National Library of Energy BETA

Sample records for forecasting wrf model

  1. Enhancing Cloud Radiative Processes and Radiation Efficiency in the Advanced Research Weather Research and Forecasting (WRF) Model

    SciTech Connect (OSTI)

    Iacono, Michael J.

    2015-03-09

    The objective of this research has been to evaluate and implement enhancements to the computational performance of the RRTMG radiative transfer option in the Advanced Research version of the Weather Research and Forecasting (WRF) model. Efficiency is as essential as accuracy for effective numerical weather prediction, and radiative transfer is a relatively time-consuming component of dynamical models, taking up to 30-50 percent of the total model simulation time. To address this concern, this research has implemented and tested a version of RRTMG that utilizes graphics processing unit (GPU) technology (hereinafter RRTMGPU) to greatly improve its computational performance; thereby permitting either more frequent simulation of radiative effects or other model enhancements. During the early stages of this project the development of RRTMGPU was completed at AER under separate NASA funding to accelerate the code for use in the Goddard Space Flight Center (GSFC) Goddard Earth Observing System GEOS-5 global model. It should be noted that this final report describes results related to the funded portion of the originally proposed work concerning the acceleration of RRTMG with GPUs in WRF. As a k-distribution model, RRTMG is especially well suited to this modification due to its relatively large internal pseudo-spectral (g-point) dimension that, when combined with the horizontal grid vector in the dynamical model, can take great advantage of the GPU capability. Thorough testing under several model configurations has been performed to ensure that RRTMGPU improves WRF model run time while having no significant impact on calculated radiative fluxes and heating rates or on dynamical model fields relative to the RRTMG radiation. The RRTMGPU codes have been provided to NCAR for possible application to the next public release of the WRF forecast model.

  2. Coupling WRF double-moment 6-class microphysics schemes to RRTMG radiation scheme in weather research forecasting model

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bae, Soo Ya; Hong, Song -You; Lim, Kyo-Sun Sunny

    2016-01-01

    A method to explicitly calculate the effective radius of hydrometeors in the Weather Research Forecasting (WRF) double-moment 6-class (WDM6) microphysics scheme is designed to tackle the physical inconsistency in cloud properties between the microphysics and radiation processes. At each model time step, the calculated effective radii of hydrometeors from the WDM6 scheme are linked to the Rapid Radiative Transfer Model for GCMs (RRTMG) scheme to consider the cloud effects in radiative flux calculation. This coupling effect of cloud properties between the WDM6 and RRTMG algorithms is examined for a heavy rainfall event in Korea during 25–27 July 2011, and itmore » is compared to the results from the control simulation in which the effective radius is prescribed as a constant value. It is found that the derived radii of hydrometeors in the WDM6 scheme are generally larger than the prescribed values in the RRTMG scheme. Consequently, shortwave fluxes reaching the ground (SWDOWN) are increased over less cloudy regions, showing a better agreement with a satellite image. The overall distribution of the 24-hour accumulated rainfall is not affected but its amount is changed. In conclusion, a spurious rainfall peak over the Yellow Sea is alleviated, whereas the local maximum in the central part of the peninsula is increased.« less

  3. Weather Research and Forecasting Model with the Immersed Boundary Method

    Energy Science and Technology Software Center (OSTI)

    2012-05-01

    The Weather Research and Forecasting (WRF) Model with the immersed boundary method is an extension of the open-source WRF Model available for wwww.wrf-model.org. The new code modifies the gridding procedure and boundary conditions in the WRF model to improve WRF's ability to simutate the atmosphere in environments with steep terrain and additionally at high-resolutions.

  4. Assessment of Land Surface Model Performance in WRF for Simulating...

    Office of Scientific and Technical Information (OSTI)

    Assessment of Land Surface Model Performance in WRF for Simulating Wind at Heights Relevant to the Wind Energy Community Citation Details In-Document Search Title: Assessment of ...

  5. Assessment of Land Surface Model Performance in WRF for Simulating...

    Office of Scientific and Technical Information (OSTI)

    Wind Energy Community Citation Details In-Document Search Title: Assessment of Land Surface Model Performance in WRF for Simulating Wind at Heights Relevant to the Wind Energy ...

  6. Weather Research and Forecasting Model with Vertical Nesting Capability

    Energy Science and Technology Software Center (OSTI)

    2014-08-01

    The Weather Research and Forecasting (WRF) model with vertical nesting capability is an extension of the WRF model, which is available in the public domain, from www.wrf-model.org. The new code modifies the nesting procedure, which passes lateral boundary conditions between computational domains in the WRF model. Previously, the same vertical grid was required on all domains, while the new code allows different vertical grids to be used on concurrently run domains. This new functionality improvesmore » WRF's ability to produce high-resolution simulations of the atmosphere by allowing a wider range of scales to be efficiently resolved and more accurate lateral boundary conditions to be provided through the nesting procedure.« less

  7. The Lagrangian particle dispersion model FLEXPART-WRF VERSION 3.1

    SciTech Connect (OSTI)

    Brioude, J.; Arnold, D.; Stohl, A.; Cassiani, M.; Morton, Don; Seibert, P.; Angevine, W. M.; Evan, S.; Dingwell, A.; Fast, Jerome D.; Easter, Richard C.; Pisso, I.; Bukhart, J.; Wotawa, G.

    2013-11-01

    The Lagrangian particle dispersion model FLEXPART was originally designed for cal- culating long-range and mesoscale dispersion of air pollutants from point sources, such as after an accident in a nuclear power plant. In the meantime FLEXPART has evolved into a comprehensive tool for atmospheric transport modeling and analysis at different scales. This multiscale need from the modeler community has encouraged new developments in FLEXPART. In this document, we present a version that works with the Weather Research and Forecasting (WRF) mesoscale meteoro- logical model. Simple procedures on how to run FLEXPART-WRF are presented along with special options and features that differ from its predecessor versions. In addition, test case data, the source code and visualization tools are provided to the reader as supplementary material.

  8. Operational forecasting based on a modified Weather Research and Forecasting model

    SciTech Connect (OSTI)

    Lundquist, J; Glascoe, L; Obrecht, J

    2010-03-18

    Accurate short-term forecasts of wind resources are required for efficient wind farm operation and ultimately for the integration of large amounts of wind-generated power into electrical grids. Siemens Energy Inc. and Lawrence Livermore National Laboratory, with the University of Colorado at Boulder, are collaborating on the design of an operational forecasting system for large wind farms. The basis of the system is the numerical weather prediction tool, the Weather Research and Forecasting (WRF) model; large-eddy simulations and data assimilation approaches are used to refine and tailor the forecasting system. Representation of the atmospheric boundary layer is modified, based on high-resolution large-eddy simulations of the atmospheric boundary. These large-eddy simulations incorporate wake effects from upwind turbines on downwind turbines as well as represent complex atmospheric variability due to complex terrain and surface features as well as atmospheric stability. Real-time hub-height wind speed and other meteorological data streams from existing wind farms are incorporated into the modeling system to enable uncertainty quantification through probabilistic forecasts. A companion investigation has identified optimal boundary-layer physics options for low-level forecasts in complex terrain, toward employing decadal WRF simulations to anticipate large-scale changes in wind resource availability due to global climate change.

  9. Review of Wind Energy Forecasting Methods for Modeling Ramping Events

    SciTech Connect (OSTI)

    Wharton, S; Lundquist, J K; Marjanovic, N; Williams, J L; Rhodes, M; Chow, T K; Maxwell, R

    2011-03-28

    Tall onshore wind turbines, with hub heights between 80 m and 100 m, can extract large amounts of energy from the atmosphere since they generally encounter higher wind speeds, but they face challenges given the complexity of boundary layer flows. This complexity of the lowest layers of the atmosphere, where wind turbines reside, has made conventional modeling efforts less than ideal. To meet the nation's goal of increasing wind power into the U.S. electrical grid, the accuracy of wind power forecasts must be improved. In this report, the Lawrence Livermore National Laboratory, in collaboration with the University of Colorado at Boulder, University of California at Berkeley, and Colorado School of Mines, evaluates innovative approaches to forecasting sudden changes in wind speed or 'ramping events' at an onshore, multimegawatt wind farm. The forecast simulations are compared to observations of wind speed and direction from tall meteorological towers and a remote-sensing Sound Detection and Ranging (SODAR) instrument. Ramping events, i.e., sudden increases or decreases in wind speed and hence, power generated by a turbine, are especially problematic for wind farm operators. Sudden changes in wind speed or direction can lead to large power generation differences across a wind farm and are very difficult to predict with current forecasting tools. Here, we quantify the ability of three models, mesoscale WRF, WRF-LES, and PF.WRF, which vary in sophistication and required user expertise, to predict three ramping events at a North American wind farm.

  10. Impacts of WRF Physics and Measurement Uncertainty on California Wintertime Model Wet Bias

    SciTech Connect (OSTI)

    Chin, H S; Caldwell, P M; Bader, D C

    2009-07-22

    The Weather and Research Forecast (WRF) model version 3.0.1 is used to explore California wintertime model wet bias. In this study, two wintertime storms are selected from each of four major types of large-scale conditions; Pineapple Express, El Nino, La Nina, and synoptic cyclones. We test the impacts of several model configurations on precipitation bias through comparison with three sets of gridded surface observations; one from the National Oceanographic and Atmospheric Administration, and two variations from the University of Washington (without and with long-term trend adjustment; UW1 and UW2, respectively). To simplify validation, California is divided into 4 regions (Coast, Central Valley, Mountains, and Southern California). Simulations are driven by North American Regional Reanalysis data to minimize large-scale forcing error. Control simulations are conducted with 12-km grid spacing (low resolution) but additional experiments are performed at 2-km (high) resolution to evaluate the robustness of microphysics and cumulus parameterizations to resolution changes. We find that the choice of validation dataset has a significant impact on the model wet bias, and the forecast skill of model precipitation depends strongly on geographic location and storm type. Simulations with right physics options agree better with UW1 observations. In 12-km resolution simulations, the Lin microphysics and the Kain-Fritsch cumulus scheme have better forecast skill in the coastal region while Goddard, Thompson, and Morrison microphysics, and the Grell-Devenyi cumulus scheme perform better in the rest of California. The effect of planetary boundary layer, soil-layer, and radiation physics on model precipitation is weaker than that of microphysics and cumulus processes for short- to medium-range low-resolution simulations. Comparison of 2-km and 12-km resolution runs suggests a need for improvement of cumulus schemes, and supports the use of microphysics schemes in coarser

  11. Two-Way Integration of WRF and CCSM for Regional Climate Simulations

    Office of Scientific and Technical Information (OSTI)

    (Technical Report) | SciTech Connect Two-Way Integration of WRF and CCSM for Regional Climate Simulations Citation Details In-Document Search Title: Two-Way Integration of WRF and CCSM for Regional Climate Simulations Under the support of the DOE award DE-SC0004670, we have successfully developed an integrated climate modeling system by nesting Weather Research and Forecasting (WRF) model within the Community Climate System Model (CCSM) and the ensuing new generation Community Earth System

  12. Assessing the CAM5 Physics Suite in the WRF-Chem Model: Implementation, Resolution Sensitivity, and a First Evaluation for a Regional Case Study

    SciTech Connect (OSTI)

    Ma, Po-Lun; Rasch, Philip J.; Fast, Jerome D.; Easter, Richard C.; Gustafson, William I.; Liu, Xiaohong; Ghan, Steven J.; Singh, Balwinder

    2014-05-06

    A suite of physical parameterizations (deep and shallow convection, turbulent boundary layer, aerosols, cloud microphysics, and cloud fraction) from the global climate model Community Atmosphere Model version 5.1 (CAM5) has been implemented in the regional model Weather Research and Forecasting with chemistry (WRF-Chem). A downscaling modeling framework with consistent physics has also been established in which both global and regional simulations use the same emissions and surface fluxes. The WRF-Chem model with the CAM5 physics suite is run at multiple horizontal resolutions over a domain encompassing the northern Pacific Ocean, northeast Asia, and northwest North America for April 2008 when the ARCTAS, ARCPAC, and ISDAC field campaigns took place. These simulations are evaluated against field campaign measurements, satellite retrievals, and ground-based observations, and are compared with simulations that use a set of common WRF-Chem Parameterizations. This manuscript describes the implementation of the CAM5 physics suite in WRF-Chem provides an overview of the modeling framework and an initial evaluation of the simulated meteorology, clouds, and aerosols, and quantifies the resolution dependence of the cloud and aerosol parameterizations. We demonstrate that some of the CAM5 biases, such as high estimates of cloud susceptibility to aerosols and the underestimation of aerosol concentrations in the Arctic, can be reduced simply by increasing horizontal resolution. We also show that the CAM5 physics suite performs similarly to a set of parameterizations commonly used in WRF-Chem, but produces higher ice and liquid water condensate amounts and near-surface black carbon concentration. Further evaluations that use other mesoscale model parameterizations and perform other case studies are needed to infer whether one parameterization consistently produces results more consistent with observations.

  13. Incorporating an advanced aerosol activation parameterization into WRF-CAM5: Model evaluation and parameterization intercomparison

    SciTech Connect (OSTI)

    Zhang, Yang; Zhang, Xin; Wang, Kai; He, Jian; Leung, Lai-Yung R.; Fan, Jiwen; Nenes, Athanasios

    2015-07-22

    Aerosol activation into cloud droplets is an important process that governs aerosol indirect effects. The advanced treatment of aerosol activation by Fountoukis and Nenes (2005) and its recent updates, collectively called the FN series, have been incorporated into a newly developed regional coupled climate-air quality model based on the Weather Research and Forecasting model with the physics package of the Community Atmosphere Model version 5 (WRF-CAM5) to simulate aerosol-cloud interactions in both resolved and convective clouds. The model is applied to East Asia for two full years of 2005 and 2010. A comprehensive model evaluation is performed for model predictions of meteorological, radiative, and cloud variables, chemical concentrations, and column mass abundances against satellite data and surface observations from air quality monitoring sites across East Asia. The model performs overall well for major meteorological variables including near-surface temperature, specific humidity, wind speed, precipitation, cloud fraction, precipitable water, downward shortwave and longwave radiation, and column mass abundances of CO, SO2, NO2, HCHO, and O3 in terms of both magnitudes and spatial distributions. Larger biases exist in the predictions of surface concentrations of CO and NOx at all sites and SO2, O3, PM2.5, and PM10 concentrations at some sites, aerosol optical depth, cloud condensation nuclei over ocean, cloud droplet number concentration (CDNC), cloud liquid and ice water path, and cloud optical thickness. Compared with the default Abdul-Razzack Ghan (2000) parameterization, simulations with the FN series produce ~107113% higher CDNC, with half of the difference attributable to the higher aerosol activation fraction by the FN series and the remaining half due to feedbacks in subsequent cloud microphysical processes. With the higher CDNC, the FN series are more skillful in simulating cloud water path, cloud optical thickness, downward shortwave radiation

  14. Ecosystem feedbacks to climate change in California: Development, testing, and analysis using a coupled regional atmosphere and land-surface model (WRF3-CLM3.5)

    SciTech Connect (OSTI)

    Subin, Z.M.; Riley, W.J.; Kueppers, L.M.; Jin, J.; Christianson, D.S.; Torn, M.S.

    2010-11-01

    A regional atmosphere model [Weather Research and Forecasting model version 3 (WRF3)] and a land surface model [Community Land Model, version 3.5 (CLM3.5)] were coupled to study the interactions between the atmosphere and possible future California land-cover changes. The impact was evaluated on California's climate of changes in natural vegetation under climate change and of intentional afforestation. The ability of WRF3 to simulate California's climate was assessed by comparing simulations by WRF3-CLM3.5 and WRF3-Noah to observations from 1982 to 1991. Using WRF3-CLM3.5, the authors performed six 13-yr experiments using historical and future large-scale climate boundary conditions from the Geophysical Fluid Dynamics Laboratory Climate Model version 2.1 (GFDL CM2.1). The land-cover scenarios included historical and future natural vegetation from the Mapped Atmosphere-Plant-Soil System-Century 1 (MC1) dynamic vegetation model, in addition to a future 8-million-ha California afforestation scenario. Natural vegetation changes alone caused summer daily-mean 2-m air temperature changes of -0.7 to +1 C in regions without persistent snow cover, depending on the location and the type of vegetation change. Vegetation temperature changes were much larger than the 2-m air temperature changes because of the finescale spatial heterogeneity of the imposed vegetation change. Up to 30% of the magnitude of the summer daily-mean 2-m air temperature increase and 70% of the magnitude of the 1600 local time (LT) vegetation temperature increase projected under future climate change were attributable to the climate-driven shift in land cover. The authors projected that afforestation could cause local 0.2-1.2 C reductions in summer daily-mean 2-m air temperature and 2.0-3.7 C reductions in 1600 LT vegetation temperature for snow-free regions, primarily because of increased evapotranspiration. Because some of these temperature changes are of comparable magnitude to those projected under

  15. Continuous Evaluation of Fast Processes in Climate Models Using...

    Office of Scientific and Technical Information (OSTI)

    The goal of this project is to produce accurate, consistent and comprehensive data sets ... (NCEP) and has been implemented in the Weather Research and Forecast (WRF) model. ...

  16. Nambe Pueblo Water Budget and Forecasting model.

    SciTech Connect (OSTI)

    Brainard, James Robert

    2009-10-01

    This report documents The Nambe Pueblo Water Budget and Water Forecasting model. The model has been constructed using Powersim Studio (PS), a software package designed to investigate complex systems where flows and accumulations are central to the system. Here PS has been used as a platform for modeling various aspects of Nambe Pueblo's current and future water use. The model contains three major components, the Water Forecast Component, Irrigation Scheduling Component, and the Reservoir Model Component. In each of the components, the user can change variables to investigate the impacts of water management scenarios on future water use. The Water Forecast Component includes forecasting for industrial, commercial, and livestock use. Domestic demand is also forecasted based on user specified current population, population growth rates, and per capita water consumption. Irrigation efficiencies are quantified in the Irrigated Agriculture component using critical information concerning diversion rates, acreages, ditch dimensions and seepage rates. Results from this section are used in the Water Demand Forecast, Irrigation Scheduling, and the Reservoir Model components. The Reservoir Component contains two sections, (1) Storage and Inflow Accumulations by Categories and (2) Release, Diversion and Shortages. Results from both sections are derived from the calibrated Nambe Reservoir model where historic, pre-dam or above dam USGS stream flow data is fed into the model and releases are calculated.

  17. Simulating atmosphere flow for wind energy applications with WRF-LES

    SciTech Connect (OSTI)

    Lundquist, J K; Mirocha, J D; Chow, F K; Kosovic, B; Lundquist, K A

    2008-01-14

    Forecasts of available wind energy resources at high spatial resolution enable users to site wind turbines in optimal locations, to forecast available resources for integration into power grids, to schedule maintenance on wind energy facilities, and to define design criteria for next-generation turbines. This array of research needs implies that an appropriate forecasting tool must be able to account for mesoscale processes like frontal passages, surface-atmosphere interactions inducing local-scale circulations, and the microscale effects of atmospheric stability such as breaking Kelvin-Helmholtz billows. This range of scales and processes demands a mesoscale model with large-eddy simulation (LES) capabilities which can also account for varying atmospheric stability. Numerical weather prediction models, such as the Weather and Research Forecasting model (WRF), excel at predicting synoptic and mesoscale phenomena. With grid spacings of less than 1 km (as is often required for wind energy applications), however, the limits of WRF's subfilter scale (SFS) turbulence parameterizations are exposed, and fundamental problems arise, associated with modeling the scales of motion between those which LES can represent and those for which large-scale PBL parameterizations apply. To address these issues, we have implemented significant modifications to the ARW core of the Weather Research and Forecasting model, including the Nonlinear Backscatter model with Anisotropy (NBA) SFS model following Kosovic (1997) and an explicit filtering and reconstruction technique to compute the Resolvable Subfilter-Scale (RSFS) stresses (following Chow et al, 2005).We are also modifying WRF's terrain-following coordinate system by implementing an immersed boundary method (IBM) approach to account for the effects of complex terrain. Companion papers presenting idealized simulations with NBA-RSFS-WRF (Mirocha et al.) and IBM-WRF (K. A. Lundquist et al.) are also presented. Observations of flow

  18. DE-SC0004670 Final Technical Report Project Title: Two-Way Integration of WRF and CCSM for Regional Climate Simulations

    Office of Scientific and Technical Information (OSTI)

    4670 Final Technical Report Project Title: Two-Way Integration of WRF and CCSM for Regional Climate Simulations Investigators: Wuyin Lin, Minghua Zhang, Xiangmin Jiao, Brian Colle, Andrew M. Vogelmann, Marat Khairoutdinov, and L. Ruby Leung Under the support of the DOE award DE-SC0004670, we have successfully developed an integrated climate modeling system by nesting Weather Research and Forecasting (WRF) model within the Community Climate System Model (CCSM) and the ensuing new generation

  19. Aerosol Indirect Effect on the Grid-scale Clouds in the Two-way Coupled WRF-CMAQ: Model Description, Development, Evaluation and Regional Analysis

    SciTech Connect (OSTI)

    Yu, Shaocai; Mathur, Rohit; Pleim, Jonathan; Wong, David; Gilliam, R.; Alapaty, Kiran; Zhao, Chun; Liu, Xiaohong

    2014-10-24

    This study implemented first, second and glaciations aerosol indirect effects (AIE) on resolved clouds in the two-way coupled WRF-CMAQ modeling system by including parameterizations for both cloud drop and ice number concentrations on the basis of CMAQpredicted aerosol distributions and WRF meteorological conditions. The performance of the newly-developed WRF-CMAQ model, with alternate CAM and RRTMG radiation schemes, was evaluated with the observations from the CERES satellite and surface monitoring networks (AQS, IMPROVE, CASTNet, STN, and PRISM) over the continental U.S. (CONUS) (12-km resolution) and eastern Texas (4-km resolution) during August and September of 2006. The results at the AQS surface sites show that in August, the NMB values for PM2.5 over the eastern/western U.S (EUS/WUS) and western U.S. (WUS) are 5.3% (?0.1%) and 0.4% (-5.2%) for WRF-CMAQ/CAM (WRF-CMAQ/RRTMG), respectively. The evaluation of PM2.5 chemical composition reveals that in August, WRF-CMAQ/CAM (WRF-CMAQ/RRTMG) consistently underestimated the observed SO4 2? by -23.0% (-27.7%), -12.5% (-18.9%) and -7.9% (-14.8%) over the EUS at the CASTNet, IMPROVE and STN sites, respectively. Both models (WRF-CMAQ/CAM, WRF-CMAQ/RRTMG) overestimated the observed mean OC, EC and TC concentrations over the EUS in August at the IMPROVE sites. Both models generally underestimated the cloud field (SWCF) over the CONUS in August due to the fact that the AIE on the subgrid convective clouds was not considered when the model simulations were run at the 12 km resolution. This is in agreement with the fact that both models captured SWCF and LWCF very well for the 4-km simulation over the eastern Texas when all clouds were resolved by the finer domain. Both models generally overestimated the observed precipitation by more than 40% mainly because of significant overestimation in the southern part of the CONUS in August. The simulations of WRF-CMAQ/CAM and WRF-CMAQ/RRTMG show dramatic improvements for SWCF, LWCF

  20. PNNL-Weather Research and Forecasting (WRF)-Chem Modeling in...

    Open Energy Info (EERE)

    San Francisco, CA, A41F-01. Fast JD, JC Doran, JC Barnard, S Springs ton, L Klein man, L Emmons, C Wiedinmyer. 2007. "Predictions of aerosols downwind of Mexico City using a...

  1. A Case Study of the Weather Research and Forecasting Model Applied to the Joint Urban 2003 Tracer Field Experiment. Part 1. Wind and Turbulence

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Nelson, Matthew A.; Brown, Michael J.; Halverson, Scot A.; Bieringer, Paul E.; Annunzio, Andrew; Bieberbach, George; Meech, Scott

    2015-09-25

    We found that numerical-weather-prediction models are often used to supply the mean wind and turbulence fields for atmospheric transport and dispersion plume models as they provide dense horizontally- and vertically-resolved geographic coverage in comparison to typically sparse monitoring networks. Here, the Weather Research and Forecasting (WRF) model was run over the month-long period of the Joint Urban 2003 field campaign conducted in Oklahoma City and the simulated fields important to transport and dispersion models were compared to measurements from a number of sodars, tower-based sonic anemometers, and balloon soundings located in the greater metropolitan area. Time histories of computed windmore » speed, wind direction, turbulent kinetic energy (e), friction velocity (u* ), and reciprocal Obukhov length (1 / L) were compared to measurements over the 1-month field campaign. Vertical profiles of wind speed, potential temperature (θ ), and e were compared during short intensive operating periods. The WRF model was typically able to replicate the measured diurnal variation of the wind fields, but with an average absolute wind direction and speed difference of 35° and 1.9 m s-1 , respectively. Then, using the Mellor-Yamada-Janjic (MYJ) surface-layer scheme, the WRF model was found to generally underpredict surface-layer TKE but overpredict u* that was observed above a suburban region of Oklahoma City. The TKE-threshold method used by the WRF model’s MYJ surface-layer scheme to compute the boundary-layer height (h) consistently overestimated h derived from a θ gradient method whether using observed or modelled θ profiles.« less

  2. A Case Study of the Weather Research and Forecasting Model Applied to the Joint Urban 2003 Tracer Field Experiment. Part 1. Wind and Turbulence

    SciTech Connect (OSTI)

    Nelson, Matthew A.; Brown, Michael J.; Halverson, Scot A.; Bieringer, Paul E.; Annunzio, Andrew; Bieberbach, George; Meech, Scott

    2015-09-25

    We found that numerical-weather-prediction models are often used to supply the mean wind and turbulence fields for atmospheric transport and dispersion plume models as they provide dense horizontally- and vertically-resolved geographic coverage in comparison to typically sparse monitoring networks. Here, the Weather Research and Forecasting (WRF) model was run over the month-long period of the Joint Urban 2003 field campaign conducted in Oklahoma City and the simulated fields important to transport and dispersion models were compared to measurements from a number of sodars, tower-based sonic anemometers, and balloon soundings located in the greater metropolitan area. Time histories of computed wind speed, wind direction, turbulent kinetic energy (e), friction velocity (u* ), and reciprocal Obukhov length (1 / L) were compared to measurements over the 1-month field campaign. Vertical profiles of wind speed, potential temperature (θ ), and e were compared during short intensive operating periods. The WRF model was typically able to replicate the measured diurnal variation of the wind fields, but with an average absolute wind direction and speed difference of 35° and 1.9 m s-1 , respectively. Then, using the Mellor-Yamada-Janjic (MYJ) surface-layer scheme, the WRF model was found to generally underpredict surface-layer TKE but overpredict u* that was observed above a suburban region of Oklahoma City. The TKE-threshold method used by the WRF model’s MYJ surface-layer scheme to compute the boundary-layer height (h) consistently overestimated h derived from a θ gradient method whether using observed or modelled θ profiles.

  3. Application of an online-coupled regional climate model, WRF-CAM5, over East Asia for examination of ice nucleation schemes: Part I. Comprehensive model evaluation and trend analysis for 2006 and 2011

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chen, Ying; Zhang, Yang; Fan, Jiwen; Leung, Lai -Yung; Zhang, Qiang; He, Kebin

    2015-08-18

    Online-coupled climate and chemistry models are necessary to realistically represent the interactions between climate variables and chemical species and accurately simulate aerosol direct and indirect effects on cloud, precipitation, and radiation. In this Part I of a two-part paper, simulations from the Weather Research and Forecasting model coupled with the physics package of Community Atmosphere Model (WRF-CAM5) are conducted with the default heterogeneous ice nucleation parameterization over East Asia for two full years: 2006 and 2011. A comprehensive model evaluation is performed using satellite and surface observations. The model shows an overall acceptable performance for major meteorological variables at themore » surface and in the boundary layer, as well as column variables (e.g., precipitation, cloud fraction, precipitating water vapor, downward longwave and shortwave radiation). Moderate to large biases exist for cloud condensation nuclei over oceanic areas, cloud variables (e.g., cloud droplet number concentration, cloud liquid and ice water paths, cloud optical depth, longwave and shortwave cloud forcing). These biases indicate a need to improve the model treatments for cloud processes, especially cloud droplets and ice nucleation, as well as to reduce uncertainty in the satellite retrievals. The model simulates well the column abundances of chemical species except for column SO2 but relatively poor for surface concentrations of several species such as CO, NO2, SO2, PM2.5, and PM10. Several reasons could contribute to the underestimation of major chemical species in East Asia including underestimations of anthropogenic emissions and natural dust emissions, uncertainties in the spatial and vertical distributions of the anthropogenic emissions, as well as biases in meteorological, radiative, and cloud predictions. Despite moderate to large biases in the chemical predictions, the model performance is generally consistent with or even better than that

  4. Application of an online-coupled regional climate model, WRF-CAM5, over East Asia for examination of ice nucleation schemes: Part I. Comprehensive model evaluation and trend analysis for 2006 and 2011

    SciTech Connect (OSTI)

    Chen, Ying; Zhang, Yang; Fan, Jiwen; Leung, Lai -Yung; Zhang, Qiang; He, Kebin

    2015-08-18

    Online-coupled climate and chemistry models are necessary to realistically represent the interactions between climate variables and chemical species and accurately simulate aerosol direct and indirect effects on cloud, precipitation, and radiation. In this Part I of a two-part paper, simulations from the Weather Research and Forecasting model coupled with the physics package of Community Atmosphere Model (WRF-CAM5) are conducted with the default heterogeneous ice nucleation parameterization over East Asia for two full years: 2006 and 2011. A comprehensive model evaluation is performed using satellite and surface observations. The model shows an overall acceptable performance for major meteorological variables at the surface and in the boundary layer, as well as column variables (e.g., precipitation, cloud fraction, precipitating water vapor, downward longwave and shortwave radiation). Moderate to large biases exist for cloud condensation nuclei over oceanic areas, cloud variables (e.g., cloud droplet number concentration, cloud liquid and ice water paths, cloud optical depth, longwave and shortwave cloud forcing). These biases indicate a need to improve the model treatments for cloud processes, especially cloud droplets and ice nucleation, as well as to reduce uncertainty in the satellite retrievals. The model simulates well the column abundances of chemical species except for column SO2 but relatively poor for surface concentrations of several species such as CO, NO2, SO2, PM2.5, and PM10. Several reasons could contribute to the underestimation of major chemical species in East Asia including underestimations of anthropogenic emissions and natural dust emissions, uncertainties in the spatial and vertical distributions of the anthropogenic emissions, as well as biases in meteorological, radiative, and cloud predictions. Despite moderate to large biases in the chemical predictions, the model performance is

  5. Network Bandwidth Utilization Forecast Model on High Bandwidth Network

    SciTech Connect (OSTI)

    Yoo, Wucherl; Sim, Alex

    2014-07-07

    With the increasing number of geographically distributed scientific collaborations and the scale of the data size growth, it has become more challenging for users to achieve the best possible network performance on a shared network. We have developed a forecast model to predict expected bandwidth utilization for high-bandwidth wide area network. The forecast model can improve the efficiency of resource utilization and scheduling data movements on high-bandwidth network to accommodate ever increasing data volume for large-scale scientific data applications. Univariate model is developed with STL and ARIMA on SNMP path utilization data. Compared with traditional approach such as Box-Jenkins methodology, our forecast model reduces computation time by 83.2percent. It also shows resilience against abrupt network usage change. The accuracy of the forecast model is within the standard deviation of the monitored measurements.

  6. Implementation and assessment of turbine wake models in the Weather Research and Forecasting model for both mesoscale and large-eddy simulation

    SciTech Connect (OSTI)

    Singer, M; Mirocha, J; Lundquist, J; Cleve, J

    2010-03-03

    Flow dynamics in large wind projects are influenced by the turbines located within. The turbine wakes, regions characterized by lower wind speeds and higher levels of turbulence than the surrounding free stream flow, can extend several rotor diameters downstream, and may meander and widen with increasing distance from the turbine. Turbine wakes can also reduce the power generated by downstream turbines and accelerate fatigue and damage to turbine components. An improved understanding of wake formation and transport within wind parks is essential for maximizing power output and increasing turbine lifespan. Moreover, the influence of wakes from large wind projects on neighboring wind farms, agricultural activities, and local climate are all areas of concern that can likewise be addressed by wake modeling. This work describes the formulation and application of an actuator disk model for studying flow dynamics of both individual turbines and arrays of turbines within wind projects. The actuator disk model is implemented in the Weather Research and Forecasting (WRF) model, which is an open-source atmospheric simulation code applicable to a wide range of scales, from mesoscale to large-eddy simulation. Preliminary results demonstrate the applicability of the actuator disk model within WRF to a moderately high-resolution large-eddy simulation study of a small array of turbines.

  7. WRF-Chem model predictions of the regional impacts of N2O5 heterogeneous processes on night-time chemistry over north-western Europe

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lowe, Douglas; Archer-Nicholls, Scott; Morgan, Will; Allan, James D.; Utembe, Steve; Ouyang, Bin; Aruffo, Eleonora; Le Breton, Michael; Zaveri, Rahul A.; di Carlo, Piero; et al

    2015-02-09

    Chemical modelling studies have been conducted over north-western Europe in summer conditions, showing that night-time dinitrogen pentoxide (N2O5) heterogeneous reactive uptake is important regionally in modulating particulate nitrate and has a~modest influence on oxidative chemistry. Results from Weather Research and Forecasting model with Chemistry (WRF-Chem) model simulations, run with a detailed volatile organic compound (VOC) gas-phase chemistry scheme and the Model for Simulating Aerosol Interactions and Chemistry (MOSAIC) sectional aerosol scheme, were compared with a series of airborne gas and particulate measurements made over the UK in July 2010. Modelled mixing ratios of key gas-phase species were reasonably accurate (correlationsmore » with measurements of 0.7–0.9 for NO2 and O3). However modelled loadings of particulate species were less accurate (correlation with measurements for particulate sulfate and ammonium were between 0.0 and 0.6). Sulfate mass loadings were particularly low (modelled means of 0.5–0.7 μg kg−1air, compared with measurements of 1.0–1.5 μg kg−1air). Two flights from the campaign were used as test cases – one with low relative humidity (RH) (60–70%), the other with high RH (80–90%). N2O5 heterogeneous chemistry was found to not be important in the low-RH test case; but in the high-RH test case it had a strong effect and significantly improved the agreement between modelled and measured NO3 and N2O5. When the model failed to capture atmospheric RH correctly, the modelled NO3 and N2O5 mixing ratios for these flights differed significantly from the measurements. This demonstrates that, for regional modelling which involves heterogeneous processes, it is essential to capture the ambient temperature and water vapour profiles. The night-time NO3 oxidation of VOCs across the whole region was found to be 100–300 times slower than the daytime OH oxidation of these compounds. The difference in contribution was less for

  8. On-line Chemistry within WRF: Description and Evaluation of a State-of-the-Art Multiscale Air Quality and Weather Prediction Model

    SciTech Connect (OSTI)

    Grell, Georg; Fast, Jerome D.; Gustafson, William I.; Peckham, Steven E.; McKeen, Stuart A.; Salzmann, Marc; Freitas, Saulo

    2010-01-01

    This is a conference proceeding that is now being put together as a book. This is chapter 2 of the book: "INTEGRATED SYSTEMS OF MESO-METEOROLOGICAL AND CHEMICAL TRANSPORT MODELS" published by Springer. The chapter title is "On-line Chemistry within WRF: Description and Evaluation of a State-of-the-Art Multiscale Air Quality and Weather Prediction Model." The original conference was the COST-728/NetFAM workshop on Integrated systems of meso-meteorological and chemical transport models, Danish Meteorological Institute, Copenhagen, May 21-23, 2007.

  9. Short-Term Energy Outlook Model Documentation: Macro Bridge Procedure to Update Regional Macroeconomic Forecasts with National Macroeconomic Forecasts

    Reports and Publications (EIA)

    2010-01-01

    The Regional Short-Term Energy Model (RSTEM) uses macroeconomic variables such as income, employment, industrial production and consumer prices at both the national and regional1 levels as explanatory variables in the generation of the Short-Term Energy Outlook (STEO). This documentation explains how national macroeconomic forecasts are used to update regional macroeconomic forecasts through the RSTEM Macro Bridge procedure.

  10. CCPP-ARM Parameterization Testbed Model Forecast Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Klein, Stephen

    Dataset contains the NCAR CAM3 (Collins et al., 2004) and GFDL AM2 (GFDL GAMDT, 2004) forecast data at locations close to the ARM research sites. These data are generated from a series of multi-day forecasts in which both CAM3 and AM2 are initialized at 00Z every day with the ECMWF reanalysis data (ERA-40), for the year 1997 and 2000 and initialized with both the NASA DAO Reanalyses and the NCEP GDAS data for the year 2004. The DOE CCPP-ARM Parameterization Testbed (CAPT) project assesses climate models using numerical weather prediction techniques in conjunction with high quality field measurements (e.g. ARM data).

  11. CCPP-ARM Parameterization Testbed Model Forecast Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Klein, Stephen

    2008-01-15

    Dataset contains the NCAR CAM3 (Collins et al., 2004) and GFDL AM2 (GFDL GAMDT, 2004) forecast data at locations close to the ARM research sites. These data are generated from a series of multi-day forecasts in which both CAM3 and AM2 are initialized at 00Z every day with the ECMWF reanalysis data (ERA-40), for the year 1997 and 2000 and initialized with both the NASA DAO Reanalyses and the NCEP GDAS data for the year 2004. The DOE CCPP-ARM Parameterization Testbed (CAPT) project assesses climate models using numerical weather prediction techniques in conjunction with high quality field measurements (e.g. ARM data).

  12. Calibration of a Convective Parameterization Scheme in the WRF Model and its Impact on the Simulation of East Asian Summer Monsoon Precipitation

    SciTech Connect (OSTI)

    Yang, Ben; Zhang, Yaocun; Qian, Yun; Huang, Anning; Yan, Huiping

    2015-03-26

    Reasonably modeling the magnitude, south-north gradient and seasonal propagation of precipitation associated with the East Asian Summer Monsoon (EASM) is a challenging task in the climate community. In this study we calibrate five key parameters in the Kain-Fritsch convection scheme in the WRF model using an efficient importance-sampling algorithm to improve the EASM simulation. We also examine the impacts of the improved EASM precipitation on other physical process. Our results suggest similar model sensitivity and values of optimized parameters across years with different EASM intensities. By applying the optimal parameters, the simulated precipitation and surface energy features are generally improved. The parameters related to downdraft, entrainment coefficients and CAPE consumption time (CCT) can most sensitively affect the precipitation and atmospheric features. Larger downdraft coefficient or CCT decrease the heavy rainfall frequency, while larger entrainment coefficient delays the convection development but build up more potential for heavy rainfall events, causing a possible northward shift of rainfall distribution. The CCT is the most sensitive parameter over wet region and the downdraft parameter plays more important roles over drier northern region. Long-term simulations confirm that by using the optimized parameters the precipitation distributions are better simulated in both weak and strong EASM years. Due to more reasonable simulated precipitation condensational heating, the monsoon circulations are also improved. By using the optimized parameters the biases in the retreating (beginning) of Mei-yu (northern China rainfall) simulated by the standard WRF model are evidently reduced and the seasonal and sub-seasonal variations of the monsoon precipitation are remarkably improved.

  13. Calibration of a convective parameterization scheme in the WRF model and its impact on the simulation of East Asian summer monsoon precipitation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yang, Ben; Zhang, Yaocun; Qian, Yun; Huang, Anning; Yan, Huiping

    2014-03-26

    Reasonably modeling the magnitude, south-north gradient and seasonal propagation of precipitation associated with the East Asian Summer Monsoon (EASM) is a challenging task in the climate community. In this study we calibrate five key parameters in the Kain-Fritsch convection scheme in the WRF model using an efficient importance-sampling algorithm to improve the EASM simulation. We also examine the impacts of the improved EASM precipitation on other physical process. Our results suggest similar model sensitivity and values of optimized parameters across years with different EASM intensities. By applying the optimal parameters, the simulated precipitation and surface energy features are generally improved.more » The parameters related to downdraft, entrainment coefficients and CAPE consumption time (CCT) can most sensitively affect the precipitation and atmospheric features. Larger downdraft coefficient or CCT decrease the heavy rainfall frequency, while larger entrainment coefficient delays the convection development but build up more potential for heavy rainfall events, causing a possible northward shift of rainfall distribution. The CCT is the most sensitive parameter over wet region and the downdraft parameter plays more important roles over drier northern region. Long-term simulations confirm that by using the optimized parameters the precipitation distributions are better simulated in both weak and strong EASM years. Due to more reasonable simulated precipitation condensational heating, the monsoon circulations are also improved. Lastly, by using the optimized parameters the biases in the retreating (beginning) of Mei-yu (northern China rainfall) simulated by the standard WRF model are evidently reduced and the seasonal and sub-seasonal variations of the monsoon precipitation are remarkably improved.« less

  14. Watt-Sun: A Multi-Scale, Multi-Model, Machine-Learning Solar Forecasting

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology | Department of Energy Watt-Sun: A Multi-Scale, Multi-Model, Machine-Learning Solar Forecasting Technology Watt-Sun: A Multi-Scale, Multi-Model, Machine-Learning Solar Forecasting Technology IBM logo.png As part of this project, new solar forecasting technology will be developed that leverages big data processing, deep machine learning, and cloud modeling integrated in a universal platform with an open architecture. Similar to the Watson computer system, this proposed technology

  15. Unit commitment with wind power generation: integrating wind forecast uncertainty and stochastic programming.

    SciTech Connect (OSTI)

    Constantinescu, E. M.; Zavala, V. M.; Rocklin, M.; Lee, S.; Anitescu, M.

    2009-10-09

    We present a computational framework for integrating the state-of-the-art Weather Research and Forecasting (WRF) model in stochastic unit commitment/energy dispatch formulations that account for wind power uncertainty. We first enhance the WRF model with adjoint sensitivity analysis capabilities and a sampling technique implemented in a distributed-memory parallel computing architecture. We use these capabilities through an ensemble approach to model the uncertainty of the forecast errors. The wind power realizations are exploited through a closed-loop stochastic unit commitment/energy dispatch formulation. We discuss computational issues arising in the implementation of the framework. In addition, we validate the framework using real wind speed data obtained from a set of meteorological stations. We also build a simulated power system to demonstrate the developments.

  16. ARM - PI Product - CCPP-ARM Parameterization Testbed Model Forecast Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ProductsCCPP-ARM Parameterization Testbed Model Forecast Data ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send PI Product : CCPP-ARM Parameterization Testbed Model Forecast Data Dataset contains the NCAR CAM3 (Collins et al., 2004) and GFDL AM2 (GFDL GAMDT, 2004) forecast data at locations close to the ARM research sites. These data are generated from a series of multi-day forecasts in which both CAM3 and AM2 are

  17. WRF-Chem model predictions of the regional impacts of N2O5 heterogeneous processes on night-time chemistry over north-western Europe

    SciTech Connect (OSTI)

    Lowe, Douglas; Archer-Nicholls, Scott; Morgan, Will; Allan, James D.; Utembe, Steve; Ouyang, Bin; Aruffo, Eleonora; Le Breton, Michael; Zaveri, Rahul A.; di Carlo, Piero; Percival, Carl; Coe, H.; Jones, Roderic L.; McFiggans, Gordon

    2015-02-09

    Chemical modelling studies have been conducted over north-western Europe in summer conditions, showing that night-time dinitrogen pentoxide (N2O5) heterogeneous reactive uptake is important regionally in modulating particulate nitrate and has a~modest influence on oxidative chemistry. Results from Weather Research and Forecasting model with Chemistry (WRF-Chem) model simulations, run with a detailed volatile organic compound (VOC) gas-phase chemistry scheme and the Model for Simulating Aerosol Interactions and Chemistry (MOSAIC) sectional aerosol scheme, were compared with a series of airborne gas and particulate measurements made over the UK in July 2010. Modelled mixing ratios of key gas-phase species were reasonably accurate (correlations with measurements of 0.7–0.9 for NO2 and O3). However modelled loadings of particulate species were less accurate (correlation with measurements for particulate sulfate and ammonium were between 0.0 and 0.6). Sulfate mass loadings were particularly low (modelled means of 0.5–0.7 μg kg−1air, compared with measurements of 1.0–1.5 μg kg−1air). Two flights from the campaign were used as test cases – one with low relative humidity (RH) (60–70%), the other with high RH (80–90%). N2O5 heterogeneous chemistry was found to not be important in the low-RH test case; but in the high-RH test case it had a strong effect and significantly improved the agreement between modelled and measured NO3 and N2O5. When the model failed to capture atmospheric RH correctly, the modelled NO3 and N2O5 mixing ratios for these flights differed significantly from the measurements. This demonstrates that, for regional modelling which involves heterogeneous processes, it is essential to capture the ambient temperature and water vapour profiles.

    The night-time NO

  18. Impact of WRF Physics and Grid Resolution on Low-level Wind Prediction: Towards the Assessment of Climate Change Impact on Future Wind Power

    SciTech Connect (OSTI)

    Chin, H S; Glascoe, L; Lundquist, J; Wharton, S

    2010-02-24

    The Weather Research and Forecast (WRF) model is used in short-range simulations to explore the sensitivity of model physics and horizontal grid resolution. We choose five events with the clear-sky conditions to study the impact of different planetary boundary layer (PBL), surface and soil-layer physics on low-level wind forecast for two wind farms; one in California (CA) and the other in Texas (TX). Short-range simulations are validated with field measurements. Results indicate that the forecast error of the CA case decreases with increasing grid resolution due to the improved representation of valley winds. Besides, the model physics configuration has a significant impact on the forecast error at this location. In contrast, the forecast error of the TX case exhibits little dependence on grid resolution and is relatively independent of physics configuration. Therefore, the occurrence frequency of lowest root mean square errors (RMSEs) at this location is used to determine an optimal model configuration for subsequent decade-scale regional climate model (RCM) simulations. In this study, we perform two sets of 20-year RCM simulations using the data from the NCAR Global Climate Model (GCM) simulations; one set models the present climate and the other simulates the future climate. These RCM simulations will be used to assess the impact of climate change on future wind energy.

  19. Twelve-month, 12 km resolution North American WRF-Chem v3.4 air quality simulation: performance evaluation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tessum, C. W.; Hill, J. D.; Marshall, J. D.

    2015-04-07

    We present results from and evaluate the performance of a 12-month, 12 km horizontal resolution year 2005 air pollution simulation for the contiguous United States using the WRF-Chem (Weather Research and Forecasting with Chemistry) meteorology and chemical transport model (CTM). We employ the 2005 US National Emissions Inventory, the Regional Atmospheric Chemistry Mechanism (RACM), and the Modal Aerosol Dynamics Model for Europe (MADE) with a volatility basis set (VBS) secondary aerosol module. Overall, model performance is comparable to contemporary modeling efforts used for regulatory and health-effects analysis, with an annual average daytime ozone (O3) mean fractional bias (MFB) of 12%more » and an annual average fine particulate matter (PM2.5) MFB of −1%. WRF-Chem, as configured here, tends to overpredict total PM2.5 at some high concentration locations and generally overpredicts average 24 h O3 concentrations. Performance is better at predicting daytime-average and daily peak O3 concentrations, which are more relevant for regulatory and health effects analyses relative to annual average values. Predictive performance for PM2.5 subspecies is mixed: the model overpredicts particulate sulfate (MFB = 36%), underpredicts particulate nitrate (MFB = −110%) and organic carbon (MFB = −29%), and relatively accurately predicts particulate ammonium (MFB = 3%) and elemental carbon (MFB = 3%), so that the accuracy in total PM2.5 predictions is to some extent a function of offsetting over- and underpredictions of PM2.5 subspecies. Model predictive performance for PM2.5 and its subspecies is in general worse in winter and in the western US than in other seasons and regions, suggesting spatial and temporal opportunities for future WRF-Chem model development and evaluation.« less

  20. Twelve-month, 12 km resolution North American WRF-Chem v3.4 air quality simulation: performance evaluation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tessum, C. W.; Hill, J. D.; Marshall, J. D.

    2014-12-02

    We present results from and evaluate the performance of a 12 month, 12 km horizontal resolution air pollution simulation for the contiguous United States using the WRF-Chem (Weather Research and Forecasting with Chemistry) meteorology and chemical transport model (CTM). We employ the 2005 US National Emissions Inventory, the Regional Atmospheric Chemistry Mechanism (RACM), and the Modal Aerosol Dynamics Model for Europe (MADE) with a Volatility Basis Set (VBS) secondary aerosol module. Overall, model performance is comparable to contemporary models used for regulatory and health-effects analysis, with an annual average daytime ozone (O3) mean fractional bias (MFB) of 12% and anmore » annual average fine particulate matter (PM2.5) MFB of −1%. WRF-Chem, as configured here, tends to overpredict total PM2.5 at some high concentration locations, and generally overpredicts average 24 h O3 concentrations, with better performance at predicting average daytime and daily peak O3 concentrations. Predictive performance for PM2.5 subspecies is mixed: the model overpredicts particulate sulfate (MFB = 65%), underpredicts particulate nitrate (MFB = −110%) and organic carbon (MFB = −65%), and relatively accurately predicts particulate ammonium (MFB = 3%) and elemental carbon (MFB = 3%), so that the accuracy in total PM2.5 predictions is to some extent a function of offsetting over- and underpredictions of PM2.5 subspecies. Model predictive performance for PM2.5 and its subspecies is in general worse in winter and in the western US than in other seasons and regions, suggesting spatial and temporal opportunities for future WRF-Chem model development and evaluation.« less

  1. Development of an Immersed Boundary Method to Resolve Complex Terrain in the Weather Research and Forecasting Model

    SciTech Connect (OSTI)

    Lunquist, K A; Chow, F K; Lundquist, J K; Mirocha, J D

    2007-09-04

    simulations, on the other hand, are performed by numerical weather prediction (NWP) codes, which cannot handle the geometry of the urban landscape, but do provide a more complete representation of atmospheric physics. NWP codes typically use structured grids with terrain-following vertical coordinates, include a full suite of atmospheric physics parameterizations, and allow for dynamic synoptic scale lateral forcing through grid nesting. Terrain following grids are unsuitable for urban terrain, as steep terrain gradients cause extreme distortion of the computational cells. In this work, we introduce and develop an immersed boundary method (IBM) to allow the favorable properties of a numerical weather prediction code to be combined with the ability to handle complex terrain. IBM uses a non-conforming structured grid, and allows solid boundaries to pass through the computational cells. As the terrain passes through the mesh in an arbitrary manner, the main goal of the IBM is to apply the boundary condition on the interior of the domain as accurately as possible. With the implementation of the IBM, numerical weather prediction codes can be used to explicitly resolve urban terrain. Heterogeneous urban domains using the IBM can be nested into larger mesoscale domains using a terrain-following coordinate. The larger mesoscale domain provides lateral boundary conditions to the urban domain with the correct forcing, allowing seamless integration between mesoscale and urban scale models. Further discussion of the scope of this project is given by Lundquist et al. [2007]. The current paper describes the implementation of an IBM into the Weather Research and Forecasting (WRF) model, which is an open source numerical weather prediction code. The WRF model solves the non-hydrostatic compressible Navier-Stokes equations, and employs an isobaric terrain-following vertical coordinate. Many types of IB methods have been developed by researchers; a comprehensive review can be found in Mittal

  2. A new WRF-Chem treatment for studying regional-scale impacts of cloud processes on aerosol and trace gases in parameterized cumuli

    SciTech Connect (OSTI)

    Berg, L. K.; Shrivastava, M.; Easter, R. C.; Fast, J. D.; Chapman, E. G.; Liu, Y.; Ferrare, R. A.

    2015-02-24

    A new treatment of cloud effects on aerosol and trace gases within parameterized shallow and deep convection, and aerosol effects on cloud droplet number, has been implemented in the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) version 3.2.1 that can be used to better understand the aerosol life cycle over regional to synoptic scales. The modifications to the model include treatment of the cloud droplet number mixing ratio; key cloud microphysical and macrophysical parameters (including the updraft fractional area, updraft and downdraft mass fluxes, and entrainment) averaged over the population of shallow clouds, or a single deep convective cloud; and vertical transport, activation/resuspension, aqueous chemistry, and wet removal of aerosol and trace gases in warm clouds. These changes have been implemented in both the WRF-Chem chemistry packages as well as the Kain–Fritsch (KF) cumulus parameterization that has been modified to better represent shallow convective clouds. Testing of the modified WRF-Chem has been completed using observations from the Cumulus Humilis Aerosol Processing Study (CHAPS). The simulation results are used to investigate the impact of cloud–aerosol interactions on regional-scale transport of black carbon (BC), organic aerosol (OA), and sulfate aerosol. Based on the simulations presented here, changes in the column-integrated BC can be as large as –50% when cloud–aerosol interactions are considered (due largely to wet removal), or as large as +40% for sulfate under non-precipitating conditions due to sulfate production in the parameterized clouds. The modifications to WRF-Chem are found to account for changes in the cloud droplet number concentration (CDNC) and changes in the chemical composition of cloud droplet residuals in a way that is consistent with observations collected during CHAPS. Efforts are currently underway to port the changes described here to the latest version of WRF-Chem, and it is

  3. A new WRF-Chem treatment for studying regional-scale impacts of cloud processes on aerosol and trace gases in parameterized cumuli

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Berg, L. K.; Shrivastava, M.; Easter, R. C.; Fast, J. D.; Chapman, E. G.; Liu, Y.; Ferrare, R. A.

    2015-02-24

    A new treatment of cloud effects on aerosol and trace gases within parameterized shallow and deep convection, and aerosol effects on cloud droplet number, has been implemented in the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) version 3.2.1 that can be used to better understand the aerosol life cycle over regional to synoptic scales. The modifications to the model include treatment of the cloud droplet number mixing ratio; key cloud microphysical and macrophysical parameters (including the updraft fractional area, updraft and downdraft mass fluxes, and entrainment) averaged over the population of shallow clouds, or a single deep convectivemore » cloud; and vertical transport, activation/resuspension, aqueous chemistry, and wet removal of aerosol and trace gases in warm clouds. These changes have been implemented in both the WRF-Chem chemistry packages as well as the Kain–Fritsch (KF) cumulus parameterization that has been modified to better represent shallow convective clouds. Testing of the modified WRF-Chem has been completed using observations from the Cumulus Humilis Aerosol Processing Study (CHAPS). The simulation results are used to investigate the impact of cloud–aerosol interactions on regional-scale transport of black carbon (BC), organic aerosol (OA), and sulfate aerosol. Based on the simulations presented here, changes in the column-integrated BC can be as large as –50% when cloud–aerosol interactions are considered (due largely to wet removal), or as large as +40% for sulfate under non-precipitating conditions due to sulfate production in the parameterized clouds. The modifications to WRF-Chem are found to account for changes in the cloud droplet number concentration (CDNC) and changes in the chemical composition of cloud droplet residuals in a way that is consistent with observations collected during CHAPS. Efforts are currently underway to port the changes described here to the latest version of WRF-Chem, and it

  4. Expectations models of electric utilities' forecasts: a case study of econometric estimation with influential data points

    SciTech Connect (OSTI)

    Vellutini, R. de A.S.; Mount, T.D.

    1983-01-01

    This study develops an econometric model for explaining how electric utilities revise their forecasts of future electricity demand each year. The model specification is developed from the adaptive expectations hypothesis and it relates forecasted growth rates to actual lagged growth rates of electricity demand. Unlike other studies of the expectation phenomenon, expectations of future demand levels constitute an observable variable and thus can be incorporated explicitly into the model. The data used for the analysis were derived from the published forecasts of the nine National Electric Reliability Councils in the US for the years 1974 to 1980. Three alternative statistical methods are used for estimation purposes: ordinary least-squares, robust regression and a diagnostic analysis to identify influential observations. The results obtained with the first two methods are very similar, but are both inconsistent with the underlying economic logic of the model. The estimated model obtained from the diagnostics approach after deleting two aberrant observations is consistent with economic logic, and supports the hypothesis that the low growth demand experienced immediately following the oil embargo in 1973 were disregarded by the industry for forecasting purposes. The model includes transitory effects associated with the oil embargo that gradually disappear over time, the estimated coefficients for the lagged values of actual growth approach a structure with declining positive weights. The general shape of this asymptotic structure is similar to the findings in many economic applications using distributed lag models.

