope Enrichment Capabilities at ORNL

    SciTech Connect (OSTI)

    Egle, Brian; Aaron, W Scott; Hart, Kevin J

    2013-01-01

    The Oak Ridge National Laboratory (ORNL) and the US Department of Energy Nuclear Physics Program have built a high-resolution Electromagnetic Isotope Separator (EMIS) as a prototype for reestablishing a US based enrichment capability for stable isotopes. ORNL has over 60 years of experience providing enriched stable isotopes and related technical services to the international accelerator target community, as well as medical, research, industrial, national security, and other communities. ORNL is investigating the combined use of electromagnetic and gas centrifuge isotope separation technologies to provide research quantities (milligram to several kilograms) of enriched stable isotopes. In preparation for implementing a larger scale production facility, a 10 mA high-resolution EMIS prototype has been built and tested. Initial testing of the device has simultaneously collected greater than 98% enriched samples of all the molybdenum isotopes from natural abundance feedstock.

  10. Highly Enriched Uranium Disposition | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    needs primarily by down-blending, or converting, it into low enriched uranium (LEU). Once down-blended, the material can no longer be used for nuclear weapons. To the extent...

  11. Safety aspects of gas centrifuge enrichment plants

    SciTech Connect (OSTI)

    Hansen, A.H.

    1987-01-01

    Uranium enrichment by gas centrifuge is a commercially proven, viable technology. Gas centrifuge enrichment plant operations pose hazards that are also found in other industries as well as unique hazards as a result of processing and handling uranium hexafluoride and the handling of enriched uranium. Hazards also found in other industries included those posed by the use of high-speed rotating equipment and equipment handling by use of heavy-duty cranes. Hazards from high-speed rotating equipment are associated with the operation of the gas centrifuges themselves and with the operation of the uranium hexafluoride compressors in the tail withdrawal system. These and related hazards are discussed. It is included that commercial gas centrifuge enrichment plants have been designed to operate safely.

  12. Highly Enriched Uranium Transparency Program | National Nuclear...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Program reduces nuclear risk by monitoring the conversion of 500 metric tons (MT) of Russian HEU, enough material for 20,000 nuclear weapons, into low enriched uranium (LEU). ...

  13. Highly Enriched Uranium Materials Facility | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Highly Enriched Uranium ... Highly Enriched Uranium Materials Facility HEUMF The Highly Enriched Uranium Materials Facility is our nation's central repository for highly enriched uranium, a vital national security asset. HEUMF is a massive concrete and steel structure that provides maximum security for the highly enriched uranium material that it protects. Approximately 300 feet by 475 feet, HEUMF has areas for receiving, shipping and providing long-term storage of the enriched uranium, as well

  14. Techniques for Intravascular Foreign Body Retrieval

    SciTech Connect (OSTI)

    Woodhouse, Joe B.; Uberoi, Raman

    2013-08-01

    As endovascular therapies increase in frequency, the incidence of lost or embolized foreign bodies is increasing. The presence of an intravascular foreign body (IFB) is well recognized to have the potential to cause serious complications. IFB can embolize and impact critical sites such as the heart, with subsequent significant morbidity or mortality. Intravascular foreign bodies most commonly result from embolized central line fragments, but they can originate from many sources, both iatrogenic and noniatrogenic. The percutaneous approach in removing an IFB is widely perceived as the best way to retrieve endovascular foreign bodies. This minimally invasive approach has a high success rate with a low associated morbidity, and it avoids the complications related to open surgical approaches. We examined the characteristics, causes, and incidence of endovascular embolizations and reviewed the various described techniques that have been used to facilitate subsequent explantation of such materials.

  15. Establishing a Cost Basis for Converting the High Flux Isotope Reactor from High Enriched to Low Enriched Uranium Fuel

    SciTech Connect (OSTI)

    Primm, Trent; Guida, Tracey

    2010-02-01

    Under the auspices of the Global Threat Reduction Initiative Reduced Enrichment for Research and Test Reactors Program, the National Nuclear Security Administration /Department of Energy (NNSA/DOE) has, as a goal, to convert research reactors worldwide from weapons grade to non-weapons grade uranium. The High Flux Isotope Reactor (HFIR) at Oak Ridge National Lab (ORNL) is one of the candidates for conversion of fuel from high enriched uranium (HEU) to low enriched uranium (LEU). A well documented business model, including tasks, costs, and schedules was developed to plan the conversion of HFIR. Using Microsoft Project, a detailed outline of the conversion program was established and consists of LEU fuel design activities, a fresh fuel shipping cask, improvements to the HFIR reactor building, and spent fuel operations. Current-value costs total $76 million dollars, include over 100 subtasks, and will take over 10 years to complete. The model and schedule follows the path of the fuel from receipt from fuel fabricator to delivery to spent fuel storage and illustrates the duration, start, and completion dates of each subtask to be completed. Assumptions that form the basis of the cost estimate have significant impact on cost and schedule.

  16. New Hire Process for Foreign Nationals

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Hire Process New Hire Process for Foreign Nationals Employees and retirees are the building blocks of the Lab's success. Our employees get to contribute to the most pressing issues facing the nation. Contact (505) 667-4451, Option 6 Email New Hire Orientation Agenda for Foreign Nationals (pdf) Required documents Review and familiarize yourself with the New Hire forms listed below. Ensure you have read and understand what essential information is needed to complete each form at new hire

  17. Foreign Workshops | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Foreign Workshops Foreign Workshops Stopping the spread of nuclear materials is crucial in creating a safer world. Y-12 offers three workshops in material protection, control and accountability. The Performance Testing workshop underscores the role of a quality testing program. Proper performance testing ensures systems and equipment performs required in specific situations. The Process Monitoring Fundamentals workshop stresses the importance of timely identification of nuclear material issues

  18. Toxic Substances Control Act Uranium Enrichment Federal Facility...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Toxic Substances Control Act Uranium Enrichment Federal Facility Compliance Agreement Toxic Substances Control Act Uranium Enrichment Federal Facility Compliance Agreement Toxic...

  19. Highly Enriched Uranium Materials Facility, Major Design Changes...

    Energy Savers [EERE]

    Highly Enriched Uranium Materials Facility, Major Design Changes Late...Lessons Learned Report, NNSA, Dec 2010 Highly Enriched Uranium Materials Facility, Major Design Changes...

  20. Oxygen-Enriched Combustion for Military Diesel Engine Generators...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oxygen-Enriched Combustion for Military Diesel Engine Generators Oxygen-Enriched Combustion for Military Diesel Engine Generators Substantial increases in brake power and...

  1. Before the House Committee on Foreign Affairs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Foreign Affairs Before the House Committee on Foreign Affairs Testimony of Ernest Moniz, Secretary of Energy Before the House Committee on Foreign Affairs PDF icon 7-28- Ernest_Moniz FT HFA.pdf More Documents & Publications Before the Senate Committee on Armed Services Before the Senate Foreign Affairs Committee Before the House Committee on Armed Services - Subcommittee on Strategic Forces

  2. Before the Senate Foreign Affairs Committee | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Senate Foreign Affairs Committee Before the Senate Foreign Affairs Committee Testimony of Ernest Moniz, Secretary of Energy Before the Senate Foreign Affairs Committee PDF icon 7-23-15_Ernest_Moniz FT SFR.pdf More Documents & Publications Before the House Committee on Foreign Affairs Before the Senate Committee on Armed Services

  3. NEUP Foreign Travel Request Form | Department of Energy

    Office of Environmental Management (EM)

    Foreign Travel Request Form NEUP Foreign Travel Request Form NEUP Foreign Travel Request Form File NEUP Foreign Travel Form 07_31_12.docx More Documents & Publications DOE F 551.1 NEUP Student Travel Request Form HQ FNVA Questionnaire

  4. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    Commercial Buildings Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration...

  5. ,"Total Fuel Oil Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    . Fuel Oil Expenditures by Census Region for Non-Mall Buildings, 2003" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per...

  6. ,"Total Fuel Oil Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    0. Fuel Oil Consumption (gallons) and Energy Intensities by End Use for Non-Mall Buildings, 2003" ,"Total Fuel Oil Consumption (million gallons)",,,,,"Fuel Oil Energy Intensity...

  7. ,"Total Fuel Oil Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    4. Fuel Oil Expenditures by Census Region, 1999" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per Gallon",,,,"per Square Foot"...

  8. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings...

  9. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings*...

  10. ,"Total Fuel Oil Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Fuel Oil Expenditures by Census Region for All Buildings, 2003" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per Gallon",,,,"per...

  11. ,"Total Fuel Oil Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Fuel Oil Consumption (gallons) and Energy Intensities by End Use for All Buildings, 2003" ,"Total Fuel Oil Consumption (million gallons)",,,,,"Fuel Oil Energy Intensity...

  12. Parallel Total Energy

    Energy Science and Technology Software Center (OSTI)

    2004-10-21

    This is a total energy electronic structure code using Local Density Approximation (LDA) of the density funtional theory. It uses the plane wave as the wave function basis set. It can sue both the norm conserving pseudopotentials and the ultra soft pseudopotentials. It can relax the atomic positions according to the total energy. It is a parallel code using MP1.

  13. Foreign offshore worker injuries in foreign waters: why a United States forum

    SciTech Connect (OSTI)

    Sutterfield, J.R.

    1981-07-01

    When foreigners are injured or killed in offshore oil operations in foreign jurisdictional waters, US laws do not always apply as they would if the plaintiffs are American or resident aliens. The courts must first consider whether the Jones Act, Death on the High Seas Act, general maritime law, or a combination of laws applies and whether the court should assume jurisdiction or use the doctrine of forum non conveniens. Cases involving foreign offshore workers are used to illustrate the factors involved in each application and to consider the foreign-policy implication when foreign nationals assume that American laws and morality accompany multinational business. Congress has yet to resolve the issues, although a bill was proposed in 1980. 75 references. (DCK)

  14. Uranium enrichment management review: summary of analysis

    SciTech Connect (OSTI)

    Not Available

    1981-01-01

    In May 1980, the Assistant Secretary for Resource Applications within the Department of Energy requested that a group of experienced business executives be assembled to review the operation, financing, and management of the uranium enrichment enterprise as a basis for advising the Secretary of Energy. After extensive investigation, analysis, and discussion, the review group presented its findings and recommendations in a report on December 2, 1980. The following pages contain background material on which that final report was based. This report is arranged in chapters that parallel those of the uranium enrichment management review final report - chapters that contain summaries of the review group's discussion and analyses in six areas: management of operations and construction; long-range planning; marketing of enrichment services; financial management; research and development; and general management. Further information, in-depth analysis, and discussion of suggested alternative management practices are provided in five appendices.

  15. Status of gadolinium enrichment technology at LLNL

    SciTech Connect (OSTI)

    Haynam, C.; Comaskey, B.; Conway, J.; Eggert, J.; Glaser, J.; Ng, E.; Paisner, J.; Solarz, R.; Worden, E.

    1993-01-01

    A method based on,polarization selectivity and three step laser photoionization is presented for separation of the odd isotopes of gadolinium. Measurements of the spectroscopic parameters needed to quantify the excitation pathway are discussed. Model results are presented for the efficiency of photoionization. The vapor properties of electron beam vaporized gadolinium are presented which show dramatic cooling during the expansion of the hot dense vapor into a vacuum. This results in a significant increase in the efficiency of conversion of natural feed into enriched product in the AVLIS process. Production of enriched gadolinium for use in commercial power reactors appears to be economically viable using technology in use at LLNL.

  16. Summary Max Total Units

    Energy Savers [EERE]

    Summary Max Total Units *If All Splits, No Rack Units **If Only FW, AC Splits 1000 52 28 28 2000 87 59 35 3000 61 33 15 4000 61 33 15 Totals 261 153 93 ***Costs $1,957,500.00 $1,147,500.00 $697,500.00 Notes: added several refrigerants removed bins from analysis removed R-22 from list 1000lb, no Glycol, CO2 or ammonia Seawater R-404A only * includes seawater units ** no seawater units included *** Costs = (total units) X (estimate of $7500 per unit) 1000lb, air cooled split systems, fresh water

  17. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    Survey: Energy End-Use Consumption Tables Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other...

  18. ARM - Measurement - Total carbon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    carbon ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Total carbon The total concentration of carbon in all its organic and non-organic forms. Categories Aerosols, Atmospheric Carbon Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including

  19. Gas Centrifuge Enrichment Plant Safeguards System Modeling

    SciTech Connect (OSTI)

    Elayat, H A; O'Connell, W J; Boyer, B D

    2006-06-05

    The U.S. Department of Energy (DOE) is interested in developing tools and methods for potential U.S. use in designing and evaluating safeguards systems used in enrichment facilities. This research focuses on analyzing the effectiveness of the safeguards in protecting against the range of safeguards concerns for enrichment plants, including diversion of attractive material and unauthorized modes of use. We developed an Extend simulation model for a generic medium-sized centrifuge enrichment plant. We modeled the material flow in normal operation, plant operational upset modes, and selected diversion scenarios, for selected safeguards systems. Simulation modeling is used to analyze both authorized and unauthorized use of a plant and the flow of safeguards information. Simulation tracks the movement of materials and isotopes, identifies the signatures of unauthorized use, tracks the flow and compilation of safeguards data, and evaluates the effectiveness of the safeguards system in detecting misuse signatures. The simulation model developed could be of use to the International Atomic Energy Agency IAEA, enabling the IAEA to observe and draw conclusions that uranium enrichment facilities are being used only within authorized limits for peaceful uses of nuclear energy. It will evaluate improved approaches to nonproliferation concerns, facilitating deployment of enhanced and cost-effective safeguards systems for an important part of the nuclear power fuel cycle.

  20. Turkey's foreign dependence on energy

    SciTech Connect (OSTI)

    Uslu, T.

    2008-07-01

    Turkey becomes more dependent on the external countries in energy production every year. As an average of the period 1994-2002 the total primary energy production has been 27.9 Mtoe, and consumption has been 73.06 Mtoe, so Turkey is dependent on external countries in petroleum, natural gas, and hard coal consumption. The external dependency rate of these fuels has been at levels of 89.3%, 96.6%, and 82%, respectively. In the projections of Turkey for 2020, the primary energy consumption is estimated to be 298 Mtoe, production is estimated to be 70 Mtoe, the ratio of production to consumption will be reduced to 23.5%, and this situation will cause serious risks for sustainable development. In other words, Turkey will have to import 76.5% of the energy that it consumes in the 2020s.

  1. Foreign National Access to DOE Cyber Systems

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-11-01

    DOE N 205.16, dated 9-15-05, extends this Notice until 9-30-06, unless sooner rescinded. To ensure foreign national access to DOE cyber systems continues to advance DOE program objectives while enforcing information access restrictions.

  2. Assistance to Foreign Atomic Energy Activities

    National Nuclear Security Administration (NNSA)

    Guidance to the Revised Part 810 Regulation: Assistance to Foreign Atomic Energy Activities Department of Energy National Nuclear Security Administration Office of Nonproliferation and Arms Control Current As Of: April 9, 2015 Table of Contents INTRODUCTION .......................................................................................................................... 1 WHO SHOULD USE THIS GUIDANCE DOCUMENT .............................................................. 1 PURPOSE (§

  3. Headquarters Security Operations Foreign Ownership Control or Influence Program

    Broader source: Energy.gov [DOE]

    The Headquarters Foreign Ownership Control or Influence (FOCI) Program is established by DOE Order to evaluate the foreign involvement of a company being considered for award of a contract that...

  4. Foreign Direct Investment in U.S. Energy

    Reports and Publications (EIA)

    2009-01-01

    This report describes the role of direct foreign ownership of U.S. energy enterprises with respect to their energy operations, capital investments, and net foreign investment flows (including net loans). In addition, since energy investments are made in a global context, the report examines patterns of direct investment in foreign energy enterprises by U.S.-based companies.

  5. PIA - Foreign Access Central Tracking System (FACTS) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Access Central Tracking System (FACTS) PIA - Foreign Access Central Tracking System (FACTS) PIA - Foreign Access Central Tracking System (FACTS) PDF icon PIA - Foreign Access Central Tracking System (FACTS) More Documents & Publications PIA - INL SECURITY INFORMATION MANAGEMENT SYSTEM BUSINESS ENCLAVE PIA - INL PeopleSoft - Human Resource System

  6. PIA - Foreign Travel Management System (FTMS) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Travel Management System (FTMS) PIA - Foreign Travel Management System (FTMS) PIA - Foreign Travel Management System (FTMS) PDF icon PIA - Foreign Travel Management System (FTMS) More Documents & Publications PIA - INL PeopleSoft - Human Resource System PIA - INL SECURITY INFORMATION MANAGEMENT SYSTEM BUSINESS ENCLAVE

  7. US developments in technology for uranium enrichment

    SciTech Connect (OSTI)

    Wilcox, W.J. Jr.; McGill, R.M.

    1982-01-01

    The purpose of this paper is to review recent progress and the status of the work in the United States on that part of the fuel cycle concerned with uranium enrichment. The United States has one enrichment process, gaseous diffusion, which has been continuously operated in large-scale production for the past 37 years; another process, gas centrifugation, which is now in the construction phase; and three new processes, molecular laser isotope separation, atomic vapor laser isotope separation, plasma separation process, in which the US has also invested sizable research and development efforts over the last few years. The emphasis in this paper is on the technical aspects of the various processes, but the important economic factors which will define the technological mix which may be applied in the next two decades are also discussed.

  8. highly enriched uranium | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    highly enriched uranium | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at

  9. 21 briefing pages total

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 briefing pages total p. 1 Reservist Differential Briefing U.S. Office of Personnel Management December 11, 2009 p. 2 Agenda - Introduction of Speakers - Background - References/Tools - Overview of Reservist Differential Authority - Qualifying Active Duty Service and Military Orders - Understanding Military Leave and Earnings Statements p. 3 Background 5 U.S.C. 5538 (Section 751 of the Omnibus Appropriations Act, 2009, March 11, 2009) (Public Law 111-8) Law requires OPM to consult with DOD Law

  10. Microsoft Word - Foreign Obligation Codes.docx

    National Nuclear Security Administration (NNSA)

    Obligation Codes - Updated March 2014 Transaction Code Material Balance Code Obligation 1 31 85 Australia 32 86 Canada 33 87 EURATOM 34 88 Japan 35 89 Peoples' Republic of China 36 C1 Russia 37 A8 Switzerland 38 A1 Argentina 39 A2 Brazil 40 A3 Chile 65 C4 Japan/Russia 66 C5 EURATOM/Russia 67 C6 Australia/Japan/Russia 68 C7 Canada/Japan/Russia 69 C8 EURATOM/Japan/Russia 70 B1 Les Centrifuge Enrichment/Japan 71 B2 Australia/Japan/Les Centrifuge Enrichment 72 B3 Canada/Japan/Les Centrifuge

  11. Status Report on the Passive Neutron Enrichment Meter (PNEM) for UF6 Cylinder Assay

    SciTech Connect (OSTI)

    Miller, Karen A.; Swinhoe, Martyn T.; Menlove, Howard O.; Marlow, Johnna B.

    2012-05-02

    The Passive Neutron Enrichment Meter (PNEM) is a nondestructive assay (NDA) system being developed at Los Alamos National Laboratory (LANL). It was designed to determine {sup 235}U mass and enrichment of uranium hexafluoride (UF{sub 6}) in product, feed, and tails cylinders (i.e., 30B and 48Y cylinders). These cylinders are found in the nuclear fuel cycle at uranium conversion, enrichment, and fuel fabrication facilities. The PNEM is a {sup 3}He-based neutron detection system that consists of two briefcase-sized detector pods. A photograph of the system during characterization at LANL is shown in Fig. 1. Several signatures are currently being studied to determine the most effective measurement and data reduction technique for unfolding {sup 235}U mass and enrichment. The system collects total neutron and coincidence data for both bare and cadmium-covered detector pods. The measurement concept grew out of the success of the Uranium Cylinder Assay System (UCAS), which is an operator system at Rokkasho Enrichment Plant (REP) that uses total neutron counting to determine {sup 235}U mass in UF{sub 6} cylinders. The PNEM system was designed with higher efficiency than the UCAS in order to add coincidence counting functionality for the enrichment determination. A photograph of the UCAS with a 48Y cylinder at REP is shown in Fig. 2, and the calibration measurement data for 30B product and 48Y feed and tails cylinders is shown in Fig. 3. The data was collected in a low-background environment, meaning there is very little scatter in the data. The PNEM measurement concept was first presented at the 2010 Institute of Nuclear Materials Management (INMM) Annual Meeting. The physics design and uncertainty analysis were presented at the 2010 International Atomic Energy Agency (IAEA) Safeguards Symposium, and the mechanical and electrical designs and characterization measurements were published in the ESARDA Bulletin in 2011.

  12. EIS-0471: Areva Eagle Rock Enrichment Facility in Bonneville...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1: Areva Eagle Rock Enrichment Facility in Bonneville County, ID EIS-0471: Areva Eagle Rock Enrichment Facility in Bonneville County, ID May 20, 2011 delete me old download page ...

  13. An Optically Stimulated Luminescence Uranium Enrichment Monitor

    SciTech Connect (OSTI)

    Miller, Steven D.; Tanner, Jennifer E.; Simmons, Kevin L.; Conrady, Matthew M.; Benz, Jacob M.; Greenfield, Bryce A.

    2010-08-11

    The Pacific Northwest National Laboratory (PNNL) has pioneered the use of Optically Stimulated Luminescence (OSL) technology for use in personnel dosimetry and high dose radiation processing dosimetry. PNNL has developed and patented an alumina-based OSL dosimeter that is being used by the majority of medical X-ray and imaging technicians worldwide. PNNL has conceived of using OSL technology to passively measure the level of UF6 enrichment by attaching the prototype OSL monitor to pipes containing UF6 gas within an enrichment facility. The prototype OSL UF6 monitor utilizes a two-element approach with the first element open and unfiltered to measure both the low energy and high energy gammas from the UF6, while the second element utilizes a 3-mm thick tungsten filter to eliminate the low energy gammas and pass only the high energy gammas from the UF6. By placing a control monitor in the room away from the UF6 pipes and other ionizing radiation sources, the control readings can be subtracted from the UF6 pipe monitor measurements. The ratio of the shielded to the unshielded net measurements provides a means to estimate the level of uranium enrichment. PNNL has replaced the commercially available MicroStar alumina-based dosimeter elements with a composite of polyethylene plastic, high-Z glass powder, and BaFBr:Eu OSL phosphor powder at various concentrations. The high-Z glass was added in an attempt to raise the average Z of the composite dosimeter and increase the response. Additionally, since BaFBr:Eu OSL phosphor is optimally excited and emits light at different wavelengths compared to alumina, the commercially available MicroStar reader was modified for reading BaFBr:Eu in a parallel effort to increase reader sensitivity. PNNL will present the design and performance of our novel OSL uranium enrichment monitor based on a combination of laboratory and UF6 test loop measurements. PNNL will also report on the optimization effort to achieve the highest possible performance from both the OSL enrichment monitor and the new custom OSL reader modified for this application. This project has been supported by the US Department of Energys National Nuclear Security Administrations Office of Dismantlement and Transparency (DOE/NNSA/NA-241).

  14. Oxygen-Enriched Combustion for Military Diesel Engine Generators |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Oxygen-Enriched Combustion for Military Diesel Engine Generators Oxygen-Enriched Combustion for Military Diesel Engine Generators Substantial increases in brake power and considerably lower peak pressure can result from oxygen-enriched diesel combustion PDF icon deer09_yelvington.pdf More Documents & Publications Development Methodology for Power-Dense Military Diesel Engine Oxygen-Enriched Combustion Emission Control Strategy for Downsized Light-Duty Diesels

  15. Chapter 20 - Uranium Enrichment Decontamination & Decommissioning Fund

    Energy Savers [EERE]

    0. Uranium Enrichment Decontamination and Decommissioning Fund 20-1 CHAPTER 20 URANIUM ENRICHMENT DECONTAMINATION AND DECOMMISSIONING FUND 1. INTRODUCTION. a. Purpose. To establish policies and procedures for the financial management, accounting, budget preparation, cash management of the Uranium Enrichment Decontamination and Decommissioning Fund, referred to hereafter as the Fund. b. Applicability. This chapter applies to all Departmental elements, including the National Nuclear Security

  16. High Accuracy U-235 Enrichment Verification Station for Low Enriched Uranium Alloys

    SciTech Connect (OSTI)

    Lillard, C. R.; Hayward, J. P.; Williamson, M. R.

    2012-06-07

    The Y-12 National Security Complex is playing a role in the U.S. High Performance Research Reactor (USHPRR) Conversion program sponsored by the U.S. National Nuclear Security Administration's Office of Global Threat Reduction. The USHPRR program has a goal of converting remaining U.S. reactors that continue to use highly enriched uranium (HEU) fuel to low enriched uranium (LEU) fuel. The USHPRR program is currently developing a LEU Uranium-Molybdenum (U-Mo) monolithic fuel for use in the U.S. high performance research reactors.Y-12 is supporting both the fuel development and fuel fabrication efforts by fabricating low enriched U-Mo foils from its own source material for irradiation experiments and for optimizing the fabrication process in support of scaling up the process to a commercial production scale. Once the new fuel is qualified, Y-12 will produce and ship U-Mo coupons with verified 19.75% +0.2% - 0.3% U-235 enrichment to be fabricated into fuel elements for the USHPRRs. Considering this small enrichment tolerance and the transition into HEU being set strictly at 20% U-235, a characterization system with a measurement uncertainty of less than or equal to 0.1% in enrichment is desired to support customer requirements and minimize production costs. Typical uncertainty for most available characterization systems today is approximately 1-5%; therefore, a specialized system must be developed which results in a reduced measurement uncertainty. A potential system using a High-Purity Germanium (HPGe) detector has been procured, and tests have been conducted to verify its capabilities with regards to the requirements. Using four U-Mo enrichment standards fabricated with complete isotopic and chemical characterization, infinite thickness and peak-ratio enrichment measurement methods have been considered for use. As a result of inhomogeneity within the U-Mo samples, FRAM, an isotopic analysis software, has been selected for initial testing. A systematic approach towards observing effects on FRAM's enrichment analysis has been conducted with regards to count and dead time.

  17. Foreign Energy Company Competitiveness: Background information

    SciTech Connect (OSTI)

    Weimar, M.R.; Freund, K.A.; Roop, J.M.

    1994-10-01

    This report provides background information to the report Energy Company Competitiveness: Little to Do With Subsidies (DOE 1994). The main body of this publication consists of data uncovered during the course of research on this DOE report. This data pertains to major government energy policies in each country studied. This report also provides a summary of the DOE report. In October 1993, the Office of Energy Intelligence, US Department of Energy (formerly the Office of Foreign Intelligence), requested that Pacific Northwest Laboratory prepare a report addressing policies and actions used by foreign governments to enhance the competitiveness of their energy firms. Pacific Northwest Laboratory prepared the report Energy Company Competitiveness Little to Do With Subsidies (DOE 1994), which provided the analysis requested by DOE. An appendix was also prepared, which provided extensive background documentation to the analysis. Because of the length of the appendix, Pacific Northwest Laboratory decided to publish this information separately, as contained in this report.

  18. Thick crystalline films on foreign substrates

    DOE Patents [OSTI]

    Smith, H.I.; Atwater, H.A.; Geis, M.W.

    1986-03-18

    To achieve a uniform texture, large crystalline grains or, in some cases, a single crystalline orientation in a thick (>1 [mu]m) film on a foreign substrate, the film is formed so as to be thin (<1 [mu]m) in a certain section. Zone-melting recrystallization is initiated in the thin section and then extended into the thick section. The method may employ planar constriction patterns of orientation filter patterns. 2 figs.

  19. Thick crystalline films on foreign substrates

    DOE Patents [OSTI]

    Smith, Henry I. (Sudbury, MA); Atwater, Harry A. (Somerville, MA); Geis, Michael W. (Acton, MA)

    1986-01-01

    To achieve a uniform texture, large crystalline grains or, in some cases, a single crystalline orientation in a thick (>1 .mu.m) film on a foreign substrate, the film is formed so as to be thin (<1 .mu.m) in a certain section. Zone-melting recrystallization is initiated in the thin section and then extended into the thick section. The method may employ planar constriction patterns of orientation filter patterns.

  20. Foreign National Visit/Assignment Questionnaire

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Unclassified Foreign National Visits & Assignments Questionnaire Welcome to Department of Energy, Headquarters! We are looking forward to your visit or assignment with us. In order to comply with our security requirements and ensure that your time with the Department of Energy goes smoothly we need to obtain some information from you prior to your arrival. Please take a few minutes to provide the information requested below for each member of your party that is not a U.S. citizen and then

  1. Foreign National Visit/Assignment Questionnaire

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Foreign National Visits & Assignments Questionnaire Part 2: Completed by Host 24 Facility to be accessed Germantown Forrestal Other (must specify) Off Site 25 Will any Sensitive Information (see list at right) be shared with the visitor or assignee? (Check at least one but all that apply) Official Use Only (OUO) Export Controlled Information (ECI) Unclassified Controlled Nuclear Information (UCNI) Personally Identifiable Information (PII) Company Proprietary Information Unclassified Naval

  2. Total Sales of Kerosene

    U.S. Energy Information Administration (EIA) Indexed Site

    End Use: Total Residential Commercial Industrial Farm All Other Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: End Use Area 2009 2010 2011 2012 2013 2014 View History U.S. 269,010 305,508 187,656 81,102 79,674 137,928 1984-2014 East Coast (PADD 1) 198,762 237,397 142,189 63,075 61,327 106,995 1984-2014 New England (PADD 1A) 56,661 53,363 38,448 15,983 15,991 27,500 1984-2014 Connecticut 8,800 7,437

  3. Possibility of nuclear pumped laser experiment using low enriched uranium

    SciTech Connect (OSTI)

    Obara, Toru; Takezawa, Hiroki [Center for Research into Innovative Nuclear Energy Systems Tokyo Institute of Technology 2-12-1-N1-19, Ookayama Meguro-ku, Tokyo 152-8550 (Japan)

    2012-06-06

    Possibility to perform experiments for nuclear pumped laser oscillation by using low enriched uranium is investigated. Kinetic analyses are performed for two types of reactor design, one is using highly enriched uranium and the other is using low enriched uranium. The reactor design is based on the experiment reactor in IPPE. The results show the oscillation of nuclear pumped laser in the case of low enriched uranium reactor is also possible. The use of low enriched uranium in the experiment will make experiment easier.

  4. Safeguarding a NWS International Enrichment Center as an Enriched Uranium Store

    SciTech Connect (OSTI)

    Curtis, Michael M.

    2008-03-31

    The operational and regulatory singularities of a multilateral facility designed to provide enriched uranium to a consortium of members may engender a new sub-category of safeguard criteria for the International Atomic Energy Agency (IAEA). This paper introduces the contingency of monitoring such a facility as a uranium storage center with cylinders containing low-enriched uranium (LEU) as the principal, and perhaps only, material open to verification. Accountancy and verification techniques will be proffered together with disparate means for maintaining continuity of knowledge (CoK) on verified stock.

