Powered by Deep Web Technologies
Note: This page contains sample records for the topic "forecast maps countries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

NOAA Harmful Algal Bloom Operational Forecast System Southwest Florida Forecast Region Maps  

E-Print Network [OSTI]

Bloom Operational Forecast System Southwest Florida Forecast Region Maps 0 5 102.5 Miles #12;Bay Harmful Algal Bloom Operational Forecast System Southwest Florida Forecast Region Maps 0 5 102.5 Miles #12 N Collier N Charlotte S Charlotte NOAA Harmful Algal Bloom Operational Forecast System Southwest

2

Measuring the forecasting accuracy of models: evidence from industrialised countries  

Science Journals Connector (OSTI)

This paper uses the approach suggested by Akrigay (1989), Tse and Tung (1992) and Dimson and Marsh (1990) to examine the forecasting accuracy of stock price index models for industrialised markets. The focus of this paper is to compare the Mean Absolute Percentage Error (MAPE) of three models, that is, the Random Walk model, the Single Exponential Smoothing model and the Conditional Heteroskedastic model with the MAPE of the benchmark Naive Forecast 1 case. We do not evidence that a single model to provide better forecasting accuracy results compared to other models.

Athanasios Koulakiotis; Apostolos Dasilas

2009-01-01T23:59:59.000Z

3

Event:CDKN/MAPS side event: developing countries collaborating for climate  

Open Energy Info (EERE)

CDKN/MAPS side event: developing countries collaborating for climate CDKN/MAPS side event: developing countries collaborating for climate compatible development Jump to: navigation, search Calendar.png CDKN/MAPS side event: developing countries collaborating for climate compatible development: 20:15-21:45 on 2011/12/08 CDKN/MAPS side event: developing countries collaborating for climate compatible development Event Details Name CDKN/MAPS side event: developing countries collaborating for climate compatible development Date 2011/12/08 Time 20:15-21:45 Location Levubu River room, Durban Exhibition Centre Organizer Climate and Development Knowledge Network (CDKN) Tags Climate Knowledge Broker Ret LikeLike UnlikeLike You like this.Sign Up to see what your friends like. rieved from "http://en.openei.org/w/index.php?title=Event:CDKN/MAPS_side_event:_developing_countries_collaborating_for_climate_compatible_development&oldid=391878

4

Using a Self Organizing Map Neural Network for Short-Term Load Forecasting, Analysis of Different Input Data Patterns  

Science Journals Connector (OSTI)

This research uses a Self-Organizing Map neural network model (SOM) as a short-term forecasting method. The objective is to obtain the demand curve of certain hours of the next day. In order to validate the model...

C. Senabre; S. Valero; J. Aparicio

2010-01-01T23:59:59.000Z

5

The relationship between energy intensity and income levels: Forecasting long term energy demand in Asian emerging countries  

SciTech Connect (OSTI)

This paper analyzes long-term trends in energy intensity for ten Asian emerging countries to test for a non-monotonic relationship between energy intensity and income in the author's sample. Energy demand functions are estimated during 1973--1990 using a quadratic function of log income. The long-run coefficient on squared income is found to be negative and significant, indicating a change in trend of energy intensity. The estimates are then used to evaluate a medium-term forecast of energy demand in the Asian countries, using both a log-linear and a quadratic model. It is found that in medium to high income countries the quadratic model performs better than the log-linear, with an average error of 9% against 43% in 1995. For the region as a whole, the quadratic model appears more adequate with a forecast error of 16% against 28% in 1995. These results are consistent with a process of dematerialization, which occurs as a result of a reduction of resource use per unit of GDP once an economy passes some threshold level of GDP per capita.

Galli, R. (Birkbeck Coll., London (United Kingdom) Univ. della Svizzera Italiana, Lugano (Switzerland). Facolta di Scienze Economiche)

1998-01-01T23:59:59.000Z

6

Geospatial Toolkits and Resource Maps for Selected Countries from the National Renewable Energy Laboratory (NREL)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

NREL developed the Geospatial Toolkit (GsT), a map-based software application that integrates resource data and geographic information systems (GIS) for integrated resource assessment. A variety of agencies within countries, along with global datasets, provided country-specific data. Originally developed in 2005, the Geospatial Toolkit was completely redesigned and re-released in November 2010 to provide a more modern, easier-to-use interface with considerably faster analytical querying capabilities. Toolkits are available for 21 countries and each one can be downloaded separately. The source code for the toolkit is also available. [Taken and edited from http://www.nrel.gov/international/geospatial_toolkits.html

7

The effect of multinationality on management earnings forecasts  

E-Print Network [OSTI]

and number of countries withforeign subsidiaries) are significantly positively related to more optimistic management earnings forecasts....

Runyan, Bruce Wayne

2005-08-29T23:59:59.000Z

8

RACORO Forecasting  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Daniel Hartsock CIMMS, University of Oklahoma ARM AAF Wiki page Weather Briefings Observed Weather Cloud forecasting models BUFKIT forecast soundings + guidance...

9

User:GregZiebold/Developing Country Programs Map | Open Energy Information  

Open Energy Info (EERE)

Programs Map Programs Map < User:GregZiebold Jump to: navigation, search Zoom South America Central America North America Africa Central Africa Northern Africa Southern Africa Eastern Asia Southern Asia Asia/Pacific Central Asia Middle East Northern Asia Northern Europe Western Europe Southern Europe Programs & Projects Afghanistan 5 Albania 3 Algeria 6 Angola 1 Anguilla 1 Antigua and Barbuda 6 Argentina 12 Armenia 6 Aruba 3 Azerbaijan 2 Bahamas 6 Bahrain 2 Bangladesh 27 Barbados 9 Belize 8 Benin 3 Bhutan 7 Bolivia 4 Botswana 5 Brazil 37 Brunei 7 Bulgaria 2 Burkina Faso 7 Burundi 6 Cambodia 25 Cameroon 8 Cape Verde 4 Cayman Islands 1 Central African Republic 4 Chad 4 Chile 24 China 63 Colombia 26 Costa Rica 24 Croatia 1 Cuba 5 Democratic Republic of Congo 13

10

Africa Infrastructure Country Diagnostic Documents: Interactive...  

Open Energy Info (EERE)

MAP in PDF, all Countries Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Africa Infrastructure Country Diagnostic Documents: Interactive MAP in PDF, all Countries...

11

U.S. Regional Demand Forecasts Using NEMS and GIS  

E-Print Network [OSTI]

Forecasts Using NEMS and GIS National Climatic Data Center.with Changing Boundaries." Use of GIS to Understand Socio-Forecasts Using NEMS and GIS Appendix A. Map Results Gallery

Cohen, Jesse A.; Edwards, Jennifer L.; Marnay, Chris

2005-01-01T23:59:59.000Z

12

Mapping  

Science Journals Connector (OSTI)

Mapping is a creative method that invites participants to visually represent or depict the aspect of their lives that is under investigation. The underlying aim of a mapping exercise is to elicit a full, holis...

Valerie A. Futch

2014-01-01T23:59:59.000Z

13

Energy Forecast, ForskEL (Smart Grid Project) | Open Energy Information  

Open Energy Info (EERE)

Forecast, ForskEL (Smart Grid Project) Forecast, ForskEL (Smart Grid Project) Jump to: navigation, search Project Name Energy Forecast, ForskEL Country Denmark Coordinates 56.26392°, 9.501785° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":56.26392,"lon":9.501785,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

14

Forecast Energy | Open Energy Information  

Open Energy Info (EERE)

Forecast Energy Forecast Energy Jump to: navigation, search Name Forecast Energy Address 2320 Marinship Way, Suite 300 Place Sausalito, California Zip 94965 Sector Services Product Intelligent Monitoring and Forecasting Services Year founded 2010 Number of employees 11-50 Company Type For profit Website http://www.forecastenergy.net Coordinates 37.865647°, -122.496315° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.865647,"lon":-122.496315,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

15

Hydrometeorological aspects of the Real-Time Ultrafinescale Forecast Support during the Special Observing Period of MAP Hydrology and Earth System Sciences, 7(6), 877889 (2003) EGU  

E-Print Network [OSTI]

-Italian border region were predicted correctly by data from the numerical weather models linked application of numerical weather prediction data to forecast flows over a very large, multinational domain points, covering the whole of theAlpine region. These high resolution numerical weather prediction data

Paris-Sud XI, Université de

16

Forecast Prices  

Gasoline and Diesel Fuel Update (EIA)

Notes: Notes: Prices have already recovered from the spike, but are expected to remain elevated over year-ago levels because of the higher crude oil prices. There is a lot of uncertainty in the market as to where crude oil prices will be next winter, but our current forecast has them declining about $2.50 per barrel (6 cents per gallon) from today's levels by next October. U.S. average residential heating oil prices peaked at almost $1.50 as a result of the problems in the Northeast this past winter. The current forecast has them peaking at $1.08 next winter, but we will be revisiting the outlook in more detail next fall and presenting our findings at the annual Winter Fuels Conference. Similarly, diesel prices are also expected to fall. The current outlook projects retail diesel prices dropping about 14 cents per gallon

17

Maps  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Maps Maps Maps Los Alamos is located in Northern New Mexico about 35 miles (about 40 minutes drive) northwest of Santa Fe and 1 hour and 45 minutes drive from Albuquerque. Contact LANL Directory 667-5061 Badge Office (505) 667-6901 Email Institutional Visits and Events (505) 667-2222 Location and directions How to get to LANL Los Alamos is located in Northern New Mexico about 35 miles (about 40 minutes drive) northwest of Santa Fe and 1 hour and 45 minutes drive from Albuquerque. Laboratory facilities can be found in 50 different work areas that are spread across 36 square miles. Below is the general location of the Otowi Building, Badge Office, cafeteria, and Research Library. V Screen reader users: click here for plain HTML Go to Google Maps Home Casa Grande Drive, Los Alamos, NM

18

Winter wheat yield forecasting in Ukraine based on Earth observation, meteorological data and biophysical models  

Science Journals Connector (OSTI)

Ukraine is one of the most developed agriculture countries and one of the biggest crop producers in the world. Timely and accurate crop yield forecasts for Ukraine at regional level become a key element in providing support to policy makers in food security. In this paper, feasibility and relative efficiency of using moderate resolution satellite data to winter wheat forecasting in Ukraine at oblast level is assessed. Oblast is a sub-national administrative unit that corresponds to the NUTS2 level of the Nomenclature of Territorial Units for Statistics (NUTS) of the European Union. NDVI values were derived from the MODIS sensor at the 250m spatial resolution. For each oblast NDVI values were averaged for a cropland map (Rainfed croplands class) derived from the ESA GlobCover map, and were used as predictors in the regression models. Using a leave-one-out cross-validation procedure, the best time for making reliable yield forecasts in terms of root mean square error was identified. For most oblasts, NDVI values taken in AprilMay provided the minimum RMSE value when comparing to the official statistics, thus enabling forecasts 23 months prior to harvest. The NDVI-based approach was compared to the following approaches: empirical model based on meteorological observations (with forecasts in AprilMay that provide minimum RMSE value) and WOFOST crop growth simulation model implemented in the CGMS system (with forecasts in June that provide minimum RMSE value). All three approaches were run to produce winter wheat yield forecasts for independent datasets for 2010 and 2011, i.e. on data that were not used within model calibration process. The most accurate predictions for 2010 were achieved using the CGMS system with the RMSE value of 0.3tha?1 in June and 0.4tha?1 in April, while performance of three approaches for 2011 was almost the same (0.50.6tha?1 in April). Both NDVI-based approach and CGMS system overestimated winter wheat yield comparing to official statistics in 2010, and underestimated it in 2011. Therefore, we can conclude that performance of empirical NDVI-based regression model was similar to meteorological and CGMS models when producing winter wheat yield forecasts at oblast level in Ukraine 23 months prior to harvest, while providing minimum requirements to input datasets.

Felix Kogan; Nataliia Kussul; Tatiana Adamenko; Sergii Skakun; Oleksii Kravchenko; Oleksii Kryvobok; Andrii Shelestov; Andrii Kolotii; Olga Kussul; Alla Lavrenyuk

2013-01-01T23:59:59.000Z

19

Combination of Long Term and Short Term Forecasts, with Application to Tourism  

E-Print Network [OSTI]

Combination of Long Term and Short Term Forecasts, with Application to Tourism Demand Forecasting that are combined. As a case study, we consider the problem of forecasting monthly tourism numbers for inbound tourism to Egypt. Specifically, we con- sider 33 source countries, as well as the aggregate. The novel

Abu-Mostafa, Yaser S.