  5. Ecological Forecasting in Chesapeake Bay: Using a Mechanistic-Empirical Modelling Approach

    SciTech Connect (OSTI)

    Brown, C. W.; Hood, Raleigh R.; Long, Wen; Jacobs, John M.; Ramers, D. L.; Wazniak, C.; Wiggert, J. D.; Wood, R.; Xu, J.

    2013-09-01

    The Chesapeake Bay Ecological Prediction System (CBEPS) automatically generates daily nowcasts and three-day forecasts of several environmental variables, such as sea-surface temperature and salinity, the concentrations of chlorophyll, nitrate, and dissolved oxygen, and the likelihood of encountering several noxious species, including harmful algal blooms and water-borne pathogens, for the purpose of monitoring the Bay's ecosystem. While the physical and biogeochemical variables are forecast mechanistically using the Regional Ocean Modeling System configured for the Chesapeake Bay, the species predictions are generated using a novel mechanistic empirical approach, whereby real-time output from the coupled physical biogeochemical model drives multivariate empirical habitat models of the target species. The predictions, in the form of digital images, are available via the World Wide Web to interested groups to guide recreational, management, and research activities. Though full validation of the integrated forecasts for all species is still a work in progress, we argue that the mechanisticempirical approach can be used to generate a wide variety of short-term ecological forecasts, and that it can be applied in any marine system where sufficient data exist to develop empirical habitat models. This paper provides an overview of this system, its predictions, and the approach taken.

  6. NREL: Energy Analysis - Energy Forecasting and Modeling Staff

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... renewable energy systems Nexus of natural gas and renewable energy Modeling of electric sector regulation and policy in capacity expansion and dispatch models, e.g. the ...

  7. Modeling and forecasting the distribution of Vibrio vulnificus in Chesapeake Bay

    SciTech Connect (OSTI)

    Jacobs, John M.; Rhodes, M.; Brown, C. W.; Hood, Raleigh R.; Leight, A.; Long, Wen; Wood, R.

    2014-11-01

    The aim is to construct statistical models to predict the presence, abundance and potential virulence of Vibrio vulnificus in surface waters. A variety of statistical techniques were used in concert to identify water quality parameters associated with V. vulnificus presence, abundance and virulence markers in the interest of developing strong predictive models for use in regional oceanographic modeling systems. A suite of models are provided to represent the best model fit and alternatives using environmental variables that allow them to be put to immediate use in current ecological forecasting efforts. Conclusions: Environmental parameters such as temperature, salinity and turbidity are capable of accurately predicting abundance and distribution of V. vulnificus in Chesapeake Bay. Forcing these empirical models with output from ocean modeling systems allows for spatially explicit forecasts for up to 48 h in the future. This study uses one of the largest data sets compiled to model Vibrio in an estuary, enhances our understanding of environmental correlates with abundance, distribution and presence of potentially virulent strains and offers a method to forecast these pathogens that may be replicated in other regions.

  8. Evaluation of Forecasted Southeast Pacific Stratocumulus in the NCAR, GFDL and ECMWF Models

    SciTech Connect (OSTI)

    Hannay, C; Williamson, D L; Hack, J J; Kiehl, J T; Olson, J G; Klein, S A; Bretherton, C S; K?hler, M

    2008-01-24

    We examine forecasts of Southeast Pacific stratocumulus at 20S and 85W during the East Pacific Investigation of Climate (EPIC) cruise of October 2001 with the ECMWF model, the Atmospheric Model (AM) from GFDL, the Community Atmosphere Model (CAM) from NCAR, and the CAM with a revised atmospheric boundary layer formulation from the University of Washington (CAM-UW). The forecasts are initialized from ECMWF analyses and each model is run for 3 days to determine the differences with the EPIC field data. Observations during the EPIC cruise show a stable and well-mixed boundary layer under a sharp inversion. The inversion height and the cloud layer have a strong and regular diurnal cycle. A key problem common to the four models is that the forecasted planetary boundary layer (PBL) height is too low when compared to EPIC observations. All the models produce a strong diurnal cycle in the Liquid Water Path (LWP) but there are large differences in the amplitude and the phase compared to the EPIC observations. This, in turn, affects the radiative fluxes at the surface. There is a large spread in the surface energy budget terms amongst the models and large discrepancies with observational estimates. Single Column Model (SCM) experiments with the CAM show that the vertical pressure velocity has a large impact on the PBL height and LWP. Both the amplitude of the vertical pressure velocity field and its vertical structure play a significant role in the collapse or the maintenance of the PBL.

  9. Modeling and forecasting the distribution of Vibrio vulnificus...

    Office of Scientific and Technical Information (OSTI)

    A suite of models are provided to represent the best model fit and alternatives using environmental variables that allow them to be put to immediate use in current ecological ...

  10. NREL: Transmission Grid Integration - Forecasting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Forecasting NREL researchers use solar and wind resource assessment and forecasting techniques to develop models that better characterize the potential benefits and impacts of ...

  11. High Resolution Atmospheric Modeling for Wind Energy Applications

    SciTech Connect (OSTI)

    Simpson, M; Bulaevskaya, V; Glascoe, L; Singer, M

    2010-03-18

    The ability of the WRF atmospheric model to forecast wind speed over the Nysted wind park was investigated as a function of time. It was found that in the time period we considered (August 1-19, 2008), the model is able to predict wind speeds reasonably accurately for 48 hours ahead, but that its forecast skill deteriorates rapidly after 48 hours. In addition, a preliminary analysis was carried out to investigate the impact of vertical grid resolution on the forecast skill. Our preliminary finding is that increasing vertical grid resolution does not have a significant impact on the forecast skill of the WRF model over Nysted wind park during the period we considered. Additional simulations during this period, as well as during other time periods, will be run in order to validate the results presented here. Wind speed is a difficult parameter to forecast due the interaction of large and small length scale forcing. To accurately forecast the wind speed at a given location, the model must correctly forecast the movement and strength of synoptic systems, as well as the local influence of topography / land use on the wind speed. For example, small deviations in the forecast track or strength of a large-scale low pressure system can result in significant forecast errors for local wind speeds. The purpose of this study is to provide a preliminary baseline of a high-resolution limited area model forecast performance against observations from the Nysted wind park. Validating the numerical weather prediction model performance for past forecasts will give a reasonable measure of expected forecast skill over the Nysted wind park. Also, since the Nysted Wind Park is over water and some distance from the influence of terrain, the impact of high vertical grid spacing for wind speed forecast skill will also be investigated.

  12. Why Models Don%3CU%2B2019%3Et Forecast.

    SciTech Connect (OSTI)

    McNamara, Laura A.

    2010-08-01

    The title of this paper, Why Models Don't Forecast, has a deceptively simple answer: models don't forecast because people forecast. Yet this statement has significant implications for computational social modeling and simulation in national security decision making. Specifically, it points to the need for robust approaches to the problem of how people and organizations develop, deploy, and use computational modeling and simulation technologies. In the next twenty or so pages, I argue that the challenge of evaluating computational social modeling and simulation technologies extends far beyond verification and validation, and should include the relationship between a simulation technology and the people and organizations using it. This challenge of evaluation is not just one of usability and usefulness for technologies, but extends to the assessment of how new modeling and simulation technologies shape human and organizational judgment. The robust and systematic evaluation of organizational decision making processes, and the role of computational modeling and simulation technologies therein, is a critical problem for the organizations who promote, fund, develop, and seek to use computational social science tools, methods, and techniques in high-consequence decision making.

  13. Regional forecasting with global atmospheric models; Third year report

    SciTech Connect (OSTI)

    Crowley, T.J.; North, G.R.; Smith, N.R.

    1994-05-01

    This report was prepared by the Applied Research Corporation (ARC), College Station, Texas, under subcontract to Pacific Northwest Laboratory (PNL) as part of a global climate studies task. The task supports site characterization work required for the selection of a potential high-level nuclear waste repository and is part of the Performance Assessment Scientific Support (PASS) Program at PNL. The work is under the overall direction of the Office of Civilian Radioactive Waste Management (OCRWM), US Department of Energy Headquarters, Washington, DC. The scope of the report is to present the results of the third year`s work on the atmospheric modeling part of the global climate studies task. The development testing of computer models and initial results are discussed. The appendices contain several studies that provide supporting information and guidance to the modeling work and further details on computer model development. Complete documentation of the models, including user information, will be prepared under separate reports and manuals.

  14. Forecasting of municipal solid waste quantity in a developing country using multivariate grey models

    SciTech Connect (OSTI)

    Intharathirat, Rotchana; Abdul Salam, P.; Kumar, S.; Untong, Akarapong

    2015-05-15

    Highlights: • Grey model can be used to forecast MSW quantity accurately with the limited data. • Prediction interval overcomes the uncertainty of MSW forecast effectively. • A multivariate model gives accuracy associated with factors affecting MSW quantity. • Population, urbanization, employment and household size play role for MSW quantity. - Abstract: In order to plan, manage and use municipal solid waste (MSW) in a sustainable way, accurate forecasting of MSW generation and composition plays a key role. It is difficult to carry out the reliable estimates using the existing models due to the limited data available in the developing countries. This study aims to forecast MSW collected in Thailand with prediction interval in long term period by using the optimized multivariate grey model which is the mathematical approach. For multivariate models, the representative factors of residential and commercial sectors affecting waste collected are identified, classified and quantified based on statistics and mathematics of grey system theory. Results show that GMC (1, 5), the grey model with convolution integral, is the most accurate with the least error of 1.16% MAPE. MSW collected would increase 1.40% per year from 43,435–44,994 tonnes per day in 2013 to 55,177–56,735 tonnes per day in 2030. This model also illustrates that population density is the most important factor affecting MSW collected, followed by urbanization, proportion employment and household size, respectively. These mean that the representative factors of commercial sector may affect more MSW collected than that of residential sector. Results can help decision makers to develop the measures and policies of waste management in long term period.

  15. Decreasing the temporal complexity for nonlinear, implicit reduced-order models by forecasting

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Carlberg, Kevin; Ray, Jaideep; van Bloemen Waanders, Bart

    2015-02-14

    Implicit numerical integration of nonlinear ODEs requires solving a system of nonlinear algebraic equations at each time step. Each of these systems is often solved by a Newton-like method, which incurs a sequence of linear-system solves. Most model-reduction techniques for nonlinear ODEs exploit knowledge of system's spatial behavior to reduce the computational complexity of each linear-system solve. However, the number of linear-system solves for the reduced-order simulation often remains roughly the same as that for the full-order simulation. We propose exploiting knowledge of the model's temporal behavior to (1) forecast the unknown variable of the reduced-order system of nonlinear equationsmore » at future time steps, and (2) use this forecast as an initial guess for the Newton-like solver during the reduced-order-model simulation. To compute the forecast, we propose using the Gappy POD technique. As a result, the goal is to generate an accurate initial guess so that the Newton solver requires many fewer iterations to converge, thereby decreasing the number of linear-system solves in the reduced-order-model simulation.« less

  16. Decreasing the temporal complexity for nonlinear, implicit reduced-order models by forecasting

    SciTech Connect (OSTI)

    Carlberg, Kevin; Ray, Jaideep; van Bloemen Waanders, Bart

    2015-02-14

    Implicit numerical integration of nonlinear ODEs requires solving a system of nonlinear algebraic equations at each time step. Each of these systems is often solved by a Newton-like method, which incurs a sequence of linear-system solves. Most model-reduction techniques for nonlinear ODEs exploit knowledge of system's spatial behavior to reduce the computational complexity of each linear-system solve. However, the number of linear-system solves for the reduced-order simulation often remains roughly the same as that for the full-order simulation. We propose exploiting knowledge of the model's temporal behavior to (1) forecast the unknown variable of the reduced-order system of nonlinear equations at future time steps, and (2) use this forecast as an initial guess for the Newton-like solver during the reduced-order-model simulation. To compute the forecast, we propose using the Gappy POD technique. As a result, the goal is to generate an accurate initial guess so that the Newton solver requires many fewer iterations to converge, thereby decreasing the number of linear-system solves in the reduced-order-model simulation.

  17. A Distributed Modeling System for Short-Term to Seasonal Ensemble Streamflow Forecasting in Snowmelt Dominated Basins

    SciTech Connect (OSTI)

    Wigmosta, Mark S.; Gill, Muhammad K.; Coleman, Andre M.; Prasad, Rajiv; Vail, Lance W.

    2007-12-01

    This paper describes a distributed modeling system for short-term to seasonal water supply forecasts with the ability to utilize remotely-sensed snow cover products and real-time streamflow measurements. Spatial variability in basin characteristics and meteorology is represented using a raster-based computational grid. Canopy interception, snow accumulation and melt, and simplified soil water movement are simulated in each computational unit. The model is run at a daily time step with surface runoff and subsurface flow aggregated at the basin scale. This approach allows the model to be updated with spatial snow cover and measured streamflow using an Ensemble Kalman-based data assimilation strategy that accounts for uncertainty in weather forecasts, model parameters, and observations used for updating. Model inflow forecasts for the Dworshak Reservoir in northern Idaho are compared to observations and to April-July volumetric forecasts issued by the Natural Resource Conservation Service (NRCS) for Water Years 2000 2006. October 1 volumetric forecasts are superior to those issued by the NRCS, while March 1 forecasts are comparable. The ensemble spread brackets the observed April-July volumetric inflows in all years. Short-term (one and three day) forecasts also show excellent agreement with observations.

  18. Validation of Global Weather Forecast and Climate Models Over the North

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Slope of Alaska Validation of Global Weather Forecast and Climate Models Over the North Slope of Alaska Xie, Shaocheng Lawrence Livermore National Laboratory Klein, Stephen Lawrence Livermore National Laboratory Boyle, Jim Lawrence Livermore National Laboratory Fiorino, Michael DOE/Lawrence Livermore National Laboratory Hnilo, Justin DOE/Lawrence Livermore National Laboratory Phillips, Thomas PCMDI/LLNL Potter, Gerald Lawrence Livermore National Laboratory Beljaars, Anton ECMWF Category:

  19. Combining multi-objective optimization and bayesian model averaging to calibrate forecast ensembles of soil hydraulic models

    SciTech Connect (OSTI)

    Vrugt, Jasper A; Wohling, Thomas

    2008-01-01

    Most studies in vadose zone hydrology use a single conceptual model for predictive inference and analysis. Focusing on the outcome of a single model is prone to statistical bias and underestimation of uncertainty. In this study, we combine multi-objective optimization and Bayesian Model Averaging (BMA) to generate forecast ensembles of soil hydraulic models. To illustrate our method, we use observed tensiometric pressure head data at three different depths in a layered vadose zone of volcanic origin in New Zealand. A set of seven different soil hydraulic models is calibrated using a multi-objective formulation with three different objective functions that each measure the mismatch between observed and predicted soil water pressure head at one specific depth. The Pareto solution space corresponding to these three objectives is estimated with AMALGAM, and used to generate four different model ensembles. These ensembles are post-processed with BMA and used for predictive analysis and uncertainty estimation. Our most important conclusions for the vadose zone under consideration are: (1) the mean BMA forecast exhibits similar predictive capabilities as the best individual performing soil hydraulic model, (2) the size of the BMA uncertainty ranges increase with increasing depth and dryness in the soil profile, (3) the best performing ensemble corresponds to the compromise (or balanced) solution of the three-objective Pareto surface, and (4) the combined multi-objective optimization and BMA framework proposed in this paper is very useful to generate forecast ensembles of soil hydraulic models.

  20. Application of an online-coupled regional climate model, WRF-CAM5, over East Asia for examination of ice nucleation schemes. Part II. Sensitivity to heterogeneous ice nucleation parameterizations and dust emissions

    SciTech Connect (OSTI)

    Zhang, Yang; Chen, Ying; Fan, Jiwen; Leung, Lai -Yung

    2015-09-14

    Aerosol particles can affect cloud microphysical properties by serving as ice nuclei (IN). Large uncertainties exist in the ice nucleation parameterizations (INPs) used in current climate models. In this Part II paper, to examine the sensitivity of the model predictions to different heterogeneous INPs, WRF-CAM5 simulation using the INP of Niemand et al. (N12) [1] is conducted over East Asia for two full years, 2006 and 2011, and compared with simulation using the INP of Meyers et al. (M92) [2], which is the original INP used in CAM5. M92 calculates the nucleated ice particle concentration as a function of ice supersaturation, while N12 represents the nucleated ice particle concentration as a function of temperature and the number concentrations and surface areas of dust particles. Compared to M92, the WRF-CAM5 simulation with N12 produces significantly higher nucleated ice crystal number concentrations (ICNCs) in the northern domain where dust sources are located, leading to significantly higher cloud ice number and mass concentrations and ice water path, but the opposite is true in the southern domain where temperatures and moistures play a more important role in ice formation. Overall, the simulation with N12 gives lower downward shortwave radiation but higher downward longwave radiation, cloud liquid water path, cloud droplet number concentrations, and cloud optical depth. The increase in cloud optical depth and the decrease in downward solar flux result in a stronger shortwave and longwave cloud forcing, and decreases temperature at 2-m and precipitation. Changes in temperature and radiation lower surface concentrations of OH, O₃, SO₄²⁻, and PM2.5, but increase surface concentrations of CO, NO₂, and SO₂ over most of the domain. By acting as cloud condensation nuclei (CCN) and IN, dust particles have different impacts on cloud water and ice number concentrations, radiation, and temperature at 2-m and precipitation depending on

  1. Application of an online-coupled regional climate model, WRF-CAM5, over East Asia for examination of ice nucleation schemes. Part II. Sensitivity to heterogeneous ice nucleation parameterizations and dust emissions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Yang; Chen, Ying; Fan, Jiwen; Leung, Lai -Yung

    2015-09-14

    Aerosol particles can affect cloud microphysical properties by serving as ice nuclei (IN). Large uncertainties exist in the ice nucleation parameterizations (INPs) used in current climate models. In this Part II paper, to examine the sensitivity of the model predictions to different heterogeneous INPs, WRF-CAM5 simulation using the INP of Niemand et al. (N12) [1] is conducted over East Asia for two full years, 2006 and 2011, and compared with simulation using the INP of Meyers et al. (M92) [2], which is the original INP used in CAM5. M92 calculates the nucleated ice particle concentration as a function of icemore » supersaturation, while N12 represents the nucleated ice particle concentration as a function of temperature and the number concentrations and surface areas of dust particles. Compared to M92, the WRF-CAM5 simulation with N12 produces significantly higher nucleated ice crystal number concentrations (ICNCs) in the northern domain where dust sources are located, leading to significantly higher cloud ice number and mass concentrations and ice water path, but the opposite is true in the southern domain where temperatures and moistures play a more important role in ice formation. Overall, the simulation with N12 gives lower downward shortwave radiation but higher downward longwave radiation, cloud liquid water path, cloud droplet number concentrations, and cloud optical depth. The increase in cloud optical depth and the decrease in downward solar flux result in a stronger shortwave and longwave cloud forcing, and decreases temperature at 2-m and precipitation. Changes in temperature and radiation lower surface concentrations of OH, O₃, SO₄²⁻, and PM2.5, but increase surface concentrations of CO, NO₂, and SO₂ over most of the domain. By acting as cloud condensation nuclei (CCN) and IN, dust particles have different impacts on cloud water and ice number concentrations, radiation, and temperature at 2-m and precipitation depending on whether the

  2. Oxygenate Supply/Demand Balances in the Short-Term Integrated Forecasting Model (Released in the STEO March 1998)

    Reports and Publications (EIA)

    1998-01-01

    The blending of oxygenates, such as fuel ethanol and methyl tertiary butyl ether (MTBE), into motor gasoline has increased dramatically in the last few years because of the oxygenated and reformulated gasoline programs. Because of the significant role oxygenates now have in petroleum product markets, the Short-Term Integrated Forecasting System (STIFS) was revised to include supply and demand balances for fuel ethanol and MTBE. The STIFS model is used for producing forecasts in the Short-Term Energy Outlook. A review of the historical data sources and forecasting methodology for oxygenate production, imports, inventories, and demand is presented in this report.

  3. Evaluation of and Suggested Improvements to the WSM6 Microphysics in WRF- ARW Using Synthetic and Observed GOES-13 Imagery

    SciTech Connect (OSTI)

    Grasso, Lewis; Lindsey, Daniel T.; Lim, Kyo-Sun; Clark, Adam; Bikos, Dan; Dembek, Scott R.

    2014-10-01

    Synthetic satellite imagery can be employed to evaluate simulated cloud fields. Past studies have revealed that the Weather Research and Forecasting (WRF) WRF Single-Moment 6-class (WSM6) microphysics in WRF-ARW produces less upper level ice clouds within synthetic images compared to observations. Synthetic Geostationary Operational Environmental Satellite (GOES)-13 imagery at 10.7 ?m of simulated cloud fields from the 4 km National Severe Storms Laboratory (NSSL) WRF-ARW is compared to observed GOES-13 imagery. Histograms suggest that too few points contain upper level simulated ice clouds. In particular, side-by-side examples are shown of synthetic and observed convective anvils. Such images illustrate the lack of anvil cloud associated with convection produced by the NSSL WRF-ARW. A vertical profile of simulated hydrometeors suggests that too much cloud water mass may be converted into graupel mass, effectively reducing the main source of ice mass in a simulated anvil. Further, excessive accretion of ice by snow removes ice from an anvil by precipitation settling. Idealized sensitivity tests reveal that a 50% reduction of the conversion of cloud water mass to graupel and a 50% reduction of the accretion rate of ice by snow results in a significant increase in anvil ice of a simulated storm. Such results provide guidance as to which conversions could be reformulated, in a more physical manner, to increase simulated ice mass in the upper troposphere.

  4. Forecasting the northern African dust outbreak towards Europe in April 2011: A model intercomparison

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Huneeus, N.; Basart, S.; Fiedler, S.; Morcrette, J. -J.; Benedetti, A.; Mulcahy, J.; Terradellas, E.; Garcia-Pando, C. Perez; Pejanovic, G.; Nickovic, S.; et al

    2016-04-21

    In the framework of the World Meteorological Organisation's Sand and Dust Storm Warning Advisory and Assessment System, we evaluated the predictions of five state-of-the-art dust forecast models during an intense Saharan dust outbreak affecting western and northern Europe in April 2011. We assessed the capacity of the models to predict the evolution of the dust cloud with lead times of up to 72 h using observations of aerosol optical depth (AOD) from the AErosol RObotic NETwork (AERONET) and the Moderate Resolution Imaging Spectroradiometer (MODIS) and dust surface concentrations from a ground-based measurement network. In addition, the predicted vertical dust distributionmore » was evaluated with vertical extinction profiles from the Cloud and Aerosol Lidar with Orthogonal Polarization (CALIOP). To assess the diversity in forecast capability among the models, the analysis was extended to wind field (both surface and profile), synoptic conditions, emissions and deposition fluxes. Models predict the onset and evolution of the AOD for all analysed lead times. On average, differences among the models are larger than differences among lead times for each individual model. In spite of large differences in emission and deposition, the models present comparable skill for AOD. In general, models are better in predicting AOD than near-surface dust concentration over the Iberian Peninsula. Models tend to underestimate the long-range transport towards northern Europe. In this paper, our analysis suggests that this is partly due to difficulties in simulating the vertical distribution dust and horizontal wind. Differences in the size distribution and wet scavenging efficiency may also account for model diversity in long-range transport.« less

  5. A comparison of water vapor quantities from model short-range forecasts and ARM observations

    SciTech Connect (OSTI)

    Hnilo, J J

    2006-03-17

    Model evolution and improvement is complicated by the lack of high quality observational data. To address a major limitation of these measurements the Atmospheric Radiation Measurement (ARM) program was formed. For the second quarter ARM metric we will make use of new water vapor data that has become available, and called the 'Merged-sounding' value added product (referred to as OBS, within the text) at three sites: the North Slope of Alaska (NSA), Darwin Australia (DAR) and the Southern Great Plains (SGP) and compare these observations to model forecast data. Two time periods will be analyzed March 2000 for the SGP and October 2004 for both DAR and NSA. The merged-sounding data have been interpolated to 37 pressure levels (e.g., from 1000hPa to 100hPa at 25hPa increments) and time averaged to 3 hourly data for direct comparison to our model output.

  6. A Comparison of Water Vapor Quantities from Model Short-Range Forecasts and ARM Observations

    SciTech Connect (OSTI)

    Hnilo, J.

    2006-03-17

    Model evolution and improvement is complicated by the lack of high quality observational data. To address a major limitation of these measurements the Atmospheric Radiation Measurement (ARM) program was formed. For the second quarter ARM metric we will make use of new water vapor data that has become available, and called the “Mergedsounding” value added product (referred to as OBS, within the text) at three sites: the North Slope of Alaska (NSA), Darwin Australia (DAR) and the Southern Great Plains (SGP) and compare these observations to model forecast data. Two time periods will be analyzed March 2000 for the SGP and October 2004 for both DAR and NSA. The merged-sounding data have been interpolated to 37 pressure levels (e.g., from 1000hPa to 100hPa at 25hPa increments) and time averaged to 3 hourly data for direct comparison to our model output.

  7. Spatial and temporal variations of new particle formation in East Asia using an NPF-explicit WRF-chem model: North-south contrast in new particle formation frequency

    SciTech Connect (OSTI)

    Matsui, H.; Koike, Makoto; Takegawa, Nobuyuki; Kondo, Yutaka; Takami, A.; Takamura, T.; Yoon, Soh-joung; Kim, S. W.; Lim, Hyuntae; Fast, Jerome D.

    2013-10-27

    The new particle formation (NPF)-explicit version of the WRF-chem model, which we developed recently, can calculate the growth and sink of nucleated clusters explicitly with 20 aerosol size bins from 1 nm to 10 μm. In this study, the model is used to understand spatial and temporal variations of the frequency of NPF events and the concentrations of aerosols (condensation nuclei, CN) and cloud condensation nuclei (CCN) within the boundary layer in East Asia in spring 2009. Model simulations show distinct north-south contrast in the frequency and mechanism of NPF in East Asia. NPF mostly occurred over limited periods and regions between 30° and 45°N, such as northeast China, Korea, and Japan, including regions around active volcanoes (Miyakejima and Sakurajima). At these latitudes, NPF was considerably suppressed by high concentrations of preexisting particles under stagnant air conditions associated with high-pressure systems, while nucleation occurred more extensively on most days during the simulation period. Conversely, neither nucleation nor NPF occurred frequently south of 30°N because of lower SO2 emissions and H2SO4 concentrations. The period-averaged NPF frequency was 3 times higher at latitudes of 30° - 45°N than at latitudes of 20° - 30°N. The north-south contrast of NPF frequency is validated by surface measurements in outflow regions in East Asia. The period- and domain-averaged contribution of secondary particles is estimated to be 44% for CN (> 10 nm) and 26% for CCN at a supersaturation of 1.0% in our simulation, though the contribution is highly sensitive to the magnitudes and size distributions of primary aerosol emissions and the coefficients in the nucleation parameterizations.

  8. A comparison of model short-range forecasts and the ARM Microbase data

    SciTech Connect (OSTI)

    Hnilo, J J

    2006-09-22

    For the fourth quarter ARM metric we will make use of new liquid water data that has become available, and called the 'Microbase' value added product (referred to as OBS, within the text) at three sites: the North Slope of Alaska (NSA), Tropical West Pacific (TWP) and the Southern Great Plains (SGP) and compare these observations to model forecast data. Two time periods will be analyzed March 2000 for the SGP and October 2004 for both TWP and NSA. The Microbase data have been averaged to 35 pressure levels (e.g., from 1000hPa to 100hPa at 25hPa increments) and time averaged to 3hourly data for direct comparison to our model output.

  9. Machine Learning Based Multi-Physical-Model Blending for Enhancing Renewable Energy Forecast -- Improvement via Situation Dependent Error Correction

    SciTech Connect (OSTI)

    Lu, Siyuan; Hwang, Youngdeok; Khabibrakhmanov, Ildar; Marianno, Fernando J.; Shao, Xiaoyan; Zhang, Jie; Hodge, Bri-Mathias; Hamann, Hendrik F.

    2015-07-15

    With increasing penetration of solar and wind energy to the total energy supply mix, the pressing need for accurate energy forecasting has become well-recognized. Here we report the development of a machine-learning based model blending approach for statistically combining multiple meteorological models for improving the accuracy of solar/wind power forecast. Importantly, we demonstrate that in addition to parameters to be predicted (such as solar irradiance and power), including additional atmospheric state parameters which collectively define weather situations as machine learning input provides further enhanced accuracy for the blended result. Functional analysis of variance shows that the error of individual model has substantial dependence on the weather situation. The machine-learning approach effectively reduces such situation dependent error thus produces more accurate results compared to conventional multi-model ensemble approaches based on simplistic equally or unequally weighted model averaging. Validation over an extended period of time results show over 30% improvement in solar irradiance/power forecast accuracy compared to forecasts based on the best individual model.

  10. Assessing regional scale predictions of aerosols, marine stratocumulus, and their interactions during VOCALS-REx using WRF-Chem

    SciTech Connect (OSTI)

    Yang Q.; Lee Y.; Gustafson Jr., W. I.; Fast, J. D.; Wang, H.; Easter, R. C.; Morrison, H.; Chapman, E. G.; Spak, S. N.; Mena-Carrasco, M. A.

    2011-12-02

    This study assesses the ability of the recent chemistry version (v3.3) of the Weather Research and Forecasting (WRF-Chem) model to simulate boundary layer structure, aerosols, stratocumulus clouds, and energy fluxes over the Southeast Pacific Ocean. Measurements from the VAMOS Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx) and satellite retrievals (i.e., products from the MODerate resolution Imaging Spectroradiometer (MODIS), Clouds and Earth's Radiant Energy System (CERES), and GOES-10) are used for this assessment. The Morrison double-moment microphysics scheme is newly coupled with interactive aerosols in the model. The 31-day (15 October-16 November 2008) WRF-Chem simulation with aerosol-cloud interactions (AERO hereafter) is also compared to a simulation (MET hereafter) with fixed cloud droplet number concentrations in the microphysics scheme and simplified cloud and aerosol treatments in the radiation scheme. The well-simulated aerosol quantities (aerosol number, mass composition and optical properties), and the inclusion of full aerosol-cloud couplings lead to significant improvements in many features of the simulated stratocumulus clouds: cloud optical properties and microphysical properties such as cloud top effective radius, cloud water path, and cloud optical thickness. In addition to accounting for the aerosol direct and semi-direct effects, these improvements feed back to the simulation of boundary-layer characteristics and energy budgets. Particularly, inclusion of interactive aerosols in AERO strengthens the temperature and humidity gradients within the capping inversion layer and lowers the marine boundary layer (MBL) depth by 130 m from that of the MET simulation. These differences are associated with weaker entrainment and stronger mean subsidence at the top of the MBL in AERO. Mean top-of-atmosphere outgoing shortwave fluxes, surface latent heat, and surface downwelling longwave fluxes are in better agreement with observations

  11. Comparing Price Forecast Accuracy of Natural Gas Models andFutures Markets

    SciTech Connect (OSTI)

    Wong-Parodi, Gabrielle; Dale, Larry; Lekov, Alex

    2005-06-30

    The purpose of this article is to compare the accuracy of forecasts for natural gas prices as reported by the Energy Information Administration's Short-Term Energy Outlook (STEO) and the futures market for the period from 1998 to 2003. The analysis tabulates the existing data and develops a statistical comparison of the error between STEO and U.S. wellhead natural gas prices and between Henry Hub and U.S. wellhead spot prices. The results indicate that, on average, Henry Hub is a better predictor of natural gas prices with an average error of 0.23 and a standard deviation of 1.22 than STEO with an average error of -0.52 and a standard deviation of 1.36. This analysis suggests that as the futures market continues to report longer forward prices (currently out to five years), it may be of interest to economic modelers to compare the accuracy of their models to the futures market. The authors would especially like to thank Doug Hale of the Energy Information Administration for supporting and reviewing this work.

  12. Forecasting municipal solid waste generation in a fast-growing urban region with system dynamics modeling

    SciTech Connect (OSTI)

    Dyson, Brian; Chang, N.-B. . E-mail: nchang@even.tamuk.edu

    2005-07-01

    Both planning and design of municipal solid waste management systems require accurate prediction of solid waste generation. Yet achieving the anticipated prediction accuracy with regard to the generation trends facing many fast-growing regions is quite challenging. The lack of complete historical records of solid waste quantity and quality due to insufficient budget and unavailable management capacity has resulted in a situation that makes the long-term system planning and/or short-term expansion programs intangible. To effectively handle these problems based on limited data samples, a new analytical approach capable of addressing socioeconomic and environmental situations must be developed and applied for fulfilling the prediction analysis of solid waste generation with reasonable accuracy. This study presents a new approach - system dynamics modeling - for the prediction of solid waste generation in a fast-growing urban area based on a set of limited samples. To address the impact on sustainable development city wide, the practical implementation was assessed by a case study in the city of San Antonio, Texas (USA). This area is becoming one of the fastest-growing regions in North America due to the economic impact of the North American Free Trade Agreement (NAFTA). The analysis presents various trends of solid waste generation associated with five different solid waste generation models using a system dynamics simulation tool - Stella[reg]. Research findings clearly indicate that such a new forecasting approach may cover a variety of possible causative models and track inevitable uncertainties down when traditional statistical least-squares regression methods are unable to handle such issues.

  13. 2016 Solar Forecasting Workshop

    Office of Energy Efficiency and Renewable Energy (EERE)

    On August 3, 2016, the SunShot Initiative's systems integration subprogram hosted the Solar Forecasting Workshop to convene experts in the areas of bulk power system operations, distribution system operations, weather and solar irradiance forecasting, and photovoltaic system operation and modeling. The goal was to identify the technical challenges and opportunities in solar forecasting as a capability that can significantly reduce the integration cost of high levels of solar energy into the electricity grid. This will help SunShot to assess current technology and practices in this field and identify the gaps and needs for further research.

  14. Collaborative Research: Towards Advanced Understanding and Predictive Capability of Climate Change in the Arctic Using a High-Resolution Regional Arctic Climate Model

    SciTech Connect (OSTI)

    Cassano, John

    2013-06-30

    The primary research task completed for this project was the development of the Regional Arctic Climate Model (RACM). This involved coupling existing atmosphere, ocean, sea ice, and land models using the National Center for Atmospheric Research (NCAR) Community Climate System Model (CCSM) coupler (CPL7). RACM is based on the Weather Research and Forecasting (WRF) atmospheric model, the Parallel Ocean Program (POP) ocean model, the CICE sea ice model, and the Variable Infiltration Capacity (VIC) land model. A secondary research task for this project was testing and evaluation of WRF for climate-scale simulations on the large pan-Arctic model domain used in RACM. This involved identification of a preferred set of model physical parameterizations for use in our coupled RACM simulations and documenting any atmospheric biases present in RACM.

  15. ARM - Measurement - Cloud optical depth

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TWST : Three Waveband Spectrally-agile Technique Sensor WRF-CHEM : Weather Research and Forecasting (WRF) Model Output Value-Added Products LBTM-MINNIS : Minnis Cloud Products...

  16. A New WRF-Chem Treatment for Studying Regional Scale Impacts of Cloud-Aerosol Interactions in Parameterized Cumuli

    SciTech Connect (OSTI)

    Berg, Larry K.; Shrivastava, ManishKumar B.; Easter, Richard C.; Fast, Jerome D.; Chapman, Elaine G.; Liu, Ying

    2015-01-01

    A new treatment of cloud-aerosol interactions within parameterized shallow and deep convection has been implemented in WRF-Chem that can be used to better understand the aerosol lifecycle over regional to synoptic scales. The modifications to the model to represent cloud-aerosol interactions include treatment of the cloud dropletnumber mixing ratio; key cloud microphysical and macrophysical parameters (including the updraft fractional area, updraft and downdraft mass fluxes, and entrainment) averaged over the population of shallow clouds, or a single deep convective cloud; and vertical transport, activation/resuspension, aqueous chemistry, and wet removal of aerosol and trace gases in warm clouds. Thesechanges have been implemented in both the WRF-Chem chemistry packages as well as the Kain-Fritsch cumulus parameterization that has been modified to better represent shallow convective clouds. Preliminary testing of the modified WRF-Chem has been completed using observations from the Cumulus Humilis Aerosol Processing Study (CHAPS) as well as a high-resolution simulation that does not include parameterized convection. The simulation results are used to investigate the impact of cloud-aerosol interactions on the regional scale transport of black carbon (BC), organic aerosol (OA), and sulfate aerosol. Based on the simulations presented here, changes in the column integrated BC can be as large as -50% when cloud-aerosol interactions are considered (due largely to wet removal), or as large as +35% for sulfate in non-precipitating conditions due to the sulfate production in the parameterized clouds. The modifications to WRF-Chem version 3.2.1 are found to account for changes in the cloud drop number concentration (CDNC) and changes in the chemical composition of cloud-drop residuals in a way that is consistent with observations collected during CHAPS. Efforts are currently underway to port the changes described here to WRF-Chem version 3.5, and it is anticipated that they

  17. Solar Forecasting

    Broader source: Energy.gov [DOE]

    On December 7, 2012, DOE announced $8 million to fund two solar projects that are helping utilities and grid operators better forecast when, where, and how much solar power will be produced at U.S....

  18. ON THE IMPACT OF SUPER RESOLUTION WSR-88D DOPPLER RADAR DATA ASSIMILATION ON HIGH RESOLUTION NUMERICAL MODEL FORECASTS

    SciTech Connect (OSTI)

    Chiswell, S

    2009-01-11

    Assimilation of radar velocity and precipitation fields into high-resolution model simulations can improve precipitation forecasts with decreased 'spin-up' time and improve short-term simulation of boundary layer winds (Benjamin, 2004 & 2007; Xiao, 2008) which is critical to improving plume transport forecasts. Accurate description of wind and turbulence fields is essential to useful atmospheric transport and dispersion results, and any improvement in the accuracy of these fields will make consequence assessment more valuable during both routine operation as well as potential emergency situations. During 2008, the United States National Weather Service (NWS) radars implemented a significant upgrade which increased the real-time level II data resolution to 8 times their previous 'legacy' resolution, from 1 km range gate and 1.0 degree azimuthal resolution to 'super resolution' 250 m range gate and 0.5 degree azimuthal resolution (Fig 1). These radar observations provide reflectivity, velocity and returned power spectra measurements at a range of up to 300 km (460 km for reflectivity) at a frequency of 4-5 minutes and yield up to 13.5 million point observations per level in super-resolution mode. The migration of National Weather Service (NWS) WSR-88D radars to super resolution is expected to improve warning lead times by detecting small scale features sooner with increased reliability; however, current operational mesoscale model domains utilize grid spacing several times larger than the legacy data resolution, and therefore the added resolution of radar data is not fully exploited. The assimilation of super resolution reflectivity and velocity data into high resolution numerical weather model forecasts where grid spacing is comparable to the radar data resolution is investigated here to determine the impact of the improved data resolution on model predictions.

  19. Simulating 3-D Radiative Transfer Effects over the Sierra Nevada Mountains using WRF

    SciTech Connect (OSTI)

    Gu, Yu; Liou, K. N.; Lee, W- L.; Leung, Lai-Yung R.

    2012-10-30

    A surface solar radiation parameterization based on deviations between 3-D and conventional plane-parallel radiative transfer models has been incorporated into the Weather Research and Forecasting (WRF) model to understand the solar insolation over mountain/snow areas and to investigate the impact of the spatial and temporal distribution and variation of surface solar fluxes on land-surface processes. Using the Sierra-Nevada in the western United States as a testbed, we show that mountain effect could produce up to ?50 to + 50Wm?2 deviations in the surface solar fluxes over the mountain areas, resulting in a temperature increase of up to 1 C on the sunny side. Upward surface sensible and latent heat fluxes are modulated accordingly to compensate for the change in surface solar fluxes. Snow water equivalent and surface albedo both show decreases on the sunny side of the mountains, indicating more snowmelt and hence reduced snow albedo associated with more solar insolation due to mountain effect. Soil moisture increases on the sunny side of the mountains due to enhanced snowmelt, while decreases on the shaded side. Substantial differences are found in the morning hours from 8-10 a.m. and in the afternoon around 3-5 p.m., while differences around noon and in the early morning and late afternoon are comparatively smaller. Variation in the surface energy balance can also affect atmospheric processes, such as cloud fields, through the modulation of vertical thermal structure. Negative changes of up to ?40 gm?2 are found in the cloud water path, associated with reductions in the surface insolation over the cloud region. The day-averaged deviations in the surface solar flux are positive over the mountain areas and negative in the valleys, with a range between ?12~12Wm?2. Changes in sensible and latent heat fluxes and surface skin temperature follow the solar insolation pattern. Differences in the domain-averaged diurnal variation over the Sierras show that the mountain

  20. Value of Wind Power Forecasting

    SciTech Connect (OSTI)

    Lew, D.; Milligan, M.; Jordan, G.; Piwko, R.

    2011-04-01

    This study, building on the extensive models developed for the Western Wind and Solar Integration Study (WWSIS), uses these WECC models to evaluate the operating cost impacts of improved day-ahead wind forecasts.

  1. Simulations of Clouds and Sensitivity Study by Weather Research and Forecast Model for Atmospheric Radiation Measurement Case 4

    SciTech Connect (OSTI)

    Wu, J.; Zhang, M.

    2005-03-18

    One of the large errors in general circulation models (GCMs) cloud simulations is from the mid-latitude, synoptic-scale frontal cloud systems. Now, with the availability of the cloud observations from Atmospheric Radiation Measurement (ARM) 2000 cloud Intensive Operational Period (IOP) and other observational datasets, the community is able to document the model biases in comparison with the observations and make progress in development of better cloud schemes in models. Xie et al. (2004) documented the errors in midlatitude frontal cloud simulations for ARM Case 4 by single-column models (SCMs) and cloud resolving models (CRMs). According to them, the errors in the model simulated cloud field might be caused by following reasons: (1) lacking of sub-grid scale variability; (2) lacking of organized mesoscale cyclonic advection of hydrometeors behind a moving cyclone which may play important role to generate the clouds there. Mesoscale model, however, can be used to better under stand these controls on the subgrid variability of clouds. Few studies have focused on applying mesoscale models to the forecasting of cloud properties. Weaver et al. (2004) used a mesoscale model RAMS to study the frontal clouds for ARM Case 4 and documented the dynamical controls on the sub-GCM-grid-scale cloud variability.

  2. A Comparison of Model Short-Range Forecasts and the ARM Microbase Data Fourth Quarter ARM Science Metric

    SciTech Connect (OSTI)

    Hnilo, J.

    2006-09-19

    For the fourth quarter ARM metric we will make use of new liquid water data that has become available, and called the “Microbase” value added product (referred to as OBS, within the text) at three sites: the North Slope of Alaska (NSA), Tropical West Pacific (TWP) and the Southern Great Plains (SGP) and compare these observations to model forecast data. Two time periods will be analyzed March 2000 for the SGP and October 2004 for both TWP and NSA. The Microbase data have been averaged to 35 pressure levels (e.g., from 1000hPa to 100hPa at 25hPa increments) and time averaged to 3hourly data for direct comparison to our model output.

  3. Standardized Software for Wind Load Forecast Error Analyses and Predictions Based on Wavelet-ARIMA Models - Applications at Multiple Geographically Distributed Wind Farms

    SciTech Connect (OSTI)

    Hou, Zhangshuan; Makarov, Yuri V.; Samaan, Nader A.; Etingov, Pavel V.

    2013-03-19

    Given the multi-scale variability and uncertainty of wind generation and forecast errors, it is a natural choice to use time-frequency representation (TFR) as a view of the corresponding time series represented over both time and frequency. Here we use wavelet transform (WT) to expand the signal in terms of wavelet functions which are localized in both time and frequency. Each WT component is more stationary and has consistent auto-correlation pattern. We combined wavelet analyses with time series forecast approaches such as ARIMA, and tested the approach at three different wind farms located far away from each other. The prediction capability is satisfactory -- the day-ahead prediction of errors match the original error values very well, including the patterns. The observations are well located within the predictive intervals. Integrating our wavelet-ARIMA (stochastic) model with the weather forecast model (deterministic) will improve our ability significantly to predict wind power generation and reduce predictive uncertainty.

  4. A WRF Simulation of the Impact of 3-D Radiative Transfer on Surface Hydrology over the Rocky Mountains and Sierra Nevada

    SciTech Connect (OSTI)

    Liou, K. N.; Gu, Y.; Leung, Lai-Yung R.; Lee, W- L.; Fovell, R. G.

    2013-12-03

    We investigate 3-D mountains/snow effects on solar flux distributions and their impact on surface hydrology over the western United States, specifically the Rocky Mountains and Sierra Nevada. The Weather Research and Forecasting (WRF) model, applied at a 30 km grid resolution, is used in conjunction with a 3-D radiative transfer parameterization covering a time period from 1 November 2007 to 31 May 2008, during which abundant snowfall occurred. A comparison of the 3-D WRF simulation with the observed snow water equivalent (SWE) and precipitation from Snowpack Telemetry (SNOTEL) sites shows reasonable agreement in terms of spatial patterns and daily and seasonal variability, although the simulation generally has a positive precipitation bias. We show that 3-D mountain features have a profound impact on the diurnal and monthly variation of surface radiative and heat fluxes, and on the consequent elevation dependence of snowmelt and precipitation distributions. In particular, during the winter months, large deviations (3-DPP, in which PP denotes the plane-parallel approach) of the monthly mean surface solar flux are found in the morning and afternoon hours due to shading effects for elevations below 2.5 km. During spring, positive deviations shift to the earlier morning. Over mountaintops higher than 3 km, positive deviations are found throughout the day, with the largest values of 40-60Wm?2 occurring at noon during the snowmelt season of April to May. The monthly SWE deviations averaged over the entire domain show an increase in lower elevations due to reduced snowmelt, which leads to a reduction in cumulative runoff. Over higher elevation areas, positive SWE deviations are found because of increased solar radiation available at the surface. Overall, this study shows that deviations of SWE due to 3-D radiation effects range from an increase of 18%at the lowest elevation range (1.5-2 km) to a decrease of 8% at the highest elevation range (above 3 km). Since lower

  5. An Improved Model To Forecast Co2 Leakage Rates Along A Wellbore...

    Open Energy Info (EERE)

    geometry of leakage pathways. We have implemented a SCP model described in the literature, which yields an estimate of the depth of the leakage source and the effective...

  6. Hawaii demand-side management resource assessment. Final report, Reference Volume 5: The DOETRAN user`s manual; The DOE-2/DBEDT DSM forecasting model interface

    SciTech Connect (OSTI)

    1995-04-01

    The DOETRAN model is a DSM database manager, developed to act as an intermediary between the whole building energy simulation model, DOE-2, and the DBEDT DSM Forecasting Model. DOETRAN accepts output data from DOE-2 and TRANslates that into the format required by the forecasting model. DOETRAN operates in the Windows environment and was developed using the relational database management software, Paradox 5.0 for Windows. It is not necessary to have any knowledge of Paradox to use DOETRAN. DOETRAN utilizes the powerful database manager capabilities of Paradox through a series of customized user-friendly windows displaying buttons and menus with simple and clear functions. The DOETRAN model performs three basic functions, with an optional fourth. The first function is to configure the user`s computer for DOETRAN. The second function is to import DOE-2 files with energy and loadshape data for each building type. The third main function is to then process the data into the forecasting model format. As DOETRAN processes the DOE-2 data, graphs of the total electric monthly impacts for each DSM measure appear, providing the user with a visual means of inspecting DOE-2 data, as well as following program execution. DOETRAN provides three tables for each building type for the forecasting model, one for electric measures, gas measures, and basecases. The optional fourth function provided by DOETRAN is to view graphs of total electric annual impacts by measure. This last option allows a comparative view of how one measure rates against another. A section in this manual is devoted to each of the four functions mentioned above, as well as computer requirements and exiting DOETRAN.

  7. ARM - Campaign Instrument - wrf-chem

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Derived Quantities and Models, Surface Meteorology Campaigns Carbonaceous Aerosol and Radiation Effects Study (CARES) - Surface Meteorological Sounding Download Data Off...

  8. Forecast Change

    U.S. Energy Information Administration (EIA) Indexed Site

    Forecast Change 2011 2012 2013 2014 2015 2016 from 2015 United States Usage (kWh) 3,444 3,354 3,129 3,037 3,151 3,302 4.8% Price (cents/kWh) 12.06 12.09 12.58 13.04 12.95 12.84 -0.9% Expenditures $415 $405 $393 $396 $408 $424 3.9% New England Usage (kWh) 2,122 2,188 2,173 1,930 1,992 2,082 4.5% Price (cents/kWh) 15.85 15.50 16.04 17.63 18.64 18.37 -1.5% Expenditures $336 $339 $348 $340 $371 $382 3.0% Mid-Atlantic Usage (kWh) 2,531 2,548 2,447 2,234 2,371 2,497 5.3% Price (cents/kWh) 16.39 15.63

  9. Final Report, 2011-2014. Forecasting Carbon Storage as Eastern Forests Age. Joining Experimental and Modeling Approaches at the UMBS AmeriFlux Site

    SciTech Connect (OSTI)

    Curtis, Peter; Bohrer, Gil; Gough, Christopher; Nadelhoffer, Knute

    2015-03-12

    At the University of Michigan Biological Station (UMBS) AmeriFlux sites (US-UMB and US-UMd), long-term C cycling measurements and a novel ecosystem-scale experiment are revealing physical, biological, and ecological mechanisms driving long-term trajectories of C cycling, providing new data for improving modeling forecasts of C storage in eastern forests. Our findings provide support for previously untested hypotheses that stand-level structural and biological properties constrain long-term trajectories of C storage, and that remotely sensed canopy structural parameters can substantially improve model forecasts of forest C storage. Through the Forest Accelerated Succession ExperimenT (FASET), we are directly testing the hypothesis that forest C storage will increase due to increasing structural and biological complexity of the emerging tree communities. Support from this project, 2011-2014, enabled us to incorporate novel physical and ecological mechanisms into ecological, meteorological, and hydrological models to improve forecasts of future forest C storage in response to disturbance, succession, and current and long-term climate variation

  10. Precipitation characteristics of CAM5 physics at mesoscale resolution...

    Office of Scientific and Technical Information (OSTI)

    has recently been implemented in the Weather Research and Forecasting (WRF) model to ... The ETS is a contingency table based met- ric comparing ''the number of correct forecasts ...

  11. DOE Taking Wind Forecasting to New Heights | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Taking Wind Forecasting to New Heights DOE Taking Wind Forecasting to New Heights May 18, 2015 - 3:24pm Addthis A 2013 study conducted for the U.S. Department of Energy (DOE) by the National Oceanic and Atmospheric Administration (NOAA), AWS Truepower, and WindLogics in the Great Plains and Western Texas, demonstrated that wind power forecasts can be improved substantially using data collected from tall towers, remote sensors, and other devices, and incorporated into improved forecasting models

  12. Intermediate future forecasting system

    SciTech Connect (OSTI)

    Gass, S.I.; Murphy, F.H.; Shaw, S.H.

    1983-12-01

    The purposes of the Symposium on the Department of Energy's Intermediate Future Forecasting System (IFFS) were: (1) to present to the energy community details of DOE's new energy market model IFFS; and (2) to have an open forum in which IFFS and its major elements could be reviewed and critiqued by external experts. DOE speakers discussed the total system, its software design, and the modeling aspects of oil and gas supply, refineries, electric utilities, coal, and the energy economy. Invited experts critiqued each of these topics and offered suggestions for modifications and improvement. This volume documents the proceedings (papers and discussion) of the Symposium. Separate abstracts have been prepared for each presentation for inclusion in the Energy Data Base.

  13. Flood Forecasting in River System Using ANFIS

    SciTech Connect (OSTI)

    Ullah, Nazrin; Choudhury, P.

    2010-10-26

    The aim of the present study is to investigate applicability of artificial intelligence techniques such as ANFIS (Adaptive Neuro-Fuzzy Inference System) in forecasting flood flow in a river system. The proposed technique combines the learning ability of neural network with the transparent linguistic representation of fuzzy system. The technique is applied to forecast discharge at a downstream station using flow information at various upstream stations. A total of three years data has been selected for the implementation of this model. ANFIS models with various input structures and membership functions are constructed, trained and tested to evaluate efficiency of the models. Statistical indices such as Root Mean Square Error (RMSE), Correlation Coefficient (CORR) and Coefficient of Efficiency (CE) are used to evaluate performance of the ANFIS models in forecasting river flood. The values of the indices show that ANFIS model can accurately and reliably be used to forecast flood in a river system.

  14. probabilistic energy production forecasts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    energy production forecasts - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary ...

  15. Wind Power Forecasting Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Operations Call 2012 Retrospective Reports 2012 Retrospective Reports 2011 Smart Grid Wind Integration Wind Integration Initiatives Wind Power Forecasting Wind Projects Email...

  16. Forecasting Water Quality & Biodiversity

    Broader source: Energy.gov (indexed) [DOE]

    Forecasting Water Quality & Biodiversity March 25, 2015 Cross-cutting Sustainability ... that measure feedstock production, water quality, water quantity, and biodiversity. ...

  17. Wind Power Forecasting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    data Presentations BPA Super Forecast Methodology Related Links Near Real-time Wind Animation Meteorological Data Customer Supplied Generation Imbalance Dynamic Transfer Limits...

  18. Agent-based model forecasts aging of the population of people who inject drugs in metropolitan Chicago and changing prevalence of hepatitis C infections

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gutfraind, Alexander; Boodram, Basmattee; Prachand, Nikhil; Hailegiorgis, Atesmachew; Dahari, Harel; Major, Marian E.; Kaderali, Lars

    2015-09-30

    People who inject drugs (PWID) are at high risk for blood-borne pathogens transmitted during the sharing of contaminated injection equipment, particularly hepatitis C virus (HCV). HCV prevalence is influenced by a complex interplay of drug-use behaviors, social networks, and geography, as well as the availability of interventions, such as needle exchange programs. To adequately address this complexity in HCV epidemic forecasting, we have developed a computational model, the Agent-based Pathogen Kinetics model (APK). APK simulates the PWID population in metropolitan Chicago, including the social interactions that result in HCV infection. We used multiple empirical data sources on Chicago PWID tomore » build a spatial distribution of an in silico PWID population and modeled networks among the PWID by considering the geography of the city and its suburbs. APK was validated against 2012 empirical data (the latest available) and shown to agree with network and epidemiological surveys to within 1%. For the period 2010–2020, APK forecasts a decline in HCV prevalence of 0.8% per year from 44(±2)% to 36(±5)%, although some sub-populations would continue to have relatively high prevalence, including Non-Hispanic Blacks, 48(±5)%. The rate of decline will be lowest in Non-Hispanic Whites and we find, in a reversal of historical trends, that incidence among non-Hispanic Whites would exceed incidence among Non-Hispanic Blacks (0.66 per 100 per years vs 0.17 per 100 person years). APK also forecasts an increase in PWID mean age from 35(±1) to 40(±2) with a corresponding increase from 59(±2)% to 80(±6)% in the proportion of the population >30 years old. Our research highlight the importance of analyzing sub-populations in disease predictions, the utility of computer simulation for analyzing demographic and health trends among PWID and serve as a tool for guiding intervention and prevention strategies in Chicago, and other major cities.« less

  19. Agent-based model forecasts aging of the population of people who inject drugs in metropolitan Chicago and changing prevalence of hepatitis C infections

    SciTech Connect (OSTI)

    Gutfraind, Alexander; Boodram, Basmattee; Prachand, Nikhil; Hailegiorgis, Atesmachew; Dahari, Harel; Major, Marian E.; Kaderali, Lars

    2015-09-30

    People who inject drugs (PWID) are at high risk for blood-borne pathogens transmitted during the sharing of contaminated injection equipment, particularly hepatitis C virus (HCV). HCV prevalence is influenced by a complex interplay of drug-use behaviors, social networks, and geography, as well as the availability of interventions, such as needle exchange programs. To adequately address this complexity in HCV epidemic forecasting, we have developed a computational model, the Agent-based Pathogen Kinetics model (APK). APK simulates the PWID population in metropolitan Chicago, including the social interactions that result in HCV infection. We used multiple empirical data sources on Chicago PWID to build a spatial distribution of an in silico PWID population and modeled networks among the PWID by considering the geography of the city and its suburbs. APK was validated against 2012 empirical data (the latest available) and shown to agree with network and epidemiological surveys to within 1%. For the period 2010–2020, APK forecasts a decline in HCV prevalence of 0.8% per year from 44(±2)% to 36(±5)%, although some sub-populations would continue to have relatively high prevalence, including Non-Hispanic Blacks, 48(±5)%. The rate of decline will be lowest in Non-Hispanic Whites and we find, in a reversal of historical trends, that incidence among non-Hispanic Whites would exceed incidence among Non-Hispanic Blacks (0.66 per 100 per years vs 0.17 per 100 person years). APK also forecasts an increase in PWID mean age from 35(±1) to 40(±2) with a corresponding increase from 59(±2)% to 80(±6)% in the proportion of the population >30 years old. Our research highlight the importance of analyzing sub-populations in disease predictions, the utility of computer simulation for analyzing demographic and health trends among PWID and serve as a tool for guiding intervention and prevention strategies in Chicago, and other major cities.