  5. Novel Membranes and Processes for Oxygen Enrichment

    SciTech Connect (OSTI)

    Lin, Haiqing

    2011-11-15

    The overall goal of this project is to develop a membrane process that produces air containing 25-35% oxygen, at a cost of $25-40/ton of equivalent pure oxygen (EPO2). Oxygen-enriched air at such a low cost will allow existing air-fueled furnaces to be converted economically to oxygen-enriched furnaces, which in turn will improve the economic and energy efficiency of combustion processes significantly, and reduce the cost of CO{sub 2} capture and sequestration from flue gases throughout the U.S. manufacturing industries. During the 12-month Concept Definition project: We identified a series of perfluoropolymers (PFPs) with promising oxygen/nitrogen separation properties, which were successfully made into thin film composite membranes. The membranes showed oxygen permeance as high as 1,200 gpu and oxygen/nitrogen selectivity of 3.0, and the permeance and selectivity were stable over the time period tested (60 days). We successfully scaled up the production of high-flux PFP-based membranes, using MTR's commercial coaters. Two bench-scale spiral-wound modules with countercurrent designs were made and parametric tests were performed to understand the effect of feed flow rate and pressure, permeate pressure and sweep flow rate on the membrane module separation properties. At various operating conditions that modeled potential industrial operating conditions, the module separation properties were similar to the pure-gas separation properties in the membrane stamps. We also identified and synthesized new polymers [including polymers of intrinsic microporosity (PIMs) and polyimides] with higher oxygen/nitrogen selectivity (3.5-5.0) than the PFPs, and made these polymers into thin film composite membranes. However, these membranes were susceptible to severe aging; pure-gas permeance decreased nearly six-fold within two weeks, making them impractical for industrial applications of oxygen enrichment. We tested the effect of oxygen-enriched air on NO{sub x} emissions using a Bloom baffle burner at GTI. The results are positive and confirm that oxygen-enriched combustion can be carried out without producing higher levels of NOx than normal air firing, if lancing of combustion air is used and the excess air levels are controlled. A simple economic study shows that the membrane processes can produce O{sub 2} at less than $40/ton EPO{sub 2} and an energy cost of 1.1-1.5 MMBtu/ton EPO{sub 2}, which are very favorable compared with conventional technologies such as cryogenics and vacuum pressure swing adsorption processes. The benefits of integrated membrane processes/combustion process trains have been evaluated, and show good savings in process costs and energy consumption, as well as reduced CO{sub 2} emissions. For example, if air containing 30% oxygen is used in natural gas furnaces, the net natural gas savings are an estimated 18% at a burner temperature of 2,500 F, and 32% at a burner temperature of 3,000 F. With a 20% market penetration of membrane-based oxygen-enriched combustion in all combustion processes by 2020, the energy savings would be 414-736 TBtu/y in the U.S. The comparable net cost savings are estimated at $1.2-2.1 billion per year by 2020, calculated as the value of fuel savings subtracted from the cost of oxygen production. The fuel savings of 18%-32% by the membrane/oxygen-enriched combustion corresponds to an 18%-32% reduction in CO{sub 2} emissions, or 23-40 MM ton/y less CO{sub 2} from natural gas-fired furnaces by 2020. In summary, results from this project (Concept Definition phase) are highly promising and clearly demonstrate that membrane processes can produce oxygen-enriched air in a low cost manner that will lower operating costs and energy consumption in industrial combustion processes. Future work will focus on proof-of-concept bench-scale demonstration in the laboratory.

  6. TotalView Training 2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TotalView Training 2015 TotalView Training 2015 NERSC will host an in-depth training course on TotalView, a graphical parallel debugger developed by Rogue Wave Software, on...

  7. Microsoft PowerPoint - Dynamics Complexities Accounting for Foreign...

    National Nuclear Security Administration (NNSA)

    Atomic Energy Community (EURATOM) Japan China Switzerland Chile Brazil Argentina 6 Mining Milling Conversion Reactor Enriched Uranium Pool Storage Dry ...

  8. A Robust Infrastructure Design for Gas Centrifuge Enrichment Plant Unattended Online Enrichment Monitoring

    SciTech Connect (OSTI)

    Younkin, James R; Rowe, Nathan C; Garner, James R

    2012-01-01

    An online enrichment monitor (OLEM) is being developed to continuously measure the relative isotopic composition of UF6 in the unit header pipes of a gas centrifuge enrichment plant (GCEP). From a safeguards perspective, OLEM will provide early detection of a facility being misused for production of highly enriched uranium. OLEM may also reduce the number of samples collected for destructive assay and if coupled with load cell monitoring can provide isotope mass balance verification. The OLEM design includes power and network connections for continuous monitoring of the UF6 enrichment and state of health of the instrument. Monitoring the enrichment on all header pipes at a typical GCEP could require OLEM detectors on each of the product, tails, and feed header pipes. If there are eight process units, up to 24 detectors may be required at a modern GCEP. Distant locations, harsh industrial environments, and safeguards continuity of knowledge requirements all place certain demands on the network robustness and power reliability. This paper describes the infrastructure and architecture of an OLEM system based on OLEM collection nodes on the unit header pipes and power and network support nodes for groupings of the collection nodes. A redundant, self-healing communications network, distributed backup power, and a secure communications methodology. Two candidate technologies being considered for secure communications are the Object Linking and Embedding for Process Control Unified Architecture cross-platform, service-oriented architecture model for process control communications and the emerging IAEA Real-time And INtegrated STream-Oriented Remote Monitoring (RAINSTORM) framework to provide the common secure communication infrastructure for remote, unattended monitoring systems. The proposed infrastructure design offers modular, commercial components, plug-and-play extensibility for GCEP deployments, and is intended to meet the guidelines and requirements for unattended and remotely monitored safeguards systems.

  9. Unclassified Foreign National Visits & Assignments Questionnaire

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Unclassified Foreign National Visits & Assignments Questionnaire |Welcome to U.S. Department of Energy Office of Legacy Management! We are looking forward to your visit or assignment with us. In order to comply with our security requirements and ensure that your time with the Department of Energy goes smoothly we need to obtain some information from you prior to your arrival. Please take a few minutes to provide the information requested below for each member of your party that is not a U.S.

  10. Beginning Foreign Obligation Balances for the Power Reactors Presentation

    National Nuclear Security Administration (NNSA)

    Beginning Foreign Obligation Balances Beginning Foreign Obligation Balances for the Power Reactors for the Power Reactors Michael J. Smith Michael J. Smith NAC International NAC International Obligations Accounting Implementation Workshop Obligations Accounting Implementation Workshop January 13, 2004 January 13, 2004 Crowne Crowne Plaza Plaza Ravinia Ravinia Atlanta, Georgia Atlanta, Georgia Project Purpose Project Purpose * Bridge the gap in foreign obligated (FO) inventory tracking for US

  11. Determination of Total Petroleum Hydrocarbons (TPH) Using Total Carbon Analysis

    SciTech Connect (OSTI)

    Ekechukwu, A.A.

    2002-05-10

    Several methods have been proposed to replace the Freon(TM)-extraction method to determine total petroleum hydrocarbon (TPH) content. For reasons of cost, sensitivity, precision, or simplicity, none of the replacement methods are feasible for analysis of radioactive samples at our facility. We have developed a method to measure total petroleum hydrocarbon content in aqueous sample matrixes using total organic carbon (total carbon) determination. The total carbon content (TC1) of the sample is measured using a total organic carbon analyzer. The sample is then contacted with a small volume of non-pokar solvent to extract the total petroleum hydrocarbons. The total carbon content of the resultant aqueous phase of the extracted sample (TC2) is measured. Total petroleum hydrocarbon content is calculated (TPH = TC1-TC2). The resultant data are consistent with results obtained using Freon(TM) extraction followed by infrared absorbance.

  12. Rob Goldston, Alex Glaser and Boaz Barak named among Foreign...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to the field of nuclear arms control. Founded in 1970, Foreign Policy magazine focuses on global affairs, current events and domestic and international affairs. It produces daily...

  13. Laboratory Memoranda of Understanding (MOUs) with Foreign Partners

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2012-05-14

    This memorandum establishes policy and procedures for any Memoranda of Understanding (MOUs) between DOE National Laboratories and any foreign entity, whether governmental or private.

  14. Foreign National Tax Frequently Asked Questions 11/5/2013

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    between a resident alien and a nonresident alien for tax purposes? The Internal Revenue Service (IRS) classifies all foreign nationals as either resident aliens or...

  15. Security of Foreign Intelligence Information and Sensitive Compartmented Information Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1993-07-23

    The order establishes responsibilities and authorities for protecting Foreign Intelligence Information (FII) and Sensitive Compartmented Information Facilities (SCIFs) within DOE. Supersedes DOE 5639.8.

  16. A Tradition of Welcoming Foreign Scientists and Engineers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tradition National Security Science Latest Issue:July 2015 past issues All Issues submit A Tradition of Welcoming Foreign Scientists and Engineers Nuclear scientists, including...

  17. Assuaging Nuclear Energy Risks: The Angarsk International Uranium Enrichment Center

    SciTech Connect (OSTI)

    Myers, Astasia [Stanford University, Stanford, CA 94305, USA and MonAme Scientific Research Center, Ulaanbaatar (Mongolia)

    2011-06-28

    The recent nuclear renaissance has motivated many countries, especially developing nations, to plan and build nuclear power reactors. However, domestic low enriched uranium demands may trigger nations to construct indigenous enrichment facilities, which could be redirected to fabricate high enriched uranium for nuclear weapons. The potential advantages of establishing multinational uranium enrichment sites are numerous including increased low enrichment uranium access with decreased nuclear proliferation risks. While multinational nuclear initiatives have been discussed, Russia is the first nation to actualize this concept with their Angarsk International Uranium Enrichment Center (IUEC). This paper provides an overview of the historical and modern context of the multinational nuclear fuel cycle as well as the evolution of Russia's IUEC, which exemplifies how international fuel cycle cooperation is an alternative to domestic facilities.

  18. German Pebble Bed Research Reactor Highly Enriched Uranium (HEU...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Potential Acceptance and Disposition of German Pebble Bed Research Reactor Highly Enriched Uranium (HEU) Fuel Environmental Assessment Maxcine Maxted, DOE-SR Used Nuclear Fuel...

  19. DOE Signs Advanced Enrichment Technology License and Facility...

    Energy Savers [EERE]

    of enriched uranium from centrifuge plant production beginning in 2009 and capped at 100 million over the life of the technology. For more information on the lease agreement...

  20. NNSA Authorizes Start-Up of Highly Enriched Uranium Materials...

    National Nuclear Security Administration (NNSA)

    Authorizes Start-Up of Highly Enriched Uranium Materials Facility at Y-12 | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the...

  1. Energy Department Selects Global Laser Enrichment for Future...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Energy Department Selects Global Laser Enrichment for Future Operations at Paducah Site Pamela Thompson is retiring from her 37-year federal career. Retiring Procurement Official ...

  2. Paducah Plant Begins Enrichment Operations after Five Parties Strike

    Energy Savers [EERE]

    Agreement | Department of Energy Plant Begins Enrichment Operations after Five Parties Strike Agreement Paducah Plant Begins Enrichment Operations after Five Parties Strike Agreement May 1, 2012 - 12:00pm Addthis This cylinder hauler at Paducah’s Babcock & Wilcox Conversion Services plant delivers the first of DOE’s 14-ton depleted uranium cylinders to USEC for re-enrichment as part of a five-party agreement that is extending enrichment operations at the 60-year-old plant for

  3. PIA - e-Foreign Ownership, Control, or Influence (FOCI) | Department of

    Energy Savers [EERE]

    Energy PIA - e-Foreign Ownership, Control, or Influence (FOCI) PIA - e-Foreign Ownership, Control, or Influence (FOCI) June 25, 2008 PIA - e-Foreign Ownership, Control, or Influence (FOCI) PDF icon PIA - e-Foreign Ownership, Control, or Influence (FOCI) More Documents & Publications PIA - Weapons Data Control Systems PIA - FITPLUS PIA - Foreign Travel Management System (FTMS)

  4. Conversion and Blending Facility highly enriched uranium to low enriched uranium as metal. Revision 1

    SciTech Connect (OSTI)

    1995-07-05

    The mission of this Conversion and Blending Facility (CBF) will be to blend surplus HEU metal and alloy with depleted uranium metal to produce an LEU product. The primary emphasis of this blending operation will be to destroy the weapons capability of large, surplus stockpiles of HEU. The blended LEU product can only be made weapons capable again by the uranium enrichment process. The blended LEU will be produced as a waste suitable for storage or disposal.

  5. U.S. Total Exports

    U.S. Energy Information Administration (EIA) Indexed Site

    Warroad, MN Babb, MT Havre, MT Port of Morgan, MT Sherwood, ND Pittsburg, NH Buffalo, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to Egypt Freeport, TX Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Freeport, TX Kenai, AK Port Nikiski, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Sasabe, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA San

  6. U.S. Total Exports

    U.S. Energy Information Administration (EIA) Indexed Site

    Babb, MT Havre, MT Port of Morgan, MT Sherwood, ND Pittsburg, NH Buffalo, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to Egypt Freeport, TX Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Kenai, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Sasabe, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass,

  7. Process for preparing a chemical compound enriched in isotope content. [nitrogen 15-enriched nitric acid

    DOE Patents [OSTI]

    Michaels, E.D.

    1981-02-25

    A process to prepare a chemical enriched in isotope content includes: a chemical exchange reaction between a first and second compound which yields an isotopically enriched first compound and an isotopically depleted second compound; the removal of a portion of the first compound as product and the removal of a portion of the second compound as spent material; the conversion of the remainder of the first compound to the second compound for reflux at the product end of the chemical exchange reaction region; the conversion of the remainder of the second compound to the first compound for reflux at the spent material end of the chemical exchange region; and the cycling of the additional chemicals produced by one conversion reaction to the other conversion reaction, for consumption therein. One of the conversion reactions is an oxidation reaction, and the energy that it yields is used to drive the other conversion reaction, a reduction. The reduction reaction is carried out in a solid polymer electrolyte electrolytic reactor. The overall process is energy efficient and yields no waste by-products. A particular embodiment of the process in the production of nitrogen-15-enriched nitric acid.

  8. Profiles of foreign direct investment in US energy, 1992

    SciTech Connect (OSTI)

    Not Available

    1994-05-16

    The report reviews the patterns of foreign ownership interest in US energy enterprises, exclusive of portfolio investment (<10% ownership of a US enterprise). It profiles the involvement of foreign-affiliated US companies in the following areas: domestic petroleum production (including natural gas), reserve holdings, refining and marketing activities, coal production, and uranium exploration and development.

  9. Total Eolica | Open Energy Information

    Open Energy Info (EERE)

    Eolica Jump to: navigation, search Name: Total Eolica Place: Spain Product: Project developer References: Total Eolica1 This article is a stub. You can help OpenEI by expanding...

  10. From the Lab to the real world : sources of error in UF {sub 6} gas enrichment monitoring

    SciTech Connect (OSTI)

    Lombardi, Marcie L.

    2012-03-01

    Safeguarding uranium enrichment facilities is a serious concern for the International Atomic Energy Agency (IAEA). Safeguards methods have changed over the years, most recently switching to an improved safeguards model that calls for new technologies to help keep up with the increasing size and complexity of todays gas centrifuge enrichment plants (GCEPs). One of the primary goals of the IAEA is to detect the production of uranium at levels greater than those an enrichment facility may have declared. In order to accomplish this goal, new enrichment monitors need to be as accurate as possible. This dissertation will look at the Advanced Enrichment Monitor (AEM), a new enrichment monitor designed at Los Alamos National Laboratory. Specifically explored are various factors that could potentially contribute to errors in a final enrichment determination delivered by the AEM. There are many factors that can cause errors in the determination of uranium hexafluoride (UF{sub 6}) gas enrichment, especially during the period when the enrichment is being measured in an operating GCEP. To measure enrichment using the AEM, a passive 186-keV (kiloelectronvolt) measurement is used to determine the {sup 235}U content in the gas, and a transmission measurement or a gas pressure reading is used to determine the total uranium content. A transmission spectrum is generated using an x-ray tube and a notch filter. In this dissertation, changes that could occur in the detection efficiency and the transmission errors that could result from variations in pipe-wall thickness will be explored. Additional factors that could contribute to errors in enrichment measurement will also be examined, including changes in the gas pressure, ambient and UF{sub 6} temperature, instrumental errors, and the effects of uranium deposits on the inside of the pipe walls will be considered. The sensitivity of the enrichment calculation to these various parameters will then be evaluated. Previously, UF{sub 6} gas enrichment monitors have required empty pipe measurements to accurately determine the pipe attenuation (the pipe attenuation is typically much larger than the attenuation in the gas). This dissertation reports on a method for determining the thickness of a pipe in a GCEP when obtaining an empty pipe measurement may not be feasible. This dissertation studies each of the components that may add to the final error in the enrichment measurement, and the factors that were taken into account to mitigate these issues are also detailed and tested. The use of an x-ray generator as a transmission source and the attending stability issues are addressed. Both analytical calculations and experimental measurements have been used. For completeness, some real-world analysis results from the URENCO Capenhurst enrichment plant have been included, where the final enrichment error has remained well below 1% for approximately two months.

  11. Safeguards training course: Nuclear material safeguards for enrichment plants

    SciTech Connect (OSTI)

    Not Available

    1990-06-01

    The main objective of this course is to provide the course participants with the necessary skills to perform their inspection activities at enrichment plants. As background information, a variety of enrichment technologies will first be characterized and compared followed by a review of basic cascade, gas centrifuge, and gaseous diffusion theory. To focus on gas centrifuge and gaseous diffusion technology, the major components and system of gas centrifuge and gaseous diffusion enrichment plants including their function in routine LEU production will be identified. The objectives of safeguards at an enrichment plant, including those agreed to in the Hexapartite Safeguards Project, will then be described. Discussions will then focus on potential diversion scenarios at both a centrifuge and diffusion enrichment facility and applicable safeguards inspection activities for detecting these scenarios. This report presents a discussion on basic separation and cascade theory, uranium hexafluoride, and detailed separation theory, including gas centrifuge and gaseous diffusion.

  12. Safeguards training course: Nuclear material safeguards for enrichment plants

    SciTech Connect (OSTI)

    Not Available

    1990-06-01

    The main objective of this training course is to provide the course participants with the necessary skills to perform their inspection activities at enrichment plants. As background information, a variety of enrichment technologies will first be characterized and compared followed by a review of basic cascade, gas centrifuge, and gaseous diffusion theory. To focus on gas centrifuge and gaseous diffusion technology, the major components and systems of gas centrifuge and gaseous diffusion enrichment plants including their function in routine LEU production will be identified. The objectives of safeguards at an enrichment plant, including those agreed to in the Hexapartite Safeguards Project, will then be described. Discussion will then focus on potential diversion scenarios at both a centrifuge and diffusion enrichment facility and applicable safeguards inspection activities for detecting these scenarios.

  13. Total........................................................

    Gasoline and Diesel Fuel Update (EIA)

    111.1 24.5 1,090 902 341 872 780 441 Census Region and Division Northeast............................................. 20.6 6.7 1,247 1,032 Q 811 788 147 New England.................................... 5.5 1.9 1,365 1,127 Q 814 748 107 Middle Atlantic.................................. 15.1 4.8 1,182 978 Q 810 800 159 Midwest................................................ 25.6 4.6 1,349 1,133 506 895 810 346 East North Central............................ 17.7 3.2 1,483 1,239 560 968 842 351

  14. Total...........................................................

    Gasoline and Diesel Fuel Update (EIA)

    Q Table HC3.2 Living Space Characteristics by Owner-Occupied Housing Units, 2005 2 to 4 Units 5 or More Units Mobile Homes Million U.S. Housing Units Owner- Occupied Housing Units (millions) Type of Owner-Occupied Housing Unit Housing Units (millions) Single-Family Units Apartments in Buildings With-- Living Space Characteristics Detached Attached Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC3.2 Living Space

  15. Total...........................................................

    Gasoline and Diesel Fuel Update (EIA)

    Q Million U.S. Housing Units Renter- Occupied Housing Units (millions) Type of Renter-Occupied Housing Unit U.S. Housing Units (millions Single-Family Units Apartments in Buildings With-- Living Space Characteristics Detached Attached Table HC4.2 Living Space Characteristics by Renter-Occupied Housing Units, 2005 2 to 4 Units 5 or More Units Mobile Homes Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Million U.S. Housing

  16. Total............................................................

    Gasoline and Diesel Fuel Update (EIA)

  17. Total.............................................................

    Gasoline and Diesel Fuel Update (EIA)

    26.7 28.8 20.6 13.1 22.0 16.6 38.6 Personal Computers Do Not Use a Personal Computer........... 35.5 17.1 10.8 4.2 1.8 1.6 10.3 20.6 Use a Personal Computer....................... 75.6 9.6 18.0 16.4 11.3 20.3 6.4 17.9 Most-Used Personal Computer Type of PC Desk-top Model.................................. 58.6 7.6 14.2 13.1 9.2 14.6 5.0 14.5 Laptop Model...................................... 16.9 2.0 3.8 3.3 2.1 5.7 1.3 3.5 Hours Turned on Per Week Less than 2 Hours..............................

  18. Total..............................................................

    Gasoline and Diesel Fuel Update (EIA)

    ,171 1,618 1,031 845 630 401 Census Region and Division Northeast................................................... 20.6 2,334 1,664 562 911 649 220 New England.......................................... 5.5 2,472 1,680 265 1,057 719 113 Middle Atlantic........................................ 15.1 2,284 1,658 670 864 627 254 Midwest...................................................... 25.6 2,421 1,927 1,360 981 781 551 East North Central.................................. 17.7 2,483 1,926 1,269

  19. Total..............................................................

    Gasoline and Diesel Fuel Update (EIA)

    Do Not Have Cooling Equipment................ 17.8 5.3 4.7 2.8 1.9 3.1 3.6 7.5 Have Cooling Equipment............................. 93.3 21.5 24.1 17.8 11.2 18.8 13.0 31.1 Use Cooling Equipment.............................. 91.4 21.0 23.5 17.4 11.0 18.6 12.6 30.3 Have Equipment But Do Not Use it............. 1.9 0.5 0.6 0.4 Q Q 0.5 0.8 Type of Air-Conditioning Equipment 1, 2 Central System.......................................... 65.9 11.0 16.5 13.5 8.7 16.1 6.4 17.2 Without a Heat

  20. Total...............................................................

    Gasoline and Diesel Fuel Update (EIA)

    20.6 25.6 40.7 24.2 Personal Computers Do Not Use a Personal Computer ........... 35.5 6.9 8.1 14.2 6.4 Use a Personal Computer......................... 75.6 13.7 17.5 26.6 17.8 Number of Desktop PCs 1.......................................................... 50.3 9.3 11.9 18.2 11.0 2.......................................................... 16.2 2.9 3.5 5.5 4.4 3 or More............................................. 9.0 1.5 2.1 2.9 2.5 Number of Laptop PCs

  1. Total...............................................................

    Gasoline and Diesel Fuel Update (EIA)

    0.7 21.7 6.9 12.1 Personal Computers Do Not Use a Personal Computer ........... 35.5 14.2 7.2 2.8 4.2 Use a Personal Computer......................... 75.6 26.6 14.5 4.1 7.9 Number of Desktop PCs 1.......................................................... 50.3 18.2 10.0 2.9 5.3 2.......................................................... 16.2 5.5 3.0 0.7 1.8 3 or More............................................. 9.0 2.9 1.5 0.5 0.8 Number of Laptop PCs

  2. Total...............................................................

    Gasoline and Diesel Fuel Update (EIA)

    26.7 28.8 20.6 13.1 22.0 16.6 38.6 Personal Computers Do Not Use a Personal Computer ........... 35.5 17.1 10.8 4.2 1.8 1.6 10.3 20.6 Use a Personal Computer......................... 75.6 9.6 18.0 16.4 11.3 20.3 6.4 17.9 Number of Desktop PCs 1.......................................................... 50.3 8.3 14.2 11.4 7.2 9.2 5.3 14.2 2.......................................................... 16.2 0.9 2.6 3.7 2.9 6.2 0.8 2.6 3 or More............................................. 9.0 0.4 1.2

  3. Total...............................................................

    Gasoline and Diesel Fuel Update (EIA)

    47.1 19.0 22.7 22.3 Personal Computers Do Not Use a Personal Computer ........... 35.5 16.9 6.5 4.6 7.6 Use a Personal Computer......................... 75.6 30.3 12.5 18.1 14.7 Number of Desktop PCs 1.......................................................... 50.3 21.1 8.3 10.7 10.1 2.......................................................... 16.2 6.2 2.8 4.1 3.0 3 or More............................................. 9.0 2.9 1.4 3.2 1.6 Number of Laptop PCs

  4. Total.................................................................

    Gasoline and Diesel Fuel Update (EIA)

    49.2 15.1 15.6 11.1 7.0 5.2 8.0 Have Cooling Equipment............................... 93.3 31.3 15.1 15.6 11.1 7.0 5.2 8.0 Use Cooling Equipment................................ 91.4 30.4 14.6 15.4 11.1 6.9 5.2 7.9 Have Equipment But Do Not Use it............... 1.9 1.0 0.5 Q Q Q Q Q Do Not Have Cooling Equipment................... 17.8 17.8 N N N N N N Air-Conditioning Equipment 1, 2 Central System............................................. 65.9 3.9 15.1 15.6 11.1 7.0 5.2 8.0 Without a Heat

  5. Total.................................................................

    Gasoline and Diesel Fuel Update (EIA)

    14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Do Not Have Space Heating Equipment........ 1.2 N Q Q 0.2 0.4 0.2 0.2 Q Have Main Space Heating Equipment........... 109.8 14.7 7.4 12.4 12.2 18.5 18.3 17.1 9.2 Use Main Space Heating Equipment............. 109.1 14.6 7.3 12.4 12.2 18.2 18.2 17.1 9.1 Have Equipment But Do Not Use It............... 0.8 Q Q Q Q 0.3 Q N Q Main Heating Fuel and Equipment Natural Gas................................................... 58.2 9.2 4.9 7.8 7.1 8.8 8.4 7.8 4.2 Central

  6. Total..................................................................

    Gasoline and Diesel Fuel Update (EIA)

    78.1 64.1 4.2 1.8 2.3 5.7 Do Not Have Cooling Equipment..................... 17.8 11.3 9.3 0.6 Q 0.4 0.9 Have Cooling Equipment................................. 93.3 66.8 54.7 3.6 1.7 1.9 4.8 Use Cooling Equipment.................................. 91.4 65.8 54.0 3.6 1.7 1.9 4.7 Have Equipment But Do Not Use it................. 1.9 1.1 0.8 Q N Q Q Type of Air-Conditioning Equipment 1, 2 Central System.............................................. 65.9 51.7 43.9 2.5 0.7 1.6 3.1 Without a Heat

  7. Total..................................................................

    Gasoline and Diesel Fuel Update (EIA)

    33.0 8.0 3.4 5.9 14.4 1.2 Do Not Have Cooling Equipment..................... 17.8 6.5 1.6 0.9 1.3 2.4 0.2 Have Cooling Equipment................................. 93.3 26.5 6.5 2.5 4.6 12.0 1.0 Use Cooling Equipment.................................. 91.4 25.7 6.3 2.5 4.4 11.7 0.8 Have Equipment But Do Not Use it................. 1.9 0.8 Q Q 0.2 0.3 Q Type of Air-Conditioning Equipment 1, 2 Central System.............................................. 65.9 14.1 3.6 1.5 2.1 6.4 0.6 Without a Heat

  8. Total..................................................................

    Gasoline and Diesel Fuel Update (EIA)

    . 111.1 14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Do Not Have Cooling Equipment..................... 17.8 3.9 1.8 2.2 2.1 3.1 2.6 1.7 0.4 Have Cooling Equipment................................. 93.3 10.8 5.6 10.3 10.4 15.8 16.0 15.6 8.8 Use Cooling Equipment.................................. 91.4 10.6 5.5 10.3 10.3 15.3 15.7 15.3 8.6 Have Equipment But Do Not Use it................. 1.9 Q Q Q Q 0.6 0.4 0.3 Q Type of Air-Conditioning Equipment 1, 2 Central

  9. Total...................................................................

    Gasoline and Diesel Fuel Update (EIA)

    15.2 7.8 1.0 1.2 3.3 1.9 For Two Housing Units............................. 0.9 Q N Q 0.6 N Heat Pump.................................................. 9.2 7.4 0.3 Q 0.7 0.5 Portable Electric Heater............................... 1.6 0.8 Q Q Q 0.3 Other Equipment......................................... 1.9 0.7 Q Q 0.7 Q Fuel Oil........................................................... 7.7 5.5 0.4 0.8 0.9 0.2 Steam or Hot Water System........................ 4.7 2.9 Q 0.7 0.8 N For One Housing

  10. Total...................................................................

    Gasoline and Diesel Fuel Update (EIA)

    Air-Conditioning Equipment 1, 2 Central System............................................... 65.9 47.5 4.0 2.8 7.9 3.7 Without a Heat Pump.................................. 53.5 37.8 3.4 2.2 7.0 3.1 With a Heat Pump....................................... 12.3 9.7 0.6 0.5 1.0 0.6 Window/Wall Units.......................................... 28.9 14.9 2.3 3.5 6.0 2.1 1 Unit........................................................... 14.5 6.6 1.0 1.6 4.2 1.2 2

  11. Total...................................................................

    Gasoline and Diesel Fuel Update (EIA)

    Type of Air-Conditioning Equipment 1, 2 Central System.............................................. 65.9 47.5 4.0 2.8 7.9 3.7 Without a Heat Pump.................................. 53.5 37.8 3.4 2.2 7.0 3.1 With a Heat Pump....................................... 12.3 9.7 0.6 0.5 1.0 0.6 Window/Wall Units........................................ 28.9 14.9 2.3 3.5 6.0 2.1 1 Unit........................................................... 14.5 6.6 1.0 1.6 4.2 1.2 2

  12. Total.......................................................................

    Gasoline and Diesel Fuel Update (EIA)

    0.6 15.1 5.5 Personal Computers Do Not Use a Personal Computer ................... 35.5 6.9 5.3 1.6 Use a Personal Computer................................ 75.6 13.7 9.8 3.9 Number of Desktop PCs 1.................................................................. 50.3 9.3 6.8 2.5 2.................................................................. 16.2 2.9 1.9 1.0 3 or More..................................................... 9.0 1.5 1.1 0.4 Number of Laptop PCs

  13. Total.......................................................................

    Gasoline and Diesel Fuel Update (EIA)

    5.6 17.7 7.9 Personal Computers Do Not Use a Personal Computer ................... 35.5 8.1 5.6 2.5 Use a Personal Computer................................ 75.6 17.5 12.1 5.4 Number of Desktop PCs 1.................................................................. 50.3 11.9 8.4 3.4 2.................................................................. 16.2 3.5 2.2 1.3 3 or More..................................................... 9.0 2.1 1.5 0.6 Number of Laptop PCs

  14. Total.......................................................................

    Gasoline and Diesel Fuel Update (EIA)

    4.2 7.6 16.6 Personal Computers Do Not Use a Personal Computer ................... 35.5 6.4 2.2 4.2 Use a Personal Computer................................ 75.6 17.8 5.3 12.5 Number of Desktop PCs 1.................................................................. 50.3 11.0 3.4 7.6 2.................................................................. 16.2 4.4 1.3 3.1 3 or More..................................................... 9.0 2.5 0.7 1.8 Number of Laptop PCs

  15. Total........................................................................

    Gasoline and Diesel Fuel Update (EIA)

    25.6 40.7 24.2 Do Not Have Space Heating Equipment............... 1.2 Q Q Q 0.7 Have Main Space Heating Equipment.................. 109.8 20.5 25.6 40.3 23.4 Use Main Space Heating Equipment.................... 109.1 20.5 25.6 40.1 22.9 Have Equipment But Do Not Use It...................... 0.8 N N Q 0.6 Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 11.4 18.4 13.6 14.7 Central Warm-Air Furnace................................ 44.7 6.1

  16. Total........................................................................

    Gasoline and Diesel Fuel Update (EIA)

    15.1 5.5 Do Not Have Space Heating Equipment............... 1.2 Q Q Q Have Main Space Heating Equipment.................. 109.8 20.5 15.1 5.4 Use Main Space Heating Equipment.................... 109.1 20.5 15.1 5.4 Have Equipment But Do Not Use It...................... 0.8 N N N Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 11.4 9.1 2.3 Central Warm-Air Furnace................................ 44.7 6.1 5.3 0.8 For One Housing

  17. Total........................................................................

    Gasoline and Diesel Fuel Update (EIA)

    5.6 17.7 7.9 Do Not Have Space Heating Equipment............... 1.2 Q Q N Have Main Space Heating Equipment.................. 109.8 25.6 17.7 7.9 Use Main Space Heating Equipment.................... 109.1 25.6 17.7 7.9 Have Equipment But Do Not Use It...................... 0.8 N N N Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 18.4 13.1 5.3 Central Warm-Air Furnace................................ 44.7 16.2 11.6 4.7 For One Housing

  18. Total........................................................................

    Gasoline and Diesel Fuel Update (EIA)

    0.7 21.7 6.9 12.1 Do Not Have Space Heating Equipment............... 1.2 Q Q N Q Have Main Space Heating Equipment.................. 109.8 40.3 21.4 6.9 12.0 Use Main Space Heating Equipment.................... 109.1 40.1 21.2 6.9 12.0 Have Equipment But Do Not Use It...................... 0.8 Q Q N N Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 13.6 5.6 2.3 5.7 Central Warm-Air Furnace................................ 44.7 11.0 4.4

  19. Total........................................................................

    Gasoline and Diesel Fuel Update (EIA)