20

Forecasting wireless communication technologies  

Science Journals Connector (OSTI)

The purpose of the paper is to present a formal comparison of a variety of multiple regression models in technology forecasting for wireless communication. We compare results obtained from multiple regression models to determine whether they provide a superior fitting and forecasting performance. Both techniques predict the year of wireless communication technology introduction from the first (1G) to fourth (4G) generations. This paper intends to identify the key parameters impacting the growth of wireless communications. The comparison of technology forecasting approaches benefits future researchers and practitioners when developing a prediction of future wireless communication technologies. The items of focus will be to understand the relationship between variable selection and model fit. Because the forecasting error was successfully reduced from previous approaches, the quadratic regression methodology is applied to the forecasting of future technology commercialisation. In this study, the data will show that the quadratic regression forecasting technique provides a better fit to the curve.

Sabrina Patino; Jisun Kim; Tugrul U. Daim

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "forecast maps countries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Wind Power Forecasting  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Retrospective Reports 2011 Smart Grid Wind Integration Wind Integration Initiatives Wind Power Forecasting Wind Projects Email List Self Supplied Balancing Reserves Dynamic...

22

Solar forecasting review  

E-Print Network [OSTI]

2.1.2 European Solar Radiation Atlas (ESRA)2.4 Evaluation of Solar Forecasting . . . . . . . . .2.4.1 Solar Variability . . . . . . . . . . . . .

Inman, Richard Headen

2012-01-01T23:59:59.000Z

23

Wind Power Forecasting  

Science Journals Connector (OSTI)

The National Center for Atmospheric Research (NCAR) has configured a Wind Power Forecasting System for Xcel Energy that integrates high resolution and ensemble...

Sue Ellen Haupt; William P. Mahoney; Keith Parks

2014-01-01T23:59:59.000Z

24

Energy Demand Forecasting  

Science Journals Connector (OSTI)

This chapter presents alternative approaches used in forecasting energy demand and discusses their pros and cons. It... Chaps. 3 and 4 ...

S. C. Bhattacharyya

2011-01-01T23:59:59.000Z

25

Indigenous Knowledge for Environmental Prediction in the Pacific Island Countries  

Science Journals Connector (OSTI)

Indigenous people in Pacific Island countries (PICs) often use their knowledge of the environment, acquired through generations of holistic observational practices and experimental learning, to make meteorological forecasts. Such knowledge systems ...

Savin S. Chand; Lynda E. Chambers; Mike Waiwai; Philip Malsale; Elisabeth Thompson

2014-10-01T23:59:59.000Z

26

Improving Inventory Control Using Forecasting  

E-Print Network [OSTI]

This project studied and analyzed Electronic Controls, Inc.s forecasting process for three high-demand products. In addition, alternative forecasting methods were developed to compare to the current forecast method. The ...

Balandran, Juan

2005-12-16T23:59:59.000Z

27

Technology Forecasting Scenario Development  

E-Print Network [OSTI]

Technology Forecasting and Scenario Development Newsletter No. 2 October 1998 Systems Analysis was initiated on the establishment of a new research programme entitled Technology Forecasting and Scenario and commercial applica- tion of new technology. An international Scientific Advisory Panel has been set up

28

CAPP 2010 Forecast.indd  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Forecast, Markets & Pipelines 1 Crude Oil Forecast, Markets & Pipelines June 2010 2 CANADIAN ASSOCIATION OF PETROLEUM PRODUCERS Disclaimer: This publication was prepared by the...

29

EIA - Forecasts and Analysis of Energy Data  

Gasoline and Diesel Fuel Update (EIA)

Energy Consumption by End-Use Sector Energy Consumption by End-Use Sector In the IEO2005 projections, end-use energy consumption in the residential, commercial, industrial, and transportation sectors varies widely among regions and from country to country. One way of looking at the future of world energy markets is to consider trends in energy consumption at the end-use sector level. With the exception of the transportation sector, which is almost universally dominated by petroleum products at present, the mix of energy use in the residential, commercial, and industrial sectors can vary widely from country to country, depending on a combination of regional factors, such as the availability of energy resources, the level of economic development, and political, social, and demographic factors. This chapter outlines the International Energy Outlook 2005 (IEO2005) forecast for regional energy consumption by end-use sector.

30

Valuing Climate Forecast Information  

Science Journals Connector (OSTI)

The article describes research opportunities associated with evaluating the characteristics of climate forecasts in settings where sequential decisions are made. Illustrative results are provided for corn production in east central Illinois. ...

Steven T. Sonka; James W. Mjelde; Peter J. Lamb; Steven E. Hollinger; Bruce L. Dixon

1987-09-01T23:59:59.000Z

31

Comparing Forecast Skill  

Science Journals Connector (OSTI)

A basic question in forecasting is whether one prediction system is more skillful than another. Some commonly used statistical significance tests cannot answer this question correctly if the skills are computed on a common period or using a common ...

Timothy DelSole; Michael K. Tippett

2014-12-01T23:59:59.000Z

32

Energy demand simulation for East European countries  

Science Journals Connector (OSTI)

The analysis and created statistical models of energy consumption tendencies in the European Union (EU25), including new countries in transition, are presented. The EU15 market economy countries and countries in transition are classified into six clusters by relative indicators of Gross Domestic Product (GDP/P) and energy demand (W/P) per capita. The specified statistical models of energy intensity W/GDP non-linear stochastic tendencies have been discovered with respect to the clusters of classified countries. The new energy demand simulation models have been developed for the demand management in time??territory hierarchy in various scenarios of short-term and long-term perspective on the basis of comparative analysis methodology. The non-linear statistical models were modified to GDP, W/P and electricity (E/P) final consumption long-term forecasts for new associated East European countries and, as an example, for the Baltic Countries, including Lithuania.

Jonas Algirdas Kugelevicius; Algirdas Kuprys; Jonas Kugelevicius

2007-01-01T23:59:59.000Z

33

Coal production forecast and low carbon policies in China  

Science Journals Connector (OSTI)

With rapid economic growth and industrial expansion, China consumes more coal than any other nation. Therefore, it is particularly crucial to forecast China's coal production to help managers make strategic decisions concerning China's policies intended to reduce carbon emissions and concerning the country's future needs for domestic and imported coal. Such decisions, which must consider results from forecasts, will have important national and international effects. This article proposes three improved forecasting models based on grey systems theory: the Discrete Grey Model (DGM), the Rolling DGM (RDGM), and the p value RDGM. We use the statistical data of coal production in China from 1949 to 2005 to validate the effectiveness of these improved models to forecast the data from 2006 to 2010. The performance of the models demonstrates that the p value RDGM has the best forecasting behaviour over this historical time period. Furthermore, this paper forecasts coal production from 2011 to 2015 and suggests some policies for reducing carbon and other emissions that accompany the rise in forecasted coal production.

Jianzhou Wang; Yao Dong; Jie Wu; Ren Mu; He Jiang

2011-01-01T23:59:59.000Z

34

EIA - Forecasts and Analysis of Energy Data  

Gasoline and Diesel Fuel Update (EIA)

Highlights Highlights World energy consumption is projected to increase by 57 percent from 2002 to 2025. Much of the growth in worldwide energy use in the IEO2005 reference case forecast is expected in the countries with emerging economies. Figure 1. World Marketed Energy Consumptiion by Region, 1970-2025. Need help, contact the National Energy Information Center at 202-586-8800. Figure Data In the International Energy Outlook 2005 (IEO2005) reference case, world marketed energy consumption is projected to increase on average by 2.0 percent per year over the 23-year forecast horizon from 2002 to 2025—slightly lower than the 2.2-percent average annual growth rate from 1970 to 2002. Worldwide, total energy use is projected to grow from 412 quadrillion British thermal units (Btu) in 2002 to 553 quadrillion Btu in

35

Solar Wind Forecasting with Coronal Holes  

E-Print Network [OSTI]

An empirical model for forecasting solar wind speed related geomagnetic events is presented here. The model is based on the estimated location and size of solar coronal holes. This method differs from models that are based on photospheric magnetograms (e.g., Wang-Sheeley model) to estimate the open field line configuration. Rather than requiring the use of a full magnetic synoptic map, the method presented here can be used to forecast solar wind velocities and magnetic polarity from a single coronal hole image, along with a single magnetic full-disk image. The coronal hole parameters used in this study are estimated with Kitt Peak Vacuum Telescope He I 1083 nm spectrograms and photospheric magnetograms. Solar wind and coronal hole data for the period between May 1992 and September 2003 are investigated. The new model is found to be accurate to within 10% of observed solar wind measurements for its best one-month periods, and it has a linear correlation coefficient of ~0.38 for the full 11 years studied. Using a single estimated coronal hole map, the model can forecast the Earth directed solar wind velocity up to 8.5 days in advance. In addition, this method can be used with any source of coronal hole area and location data.

S. Robbins; C. J. Henney; J. W. Harvey

2007-01-09T23:59:59.000Z

36

Sandia National Laboratories: solar forecasting  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy, Modeling & Analysis, News, News & Events, Partnership, Photovoltaic, Renewable Energy, Solar, Systems Analysis The book, Solar Energy Forecasting and Resource...

37

Consensus Coal Production Forecast for  

E-Print Network [OSTI]

Rate Forecasts 19 5. EIA Forecast: Regional Coal Production 22 6. Wood Mackenzie Forecast: W.V. Steam to data currently published by the Energy Information Administration (EIA), coal production in the state in this report calls for state production to decline by 11.3 percent in 2009 to 140.2 million tons. During

Mohaghegh, Shahab

38

U.S. Regional Demand Forecasts Using NEMS and GIS  

SciTech Connect (OSTI)

The National Energy Modeling System (NEMS) is a multi-sector, integrated model of the U.S. energy system put out by the Department of Energy's Energy Information Administration. NEMS is used to produce the annual 20-year forecast of U.S. energy use aggregated to the nine-region census division level. The research objective was to disaggregate this regional energy forecast to the county level for select forecast years, for use in a more detailed and accurate regional analysis of energy usage across the U.S. The process of disaggregation using a geographic information system (GIS) was researched and a model was created utilizing available population forecasts and climate zone data. The model's primary purpose was to generate an energy demand forecast with greater spatial resolution than what is currently produced by NEMS, and to produce a flexible model that can be used repeatedly as an add-on to NEMS in which detailed analysis can be executed exogenously with results fed back into the NEMS data flow. The methods developed were then applied to the study data to obtain residential and commercial electricity demand forecasts. The model was subjected to comparative and statistical testing to assess predictive accuracy. Forecasts using this model were robust and accurate in slow-growing, temperate regions such as the Midwest and Mountain regions. Interestingly, however, the model performed with less accuracy in the Pacific and Northwest regions of the country where population growth was more active. In the future more refined methods will be necessary to improve the accuracy of these forecasts. The disaggregation method was written into a flexible tool within the ArcGIS environment which enables the user to output the results in five year intervals over the period 2000-2025. In addition, the outputs of this tool were used to develop a time-series simulation showing the temporal changes in electricity forecasts in terms of absolute, per capita, and density of demand.

Cohen, Jesse A.; Edwards, Jennifer L.; Marnay, Chris

2005-07-01T23:59:59.000Z

39

Annual Energy Outlook Forecast Evaluation - Tables  

Gasoline and Diesel Fuel Update (EIA)

Annual Energy Outlook Forecast Evaluation Table 2. Total Energy Consumption, Actual vs. Forecasts Table 3. Total Petroleum Consumption, Actual vs. Forecasts Table 4. Total Natural Gas Consumption, Actual vs. Forecasts Table 5. Total Coal Consumption, Actual vs. Forecasts Table 6. Total Electricity Sales, Actual vs. Forecasts Table 7. Crude Oil Production, Actual vs. Forecasts Table 8. Natural Gas Production, Actual vs. Forecasts Table 9. Coal Production, Actual vs. Forecasts Table 10. Net Petroleum Imports, Actual vs. Forecasts Table 11. Net Natural Gas Imports, Actual vs. Forecasts Table 12. Net Coal Exports, Actual vs. Forecasts Table 13. World Oil Prices, Actual vs. Forecasts Table 14. Natural Gas Wellhead Prices, Actual vs. Forecasts Table 15. Coal Prices to Electric Utilities, Actual vs. Forecasts

40

On Sequential Probability Forecasting  

E-Print Network [OSTI]

at the same time. [Probability, Statistics and Truth, MacMillan 1957. page 11] ... the collective "denotes a collective wherein the attribute of the single event is the number of points thrown. [Probability, StatisticsOn Sequential Probability Forecasting David A. Bessler 1 David A. Bessler Texas A&M University

McCarl, Bruce A.