  20. An evaluation of the variable-resolution CESM for modeling California's climate: Evaluation of VR-CESM for Modeling California's Climate

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Huang, Xingying; Rhoades, Alan M.; Ullrich, Paul A.; Zarzycki, Colin M.

    2016-03-01

    In this paper, the recently developed variable-resolution option within the Community Earth System Model (VR-CESM) is assessed for long-term regional climate modeling of California at 0.25° (~ 28 km) and 0.125° (~ 14 km) horizontal resolutions. The mean climatology of near-surface temperature and precipitation is analyzed and contrasted with reanalysis, gridded observational data sets, and a traditional regional climate model (RCM)—the Weather Research and Forecasting (WRF) model. Statistical metrics for model evaluation and tests for differential significance have been extensively applied. VR-CESM tended to produce a warmer summer (by about 1–3°C) and overestimated overall winter precipitation (about 25%–35%) compared tomore » reference data sets when sea surface temperatures were prescribed. Increasing resolution from 0.25° to 0.125° did not produce a statistically significant improvement in the model results. By comparison, the analogous WRF climatology (constrained laterally and at the sea surface by ERA-Interim reanalysis) was ~1–3°C colder than the reference data sets, underestimated precipitation by ~20%–30% at 27 km resolution, and overestimated precipitation by ~ 65–85% at 9 km. Overall, VR-CESM produced comparable statistical biases to WRF in key climatological quantities. Moreover, this assessment highlights the value of variable-resolution global climate models (VRGCMs) in capturing fine-scale atmospheric processes, projecting future regional climate, and addressing the computational expense of uniform-resolution global climate models.« less

  1. Effects of soot-induced snow albedo change on snowpack and hydrological cycle in western United States based on Weather Research and Forecasting chemistry and regional climate simulations

    SciTech Connect (OSTI)

    Qian, Yun; Gustafson, William I.; Leung, Lai-Yung R.; Ghan, Steven J.

    2009-02-14

    Radiative forcing induced by soot on snow is a major anthropogenic forcing affecting the global climate. However, it is uncertain how the soot-induced snow albedo perturbation affects regional snowpack and the hydrological cycle. In this study we simulated the deposition of soot aerosol on snow and investigated the resulting impact on snowpack and the surface water budget in the western United States. A yearlong simulation was performed using the chemistry version of the Weather Research and Forecasting model (WRF-Chem) to determine an annual budget of soot deposition, followed by two regional climate simulations using WRF in meteorology-only mode, with and without the soot-induced snow albedo perturbations. The chemistry simulation shows large spatial variability in soot deposition that reflects the localized emissions and the influence of the complex terrain. The soot-induced snow albedo perturbations increase the net solar radiation flux at the surface during late winter to early spring, increase the surface air temperature, reduce snow water equivalent amount, and lead to reduced snow accumulation and less spring snowmelt. These effects are stronger over the central Rockies and southern Alberta, where soot deposition and snowpack overlap the most. The indirect forcing of soot accelerates snowmelt and alters stream flows, including a trend toward earlier melt dates in the western United States. The soot-induced albedo reduction initiates a positive feedback process whereby dirty snow absorbs more solar radiation, heating the surface and warming the air. This warming causes reduced snow depth and fraction, which further reduces the regional surface albedo for the snow covered regions. Our simulations indicate that the change of maximum snow albedo induced by soot on snow contributes to 60% of the net albedo reduction over the central Rockies. Snowpack reduction accounts for the additional 40%.

  2. Ensemble Solar Forecasting Statistical Quantification and Sensitivity Analysis: Preprint

    SciTech Connect (OSTI)

    Cheung, WanYin; Zhang, Jie; Florita, Anthony; Hodge, Bri-Mathias; Lu, Siyuan; Hamann, Hendrik F.; Sun, Qian; Lehman, Brad

    2015-12-08

    Uncertainties associated with solar forecasts present challenges to maintain grid reliability, especially at high solar penetrations. This study aims to quantify the errors associated with the day-ahead solar forecast parameters and the theoretical solar power output for a 51-kW solar power plant in a utility area in the state of Vermont, U.S. Forecasts were generated by three numerical weather prediction (NWP) models, including the Rapid Refresh, the High Resolution Rapid Refresh, and the North American Model, and a machine-learning ensemble model. A photovoltaic (PV) performance model was adopted to calculate theoretical solar power generation using the forecast parameters (e.g., irradiance, cell temperature, and wind speed). Errors of the power outputs were quantified using statistical moments and a suite of metrics, such as the normalized root mean squared error (NRMSE). In addition, the PV model's sensitivity to different forecast parameters was quantified and analyzed. Results showed that the ensemble model yielded forecasts in all parameters with the smallest NRMSE. The NRMSE of solar irradiance forecasts of the ensemble NWP model was reduced by 28.10% compared to the best of the three NWP models. Further, the sensitivity analysis indicated that the errors of the forecasted cell temperature attributed only approximately 0.12% to the NRMSE of the power output as opposed to 7.44% from the forecasted solar irradiance.

  3. Baseline and target values for regional and point PV power forecasts: Toward improved solar forecasting

    SciTech Connect (OSTI)

    Zhang, Jie; Hodge, Bri -Mathias; Lu, Siyuan; Hamann, Hendrik F.; Lehman, Brad; Simmons, Joseph; Campos, Edwin; Banunarayanan, Venkat; Black, Jon; Tedesco, John

    2015-11-10

    Accurate solar photovoltaic (PV) power forecasting allows utilities to reliably utilize solar resources on their systems. However, to truly measure the improvements that any new solar forecasting methods provide, it is important to develop a methodology for determining baseline and target values for the accuracy of solar forecasting at different spatial and temporal scales. This paper aims at developing a framework to derive baseline and target values for a suite of generally applicable, value-based, and custom-designed solar forecasting metrics. The work was informed by close collaboration with utility and independent system operator partners. The baseline values are established based on state-of-the-art numerical weather prediction models and persistence models in combination with a radiative transfer model. The target values are determined based on the reduction in the amount of reserves that must be held to accommodate the uncertainty of PV power output. The proposed reserve-based methodology is a reasonable and practical approach that can be used to assess the economic benefits gained from improvements in accuracy of solar forecasting. Lastly, the financial baseline and targets can be translated back to forecasting accuracy metrics and requirements, which will guide research on solar forecasting improvements toward the areas that are most beneficial to power systems operations.

  4. Baseline and target values for regional and point PV power forecasts: Toward improved solar forecasting

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Jie; Hodge, Bri -Mathias; Lu, Siyuan; Hamann, Hendrik F.; Lehman, Brad; Simmons, Joseph; Campos, Edwin; Banunarayanan, Venkat; Black, Jon; Tedesco, John

    2015-11-10

    Accurate solar photovoltaic (PV) power forecasting allows utilities to reliably utilize solar resources on their systems. However, to truly measure the improvements that any new solar forecasting methods provide, it is important to develop a methodology for determining baseline and target values for the accuracy of solar forecasting at different spatial and temporal scales. This paper aims at developing a framework to derive baseline and target values for a suite of generally applicable, value-based, and custom-designed solar forecasting metrics. The work was informed by close collaboration with utility and independent system operator partners. The baseline values are established based onmore » state-of-the-art numerical weather prediction models and persistence models in combination with a radiative transfer model. The target values are determined based on the reduction in the amount of reserves that must be held to accommodate the uncertainty of PV power output. The proposed reserve-based methodology is a reasonable and practical approach that can be used to assess the economic benefits gained from improvements in accuracy of solar forecasting. Lastly, the financial baseline and targets can be translated back to forecasting accuracy metrics and requirements, which will guide research on solar forecasting improvements toward the areas that are most beneficial to power systems operations.« less

  5. Today's Forecast: Improved Wind Predictions

    Broader source: Energy.gov [DOE]

    Accurate weather forecasts are critical for making energy sources -- including wind and solar -- dependable and predictable.

  6. Solar Forecast Improvement Project

    Office of Energy Efficiency and Renewable Energy (EERE)

    For the Solar Forecast Improvement Project (SFIP), the Earth System Research Laboratory (ESRL) is partnering with the National Center for Atmospheric Research (NCAR) and IBM to develop more...

  7. Acquisition Forecast | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Acquisition Forecast Acquisition Forecast Acquisition Forecast It is the policy of the U.S. Department of Energy (DOE) to provide timely information to the public regarding DOE's forecast of future prime contracting opportunities and subcontracting opportunities which are available via the Department's major site and facilities management contractors. This forecast has been expanded to also provide timely status information for ongoing prime contracting actions that are valued in excess of the

  8. WRF-Chem Simulations of Aerosols and Anthropogenic Aerosol Radiative Forcing in East Asia

    SciTech Connect (OSTI)

    Gao, Yi; Zhao, Chun; Liu, Xiaohong; Zhang, Meigen; Leung, Lai-Yung R.

    2014-08-01

    This study aims to provide a first comprehensive evaluation of WRF-Chem for modeling aerosols and anthropogenic aerosol radiative forcing (RF) over East Asia. Several numerical experiments were conducted from November 2007 to December 2008. Comparison between model results and observations shows that the model can generally reproduce the observed spatial distributions of aerosol concentration, aerosol optical depth (AOD) and single scattering albedo (SSA) from measurements at different sites, including the relatively higher aerosol concentration and AOD over East China and the relatively lower AOD over Southeast Asia, Korean, and Japan. The model also depicts the seasonal variation and transport of pollutions over East Asia. Particulate matter of 10 um or less in the aerodynamic diameter (PM10), black carbon (BC), sulfate (SO42-), nitrate (NO3-) and ammonium (NH4+) concentrations are higher in spring than other seasons in Japan due to the pollutant transport from polluted area of East Asia. AOD is high over Southwest and Central China in winter, spring and autumn and over North China in summer while is low over South China in summer due to monsoon precipitation. SSA is lowest in winter and highest in summer. The model also captures the dust events at the Zhangye site in the semi-arid region of China. Anthropogenic aerosol RF is estimated to range from -5 to -20 W m-2 over land and -20 to -40 W m-2 over ocean at the top of atmosphere (TOA), 5 to 30 W m-2 in the atmosphere (ATM) and -15 to -40 W m-2 at the bottom (BOT). The warming effect of anthropogenic aerosol in ATM results from BC aerosol while the negative aerosol RF at TOA is caused by scattering aerosols such as SO4 2-, NO3 - and NH4+. Positive BC RF at TOA compensates 40~50% of the TOA cooling associated with anthropogenic aerosol.

  9. ASSIMILATION OF DOPPLER RADAR DATA INTO NUMERICAL WEATHER MODELS

    SciTech Connect (OSTI)

    Chiswell, S.; Buckley, R.

    2009-01-15

    During the year 2008, the United States National Weather Service (NWS) completed an eight fold increase in sampling capability for weather radars to 250 m resolution. This increase is expected to improve warning lead times by detecting small scale features sooner with increased reliability; however, current NWS operational model domains utilize grid spacing an order of magnitude larger than the radar data resolution, and therefore the added resolution of radar data is not fully exploited. The assimilation of radar reflectivity and velocity data into high resolution numerical weather model forecasts where grid spacing is comparable to the radar data resolution was investigated under a Laboratory Directed Research and Development (LDRD) 'quick hit' grant to determine the impact of improved data resolution on model predictions with specific initial proof of concept application to daily Savannah River Site operations and emergency response. Development of software to process NWS radar reflectivity and radial velocity data was undertaken for assimilation of observations into numerical models. Data values within the radar data volume undergo automated quality control (QC) analysis routines developed in support of this project to eliminate empty/missing data points, decrease anomalous propagation values, and determine error thresholds by utilizing the calculated variances among data values. The Weather Research and Forecasting model (WRF) three dimensional variational data assimilation package (WRF-3DVAR) was used to incorporate the QC'ed radar data into input and boundary conditions. The lack of observational data in the vicinity of SRS available to NWS operational models signifies an important data void where radar observations can provide significant input. These observations greatly enhance the knowledge of storm structures and the environmental conditions which influence their development. As the increase in computational power and availability has made higher

  10. Diagnosis of the Marine Low Cloud Simulation in the NCAR Community Earth System Model (CESM) and the NCEP Global Forecast System (GFS)-Modular Ocean Model v4 (MOM4) coupled model

    SciTech Connect (OSTI)

    Xiao, Heng; Mechoso, C. R.; Sun, Rui; Han, J.; Pan, H. L.; Park, S.; Hannay, Cecile; Bretherton, Christopher S.; Teixeira, J.

    2014-07-25

    We present a diagnostic analysis of the marine low cloud climatology simulated by two state-of-the-art coupled atmosphere-ocean models: the NCAR Community Earth System Model (CESM) and the NCEP Global Forecasting System (GFS). In both models, the shallow convection and boundary layer turbulence parameterizations have been recently updated: both models now use a mass-flux scheme for the parameterization of shallow convection, and a turbulence parameterization capable of handling Stratocumulus (Sc)-topped Planetary Boundary Layers (PBLs). For shallow convection, both models employ a convective trigger function based on the concept of convective inhibition and both include explicit convective overshooting/penetrative entrainment formulation. For Sc-topped PBL, both models treat explicitly turbulence mixing and cloud-top entrainment driven by cloud-top radiative cooling. Our focus is on the climatological transition from Sc to shallow Cumulus (Cu)-topped PBL in the subtropical eastern oceans. We show that in the CESM the coastal Sc-topped PBLs in the subtropical Eastern Pacific are well-simulated but the climatological transition from Sc to shallow Cu is too abrupt and happens too close to the coast. By contrast, in the GFS coupled simulation the coastal Sc amount and PBL depth are severely underestimated while the transition from Sc to shallow Cu is delayed and offshore Sc cover is too extensive in the subtropical Eastern Pacific. We discuss the possible connections between such differences in the simulations and differences in the parameterizations of shallow convection and boundary layer turbulence in the two models.

  11. The Wind Forecast Improvement Project (WFIP). A Public-Private Partnership Addressing Wind Energy Forecast Needs

    SciTech Connect (OSTI)

    Wilczak, James M.; Finley, Cathy; Freedman, Jeff; Cline, Joel; Bianco, L.; Olson, J.; Djalaova, I.; Sheridan, L.; Ahlstrom, M.; Manobianco, J.; Zack, J.; Carley, J.; Benjamin, S.; Coulter, R. L.; Berg, Larry K.; Mirocha, Jeff D.; Clawson, K.; Natenberg, E.; Marquis, M.

    2015-10-30

    The Wind Forecast Improvement Project (WFIP) is a public-private research program, the goals of which are to improve the accuracy of short-term (0-6 hr) wind power forecasts for the wind energy industry and then to quantify the economic savings that accrue from more efficient integration of wind energy into the electrical grid. WFIP was sponsored by the U.S. Department of Energy (DOE), with partners that include the National Oceanic and Atmospheric Administration (NOAA), private forecasting companies (WindLogics and AWS Truepower), DOE national laboratories, grid operators, and universities. WFIP employed two avenues for improving wind power forecasts: first, through the collection of special observations to be assimilated into forecast models to improve model initial conditions; and second, by upgrading NWP forecast models and ensembles. The new observations were collected during concurrent year-long field campaigns in two high wind energy resource areas of the U.S. (the upper Great Plains, and Texas), and included 12 wind profiling radars, 12 sodars, 184 instrumented tall towers and over 400 nacelle anemometers (provided by private industry), lidar, and several surface flux stations. Results demonstrate that a substantial improvement of up to 14% relative reduction in power root mean square error (RMSE) was achieved from the combination of improved NOAA numerical weather prediction (NWP) models and assimilation of the new observations. Data denial experiments run over select periods of time demonstrate that up to a 6% relative improvement came from the new observations. The use of ensemble forecasts produced even larger forecast improvements. Based on the success of WFIP, DOE is planning follow-on field programs.

  12. Predicting Aerosol Direct Radiative Forcing over Mexico using...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Use Weather Research and Forecasting (WRF) model as the foundation of computational framework * Fully-coupled aerosol-radiation-cloud-chemistry interactions * Handles multiple ...

  13. Search for: All records | DOE PAGES

    Office of Scientific and Technical Information (OSTI)

    fields in their large-eddy simulations (LESs) of marine stratocumulus using the Weather Research and Forecasting (WRF) model exhibit a strong sensitivity to time stepping choices. ...

  14. Simulation Toolkit Promises Better Wind Predictions, Increased...

    Office of Environmental Management (EM)

    higher-than-expected downtimes and maintenance costs all undermine project profitability. ... The toolkit is being implemented within the Weather Research and Forecasting (WRF) model, ...

  15. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Analysis (AMMA) project in 2006 and the Weather Research Forecast-Chemistry (WRF-CHEM) model to investigate the effects of dust on monsoon circulation and precipitation. ...

  16. Issues in midterm analysis and forecasting, 1996

    SciTech Connect (OSTI)

    1996-08-01

    This document consists of papers which cover topics in analysis and modeling that underlie the Annual Energy Outlook 1996. Topics include: The Potential Impact of Technological Progress on U.S. Energy Markets; The Outlook for U.S. Import Dependence; Fuel Economy, Vehicle Choice, and Changing Demographics, and Annual Energy Outlook Forecast Evaluation.

  17. Baseline and Target Values for PV Forecasts: Toward Improved Solar Power Forecasting: Preprint

    SciTech Connect (OSTI)

    Zhang, Jie; Hodge, Bri-Mathias; Lu, Siyuan; Hamann, Hendrik F.; Lehman, Brad; Simmons, Joseph; Campos, Edwin; Banunarayanan, Venkat

    2015-08-05

    Accurate solar power forecasting allows utilities to get the most out of the solar resources on their systems. To truly measure the improvements that any new solar forecasting methods can provide, it is important to first develop (or determine) baseline and target solar forecasting at different spatial and temporal scales. This paper aims to develop baseline and target values for solar forecasting metrics. These were informed by close collaboration with utility and independent system operator partners. The baseline values are established based on state-of-the-art numerical weather prediction models and persistence models. The target values are determined based on the reduction in the amount of reserves that must be held to accommodate the uncertainty of solar power output. forecasting metrics. These were informed by close collaboration with utility and independent system operator partners. The baseline values are established based on state-of-the-art numerical weather prediction models and persistence models. The target values are determined based on the reduction in the amount of reserves that must be held to accommodate the uncertainty of solar power output.

  18. U.S. Regional Demand Forecasts Using NEMS and GIS

    SciTech Connect (OSTI)

    Cohen, Jesse A.; Edwards, Jennifer L.; Marnay, Chris

    2005-07-01

    The National Energy Modeling System (NEMS) is a multi-sector, integrated model of the U.S. energy system put out by the Department of Energy's Energy Information Administration. NEMS is used to produce the annual 20-year forecast of U.S. energy use aggregated to the nine-region census division level. The research objective was to disaggregate this regional energy forecast to the county level for select forecast years, for use in a more detailed and accurate regional analysis of energy usage across the U.S. The process of disaggregation using a geographic information system (GIS) was researched and a model was created utilizing available population forecasts and climate zone data. The model's primary purpose was to generate an energy demand forecast with greater spatial resolution than what is currently produced by NEMS, and to produce a flexible model that can be used repeatedly as an add-on to NEMS in which detailed analysis can be executed exogenously with results fed back into the NEMS data flow. The methods developed were then applied to the study data to obtain residential and commercial electricity demand forecasts. The model was subjected to comparative and statistical testing to assess predictive accuracy. Forecasts using this model were robust and accurate in slow-growing, temperate regions such as the Midwest and Mountain regions. Interestingly, however, the model performed with less accuracy in the Pacific and Northwest regions of the country where population growth was more active. In the future more refined methods will be necessary to improve the accuracy of these forecasts. The disaggregation method was written into a flexible tool within the ArcGIS environment which enables the user to output the results in five year intervals over the period 2000-2025. In addition, the outputs of this tool were used to develop a time-series simulation showing the temporal changes in electricity forecasts in terms of absolute, per capita, and density of demand.

  19. Final Report- Integration of Behind-the-Meter PV Fleet Forecasts into Utility Grid System Operations

    Office of Energy Efficiency and Renewable Energy (EERE)

    Four major research objectives were completed over the course of this study. Three of the objectives were to evaluate three, new, state-of-the-art solar irradiance forecasting models. The fourth objective was to improve the California independent system operator’s load forecasts by integrating behind-the-meter photovoltaic forecasts.

  20. Issues in midterm analysis and forecasting 1998

    SciTech Connect (OSTI)

    1998-07-01

    Issues in Midterm Analysis and Forecasting 1998 (Issues) presents a series of nine papers covering topics in analysis and modeling that underlie the Annual Energy Outlook 1998 (AEO98), as well as other significant issues in midterm energy markets. AEO98, DOE/EIA-0383(98), published in December 1997, presents national forecasts of energy production, demand, imports, and prices through the year 2020 for five cases -- a reference case and four additional cases that assume higher and lower economic growth and higher and lower world oil prices than in the reference case. The forecasts were prepared by the Energy Information Administration (EIA), using EIA`s National Energy Modeling System (NEMS). The papers included in Issues describe underlying analyses for the projections in AEO98 and the forthcoming Annual Energy Outlook 1999 and for other products of EIA`s Office of Integrated Analysis and Forecasting. Their purpose is to provide public access to analytical work done in preparation for the midterm projections and other unpublished analyses. Specific topics were chosen for their relevance to current energy issues or to highlight modeling activities in NEMS. 59 figs., 44 tabs.

  1. Science and Engineering of an Operational Tsunami Forecasting System

    ScienceCinema (OSTI)

    Gonzalez, Frank

    2010-01-08

    After a review of tsunami statistics and the destruction caused by tsunamis, a means of forecasting tsunamis is discussed as part of an overall program of reducing fatalities through hazard assessment, education, training, mitigation, and a tsunami warning system. The forecast is accomplished via a concept called Deep Ocean Assessment and Reporting of Tsunamis (DART). Small changes of pressure at the sea floor are measured and relayed to warning centers. Under development is an international modeling network to transfer, maintain, and improve tsunami forecast models.

  2. Microsoft PowerPoint - wrf_les_2007_zhu.ppt [Compatibility Mode]

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LES Testbed Prototype: ARM LES Testbed Prototype: Multi-Scale WRF Simulations of Boundary Layer Clouds Ping Zhu Florida International University Pavlos Kollias Brookhaven National Laboratory Bruce Albrecht University of Miami What is ARM-LES-Testbed ? It is structured to provide a framework for effectively organizing and using the extensive data generated by the ARM radars and other ARM observing systems for boundary layer cloud studies and for evaluating high resolution simulations. GCM/ PAR

  3. Forecasting Crude Oil Spot Price Using OECD Petroleum Inventory Levels

    Reports and Publications (EIA)

    2003-01-01

    This paper presents a short-term monthly forecasting model of West Texas Intermediate crude oil spot price using Organization for Economic Cooperation and Development (OECD) petroleum inventory levels.

  4. DOE Publishes New Forecast of Energy Savings from LED Lighting

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy has just published the latest edition of its biannual report, Energy Savings Forecast of Solid-State Lighting in General Illumination Applications, which models the...

  5. Energy Forecasting Framework and Emissions Consensus Tool (EFFECT...

    Open Energy Info (EERE)

    Tool (EFFECT) EFFECT is an open, Excel-based modeling tool used to forecast greenhouse gas emissions from a range of development scenarios at the regional and national levels....

  6. Baseline and Target Values for PV Forecasts: Toward Improved...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Baseline and Target Values for PV Forecasts: Toward Improved Solar Power Forecasting ... Baseline and Target Values for PV Forecasts: Toward Improved Solar Power Forecasting Jie ...

  7. Using Wikipedia to forecast diseases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Using Wikipedia to forecast diseases Using Wikipedia to forecast diseases Scientists can now monitor and forecast diseases around the globe more effectively by analyzing views of Wikipedia articles. November 13, 2014 Del Valle and her team observe findings from their research on disease patterns from analyzing Wikipedia articles. Del Valle and her team observe findings from their research on disease patterns from analyzing Wikipedia articles. Contact Nancy Ambrosiano Communications Office (505)

  8. High-Resolution Modeling to Assess Tropical Cyclone Activity in Future Climate Regimes

    SciTech Connect (OSTI)

    Lackmann, Gary

    2013-06-10

    Applied research is proposed with the following objectives: (i) to determine the most likely level of tropical cyclone intensity and frequency in future climate regimes, (ii) to provide a quantitative measure of uncertainty in these predictions, and (iii) to improve understanding of the linkage between tropical cyclones and the planetary-scale circulation. Current mesoscale weather forecasting models, such as the Weather Research and Forecasting (WRF) model, are capable of simulating the full intensity of tropical cyclones (TC) with realistic structures. However, in order to accurately represent both the primary and secondary circulations in these systems, model simulations must be configured with sufficient resolution to explicitly represent convection (omitting the convective parameterization scheme). Most previous numerical studies of TC activity at seasonal and longer time scales have not utilized such explicit convection (EC) model runs. Here, we propose to employ the moving nest capability of WRF to optimally represent TC activity on a seasonal scale using a downscaling approach. The statistical results of a suite of these high-resolution TC simulations will yield a realistic representation of TC intensity on a seasonal basis, while at the same time allowing analysis of the feedback that TCs exert on the larger-scale climate system. Experiments will be driven with analyzed lateral boundary conditions for several recent Atlantic seasons, spanning a range of activity levels and TC track patterns. Results of the ensemble of WRF simulations will then be compared to analyzed TC data in order to determine the extent to which this modeling setup can reproduce recent levels of TC activity. Next, the boundary conditions (sea-surface temperature, tropopause height, and thermal/moisture profiles) from the recent seasons will be altered in a manner consistent with various future GCM/RCM scenarios, but that preserves the large-scale shear and incipient disturbance

  9. Forecast Energy | Open Energy Information

    Open Energy Info (EERE)

    Zip: 94965 Region: Bay Area Sector: Services Product: Intelligent Monitoring and Forecasting Services Year Founded: 2010 Website: www.forecastenergy.net Coordinates:...

  10. UWIG Forecasting Workshop -- Albany (Presentation)

    SciTech Connect (OSTI)

    Lew, D.

    2011-04-01

    This presentation describes the importance of good forecasting for variable generation, the different approaches used by industry, and the importance of validated high-quality data.

  11. The forecast calls for flu

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science on the Hill: The forecast calls for flu Using mathematics, computer programs, ... We're getting close. Using mathematics, computer programs, statistics and information ...

  12. The Wind Forecast Improvement Project (WFIP). A Public/Private Partnership for Improving Short Term Wind Energy Forecasts and Quantifying the Benefits of Utility Operations -- the Northern Study Area

    SciTech Connect (OSTI)

    Finley, Cathy

    2014-04-30

    This report contains the results from research aimed at improving short-range (0-6 hour) hub-height wind forecasts in the NOAA weather forecast models through additional data assimilation and model physics improvements for use in wind energy forecasting. Additional meteorological observing platforms including wind profilers, sodars, and surface stations were deployed for this study by NOAA and DOE, and additional meteorological data at or near wind turbine hub height were provided by South Dakota State University and WindLogics/NextEra Energy Resources over a large geographical area in the U.S. Northern Plains for assimilation into NOAA research weather forecast models. The resulting improvements in wind energy forecasts based on the research weather forecast models (with the additional data assimilation and model physics improvements) were examined in many different ways and compared with wind energy forecasts based on the current operational weather forecast models to quantify the forecast improvements important to power grid system operators and wind plant owners/operators participating in energy markets. Two operational weather forecast models (OP_RUC, OP_RAP) and two research weather forecast models (ESRL_RAP, HRRR) were used as the base wind forecasts for generating several different wind power forecasts for the NextEra Energy wind plants in the study area. Power forecasts were generated from the wind forecasts in a variety of ways, from very simple to quite sophisticated, as they might be used by a wide range of both general users and commercial wind energy forecast vendors. The error characteristics of each of these types of forecasts were examined and quantified using bulk error statistics for both the local wind plant and the system aggregate forecasts. The wind power forecast accuracy was also evaluated separately for high-impact wind energy ramp events. The overall bulk error statistics calculated over the first six hours of the forecasts at both the

  13. Top-down estimate of methane emissions in California using a mesoscale inverse modeling technique: The South Coast Air Basin

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cui, Yu Yan; Brioude, Jerome; McKeen, Stuart A.; Angevine, Wayne M.; Kim, Si -Wan; Frost, Gregory J.; Ahmadov, Ravan; Peischl, Jeff; Bousserez, Nicolas; Liu, Zhen; et al

    2015-07-28

    Methane (CH4) is the primary component of natural gas and has a larger global warming potential than CO2. Some recent top-down studies based on observations showed CH4 emissions in California's South Coast Air Basin (SoCAB) were greater than those expected from population-apportioned bottom-up state inventories. In this study, we quantify CH4 emissions with an advanced mesoscale inverse modeling system at a resolution of 8 km × 8 km, using aircraft measurements in the SoCAB during the 2010 Nexus of Air Quality and Climate Change campaign to constrain the inversion. To simulate atmospheric transport, we use the FLEXible PARTicle-Weather Research andmore » Forecasting (FLEXPART-WRF) Lagrangian particle dispersion model driven by three configurations of the Weather Research and Forecasting (WRF) mesoscale model. We determine surface fluxes of CH4 using a Bayesian least squares method in a four-dimensional inversion. Simulated CH4 concentrations with the posterior emission inventory achieve much better correlations with the measurements (R2 = 0.7) than using the prior inventory (U.S. Environmental Protection Agency's National Emission Inventory 2005, R2 = 0.5). The emission estimates for CH4 in the posterior, 46.3 ± 9.2 Mg CH4/h, are consistent with published observation-based estimates. Changes in the spatial distribution of CH4 emissions in the SoCAB between the prior and posterior inventories are discussed. Missing or underestimated emissions from dairies, the oil/gas system, and landfills in the SoCAB seem to explain the differences between the prior and posterior inventories. Furthermore, we estimate that dairies contributed 5.9 ± 1.7 Mg CH4/h and the two sectors of oil and gas industries (production and downstream) and landfills together contributed 39.6 ± 8.1 Mg CH4/h in the SoCAB.« less

  14. Evaluation of WRF predicted near hub-height winds and ramp events over a Pacific Northwest site with complex terrain

    SciTech Connect (OSTI)

    Yang, Qing; Berg, Larry K.; Pekour, Mikhail S.; Fast, Jerome D.; Newsom, Rob K.; Stoelinga, Mark; Finley, Cathy

    2013-08-16

    The WRF model version 3.3 is used to simulate near hub-height winds and power ramps utilizing three commonly used planetary boundary-layer (PBL) schemes: Mellor-Yamada-Janji? (MYJ), University of Washington (UW), and Yonsei University (YSU). The predicted winds have small mean biases compared with observations. Power ramps and step changes (changes within an hour) consistently show that the UW scheme performed better in predicting up ramps under stable conditions with higher prediction accuracy and capture rates. Both YSU and UW scheme show good performance predicting up- and down- ramps under unstable conditions with YSU being slightly better for ramp durations longer than an hour. MYJ is the most successful simulating down-ramps under stable conditions. The high wind speed and large shear associated with low-level jets are frequently associated with power ramps, and the biases in predicted low-level jet explain some of the shown differences in ramp predictions among different PBL schemes. Low-level jets were observed as low as ~200 m in altitude over the Columbia Basin Wind Energy Study (CBWES) site, located in an area of complex terrain. The shear, low-level peak wind speeds, as well as the height of maximum wind speed are not well predicted. Model simulations with 3 PBL schemes show the largest variability among them under stable conditions.

  15. Global disease monitoring and forecasting with Wikipedia

    SciTech Connect (OSTI)

    Generous, Nicholas; Fairchild, Geoffrey; Deshpande, Alina; Del Valle, Sara Y.; Priedhorsky, Reid; Salathé, Marcel

    2014-11-13

    Infectious disease is a leading threat to public health, economic stability, and other key social structures. Efforts to mitigate these impacts depend on accurate and timely monitoring to measure the risk and progress of disease. Traditional, biologically-focused monitoring techniques are accurate but costly and slow; in response, new techniques based on social internet data, such as social media and search queries, are emerging. These efforts are promising, but important challenges in the areas of scientific peer review, breadth of diseases and countries, and forecasting hamper their operational usefulness. We examine a freely available, open data source for this use: access logs from the online encyclopedia Wikipedia. Using linear models, language as a proxy for location, and a systematic yet simple article selection procedure, we tested 14 location-disease combinations and demonstrate that these data feasibly support an approach that overcomes these challenges. Specifically, our proof-of-concept yields models with up to 0.92, forecasting value up to the 28 days tested, and several pairs of models similar enough to suggest that transferring models from one location to another without re-training is feasible. Based on these preliminary results, we close with a research agenda designed to overcome these challenges and produce a disease monitoring and forecasting system that is significantly more effective, robust, and globally comprehensive than the current state of the art.

  16. Global disease monitoring and forecasting with Wikipedia

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Generous, Nicholas; Fairchild, Geoffrey; Deshpande, Alina; Del Valle, Sara Y.; Priedhorsky, Reid; Salathé, Marcel

    2014-11-13

    Infectious disease is a leading threat to public health, economic stability, and other key social structures. Efforts to mitigate these impacts depend on accurate and timely monitoring to measure the risk and progress of disease. Traditional, biologically-focused monitoring techniques are accurate but costly and slow; in response, new techniques based on social internet data, such as social media and search queries, are emerging. These efforts are promising, but important challenges in the areas of scientific peer review, breadth of diseases and countries, and forecasting hamper their operational usefulness. We examine a freely available, open data source for this use: accessmore » logs from the online encyclopedia Wikipedia. Using linear models, language as a proxy for location, and a systematic yet simple article selection procedure, we tested 14 location-disease combinations and demonstrate that these data feasibly support an approach that overcomes these challenges. Specifically, our proof-of-concept yields models with up to 0.92, forecasting value up to the 28 days tested, and several pairs of models similar enough to suggest that transferring models from one location to another without re-training is feasible. Based on these preliminary results, we close with a research agenda designed to overcome these challenges and produce a disease monitoring and forecasting system that is significantly more effective, robust, and globally comprehensive than the current state of the art.« less

  17. Energy Department Announces $2.5 Million to Improve Wind Forecasting...

    Broader source: Energy.gov (indexed) [DOE]

    turbines operate closer to maximum capacity, leading to lower energy costs for consumers. ... for the Weather Research and Forecasting model, a widely used weather prediction system. ...

  18. Upcoming Funding Opportunity for Wind Forecasting Improvement...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind Forecasting Improvement Project in Complex Terrain Upcoming Funding Opportunity for Wind Forecasting Improvement Project in Complex Terrain February 12, 2014 - 10:47am ...

  19. Solar Energy Market Forecast | Open Energy Information

    Open Energy Info (EERE)

    Market Forecast Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Solar Energy Market Forecast AgencyCompany Organization: United States Department of Energy Sector:...

  20. Project Profile: Forecasting and Influencing Technological Progress...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Soft Costs Project Profile: Forecasting and Influencing Technological Progress in Solar Energy Project Profile: Forecasting and Influencing Technological Progress in Solar ...

  1. National Oceanic and Atmospheric Administration Provides Forecasting...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... will share their expertise with CLASIC and CHAPS forecasters and project leaders as they consult on the forecast that will determine the day's operations plan. -- Storm Prediction ...

  2. Study forecasts disappearance of conifers due to climate change

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Study forecasts disappearance of conifers due to climate change Study forecasts disappearance of conifers due to climate change New results, reported in a paper released today in the journal Nature Climate Change, suggest that global models may underestimate predictions of forest death. December 21, 2015 Los Alamos scientist Nate McDowell discusses how climate change is killing trees with PBS NewsHour reporter Miles O'Brien. Los Alamos scientist Nate McDowell discusses how climate change is

  3. Science on Tap - Forecasting illness

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science on Tap - Forecasting illness Science on Tap - Forecasting illness WHEN: Mar 17, 2016 5:30 PM - 7:00 PM WHERE: UnQuarked Wine Room 145 Central Park Square, Los Alamos, New Mexico 87544 USA CONTACT: Linda Anderman (505) 665-9196 CATEGORY: Bradbury INTERNAL: Calendar Login Event Description Mark your calendars for this event held every third Thursday from 5:30 to 7 p.m. A short presentation is followed by a lively discussion on a different subject each month. Forecasting the flu (and other

  4. Development and testing of improved statistical wind power forecasting methods.

    SciTech Connect (OSTI)

    Mendes, J.; Bessa, R.J.; Keko, H.; Sumaili, J.; Miranda, V.; Ferreira, C.; Gama, J.; Botterud, A.; Zhou, Z.; Wang, J.

    2011-12-06

    Wind power forecasting (WPF) provides important inputs to power system operators and electricity market participants. It is therefore not surprising that WPF has attracted increasing interest within the electric power industry. In this report, we document our research on improving statistical WPF algorithms for point, uncertainty, and ramp forecasting. Below, we provide a brief introduction to the research presented in the following chapters. For a detailed overview of the state-of-the-art in wind power forecasting, we refer to [1]. Our related work on the application of WPF in operational decisions is documented in [2]. Point forecasts of wind power are highly dependent on the training criteria used in the statistical algorithms that are used to convert weather forecasts and observational data to a power forecast. In Chapter 2, we explore the application of information theoretic learning (ITL) as opposed to the classical minimum square error (MSE) criterion for point forecasting. In contrast to the MSE criterion, ITL criteria do not assume a Gaussian distribution of the forecasting errors. We investigate to what extent ITL criteria yield better results. In addition, we analyze time-adaptive training algorithms and how they enable WPF algorithms to cope with non-stationary data and, thus, to adapt to new situations without requiring additional offline training of the model. We test the new point forecasting algorithms on two wind farms located in the U.S. Midwest. Although there have been advancements in deterministic WPF, a single-valued forecast cannot provide information on the dispersion of observations around the predicted value. We argue that it is essential to generate, together with (or as an alternative to) point forecasts, a representation of the wind power uncertainty. Wind power uncertainty representation can take the form of probabilistic forecasts (e.g., probability density function, quantiles), risk indices (e.g., prediction risk index) or scenarios

  5. USE OF AN EQUILIBRIUM MODEL TO FORECAST DISSOLUTION EFFECTIVENESS, SAFETY IMPACTS, AND DOWNSTREAM PROCESSABILITY FROM OXALIC ACID AIDED SLUDGE REMOVAL IN SAVANNAH RIVER SITE HIGH LEVEL WASTE TANKS 1-15

    SciTech Connect (OSTI)

    KETUSKY, EDWARD

    2005-10-31

    This thesis details a graduate research effort written to fulfill the Magister of Technologiae in Chemical Engineering requirements at the University of South Africa. The research evaluates the ability of equilibrium based software to forecast dissolution, evaluate safety impacts, and determine downstream processability changes associated with using oxalic acid solutions to dissolve sludge heels in Savannah River Site High Level Waste (HLW) Tanks 1-15. First, a dissolution model is constructed and validated. Coupled with a model, a material balance determines the fate of hypothetical worst-case sludge in the treatment and neutralization tanks during each chemical adjustment. Although sludge is dissolved, after neutralization more is created within HLW. An energy balance determines overpressurization and overheating to be unlikely. Corrosion induced hydrogen may overwhelm the purge ventilation. Limiting the heel volume treated/acid added and processing the solids through vitrification is preferred and should not significantly increase the number of glass canisters.

  6. Acquisition Forecast Download | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Acquisition Forecast Download Acquisition Forecast Download Click on the link to download a copy of the DOE HQ Acquisition Forecast. Acquisition-Forecast-2016-07-20.xlsx (72.85 KB) More Documents & Publications Small Business Program Manager Directory EA-1900: Notice of Availability of a Draft Environmental Assessment Assessment Report: OAS-V-15-01

  7. Forecasting the 2013–2014 influenza season using Wikipedia

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hickmann, Kyle S.; Fairchild, Geoffrey; Priedhorsky, Reid; Generous, Nicholas; Hyman, James M.; Deshpande, Alina; Del Valle, Sara Y.; Salathé, Marcel

    2015-05-14

    Infectious diseases are one of the leading causes of morbidity and mortality around the world; thus, forecasting their impact is crucial for planning an effective response strategy. According to the Centers for Disease Control and Prevention (CDC), seasonal influenza affects 5% to 20% of the U.S. population and causes major economic impacts resulting from hospitalization and absenteeism. Understanding influenza dynamics and forecasting its impact is fundamental for developing prevention and mitigation strategies. We combine modern data assimilation methods with Wikipedia access logs and CDC influenza-like illness (ILI) reports to create a weekly forecast for seasonal influenza. The methods are appliedmore » to the 2013-2014 influenza season but are sufficiently general to forecast any disease outbreak, given incidence or case count data. We adjust the initialization and parametrization of a disease model and show that this allows us to determine systematic model bias. In addition, we provide a way to determine where the model diverges from observation and evaluate forecast accuracy. Wikipedia article access logs are shown to be highly correlated with historical ILI records and allow for accurate prediction of ILI data several weeks before it becomes available. The results show that prior to the peak of the flu season, our forecasting method produced 50% and 95% credible intervals for the 2013-2014 ILI observations that contained the actual observations for most weeks in the forecast. However, since our model does not account for re-infection or multiple strains of influenza, the tail of the epidemic is not predicted well after the peak of flu season has passed.« less

  8. Forecasting the 2013–2014 influenza season using Wikipedia

    SciTech Connect (OSTI)

    Hickmann, Kyle S.; Fairchild, Geoffrey; Priedhorsky, Reid; Generous, Nicholas; Hyman, James M.; Deshpande, Alina; Del Valle, Sara Y.; Salathé, Marcel

    2015-05-14

    Infectious diseases are one of the leading causes of morbidity and mortality around the world; thus, forecasting their impact is crucial for planning an effective response strategy. According to the Centers for Disease Control and Prevention (CDC), seasonal influenza affects 5% to 20% of the U.S. population and causes major economic impacts resulting from hospitalization and absenteeism. Understanding influenza dynamics and forecasting its impact is fundamental for developing prevention and mitigation strategies. We combine modern data assimilation methods with Wikipedia access logs and CDC influenza-like illness (ILI) reports to create a weekly forecast for seasonal influenza. The methods are applied to the 2013-2014 influenza season but are sufficiently general to forecast any disease outbreak, given incidence or case count data. We adjust the initialization and parametrization of a disease model and show that this allows us to determine systematic model bias. In addition, we provide a way to determine where the model diverges from observation and evaluate forecast accuracy. Wikipedia article access logs are shown to be highly correlated with historical ILI records and allow for accurate prediction of ILI data several weeks before it becomes available. The results show that prior to the peak of the flu season, our forecasting method produced 50% and 95% credible intervals for the 2013-2014 ILI observations that contained the actual observations for most weeks in the forecast. However, since our model does not account for re-infection or multiple strains of influenza, the tail of the epidemic is not predicted well after the peak of flu season has passed.

  9. Wind Forecast Improvement Project Southern Study Area Final Report...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind Forecast Improvement Project Southern Study Area Final Report Wind Forecast Improvement Project Southern Study Area Final Report Wind Forecast Improvement Project Southern ...

  10. Picture of the Week: Forecasting Flu

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 Forecasting Flu What if we could forecast infectious diseases the same way we forecast the weather, and predict how diseases like Dengue, Typhus or Zika were going to spread? March 6, 2016 flu epidemics modellled using social media Watch the video on YouTube. Forecasting Flu What if we could forecast infectious diseases the same way we forecast the weather, and predict how diseases like Dengue, Typhus or Zika were going to spread? Using real-time data from Wikipedia and social media, Sara del

  11. Economic Evaluation of Short-Term Wind Power Forecasts in ERCOT: Preliminary Results; Preprint

    SciTech Connect (OSTI)

    Orwig, K.; Hodge, B. M.; Brinkman, G.; Ela, E.; Milligan, M.; Banunarayanan, V.; Nasir, S.; Freedman, J.

    2012-09-01

    Historically, a number of wind energy integration studies have investigated the value of using day-ahead wind power forecasts for grid operational decisions. These studies have shown that there could be large cost savings gained by grid operators implementing the forecasts in their system operations. To date, none of these studies have investigated the value of shorter-term (0 to 6-hour-ahead) wind power forecasts. In 2010, the Department of Energy and National Oceanic and Atmospheric Administration partnered to fund improvements in short-term wind forecasts and to determine the economic value of these improvements to grid operators, hereafter referred to as the Wind Forecasting Improvement Project (WFIP). In this work, we discuss the preliminary results of the economic benefit analysis portion of the WFIP for the Electric Reliability Council of Texas. The improvements seen in the wind forecasts are examined, then the economic results of a production cost model simulation are analyzed.

  12. Selected papers on fuel forecasting and analysis

    SciTech Connect (OSTI)

    Gordon, R.L.; Prast, W.G.

    1983-05-01

    Of the 19 presentations at this seminar, covering coal, uranium, oil, and gas issues as well as related EPRI research projects, eleven papers are published in this volume. Nine of the papers primarily address coal-market analysis, coal transportation, and uranium supply. Two additional papers provide an evaluation and perspective on the art and use of coal-supply forecasting models and on the relationship between coal and oil prices. The authors are energy analysts and EPRI research contractors from academia, the consulting profession, and the coal industry. A separate abstract was prepared for each of the 11 papers.

  13. The Value of Wind Power Forecasting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... day-ahead wind generation forecasts yields an average of 195M savings in annual operating costs. Figure 6 shows how operating cost savings vary with improvements in forecasting. ...

  14. EIA lowers forecast for summer gasoline prices

    U.S. Energy Information Administration (EIA) Indexed Site

    EIA lowers forecast for summer gasoline prices U.S. gasoline prices are expected to be ... according to the new monthly forecast from the U.S. Energy Information Administration. ...

  15. Wind Forecasting Improvement Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Forecasting Improvement Project Wind Forecasting Improvement Project October 3, 2011 - 12:12pm Addthis This is an excerpt from the Third Quarter 2011 edition of the Wind Program R&D Newsletter. In July, the Department of Energy launched a $6 million project with the National Oceanic and Atmospheric Administration (NOAA) and private partners to improve wind forecasting. Wind power forecasting allows system operators to anticipate the electrical output of wind plants and adjust the electrical

  16. UPF Forecast | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Subcontracting / Subcontracting Forecasts / UPF Forecast UPF Forecast UPF Procurement provides the following forecast of subcontracting opportunities. Keep in mind that these requirements may be revised or cancelled, depending on program budget funding or departmental needs. If you have questions or would like to express an interest in any of the opportunities listed below, contact UPF Procurement. Descriptiona Methodb NAICS Est. Dollar Range RFP release/ Award datec Buyer/ Phone Commodities

  17. 3D cloud detection and tracking system for solar forecast using multiple sky imagers

    SciTech Connect (OSTI)

    Peng, Zhenzhou; Yu, Dantong; Huang, Dong; Heiser, John; Yoo, Shinjae; Kalb, Paul

    2015-06-23

    We propose a system for forecasting short-term solar irradiance based on multiple total sky imagers (TSIs). The system utilizes a novel method of identifying and tracking clouds in three-dimensional space and an innovative pipeline for forecasting surface solar irradiance based on the image features of clouds. First, we develop a supervised classifier to detect clouds at the pixel level and output cloud mask. In the next step, we design intelligent algorithms to estimate the block-wise base height and motion of each cloud layer based on images from multiple TSIs. Thus, this information is then applied to stitch images together into larger views, which are then used for solar forecasting. We examine the systems ability to track clouds under various cloud conditions and investigate different irradiance forecast models at various sites. We confirm that this system can 1) robustly detect clouds and track layers, and 2) extract the significant global and local features for obtaining stable irradiance forecasts with short forecast horizons from the obtained images. Finally, we vet our forecasting system at the 32-megawatt Long Island Solar Farm (LISF). Compared with the persistent model, our system achieves at least a 26% improvement for all irradiance forecasts between one and fifteen minutes.

  18. 3D cloud detection and tracking system for solar forecast using multiple sky imagers

    SciTech Connect (OSTI)

    Peng, Zhenzhou; Yu, Dantong; Huang, Dong; Heiser, John; Yoo, Shinjae; Kalb, Paul

    2015-06-23

    We propose a system for forecasting short-term solar irradiance based on multiple total sky imagers (TSIs). The system utilizes a novel method of identifying and tracking clouds in three-dimensional space and an innovative pipeline for forecasting surface solar irradiance based on the image features of clouds. First, we develop a supervised classifier to detect clouds at the pixel level and output cloud mask. In the next step, we design intelligent algorithms to estimate the block-wise base height and motion of each cloud layer based on images from multiple TSIs. Thus, this information is then applied to stitch images together into larger views, which are then used for solar forecasting. We examine the system’s ability to track clouds under various cloud conditions and investigate different irradiance forecast models at various sites. We confirm that this system can 1) robustly detect clouds and track layers, and 2) extract the significant global and local features for obtaining stable irradiance forecasts with short forecast horizons from the obtained images. Finally, we vet our forecasting system at the 32-megawatt Long Island Solar Farm (LISF). Compared with the persistent model, our system achieves at least a 26% improvement for all irradiance forecasts between one and fifteen minutes.

  19. 3D cloud detection and tracking system for solar forecast using multiple sky imagers

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Peng, Zhenzhou; Yu, Dantong; Huang, Dong; Heiser, John; Yoo, Shinjae; Kalb, Paul

    2015-06-23

    We propose a system for forecasting short-term solar irradiance based on multiple total sky imagers (TSIs). The system utilizes a novel method of identifying and tracking clouds in three-dimensional space and an innovative pipeline for forecasting surface solar irradiance based on the image features of clouds. First, we develop a supervised classifier to detect clouds at the pixel level and output cloud mask. In the next step, we design intelligent algorithms to estimate the block-wise base height and motion of each cloud layer based on images from multiple TSIs. Thus, this information is then applied to stitch images together intomore » larger views, which are then used for solar forecasting. We examine the system’s ability to track clouds under various cloud conditions and investigate different irradiance forecast models at various sites. We confirm that this system can 1) robustly detect clouds and track layers, and 2) extract the significant global and local features for obtaining stable irradiance forecasts with short forecast horizons from the obtained images. Finally, we vet our forecasting system at the 32-megawatt Long Island Solar Farm (LISF). Compared with the persistent model, our system achieves at least a 26% improvement for all irradiance forecasts between one and fifteen minutes.« less

  20. Assessment of multi-decadal WRF-CMAQ simulations for understanding direct aerosol effects on radiation "brightening" in the United States

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gan, C.-M.; Pleim, J.; Mathur, R.; Hogrefe, C.; Long, C. N.; Xing, J.; Wong, D.; Gilliam, R.; Wei, C.

    2015-07-01

    Multi-decadal simulations with the coupled WRF-CMAQ model have been conducted to systematically investigate the changes in anthropogenic emissions of SO2 and NOx over the past 21 years (1990–2010) across the United States (US), their impacts on anthropogenic aerosol loading over North America, and subsequent impacts on regional radiation budgets. In particular, this study attempts to determine the consequences of the changes in tropospheric aerosol burden arising from substantial reductions in emissions of SO2 and NOx associated with control measures under the Clean Air Act (CAA) especially on trends in solar radiation. Extensive analyses conducted by Gan et al. (2014) utilizingmore » observations (e.g. SURFRAD, CASTNET, IMPROVE and ARM) over the past 16 years (1995–2010) indicate a shortwave (SW) radiation (both all-sky and clear-sky) "brightening" in the US. The relationship of the radiation brightening trend with decreases in the aerosol burden is less apparent in the western US. One of the main reasons for this is that the emission controls under the CAA were aimed primarily at reducing pollutants in areas violating national air quality standards, most of which were located in the eastern US while the relatively less populated areas in the western US were less polluted at the beginning of this study period. Comparisons of model results with observations of aerosol optical depth (AOD), aerosol concentration, and radiation demonstrate that the coupled WRF-CMAQ model is capable of replicating the trends well even through it tends to underestimate the AOD. In particular, the sulfate concentration predictions were well matched with the observations. The discrenpancies found in the clear-sky diffuse SW radiation are likely due to several factors such as potential increase of ice particles associated with increasing air traffic, the definition of "clear-sky" in the radiation retrieval methodology and aerosol semi-direct and/or indirect effects which cannot be

  1. Supply Forecast and Analysis (SFA)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Matthew Langholtz Science Team Leader Oak Ridge National Laboratory DOE Bioenergy Technologies Office (BETO) 2015 Project Peer Review Supply Forecast and Analysis (SFA) 2 | Bioenergy Technologies Office Goal Statement * Provide timely and credible estimates of feedstock supplies and prices to support - the development of a bioeconomy; feedstock demand analysis of EISA, RFS2, and RPS mandates - the data and analysis of other projects in Analysis and Sustainability, Feedstock Supply and Logistics,

  2. The Wind Forecast Improvement Project (WFIP): A Public/Private Partnership for Improving Short Term Wind Energy Forecasts and Quantifying the Benefits of Utility Operations. The Southern Study Area, Final Report

    SciTech Connect (OSTI)

    Freedman, Jeffrey M.; Manobianco, John; Schroeder, John; Ancell, Brian; Brewster, Keith; Basu, Sukanta; Banunarayanan, Venkat; Hodge, Bri-Mathias; Flores, Isabel

    2014-04-30

    This Final Report presents a comprehensive description, findings, and conclusions for the Wind Forecast Improvement Project (WFIP) -- Southern Study Area (SSA) work led by AWS Truepower (AWST). This multi-year effort, sponsored by the Department of Energy (DOE) and National Oceanographic and Atmospheric Administration (NOAA), focused on improving short-term (15-minute - 6 hour) wind power production forecasts through the deployment of an enhanced observation network of surface and remote sensing instrumentation and the use of a state-of-the-art forecast modeling system. Key findings from the SSA modeling and forecast effort include: 1. The AWST WFIP modeling system produced an overall 10 - 20% improvement in wind power production forecasts over the existing Baseline system, especially during the first three forecast hours; 2. Improvements in ramp forecast skill, particularly for larger up and down ramps; 3. The AWST WFIP data denial experiments showed mixed results in the forecasts incorporating the experimental network instrumentation; however, ramp forecasts showed significant benefit from the additional observations, indicating that the enhanced observations were key to the model systems’ ability to capture phenomena responsible for producing large short-term excursions in power production; 4. The OU CAPS ARPS simulations showed that the additional WFIP instrument data had a small impact on their 3-km forecasts that lasted for the first 5-6 hours, and increasing the vertical model resolution in the boundary layer had a greater impact, also in the first 5 hours; and 5. The TTU simulations were inconclusive as to which assimilation scheme (3DVAR versus EnKF) provided better forecasts, and the additional observations resulted in some improvement to the forecasts in the first 1 - 3 hours.

  3. Weather forecast-based optimization of integrated energy systems.

    SciTech Connect (OSTI)

    Zavala, V. M.; Constantinescu, E. M.; Krause, T.; Anitescu, M.