    4.2 7.6 16.6 Do Not Have Space Heating Equipment............... 1.2 0.7 Q 0.7 Have Main Space Heating Equipment.................. 109.8 23.4 7.5 16.0 Use Main Space Heating Equipment.................... 109.1 22.9 7.4 15.4 Have Equipment But Do Not Use It...................... 0.8 0.6 Q 0.5 Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 14.7 4.6 10.1 Central Warm-Air Furnace................................ 44.7 11.4 4.0 7.4 For One

  20. Total........................................................................

    Gasoline and Diesel Fuel Update (EIA)

    7.1 7.0 8.0 12.1 Do Not Have Space Heating Equipment............... 1.2 Q Q Q 0.2 Have Main Space Heating Equipment.................. 109.8 7.1 6.8 7.9 11.9 Use Main Space Heating Equipment.................... 109.1 7.1 6.6 7.9 11.4 Have Equipment But Do Not Use It...................... 0.8 N Q N 0.5 Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 3.8 0.4 3.8 8.4 Central Warm-Air Furnace................................ 44.7 1.8 Q 3.1 6.0

  1. Total........................................................................

    Gasoline and Diesel Fuel Update (EIA)

    7.1 19.0 22.7 22.3 Do Not Have Space Heating Equipment............... 1.2 0.7 Q 0.2 Q Have Main Space Heating Equipment.................. 109.8 46.3 18.9 22.5 22.1 Use Main Space Heating Equipment.................... 109.1 45.6 18.8 22.5 22.1 Have Equipment But Do Not Use It...................... 0.8 0.7 Q N N Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 27.0 11.9 14.9 4.3 Central Warm-Air Furnace................................ 44.7

  2. Total...........................................................................

    Gasoline and Diesel Fuel Update (EIA)

    0.6 15.1 5.5 Do Not Have Cooling Equipment............................. 17.8 4.0 2.4 1.7 Have Cooling Equipment.......................................... 93.3 16.5 12.8 3.8 Use Cooling Equipment........................................... 91.4 16.3 12.6 3.7 Have Equipment But Do Not Use it.......................... 1.9 0.3 Q Q Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 6.0 5.2 0.8 Without a Heat

  3. Total...........................................................................

    Gasoline and Diesel Fuel Update (EIA)

    5.6 17.7 7.9 Do Not Have Cooling Equipment............................. 17.8 2.1 1.8 0.3 Have Cooling Equipment.......................................... 93.3 23.5 16.0 7.5 Use Cooling Equipment........................................... 91.4 23.4 15.9 7.5 Have Equipment But Do Not Use it.......................... 1.9 Q Q Q Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 17.3 11.3 6.0 Without a Heat

  4. Total...........................................................................

    Gasoline and Diesel Fuel Update (EIA)

    4.2 7.6 16.6 Do Not Have Cooling Equipment............................. 17.8 10.3 3.1 7.3 Have Cooling Equipment.......................................... 93.3 13.9 4.5 9.4 Use Cooling Equipment........................................... 91.4 12.9 4.3 8.5 Have Equipment But Do Not Use it.......................... 1.9 1.0 Q 0.8 Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 10.5 3.9 6.5 Without a Heat

  5. Total.............................................................................

    Gasoline and Diesel Fuel Update (EIA)

    Do Not Have Cooling Equipment............................... 17.8 4.0 2.1 1.4 10.3 Have Cooling Equipment............................................ 93.3 16.5 23.5 39.3 13.9 Use Cooling Equipment............................................. 91.4 16.3 23.4 38.9 12.9 Have Equipment But Do Not Use it............................ 1.9 0.3 Q 0.5 1.0 Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 6.0 17.3 32.1 10.5 Without a Heat

  6. Total.............................................................................

    Gasoline and Diesel Fuel Update (EIA)

    Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day......................................... 8.2 1.2 1.0 0.2 2 Times A Day...................................................... 24.6 4.0 2.7 1.2 Once a Day........................................................... 42.3 7.9 5.4 2.5 A Few Times Each Week...................................... 27.2 6.0 4.8 1.2 About Once a Week.............................................. 3.9 0.6 0.5 Q Less Than Once a

  7. Total.............................................................................

    Gasoline and Diesel Fuel Update (EIA)

    Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day......................................... 8.2 1.4 1.0 0.4 2 Times A Day...................................................... 24.6 5.8 3.5 2.3 Once a Day........................................................... 42.3 10.7 7.8 2.9 A Few Times Each Week...................................... 27.2 5.6 4.0 1.6 About Once a Week.............................................. 3.9 0.9 0.6 0.3 Less Than Once a

  8. Total.............................................................................

    Gasoline and Diesel Fuel Update (EIA)

    Do Not Have Cooling Equipment............................... 17.8 2.1 1.8 0.3 Have Cooling Equipment............................................ 93.3 23.5 16.0 7.5 Use Cooling Equipment............................................. 91.4 23.4 15.9 7.5 Have Equipment But Do Not Use it............................ 1.9 Q Q Q Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 17.3 11.3 6.0 Without a Heat

  9. Total.............................................................................

    Gasoline and Diesel Fuel Update (EIA)

    Do Not Have Cooling Equipment............................... 17.8 1.4 0.8 0.2 0.3 Have Cooling Equipment............................................ 93.3 39.3 20.9 6.7 11.8 Use Cooling Equipment............................................. 91.4 38.9 20.7 6.6 11.7 Have Equipment But Do Not Use it............................ 1.9 0.5 Q Q Q Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 32.1 17.6 5.2 9.3 Without a Heat

  10. Total.............................................................................

    Gasoline and Diesel Fuel Update (EIA)

    Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day......................................... 8.2 2.6 0.7 1.9 2 Times A Day...................................................... 24.6 6.6 2.0 4.6 Once a Day........................................................... 42.3 8.8 2.9 5.8 A Few Times Each Week...................................... 27.2 4.7 1.5 3.1 About Once a Week.............................................. 3.9 0.7 Q 0.6 Less Than Once a

  11. Total.............................................................................

    Gasoline and Diesel Fuel Update (EIA)

    Do Not Have Cooling Equipment............................... 17.8 10.3 3.1 7.3 Have Cooling Equipment............................................ 93.3 13.9 4.5 9.4 Use Cooling Equipment............................................. 91.4 12.9 4.3 8.5 Have Equipment But Do Not Use it............................ 1.9 1.0 Q 0.8 Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 10.5 3.9 6.5 Without a Heat

  12. Total.............................................................................

    Gasoline and Diesel Fuel Update (EIA)

    Do Not Have Cooling Equipment............................... 17.8 8.5 2.7 2.6 4.0 Have Cooling Equipment............................................ 93.3 38.6 16.2 20.1 18.4 Use Cooling Equipment............................................. 91.4 37.8 15.9 19.8 18.0 Have Equipment But Do Not Use it............................ 1.9 0.9 0.3 0.3 0.4 Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 25.8 10.9 16.6 12.5 Without a Heat

  13. Total..............................................................................

    Gasoline and Diesel Fuel Update (EIA)

    20.6 25.6 40.7 24.2 Do Not Have Cooling Equipment................................ 17.8 4.0 2.1 1.4 10.3 Have Cooling Equipment............................................. 93.3 16.5 23.5 39.3 13.9 Use Cooling Equipment.............................................. 91.4 16.3 23.4 38.9 12.9 Have Equipment But Do Not Use it............................. 1.9 0.3 Q 0.5 1.0 Air-Conditioning Equipment 1, 2 Central System........................................................... 65.9 6.0 17.3 32.1 10.5

  14. Total..............................................................................

    Gasoline and Diesel Fuel Update (EIA)

    0.7 21.7 6.9 12.1 Do Not Have Cooling Equipment................................ 17.8 1.4 0.8 0.2 0.3 Have Cooling Equipment............................................. 93.3 39.3 20.9 6.7 11.8 Use Cooling Equipment.............................................. 91.4 38.9 20.7 6.6 11.7 Have Equipment But Do Not Use it............................. 1.9 0.5 Q Q Q Air-Conditioning Equipment 1, 2 Central System........................................................... 65.9 32.1 17.6 5.2 9.3 Without a

  15. Total..............................................................................

    Gasoline and Diesel Fuel Update (EIA)

    111.1 7.1 7.0 8.0 12.1 Personal Computers Do Not Use a Personal Computer .......................... 35.5 3.0 2.0 2.7 3.1 Use a Personal Computer....................................... 75.6 4.2 5.0 5.3 9.0 Number of Desktop PCs 1......................................................................... 50.3 3.1 3.4 3.4 5.4 2......................................................................... 16.2 0.7 1.1 1.2 2.2 3 or More............................................................ 9.0 0.3

  16. Total..............................................................................

    Gasoline and Diesel Fuel Update (EIA)

    7.1 19.0 22.7 22.3 Do Not Have Cooling Equipment................................ 17.8 8.5 2.7 2.6 4.0 Have Cooling Equipment............................................. 93.3 38.6 16.2 20.1 18.4 Use Cooling Equipment.............................................. 91.4 37.8 15.9 19.8 18.0 Have Equipment But Do Not Use it............................. 1.9 0.9 0.3 0.3 0.4 Air-Conditioning Equipment 1, 2 Central System........................................................... 65.9 25.8 10.9 16.6 12.5

  17. Total.................................................................................

    Gasoline and Diesel Fuel Update (EIA)

    ... 111.1 20.6 15.1 5.5 Do Not Have Cooling Equipment................................. 17.8 4.0 2.4 1.7 Have Cooling Equipment............................................. 93.3 16.5 12.8 3.8 Use Cooling Equipment............................................... 91.4 16.3 12.6 3.7 Have Equipment But Do Not Use it............................. 1.9 0.3 Q Q Type of Air-Conditioning Equipment 1, 2 Central System.......................................................... 65.9 6.0 5.2 0.8 Without a Heat

  18. Total.................................................................................

    Gasoline and Diesel Fuel Update (EIA)

    7.1 7.0 8.0 12.1 Do Not Have Cooling Equipment................................... 17.8 1.8 Q Q 4.9 Have Cooling Equipment................................................ 93.3 5.3 7.0 7.8 7.2 Use Cooling Equipment................................................. 91.4 5.3 7.0 7.7 6.6 Have Equipment But Do Not Use it............................... 1.9 Q N Q 0.6 Air-Conditioning Equipment 1, 2 Central System.............................................................. 65.9 1.1 6.4 6.4 5.4 Without a

  19. Total....................................................................................

    Gasoline and Diesel Fuel Update (EIA)

    25.6 40.7 24.2 Personal Computers Do Not Use a Personal Computer.................................. 35.5 6.9 8.1 14.2 6.4 Use a Personal Computer.............................................. 75.6 13.7 17.5 26.6 17.8 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 10.4 14.1 20.5 13.7 Laptop Model............................................................. 16.9 3.3 3.4 6.1 4.1 Hours Turned on Per Week Less than 2

  20. Total....................................................................................

    Gasoline and Diesel Fuel Update (EIA)

    5.6 17.7 7.9 Personal Computers Do Not Use a Personal Computer.................................. 35.5 8.1 5.6 2.5 Use a Personal Computer.............................................. 75.6 17.5 12.1 5.4 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 14.1 10.0 4.0 Laptop Model............................................................. 16.9 3.4 2.1 1.3 Hours Turned on Per Week Less than 2

  1. Total....................................................................................

    Gasoline and Diesel Fuel Update (EIA)

    Personal Computers Do Not Use a Personal Computer.................................. 35.5 14.2 7.2 2.8 4.2 Use a Personal Computer.............................................. 75.6 26.6 14.5 4.1 7.9 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 20.5 11.0 3.4 6.1 Laptop Model............................................................. 16.9 6.1 3.5 0.7 1.9 Hours Turned on Per Week Less than 2

  2. Total....................................................................................

    Gasoline and Diesel Fuel Update (EIA)

    4.2 7.6 16.6 Personal Computers Do Not Use a Personal Computer.................................. 35.5 6.4 2.2 4.2 Use a Personal Computer.............................................. 75.6 17.8 5.3 12.5 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 13.7 4.2 9.5 Laptop Model............................................................. 16.9 4.1 1.1 3.0 Hours Turned on Per Week Less than 2

  3. Total....................................................................................

    Gasoline and Diesel Fuel Update (EIA)

    111.1 47.1 19.0 22.7 22.3 Personal Computers Do Not Use a Personal Computer.................................. 35.5 16.9 6.5 4.6 7.6 Use a Personal Computer.............................................. 75.6 30.3 12.5 18.1 14.7 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 22.9 9.8 14.1 11.9 Laptop Model............................................................. 16.9 7.4 2.7 4.0 2.9 Hours Turned on Per Week Less than 2

  4. Total.........................................................................................

    Gasoline and Diesel Fuel Update (EIA)

    ..... 111.1 7.1 7.0 8.0 12.1 Personal Computers Do Not Use a Personal Computer...................................... 35.5 3.0 2.0 2.7 3.1 Use a Personal Computer.................................................. 75.6 4.2 5.0 5.3 9.0 Most-Used Personal Computer Type of PC Desk-top Model............................................................. 58.6 3.2 3.9 4.0 6.7 Laptop Model................................................................. 16.9 1.0 1.1 1.3 2.4 Hours Turned on Per Week Less

  5. Total..........................................................

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... 2.0 0.4 Q 0.3 Basements Basement in Single-Family Homes and Apartments in 2-4 Unit Buildings Yes......

  6. Total..........................................................

    Gasoline and Diesel Fuel Update (EIA)

    Housing Units Living Space Characteristics Attached 2 to 4 Units 5 or More Units Mobile Homes Apartments in Buildings With-- Housing Units (millions) Single-Family Units Detached...

  7. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Living Space Characteristics Below Poverty Line Eligible for Federal Assistance 1 Million ... Living Space Characteristics Below Poverty Line Eligible for Federal Assistance 1 Million ...

  8. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Below Poverty Line Eligible for Federal Assistance 1 80,000 or More 60,000 to 79,999 ... Below Poverty Line Eligible for Federal Assistance 1 80,000 or More 60,000 to 79,999 ...

  9. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Table HC7.4 Space Heating Characteristics by Household Income, 2005 Below Poverty Line ... Below Poverty Line Eligible for Federal Assistance 1 80,000 or More Space Heating ...

  10. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Table HC7.10 Home Appliances Usage Indicators by Household Income, 2005 Below Poverty Line ... Below Poverty Line Eligible for Federal Assistance 1 40,000 to 59,999 60,000 to 79,999 ...

  11. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Income Relative to Poverty Line Below 100 Percent......1.3 1.2 0.8 0.4 1. Below 150 percent of poverty line or 60 percent of median State ...

  12. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Table HC13.10 Home Appliances Usage Indicators by South Census Region, 2005 Million U.S. Housing Units South Census Region Home Appliances Usage Indicators South Atlantic East ...

  13. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Table HC8.10 Home Appliances Usage Indicators by UrbanRural Location, 2005 Million U.S. Housing Units UrbanRural Location (as Self-Reported) Housing Units (millions) Home ...

  14. Total..............................................

    U.S. Energy Information Administration (EIA) Indexed Site

    ... 14.8 10.5 2,263 1,669 1,079 1,312 1,019 507 N N N ConcreteConcrete Block... 5.3 3.4 2,393 1,660 1,614 Q Q Q Q Q Q Composition...

  15. ORISE: Stay Rates of Foreign Doctorate Recipients from U.S. Universiti...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stay Rates of Foreign Doctorate Recipients ORISE staff monitor how well U.S. does at attracting and retaining foreign scientists and engineers International scientists in a...

  16. WC_1992_002_CLASS_WAIVER_of_the_Government_US_and_Foreign_Pa...

    Energy Savers [EERE]

    2002CLASSWAIVERoftheGovernmentUSandForeignPa.pdf WC1992002CLASSWAIVERoftheGovernmentUSandForeignPa.pdf WC1992002CLASSWAIVERoftheGovernmentUSandForeig...

  17. Our Dependence on Foreign Oil Is Declining | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dependence on Foreign Oil Is Declining Our Dependence on Foreign Oil Is Declining March 1, 2012 - 11:02am Addthis Image courtesy of whitehouse.gov Image courtesy of whitehouse.gov Megan Slack Deputy Director of Digital Content, White House Office of Digital Strategy What are the key facts? America's dependence on foreign oil has decreased every year since President Obama took office. We need an all-out, all-of-the-above strategy to protect Americans from high energy prices in the long run.

  18. Realities of verifying the absence of highly enriched uranium (HEU) in gas centrifuge enrichment plants

    SciTech Connect (OSTI)

    Swindle, D.W.

    1990-03-01

    Over a two and one-half year period beginning in 1981, representatives of six countries (United States, United Kingdom, Federal Republic of Germany, Australia, The Netherlands, and Japan) and the inspectorate organizations of the International Atomic Energy Agency and EURATOM developed and agreed to a technically sound approach for verifying the absence of highly enriched uranium (HEU) in gas centrifuge enrichment plants. This effort, known as the Hexapartite Safeguards Project (HSP), led to the first international concensus on techniques and requirements for effective verification of the absence of weapons-grade nuclear materials production. Since that agreement, research and development has continued on the radiation detection technology-based technique that technically confirms the HSP goal is achievable. However, the realities of achieving the HSP goal of effective technical verification have not yet been fully attained. Issues such as design and operating conditions unique to each gas centrifuge plant, concern about the potential for sensitive technology disclosures, and on-site support requirements have hindered full implementation and operator support of the HSP agreement. In future arms control treaties that may limit or monitor fissile material production, the negotiators must recognize and account for the realities and practicalities in verifying the absence of HEU production. This paper will describe the experiences and realities of trying to achieve the goal of developing and implementing an effective approach for verifying the absence of HEU production. 3 figs.

  19. Enriching stable isotopes: Alternative use for Urenco technology

    SciTech Connect (OSTI)

    Rakhorst, H.; de Jong, P.G.T.; Dawson, P.D.

    1996-12-31

    The International Urenco Group utilizes a technologically advanced centrifuge process to enrich uranium in the fissionable isotope {sup 235}U. The group operates plants in the United Kingdom, the Netherlands, and Germany and currently holds a 10% share of the multibillion dollar world enrichment market. In the early 1990s, Urenco embarked on a strategy of building on the company`s uniquely advanced centrifuge process and laser isotope separation (LIS) experience to enrich nonradioactive isotopes colloquially known as stable isotopes. This paper summarizes the present status of Urenco`s stable isotopes business.

  20. Development of an enrichment monitor for the Portsmouth GCEP

    SciTech Connect (OSTI)

    Strittmatter, R.B.; Stovall, L.A.; Sprinkle, J.K. Jr.

    1983-01-01

    We have developed a gas-phase UF/sub 6/ enrichment monitor for use by the International Atomic Energy Agency at the Portsmouth Gas Centrifuge Enrichment Plant. The enrichment monitoring system provides a method for effective nuclear materials accountability verification while reducing the effort for both the facility operator and the inspector. The experience with an inplant prototype monitor, the facility and operational constraints, and the constraints related to international safeguards inspection are described in terms of the impact on the monitor design.

  1. Profiles of foreign direct investment in US energy, 1991. [Contains a table of completed foreign direct investment transactions for 1991

    SciTech Connect (OSTI)

    Not Available

    1993-04-01

    Profiles of Foreign Direct Investment in US Energy 1991 describes the role of foreign ownership in US energy enterprises, with respect to investment, energy operations, and financial performance. Additionally, since energy investments are made in a global context, outward investment in energy is reviewed trough an examination of US-based companies' patterns of investment in foreign petroleum. The data used in this report come from the Energy Information Administration (EIA), the US Department of Commerce, company annual reports, and public disclosures of investment transactions.

  2. State Administration for Foreign Exchange | Open Energy Information

    Open Energy Info (EERE)

    State Administration for Foreign Exchange Jump to: navigation, search TODO: More information needed This article is a stub. You can help OpenEI by expanding it. China's State...

  3. Committee on Foreign Investment in the United States

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2010-10-08

    The order establishes the requirements and responsibilities for DOE in meeting its statutory obligations for the review of covered transactions filed with the Committee on Foreign Investment in the United States (CFIUS). Admin Chg 1, dated 4-21-14.

  4. Hosting foreign educators | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    expertise to foreign countries. Through the INS, Y-12 will work with the State Department for similar visits in the near future with Jordan, the United Arab Emirates, and others...

  5. Ion laser isotope enrichment by photo-predissociation of formaldehyde

    DOE Patents [OSTI]

    Marling, John B.

    1977-06-17

    Enrichment of carbon, hydrogen and/or oxygen isotopes by means of isotopically selective photo-predissociation of formaldehyde is achieved by irradiation with a fixed frequency ion laser, specifically, a neon, cadmium, or xenon ion laser.

  6. Description of the Portsmouth Gas Centrifuge Enrichment Plant

    SciTech Connect (OSTI)

    Arthur, W.B.

    1980-12-16

    The Portsmouth Gas Centrifuge Enrichment Plant (GCEP) will be located at the site of the Portsmouth Gaseous Diffusion Plant in Piketon, Ohio. The purpose of the facility is to provide enriching services for the production of low assay enriched uranium for civilian nuclear power reactors. The construction and operation of the GCEP is administered by the US Department of Energy. The facility will be operated under contract from the US Government. Control of the GCEP rests solely with the US Government, which holds and controls access to the technology. Construction of GCEP is expected to be completed in the mid-1990's. Many facility design and operating procedures are subject to change. Nonetheless, the design described in this report does reflect current thinking. Descriptions of the general facility and major buildings such as the process buildings, feed and withdrawal building, cylinder storage and transfer, recycle/assembly building, and a summary of the centrifuge uranium enriching process are provided in this report.

  7. German Pebble Bed Research Reactor Highly Enriched Uranium (HEU) Fuel

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Potential Acceptance and Disposition of German Pebble Bed Research Reactor Highly Enriched Uranium (HEU) Fuel Environmental Assessment Maxcine Maxted, DOE-SR Used Nuclear Fuel Program Manager June 24, 2014 Public Scoping Meeting

  8. ORISE: Securing the Golden State from threats foreign and domestic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Securing the Golden State from threats foreign and domestic ORISE helps California emergency planners with innovative training on state and local levels To protect the state of California from both foreign and domestic threats, ORISE supports the California Governor's Office of Emergency Services (CalOES)-an agency which aims to protect lives and property by effectively preparing for, preventing, responding to, and recovering from all threats, crimes, hazards, and emergencies. How ORISE is

  9. Foreign DNA Capture during CRISPR-CAS Adaptive Immunity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Foreign DNA Capture during CRISPR-CAS Adaptive Immunity Foreign DNA Capture during CRISPR-CAS Adaptive Immunity Print Thursday, 21 January 2016 16:45 While we humans view bacteria as the enemy, bacteria have enemies too, for example, viruses. To protect themselves, bacteria have developed an adaptive-type immune system that revolves around a unit of DNA known as CRISPR, which stands for Clustered Regularly Interspaced Short Palindromic Repeats. A CRISPR unit of DNA is made up of

  10. A Tradition of Welcoming Foreign Scientists and Engineers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tradition National Security Science Latest Issue:July 2015 past issues All Issues » submit A Tradition of Welcoming Foreign Scientists and Engineers Nuclear scientists, including future Nobel laureates, fleeing fascist persecution found a new home at Los Alamos during World War II, where they made a huge contribution to U.S. nuclear weapons research. July 1, 2015 A Tradition of Welcoming Foreign Scientists and Engineers Legendary Nobel Prize-winning physicist Hans Bethe with Enrico Fermi, Bruno

  11. The Department of Energy's Management of Foreign Travel, IG-0872

    Energy Savers [EERE]

    The Department of Energy's Management of Foreign Travel DOE/IG-0872 October 2012 U.S. Department of Energy Office of Inspector General Office of Audits and Inspections Department of Energy Washington, DC 20585 October 16, 2012 MEMORANDUM FOR THE SECRETARY FROM: Gregory H. Friedman Inspector General SUBJECT: INFORMATION: Management Alert: "The Department of Energy's Management of Foreign Travel" INTRODUCTION The Department of Energy and its workforce of 116,000 Federal and contractor

  12. Bush Administration Establishes Program to Reduce Foreign Oil Dependency,

    Energy Savers [EERE]

    Greenhouse Gases | Department of Energy Establishes Program to Reduce Foreign Oil Dependency, Greenhouse Gases Bush Administration Establishes Program to Reduce Foreign Oil Dependency, Greenhouse Gases April 10, 2007 - 12:34pm Addthis WASHINGTON, DC - In step with the Bush Administration's call to increase the supply of alternative and renewable fuels nationwide, the U.S. Environmental Protection Agency today established the nation's first comprehensive Renewable Fuel Standard (RFS) program.

  13. PNNL Breakthrough Leads to Less Foreign Oil, More American Jobs |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy PNNL Breakthrough Leads to Less Foreign Oil, More American Jobs PNNL Breakthrough Leads to Less Foreign Oil, More American Jobs October 17, 2011 - 2:50pm Addthis A highly efficient catalyst to convert renewable crops into the product propylene glycol was discovered by scientists at the Pacific Northwest National Laboratory (PNNL) and commercialized by the Archer Daniels Midland Company. | Image courtesy of PNNL. A highly efficient catalyst to convert renewable crops into

  14. Secretary Moniz's Testimony Before the Senate Foreign affairs Committee on

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Iran Deal -- As Prepared | Department of Energy Testimony Before the Senate Foreign affairs Committee on the Iran Deal -- As Prepared Secretary Moniz's Testimony Before the Senate Foreign affairs Committee on the Iran Deal -- As Prepared July 23, 2015 - 5:43pm Addthis Dr. Ernest Moniz Dr. Ernest Moniz Secretary of Energy Chairman Corker, Ranking Member Cardin and Members of the Committee, thank you for the opportunity to discuss the historic Joint Comprehensive Plan of Action (JCPOA)

  15. Peak fitting applied to low-resolution enrichment measurements

    SciTech Connect (OSTI)

    Bracken, D.; McKown, T.; Sprinkle, J.K. Jr.; Gunnink, R.; Kartoshov, M.; Kuropatwinski, J.; Raphina, G.; Sokolov, G.

    1998-12-01

    Materials accounting at bulk processing facilities that handle low enriched uranium consists primarily of weight and uranium enrichment measurements. Most low enriched uranium processing facilities draw separate materials balances for each enrichment handled at the facility. The enrichment measurement determines the isotopic abundance of the {sup 235}U, thereby determining the proper strata for the item, while the weight measurement generates the primary accounting value for the item. Enrichment measurements using the passive gamma radiation from uranium were developed for use in US facilities a few decades ago. In the US, the use of low-resolution detectors was favored because they cost less, are lighter and more robust, and don`t require the use of liquid nitrogen. When these techniques were exported to Europe, however, difficulties were encountered. Two of the possible root causes were discovered to be inaccurate knowledge of the container wall thickness and higher levels of minor isotopes of uranium introduced by the use of reactor returns in the enrichment plants. the minor isotopes cause an increase in the Compton continuum under the 185.7 keV assay peak and the observance of interfering 238.6 keV gamma rays. The solution selected to address these problems was to rely on the slower, more costly, high-resolution gamma ray detectors when the low-resolution method failed. Recently, these gamma ray based enrichment measurement techniques have been applied to Russian origin material. The presence of interfering gamma radiation from minor isotopes was confirmed. However, with the advent of fast portable computers, it is now possible to apply more sophisticated analysis techniques to the low-resolution data in the field. Explicit corrections for Compton background, gamma rays from {sup 236}U daughters, and the attenuation caused by thick containers can be part of the least squares fitting routine. Preliminary results from field measurements in Kazakhstan will be discussed.

  16. News Media invited to interview JLab summer, science enrichment program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    participants; cover closing Poster Session | Jefferson Lab 2003 Education Poster Session 2003 Education Poster Session News Media invited to interview JLab summer, science enrichment program participants; cover closing Poster Session July 28, 2004 Newport News, VA. - News Media representatives are invited to interview, photograph or film participants of Jefferson Lab's summer, science enrichment programs as the high school and college students share their summer experiences and projects with

  17. News Media invited to interview Jefferson Lab summer science enrichment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    program participants; cover closing Poster Session | Jefferson Lab News Media invited to interview Jefferson Lab summer science enrichment program participants; cover closing Poster Session August 1, 2007 News Media representatives are invited to interview, photograph and/or film participants of Jefferson Lab's summer science enrichment programs as they share their summer experiences and projects with JLab staff during a Poster Session scheduled for Friday, Aug. 3, from 11:30 a.m.-1:30 p.m.

  18. Energy Department Selects Global Laser Enrichment for Future Operations at

    Energy Savers [EERE]

    Paducah Site | Department of Energy Global Laser Enrichment for Future Operations at Paducah Site Energy Department Selects Global Laser Enrichment for Future Operations at Paducah Site November 27, 2013 - 12:00pm Addthis Workers inspect cylinders containing depleted uranium hexafluoride. Workers inspect cylinders containing depleted uranium hexafluoride. Media Contact (202) 586-4940 Washington, D.C. - The U.S. Department of Energy announced today that it will open negotiations with Global

  19. Special Nuclear Materials: EM Manages Plutonium, Highly Enriched Uranium

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Uranium-233 | Department of Energy Waste Management » Nuclear Materials & Waste » Special Nuclear Materials: EM Manages Plutonium, Highly Enriched Uranium and Uranium-233 Special Nuclear Materials: EM Manages Plutonium, Highly Enriched Uranium and Uranium-233 105-K building houses the K-Area Material Storage (KAMS) facility, designated for the consolidated storage of surplus plutonium at Savannah River Site pending disposition. The plutonium shipped to KAMS is sealed inside a

  20. Jefferson Lab Seeks Applicants for Science Teacher Enrichment Program |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jefferson Lab Seeks Applicants for Science Teacher Enrichment Program March 14, 2001 Calling all middle school teachers who instruct science classes. Jefferson Lab would like to help you refresh and hone your science knowledge and teaching skills over the summer. The Department of Energy physics research lab, located at 12000 Jefferson Ave. in Newport News, is seeking applications for its four-week, summer physics enrichment program for science teachers. The program consists of a mini-course

  1. Jefferson Lab seeks applicants for summer, science teacher enrichment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    program | Jefferson Lab seeks applicants for summer, science teacher enrichment program February 26, 2003 Calling all middle school teachers who instruct science classes. Jefferson Lab would like to help you refresh and hone your science knowledge and teaching skills over the summer. The Department of Energy physics research lab, located at 12000 Jefferson Ave. in Newport News, is seeking applications for its four-week, summer physics enrichment program for science teachers. The program

  2. Report on the Effect the Low Enriched Uranium Delivered Under the Highly

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Enriched Uranium Agreement Between the USA and the Russian Federation has on the Domestic Uranium Mining, Conversion, and Enrichment Industries and the Ops of the Gaseous Diffusion | Department of Energy on the Effect the Low Enriched Uranium Delivered Under the Highly Enriched Uranium Agreement Between the USA and the Russian Federation has on the Domestic Uranium Mining, Conversion, and Enrichment Industries and the Ops of the Gaseous Diffusion Report on the Effect the Low Enriched Uranium

  3. Signatures and Methods for the Automated Nondestructive Assay of UF6 Cylinders at Uranium Enrichment Plants

    SciTech Connect (OSTI)

    Smith, Leon E.; Mace, Emily K.; Misner, Alex C.; Shaver, Mark W.

    2010-08-08

    International Atomic Energy Agency (IAEA) inspectors currently perform periodic inspections at uranium enrichment plants to verify UF6 cylinder enrichment declarations. Measurements are typically performed with handheld high-resolution sensors on a sampling of cylinders taken to be representative of the facilitys entire cylinder inventory. These measurements are time-consuming, expensive, and assay only a small fraction of the total cylinder volume. An automated nondestructive assay system capable of providing enrichment measurements over the full volume of the cylinder could improve upon current verification practices in terms of manpower and assay accuracy. Such a station would use sensors that can be operated in an unattended mode at an industrial facility: medium-resolution scintillators for gamma-ray spectroscopy (e.g., NaI(Tl)) and moderated He-3 neutron detectors. This sensor combination allows the exploitation of additional, more-penetrating signatures beyond the traditional 185-keV emission from U-235: neutrons produced from F-19(?,n) reactions (spawned primarily from U 234 alpha emission) and high-energy gamma rays (extending up to 8 MeV) induced by neutrons interacting in the steel cylinder. This paper describes a study of these non-traditional signatures for the purposes of cylinder enrichment verification. The signatures and the radiation sensors designed to collect them are described, as are proof-of-principle cylinder measurements and analyses. Key sources of systematic uncertainty in the non-traditional signatures are discussed, and the potential benefits of utilizing these non-traditional signatures, in concert with an automated form of the traditional 185-keV-based assay, are discussed.