Note: This page contains sample records for the topic "forecast maps countries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Quantitative maps of groundwater resources in Africa  

Science Journals Connector (OSTI)

In Africa, groundwater is the major source of drinking water and its use for irrigation is forecast to increase substantially to combat growing food insecurity. Despite this, there is little quantitative information on groundwater resources in Africa, and groundwater storage is consequently omitted from assessments of freshwater availability. Here we present the first quantitative continent-wide maps of aquifer storage and potential borehole yields in Africa based on an extensive review of available maps, publications and data. We estimate total groundwater storage in Africa to be 0.66million km3 (0.361.75millionkm3). Not all of this groundwater storage is available for abstraction, but the estimated volume is more than 100 times estimates of annual renewable freshwater resources on Africa. Groundwater resources are unevenly distributed: the largest groundwater volumes are found in the large sedimentary aquifers in the North African countries Libya, Algeria, Egypt and Sudan. Nevertheless, for many African countries appropriately sited and constructed boreholes can support handpump abstraction (yields of 0.10.3ls?1), and contain sufficient storage to sustain abstraction through inter-annual variations in recharge. The maps show further that the potential for higher yielding boreholes (>5ls?1) is much more limited. Therefore, strategies for increasing irrigation or supplying water to rapidly urbanizing cities that are predicated on the widespread drilling of high yielding boreholes are likely to be unsuccessful. As groundwater is the largest and most widely distributed store of freshwater in Africa, the quantitative maps are intended to lead to more realistic assessments of water security and water stress, and to promote a more quantitative approach to mapping of groundwater resources at national and regional level.

A M MacDonald; H C Bonsor; B Dochartaigh; R G Taylor

2012-01-01T23:59:59.000Z

42

Annual Energy Outlook Forecast Evaluation  

Gasoline and Diesel Fuel Update (EIA)

by Esmeralda Sánchez The Office of Integrated Analysis and Forecasting has produced an annual evaluation of the accuracy of the Annual Energy Outlook (AEO) since 1996. Each year, the forecast evaluation expands on the prior year by adding the projections from the most recent AEO and the most recent historical year of data. The Forecast Evaluation examines the accuracy of AEO forecasts dating back to AEO82 by calculating the average absolute forecast errors for each of the major variables for AEO82 through AEO2003. The average absolute forecast error, which for the purpose of this report will also be referred to simply as "average error" or "forecast error", is computed as the simple mean, or average, of all the absolute values of the percent errors,

43

Annual Energy Outlook Forecast Evaluation  

Gasoline and Diesel Fuel Update (EIA)

by Esmeralda Sanchez by Esmeralda Sanchez Errata -(7/14/04) The Office of Integrated Analysis and Forecasting has produced an annual evaluation of the accuracy of the Annual Energy Outlook (AEO) since 1996. Each year, the forecast evaluation expands on the prior year by adding the projections from the most recent AEO and the most recent historical year of data. The Forecast Evaluation examines the accuracy of AEO forecasts dating back to AEO82 by calculating the average absolute forecast errors for each of the major variables for AEO82 through AEO2003. The average absolute forecast error, which for the purpose of this report will also be referred to simply as "average error" or "forecast error", is computed as the simple mean, or average, of all the absolute values of the percent errors, expressed as the percentage difference between the Reference Case projection and actual historic value, shown for every AEO and for each year in the forecast horizon (for a given variable). The historical data are typically taken from the Annual Energy Review (AER). The last column of Table 1 provides a summary of the most recent average absolute forecast errors. The calculation of the forecast error is shown in more detail in Tables 2 through 18. Because data for coal prices to electric generating plants were not available from the AER, data from the Monthly Energy Review (MER), July 2003 were used.

44

European Wind Energy Conference & Exhibition EWEC 2003, Madrid, Spain. Forecasting of Regional Wind Generation by a Dynamic  

E-Print Network [OSTI]

European Wind Energy Conference & Exhibition EWEC 2003, Madrid, Spain. Forecasting of Regional Wind forecasting. I. INTRODUCTION HE actual large-scale integration of wind energy in several European countries enhance the position of wind energy compared to other dispatchable forms of generation. Predicting

Paris-Sud XI, Université de

45

Price forecasting for notebook computers.  

E-Print Network [OSTI]

??This paper proposes a four-step approach that uses statistical regression to forecast notebook computer prices. Notebook computer price is related to constituent features over a (more)

Rutherford, Derek Paul

2012-01-01T23:59:59.000Z

46

Ensemble Forecasts and their Verification  

E-Print Network [OSTI]

· Ensemble forecast verification ­ Performance metrics: Brier Score, CRPSS · New concepts and developments of weather Sources: Insufficient spatial resolution, truncation errors in the dynamical equations

Maryland at College Park, University of

47

Probabilistic manpower forecasting  

E-Print Network [OSTI]

- ing E. Results- Probabilistic Forecasting . 26 27 Z8 29 31 35 36 38 39 IV. CONCLUSIONS. V. GLOSSARY 42 44 APPENDICES REFERENCES 50 70 LIST OF TABLES Table Page Outline of Job-Probability Matrix Job-Probability Matrix. Possible... Outcomes of Job A Possible Outcomes of Jobs A and B 10 Possible Outcomes of Jobs A, B and C II LIST GF FIGURES Figure Page Binary Representation of Numbers 0 Through 7 12 First Cumulative Probability Table 14 3. Graph of Cumulative Probability vs...

Koonce, James Fitzhugh

1966-01-01T23:59:59.000Z

48

Diagnosing Forecast Errors in Tropical Cyclone Motion  

Science Journals Connector (OSTI)

This paper reports on the development of a diagnostic approach that can be used to examine the sources of numerical model forecast error that contribute to degraded tropical cyclone (TC) motion forecasts. Tropical cyclone motion forecasts depend ...

Thomas J. Galarneau Jr.; Christopher A. Davis

2013-02-01T23:59:59.000Z

49

Country Analysis Briefs  

Reports and Publications (EIA)

An ongoing compilation of country energy profiles. The Energy Information Administration (EIA) maintains Country Analysis Briefs (CABs) for specific countries that are important to world energy markets, including members of the Organization of the Petroleum Exporting Countries (OPEC), major non-OPEC oil producers, major energy transit countries, major energy consumers, and other areas of current interest to energy analysts and policy makers.

2028-01-01T23:59:59.000Z

50

Random switching exponential smoothing and inventory forecasting  

Science Journals Connector (OSTI)

Abstract Exponential smoothing models represent an important prediction tool both in business and in macroeconomics. This paper provides the analytical forecasting properties of the random coefficient exponential smoothing model in the multiple source of error framework. The random coefficient state-space representation allows for switching between simple exponential smoothing and local linear trend. Therefore it enables controlling, in a flexible manner, the random changing dynamic behavior of the time series. The paper establishes the algebraic mapping between the state-space parameters and the implied reduced form ARIMA parameters. In addition, it shows that the parametric mapping allows overcoming the difficulties that are likely to emerge in estimating directly the random coefficient state-space model. Finally, it presents an empirical application comparing the forecast accuracy of the suggested model vis--vis other benchmark models, both in the ARIMA and in the exponential smoothing class. Using time series relative to wholesalers inventories in the USA, the out-of-sample results show that the reduced form of the random coefficient exponential smoothing model tends to be superior to its competitors.

Giacomo Sbrana; Andrea Silvestrini

2014-01-01T23:59:59.000Z

51

Project Profile: Forecasting and Influencing Technological Progress...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Forecasting and Influencing Technological Progress in Solar Energy Project Profile: Forecasting and Influencing Technological Progress in Solar Energy Logos of the University of...

52

Forecasting with adaptive extended exponential smoothing  

Science Journals Connector (OSTI)

Much of product level forecasting is based upon time series techniques. However, traditional time series forecasting techniques have offered either smoothing constant adaptability or consideration of various t...

John T. Mentzer Ph.D.

53

Electricity price forecasting in a grid environment.  

E-Print Network [OSTI]

??Accurate electricity price forecasting is critical to market participants in wholesale electricity markets. Market participants rely on price forecasts to decide their bidding strategies, allocate (more)

Li, Guang, 1974-

2007-01-01T23:59:59.000Z

54

Energy Department Forecasts Geothermal Achievements in 2015 ...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Forecasts Geothermal Achievements in 2015 Energy Department Forecasts Geothermal Achievements in 2015 The 40th annual Stanford Geothermal Workshop in January featured speakers in...

55

EIA - Forecasts and Analysis of Energy Data  

Gasoline and Diesel Fuel Update (EIA)

Regional Definitions in the International Energy Outlook 2005 Regional Definitions in the International Energy Outlook 2005 Regular readers of the International Energy Outlook (IEO) will notice that, in this edition, the names used to describe country groupings have been changed. Although the organization of countries within the three major groupings has not changed, the nomenclature used in previous editions to describe the groups— namely, industrialized, EE/FSU, and developing— had become somewhat dated and did not accurately reflect the countries within them. Some analysts have argued that several of the countries in the “developing” group (South Korea and China, for instance) could fairly be called “industrialized” today. IEO2005 World Regions Map. Need help, contact the National Energy Information Center at 202-586-8800.

56

Annual Energy Outlook Forecast Evaluation  

Gasoline and Diesel Fuel Update (EIA)

Annual Energy Outlook Forecast Evaluation Annual Energy Outlook Forecast Evaluation Annual Energy Outlook Forecast Evaluation by Susan H. Holte In this paper, the Office of Integrated Analysis and Forecasting (OIAF) of the Energy Information Administration (EIA) evaluates the projections published in the Annual Energy Outlook (AEO), (1) by comparing the projections from the Annual Energy Outlook 1982 through the Annual Energy Outlook 2001 with actual historical values. A set of major consumption, production, net import, price, economic, and carbon dioxide emissions variables are included in the evaluation, updating similar papers from previous years. These evaluations also present the reasons and rationales for significant differences. The Office of Integrated Analysis and Forecasting has been providing an

57

Annual Energy Outlook Forecast Evaluation  

Gasoline and Diesel Fuel Update (EIA)

Title of Paper Annual Energy Outlook Forecast Evaluation Title of Paper Annual Energy Outlook Forecast Evaluation by Susan H. Holte OIAF has been providing an evaluation of the forecasts in the Annual Energy Outlook (AEO) annually since 1996. Each year, the forecast evaluation expands on that of the prior year by adding the most recent AEO and the most recent historical year of data. However, the underlying reasons for deviations between the projections and realized history tend to be the same from one evaluation to the next. The most significant conclusions are: Natural gas has generally been the fuel with the least accurate forecasts of consumption, production, and prices. Natural gas was the last fossil fuel to be deregulated following the strong regulation of energy markets in the 1970s and early 1980s. Even after deregulation, the behavior

58

Ensemble forecasting with machine learning algorithms for ozone, nitrogen dioxide and PM10 on the Prev'Air  

E-Print Network [OSTI]

Ensemble forecasting with machine learning algorithms for ozone, nitrogen dioxide and PM10'Air operational platform. This platform aims at forecasting maps, on a daily basis, for ozone, nitrogen dioxide models, ozone, nitrogen dioxide, particulate matter, threshold exceedance 1. Introduction1 Operational

Mallet, Vivien

59

Correcting and combining time series forecasters  

Science Journals Connector (OSTI)

Combined forecasters have been in the vanguard of stochastic time series modeling. In this way it has been usual to suppose that each single model generates a residual or prediction error like a white noise. However, mostly because of disturbances not ... Keywords: Artificial neural networks hybrid systems, Linear combination of forecasts, Maximum likelihood estimation, Time series forecasters, Unbiased forecasters

Paulo Renato A. Firmino; Paulo S. G. De Mattos Neto; Tiago A. E. Ferreira

2014-02-01T23:59:59.000Z

60

EIA - Forecasts and Analysis of Energy Data  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas Natural Gas Natural gas is the fastest growing primary energy source in the IEO2005 forecast. Consumption of natural gas is projected to increase by nearly 70 percent between 2002 and 2025, with the most robust growth in demand expected among the emerging economies. Figure 34. World Natural Gas Consumption, 1980-2025 (Trillion Cubic Feet). Need help, contact the National Energy Information Center on 202-586-8800. Figure Data Figure 35. Natural Gas Consumption by Region, 1980-2025 (Trillion Cubic Feet). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 36. Increase in Natural Gas Consumption by Region and Country, 2002-2025. Need help, contact the National Energy Information Center at 202-586-8800. Figure Data

Note: This page contains sample records for the topic "forecast maps countries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Price forecasting for notebook computers  

E-Print Network [OSTI]

This paper proposes a four-step approach that uses statistical regression to forecast notebook computer prices. Notebook computer price is related to constituent features over a series of time periods, and the rates of change in the influence...

Rutherford, Derek Paul

2012-06-07T23:59:59.000Z

62

Forecasting phenology under global warming  

Science Journals Connector (OSTI)

...Forrest Forecasting phenology under global warming Ines Ibanez 1 * Richard B. Primack...and site-specific responses to global warming. We found that for most species...climate change|East Asia, global warming|growing season, hierarchical...