    2009-03-01

    In this work, we establish an on-line optimization framework to exploit detailed weather forecast information in the operation of integrated energy systems, such as buildings and photovoltaic/wind hybrid systems. We first discuss how the use of traditional reactive operation strategies that neglect the future evolution of the ambient conditions can translate in high operating costs. To overcome this problem, we propose the use of a supervisory dynamic optimization strategy that can lead to more proactive and cost-effective operations. The strategy is based on the solution of a receding-horizon stochastic dynamic optimization problem. This permits the direct incorporation of economic objectives, statistical forecast information, and operational constraints. To obtain the weather forecast information, we employ a state-of-the-art forecasting model initialized with real meteorological data. The statistical ambient information is obtained from a set of realizations generated by the weather model executed in an operational setting. We present proof-of-concept simulation studies to demonstrate that the proposed framework can lead to significant savings (more than 18% reduction) in operating costs.

  4. ARM - CARES - Tracer Forecast for CARES

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CampaignsCarbonaceous Aerosols and Radiative Effects Study (CARES)Tracer Forecast for CARES Related Links CARES Home AAF Home ARM Data Discovery Browse Data Post-Campaign Data Sets Field Updates CARES Wiki Campaign Images Experiment Planning Proposal Abstract and Related Campaigns Science Plan Operations Plan Measurements Forecasts News News & Press Backgrounder (PDF, 1.45MB) G-1 Aircraft Fact Sheet (PDF, 1.3MB) Contacts Rahul Zaveri, Lead Scientist Tracer Forecasts for CARES This webpage

  5. LED Lighting Forecast | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Publications » Market Studies » LED Lighting Forecast LED Lighting Forecast The DOE report Energy Savings Forecast of Solid-State Lighting in General Illumination Applications estimates the energy savings of LED white-light sources over the analysis period of 2013 to 2030. With declining costs and improving performance, LED products have been seeing increased adoption for general illumination applications. This is a positive development in terms of energy consumption, as LEDs use significantly

  6. Incorporating Forecast Uncertainty in Utility Control Center

    SciTech Connect (OSTI)

    Makarov, Yuri V.; Etingov, Pavel V.; Ma, Jian

    2014-07-09

    Uncertainties in forecasting the output of intermittent resources such as wind and solar generation, as well as system loads are not adequately reflected in existing industry-grade tools used for transmission system management, generation commitment, dispatch and market operation. There are other sources of uncertainty such as uninstructed deviations of conventional generators from their dispatch set points, generator forced outages and failures to start up, load drops, losses of major transmission facilities and frequency variation. These uncertainties can cause deviations from the system balance, which sometimes require inefficient and costly last minute solutions in the near real-time timeframe. This Chapter considers sources of uncertainty and variability, overall system uncertainty model, a possible plan for transition from deterministic to probabilistic methods in planning and operations, and two examples of uncertainty-based fools for grid operations.This chapter is based on work conducted at the Pacific Northwest National Laboratory (PNNL)

  7. NREL: Resource Assessment and Forecasting Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    are used to plan and develop renewable energy technologies and support climate change research. Learn more about NREL's resource assessment and forecasting research:...

  8. Development and Demonstration of Advanced Forecasting, Power...

    Broader source: Energy.gov (indexed) [DOE]

    and Demonstration of Advanced Forecasting, Power and Environmental Planning and Management Tools and Best Practices 63wateruseoptimizationprojectanlgasper.ppt (7.72 MB) More ...

  9. Forecast and Funding Arrangements - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Annual Waste Forecast and Funding Arrangements About Us Hanford Site Solid Waste Acceptance Program What's New Acceptance Criteria Acceptance Process Becoming a new Hanford...

  10. NREL: Resource Assessment and Forecasting - Webmaster

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    email address: Your message: Send Message Printable Version Resource Assessment & Forecasting Home Capabilities Facilities Working with Us Research Staff Data & Resources Did...

  11. Funding Opportunity Announcement for Wind Forecasting Improvement...

    Broader source: Energy.gov (indexed) [DOE]

    There is no cost to participate and all applicants are encouraged to attend. To join the ... Related Articles Upcoming Funding Opportunity for Wind Forecasting Improvement Project in ...

  12. Module 6 - Metrics, Performance Measurements and Forecasting...

    Broader source: Energy.gov (indexed) [DOE]

    This module reviews metrics such as cost and schedule variance along with cost and schedule performance indices. In addition, this module will outline forecasting tools such as ...

  13. Natural Gas Prices Forecast Comparison--AEO vs. Natural Gas Markets

    SciTech Connect (OSTI)

    Wong-Parodi, Gabrielle; Lekov, Alex; Dale, Larry

    2005-02-09

    This paper evaluates the accuracy of two methods to forecast natural gas prices: using the Energy Information Administration's ''Annual Energy Outlook'' forecasted price (AEO) and the ''Henry Hub'' compared to U.S. Wellhead futures price. A statistical analysis is performed to determine the relative accuracy of the two measures in the recent past. A statistical analysis suggests that the Henry Hub futures price provides a more accurate average forecast of natural gas prices than the AEO. For example, the Henry Hub futures price underestimated the natural gas price by 35 cents per thousand cubic feet (11.5 percent) between 1996 and 2003 and the AEO underestimated by 71 cents per thousand cubic feet (23.4 percent). Upon closer inspection, a liner regression analysis reveals that two distinct time periods exist, the period between 1996 to 1999 and the period between 2000 to 2003. For the time period between 1996 to 1999, AEO showed a weak negative correlation (R-square = 0.19) between forecast price by actual U.S. Wellhead natural gas price versus the Henry Hub with a weak positive correlation (R-square = 0.20) between forecasted price and U.S. Wellhead natural gas price. During the time period between 2000 to 2003, AEO shows a moderate positive correlation (R-square = 0.37) between forecasted natural gas price and U.S. Wellhead natural gas price versus the Henry Hub that show a moderate positive correlation (R-square = 0.36) between forecast price and U.S. Wellhead natural gas price. These results suggest that agencies forecasting natural gas prices should consider incorporating the Henry Hub natural gas futures price into their forecasting models along with the AEO forecast. Our analysis is very preliminary and is based on a very small data set. Naturally the results of the analysis may change, as more data is made available.

  14. Analysis and Synthesis of Load Forecasting Data for Renewable Integration Studies: Preprint

    SciTech Connect (OSTI)

    Steckler, N.; Florita, A.; Zhang, J.; Hodge, B. M.

    2013-11-01

    As renewable energy constitutes greater portions of the generation fleet, the importance of modeling uncertainty as part of integration studies also increases. In pursuit of optimal system operations, it is important to capture not only the definitive behavior of power plants, but also the risks associated with systemwide interactions. This research examines the dependence of load forecast errors on external predictor variables such as temperature, day type, and time of day. The analysis was utilized to create statistically relevant instances of sequential load forecasts with only a time series of historic, measured load available. The creation of such load forecasts relies on Bayesian techniques for informing and updating the model, thus providing a basis for networked and adaptive load forecast models in future operational applications.

  15. Sensing, Measurement, and Forecasting | Grid Modernization | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sensing, Measurement, and Forecasting NREL measures weather resources and power systems, forecasts renewable resources and grid conditions, and converts measurements into operational intelligence to support a modern grid. Photo of solar resource monitoring equipment Modernizing the grid involves assessing its health in real time, predicting its behavior and potential disruptions, and quickly responding to events-which requires understanding vital parameters throughout the electric

  16. Use of wind power forecasting in operational decisions.

    SciTech Connect (OSTI)

    Botterud, A.; Zhi, Z.; Wang, J.; Bessa, R.J.; Keko, H.; Mendes, J.; Sumaili, J.; Miranda, V.

    2011-11-29

    The rapid expansion of wind power gives rise to a number of challenges for power system operators and electricity market participants. The key operational challenge is to efficiently handle the uncertainty and variability of wind power when balancing supply and demand in ths system. In this report, we analyze how wind power forecasting can serve as an efficient tool toward this end. We discuss the current status of wind power forecasting in U.S. electricity markets and develop several methodologies and modeling tools for the use of wind power forecasting in operational decisions, from the perspectives of the system operator as well as the wind power producer. In particular, we focus on the use of probabilistic forecasts in operational decisions. Driven by increasing prices for fossil fuels and concerns about greenhouse gas (GHG) emissions, wind power, as a renewable and clean source of energy, is rapidly being introduced into the existing electricity supply portfolio in many parts of the world. The U.S. Department of Energy (DOE) has analyzed a scenario in which wind power meets 20% of the U.S. electricity demand by 2030, which means that the U.S. wind power capacity would have to reach more than 300 gigawatts (GW). The European Union is pursuing a target of 20/20/20, which aims to reduce greenhouse gas (GHG) emissions by 20%, increase the amount of renewable energy to 20% of the energy supply, and improve energy efficiency by 20% by 2020 as compared to 1990. Meanwhile, China is the leading country in terms of installed wind capacity, and had 45 GW of installed wind power capacity out of about 200 GW on a global level at the end of 2010. The rapid increase in the penetration of wind power into power systems introduces more variability and uncertainty in the electricity generation portfolio, and these factors are the key challenges when it comes to integrating wind power into the electric power grid. Wind power forecasting (WPF) is an important tool to help

  17. 915 MHz Wind Profiler for Cloud Forecasting at Brookhaven National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Profiler for Cloud Forecasting at Brookhaven National Laboratory M Jensen MJ ... Wind Profiler for Cloud Forecasting at Brookhaven National Laboratory M Jensen, ...

  18. Study forecasts disappearance of conifers due to climate change

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Study forecasts disappearance of conifers due to climate change Study forecasts disappearance of conifers due to climate change New results, reported in a paper released today in ...

  19. Data Collection and Comparison with Forecasted Unit Sales of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Data Collection and Comparison with Forecasted Unit Sales of Five Lamp Types Data Collection and Comparison with Forecasted Unit Sales of Five Lamp Types PDF icon Data Collection ...

  20. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... The goal of this project is to produce accurate, consistent and comprehensive data sets ... implemented in the Weather Research and Forecast (WRF) model.more This MS-3DVAR is ...

  1. U.S. Department of Energy Workshop Report: Solar Resources and Forecasting

    SciTech Connect (OSTI)

    Stoffel, T.

    2012-06-01

    This report summarizes the technical presentations, outlines the core research recommendations, and augments the information of the Solar Resources and Forecasting Workshop held June 20-22, 2011, in Golden, Colorado. The workshop brought together notable specialists in atmospheric science, solar resource assessment, solar energy conversion, and various stakeholders from industry and academia to review recent developments and provide input for planning future research in solar resource characterization, including measurement, modeling, and forecasting.

  2. Top-down estimate of methane emissions in California using a mesoscale inverse modeling technique: The South Coast Air Basin

    SciTech Connect (OSTI)

    Cui, Yu Yan; Brioude, Jerome; McKeen, Stuart A.; Angevine, Wayne M.; Kim, Si -Wan; Frost, Gregory J.; Ahmadov, Ravan; Peischl, Jeff; Bousserez, Nicolas; Liu, Zhen; Ryerson, Thomas B.; Wofsy, Steve C.; Santoni, Gregory W.; Kort, Eric A.; Fischer, Marc L.; Trainer, Michael

    2015-07-28

    Methane (CH4) is the primary component of natural gas and has a larger global warming potential than CO2. Some recent top-down studies based on observations showed CH4 emissions in California's South Coast Air Basin (SoCAB) were greater than those expected from population-apportioned bottom-up state inventories. In this study, we quantify CH4 emissions with an advanced mesoscale inverse modeling system at a resolution of 8 km × 8 km, using aircraft measurements in the SoCAB during the 2010 Nexus of Air Quality and Climate Change campaign to constrain the inversion. To simulate atmospheric transport, we use the FLEXible PARTicle-Weather Research and Forecasting (FLEXPART-WRF) Lagrangian particle dispersion model driven by three configurations of the Weather Research and Forecasting (WRF) mesoscale model. We determine surface fluxes of CH4 using a Bayesian least squares method in a four-dimensional inversion. Simulated CH4 concentrations with the posterior emission inventory achieve much better correlations with the measurements (R2 = 0.7) than using the prior inventory (U.S. Environmental Protection Agency's National Emission Inventory 2005, R2 = 0.5). The emission estimates for CH4 in the posterior, 46.3 ± 9.2 Mg CH4/h, are consistent with published observation-based estimates. Changes in the spatial distribution of CH4 emissions in the SoCAB between the prior and posterior inventories are discussed. Missing or underestimated emissions from dairies, the oil/gas system, and landfills in the SoCAB seem to explain the differences between the prior and posterior inventories. Furthermore, we estimate that dairies contributed 5.9 ± 1.7 Mg CH4/h and the two sectors of oil and gas industries (production and downstream) and landfills together contributed 39.6 ± 8.1 Mg CH4/h in the SoCAB.

  3. Top-down estimate of methane emissions in California using a mesoscale inverse modeling technique: The South Coast Air Basin

    SciTech Connect (OSTI)

    Cui, Yu Yan; Brioude, Jerome; McKeen, Stuart A.; Angevine, Wayne M.; Kim, Si -Wan; Frost, Gregory J.; Ahmadov, Ravan; Peischl, Jeff; Bousserez, Nicolas; Liu, Zhen; Ryerson, Thomas B.; Wofsy, Steve C.; Santoni, Gregory W.; Kort, Eric A.; Fischer, Marc L.; Trainer, Michael

    2015-07-28

    Methane (CH4) is the primary component of natural gas and has a larger global warming potential than CO2. Some recent top-down studies based on observations showed CH4 emissions in California's South Coast Air Basin (SoCAB) were greater than those expected from population-apportioned bottom-up state inventories. In this study, we quantify CH4 emissions with an advanced mesoscale inverse modeling system at a resolution of 8 km 8 km, using aircraft measurements in the SoCAB during the 2010 Nexus of Air Quality and Climate Change campaign to constrain the inversion. To simulate atmospheric transport, we use the FLEXible PARTicle-Weather Research and Forecasting (FLEXPART-WRF) Lagrangian particle dispersion model driven by three configurations of the Weather Research and Forecasting (WRF) mesoscale model. We determine surface fluxes of CH4 using a Bayesian least squares method in a four-dimensional inversion. Simulated CH4 concentrations with the posterior emission inventory achieve much better correlations with the measurements (R2 = 0.7) than using the prior inventory (U.S. Environmental Protection Agency's National Emission Inventory 2005, R2 = 0.5). The emission estimates for CH4 in the posterior, 46.3 9.2 Mg CH4/h, are consistent with published observation-based estimates. Changes in the spatial distribution of CH4 emissions in the SoCAB between the prior and posterior inventories are discussed. Missing or underestimated emissions from dairies, the oil/gas system, and landfills in the SoCAB seem to explain the differences between the prior and posterior inventories. Furthermore, we estimate that dairies contributed 5.9 1.7 Mg CH4/h and the two sectors of oil and gas industries (production and downstream) and landfills together contributed 39.6 8.1 Mg CH4/h in the SoCAB.

  4. Forecasting longitudinal changes in oropharyngeal tumor morphology throughout the course of head and neck radiation therapy

    SciTech Connect (OSTI)

    Yock, Adam D.; Kudchadker, Rajat J.; Rao, Arvind; Dong, Lei; Beadle, Beth M.; Garden, Adam S.; Court, Laurence E.

    2014-08-15

    Purpose: To create models that forecast longitudinal trends in changing tumor morphology and to evaluate and compare their predictive potential throughout the course of radiation therapy. Methods: Two morphology feature vectors were used to describe 35 gross tumor volumes (GTVs) throughout the course of intensity-modulated radiation therapy for oropharyngeal tumors. The feature vectors comprised the coordinates of the GTV centroids and a description of GTV shape using either interlandmark distances or a spherical harmonic decomposition of these distances. The change in the morphology feature vector observed at 33 time points throughout the course of treatment was described using static, linear, and mean models. Models were adjusted at 0, 1, 2, 3, or 5 different time points (adjustment points) to improve prediction accuracy. The potential of these models to forecast GTV morphology was evaluated using leave-one-out cross-validation, and the accuracy of the models was compared using Wilcoxon signed-rank tests. Results: Adding a single adjustment point to the static model without any adjustment points decreased the median error in forecasting the position of GTV surface landmarks by the largest amount (1.2 mm). Additional adjustment points further decreased the forecast error by about 0.4 mm each. Selection of the linear model decreased the forecast error for both the distance-based and spherical harmonic morphology descriptors (0.2 mm), while the mean model decreased the forecast error for the distance-based descriptor only (0.2 mm). The magnitude and statistical significance of these improvements decreased with each additional adjustment point, and the effect from model selection was not as large as that from adding the initial points. Conclusions: The authors present models that anticipate longitudinal changes in tumor morphology using various models and model adjustment schemes. The accuracy of these models depended on their form, and the utility of these models

  5. Modeling the Transport and Radiative Forcing of Taklimakan Dust over the Tibetan Plateau: A case study in the summer of 2006

    SciTech Connect (OSTI)

    Chen, Siyu; Huang, J.; Zhao, Chun; Qian, Yun; Leung, Lai-Yung R.; Yang, Ben

    2013-01-30

    The Weather Research and Forecasting model with chemistry (WRF-Chem) is used to investigate an intense dust storm event during 26 to 30 July 2006 that originated over the Taklimakan Desert (TD) and transported to the northern slope of Tibetan Plateau (TP). The dust storm is initiated by the approach of a strong cold frontal system over the TD. In summer, the meridional transport of TD dust to the TP is favored by the thermal effect of the TP and the weakening of the East Asian westerly winds. During this dust storm, the transport of TD dust over the TP is further enhanced by the passage of the cold front. As a result, TD dust breaks through the planetary boundary layer and extends to the upper troposphere over the northern TP. TD dust flux arrived at the TP with a value of 6.6 Gg/day in this 5 day event but decays quickly during the southward migration over the TP due to dry deposition. The simulations show that TD dust cools the atmosphere near the surface and heats the atmosphere above with a maximum heating rate of 0.11 K day-1 at ~7 km over the TP. The event-averaged net radiative forcings of TD dust over the TP are -3.97, 1.61, and -5.58 Wm-2 at the top of the atmosphere (TOA), in the atmosphere, and at the surface, respectively. The promising performance of WRF-Chem in simulating dust and its radiative forcing provides confidence for use in further investigation of climatic impact of TD dust over the TP.

  6. Forecast of transportation energy demand through the year 2010

    SciTech Connect (OSTI)

    Mintz, M.M.; Vyas, A.D.

    1991-04-01

    Since 1979, the Center for Transportation Research (CTR) at Argonne National Laboratory (ANL) has produced baseline projections of US transportation activity and energy demand. These projections and the methodologies used to compute them are documented in a series of reports and research papers. As the lastest in this series of projections, this report documents the assumptions, methodologies, and results of the most recent projection -- termed ANL-90N -- and compares those results with other forecasts from the current literature, as well as with the selection of earlier Argonne forecasts. This current forecast may be used as a baseline against which to analyze trends and evaluate existing and proposed energy conservation programs and as an illustration of how the Transportation Energy and Emission Modeling System (TEEMS) works. (TEEMS links disaggregate models to produce an aggregate forecast of transportation activity, energy use, and emissions). This report and the projections it contains were developed for the US Department of Energy's Office of Transportation Technologies (OTT). The projections are not completely comprehensive. Time and modeling effort have been focused on the major energy consumers -- automobiles, trucks, commercial aircraft, rail and waterborne freight carriers, and pipelines. Because buses, rail passengers services, and general aviation consume relatively little energy, they are projected in the aggregate, as other'' modes, and used primarily as scaling factors. These projections are also limited to direct energy consumption. Projections of indirect energy consumption, such as energy consumed in vehicle and equipment manufacturing, infrastructure, fuel refining, etc., were judged outside the scope of this effort. The document is organized into two complementary sections -- one discussing passenger transportation modes, and the other discussing freight transportation modes. 99 refs., 10 figs., 43 tabs.

  7. 1993 Pacific Northwest Loads and Resources Study, Pacific Northwest Economic and Electricity Use Forecast, Technical Appendix: Volume 1.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1994-02-01

    This publication documents the load forecast scenarios and assumptions used to prepare BPA`s Whitebook. It is divided into: intoduction, summary of 1993 Whitebook electricity demand forecast, conservation in the load forecast, projection of medium case electricity sales and underlying drivers, residential sector forecast, commercial sector forecast, industrial sector forecast, non-DSI industrial forecast, direct service industry forecast, and irrigation forecast. Four appendices are included: long-term forecasts, LTOUT forecast, rates and fuel price forecasts, and forecast ranges-calculations.

  8. Towards a Science of Tumor Forecast for Clinical Oncology

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yankeelov, Tom; Quaranta, Vito; Evans, Katherine J; Rericha, Erin

    2015-01-01

    We propose that the quantitative cancer biology community make a concerted effort to apply the methods of weather forecasting to develop an analogous theory for predicting tumor growth and treatment response. Currently, the time course of response is not predicted, but rather assessed post hoc by physical exam or imaging methods. This fundamental limitation of clinical oncology makes it extraordinarily difficult to select an optimal treatment regimen for a particular tumor of an individual patient, as well as to determine in real time whether the choice was in fact appropriate. This is especially frustrating at a time when a panoplymore » of molecularly targeted therapies is available, and precision genetic or proteomic analyses of tumors are an established reality. By learning from the methods of weather and climate modeling, we submit that the forecasting power of biophysical and biomathematical modeling can be harnessed to hasten the arrival of a field of predictive oncology. With a successful theory of tumor forecasting, it should be possible to integrate large tumor specific datasets of varied types, and effectively defeat cancer one patient at a time.« less

  9. Toward a science of tumor forecasting for clinical oncology

    SciTech Connect (OSTI)

    Yankeelov, Thomas E.; Quaranta, Vito; Evans, Katherine J.; Rericha, Erin C.

    2015-03-15

    We propose that the quantitative cancer biology community makes a concerted effort to apply lessons from weather forecasting to develop an analogous methodology for predicting and evaluating tumor growth and treatment response. Currently, the time course of tumor response is not predicted; instead, response is only assessed post hoc by physical examination or imaging methods. This fundamental practice within clinical oncology limits optimization of a treatment regimen for an individual patient, as well as to determine in real time whether the choice was in fact appropriate. This is especially frustrating at a time when a panoply of molecularly targeted therapies is available, and precision genetic or proteomic analyses of tumors are an established reality. By learning from the methods of weather and climate modeling, we submit that the forecasting power of biophysical and biomathematical modeling can be harnessed to hasten the arrival of a field of predictive oncology. Furthermore, with a successful methodology toward tumor forecasting, it should be possible to integrate large tumor-specific datasets of varied types and effectively defeat one cancer patient at a time.

  10. Toward a science of tumor forecasting for clinical oncology

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yankeelov, Thomas E.; Quaranta, Vito; Evans, Katherine J.; Rericha, Erin C.

    2015-03-15

    We propose that the quantitative cancer biology community makes a concerted effort to apply lessons from weather forecasting to develop an analogous methodology for predicting and evaluating tumor growth and treatment response. Currently, the time course of tumor response is not predicted; instead, response is only assessed post hoc by physical examination or imaging methods. This fundamental practice within clinical oncology limits optimization of a treatment regimen for an individual patient, as well as to determine in real time whether the choice was in fact appropriate. This is especially frustrating at a time when a panoply of molecularly targeted therapiesmore » is available, and precision genetic or proteomic analyses of tumors are an established reality. By learning from the methods of weather and climate modeling, we submit that the forecasting power of biophysical and biomathematical modeling can be harnessed to hasten the arrival of a field of predictive oncology. Furthermore, with a successful methodology toward tumor forecasting, it should be possible to integrate large tumor-specific datasets of varied types and effectively defeat one cancer patient at a time.« less

  11. Towards a Science of Tumor Forecast for Clinical Oncology

    SciTech Connect (OSTI)

    Yankeelov, Tom; Quaranta, Vito; Evans, Katherine J; Rericha, Erin

    2015-01-01

    We propose that the quantitative cancer biology community make a concerted effort to apply the methods of weather forecasting to develop an analogous theory for predicting tumor growth and treatment response. Currently, the time course of response is not predicted, but rather assessed post hoc by physical exam or imaging methods. This fundamental limitation of clinical oncology makes it extraordinarily difficult to select an optimal treatment regimen for a particular tumor of an individual patient, as well as to determine in real time whether the choice was in fact appropriate. This is especially frustrating at a time when a panoply of molecularly targeted therapies is available, and precision genetic or proteomic analyses of tumors are an established reality. By learning from the methods of weather and climate modeling, we submit that the forecasting power of biophysical and biomathematical modeling can be harnessed to hasten the arrival of a field of predictive oncology. With a successful theory of tumor forecasting, it should be possible to integrate large tumor specific datasets of varied types, and effectively defeat cancer one patient at a time.

  12. Coal Fired Power Generation Market Forecast | OpenEI Community

    Open Energy Info (EERE)

    Coal Fired Power Generation Market Forecast Home There are currently no posts in this category. Syndicate...

  13. Offshore Lubricants Market Forecast | OpenEI Community

    Open Energy Info (EERE)

    Offshore Lubricants Market Forecast Home There are currently no posts in this category. Syndicate...

  14. Metrics for Evaluating the Accuracy of Solar Power Forecasting (Presentation)

    SciTech Connect (OSTI)

    Zhang, J.; Hodge, B.; Florita, A.; Lu, S.; Hamann, H.; Banunarayanan, V.

    2013-10-01

    This presentation proposes a suite of metrics for evaluating the performance of solar power forecasting.

  15. Distribution of Wind Power Forecasting Errors from Operational Systems (Presentation)

    SciTech Connect (OSTI)

    Hodge, B. M.; Ela, E.; Milligan, M.

    2011-10-01

    This presentation offers new data and statistical analysis of wind power forecasting errors in operational systems.

  16. energy data + forecasting | OpenEI Community

    Open Energy Info (EERE)

    energy data + forecasting Home FRED Description: Free Energy Database Tool on OpenEI This is an open source platform for assisting energy decision makers and policy makers in...

  17. Text-Alternative Version LED Lighting Forecast

    Office of Energy Efficiency and Renewable Energy (EERE)

    The DOE report Energy Savings Forecast of Solid-State Lighting in General Illumination Applications estimates the energy savings of LED white-light sources over the analysis period of 2013 to 2030....

  18. Regional four-dimensional variational data assimilation in a quasi-operational forecasting environment

    SciTech Connect (OSTI)

    Zupanski, M. )

    1993-08-01

    Four-dimensional variational data assimilation is applied to a regional forecast model as part of the development of a new data assimilation system at the National Meteorological Center (NMC). The assimilation employs an operational version of the NMC's new regional forecast model defined in eta vertical coordinates, and data used are operationally produced optimal interpolation (OI) analyses (using the first guess from the NMC's global spectral model), available every 3 h. Humidity and parameterized processes are not included in the adjoint model integration. The calculation of gradients by the adjoint model is approximate since the forecast model is used in its full-physics operational form. All experiments are over a 12-h assimilation period with subsequent 48-h forecast. Three different types of assimilation experiments are performed: (a) adjustment of initial conditions only (standard [open quotes]adjoint[close quotes] approach), (b) adjustment of a correction to the model equations only (variational continuous assimilation), and (c) simultaneous or sequential adjustment of both initial conditions and the correction term. Results indicate significantly better results when the correction term is included in the assimilation. It is shown, for a single case, that the new technique [experiment (c)] is able to produce a forecast better than the current conventional OI assimilation. It is very important to note that these results are obtained with an approximate gradient, calculated from a simplified adjoint model. Thus, it may be possible to perform an operational four-dimensional variational data assimilation of realistic forecast models, even before more complex adjoint models are developed. Also, the results suggest that it may be possible to reduce the large computational cost of assimilation by using only a few iterations of the minimization algorithm. This fast convergence is encouraging from the prospective of operational use. 37 refs., 10 figs., 1 tab.

  19. Science on the Hill: The forecast calls for flu

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The forecast calls for flu The forecast calls for flu Using mathematics, computer programs, statistics and information about how disease develops and spreads, a research team at Los Alamos National Laboratory found a way to forecast the flu season and even next week's sickness trends. January 15, 2016 Forecasting flu A team from Los Alamos has developed a method to predict flu outbreaks based in part on influenza-related searches of Wikipedia. The forecast calls for flu Beyond the familiar flu,

  20. Assessment of the possibility of forecasting future natural gas curtailments

    SciTech Connect (OSTI)

    Lemont, S.

    1980-01-01

    This study provides a preliminary assessment of the potential for determining probabilities of future natural-gas-supply interruptions by combining long-range weather forecasts and natural-gas supply/demand projections. An illustrative example which measures the probability of occurrence of heating-season natural-gas curtailments for industrial users in the southeastern US is analyzed. Based on the information on existing long-range weather forecasting techniques and natural gas supply/demand projections enumerated above, especially the high uncertainties involved in weather forecasting and the unavailability of adequate, reliable natural-gas projections that take account of seasonal weather variations and uncertainties in the nation's energy-economic system, it must be concluded that there is little possibility, at the present time, of combining the two to yield useful, believable probabilities of heating-season gas curtailments in a form useful for corporate and government decision makers and planners. Possible remedial actions are suggested that might render such data more useful for the desired purpose in the future. The task may simply require the adequate incorporation of uncertainty and seasonal weather trends into modeling systems and the courage to report projected data, so that realistic natural gas supply/demand scenarios and the probabilities of their occurrence will be available to decision makers during a time when such information is greatly needed.

  1. Ramp Forecasting Performance from Improved Short-Term Wind Power Forecasting: Preprint

    SciTech Connect (OSTI)

    Zhang, J.; Florita, A.; Hodge, B. M.; Freedman, J.

    2014-05-01

    The variable and uncertain nature of wind generation presents a new concern to power system operators. One of the biggest concerns associated with integrating a large amount of wind power into the grid is the ability to handle large ramps in wind power output. Large ramps can significantly influence system economics and reliability, on which power system operators place primary emphasis. The Wind Forecasting Improvement Project (WFIP) was performed to improve wind power forecasts and determine the value of these improvements to grid operators. This paper evaluates the performance of improved short-term wind power ramp forecasting. The study is performed for the Electric Reliability Council of Texas (ERCOT) by comparing the experimental WFIP forecast to the current short-term wind power forecast (STWPF). Four types of significant wind power ramps are employed in the study; these are based on the power change magnitude, direction, and duration. The swinging door algorithm is adopted to extract ramp events from actual and forecasted wind power time series. The results show that the experimental short-term wind power forecasts improve the accuracy of the wind power ramp forecasting, especially during the summer.

  2. 1994 Solid waste forecast container volume summary

    SciTech Connect (OSTI)

    Templeton, K.J.; Clary, J.L.

    1994-09-01

    This report describes a 30-year forecast of the solid waste volumes by container type. The volumes described are low-level mixed waste (LLMW) and transuranic/transuranic mixed (TRU/TRUM) waste. These volumes and their associated container types will be generated or received at the US Department of Energy Hanford Site for storage, treatment, and disposal at Westinghouse Hanford Company`s Solid Waste Operations Complex (SWOC) during a 30-year period from FY 1994 through FY 2023. The forecast data for the 30-year period indicates that approximately 307,150 m{sup 3} of LLMW and TRU/TRUM waste will be managed by the SWOC. The main container type for this waste is 55-gallon drums, which will be used to ship 36% of the LLMW and TRU/TRUM waste. The main waste generator forecasting the use of 55-gallon drums is Past Practice Remediation. This waste will be generated by the Environmental Restoration Program during remediation of Hanford`s past practice sites. Although Past Practice Remediation is the primary generator of 55-gallon drums, most waste generators are planning to ship some percentage of their waste in 55-gallon drums. Long-length equipment containers (LECs) are forecasted to contain 32% of the LLMW and TRU/TRUM waste. The main waste generator forecasting the use of LECs is the Long-Length Equipment waste generator, which is responsible for retrieving contaminated long-length equipment from the tank farms. Boxes are forecasted to contain 21% of the waste. These containers are primarily forecasted for use by the Environmental Restoration Operations--D&D of Surplus Facilities waste generator. This waste generator is responsible for the solid waste generated during decontamination and decommissioning (D&D) of the facilities currently on the Surplus Facilities Program Plan. The remaining LLMW and TRU/TRUM waste volume is planned to be shipped in casks and other miscellaneous containers.

  3. Transforming the representation of the boundary layer and low clouds for high-resolution regional climate modeling: Final report

    SciTech Connect (OSTI)

    Huang, Hsin-Yuan; Hall, Alex

    2013-07-24

    Stratocumulus and shallow cumulus clouds in subtropical oceanic regions (e.g., Southeast Pacific) cover thousands of square kilometers and play a key role in regulating global climate (e.g., Klein and Hartmann, 1993). Numerical modeling is an essential tool to study these clouds in regional and global systems, but the current generation of climate and weather models has difficulties in representing them in a realistic way (e.g., Siebesma et al., 2004; Stevens et al., 2007; Teixeira et al., 2011). While numerical models resolve the large-scale flow, subgrid-scale parameterizations are needed to estimate small-scale properties (e.g. boundary layer turbulence and convection, clouds, radiation), which have significant influence on the resolved scale due to the complex nonlinear nature of the atmosphere. To represent the contribution of these fine-scale processes to the resolved scale, climate models use various parameterizations, which are the main pieces in the model that contribute to the low clouds dynamics and therefore are the major sources of errors or approximations in their representation. In this project, we aim to 1) improve our understanding of the physical processes in thermal circulation and cloud formation, 2) examine the performance and sensitivity of various parameterizations in the regional weather model (Weather Research and Forecasting model; WRF), and 3) develop, implement, and evaluate the advanced boundary layer parameterization in the regional model to better represent stratocumulus, shallow cumulus, and their transition. Thus, this project includes three major corresponding studies. We find that the mean diurnal cycle is sensitive to model domain in ways that reveal the existence of different contributions originating from the Southeast Pacific land-masses. The experiments suggest that diurnal variations in circulations and thermal structures over this region are influenced by convection over the Peruvian sector of the Andes cordillera, while

  4. The Value of Improved Short-Term Wind Power Forecasting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... up-ramp reserves c down cost in MWh of down-ramp reserves R down MW range for ... power forecasting and the increased gas usage that comes with less-accurate forecasting. ...

  5. PBL FY 2003 Second Quarter Review Forecast of Generation Accumulated...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the rate period (i.e., FY 2002-2006), a forecast of that end-of-year Accumulated Net Revenue (ANR) will be completed. If the ANR at the end of the forecast year falls below the...

  6. Solar Forecasting Gets a Boost from Watson, Accuracy Improved...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Forecasting Gets a Boost from Watson, Accuracy Improved by 30% Solar Forecasting Gets a Boost from Watson, Accuracy Improved by 30% October 27, 2015 - 11:48am Addthis IBM ...

  7. Wind Power Forecasting Error Distributions over Multiple Timescales (Presentation)

    SciTech Connect (OSTI)

    Hodge, B. M.; Milligan, M.

    2011-07-01

    This presentation presents some statistical analysis of wind power forecast errors and error distributions, with examples using ERCOT data.

  8. Combined Heat And Power Installation Market Forecast | OpenEI...

    Open Energy Info (EERE)

    Combined Heat And Power Installation Market Forecast Home There are currently no posts in this category. Syndicate...

  9. Wind power forecasting in U.S. electricity markets.

    SciTech Connect (OSTI)

    Botterud, A.; Wang, J.; Miranda, V.; Bessa, R. J.; Decision and Information Sciences; INESC Porto

    2010-04-01

    Wind power forecasting is becoming an important tool in electricity markets, but the use of these forecasts in market operations and among market participants is still at an early stage. The authors discuss the current use of wind power forecasting in U.S. ISO/RTO markets, and offer recommendations for how to make efficient use of the information in state-of-the-art forecasts.

  10. Wind power forecasting in U.S. Electricity markets

    SciTech Connect (OSTI)

    Botterud, Audun; Wang, Jianhui; Miranda, Vladimiro; Bessa, Ricardo J.

    2010-04-15

    Wind power forecasting is becoming an important tool in electricity markets, but the use of these forecasts in market operations and among market participants is still at an early stage. The authors discuss the current use of wind power forecasting in U.S. ISO/RTO markets, and offer recommendations for how to make efficient use of the information in state-of-the-art forecasts. (author)

  11. Wind Forecast Improvement Project Southern Study Area Final Report |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Wind Forecast Improvement Project Southern Study Area Final Report Wind Forecast Improvement Project Southern Study Area Final Report Wind Forecast Improvement Project Southern Study Area Final Report.pdf (15.76 MB) More Documents & Publications QER - Comment of Edison Electric Institute (EEI) 1 QER - Comment of Canadian Hydropower Association QER - Comment of Edison Electric Institute (EEI) 2

  12. Demand forecasting for automotive sector in Malaysia by system dynamics approach

    SciTech Connect (OSTI)

    Zulkepli, Jafri Abidin, Norhaslinda Zainal; Fong, Chan Hwa

    2015-12-11

    In general, Proton as an automotive company needs to forecast future demand of the car to assist in decision making related to capacity expansion planning. One of the forecasting approaches that based on judgemental or subjective factors is normally used to forecast the demand. As a result, demand could be overstock that eventually will increase the operation cost; or the company will face understock, which resulted losing their customers. Due to automotive industry is very challenging process because of high level of complexity and uncertainty involved in the system, an accurate tool to forecast the future of automotive demand from the modelling perspective is required. Hence, the main objective of this paper is to forecast the demand of automotive Proton car industry in Malaysia using system dynamics approach. Two types of intervention namely optimistic and pessimistic experiments scenarios have been tested to determine the capacity expansion that can prevent the company from overstocking. Finding from this study highlighted that the management needs to expand their production for optimistic scenario, whilst pessimistic give results that would otherwise. Finally, this study could help Proton Edar Sdn. Bhd (PESB) to manage the long-term capacity planning in order to meet the future demand of the Proton cars.

  13. Final Report on California Regional Wind Energy Forecasting Project:Application of NARAC Wind Prediction System

    SciTech Connect (OSTI)

    Chin, H S

    2005-07-26

    direction, using its wind tunnel facility at the windmill farm at the Altamont Pass. The main objective of LLNL's involvement is to provide UC-Davis with improved wind forecasts to drive the parameterization scheme of turbine power curves developed from the wind tunnel facility. Another objective of LLNL's effort is to support the windmill farm operation with real-time wind forecasts for the effective energy management. The forecast skill in capturing the situation to meet the cut-in and cutout speed of given turbines would help reduce the operation cost in low and strong wind scenarios, respectively. The main focus of this report is to evaluate the wind forecast errors of LLNL's three-dimensional real-time weather forecast model at the location with the complex terrain. The assessment of weather forecast accuracy would help quantify the source of wind energy forecast errors from the atmospheric forecast model and/or wind-tunnel module for further improvement in the wind energy forecasting system.

  14. Baseline data for the residential sector and development of a residential forecasting database

    SciTech Connect (OSTI)

    Hanford, J.W.; Koomey, J.G.; Stewart, L.E.; Lecar, M.E.; Brown, R.E.; Johnson, F.X.; Hwang, R.J.; Price, L.K.

    1994-05-01

    This report describes the Lawrence Berkeley Laboratory (LBL) residential forecasting database. It provides a description of the methodology used to develop the database and describes the data used for heating and cooling end-uses as well as for typical household appliances. This report provides information on end-use unit energy consumption (UEC) values of appliances and equipment historical and current appliance and equipment market shares, appliance and equipment efficiency and sales trends, cost vs efficiency data for appliances and equipment, product lifetime estimates, thermal shell characteristics of buildings, heating and cooling loads, shell measure cost data for new and retrofit buildings, baseline housing stocks, forecasts of housing starts, and forecasts of energy prices and other economic drivers. Model inputs and outputs, as well as all other information in the database, are fully documented with the source and an explanation of how they were derived.

  15. Two-Way Integration of WRF and CCSM for Regional Climate Simulations...

    Office of Scientific and Technical Information (OSTI)

    the process of dynamical downscaling by avoiding massive intermediate model outputs at high frequency that are typically required for offline regional downscaling. The inline...

  16. Forecastability as a Design Criterion in Wind Resource Assessment: Preprint

    SciTech Connect (OSTI)

    Zhang, J.; Hodge, B. M.

    2014-04-01

    This paper proposes a methodology to include the wind power forecasting ability, or 'forecastability,' of a site as a design criterion in wind resource assessment and wind power plant design stages. The Unrestricted Wind Farm Layout Optimization (UWFLO) methodology is adopted to maximize the capacity factor of a wind power plant. The 1-hour-ahead persistence wind power forecasting method is used to characterize the forecastability of a potential wind power plant, thereby partially quantifying the integration cost. A trade-off between the maximum capacity factor and the forecastability is investigated.

  17. Industrial end-use forecasting that incorporates DSM and air quality

    SciTech Connect (OSTI)

    Tutt, T.; Flory, J.

    1995-05-01

    The California Energy Commission (CEC) and major enregy utilities in California have generally depended on simple aggregate intensity or economic models to forecast energy use in the process industry sector (which covers large industries employing basic processes to transform raw materials, such as paper mills, glass plants, and cement plants). Two recent trends suggests that the time has come to develop a more disaggregate process industry forecasting model. First, recent efforts to improve air quality, especially by the South Coast Air Quality Management District (SCAQMD), could significantly affect energy use by the process industry by altering the technologies and processes employed in order to reduce emissions. Second, there is a renewed interest in Demand-Side Management (DSM), not only for utility least-cost planning, but also for improving the economic competitiveness and environmental compliance of the pro{minus}cess industries. A disaggregate forecasting model is critical to help the CEC and utilities evaluate both the air quality and DSM impacts on energy use. A crucial obstacle to the development and use of these detailed process industry forecasting models is the lack of good data about disaggregate energy use in the sector. The CEC is nearing completion of a project to begin to overcome this lack of data. The project is testing methds of developing detailed energy use data, collecting an initial database for a large portion of southern California, and providing recommendations and direction for further data collection efforts.

  18. Forecasting hotspots using predictive visual analytics approach

    SciTech Connect (OSTI)

    Maciejewski, Ross; Hafen, Ryan; Rudolph, Stephen; Cleveland, William; Ebert, David

    2014-12-30

    A method for forecasting hotspots is provided. The method may include the steps of receiving input data at an input of the computational device, generating a temporal prediction based on the input data, generating a geospatial prediction based on the input data, and generating output data based on the time series and geospatial predictions. The output data may be configured to display at least one user interface at an output of the computational device.

  19. A survey on wind power ramp forecasting.

    SciTech Connect (OSTI)

    Ferreira, C.; Gama, J.; Matias, L.; Botterud, A.; Wang, J.

    2011-02-23

    The increasing use of wind power as a source of electricity poses new challenges with regard to both power production and load balance in the electricity grid. This new source of energy is volatile and highly variable. The only way to integrate such power into the grid is to develop reliable and accurate wind power forecasting systems. Electricity generated from wind power can be highly variable at several different timescales: sub-hourly, hourly, daily, and seasonally. Wind energy, like other electricity sources, must be scheduled. Although wind power forecasting methods are used, the ability to predict wind plant output remains relatively low for short-term operation. Because instantaneous electrical generation and consumption must remain in balance to maintain grid stability, wind power's variability can present substantial challenges when large amounts of wind power are incorporated into a grid system. A critical issue is ramp events, which are sudden and large changes (increases or decreases) in wind power. This report presents an overview of current ramp definitions and state-of-the-art approaches in ramp event forecasting.

  20. Metrics for Evaluating the Accuracy of Solar Power Forecasting: Preprint

    SciTech Connect (OSTI)

    Zhang, J.; Hodge, B. M.; Florita, A.; Lu, S.; Hamann, H. F.; Banunarayanan, V.

    2013-10-01

    Forecasting solar energy generation is a challenging task due to the variety of solar power systems and weather regimes encountered. Forecast inaccuracies can result in substantial economic losses and power system reliability issues. This paper presents a suite of generally applicable and value-based metrics for solar forecasting for a comprehensive set of scenarios (i.e., different time horizons, geographic locations, applications, etc.). In addition, a comprehensive framework is developed to analyze the sensitivity of the proposed metrics to three types of solar forecasting improvements using a design of experiments methodology, in conjunction with response surface and sensitivity analysis methods. The results show that the developed metrics can efficiently evaluate the quality of solar forecasts, and assess the economic and reliability impact of improved solar forecasting.

  1. Use of ARM observations and numerical models to determine radiative and latent heating profiles of mesoscale convective systems for general circulation models

    SciTech Connect (OSTI)

    Houze, Jr., Robert A.

    2013-11-13

    We examined cloud radar data in monsoon climates, using cloud radars at Darwin in the Australian monsoon, on a ship in the Bay of Bengal in the South Asian monsoon, and at Niamey in the West African monsoon. We followed on with a more in-depth study of the continental MCSs over West Africa. We investigated whether the West African anvil clouds connected with squall line MCSs passing over the Niamey ARM site could be simulated in a numerical model by comparing the observed anvil clouds to anvil structures generated by the Weather Research and Forecasting (WRF) mesoscale model at high resolution using six different ice-phase microphysical schemes. We carried out further simulations with a cloud-resolving model forced by sounding network budgets over the Niamey region and over the northern Australian region. We have devoted some of the effort of this project to examining how well satellite data can determine the global breadth of the anvil cloud measurements obtained at the ARM ground sites. We next considered whether satellite data could be objectively analyzed to so that their large global measurement sets can be systematically related to the ARM measurements. Further differences were detailed between the land and ocean MCS anvil clouds by examining the interior structure of the anvils with the satellite-detected the CloudSat Cloud Profiling Radar (CPR). The satellite survey of anvil clouds in the Indo-Pacific region was continued to determine the role of MCSs in producing the cloud pattern associated with the MJO.

  2. Upcoming Funding Opportunity for Wind Forecasting Improvement Project in

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Complex Terrain | Department of Energy Wind Forecasting Improvement Project in Complex Terrain Upcoming Funding Opportunity for Wind Forecasting Improvement Project in Complex Terrain February 12, 2014 - 10:47am Addthis On February 11, 2014 the Wind Program announced a Notice of Intent to issue a funding opportunity entitled "Wind Forecasting Improvement Project in Complex Terrain." By researching the physical processes that take place in complex terrain, this funding would improve

  3. FY 2004 Second Quarter Review Forecast of Generation Accumulated...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bonneville Power Administration Power Business Line Generation (PBL) Accumulated Net Revenue Forecast for Financial-Based Cost Recovery Adjustment Clause (FB CRAC) and Safety-Net...

  4. PBL FY 2003 Third Quarter Review Forecast of Generation Accumulated...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2003 Bonneville Power Administration Power Business Line Generation Accumulated Net Revenue Forecast for Financial-Based Cost Recovery Adjustment Clause (FB CRAC) and Safety-Net...

  5. Improving the Accuracy of Solar Forecasting Funding Opportunity...

    Energy Savers [EERE]

    Through the Improving the Accuracy of Solar Forecasting Funding Opportunity, DOE is funding solar projects that are helping utilities, grid operators, solar power plant owners, and ...

  6. NREL: Resource Assessment and Forecasting - Data and Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Data and Resources National Solar Radiation Database NREL resource assessment and forecasting research information is available from the following sources. Renewable Resource Data ...

  7. Roel Neggers European Centre for Medium-range Weather Forecasts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    transition from shallow to deep convection using a dual mass flux boundary layer scheme Roel Neggers European Centre for Medium-range Weather Forecasts Introduction " " % % &...

  8. Radar Wind Profiler for Cloud Forecasting at Brookhaven National...

    Office of Scientific and Technical Information (OSTI)

    forecasts for solar-energy applications and 2) to provide vertical profiling capabilities for the study of dynamics (i.e., vertical velocity) and hydrometeors in winter storms. ...

  9. DOE Announces Webinars on Solar Forecasting Metrics, the DOE...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Announces Webinars on Solar Forecasting Metrics, the DOE ... from adopting the latest energy efficiency and renewable ... to liquids technology, advantages of using natural gas, ...

  10. DOE Benefits Forecasts: Report of the External Peer Review Panel

    Office of Energy Efficiency and Renewable Energy (EERE)

    A report for the FY 2007 GPRA methodology review, highlighting the views of an external expert peer review panel on DOE benefits forecasts.

  11. New Forecasting Tools Enhance Wind Energy Integration In Idaho...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... RIT forecasting is saving costs and improving operational practices for IPC and helping integrate wind power more efficiently and cost effectively. Figure 3 shows how the ...

  12. A Review of Variable Generation Forecasting in the West: July...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Cost Assignment - Only a few respondents partly or fully recover forecasting costs from variable generators. Many simply absorb the costs, possibly viewing them as relatively ...

  13. Wind Power Forecasting Error Distributions: An International Comparison; Preprint

    SciTech Connect (OSTI)

    Hodge, B. M.; Lew, D.; Milligan, M.; Holttinen, H.; Sillanpaa, S.; Gomez-Lazaro, E.; Scharff, R.; Soder, L.; Larsen, X. G.; Giebel, G.; Flynn, D.; Dobschinski, J.

    2012-09-01

    Wind power forecasting is expected to be an important enabler for greater penetration of wind power into electricity systems. Because no wind forecasting system is perfect, a thorough understanding of the errors that do occur can be critical to system operation functions, such as the setting of operating reserve levels. This paper provides an international comparison of the distribution of wind power forecasting errors from operational systems, based on real forecast data. The paper concludes with an assessment of similarities and differences between the errors observed in different locations.

  14. ANL Software Improves Wind Power Forecasting | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    ... The licensing arrangement helps to facilitate transfer of the statistical learning algorithms developed in the project to industry use. A leading forecast provider in the United ...

  15. Turbulence-driven coronal heating and improvements to empirical forecasting of the solar wind

    SciTech Connect (OSTI)

    Woolsey, Lauren N.; Cranmer, Steven R.

    2014-06-01

    Forecasting models of the solar wind often rely on simple parameterizations of the magnetic field that ignore the effects of the full magnetic field geometry. In this paper, we present the results of two solar wind prediction models that consider the full magnetic field profile and include the effects of Alfvn waves on coronal heating and wind acceleration. The one-dimensional magnetohydrodynamic code ZEPHYR self-consistently finds solar wind solutions without the need for empirical heating functions. Another one-dimensional code, introduced in this paper (The Efficient Modified-Parker-Equation-Solving Tool, TEMPEST), can act as a smaller, stand-alone code for use in forecasting pipelines. TEMPEST is written in Python and will become a publicly available library of functions that is easy to adapt and expand. We discuss important relations between the magnetic field profile and properties of the solar wind that can be used to independently validate prediction models. ZEPHYR provides the foundation and calibration for TEMPEST, and ultimately we will use these models to predict observations and explain space weather created by the bulk solar wind. We are able to reproduce with both models the general anticorrelation seen in comparisons of observed wind speed at 1 AU and the flux tube expansion factor. There is significantly less spread than comparing the results of the two models than between ZEPHYR and a traditional flux tube expansion relation. We suggest that the new code, TEMPEST, will become a valuable tool in the forecasting of space weather.

  16. Enhanced Short-Term Wind Power Forecasting and Value to Grid Operations: Preprint

    SciTech Connect (OSTI)

    Orwig, K.; Clark, C.; Cline, J.; Benjamin, S.; Wilczak, J.; Marquis, M.; Finley, C.; Stern, A.; Freedman, J.

    2012-09-01

    The current state of the art of wind power forecasting in the 0- to 6-hour time frame has levels of uncertainty that are adding increased costs and risk on the U.S. electrical grid. It is widely recognized within the electrical grid community that improvements to these forecasts could greatly reduce the costs and risks associated with integrating higher penetrations of wind energy. The U.S. Department of Energy has sponsored a research campaign in partnership with the National Oceanic and Atmospheric Administration (NOAA) and private industry to foster improvements in wind power forecasting. The research campaign involves a three-pronged approach: 1) a 1-year field measurement campaign within two regions; 2) enhancement of NOAA's experimental 3-km High-Resolution Rapid Refresh (HRRR) model by assimilating the data from the field campaign; and 3) evaluation of the economic and reliability benefits of improved forecasts to grid operators. This paper and presentation provides an overview of the regions selected, instrumentation deployed, data quality and control, assimilation of data into HRRR, and preliminary results of HRRR performance analysis.

  17. Voluntary Green Power Market Forecast through 2015

    SciTech Connect (OSTI)

    Bird, L.; Holt, E.; Sumner, J.; Kreycik, C.

    2010-05-01

    Various factors influence the development of the voluntary 'green' power market--the market in which consumers purchase or produce power from non-polluting, renewable energy sources. These factors include climate policies, renewable portfolio standards (RPS), renewable energy prices, consumers' interest in purchasing green power, and utilities' interest in promoting existing programs and in offering new green options. This report presents estimates of voluntary market demand for green power through 2015 that were made using historical data and three scenarios: low-growth, high-growth, and negative-policy impacts. The resulting forecast projects the total voluntary demand for renewable energy in 2015 to range from 63 million MWh annually in the low case scenario to 157 million MWh annually in the high case scenario, representing an approximately 2.5-fold difference. The negative-policy impacts scenario reflects a market size of 24 million MWh. Several key uncertainties affect the results of this forecast, including uncertainties related to growth assumptions, the impacts that policy may have on the market, the price and competitiveness of renewable generation, and the level of interest that utilities have in offering and promoting green power products.

  18. Technical analysis in short-term uranium price forecasting

    SciTech Connect (OSTI)

    Schramm, D.S.

    1990-03-01

    As market participants anticipate the end of the current uranium price decline and its subsequent reversal, increased attention will be focused upon forecasting future price movements. Although uranium is economically similar to other mineral commodities, it is questionable whether methodologies used to forecast price movements of such commodities may be successfully applied to uranium.

  19. Comparison of Wind Power and Load Forecasting Error Distributions: Preprint

    SciTech Connect (OSTI)

    Hodge, B. M.; Florita, A.; Orwig, K.; Lew, D.; Milligan, M.

    2012-07-01

    The introduction of large amounts of variable and uncertain power sources, such as wind power, into the electricity grid presents a number of challenges for system operations. One issue involves the uncertainty associated with scheduling power that wind will supply in future timeframes. However, this is not an entirely new challenge; load is also variable and uncertain, and is strongly influenced by weather patterns. In this work we make a comparison between the day-ahead forecasting errors encountered in wind power forecasting and load forecasting. The study examines the distribution of errors from operational forecasting systems in two different Independent System Operator (ISO) regions for both wind power and load forecasts at the day-ahead timeframe. The day-ahead timescale is critical in power system operations because it serves the unit commitment function for slow-starting conventional generators.

  20. 3TIER Environmental Forecast Group Inc 3TIER | Open Energy Information

    Open Energy Info (EERE)

    TIER Environmental Forecast Group Inc 3TIER Jump to: navigation, search Name: 3TIER Environmental Forecast Group Inc (3TIER) Place: Seattle, Washington Zip: 98121 Sector: Renewable...

  1. Model analysis of the anthropogenic aerosol effect on clouds over East Asia

    SciTech Connect (OSTI)

    Gao, Yi; Zhang, Meigen; Liu, Xiaohong; Zhao, Chun

    2012-01-16

    A coupled meteorology and aerosol/chemistry model WRF-Chem (Weather Research and Forecast model coupled with Chemistry) was used to conduct a pair of simulations with present-day (PD) and preindustrial (PI) emissions over East Asia to examine the aerosol indirect effect on clouds. As a result of an increase in aerosols in January, the cloud droplet number increased by 650 cm{sup -3} over the ocean and East China, 400 cm{sup -3} over Central and Southwest China, and less than 200 cm{sup -3} over North China. The cloud liquid water path (LWP) increased by 40-60 g m{sup -2} over the ocean and Southeast China and 30 g m{sup -2} over Central China; the LWP increased less than 5 g m{sup -2} or decreased by 5 g m{sup -2} over North China. The effective radius (Re) decreased by more than 4 {mu}m over Southwest, Central, and Southeast China and 2 {mu}m over North China. In July, variations in cloud properties were more uniform; the cloud droplet number increased by approximately 250-400 cm{sup -3}, the LWP increased by approximately 30-50 g m{sup -2}, and Re decreased by approximately 3 {mu}m over most regions of China. In response to cloud property changes from PI to PD, shortwave (SW) cloud radiative forcing strengthened by 30 W m{sup -2} over the ocean and 10 W m{sup -2} over Southeast China, and it weakened slightly by approximately 2-10 W m{sup -2} over Central and Southwest China in January. In July, SW cloud radiative forcing strengthened by 15 W m{sup -2} over Southeast and North China and weakened by 10 W m{sup -2} over Central China. The different responses of SW cloud radiative forcing in different regions was related to cloud feedbacks and natural variability.