  4. Characteristics RSE Column Factor: Total

    U.S. Energy Information Administration (EIA) Indexed Site

    and 1994 Vehicle Characteristics RSE Column Factor: Total 1993 Family Income Below Poverty Line Eli- gible for Fed- eral Assist- ance 1 RSE Row Factor: Less than 5,000 5,000...

  5. ARM - Measurement - Total cloud water

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cloud water ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Total cloud water The total concentration (mass/vol) of ice and liquid water particles in a cloud; this includes condensed water content (CWC). Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a

  6. Uncertainty quantification in application of the enrichment meter principle for nondestructive assay of special nuclear material

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Burr, Tom; Croft, Stephen; Jarman, Kenneth D.

    2015-09-05

    The various methods of nondestructive assay (NDA) of special nuclear material (SNM) have applications in nuclear nonproliferation, including detection and identification of illicit SNM at border crossings, and quantifying SNM at nuclear facilities for safeguards. No assay method is complete without “error bars,” which provide one way of expressing confidence in the assay result. Consequently, NDA specialists typically quantify total uncertainty in terms of “random” and “systematic” components, and then specify error bars for the total mass estimate in multiple items. Uncertainty quantification (UQ) for NDA has always been important, but it is recognized that greater rigor is needed andmore » achievable using modern statistical methods. To this end, we describe the extent to which the guideline for expressing uncertainty in measurements (GUM) can be used for NDA. Also, we propose improvements over GUM for NDA by illustrating UQ challenges that it does not address, including calibration with errors in predictors, model error, and item-specific biases. A case study is presented using low-resolution NaI spectra and applying the enrichment meter principle to estimate the U-235 mass in an item. The case study illustrates how to update the current American Society for Testing and Materials guide for application of the enrichment meter principle using gamma spectra from a NaI detector.« less

  7. Uncertainty quantification in application of the enrichment meter principle for nondestructive assay of special nuclear material

    SciTech Connect (OSTI)

    Burr, Tom; Croft, Stephen; Jarman, Kenneth D.

    2015-09-05

    The various methods of nondestructive assay (NDA) of special nuclear material (SNM) have applications in nuclear nonproliferation, including detection and identification of illicit SNM at border crossings, and quantifying SNM at nuclear facilities for safeguards. No assay method is complete without error bars, which provide one way of expressing confidence in the assay result. Consequently, NDA specialists typically quantify total uncertainty in terms of random and systematic components, and then specify error bars for the total mass estimate in multiple items. Uncertainty quantification (UQ) for NDA has always been important, but it is recognized that greater rigor is needed and achievable using modern statistical methods. To this end, we describe the extent to which the guideline for expressing uncertainty in measurements (GUM) can be used for NDA. Also, we propose improvements over GUM for NDA by illustrating UQ challenges that it does not address, including calibration with errors in predictors, model error, and item-specific biases. A case study is presented using low-resolution NaI spectra and applying the enrichment meter principle to estimate the U-235 mass in an item. The case study illustrates how to update the current American Society for Testing and Materials guide for application of the enrichment meter principle using gamma spectra from a NaI detector.

  8. Automated UF6 Cylinder Enrichment Assay: Status of the Hybrid Enrichment Verification Array (HEVA) Project: POTAS Phase II

    SciTech Connect (OSTI)

    Jordan, David V.; Orton, Christopher R.; Mace, Emily K.; McDonald, Benjamin S.; Kulisek, Jonathan A.; Smith, Leon E.

    2012-06-01

    Pacific Northwest National Laboratory (PNNL) intends to automate the UF6 cylinder nondestructive assay (NDA) verification currently performed by the International Atomic Energy Agency (IAEA) at enrichment plants. PNNL is proposing the installation of a portal monitor at a key measurement point to positively identify each cylinder, measure its mass and enrichment, store the data along with operator inputs in a secure database, and maintain continuity of knowledge on measured cylinders until inspector arrival. This report summarizes the status of the research and development of an enrichment assay methodology supporting the cylinder verification concept. The enrichment assay approach exploits a hybrid of two passively-detected ionizing-radiation signatures: the traditional enrichment meter signature (186-keV photon peak area) and a non-traditional signature, manifested in the high-energy (3 to 8 MeV) gamma-ray continuum, generated by neutron emission from UF6. PNNL has designed, fabricated, and field-tested several prototype assay sensor packages in an effort to demonstrate proof-of-principle for the hybrid assay approach, quantify the expected assay precision for various categories of cylinder contents, and assess the potential for unsupervised deployment of the technology in a portal-monitor form factor. We refer to recent sensor-package prototypes as the Hybrid Enrichment Verification Array (HEVA). The report provides an overview of the assay signatures and summarizes the results of several HEVA field measurement campaigns on populations of Type 30B UF6 cylinders containing low-enriched uranium (LEU), natural uranium (NU), and depleted uranium (DU). Approaches to performance optimization of the assay technique via radiation transport modeling are briefly described, as are spectroscopic and data-analysis algorithms.

  9. MCNP5 CRITICALITY VALIDATION AND BIAS FOR INTERMEDIATE ENRICHED URANIUM SYSTEMS

    SciTech Connect (OSTI)

    FINFROCK SH

    2009-12-10

    The purpose of this analysis is to validate the Monte Carlo N-Particle 5 (MCNP5) code Version 1.40 (LA-UR-03-1987, 2005) and its cross-section database for k-code calculations of intermediate enriched uranium systems on INTEL{reg_sign} processor based PC's running any version of the WINDOWS operating system. Configurations with intermediate enriched uranium were modeled with the moderator range of 39 {le} H/Fissile {le} 1438. See Table 2-1 for brief descriptions of selected cases and Table 3-1 for the range of applicability for this validation. A total of 167 input cases were evaluated including bare and reflected systems in a single body or arrays. The 167 cases were taken directly from the previous (Version 4C [Lan 2005]) validation database. Section 2.0 list data used to calculate k-effective (k{sub eff}) for the 167 experimental criticality benchmark cases using the MCNP5 code v1.40 and its cross section database. Appendix B lists the MCNP cross-section database entries validated for use in evaluating the intermediate enriched uranium systems for criticality safety. The dimensions and atom densities for the intermediate enriched uranium experiments were taken from NEA/NSC/DOC(95)03, September 2005, which will be referred to as the benchmark handbook throughout the report. For these input values, the experimental benchmark k{sub eff} is approximately 1.0. The MCNP validation computer runs ran to an accuracy of approximately {+-} 0.001. For the cases where the reported benchmark k{sub eff} was not equal to 1.0000 the MCNP calculational results were normalized. The difference between the MCNP validation computer runs and the experimentally measured k{sub eff} is the MCNP5 v1.40 bias. The USLSTATS code (ORNL 1998) was utilized to perform the statistical analysis and generate an acceptable maximum k{sub eff} limit for calculations of the intermediate enriched uranium type systems.

  10. Centrifuge enrichment plants. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1994-03-01

    The bibliography contains citations concerning the design, control, monitoring, and safety of centrifuge enrichment plants. Power supplies, enrichment plant safeguards, facility design, cascade heater test loops to monitor the enrichment process, inspection strategies, and the socioeconomic effects of centrifuge enrichment plants are examined. Radioactive waste disposal problems are considered. (Contains a minimum of 172 citations and includes a subject term index and title list.)

  11. Centrifuge enrichment plants. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect (OSTI)

    1993-09-01

    The bibliography contains citations concerning the design, control, monitoring, and safety of centrifuge enrichment plants. Power supplies, enrichment plant safeguards, facility design, cascade heater test loops to monitor the enrichment process, inspection strategies, and the socioeconomic effects of centrifuge enrichment plants are examined. Radioactive waste disposal problems are considered. (Contains a minimum of 171 citations and includes a subject term index and title list.)

  12. Unattended Environmental Sampling and Laser-based Enrichment Assay for Detection of Undeclared HEU Production in Enrichment Plants

    SciTech Connect (OSTI)

    Anheier, Norman C.; Bushaw, Bruce A.

    2010-04-15

    Nuclear power is enjoying rapid growth as government energy policies and public demand shift toward carbon neutral energy production. Accompanying the growth in nuclear power is the requirement for increased nuclear fuel production, including a significant expansion in uranium enrichment capacity. Essential to the success of the nuclear energy renaissance is the development and implementation of sustainable, proliferation-resistant nuclear power generation. Unauthorized production of highly enriched uranium (HEU) remains the primary proliferation concern for modern gaseous centrifuge enrichment plants (GCEPs). While to date there has been no indication of declared, safeguarded GCEPs producing HEU, the massive separative work unit (SWU) processing power of modern GCEPs presents a significant latent risk of nuclear breakout and suggests the need for more timely detection of potential facility misuse. The Pacific Northwest National Laboratory is developing an unattended safeguards instrument, combining continuous aerosol particulate collection with uranium isotope assay, to provide timely HEU detection within a GCEP. This approach is based on laser vaporization of aerosol particulates, followed by laser spectroscopy to characterize the uranium enrichment level. We demonstrate enrichment assay, with relative isotope abundance uncertainty <5%, on individual micron-sized particles that are trace components within a mixture background particles

  13. Defining the needs for gas centrifuge enrichment plants advanced safeguards

    SciTech Connect (OSTI)

    Boyer, Brian David; Erpenbeck, Heather H; Miller, Karen A; Swinhoe, Martyn T; Ianakiev, Kiril; Marlow, Johnna B

    2010-04-05

    Current safeguards approaches used by the International Atomic Energy Agency (IAEA) at gas centrifuge enrichment plants (GCEPs) need enhancement in order to verify declared low-enriched (LEU) production, detect undeclared LEU production and detect highly enriched uranium (HEU) production with adequate detection probability using nondestructive assay (NDA) techniques. At present inspectors use attended systems, systems needing the presence of an inspector for operation, during inspections to verify the mass and {sup 235}U enrichment of declared UF{sub 6} containers used in the process of enrichment at GCEPs. In verifying declared LEU production, the inspectors also take samples for off-site destructive assay (DA) which provide accurate data, with 0.1% to 0.5% measurement uncertainty, on the enrichment of the UF{sub 6} feed, tails, and product. However, taking samples of UF{sub 6} for off-site analysis is a much more labor and resource intensive exercise for the operator and inspector. Furthermore, the operator must ship the samples off-site to the IAEA laboratory which delays the timeliness of results and interruptions to the continuity of knowledge (CofK) of the samples during their storage and transit. This paper contains an analysis of possible improvements in unattended and attended NDA systems such as process monitoring and possible on-site analysis of DA samples that could reduce the uncertainty of the inspector's measurements and provide more effective and efficient IAEA GCEPs safeguards. We also introduce examples advanced safeguards systems that could be assembled for unattended operation.

  14. EIS-0240: Disposition of Surplus Highly Enriched Uranium

    Broader source: Energy.gov [DOE]

    The Department proposes to eliminate the proliferation threat of surplus highly enriched uranium (HEU) by blending it down to low enriched uranium (LEU), which is not weapons-usable. The EIS assesses the disposition of a nominal 200 metric tons of surplus HEU. The Preferred Alternative is, where practical, to blend the material for use as LEU and use overtime, in commercial nuclear reactor field to recover its economic value. Material that cannot be economically recovered would be blended to LEU for disposal as low-level radioactive waste.

  15. ORISE: Study finds foreign doctorate recipients' stay rates remain high

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Study finds rate of foreign doctorate recipients staying in the United States remains high No evidence that visa restrictions are reducing stay rates, according to report FOR IMMEDIATE RELEASE Jan. 18, 2012 FY12-12 OAK RIDGE, Tenn.-The number of foreign students pursuing science and engineering doctorates in the United States continues to trend upward, and the rates at which they remain in the United States to work after graduation are at or near the highest levels observed for the various

  16. Total Number of Operable Refineries

    U.S. Energy Information Administration (EIA) Indexed Site

    Data Series: Total Number of Operable Refineries Number of Operating Refineries Number of Idle Refineries Atmospheric Crude Oil Distillation Operable Capacity (B/CD) Atmospheric Crude Oil Distillation Operating Capacity (B/CD) Atmospheric Crude Oil Distillation Idle Capacity (B/CD) Atmospheric Crude Oil Distillation Operable Capacity (B/SD) Atmospheric Crude Oil Distillation Operating Capacity (B/SD) Atmospheric Crude Oil Distillation Idle Capacity (B/SD) Vacuum Distillation Downstream Charge

  17. Total Energy Outcome City Pilot

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Total Energy Outcome City Pilot 2014 Building Technologies Office Peer Review Targeted Energy Outcomes A New City Energy Policy for Buildings Ken Baker - kbaker@neea.org Northwest Energy Efficiency Alliance Project Summary Timeline: Key Partners: Start date: 09/01/2012 Planned end date: 08/31/2015 Key Milestones 1. Produce outcome based marketing collateral; 04/03/14 New Buildings Institute Two to three NW cities 2. Quantify and define participating city actions; 04/03/14 3. Quantify ongoing

  18. Total Estimated Contract Cost: Performance Period Total Fee Paid

    Office of Environmental Management (EM)

    Total Fee Paid FY2008 $134,832 FY2009 $142,578 FY2010 $299,878 FY2011 $169,878 Cumulative Fee Paid $747,166 Contract Period: September 2007 - October 2012 $31,885,815 C/P/E Environmental Services, LLC DE-AM09-05SR22405/DE-AT30-07CC60011/SL14 Contractor: Contract Number: Contract Type: Cost Plus Award Fee $357,223 $597,797 $894,699 EM Contractor Fee Site: Stanford Linear Accelerator Center (SLAC) Contract Name: SLAC Environmental Remediation December 2012 $1,516,646 Fee Available $208,620 Fee

  19. A more accurate and penetrating method to measure the enrichment and mass of UF6 storage containers using passive neutron self-interrogation

    SciTech Connect (OSTI)

    Menlove, Howard O; Swinhoe, Martyn T; Miller, Karen A

    2010-01-01

    This paper describes an unattended mode neutron measurement that can provide the enrichment of the uranium in UF{sub 6} cylinders. The new passive neutron measurement provides better penetration into the uranium mass than prior gamma-ray enrichment measurement methods. The Passive Neutron Enrichment Monitor (PNEM) provides a new measurement technique that uses passive neutron totals and coincidence counting together with neutron self-interrogation to measure the enrichment in the cylinders. The measurement uses the neutron rates from two detector pods. One of the pods has a bare polyethylene surface next to the cylinder and the other polyethylene surface is covered with Cd to prevent thermal neutrons from returning to the cylinder. The primary neutron source from the enriched UF{sub 6} is the alpha-particle decay from the {sub 234}U that interacts with the fluorine to produce random neutrons. The singles neutron counting rate is dominated by the {sub 234}U neutrons with a minor contribution from the induced fissions in the {sub 235}U. However, the doubles counting rate comes primarily from the induced fissions (i.e., multiplication) in the {sub 235}U in enriched uranium. The PNEM concept makes use of the passive neutrons that are initially produced from the {sub 234}U reactions that track the {sub 235}U enrichment during the enrichment process. The induced fission reactions from the thermal-neutron albedo are all from the {sub 235}U and provide a measurement of the {sub 235}U. The Cd ratio has the desirable feature that all of the thermal-neutron-induced fissions in {sub 235}U are independent of the original neutron source. Thus, the ratio is independent of the uranium age, purity, and prior reactor history.

  20. The IMCA: A field instrument for uranium enrichment measurements

    SciTech Connect (OSTI)

    Gardner, G.H.; Koskelo, M.; Moeslinger, M.; Mayer, R.L. II; McGinnis, B.R.; Wishard, B.

    1996-12-31

    The IMCA (Inspection Multi-Channel Analyzer) is a portable gamma-ray spectrometer designed to measure the enrichment of uranium either in a laboratory or in the field. The IMCA consists of a Canberra InSpector Multi-Channel Analyzer, sodium iodide or a planar germanium detector, and special application software. The system possesses a high degree of automation. The IMCA uses the uranium enrichment meter principle, and is designed to meet the International Atomic Energy Agency (IAEA) requirements for the verification of enriched uranium materials. The IMCA is available with MGA plutonium isotopic analysis software or MGAU uranium analysis software as well. In this paper, the authors present a detailed description of the hardware and software of the IMCA system, as well as results from preliminary measurements testing compliance of IMCA with IAEA requirements using uranium standards and UF6 cylinders. Measurements performed on UF6 cylinders in the field under variable environmental conditions (temperatures ranging from 0 to 35 C) have shown that good results can be achieved. The enrichment of UF6 contained in the cylinder is determined by using calibration constants generated from an instrument calibration, using traceable uranium oxide standards, performed in the laboratory under controlled environmental conditions. The IMCA software is designed to make the necessary matrix and container corrections to ensure that accurate results are achieved in the field.

  1. Enrichment Assay Methods Development for the Integrated Cylinder Verification System

    SciTech Connect (OSTI)

    Smith, Leon E.; Misner, Alex C.; Hatchell, Brian K.; Curtis, Michael M.

    2009-10-22

    International Atomic Energy Agency (IAEA) inspectors currently perform periodic inspections at uranium enrichment plants to verify UF6 cylinder enrichment declarations. Measurements are typically performed with handheld high-resolution sensors on a sampling of cylinders taken to be representative of the facility's entire product-cylinder inventory. Pacific Northwest National Laboratory (PNNL) is developing a concept to automate the verification of enrichment plant cylinders to enable 100 percent product-cylinder verification and potentially, mass-balance calculations on the facility as a whole (by also measuring feed and tails cylinders). The Integrated Cylinder Verification System (ICVS) could be located at key measurement points to positively identify each cylinder, measure its mass and enrichment, store the collected data in a secure database, and maintain continuity of knowledge on measured cylinders until IAEA inspector arrival. The three main objectives of this FY09 project are summarized here and described in more detail in the report: (1) Develop a preliminary design for a prototype NDA system, (2) Refine PNNL's MCNP models of the NDA system, and (3) Procure and test key pulse-processing components. Progress against these tasks to date, and next steps, are discussed.

  2. CRAD, Training- Y-12 Enriched Uranium Operations Oxide Conversion Facility

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a January 2005 assessment of the Training Program at the Y-12 - Enriched Uranium Operations Oxide Conversion Facility.

  3. CRAD, Management- Y-12 Enriched Uranium Operations Oxide Conversion Facility

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a January 2005 assessment of Management program at the Y-12 - Enriched Uranium Operations Oxide Conversion Facility.

  4. Genetic engineering of syringyl-enriched lignin in plants

    DOE Patents [OSTI]

    Chiang, Vincent Lee; Li, Laigeng

    2004-11-02

    The present invention relates to a novel DNA sequence, which encodes a previously unidentified lignin biosynthetic pathway enzyme, sinapyl alcohol dehydrogenase (SAD) that regulates the biosynthesis of syringyl lignin in plants. Also provided are methods for incorporating this novel SAD gene sequence or substantially similar sequences into a plant genome for genetic engineering of syringyl-enriched lignin in plants.

  5. Highly Enriched Uranium Materials Facility, Major Design Changes

    Broader source: Energy.gov (indexed) [DOE]

    Late...Lessons Learned Report, NNSA, Dec 2010 | Department of Energy 440 Highly Enriched Uranium Materials Facility (HEUMF) Major Design Changes Late Lessons Learned Report Apr 2010.pdf More Documents & Publications EIS-0387: Draft Site-Wide Environmental Impact Statement EIS-0387: Final Site-Wide Environmental Impact Statement EIS-0236-S4: Final Supplemental Programmatic Environmental Impact Statement

  6. Microchip method for the enrichment of specific DNA sequences

    DOE Patents [OSTI]

    Mirzabekov, A.D.; Lysov, Y.P.; Shick, V.V.; Dubiley, S.A.

    1998-12-22

    A method for enriching specific genetic material sequences is provided, whereby oligonucleotide molecules complementary to the desired genetic material is first used to isolate the genetic material from a first source of genomic material. Then the genetic material is used as a label to isolate similar genetic sequences from other sources. 4 figs.

  7. Neutron spectrometry for UF6 enrichment verification in storage cylinders

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mengesha, Wondwosen; Kiff, Scott D.

    2015-01-29

    Verification of declared UF6 enrichment and mass in storage cylinders is of great interest in nuclear material nonproliferation. Nondestructive assay (NDA) techniques are commonly used for safeguards inspections to ensure accountancy of declared nuclear materials. Common NDA techniques used include gamma-ray spectrometry and both passive and active neutron measurements. In the present study, neutron spectrometry was investigated for verification of UF6 enrichment in 30B storage cylinders based on an unattended and passive measurement approach. MCNP5 and Geant4 simulated neutron spectra, for selected UF6 enrichments and filling profiles, were used in the investigation. The simulated neutron spectra were analyzed using principalmore » component analysis (PCA). The PCA technique is a well-established technique and has a wide area of application including feature analysis, outlier detection, and gamma-ray spectral analysis. Results obtained demonstrate that neutron spectrometry supported by spectral feature analysis has potential for assaying UF6 enrichment in storage cylinders. The results from the present study also showed that difficulties associated with the UF6 filling profile and observed in other unattended passive neutron measurements can possibly be overcome using the approach presented.« less

  8. Belgium Highly Enriched Uranium and Plutonium Removals | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration Highly Enriched Uranium and Plutonium Removals | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo

  9. GTRI's Convert Program: Minimizing the Use of Highly Enriched Uranium |

    National Nuclear Security Administration (NNSA)

    National Nuclear Security Administration GTRI's Convert Program: Minimizing the Use of Highly Enriched Uranium | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact

  10. Italy Highly Enriched Uranium and Plutonium Removals | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration Highly Enriched Uranium and Plutonium Removals | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo

  11. US, Kazakhstan Cooperate to Eliminate Highly Enriched Uranium | National

    National Nuclear Security Administration (NNSA)

    Nuclear Security Administration Kazakhstan Cooperate to Eliminate Highly Enriched Uranium | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters

  12. Microchip method for the enrichment of specific DNA sequences

    DOE Patents [OSTI]

    Mirzabekov, Andrei Darievich (Moscow, RU); Lysov, Yuri Petrovich (Moscow, RU); Shick, Valentine Vladimirovich (Hinsdale, IL); Dubiley, Svetlana Alekseevna (Moscow, RU)

    1998-01-01

    A method for enriching specific genetic material sequences is provided, whereby oligonucleotide molecules complementary to the desired genetic material is first used to isolate the genetic material from a first source of genomic material. Then the genetic material is used as a label to isolate similar genetic sequences from other sources.

  13. Laser Isotope Enrichment for Medical and Industrial Applications

    SciTech Connect (OSTI)

    Leonard Bond

    2006-07-01

    Laser Isotope Enrichment for Medical and Industrial Applications by Jeff Eerkens (University of Missouri), Jay Kunze (Idaho State University), and Leonard Bond (Idaho National Laboratory) The principal isotope enrichment business in the world is the enrichment of uranium for commercial power reactor fuels. However, there are a number of other needs for separated isotopes. Some examples are: 1) Pure isotopic targets for irradiation to produce medical radioisotopes. 2) Pure isotopes for semiconductors. 3) Low neutron capture isotopes for various uses in nuclear reactors. 4) Isotopes for industrial tracer/identification applications. Examples of interest to medicine are targets to produce radio-isotopes such as S-33, Mo-98, Mo-100, W-186, Sn-112; while for MRI diagnostics, the non-radioactive Xe-129 isotope is wanted. For super-semiconductor applications some desired industrial isotopes are Si-28, Ga-69, Ge-74, Se-80, Te-128, etc. An example of a low cross section isotope for use in reactors is Zn-68 as a corrosion inhibitor material in nuclear reactor primary systems. Neutron activation of Ar isotopes is of interest in industrial tracer and diagnostic applications (e.g. oil-logging). . In the past few years there has been a sufficient supply of isotopes in common demand, because of huge Russian stockpiles produced with old electromagnetic and centrifuge separators previously used for uranium enrichment. Production of specialized isotopes in the USA has been largely accomplished using old calutrons (electromagnetic separators) at Oak Ridge National Laboratory. These methods of separating isotopes are rather energy inefficient. Use of lasers for isotope separation has been considered for many decades. None of the proposed methods have attained sufficient proof of principal status to be economically attractive to pursue commercially. Some of the authors have succeeded in separating sulfur isotopes using a rather new and different method, known as condensation repression. In this scheme a gas, of the selected isotopes for enrichment, is irradiated with a laser at a particular wavelength that would excite only one of the isotopes. The entire gas is subject to low temperatures sufficient to cause condensation on a cold surface. Those molecules in the gas that the laser excited are not as likely to condense as are the unexcited molecules. Hence the gas drawn out of the system will be enriched in the isotope that was excited by the laser. We have evaluated the relative energy required in this process if applied on a commercial scale. We estimate the energy required for laser isotope enrichment is about 20% of that required in centrifuge separations, and 2% of that required by use of "calutrons".

  14. U.S. Total Stocks

    Gasoline and Diesel Fuel Update (EIA)

    Stock Type: Total Stocks Strategic Petroleum Reserve Non-SPR Refinery Tank Farms and Pipelines Leases Alaskan in Transit Bulk Terminal Pipeline Natural Gas Processing Plant Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Stock Type Area Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 View History Crude Oil and Petroleum Products 1,968,618 1,991,182 2,001,135 2,009,097 2,021,553 2,014,788 1956-2015 Crude Oil

  15. U.S. Total Exports

    U.S. Energy Information Administration (EIA) Indexed Site

    International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG

  16. Committee on Foreign Investment in the United States

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2010-10-08

    The order establishes the requirements and responsibilities for DOE in meeting its statutory obligations for the review of covered transactions filed with the Committee on Foreign Investment in the United States (CFIUS). Admin Chg 1, dated 4-21-2014, supersedes DOE O 142.5.

  17. Foreign Research Reactor/Domestic Research Reactor Receipt Coordinator,

    National Nuclear Security Administration (NNSA)

    Savannah River Nuclear Solutions | National Nuclear Security Administration Foreign Research Reactor/Domestic Research Reactor Receipt Coordinator, Savannah River Nuclear Solutions | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our

  18. Environmental assessment: Transfer of normal and low-enriched uranium billets to the United Kingdom, Hanford Site, Richland, Washington

    SciTech Connect (OSTI)

    1995-11-01

    Under the auspices of an agreement between the U.S. and the United Kingdom, the U.S. Department of Energy (DOE) has an opportunity to transfer approximately 710,000 kilograms (1,562,000 pounds) of unneeded normal and low-enriched uranium (LEU) to the United Kingdom; thus, reducing long-term surveillance and maintenance burdens at the Hanford Site. The material, in the form of billets, is controlled by DOE`s Defense Programs, and is presently stored as surplus material in the 300 Area of the Hanford Site. The United Kingdom has expressed a need for the billets. The surplus uranium billets are currently stored in wooden shipping containers in secured facilities in the 300 Area at the Hanford Site (the 303-B and 303-G storage facilities). There are 482 billets at an enrichment level (based on uranium-235 content) of 0.71 weight-percent. This enrichment level is normal uranium; that is, uranium having 0.711 as the percentage by weight of uranium-235 as occurring in nature. There are 3,242 billets at an enrichment level of 0.95 weight-percent (i.e., low-enriched uranium). This inventory represents a total of approximately 532 curies. The facilities are routinely monitored. The dose rate on contact of a uranium billet is approximately 8 millirem per hour. The dose rate on contact of a wooden shipping container containing 4 billets is approximately 4 millirem per hour. The dose rate at the exterior of the storage facilities is indistinguishable from background levels.

  19. Experimental critical parameters of enriched uranium solution in annular tank geometries

    SciTech Connect (OSTI)

    Rothe, R.E.

    1996-04-01

    A total of 61 critical configurations are reported for experiments involving various combinations of annular tanks into which enriched uranium solution was pumped. These experiments were performed at two widely separated times in the 1980s under two programs at the Rocky Flats Plant`s Critical Mass Laboratory. The uranyl nitrate solution contained about 370 g of uranium per liter, but this concentration varied a little over the duration of the studies. The uranium was enriched to about 93% [sup 235]U. All tanks were typical of sizes commonly found in nuclear production plants. They were about 2 m tall and ranged in diameter from 0.6 m to 1.5 m. Annular thicknesses and conditions of neutron reflection, moderation, and absorption were such that criticality would be achieved with these dimensions. Only 13 of the entire set of 74 experiments proved to be subcritical when tanks were completely filled with solution. Single tanks of several radial thicknesses were studied as well as small line arrays (1 x 2 and 1 x 3) of annular tanks. Many systems were reflected on four sides and the bottom by concrete, but none were reflected from above. Many experiments also contained materials within and outside the annular regions that contained strong neutron absorbers. One program had such a thick external moderator/absorber combination that no reflector was used at all.

  20. WA_1993_033_GOLDEN_PHOTON_INC_Waiver_of_Domestic_and_Foreign.pdf |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 3_033_GOLDEN_PHOTON_INC_Waiver_of_Domestic_and_Foreign.pdf WA_1993_033_GOLDEN_PHOTON_INC_Waiver_of_Domestic_and_Foreign.pdf PDF icon WA_1993_033_GOLDEN_PHOTON_INC_Waiver_of_Domestic_and_Foreign.pdf More Documents & Publications WA_1995_030_GOLDEN_PHOTON_INC_Waiver_of_Domestic_and_Foreign.pdf WA_1994_003_GOLDEN_PHOTOCON_INC_Waiver_of_Domestic_and_Forei

  1. WA_1995_030_GOLDEN_PHOTON_INC_Waiver_of_Domestic_and_Foreign.pdf |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 5_030_GOLDEN_PHOTON_INC_Waiver_of_Domestic_and_Foreign.pdf WA_1995_030_GOLDEN_PHOTON_INC_Waiver_of_Domestic_and_Foreign.pdf PDF icon WA_1995_030_GOLDEN_PHOTON_INC_Waiver_of_Domestic_and_Foreign.pdf More Documents & Publications WA_1994_003_GOLDEN_PHOTOCON_INC_Waiver_of_Domestic_and_Forei.pdf WA_1993_033_GOLDEN_PHOTON_INC_Waiver_of_Domestic_and_Foreign

  2. WC_1993_014_CLASS_WAIVER_of_the_Governments_US_and_Foreign_P.pdf |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy 3_014_CLASS_WAIVER_of_the_Governments_US_and_Foreign_P.pdf More Documents & Publications WC_1993_006_CLASS_WAIVER_of_the_Governments_Us_and_Foreign_P.pdf WC_1993_005__CLASS_WAIVER_of_the_Goernment_US_and_Foreign_Pa.pdf WC_1993_003_CLASS_WAIVER__of_the_Government_US_and_Foreign_P

  3. Unattended Monitoring of HEU Production in Gaseous Centrifuge Enrichment Plants using Automated Aerosol Collection and Laser-based Enrichment Assay

    SciTech Connect (OSTI)

    Anheier, Norman C.; Bushaw, Bruce A.

    2010-08-11

    Nuclear power is enjoying rapid growth as government energy policies and public demand shift toward low carbon energy production. Pivotal to the global nuclear power renaissance is the development and deployment of robust safeguards instrumentation that allows the limited resources of the IAEA to keep pace with the expansion of the nuclear fuel cycle. Undeclared production of highly enriched uranium (HEU) remains a primary proliferation concern for modern gaseous centrifuge enrichment plants (GCEPs), due to their massive separative work unit (SWU) processing power and comparably short cascade equilibrium timescale. The Pacific Northwest National Laboratory is developing an unattended safeguards instrument, combining continuous aerosol particulate collection with uranium isotope assay, to provide timely detection of HEU production within a GCEP. This approach is based on laser vaporization of aerosol particulates, followed by laser spectroscopy to characterize the uranium enrichment level. Our prior investigation demonstrated single-shot detection sensitivity approaching the femtogram range and relative isotope ratio uncertainty better than 10% using gadolinium as a surrogate for uranium. In this paper we present measurement results on standard samples containing traces of depleted, natural, and low enriched uranium, as well as measurements on aerodynamic size uranium particles mixed in background materials (e.g., dust, minerals, soils). Improvements and optimizations in the detection electronics, signal timing, calibration, and laser alignment have lead to significant improvements in detection sensitivity and enrichment accuracy, contributing to an overall reduction in the false alarm probability. The sample substrate media was also found to play a significant role in facilitating laser-induced vaporization and the production of energetic plasma conditions, resulting in ablation optimization and further improvements in the isotope abundance sensitivity.