2010-01-01T23:59:59.000Z

63

Demand Forecasting of New Products  

E-Print Network [OSTI]

Keeping Unit or SKU) employing attribute analysis techniques. The objective of this thesis is to improve Abstract This thesis is a study into the demand forecasting of new products (also referred to as Stock

Sun, Yu

64

Weather forecasting : the next generation : the potential use and implementation of ensemble forecasting  

E-Print Network [OSTI]

This thesis discusses ensemble forecasting, a promising new weather forecasting technique, from various viewpoints relating not only to its meteorological aspects but also to its user and policy aspects. Ensemble forecasting ...

Goto, Susumu

2007-01-01T23:59:59.000Z

65

Wind Forecast Improvement Project Southern Study Area Final Report...  

Office of Environmental Management (EM)

Wind Forecast Improvement Project Southern Study Area Final Report Wind Forecast Improvement Project Southern Study Area Final Report Wind Forecast Improvement Project Southern...

66

Applying Bayesian Forecasting to Predict New Customers' Heating Oil Demand.  

E-Print Network [OSTI]

??This thesis presents a new forecasting technique that estimates energy demand by applying a Bayesian approach to forecasting. We introduce our Bayesian Heating Oil Forecaster (more)

Sakauchi, Tsuginosuke

2011-01-01T23:59:59.000Z

67

Country Risk Assessment  

Science Journals Connector (OSTI)

There are a multitude of organizations providing country risk services using their proprietary benchmarking. The central ... in a quantifiable manner, individual country sovereign risk and the implication of such...

Mohamed A. Ramady

2014-01-01T23:59:59.000Z

68

Tropical Africa: Total Forest Biomass (By Country)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Tropical Africa: Total Forest Biomass (By Country) Tropical Africa: Total Forest Biomass (By Country) image Brown, S., and G. Gaston. 1996. Tropical Africa: Land Use, Biomass, and Carbon Estimates For 1980. ORNL/CDIAC-92, NDP-055. Carbon Dioxide Information Analysis Center, U.S. Department of Energy, Oak Ridge National Laboratory, Oak Ridge, Tennessee, U.S.A. More Maps Calculated Actual Aboveground Live Biomass in Forests (1980) Maximum Potential Biomass Density Land Use (1980) Area of Closed Forests (By Country) Mean Biomass of Closed Forests (By County) Area of Open Forests (By Country) Mean Biomass of Open Forests (By County) Percent Forest Cover (By Country) Population Density - 1990 (By Administrative Unit) Population Density - 1980 (By Administrative Unit) Population Density - 1970 (By Administrative Unit)

69

Solar Energy Market Forecast | Open Energy Information  

Open Energy Info (EERE)

Solar Energy Market Forecast Solar Energy Market Forecast Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Solar Energy Market Forecast Agency/Company /Organization: United States Department of Energy Sector: Energy Focus Area: Solar Topics: Market analysis, Technology characterizations Resource Type: Publications Website: giffords.house.gov/DOE%20Perspective%20on%20Solar%20Market%20Evolution References: Solar Energy Market Forecast[1] Summary " Energy markets / forecasts DOE Solar America Initiative overview Capital market investments in solar Solar photovoltaic (PV) sector overview PV prices and costs PV market evolution Market evolution considerations Balance of system costs Silicon 'normalization' Solar system value drivers Solar market forecast Additional resources"

70

PNNL-Weather Research and Forecasting (WRF)-Chem Modeling in Mexico | Open  

Open Energy Info (EERE)

Weather Research and Forecasting (WRF)-Chem Modeling in Mexico Weather Research and Forecasting (WRF)-Chem Modeling in Mexico Jump to: navigation, search Name PNNL-Weather Research and Forecasting (WRF)-Chem Modeling in Mexico Agency/Company /Organization Pacific Northwest National Laboratory Sector Energy Topics Co-benefits assessment, - Environmental and Biodiversity, - Health, Background analysis Resource Type Publications Website http://www.pnl.gov/atmospheric Country Mexico UN Region Latin America and the Caribbean References PNNL-Weather Research and Forecasting (WRF)-Chem Modeling in Mexico[1] PNNL Publications on WRF-Chem modeling in Mexico include: Fast JD, M Shrivastava, RA Zaveri, and JC. Barnard. 2010. "Modeling particulates and direct radiative forcing from urban to synoptic scales downwind of Mexico City." Annual European Geosciences Union Assembly,

71

Summary Verification Measures and Their Interpretation for Ensemble Forecasts  

Science Journals Connector (OSTI)

Ensemble prediction systems produce forecasts that represent the probability distribution of a continuous forecast variable. Most often, the verification problem is simplified by transforming the ensemble forecast into probability forecasts for ...

A. Allen Bradley; Stuart S. Schwartz

2011-09-01T23:59:59.000Z

72

Annual Energy Outlook Forecast Evaluation  

Gasoline and Diesel Fuel Update (EIA)

by by Esmeralda Sanchez The Office of Integrated Analysis and Forecasting has been providing an evaluation of the forecasts in the Annual Energy Outlook (AEO) annually since 1996. Each year, the forecast evaluation expands on that of the prior year by adding the most recent AEO and the most recent historical year of data. However, the underlying reasons for deviations between the projections and realized history tend to be the same from one evaluation to the next. The most significant conclusions are: * Over the last two decades, there have been many significant changes in laws, policies, and regulations that could not have been anticipated and were not assumed in the projections prior to their implementation. Many of these actions have had significant impacts on energy supply, demand, and prices; however, the

73

Aggregate vehicle travel forecasting model  

SciTech Connect (OSTI)

This report describes a model for forecasting total US highway travel by all vehicle types, and its implementation in the form of a personal computer program. The model comprises a short-run, econometrically-based module for forecasting through the year 2000, as well as a structural, scenario-based longer term module for forecasting through 2030. The short-term module is driven primarily by economic variables. It includes a detailed vehicle stock model and permits the estimation of fuel use as well as vehicle travel. The longer-tenn module depends on demographic factors to a greater extent, but also on trends in key parameters such as vehicle load factors, and the dematerialization of GNP. Both passenger and freight vehicle movements are accounted for in both modules. The model has been implemented as a compiled program in the Fox-Pro database management system operating in the Windows environment.

Greene, D.L.; Chin, Shih-Miao; Gibson, R. [Tennessee Univ., Knoxville, TN (United States)

1995-05-01T23:59:59.000Z

74

Communication of uncertainty in temperature forecasts  

Science Journals Connector (OSTI)

We used experimental economics to test whether undergraduate students presented with a temperature forecast with uncertainty information in a table and bar graph format were able to use the extra information to interpret a given forecast. ...

Pricilla Marimo; Todd R. Kaplan; Ken Mylne; Martin Sharpe

75

FORECASTING THE ROLE OF RENEWABLES IN HAWAII  

E-Print Network [OSTI]

FORECASTING THE ROLE OF RENEWABLES IN HAWAII Jayant SathayeFORECASTING THE ROLF OF RENEWABLES IN HAWAII J Sa and Henrythe Conservation Role of Renewables November 18, 1980 Page 2

Sathaye, Jayant

2013-01-01T23:59:59.000Z

76

Massachusetts state airport system plan forecasts.  

E-Print Network [OSTI]

This report is a first step toward updating the forecasts contained in the 1973 Massachusetts State System Plan. It begins with a presentation of the forecasting techniques currently available; it surveys and appraises the ...

Mathaisel, Dennis F. X.

77

Antarctic Satellite Meteorology: Applications for Weather Forecasting  

Science Journals Connector (OSTI)

For over 30 years, weather forecasting for the Antarctic continent and adjacent Southern Ocean has relied on weather satellites. Significant advancements in forecasting skill have come via the weather satellite. The advent of the high-resolution ...

Matthew A. Lazzara; Linda M. Keller; Charles R. Stearns; Jonathan E. Thom; George A. Weidner

2003-02-01T23:59:59.000Z

78

Forecasting Water Use in Texas Cities  

E-Print Network [OSTI]

In this research project, a methodology for automating the forecasting of municipal daily water use is developed and implemented in a microcomputer program called WATCAL. An automated forecast system is devised by modifying the previously...

Shaw, Douglas T.; Maidment, David R.

79

EIA - Forecasts and Analysis of Energy Data  

Gasoline and Diesel Fuel Update (EIA)

Oil Markets Oil Markets IEO2005 projects that world crude oil prices in real 2003 dollars will decline from their current level by 2010, then rise gradually through 2025. In the International Energy Outlook 2005 (IEO2005) reference case, world demand for crude oil grows from 78 million barrels per day in 2002 to 103 million barrels per day in 2015 and to just over 119 million barrels per day in 2025. Much of the growth in oil consumption is projected for the emerging Asian nations, where strong economic growth results in a robust increase in oil demand. Emerging Asia (including China and India) accounts for 45 percent of the total world increase in oil use over the forecast period in the IEO2005 reference case. The projected increase in world oil demand would require an increment to world production capability of more than 42 million barrels per day relative to the 2002 crude oil production capacity of 80.0 million barrels per day. Producers in the Organization of Petroleum Exporting Countries (OPEC) are expected to be the major source of production increases. In addition, non-OPEC supply is expected to remain highly competitive, with major increments to supply coming from offshore resources, especially in the Caspian Basin, Latin America, and deepwater West Africa. The estimates of incremental production are based on current proved reserves and a country-by-country assessment of ultimately recoverable petroleum. In the IEO2005 oil price cases, the substantial investment capital required to produce the incremental volumes is assumed to exist, and the investors are expected to receive at least a 10-percent return on investment.

80

3TIER Environmental Forecast Group Inc 3TIER | Open Energy Information  

Open Energy Info (EERE)

TIER Environmental Forecast Group Inc 3TIER TIER Environmental Forecast Group Inc 3TIER Jump to: navigation, search Name 3TIER Environmental Forecast Group Inc (3TIER) Place Seattle, Washington Zip 98121 Sector Renewable Energy Product Seattle-based, renewable energy assessment and forecasting company. Coordinates 47.60356°, -122.329439° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.60356,"lon":-122.329439,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "forecast maps countries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Energy demand forecasting: industry practices and challenges  

Science Journals Connector (OSTI)

Accurate forecasting of energy demand plays a key role for utility companies, network operators, producers and suppliers of energy. Demand forecasts are utilized for unit commitment, market bidding, network operation and maintenance, integration of renewable ... Keywords: analytics, energy demand forecasting, machine learning, renewable energy sources, smart grids, smart meters

Mathieu Sinn

2014-06-01T23:59:59.000Z

82

Consensus Coal Production And Price Forecast For  

E-Print Network [OSTI]

Consensus Coal Production And Price Forecast For West Virginia: 2011 Update Prepared for the West December 2011 © Copyright 2011 WVU Research Corporation #12;#12;W.Va. Consensus Coal Forecast Update 2011 i Table of Contents Executive Summary 1 Recent Developments 3 Consensus Coal Production And Price Forecast

Mohaghegh, Shahab

83

Use of wind power forecasting in operational decisions.  

SciTech Connect (OSTI)

The rapid expansion of wind power gives rise to a number of challenges for power system operators and electricity market participants. The key operational challenge is to efficiently handle the uncertainty and variability of wind power when balancing supply and demand in ths system. In this report, we analyze how wind power forecasting can serve as an efficient tool toward this end. We discuss the current status of wind power forecasting in U.S. electricity markets and develop several methodologies and modeling tools for the use of wind power forecasting in operational decisions, from the perspectives of the system operator as well as the wind power producer. In particular, we focus on the use of probabilistic forecasts in operational decisions. Driven by increasing prices for fossil fuels and concerns about greenhouse gas (GHG) emissions, wind power, as a renewable and clean source of energy, is rapidly being introduced into the existing electricity supply portfolio in many parts of the world. The U.S. Department of Energy (DOE) has analyzed a scenario in which wind power meets 20% of the U.S. electricity demand by 2030, which means that the U.S. wind power capacity would have to reach more than 300 gigawatts (GW). The European Union is pursuing a target of 20/20/20, which aims to reduce greenhouse gas (GHG) emissions by 20%, increase the amount of renewable energy to 20% of the energy supply, and improve energy efficiency by 20% by 2020 as compared to 1990. Meanwhile, China is the leading country in terms of installed wind capacity, and had 45 GW of installed wind power capacity out of about 200 GW on a global level at the end of 2010. The rapid increase in the penetration of wind power into power systems introduces more variability and uncertainty in the electricity generation portfolio, and these factors are the key challenges when it comes to integrating wind power into the electric power grid. Wind power forecasting (WPF) is an important tool to help efficiently address this challenge, and significant efforts have been invested in developing more accurate wind power forecasts. In this report, we document our work on the use of wind power forecasting in operational decisions.