  2. Modelling economic losses of historic and present-day high-impact winter windstorms in Switzerland

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Welker, Christoph; Martius, Olivia; Stucki, Peter; Bresch, David; Dierer, Silke; Bronnimann, Stefan

    2016-03-30

    This study investigates the wind gusts and associated economic loss patterns of high-impact winter windstorms in Switzerland between 1871 and 2011. A novel approach for simulating windstorm-related gusts and losses at regional to local scales is applied to a sample of 84 windstorms. The approach involves the dynamical downscaling of the Twentieth Century Reanalysis (20CR) ensemble mean to 3-km horizontal grid size using the Weather Research and Forecasting (WRF) model. Economic losses are simulated at municipal level for present-day asset distribution based on the downscaled (parameterised) wind gusts at high spatiotemporal resolution using the open-source impact model climada. A comparisonmore » with insurance loss data for two recent windstorms ("Lothar'' in 1999, "Joachim'' in 2011) indicates that the loss simulation allows to realistically simulate the spatial patterns of windstorm losses. The loss amplitude is strongly underestimated for 'Lothar', while it is in reasonable agreement for 'Joachim'. Possible reasons are discussed. Uncertainties concerning the loss simulation arise from the wind gust estimation method applied; estimates can differ considerably among the different methods, in particular over high orography. Furthermore, the quality of the loss simulation is affected by the underlying simplified assumptions regarding the distribution of assets and their susceptibilities to damage. For the whole windstorm sample, composite averages of simulated wind gust speed and loss are computed. Both composites reveal high values for the densely populated Swiss Plateau and lower values for south-eastern Switzerland; metropolitan areas stand out in the loss composite. Eight of the top 10 events concerning the losses simulated for present-day asset distribution and summed over all Swiss municipalities occurred after 1950. Furthermore, it remains uncertain whether this is due to decadal-scale changes of winter windstorms in Switzerland or merely due to a possible

  3. Forecasting the Magnitude of Sustainable Biofeedstock Supplies: the Challenges and the Rewards

    SciTech Connect (OSTI)

    Graham, Robin Lambert

    2007-01-01

    Forecasting the magnitude of sustainable biofeedstock supplies is challenging because of 1) the myriad of potential feedstock types and their management 2) the need to account for the spatial variation of both the supplies and their environmental and economic consequences, and 3) the inherent challenges of optimizing across economic and environmental considerations. Over the last two decades U.S. biomass forecasts have become increasingly complex and sensitive to environmental and economic considerations. More model development and research is needed however, to capture the landscape and regional tradeoffs of differing biofeedstock supplies especially with regards water quality concerns and wildlife/biodiversity. Forecasts need to be done in the context of the direction of change and what the probable land use and attendant environmental and economic outcomes would be if biofeedstocks were not being produced. To evaluate sustainability, process-oriented models need to be coupled or used to inform sector models and more work needs to be done on developing environmental metrics that are useful for evaluating economic and environmental tradeoffs. These challenges are exciting and worthwhile as they will enable the bioenergy industry to capture environmental and social benefits of biofeedstock production and reduce risks.

  4. Developing an industrial end-use forecast: A case study at the Los Angeles department of water and power

    SciTech Connect (OSTI)

    Mureau, T.H.; Francis, D.M.

    1995-05-01

    The Los Angeles Department of Water and Power (LADWP) uses INFORM 1.0 to forecast industrial sector energy. INFORM 1.0 provides an end-use framework that can be used to forecast electricity, natural gas or other fuels consumption. Included with INFORM 1.0 is a default date set including the input data and equations necessary to solve each model. LADWP has substituted service area specific data for the default data wherever possible. This paper briefly describes the steps LADWP follows in developing those inputs and application in INFORM 1.0.

  5. Application of Ensemble Sensitivity Analysis to Observation Targeting for Short-term Wind Speed Forecasting

    SciTech Connect (OSTI)

    Zack, J; Natenberg, E; Young, S; Manobianco, J; Kamath, C

    2010-02-21

    The operators of electrical grids, sometimes referred to as Balancing Authorities (BA), typically make critical decisions on how to most reliably and economically balance electrical load and generation in time frames ranging from a few minutes to six hours ahead. At higher levels of wind power generation, there is an increasing need to improve the accuracy of 0- to 6-hour ahead wind power forecasts. Forecasts on this time scale have typically been strongly dependent on short-term trends indicated by the time series of power production and meteorological data from a wind farm. Additional input information is often available from the output of Numerical Weather Prediction (NWP) models and occasionally from off-site meteorological towers in the region surrounding the wind generation facility. A widely proposed approach to improve short-term forecasts is the deployment of off-site meteorological towers at locations upstream from the wind generation facility in order to sense approaching wind perturbations. While conceptually appealing, it turns out that, in practice, it is often very difficult to derive significant benefit in forecast performance from this approach. The difficulty is rooted in the fact that the type, scale, and amplitude of the processes controlling wind variability at a site change from day to day if not from hour to hour. Thus, a location that provides some useful forecast information for one time may not be a useful predictor a few hours later. Indeed, some processes that cause significant changes in wind power production operate predominantly in the vertical direction and thus cannot be monitored by employing a network of sensors at off-site locations. Hence, it is very challenging to determine the type of sensors and deployment locations to get the most benefit for a specific short-term forecast application. Two tools recently developed in the meteorological research community have the potential to help determine the locations and parameters to

  6. Statistical surrogate models for prediction of high-consequence...

    Office of Scientific and Technical Information (OSTI)

    existing coupled atmospheric models due to the high computational cost of each simulation. ... CLIMATES; DIAGNOSIS; DISTRIBUTION; FORECASTING; GENERAL CIRCULATION MODELS; METRICS; ...

  7. 2007 Wholesale Power Rate Case Final Proposal : Market Price Forecast Study.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    2006-07-01

    This study presents BPA's market price forecasts for the Final Proposal, which are based on AURORA modeling. AURORA calculates the variable cost of the marginal resource in a competitively priced energy market. In competitive market pricing, the marginal cost of production is equivalent to the market-clearing price. Market-clearing prices are important factors for informing BPA's power rates. AURORA was used as the primary tool for (a) estimating the forward price for the IOU REP Settlement benefits calculation for fiscal years (FY) 2008 and 2009, (b) estimating the uncertainty surrounding DSI payments and IOU REP Settlements benefits, (c) informing the secondary revenue forecast and (d) providing a price input used for the risk analysis. For information about the calculation of the secondary revenues, uncertainty regarding the IOU REP Settlement benefits and DSI payment uncertainty, and the risk run, see Risk Analysis Study WP-07-FS-BPA-04.

  8. Alternative Measures of Welfare in Macroeconomic Models

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... To the extent that policy changes require forecasting, a CGE model may not be the ... it can incorporate the direct and indirect costs and benefits of different policies. ...

  9. Development and Demonstration of Advanced Forecasting, Power and Environmental Planning and Management Tools and Best Practices

    Office of Energy Efficiency and Renewable Energy (EERE)

    Development and Demonstration of Advanced Forecasting, Power and Environmental Planning and Management Tools and Best Practices

  10. Wind Energy Technology Trends: Comparing and Contrasting Recent Cost and Performance Forecasts (Poster)

    SciTech Connect (OSTI)

    Lantz, E.; Hand, M.

    2010-05-01

    Poster depicts wind energy technology trends, comparing and contrasting recent cost and performance forecasts.

  11. World oil inventories forecast to grow significantly in 2016...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    World oil inventories forecast to grow significantly in 2016 and 2017 Global oil inventories are expected to continue strong growth over the next two years which should keep oil ...

  12. PBL FY 2002 Second Quarter Review Forecast of Generation Accumulated...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Slice true-ups, and actual expense levels. Any variation of these can change the net revenue situation. FY 2002 Forecasted Second Quarter Results 170 (418) FY 2002 Unaudited...

  13. 915 MHz Wind Profiler for Cloud Forecasting at Brookhaven National...

    Office of Scientific and Technical Information (OSTI)

    U.S. DEPARTMENT OF HP IENERGY Office of Science DOESC-ARM-15-024 915-MHz Wind Profiler ... M Jensen et al., March 2016, DOESC-ARM-15-024 915-MHz Wind Profiler for Cloud Forecasting ...

  14. Improving the Accuracy of Solar Forecasting Funding Opportunity

    Broader source: Energy.gov [DOE]

    Through the Improving the Accuracy of Solar Forecasting Funding Opportunity, DOE is funding solar projects that are helping utilities, grid operators, solar power plant owners, and other...

  15. Value of Improved Short-Term Wind Power Forecasting

    SciTech Connect (OSTI)

    Hodge, B. M.; Florita, A.; Sharp, J.; Margulis, M.; Mcreavy, D.

    2015-02-01

    This report summarizes an assessment of improved short-term wind power forecasting in the California Independent System Operator (CAISO) market and provides a quantification of its potential value.

  16. The Wind Forecast Improvement Project (WFIP): A Public/Private...

    Broader source: Energy.gov (indexed) [DOE]

    The Wind Forecast Improvement Project (WFIP) is a U. S. Department of Energy (DOE) sponsored research project whose overarching goals are to improve the accuracy of short-term wind ...

  17. Solar Trackers Market Forecast | OpenEI Community

    Open Energy Info (EERE)

    Solar Trackers Market Forecast Home John55364's picture Submitted by John55364(100) Contributor 12 May, 2015 - 03:54 Solar Trackers Market - Global Industry Analysis, Size, Share,...

  18. Recently released EIA report presents international forecasting data

    SciTech Connect (OSTI)

    1995-05-01

    This report presents information from the Energy Information Administration (EIA). Articles are included on international energy forecasting data, data on the use of home appliances, gasoline prices, household energy use, and EIA information products and dissemination avenues.

  19. New Climate Research Centers Forecast Changes and Challenges | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Climate Research Centers Forecast Changes and Challenges New Climate Research Centers Forecast Changes and Challenges October 25, 2013 - 12:24pm Addthis This artist's rendering illustrates the full site installation, including a new aerosol observing system (far left) and a precipitation radar (far right, with 20-ft tower). The site is located near the Graciosa Island aiport terminal, hidden by the image inset. | Image courtesy of ARM Climate Research Facility. This artist's

  20. Energy Department Forecasts Geothermal Achievements in 2015 | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Forecasts Geothermal Achievements in 2015 Energy Department Forecasts Geothermal Achievements in 2015 The 40th annual Stanford Geothermal Workshop in January featured speakers in the geothermal sector, including Jay Nathwani, Acting Director of the Energy Department's Geothermal Technologies Office. Nathwani shared achievements and challenges in the program's technical portfolio. The 40th annual Stanford Geothermal Workshop in January featured speakers in the geothermal sector,

  1. A hybrid procedure for MSW generation forecasting at multiple time scales in Xiamen City, China

    SciTech Connect (OSTI)

    Xu, Lilai; Gao, Peiqing; Cui, Shenghui; Liu, Chun

    2013-06-15

    Highlights: ► We propose a hybrid model that combines seasonal SARIMA model and grey system theory. ► The model is robust at multiple time scales with the anticipated accuracy. ► At month-scale, the SARIMA model shows good representation for monthly MSW generation. ► At medium-term time scale, grey relational analysis could yield the MSW generation. ► At long-term time scale, GM (1, 1) provides a basic scenario of MSW generation. - Abstract: Accurate forecasting of municipal solid waste (MSW) generation is crucial and fundamental for the planning, operation and optimization of any MSW management system. Comprehensive information on waste generation for month-scale, medium-term and long-term time scales is especially needed, considering the necessity of MSW management upgrade facing many developing countries. Several existing models are available but of little use in forecasting MSW generation at multiple time scales. The goal of this study is to propose a hybrid model that combines the seasonal autoregressive integrated moving average (SARIMA) model and grey system theory to forecast MSW generation at multiple time scales without needing to consider other variables such as demographics and socioeconomic factors. To demonstrate its applicability, a case study of Xiamen City, China was performed. Results show that the model is robust enough to fit and forecast seasonal and annual dynamics of MSW generation at month-scale, medium- and long-term time scales with the desired accuracy. In the month-scale, MSW generation in Xiamen City will peak at 132.2 thousand tonnes in July 2015 – 1.5 times the volume in July 2010. In the medium term, annual MSW generation will increase to 1518.1 thousand tonnes by 2015 at an average growth rate of 10%. In the long term, a large volume of MSW will be output annually and will increase to 2486.3 thousand tonnes by 2020 – 2.5 times the value for 2010. The hybrid model proposed in this paper can enable decision makers to

  2. Validation of a 20-year forecast of US childhood lead poisoning: Updated prospects for 2010

    SciTech Connect (OSTI)

    Jacobs, David E. . E-mail: dejacobs@starpower.net; Nevin, Rick

    2006-11-15

    We forecast childhood lead poisoning and residential lead paint hazard prevalence for 1990-2010, based on a previously unvalidated model that combines national blood lead data with three different housing data sets. The housing data sets, which describe trends in housing demolition, rehabilitation, window replacement, and lead paint, are the American Housing Survey, the Residential Energy Consumption Survey, and the National Lead Paint Survey. Blood lead data are principally from the National Health and Nutrition Examination Survey. New data now make it possible to validate the midpoint of the forecast time period. For the year 2000, the model predicted 23.3 million pre-1960 housing units with lead paint hazards, compared to an empirical HUD estimate of 20.6 million units. Further, the model predicted 498,000 children with elevated blood lead levels (EBL) in 2000, compared to a CDC empirical estimate of 434,000. The model predictions were well within 95% confidence intervals of empirical estimates for both residential lead paint hazard and blood lead outcome measures. The model shows that window replacement explains a large part of the dramatic reduction in lead poisoning that occurred from 1990 to 2000. Here, the construction of the model is described and updated through 2010 using new data. Further declines in childhood lead poisoning are achievable, but the goal of eliminating children's blood lead levels {>=}10 {mu}g/dL by 2010 is unlikely to be achieved without additional action. A window replacement policy will yield multiple benefits of lead poisoning prevention, increased home energy efficiency, decreased power plant emissions, improved housing affordability, and other previously unrecognized benefits. Finally, combining housing and health data could be applied to forecasting other housing-related diseases and injuries.

  3. AVLIS: a technical and economic forecast

    SciTech Connect (OSTI)

    Davis, J.I.; Spaeth, M.L.

    1986-01-01

    The AVLIS process has intrinsically large isotopic selectivity and hence high separative capacity per module. The critical components essential to achieving the high production rates represent a small fraction (approx.10%) of the total capital cost of a production facility, and the reference production designs are based on frequent replacement of these components. The specifications for replacement frequencies in a plant are conservative with respect to our expectations; it is reasonable to expect that, as the plant is operated, the specifications will be exceeded and production costs will continue to fall. Major improvements in separator production rates and laser system efficiencies (approx.power) are expected to occur as a natural evolution in component improvements. With respect to the reference design, such improvements have only marginal economic value, but given the exigencies of moving from engineering demonstration to production operations, we continue to pursue these improvements in order to offset any unforeseen cost increases. Thus, our technical and economic forecasts for the AVLIS process remain very positive. The near-term challenge is to obtain stable funding and a commitment to bring the process to full production conditions within the next five years. If the funding and commitment are not maintained, the team will disperse and the know-how will be lost before it can be translated into production operations. The motivation to preserve the option for low-cost AVLIS SWU production is integrally tied to the motivation to maintain a competitive nuclear option. The US industry can certainly survive without AVLIS, but our tradition as technology leader in the industry will certainly be lost.

  4. Wind power forecasting : state-of-the-art 2009.

    SciTech Connect (OSTI)

    Monteiro, C.; Bessa, R.; Miranda, V.; Botterud, A.; Wang, J.; Conzelmann, G.; Decision and Information Sciences; INESC Porto

    2009-11-20

    Many countries and regions are introducing policies aimed at reducing the environmental footprint from the energy sector and increasing the use of renewable energy. In the United States, a number of initiatives have been taken at the state level, from renewable portfolio standards (RPSs) and renewable energy certificates (RECs), to regional greenhouse gas emission control schemes. Within the U.S. Federal government, new energy and environmental policies and goals are also being crafted, and these are likely to increase the use of renewable energy substantially. The European Union is pursuing implementation of its ambitious 20/20/20 targets, which aim (by 2020) to reduce greenhouse gas emissions by 20% (as compared to 1990), increase the amount of renewable energy to 20% of the energy supply, and reduce the overall energy consumption by 20% through energy efficiency. With the current focus on energy and the environment, efficient integration of renewable energy into the electric power system is becoming increasingly important. In a recent report, the U.S. Department of Energy (DOE) describes a model-based scenario, in which wind energy provides 20% of the U.S. electricity demand in 2030. The report discusses a set of technical and economic challenges that have to be overcome for this scenario to unfold. In Europe, several countries already have a high penetration of wind power (i.e., in the range of 7 to 20% of electricity consumption in countries such as Germany, Spain, Portugal, and Denmark). The rapid growth in installed wind power capacity is expected to continue in the United States as well as in Europe. A large-scale introduction of wind power causes a number of challenges for electricity market and power system operators who will have to deal with the variability and uncertainty in wind power generation when making their scheduling and dispatch decisions. Wind power forecasting (WPF) is frequently identified as an important tool to address the variability and

  5. Forecasting the response of Earth's surface to future climatic and land use changes: A review of methods and research needs

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Pelletier, Jon D.; Murray, A. Brad; Pierce, Jennifer L.; Bierman, Paul R.; Breshears, David D.; Crosby, Benjamin T.; Ellis, Michael; Foufoula-Georgiou, Efi; Heimsath, Arjun M.; Houser, Chris; et al

    2015-07-14

    In the future, Earth will be warmer, precipitation events will be more extreme, global mean sea level will rise, and many arid and semiarid regions will be drier. Human modifications of landscapes will also occur at an accelerated rate as developed areas increase in size and population density. We now have gridded global forecasts, being continually improved, of the climatic and land use changes (C&LUC) that are likely to occur in the coming decades. However, besides a few exceptions, consensus forecasts do not exist for how these C&LUC will likely impact Earth-surface processes and hazards. In some cases, we havemore » the tools to forecast the geomorphic responses to likely future C&LUC. Fully exploiting these models and utilizing these tools will require close collaboration among Earth-surface scientists and Earth-system modelers. This paper assesses the state-of-the-art tools and data that are being used or could be used to forecast changes in the state of Earth's surface as a result of likely future C&LUC. We also propose strategies for filling key knowledge gaps, emphasizing where additional basic research and/or collaboration across disciplines are necessary. The main body of the paper addresses cross-cutting issues, including the importance of nonlinear/threshold-dominated interactions among topography, vegetation, and sediment transport, as well as the importance of alternate stable states and extreme, rare events for understanding and forecasting Earth-surface response to C&LUC. Five supplements delve into different scales or process zones (global-scale assessments and fluvial, aeolian, glacial/periglacial, and coastal process zones) in detail.« less

  6. Forecasting the response of Earth's surface to future climatic and land use changes: A review of methods and research needs

    SciTech Connect (OSTI)

    Pelletier, Jon D.; Murray, A. Brad; Pierce, Jennifer L.; Bierman, Paul R.; Breshears, David D.; Crosby, Benjamin T.; Ellis, Michael; Foufoula-Georgiou, Efi; Heimsath, Arjun M.; Houser, Chris; Lancaster, Nick; Marani, Marco; Merritts, Dorothy J.; Moore, Laura J.; Pederson, Joel L.; Poulos, Michael J.; Rittenour, Tammy M.; Rowland, Joel C.; Ruggiero, Peter; Ward, Dylan J.; Wickert, Andrew D.; Yager, Elowyn M.

    2015-07-14

    In the future, Earth will be warmer, precipitation events will be more extreme, global mean sea level will rise, and many arid and semiarid regions will be drier. Human modifications of landscapes will also occur at an accelerated rate as developed areas increase in size and population density. We now have gridded global forecasts, being continually improved, of the climatic and land use changes (C&LUC) that are likely to occur in the coming decades. However, besides a few exceptions, consensus forecasts do not exist for how these C&LUC will likely impact Earth-surface processes and hazards. In some cases, we have the tools to forecast the geomorphic responses to likely future C&LUC. Fully exploiting these models and utilizing these tools will require close collaboration among Earth-surface scientists and Earth-system modelers. This paper assesses the state-of-the-art tools and data that are being used or could be used to forecast changes in the state of Earth's surface as a result of likely future C&LUC. We also propose strategies for filling key knowledge gaps, emphasizing where additional basic research and/or collaboration across disciplines are necessary. The main body of the paper addresses cross-cutting issues, including the importance of nonlinear/threshold-dominated interactions among topography, vegetation, and sediment transport, as well as the importance of alternate stable states and extreme, rare events for understanding and forecasting Earth-surface response to C&LUC. Five supplements delve into different scales or process zones (global-scale assessments and fluvial, aeolian, glacial/periglacial, and coastal process zones) in detail.

  7. Survey of Variable Generation Forecasting in the West: August 2011 - June 2012

    SciTech Connect (OSTI)

    Porter, K.; Rogers, J.

    2012-04-01

    This report surveyed Western Interconnection Balancing Authorities regarding their implementation of variable generation forecasting, the lessons learned to date, and recommendations they would offer to other Balancing Authorities who are considering variable generation forecasting. Our survey found that variable generation forecasting is at an early implementation stage in the West. Eight of the eleven Balancing Authorities interviewed began forecasting in 2008 or later. It also appears that less than one-half of the Balancing Authorities in the West are currently utilizing variable generation forecasting, suggesting that more Balancing Authorities in the West will engage in variable generation forecasting should more variable generation capacity be added.

  8. 1980 annual report to Congress: Volume three, Forecasts: Summary

    SciTech Connect (OSTI)

    Not Available

    1981-05-27

    This report presents an overview of forecasts of domestic energy consumption, production, and prices for the year 1990. These results are selected from more detailed projections prepared and published in Volume 3 of the Energy Information Administration 1980 Annual Report to Congress. This report focuses specifically upon the 1980's and concentrates upon similarities and differences in the domestic energy system, as forecast, compared to the national experience in the years immediately following the 1973--1974 oil embargo. Interest in the 1980's stems not only from its immediacy in time, but also from its importance as a time in which certain adjustments to higher energy prices are expected to take place. The forecasts presented do not attempt to account for all of this wide range of potentially important forces that could conceivably alter the energy situation. Instead, the projections are based on a particular set of assumptions that seems reasonable in light of what is currently known. 9 figs., 25 tabs.

  9. Making Wind Energy Predictable: New Profilers Provide Hourly Forecasts |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Making Wind Energy Predictable: New Profilers Provide Hourly Forecasts Making Wind Energy Predictable: New Profilers Provide Hourly Forecasts May 11, 2016 - 6:48pm Addthis Balancing the power grid is an art-or at least a scientific study in chaos-and the Energy Department is hoping wind energy can take a greater role in the act. Yet, the intermittency of wind-sometimes it's blowing, sometimes it's not-makes adding it smoothly to the nation's electrical grid a challenge.

  10. Forecast of contracting and subcontracting opportunities. Fiscal year 1996

    SciTech Connect (OSTI)

    1996-02-01

    This forecast of prime and subcontracting opportunities with the U.S. Department of Energy and its MAO contractors and environmental restoration and waste management contractors, is the Department`s best estimate of small, small disadvantaged and women-owned small business procurement opportunities for fiscal year 1996. The information contained in the forecast is published in accordance with Public Law 100-656. It is not an invitation for bids, a request for proposals, or a commitment by DOE to purchase products or services. Each procurement opportunity is based on the best information available at the time of publication and may be revised or cancelled.

  11. Climatic Forecasting of Net Infiltration at Yucca Montain Using Analogue Meteororological Data

    SciTech Connect (OSTI)

    B. Faybishenko

    2006-09-11

    At Yucca Mountain, Nevada, future changes in climatic conditions will most likely alter net infiltration, or the drainage below the bottom of the evapotranspiration zone within the soil profile or flow across the interface between soil and the densely welded part of the Tiva Canyon Tuff. The objectives of this paper are to: (a) develop a semi-empirical model and forecast average net infiltration rates, using the limited meteorological data from analogue meteorological stations, for interglacial (present day), and future monsoon, glacial transition, and glacial climates over the Yucca Mountain region, and (b) corroborate the computed net-infiltration rates by comparing them with the empirically and numerically determined groundwater recharge and percolation rates through the unsaturated zone from published data. In this paper, the author presents an approach for calculations of net infiltration, aridity, and precipitation-effectiveness indices, using a modified Budyko's water-balance model, with reference-surface potential evapotranspiration determined from the radiation-based Penman (1948) formula. Results of calculations show that net infiltration rates are expected to generally increase from the present-day climate to monsoon climate, to glacial transition climate, and then to the glacial climate. The forecasting results indicate the overlap between the ranges of net infiltration for different climates. For example, the mean glacial net-infiltration rate corresponds to the upper-bound glacial transition net infiltration, and the lower-bound glacial net infiltration corresponds to the glacial transition mean net infiltration. Forecasting of net infiltration for different climate states is subject to numerous uncertainties-associated with selecting climate analogue sites, using relatively short analogue meteorological records, neglecting the effects of vegetation and surface runoff and runon on a local scale, as well as possible anthropogenic climate changes.

  12. Final Report - Integration of Behind-the-Meter PV Fleet Forecasts...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integration of Behind-the-Meter PV Fleet Forecasts into Utility Grid System Operations Final Report - Integration of Behind-the-Meter PV Fleet Forecasts into Utility Grid System ...

  13. Impacts of Improved Day-Ahead Wind Forecasts on Power Grid Operations: September 2011

    SciTech Connect (OSTI)

    Piwko, R.; Jordan, G.

    2011-11-01

    This study analyzed the potential benefits of improving the accuracy (reducing the error) of day-ahead wind forecasts on power system operations, assuming that wind forecasts were used for day ahead security constrained unit commitment.

  14. DOE Releases Latest Report on Energy Savings Forecast of Solid-State Lighting

    Broader source: Energy.gov [DOE]

    DOE has published a new report forecasting the energy savings of LED white-light sources compared with conventional white-light sources. The sixth iteration of the Energy Savings Forecast of Solid...

  15. Status of Centralized Wind Power Forecasting in North America: May 2009-May 2010

    SciTech Connect (OSTI)

    Porter, K.; Rogers, J.

    2010-04-01

    Report surveys grid wind power forecasts for all wind generators, which are administered by utilities or regional transmission organizations (RTOs), typically with the assistance of one or more wind power forecasting companies.

  16. EIA revises up forecast for U.S. 2013 crude oil production by...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    EIA revises up forecast for U.S. 2013 crude oil production by 70,000 barrels per day The forecast for U.S. crude oil production keeps going higher. The U.S. Energy Information ...

  17. Beyond "Partly Sunny": A Better Solar Forecast | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    "Partly Sunny": A Better Solar Forecast Beyond "Partly Sunny": A Better Solar Forecast December 7, 2012 - 10:00am Addthis The Energy Department is investing in better solar forecasting techniques to improve the reliability and stability of solar power plants during periods of cloud coverage. | Photo by Dennis Schroeder/NREL. The Energy Department is investing in better solar forecasting techniques to improve the reliability and stability of solar power plants during periods

  18. Central Wind Power Forecasting Programs in North America by Regional Transmission Organizations and Electric Utilities

    SciTech Connect (OSTI)

    Porter, K.; Rogers, J.

    2009-12-01

    The report addresses the implementation of central wind power forecasting by electric utilities and regional transmission organizations in North America.

  19. Issues in Midterm Analysis and Forecasting

    Reports and Publications (EIA)

    1999-01-01

    Final issue of this report. Presents a series of eight papers, which cover topics in analysis and modeling that underlie the Annual Energy Outlook 1999, as well as other significant issues in midterm energy markets.

  20. Analysis of Variability and Uncertainty in Wind Power Forecasting: An International Comparison: Preprint

    SciTech Connect (OSTI)

    Zhang, J.; Hodge, B. M.; Gomez-Lazaro, E.; Lovholm, A. L.; Berge, E.; Miettinen, J.; Holttinen, H.; Cutululis, N.; Litong-Palima, M.; Sorensen, P.; Dobschinski, J.

    2013-10-01

    One of the critical challenges of wind power integration is the variable and uncertain nature of the resource. This paper investigates the variability and uncertainty in wind forecasting for multiple power systems in six countries. An extensive comparison of wind forecasting is performed among the six power systems by analyzing the following scenarios: (i) wind forecast errors throughout a year; (ii) forecast errors at a specific time of day throughout a year; (iii) forecast errors at peak and off-peak hours of a day; (iv) forecast errors in different seasons; (v) extreme forecasts with large overforecast or underforecast errors; and (vi) forecast errors when wind power generation is at different percentages of the total wind capacity. The kernel density estimation method is adopted to characterize the distribution of forecast errors. The results show that the level of uncertainty and the forecast error distribution vary among different power systems and scenarios. In addition, for most power systems, (i) there is a tendency to underforecast in winter; and (ii) the forecasts in winter generally have more uncertainty than the forecasts in summer.

  1. Navy mobility fuels forecasting system report: World petroleum trade forecasts for the year 2000

    SciTech Connect (OSTI)

    Das, S.

    1991-12-01

    The Middle East will continue to play the dominant role of a petroleum supplier in the world oil market in the year 2000, according to business-as-usual forecasts published by the US Department of Energy. However, interesting trade patterns will emerge as a result of the democratization in the Soviet Union and Eastern Europe. US petroleum imports will increase from 46% in 1989 to 49% in 2000. A significantly higher level of US petroleum imports (principally products) will be coming from Japan, the Soviet Union, and Eastern Europe. Several regions, the Far East, Japan, Latin American, and Africa will import more petroleum. Much uncertainty remains about of the level future Soviet crude oil production. USSR net petroleum exports will decrease; however, the United States and Canada will receive some of their imports from the Soviet Union due to changes in the world trade patterns. The Soviet Union can avoid becoming a net petroleum importer as long as it (1) maintains enough crude oil production to meet its own consumption and (2) maintains its existing refining capacities. Eastern Europe will import approximately 50% of its crude oil from the Middle East.

  2. Residential applliance data, assumptions and methodology for end-use forecasting with EPRI-REEPS 2.1

    SciTech Connect (OSTI)

    Hwang, R.J,; Johnson, F.X.; Brown, R.E.; Hanford, J.W.; Kommey, J.G.

    1994-05-01

    This report details the data, assumptions and methodology for end-use forecasting of appliance energy use in the US residential sector. Our analysis uses the modeling framework provided by the Appliance Model in the Residential End-Use Energy Planning System (REEPS), which was developed by the Electric Power Research Institute. In this modeling framework, appliances include essentially all residential end-uses other than space conditioning end-uses. We have defined a distinct appliance model for each end-use based on a common modeling framework provided in the REEPS software. This report details our development of the following appliance models: refrigerator, freezer, dryer, water heater, clothes washer, dishwasher, lighting, cooking and miscellaneous. Taken together, appliances account for approximately 70% of electricity consumption and 30% of natural gas consumption in the US residential sector. Appliances are thus important to those residential sector policies or programs aimed at improving the efficiency of electricity and natural gas consumption. This report is primarily methodological in nature, taking the reader through the entire process of developing the baseline for residential appliance end-uses. Analysis steps documented in this report include: gathering technology and market data for each appliance end-use and specific technologies within those end-uses, developing cost data for the various technologies, and specifying decision models to forecast future purchase decisions by households. Our implementation of the REEPS 2.1 modeling framework draws on the extensive technology, cost and market data assembled by LBL for the purpose of analyzing federal energy conservation standards. The resulting residential appliance forecasting model offers a flexible and accurate tool for analyzing the effect of policies at the national level.

  3. Use of ARM observations and numerical models to determine radiative and latent heating profiles of mesoscale convective systems for general circulation models

    SciTech Connect (OSTI)

    Tao, Wei-Kuo; Houze, Robert, A., Jr.; Zeng, Xiping

    2013-03-14

    were compared with three reanalyses (MERRA, ERA-Interim and CFSR). Although the MMF tends to produce a higher precipitation rate over some topical regions, it actually well captures the variations in the zonal and meridional means. Among the three reanalyses, ERA-Interim seems to have values close to those of the satellite retrievals especially for GPCP. It is interesting to note that the MMF obtained the best results in the rain forest of Africa even better than those of CFSR and ERA-Interim, when compared to CMORPH. MERRA fails to capture the precipitation in this region. We are now collaborating with Steve Rutledge (CSU) to validate the model results for AMMA 6. MC3E and the diurnal variation of precipitation processes The Midlatitude Continental Convective Clouds Experiment (MC3E) was a joint field campaign between the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility and the NASA Global Precipitation Measurement (GPM) mission Ground Validation (GV) program. It took place in central Oklahoma during the period April 22 _ June 6, 2011. Some of its major objectives involve the use of CRMs in precipitation science such as: (1) testing the fidelity of CRM simulations via intensive statistical comparisons between simulated and observed cloud properties and latent heating fields for a variety of case types, (2) establishing the limits of CRM space-time integration capabilities for quantitative precipitation estimates, and (3) supporting the development and refinement of physically-based GMI, DPR, and DPR-GMI combined retrieval algorithms using ground-based GPM GV Ku-Ka band radar and CRM simulations. The NASA unified WRF model (nu-WRF) was used for real time forecasts during the field campaign, and ten precipitation events were selected for post mission simulations. These events include well-organized squall lines, scattered storms and quasi-linear storms. A paper focused on the diurnal variation of precipitation will be

  4. Wind Energy Management System Integration Project Incorporating Wind Generation and Load Forecast Uncertainties into Power Grid Operations

    SciTech Connect (OSTI)

    Makarov, Yuri V.; Huang, Zhenyu; Etingov, Pavel V.; Ma, Jian; Guttromson, Ross T.; Subbarao, Krishnappa; Chakrabarti, Bhujanga B.

    2010-09-01

    The power system balancing process, which includes the scheduling, real time dispatch (load following) and regulation processes, is traditionally based on deterministic models. Since the conventional generation needs time to be committed and dispatched to a desired megawatt level, the scheduling and load following processes use load and wind power production forecasts to achieve future balance between the conventional generation and energy storage on the one side, and system load, intermittent resources (such as wind and solar generation) and scheduled interchange on the other side. Although in real life the forecasting procedures imply some uncertainty around the load and wind forecasts (caused by forecast errors), only their mean values are actually used in the generation dispatch and commitment procedures. Since the actual load and intermittent generation can deviate from their forecasts, it becomes increasingly unclear (especially, with the increasing penetration of renewable resources) whether the system would be actually able to meet the conventional generation requirements within the look-ahead horizon, what the additional balancing efforts would be needed as we get closer to the real time, and what additional costs would be incurred by those needs. In order to improve the system control performance characteristics, maintain system reliability, and minimize expenses related to the system balancing functions, it becomes necessary to incorporate the predicted uncertainty ranges into the scheduling, load following, and, in some extent, into the regulation processes. It is also important to address the uncertainty problem comprehensively, by including all sources of uncertainty (load, intermittent generation, generators’ forced outages, etc.) into consideration. All aspects of uncertainty such as the imbalance size (which is the same as capacity needed to mitigate the imbalance) and generation ramping requirement must be taken into account. The latter unique

  5. Wind Energy Management System EMS Integration Project: Incorporating Wind Generation and Load Forecast Uncertainties into Power Grid Operations

    SciTech Connect (OSTI)

    Makarov, Yuri V.; Huang, Zhenyu; Etingov, Pavel V.; Ma, Jian; Guttromson, Ross T.; Subbarao, Krishnappa; Chakrabarti, Bhujanga B.

    2010-01-01

    The power system balancing process, which includes the scheduling, real time dispatch (load following) and regulation processes, is traditionally based on deterministic models. Since the conventional generation needs time to be committed and dispatched to a desired megawatt level, the scheduling and load following processes use load and wind and solar power production forecasts to achieve future balance between the conventional generation and energy storage on the one side, and system load, intermittent resources (such as wind and solar generation), and scheduled interchange on the other side. Although in real life the forecasting procedures imply some uncertainty around the load and wind/solar forecasts (caused by forecast errors), only their mean values are actually used in the generation dispatch and commitment procedures. Since the actual load and intermittent generation can deviate from their forecasts, it becomes increasingly unclear (especially, with the increasing penetration of renewable resources) whether the system would be actually able to meet the conventional generation requirements within the look-ahead horizon, what the additional balancing efforts would be needed as we get closer to the real time, and what additional costs would be incurred by those needs. To improve the system control performance characteristics, maintain system reliability, and minimize expenses related to the system balancing functions, it becomes necessary to incorporate the predicted uncertainty ranges into the scheduling, load following, and, in some extent, into the regulation processes. It is also important to address the uncertainty problem comprehensively by including all sources of uncertainty (load, intermittent generation, generators’ forced outages, etc.) into consideration. All aspects of uncertainty such as the imbalance size (which is the same as capacity needed to mitigate the imbalance) and generation ramping requirement must be taken into account. The latter

  6. Microsoft Word - Documentation - Price Forecast Uncertainty.doc

    U.S. Energy Information Administration (EIA) Indexed Site

    October 2009 1 October 2009 Short-Term Energy Outlook Supplement: Energy Price Volatility and Forecast Uncertainty 1 Summary It is often noted that energy prices are quite volatile, reflecting market participants' adjustments to new information from physical energy markets and/or markets in energy- related financial derivatives. Price volatility is an indication of the level of uncertainty, or risk, in the market. This paper describes how markets price risk and how the market- clearing process

  7. The Wind Forecast Improvement Project (WFIP): A Public/Private Partnership for Improving Short Term Wind Energy Forecasts and Quantifying the Benefits of Utility Operations

    Broader source: Energy.gov [DOE]

    The Wind Forecast Improvement Project (WFIP) is a U. S. Department of Energy (DOE) sponsored research project whose overarching goals are to improve the accuracy of short-term wind energy forecasts, and to demonstrate the economic value of these improvements.

  8. Accounting for fuel price risk: Using forward natural gas prices instead of gas price forecasts to compare renewable to natural gas-fired generation

    SciTech Connect (OSTI)

    Bolinger, Mark; Wiser, Ryan; Golove, William

    2003-08-13

    Against the backdrop of increasingly volatile natural gas prices, renewable energy resources, which by their nature are immune to natural gas fuel price risk, provide a real economic benefit. Unlike many contracts for natural gas-fired generation, renewable generation is typically sold under fixed-price contracts. Assuming that electricity consumers value long-term price stability, a utility or other retail electricity supplier that is looking to expand its resource portfolio (or a policymaker interested in evaluating different resource options) should therefore compare the cost of fixed-price renewable generation to the hedged or guaranteed cost of new natural gas-fired generation, rather than to projected costs based on uncertain gas price forecasts. To do otherwise would be to compare apples to oranges: by their nature, renewable resources carry no natural gas fuel price risk, and if the market values that attribute, then the most appropriate comparison is to the hedged cost of natural gas-fired generation. Nonetheless, utilities and others often compare the costs of renewable to gas-fired generation using as their fuel price input long-term gas price forecasts that are inherently uncertain, rather than long-term natural gas forward prices that can actually be locked in. This practice raises the critical question of how these two price streams compare. If they are similar, then one might conclude that forecast-based modeling and planning exercises are in fact approximating an apples-to-apples comparison, and no further consideration is necessary. If, however, natural gas forward prices systematically differ from price forecasts, then the use of such forecasts in planning and modeling exercises will yield results that are biased in favor of either renewable (if forwards < forecasts) or natural gas-fired generation (if forwards > forecasts). In this report we compare the cost of hedging natural gas price risk through traditional gas-based hedging instruments (e

  9. Residential sector end-use forecasting with EPRI-Reeps 2.1: Summary input assumptions and results

    SciTech Connect (OSTI)

    Koomey, J.G.; Brown, R.E.; Richey, R.

    1995-12-01

    This paper describes current and projected future energy use by end-use and fuel for the U.S. residential sector, and assesses which end-uses are growing most rapidly over time. The inputs to this forecast are based on a multi-year data compilation effort funded by the U.S. Department of Energy. We use the Electric Power Research Institute`s (EPRI`s) REEPS model, as reconfigured to reflect the latest end-use technology data. Residential primary energy use is expected to grow 0.3% per year between 1995 and 2010, while electricity demand is projected to grow at about 0.7% per year over this period. The number of households is expected to grow at about 0.8% per year, which implies that the overall primary energy intensity per household of the residential sector is declining, and the electricity intensity per household is remaining roughly constant over the forecast period. These relatively low growth rates are dependent on the assumed growth rate for miscellaneous electricity, which is the single largest contributor to demand growth in many recent forecasts.

  10. Appendix A - GPRA06 benefits estimates: MARKAL and NEMS model baseline cases

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    NEMS is an integrated energy model of the U.S. energy system developed by the Energy Information Administration (EIA) for forecasting and policy analysis purposes.

  11. A Comparison of Water Vapor Quantities from Model Short-Range...

    Office of Scientific and Technical Information (OSTI)

    Comparison of Water Vapor Quantities from Model Short-Range Forecasts and ARM Observations Citation Details In-Document Search Title: A Comparison of Water Vapor Quantities from ...

  12. Short-Term Energy Outlook Model Documentation: Coal Supply, Demand, and Prices

    Reports and Publications (EIA)

    2016-01-01

    The coal module of the Short-Term Energy Outlook (STEO) model is designed to provide forecasts of U.S. production, consumption, imports, exports, inventories, and prices.

  13. A 24-h forecast of solar irradiance using artificial neural network: Application for performance prediction of a grid-connected PV plant at Trieste, Italy

    SciTech Connect (OSTI)

    Mellit, Adel; Pavan, Alessandro Massi

    2010-05-15

    Forecasting of solar irradiance is in general significant for planning the operations of power plants which convert renewable energies into electricity. In particular, the possibility to predict the solar irradiance (up to 24 h or even more) can became - with reference to the Grid Connected Photovoltaic Plants (GCPV) - fundamental in making power dispatching plans and - with reference to stand alone and hybrid systems - also a useful reference for improving the control algorithms of charge controllers. In this paper, a practical method for solar irradiance forecast using artificial neural network (ANN) is presented. The proposed Multilayer Perceptron MLP-model makes it possible to forecast the solar irradiance on a base of 24 h using the present values of the mean daily solar irradiance and air temperature. An experimental database of solar irradiance and air temperature data (from July 1st 2008 to May 23rd 2009 and from November 23rd 2009 to January 24th 2010) has been used. The database has been collected in Trieste (latitude 45 40'N, longitude 13 46'E), Italy. In order to check the generalization capability of the MLP-forecaster, a K-fold cross-validation was carried out. The results indicate that the proposed model performs well, while the correlation coefficient is in the range 98-99% for sunny days and 94-96% for cloudy days. As an application, the comparison between the forecasted one and the energy produced by the GCPV plant installed on the rooftop of the municipality of Trieste shows the goodness of the proposed model. (author)

  14. Integration of Behind-the-Meter PV Fleet Forecasts into Utility Grid System

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Operations | Department of Energy Integration of Behind-the-Meter PV Fleet Forecasts into Utility Grid System Operations Integration of Behind-the-Meter PV Fleet Forecasts into Utility Grid System Operations Clean Power Research logo.jpg This project will address the need for a more accurate approach to forecasting net utility load by taking into consideration the contribution of customer-sited PV energy generation. Tasks within the project are designed to integrate novel PV power

  15. Central Wind Forecasting Programs in North America by Regional Transmission Organizations and Electric Utilities: Revised Edition

    SciTech Connect (OSTI)

    Rogers, J.; Porter, K.

    2011-03-01

    The report and accompanying table addresses the implementation of central wind power forecasting by electric utilities and regional transmission organizations in North America. The first part of the table focuses on electric utilities and regional transmission organizations that have central wind power forecasting in place; the second part focuses on electric utilities and regional transmission organizations that plan to adopt central wind power forecasting in 2010. This is an update of the December 2009 report, NREL/SR-550-46763.

  16. Updated Eastern Interconnect Wind Power Output and Forecasts for ERGIS: July 2012

    SciTech Connect (OSTI)

    Pennock, K.

    2012-10-01

    AWS Truepower, LLC (AWST) was retained by the National Renewable Energy Laboratory (NREL) to update wind resource, plant output, and wind power forecasts originally produced by the Eastern Wind Integration and Transmission Study (EWITS). The new data set was to incorporate AWST's updated 200-m wind speed map, additional tall towers that were not included in the original study, and new turbine power curves. Additionally, a primary objective of this new study was to employ new data synthesis techniques developed for the PJM Renewable Integration Study (PRIS) to eliminate diurnal discontinuities resulting from the assimilation of observations into mesoscale model runs. The updated data set covers the same geographic area, 10-minute time resolution, and 2004?2006 study period for the same onshore and offshore (Great Lakes and Atlantic coast) sites as the original EWITS data set.

  17. The Value of Improved Wind Power Forecasting in the Western Interconne...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of this research will facilitate a better functional understanding of wind forecasting accuracy and power system operations at various spatial and temporal scales.* Of particular ...

  18. Report of the external expert peer review panel: DOE benefits forecasts

    SciTech Connect (OSTI)

    None, None

    2006-12-20

    A report for the FY 2007 GPRA methodology review, highlighting the views of an external expert peer review panel on DOE benefits forecasts.

  19. Integration of Behind-the-Meter PV Fleet Forecasts into Utility...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Forecasting behind-the-meter distributed PV generation power production within a region ... This project is expected to reduce the costs of integrating higher penetrations of PV into ...

  20. Value of Improved Wind Power Forecasting in the Western Interconnection (Poster)

    SciTech Connect (OSTI)

    Hodge, B.

    2013-12-01

    Wind power forecasting is a necessary and important technology for incorporating wind power into the unit commitment and dispatch process. It is expected to become increasingly important with higher renewable energy penetration rates and progress toward the smart grid. There is consensus that wind power forecasting can help utility operations with increasing wind power penetration; however, there is far from a consensus about the economic value of improved forecasts. This work explores the value of improved wind power forecasting in the Western Interconnection of the United States.

  1. EERE Success Story-Solar Forecasting Gets a Boost from Watson...

    Broader source: Energy.gov (indexed) [DOE]

    electric system operators, and solar project owners better predict when and how much ... production varies, an accurate solar forecast is needed in order to maintain an ...

  2. Modeling & Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Named PRESCIENT, the software produces probabilistic forecasts automatically from deterministic historical forecasts for load, solar, andor wind power production and their ...

  3. Recent Trends in Variable Generation Forecasting and Its Value to the Power System

    SciTech Connect (OSTI)

    Orwig, Kirsten D.; Ahlstrom, Mark L.; Banunarayanan, Venkat; Sharp, Justin; Wilczak, James M.; Freedman, Jeffrey; Haupt, Sue Ellen; Cline, Joel; Bartholomy, Obadiah; Hamann, Hendrik F.; Hodge, Bri-Mathias; Finley, Catherine; Nakafuji, Dora; Peterson, Jack L.; Maggio, David; Marquis, Melinda

    2014-12-23

    We report that the rapid deployment of wind and solar energy generation systems has resulted in a need to better understand, predict, and manage variable generation. The uncertainty around wind and solar power forecasts is still viewed by the power industry as being quite high, and many barriers to forecast adoption by power system operators still remain. In response, the U.S. Department of Energy has sponsored, in partnership with the National Oceanic and Atmospheric Administration, public, private, and academic organizations, two projects to advance wind and solar power forecasts. Additionally, several utilities and grid operators have recognized the value of adopting variable generation forecasting and have taken great strides to enhance their usage of forecasting. In parallel, power system markets and operations are evolving to integrate greater amounts of variable generation. This paper will discuss the recent trends in wind and solar power forecasting technologies in the U.S., the role of forecasting in an evolving power system framework, and the benefits to intended forecast users.

  4. Analysis of Variability and Uncertainty in Wind Power Forecasting: An International Comparison (Presentation)

    SciTech Connect (OSTI)

    Zhang, J.; Hodge, B.; Miettinen, J.; Holttinen, H.; Gomez-Lozaro, E.; Cutululis, N.; Litong-Palima, M.; Sorensen, P.; Lovholm, A.; Berge, E.; Dobschinski, J.

    2013-10-01

    This presentation summarizes the work to investigate the uncertainty in wind forecasting at different times of year and compare wind forecast errors in different power systems using large-scale wind power prediction data from six countries: the United States, Finland, Spain, Denmark, Norway, and Germany.

  5. Recent Trends in Variable Generation Forecasting and Its Value to the Power System

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Orwig, Kirsten D.; Ahlstrom, Mark L.; Banunarayanan, Venkat; Sharp, Justin; Wilczak, James M.; Freedman, Jeffrey; Haupt, Sue Ellen; Cline, Joel; Bartholomy, Obadiah; Hamann, Hendrik F.; et al

    2014-12-23

    We report that the rapid deployment of wind and solar energy generation systems has resulted in a need to better understand, predict, and manage variable generation. The uncertainty around wind and solar power forecasts is still viewed by the power industry as being quite high, and many barriers to forecast adoption by power system operators still remain. In response, the U.S. Department of Energy has sponsored, in partnership with the National Oceanic and Atmospheric Administration, public, private, and academic organizations, two projects to advance wind and solar power forecasts. Additionally, several utilities and grid operators have recognized the value ofmore » adopting variable generation forecasting and have taken great strides to enhance their usage of forecasting. In parallel, power system markets and operations are evolving to integrate greater amounts of variable generation. This paper will discuss the recent trends in wind and solar power forecasting technologies in the U.S., the role of forecasting in an evolving power system framework, and the benefits to intended forecast users.« less

  6. Material World: Forecasting Household Appliance Ownership in a Growing Global Economy

    SciTech Connect (OSTI)

    Letschert, Virginie; McNeil, Michael A.

    2009-03-23

    Over the past years the Lawrence Berkeley National Laboratory (LBNL) has developed an econometric model that predicts appliance ownership at the household level based on macroeconomic variables such as household income (corrected for purchase power parity), electrification, urbanization and climate variables. Hundreds of data points from around the world were collected in order to understand trends in acquisition of new appliances by households, especially in developing countries. The appliances covered by this model are refrigerators, lighting fixtures, air conditioners, washing machines and televisions. The approach followed allows the modeler to construct a bottom-up analysis based at the end use and the household level. It captures the appliance uptake and the saturation effect which will affect the energy demand growth in the residential sector. With this approach, the modeler can also account for stock changes in technology and efficiency as a function of time. This serves two important functions with regard to evaluation of the impact of energy efficiency policies. First, it provides insight into which end uses will be responsible for the largest share of demand growth, and therefore should be policy priorities. Second, it provides a characterization of the rate at which policies affecting new equipment penetrate the appliance stock. Over the past 3 years, this method has been used to support the development of energy demand forecasts at the country, region or global level.

  7. Thirty-Year Solid Waste Generation Maximum and Minimum Forecast for SRS

    SciTech Connect (OSTI)

    Thomas, L.C.

    1994-10-01

    This report is the third phase (Phase III) of the Thirty-Year Solid Waste Generation Forecast for Facilities at the Savannah River Site (SRS). Phase I of the forecast, Thirty-Year Solid Waste Generation Forecast for Facilities at SRS, forecasts the yearly quantities of low-level waste (LLW), hazardous waste, mixed waste, and transuranic (TRU) wastes generated over the next 30 years by operations, decontamination and decommissioning and environmental restoration (ER) activities at the Savannah River Site. The Phase II report, Thirty-Year Solid Waste Generation Forecast by Treatability Group (U), provides a 30-year forecast by waste treatability group for operations, decontamination and decommissioning, and ER activities. In addition, a 30-year forecast by waste stream has been provided for operations in Appendix A of the Phase II report. The solid wastes stored or generated at SRS must be treated and disposed of in accordance with federal, state, and local laws and regulations. To evaluate, select, and justify the use of promising treatment technologies and to evaluate the potential impact to the environment, the generic waste categories described in the Phase I report were divided into smaller classifications with similar physical, chemical, and radiological characteristics. These smaller classifications, defined within the Phase II report as treatability groups, can then be used in the Waste Management Environmental Impact Statement process to evaluate treatment options. The waste generation forecasts in the Phase II report includes existing waste inventories. Existing waste inventories, which include waste streams from continuing operations and stored wastes from discontinued operations, were not included in the Phase I report. Maximum and minimum forecasts serve as upper and lower boundaries for waste generation. This report provides the maximum and minimum forecast by waste treatability group for operation, decontamination and decommissioning, and ER activities.

  8. Energy Conservation Program: Data Collection and Comparison with Forecasted Unit Sales for Five Lamp Types, Notice of Data Availability

    Broader source: Energy.gov [DOE]

    Energy Conservation Program: Data Collection and Comparison with Forecasted Unit Sales for Five Lamp Types, Notice of Data Availability

  9. ARM - CLASIC Workshop, March 26-27

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Measurement Platforms PNNL WRF-CuP Forecast Cloud Physics Lidar MODIS Airborne Simulator Data Mesonet Monitoring ARM Data Plots Experiment Planning CLASIC Proposal Abstract...

  10. ARM - AAF CLASIC Field Campaign

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Measurement Platforms PNNL WRF-CuP Forecast Cloud Physics Lidar MODIS Airborne Simulator Data Mesonet Monitoring ARM Data Plots Experiment Planning CLASIC Proposal Abstract...

  11. ARM - Fact Sheets

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Measurement Platforms PNNL WRF-CuP Forecast Cloud Physics Lidar MODIS Airborne Simulator Data Mesonet Monitoring ARM Data Plots Experiment Planning CLASIC Proposal Abstract...

  12. ARM - CLASIC News & Press

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Measurement Platforms PNNL WRF-CuP Forecast Cloud Physics Lidar MODIS Airborne Simulator Data Mesonet Monitoring ARM Data Plots Experiment Planning CLASIC Proposal Abstract...

  13. Short-Term Energy Outlook Model Documentation: Regional Residential Propane Price Model

    Reports and Publications (EIA)

    2009-01-01

    The regional residential propane price module of the Short-Term Energy Outlook (STEO) model is designed to provide residential retail price forecasts for the 4 Census regions: Northeast, South, Midwest, and West.

  14. Short-Term Energy Outlook Model Documentation: Motor Gasoline Consumption Model

    Reports and Publications (EIA)

    2011-01-01

    The motor gasoline consumption module of the Short-Term Energy Outlook (STEO) model is designed to provide forecasts of total U.S. consumption of motor gasolien based on estimates of vehicle miles traveled and average vehicle fuel economy.

  15. Short-Term Energy Outlook Model Documentation: Regional Residential Heating Oil Price Model

    Reports and Publications (EIA)

    2009-01-01

    The regional residential heating oil price module of the Short-Term Energy Outlook (STEO) model is designed to provide residential retail price forecasts for the 4 census regions: Northeast, South, Midwest, and West.

  16. Overview and Meteorological Validation of the Wind Integration National Dataset toolkit

    SciTech Connect (OSTI)

    Draxl, C.; Hodge, B. M.; Clifton, A.; McCaa, J.

    2015-04-13

    The Wind Integration National Dataset (WIND) Toolkit described in this report fulfills these requirements, and constitutes a state-of-the-art national wind resource data set covering the contiguous United States from 2007 to 2013 for use in a variety of next-generation wind integration analyses and wind power planning. The toolkit is a wind resource data set, wind forecast data set, and wind power production and forecast data set derived from the Weather Research and Forecasting (WRF) numerical weather prediction model. WIND Toolkit data are available online for over 116,000 land-based and 10,000 offshore sites representing existing and potential wind facilities.

  17. An Optimized Autoregressive Forecast Error Generator for Wind and Load Uncertainty Study

    SciTech Connect (OSTI)

    De Mello, Phillip; Lu, Ning; Makarov, Yuri V.