  4. Total Imports of Residual Fuel

    Gasoline and Diesel Fuel Update (EIA)

    Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 View History U.S. Total 4,471 6,479 7,281 4,217 5,941 6,842 1936-2015 PAD District 1 1,854 1,956 4,571 2,206 2,952 3,174 1981-2015 Connecticut 1995-2015 Delaware 204 678 85 1995-2015 Florida 677 351 299 932 836 1995-2015 Georgia 232 138 120 295 1995-2015 Maine 50 1995-2015 Maryland 1995-2015 Massachusetts 1995-2015 New Hampshire 1995-2015 New Jersey 1,328 780 1,575 400 1,131 1,712 1995-2015 New York 7 6 1,475 998 350 322 1995-2015 North Carolina

  5. 2014 Total Electric Industry- Customers

    Gasoline and Diesel Fuel Update (EIA)

    Customers (Data from forms EIA-861- schedules 4A, 4B, 4D, EIA-861S and EIA-861U) State Residential Commercial Industrial Transportation Total New England 6,243,013 862,269 28,017 8 7,133,307 Connecticut 1,459,239 155,372 4,648 4 1,619,263 Maine 706,952 91,541 3,023 0 801,516 Massachusetts 2,720,128 398,717 14,896 3 3,133,744 New Hampshire 606,883 105,840 3,342 0 716,065 Rhode Island 438,879 58,346 1,884 1 499,110 Vermont 310,932 52,453 224 0 363,609 Middle Atlantic 15,806,914 2,247,455 44,397 17

  6. Total Adjusted Sales of Kerosene

    U.S. Energy Information Administration (EIA) Indexed Site

    End Use: Total Residential Commercial Industrial Farm All Other Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: End Use Area 2009 2010 2011 2012 2013 2014 View History U.S. 269,010 305,508 187,656 81,102 79,674 137,928 1984-2014 East Coast (PADD 1) 198,762 237,397 142,189 63,075 61,327 106,995 1984-2014 New England (PADD 1A) 56,661 53,363 38,448 15,983 15,991 27,500 1984-2014 Connecticut 8,800 7,437

  7. Total Imports of Residual Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    2010 2011 2012 2013 2014 2015 View History U.S. Total 133,646 119,888 93,672 82,173 63,294 68,265 1936-2015 PAD District 1 88,999 79,188 59,594 33,566 30,944 33,789 1981-2015 Connecticut 220 129 1995-2015 Delaware 748 1,704 510 1,604 2,479 1995-2015 Florida 15,713 11,654 10,589 8,331 5,055 7,013 1995-2015 Georgia 5,648 7,668 6,370 4,038 2,037 1,629 1995-2015 Maine 1,304 651 419 75 317 135 1995-2015 Maryland 3,638 1,779 1,238 433 938 539 1995-2015 Massachusetts 123 50 78 542 88 1995-2015 New

  8. WA_01_018_IBM_Waiver_of_Governement_US_and_Foreign_Patent_Ri.pdf |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy 1_018_IBM_Waiver_of_Governement_US_and_Foreign_Patent_Ri.pdf More Documents & Publications WA_04_053_IBM_CORP_Waiver_of_the_Government_U.S._and_Foreign.pdf WA_00_015_COMPAQ_FEDERAL_LLC_Waiver_Domestic_and_Foreign_Pat.pdf Advance Patent Waiver W(A)2002-023

  9. Direct fissile assay of enriched uranium using random self-interrogation and neutron coincidence response

    DOE Patents [OSTI]

    Menlove, H.O.; Stewart, J.E.

    1985-02-04

    Apparatus and method for the direct, nondestructive evaluation of the /sup 235/U nuclide content of samples containing UF/sub 6/, UF/sub 4/, or UO/sub 2/ utilizing the passive neutron self-interrogation of the sample resulting from the intrinsic production of neutrons therein. The ratio of the emitted neutron coincidence count rate to the total emitted neutron count rate is determined and yields a measure of the bulk fissile mass. The accuracy of the method is 6.8% (1sigma) for cylinders containing UF/sub 6/ with enrichments ranging from 6% to 98% with measurement times varying from 3-6 min. The samples contained from below 1 kg to greater than 16 kg. Since the subject invention relies on fast neutron self-interrogation, complete sampling of the UF/sub 6/ takes place, reducing difficulties arising from inhomogeneity of the sample which adversely affects other assay procedures. 4 figs., 1 tab.

  10. Direct fissile assay of enriched uranium using random self-interrogation and neutron coincidence response

    DOE Patents [OSTI]

    Menlove, Howard O.; Stewart, James E.

    1986-01-01

    Apparatus and method for the direct, nondestructive evaluation of the .sup.235 U nuclide content of samples containing UF.sub.6, UF.sub.4, or UO.sub.2 utilizing the passive neutron self-interrogation of the sample resulting from the intrinsic production of neutrons therein. The ratio of the emitted neutron coincidence count rate to the total emitted neutron count rate is determined and yields a measure of the bulk fissile mass. The accuracy of the method is 6.8% (1.sigma.) for cylinders containing UF.sub.6 with enrichments ranging from 6% to 98% with measurement times varying from 3-6 min. The samples contained from below 1 kg to greater than 16 kg. Since the subject invention relies on fast neutron self-interrogation, complete sampling of the UF.sub.6 takes place, reducing difficulties arising from inhomogeneity of the sample which adversely affects other assay procedures.

  11. Natural uranium/conversion services/enrichment services

    SciTech Connect (OSTI)

    1993-12-31

    This article is the 1993 uranium market summary. During this reporting period, there were 50 deals in the concentrates market, 26 deals in the UF6 market, and 14 deals for enrichment services. In the concentrates market, the restricted value closed $0.15 higher at $9.85, and the unrestricted value closed down $0.65 at $7.00. In the UF6 market, restricted prices fluctuated and closed higher at $31.00, and unrestricted prices closed at their initial value of $24.75. The restricted transaction value closed at $10.25 and the unrestricted value closed at $7.15. In the enrichment services market, the restricted value moved steadily higher to close at $84.00 per SWU, and the unrestricted value closed at its initial value of $68.00 per SWU.

  12. Simulation of transportation of low enriched uranium solutions

    SciTech Connect (OSTI)

    Hope, E.P.; Ades, M.J.

    1996-08-01

    A simulation of the transportation by truck of low enriched uranium solutions has been completed for NEPA purposes at the Savannah River Site. The analysis involves three distinct source terms, and establishes the radiological risks of shipment to three possible destinations. Additionally, loading accidents were analyzed to determine the radiological consequences of mishaps during handling and delivery. Source terms were developed from laboratory measurements of chemical samples from low enriched uranium feed materials being stored at SRS facilities, and from manufacturer data on transport containers. The transportation simulations were accomplished over the INTERNET using the DOE TRANSNET system at Sandia National Laboratory. The HIGHWAY 3.3 code was used to analyze routing scenarios, and the RADTRAN 4 code was used to analyze incident free and accident risks of transporting radiological materials. Loading accidents were assessed using the Savannah River Site AXAIR89Q and RELEASE 2 codes.

  13. Comments on proposed legislation to restructure DOE's uranium enrichment program

    SciTech Connect (OSTI)

    Not Available

    1991-04-01

    This book focuses on H.R.145, H.R.788, and S.210. Each of the proposed bills would restructure DOE's enrichment program as a government corporation with private financing and would encourage the eventual sale of the corporation to the private sector. In doing so, the bills would, among other things, allow the corporation to set prices to maximize long-term returns; establish a fund to meet the costs of decontamination, decommissioning, and other environmental cleanup costs associated with uranium enrichment activities; transfer interest in DOE's new atomic vapor laser isotope separation (AVLIS) process to the new corporation; and, except for H.R. 145, require the government to pay its share of the costs to clean up mill tailings (mining wastes) generated under government contracts.

  14. Method for production of an isotopically enriched compound

    DOE Patents [OSTI]

    Watrous, Matthew G.

    2012-12-11

    A method is presented for producing and isolating an isotopically enriched compound of a desired isotope from a parent radionuclide. The method includes forming, or placing, a precipitate containing a parent radionuclide of the desired daughter isotope in a first reaction zone and allowing sufficient time for the parent to decay into the desired gaseous daughter radioisotope. The method further contemplates collecting the desired daughter isotope as a solid in a second reaction zone through the application of temperatures below the freezing point of the desired isotope to a second reaction zone that is connected to the first reaction zone. Specifically, a method is presented for producing isotopically enriched compounds of xenon, including the radioactive isotope Xe-131m and the stable isotope Xe-131.

  15. News Media invited to interview Jefferson Lab summer science enrichment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    program participants; cover closing Poster Session | Jefferson Lab SULI 2004 participant Rachel Black, SULI 2004 participant, talks to Alan Gavalya (far left), Physics Division, and Jim Clark, Accelerator Division, about her work with JLab's Detector Group. Photo: Greg Adams, JLab Media Advisory: News Media invited to interview Jefferson Lab summer science enrichment program participants; cover closing Poster Session July 29, 2005 News Media representatives are invited to interview,

  16. Jefferson Lab welcomes students, teachers for summer internship, enrichment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    program | Jefferson Lab 2003 Education Poster Session Jefferson Lab welcomes students, teachers for summer internship, enrichment program July 28, 2004 Newport News, VA. - As schools close for the summer, the number of teachers and high school and college students at the Department of Energy's Jefferson Lab in Newport News, Va., multiplies. They come to participate in a variety of innovative, educational, science-based programs. High School seniors arrive for the Lab's summer honors program.

  17. Initial report on characterization of excess highly enriched uranium

    SciTech Connect (OSTI)

    1996-07-01

    DOE`s Office of Fissile Materials Disposition assigned to this Y-12 division the task of preparing a report on the 174.4 metric tons of excess highly enriched U. Characterization included identification by category, gathering existing data (assay), defining the likely needed processing steps for prepping for transfer to a blending site, and developing a range of preliminary cost estimates for those steps. Focus is on making commercial reactor fuel as a final disposition path.

  18. Total-derivative supersymmetry breaking

    SciTech Connect (OSTI)

    Haba, Naoyuki; Uekusa, Nobuhiro

    2010-05-15

    On an interval compactification in supersymmetric theory, boundary conditions for bulk fields must be treated carefully. If they are taken arbitrarily following the requirement that a theory is supersymmetric, the conditions could give redundant constraints on the theory. We construct a supersymmetric action integral on an interval by introducing brane interactions with which total-derivative terms under the supersymmetry transformation become zero due to a cancellation. The variational principle leads equations of motion and also boundary conditions for bulk fields, which determine boundary values of bulk fields. By estimating mass spectrum, spontaneous supersymmetry breaking in this simple setup can be realized in a new framework. This supersymmetry breaking does not induce a massless R axion, which is favorable for phenomenology. It is worth noting that fermions in hyper-multiplet, gauge bosons, and the fifth-dimensional component of gauge bosons can have zero-modes (while the other components are all massive as Kaluza-Klein modes), which fits the gauge-Higgs unification scenarios.

  19. Multi-stage combustion using nitrogen-enriched air

    DOE Patents [OSTI]

    Fischer, Larry E.; Anderson, Brian L.

    2004-09-14

    Multi-stage combustion technology combined with nitrogen-enriched air technology for controlling the combustion temperature and products to extend the maintenance and lifetime cycles of materials in contact with combustion products and to reduce pollutants while maintaining relatively high combustion and thermal cycle efficiencies. The first stage of combustion operates fuel rich where most of the heat of combustion is released by burning it with nitrogen-enriched air. Part of the energy in the combustion gases is used to perform work or to provide heat. The cooled combustion gases are reheated by additional stages of combustion until the last stage is at or near stoichiometric conditions. Additional energy is extracted from each stage to result in relatively high thermal cycle efficiency. The air is enriched with nitrogen using air separation technologies such as diffusion, permeable membrane, absorption, and cryogenics. The combustion method is applicable to many types of combustion equipment, including: boilers, burners, turbines, internal combustion engines, and many types of fuel including hydrogen and carbon-based fuels including methane and coal.

  20. Onsite Gaseous Centrifuge Enrichment Plant UF6 Cylinder Destructive Analysis

    SciTech Connect (OSTI)

    Anheier, Norman C.; Cannon, Bret D.; Qiao, Hong; Carter, Jennifer C.; McNamara, Bruce K.; O'Hara, Matthew J.; Phillips, Jon R.; Curtis, Michael M.

    2012-07-17

    The IAEA safeguards approach for gaseous centrifuge enrichment plants (GCEPs) includes measurements of gross, partial, and bias defects in a statistical sampling plan. These safeguard methods consist principally of mass and enrichment nondestructive assay (NDA) verification. Destructive assay (DA) samples are collected from a limited number of cylinders for high precision offsite mass spectrometer analysis. DA is typically used to quantify bias defects in the GCEP material balance. Under current safeguards measures, the operator collects a DA sample from a sample tap following homogenization. The sample is collected in a small UF6 sample bottle, then sealed and shipped under IAEA chain of custody to an offsite analytical laboratory. Current practice is expensive and resource intensive. We propose a new and novel approach for performing onsite gaseous UF6 DA analysis that provides rapid and accurate assessment of enrichment bias defects. DA samples are collected using a custom sampling device attached to a conventional sample tap. A few micrograms of gaseous UF6 is chemically adsorbed onto a sampling coupon in a matter of minutes. The collected DA sample is then analyzed onsite using Laser Ablation Absorption Ratio Spectrometry-Destructive Assay (LAARS-DA). DA results are determined in a matter of minutes at sufficient accuracy to support reliable bias defect conclusions, while greatly reducing DA sample volume, analysis time, and cost.

  1. Future of the Department of Energy's uranium enrichment enterprise

    SciTech Connect (OSTI)

    Sewell, P.G.

    1991-11-01

    The national energy strategy (NES) developed at President Bush's direction provides a focus for the US Department of Energy (DOE) future policy and funding initiatives including those of the uranium enrichment enterprise. The NES identifies an important and continuing role for nuclear energy as part of a balanced array of energy sources for meeting US energy needs, especially the growing demand for electricity. For many years, growth in US electricity demand has exhibited a strong correlation with growth in gross national product. NEW projections indicate that the US will need between 190 and 275 GW of additional system capacity by 2010. In order to unable nuclear power to help meet this need, the NEW establishes basic objectives for nuclear power. These objectives are to have a first order of a new nuclear power plant by 1995 and to have such a plant operational by 2000. The expansion of nuclear power anticipated in the NEW affirms a continuing need for a strong domestic uranium enrichment services supply capability. In terms of the future outlook for uranium enrichment, the atomic vapor laser isotope separation (AVLIS) technology continues to hold great promise for commercial application. If AVLIS efforts are successful, significant financial benefits from the commercial use of AVLIS will be realized by customers and the AVLIS deployment entity by approximately the year 2000 and thereafter.

  2. Total Space Heating Water Heating Cook-

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Commercial Buildings Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing...

  3. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,870 1,276...

  4. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All...

  5. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,602 1,397...

  6. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings ... 2,037...

  7. DOE to Remove 200 Metric Tons of Highly Enriched Uranium from...

    Energy Savers [EERE]

    to Remove 200 Metric Tons of Highly Enriched Uranium from U.S. Nuclear Weapons Stockpile DOE to Remove 200 Metric Tons of Highly Enriched Uranium from U.S. Nuclear Weapons ...

  8. EIS-0471: Areva Eagle Rock Enrichment Facility in Bonneville County, ID |

    Office of Environmental Management (EM)

    Department of Energy 1: Areva Eagle Rock Enrichment Facility in Bonneville County, ID EIS-0471: Areva Eagle Rock Enrichment Facility in Bonneville County, ID May 20, 2011 delete me old download page duplicate

  9. Market power and foreign involvement by US multinationals

    SciTech Connect (OSTI)

    Hirschey, M.

    1982-05-01

    This study considers the relationship between market power and multinational involvement through use of a market-valuation approach. Estimation results for a sample of large US multinationals reveal superior valuation effects due to returns from foreign as opposed to domestic operations. This finding is consistent with the hypothesis that returns from the US market tend to be less secure, and therefore less valued, than are returns from foreign markets due to both real (market size, entry barriers, etc.) and institutional (antitrust policies, etc.) differences in competitive environments. Such findings are also consistent with previous suggestions that firms develop markets abroad in order to exploit economic-rent opportunities. These findings remain tentative, however, and await verification in future studies of data from both the United States and abroad. 13 references, 1 table.

  10. Conducting business under the Foreign Corrupt Practices Act

    SciTech Connect (OSTI)

    Ittig, J.

    1982-07-01

    The Foreign Corrupt Practices Act inhibits many businesses conducting international transactions. Although the Senate has proposed revisions to the FCPA to alleviate some of the handicaps of U.S. citizens doing business abroad, the House of Representatives has yet to approve a bill. This study identifies the critical interpretive problems, and suggests protective measures a company can take to avoid problems until the FCPA is amended.

  11. Secretary Ernest Moniz Testimony before the Senate Foreign Affairs Committee

    Energy Savers [EERE]

    Foreign Affairs Committee Washington, DC July 23, 2015 Chairman Corker, Ranking Member Cardin and Members of the Committee, thank you for the opportunity to discuss the historic Joint Comprehensive Plan of Action (JCPOA) reached between the E3/EU+3 (China, France, Germany, Russia, the United Kingdom, the European Union, and the United States) and Iran. The JCPOA prevents Iran from getting a nuclear weapon, provides strong verification measures that give us ample time to respond if Iran chose to

  12. An Inspector's Assessment of the New Model Safeguards Approach for Enrichment Plants

    SciTech Connect (OSTI)

    Curtis, Michael M.

    2007-07-31

    This conference paper assesses the changes that are being made to the Model Safeguards Approach for Gas Centrifuge Enrichment Plants.

  13. Centrifuge enrichment plants. (Latest citations from the NTIS data base). Published Search

    SciTech Connect (OSTI)

    Not Available

    1992-09-01

    The bibliography contains citations concerning the design, control, monitoring, and safety of centrifuge enrichment plants. Power supplies, enrichment plant safeguards, facility design, cascade heater test loops to monitor the enrichment process, inspection strategies, and the socioeconomic effects of centrifuge enrichment plants are examined. Radioactive waste disposal problems are briefly considered. (Contains a minimum of 169 citations and includes a subject term index and title list.)

  14. FEMO, A FLOW AND ENRICHMENT MONITOR FOR VERIFYING COMPLIANCE WITH INTERNATIONAL SAFEGUARDS REQUIREMENTS AT A GAS CENTRIFUGE ENRICHMENT FACILITY

    SciTech Connect (OSTI)

    Gunning, John E; Laughter, Mark D; March-Leuba, Jose A

    2008-01-01

    A number of countries have received construction licenses or are contemplating the construction of large-capacity gas centrifuge enrichment plants (GCEPs). The capability to independently verify nuclear material flows is a key component of international safeguards approaches, and the IAEA does not currently have an approved method to continuously monitor the mass flow of 235U in uranium hexafluoride (UF6) gas streams. Oak Ridge National Laboratory is investigating the development of a flow and enrichment monitor, or FEMO, based on an existing blend-down monitoring system (BDMS). The BDMS was designed to continuously monitor both 235U mass flow and enrichment of UF6 streams at the low pressures similar to those which exists at GCEPs. BDMSs have been installed at three sites-the first unit has operated successfully in an unattended environment for approximately 10 years. To be acceptable to GCEP operators, it is essential that the instrument be installed and maintained without interrupting operations. A means to continuously verify flow as is proposed by FEMO will likely be needed to monitor safeguards at large-capacity plants. This will enable the safeguards effectiveness that currently exists at smaller plants to be maintained at the larger facilities and also has the potential to reduce labor costs associated with inspections at current and future plants. This paper describes the FEMO design requirements, operating capabilities, and development work required before field demonstration.

  15. D&D of the French High Enrichment Gaseous Diffusion Plant

    SciTech Connect (OSTI)

    BEHAR, Christophe; GUIBERTEAU, Philippe; DUPERRET, Bernard; TAUZIN, Claude

    2003-02-27

    This paper describes the D&D program that is being implemented at France's High Enrichment Gaseous Diffusion Plant, which was designed to supply France's Military with Highly Enriched Uranium. This plant was definitively shut down in June 1996, following French President Jacques Chirac's decision to end production of Highly Enriched Uranium and dismantle the corresponding facilities.

  16. Resin-assisted enrichment of thiols as a general strategy for proteomic profiling of cysteine-based reversible modifications

    SciTech Connect (OSTI)

    Guo, Jia; Gaffrey, Matthew J.; Su, Dian; Liu, Tao; Camp, David G.; Smith, Richard D.; Qian, Weijun

    2013-12-12

    Reversible modifications on cysteine thiols play a significant role in redox signaling and regulation. A number of reversible redox modifications, including disulfide formation, S-nitrosylation, and S-glutathionylation, have been recognized for their significance in various physiological and pathological processes. Here we describe in detail a resin-assisted thiol-affinity enrichment protocol for both biochemical and proteomics applications. This protocol serves as a general approach for specific isolation of thiol-containing proteins or peptides derived from reversible redox-modified proteins. This approach utilizes thiol-affinity resins to directly capture thiol-containing proteins or peptides through a disulfide exchange reaction followed by on-resin protein digestion and on-resin multiplexed isobaric labeling to facilitate LC-MS/MS based quantitative site-specific analysis of redox modifications. The overall approach requires a much simpler workflow with increased specificity compared to the commonly used biotin switch technique. By coupling different selective reduction strategies, the resin-assisted approach provides the researcher with a useful tool capable of enriching different types of reversible modifications on protein thiols. Procedures for selective enrichment and analyses of S-nitrosylation and total reversible cysteine oxidation are presented to demonstrate the utility of this general strategy.

  17. Process for producing enriched uranium having a {sup 235}U content of at least 4 wt. % via combination of a gaseous diffusion process and an atomic vapor laser isotope separation process to eliminate uranium hexafluoride tails storage

    DOE Patents [OSTI]

    Horton, J.A.; Hayden, H.W. Jr.

    1995-05-30

    An uranium enrichment process capable of producing an enriched uranium, having a {sup 235}U content greater than about 4 wt. %, is disclosed which will consume less energy and produce metallic uranium tails having a lower {sup 235}U content than the tails normally produced in a gaseous diffusion separation process and, therefore, eliminate UF{sub 6} tails storage and sharply reduce fluorine use. The uranium enrichment process comprises feeding metallic uranium into an atomic vapor laser isotope separation process to produce an enriched metallic uranium isotopic mixture having a {sup 235} U content of at least about 2 wt. % and a metallic uranium residue containing from about 0.1 wt. % to about 0.2 wt. % {sup 235} U; fluorinating this enriched metallic uranium isotopic mixture to form UF{sub 6}; processing the resultant isotopic mixture of UF{sub 6} in a gaseous diffusion process to produce a final enriched uranium product having a {sup 235}U content of at least 4 wt. %, and up to 93.5 wt. % or higher, of the total uranium content of the product, and a low {sup 235}U content UF{sub 6} having a {sup 235}U content of about 0.71 wt. % of the total uranium content of the low {sup 235}U content UF{sub 6}; and converting this low {sup 235}U content UF{sub 6} to metallic uranium for recycle to the atomic vapor laser isotope separation process. 4 figs.

  18. Process for producing enriched uranium having a .sup.235 U content of at least 4 wt. % via combination of a gaseous diffusion process and an atomic vapor laser isotope separation process to eliminate uranium hexafluoride tails storage

    DOE Patents [OSTI]

    Horton, James A. (Livermore, CA); Hayden, Jr., Howard W. (Oakridge, TN)

    1995-01-01

    An uranium enrichment process capable of producing an enriched uranium, having a .sup.235 U content greater than about 4 wt. %, is disclosed which will consume less energy and produce metallic uranium tails having a lower .sup.235 U content than the tails normally produced in a gaseous diffusion separation process and, therefore, eliminate UF.sub.6 tails storage and sharply reduce fluorine use. The uranium enrichment process comprises feeding metallic uranium into an atomic vapor laser isotope separation process to produce an enriched metallic uranium isotopic mixture having a .sup.235 U content of at least about 2 wt. % and a metallic uranium residue containing from about 0.1 wt. % to about 0.2 wt. % .sup.235 U; fluorinating this enriched metallic uranium isotopic mixture to form UF.sub.6 ; processing the resultant isotopic mixture of UF.sub.6 in a gaseous diffusion process to produce a final enriched uranium product having a .sup.235 U content of at least 4 wt. %, and up to 93.5 wt. % or higher, of the total uranium content of the product, and a low .sup.235 U content UF.sub.6 having a .sup.235 U content of about 0.71 wt. % of the total uranium content of the low .sup.235 U content UF.sub.6 ; and converting this low .sup.235 U content UF.sub.6 to metallic uranium for recycle to the atomic vapor laser isotope separation process.

  19. Selection of potential IAEA inspection strategies involving cascade access at the Portsmouth Gas Centrifuge Enrichment Plant (GCEP)

    SciTech Connect (OSTI)

    Not Available

    1981-04-13

    This report has been prepared as a US contribution to Team 4 of the Hexapartite Safeguards Project. It provides to the Team 4 participants one example of an approach, which has been used in the United States, to developing a range of safeguards strategies involving differing degrees of access to cascade areas of centrifuge enrichment plants. Its purpose is to facilitate the work of other Hexapartite participants in completing Task II of Team 4's terms of reference. The scope of this report is limited to identifying safeguards approaches for the Portsmouth Gas Centrifuge Enrichment Plant (GCEP) which involve differing degrees of access to the cascade area. This report provides a method for selecting cascade access inspection strategies at GCEP which appear promising for more detailed evaluation. It is quite important to note, however, that the effectiveness and practicability of these strategies have not been established at the present. In addition, some strategies have been included on the basis of very preliminary calculations and considerations which have not been validated. Thus, some of these strategies may ultimately be rejected because they prove to be impracticable. Considerations of cost and the possible transfer of information and technology related to the production of enriched uranium will also be pertinent in considering the degrees and frequency of access to the cascade areas of centrifuge enrichment plants. This report describes the process for combining technical measures, implementation approaches and objectives to arrive at the total number of theoretically possible combinations. It then describes how these combinations may be reduced in a series of steps to a number that is more manageable for detailed evaluation. The process is shown schematically.

  20. Two U.S. University Research Reactors to be Converted From Highly Enriched

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Uranium to Low-Enriched Uranium | Department of Energy U.S. University Research Reactors to be Converted From Highly Enriched Uranium to Low-Enriched Uranium Two U.S. University Research Reactors to be Converted From Highly Enriched Uranium to Low-Enriched Uranium April 11, 2005 - 11:34am Addthis WASHINGTON, D.C. - As part of the Bush administration's aggressive effort to reduce the amount of weapons-grade nuclear material worldwide, Secretary of Energy Samuel W. Bodman announced today that

  1. Separation of carbon nanotubes into chirally enriched fractions

    DOE Patents [OSTI]

    Doorn, Stephen K. (Los Alamos, NM); Niyogi, Sandip (Los Alamos, NM)

    2012-04-10

    A mixture of single-walled carbon nanotubes ("SWNTs") is separated into fractions of enriched chirality by preparing an aqueous suspension of a mixture of SWNTs and a surfactant, injecting a portion of the suspension on a column of separation medium having a density gradient, and centrifuging the column. In some embodiments, salt is added prior to centrifugation. In other embodiments, the centrifugation is performed at a temperature below room temperature. Fractions separate as colored bands in the column. The diameter of the separated SWNTs decreases with increasing density along the gradient of the column. The colored bands can be withdrawn separately from the column.

  2. New Prototype Safeguards Technology Offers Improved Confidence and Automation for Uranium Enrichment Facilities

    SciTech Connect (OSTI)

    Brim, Cornelia P.

    2013-04-01

    An important requirement for the international safeguards community is the ability to determine the enrichment level of uranium in gas centrifuge enrichment plants and nuclear fuel fabrication facilities. This is essential to ensure that countries with nuclear nonproliferation commitments, such as States Party to the Nuclear Nonproliferation Treaty, are adhering to their obligations. However, current technologies to verify the uranium enrichment level in gas centrifuge enrichment plants or nuclear fuel fabrication facilities are technically challenging and resource-intensive. NNSAs Office of Nonproliferation and International Security (NIS) supports the development, testing, and evaluation of future systems that will strengthen and sustain U.S. safeguards and security capabilitiesin this case, by automating the monitoring of uranium enrichment in the entire inventory of a fuel fabrication facility. One such system is HEVAhybrid enrichment verification array. This prototype was developed to provide an automated, nondestructive assay verification technology for uranium hexafluoride (UF6) cylinders at enrichment plants.

  3. Fissile Flow and Enrichment Monitor for GCEP Advanced Safeguards Application

    SciTech Connect (OSTI)

    March-Leuba, Jose A; Uckan, Taner

    2010-01-01

    This paper presents experimental data that demonstrate a concept for a {sup 235}U flow and enrichment monitor (FEMO) based on passive measurements of process equipment in gaseous centrifuge enrichment plants (GCEPs). The primary goal of the FEMO is to prevent, without using pipe penetrations or active interrogation with external sources, the production and diversion of undeclared nuclear material. This FEMO concept utilizes: (1) calibrated measurements of {sup 235}U density in cascade headers, and (2) measurements of pump inlet pressure and volumetric flow rate, which are correlated to the electrical power consumed by the GCEP pumps that transport UF{sub 6} from the cascade to the condensation cylinders. The {sup 235}U density is measured by counting 186 keV emissions using a NaI gamma detector located upstream of the pump. The pump inlet pressure and volumetric flow rate are determined using a correlation that is a function of the measured pump operational parameters (e.g., electric power consumption and rotational frequency) and the pumping configuration. The concept has been demonstrated in a low-pressure flow loop at Oak Ridge National Laboratory.

  4. Isotopically Enriched Films and Nanostructures by Ultrafast Pulsed Laser Deposition

    SciTech Connect (OSTI)

    Peter Pronko

    2004-12-13

    This project involved a systematic study to apply newly discovered isotopic enrichment effects in laser ablation plumes to the fabrication of isotopically engineered thin films, superlattices, and nanostructures. The approach to this program involved using ultrafast lasers as a method for generating ablated plasmas that have preferentially structured isotopic content in the body of the ablation plasma plumes. In examining these results we have attempted to interpret the observations in terms of a plasma centrifuge process that is driven by the internal electro-magnetic fields of the plasma itself. The research plan involved studying the following phenomena in regard to the ablation plume and the isotopic mass distribution within it: (1) Test basic equations of steady state centrifugal motion in the ablation plasma. (2) Investigate angular distribution of ions in the ablation plasmas. (3) Examine interactions of plasma ions with self-generated magnetic fields. (3) Investigate ion to neutral ratios in the ablation plasmas. (5) Test concepts of plasma pumping. (6) Fabricate isotopically enriched nanostructures.

  5. LISSAT Analysis of a Generic Centrifuge Enrichment Plant

    SciTech Connect (OSTI)

    Lambert, H; Elayat, H A; O?Connell, W J; Szytel, L; Dreicer, M

    2007-05-31

    The U.S. Department of Energy (DOE) is interested in developing tools and methods for use in designing and evaluating safeguards systems for current and future plants in the nuclear power fuel cycle. The DOE is engaging several DOE National Laboratories in efforts applied to safeguards for chemical conversion plants and gaseous centrifuge enrichment plants. As part of the development, Lawrence Livermore National Laboratory has developed an integrated safeguards system analysis tool (LISSAT). This tool provides modeling and analysis of facility and safeguards operations, generation of diversion paths, and evaluation of safeguards system effectiveness. The constituent elements of diversion scenarios, including material extraction and concealment measures, are structured using directed graphs (digraphs) and fault trees. Statistical analysis evaluates the effectiveness of measurement verification plans and randomly timed inspections. Time domain simulations analyze significant scenarios, especially those involving alternate time ordering of events or issues of timeliness. Such simulations can provide additional information to the fault tree analysis and can help identify the range of normal operations and, by extension, identify additional plant operational signatures of diversions. LISSAT analyses can be used to compare the diversion-detection probabilities for individual safeguards technologies and to inform overall strategy implementations for present and future plants. Additionally, LISSAT can be the basis for a rigorous cost-effectiveness analysis of safeguards and design options. This paper will describe the results of a LISSAT analysis of a generic centrifuge enrichment plant. The paper will describe the diversion scenarios analyzed and the effectiveness of various safeguards systems alternatives.

  6. MAVTgsa: An R Package for Gene Set (Enrichment) Analysis

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chien, Chih-Yi; Chang, Ching-Wei; Tsai, Chen-An; Chen, James J.