Botterud, A.; Zhi, Z.; Wang, J.; Bessa, R.J.; Keko, H.; Mendes, J.; Sumaili, J.; Miranda, V. (Decision and Information Sciences); (INESC Porto)

2011-11-29T23:59:59.000Z

84

Annual Energy Outlook Forecast Evaluation  

Gasoline and Diesel Fuel Update (EIA)

Evaluation Evaluation Annual Energy Outlook Forecast Evaluation by Esmeralda Sanchez The Office of Integrated Analysis and Forecasting has been providing an evaluation of the forecasts in the Annual Energy Outlook (AEO) annually since 1996. Each year, the forecast evaluation expands on that of the prior year by adding the most recent AEO and the most recent historical year of data. However, the underlying reasons for deviations between the projections and realized history tend to be the same from one evaluation to the next. The most significant conclusions are: Over the last two decades, there have been many significant changes in laws, policies, and regulations that could not have been anticipated and were not assumed in the projections prior to their implementation. Many of these actions have had significant impacts on energy supply, demand, and prices; however, the impacts were not incorporated in the AEO projections until their enactment or effective dates in accordance with EIA's requirement to remain policy neutral and include only current laws and regulations in the AEO reference case projections.

85

Annual Energy Outlook Forecast Evaluation  

Gasoline and Diesel Fuel Update (EIA)

Analysis Papers > Annual Energy Outlook Forecast Evaluation Analysis Papers > Annual Energy Outlook Forecast Evaluation Release Date: February 2005 Next Release Date: February 2006 Printer-friendly version Annual Energy Outlook Forecast Evaluation* Table 1.Comparison of Absolute Percent Errors for Present and Current AEO Forecast Evaluations Printer Friendly Version Average Absolute Percent Error Variable AEO82 to AEO99 AEO82 to AEO2000 AEO82 to AEO2001 AEO82 to AEO2002 AEO82 to AEO2003 AEO82 to AEO2004 Consumption Total Energy Consumption 1.9 2.0 2.1 2.1 2.1 2.1 Total Petroleum Consumption 2.9 3.0 3.1 3.1 3.0 2.9 Total Natural Gas Consumption 7.3 7.1 7.1 6.7 6.4 6.5 Total Coal Consumption 3.1 3.3 3.5 3.6 3.7 3.8 Total Electricity Sales 1.9 2.0 2.3 2.3 2.3 2.4 Production Crude Oil Production 4.5 4.5 4.5 4.5 4.6 4.7

86

Load Forecasting of Supermarket Refrigeration  

E-Print Network [OSTI]

energy system. Observed refrigeration load and local ambient temperature from a Danish su- permarket renewable energy, is increasing, therefore a flexible energy system is needed. In the present ThesisLoad Forecasting of Supermarket Refrigeration Lisa Buth Rasmussen Kongens Lyngby 2013 M.Sc.-2013

87

Essays on macroeconomics and forecasting  

E-Print Network [OSTI]

explanatory variables. Compared to Stock and Watson (2002)â??s models, the models proposed in this chapter can further allow me to select the factors structurally for each variable to be forecasted. I find advantages to using the structural dynamic factor...

Liu, Dandan

2006-10-30T23:59:59.000Z

88

Forecasting-based SKU classification  

Science Journals Connector (OSTI)

Different spare parts are associated with different underlying demand patterns, which in turn require different forecasting methods. Consequently, there is a need to categorise stock keeping units (SKUs) and apply the most appropriate methods in each category. For intermittent demands, Croston's method (CRO) is currently regarded as the standard method used in industry to forecast the relevant inventory requirements; this is despite the bias associated with Croston's estimates. A bias adjusted modification to CRO (SyntetosBoylan Approximation, SBA) has been shown in a number of empirical studies to perform very well and be associated with a very robust behaviour. In a 2005 article, entitled On the categorisation of demand patterns published by the Journal of the Operational Research Society, Syntetos et al. (2005) suggested a categorisation scheme, which establishes regions of superior forecasting performance between CRO and SBA. The results led to the development of an approximate rule that is expressed in terms of fixed cut-off values for the following two classification criteria: the squared coefficient of variation of the demand sizes and the average inter-demand interval. Kostenko and Hyndman (2006) revisited this issue and suggested an alternative scheme to distinguish between CRO and SBA in order to improve overall forecasting accuracy. Claims were made in terms of the superiority of the proposed approach to the original solution but this issue has never been assessed empirically. This constitutes the main objective of our work. In this paper the above discussed classification solutions are compared by means of experimentation on more than 10,000 \\{SKUs\\} from three different industries. The results enable insights to be gained into the comparative benefits of these approaches. The trade-offs between forecast accuracy and other implementation related considerations are also addressed.

G. Heinecke; A.A. Syntetos; W. Wang

2013-01-01T23:59:59.000Z

89

EIA - Forecasts and Analysis of Energy Data  

Gasoline and Diesel Fuel Update (EIA)

J: Regional Definitions J: Regional Definitions Figure J1. Map of the Six Basic Country Groupings. Need help, contact the National Energy Information Center at 202-586-8800. The six basic country groupings used in this report (Figure J1) are defined as follows: Mature Market Economies (15 percent of the 2005 world population): North America—United States, Canada, and Mexico; Western Europe—Austria, Belgium, Denmark, Finland, France, Germany, Greece, Iceland, Ireland, Italy, Luxembourg, the Netherlands, Norway, Portugal, Spain, Sweden, Switzerland, and the United Kingdom; Mature Market Asia—Japan, Australia, and New Zealand. Transitional Economies (6 percent of the 2005 world population): Eastern Europe (EE)—Albania, Bosnia and Herzegovina, Bulgaria, Croatia, Czech Republic, Hungary, Macedonia, Poland, Romania, Serbia and Montenegro,

90

Georgia (country): Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Georgia (country): Energy Resources Georgia (country): Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"390px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42,"lon":43.5,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

91

Forecasting wind speed financial return  

E-Print Network [OSTI]

The prediction of wind speed is very important when dealing with the production of energy through wind turbines. In this paper, we show a new nonparametric model, based on semi-Markov chains, to predict wind speed. Particularly we use an indexed semi-Markov model that has been shown to be able to reproduce accurately the statistical behavior of wind speed. The model is used to forecast, one step ahead, wind speed. In order to check the validity of the model we show, as indicator of goodness, the root mean square error and mean absolute error between real data and predicted ones. We also compare our forecasting results with those of a persistence model. At last, we show an application of the model to predict financial indicators like the Internal Rate of Return, Duration and Convexity.

D'Amico, Guglielmo; Prattico, Flavio

2013-01-01T23:59:59.000Z

92

Country Political Risk Contents  

Science Journals Connector (OSTI)

For investors, domestic and international, the assessment of political risk is very important to decide whether to ... not in a particular market or country. Political risk can simply be defined as the risk of lo...

Mohamed A. Ramady

2014-01-01T23:59:59.000Z

93

Development of short-term forecast quality for new offshore wind farms  

Science Journals Connector (OSTI)

As the rapid wind power build-out continues, a large number of new wind farms will come online but forecasters and forecasting algorithms have little experience with them. This is a problem for statistical short term forecasts, which must be trained on a long record of historical power production exactly what is missing for a new farm. Focus of the study was to analyse development of the offshore wind power forecast (WPF) quality from beginning of operation up to one year of operational experience. This paper represents a case study using data of the first German offshore wind farm "alpha ventus" and first German commercial offshore wind farm "Baltic1". The work was carried out with measured data from meteorological measurement mast FINO1, measured power from wind farms and numerical weather prediction (NWP) from the German Weather Service (DWD). This study facilitates to decide the length of needed time series and selection of forecast method to get a reliable WPF on a weekly time axis. Weekly development of WPF quality for day-ahead WPF via different models is presented. The models are physical model; physical model extended with a statistical correction (MOS) and artificial neural network (ANN) as a pure statistical model. Selforganizing map (SOM) is investigated for a better understanding of uncertainties of forecast error.

M Kurt; B Lange

2014-01-01T23:59:59.000Z

94

Weather Forecast Data an Important Input into Building Management Systems  

E-Print Network [OSTI]

Lewis Poulin Implementation and Operational Services Section Canadian Meteorological Centre, Dorval, Qc National Prediction Operations Division ICEBO 2013, Montreal, Qc October 10 2013 Version 2013-09-27 Weather Forecast Data An Important... and weather information ? Numerical weather forecast production 101 ? From deterministic to probabilistic forecasts ? Some MSC weather forecast (NWP) datasets ? Finding the appropriate data for the appropriate forecast ? Preparing for probabilistic...

Poulin, L.

2013-01-01T23:59:59.000Z

95

BMA Probabilistic Quantitative Precipitation Forecasting over the Huaihe Basin Using TIGGE Multimodel Ensemble Forecasts  

Science Journals Connector (OSTI)

Bayesian model averaging (BMA) probability quantitative precipitation forecast (PQPF) models were established by calibrating their parameters using 17-day ensemble forecasts of 24-h accumulated precipitation, and observations from 43 ...

Jianguo Liu; Zhenghui Xie

2014-04-01T23:59:59.000Z

96

Calibrated Precipitation Forecasts for a Limited-Area Ensemble Forecast System Using Reforecasts  

Science Journals Connector (OSTI)

The calibration of numerical weather forecasts using reforecasts has been shown to increase the skill of weather predictions. Here, the precipitation forecasts from the Consortium for Small Scale Modeling Limited Area Ensemble Prediction System (...

Felix Fundel; Andre Walser; Mark A. Liniger; Christoph Frei; Christof Appenzeller

2010-01-01T23:59:59.000Z

97

EIA - Forecasts and Analysis of Energy Data  

Gasoline and Diesel Fuel Update (EIA)

H Tables H Tables Appendix H Comparisons With Other Forecasts, and Performance of Past IEO Forecasts for 1990, 1995, and 2000 Forecast Comparisons Three organizations provide forecasts comparable with those in the International Energy Outlook 2005 (IEO2005). The International Energy Agency (IEA) provides “business as usual” projections to the year 2030 in its World Energy Outlook 2004; Petroleum Economics, Ltd. (PEL) publishes world energy forecasts to 2025; and Petroleum Industry Research Associates (PIRA) provides projections to 2015. For this comparison, 2002 is used as the base year for all the forecasts, and the comparisons extend to 2025. Although IEA’s forecast extends to 2030, it does not publish a projection for 2025. In addition to forecasts from other organizations, the IEO2005 projections are also compared with those in last year’s report (IEO2004). Because 2002 data were not available when IEO2004 forecasts were prepared, the growth rates from IEO2004 are computed from 2001.

98

Funding Opportunity Announcement for Wind Forecasting Improvement...  

Office of Environmental Management (EM)

to improved forecasts, system operators and industry professionals can ensure that wind turbines will operate at their maximum potential. Data collected during this field...

99

Upcoming Funding Opportunity for Wind Forecasting Improvement...  

Office of Environmental Management (EM)

to improved forecasts, system operators and industry professionals can ensure that wind turbines will operate at their maximum potential. Data collected during this field...

100

Huge market forecast for linear LDPE  

Science Journals Connector (OSTI)

Huge market forecast for linear LDPE ... It now appears that the success of the new technology, which rests largely on energy and equipment cost savings, could be overwhelming. ...

1980-08-25T23:59:59.000Z

Note: This page contains sample records for the topic "forecast maps countries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Extension maps  

E-Print Network [OSTI]

We define extension maps as maps that extend a system (through adding ancillary systems) without changing the state in the original system. We show, using extension maps, why a completely positive operation on an initially entangled system results in a non positive mapping of a subsystem. We also show that any trace preserving map, either positive or negative, can be decomposed in terms of an extension map and a completely positive map.