    2011-01-17

    This paper presents a first-order autoregressive algorithm to generate real-time (RT), hour-ahead (HA), and day-ahead (DA) wind and load forecast errors. The methodology aims at producing random wind and load forecast time series reflecting the autocorrelation and cross-correlation of historical forecast data sets. Five statistical characteristics are considered: the means, standard deviations, autocorrelations, and cross-correlations. A stochastic optimization routine is developed to minimize the differences between the statistical characteristics of the generated time series and the targeted ones. An optimal set of parameters are obtained and used to produce the RT, HA, and DA forecasts in due order of succession. This method, although implemented as the first-order regressive random forecast error generator, can be extended to higher-order. Results show that the methodology produces random series with desired statistics derived from real data sets provided by the California Independent System Operator (CAISO). The wind and load forecast error generator is currently used in wind integration studies to generate wind and load inputs for stochastic planning processes. Our future studies will focus on reflecting the diurnal and seasonal differences of the wind and load statistics and implementing them in the random forecast generator.

  18. Review of Variable Generation Forecasting in the West: July 2013 - March 2014

    SciTech Connect (OSTI)

    Widiss, R.; Porter, K.

    2014-03-01

    This report interviews 13 operating entities (OEs) in the Western Interconnection about their implementation of wind and solar forecasting. The report updates and expands upon one issued by NREL in 2012. As in the 2012 report, the OEs interviewed vary in size and character; the group includes independent system operators, balancing authorities, utilities, and other entities. Respondents' advice for other utilities includes starting sooner rather than later as it can take time to plan, prepare, and train a forecast; setting realistic expectations; using multiple forecasts; and incorporating several performance metrics.

  19. FY 2010 Fourth Quarter Report: Evaluation of the Dependency of Drizzle Formation on Aerosol Properties

    SciTech Connect (OSTI)

    Lin, W; McGraw, R; Liu, Y; Wang, J; Vogelmann, A; Daum, PH

    2010-10-01

    Metric for Quarter 4: Report results of implementation of composite parameterization in single-column model (SCM) to explore the dependency of drizzle formation on aerosol properties. To better represent VOCALS conditions during a test flight, the Liu-Duam-McGraw (LDM) drizzle parameterization is implemented in the high-resolution Weather Research and Forecasting (WRF) model, as well as in the single-column Community Atmosphere Model (CAM), to explore this dependency.

  20. The use of real-time off-site observations as a methodology for increasing forecast skill in prediction of large wind power ramps one or more hours ahead of their impact on a wind plant.

    SciTech Connect (OSTI)

    Martin Wilde, Principal Investigator

    2012-12-31

    setting. It shall be demonstrated that when used properly, the real-time offsite measurements materially improve wind ramp capture and prediction statistics, when compared to traditional wind forecasting techniques and to a simple persistence model.

  1. U.S. Crude Oil Production Forecast-Analysis of Crude Types

    U.S. Energy Information Administration (EIA) Indexed Site

    of Energy Washington, DC 20585 U.S. Energy Information Administration | U.S. Crude Oil Production Forecast-Analysis of Crude Types i This report was prepared by the U.S....

  2. Resource Information and Forecasting Group; Electricity, Resources, & Building Systems Integration (ERBSI) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-11-01

    Researchers in the Resource Information and Forecasting group at NREL provide scientific, engineering, and analytical expertise to help characterize renewable energy resources and facilitate the integration of these clean energy sources into the electricity grid.

  3. A Public-Private-Academic Partnership to Advance Solar Power Forecasting

    Broader source: Energy.gov [DOE]

    The University Corporation for Atmospheric  Research (UCAR) will develop a solar power forecasting system that advances the state of the science through cutting-edge research.

  4. Short-Term Load Forecasting Error Distributions and Implications for Renewable Integration Studies: Preprint

    SciTech Connect (OSTI)

    Hodge, B. M.; Lew, D.; Milligan, M.

    2013-01-01

    Load forecasting in the day-ahead timescale is a critical aspect of power system operations that is used in the unit commitment process. It is also an important factor in renewable energy integration studies, where the combination of load and wind or solar forecasting techniques create the net load uncertainty that must be managed by the economic dispatch process or with suitable reserves. An understanding of that load forecasting errors that may be expected in this process can lead to better decisions about the amount of reserves necessary to compensate errors. In this work, we performed a statistical analysis of the day-ahead (and two-day-ahead) load forecasting errors observed in two independent system operators for a one-year period. Comparisons were made with the normal distribution commonly assumed in power system operation simulations used for renewable power integration studies. Further analysis identified time periods when the load is more likely to be under- or overforecast.

  5. Ramping Effect on Forecast Use: Integrated Ramping as a Mitigation Strategy; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Diakov, Victor; Barrows, Clayton; Brinkman, Gregory; Bloom, Aaron; Denholm, Paul

    2015-06-23

    Power generation ramping between forecasted (net) load set-points shift the generation (MWh) from its scheduled values. The Integrated Ramping is described as a method that mitigates this problem.

  6. Examining Information Entropy Approaches as Wind Power Forecasting Performance Metrics: Preprint

    SciTech Connect (OSTI)

    Hodge, B. M.; Orwig, K.; Milligan, M.

    2012-06-01

    In this paper, we examine the parameters associated with the calculation of the Renyi entropy in order to further the understanding of its application to assessing wind power forecasting errors.

  7. Funding Opportunity Announcement for Wind Forecasting Improvement Project in Complex Terrain

    Office of Energy Efficiency and Renewable Energy (EERE)

    On April 4, 2014 the U.S. Department of Energy announced a $2.5 million funding opportunity entitled “Wind Forecasting Improvement Project in Complex Terrain.” By researching the physical processes...

  8. Energy Savings Forecast of Solid-State Lighting in General Illumination Applications

    Broader source: Energy.gov [DOE]

    Report forecasting the U.S. energy savings of LED white-light sources compared to conventional white-light sources (i.e., incandescent, halogen, fluorescent, and high-intensity discharge) over the...

  9. U.S. oil production forecast update reflects lower rig count

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    U.S. oil production forecast update reflects lower rig count Lower oil prices and fewer rigs drilling for crude oil are expected to slow U.S. oil production growth this year and in ...

  10. Gasoline price forecast to stay below 3 dollar a gallon in 2015

    U.S. Energy Information Administration (EIA) Indexed Site

    Gasoline price forecast to stay below 3 a gallon in 2015 The national average pump price of gasoline is expected to stay below 3 per gallon during 2015. In its new monthly ...

  11. Impact of Improved Solar Forecasts on Bulk Power System Operations in ISO-NE: Preprint

    SciTech Connect (OSTI)

    Brancucci Martinez-Anido, C.; Florita, A.; Hodge, B. M.

    2014-09-01

    The diurnal nature of solar power is made uncertain by variable cloud cover and the influence of atmospheric conditions on irradiance scattering processes. Its forecasting has become increasingly important to the unit commitment and dispatch process for efficient scheduling of generators in power system operations. This study examines the value of improved solar power forecasting for the Independent System Operator-New England system. The results show how 25% solar power penetration reduces net electricity generation costs by 22.9%.

  12. Investigating the Correlation Between Wind and Solar Power Forecast Errors in the Western Interconnection: Preprint

    SciTech Connect (OSTI)

    Zhang, J.; Hodge, B. M.; Florita, A.

    2013-05-01

    Wind and solar power generations differ from conventional energy generation because of the variable and uncertain nature of their power output. This variability and uncertainty can have significant impacts on grid operations. Thus, short-term forecasting of wind and solar generation is uniquely helpful for power system operations to balance supply and demand in an electricity system. This paper investigates the correlation between wind and solar power forecasting errors.

  13. Solar energy conversion: Technological forecasting. (Latest citations from the Aerospace database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1993-12-01

    The bibliography contains citations concerning current forecasting of Earth surface-bound solar energy conversion technology. Topics consider research, development and utilization of this technology in relation to electric power generation, heat pumps, bioconversion, process heat and the production of renewable gaseous, liquid, and solid fuels for industrial, commercial, and domestic applications. Some citations concern forecasts which compare solar technology with other energy technologies. (Contains 250 citations and includes a subject term index and title list.)

  14. Solar energy conversion: Technological forecasting. (Latest citations from the Aerospace database). Published Search

    SciTech Connect (OSTI)

    1995-01-01

    The bibliography contains citations concerning current forecasting of Earth surface-bound solar energy conversion technology. Topics consider research, development and utilization of this technology in relation to electric power generation, heat pumps, bioconversion, process heat and the production of renewable gaseous, liquid, and solid fuels for industrial, commercial, and domestic applications. Some citations concern forecasts which compare solar technology with other energy technologies. (Contains 250 citations and includes a subject term index and title list.)

  15. Impact of Improved Solar Forecasts on Bulk Power System Operations in ISO-NE (Presentation)

    SciTech Connect (OSTI)

    Brancucci Martinez-Anido, C.; Florita, A.; Hodge, B.M.

    2014-11-01

    The diurnal nature of solar power is made uncertain by variable cloud cover and the influence of atmospheric conditions on irradiance scattering processes. Its forecasting has become increasingly important to the unit commitment and dispatch process for efficient scheduling of generators in power system operations. This presentation is an overview of a study that examines the value of improved solar forecasts on Bulk Power System Operations.

  16. Forecasting Wind and Solar Generation: Improving System Operations, Greening the Grid

    SciTech Connect (OSTI)

    Tian; Tian; Chernyakhovskiy, Ilya

    2016-01-01

    This document discusses improving system operations with forecasting and solar generation. By integrating variable renewable energy (VRE) forecasts into system operations, power system operators can anticipate up- and down-ramps in VRE generation in order to cost-effectively balance load and generation in intra-day and day-ahead scheduling. This leads to reduced fuel costs, improved system reliability, and maximum use of renewable resources.

  17. Wind Power Forecasting Error Frequency Analyses for Operational Power System Studies: Preprint

    SciTech Connect (OSTI)

    Florita, A.; Hodge, B. M.; Milligan, M.

    2012-08-01

    The examination of wind power forecasting errors is crucial for optimal unit commitment and economic dispatch of power systems with significant wind power penetrations. This scheduling process includes both renewable and nonrenewable generators, and the incorporation of wind power forecasts will become increasingly important as wind fleets constitute a larger portion of generation portfolios. This research considers the Western Wind and Solar Integration Study database of wind power forecasts and numerical actualizations. This database comprises more than 30,000 locations spread over the western United States, with a total wind power capacity of 960 GW. Error analyses for individual sites and for specific balancing areas are performed using the database, quantifying the fit to theoretical distributions through goodness-of-fit metrics. Insights into wind-power forecasting error distributions are established for various levels of temporal and spatial resolution, contrasts made among the frequency distribution alternatives, and recommendations put forth for harnessing the results. Empirical data are used to produce more realistic site-level forecasts than previously employed, such that higher resolution operational studies are possible. This research feeds into a larger work of renewable integration through the links wind power forecasting has with various operational issues, such as stochastic unit commitment and flexible reserve level determination.

  18. Demand forecasting and revenue requirements, with implications for consideration in British Columbia

    SciTech Connect (OSTI)

    Acton, J.P.

    1983-05-01

    This paper was filed as an exhibit on behalf of The Consumers' Association of Canada (B.C. Branch), The Federated Anti-Poverty Groups of B.C., The Sierra Club of Western Canada, and the B.C. Old Age Pensioners' Organization. It was subjected to cross-examination on October 29, 1982, during Phase I of the hearings. The Utilities Commission had designated Phase I for consideration of (1) demand, (2) assets in service, (3) revenue requirements excluding return, and (4) financing and capital requirements. This paper presents a general discussion of the elements of a rate structure and their relationship to the demand for electricity, a systematic review of some 50 empirical studies of the demand for electricity as a function of price and other factors by the three principal classes of customers, and a discussion of the notion of revenue requirements. The paper should be of interest to utility regulators, rate specialists, and forecasters for its review of demand models and to academics concerned with the study of energy demand.

  19. Navy Mobility Fuels Forecasting System report: Navy fuel production in the year 2000

    SciTech Connect (OSTI)

    Hadder, G.R.; Davis, R.M.

    1991-09-01

    The Refinery Yield Model of the Navy Mobility Fuels Forecasting System has been used to study the feasibility and quality of Navy JP-5 jet fuel and F-76 marine diesel fuel for two scenarios in the year 2000. Both scenarios account for environmental regulations for fuels produced in the US and assume that Eastern Europe, the USSR, and the People`s Republic of China have free market economies. One scenario is based on business-as-usual market conditions for the year 2000. The second scenario is similar to first except that USSR crude oil production is 24 percent lower. During lower oil production in the USSR., there are no adverse effects on Navy fuel availability, but JP-5 is generally a poorer quality fuel relative to business-as-usual in the year 2000. In comparison with 1990, there are two potential problems areas for future Navy fuel quality. The first problem is increased aromaticity of domestically produced Navy fuels. Higher percentages of aromatics could have adverse effects on storage, handling, and combustion characteristics of both JP-5 and F-76. The second, and related, problem is that highly aromatic light cycle oils are blended into F-76 at percentages which promote fuel instability. It is recommended that the Navy continue to monitor the projected trend toward increased aromaticity in JP-5 and F-76 and high percentages of light cycle oils in F-76. These potential problems should be important considerations in research and development for future Navy engines.

  20. Navy Mobility Fuels Forecasting System report: Navy fuel production in the year 2000

    SciTech Connect (OSTI)

    Hadder, G.R.; Davis, R.M.

    1991-09-01

    The Refinery Yield Model of the Navy Mobility Fuels Forecasting System has been used to study the feasibility and quality of Navy JP-5 jet fuel and F-76 marine diesel fuel for two scenarios in the year 2000. Both scenarios account for environmental regulations for fuels produced in the US and assume that Eastern Europe, the USSR, and the People's Republic of China have free market economies. One scenario is based on business-as-usual market conditions for the year 2000. The second scenario is similar to first except that USSR crude oil production is 24 percent lower. During lower oil production in the USSR., there are no adverse effects on Navy fuel availability, but JP-5 is generally a poorer quality fuel relative to business-as-usual in the year 2000. In comparison with 1990, there are two potential problems areas for future Navy fuel quality. The first problem is increased aromaticity of domestically produced Navy fuels. Higher percentages of aromatics could have adverse effects on storage, handling, and combustion characteristics of both JP-5 and F-76. The second, and related, problem is that highly aromatic light cycle oils are blended into F-76 at percentages which promote fuel instability. It is recommended that the Navy continue to monitor the projected trend toward increased aromaticity in JP-5 and F-76 and high percentages of light cycle oils in F-76. These potential problems should be important considerations in research and development for future Navy engines.

  1. Regional Short-Term Energy Model (RSTEM) Overview

    Reports and Publications (EIA)

    2009-01-01

    The Regional Short-Term Energy Model (RSTEM) utilizes estimated econometric relationships for demand, inventories and prices to forecast energy market outcomes across key sectors and selected regions throughout the United States.

  2. Technology data characterizing water heating in commercial buildings: Application to end-use forecasting

    SciTech Connect (OSTI)

    Sezgen, O.; Koomey, J.G.

    1995-12-01

    Commercial-sector conservation analyses have traditionally focused on lighting and space conditioning because of their relatively-large shares of electricity and fuel consumption in commercial buildings. In this report we focus on water heating, which is one of the neglected end uses in the commercial sector. The share of the water-heating end use in commercial-sector electricity consumption is 3%, which corresponds to 0.3 quadrillion Btu (quads) of primary energy consumption. Water heating accounts for 15% of commercial-sector fuel use, which corresponds to 1.6 quads of primary energy consumption. Although smaller in absolute size than the savings associated with lighting and space conditioning, the potential cost-effective energy savings from water heaters are large enough in percentage terms to warrant closer attention. In addition, water heating is much more important in particular building types than in the commercial sector as a whole. Fuel consumption for water heating is highest in lodging establishments, hospitals, and restaurants (0.27, 0.22, and 0.19 quads, respectively); water heating`s share of fuel consumption for these building types is 35%, 18% and 32%, respectively. At the Lawrence Berkeley National Laboratory, we have developed and refined a base-year data set characterizing water heating technologies in commercial buildings as well as a modeling framework. We present the data and modeling framework in this report. The present commercial floorstock is characterized in terms of water heating requirements and technology saturations. Cost-efficiency data for water heating technologies are also developed. These data are intended to support models used for forecasting energy use of water heating in the commercial sector.

  3. Transportation Sector Model of the National Energy Modeling System. Volume 1

    SciTech Connect (OSTI)

    1998-01-01

    This report documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Transportation Model (TRAN). The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated by the model. The NEMS Transportation Model comprises a series of semi-independent models which address different aspects of the transportation sector. The primary purpose of this model is to provide mid-term forecasts of transportation energy demand by fuel type including, but not limited to, motor gasoline, distillate, jet fuel, and alternative fuels (such as CNG) not commonly associated with transportation. The current NEMS forecast horizon extends to the year 2010 and uses 1990 as the base year. Forecasts are generated through the separate consideration of energy consumption within the various modes of transport, including: private and fleet light-duty vehicles; aircraft; marine, rail, and truck freight; and various modes with minor overall impacts, such as mass transit and recreational boating. This approach is useful in assessing the impacts of policy initiatives, legislative mandates which affect individual modes of travel, and technological developments. The model also provides forecasts of selected intermediate values which are generated in order to determine energy consumption. These elements include estimates of passenger travel demand by automobile, air, or mass transit; estimates of the efficiency with which that demand is met; projections of vehicle stocks and the penetration of new technologies; and estimates of the demand for freight transport which are linked to forecasts of industrial output. Following the estimation of energy demand, TRAN produces forecasts of vehicular emissions of the following pollutants by source: oxides of sulfur, oxides of nitrogen, total carbon, carbon dioxide, carbon monoxide, and volatile organic compounds.

  4. High-resolution dynamically downscaled projections of precipitation in the mid and late 21st century over North America

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    none,

    2015-07-29

    This study performs high-spatial-resolution (12 km) Weather Research and Forecasting (WRF) simulations over a very large domain (7200 km × 6180 km, covering much of North America) to explore changes in mean and extreme precipitation in the mid and late 21st century under Representative Concentration Pathways 4.5 (RCP 4.5) and 8.5 (RCP 8.5). We evaluate WRF model performance for a historical simulation and future projections, applying the Community Climate System Model version 4 (CCSM4) as initial and boundary conditions with and without a bias correction. WRF simulations using boundary and initial conditions from both versions of CCSM4 show smaller biasesmore » versus evaluation data sets than does CCSM4 over western North America. WRF simulations also improve spatial details of precipitation over much of North America. However, driving the WRF with the bias-corrected CCSM4 does not always reduce the bias. WRF-projected changes in precipitation include decreasing intensity over the southwestern United States, increasing intensity over the eastern United States and most of Canada, and an increase in the number of days with heavy precipitation over much of North America. Projected precipitation changes are more evident in the late 21st century than the mid 21st century, and they are more evident under RCP 8.5 than under RCP 4.5 in the late 21st century. Uncertainties in the projected changes in precipitation due to different warming scenarios are non-negligible. Differences in summer precipitation changes between WRF and CCSM4 are significant over most of the United States.« less

  5. High-resolution dynamically downscaled projections of precipitation in the mid and late 21st century over North America

    SciTech Connect (OSTI)

    none,

    2015-07-29

    This study performs high-spatial-resolution (12 km) Weather Research and Forecasting (WRF) simulations over a very large domain (7200 km × 6180 km, covering much of North America) to explore changes in mean and extreme precipitation in the mid and late 21st century under Representative Concentration Pathways 4.5 (RCP 4.5) and 8.5 (RCP 8.5). We evaluate WRF model performance for a historical simulation and future projections, applying the Community Climate System Model version 4 (CCSM4) as initial and boundary conditions with and without a bias correction. WRF simulations using boundary and initial conditions from both versions of CCSM4 show smaller biases versus evaluation data sets than does CCSM4 over western North America. WRF simulations also improve spatial details of precipitation over much of North America. However, driving the WRF with the bias-corrected CCSM4 does not always reduce the bias. WRF-projected changes in precipitation include decreasing intensity over the southwestern United States, increasing intensity over the eastern United States and most of Canada, and an increase in the number of days with heavy precipitation over much of North America. Projected precipitation changes are more evident in the late 21st century than the mid 21st century, and they are more evident under RCP 8.5 than under RCP 4.5 in the late 21st century. Uncertainties in the projected changes in precipitation due to different warming scenarios are non-negligible. Differences in summer precipitation changes between WRF and CCSM4 are significant over most of the United States.

  6. Optimization Based Data Mining Approah for Forecasting Real-Time Energy Demand

    SciTech Connect (OSTI)

    Omitaomu, Olufemi A; Li, Xueping; Zhou, Shengchao

    2015-01-01

    The worldwide concern over environmental degradation, increasing pressure on electric utility companies to meet peak energy demand, and the requirement to avoid purchasing power from the real-time energy market are motivating the utility companies to explore new approaches for forecasting energy demand. Until now, most approaches for forecasting energy demand rely on monthly electrical consumption data. The emergence of smart meters data is changing the data space for electric utility companies, and creating opportunities for utility companies to collect and analyze energy consumption data at a much finer temporal resolution of at least 15-minutes interval. While the data granularity provided by smart meters is important, there are still other challenges in forecasting energy demand; these challenges include lack of information about appliances usage and occupants behavior. Consequently, in this paper, we develop an optimization based data mining approach for forecasting real-time energy demand using smart meters data. The objective of our approach is to develop a robust estimation of energy demand without access to these other building and behavior data. Specifically, the forecasting problem is formulated as a quadratic programming problem and solved using the so-called support vector machine (SVM) technique in an online setting. The parameters of the SVM technique are optimized using simulated annealing approach. The proposed approach is applied to hourly smart meters data for several residential customers over several days.

  7. Ensemble Atmospheric Dispersion Modeling

    SciTech Connect (OSTI)

    Addis, R.P.

    2002-06-24

    Prognostic atmospheric dispersion models are used to generate consequence assessments, which assist decision-makers in the event of a release from a nuclear facility. Differences in the forecast wind fields generated by various meteorological agencies, differences in the transport and diffusion models, as well as differences in the way these models treat the release source term, result in differences in the resulting plumes. Even dispersion models using the same wind fields may produce substantially different plumes. This talk will address how ensemble techniques may be used to enable atmospheric modelers to provide decision-makers with a more realistic understanding of how both the atmosphere and the models behave.

  8. Model documentation report: Transportation sector model of the National Energy Modeling System

    SciTech Connect (OSTI)

    Not Available

    1994-03-01

    This report documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Transportation Model (TRAN). The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated by the model. This document serves three purposes. First, it is a reference document providing a detailed description of TRAN for model analysts, users, and the public. Second, this report meets the legal requirements of the Energy Information Administration (EIA) to provide adequate documentation in support of its statistical and forecast reports (Public Law 93-275, 57(b)(1)). Third, it permits continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements.

  9. Model documentation Natural Gas Transmission and Distribution Model of the National Energy Modeling System. Volume 1

    SciTech Connect (OSTI)

    1996-02-26

    The Natural Gas Transmission and Distribution Model (NGTDM) of the National Energy Modeling System is developed and maintained by the Energy Information Administration (EIA), Office of Integrated Analysis and Forecasting. This report documents the archived version of the NGTDM that was used to produce the natural gas forecasts presented in the Annual Energy Outlook 1996, (DOE/EIA-0383(96)). The purpose of this report is to provide a reference document for model analysts, users, and the public that defines the objectives of the model, describes its basic approach, and provides detail on the methodology employed. Previously this report represented Volume I of a two-volume set. Volume II reported on model performance, detailing convergence criteria and properties, results of sensitivity testing, comparison of model outputs with the literature and/or other model results, and major unresolved issues.

  10. ARM - Field Campaign - 915 MHz Wind Profiler for Cloud Forecasting at BNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaigns915 MHz Wind Profiler for Cloud Forecasting at BNL Campaign Links Field Campaign Report ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : 915 MHz Wind Profiler for Cloud Forecasting at BNL 2011.05.31 - 2012.05.31 Lead Scientist : Michael Jensen For data sets, see below. Abstract In support of the installation of a 37 MW solar array on the grounds of Brookhaven National Laboratory (BNL), a study

  11. ARM - Field Campaign - Radar Wind Profiler for Cloud Forecasting at BNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsRadar Wind Profiler for Cloud Forecasting at BNL Campaign Links Field Campaign Report ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Radar Wind Profiler for Cloud Forecasting at BNL 2013.07.15 - 2015.08.06 Lead Scientist : Michael Jensen For data sets, see below. Abstract In support of recent activities funded by the DOE Energy Efficiency and Renewable Energy (EERE) to produce short-term

  12. EERE Success Story-Solar Forecasting Gets a Boost from Watson, Accuracy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Improved by 30% | Department of Energy Forecasting Gets a Boost from Watson, Accuracy Improved by 30% EERE Success Story-Solar Forecasting Gets a Boost from Watson, Accuracy Improved by 30% October 27, 2015 - 11:48am Addthis IBM Youtube Video | Courtesy of IBM Remember when IBM's super computer Watson defeated Jeopardy! champions Ken Jennings and Brad Rutter? With funding from the U.S. Department of Energy SunShot Initiative, IBM researchers are using Watson-like technology to improve solar

  13. Comparison of AEO 2010 Natural Gas Price Forecast to NYMEX Futures Prices

    SciTech Connect (OSTI)

    Bolinger, Mark A.; Wiser, Ryan H.

    2010-01-04

    On December 14, 2009, the reference-case projections from Annual Energy Outlook 2010 were posted on the Energy Information Administration's (EIA) web site. We at LBNL have, in the past, compared the EIA's reference-case long-term natural gas price forecasts from the AEO series to contemporaneous natural gas prices that can be locked in through the forward market, with the goal of better understanding fuel price risk and the role that renewables can play in itigating such risk. As such, we were curious to see how the latest AEO reference-case gas price forecast compares to the NYMEX natural gas futures strip. This brief memo presents our findings.

  14. Summer gasoline price forecast slightly higher, but drivers still pay less than last year

    U.S. Energy Information Administration (EIA) Indexed Site

    Summer gasoline price forecast slightly higher, but drivers still pay less than last year Rising crude oil prices are likely to be passed on to consumers at the pump, but U.S. drivers are still expected to pay the lowest summer gasoline prices since 2004, and for all of 2016 the average household will spend $900 less on gasoline than it did two years ago." In its new monthly forecast, the U.S. Energy Information Administration said the retail price for regular grade gasoline will average

  15. SOLID WASTE INTEGRATED FORECAST TECHNICAL (SWIFT) REPORT FY2003 THRU FY2046 VERSION 2003.1 VOLUME 2 [SEC 1 & 2

    SciTech Connect (OSTI)

    BARCOT, R.A.

    2003-12-01

    This report includes data requested on September 10, 2002 and includes radioactive solid waste forecasting updates through December 31, 2002. The FY2003.0 request is the primary forecast for fiscal year FY 2003.

  16. Wind Power Forecasting Error Distributions over Multiple Timescales: Preprint

    SciTech Connect (OSTI)

    Hodge, B. M.; Milligan, M.

    2011-03-01

    In this paper, we examine the shape of the persistence model error distribution for ten different wind plants in the ERCOT system over multiple timescales. Comparisons are made between the experimental distribution shape and that of the normal distribution.

  17. Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Modeling & Analysis, News, News & Events, Photovoltaic, Renewable Energy, Research & Capabilities, Solar, Solar Newsletter, SunShot, Systems Analysis Sandia Develops Stochastic ...

  18. Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Monte Carlo modeling it was found that for noisy signals with a significant background component, accuracy is improved by fitting the total emission data which includes the...

  19. Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Sandia Labs Releases New Version of PVLib Toolbox Sandia has released version 1.3 of PVLib, its widely used Matlab toolbox for modeling photovoltaic (PV) power ...

  20. Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Sandia Will Host PV Bankability Workshop at Solar Power International (SPI) 2013 Computational Modeling & Simulation, Distribution Grid Integration, Energy, Facilities, Grid ...

  1. Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science and Actuarial Practice" Read More Permalink New Project Is the ACME of Computer Science to Address Climate Change Analysis, Climate, Global Climate & Energy, Modeling, ...

  2. Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Though adequate for modeling mean transport, this approach does not address ... Microphysics such as diffusive transport and chemical kinetics are represented by ...

  3. Nesting large-eddy simulations within mesoscale simulations for wind energy applications

    SciTech Connect (OSTI)

    Lundquist, J K; Mirocha, J D; Chow, F K; Kosovic, B; Lundquist, K A

    2008-09-08

    With increasing demand for more accurate atmospheric simulations for wind turbine micrositing, for operational wind power forecasting, and for more reliable turbine design, simulations of atmospheric flow with resolution of tens of meters or higher are required. These time-dependent large-eddy simulations (LES), which resolve individual atmospheric eddies on length scales smaller than turbine blades and account for complex terrain, are possible with a range of commercial and open-source software, including the Weather Research and Forecasting (WRF) model. In addition to 'local' sources of turbulence within an LES domain, changing weather conditions outside the domain can also affect flow, suggesting that a mesoscale model provide boundary conditions to the large-eddy simulations. Nesting a large-eddy simulation within a mesoscale model requires nuanced representations of turbulence. Our group has improved the Weather and Research Forecasting model's (WRF) LES capability by implementing the Nonlinear Backscatter and Anisotropy (NBA) subfilter stress model following Kosovic (1997) and an explicit filtering and reconstruction technique to compute the Resolvable Subfilter-Scale (RSFS) stresses (following Chow et al, 2005). We have also implemented an immersed boundary method (IBM) in WRF to accommodate complex terrain. These new models improve WRF's LES capabilities over complex terrain and in stable atmospheric conditions. We demonstrate approaches to nesting LES within a mesoscale simulation for farms of wind turbines in hilly regions. Results are sensitive to the nesting method, indicating that care must be taken to provide appropriate boundary conditions, and to allow adequate spin-up of turbulence in the LES domain.

  4. Short-Term Energy Outlook Model Documentation: Petroleum Product Prices Module

    Reports and Publications (EIA)

    2015-01-01

    The petroleum products price module of the Short-Term Energy Outlook (STEO) model is designed to provide U.S. average wholesale and retail price forecasts for motor gasoline, diesel fuel, heating oil, and jet fuel.

  5. Short-Term Energy Outlook Model Documentation: Hydrocarbon Gas Liquids Supply and Demand

    Reports and Publications (EIA)

    2015-01-01

    The hydrocarbon gas liquids (ethane, propane, butanes, and natural gasoline) module of the Short-Term Energy Outlook (STEO) model is designed to provide forecasts of U.S. production, consumption, refinery inputs, net imports, and inventories.

  6. Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with application in modeling NDCX-II experiments Wangyi Liu 1 , John Barnard 2 , Alex Friedman 2 , Nathan Masters 2 , Aaron Fisher 2 , Alice Koniges 2 , David Eder 2 1 LBNL, USA, 2...

  7. Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NASA Earth at Night Video EC, Energy, Energy Efficiency, Global, Modeling, News & Events, Solid-State Lighting, Videos NASA Earth at Night Video Have you ever wondered what the ...

  8. Wind Energy Forecasting: A Collaboration of the National Center for Atmospheric Research (NCAR) and Xcel Energy

    SciTech Connect (OSTI)

    Parks, K.; Wan, Y. H.; Wiener, G.; Liu, Y.

    2011-10-01

    The focus of this report is the wind forecasting system developed during this contract period with results of performance through the end of 2010. The report is intentionally high-level, with technical details disseminated at various conferences and academic papers. At the end of 2010, Xcel Energy managed the output of 3372 megawatts of installed wind energy. The wind plants span three operating companies1, serving customers in eight states2, and three market structures3. The great majority of the wind energy is contracted through power purchase agreements (PPAs). The remainder is utility owned, Qualifying Facilities (QF), distributed resources (i.e., 'behind the meter'), or merchant entities within Xcel Energy's Balancing Authority footprints. Regardless of the contractual or ownership arrangements, the output of the wind energy is balanced by Xcel Energy's generation resources that include fossil, nuclear, and hydro based facilities that are owned or contracted via PPAs. These facilities are committed and dispatched or bid into day-ahead and real-time markets by Xcel Energy's Commercial Operations department. Wind energy complicates the short and long-term planning goals of least-cost, reliable operations. Due to the uncertainty of wind energy production, inherent suboptimal commitment and dispatch associated with imperfect wind forecasts drives up costs. For example, a gas combined cycle unit may be turned on, or committed, in anticipation of low winds. The reality is winds stayed high, forcing this unit and others to run, or be dispatched, to sub-optimal loading positions. In addition, commitment decisions are frequently irreversible due to minimum up and down time constraints. That is, a dispatcher lives with inefficient decisions made in prior periods. In general, uncertainty contributes to conservative operations - committing more units and keeping them on longer than may have been necessary for purposes of maintaining reliability. The downside is costs are

  9. Model documentation report: Residential sector demand module of the national energy modeling system

    SciTech Connect (OSTI)

    1998-01-01

    This report documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Residential Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, and FORTRAN source code. This reference document provides a detailed description for energy analysts, other users, and the public. The NEMS Residential Sector Demand Module is currently used for mid-term forecasting purposes and energy policy analysis over the forecast horizon of 1993 through 2020. The model generates forecasts of energy demand for the residential sector by service, fuel, and Census Division. Policy impacts resulting from new technologies, market incentives, and regulatory changes can be estimated using the module. 26 refs., 6 figs., 5 tabs.

  10. A comparison of model short-range forecasts and the ARM Microbase...

    Office of Scientific and Technical Information (OSTI)

    For the fourth quarter ARM metric we will make use of new liquid water data that has become available, and called the 'Microbase' value added product (referred to as OBS, within ...

  11. A Comparison of Model Short-Range Forecasts and the ARM Microbase...

    Office of Scientific and Technical Information (OSTI)

    ARM Science Metric For the fourth quarter ARM metric we will make use of new liquid water data that has become available, and called the "Microbase" value added product ...

  12. Simulations of arctic mixed-phase clouds in forecasts with CAM3 and AM2 for M-PACE

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Xie, Shaocheng; Boyle, James; Klein, Stephen A.; Liu, Xiaohong; Ghan, Steven

    2008-02-27

    [1] Simulations of mixed-phase clouds in forecasts with the NCAR Atmosphere Model version 3 (CAM3) and the GFDL Atmospheric Model version 2 (AM2) for the Mixed-Phase Arctic Cloud Experiment (M-PACE) are performed using analysis data from numerical weather prediction centers. CAM3 significantly underestimates the observed boundary layer mixed-phase cloud fraction and cannot realistically simulate the variations of liquid water fraction with temperature and cloud height due to its oversimplified cloud microphysical scheme. In contrast, AM2 reasonably reproduces the observed boundary layer cloud fraction while its clouds contain much less cloud condensate than CAM3 and the observations. The simulation of themore » boundary layer mixed-phase clouds and their microphysical properties is considerably improved in CAM3 when a new physically based cloud microphysical scheme is used (CAM3LIU). The new scheme also leads to an improved simulation of the surface and top of the atmosphere longwave radiative fluxes. Sensitivity tests show that these results are not sensitive to the analysis data used for model initialization. Increasing model horizontal resolution helps capture the subgrid-scale features in Arctic frontal clouds but does not help improve the simulation of the single-layer boundary layer clouds. AM2 simulated cloud fraction and LWP are sensitive to the change in cloud ice number concentrations used in the Wegener-Bergeron-Findeisen process while CAM3LIU only shows moderate sensitivity in its cloud fields to this change. Furthermore, this paper shows that the Wegener-Bergeron-Findeisen process is important for these models to correctly simulate the observed features of mixed-phase clouds.« less

  13. TSD capacity model interface with waste reduction planning in the Environmental Restoration Program

    SciTech Connect (OSTI)

    Phifer, B.E. Jr.; Grumski, J.T.

    1991-01-01

    This report provides a picture of how the integration of waste generation forecasting with treatment, storage, and disposal (TSD) capacity modeling interfaces with waste reduction planning in the Environmental Restoration Program. Background information is given for the major activities at the seven Martin Marietta Energy Systems, Inc., sites: (1) Oak Ridge National Laboratory; (2) Oak Ridge Y-12 Plant; (3) Oak Ridge K-25 Site; (4) Paducah Gaseous Diffusion Plant; (5) Portsmouth Gaseous Diffusion Plant; (6) Oak Ridge Associated Universities; and (7) the off-site contaminated areas near DOE facilities. A perspective is provided for strategies to achieve waste reduction, how waste generation forecasts rates were developed, and how those forecasted waste generation rates will be used in TSD capacity modeling. The generation forecasting in combination with TSD modeling allows development of quantifiable goals and subsequent waste reduction. 2 figs.

  14. Model documentation: Electricity Market Module, Electricity Fuel Dispatch Submodule

    SciTech Connect (OSTI)

    Not Available

    1994-04-08

    This report documents the objectives, analytical approach and development of the National Energy Modeling System Electricity Fuel Dispatch Submodule (EFD), a submodule of the Electricity Market Module (EMM). The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated through the synthesis and scenario development based on these components.

  15. Comparison of AEO 2005 natural gas price forecast to NYMEX futures prices

    SciTech Connect (OSTI)

    Bolinger, Mark; Wiser, Ryan

    2004-12-13

    On December 9, the reference case projections from ''Annual Energy Outlook 2005 (AEO 2005)'' were posted on the Energy Information Administration's (EIA) web site. As some of you may be aware, we at LBNL have in the past compared the EIA's reference case long-term natural gas price forecasts from the AEO series to contemporaneous natural gas prices that can be locked in through the forward market, with the goal of better understanding fuel price risk and the role that renewables play in mitigating such risk. As such, we were curious to see how the latest AEO gas price forecast compares to the NYMEX natural gas futures strip. This brief memo presents our findings. As a refresher, our past work in this area has found that over the past four years, forward natural gas contracts (e.g., gas futures, swaps, and physical supply) have traded at a premium relative to contemporaneous long-term reference case gas price forecasts from the EIA. As such, we have concluded that, over the past four years at least, levelized cost comparisons of fixed-price renewable generation with variable price gas-fired generation that have been based on AEO natural gas price forecasts (rather than forward prices) have yielded results that are ''biased'' in favor of gas-fired generation (presuming that long-term price stability is valued). In this memo we simply update our past analysis to include the latest long-term gas price forecast from the EIA, as contained in AEO 2005. For the sake of brevity, we do not rehash information (on methodology, potential explanations for the premiums, etc.) contained in our earlier reports on this topic; readers interested in such information are encouraged to download that work from http://eetd.lbl.gov/ea/EMS/reports/53587.pdf or, more recently (and briefly), http://eetd.lbl.gov/ea/ems/reports/54751.pdf. As was the case in the past four AEO releases (AEO 2001-AE0 2004), we once again find that the AEO 2005 reference case gas price forecast falls well below

  16. The impact of forecasted energy price increases on low-income consumers

    SciTech Connect (OSTI)

    Eisenberg, Joel F.

    2005-10-31

    The Department of Energy’s Energy Information Administration (EIA) recently released its short term forecast for residential energy prices for the winter of 2005-2006. The forecast indicates significant increases in fuel costs, particularly for natural gas, propane, and home heating oil, for the year ahead. In the following analysis, the Oak Ridge National Laboratory has integrated the EIA price projections with the Residential Energy Consumption Survey (RECS) for 2001 in order to project the impact of these price increases on the nation’s low-income households by primary heating fuel type, nationally and by Census Region. The statistics are intended for the use of policymakers in the Department of Energy’s Weatherization Assistance Program and elsewhere who are trying to gauge the nature and severity of the problems that will be faced by eligible low-income households during the 2006 fiscal year.

  17. Comparison of AEO 2006 Natural Gas Price Forecast to NYMEX FuturesPrices

    SciTech Connect (OSTI)

    Bolinger, Mark; Wiser, Ryan

    2005-12-19

    On December 12, 2005, the reference case projections from ''Annual Energy Outlook 2006'' (AEO 2006) were posted on the Energy Information Administration's (EIA) web site. We at LBNL have in the past compared the EIA's reference case long-term natural gas price forecasts from the AEO series to contemporaneous natural gas prices that can be locked in through the forward market, with the goal of better understanding fuel price risk and the role that renewables play in mitigating such risk (see, for example, http://eetd.lbl.gov/ea/EMS/reports/53587.pdf or http://eetd.lbl.gov/ea/ems/reports/54751.pdf). As such, we were curious to see how the latest AEO gas price forecast compares to the NYMEX natural gas futures strip. This brief memo presents our findings. As a refresher, our past work in this area has found that over the past five years, forward natural gas contracts (with prices that can be locked in--e.g., gas futures, swaps, and physical supply) have traded at a premium relative to contemporaneous long-term reference case gas price forecasts from the EIA. As such, we have concluded that, over the past five years at least, levelized cost comparisons of fixed-price renewable generation with variable price gas-fired generation that have been based on AEO natural gas price forecasts (rather than forward prices) have yielded results that are ''biased'' in favor of gas-fired generation, presuming that long-term price stability is valued. In this memo we simply update our past analysis to include the latest long-term gas price forecast from the EIA, as contained in AEO 2006. For the sake of brevity, we do not rehash information (on methodology, potential explanations for the premiums, etc.) contained in our earlier reports on this topic; readers interested in such information are encouraged to download that work from http://eetd.lbl.gov/ea/EMS/reports/53587.pdf or http://eetd.lbl.gov/ea/ems/reports/54751.pdf. As was the case in the past five AEO releases (AEO 2001-AEO

  18. Comparison of AEO 2007 Natural Gas Price Forecast to NYMEX FuturesPrices

    SciTech Connect (OSTI)

    Bolinger, Mark; Wiser, Ryan

    2006-12-06

    On December 5, 2006, the reference case projections from 'Annual Energy Outlook 2007' (AEO 2007) were posted on the Energy Information Administration's (EIA) web site. We at LBNL have, in the past, compared the EIA's reference case long-term natural gas price forecasts from the AEO series to contemporaneous natural gas prices that can be locked in through the forward market, with the goal of better understanding fuel price risk and the role that renewables play in mitigating such risk (see, for example, http://eetd.lbl.gov/ea/EMS/reports/53587.pdf or http://eetd.lbl.gov/ea/ems/reports/54751.pdf). As such, we were curious to see how the latest AEO gas price forecast compares to the NYMEX natural gas futures strip. This brief memo presents our findings. As a refresher, our past work in this area has found that over the past six years, forward natural gas contracts (with prices that can be locked in--e.g., gas futures, swaps, and physical supply) have traded at a premium relative to contemporaneous long-term reference case gas price forecasts from the EIA. As such, we have concluded that, over the past six years at least, levelized cost comparisons of fixed-price renewable generation with variable-price gas-fired generation that have been based on AEO natural gas price forecasts (rather than forward prices) have yielded results that are 'biased' in favor of gas-fired generation, presuming that long-term price stability is valued. In this memo we simply update our past analysis to include the latest long-term gas price forecast from the EIA, as contained in AEO 2007. For the sake of brevity, we do not rehash information (on methodology, potential explanations for the premiums, etc.) contained in our earlier reports on this topic; readers interested in such information are encouraged to download that work from http://eetd.lbl.gov/ea/EMS/reports/53587.pdf or http://eetd.lbl.gov/ea/ems/reports/54751.pdf. As was the case in the past six AEO releases (AEO 2001-AEO 2006), we

  19. Integration of Wind Generation and Load Forecast Uncertainties into Power Grid Operations

    SciTech Connect (OSTI)

    Makarov, Yuri V.; Etingov, Pavel V.; Huang, Zhenyu; Ma, Jian; Chakrabarti, Bhujanga B.; Subbarao, Krishnappa; Loutan, Clyde; Guttromson, Ross T.

    2010-04-20

    In this paper, a new approach to evaluate the uncertainty ranges for the required generation performance envelope, including the balancing capacity, ramping capability and ramp duration is presented. The approach includes three stages: statistical and actual data acquisition, statistical analysis of retrospective information, and prediction of future grid balancing requirements for specified time horizons and confidence intervals. Assessment of the capacity and ramping requirements is performed using a specially developed probabilistic algorithm based on a histogram analysis incorporating all sources of uncertainty and parameters of a continuous (wind forecast and load forecast errors) and discrete (forced generator outages and failures to start up) nature. Preliminary simulations using California Independent System Operator (CAISO) real life data have shown the effectiveness and efficiency of the proposed approach.

  20. Are there Gains from Pooling Real-Time Oil Price Forecasts?

    U.S. Energy Information Administration (EIA) Indexed Site

    Are there Gains from Pooling Real- Time Oil Price Forecasts? Christiane Baumeister, Bank of Canada Lutz Kilian, University of Michigan Thomas K. Lee, U.S. Energy Information Administration February 12, 2014 Independent Statistics & Analysis www.eia.gov U.S. Energy Information Administration Washington, DC 20585 This paper is released to encourage discussion and critical comment. The analysis and conclusions expressed here are those of the authors and not necessarily those of the U.S. Energy

  1. New Tools for Forecasting Old Physics at the LHC

    ScienceCinema (OSTI)

    None

    2011-10-06

    For the LHC to uncover many types of new physics, the "old physics" produced by the Standard Model must be understood very well. For decades, the central theoretical tool for this job was the Feynman diagram expansion. However, Feynman diagrams are just too slow, even on fast computers, to allow adequate precision for complicated LHC events with many jets in the final state. Such events are already visible in the initial LHC data. Over the past few years, alternative methods to Feynman diagrams have come to fruition. These new "on-shell" methods are based on the old principles of unitarity and factorization. They can be much more efficient because they exploit the underlying simplicity of scattering amplitudes, and recycle lower-loop information. I will describe how and why these methods work, and present some of the recent state-of-the-art results that have been obtained with them.

  2. National forecast for geothermal resource exploration and development with techniques for policy analysis and resource assessment

    SciTech Connect (OSTI)

    Cassel, T.A.V.; Shimamoto, G.T.; Amundsen, C.B.; Blair, P.D.; Finan, W.F.; Smith, M.R.; Edeistein, R.H.

    1982-03-31

    The backgrund, structure and use of modern forecasting methods for estimating the future development of geothermal energy in the United States are documented. The forecasting instrument may be divided into two sequential submodels. The first predicts the timing and quality of future geothermal resource discoveries from an underlying resource base. This resource base represents an expansion of the widely-publicized USGS Circular 790. The second submodel forecasts the rate and extent of utilization of geothermal resource discoveries. It is based on the joint investment behavior of resource developers and potential users as statistically determined from extensive industry interviews. It is concluded that geothermal resource development, especially for electric power development, will play an increasingly significant role in meeting US energy demands over the next 2 decades. Depending on the extent of R and D achievements in related areas of geosciences and technology, expected geothermal power development will reach between 7700 and 17300 Mwe by the year 2000. This represents between 8 and 18% of the expected electric energy demand (GWh) in western and northwestern states.

  3. FY 1996 solid waste integrated life-cycle forecast characteristics summary. Volumes 1 and 2

    SciTech Connect (OSTI)

    Templeton, K.J.

    1996-05-23

    For the past six years, a waste volume forecast has been collected annually from onsite and offsite generators that currently ship or are planning to ship solid waste to the Westinghouse Hanford Company`s Central Waste Complex (CWC). This document provides a description of the physical waste forms, hazardous waste constituents, and radionuclides of the waste expected to be shipped to the CWC from 1996 through the remaining life cycle of the Hanford Site (assumed to extend to 2070). In previous years, forecast data has been reported for a 30-year time period; however, the life-cycle approach was adopted this year to maintain consistency with FY 1996 Multi-Year Program Plans. This document is a companion report to two previous reports: the more detailed report on waste volumes, WHC-EP-0900, FY1996 Solid Waste Integrated Life-Cycle Forecast Volume Summary and the report on expected containers, WHC-EP-0903, FY1996 Solid Waste Integrated Life-Cycle Forecast Container Summary. All three documents are based on data gathered during the FY 1995 data call and verified as of January, 1996. These documents are intended to be used in conjunction with other solid waste planning documents as references for short and long-term planning of the WHC Solid Waste Disposal Division`s treatment, storage, and disposal activities over the next several decades. This document focuses on two main characteristics: the physical waste forms and hazardous waste constituents of low-level mixed waste (LLMW) and transuranic waste (both non-mixed and mixed) (TRU(M)). The major generators for each waste category and waste characteristic are also discussed. The characteristics of low-level waste (LLW) are described in Appendix A. In addition, information on radionuclides present in the waste is provided in Appendix B. The FY 1996 forecast data indicate that about 100,900 cubic meters of LLMW and TRU(M) waste is expected to be received at the CWC over the remaining life cycle of the site. Based on

  4. Modeling

    SciTech Connect (OSTI)

    Loth, E.; Tryggvason, G.; Tsuji, Y.; Elghobashi, S. E.; Crowe, Clayton T.; Berlemont, A.; Reeks, M.; Simonin, O.; Frank, Th; Onishi, Yasuo; Van Wachem, B.

    2005-09-01

    Slurry flows occur in many circumstances, including chemical manufacturing processes, pipeline transfer of coal, sand, and minerals; mud flows; and disposal of dredged materials. In this section we discuss slurry flow applications related to radioactive waste management. The Hanford tank waste solids and interstitial liquids will be mixed to form a slurry so it can be pumped out for retrieval and treatment. The waste is very complex chemically and physically. The ARIEL code is used to model the chemical interactions and fluid dynamics of the waste.

  5. Evaluation of the St. Lucia geothermal resource: macroeconomic models

    SciTech Connect (OSTI)

    Burris, A.E.; Trocki, L.K.; Yeamans, M.K.; Kolstad, C.D.

    1984-08-01

    A macroeconometric model describing the St. Lucian economy was developed using 1970 to 1982 economic data. Results of macroeconometric forecasts for the period 1983 through 1985 show an increase in gross domestic product (GDP) for 1983 and 1984 with a decline in 1985. The rate of population growth is expected to exceed GDP growth so that a small decline in per capita GDP will occur. We forecast that garment exports will increase, providing needed employment and foreign exchange. To obtain a longer-term but more general outlook on St. Lucia's economy, and to evaluate the benefit of geothermal energy development, we applied a nonlinear programming model. The model maximizes discounted cumulative consumption.

  6. Causal univariate spatial-temporal autoregressive moving averages (STARMA) modelling of target information to generate tasking of a world-wide sensor system. Master's thesis

    SciTech Connect (OSTI)

    Greene, K.A.

    1992-03-01

    The Department of Defense employs a resource limited world-wide sensor system to detect certain events of interest. The purpose of this research was to establish a methodology using a univariate causal STARMA model for forecasting the relative probability of an event occurring in a geographical location during a time block of the day. These relative probabilities are used as input for a tasking model that assigns the scarce sensor resources so as to optimize the detection of these events. The STARMA model is appropriate for forecasting the relative probabilities because a definite temporal relationship and a definite spatial relationship exists in the data bases. The model created is a univariate causal STARMA model in that it only produces forecasts for one of the twenty-two given geographical regions. A causal univariate STARMA model was created to provide forecasts for one event type occurring at region 11 and appears to provide good forecasts. The model is both correlative and causal. The model is correlative in that it uses temporal and spatial correlations to develop the forecasts. The model is also causal in that it employs predictions from an analytical model.

  7. Short-Term Energy Outlook Model Documentation: Electricity Generation and Fuel Consumption Models

    Gasoline and Diesel Fuel Update (EIA)

    Model Documentation: Electricity Generation and Fuel Consumption Models January 2014 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | STEO Model Documentation: Electricity Generation and Fuel Consumption Models i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts

  8. Use of Data Denial Experiments to Evaluate ESA Forecast Sensitivity Patterns

    SciTech Connect (OSTI)

    Zack, J; Natenberg, E J; Knowe, G V; Manobianco, J; Waight, K; Hanley, D; Kamath, C

    2011-09-13

    The overall goal of this multi-phased research project known as WindSENSE is to develop an observation system deployment strategy that would improve wind power generation forecasts. The objective of the deployment strategy is to produce the maximum benefit for 1- to 6-hour ahead forecasts of wind speed at hub-height ({approx}80 m). In this phase of the project the focus is on the Mid-Columbia Basin region which encompasses the Bonneville Power Administration (BPA) wind generation area shown in Figure 1 that includes Klondike, Stateline, and Hopkins Ridge wind plants. The Ensemble Sensitivity Analysis (ESA) approach uses data generated by a set (ensemble) of perturbed numerical weather prediction (NWP) simulations for a sample time period to statistically diagnose the sensitivity of a specified forecast variable (metric) for a target location to parameters at other locations and prior times referred to as the initial condition (IC) or state variables. The ESA approach was tested on the large-scale atmospheric prediction problem by Ancell and Hakim 2007 and Torn and Hakim 2008. ESA was adapted and applied at the mesoscale by Zack et al. (2010a, b, and c) to the Tehachapi Pass, CA (warm and cools seasons) and Mid-Colombia Basin (warm season only) wind generation regions. In order to apply the ESA approach at the resolution needed at the mesoscale, Zack et al. (2010a, b, and c) developed the Multiple Observation Optimization Algorithm (MOOA). MOOA uses a multivariate regression on a few select IC parameters at one location to determine the incremental improvement of measuring multiple variables (representative of the IC parameters) at various locations. MOOA also determines how much information from each IC parameter contributes to the change in the metric variable at the target location. The Zack et al. studies (2010a, b, and c), demonstrated that forecast sensitivity can be characterized by well-defined, localized patterns for a number of IC variables such as 80-m

  9. North Pacific Mesoscale Coupled Air-Ocean Simulations Compared with Observations

    SciTech Connect (OSTI)

    Koracin, Darko; Cerovecki, Ivana; Vellore, Ramesh; Mejia, John; Hatchett, Benjamin; McCord, Travis; McLean, Julie; Dorman, Clive

    2013-04-11

    Executive summary The main objective of the study was to investigate atmospheric and ocean interaction processes in the western Pacific and, in particular, effects of significant ocean heat loss in the Kuroshio and Kuroshio Extension regions on the lower and upper atmosphere. It is yet to be determined how significant are these processes are on climate scales. The understanding of these processes led us also to development of the methodology of coupling the Weather and Research Forecasting model with the Parallel Ocean Program model for western Pacific regional weather and climate simulations. We tested NCAR-developed research software Coupler 7 for coupling of the WRF and POP models and assessed its usability for regional-scale applications. We completed test simulations using the Coupler 7 framework, but implemented a standard WRF model code with options for both one- and two-way mode coupling. This type of coupling will allow us to seamlessly incorporate new WRF updates and versions in the future. We also performed a long-term WRF simulation (15 years) covering the entire North Pacific as well as high-resolution simulations of a case study which included extreme ocean heat losses in the Kuroshio and Kuroshio Extension regions. Since the extreme ocean heat loss occurs during winter cold air outbreaks (CAO), we simulated and analyzed a case study of a severe CAO event in January 2000 in detail. We found that the ocean heat loss induced by CAOs is amplified by additional advection from mesocyclones forming on the southern part of the Japan Sea. Large scale synoptic patterns with anomalously strong anticyclone over Siberia and Mongolia, deep Aleutian Low, and the Pacific subtropical ridge are a crucial setup for the CAO. It was found that the onset of the CAO is related to the breaking of atmospheric Rossby waves and vertical transport of vorticity that facilitates meridional advection. The study also indicates that intrinsic parameterization of the surface fluxes

  10. FY 1996 solid waste integrated life-cycle forecast container summary volume 1 and 2

    SciTech Connect (OSTI)

    Valero, O.J.

    1996-04-23

    For the past six years, a waste volume forecast has been collected annually from onsite and offsite generators that currently ship or are planning to ship solid waste to the Westinghouse Hanford Company`s Central Waste Complex (CWC). This document provides a description of the containers expected to be used for these waste shipments from 1996 through the remaining life cycle of the Hanford Site. In previous years, forecast data have been reported for a 30-year time period; however, the life-cycle approach was adopted this year to maintain consistency with FY 1996 Multi-Year Program Plans. This document is a companion report to the more detailed report on waste volumes: WHC-EP0900, FY 1996 Solid Waste Integrated Life-Cycle Forecast Volume Summary. Both of these documents are based on data gathered during the FY 1995 data call and verified as of January, 1996. These documents are intended to be used in conjunction with other solid waste planning documents as references for short and long-term planning of the WHC Solid Waste Disposal Division`s treatment, storage, and disposal activities over the next several decades. This document focuses on the types of containers that will be used for packaging low-level mixed waste (LLMW) and transuranic waste (both non-mixed and mixed) (TRU(M)). The major waste generators for each waste category and container type are also discussed. Containers used for low-level waste (LLW) are described in Appendix A, since LLW requires minimal treatment and storage prior to onsite disposal in the LLW burial grounds. The FY 1996 forecast data indicate that about 100,900 cubic meters of LLMW and TRU(M) waste are expected to be received at the CWC over the remaining life cycle of the site. Based on ranges provided by the waste generators, this baseline volume could fluctuate between a minimum of about 59,720 cubic meters and a maximum of about 152,170 cubic meters.