    2014-01-01

    Gene semore » t analysis methods aim to determine whether an a priori defined set of genes shows statistically significant difference in expression on either categorical or continuous outcomes. Although many methods for gene set analysis have been proposed, a systematic analysis tool for identification of different types of gene set significance modules has not been developed previously. This work presents an R package, called MAVTgsa, which includes three different methods for integrated gene set enrichment analysis. (1) The one-sided OLS (ordinary least squares) test detects coordinated changes of genes in gene set in one direction, either up- or downregulation. (2) The two-sided MANOVA (multivariate analysis variance) detects changes both up- and downregulation for studying two or more experimental conditions. (3) A random forests-based procedure is to identify gene sets that can accurately predict samples from different experimental conditions or are associated with the continuous phenotypes. MAVTgsa computes the P values and FDR (false discovery rate) q -value for all gene sets in the study. Furthermore, MAVTgsa provides several visualization outputs to support and interpret the enrichment results. This package is available online.« less

  7. Total Space Heating Water Heating Cook-

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Tables Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 634 578 46 1 Q 116.4 106.3...

  8. Part 810-ASSISTANCE TO FOREIGN ATOMIC ENERGY ACTIVITIES Sec.

    National Nuclear Security Administration (NNSA)

    10 CFR Part 810 1986 Version Final Rule (effective March 25, 2015) Comments Part 810-ASSISTANCE TO FOREIGN ATOMIC ENERGY ACTIVITIES Sec. 810.1 Purpose. 810.2 Scope. 810.3 Definitions. 810.4 Communications. 810.5 Interpretations. 810.6 Authorization requirement. 810.7 Generally authorized activities. 810.8 Activities requiring specific authorization. 810.9 Restrictions on general and specific authorization. 810.10 Grant of specific authorization. 810.11 Revocation, suspension, or modification of

  9. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    2 Alaska - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S2. Summary statistics for natural gas - Alaska, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 269 277 185 R 159 170 Production (million cubic feet) Gross Withdrawals From Gas Wells 127,417 112,268

  10. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    2 Connecticut - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S7. Summary statistics for natural gas - Connecticut, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil

  11. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    6 District of Columbia - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S9. Summary statistics for natural gas - District of Columbia, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells

  12. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    0 Indiana - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S16. Summary statistics for natural gas - Indiana, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 620 914 819 R 921 895 Production (million cubic feet) Gross Withdrawals From Gas Wells 6,802 9,075

  13. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    2 Maryland - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S22. Summary statistics for natural gas - Maryland, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 7 8 9 7 7 Production (million cubic feet) Gross Withdrawals From Gas Wells 43 34 44 32 20 From Oil

  14. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    4 Massachusetts - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S23. Summary statistics for natural gas - Massachusetts, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0

  15. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    8 Minnesota - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S25. Summary statistics for natural gas - Minnesota, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil

  16. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    6 Nebraska - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S29. Summary statistics for natural gas - Nebraska, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 276 322 270 R 357 310 Production (million cubic feet) Gross Withdrawals From Gas Wells 2,092 1,854

  17. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    0 New Hampshire - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S31. Summary statistics for natural gas - New Hampshire, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0

  18. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    8 North Carolina - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S35. Summary statistics for natural gas - North Carolina, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0

  19. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    50 North Dakota - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S36. Summary statistics for natural gas - North Dakota, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 188 239 211 200 200 Production (million cubic feet) Gross Withdrawals From Gas Wells

  20. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    2 South Carolina - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S42. Summary statistics for natural gas - South Carolina, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0

  1. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    6 Washington - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S49. Summary statistics for natural gas - Washington, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil

  2. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    80 Wisconsin - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S51. Summary statistics for natural gas - Wisconsin, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil

  3. Total System Performance Assessment Peer Review Panel

    Office of Energy Efficiency and Renewable Energy (EERE)

    Total System Performance Assessment (TSPA) Peer Review Panel for predicting the performance of a repository at Yucca Mountain.

  4. Microsoft Word - SEC J_Appendix D - Sensitive Foreign Nations Control

    National Nuclear Security Administration (NNSA)

    D, Page 1 SECTION J APPENDIX D SENSITIVE FOREIGN NATIONS CONTROL 1. Pursuant to the Contract Section I Clause entitled "Sensitive Foreign Nations Controls," "sensitive foreign nations" is one of the countries listed below: Algeria Armenia Azerbaijan Belarus China (People's Republic of China) Cuba Georgia Hong Kong India Iran Iraq Israel Kazakhstan Kyrgyzstan Libya Moldova North Korea (Democratic People's Republic of) Pakistan Russia Sudan Syria Taiwan Tajikistan Turkmenistan

  5. Variable oxygen/nitrogen enriched intake air system for internal combustion engine applications

    DOE Patents [OSTI]

    Poola, Ramesh B. (Woodridge, IL); Sekar, Ramanujam R. (Naperville, IL); Cole, Roger L. (Elmhurst, IL)

    1997-01-01

    An air supply control system for selectively supplying ambient air, oxygen enriched air and nitrogen enriched air to an intake of an internal combustion engine includes an air mixing chamber that is in fluid communication with the air intake. At least a portion of the ambient air flowing to the mixing chamber is selectively diverted through a secondary path that includes a selectively permeable air separating membrane device due a differential pressure established across the air separating membrane. The permeable membrane device separates a portion of the nitrogen in the ambient air so that oxygen enriched air (permeate) and nitrogen enriched air (retentate) are produced. The oxygen enriched air and the nitrogen enriched air can be selectively supplied to the mixing chamber or expelled to atmosphere. Alternatively, a portion of the nitrogen enriched air can be supplied through another control valve to a monatomic-nitrogen plasma generator device so that atomic nitrogen produced from the nitrogen enriched air can be then injected into the exhaust of the engine. The oxygen enriched air or the nitrogen enriched air becomes mixed with the ambient air in the mixing chamber and then the mixed air is supplied to the intake of the engine. As a result, the air being supplied to the intake of the engine can be regulated with respect to the concentration of oxygen and/or nitrogen.

  6. SAVANNAH RIVER SITE'S H-CANYON FACILITY: IMPACTS OF FOREIGN OBLIGATIONS ON SPECIAL NUCLEAR MATERIAL DISPOSITION

    SciTech Connect (OSTI)

    Magoulas, V.

    2013-06-03

    The US has a non-proliferation policy to receive foreign and domestic research reactor returns of spent fuel materials of US origin. These spent fuel materials are returned to the Department of Energy (DOE) and placed in storage in the L-area spent fuel basin at the Savannah River Site (SRS). The foreign research reactor returns fall subject to the 123 agreements for peaceful cooperation. These 123 agreements are named after section 123 of the Atomic Energy Act of 1954 and govern the conditions of nuclear cooperation with foreign partners. The SRS management of these foreign obligations while planning material disposition paths can be a challenge.

  7. WC_1993_015_CLASS_WAIVER_of_the_Governments_US_and_Foreign_P.pdf |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 3_015_CLASS_WAIVER_of_the_Governments_US_and_Foreign_P.pdf WC_1993_015_CLASS_WAIVER_of_the_Governments_US_and_Foreign_P.pdf PDF icon WC_1993_015_CLASS_WAIVER_of_the_Governments_US_and_Foreign_P.pdf More Documents & Publications Class Patent Waiver W(C)2008-001 WC_1993_003_CLASS_WAIVER__of_the_Government_US_and_Foreign_P.pdf WC_1993_005__CLASS_WAIVER_of_the_Goernment

  8. Locally Employed Staff (LES)/Foreign Service National (FSN) of the Year

    Office of Environmental Management (EM)

    Award | Department of Energy Locally Employed Staff (LES)/Foreign Service National (FSN) of the Year Award Locally Employed Staff (LES)/Foreign Service National (FSN) of the Year Award The Locally Employed Staff (LES)/Foreign Service National (FSN) of the Year Award is designed to recognize special contributions made by the Department's LES/FSN's in achieving the U.S. Department of Energy's (DOE) and United States Government's (USG) foreign policy goals and objectives. The LES/FSN of the

  9. Analysis of Enriched Uranyl Nitrate in Nested Annular Tank Array

    SciTech Connect (OSTI)

    John D. Bess; James D. Cleaver

    2009-06-01

    Two series of experiments were performed at the Rocky Flats Critical Mass Laboratory during the 1980s using highly enriched (93%) uranyl nitrate solution in annular tanks. [1, 2] Tanks were of typical sizes found in nuclear production plants. Experiments looked at tanks of varying radii in a co-located set of nested tanks, a 1 by 2 array, and a 1 by 3 array. The co-located set of tanks had been analyzed previously [3] as a benchmark for inclusion within the International Handbook of Evaluated Criticality Safety Benchmark Experiments. [4] The current study represents the benchmark analysis of the 1 by 3 array of a series of nested annular tanks. Of the seventeen configurations performed in this set of experiments, twelve were evaluated and nine were judged as acceptable benchmarks.

  10. Method and apparatus for measuring enrichment of UF6

    DOE Patents [OSTI]

    Hill, Thomas Roy; Ianakiev, Kiril Dimitrov

    2011-06-07

    A system and method are disclosed for determining the enrichment of .sup.235U in Uranium Hexafluoride (UF6) utilizing synthesized X-rays which are directed at a container test zone containing a sample of UF6. A detector placed behind the container test zone then detects and counts the X-rays which pass through the container and the UF6. In order to determine the portion of the attenuation due to the UF6 gas alone, this count rate may then be compared to a calibration count rate of X-rays passing through a calibration test zone which contains a vacuum, the test zone having experienced substantially similar environmental conditions as the actual test zone. Alternatively, X-rays of two differing energy levels may be alternately directed at the container, where either the container or the UF6 has a high sensitivity to the difference in the energy levels, and the other having a low sensitivity.

  11. Systems approach used in the Gas Centrifuge Enrichment Plant

    SciTech Connect (OSTI)

    Rooks, W.A. Jr.

    1982-01-01

    A requirement exists for effective and efficient transfer of technical knowledge from the design engineering team to the production work force. Performance-Based Training (PBT) is a systematic approach to the design, development, and implementation of technical training. This approach has been successfully used by the US Armed Forces, industry, and other organizations. The advantages of the PBT approach are: cost-effectiveness (lowest life-cycle training cost), learning effectiveness, reduced implementation time, and ease of administration. The PBT process comprises five distinctive and rigorous phases: Analysis of Job Performance, Design of Instructional Strategy, Development of Training Materials and Instructional Media, Validation of Materials and Media, and Implementation of the Instructional Program. Examples from the Gas Centrifuge Enrichment Plant (GCEP) are used to illustrate the application of PBT.

  12. Centrifuge enrichment plants. January 1970-October 1988 (Citations from the NTIS data base). Report for January 1970-October 1988

    SciTech Connect (OSTI)

    Not Available

    1988-11-01

    This bibliography contains citations concerning the design, control, monitoring, and safety of centrifuge enrichment plants. Power supplies, enrichment plant safeguards, facility design, cascade heater test loops to monitor the enrichment process, inspection strategies, and the socio-economic effects of centrifuge enrichment plants are examined. Radioactive waste disposal problems are briefly considered. (Contains 151 citations fully indexed and including a title list.)

  13. Defining the needs for non-destructive assay of UF6 feed, product, and tails at gas centrifuge enrichment plants and possible next steps

    SciTech Connect (OSTI)

    Boyer, Brian D; Swinhoe, Martyn T; Moran, Bruce W; Lebrun, Alain

    2009-01-01

    Current safeguards approaches used by the IAEA at gas centrifuge enrichment plants (GCEPs) need enhancement in order to detect undeclared LEU production with adequate detection probability using non destructive assay (NDA) techniques. At present inspectors use attended systems, systems needing the presence of an inspector for operation, during inspections to verify the mass and {sup 235}U enrichment of UF{sub 6} bulk material used in the process of enrichment at GCEPS. The inspectors also take destructive assay (DA) samples for analysis off-site which provide accurate, on the order of 0.1 % to 0.5% uncertainty, data on the enrichment of the UF{sub 6} feed, tails, and product. However, DA sample taking is a much more labor intensive and resource intensive exercise for the operator and inspector. Furthermore, the operator must ship the samples off-site to the IAEA laboratory which delays the timeliness of the results and contains the possibility of the loss of the continuity of knowledge of the samples during the storage and transit of the material. Use of the IAEA's inspection sampling algorithm shows that while total sample size is fixed by the total population of potential samples and its intrinsic qualities, the split of the samples into NDA or DA samples is determined by the uncertainties in the NDA measurements. Therefore, the larger the uncertainties in the NDA methods, more of the sample taken must be DA samples. Since the DA sampling is arduous and costly, improvements in NDA methods would reduce the number of DA samples needed. Furthermore, if methods of on-site analysis of the samples could be developed that have uncertainties in the 1-2% range, a lot of the problems inherent in DA sampling could be removed. The use of an unattended system that could give an overview of the entire process giving complementary data on the enrichment process as well as accurate measures of enrichment and weights of the UF{sub 6} feed, tails, and product would be a major step in enhancing the ability of NDA beyond present attended systems. The possibility of monitoring the feed, tails, and product header pipes in such a way as to gain safeguards relevant flow and enrichment information without compromising the intellectual property of the operator including proprietary equipment and operational parameters would be a huge step forward. This paper contains an analysis of possible improvements in unattended and attended NDA systems including such process monitoring and possible on-site analysis of DA samples that could reduce the uncertainty of the inspector measurements reducing the difference between the operator's and inspector's measurements providing more effective and efficient IAEA GeEPs safeguards.

  14. Method for enriching a middle isotope using vibration-vibration pumping

    DOE Patents [OSTI]

    Rich, Joseph W. (East Aurora, NY); Homicz, Gregory F. (Getzville, NY); Bergman, Richard C. (Corfu, NY)

    1989-01-01

    Method for producing isotopically enriched material by vibration-vibration excitation of gaseous molecules wherein a middle mass isotope of an isotopic mixture including lighter and heavier mass isotopes preferentially populates a higher vibrational mode and chemically reacts to provide a product in which it is enriched. The method can be used for vibration-vibration enrichment of .sup.17 O in a CO reactant mixture.

  15. Deuterium enrichment by selective photoinduced dissociation of a multihalogenated organic compound

    DOE Patents [OSTI]

    Marling, John B. (Livermore, CA); Herman, Irving P. (Oakland, CA)

    1981-01-01

    A method for deuterium enrichment by photoinduced dissociation which uses as the deuterium source a multihalogenated organic compound selected from the group consisting of a dihalomethane, a trihalomethane, a 1,2-dihaloethene, a trihaloethene, a tetrahaloethane and a pentahaloethane. The multihalogenated organic compound is subjected to intense infrared radiation at a preselected wavelength to selectively excite and thereby induce dissociation of substantially only those molecules containing deuterium to provide a deuterium enriched dissociation product. The deuterium enriched product may be combusted with oxygen to provide deuterium enriched water. The deuterium depleted undissociated molecules may be redeuterated by treatment with a deuterium source such as water.

  16. EA-1172: Sale of Surplus Natural and Low Enriched Uranium, Piketon, Ohio

    Office of Energy Efficiency and Renewable Energy (EERE)

    This EA evaluates the environmental impacts for the proposal to sell uranium for subsequent enrichment and fabrication into commercial nuclear power reactor fuel. The uranium is currently stored...

  17. ARM - Measurement - Shortwave broadband total downwelling irradiance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    total downwelling irradiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Shortwave broadband total downwelling irradiance The total diffuse and direct radiant energy that comes from some continuous range of directions, at wavelengths between 0.4 and 4 {mu}m, that is being emitted downwards. Categories Radiometric Instruments The above measurement is considered scientifically relevant for the

  18. Design Storm for Total Retention.pdf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Storm Events for Select Western U.S. Cities (adapted from Energy Independence and Security Act Technical Guidance, USEPA, 2009) City 95th Percentile Event Rainfall Total...

  19. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    0 Alabama - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S1. Summary statistics for natural gas - Alabama, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 7,026 7,063 6,327 R 6,165 6,118 Production (million cubic feet) Gross Withdrawals From Gas Wells

  20. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    6 Arkansas - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S4. Summary statistics for natural gas - Arkansas, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 7,397 8,388 8,538 R 9,843 10,150 Production (million cubic feet) Gross Withdrawals From Gas Wells

  1. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    8 California - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S5. Summary statistics for natural gas - California, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 1,580 1,308 1,423 R 1,335 1,118 Production (million cubic feet) Gross Withdrawals From Gas

  2. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    0 Colorado - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S6. Summary statistics for natural gas - Colorado, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 28,813 30,101 32,000 R 32,468 38,346 Production (million cubic feet) Gross Withdrawals From Gas

  3. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    8 Florida - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S10. Summary statistics for natural gas - Florida, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 17,182 16,459 19,742

  4. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    0 Georgia - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S11. Summary statistics for natural gas - Georgia, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells

  5. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    8 Illinois - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S15. Summary statistics for natural gas - Illinois, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 50 40 40 R 34 36 Production (million cubic feet) Gross Withdrawals From Gas Wells E 1,697 2,114

  6. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    2 Iowa - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S17. Summary statistics for natural gas - Iowa, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0

  7. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    4 Kansas - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S18. Summary statistics for natural gas - Kansas, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 22,145 25,758 24,697 R 23,792 24,354 Production (million cubic feet) Gross Withdrawals From Gas Wells

  8. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    6 Kentucky - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S19. Summary statistics for natural gas - Kentucky, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 17,670 14,632 17,936 R 19,494 19,256 Production (million cubic feet) Gross Withdrawals From Gas

  9. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    8 Louisiana - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S20. Summary statistics for natural gas - Louisiana, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 19,137 21,235 19,792 R 19,528 19,251 Production (million cubic feet) Gross Withdrawals From Gas

  10. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    0 Maine - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S21. Summary statistics for natural gas - Maine, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0

  11. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    6 Michigan - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S24. Summary statistics for natural gas - Michigan, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 10,100 11,100 10,900 R 10,550 10,500 Production (million cubic feet) Gross Withdrawals From Gas

  12. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    0 Mississippi - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S26. Summary statistics for natural gas - Mississippi, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 1,979 5,732 1,669 R 1,967 1,645 Production (million cubic feet) Gross Withdrawals From Gas

  13. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    2 Missouri - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S27. Summary statistics for natural gas - Missouri, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 53 100 R 26 28 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 R 8 8 From

  14. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    4 Montana - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S28. Summary statistics for natural gas - Montana, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 6,059 6,477 6,240 5,754 5,754 Production (million cubic feet) Gross Withdrawals From Gas Wells

  15. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    8 Nevada - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S30. Summary statistics for natural gas - Nevada, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 R 4 4 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 3 From Oil Wells

  16. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    2 New Jersey - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S32. Summary statistics for natural gas - New Jersey, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil

  17. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    4 New Mexico - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S33. Summary statistics for natural gas - New Mexico, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 44,748 32,302 28,206 R 27,073 27,957 Production (million cubic feet) Gross Withdrawals From

  18. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    6 New York - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S34. Summary statistics for natural gas - New York, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 6,736 6,157 7,176 R 6,902 7,119 Production (million cubic feet) Gross Withdrawals From Gas Wells

  19. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    2 Ohio - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S37. Summary statistics for natural gas - Ohio, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 34,931 46,717 35,104 R 32,664 32,967 Production (million cubic feet) Gross Withdrawals From Gas Wells

  20. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    4 Oklahoma - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S38. Summary statistics for natural gas - Oklahoma, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 44,000 41,238 40,000 39,776 40,070 Production (million cubic feet) Gross Withdrawals From Gas

  1. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    6 Oregon - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S39. Summary statistics for natural gas - Oregon, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 26 24 27 R 26 28 Production (million cubic feet) Gross Withdrawals From Gas Wells 1,407 1,344 770 770

  2. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    8 Pennsylvania - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S40. Summary statistics for natural gas - Pennsylvania, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 44,500 54,347 55,136 R 53,762 70,400 Production (million cubic feet) Gross Withdrawals

  3. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    0 Rhode Island - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S41. Summary statistics for natural gas - Rhode Island, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From

  4. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    6 Tennessee - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S44. Summary statistics for natural gas - Tennessee, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 230 210 212 R 1,089 1,024 Production (million cubic feet) Gross Withdrawals From Gas Wells 5,144

  5. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    8 Texas - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S45. Summary statistics for natural gas - Texas, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 95,014 100,966 96,617 97,618 98,279 Production (million cubic feet) Gross Withdrawals From Gas Wells

  6. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    0 Utah - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S46. Summary statistics for natural gas - Utah, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 6,075 6,469 6,900 R 7,030 7,275 Production (million cubic feet) Gross Withdrawals From Gas Wells 328,135

  7. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    2 Vermont - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S47. Summary statistics for natural gas - Vermont, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells

  8. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    4 Virginia - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S48. Summary statistics for natural gas - Virginia, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 7,470 7,903 7,843 R 7,956 7,961 Production (million cubic feet) Gross Withdrawals From Gas Wells

  9. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    8 West Virginia - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S50. Summary statistics for natural gas - West Virginia, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 52,498 56,813 50,700 R 54,920 60,000 Production (million cubic feet) Gross Withdrawals

  10. Total Blender Net Input of Petroleum Products

    U.S. Energy Information Administration (EIA) Indexed Site

    Input Product: Total Input Natural Gas Plant Liquids and Liquefied Refinery Gases Pentanes Plus Liquid Petroleum Gases Normal Butane Isobutane Other Liquids OxygenatesRenewables ...

  11. 2014 Total Electric Industry- Sales (Megawatthours

    U.S. Energy Information Administration (EIA) Indexed Site

    and EIA-861U)" "State","Residential","Commercial","Industrial","Transportation","Total" "New England",47211525,53107038,19107433,557463,119983459 "Connecticut",12777579,12893531,3...

  12. ,"Total Natural Gas Underground Storage Capacity "

    U.S. Energy Information Administration (EIA) Indexed Site

    ...orcapaepg0sacmmcfm.htm" ,"Source:","Energy Information Administration" ,"For Help, ... 1: Total Natural Gas Underground Storage Capacity " "Sourcekey","N5290US2","NGMEP...

  13. Profiles of foreign direct investment in U.S. energy 1993

    SciTech Connect (OSTI)

    1995-05-05

    Profiles of Foreign Direct Investment in US Energy 1993 describes the role of foreign ownership in US energy resources. This report also looks at the investment patterns of US energy companies in other countries. The data used in this report come from the Energy Information Administration (EIA), the US Department of Commerce, company annual reports, and public disclosures of investment activities.

  14. WA_00_015_COMPAQ_FEDERAL_LLC_Waiver_Domestic_and_Foreign_Pat.pdf |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy 0_015_COMPAQ_FEDERAL_LLC_Waiver_Domestic_and_Foreign_Pat.pdf More Documents & Publications WA_01_018_IBM_Waiver_of_Governement_US_and_Foreign_Patent_Ri.pdf Advance Patent Waiver W(A)2002-023 WC_1997_004_CLASS_ADVANCE_WAIVER_Under_Domestic_First_and_Se.pdf

  15. WA_04_069__EATON_CORPORATION_Waiver_of_Domestic_and_Foreign_.pdf |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy 69__EATON_CORPORATION_Waiver_of_Domestic_and_Foreign_.pdf More Documents & Publications WA_04_059_EATON_CORPORATION_Waiver_of_Patent_Rights_Under_a_.pdf WA_02_048_EATON_CORPORATION_Waviver_of_Patent_Rights_Under_A.pdf WA_04_074_EATON_CORPORATION_Waiver_of_Domestic_and_Foreign_I.pdf

  16. Technical basis in support of the conversion of the University of Missouri Research Reactor (MURR) core from highly-enriched to low-enriched uranium - core neutron physics

    SciTech Connect (OSTI)

    Stillman, J.; Feldman, E.; Foyto, L; Kutikkad, K; McKibben, J C; Peters, N.; Stevens, J.

    2012-09-01

    This report contains the results of reactor design and performance for conversion of the University of Missouri Research Reactor (MURR) from the use of highly-enriched uranium (HEU) fuel to the use of low-enriched uranium (LEU) fuel. The analyses were performed by staff members of the Global Threat Reduction Initiative (GTRI) Reactor Conversion Program at the Argonne National Laboratory (ANL) and the MURR Facility. The core conversion to LEU is being performed with financial support of the U. S. government.

  17. Highly Enriched Uranyl Nitrate in Annular Tanks with Concrete Reflection: 1 x 3 Line Array of Nested Pairs of Tanks

    SciTech Connect (OSTI)

    James Cleaver; John D. Bess; Nathan Devine; Fitz Trumble

    2009-09-01

    A series of seven experiments were performed at the Rocky Flats Critical Mass Laboratory beginning in August, 1980 (References 1 and 2). Highly enriched uranyl nitrate solution was introduced into a 1-3 linear array of nested stainless steel annular tanks. The tanks were inside a concrete enclosure, with various moderator and absorber materials placed inside and/or between the tanks. These moderators and absorbers included boron-free concrete, borated concrete, borated plaster, and cadmium. Two configurations included placing bottles of highly enriched uranyl nitrate between tanks externally. Another experiment involved nested hemispheres of highly enriched uranium placed between tanks externally. These three configurations are not evaluated in this report. The experiments evaluated here are part of a series of experiments, one set of which is evaluated in HEU-SOL-THERM-033. The experiments in this and HEU-SOL-THERM-033 were performed similarly. They took place in the same room and used the same tanks, some of the same moderators and absorbers, some of the same reflector panels, and uranyl nitrate solution from the same location. There are probably additional similarities that existed that are not identified here. Thus, many of the descriptions in this report are either the same or similar to those in the HEU-SOL-THERM-033 report. Seventeen configurations (sixteen of which were critical) were performed during seven experiments; six of those experiments are evaluated here with thirteen configurations. Two configurations were identical, except for solution height, and were conducted to test repeatability. The solution heights were averaged and the two were evaluated as one configuration, which gives a total of twelve evaluated configurations. One of the seventeen configurations was subcritical. Of the twelve critical configurations evaluated, nine were judged as acceptable as benchmarks.

  18. Application of systems engineering techniques (reliability, availability, maintainability, and dollars) to the Gas Centrifuge Enrichment Plant

    SciTech Connect (OSTI)

    Boylan, J.G.; DeLozier, R.C.

    1982-01-01

    The systems engineering function for the Gas Centrifuge Enrichment Plant (GCEP) covers system requirements definition, analyses, verification, technical reviews, and other system efforts necessary to assure good balance of performance, safety, cost, and scheduling. The systems engineering function will support the design, installation, start-up, and operational phases of GCEP. The principal objectives of the systems engineering function are to: assure that the system requirements of the GCEP process are adequately specified and documented and that due consideration and emphasis are given to all aspects of the project; provide system analyses of the designs as they progress to assure that system requirements are met and that GCEP interfaces are compatible; assist in the definition of programs for the necessary and sufficient verification of GCEP systems; and integrate reliability, maintainability, logistics, safety, producibility, and other related specialties into a total system effort. This paper addresses the GCEP reliability, availability, maintainability, and dollars (RAM dollars) analyses which are the primary systems engineering tools for the development and implementation of trade-off studies. These studies are basic to reaching cost-effective project decisions. The steps necessary to achieve optimum cost-effective design are shown.

  19. 2009 Total Energy Production by State | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Total Energy Production by State 2009 Total Energy Production by State 2009 Total Energy Production by State...

  20. Environmental Survey preliminary report, Portsmouth Uranium Enrichment Complex, Piketon, Ohio

    SciTech Connect (OSTI)

    Not Available

    1987-08-01

    This report presents the preliminary findings from the first phase of the Environmental Survey of the United States Department of Energy (DOE) Portsmouth Uranium Enrichment Complex (PUEC), conducted August 4 through August 15, 1986. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Team specialists are being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations performed at PUEC, and interviews with site personnel. The Survey team developed a Sampling and Analysis Plan to assist in further assessing certain of the environmental problems identified during its on-site activities. The Sampling and Analysis Plan will be executed by Argonne National Laboratory. When completed, the results will be incorporated into the PUEC Environmental Survey Interim Report. The Interim Report will reflect the final determinations of the PUEC Survey. 55 refs., 22 figs., 21 tabs.

  1. Isotope-enriched protein standards for computational amide I spectroscopy

    SciTech Connect (OSTI)

    Reppert, Mike; Roy, Anish R.; Tokmakoff, Andrei

    2015-03-28

    We present a systematic isotope labeling study of the protein G mutant NuG2b as a step toward the production of reliable, structurally stable, experimental standards for amide I infrared spectroscopic simulations. By introducing isotope enriched amino acids into a minimal growth medium during bacterial expression, we induce uniform labeling of the amide bonds following specific amino acids, avoiding the need for chemical peptide synthesis. We use experimental data to test several common amide I frequency maps and explore the influence of various factors on map performance. Comparison of the predicted absorption frequencies for the four maps tested with empirical assignments to our experimental spectra yields a root-mean-square error of 6-12 cm{sup −1}, with outliers of at least 12 cm{sup −1} in all models. This means that the predictions may be useful for predicting general trends such as changes in hydrogen bonding configuration; however, for finer structural constraints or absolute frequency assignments, the models are unreliable. The results indicate the need for careful testing of existing literature maps and shed light on possible next steps for the development of quantitative spectral maps.

  2. New Measures to Safeguard Gas Centrifuge Enrichment Plants

    SciTech Connect (OSTI)

    Whitaker, Jr., James; Garner, James R; Whitaker, Michael; Lockwood, Dunbar; Gilligan, Kimberly V; Younkin, James R; Hooper, David A; Henkel, James J; Krichinsky, Alan M

    2011-01-01

    As Gas Centrifuge Enrichment Plants (GCEPs) increase in separative work unit (SWU) capacity, the current International Atomic Energy Agency (IAEA) model safeguards approach needs to be strengthened. New measures to increase the effectiveness of the safeguards approach are being investigated that will be mutually beneficial to the facility operators and the IAEA. One of the key concepts being studied for application at future GCEPs is embracing joint use equipment for process monitoring of load cells at feed and withdrawal (F/W) stations. A mock F/W system was built at Oak Ridge National Laboratory (ORNL) to generate and collect F/W data from an analogous system. The ORNL system has been used to collect data representing several realistic normal process and off-normal (including diversion) scenarios. Emphasis is placed on the novelty of the analysis of data from the sensors as well as the ability to build information out of raw data, which facilitates a more effective and efficient verification process. This paper will provide a progress report on recent accomplishments and next steps.

  3. Cell Total Activity Final Estimate.xls

    Office of Legacy Management (LM)

    WSSRAP Cell Total Activity Final Estimate (calculated September 2002, Fleming) (Waste streams & occupied cell volumes from spreadsheet titled "cell waste volumes-8.23.02 with macros.xls") Waste Stream a Volume (cy) Mass (g) 2 Radiological Profile 3 Nuclide Activity (Ci) 4 Total % of Total U-238 U-234 U-235 Th-228 Th-230 Th-232 Ra-226 Ra-228 Rn-222 5 Activity if > 1% Raffinate Pits Work Zone (Ci) Raffinate processed through CSS Plant 1 159990 1.49E+11 Raffinate 6.12E+01 6.12E+01

  4. Sensitive Targeted Quantification of ERK Phosphorylation Dynamics and Stoichiometry in Human Cells without Affinity Enrichment

    SciTech Connect (OSTI)

    Shi, Tujin; Gao, Yuqian; Gaffrey, Matthew J.; Nicora, Carrie D.; Fillmore, Thomas L.; Chrisler, William B.; Gritsenko, Marina A.; Wu, Chaochao; He, Jintang; Bloodsworth, Kent J.; Zhao, Rui; Camp, David G.; Liu, Tao; Rodland, Karin D.; Smith, Richard D.; Wiley, H. S.; Qian, Weijun

    2014-12-17

    Mass spectrometry-based targeted quantification is a promising technology for site-specific quantification of posttranslational modifications (PTMs). However, a major constraint of most targeted MS approaches is the limited sensitivity for quantifying low-abundance PTMs, requiring the use of affinity reagents to enrich specific PTMs. Herein, we demonstrate the direct site-specific quantification of ERK phosphorylation isoforms (pT, pY, pTpY) and their relative stoichiometries using a highly sensitive targeted MS approach termed high-pressure, high-resolution separations with intelligent selection and multiplexing (PRISM). PRISM provides effective enrichment of target peptides within a given fraction from complex biological matrix with minimal sample losses, followed by selected reaction monitoring (SRM) quantification. The PRISM-SRM approach enabled direct quantification of ERK phosphorylation in human mammary epithelial cells (HMEC) from as little as 25 g tryptic peptides from whole cell lysates. Compared to immobilized metal-ion affinity chromatography, PRISM provided >10-fold improvement in signal intensities, presumably due to the better peptide recovery of PRISM for handling small size samples. This approach was applied to quantify ERK phosphorylation dynamics in HMEC treated by different doses of EGF at both the peak activation (10 min) and steady state (2 h). At 10 min, the maximal ERK activation was observed with 0.3 ng/mL dose, whereas the maximal steady state level of ERK activation at 2 h was at 3 ng/ml dose, corresponding to 1200 and 9000 occupied receptors, respectively. At 10 min, the maximally activated pTpY isoform represented ~40% of total ERK, falling to less than 10% at 2 h. The time course and dose-response profiles of individual phosphorylated ERK isoforms indicated that singly phosphorylated pT-ERK never increases significantly, while the increase of pY-ERK paralleled that of pTpY-ERK. This data supports for a processive, rather than distributed, model of ERK phosphorylation. The PRISM-SRM quantification of protein phosphorylation illustrates the potential for simultaneous quantification of multiple PTMs.