Aik-meng Kuah; E. C. G. Sudarshan

2005-03-12T23:59:59.000Z

102

High Country Energy | Open Energy Information  

Open Energy Info (EERE)

High Country Energy High Country Energy Place Kasson, Minnesota Zip MN 55944 Sector Wind energy Product Developing a planned 300MW wind project in Dodge and Olmsted countries, Minnesota. Coordinates 44.02676°, -92.748254° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.02676,"lon":-92.748254,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

103

Kenya SWERA-Country Report.pdf  

Open Energy Info (EERE)

KENYA COUNTRY REPORT KENYA COUNTRY REPORT SOLAR AND WIND ENERGY RESOURCE ASSESSMENT Nairobi, 23 May 2008 i ii Disclaimer This report is a compilation of information relating to the Solar and Wind Energy Resource Assessment Project (SWERA) including data capturing and analysis, computation and mapping using GIS and other technologies to produce a national solar and wind atlases for Kenya. The contents of this report do not necessarily reflect the views of the United Nations Environment Programme, Government of Kenya, Practical Action or any other party or organizations and countries involved in the SWERA project. Any omissions or alteration of the intended meaning and discrepancies are highly regretted. Daniel Theuri Lead Implementer SWERA National Team Nairobi, 23 May 2008 iii ACKNOWLEDGMENTS

104

NOAA GREAT LAKES COASTAL FORECASTING SYSTEM Forecasts (up to 5 days in the future)  

E-Print Network [OSTI]

conditions for up to 5 days in the future. These forecasts are run twice daily, and you can step through are generated every 6 hours and you can step backward in hourly increments to view conditions over the previousNOAA GREAT LAKES COASTAL FORECASTING SYSTEM Forecasts (up to 5 days in the future) and Nowcasts

105

countries | OpenEI  

Open Energy Info (EERE)

97 97 Varnish cache server Browse Upload data GDR 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142281497 Varnish cache server countries Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 142, and contains only the reference case. The dataset uses million short tons. The data is broken down into steam coal exports to Europe, Asia and America. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO Coal flows countries EIA exporting importing Data application/vnd.ms-excel icon AEO2011: World Steam Coal Flows By Importing Regions and Exporting Countries- Reference Case (xls, 103.7 KiB)

106

Annual Energy Outlook Forecast Evaluation - Table 1. Forecast Evaluations:  

Gasoline and Diesel Fuel Update (EIA)

Average Absolute Percent Errors from AEO Forecast Evaluations: Average Absolute Percent Errors from AEO Forecast Evaluations: 1996 to 2000 Average Absolute Percent Error Average Absolute Percent Error Average Absolute Percent Error Average Absolute Percent Error Average Absolute Percent Error Variable 1996 Evaluation: AEO82 to AEO93 1997 Evaluation: AEO82 to AEO97 1998 Evaluation: AEO82 to AEO98 1999 Evaluation: AEO82 to AEO99 2000 Evaluation: AEO82 to AEO2000 Consumption Total Energy Consumption 1.8 1.6 1.7 1.7 1.8 Total Petroleum Consumption 3.2 2.8 2.9 2.8 2.9 Total Natural Gas Consumption 6.0 5.8 5.7 5.6 5.6 Total Coal Consumption 2.9 2.7 3.0 3.2 3.3 Total Electricity Sales 1.8 1.6 1.7 1.8 2.0 Production Crude Oil Production 5.1 4.2 4.3 4.5 4.5

107

Optimal combined wind power forecasts using exogeneous variables  

E-Print Network [OSTI]

Optimal combined wind power forecasts using exogeneous variables Fannar ¨Orn Thordarson Kongens of the thesis is combined wind power forecasts using informations from meteorological forecasts. Lyngby, January

108

Ensemble typhoon quantitative precipitation forecasts model in Taiwan  

Science Journals Connector (OSTI)

In this study, an ensemble typhoon quantitative precipitation forecast (ETQPF) model was developed to provide typhoon rainfall forecasts for Taiwan. The ETQPF rainfall forecast is obtained by averaging the pick-out cases, which are screened at a ...

Jing-Shan Hong; Chin-Tzu Fong; Ling-Feng Hsiao; Yi-Chiang Yu; Chian-You Tzeng

109

COUNTRY INSTITUTION SIGNING DATE  

E-Print Network [OSTI]

COUNTRY INSTITUTION SIGNING DATE /RENEWAL WEB SITE ALBANIA University of Tirana 11.12.2001 www /RENEWAL WEB SITE FINLAND JAMK University of Applied Sciences 29.10.2009 www.jamk.fi/ FRANCE ?cole INSTITUTION SIGNING DATE /RENEWAL WEB SITE MACEDONIA St. Cyril and Methodius" University of Skopje 11

Di Pillo, Gianni

110

Forecast of geothermal drilling activity  

SciTech Connect (OSTI)

The numbers of each type of geothermal well expected to be drilled in the United States for each 5-year period to 2000 AD are specified. Forecasts of the growth of geothermally supplied electric power and direct heat uses are presented. The different types of geothermal wells needed to support the forecasted capacity are quantified, including differentiation of the number of wells to be drilled at each major geothermal resource for electric power production. The rate of growth of electric capacity at geothermal resource areas is expected to be 15 to 25% per year (after an initial critical size is reached) until natural or economic limits are approached. Five resource areas in the United States should grow to significant capacity by the end of the century (The Geysers; Imperial Valley; Valles Caldera, NM; Roosevelt Hot Springs, UT; and northern Nevada). About 3800 geothermal wells are expected to be drilled in support of all electric power projects in the United States between 1981 and 2000 AD. Half of the wells are expected to be drilled in the Imperial Valley. The Geysers area is expected to retain most of the drilling activity for the next 5 years. By the 1990's, the Imperial Valley is expected to contain most of the drilling activity.

Brown, G.L.; Mansure, A.J.

1981-10-01T23:59:59.000Z

111

New Concepts in Wind Power Forecasting Models  

E-Print Network [OSTI]

New Concepts in Wind Power Forecasting Models Vladimiro Miranda, Ricardo Bessa, João Gama, Guenter to the training of mappers such as neural networks to perform wind power prediction as a function of wind for more accurate short term wind power forecasting models has led to solid and impressive development

Kemner, Ken

112

QUIKSCAT MEASUREMENTS AND ECMWF WIND FORECASTS  

E-Print Network [OSTI]

. (2004) this forecast error was encountered when assimilating satellite measurements of zonal wind speeds between satellite measurements and meteorological forecasts of near-surface ocean winds. This type of covariance enters in assimilation techniques such as Kalman filtering. In all, six residual fields

Malmberg, Anders

113

QUIKSCAT MEASUREMENTS AND ECMWF WIND FORECASTS  

E-Print Network [OSTI]

. (2004) this forecast error was encountered when assimilating satellite measurements of zonal wind speeds between satellite measurements and meteorological forecasts of near­surface ocean winds. This type of covariance enters in assimilation techniques such as Kalman filtering. In all, six residual fields

Malmberg, Anders

114

PROBLEMS OF FORECAST1 Dmitry KUCHARAVY  

E-Print Network [OSTI]

: Technology Forecast, Laws of Technical systems evolution, Analysis of Contradictions. 1. Introduction Let us: If technology forecasting practice remains at the present level, it is necessary to significantly improve to new demands (like Green House Gases - GHG Effect reduction or covering exploded nuclear reactor

Paris-Sud XI, Université de

115

UHERO FORECAST PROJECT DECEMBER 5, 2014  

E-Print Network [OSTI]

deficits. After solid 3% growth this year, real GDP growth will recede a bit for the next two years. New household spending. Real GDP will firm above 3% in 2015. · The pace of growth in China has continuedUHERO FORECAST PROJECT DECEMBER 5, 2014 Asia-Pacific Forecast: Press Version: Embargoed Until 2

116

Amending Numerical Weather Prediction forecasts using GPS  

E-Print Network [OSTI]

. Satellite images and Numerical Weather Prediction (NWP) models are used together with the synoptic surfaceAmending Numerical Weather Prediction forecasts using GPS Integrated Water Vapour: a case study to validate the amounts of humidity in Numerical Weather Prediction (NWP) model forecasts. This paper presents

Stoffelen, Ad

117

A Forecasting Support System Based on Exponential Smoothing  

Science Journals Connector (OSTI)

This chapter presents a forecasting support system based on the exponential smoothing scheme to forecast time-series data. Exponential smoothing methods are simple to apply, which facilitates...

Ana Corbern-Vallet; Jos D. Bermdez; Jos V. Segura

2010-01-01T23:59:59.000Z

118

ANL Software Improves Wind Power Forecasting | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

principal investigator for the project. For wind power point forecasting, ARGUS PRIMA trains a neural network using data from weather forecasts, observations, and actual wind...

119

Improved Prediction of Runway Usage for Noise Forecast :.  

E-Print Network [OSTI]

??The research deals with improved prediction of runway usage for noise forecast. Since the accuracy of the noise forecast depends on the robustness of runway (more)

Dhanasekaran, D.

2014-01-01T23:59:59.000Z

120

The Wind Forecast Improvement Project (WFIP): A Public/Private...  

Energy Savers [EERE]

Improvement Project (WFIP): A PublicPrivate Partnership for Improving Short Term Wind Energy Forecasts and Quantifying the Benefits of Utility Operations The Wind Forecast...

Note: This page contains sample records for the topic "forecast maps countries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

PBL FY 2002 Third Quarter Review Forecast of Generation Accumulated...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Power Business Line Generation Accumulated Net Revenues Forecast for Financial-Based Cost Recovery Adjustment Clause (FB CRAC) FY 2002 Third Quarter Review Forecast in Millions...

122

Impact of vegetation fraction from Indian geostationary satellite on short-range weather forecast  

Science Journals Connector (OSTI)

Indian economy is largely depending upon the agricultural productivity and thus influences the trade among the SAARC countries. High-resolution and good-quality regional weather forecasts are necessary for planners, resource managers, insurers and national agro-advisory services. In this study, high resolution updated land-surface state in terms of vegetation fraction (VF) from operational vegetation index products of Indian geostationary satellite (INSAT 3A) sensor (CCD) was utilized in numerical weather prediction (NWP) model (e.g. WRF) to investigate its impact on short-range weather forecast over the control run. Results showed that the updated vegetation fraction from INSAT 3A CCD improved the low-level 24h temperature (?18%) and moisture (?10%) forecast in comparison to control run. The 24h rainfall forecast was also improved (more than 5%) over central and southern India with the use of updated vegetation fraction compared to control experiment. INSAT 3A VF based experiment also showed a net improvement of 27% in surface sensible heat fluxes from WRF in comparison to control experiment when both were compared with area-averaged measurements from Large Aperture Scintillometer (LAS). This triggers the need of more and more use of realistic and updated land surface states through satellite remote sensing data as well as in situ micrometeorological measurements to improve the forecast quality, skill and consistency.

Prashant Kumar; Bimal K. Bhattacharya; P.K. Pal

2013-01-01T23:59:59.000Z

123

Location Map  

SciTech Connect (OSTI)

Map file package containing shaded relief base with Hot Pot project area, major roads, railroads, and rivers. The inset map shows regional Paleozoic structural elements.

Lane, Michael

2013-06-27T23:59:59.000Z

124

Location Map  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Map file package containing shaded relief base with Hot Pot project area, major roads, railroads, and rivers. The inset map shows regional Paleozoic structural elements.

Lane, Michael

125

1993 Pacific Northwest Loads and Resources Study, Pacific Northwest Economic and Electricity Use Forecast, Technical Appendix: Volume 1.  

SciTech Connect (OSTI)

This publication documents the load forecast scenarios and assumptions used to prepare BPA`s Whitebook. It is divided into: intoduction, summary of 1993 Whitebook electricity demand forecast, conservation in the load forecast, projection of medium case electricity sales and underlying drivers, residential sector forecast, commercial sector forecast, industrial sector forecast, non-DSI industrial forecast, direct service industry forecast, and irrigation forecast. Four appendices are included: long-term forecasts, LTOUT forecast, rates and fuel price forecasts, and forecast ranges-calculations.

United States. Bonneville Power Administration.

1994-02-01T23:59:59.000Z

126

1993 Solid Waste Reference Forecast Summary  

SciTech Connect (OSTI)

This report, which updates WHC-EP-0567, 1992 Solid Waste Reference Forecast Summary, (WHC 1992) forecasts the volumes of solid wastes to be generated or received at the US Department of Energy Hanford Site during the 30-year period from FY 1993 through FY 2022. The data used in this document were collected from Westinghouse Hanford Company forecasts as well as from surveys of waste generators at other US Department of Energy sites who are now shipping or plan to ship solid wastes to the Hanford Site for disposal. These wastes include low-level and low-level mixed waste, transuranic and transuranic mixed waste, and nonradioactive hazardous waste.

Valero, O.J.; Blackburn, C.L. [Westinghouse Hanford Co., Richland, WA (United States); Kaae, P.S.; Armacost, L.L.; Garrett, S.M.K. [Pacific Northwest Lab., Richland, WA (United States)

1993-08-01T23:59:59.000Z

127

Metrics for Evaluating the Accuracy of Solar Power Forecasting (Presentation)  

SciTech Connect (OSTI)

This presentation proposes a suite of metrics for evaluating the performance of solar power forecasting.

Zhang, J.; Hodge, B.; Florita, A.; Lu, S.; Hamann, H.; Banunarayanan, V.