  11. Energy Savings Forecast of Solid-State Lighting in General Illumination Applications

    SciTech Connect (OSTI)

    none,

    2014-08-29

    With declining production costs and increasing technical capabilities, LED adoption has recently gained momentum in general illumination applications. This is a positive development for our energy infrastructure, as LEDs use significantly less electricity per lumen produced than many traditional lighting technologies. The U.S. Department of Energy’s Energy Savings Forecast of Solid-State Lighting in General Illumination Applications examines the expected market penetration and resulting energy savings of light-emitting diode, or LED, lamps and luminaires from today through 2030.

  12. Wind Resource Assessment of Gujarat (India)

    SciTech Connect (OSTI)

    Draxl, C.; Purkayastha, A.; Parker, Z.

    2014-07-01

    India is one of the largest wind energy markets in the world. In 1986 Gujarat was the first Indian state to install a wind power project. In February 2013, the installed wind capacity in Gujarat was 3,093 MW. Due to the uncertainty around existing wind energy assessments in India, this analysis uses the Weather Research and Forecasting (WRF) model to simulate the wind at current hub heights for one year to provide more precise estimates of wind resources in Gujarat. The WRF model allows for accurate simulations of winds near the surface and at heights important for wind energy purposes. While previous resource assessments published wind power density, we focus on average wind speeds, which can be converted to wind power densities by the user with methods of their choice. The wind resource estimates in this study show regions with average annual wind speeds of more than 8 m/s.

  13. Waste generation forecast for DOE-ORO`s Environmental Restoration OR-1 Project: FY 1995-FY 2002, September 1994 revision

    SciTech Connect (OSTI)

    Not Available

    1994-12-01

    A comprehensive waste-forecasting task was initiated in FY 1991 to provide a consistent, documented estimate of the volumes of waste expected to be generated as a result of U.S. Department of Energy-Oak Ridge Operations (DOE-ORO) Environmental Restoration (ER) OR-1 Project activities. Continual changes in the scope and schedules for remedial action (RA) and decontamination and decommissioning (D&D) activities have required that an integrated data base system be developed that can be easily revised to keep pace with changes and provide appropriate tabular and graphical output. The output can then be analyzed and used to drive planning assumptions for treatment, storage, and disposal (TSD) facilities. The results of this forecasting effort and a description of the data base developed to support it are provided herein. The initial waste-generation forecast results were compiled in November 1991. Since the initial forecast report, the forecast data have been revised annually. This report reflects revisions as of September 1994.

  14. RACORO Forecasting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7a. Space Heating by Census Region and Climate Zone, Million U.S. Households, 1993 Space Heating Characteristics RSE Column Factor: Total Census Region Climate Zone RSE Row Factors Northeast Midwest South West Fewer than 2,000 CDD and -- More than 2,000 CDD and Few- er than 4,000 HDD More than 7,000 HDD 5,500 to 7,000 HDD 4,000 to 5,499 HDD Few- er than 4,000 HDD 0.5 0.9 1.1 0.8 0.8 1.6 1.3 1.2 1.2 1.1 Total ................................................. 96.6 19.5 23.3 33.5 20.4 8.7 26.5

  15. Model documentation coal market module of the National Energy Modeling System

    SciTech Connect (OSTI)

    1997-02-01

    This report documents the objectives and the conceptual and methodological approach used in the development of the Coal Production Submodule (CPS). It provides a description of the CPS for model analysts and the public. The Coal Market Module provides annual forecasts of prices, production, and consumption of coal.

  16. Short-Term Energy Outlook Model Documentation: Other Petroleum Products Consumption Model

    Reports and Publications (EIA)

    2011-01-01

    The other petroleum product consumption module of the Short-Term Energy Outlook (STEO) model is designed to provide U.S. consumption forecasts for 6 petroleum product categories: asphalt and road oil, petrochemical feedstocks, petroleum coke, refinery still gas, unfinished oils, and other miscvellaneous products

  17. Model documentation natural gas transmission and distribution model (NGTDM) of the national energy modeling system. Volume II: Model developer`s report

    SciTech Connect (OSTI)

    Not Available

    1995-01-03

    To partially fulfill the requirements for {open_quotes}Model Acceptance{close_quotes} as stipulated in EIA Standard 91-01-01 (effective February 3, 1991), the Office of Integrated Analysis and Forecasting has conducted tests of the Natural Gas Transmission and Distribution Model (NGTDM) for the specific purpose of validating the forecasting model. This volume of the model documentation presents the results of {open_quotes}one-at-a-time{close_quotes} sensitivity tests conducted in support of this validation effort. The test results are presented in the following forms: (1) Tables of important model outputs for the years 2000 and 2010 are presented with respect to change in each input from the reference case; (2) Tables of percent changes from base case results for the years 2000 and 2010 are presented for important model outputs; (3) Tables of conditional sensitivities (percent change in output/percent change in input) for the years 2000 and 2010 are presented for important model outputs; (4) Finally, graphs presenting the percent change from base case results for each year of the forecast period are presented for selected key outputs. To conduct the sensitivity tests, two main assumptions are made in order to test the performance characteristics of the model itself and facilitate the understanding of the effects of the changes in the key input variables to the model on the selected key output variables: (1) responses to the amount demanded do not occur since there are no feedbacks of inputs from other NEMS models in the stand-alone NGTDM run. (2) All the export and import quantities from and to Canada and Mexico, and liquefied natural gas (LNG) imports and exports are held fixed (i.e., there are no changes in imports and exports between the reference case and the sensitivity cases) throughout the forecast period.

  18. Crude oil and alternate energy production forecasts for the twenty-first century: The end of the hydrocarbon era

    SciTech Connect (OSTI)

    Edwards, J.D.

    1997-08-01

    Predictions of production rates and ultimate recovery of crude oil are needed for intelligent planning and timely action to ensure the continuous flow of energy required by the world`s increasing population and expanding economies. Crude oil will be able to supply increasing demand until peak world production is reached. The energy gap caused by declining conventional oil production must then be filled by expanding production of coal, heavy oil and oil shales, nuclear and hydroelectric power, and renewable energy sources (solar, wind, and geothermal). Declining oil production forecasts are based on current estimated ultimate recoverable conventional crude oil resources of 329 billion barrels for the United States and close to 3 trillion barrels for the world. Peak world crude oil production is forecast to occur in 2020 at 90 million barrels per day. Conventional crude oil production in the United States is forecast to terminate by about 2090, and world production will be close to exhaustion by 2100.

  19. Solid waste integrated forecast technical (SWIFT) report: FY1997 to FY 2070, Revision 1

    SciTech Connect (OSTI)

    Valero, O.J.; Templeton, K.J.; Morgan, J.

    1997-01-07

    This web site provides an up-to-date report on the radioactive solid waste expected to be managed by Hanford's Waste Management (WM) Project from onsite and offsite generators. It includes: an overview of Hanford-wide solid waste to be managed by the WM Project; program-level and waste class-specific estimates; background information on waste sources; and comparisons with previous forecasts and with other national data sources. This web site does not include: liquid waste (current or future generation); waste to be managed by the Environmental Restoration (EM-40) contractor (i.e., waste that will be disposed of at the Environmental Restoration Disposal Facility (ERDF)); or waste that has been received by the WM Project to date (i.e., inventory waste). The focus of this web site is on low-level mixed waste (LLMW), and transuranic waste (both non-mixed and mixed) (TRU(M)). Some details on low-level waste and hazardous waste are also provided. Currently, this web site is reporting data th at was requested on 10/14/96 and submitted on 10/25/96. The data represent a life cycle forecast covering all reported activities from FY97 through the end of each program's life cycle. Therefore, these data represent revisions from the previous FY97.0 Data Version, due primarily to revised estimates from PNNL. There is some useful information about the structure of this report in the SWIFT Report Web Site Overview.

  20. Incorporating Uncertainty of Wind Power Generation Forecast into Power System Operation, Dispatch, and Unit Commitment Procedures

    SciTech Connect (OSTI)

    Makarov, Yuri V.; Etingov, Pavel V.; Ma, Jian; Huang, Zhenyu; Subbarao, Krishnappa

    2011-06-23

    An approach to evaluate the uncertainties of the balancing capacity, ramping capability, and ramp duration requirements is proposed. The approach includes three steps: forecast data acquisition, statistical analysis of retrospective information, and prediction of grid balancing requirements for a specified time horizon and a given confidence level. An assessment of the capacity and ramping requirements is performed using a specially developed probabilistic algorithm based on histogram analysis, incorporating sources of uncertainty - both continuous (wind and load forecast errors) and discrete (forced generator outages and start-up failures). A new method called the 'flying-brick' technique is developed to evaluate the look-ahead required generation performance envelope for the worst case scenario within a user-specified confidence level. A self-validation process is used to validate the accuracy of the confidence intervals. To demonstrate the validity of the developed uncertainty assessment methods and its impact on grid operation, a framework for integrating the proposed methods with an EMS system is developed. Demonstration through EMS integration illustrates the applicability of the proposed methodology and the developed tool for actual grid operation and paves the road for integration with EMS systems in control rooms.

  1. Incorporating Wind Generation Forecast Uncertainty into Power System Operation, Dispatch, and Unit Commitment Procedures

    SciTech Connect (OSTI)

    Makarov, Yuri V.; Etingov, Pavel V.; Huang, Zhenyu; Ma, Jian; Subbarao, Krishnappa

    2010-10-19

    In this paper, an approach to evaluate the uncertainties of the balancing capacity, ramping capability, and ramp duration requirements is proposed. The approach includes three steps: forecast data acquisition, statistical analysis of retrospective information, and prediction of grid balancing requirements for a specified time horizon and a given confidence level. Assessment of the capacity and ramping requirements is performed using a specially developed probabilistic algorithm based on histogram analysis, incorporating sources of uncertainty of both continuous (wind and load forecast errors) and discrete (forced generator outages and start-up failures) nature. A new method called the "flying-brick" technique is developed to evaluate the look-ahead required generation performance envelope for the worst case scenario within a user-specified confidence level. A self-validation process is used to validate the accuracy of the confidence intervals. To demonstrate the validity of the developed uncertainty assessment methods and its impact on grid operation, a framework for integrating the proposed methods with an EMS system is developed. Demonstration through integration with an EMS system illustrates the applicability of the proposed methodology and the developed tool for actual grid operation and paves the road for integration with EMS systems from other vendors.

  2. Oil and Gas Supply Module of the National Energy Modeling System: Model Documentation 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Oil and Gas Supply Module of the National Energy Modeling System: Model Documentation 2014 July 2014 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | NEMS Model Documentation 2014: Oil and Gas Supply Module i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are

  3. Coal Market Module of the National Energy Modeling System Model Documentation 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Coal Market Module of the National Energy Modeling System Model Documentation 2013 June 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Model Documentation: Coal Market Module 2013 i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of

  4. DE-SC0001933 DOE Final Report

    SciTech Connect (OSTI)

    Cerovecki, Ivana

    2014-11-14

    The overall objective of this study was to improve the representation of regional ocean circulation in the North Pacific by using high resolution atmospheric forcing that accurately represents mesoscale processes in ocean-atmosphere regional (North Pacific) model configuration. The goal was to assess the importance of accurate representation of mesoscale processes in the atmosphere and the ocean on large scale circulation. This is an important question, as mesoscale processes in the atmosphere which are resolved by the high resolution mesoscale atmospheric models such as Weather Research and Forecasting (WRF), are absent in commonly used atmospheric forcing such as CORE forcing, employed in e.g. the Community Climate System Model (CCSM).

  5. Application of global weather and climate model output to the design and operation of wind-energy systems

    SciTech Connect (OSTI)

    Curry, Judith

    2015-05-21

    This project addressed the challenge of providing weather and climate information to support the operation, management and planning for wind-energy systems. The need for forecast information is extending to longer projection windows with increasing penetration of wind power into the grid and also with diminishing reserve margins to meet peak loads during significant weather events. Maintenance planning and natural gas trading is being influenced increasingly by anticipation of wind generation on timescales of weeks to months. Future scenarios on decadal time scales are needed to support assessment of wind farm siting, government planning, long-term wind purchase agreements and the regulatory environment. The challenge of making wind forecasts on these longer time scales is associated with a wide range of uncertainties in general circulation and regional climate models that make them unsuitable for direct use in the design and planning of wind-energy systems. To address this challenge, CFAN has developed a hybrid statistical/dynamical forecasting scheme for delivering probabilistic forecasts on time scales from one day to seven months using what is arguably the best forecasting system in the world (European Centre for Medium Range Weather Forecasting, ECMWF). The project also provided a framework to assess future wind power through developing scenarios of interannual to decadal climate variability and change. The Phase II research has successfully developed an operational wind power forecasting system for the U.S., which is being extended to Europe and possibly Asia.

  6. InMAP: a new model for air pollution interventions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tessum, C. W.; Hill, J. D.; Marshall, J. D.

    2015-10-29

    Mechanistic air pollution models are essential tools in air quality management. Widespread use of such models is hindered, however, by the extensive expertise or computational resources needed to run most models. Here, we present InMAP (Intervention Model for Air Pollution), which offers an alternative to comprehensive air quality models for estimating the air pollution health impacts of emission reductions and other potential interventions. InMAP estimates annual-average changes in primary and secondary fine particle (PM2.5) concentrations the air pollution outcome generally causing the largest monetized health damages attributable to annual changes in precursor emissions. InMAP leverages pre-processed physical andmorechemical information from the output of a state-of-the-science chemical transport model (WRF-Chem) within an Eulerian modeling framework, to perform simulations that are several orders of magnitude less computationally intensive than comprehensive model simulations. InMAP uses a variable resolution grid that focuses on human exposures by employing higher spatial resolution in urban areas and lower spatial resolution in rural and remote locations and in the upper atmosphere; and by directly calculating steady-state, annual average concentrations. In comparisons run here, InMAP recreates WRF-Chem predictions of changes in total PM2.5 concentrations with population-weighted mean fractional error (MFE) and bias (MFB) R2 ~ 0.99. Among individual PM2.5 species, the best predictive performance is for primary PM2.5 (MFE: 16 %; MFB: 13 %) and the worst predictive performance is for particulate nitrate (MFE: 119 %; MFB: 106 %). Potential uses of InMAP include studying exposure, health, and environmental justice impacts of potential shifts in emissions for annual-average PM2.5. Features planned for future model releases include a larger spatial domain, more temporal information, and the ability to predict ground-level ozone (O3) concentrations. The In

  7. Solid Waste Integrated Forecast Technical (SWIFT) Report FY2001 to FY2046 Volume 1

    SciTech Connect (OSTI)

    BARCOT, R.A.

    2000-08-31

    This report provides up-to-date life cycle information about the radioactive solid waste expected to be managed by Hanford's Waste Management (WM) Project from onsite and offsite generators. It includes: an overview of Hanford-wide solid waste to be managed by the WM Project; program-level and waste class-specific estimates; background information on waste sources; and comparisons to previous forecasts and other national data sources. This report does not include: waste to be managed by the Environmental Restoration (EM-40) contractor (i.e., waste that will be disposed of at the Environmental Restoration Disposal Facility (ERDF)); waste that has been received by the WM Project to date (i.e., inventory waste); mixed low-level waste that will be processed and disposed by the River Protection Program; and liquid waste (current or future generation). Although this report currently does not include liquid wastes, they may be added as information becomes available.

  8. Department of Energy award DE-SC0004164 Climate and National Security: Securing Better Forecasts

    SciTech Connect (OSTI)

    Reno Harnish

    2011-08-16

    The Climate and National Security: Securing Better Forecasts symposium was attended by senior policy makers and distinguished scientists. The juxtaposition of these communities was creative and fruitful. They acknowledged they were speaking past each other. Scientists were urged to tell policy makers about even improbable outcomes while articulating clearly the uncertainties around the outcomes. As one policy maker put it, we are accustomed to making these types of decisions. These points were captured clearly in an article that appeared on the New York Times website and can be found with other conference materials most easily on our website, www.scripps.ucsd.edu/cens/. The symposium, generously supported by the NOAA/JIMO, benefitted the public by promoting scientifically informed decision making and by the transmission of objective information regarding climate change and national security.

  9. HONEYWELL - KANSAS CITY PLANT FISCAL YEARS 2009 THRU 2015 SMALL BUSINESS PROGRAM RESULTS & FORECAST

    National Nuclear Security Administration (NNSA)

    HONEYWELL - KANSAS CITY PLANT FISCAL YEARS 2009 THRU 2015 SMALL BUSINESS PROGRAM RESULTS & FORECAST CATEGORY Total Procurement Total SB Small Disad. Bus Woman-Owned SB Hub-Zone SB Veteran-Owned SB Service Disabled Vet. SB FY 2009 Dollars Goal (projected) $183,949,920 $82,690,000 $4,550,000 $8,829,596 $3,370,000 $5,025,000 $460,000 FY 2009 Dollars Accomplished $143,846,731 $68,174,398 $9,247,214 $11,333,905 $4,979,858 $6,713,791 $1,612,136 FY 2009 % Goal 45.0% 2.5% 4.8% 1.8% 2.7% 0.25% FY

  10. Development of hybrid 3-D hydrological modeling for the NCAR Community Earth System Model (CESM)

    SciTech Connect (OSTI)

    Zeng, Xubin; Troch, Peter; Pelletier, Jon; Niu, Guo-Yue; Gochis, David

    2015-11-15

    This is the Final Report of our four-year (3-year plus one-year no cost extension) collaborative project between the University of Arizona (UA) and the National Center for Atmospheric Research (NCAR). The overall objective of our project is to develop and evaluate the first hybrid 3-D hydrological model with a horizontal grid spacing of 1 km for the NCAR Community Earth System Model (CESM). We have made substantial progress in model development and evaluation, computational efficiencies and software engineering, and data development and evaluation, as discussed in Sections 2-4. Section 5 presents our success in data dissemination, while Section 6 discusses the scientific impacts of our work. Section 7 discusses education and mentoring success of our project, while Section 8 lists our relevant DOE services. All peer-reviewed papers that acknowledged this project are listed in Section 9. Highlights of our achievements include: • We have finished 20 papers (most published already) on model development and evaluation, computational efficiencies and software engineering, and data development and evaluation • The global datasets developed under this project have been permanently archived and publicly available • Some of our research results have already been implemented in WRF and CLM • Patrick Broxton and Michael Brunke have received their Ph.D. • PI Zeng has served on DOE proposal review panels and DOE lab scientific focus area (SFA) review panels

  11. Electric-utility DSM programs: 1990 data and forecasts to 2000

    SciTech Connect (OSTI)

    Hirst, E.

    1992-06-01

    In April 1992, the Energy Information Administration (EIA) released data on 1989 and 1990 electric-utility demand-site management (DMS) programs. These data represent a census of US utility DSM programs, with reports of utility expenditures, energy savings, and load reductions caused by these programs. In addition, EIA published utility estimates of the costs and effects of these programs from 1991 to 2000. These data provide the first comprehensive picture of what utilities are spending and accomplishing by utility, state, and region. This report presents, summarizes, and interprets the 1990 data and the utility forecasts of their DSM-program expenditures and impacts to the year 2000. Only utilities with annual sales greater than 120 GWh were required to report data on their DSM programs to EIA. Of the 1194 such utilities, 363 reported having a DSM program that year. These 363 electric utilities spent $1.2 billion on their DSM programs in 1990, up from $0.9 billion in 1989. Estimates of energy savings (17,100 GWh in 1990 and 14,800 GWh in 1989) and potential reductions in peak demand (24,400 MW in 1990 and about 19,400 MW in 1989) also showed substantial increases. Overall, utility DSM expenditures accounted for 0.7% of total US electric revenues, while the reductions in energy and demand accounted for 0.6% and 4.9% of their respective 1990 national totals. The investor-owned utilities accounted for 70 to 90% of the totals for DSM costs, energy savings, and demand reductions. The public utilities reported larger percentage reductions in peak demand and energy smaller percentage DSM expenditures. These averages hide tremendous variations across utilities. Utility forecasts of DSM expenditures and effects show substantial growth in both absolute and relative terms.

  12. A Model of U.S. Commercial Distributed Generation Adoption

    SciTech Connect (OSTI)

    LaCommare, Kristina Hamachi; Ryan Firestone; Zhou, Nan; Maribu,Karl; Marnay, Chris

    2006-01-10

    Small-scale (100 kW-5 MW) on-site distributed generation (DG) economically driven by combined heat and power (CHP) applications and, in some cases, reliability concerns will likely emerge as a common feature of commercial building energy systems over the next two decades. Forecasts of DG adoption published by the Energy Information Administration (EIA) in the Annual Energy Outlook (AEO) are made using the National Energy Modeling System (NEMS), which has a forecasting module that predicts the penetration of several possible commercial building DG technologies over the period 2005-2025. NEMS is also used for estimating the future benefits of Department of Energy research and development used in support of budget requests and management decisionmaking. The NEMS approach to modeling DG has some limitations, including constraints on the amount of DG allowed for retrofits to existing buildings and a small number of possible sizes for each DG technology. An alternative approach called Commercial Sector Model (ComSeM) is developed to improve the way in which DG adoption is modeled. The approach incorporates load shapes for specific end uses in specific building types in specific regions, e.g., cooling in hospitals in Atlanta or space heating in Chicago offices. The Distributed Energy Resources Customer Adoption Model (DER-CAM) uses these load profiles together with input cost and performance DG technology assumptions to model the potential DG adoption for four selected cities and two sizes of five building types in selected forecast years to 2022. The Distributed Energy Resources Market Diffusion Model (DER-MaDiM) is then used to then tailor the DER-CAM results to adoption projections for the entire U.S. commercial sector for all forecast years from 2007-2025. This process is conducted such that the structure of results are consistent with the structure of NEMS, and can be re-injected into NEMS that can then be used to integrate adoption results into a full forecast.

  13. Natural gas transmission and distribution model of the National Energy Modeling System

    SciTech Connect (OSTI)

    1997-02-01

    The Natural Gas Transmission and Distribution Model (NGTDM) is the component of the National Energy Modeling System (NEMS) that is used to represent the domestic natural gas transmission and distribution system. NEMS was developed in the Office of Integrated Analysis and Forecasting of the Energy Information Administration (EIA). NEMS is the third in a series of computer-based, midterm energy modeling systems used since 1974 by the EIA and its predecessor, the Federal Energy Administration, to analyze domestic energy-economy markets and develop projections. From 1982 through 1993, the Intermediate Future Forecasting System (IFFS) was used by the EIA for its analyses, and the Gas Analysis Modeling System (GAMS) was used within IFFS to represent natural gas markets. Prior to 1982, the Midterm Energy Forecasting System (MEFS), also referred to as the Project Independence Evaluation System (PIES), was employed. NEMS was developed to enhance and update EIA`s modeling capability by internally incorporating models of energy markets that had previously been analyzed off-line. In addition, greater structural detail in NEMS permits the analysis of a broader range of energy issues. The time horizon of NEMS is the midterm period (i.e., through 2015). In order to represent the regional differences in energy markets, the component models of NEMS function at regional levels appropriate for the markets represented, with subsequent aggregation/disaggregation to the Census Division level for reporting purposes.

  14. Stochastic Energy Deployment System (SEDS) World Oil Model (WOM)

    Energy Science and Technology Software Center (OSTI)

    2009-08-07

    The function of the World Oil Market Model (WOMM) is to calculate a world oil price. SEDS will set start and end dates for the forecast period, and a time increment (assumed to be 1 year in the initial version). The WOMM will then randomly select an Annual Energy Outlook (AEO) oil price case and calibrate itself to that case. As it steps through each year, the WOMM will generate a stochastic supply shock tomore » OPEC output and accept a new estimate of U.S. petroleum demand from SEDS. The WOMM will then calculate a new oil market equilibrium for the current year. The world oil price at the new equilibrium will be sent back to SEDS. When the end year is reached, the process will begin again with the selection of a new AEO forecast. Iterations over forecasts will continue until SEDS has completed all its simulation runs.« less

  15. Stochastic Energy Deployment System (SEDS) World Oil Model (WOM)

    SciTech Connect (OSTI)

    2009-08-07

    The function of the World Oil Market Model (WOMM) is to calculate a world oil price. SEDS will set start and end dates for the forecast period, and a time increment (assumed to be 1 year in the initial version). The WOMM will then randomly select an Annual Energy Outlook (AEO) oil price case and calibrate itself to that case. As it steps through each year, the WOMM will generate a stochastic supply shock to OPEC output and accept a new estimate of U.S. petroleum demand from SEDS. The WOMM will then calculate a new oil market equilibrium for the current year. The world oil price at the new equilibrium will be sent back to SEDS. When the end year is reached, the process will begin again with the selection of a new AEO forecast. Iterations over forecasts will continue until SEDS has completed all its simulation runs.

  16. Residential Demand Module of the National Energy Modeling System: Model Documentation 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Demand Module of the National Energy Modeling System: Model Documentation 2014 August 2014 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | NEMS Residential Demand Module Documentation Report 2014 ii This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts

  17. Renewable Energy and Efficiency Modeling Analysis Partnership (REMAP): An Analysis of How Different Energy Models Addressed a Common High Renewable Energy Penetration Scenario in 2025

    SciTech Connect (OSTI)

    Blair, Nate; Jenkin, Thomas; Milford, James; Short, Walter; Sullivan, Patrick; Evans, David; Lieberman, Elliot; Goldstein, Gary; Wright, Evelyn; Jayaraman, Kamala R.; Venkatesh, Boddu; Kleiman, Gary; Namovicz, Christopher; Smith, Bob; Palmer, Karen; Wiser, Ryan; Wood, Frances

    2009-09-01

    Energy system modeling can be intentionally or unintentionally misused by decision-makers. This report describes how both can be minimized through careful use of models and thorough understanding of their underlying approaches and assumptions. The analysis summarized here assesses the impact that model and data choices have on forecasting energy systems by comparing seven different electric-sector models. This analysis was coordinated by the Renewable Energy and Efficiency Modeling Analysis Partnership (REMAP), a collaboration among governmental, academic, and nongovernmental participants.

  18. New model predicts once-mysterious chemical reactions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New model predicts once-mysterious chemical reactions New model predicts once-mysterious chemical reactions Results will also be used to understand basic questions about nature such as the cooling mechanisms of the early universe and the formation of planets and stars. June 28, 2016 Mark Zammit, of Los Alamos' Physics and Chemistry of Materials group, is part of a team that developed a theoretical model to forecast the fundamental chemical reactions involving molecular hydrogen. Photo credit

  19. Comparison of AEO 2008 Natural Gas Price Forecast to NYMEX Futures Prices

    SciTech Connect (OSTI)

    Bolinger, Mark A; Bolinger, Mark; Wiser, Ryan

    2008-01-07

    On December 12, 2007, the reference-case projections from Annual Energy Outlook 2008 (AEO 2008) were posted on the Energy Information Administration's (EIA) web site. We at LBNL have, in the past, compared the EIA's reference-case long-term natural gas price forecasts from the AEO series to contemporaneous natural gas prices that can be locked in through the forward market, with the goal of better understanding fuel price risk and the role that renewables can play in mitigating such risk. As such, we were curious to see how the latest AEO reference-case gas price forecast compares to the NYMEX natural gas futures strip. This brief memo presents our findings. Note that this memo pertains only to natural gas fuel price risk (i.e., the risk that natural gas prices might differ over the life of a gas-fired generation asset from what was expected when the decision to build the gas-fired unit was made). We do not take into consideration any of the other distinct attributes of gas-fired and renewable generation, such as dispatchability (or lack thereof) or environmental externalities. A comprehensive comparison of different resource types--which is well beyond the scope of this memo--would need to account for differences in all such attributes, including fuel price risk. Furthermore, our analysis focuses solely on natural-gas-fired generation (as opposed to coal-fired generation, for example), for several reasons: (1) price volatility has been more of a concern for natural gas than for other fuels used to generate power; (2) for environmental and other reasons, natural gas has, in recent years, been the fuel of choice among power plant developers (though its appeal has diminished somewhat as prices have increased); and (3) natural gas-fired generators often set the market clearing price in competitive wholesale power markets throughout the United States. That said, a more-complete analysis of how renewables mitigate fuel price risk would also need to consider coal and

  20. Comparison of AEO 2009 Natural Gas Price Forecast to NYMEX Futures Prices

    SciTech Connect (OSTI)

    Bolinger, Mark; Wiser, Ryan

    2009-01-28

    On December 17, 2008, the reference-case projections from Annual Energy Outlook 2009 (AEO 2009) were posted on the Energy Information Administration's (EIA) web site. We at LBNL have, in the past, compared the EIA's reference-case long-term natural gas price forecasts from the AEO series to contemporaneous natural gas prices that can be locked in through the forward market, with the goal of better understanding fuel price risk and the role that renewables can play in mitigating such risk. As such, we were curious to see how the latest AEO reference-case gas price forecast compares to the NYMEX natural gas futures strip. This brief memo presents our findings. Note that this memo pertains only to natural gas fuel price risk (i.e., the risk that natural gas prices might differ over the life of a gas-fired generation asset from what was expected when the decision to build the gas-fired unit was made). We do not take into consideration any of the other distinct attributes of gas-fired and renewable generation, such as dispatchability (or lack thereof), differences in capital costs and O&M expenses, or environmental externalities. A comprehensive comparison of different resource types--which is well beyond the scope of this memo--would need to account for differences in all such attributes, including fuel price risk. Furthermore, our analysis focuses solely on natural-gas-fired generation (as opposed to coal-fired or nuclear generation, for example), for several reasons: (1) price volatility has been more of a concern for natural gas than for other fuels used to generate power; (2) for environmental and other reasons, natural gas has, in recent years, been the fuel of choice among power plant developers; and (3) natural gas-fired generators often set the market clearing price in competitive wholesale power markets throughout the United States. That said, a more-complete analysis of how renewables mitigate fuel price risk would also need to consider coal, uranium, and

  1. Motor Gasoline Market Model documentation report

    SciTech Connect (OSTI)

    Not Available

    1993-09-01

    The purpose of this report is to define the objectives of the Motor Gasoline Market Model (MGMM), describe its basic approach and to provide detail on model functions. This report is intended as a reference document for model analysts, users, and the general public. The MGMM performs a short-term (6- to 9-month) forecast of demand and price for motor gasoline in the US market; it also calculates end of month stock levels. The model is used to analyze certain market behavior assumptions or shocks and to determine the effect on market price, demand and stock level.

  2. Model documentation: Electricity market module, electricity finance and pricing submodule

    SciTech Connect (OSTI)

    Not Available

    1994-04-07

    The purpose of this report is to define the objectives of the model, describe its basic approach, and provide detail on how it works. The EFP is a regulatory accounting model that projects electricity prices. The model first solves for revenue requirements by building up a rate base, calculating a return on rate base, and adding the allowed expenses. Average revenues (prices) are calculated based on assumptions regarding regulator lag and customer cost allocation methods. The model then solves for the internal cash flow and analyzes the need for external financing to meet necessary capital expenditures. Finally, the EFP builds up the financial statements. The EFP is used in conjunction with the National Energy Modeling System (NEMS). Inputs to the EFP include the forecast generating capacity expansion plans, operating costs, regulator environment, and financial data. The outputs include forecasts of income statements, balance sheets, revenue requirements, and electricity prices.

  3. Short-Term Energy Outlook Supplement: Uncertainties in the Short-Term Global Petroleum and Other Liquids Supply Forecast

    Gasoline and Diesel Fuel Update (EIA)

    Summer 2013 Outlook for Residential Electric Bills June 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | STEO Supplement: Summer 2013 Outlook for Residential Electric Bills i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by

  4. NREL: Energy Analysis - dGen: Distributed Generation Market Demand Model

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Distributed Generation Market Demand (dGen) model is a geospatially rich, bottom-up, market-penetration model that simulates the potential adoption of distributed energy resources (DERs) for residential, commercial, and industrial entities in the continental United States through 2050. The dGen model builds on and provides significant advances over NREL's deprecated Solar Deployment System (SolarDS) model. The dGen model can help develop deployment forecasts for distributed resources,

  5. Forecasting the oil-gasoline price relationship: should we care about the Rockets and the Feathers?

    Gasoline and Diesel Fuel Update (EIA)

    Forecast Change 2011 2012 2013 2014 2015 2016 from 2015 United States Usage (kWh) 3,444 3,354 3,129 3,037 3,153 3,253 3.2% Price (cents/kWh) 12.06 12.09 12.58 13.04 12.95 12.98 0.2% Expenditures $415 $405 $393 $396 $408 $422 3.3% New England Usage (kWh) 2,122 2,188 2,173 1,930 1,993 2,051 2.9% Price (cents/kWh) 15.85 15.50 16.04 17.63 18.64 18.36 -1.5% Expenditures $336 $339 $348 $340 $372 $377 1.3% Mid-Atlantic Usage (kWh) 2,531 2,548 2,447 2,234 2,372 2,431 2.5% Price (cents/kWh) 16.39 15.63

  6. A critical evaluation of the upper ocean heat budget in the Climate Forecast System Reanalysis data for the south central equatorial Pacific

    SciTech Connect (OSTI)

    Liu H.; Lin W.; Liu, X.; Zhang, M.

    2011-08-26

    Coupled ocean-atmospheric models suffer from the common bias of a spurious rain belt south of the central equatorial Pacific throughout the year. Observational constraints on key processes responsible for this bias are scarce. The recently available reanalysis from a coupled model system for the National Centers for Environmental Prediction (NCEP) Climate Forecast System Reanalysis (CFSR) data is a potential benchmark for climate models in this region. Its suitability for model evaluation and validation, however, needs to be established. This paper examines the mixed layer heat budget and the ocean surface currents - key factors for the sea surface temperature control in the double Inter-Tropical Convergence Zone in the central Pacific - from 5{sup o}S to 10{sup o}S and 170{sup o}E to 150{sup o}W. Two independent approaches are used. The first approach is through comparison of CFSR data with collocated station observations from field experiments; the second is through the residual analysis of the heat budget of the mixed layer. We show that the CFSR overestimates the net surface flux in this region by 23 W m{sup -2}. The overestimated net surface flux is mainly due to an even larger overestimation of shortwave radiation by 44 W m{sup -2}, which is compensated by a surface latent heat flux overestimated by 14 W m{sup -2}. However, the quality of surface currents and the associated oceanic heat transport in CFSR are not compromised by the surface flux biases, and they agree with the best available estimates. The uncertainties of the observational data from field experiments are also briefly discussed in the present study.

  7. Hawaii Energy Strategy: Program guide. [Contains special sections on analytical energy forecasting, renewable energy resource assessment, demand-side energy management, energy vulnerability assessment, and energy strategy integration

    SciTech Connect (OSTI)

    Not Available

    1992-09-01

    The Hawaii Energy Strategy program, or HES, is a set of seven projects which will produce an integrated energy strategy for the State of Hawaii. It will include a comprehensive energy vulnerability assessment with recommended courses of action to decrease Hawaii's energy vulnerability and to better prepare for an effective response to any energy emergency or supply disruption. The seven projects are designed to increase understanding of Hawaii's energy situation and to produce recommendations to achieve the State energy objectives of: Dependable, efficient, and economical state-wide energy systems capable of supporting the needs of the people, and increased energy self-sufficiency. The seven projects under the Hawaii Energy Strategy program include: Project 1: Develop Analytical Energy Forecasting Model for the State of Hawaii. Project 2: Fossil Energy Review and Analysis. Project 3: Renewable Energy Resource Assessment and Development Program. Project 4: Demand-Side Management Program. Project 5: Transportation Energy Strategy. Project 6: Energy Vulnerability Assessment Report and Contingency Planning. Project 7: Energy Strategy Integration and Evaluation System.

  8. Modifications to WRFs dynamical core to improve the treatment of moisture for large-eddy simulations

    SciTech Connect (OSTI)

    Xiao, Heng; Endo, Satoshi; Wong, May; Skamarock, William C.; Klemp, Joseph B.; Fast, Jerome D.; Gustafson, Jr., William I.; Vogelmann, Andrew; Wang, Hailong; Liu, Yangang; Lin, Wuyin

    2015-10-29

    Yamaguchi and Feingold (2012) note that the cloud fields in their large-eddy simulations (LESs) of marine stratocumulus using the Weather Research and Forecasting (WRF) model exhibit a strong sensitivity to time stepping choices. In this study, we reproduce and analyze this sensitivity issue using two stratocumulus cases, one marine and one continental. Results show that (1) the sensitivity is associated with spurious motions near the moisture jump between the boundary layer and the free atmosphere, and (2) these spurious motions appear to arise from neglecting small variations in water vapor mixing ratio (qv) in the pressure gradient calculation in the acoustic sub-stepping portion of the integration procedure. We show that this issue is remedied in the WRF dynamical core by replacing the prognostic equation for the potential temperature θ with one for the moist potential temperature θm=θ(1+1.61qv), which allows consistent treatment of moisture in the calculation of pressure during the acoustic sub-steps. With this modification, the spurious motions and the sensitivity to the time stepping settings (i.e., the dynamic time step length and number of acoustic sub-steps) are eliminated in both of the example stratocumulus cases. In conclusion, this modification improves the applicability of WRF for LES applications, and possibly other models using similar dynamical core formulations, and also permits the use of longer time steps than in the original code.

  9. Modifications to WRFs dynamical core to improve the treatment of moisture for large-eddy simulations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Xiao, Heng; Endo, Satoshi; Wong, May; Skamarock, William C.; Klemp, Joseph B.; Fast, Jerome D.; Gustafson, Jr., William I.; Vogelmann, Andrew; Wang, Hailong; Liu, Yangang; et al

    2015-10-29

    Yamaguchi and Feingold (2012) note that the cloud fields in their large-eddy simulations (LESs) of marine stratocumulus using the Weather Research and Forecasting (WRF) model exhibit a strong sensitivity to time stepping choices. In this study, we reproduce and analyze this sensitivity issue using two stratocumulus cases, one marine and one continental. Results show that (1) the sensitivity is associated with spurious motions near the moisture jump between the boundary layer and the free atmosphere, and (2) these spurious motions appear to arise from neglecting small variations in water vapor mixing ratio (qv) in the pressure gradient calculation in themore » acoustic sub-stepping portion of the integration procedure. We show that this issue is remedied in the WRF dynamical core by replacing the prognostic equation for the potential temperature θ with one for the moist potential temperature θm=θ(1+1.61qv), which allows consistent treatment of moisture in the calculation of pressure during the acoustic sub-steps. With this modification, the spurious motions and the sensitivity to the time stepping settings (i.e., the dynamic time step length and number of acoustic sub-steps) are eliminated in both of the example stratocumulus cases. In conclusion, this modification improves the applicability of WRF for LES applications, and possibly other models using similar dynamical core formulations, and also permits the use of longer time steps than in the original code.« less

  10. Effect of Terrestrial and Marine Organic Aerosol on Regional and Global Climate: Model Development, Application, and Verification with Satellite Data

    SciTech Connect (OSTI)

    Meskhidze, Nicholas; Zhang, Yang; Kamykowski, Daniel

    2012-03-28

    In this DOE project the improvements to parameterization of marine primary organic matter (POM) emissions, hygroscopic properties of marine POM, marine isoprene derived secondary organic aerosol (SOA) emissions, surfactant effects, new cloud droplet activation parameterization have been implemented into Community Atmosphere Model (CAM 5.0), with a seven mode aerosol module from the Pacific Northwest National Laboratory (PNNL)'s Modal Aerosol Model (MAM7). The effects of marine aerosols derived from sea spray and ocean emitted biogenic volatile organic compounds (BVOCs) on microphysical properties of clouds were explored by conducting 10 year CAM5.0-MAM7 model simulations at a grid resolution 1.9° by 2.5° with 30 vertical layers. Model-predicted relationship between ocean physical and biological systems and the abundance of CCN in remote marine atmosphere was compared to data from the A-Train satellites (MODIS, CALIPSO, AMSR-E). Model simulations show that on average, primary and secondary organic aerosol emissions from the ocean can yield up to 20% increase in Cloud Condensation Nuclei (CCN) at 0.2% Supersaturation, and up to 5% increases in droplet number concentration of global maritime shallow clouds. Marine organics were treated as internally or externally mixed with sea salt. Changes associated with cloud properties reduced (absolute value) the model-predicted short wave cloud forcing from -1.35 Wm-2 to -0.25 Wm-2. By using different emission scenarios, and droplet activation parameterizations, this study suggests that addition of marine primary aerosols and biologically generated reactive gases makes an important difference in radiative forcing assessments. All baseline and sensitivity simulations for 2001 and 2050 using global-through-urban WRF/Chem (GU-WRF) were completed. The main objective of these simulations was to evaluate the capability of GU-WRF for an accurate representation of the global atmosphere by exploring the most accurate configuration of

  11. Evaluation of the Mesoscale Eta Model over the western United States. Master`s thesis

    SciTech Connect (OSTI)

    Swanson, R.T.

    1995-09-10

    The skill of the Mesoscale Eta Model is evaluated over a 6-month period from October 1, 1994 to March 31, 1995 over the western United States. This model will continue to undergo changes until and after its projected operational release in July 1995. Many diagnostics and error statistics are created to evaluate its performance as forecasts are received and archived at the University of Utah. These statistics are available on the Internet allowing researchers and operational forecasters access to them in near real-time. The Mesoscale Eta Model forecast initialized at 1200 UTC, 9 November 1994 is used as a case study to introduce many of the diagnostics developed to evaluate the model. A systematic evaluation of the average and root-mean-squared error over months and seasons reveals little significant bias in upper tropospheric fields such as 300 mb wind or 500 mb geopotential height. Moderate average errors are evident in lower tropospheric temperature. Accumulated precipitation over months and seasons indicates the model`s spinup of precipitation during the first 12 hours of the forecast cycle.

  12. The Monte Carlo Independent Column Approximation Model Intercomparison

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Project (McMIP) The Monte Carlo Independent Column Approximation Model Intercomparison Project (McMIP) Barker, Howard Meteorological Service of Canada Cole, Jason Meteorological Service of Canada Raisanen, Petri Finnish Meteorological Institute Pincus, Robert NOAA-CIRES Climate Diagnostics Center Morcrette, Jean-Jacques European Centre for Medium-Range Weather Forecasts Li, Jiangnan Canadian Center for Climate Modelling Stephens, Graeme Colorado State University Vaillancourt, Paul

  13. Directory of energy information administration models 1995

    SciTech Connect (OSTI)

    1995-07-13

    This updated directory has been published annually; after this issue, it will be published only biennially. The Disruption Impact Simulator Model in use by EIA is included. Model descriptions have been updated according to revised documentation approved during the past year. This directory contains descriptions about each model, including title, acronym, purpose, followed by more detailed information on characteristics, uses, and requirements. Sources for additional information are identified. Included are 37 EIA models active as of February 1, 1995. The first group is the National Energy Modeling System (NEMS) models. The second group is all other EIA models that are not part of NEMS. Appendix A identifies major EIA modeling systems and the models within these systems. Appendix B is a summary of the `Annual Energy Outlook` Forecasting System.

  14. Directory of Energy Information Administration Models 1993

    SciTech Connect (OSTI)

    Not Available

    1993-07-06

    This directory contains descriptions about each model, including the title, acronym, purpose, followed by more detailed information on characteristics, uses, and requirements. Sources for additional information are identified. Included in this directory are 35 EIA models active as of May 1, 1993. Models that run on personal computers are identified by ``PC`` as part of the acronym. EIA is developing new models, a National Energy Modeling System (NEMS), and is making changes to existing models to include new technologies, environmental issues, conservation, and renewables, as well as extend forecast horizon. Other parts of the Department are involved in this modeling effort. A fully operational model is planned which will integrate completed segments of NEMS for its first official application--preparation of EIA`s Annual Energy Outlook 1994. Abstracts for the new models will be included in next year`s version of this directory.

  15. PROJECT PROFILE: Improving PV performance Estimates in the System Advisor Model with Component and System Reliability Metrics

    Office of Energy Efficiency and Renewable Energy (EERE)

    This project will improve the forecasting of lifetime PV system performance as well as operations and maintenance costs by incorporating the Photovoltaic Reliability and Performance Model (PV-RPM) developed by Sandia into the widely-used Solar Advisor Model (SAM) software platform.

  16. EIA model documentation: Electricity market module - electricity fuel dispatch

    SciTech Connect (OSTI)

    1997-01-01

    This report documents the National Energy Modeling System Electricity Fuel Dispatch Submodule (EFD), a submodule of the Electricity Market Module (EMM) as it was used for EIA`s Annual Energy Outlook 1997. It replaces previous documentation dated March 1994 and subsequent yearly update revisions. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated through the synthesis and scenario development based on these components. This document serves four purposes. First, it is a reference document providing a detailed description of the model for reviewers and potential users of the EFD including energy experts at the Energy Information Administration (EIA), other Federal agencies, state energy agencies, private firms such as utilities and consulting firms, and non-profit groups such as consumer and environmental groups. Second, this report meets the legal requirement of the Energy Information Administration (EIA) to provide adequate documentation in support of its statistical and forecast reports. Third, it facilitates continuity in model development by providing documentation which details model enhancements that were undertaken for AE097 and since the previous documentation. Last, because the major use of the EFD is to develop forecasts, this documentation explains the calculations, major inputs and assumptions which were used to generate the AE097.

  17. Energy consumption and expenditure projections by population group on the basis of the annual energy outlook 1999 forecast

    SciTech Connect (OSTI)

    Poyer, D.A.; Balsley, J.H.

    2000-01-07

    This report presents an analysis of the relative impact of the base-case scenario used in Annual Energy Outlook 1999 on different population groups. Projections of energy consumption and expenditures, as well as energy expenditure as a share of income, from 1996 to 2020 are given. The projected consumption of electricty, natural gas, distillate fuel, and liquefied petroleum gas during this period is also reported for each population group. In addition, this report compares the findings of the Annual Energy Outlook 1999 report with the 1998 report. Changes in certain indicators and information affect energy use forecasts, and these effects are analyzed and discussed.

  18. U.S. diesel fuel price forecast to be 1 penny lower this summer at $3.94 a gallon

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel price forecast to be 1 penny lower this summer at $3.94 a gallon The retail price of diesel fuel is expected to average $3.94 a gallon during the summer driving season that which runs from April through September. That's close to last summer's pump price of $3.95, according to the latest monthly energy outlook from the U.S. Energy Information Administration. Demand for distillate fuel, which includes diesel fuel, is expected to be up less than 1 percent from last summer. Daily

  19. Short-Term Energy Outlook Model Documentation: Petroleum Products Supply Module

    Reports and Publications (EIA)

    2013-01-01

    The Petroleum Products Supply Module of the Short-Term Energy Outlook (STEO) model provides forecasts of petroleum refinery inputs (crude oil, unfinished oils, pentanes plus, liquefied petroleum gas, motor gasoline blending components, and aviation gasoline blending components) and refinery outputs (motor gasoline, jet fuel, distillate fuel, residual fuel, liquefied petroleum gas, and other petroleum products).

  20. Model documentation, Coal Market Module of the National Energy Modeling System

    SciTech Connect (OSTI)

    1998-01-01

    This report documents the objectives and the conceptual and methodological approach used in the development of the National Energy Modeling System`s (NEMS) Coal Market Module (CMM) used to develop the Annual Energy Outlook 1998 (AEO98). This report catalogues and describes the assumptions, methodology, estimation techniques, and source code of CMM`s two submodules. These are the Coal Production Submodule (CPS) and the Coal Distribution Submodule (CDS). CMM provides annual forecasts of prices, production, and consumption of coal for NEMS. In general, the CDS integrates the supply inputs from the CPS to satisfy demands for coal from exogenous demand models. The international area of the CDS forecasts annual world coal trade flows from major supply to major demand regions and provides annual forecasts of US coal exports for input to NEMS. Specifically, the CDS receives minemouth prices produced by the CPS, demand and other exogenous inputs from other NEMS components, and provides delivered coal prices and quantities to the NEMS economic sectors and regions.

  1. Evaluating climate models: Should we use weather or climate observations?

    SciTech Connect (OSTI)

    Oglesby, Robert J; Erickson III, David J

    2009-12-01

    Calling the numerical models that we use for simulations of climate change 'climate models' is a bit of a misnomer. These 'general circulation models' (GCMs, AKA global climate models) and their cousins the 'regional climate models' (RCMs) are actually physically-based weather simulators. That is, these models simulate, either globally or locally, daily weather patterns in response to some change in forcing or boundary condition. These simulated weather patterns are then aggregated into climate statistics, very much as we aggregate observations into 'real climate statistics'. Traditionally, the output of GCMs has been evaluated using climate statistics, as opposed to their ability to simulate realistic daily weather observations. At the coarse global scale this may be a reasonable approach, however, as RCM's downscale to increasingly higher resolutions, the conjunction between weather and climate becomes more problematic. We present results from a series of present-day climate simulations using the WRF ARW for domains that cover North America, much of Latin America, and South Asia. The basic domains are at a 12 km resolution, but several inner domains at 4 km have also been simulated. These include regions of complex topography in Mexico, Colombia, Peru, and Sri Lanka, as well as a region of low topography and fairly homogeneous land surface type (the U.S. Great Plains). Model evaluations are performed using standard climate analyses (e.g., reanalyses; NCDC data) but also using time series of daily station observations. Preliminary results suggest little difference in the assessment of long-term mean quantities, but the variability on seasonal and interannual timescales is better described. Furthermore, the value-added by using daily weather observations as an evaluation tool increases with the model resolution.

  2. Seismic energy data analysis of Merapi volcano to test the eruption time prediction using materials failure forecast method (FFM)

    SciTech Connect (OSTI)

    Anggraeni, Novia Antika

    2015-04-24

    The test of eruption time prediction is an effort to prepare volcanic disaster mitigation, especially in the volcano’s inhabited slope area, such as Merapi Volcano. The test can be conducted by observing the increase of volcanic activity, such as seismicity degree, deformation and SO2 gas emission. One of methods that can be used to predict the time of eruption is Materials Failure Forecast Method (FFM). Materials Failure Forecast Method (FFM) is a predictive method to determine the time of volcanic eruption which was introduced by Voight (1988). This method requires an increase in the rate of change, or acceleration of the observed volcanic activity parameters. The parameter used in this study is the seismic energy value of Merapi Volcano from 1990 – 2012. The data was plotted in form of graphs of seismic energy rate inverse versus time with FFM graphical technique approach uses simple linear regression. The data quality control used to increase the time precision employs the data correlation coefficient value of the seismic energy rate inverse versus time. From the results of graph analysis, the precision of prediction time toward the real time of eruption vary between −2.86 up to 5.49 days.

  3. SOLID WASTE INTEGRATED FORECAST TECHNICAL (SWIFT) REPORT FY2005 THRU FY2035 2005.0 VOLUME 2

    SciTech Connect (OSTI)

    BARCOT, R.A.

    2005-08-17

    This report provides up-to-date life cycle information about the radioactive solid waste expected to be managed by Hanford's Waste Management (WM) Project from onsite and offsite generators. It includes: (1) an overview of Hanford-wide solid waste to be managed by the WM Project; (2) multi-level and waste class-specific estimates; (3) background information on waste sources; and (4) comparisons to previous forecasts and other national data sources. The focus of this report is low-level waste (LLW), mixed low-level waste (MLLW), and transuranic waste, both non-mixed and mixed (TRU(M)). Some details on hazardous waste are also provided, however, this information is not considered comprehensive. This report includes data requested in December, 2004 with updates through March 31,2005. The data represent a life cycle forecast covering all reported activities from FY2005 through the end of each program's life cycle and are an update of the previous FY2004.1 data version.

  4. Meanwhile, much attention will focus on model evaluation results at Frenchman Fl

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Meanwhile, much attention will focus on model evaluation results at Frenchman Flat. "We are optimistic the results will be reasonably consistent with our model forecasts," explained Wilborn. "If model evaluation results are approved by the State of Nevada, we can move toward closure and long-term monitoring - the final stage in our strategy." All components of the Nevada Site Office groundwater program will be discussed at an upcoming Groundwater Open House on September 18,

  5. The origins of computer weather prediction and climate modeling

    SciTech Connect (OSTI)

    Lynch, Peter [Meteorology and Climate Centre, School of Mathematical Sciences, University College Dublin, Belfield (Ireland)], E-mail: Peter.Lynch@ucd.ie

    2008-03-20

    Numerical simulation of an ever-increasing range of geophysical phenomena is adding enormously to our understanding of complex processes in the Earth system. The consequences for mankind of ongoing climate change will be far-reaching. Earth System Models are capable of replicating climate regimes of past millennia and are the best means we have of predicting the future of our climate. The basic ideas of numerical forecasting and climate modeling were developed about a century ago, long before the first electronic computer was constructed. There were several major practical obstacles to be overcome before numerical prediction could be put into practice. A fuller understanding of atmospheric dynamics allowed the development of simplified systems of equations; regular radiosonde observations of the free atmosphere and, later, satellite data, provided the initial conditions; stable finite difference schemes were developed; and powerful electronic computers provided a practical means of carrying out the prodigious calculations required to predict the changes in the weather. Progress in weather forecasting and in climate modeling over the past 50 years has been dramatic. In this presentation, we will trace the history of computer forecasting through the ENIAC integrations to the present day. The useful range of deterministic prediction is increasing by about one day each decade, and our understanding of climate change is growing rapidly as Earth System Models of ever-increasing sophistication are developed.

  6. Impacts of Microphysical Scheme on Convective and Stratiform Characteristics in Two High Precipitation Squall Line Events

    SciTech Connect (OSTI)

    Wu, Di; Dong, Xiquan; Xi, Baike; Feng, Zhe; Kennedy, Aaron; Mullendore, Gretchen; Gilmore, Matthew; Tao, Wei-Kuo

    2013-10-04

    This study investigates the impact of snow, graupel, and hail processes on the simulated squall lines over the Southern Great Plains in the United States. Weather Research and Forecasting (WRF) model is used to simulate two squall line events in May 2007, and the results are validated against radar and surface observations in Oklahoma. Several microphysics schemes are tested in this study, including WRF 5-Class Microphysics Scheme (WSM5), WRF 6-Class Microphysics Scheme (WSM6), Goddard Three Ice scheme (Goddard 3-ice) with graupel, Goddard Two Ice scheme (Goddard 2-ice), and Goddard 3-ice hail scheme. The simulated surface precipitation is sensitive to the microphysics scheme, and especially to whether graupel or hail category is included. All of the three ice (3-ice) schemes overestimated the total precipitation, within which WSM6 has the highest overestimation. Two ice (2-ice) schemes, missing a graupel/hail category, produced less total precipitation than 3-ice schemes. By applying a radar-based convective/stratiform partitioning algorithm, we find that by including the graupel/hail processes, there is an increase in areal coverage, precipitation intensity, updraft and downdraft intensity in convective region and a reduction of areal coverage and its precipitation intensity in stratiform region. For vertical structures, all the bulk schemes, especially 2-ice schemes, have the highest reflectivity located at upper levels (~8 km), which is unrealistic compared to observations. In addition, this study shows the radar-based convective/stratiform partitioning algorithm can reasonably identify WRF simulated precipitation, wind and microphysics fields in both convective and stratiform regions.

  7. Using Artificial Neural Networks to Forecast Trichloroethylene Concentrations at the Paducah Gaseous Diffusion Plant

    SciTech Connect (OSTI)

    Kopp, Joshua D

    2007-05-01

    To determine the future extent of the TCE contamination plume at PGDP, a groundwater and solute transport model has been developed by the Department of Energy (DOE). The model used to perform these calculations is MODFLOWT which is an enhanced groundwater transport model developed by the United States Geological Survey (USGS). MODFLOWT models groundwater movement as well as the transport of species that are subject to adsorption and decay by using a finite difference method (Duffield et al 2001). A significant limitation of MODFLOWT is that it requires large amounts of data. This data can be difficult and expensive to obtain. MODFLOWT also requires excessive computational time to perform one simulation. It is desirable to have a model that can predict the spatial extent of the contaminant plume without as much required data and that does not require excessive computational times. The purpose of this study is to develop and alternative model to MODFLOWT that can produce similar results for possible use in a companion management model. The alternative model used in this study is an artificial neural network (ANN).