  5. REMOVAL OF SOLIDS FROM HIGHLY ENRICHED URANIUM SOLUTIONS USING THE H-CANYON CENTRIFUGE

    SciTech Connect (OSTI)

    Rudisill, T; Fernando Fondeur, F

    2009-01-15

    Prior to the dissolution of Pu-containing materials in HB-Line, highly enriched uranium (HEU) solutions stored in Tanks 11.1 and 12.2 of H-Canyon must be transferred to provide storage space. The proposed plan is to centrifuge the solutions to remove solids which may present downstream criticality concerns or cause operational problems with the 1st Cycle solvent extraction due to the formation of stable emulsions. An evaluation of the efficiency of the H-Canyon centrifuge concluded that a sufficient amount (> 90%) of the solids in the Tank 11.1 and 12.2 solutions will be removed to prevent any problems. We based this conclusion on the particle size distribution of the solids isolated from samples of the solutions and the calculation of particle settling times in the centrifuge. The particle size distributions were calculated from images generated by scanning electron microscopy (SEM). The mean particle diameters for the distributions were 1-3 {micro}m. A significant fraction (30-50%) of the particles had diameters which were < 1 {micro}m; however, the mass of these solids is insignificant (< 1% of the total solids mass) when compared to particles with larger diameters. It is also probable that the number of submicron particles was overestimated by the software used to generate the particle distribution due to the morphology of the filter paper used to isolate the solids. The settling times calculated for the H-Canyon centrifuge showed that particles with diameters less than 1 to 0.5 {micro}m will not have sufficient time to settle. For this reason, we recommend the use of a gelatin strike to coagulate the submicron particles and facilitate their removal from the solution; although we have no experimental basis to estimate the level of improvement. Incomplete removal of particles with diameters < 1 {micro}m should not cause problems during purification of the HEU in the 1st Cycle solvent extraction. Particles with diameters > 1 {micro}m account for > 99% of the solid mass and will be efficiently removed by the centrifuge; therefore, the formation of emulsions during solvent extraction operations is not an issue. Under the current processing plan, the solutions from Tanks 11.1 and 12.2 will be transferred to the enriched uranium storage (EUS) tank following centrifugation. The solution from Tanks 11.1 and 12.2 may remain in the EUS tank for an extended time prior to purification. The effects of extended storage on the solution were not evaluated as part of this study.

  6. TotalView Parallel Debugger at NERSC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The performance of the GUI can be greatly improved if used in conjunction with free NX software. The TotalView documentation web page is a good resource for learning more...

  7. Million Cu. Feet Percent of National Total

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    as known volumes of natural gas that were the result of leaks, damage, accidents, migration, andor blow down. Notes: Totals may not add due to independent rounding. Prices are...

  8. EQUUS Total Return Inc | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: EQUUS Total Return Inc Place: Houston, Texas Product: A business development company and VC investor that trades as a closed-end fund. EQUUS is...

  9. "2014 Total Electric Industry- Revenue (Thousands Dollars)"

    U.S. Energy Information Administration (EIA) Indexed Site

    and EIA-861U)" "State","Residential","Commercial","Industrial","Transportation","Total" "New England",8414175.4,7806276.7,2262752.4,57837.4,18541041.8 "Connecticut",2523348.7,2004...

  10. Total Natural Gas Underground Storage Capacity

    Gasoline and Diesel Fuel Update (EIA)

    Salt Caverns Storage Capacity Aquifers Storage Capacity Depleted Fields Storage Capacity Total Working Gas Capacity Working Gas Capacity of Salt Caverns Working Gas Capacity of Aquifers Working Gas Capacity of Depleted Fields Total Number of Existing Fields Number of Existing Salt Caverns Number of Existing Aquifers Number of Depleted Fields Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data

  11. Total Natural Gas Underground Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    Salt Caverns Storage Capacity Aquifers Storage Capacity Depleted Fields Storage Capacity Total Working Gas Capacity Working Gas Capacity of Salt Caverns Working Gas Capacity of Aquifers Working Gas Capacity of Depleted Fields Total Number of Existing Fields Number of Existing Salt Caverns Number of Existing Aquifers Number of Depleted Fields Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data

  12. ARM - Measurement - Net broadband total irradiance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govMeasurementsNet broadband total irradiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Net broadband total irradiance The difference between upwelling and downwelling, covering longwave and shortwave radiation. Categories Radiometric Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each

  13. Detection of foreign body using fast thermoacoustic tomography with a multielement linear transducer array

    SciTech Connect (OSTI)

    Nie Liming; Xing Da; Yang Diwu; Zeng Lvming; Zhou Quan

    2007-04-23

    Current imaging modalities face challenges in clinical applications due to limitations in resolution or contrast. Microwave-induced thermoacoustic imaging may provide a complementary modality for medical imaging, particularly for detecting foreign objects due to their different absorption of electromagnetic radiation at specific frequencies. A thermoacoustic tomography system with a multielement linear transducer array was developed and used to detect foreign objects in tissue. Radiography and thermoacoustic images of objects with different electromagnetic properties, including glass, sand, and iron, were compared. The authors' results demonstrate that thermoacoustic imaging has the potential to become a fast method for surgical localization of occult foreign objects.

  14. High-solids enrichment of thermophilic microbial communities and their enzymes on bioenergy feedstocks

    SciTech Connect (OSTI)

    Reddy, A. P.; Allgaier, M.; Singer, S.W.; Hazen, T.C.; Simmons, B.A.; Hugenholtz, P.; VanderGheynst, J.S.

    2011-04-01

    Thermophilic microbial communities that are active in a high-solids environment offer great potential for the discovery of industrially relevant enzymes that efficiently deconstruct bioenergy feedstocks. In this study, finished green waste compost was used as an inoculum source to enrich microbial communities and associated enzymes that hydrolyze cellulose and hemicellulose during thermophilic high-solids fermentation of the bioenergy feedstocks switchgrass and corn stover. Methods involving the disruption of enzyme and plant cell wall polysaccharide interactions were developed to recover xylanase and endoglucanase activity from deconstructed solids. Xylanase and endoglucanase activity increased by more than a factor of 5, upon four successive enrichments on switchgrass. Overall, the changes for switchgrass were more pronounced than for corn stover; solids reduction between the first and second enrichments increased by a factor of four for switchgrass while solids reduction remained relatively constant for corn stover. Amplicon pyrosequencing analysis of small-subunit ribosomal RNA genes recovered from enriched samples indicated rapid changes in the microbial communities between the first and second enrichment with the simplified communities achieved by the third enrichment. The results demonstrate a successful approach for enrichment of unique microbial communities and enzymes active in a thermophilic high-solids environment.

  15. Low temperature combustion using nitrogen enrichment to mitigate NOx from large bore natural gas fueled engines.

    SciTech Connect (OSTI)

    Biruduganti, M.; Gupta, S.; Sekar, R.; Energy Systems

    2010-01-01

    Low temperature combustion is identified as one of the pathways to meet the mandatory ultra low NO{sub x} emissions levels set by the regulatory agencies. Exhaust gas recirculation (EGR) is a well known technique to realize low NO{sub x} emissions. However, EGR has many built-in adverse ramifications that negate its advantages in the long term. This paper discusses nitrogen enrichment of intake air using air separation membranes as a better alternative to the mature EGR technique. This investigation was undertaken to determine the maximum acceptable level of nitrogen enrichment of air for a single-cylinder spark-ignited natural gas engine. NO{sub x} reduction as high as 70% was realized with a modest 2% nitrogen enrichment while maintaining power density and simultaneously improving fuel conversion efficiency (FCE). Any enrichment beyond this level degraded engine performance in terms of power density, FCE, and unburned hydrocarbon emissions. The effect of ignition timing was also studied with and without N{sub 2} enrichment. Finally, lean burn versus stoichiometric operation utilizing nitrogen enrichment was compared. Analysis showed that lean burn operation along with nitrogen enrichment is one of the effective pathways for realizing better FCE and lower NO{sub x} emissions.

  16. ZPR-3 Assembly 12 : A cylindrical assembly of highly enriched uranium, depleted uranium and graphite with an average {sup 235}U enrichment of 21 atom %.

    SciTech Connect (OSTI)

    Lell, R. M.; McKnight, R. D.; Perel, R. L.; Wagschal, J. J.; Nuclear Engineering Division; Racah Inst. of Physics

    2010-09-30

    Over a period of 30 years, more than a hundred Zero Power Reactor (ZPR) critical assemblies were constructed at Argonne National Laboratory. The ZPR facilities, ZPR-3, ZPR-6, ZPR-9 and ZPPR, were all fast critical assembly facilities. The ZPR critical assemblies were constructed to support fast reactor development, but data from some of these assemblies are also well suited for nuclear data validation and to form the basis for criticality safety benchmarks. A number of the Argonne ZPR/ZPPR critical assemblies have been evaluated as ICSBEP and IRPhEP benchmarks. Of the three classes of ZPR assemblies, engineering mockups, engineering benchmarks and physics benchmarks, the last group tends to be most useful for criticality safety. Because physics benchmarks were designed to test fast reactor physics data and methods, they were as simple as possible in geometry and composition. The principal fissile species was {sup 235}U or {sup 239}Pu. Fuel enrichments ranged from 9% to 95%. Often there were only one or two main core diluent materials, such as aluminum, graphite, iron, sodium or stainless steel. The cores were reflected (and insulated from room return effects) by one or two layers of materials such as depleted uranium, lead or stainless steel. Despite their more complex nature, a small number of assemblies from the other two classes would make useful criticality safety benchmarks because they have features related to criticality safety issues, such as reflection by soil-like material. ZPR-3 Assembly 12 (ZPR-3/12) was designed as a fast reactor physics benchmark experiment with an average core {sup 235}U enrichment of approximately 21 at.%. Approximately 68.9% of the total fissions in this assembly occur above 100 keV, approximately 31.1% occur below 100 keV, and essentially none below 0.625 eV - thus the classification as a 'fast' assembly. This assembly is Fast Reactor Benchmark No. 9 in the Cross Section Evaluation Working Group (CSEWG) Benchmark Specifications and has historically been used as a data validation benchmark assembly. Loading of ZPR-3 Assembly 12 began in late Jan. 1958, and the Assembly 12 program ended in Feb. 1958. The core consisted of highly enriched uranium (HEU) plates, depleted uranium plates and graphite plates loaded into stainless steel drawers which were inserted into the central square stainless steel tubes of a 31 x 31 matrix on a split table machine. The core unit cell consisted of two columns of 0.125 in.-wide (3.175 mm) HEU plates, seven columns of 0.125 in.-wide depleted uranium plates and seven columns of 0.125 in.-wide graphite plates. The length of each column was 9 in. (228.6 mm) in each half of the core. The graphite plates were included to produce a softer neutron spectrum that would be more characteristic of a large power reactor. The axial blanket consisted of 12 in. (304.8 mm) of depleted uranium behind the core. The thickness of the radial blanket was approximately 12 in. and the length of the radial blanket in each half of the matrix was 21 in. (533.4 mm). The assembly geometry approximated a right circular cylinder as closely as the square matrix tubes allowed. According to the logbook and loading records for ZPR-3/12, the reference critical configuration was loading 10 which was critical on Feb. 5, 1958. The subsequent loadings were very similar but less clean for criticality because there were modifications made to accommodate reactor physics measurements other than criticality. Accordingly, ZPR-3/12 loading 10 was selected as the only configuration for this benchmark. As documented below, it was determined to be acceptable as a criticality safety benchmark experiment. An accurate transformation to a simplified model is needed to make any ZPR assembly a practical criticality-safety benchmark. There is simply too much geometric detail in an exact (as-built) model of a ZPR assembly, even a clean core such as ZPR-3/12 loading 10. The transformation must reduce the detail to a practical level without masking any of the important features of the critical experiment. And it must d

  17. ZPR-3 Assembly 6F : A spherical assembly of highly enriched uranium, depleted uranium, aluminum and steel with an average {sup 235}U enrichment of 47 atom %.

    SciTech Connect (OSTI)

    Lell, R. M.; McKnight, R. D; Schaefer, R. W.; Nuclear Engineering Division

    2010-09-30

    Over a period of 30 years, more than a hundred Zero Power Reactor (ZPR) critical assemblies were constructed at Argonne National Laboratory. The ZPR facilities, ZPR-3, ZPR-6, ZPR-9 and ZPPR, were all fast critical assembly facilities. The ZPR critical assemblies were constructed to support fast reactor development, but data from some of these assemblies are also well suited for nuclear data validation and to form the basis for criticality safety benchmarks. A number of the Argonne ZPR/ZPPR critical assemblies have been evaluated as ICSBEP and IRPhEP benchmarks. Of the three classes of ZPR assemblies, engineering mockups, engineering benchmarks and physics benchmarks, the last group tends to be most useful for criticality safety. Because physics benchmarks were designed to test fast reactor physics data and methods, they were as simple as possible in geometry and composition. The principal fissile species was {sup 235}U or {sup 239}Pu. Fuel enrichments ranged from 9% to 95%. Often there were only one or two main core diluent materials, such as aluminum, graphite, iron, sodium or stainless steel. The cores were reflected (and insulated from room return effects) by one or two layers of materials such as depleted uranium, lead or stainless steel. Despite their more complex nature, a small number of assemblies from the other two classes would make useful criticality safety benchmarks because they have features related to criticality safety issues, such as reflection by soil-like material. ZPR-3 Assembly 6 consisted of six phases, A through F. In each phase a critical configuration was constructed to simulate a very simple shape such as a slab, cylinder or sphere that could be analyzed with the limited analytical tools available in the 1950s. In each case the configuration consisted of a core region of metal plates surrounded by a thick depleted uranium metal reflector. The average compositions of the core configurations were essentially identical in phases A - F. ZPR-3 Assembly 6F (ZPR-3/6F), the final phase of the Assembly 6 program, simulated a spherical core with a thick depleted uranium reflector. ZPR-3/6F was designed as a fast reactor physics benchmark experiment with an average core {sup 235}U enrichment of approximately 47 at.%. Approximately 81.4% of the total fissions in this assembly occur above 100 keV, approximately 18.6% occur below 100 keV, and essentially none below 0.625 eV - thus the classification as a 'fast' assembly. This assembly is Fast Reactor Benchmark No. 7 in the Cross Section Evaluation Working Group (CSEWG) Benchmark Specifications and has historically been used as a data validation benchmark assembly. Loading of ZPR-3/6F began in late December 1956, and the experimental measurements were performed in January 1957. The core consisted of highly enriched uranium (HEU) plates, depleted uranium plates, perforated aluminum plates and stainless steel plates loaded into aluminum drawers, which were inserted into the central square stainless steel tubes of a 31 x 31 matrix on a split table machine. The core unit cell consisted of three columns of 0.125 in.-wide (3.175 mm) HEU plates, three columns of 0.125 in.-wide depleted uranium plates, nine columns of 0.125 in.-wide perforated aluminum plates and one column of stainless steel plates. The maximum length of each column of core material in a drawer was 9 in. (228.6 mm). Because of the goal to produce an approximately spherical core, core fuel and diluent column lengths generally varied between adjacent drawers and frequently within an individual drawer. The axial reflector consisted of depleted uranium plates and blocks loaded in the available space in the front (core) drawers, with the remainder loaded into back drawers behind the front drawers. The radial reflector consisted of blocks of depleted uranium loaded directly into the matrix tubes. The assembly geometry approximated a reflected sphere as closely as the square matrix tubes, the drawers and the shapes of fuel and diluent plates allowed. According to the logbook and loading records for ZPR-3/6F

  18. Electrolytic recovery of mercury enriched in isotopic abundance

    DOE Patents [OSTI]

    Grossman, Mark W. (Belmont, MA)

    1991-01-01

    The present invention is directed to a method of electrolytically extracting liquid mercury from HgO or Hg.sub.2 Cl.sub.2. Additionally there are disclosed two related techniques associated with the present invention, namely (1) a technique for selectively removing product from different regions of a long photochemical reactor (photoreactor) and (2) a method of accurately measuring the total quantity of mercury formed as either HgO or Hg.sub.2 Cl.sub.2.

  19. FACE: Free-Air CO[sub 2] Enrichment for plant research in the field

    SciTech Connect (OSTI)

    Hendrey, G.R.

    1992-08-01

    Research programs concerning the effects of Carbon Dioxide(CO)[sub 2] on cotton plants are described. Biological responses studied include foliage response to CO[sub 2] fluctuations; yield of cotton exposed to CO[sub 2] enrichment; responses of photosynthesis and stomatal conductance to elevated CO[sub 2] in field-grown cotton; cotton leaf and boll temperatures; root response to CO[sub 2] enrichment; and evaluations of cotton response to CO[sub 2] enrichment with canopy reflectance observations.

  20. FACE: Free-Air CO{sub 2} Enrichment for plant research in the field

    SciTech Connect (OSTI)

    Hendrey, G.R.

    1992-08-01

    Research programs concerning the effects of Carbon Dioxide(CO){sub 2} on cotton plants are described. Biological responses studied include foliage response to CO{sub 2} fluctuations; yield of cotton exposed to CO{sub 2} enrichment; responses of photosynthesis and stomatal conductance to elevated CO{sub 2} in field-grown cotton; cotton leaf and boll temperatures; root response to CO{sub 2} enrichment; and evaluations of cotton response to CO{sub 2} enrichment with canopy reflectance observations.

  1. ARM - Measurement - Shortwave spectral total downwelling irradiance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    total downwelling irradiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Shortwave spectral total downwelling irradiance The rate at which radiant energy, at specrally-resolved wavelengths between 0.4 and 4 {mu}m, is being emitted upwards and downwards into a radiation field and transferred across a surface area (real or imaginary) in a hemisphere of directions. Categories Radiometric Instruments

  2. ORISE: After a Brief Decline, Recent Foreign Ph.D. Graduates...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    point increase and a rebound in the proportion of foreign graduates willing or able to stay in the U.S. after finishing their degrees (known as the stay rate), which had...

  3. Methods and constructs for expression of foreign proteins in photosynthetic organisms

    DOE Patents [OSTI]

    Laible, Philip D. (Villa Park, IL); Hanson, Deborah K. (Downers Grove, IL)

    2002-01-01

    A method for expressing and purifying foreign proteins in photosynthetic organisms comprising the simultaneous expression of both the heterologous protein and a means for compartmentalizing or sequestering of the protein.

  4. EA-0912: Urgent-Relief Acceptance of Foreign Research Reactor Spent Nuclear Fuel

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to accept 409 spent fuel elements from eight foreign research reactors in seven European countries.  The spent fuel would be shipped across...

  5. Rob Goldston, Alex Glaser and Boaz Barak named among Foreign Policy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    magazine's 100 top global thinkers | Princeton Plasma Physics Lab Rob Goldston, Alex Glaser and Boaz Barak named among Foreign Policy magazine's 100 top global thinkers By John Greenwald November 18, 2014 Tweet Widget Google Plus One Share on Facebook Alex Glaser, left, and Rob Goldston, seen here with a non-nuclear test object. The two were named to Foreign Policy magazine's list of "100 Leading Global Thinkers of 2014." (Photo by Elle Starkman/ PPPL Office of Communications) Alex

  6. How a Single T Cell Receptor Recognizes Both Self and Foreign MHC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a Single T Cell Receptor Recognizes Both Self and Foreign MHC The adaptive immune response enables the vertebrate immune system to recognize and respond to specific pathogens, with immunological memory allowing a stronger response upon subsequent re-exposure to a pathogen. Adaptive immunity relies on the capacity of immune cells to distinguish between the body's own cells and foreign invaders. ab T cell receptors (TCRs) recognize antigenic peptides in complex with major histocompatibility

  7. Unclassified Foreign National Visits and Assignments at Oak Ridge National Laboratory

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Unclassified Foreign National Visits and Assignments at Oak Ridge National Laboratory INS-O-13-05 September 2013 Department of Energy Washington, DC 20585 September 16, 2013 MEMORANDUM FOR THE MANAGER, OAK RIDGE NATIONAL LABORATORY SITE OFFICE FROM: Sandra D. Bruce Assistant Inspector General for Inspections Office of Inspector General SUBJECT: INFORMATION: Inspection Report on "Unclassified Foreign National Visits and Assignments at Oak Ridge National Laboratory" BACKGROUND In support

  8. Chapter_4_Foreign_Ownership_Control_or_Influence_Facility_Clearance_and_Classified_Contract_Registration

    Office of Environmental Management (EM)

    Foreign Ownership, Control, or Influence; Facility Clearance; and Classified Contract Registration This chapter summarizes the process that contractors undergo to be authorized to perform classified work for DOE HQ. The process involves three-steps: obtaining a Foreign Ownership, Control, or Influence (FOCI) determination, obtaining a Facility Clearance; and registering classified contracts within DOE's Safeguards and Security Information Management System (SSIMS). At HQ, all these actions are

  9. Microsoft PowerPoint - Foreign Obligations_Julie Hawkins [Compatibility Mode]

    National Nuclear Security Administration (NNSA)

    Obligations Julie Hawkins - Global Nuclear Fuel Foreign Obligations Update 2  Review of origin of obligations tracking  How obligations are tracked  NRC notice to facilities  Obligations codes being tracked by NMMSS  Obligation codes being tracked by Euratom  Obligation codes being tracked by Japan  Creation of obligated material onsite  Reconciliation of obligations balances  Depleting WR Balances Origins of Foreign Obligations Tracking 3  US, Canada, Australia,

  10. 2014 Total Electric Industry- Revenue (Thousands Dollars)

    U.S. Energy Information Administration (EIA) Indexed Site

    4A-D, EIA-861S and EIA-861U) State Residential Commercial Industrial Transportation Total New England 8,414,175 7,806,277 2,262,752 57,837 18,541,042 Connecticut 2,523,349...

  11. Directory of financing sources for foreign energy projects

    SciTech Connect (OSTI)

    La Ferla, L.

    1995-09-01

    The Office of National Security Policy has produced this Directory of Financing Sources for Foreign Energy Projects. The Directory reviews programs that offer financing from US government agencies, multilateral organizations, public, private, and quasi-private investment funds, and local commercial and state development banks. The main US government agencies covered are the US Agency for International Development (USAID), the Export-Import Bank of the US (EXIM Bank), Overseas Private Investment Corporation (OPIC), US Department of Energy, US Department of Defense, and the US Trade and Development Agency (TDA). Other US Government Sources includes market funds that have been in part capitalized using US government agency funds. Multilateral organizations include the World Bank, International Finance Corporation (IFC), Asian Development Bank (ADB), European Bank for Reconstruction and Development (EBRD), and various organizations of the United Nations. The Directory lists available public, private, and quasi-private sources of financing in key emerging markets in the Newly Independent States and other developing countries of strategic interest to the US Department of Energy. The sources of financing listed in this directory should be considered indicative rather than inclusive of all potential sources of financing. Initial focus is on the Russian Federation, Ukraine, india, China, and Pakistan. Separate self-contained sections have been developed for each of the countries to enable the user to readily access market-specific information and to support country-specific Departmental initiatives. For each country, the directory is organized to follow the project life cycle--from prefeasibility, feasibility, project finance, cofinancing, and trade finance, through to technical assistance and training. Programs on investment and export insurance are excluded.

  12. Isotope enrichment by frequency-tripled temperature tuned neodymium laser photolysis of formaldehyde

    DOE Patents [OSTI]

    Marling, John B.

    1977-01-01

    Enrichment of carbon, hydrogen and/or oxygen isotopes by means of isotopically selective photo-predissociation of formaldehyde is achieved by irradiation provided by a frequency-tripled, temperature tuned neodymium laser.

  13. Report of Survey of Oak Ridge Isotope Enrichment (Calutron) Facility Building 9204-3

    Broader source: Energy.gov [DOE]

    The purpose of this document is to report the results of a survey conducted at the Isotope Enrichment Facility (IEF, Calutron, Building 9204-3) on the Y-12 Plant property at the Oak Ridge Site. The...

  14. Toxic Substances Control Act Uranium Enrichment Federal Facilities Compliance Agreement, February 20, 1992 Summary

    Office of Environmental Management (EM)

    Toxic Substance Control Act Uranium Enrichment Federal Facilities Compliance Agreement (TSCA-UE- FFCA), February 20, 1992 State Kentucky Agreement Type Compliance Agreement Legal Driver(s) TSCA Scope Summary Establishes responsibilities and commitments for bringing DOE's former and active Uranium Enrichment Plants in Paducah, Portsmouth, and Oak Ridge into compliance with TSCA and PCB Regulations Parties DOE; U.S. EPA Date 2/20/1992 SCOPE * Establish a plan and the responsibilities and

  15. Toxic Substances Control Act Uranium Enrichment Federal Facilities Compliance Agreement, February 20, 1992 Summary

    Office of Environmental Management (EM)

    Toxic Substance Control Act Uranium Enrichment Federal Facilities Compliance Agreement (TSCA-UE- FFCA), February 20, 1992 State Ohio Agreement Type Compliance Agreement Legal Driver(s) TSCA Scope Summary Establishes responsibilities and commitments for bringing DOE's former and active Uranium Enrichment Plants in Paducah, Portsmouth, and Oak Ridge into compliance with TSCA and PCB Regulations Parties DOE; U.S. EPA Date 2/20/1992 SCOPE * Establish a plan and the responsibilities and commitments

  16. STUDY OF USING OXYGEN-ENRICHED COMBUSTION AIR FOR LOCOMOTIVE DIESEL ENGINES

    Office of Scientific and Technical Information (OSTI)

    STUDY OF USING OXYGEN-ENRICHED COMBUSTION AIR FOR LOCOMOTIVE DIESEL ENGINES Ramesh B. Poola and Raj Sekar Argonne National Laboratory Argonne, Illinois Dennis N. Assanis The University of Michigan Ann Arbor, Michigan G. Richard Cataldi Association of American Railroads Washington, D.C. ABSTRACT A thermodynamic simulation is used to study the effects of oxygen-enriched intake air on the performance and nitrogen oxide (NO) emissions of a locomotive diesel engine. The parasitic power of the air

  17. Cutting NOx from Diesel Engines with Membrane-Generated Nitrogen-Enriched

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Air | Department of Energy Cutting NOx from Diesel Engines with Membrane-Generated Nitrogen-Enriched Air Cutting NOx from Diesel Engines with Membrane-Generated Nitrogen-Enriched Air 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters PDF icon 2005_deer_bowser.pdf More Documents & Publications Membrane Technology Workshop Advanced Reciprocating Engine Systems (ARES) R&D - Presentation by Argonne National Laboratory, June 2011 Diesel Engine Alternatives

  18. DOE's General Counsel Determines Sudan Act Does Not Bar Areva Enrichment

    Office of Environmental Management (EM)

    Services LLC Loan Application | Department of Energy DOE's General Counsel Determines Sudan Act Does Not Bar Areva Enrichment Services LLC Loan Application DOE's General Counsel Determines Sudan Act Does Not Bar Areva Enrichment Services LLC Loan Application December 28, 2009 - 10:57am Addthis Washington, DC - The Office of General Counsel was recently asked whether the Sudan Accountability and Divestment Act of 2007 barred the Department from considering a loan guarantee application

  19. Study of using oxygen-enriched combustion air for locomotive diesel engines

    SciTech Connect (OSTI)

    Poola, R.B.; Sekar, R.; Assanis, D.N.; Cataldi, G.R.

    1996-10-01

    A thermodynamic simulation is used to study effects of O2-enriched intake air on performance and NO emissions of a locomotive diesel engine. Parasitic power of the air separation membrane required to supply the O2-enriched air is also estimated. For a given constraint on peak cylinder pressure, gross and net power output of an engine operating under different levels of O2 enrichment are compared with those obtained when a high-boost turbocharged engine is used. A 4% increase in peak cylinder pressure can result in 13% increase in net engine power when intake air with 28 vol% O2 is used and fuel injection timing retarded by 4 degrees. When the engine is turbocharged to a higher inlet boost, the same increase in peak cylinder pressure can result in only 4% improvement in power. If part of the higher exhaust enthalpies from the O2 enrichment is recovered, the power requirements of the air separator membrane can be met. O2 enrichment with its higher combustion temperatures reduces emissions of particulates and visible smoke but increases NO emissions (by up to 3 times at 26% O2 content). Therefore, exhaust gas after-treatment and heat recovery would be required if the full potential of O2 enrichment for improving the performance of locomotive diesel engines is to be realized.

  20. Study of using oxygen-enriched combustion air for locomotive diesel engines

    SciTech Connect (OSTI)

    Poola, R.B.; Sekar, R.; Assanis, D.N.; Cataldi, G.R.

    1996-12-31

    A thermodynamic simulation is used to study the effects of oxygen-enriched intake air on the performance and nitrogen oxide (NO) emissions of a locomotive diesel engine. The parasitic power of the air separation membrane required to supply the oxygen-enriched air is also estimated. For a given constraint on peak cylinder pressure, the gross and net power output of an engine operating under different levels of oxygen enrichment are compared with those obtained when a high-boost turbocharged engine is used. A 4% increase in peak cylinder pressure can result in an increase in net engine power of approximately 13% when intake air with an oxygen content of 28% by volume is used and fuel injection timing is retarded by 4 degrees. When the engine is turbocharged to a higher inlet boost, the same increase in peak cylinder pressure can improve power by only 4%. If part of the significantly higher exhaust enthalpies available as a result of oxygen enrichment are recovered, the power requirements of the air separator membrane can be met, resulting in substantial net power improvements. Oxygen enrichment with its attendant higher combustion temperatures, reduces emissions of particulates and visible smoke but increases NO emissions (by up to three times at 26% oxygen content). Therefore, exhaust gas after-treatment and heat recovery would be required if the full potential of oxygen enrichment for improving the performance of locomotive diesel engines is to be realized.

  1. Frustrated total internal reflection acoustic field sensor

    DOE Patents [OSTI]

    Kallman, Jeffrey S. (Pleasanton, CA)

    2000-01-01

    A frustrated total internal reflection acoustic field sensor which allows the acquisition of the acoustic field over an entire plane, all at once. The sensor finds use in acoustic holography and acoustic diffraction tomography. For example, the sensor may be produced by a transparent plate with transparent support members tall enough to support one or more flexible membranes at an appropriate height for frustrated total internal reflection to occur. An acoustic wave causes the membrane to deflect away from its quiescent position and thus changes the amount of light that tunnels through the gap formed by the support members and into the membrane, and so changes the amount of light reflected by the membrane. The sensor(s) is illuminated by a uniform tight field, and the reflection from the sensor yields acoustic wave amplitude and phase information which can be picked up electronically or otherwise.

  2. Fractionated total body irradiation for metastatic neuroblastoma

    SciTech Connect (OSTI)

    Kun, L.E.; Casper, J.T.; Kline, R.W.; Piaskowski, V.D.

    1981-11-01

    Twelve patients over one year old with neuroblastoma (NBL) metastatic to bone and bone marrow entered a study of adjuvant low-dose, fractionated total body irradiation (TBI). Six children who achieved a ''complete clinical response'' following chemotherapy (cyclophosphamide and adriamycin) and surgical resection of the abdominal primary received TBI (10 rad/fraction to totals of 100-120 rad/10-12 fx/12-25 days). Two children received concurrent local irradiation for residual abdominal tumor. The intervals from cessation of chemotherapy to documented progression ranged from 2-16 months, not substatially different from patients receiving similar chemotherapy and surgery without TBI. Three additional children with progressive NBL received similar TBI (80-120 rad/8-12 fx) without objective response.