2013-10-01T23:59:59.000Z

128

PSO (FU 2101) Ensemble-forecasts for wind power  

E-Print Network [OSTI]

PSO (FU 2101) Ensemble-forecasts for wind power Analysis of the Results of an On-line Wind Power Ensemble- forecasts for wind power (FU2101) a demo-application producing quantile forecasts of wind power correct) quantile forecasts of the wind power production are generated by the application. However

129

Forecasting Uncertainty Related to Ramps of Wind Power Production  

E-Print Network [OSTI]

Forecasting Uncertainty Related to Ramps of Wind Power Production Arthur Bossavy, Robin Girard - The continuous improvement of the accuracy of wind power forecasts is motivated by the increasing wind power study. Key words : wind power forecast, ramps, phase er- rors, forecasts ensemble. 1 Introduction Most

Boyer, Edmond

130

Distribution of Wind Power Forecasting Errors from Operational Systems (Presentation)  

SciTech Connect (OSTI)

This presentation offers new data and statistical analysis of wind power forecasting errors in operational systems.

Hodge, B. M.; Ela, E.; Milligan, M.

2011-10-01T23:59:59.000Z

131

Advanced Numerical Weather Prediction Techniques for Solar Irradiance Forecasting : : Statistical, Data-Assimilation, and Ensemble Forecasting  

E-Print Network [OSTI]

J.B. , 2004: Probabilistic wind power forecasts using localforecast intervals for wind power output using NWP-predictedsources such as wind and solar power. Integration of this

Mathiesen, Patrick James

2013-01-01T23:59:59.000Z

132

Advanced Numerical Weather Prediction Techniques for Solar Irradiance Forecasting : : Statistical, Data-Assimilation, and Ensemble Forecasting  

E-Print Network [OSTI]

United States California Solar Initiative Coastally Trappedparticipants in the California Solar Initiative (CSI)on location. In California, solar irradiance forecasts near

Mathiesen, Patrick James

2013-01-01T23:59:59.000Z

133

Annual Energy Outlook Forecast Evaluation - Tables  

Gasoline and Diesel Fuel Update (EIA)

Analysis Papers > Annual Energy Outlook Forecast Evaluation>Tables Analysis Papers > Annual Energy Outlook Forecast Evaluation>Tables Annual Energy Outlook Forecast Evaluation Download Adobe Acrobat Reader Printer friendly version on our site are provided in Adobe Acrobat Spreadsheets are provided in Excel Actual vs. Forecasts Formats Table 2. Total Energy Consumption Excel, PDF Table 3. Total Petroleum Consumption Excel, PDF Table 4. Total Natural Gas Consumption Excel, PDF Table 5. Total Coal Consumption Excel, PDF Table 6. Total Electricity Sales Excel, PDF Table 7. Crude Oil Production Excel, PDF Table 8. Natural Gas Production Excel, PDF Table 9. Coal Production Excel, PDF Table 10. Net Petroleum Imports Excel, PDF Table 11. Net Natural Gas Imports Excel, PDF Table 12. World Oil Prices Excel, PDF Table 13. Natural Gas Wellhead Prices

134

Annual Energy Outlook Forecast Evaluation - Tables  

Gasoline and Diesel Fuel Update (EIA)

Modeling and Analysis Papers> Annual Energy Outlook Forecast Evaluation>Tables Modeling and Analysis Papers> Annual Energy Outlook Forecast Evaluation>Tables Annual Energy Outlook Forecast Evaluation Actual vs. Forecasts Available formats Excel (.xls) for printable spreadsheet data (Microsoft Excel required) MS Excel Viewer PDF (Acrobat Reader required Download Acrobat Reader ) Adobe Acrobat Reader Logo Table 2. Total Energy Consumption Excel, PDF Table 3. Total Petroleum Consumption Excel, PDF Table 4. Total Natural Gas Consumption Excel, PDF Table 5. Total Coal Consumption Excel, PDF Table 6. Total Electricity Sales Excel, PDF Table 7. Crude Oil Production Excel, PDF Table 8. Natural Gas Production Excel, PDF Table 9. Coal Production Excel, PDF Table 10. Net Petroleum Imports Excel, PDF Table 11. Net Natural Gas Imports Excel, PDF

135

Annual Energy Outlook Forecast Evaluation 2004  

Gasoline and Diesel Fuel Update (EIA)

2004 2004 * The Office of Integrated Analysis and Forecasting of the Energy Information Administration (EIA) has produced annual evaluations of the accuracy of the Annual Energy Outlook (AEO) since 1996. Each year, the forecast evaluation expands on the prior year by adding the projections from the most recent AEO and replacing the historical year of data with the most recent. The forecast evaluation examines the accuracy of AEO forecasts dating back to AEO82 by calculating the average absolute percent errors for several of the major variables for AEO82 through AEO2004. (There is no report titled Annual Energy Outlook 1988 due to a change in the naming convention of the AEOs.) The average absolute percent error is the simple mean of the absolute values of the percentage difference between the Reference Case projection and the

136

Annual Energy Outlook 2001 - Forecast Comparisons  

Gasoline and Diesel Fuel Update (EIA)

Forecast Comparisons Forecast Comparisons Economic Growth World Oil Prices Total Energy Consumption Residential and Commercial Sectors Industrial Sector Transportation Sector Electricity Natural Gas Petroleum Coal Three other organizations—Standard & Poor’s DRI (DRI), the WEFA Group (WEFA), and the Gas Research Institute (GRI) [95]—also produce comprehensive energy projections with a time horizon similar to that of AEO2001. The most recent projections from those organizations (DRI, Spring/Summer 2000; WEFA, 1st Quarter 2000; GRI, January 2000), as well as other forecasts that concentrate on petroleum, natural gas, and international oil markets, are compared here with the AEO2001 projections. Economic Growth Differences in long-run economic forecasts can be traced primarily to

137

energy data + forecasting | OpenEI Community  

Open Energy Info (EERE)

energy data + forecasting energy data + forecasting Home FRED Description: Free Energy Database Tool on OpenEI This is an open source platform for assisting energy decision makers and policy makers in formulating policies and energy plans based on easy to use forecasting tools, visualizations, sankey diagrams, and open data. The platform will live on OpenEI and this community was established to initiate discussion around continuous development of this tool, integrating it with new datasets, and connecting with the community of users who will want to contribute data to the tool and use the tool for planning purposes. Links: FRED beta demo energy data + forecasting Syndicate content 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2084382122

138

Wind Speed Forecasting for Power System Operation  

E-Print Network [OSTI]

In order to support large-scale integration of wind power into current electric energy system, accurate wind speed forecasting is essential, because the high variation and limited predictability of wind pose profound challenges to the power system...

Zhu, Xinxin

2013-07-22T23:59:59.000Z

139

Evaluation of hierarchical forecasting for substitutable products  

Science Journals Connector (OSTI)

This paper addresses hierarchical forecasting in a production planning environment. Specifically, we examine the relative effectiveness of Top-Down (TD) and Bottom-Up (BU) strategies for forecasting the demand for a substitutable product (which belongs to a family) as well as the demand for the product family under different types of family demand processes. Through a simulation study, it is revealed that the TD strategy consistently outperforms the BU strategy for forecasting product family demand. The relative superiority of the TD strategy further improves by as much as 52% as the product demand variability increases and the degree of substitutability between the products decreases. This phenomenon, however, is not always true for forecasting the demand for the products within the family. In this case, it is found that there are a few situations wherein the BU strategy marginally outperforms the TD strategy, especially when the product demand variability is high and the degree of product substitutability is low.

S. Viswanathan; Handik Widiarta; R. Piplani

2008-01-01T23:59:59.000Z

140

Testing Competing High-Resolution Precipitation Forecasts  

E-Print Network [OSTI]

Testing Competing High-Resolution Precipitation Forecasts Eric Gilleland Research Prediction Comparison Test D1 D2 D = D1 ­ D2 copyright NCAR 2013 Loss Differential Field #12;Spatial Prediction Comparison Test Introduced by Hering and Genton

Gilleland, Eric

Note: This page contains sample records for the topic "forecast maps countries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Forecasting Capital Expenditure with Plan Data  

Science Journals Connector (OSTI)

The short-term forecasting of capital expenditure presents one of the most difficult problems ... reason is that year-to-year fluctuations in capital expenditure are extremely wide. Some simple methods which...

W. Gerstenberger

1977-01-01T23:59:59.000Z

142

Forecasting Agriculturally Driven Global Environmental Change  

Science Journals Connector (OSTI)

...of each variable on GDP (13, 17), combined with global GDP projections (14...population, and per capita GDP, combined with projected...measure of agricultural demand for water, is forecast...Just as demand for energy is the major cause...

David Tilman; Joseph Fargione; Brian Wolff; Carla D'Antonio; Andrew Dobson; Robert Howarth; David Schindler; William H. Schlesinger; Daniel Simberloff; Deborah Swackhamer

2001-04-13T23:59:59.000Z

143

Medium- and Long-Range Forecasting  

Science Journals Connector (OSTI)

In contrast to short and extended range forecasts, predictions for periods beyond 5 days use time-averaged, midtropospheric height fields as their primary guidance. As time ranges are increased to 3O- and 90-day outlooks, guidance increasingly ...

A. James Wagner

1989-09-01T23:59:59.000Z

144

Updated Satellite Technique to Forecast Heavy Snow  

Science Journals Connector (OSTI)

Certain satellite interpretation techniques have proven quite useful in the heavy snow forecast process. Those considered best are briefly reviewed, and another technique is introduced. This new technique was found to be most valuable in cyclonic ...

Edward C. Johnston

1995-06-01T23:59:59.000Z

145

Annual Energy Outlook Forecast Evaluation 2005  

Gasoline and Diesel Fuel Update (EIA)

Forecast Evaluation 2005 Forecast Evaluation 2005 Annual Energy Outlook Forecast Evaluation 2005 Annual Energy Outlook Forecast Evaluation 2005 * Then Energy Information Administration (EIA) produces projections of energy supply and demand each year in the Annual Energy Outlook (AEO). The projections in the AEO are not statements of what will happen but of what might happen, given the assumptions and methodologies used. The projections are business-as-usual trend projections, given known technology, technological and demographic trends, and current laws and regulations. Thus, they provide a policy-neutral reference case that can be used to analyze policy initiatives. EIA does not propose or advocate future legislative and regulatory changes. All laws are assumed to remain as currently enacted; however, the impacts of emerging regulatory changes, when defined, are reflected.

146

Forecasting energy markets using support vector machines  

Science Journals Connector (OSTI)

Abstract In this paper we investigate the efficiency of a support vector machine (SVM)-based forecasting model for the next-day directional change of electricity prices. We first adjust the best autoregressive SVM model and then we enhance it with various related variables. The system is tested on the daily Phelix index of the German and Austrian control area of the European Energy Exchange (???) wholesale electricity market. The forecast accuracy we achieved is 76.12% over a 200day period.

Theophilos Papadimitriou; Periklis Gogas; Efthimios Stathakis

2014-01-01T23:59:59.000Z

147

Assessment of Biomass Resources from Marginal Lands in APEC Countries |  

Open Energy Info (EERE)

from Marginal Lands in APEC Countries from Marginal Lands in APEC Countries Jump to: navigation, search Logo: Assessment of Biomass Resources from Marginal Lands in APEC Countries Name Assessment of Biomass Resources from Marginal Lands in APEC Countries Agency/Company /Organization National Renewable Energy Laboratory Sector Energy Focus Area Biomass Topics Resource assessment Resource Type Dataset, Maps, Publications Website http://www.biofuels.apec.org/p Country Australia, Brunei, Canada, Chile, China, Indonesia, Japan, South Korea, Malaysia, Mexico, New Zealand, Papua New Guinea, Peru, Philippines, Russia, Chinese Taipei, Thailand, United States, Vietnam Australia and New Zealand, South-Eastern Asia, Northern America, South America, Eastern Asia, South-Eastern Asia, Eastern Asia, Eastern Asia, South-Eastern Asia, Central America, Australia and New Zealand, Melanesia, South America, South-Eastern Asia, Eastern Europe, , South-Eastern Asia, Northern America, South-Eastern Asia

148

Central American geologic map project  

SciTech Connect (OSTI)

During the Northeast Quadrant Panel meeting of the Circum-Pacific Map Project held in Mexico City, February 1985, Central American panel members proposed and adopted plans for compiling a geologic map of Central America, probably at a scale of 1:500,000. A local group with participants from each country was organized and coordinated by Rolando Castillo, director, Central American School of Geology, University of Costa Rica, for the geologic aspects, and Fernando Rudin, director, Geographic Institute of Costa Rica, for the topographic base. In 1956, the US Geological Survey published a geologic map of the region at a scale of 1:1 million. Subsequent topographic and geologic mapping projects have provided a large amount of new data. The entire area is now covered by topographic maps at a scale of 1:50,000, and these maps have been used in several countries as a base for geologic mapping. Another regional map, the Metallogenic Map of Central America (scale = 1:2 million), was published in 1969 by the Central American Research Institute for Industry (ICAITI) with a generalized but updated geologic base map. Between 1969 and 1980, maps for each country were published by local institutions: Guatemala-Belize at 1:500,000, Honduras at 1:500,000, El Salvador at 1:100,000, Nicaragua at 1:1 million, Costa Rica at 1:200,000, and Panama at 1:1 million. This information, in addition to that of newly mapped areas, served as the base for the Central American part of the Geologic-Tectonic Map of the Caribbean Region (scale = 1:2.5 million), published by the US Geological Survey in 1980, and also fro the Northeast Quadrant Maps of the Circum-Pacific Region. The new project also involves bathymetric and geologic mapping of the Pacific and Caribbean margins of the Central American Isthmus. A substantial amount of new information of the Middle America Trench has been acquired through DSDP Legs 67 and 84.