  8. Market Acceptance of Advanced Automotive Technologies (MA3T) Model

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Acceptance of Advanced Automotive Technologies (MA3T) Model (Oak Ridge National Laboratory) Objectives Forecasts sales of competing vehicle technologies among consumer segments. Analyzes how technology, infrastructure, consumer behavior, and policy affect sales of new technologies and determines the resulting societal, environmental and economic impacts. Key Attributes & Strengths MA3T can be used to investigate the societal benefits, costs, and employment impacts of market transitions

  9. Effects of the Financial Crisis on Photovoltaics: An Analysis of Changes in Market Forecasts from 2008 to 2009

    SciTech Connect (OSTI)

    Bartlett, J. E.; Margolis, R. M.; Jennings, C. E.

    2009-09-01

    To examine how the financial crisis has impacted expectations of photovoltaic production, demand and pricing over the next several years, we surveyed the market forecasts of industry analysts that had issued projections in 2008 and 2009. We find that the financial crisis has had a significant impact on the PV industry, primarily through increasing the cost and reducing the availability of investment into the sector. These effects have been more immediately experienced by PV installations than by production facilities, due to the different types and duration of investments, and thus PV demand has been reduced by a greater proportion than PV production. By reducing demand more than production, the financial crisis has accelerated previously expected PV overcapacity and resulting price declines.

  10. HOW TO DEAL WITH WASTE ACCEPTANCE UNCERTAINTY USING THE WASTE ACCEPTANCE CRITERIA FORECASTING AND ANALYSIS CAPABILITY SYSTEM (WACFACS)

    SciTech Connect (OSTI)

    Redus, K. S.; Hampshire, G. J.; Patterson, J. E.; Perkins, A. B.

    2002-02-25

    The Waste Acceptance Criteria Forecasting and Analysis Capability System (WACFACS) is used to plan for, evaluate, and control the supply of approximately 1.8 million yd3 of low-level radioactive, TSCA, and RCRA hazardous wastes from over 60 environmental restoration projects between FY02 through FY10 to the Oak Ridge Environmental Management Waste Management Facility (EMWMF). WACFACS is a validated decision support tool that propagates uncertainties inherent in site-related contaminant characterization data, disposition volumes during EMWMF operations, and project schedules to quantitatively determine the confidence that risk-based performance standards are met. Trade-offs in schedule, volumes of waste lots, and allowable concentrations of contaminants are performed to optimize project waste disposition, regulatory compliance, and disposal cell management.

  11. Identification of influencing municipal characteristics regarding household waste generation and their forecasting ability in Biscay

    SciTech Connect (OSTI)

    Oribe-Garcia, Iraia Kamara-Esteban, Oihane; Martin, Cristina; Macarulla-Arenaza, Ana M.; Alonso-Vicario, Ainhoa

    2015-05-15

    Highlights: • We have modelled household waste generation in Biscay municipalities. • We have identified relevant characteristics regarding household waste generation. • Factor models are used in order to identify the best subset of explicative variables. • Biscay’s municipalities are grouped by means of hierarchical clustering. - Abstract: The planning of waste management strategies needs tools to support decisions at all stages of the process. Accurate quantification of the waste to be generated is essential for both the daily management (short-term) and proper design of facilities (long-term). Designing without rigorous knowledge may have serious economic and environmental consequences. The present works aims at identifying relevant socio-economic features of municipalities regarding Household Waste (HW) generation by means of factor models. Factor models face two main drawbacks, data collection and identifying relevant explanatory variables within a heterogeneous group. Grouping similar characteristics observations within a group may favour the deduction of more robust models. The methodology followed has been tested with Biscay Province because it stands out for having very different municipalities ranging from very rural to urban ones. Two main models are developed, one for the overall province and a second one after clustering the municipalities. The results prove that relating municipalities with specific characteristics, improves the results in a very heterogeneous situation. The methodology has identified urban morphology, tourism activity, level of education and economic situation as the most influencing characteristics in HW generation.

  12. FY 2011 Second Quarter: Demonstration of New Aerosol Measurement Verification Testbed for Present-Day Global Aerosol Simulations

    SciTech Connect (OSTI)

    Koch, D

    2011-03-20

    The regional-scale Weather Research and Forecasting (WRF) model is being used by a DOE Earth System Modeling (ESM) project titled Improving the Characterization of Clouds, Aerosols and the Cryosphere in Climate Models to evaluate the performance of atmospheric process modules that treat aerosols and aerosol radiative forcing in the Arctic. We are using a regional-scale modeling framework for three reasons: (1) It is easier to produce a useful comparison to observations with a high resolution model; (2) We can compare the behavior of the CAM parameterization suite with some of the more complex and computationally expensive parameterizations used in WRF; (3) we can explore the behavior of this parameterization suite at high resolution. Climate models like the Community Atmosphere Model version 5 (CAM5) being used within the Community Earth System Model (CESM) will not likely be run at mesoscale spatial resolutions (1020 km) until 510 years from now. The performance of the current suite of physics modules in CAM5 at such resolutions is not known, and current computing resources do not permit high-resolution global simulations to be performed routinely. We are taking advantage of two tools recently developed under PNNL Laboratory Directed Research and Development (LDRD) projects for this activity. The first is the Aerosol Modeling Testbed (Fast et al., 2011b), a new computational framework designed to streamline the process of testing and evaluating aerosol process modules over a range of spatial and temporal scales. The second is the CAM5 suite of physics parameterizations that have been ported into WRF so that their performance and scale dependency can be quantified at mesoscale spatial resolutions (Gustafson et al., 2010; with more publications in preparation).

  13. Model documentation: Renewable Fuels Module of the National Energy Modeling System

    SciTech Connect (OSTI)

    Not Available

    1994-04-01

    This report documents the objectives, analytical approach, and design of the National Energy Modeling System (NEMS) Renewable Fuels Module (RFM) as it related to the production of the 1994 Annual Energy Outlook (AEO94) forecasts. The report catalogues and describes modeling assumptions, computational methodologies, data inputs, and parameter estimation techniques. A number of offline analyses used in lieu of RFM modeling components are also described. This documentation report serves two purposes. First, it is a reference document for model analysts, model users, and the public interested in the construction and application of the RFM. Second, it meets the legal requirement of the Energy Information Administration (EIA) to provide adequate documentation in support of its models. The RFM consists of six analytical submodules that represent each of the major renewable energy resources -- wood, municipal solid waste (MSW), solar energy, wind energy, geothermal energy, and alcohol fuels. Of these six, four are documented in the following chapters: municipal solid waste, wind, solar and biofuels. Geothermal and wood are not currently working components of NEMS. The purpose of the RFM is to define the technological and cost characteristics of renewable energy technologies, and to pass these characteristics to other NEMS modules for the determination of mid-term forecasted renewable energy demand.

  14. Oil- and gas-supply modeling

    SciTech Connect (OSTI)

    Gass, S.I.

    1982-05-01

    The symposium on Oil and Gas Supply Modeling, held at the Department of Commerce, Washington, DC (June 18-20, 1980), was funded by the Energy Information Administration of the Department of Energy and co-sponsored by the National Bureau of Standards' Operations Research Division. The symposium was organized to be a forum in which the theoretical and applied state-of-the-art of oil and gas supply models could be presented and discussed. Speakers addressed the following areas: the realities of oil and gas supply, prediction of oil and gas production, problems in oil and gas modeling, resource appraisal procedures, forecasting field size and production, investment and production strategies, estimating cost and production schedules for undiscovered fields, production regulations, resource data, sensitivity analysis of forecasts, econometric analysis of resource depletion, oil and gas finding rates, and various models of oil and gas supply. This volume documents the proceedings (papers and discussion) of the symposium. Separate abstracts have been prepared for individual papers for inclusion in the Energy Data Base.

  15. Reducing Our Carbon Footprint: Frontiers in Climate Forecasting (LBNL Science at the Theater)

    ScienceCinema (OSTI)

    Collins, Bill

    2011-05-09

    Bill Collins directs Berkeley Lab's research dedicated to atmospheric and climate science. Previously, he headed the development of one of the leading climate models used in international studies of global warming. His work has confirmed that man-made greenhouse gases are probably the main culprits of recent warming and future warming poses very real challenges for the environment and society. A lead author of the most recent assessment of the science of climate change by the United Nations' Integovernmental Panel on Climate Change, Collins wants to create a new kind of climate model, one that will integrate cutting-edge climate science with accurate predictions people can use to plan their lives

  16. Modeling volcanic ash dispersal

    ScienceCinema (OSTI)

    None

    2011-10-06

    Explosive volcanic eruptions inject into the atmosphere large amounts of volcanic material (ash, blocks and lapilli). Blocks and larger lapilli follow ballistic and non-ballistic trajectories and fall rapidly close to the volcano. In contrast, very fine ashes can remain entrapped in the atmosphere for months to years, and may affect the global climate in the case of large eruptions. Particles having sizes between these two end-members remain airborne from hours to days and can cover wide areas downwind. Such volcanic fallout entails a serious threat to aircraft safety and can create many undesirable effects to the communities located around the volcano. The assessment of volcanic fallout hazard is an important scientific, economic, and political issue, especially in densely populated areas. From a scientific point of view, considerable progress has been made during the last two decades through the use of increasingly powerful computational models and capabilities. Nowadays, models are used to quantify hazard scenarios and/or to give short-term forecasts during emergency situations. This talk will be focused on the main aspects related to modeling volcanic ash dispersal and fallout with application to the well known problem created by the Eyjafjöll volcano in Iceland. Moreover, a short description of the main volcanic monitoring techniques is presented.

  17. Advanced Modeling of Renewable Energy Market Dynamics: May 2006

    SciTech Connect (OSTI)

    Evans, M.; Little, R.; Lloyd, K.; Malikov, G.; Passolt, G.; Arent, D.; Swezey, B.; Mosey, G.

    2007-08-01

    This report documents a year-long academic project, presenting selected techniques for analysis of market growth, penetration, and forecasting applicable to renewable energy technologies. Existing mathematical models were modified to incorporate the effects of fiscal policies and were evaluated using available data. The modifications were made based on research and classification of current mathematical models used for predicting market penetration. An analysis of the results was carried out, based on available data. MATLAB versions of existing and new models were developed for research and policy analysis.

  18. Evaluation of Cloud Type Occurrences and Radiative Forcings Simulated by a Cloud Resolving Model Using Observations from Sa...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cloud Type Occurrences and Radiative Forcings Simulated by a Cloud Resolving Model Using Observations from Satellite and Cloud Radar Y. Luo and S. K. Krueger University of Utah Salt Lake City, Utah Introduction Because of both the various effects clouds exert on the earth-atmospheric system and the cloud feedback, correct representations of clouds in numerical models are critical for accurate climate modeling and weather forecast. Unfortunately, determination of clouds and their radiative

  19. Regional price targets appropriate for advanced coal extraction. [Forecasting to 1985 and 2000; USA; Regional analysis

    SciTech Connect (OSTI)

    Terasawa, K.L.; Whipple, D.W.

    1980-12-01

    The object of the study is to provide a methodology for predicting coal prices in regional markets for the target time frames 1985 and 2000 that could subsequently be used to guide the development of an advanced coal extraction system. The model constructed for the study is a supply and demand model that focuses on underground mining, since the advanced technology is expected to be developed for these reserves by the target years. The supply side of the model is based on coal reserve data generated by Energy and Environmental Analysis, Inc. (EEA). Given this data and the cost of operating a mine (data from US Department of Energy and Bureau of Mines), the Minimum Acceptable Selling Price (MASP) is obtained. The MASP is defined as the smallest price that would induce the producer to bring the mine into production, and is sensitive to the current technology and to assumptions concerning miner productivity. Based on this information, market supply curves can then be generated. On the demand side of the model, demand by region is calculated based on an EEA methodology that emphasizes demand by electric utilities and demand by industry. The demand and supply curves are then used to obtain the price targets. This last step is accomplished by allocating the demands among the suppliers so that the combined cost of producing and transporting coal is minimized.

  20. Data Tools & Models - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    Data Tools & Models Glossary › FAQS › Overview Data Tools Time Series Models & Documentation EIA has a vast amount of data, reports, forecasts, analytical content, and documentation to assist researchers working on energy topics. For users eager to dive deeper into our content, we have assembled tools to customize searches, view specific data sets, study detailed documentation, and access time-series data. Application Programming Interface (API): The API allows computers to more

  1. Cloudy Sky RRTM Shortwave Radiative Transfer and Comparison to the Revised ECMWF Shortwave Model

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cloudy Sky RRTM Shortwave Radiative Transfer and Comparison to the Revised ECMWF Shortwave Model M. J. Iacono, J. S. Delamere, E. J. Mlawer, and S. A. Clough Atmospheric and Environmental Research, Inc. Lexington, Massachusetts J.-J. Morcrette European Centre for Medium-Range Weather Forecasts Reading, United Kingdom Introduction An important step toward improving radiative transfer codes in general circulation models (GCMs) is their thorough evaluation by comparison to measurements directly, or

  2. Modifications to WRF's dynamical core to improve the treatment...

    Office of Scientific and Technical Information (OSTI)

    stepping settings (i.e., the dynamic time step length and number of acoustic sub-steps) ... OSTI Identifier: 1243286 Report Number(s): PNNL-SA-112067 KP1701000 DOE Contract Number: ...

  3. HIGH-RESOLUTION ATMOSPHERIC ENSEMBLE MODELING AT SRNL

    SciTech Connect (OSTI)

    Buckley, R.; Werth, D.; Chiswell, S.; Etherton, B.

    2011-05-10

    The High-Resolution Mid-Atlantic Forecasting Ensemble (HME) is a federated effort to improve operational forecasts related to precipitation, convection and boundary layer evolution, and fire weather utilizing data and computing resources from a diverse group of cooperating institutions in order to create a mesoscale ensemble from independent members. Collaborating organizations involved in the project include universities, National Weather Service offices, and national laboratories, including the Savannah River National Laboratory (SRNL). The ensemble system is produced from an overlapping numerical weather prediction model domain and parameter subsets provided by each contributing member. The coordination, synthesis, and dissemination of the ensemble information are performed by the Renaissance Computing Institute (RENCI) at the University of North Carolina-Chapel Hill. This paper discusses background related to the HME effort, SRNL participation, and example results available from the RENCI website.

  4. Joint Analysis of Galaxy-Galaxy Lensing and Galaxy Clustering: Methodology and Forecasts for DES

    SciTech Connect (OSTI)

    Park, Y.

    2015-07-19

    The joint analysis of galaxy-galaxy lensing and galaxy clustering is a promising method for inferring the growth function of large scale structure. Our analysis will be carried out on data from the Dark Energy Survey (DES), with its measurements of both the distribution of galaxies and the tangential shears of background galaxies induced by these foreground lenses. We develop a practical approach to modeling the assumptions and systematic effects affecting small scale lensing, which provides halo masses, and large scale galaxy clustering. Introducing parameters that characterize the halo occupation distribution (HOD), photometric redshift uncertainties, and shear measurement errors, we study how external priors on different subsets of these parameters affect our growth constraints. Degeneracies within the HOD model, as well as between the HOD and the growth function, are identified as the dominant source of complication, with other systematic effects sub-dominant. The impact of HOD parameters and their degeneracies necessitate the detailed joint modeling of the galaxy sample that we employ. Finally, we conclude that DES data will provide powerful constraints on the evolution of structure growth in the universe, conservatively/optimistically constraining the growth function to 7.9%/4.8% with its first-year data that covered over 1000 square degrees, and to 3.9%/2.3% with its full five-year data that will survey 5000 square degrees, including both statistical and systematic uncertainties.

  5. Application of Improved Radiation Modeling to General Circulation Models

    SciTech Connect (OSTI)

    Michael J Iacono

    2011-04-07

    This research has accomplished its primary objectives of developing accurate and efficient radiation codes, validating them with measurements and higher resolution models, and providing these advancements to the global modeling community to enhance the treatment of cloud and radiative processes in weather and climate prediction models. A critical component of this research has been the development of the longwave and shortwave broadband radiative transfer code for general circulation model (GCM) applications, RRTMG, which is based on the single-column reference code, RRTM, also developed at AER. RRTMG is a rigorously tested radiation model that retains a considerable level of accuracy relative to higher resolution models and measurements despite the performance enhancements that have made it possible to apply this radiation code successfully to global dynamical models. This model includes the radiative effects of all significant atmospheric gases, and it treats the absorption and scattering from liquid and ice clouds and aerosols. RRTMG also includes a statistical technique for representing small-scale cloud variability, such as cloud fraction and the vertical overlap of clouds, which has been shown to improve cloud radiative forcing in global models. This development approach has provided a direct link from observations to the enhanced radiative transfer provided by RRTMG for application to GCMs. Recent comparison of existing climate model radiation codes with high resolution models has documented the improved radiative forcing capability provided by RRTMG, especially at the surface, relative to other GCM radiation models. Due to its high accuracy, its connection to observations, and its computational efficiency, RRTMG has been implemented operationally in many national and international dynamical models to provide validated radiative transfer for improving weather forecasts and enhancing the prediction of global climate change.

  6. Effects of downscaled high-resolution meteorological data on the PSCF identification of emission sources

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cheng, Meng -Dawn; Kabela, Erik D.

    2016-04-30

    The Potential Source Contribution Function (PSCF) model has been successfully used for identifying regions of emission source at a long distance in this study, the PSCF model relies on backward trajectories calculated by the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model. In this study, we investigated the impacts of grid resolution and Planetary Boundary Layer (PBL) parameterization (e.g., turbulent transport of pollutants) on the PSCF analysis. The Mellor-Yamada-Janjic (MYJ) and Yonsei University (YUS) parameterization schemes were selected to model the turbulent transport in the PBL within the Weather Research and Forecasting (WRF version 3.6) model. Two separate domain grid sizesmore » (83 and 27 km) were chosen in the WRF downscaling in generating the wind data for driving the HYSPLIT calculation. The effects of grid size and PBL parameterization are important in incorporating the influ- ence of regional and local meteorological processes such as jet streaks, blocking patterns, Rossby waves, and terrain-induced convection on the transport of pollutants by a wind trajectory. We found high resolution PSCF did discover and locate source areas more precisely than that with lower resolution meteorological inputs. The lack of anticipated improvement could also be because a PBL scheme chosen to produce the WRF data was only a local parameterization and unable to faithfully duplicate the real atmosphere on a global scale. The MYJ scheme was able to replicate PSCF source identification by those using the Reanalysis and discover additional source areas that was not identified by the Reanalysis data. In conclusion, a potential benefit for using high-resolution wind data in the PSCF modeling is that it could discover new source location in addition to those identified by using the Reanalysis data input.« less

  7. Solid waste integrated forecast technical (SWEFT) report: FY1997 to FY 2070 - Document number changed to HNF-0918 at revision 1 - 1/7/97

    SciTech Connect (OSTI)

    Valero, O.J.

    1996-10-03

    This web site provides an up-to-date report on the radioactive solid waste expected to be managed at Hanford`s Solid Waste (SW) Program from onsite and offsite generators. It includes: an overview of Hanford-wide solid waste to be managed by the SW Program; program- level and waste class-specific estimates; background information on waste sources; and Li comparisons with previous forecasts and with other national data sources. The focus of this web site is on low- level mixed waste (LLMW), and transuranic waste (both non-mixed and mixed) (TRU(M)). Some details on low-level waste and hazardous waste are also provided. Currently, this site is reporting data current as of 9/96. The data represent a life cycle forecast covering all reported activities from FY97 through the end of each program`s life cycle.

  8. World Natural Gas Model

    Energy Science and Technology Software Center (OSTI)

    1994-12-01

    RAMSGAS, the Research and Development Analysis Modeling System World Natural Gas Model, was developed to support planning of unconventional gaseoues fuels research and development. The model is a scenario analysis tool that can simulate the penetration of unconventional gas into world markets for oil and gas. Given a set of parameter values, the model estimates the natural gas supply and demand for the world for the period from 1980 to 2030. RAMSGAS is based onmore » a supply/demand framwork and also accounts for the non-renewable nature of gas resources. The model has three fundamental components: a demand module, a wellhead production cost module, and a supply/demand interface module. The demand for gas is a product of total demand for oil and gas in each of 9 demand regions and the gas share. Demand for oil and gas is forecast from the base year of 1980 through 2030 for each demand region, based on energy growth rates and price-induced conservation. For each of 11 conventional and 19 unconventional gas supply regions, wellhead production costs are calculated. To these are added transportation and distribution costs estimates associated with moving gas from the supply region to each of the demand regions and any economic rents. Based on a weighted average of these costs and the world price of oil, fuel shares for gas and oil are computed for each demand region. The gas demand is the gas fuel share multiplied by the total demand for oil plus gas. This demand is then met from the available supply regions in inverse proportion to the cost of gas from each region. The user has almost complete control over the cost estimates for each unconventional gas source in each year and thus can compare contributions from unconventional resources under different cost/price/demand scenarios.« less

  9. Snow Micro-Structure Model

    Energy Science and Technology Software Center (OSTI)

    2014-06-25

    PIKA is a MOOSE-based application for modeling micro-structure evolution of seasonal snow. The model will be useful for environmental, atmospheric, and climate scientists. Possible applications include application to energy balance models, ice sheet modeling, and avalanche forecasting. The model implements physics from published, peer-reviewed articles. The main purpose is to foster university and laboratory collaboration to build a larger multi-scale snow model using MOOSE. The main feature of the code is that it is implementedmore » using the MOOSE framework, thus making features such as multiphysics coupling, adaptive mesh refinement, and parallel scalability native to the application. PIKA implements three equations: the phase-field equation for tracking the evolution of the ice-air interface within seasonal snow at the grain-scale; the heat equation for computing the temperature of both the ice and air within the snow; and the mass transport equation for monitoring the diffusion of water vapor in the pore space of the snow.« less

  10. Short and Long-Term Perspectives: The Impact on Low-Income Consumers of Forecasted Energy Price Increases in 2008 and A Cap & Trade Carbon Policy in 2030

    SciTech Connect (OSTI)

    Eisenberg, Joel Fred

    2008-01-01

    The Department of Energy's Energy Information Administration (EIA) recently released its short-term forecast for residential energy prices for the winter of 2007-2008. The forecast indicates increases in costs for low-income consumers in the year ahead, particularly for those using fuel oil to heat their homes. In the following analysis, the Oak Ridge National Laboratory has integrated the EIA price projections with the Residential Energy Consumption Survey (RECS) for 2001 in order to project the impact of these price increases on the nation's low-income households by primary heating fuel type, nationally and by Census Region. The report provides an update of bill estimates provided in a previous study, "The Impact Of Forecasted Energy Price Increases On Low-Income Consumers" (Eisenberg, 2005). The statistics are intended for use by policymakers in the Department of Energy's Weatherization Assistance Program and elsewhere who are trying to gauge the nature and severity of the problems that will be faced by eligible low-income households during the 2008 fiscal year. In addition to providing expenditure forecasts for the year immediately ahead, this analysis uses a similar methodology to give policy makers some insight into one of the major policy debates that will impact low-income energy expenditures well into the middle decades of this century and beyond. There is now considerable discussion of employing a cap-and-trade mechanism to first limit and then reduce U.S. emissions of carbon into the atmosphere in order to combat the long-range threat of human-induced climate change. The Energy Information Administration has provided an analysis of projected energy prices in the years 2020 and 2030 for one such cap-and-trade carbon reduction proposal that, when integrated with the RECS 2001 database, provides estimates of how low-income households will be impacted over the long term by such a carbon reduction policy.

  11. Coal supply/demand, 1980 to 2000. Task 3. Resource applications industrialization system data base. Final review draft. [USA; forecasting 1980 to 2000; sector and regional analysis

    SciTech Connect (OSTI)

    Fournier, W.M.; Hasson, V.

    1980-10-10

    This report is a compilation of data and forecasts resulting from an analysis of the coal market and the factors influencing supply and demand. The analyses performed for the forecasts were made on an end-use-sector basis. The sectors analyzed are electric utility, industry demand for steam coal, industry demand for metallurgical coal, residential/commercial, coal demand for synfuel production, and exports. The purpose is to provide coal production and consumption forecasts that can be used to perform detailed, railroad company-specific coal transportation analyses. To make the data applicable for the subsequent transportation analyses, the forecasts have been made for each end-use sector on a regional basis. The supply regions are: Appalachia, East Interior, West Interior and Gulf, Northern Great Plains, and Mountain. The demand regions are the same as the nine Census Bureau regions. Coal production and consumption in the United States are projected to increase dramatically in the next 20 years due to increasing requirements for energy and the unavailability of other sources of energy to supply a substantial portion of this increase. Coal comprises 85 percent of the US recoverable fossil energy reserves and could be mined to supply the increasing energy demands of the US. The NTPSC study found that the additional traffic demands by 1985 may be met by the railways by the way of improved signalization, shorter block sections, centralized traffic control, and other modernization methods without providing for heavy line capacity works. But by 2000 the incremental traffic on some of the major corridors was projected to increase very significantly and is likely to call for special line capacity works involving heavy investment.

  12. Grid Integration of Aggregated Demand Response, Part 2: Modeling Demand Response in a Production Cost Model

    Broader source: Energy.gov [DOE]

    Renewable integration studies have evaluated many challenges associated with deploying large amounts of variable wind and solar generation technologies. These studies can evaluate operational impacts associated with variable generation, benefits of improved wind and solar resource forecasting, and trade-offs between institutional changes, including increasing balancing area cooperation and technical changes such as installing new flexible generation. Demand response (DR) resources present a potentially important source of grid flexibility and can aid in integrating variable generation; however, integration analyses have not yet incorporated these resources explicitly into grid simulation models as part of a standard toolkit for resource planners.

  13. Waste Generation Forecast for DOE-ORO`s Environmental Restoration OR-1 Project: FY 1994--FY 2001. Environmental Restoration Program, September 1993 Revision

    SciTech Connect (OSTI)

    Not Available

    1993-12-01

    This Waste Generation Forecast for DOE-ORO`s Environmental Restoration OR-1 Project. FY 1994--FY 2001 is the third in a series of documents that report current estimates of the waste volumes expected to be generated as a result of Environmental Restoration activities at Department of Energy, Oak Ridge Operations Office (DOE-ORO), sites. Considered in the scope of this document are volumes of waste expected to be generated as a result of remedial action and decontamination and decommissioning activities taking place at these sites. Sites contributing to the total estimates make up the DOE-ORO Environmental Restoration OR-1 Project: the Oak Ridge K-25 Site, the Oak Ridge National Laboratory, the Y-12 Plant, the Paducah Gaseous Diffusion Plant, the Portsmouth Gaseous Diffusion Plant, and the off-site contaminated areas adjacent to the Oak Ridge facilities (collectively referred to as the Oak Ridge Reservation Off-Site area). Estimates are available for the entire fife of all waste generating activities. This document summarizes waste estimates forecasted for the 8-year period of FY 1994-FY 2001. Updates with varying degrees of change are expected throughout the refinement of restoration strategies currently in progress at each of the sites. Waste forecast data are relatively fluid, and this document represents remediation plans only as reported through September 1993.

  14. Modeling & Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities, Modeling, Modeling, Modeling & Analysis, Modeling & Analysis, Renewable Energy, Research & Capabilities, Wind Energy, Wind News Virtual LIDAR Model Helps Researchers ...

  15. Model documentation: Natural Gas Transmission and Distribution Model of the National Energy Modeling System; Volume 1

    SciTech Connect (OSTI)

    1994-02-24

    The Natural Gas Transmission and Distribution Model (NGTDM) is a component of the National Energy Modeling System (NEMS) used to represent the domestic natural gas transmission and distribution system. NEMS is the third in a series of computer-based, midterm energy modeling systems used since 1974 by the Energy Information Administration (EIA) and its predecessor, the Federal Energy Administration, to analyze domestic energy-economy markets and develop projections. This report documents the archived version of NGTDM that was used to produce the natural gas forecasts used in support of the Annual Energy Outlook 1994, DOE/EIA-0383(94). The purpose of this report is to provide a reference document for model analysts, users, and the public that defines the objectives of the model, describes its basic design, provides detail on the methodology employed, and describes the model inputs, outputs, and key assumptions. It is intended to fulfill the legal obligation of the EIA to provide adequate documentation in support of its models (Public Law 94-385, Section 57.b.2). This report represents Volume 1 of a two-volume set. (Volume 2 will report on model performance, detailing convergence criteria and properties, results of sensitivity testing, comparison of model outputs with the literature and/or other model results, and major unresolved issues.) Subsequent chapters of this report provide: (1) an overview of the NGTDM (Chapter 2); (2) a description of the interface between the National Energy Modeling System (NEMS) and the NGTDM (Chapter 3); (3) an overview of the solution methodology of the NGTDM (Chapter 4); (4) the solution methodology for the Annual Flow Module (Chapter 5); (5) the solution methodology for the Distributor Tariff Module (Chapter 6); (6) the solution methodology for the Capacity Expansion Module (Chapter 7); (7) the solution methodology for the Pipeline Tariff Module (Chapter 8); and (8) a description of model assumptions, inputs, and outputs (Chapter 9).

  16. Forecasting the market for SO sub 2 emission allowances under uncertainty

    SciTech Connect (OSTI)

    Hanson, D.; Molburg, J.; Fisher, R.; Boyd, G.; Pandola, G.; Lurie, G.; Taxon, T.

    1991-01-01

    This paper deals with the effects of uncertainty and risk aversion on market outcomes for SO{sub 2} emission allowance prices and on electric utility compliance choices. The 1990 Clean Air Act Amendments (CAAA), which are briefly reviewed here, provide for about twice as many SO{sub 2} allowances to be issued per year in Phase 1 (1995--1999) than in Phase 2. Considering the scrubber incentives in Phase 1, there is likely to be substantial emission banking for use in Phase 2. Allowance prices are expected to increase over time at a rate less than the return on alternative investments, so utilities which are risk neutral, or potential speculators in the allowance market, are not expected to bank allowances. The allowances will be banked by utilities that are risk averse. The Argonne Utility Simulation Model (ARGUS2) is being revised to incorporate the provisions of the CAAA acid rain title and to simulate SO{sub 2} allowance prices, compliance choices, capacity expansion, system dispatch, fuel use, and emissions using a unit level data base and alternative scenario assumptions. 1 fig.

  17. Model documentation report: Residential sector demand module of the National Energy Modeling System

    SciTech Connect (OSTI)

    1997-01-01

    This report documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Residential Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, and FORTRAN source code. This document serves three purposes. First, it is a reference document that provides a detailed description for energy analysts, other users, and the public. Second, this report meets the legal requirement of the Energy Information Administration (EIA) to provide adequate documentation in support of its statistical and forecast reports according to Public Law 93-275, section 57(b)(1). Third, it facilitates continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements.

  18. An economic feasibility analysis of distributed electric power generation based upon the Natural Gas-Fired Fuel Cell: a model of the operations cost.

    SciTech Connect (OSTI)

    Not Available

    1993-06-30

    This model description establishes the revenues, expenses incentives and avoided costs of Operation of a Natural Gas-Fired Fuel Cell-Based. Fuel is the major element of the cost of operation of a natural gas-fired fuel cell. Forecasts of the change in the price of this commodity a re an important consideration in the ownership of an energy conversion system. Differences between forecasts, the interests of the forecaster or geographical areas can all have significant effects on imputed fuel costs. There is less effect on judgments made on the feasibility of an energy conversion system since changes in fuel price can affect the cost of operation of the alternatives to the fuel cell in a similar fashion. The forecasts used in this model are only intended to provide the potential owner or operator with the means to examine alternate future scenarios. The operations model computes operating costs of a system suitable for a large condominium complex or a residential institution such as a hotel, boarding school or prison. The user may also select large office buildings that are characterized by 12 to 16 hours per day of operation or industrial users with a steady demand for thermal and electrical energy around the clock.

  19. Summary of available waste forecast data for the Environmental Restoration Program at the Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Not Available

    1994-08-01

    This report identifies patterns of Oak Ridge National Laboratory (ORNL) Environmental Restoration (ER) waste generation that are predicted by the current ER Waste Generation Forecast data base. It compares the waste volumes to be generated with the waste management capabilities of current and proposed treatment, storage, or disposal (TSD) facilities. The scope of this report is limited to wastes generated during activities funded by the Office of the Deputy Assistant Secretary for Environmental Restoration (EM-40) and excludes wastes from the decontamination and decommissioning of facilities. Significant quantities of these wastes are expected to be generated during ER activities. This report has been developed as a management tool supporting communication and coordination of waste management activities at ORNL. It summarizes the available data for waste that will be generated as a result of remediation activities under the direction of the U.S. Department of Energy Oak Ridge Operations Office and identifies areas requiring continued waste management planning and coordination. Based on the available data, it is evident that most remedial action wastes leaving the area of contamination can be managed adequately with existing and planned ORR waste management facilities if attention is given to waste generation scheduling and the physical limitations of particular TSD facilities. Limited use of off-site commercial TSD facilities is anticipated, provided the affected waste streams can be shown to satisfy the requirements of the performance objective for certification of non-radioactive hazardous waste and the waste acceptance criteria of the off-site facilities. Ongoing waste characterization will be required to determine the most appropriate TSD facility for each waste stream.

  20. CERTS customer adoption model

    SciTech Connect (OSTI)

    Rubio, F. Javier; Siddiqui, Afzal S.; Marnay, Chris; Hamachi,Kristina S.

    2000-03-01

    This effort represents a contribution to the wider distributed energy resources (DER) research of the Consortium for Electric Reliability Technology Solutions (CERTS, http://certs.lbl.gov) that is intended to attack and, hopefully, resolve the technical barriers to DER adoption, particularly those that are unlikely to be of high priority to individual equipment vendors. The longer term goal of the Berkeley Lab effort is to guide the wider technical research towards the key technical problems by forecasting some likely patterns of DER adoption. In sharp contrast to traditional electricity utility planning, this work takes a customer-centric approach and focuses on DER adoption decision making at, what we currently think of as, the customer level. This study reports on Berkeley Lab's second year effort (completed in Federal fiscal year 2000, FY00) of a project aimed to anticipate patterns of customer adoption of distributed energy resources (DER). Marnay, et al., 2000 describes the earlier FY99 Berkeley Lab work. The results presented herein are not intended to represent definitive economic analyses of possible DER projects by any means. The paucity of data available and the importance of excluded factors, such as environmental implications, are simply too important to make such an analysis possible at this time. Rather, the work presented represents a demonstration of the current model and an indicator of the potential to conduct more relevant studies in the future.

  1. Ensemble bayesian model averaging using markov chain Monte Carlo sampling

    SciTech Connect (OSTI)

    Vrugt, Jasper A; Diks, Cees G H; Clark, Martyn P

    2008-01-01

    Bayesian model averaging (BMA) has recently been proposed as a statistical method to calibrate forecast ensembles from numerical weather models. Successful implementation of BMA however, requires accurate estimates of the weights and variances of the individual competing models in the ensemble. In their seminal paper (Raftery etal. Mon Weather Rev 133: 1155-1174, 2(05)) has recommended the Expectation-Maximization (EM) algorithm for BMA model training, even though global convergence of this algorithm cannot be guaranteed. In this paper, we compare the performance of the EM algorithm and the recently developed Differential Evolution Adaptive Metropolis (DREAM) Markov Chain Monte Carlo (MCMC) algorithm for estimating the BMA weights and variances. Simulation experiments using 48-hour ensemble data of surface temperature and multi-model stream-flow forecasts show that both methods produce similar results, and that their performance is unaffected by the length of the training data set. However, MCMC simulation with DREAM is capable of efficiently handling a wide variety of BMA predictive distributions, and provides useful information about the uncertainty associated with the estimated BMA weights and variances.

  2. Improvements in fast-response flood modeling: desktop parallel computing and domain tracking

    SciTech Connect (OSTI)

    Judi, David R; Mcpherson, Timothy N; Burian, Steven J

    2009-01-01

    It is becoming increasingly important to have the ability to accurately forecast flooding, as flooding accounts for the most losses due to natural disasters in the world and the United States. Flood inundation modeling has been dominated by one-dimensional approaches. These models are computationally efficient and are considered by many engineers to produce reasonably accurate water surface profiles. However, because the profiles estimated in these models must be superimposed on digital elevation data to create a two-dimensional map, the result may be sensitive to the ability of the elevation data to capture relevant features (e.g. dikes/levees, roads, walls, etc...). Moreover, one-dimensional models do not explicitly represent the complex flow processes present in floodplains and urban environments and because two-dimensional models based on the shallow water equations have significantly greater ability to determine flow velocity and direction, the National Research Council (NRC) has recommended that two-dimensional models be used over one-dimensional models for flood inundation studies. This paper has shown that two-dimensional flood modeling computational time can be greatly reduced through the use of Java multithreading on multi-core computers which effectively provides a means for parallel computing on a desktop computer. In addition, this paper has shown that when desktop parallel computing is coupled with a domain tracking algorithm, significant computation time can be eliminated when computations are completed only on inundated cells. The drastic reduction in computational time shown here enhances the ability of two-dimensional flood inundation models to be used as a near-real time flood forecasting tool, engineering, design tool, or planning tool. Perhaps even of greater significance, the reduction in computation time makes the incorporation of risk and uncertainty/ensemble forecasting more feasible for flood inundation modeling (NRC 2000; Sayers et al

  3. Evaluation of convection-permitting model simulations of cloud populations associated with the Madden-Julian Oscillation using data collected during the AMIE/DYNAMO field campaign

    SciTech Connect (OSTI)

    Hagos, Samson M.; Feng, Zhe; Burleyson, Casey D.; Lim, Kyo-Sun; Long, Charles N.; Wu, Di; Thompson, Gregory

    2014-11-12

    Regional cloud permitting model simulations of cloud populations observed during the 2011 ARM Madden Julian Oscillation Investigation Experiment/ Dynamics of Madden-Julian Experiment (AMIE/DYNAMO) field campaign are evaluated against radar and ship-based measurements. Sensitivity of model simulated surface rain rate statistics to parameters and parameterization of hydrometeor sizes in five commonly used WRF microphysics schemes are examined. It is shown that at 2 km grid spacing, the model generally overestimates rain rate from large and deep convective cores. Sensitivity runs involving variation of parameters that affect rain drop or ice particle size distribution (more aggressive break-up process etc) generally reduce the bias in rain-rate and boundary layer temperature statistics as the smaller particles become more vulnerable to evaporation. Furthermore significant improvement in the convective rain-rate statistics is observed when the horizontal grid-spacing is reduced to 1 km and 0.5 km, while it is worsened when run at 4 km grid spacing as increased turbulence enhances evaporation. The results suggest modulation of evaporation processes, through parameterization of turbulent mixing and break-up of hydrometeors may provide a potential avenue for correcting cloud statistics and associated boundary layer temperature biases in regional and global cloud permitting model simulations.

  4. Model documentation report: Commercial Sector Demand Module of the National Energy Modeling System

    SciTech Connect (OSTI)

    1998-01-01

    This report documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Commercial Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated through the synthesis and scenario development based on these components. The NEMS Commercial Sector Demand Module is a simulation tool based upon economic and engineering relationships that models commercial sector energy demands at the nine Census Division level of detail for eleven distinct categories of commercial buildings. Commercial equipment selections are performed for the major fuels of electricity, natural gas, and distillate fuel, for the major services of space heating, space cooling, water heating, ventilation, cooking, refrigeration, and lighting. The algorithm also models demand for the minor fuels of residual oil, liquefied petroleum gas, steam coal, motor gasoline, and kerosene, the renewable fuel sources of wood and municipal solid waste, and the minor services of office equipment. Section 2 of this report discusses the purpose of the model, detailing its objectives, primary input and output quantities, and the relationship of the Commercial Module to the other modules of the NEMS system. Section 3 of the report describes the rationale behind the model design, providing insights into further assumptions utilized in the model development process to this point. Section 3 also reviews alternative commercial sector modeling methodologies drawn from existing literature, providing a comparison to the chosen approach. Section 4 details the model structure, using graphics and text to illustrate model flows and key computations.

  5. Could crop height affect the wind resource at agriculturally productive wind farm sites?

    SciTech Connect (OSTI)

    Vanderwende, Brian; Lundquist, Julie K.

    2015-11-07

    The collocation of cropland and wind turbines in the US Midwest region introduces complex meteorological interactions that could influence both agriculture and wind-power production. Crop management practices may affect the wind resource through alterations of land-surface properties. We use the weather research and forecasting (WRF) model to estimate the impact of crop height variations on the wind resource in the presence of a large turbine array. A hypothetical wind farm consisting of 121 1.8-MW turbines is represented using the WRF model wind-farm parametrization. We represent the impact of selecting soybeans rather than maize by altering the aerodynamic roughness length in a region approximately 65 times larger than that occupied by the turbine array. Roughness lengths of 0.1 and 0.25 m represent the mature soy crop and a mature maize crop, respectively. In all but the most stable atmospheric conditions, statistically significant hub-height wind-speed increases and rotor-layer wind-shear reductions result from switching from maize to soybeans. Based on simulations for the entire month of August 2013, wind-farm energy output increases by 14 %, which would yield a significant monetary gain. Further investigation is required to determine the optimal size, shape, and crop height of the roughness modification to maximize the economic benefit and minimize the cost of such crop-management practices. As a result, these considerations must be balanced by other influences on crop choice such as soil requirements and commodity prices.

  6. Electrical utilities model for determining electrical distribution capacity

    SciTech Connect (OSTI)

    Fritz, R. L.

    1997-09-03

    In its simplest form, this model was to obtain meaningful data on the current state of the Site`s electrical transmission and distribution assets, and turn this vast collection of data into useful information. The resulting product is an Electrical Utilities Model for Determining Electrical Distribution Capacity which provides: current state of the electrical transmission and distribution systems; critical Hanford Site needs based on outyear planning documents; decision factor model. This model will enable Electrical Utilities management to improve forecasting requirements for service levels, budget, schedule, scope, and staffing, and recommend the best path forward to satisfy customer demands at the minimum risk and least cost to the government. A dynamic document, the model will be updated annually to reflect changes in Hanford Site activities.

  7. Mathematical models for risk assessment

    SciTech Connect (OSTI)

    Zaikin, S.A.

    1995-12-01

    The use of mathematical models in risk assessment results in the proper understanding of many aspects of chemical exposure and allows to make more actual decisions. Our project ISCRA (Integrated Systems of Complex Risk Assessment) has the aim to create integrated systems of algorythms for prediction of pollutants` exposure on human and environmental health and to apply them for environmental monitoring, and decision-making. Mathematical model {open_quotes}MASTER{close_quotes} (Mathematical Algorythm of SimulaTion of Environmental Risk) represents the complex of algorythmical blocks and is intended for the prediction of danger of pollutants` exposure for human and environmental risk. Model LIMES (LIMits EStimation) is developed for prognosis of safety concentrations of pollutants in the environment both in the case of isolated exposure and in the case of complex exposure for concrete location. Model QUANT (QUANtity of Toxicant) represents the multicompartmental physiological pharmacokinetic model describing absorption, distribution, fate, metabolism, and elimination of pollutants in the body of different groups of human population, as a result of the different kind of exposure. Decision support system CLEVER (Complex LEVE1 of Risk) predicts the probability and the degree of development of unfavourable effects as result of exposure of pollutant on human health. System is based on the data of epidemiological and experimental researches and includes several mathematical models for analysis of {open_quotes}dose-time-response{close_quotes} relations and information about clinical symptoms of diseases. Model CEP (Combination Effect Prognosis) contains probabilistic algorythms for forecasting the effect of simultaneous impact of several factors polluting the environment. The result of the program work is the prediction of an independent exposure of two or more factors, and intensification or weakening of exposure in depending on factors` interactions.

  8. Accounting for Unresolved Spatial Variability in Large Scale Models: Development and Evaluation of a Statistical Cloud Parameterization with Prognostic Higher Order Moments

    SciTech Connect (OSTI)

    Robert Pincus

    2011-05-17

    This project focused on the variability of clouds that is present across a wide range of scales ranging from the synoptic to the millimeter. In particular, there is substantial variability in cloud properties at scales smaller than the grid spacing of models used to make climate projections (GCMs) and weather forecasts. These models represent clouds and other small-scale processes with parameterizations that describe how those processes respond to and feed back on the largescale state of the atmosphere.

  9. Model documentation: Natural gas transmission and distribution model of the National Energy Modeling System. Volume 1

    SciTech Connect (OSTI)

    1995-02-17

    The Natural Gas Transmission and Distribution Model (NGTDM) is the component of the National Energy Modeling System (NEMS) that is used to represent the domestic natural gas transmission and distribution system. NEMS was developed in the Office of integrated Analysis and Forecasting of the Energy information Administration (EIA). NEMS is the third in a series of computer-based, midterm energy modeling systems used since 1974 by the EIA and its predecessor, the Federal Energy Administration, to analyze domestic energy-economy markets and develop projections. The NGTDM is the model within the NEMS that represents the transmission, distribution, and pricing of natural gas. The model also includes representations of the end-use demand for natural gas, the production of domestic natural gas, and the availability of natural gas traded on the international market based on information received from other NEMS models. The NGTDM determines the flow of natural gas in an aggregate, domestic pipeline network, connecting domestic and foreign supply regions with 12 demand regions. The methodology employed allows the analysis of impacts of regional capacity constraints in the interstate natural gas pipeline network and the identification of pipeline capacity expansion requirements. There is an explicit representation of core and noncore markets for natural gas transmission and distribution services, and the key components of pipeline tariffs are represented in a pricing algorithm. Natural gas pricing and flow patterns are derived by obtaining a market equilibrium across the three main elements of the natural gas market: the supply element, the demand element, and the transmission and distribution network that links them. The NGTDM consists of four modules: the Annual Flow Module, the Capacity F-expansion Module, the Pipeline Tariff Module, and the Distributor Tariff Module. A model abstract is provided in Appendix A.

  10. Modeling a Typical Winter-time Dust Event over the Arabian Peninsula and the Red Sea

    SciTech Connect (OSTI)

    Kalenderski, S.; Stenchikov, G.; Zhao, Chun

    2013-02-20

    We used WRF-Chem, a regional meteorological model coupled with an aerosol-chemistry component, to simulate various aspects of the dust phenomena over the Arabian Peninsula and Red Sea during a typical winter-time dust event that occurred in January 2009. The model predicted that the total amount of emitted dust was 18.3 Tg for the entire dust outburst period and that the two maximum daily rates were ~2.4 Tg/day and ~1.5 Tg/day, corresponding to two periods with the highest aerosol optical depth that were well captured by ground- and satellite-based observations. The model predicted that the dust plume was thick, extensive, and mixed in a deep boundary layer at an altitude of 3-4 km. Its spatial distribution was modeled to be consistent with typical spatial patterns of dust emissions. We utilized MODIS-Aqua and Solar Village AERONET measurements of the aerosol optical depth (AOD) to evaluate the radiative impact of aerosols. Our results clearly indicated that the presence of dust particles in the atmosphere caused a significant reduction in the amount of solar radiation reaching the surface during the dust event. We also found that dust aerosols have significant impact on the energy and nutrient balances of the Red Sea. Our results showed that the simulated cooling under the dust plume reached 100 W/m2, which could have profound effects on both the sea surface temperature and circulation. Further analysis of dust generation and its spatial and temporal variability is extremely important for future projections and for better understanding of the climate and ecological history of the Red Sea.

  11. Radiative Heating Profiles in the Convective Tropics: A Comparison of Observations and Models

    SciTech Connect (OSTI)

    McFarlane, Sally A.; Mather, Jim H.; Ackerman, Thomas P.

    2005-01-10

    Radiative heating is one of the principal drivers of tropical circulation. While we have good knowledge of radiative fluxes at the top-of-atmosphere and at specific surface sites, observations of atmospheric profiles of radiative heating, particular in cloudy conditions, have been largely unavailable. The Atmospheric Radiation Measurement (ARM) Program has begun a program to compute radiative heating profiles routinely at its observational sites at Nauru and Manus Island, Papua New Guinea, using observed and retrieved inputs of water vapor and condensed water phase, particle size, and mass. The accuracy of these profiles can be assessed by comparing the calculated TOA and surface fluxes with observations. We have computed radiative heating profiles every 20 minutes for several months at each of these two sites in the 1999-2000 time period, which represent a unique dataset for model comparison. Here, we compare this dataset to model output from the European Center for Medium-Range Weather Forecasting (ECMWF) analysis, the NCAR Community Atmosphere Model (CAM 3.0) and the Multi-Scale Modeling Framework (MMF). These three models, all run using observed SST for this comparison, provide an interesting range of resolution from the 4 km cloud resolving model in the MMF to the approximately 280 km grid-scale of the CAM and a contrast between forecasting and climate models. In general, the model results fail to capture the structure of the observed heating in the upper troposphere because of their failure to simulate cirrus and stratiform cloud adequately.

  12. A Flexible Power System Operations Simulation Model for Assessing...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... common method of forecasting in the very short-term. Many of the integration studies in 1 determine that the forecast errors have larger impacts on costs and operations than ...

  13. Modeling and simulation of consumer response to dynamic pricing.

    SciTech Connect (OSTI)

    Valenzuela, J.; Thimmapuram, P.; Kim, J

    2012-08-01

    Assessing the impacts of dynamic-pricing under the smart grid concept is becoming extremely important for deciding its full deployment. In this paper, we develop a model that represents the response of consumers to dynamic pricing. In the model, consumers use forecasted day-ahead prices to shift daily energy consumption from hours when the price is expected to be high to hours when the price is expected to be low while maintaining the total energy consumption as unchanged. We integrate the consumer response model into the Electricity Market Complex Adaptive System (EMCAS). EMCAS is an agent-based model that simulates restructured electricity markets. We explore the impacts of dynamic-pricing on price spikes, peak demand, consumer energy bills, power supplier profits, and congestion costs. A simulation of an 11-node test network that includes eight generation companies and five aggregated consumers is performed for a period of 1 month. In addition, we simulate the Korean power system.

  14. DOE SBIR Phase II Final Technical Report - Assessing Climate Change Effects on Wind Energy

    SciTech Connect (OSTI)

    Whiteman, Cameron; Capps, Scott

    2014-11-05

    Specialized Vertum Partners software tools were prototyped, tested and commercialized to allow wind energy stakeholders to assess the uncertainties of climate change on wind power production and distribution. This project resulted in three commercially proven products and a marketing tool. The first was a Weather Research and Forecasting Model (WRF) based resource evaluation system. The second was a web-based service providing global 10m wind data from multiple sources to wind industry subscription customers. The third product addressed the needs of our utility clients looking at climate change effects on electricity distribution. For this we collaborated on the Santa Ana Wildfire Threat Index (SAWTi), which was released publicly last quarter. Finally to promote these products and educate potential users we released “Gust or Bust”, a graphic-novel styled marketing publication.

  15. Using a Simple Binomial Model to Assess Improvement in Predictive...

    Office of Scientific and Technical Information (OSTI)

    ... Subject: 42 ENGINEERING; 97 MATHEMATICAL METHODS AND COMPUTING; COMPUTER CODES; DISTRIBUTION; FORECASTING; HYPOTHESIS; PRICES; PROBABILITY; SIMULATION; STATISTICS; TESTING Word ...

  16. Policy modeling for industrial energy use

    SciTech Connect (OSTI)

    Worrell, Ernst; Park, Hi-Chun; Lee, Sang-Gon; Jung, Yonghun; Kato, Hiroyuki; Ramesohl, Stephan; Boyd, Gale; Eichhammer, Wolfgang; Nyboer, John; Jaccard, Mark; Nordqvist, Joakim; Boyd, Christopher; Klee, Howard; Anglani, Norma; Biermans, Gijs

    2003-03-01

    The international workshop on Policy Modeling for Industrial Energy Use was jointly organized by EETA (Professional Network for Engineering Economic Technology Analysis) and INEDIS (International Network for Energy Demand Analysis in the Industrial Sector). The workshop has helped to layout the needs and challenges to include policy more explicitly in energy-efficiency modeling. The current state-of-the-art models have a proven track record in forecasting future trends under conditions similar to those faced in the recent past. However, the future of energy policy in a climate-restrained world is likely to demand different and additional services to be provided by energy modelers. In this workshop some of the international models used to make energy consumption forecasts have been discussed as well as innovations to enable the modeling of policy scenarios. This was followed by the discussion of future challenges, new insights in the data needed to determine the inputs into energy model s, and methods to incorporate decision making and policy in the models. Based on the discussion the workshop participants came to the following conclusions and recommendations: Current energy models are already complex, and it is already difficult to collect the model inputs. Hence, new approaches should be transparent and not lead to extremely complex models that try to ''do everything''. The model structure will be determined by the questions that need to be answered. A good understanding of the decision making framework of policy makers and clear communication on the needs are essential to make any future energy modeling effort successful. There is a need to better understand the effects of policy on future energy use, emissions and the economy. To allow the inclusion of policy instruments in models, evaluation of programs and instruments is essential, and need to be included in the policy instrument design. Increased efforts are needed to better understand the effects of

  17. Modeling diffusion of electrical appliances in the residential sector

    SciTech Connect (OSTI)

    McNeil, Michael A.; Letschert, Virginie E.

    2009-11-22

    This paper presents a methodology for modeling residential appliance uptake as a function of root macroeconomic drivers. The analysis concentrates on four major energy end uses in the residential sector: refrigerators, washing machines, televisions and air conditioners. The model employs linear regression analysis to parameterize appliance ownership in terms of household income, urbanization and electrification rates according to a standard binary choice (logistic) function. The underlying household appliance ownership data are gathered from a variety of sources including energy consumption and more general standard of living surveys. These data span a wide range of countries, including many developing countries for which appliance ownership is currently low, but likely to grow significantly over the next decades as a result of economic development. The result is a 'global' parameterization of appliance ownership rates as a function of widely available macroeconomic variables for the four appliances studied, which provides a reliable basis for interpolation where data are not available, and forecasting of ownership rates on a global scale. The main value of this method is to form the foundation of bottom-up energy demand forecasts, project energy-related greenhouse gas emissions, and allow for the construction of detailed emissions mitigation scenarios.

  18. Model for Aggregated Water Heater Load Using Dynamic Bayesian Networks

    SciTech Connect (OSTI)

    Vlachopoulou, Maria; Chin, George; Fuller, Jason C.; Lu, Shuai; Kalsi, Karanjit

    2012-07-19

    The transition to the new generation power grid, or smart grid, requires novel ways of using and analyzing data collected from the grid infrastructure. Fundamental functionalities like demand response (DR), that the smart grid needs, rely heavily on the ability of the energy providers and distributors to forecast the load behavior of appliances under different DR strategies. This paper presents a new model of aggregated water heater load, based on dynamic Bayesian networks (DBNs). The model has been validated against simulated data from an open source distribution simulation software (GridLAB-D). The results presented in this paper demonstrate that the DBN model accurately tracks the load profile curves of aggregated water heaters under different testing scenarios.

  19. Coupling a Mesoscale Numerical Weather Prediction Model with Large-Eddy Simulation for Realistic Wind Plant Aerodynamics Simulations (Poster)

    SciTech Connect (OSTI)

    Draxl, C.; Churchfield, M.; Mirocha, J.; Lee, S.; Lundquist, J.; Michalakes, J.; Moriarty, P.; Purkayastha, A.; Sprague, M.; Vanderwende, B.

    2014-06-01

    Wind plant aerodynamics are influenced by a combination of microscale and mesoscale phenomena. Incorporating mesoscale atmospheric forcing (e.g., diurnal cycles and frontal passages) into wind plant simulations can lead to a more accurate representation of microscale flows, aerodynamics, and wind turbine/plant performance. Our goal is to couple a numerical weather prediction model that can represent mesoscale flow [specifically the Weather Research and Forecasting model] with a microscale LES model (OpenFOAM) that can predict microscale turbulence and wake losses.

  20. Systems Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... International Strategy for Water and Land Resources in Iraq Model US-Canada Algae Biofuel ... Generation Cost Simulation Model Iraq Water-Energy-Food Model The USMexico ...