  3. Total Natural Gas Underground Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Working Gas Capacity Total Number of Existing Fields Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 View History U.S. 9,228,173 9,219,173 9,224,005 9,225,079 9,225,911 9,228,240 1989-2015 Alaska 83,592 83,592 83,592 83,592 83,592 83,592 2013-2015 Lower 48 States 9,144,581 9,135,581 9,140,412 9,141,486 9,142,319 9,144,648

  4. Contractor: Contract Number: Contract Type: Total Estimated

    Office of Environmental Management (EM)

    Contract Number: Contract Type: Total Estimated Contract Cost: Performance Period Total Fee Paid FY2004 $294,316 FY2005 $820,074 FY2006 $799,449 FY2007 $877,898 FY2008 $866,608 FY2009 $886,404 FY2010 $800,314 FY2011 $871,280 FY2012 $824,517 FY2013 Cumulative Fee Paid $7,040,860 $820,074 $799,449 $877,898 $916,130 $886,608 Computer Sciences Corporation DE-AC06-04RL14383 $895,358 $899,230 $907,583 Cost Plus Award Fee $134,100,336 $8,221,404 Fee Available Contract Period: Fee Information Minimum

  5. Total Crude Oil and Petroleum Products Exports

    Gasoline and Diesel Fuel Update (EIA)

    Exports Product: Total Crude Oil and Petroleum Products Crude Oil Natural Gas Plant Liquids and Liquefied Refinery Gases Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Propane/Propylene Normal Butane/Butylene Isobutane/Isobutylene Other Liquids Hydrogen/Oxygenates/Renewables/Other Hydrocarbons Oxygenates (excl. Fuel Ethanol) Methyl Tertiary Butyl Ether (MTBE) Other Oxygenates Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Biomass-Based Diesel Unfinished Oils Naphthas and Lighter

  6. ARM - Measurement - Shortwave broadband total net irradiance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    net irradiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Shortwave broadband total net irradiance The difference between upwelling and downwelling broadband shortwave radiation. Categories Radiometric Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available

  7. ARM - Measurement - Shortwave narrowband total downwelling irradiance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    downwelling irradiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Shortwave narrowband total downwelling irradiance The rate at which radiant energy, in narrow bands of wavelengths shorter than approximately 4 {mu}m, passes through a horizontal unit area in a downward direction. Categories Radiometric Instruments The above measurement is considered scientifically relevant for the following

  8. ARM - Measurement - Shortwave narrowband total upwelling irradiance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    upwelling irradiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Shortwave narrowband total upwelling irradiance The rate at which radiant energy, in narrow bands of wavelengths shorter than approximately 4 {mu}m, passes through a horizontal unit area in an upward direction. Categories Radiometric Instruments The above measurement is considered scientifically relevant for the following instruments.

  9. Notices Total Estimated Number of Annual

    Energy Savers [EERE]

    372 Federal Register / Vol. 78, No. 181 / Wednesday, September 18, 2013 / Notices Total Estimated Number of Annual Burden Hours: 10,128. Abstract: Enrollment in the Federal Student Aid (FSA) Student Aid Internet Gateway (SAIG) allows eligible entities to securely exchange Title IV, Higher Education Act (HEA) assistance programs data electronically with the Department of Education processors. Organizations establish Destination Point Administrators (DPAs) to transmit, receive, view and update

  10. Table 6a. Total Electricity Consumption per Effective Occupied...

    U.S. Energy Information Administration (EIA) Indexed Site

    a. Total Electricity Consumption per Effective Occupied Square Foot, 1992 Building Characteristics All Buildings Using Electricity (thousand) Total Electricity Consumption...

  11. Application of oxygen-enriched combustion for locomotive diesel engines. Phase 1

    SciTech Connect (OSTI)

    Poola, R.B.; Sekar, R.R.; Assanis, D.N.

    1996-09-01

    A thermodynamic simulation is used to study the effects of oxygen-enriched intake air on the performance and nitrogen oxide (NO) emissions of a locomotive diesel engine. The parasitic power of the air separation membrane required to supply the oxygen-enriched air is also estimated. For a given constraint on peak cylinder pressure, the gross and net power outputs of an engine operating under different levels of oxygen enrichment are compared with those obtained when a high-boost turbocharged engine is used. A 4% increase in peak cylinder pressure can result in an increase in net engine power of approximately 13% when intake air with an oxygen content of 28% by volume is used and fuel injection timing is retarded by 4 degrees. When the engine is turbocharged to a higher inlet boost, the same increase in peak cylinder pressure improves power by only 4%. If part of the significantly higher exhaust enthalpies available as a result of oxygen enrichment are recovered, the power requirements of the air separator membrane can be met, resulting in substantial net power improvements. Oxygen enrichment reduces particulate and visible smoke emissions but increases NO emissions. However, a combination of retarded fuel injection timing and post-treatment of exhaust gases may be adequate to meet the locomotive diesel engine NO{sub x} standards. Exhaust gas after-treatment and heat recovery would be required to realize the full potential of oxygen enrichment. Economic analysis shows that oxygen-enrichment technology is economically feasible and provides high returns on investment. The study also indicates the strong influence of membrane parasitic requirements and exhaust energy recovery on economic benefits. To obtain an economic advantage while using a membrane with higher parasitic power requirements, it is necessary to recover a part of the exhaust energy.

  12. Modeling of UF{sub 6} enrichment with gas centrifuges for nuclear safeguards activities

    SciTech Connect (OSTI)

    Mercurio, G.; Peerani, P.; Richir, P.; Janssens, W.; Eklund, G.

    2012-09-26

    The physical modeling of uranium isotopes ({sup 235}U, {sup 238}U) separation process by centrifugation of is a key aspect for predicting the nuclear fuel enrichment plant performances under surveillance by the Nuclear Safeguards Authorities. In this paper are illustrated some aspects of the modeling of fast centrifuges for UF{sub 6} gas enrichment and of a typical cascade enrichment plant with the Theoretical Centrifuge and Cascade Simulator (TCCS). The background theory for reproducing the flow field characteristics of a centrifuge is derived from the work of Cohen where the separation parameters are calculated using the solution of a differential enrichment equation. In our case we chose to solve the hydrodynamic equations for the motion of a compressible fluid in a centrifugal field using the Berman - Olander vertical velocity radial distribution and the solution was obtained using the Matlab software tool. The importance of a correct estimation of the centrifuge separation parameters at different flow regimes, lies in the possibility to estimate in a reliable way the U enrichment plant performances, once the separation external parameters are set (feed flow rate and feed, product and tails assays). Using the separation parameters of a single centrifuge allow to determine the performances of an entire cascade and, for this purpose; the software Simulink was used. The outputs of the calculation are the concentrations (assays) and the flow rates of the enriched (product) and depleted (tails) gas mixture. These models represent a valid additional tool, in order to verify the compliance of the U enrichment plant operator declarations with the 'on site' inspectors' measurements.

  13. Total Adjusted Sales of Distillate Fuel Oil

    U.S. Energy Information Administration (EIA) Indexed Site

    End Use: Total Residential Commercial Industrial Oil Company Farm Electric Power Railroad Vessel Bunkering On-Highway Military Off-Highway All Other Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: End Use Area 2009 2010 2011 2012 2013 2014 View History U.S. 55,664,448 58,258,830 59,769,444 57,512,994 58,675,008 61,890,990 1984-2014 East Coast (PADD 1) 18,219,180 17,965,794 17,864,868 16,754,388

  14. Total Adjusted Sales of Residual Fuel Oil

    U.S. Energy Information Administration (EIA) Indexed Site

    End Use: Total Commercial Industrial Oil Company Electric Power Vessel Bunkering Military All Other Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: End Use Area 2009 2010 2011 2012 2013 2014 View History U.S. 7,835,436 8,203,062 7,068,306 5,668,530 4,883,466 3,942,750 1984-2014 East Coast (PADD 1) 3,339,162 3,359,265 2,667,576 1,906,700 1,699,418 1,393,068 1984-2014 New England (PADD 1A) 318,184

  15. Total Sales of Residual Fuel Oil

    U.S. Energy Information Administration (EIA) Indexed Site

    End Use: Total Commercial Industrial Oil Company Electric Power Vessel Bunkering Military All Other Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: End Use Area 2009 2010 2011 2012 2013 2014 View History U.S. 6,908,028 7,233,765 6,358,120 6,022,115 5,283,350 4,919,255 1984-2014 East Coast (PADD 1) 2,972,575 2,994,245 2,397,932 2,019,294 1,839,237 1,724,167 1984-2014 New England (PADD 1A) 281,895

  16. Total Sales of Distillate Fuel Oil

    U.S. Energy Information Administration (EIA) Indexed Site

    End Use: Total Residential Commercial Industrial Oil Company Farm Electric Power Railroad Vessel Bunkering On-Highway Military Off-Highway All Other Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: End Use Area 2009 2010 2011 2012 2013 2014 View History U.S. 54,100,092 56,093,645 57,082,558 57,020,840 58,107,155 60,827,930 1984-2014 East Coast (PADD 1) 17,821,973 18,136,965 17,757,005 17,382,566

  17. ARM - Measurement - Shortwave broadband total upwelling irradiance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    upwelling irradiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Shortwave broadband total upwelling irradiance The rate at which radiant energy, at a wavelength between 0.4 and 4 {mu}m, is being emitted upwards into a radiation field and transferred across a surface area (real or imaginary) in a hemisphere of directions. Categories Radiometric Instruments The above measurement is considered

  18. Gas centrifuge enrichment plants inspection frequency and remote monitoring issues for advanced safeguards implementation

    SciTech Connect (OSTI)

    Boyer, Brian David; Erpenbeck, Heather H; Miller, Karen A; Ianakiev, Kiril D; Reimold, Benjamin A; Ward, Steven L; Howell, John

    2010-09-13

    Current safeguards approaches used by the IAEA at gas centrifuge enrichment plants (GCEPs) need enhancement in order to verify declared low enriched uranium (LEU) production, detect undeclared LEU production and detect high enriched uranium (BEU) production with adequate probability using non destructive assay (NDA) techniques. At present inspectors use attended systems, systems needing the presence of an inspector for operation, during inspections to verify the mass and {sup 235}U enrichment of declared cylinders of uranium hexafluoride that are used in the process of enrichment at GCEPs. This paper contains an analysis of how possible improvements in unattended and attended NDA systems including process monitoring and possible on-site destructive analysis (DA) of samples could reduce the uncertainty of the inspector's measurements providing more effective and efficient IAEA GCEPs safeguards. We have also studied a few advanced safeguards systems that could be assembled for unattended operation and the level of performance needed from these systems to provide more effective safeguards. The analysis also considers how short notice random inspections, unannounced inspections (UIs), and the concept of information-driven inspections can affect probability of detection of the diversion of nuclear material when coupled to new GCEPs safeguards regimes augmented with unattended systems. We also explore the effects of system failures and operator tampering on meeting safeguards goals for quantity and timeliness and the measures needed to recover from such failures and anomalies.

  19. Analysis of the effectiveness of gas centrifuge enrichment plants advanced safeguards

    SciTech Connect (OSTI)

    Boyer, Brian David; Erpenbeck, Heather H; Miller, Karen A; Swinjoe, Martyn T; Ianakiev, Kiril D; Marlow, Johnna B

    2010-01-01

    Current safeguards approaches used by the International Atomic Energy Agency (IAEA) at gas centrifuge enrichment plants (GCEPs) need enhancement in order to verify declared low-enriched uranium (LEU) production, detect undeclared LEU production and detect highly enriched uranium (HEU) production with adequate detection probability using non destructive assay (NDA) techniques. At present inspectors use attended systems, systems needing the presence of an inspector for operation, during inspections to verify the mass and 235U enrichment of declared UF6 containers used in the process of enrichment at GCEPs. This paper contains an analysis of possible improvements in unattended and attended NDA systems including process monitoring and possible on-site destructive assay (DA) of samples that could reduce the uncertainty of the inspector's measurements. These improvements could reduce the difference between the operator's and inspector's measurements providing more effective and efficient IAEA GCEPs safeguards. We also explore how a few advanced safeguards systems could be assembled for unattended operation. The analysis will focus on how unannounced inspections (UIs), and the concept of information-driven inspections (IDS) can affect probability of detection of the diversion of nuclear materials when coupled to new GCEPs safeguards regimes augmented with unattended systems.

  20. Metal affinity enrichment increases the range and depth of proteome identification for extracellular microbial proteins

    SciTech Connect (OSTI)

    Wheeler, Korin; Erickson, Brian K; Mueller, Ryan; Singer, Steven; Verberkmoes, Nathan C; Hwang, Mona; Thelen, Michael P.; Hettich, Robert {Bob} L

    2012-01-01

    Many key proteins, such as those involved in cellular signaling or transcription, are difficult to measure in microbial proteomic experiments due to the interfering presence of more abundant, dominant proteins. In an effort to enhance the identification of previously undetected proteins, as well as provide a methodology for selective enrichment, we evaluated and optimized immobilized metal affinity chromatography (IMAC) coupled with mass spectrometric characterization of extracellular proteins from an extremophilic microbial community. Seven different metals were tested for IMAC enrichment. The combined results added 20% greater proteomic depth to the extracellular proteome. Although this IMAC enrichment could not be conducted at the physiological pH of the environmental system, this approach did yield a reproducible and specific enrichment of groups of proteins with functions potentially vital to the community, thereby providing a more extensive biochemical characterization. Notably, 40 unknown proteins previously annotated as hypothetical were enriched and identified for the first time. Examples of identified proteins includes a predicted TonB signal sensing protein homologous to other known TonB proteins and a protein with a COXG domain previously identified in many chemolithoautotrophic microbes as having a function in the oxidation of CO.

  1. Total Ore Processing Integration and Management

    SciTech Connect (OSTI)

    Leslie Gertsch; Richard Gertsch

    2006-01-30

    This report outlines the technical progress achieved for project DE-FC26-03NT41785 (Total Ore Processing Integration and Management) during the period 01 July through 30 September of 2005. This ninth quarterly report discusses the activities of the project team during the period 1 July through 30 September 2005. Richard Gertsch's unexpected death due to natural causes while in Minnesota to work on this project has temporarily slowed progress. Statistical analysis of the Minntac Mine data set for late 2004 is continuing. Preliminary results raised several questions that could be amenable to further study. Detailed geotechnical characterization is being applied to improve the predictability of mill and agglomerator performance at Hibtac Mine.

  2. 2014 Utility Bundled Retail Sales- Total

    Gasoline and Diesel Fuel Update (EIA)

    Total (Data from forms EIA-861- schedules 4A & 4D and EIA-861S) Entity State Ownership Customers (Count) Sales (Megawatthours) Revenues (Thousands Dollars) Average Price (cents/kWh) Alaska Electric Light&Power Co AK Investor Owned 16,464 399,492 41,691.0 10.44 Alaska Power and Telephone Co AK Investor Owned 7,630 63,068 17,642.0 27.97 Alaska Village Elec Coop, Inc AK Cooperative 10,829 97,874 53,522.0 54.68 Anchorage Municipal Light and Power AK Municipal 30,791 1,012,784 134,950.6 13.32

  3. Total Estimated Contract Cost: Performance Period

    Office of Environmental Management (EM)

    Fee Available (N/A) Total Fee Paid $23,179,000 $18,632,000 $16,680,000 $18,705,000 $25,495,000 $34,370,000 $32,329,000 $33,913,000 $66,794,000 $10,557,000 $3,135,000 $283,789,000 FY2015 FY2014 FY2013 FY2009 FY2010 FY2011 FY2012 Fee Information Minimum Fee Maximum Fee Dec 2015 Contract Number: Cost Plus Incentive Fee Contractor: $3,264,909,094 Contract Period: EM Contractor Fee s Idaho Operations Office - Idaho Falls, ID Contract Name: Idaho Cleanup Project $0 Contract Type: CH2M Washington Group

  4. Performance Period Total Fee Paid FY2001

    Office of Environmental Management (EM)

    FY2001 $4,547,400 FY2002 $4,871,000 FY2003 $6,177,902 FY2004 $8,743,007 FY2005 $13,134,189 FY2006 $7,489,704 FY2007 $9,090,924 FY2008 $10,045,072 FY2009 $12,504,247 FY2010 $17,590,414 FY2011 $17,558,710 FY2012 $14,528,770 Cumulative Fee Paid $126,281,339 Cost Plus Award Fee DE-AC29-01AL66444 Washington TRU Solutions LLC Contractor: Contract Number: Contract Type: $8,743,007 Contract Period: $1,813,482,000 Fee Information Maximum Fee $131,691,744 Total Estimated Contract Cost: $4,547,400

  5. Performance Period Total Fee Paid FY2008

    Office of Environmental Management (EM)

    FY2008 $87,580 FY2009 $87,580 FY2010 $171,763 FY2011 $1,339,286 FY 2012 $38,126 FY 2013 $42,265 Cumulative Fee Paid $1,766,600 $42,265 Cost Plus Incentive Fee/Cost Plus Fixed Fee $36,602,425 Contract Period: September 2007 - November 30, 2012 Target Fee $521,595 Total Estimated Contract Cost Contract Type: Maximum Fee $3,129,570 $175,160 $377,516 $1,439,287 Fee Available $175,160 $80,871 Accelerated Remediation Company (aRc) DE-AT30-07CC60013 Contractor: Contract Number: Minimum Fee $2,086,380

  6. Total Supplemental Supply of Natural Gas

    U.S. Energy Information Administration (EIA) Indexed Site

    Product: Total Supplemental Supply Synthetic Propane-Air Refinery Gas Biomass Other Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area 2010 2011 2012 2013 2014 2015 View History U.S. 64,575 60,088 61,366 54,650 59,528 59,693 1980-2015 Alabama 0 0 0 0 0 1967-2014 Alaska 0 0 0 0 0 2004-2014 Arizona 0 0 0 0 0 1967-2014 Arkansas 0 0 0 0 0 1967-2014 Colorado 5,148 4,268 4,412 4,077 4,120

  7. State Residential Commercial Industrial Transportation Total

    U.S. Energy Information Administration (EIA) Indexed Site

    Sales (Megawatthours) (Data from forms EIA-861- schedules 4A, 4B, 4D, EIA-861S and EIA-861U) State Residential Commercial Industrial Transportation Total New England 47,211,525 53,107,038 19,107,433 557,463 119,983,459 Connecticut 12,777,579 12,893,531 3,514,798 168,552 29,354,460 Maine 4,660,605 3,984,570 3,357,486 0 12,002,661 Massachusetts 20,071,160 26,076,208 7,960,941 360,983 54,469,292 New Hampshire 4,510,487 4,464,530 1,969,064 0 10,944,081 Rhode Island 3,070,347 3,657,679 887,150 27,928

  8. Report on the Effect the Low Enriched Uranium Delivered Under the Highly Enriched Uranium Agreement Between the Government of the United States and the Government of the Russian Federation has on the

    Energy Savers [EERE]

    Report on the Effect the Low Enriched Uranium Delivered Under the Highly Enriched Uranium Agreement Between the Government of the United States of America and the Government of the Russian Federation has on the Domestic Uranium Mining, Conversion, and Enrichment Industries and the Operation of the Gaseous Diffusion Plant 2008 Information Date: December 31, 2008 1 Introduction The Agreement Between the Government of the United States of America and the Government of the Russian Federation

  9. Axi-symmetrical flow reactor for .sup.196 Hg photochemical enrichment

    DOE Patents [OSTI]

    Grossman, Mark W.

    1991-01-01

    The present invention is directed to an improved photochemical reactor useful for the isotopic enrichment of a predetermined isotope of mercury, especially, .sup.196 Hg. Specifically, two axi-symmetrical flow reactors were constructed according to the teachings of the present invention. These reactors improve the mixing of the reactants during the photochemical enrichment process, affording higher yields of the desired .sup.196 Hg product. Measurements of the variation of yield (Y) and enrichment factor (E) along the flow axis of these reactors indicates very substantial improvement in process uniformity compared to previously used photochemical reactor systems. In one preferred embodiment of the present invention, the photoreactor system was built such that the reactor chamber was removable from the system without disturbing the location of either the photochemical lamp or the filter employed therewith.

  10. Axi-symmetrical flow reactor for [sup 196]Hg photochemical enrichment

    DOE Patents [OSTI]

    Grossman, M.W.

    1991-04-30

    The present invention is directed to an improved photochemical reactor useful for the isotopic enrichment of a predetermined isotope of mercury, especially, [sup 196]Hg. Specifically, two axi-symmetrical flow reactors were constructed according to the teachings of the present invention. These reactors improve the mixing of the reactants during the photochemical enrichment process, affording higher yields of the desired [sup 196]Hg product. Measurements of the variation of yield (Y) and enrichment factor (E) along the flow axis of these reactors indicates very substantial improvement in process uniformity compared to previously used photochemical reactor systems. In one preferred embodiment of the present invention, the photoreactor system was built such that the reactor chamber was removable from the system without disturbing the location of either the photochemical lamp or the filter employed therewith. 10 figures.

  11. Process for recovering evolved hydrogen enriched with at least one heavy hydrogen isotope

    DOE Patents [OSTI]

    Tanaka, John (Storrs, CT); Reilly, Jr., James J. (Bellport, NY)

    1978-01-01

    This invention relates to a separation means and method for enriching a hydrogen atmosphere with at least one heavy hydrogen isotope by using a solid titaniun alloy hydride. To this end, the titanium alloy hydride containing at least one metal selected from the group consisting of vanadium, chromium, manganese, molybdenum, iron, cobalt and nickel is contacted with a circulating gaseous flow of hydrogen containing at least one heavy hydrogen isotope at a temperature in the range of -20.degree. to +40.degree. C and at a pressure above the dissociation pressure of the hydrided alloy selectively to concentrate at least one of the isotopes of hydrogen in the hydrided metal alloy. The contacting is continued until equilibrium is reached, and then the gaseous flow is isolated while the temperature and pressure of the enriched hydride remain undisturbed selectively to isolate the hydride. Thereafter, the enriched hydrogen is selectively recovered in accordance with the separation factor (S.F.) of the alloy hydride employed.

  12. Hybrid Enrichment Assay Methods for a UF6 Cylinder Verification Station: FY10 Progress Report

    SciTech Connect (OSTI)

    Smith, Leon E.; Jordan, David V.; Orton, Christopher R.; Misner, Alex C.; Mace, Emily K.

    2010-08-01

    Pacific Northwest National Laboratory (PNNL) is developing the concept of an automated UF6 cylinder verification station that would be located at key measurement points to positively identify each cylinder, measure its mass and enrichment, store the collected data in a secure database, and maintain continuity of knowledge on measured cylinders until the arrival of International Atomic Energy Agency (IAEA) inspectors. At the center of this unattended system is a hybrid enrichment assay technique that combines the traditional enrichment-meter method (based on the 186 keV peak from 235U) with non-traditional neutron-induced high-energy gamma-ray signatures (spawned primarily by 234U alpha emissions and 19F(alpha, neutron) reactions). Previous work by PNNL provided proof-of-principle for the non-traditional signatures to support accurate, full-volume interrogation of the cylinder enrichment, thereby reducing the systematic uncertainties in enrichment assay due to UF6 heterogeneity and providing greater sensitivity to material substitution scenarios. The work described here builds on that preliminary evaluation of the non-traditional signatures, but focuses on a prototype field system utilizing NaI(Tl) and LaBr3(Ce) spectrometers, and enrichment analysis algorithms that integrate the traditional and non-traditional signatures. Results for the assay of Type-30B cylinders ranging from 0.2 to 4.95 wt% 235U, at an AREVA fuel fabrication plant in Richland, WA, are described for the following enrichment analysis methods: 1) traditional enrichment meter signature (186 keV peak) as calculated using a square-wave convolute (SWC) algorithm; 2) non-traditional high-energy gamma-ray signature that provides neutron detection without neutron detectors and 3) hybrid algorithm that merges the traditional and non-traditional signatures. Uncertainties for each method, relative to the declared enrichment for each cylinder, are calculated and compared to the uncertainties from an attended HPGe verification station at AREVA, and the IAEAs uncertainty target values for feed, tail and product cylinders. A summary of the major findings from the field measurements and subsequent analysis follows: Traditional enrichment-meter assay using specially collimated NaI spectrometers and a Square-Wave-Convolute algorithm can achieve uncertainties comparable to HPGe and LaBr for product, natural and depleted cylinders. Non-traditional signatures measured using NaI spectrometers enable interrogation of the entire cylinder volume and accurate measurement of absolute 235U mass in product, natural and depleted cylinders. A hybrid enrichment assay method can achieve lower uncertainties than either the traditional or non-traditional methods acting independently because there is a low degree of correlation in the systematic errors of the two individual methods (wall thickness variation and 234U/235U variation, respectively). This work has indicated that the hybrid NDA method has the potential to serve as the foundation for an unattended cylinder verification station. When compared to todays handheld cylinder-verification approach, such a station would have the following advantages: 1) improved enrichment assay accuracy for product, tail and feed cylinders; 2) full-volume assay of absolute 235U mass; 3) assay of minor isotopes (234U and 232U) important to verification of feedstock origin; single instrumentation design for both Type 30B and Type 48 cylinders; and 4) substantial reduction in the inspector manpower associated with cylinder verification.

  13. Characteristics of enriched cultures for bio-huff-`n`-puff tests at Jilin oil field

    SciTech Connect (OSTI)

    Xiu-Yuan Wang; Gang Dai; Yan-Fen Xue; Shu-Hua Xie

    1995-12-31

    Three enriched cultures (48, 15a, and 26a), selected from more than 80 soil and water samples, could grow anaerobically in the presence of crude oil at 30{degrees}C and could ferment molasses to gases and organic acids. Oil recovery by culture 48 in the laboratory model experiment was enhanced by 25.2% over the original reserves and by 53.7% over the residual reserves. Enriched culture 48 was composed of at least 4 species belonging to the genera Eubacterium, Fusobacterium, and Bacteroides. This enriched culture was used as inoculum for MEOR field trials at Jilin oil field with satisfactory results. The importance of the role of these isolates in EOR was confirmed by their presence and behavior in the fluids produced from the microbiologically treated reservoir.

  14. Application of atomic vapor laser isotope separation to the enrichment of mercury

    SciTech Connect (OSTI)

    Crane, J.K.; Erbert, G.V.; Paisner, J.A.; Chen, H.L.; Chiba, Z.; Beeler, R.G.; Combs, R.; Mostek, S.D.

    1986-09-01

    Workers at GTE/Sylvania have shown that the efficiency of fluorescent lighting may be markedly improved using mercury that has been enriched in the /sup 196/Hg isotope. A 5% improvement in the efficiency of fluorescent lighting in the United States could provide a savings of approx. 1 billion dollars in the corresponding reduction of electrical power consumption. We will discuss the results of recent work done at our laboratory to develop a process for enriching mercury. The discussion will center around the results of spectroscopic measurements of excited state lifetimes, photoionization cross sections and isotope shifts. In addition, we will discuss the mercury separator and supporting laser mesurements of the flow properties of mercury vapor. We will describe the laser system which will provide the photoionization and finally discuss the economic details of producing enriched mercury at a cost that would be attractive to the lighting industry.

  15. H. R. 1671: A bill to amend the Internal Revenue Code of 1986 with respect to the treatment of foreign oil and gas income, introduced in the House of Representatives, One Hundred Second Congress, First Session, April 9, 1991

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    The bill explains special rules for foreign tax credit with respect to foreign oil and gas income by amending the following sections: certain taxes not creditable; separate baskets for foreign oil and gas extraction income and foreign oil related income; and elimination of deferral for foreign oil and gas extraction income. The effective date would be December 31, 1991.

  16. ORISE: After a Brief Decline, Recent Foreign Ph.D. Graduates are Staying in

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the U.S. at Near-record Levels After a Brief Decline, Recent Foreign Ph.D. Graduates are Staying in the U.S. at Near-record Levels FOR IMMEDIATE RELEASE: Feb. 3, 2010 FY10-20 OAK RIDGE, Tenn.-Two years after completing doctoral degrees at United States (U.S.) universities, 67% of foreign students graduating in 2005 remained in the U.S., according to a new report issued by the Oak Ridge Institute for Science and Education (ORISE) and funded by the National Science Foundation (NSF). This is a

  17. Isotope Enrichment Detection by Laser Ablation - Dual Tunable Diode Laser Absorption Spectrometry

    SciTech Connect (OSTI)

    Anheier, Norman C.; Bushaw, Bruce A.

    2009-07-01

    The rapid global expansion of nuclear energy is motivating the expedited development of new safeguards technology to mitigate potential proliferation threats arising from monitoring gaps within the uranium enrichment process. Current onsite enrichment level monitoring methods are limited by poor sensitivity and accuracy performance. Offsite analysis has better performance, but this approach requires onsite hand sampling followed by time-consuming and costly post analysis. These limitations make it extremely difficult to implement comprehensive safeguards accounting measures that can effectively counter enrichment facility misuse. In addition, uranium enrichment by modern centrifugation leads to a significant proliferation threat, since the centrifuge cascades can quickly produce a significant quantity of highly enriched uranium (HEU). The Pacific Northwest National Laboratory is developing an engineered safeguards approach having continuous aerosol particulate collection and uranium isotope analysis to provide timely detection of HEU production in a low enriched uranium facility. This approach is based on laser vaporization of aerosol particulate samples, followed by wavelength tuned laser diode spectroscopy, to characterize the 235U/238U isotopic ratio by subtle differences in atomic absorption wavelengths arising from differences in each isotopes nuclear mass, volume, and spin (hyperfine structure for 235U). Environmental sampling media is introduced into a small, reduced pressure chamber, where a focused pulsed laser vaporizes a 10 to 20-m sample diameter. The ejected plasma forms a plume of atomic vapor. A plume for a sample containing uranium has atoms of the 235U and 238U isotopes present. Tunable diode lasers are directed through the plume to selectively excite each isotope and their presence is detected by monitoring absorbance signals on a shot-to-shot basis. Single-shot detection sensitivity approaching the femtogram range and abundance uncertainty less than 10% have been demonstrated with measurements on surrogate materials. In this paper we present measurement results on samples containing background materials (e.g., dust, minerals, soils) laced with micron-sized target particles having isotopic ratios ranging from 1 to 50%.

  18. Active-Interrogation Measurements of Fast Neutrons from Induced Fission in Low-Enriched Uranium

    SciTech Connect (OSTI)

    J. L. Dolan; M. J. Marcath; M. Flaska; S. A. Pozzi; D. L. Chichester; A. Tomanin; P. Peerani

    2014-02-01

    A detection system was designed with MCNPX-PoliMi to measure induced-fission neutrons from U-235 and U-238 using active interrogation. Measurements were then performed with this system at the Joint Research Centre (JRC) in Ispra, Italy on low-enriched uranium samples. Liquid scintillators measured induced fission neutron to characterize the samples in terms of their uranium mass and enrichment. Results are presented to investigate and support the use of organic liquid scintillators with active interrogation techniques to characterize uranium containing materials.

  19. Batch methods for enriching trace impurities in hydrogen gas for their further analysis

    DOE Patents [OSTI]

    Ahmed, Shabbir; Lee, Sheldon H.D.; Kumar, Romesh; Papdias, Dionissios D.

    2014-07-15

    Provided herein are batch methods and devices for enriching trace quantities of impurities in gaseous mixtures, such as hydrogen fuel. The methods and devices rely on concentrating impurities using hydrogen transport membranes wherein the time period for concentrating the sample is calculated on the basis of optimized membrane characteristics, comprising its thickness and permeance, with optimization of temperature, and wherein the enrichment of trace impurities is proportional to the pressure ratio P.sub.hi/P.sub.lo and the volume ratio V.sub.1/V.sub.2, with following detection of the impurities using commonly-available detection methods.

  20. Deuterium enrichment by selective photo-induced dissociation of an organic carbonyl compound

    DOE Patents [OSTI]

    Marling, John B. (Livermore, CA)

    1981-01-01

    A method for producing a deuterium enriched material by photoinduced dissociation which uses as the working material a gas phase photolytically dissociable organic carbonyl compound containing at least one hydrogen atom bonded to an atom which is adjacent to a carbonyl group and consisting of molecules wherein said hydrogen atom is present as deuterium and molecules wherein said hydrogen atom is present as another isotope of hydrogen. The organic carbonyl compound is subjected to intense infrared radiation at a preselected wavelength to selectively excite and thereby induce dissociation of the deuterium containing species to yield a deuterium enriched stable molecular product. Undissociated carbonyl compound, depleted in deuterium, is preferably redeuterated for reuse.