Dengo, G.

1986-07-01T23:59:59.000Z

149

Regional Maps  

Gasoline and Diesel Fuel Update (EIA)

1 East Central Area Reliability Coordination Agreement (ECAR) 1 East Central Area Reliability Coordination Agreement (ECAR) 2 Electric Reliability Council of Texas (ERCOT) 3 Mid-Atlantic Area Council (MAAC) 4 Mid-America Interconnected Network (MAIN) 5 Mid-Continent Area Power Pool (MAPP) 6. New York (NY) Southern Nevada (RA) 7. New England (NE) 8 Florida Reliability Coordinating Council (FL) 9 Southeastern Electric Reliability Council (SERC) 10 Southwest Power Pool (SPP) 11 Northwest Power Pool (NWP) 12. Rocky Mountain Power Area, Arizona, New Mexico, and 13 California (CA) Source: Energy Information Administration. Office of Integrated Analysis and Forecasting Figure 3. Petroleum Administration for Defense Districts Source: Energy Information Administration. Office of Integrated Analysis and Forecasting AK WA NV

150

Forecasting aggregate time series with intermittent subaggregate components: top-down versus bottom-up forecasting  

Science Journals Connector (OSTI)

......optimum value through a grid-search algorithm...method outperformed TD for estimating the aggregate data series...variable, there is no benefit of forecasting each subaggregate...forecasting strategies in estimating the `component'-level...WILLEMAIN, T. R., SMART, C. N., SHOCKOR......

S. Viswanathan; Handik Widiarta; Rajesh Piplani

2008-07-01T23:59:59.000Z

151

Ramp Forecasting Performance from Improved Short-Term Wind Power Forecasting: Preprint  

SciTech Connect (OSTI)

The variable and uncertain nature of wind generation presents a new concern to power system operators. One of the biggest concerns associated with integrating a large amount of wind power into the grid is the ability to handle large ramps in wind power output. Large ramps can significantly influence system economics and reliability, on which power system operators place primary emphasis. The Wind Forecasting Improvement Project (WFIP) was performed to improve wind power forecasts and determine the value of these improvements to grid operators. This paper evaluates the performance of improved short-term wind power ramp forecasting. The study is performed for the Electric Reliability Council of Texas (ERCOT) by comparing the experimental WFIP forecast to the current short-term wind power forecast (STWPF). Four types of significant wind power ramps are employed in the study; these are based on the power change magnitude, direction, and duration. The swinging door algorithm is adopted to extract ramp events from actual and forecasted wind power time series. The results show that the experimental short-term wind power forecasts improve the accuracy of the wind power ramp forecasting, especially during the summer.

Zhang, J.; Florita, A.; Hodge, B. M.; Freedman, J.

2014-05-01T23:59:59.000Z

152

CONFERENCE OF THE DANUBE COUNTRIES ON THE HYDROLOGICAL FORECASTING AND HYDROLOGICAL BASES OF WATER MANAGEMENT  

E-Print Network [OSTI]

OF WATER MANAGEMENT 28- 31. August 2006 Belgrade ­ Republic of Serbia USING THE DANUBIA DECISION SUPPORT Institute for Applied Water Resources Management and Geoinformatics, IAWG - Ottobrunn, Germany 5 Institute' and `WaterSupply' form together the Groundwater Management complex of DANUBIA and can be used to illustrate

Cirpka, Olaf Arie

153

Adirondack North Country Association | Open Energy Information  

Open Energy Info (EERE)

Adirondack North Country Association Adirondack North Country Association Jump to: navigation, search Name Adirondack North Country Association Address 67 Main Street, Suite 201 Place Saranac Lake, New York Zip 12946 Region Northeast - NY NJ CT PA Area Number of employees 1-10 Year founded 1954 Phone number 518 891 6200 Website http://www.adirondack.org Coordinates 44.326363°, -74.132012° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.326363,"lon":-74.132012,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

154

Africa Infrastructure Country Diagnostic Documents: ARCGIS Shape...  

Open Energy Info (EERE)

Shape File, all Countries Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Africa Infrastructure Country Diagnostic Documents: ARCGIS Shape File, all Countries Agency...

155

SECURITY ANALYSIS OF PROPOSEDTRAVELTO SENSITIVE COUNTRIES | Department...  

Broader source: Energy.gov (indexed) [DOE]

SECURITY ANALYSIS OF PROPOSEDTRAVELTO SENSITIVE COUNTRIES SECURITY ANALYSIS OF PROPOSEDTRAVELTO SENSITIVE COUNTRIES Form is used to document travel to sensitive countries. SECURITY...

156

Country 8+1+Area Code 8+011+Country  

E-Print Network [OSTI]

Country 8+1+Area Code 8+011+Country Code Per Minute Rate Afghanistan * 93 $0.6800 Albania * 355 $0 (Mobile Termination) * 267 $0.3800 Brazil * 55 $0.3000 Brazil (Mobile Termination) * 55 $0.3000 #12.1683 Colombia (Mobile Termination - 3) * 57 $0.3000 Comoros * 269 $0.5400 Comoros (Mobile Termination - 3, 9

157

Radar-Derived Forecasts of Cloud-to-Ground Lightning Over Houston, Texas  

E-Print Network [OSTI]

Lightning Forecasts..........................................................................................45 2.7 First Flash Forecasts and Lead Times.....................................................................47 vii... Cell Number ? 25 August 2000..............................................68 3.4 First Flash Forecast Time........................................................................................70 3.5 Lightning Forecasting Algorithm (LFA) Development...

Mosier, Richard Matthew

2011-02-22T23:59:59.000Z

158

Annual Energy Outlook Forecast Evaluation - Tables  

Gasoline and Diesel Fuel Update (EIA)

Annual Energy Outlook Forecast Evaluation Annual Energy Outlook Forecast Evaluation Actual vs. Forecasts Available formats Excel (.xls) for printable spreadsheet data (Microsoft Excel required) PDF (Acrobat Reader required) Table 2. Total Energy Consumption HTML, Excel, PDF Table 3. Total Petroleum Consumption HTML, Excel, PDF Table 4. Total Natural Gas Consumption HTML, Excel, PDF Table 5. Total Coal Consumption HTML, Excel, PDF Table 6. Total Electricity Sales HTML, Excel, PDF Table 7. Crude Oil Production HTML, Excel, PDF Table 8. Natural Gas Production HTML, Excel, PDF Table 9. Coal Production HTML, Excel, PDF Table 10. Net Petroleum Imports HTML, Excel, PDF Table 11. Net Natural Gas Imports HTML, Excel, PDF Table 12. Net Coal Exports HTML, Excel, PDF Table 13. World Oil Prices HTML, Excel, PDF

159

12-32021E2_Forecast  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

FORECAST OF VACANCIES FORECAST OF VACANCIES Until end of 2014 (Issue No. 20) Page 2 OVERVIEW OF BASIC REQUIREMENTS FOR PROFESSIONAL VACANCIES IN THE IAEA Education, Experience and Skills: Professional staff at the P4-P5 levels: * Advanced university degree (or equivalent postgraduate degree); * 7 or 10 years, respectively, of experience in a field of relevance to the post; * Resource management experience; * Strong analytical skills; * Computer skills: standard Microsoft Office software; * Languages: Fluency in English. Working knowledge of other official languages (Arabic, Chinese, French, Russian, Spanish) advantageous; * Ability to work effectively in multidisciplinary and multicultural teams; * Ability to communicate effectively. Professional staff at the P1-P3 levels:

160

Building Energy Software Tools Directory: Degree Day Forecasts  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Forecasts Forecasts Degree Day Forecasts example chart Quick and easy web-based tool that provides free 14-day ahead degree day forecasts for 1,200 stations in the U.S. and Canada. Degree Day Forecasts charts show this year, last year and three-year average. Historical degree day charts and energy usage forecasts are available from the same site. Keywords degree days, historical weather, mean daily temperature Validation/Testing Degree day data provided by AccuWeather.com, updated daily at 0700. Expertise Required No special expertise required. Simple to use. Users Over 1,000 weekly users. Audience Anyone who needs degree day forecasts (next 14 days) for the U.S. and Canada. Input Select a weather station (1,200 available) and balance point temperature. Output Charts show (1) degree day (heating and cooling) forecasts for the next 14

Note: This page contains sample records for the topic "forecast maps countries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Building Energy Software Tools Directory: Energy Usage Forecasts  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Usage Forecasts Energy Usage Forecasts Energy Usage Forecasts Quick and easy web-based tool that provides free 14-day ahead energy usage forecasts based on the degree day forecasts for 1,200 stations in the U.S. and Canada. The user enters the daily non-weather base load and the usage per degree day weather factor; the tool applies the degree day forecast and displays the total energy usage forecast. Helpful FAQs explain the process and describe various options for the calculation of the base load and weather factor. Historical degree day reports and 14-day ahead degree day forecasts are available from the same site. Keywords degree days, historical weather, mean daily temperature, load calculation, energy simulation Validation/Testing Degree day data provided by AccuWeather.com, updated daily at 0700.

162

Forecasting Market Demand for New Telecommunications Services: An Introduction  

E-Print Network [OSTI]

Forecasting Market Demand for New Telecommunications Services: An Introduction Peter Mc The marketing team of a new telecommunications company is usually tasked with producing forecasts for diverse three decades of experience working with telecommunications operators around the world we seek

McBurney, Peter

163

River Forecast Application for Water Management: Oil and Water?  

Science Journals Connector (OSTI)

Managing water resources generally and managing reservoir operations specifically have been touted as opportunities for applying forecasts to improve decision making. Previous studies have shown that the application of forecasts into water ...

Kevin Werner; Kristen Averyt; Gigi Owen

2013-07-01T23:59:59.000Z

164

Data Mining in Load Forecasting of Power System  

Science Journals Connector (OSTI)

This project applies Data Mining technology to the prediction of electric power system load forecast. It proposes a mining program of electric power load forecasting data based on the similarity of time series .....

Guang Yu Zhao; Yan Yan; Chun Zhou Zhao

2013-01-01T23:59:59.000Z

165

Operational Rainfall and Flow Forecasting for the Panama Canal Watershed  

Science Journals Connector (OSTI)

An integrated hydrometeorological system was designed for the utilization of data from various sensors in the 3300 km2 Panama Canal Watershed for the purpose of producing ... forecasts. These forecasts are used b...

Konstantine P. Georgakakos; Jason A. Sperfslage

2005-01-01T23:59:59.000Z

166

Power System Load Forecasting Based on EEMD and ANN  

Science Journals Connector (OSTI)

In order to fully mine the characteristics of load data and improve the accuracy of power system load forecasting, a load forecasting model based on Ensemble Empirical Mode ... is proposed in this paper. Firstly,...

Wanlu Sun; Zhigang Liu; Wenfan Li

2011-01-01T23:59:59.000Z

167

Beyond "Partly Sunny": A Better Solar Forecast | Department of...  

Energy Savers [EERE]

Beyond "Partly Sunny": A Better Solar Forecast Beyond "Partly Sunny": A Better Solar Forecast December 7, 2012 - 10:00am Addthis The Energy Department is investing in better solar...

168

The Energy Demand Forecasting System of the National Energy Board  

Science Journals Connector (OSTI)

This paper presents the National Energy Boards long term energy demand forecasting model in its present state of ... results of recent research at the NEB. Energy demand forecasts developed with the aid of this....

R. A. Preece; L. B. Harsanyi; H. M. Webster

1980-01-01T23:59:59.000Z

169

Forecasting Energy Demand Using Fuzzy Seasonal Time Series  

Science Journals Connector (OSTI)

Demand side energy management has become an important issue for energy management. In order to support energy planning and policy decisions forecasting the future demand is very important. Thus, forecasting the f...

?Irem Ual Sar?; Basar ztaysi

2012-01-01T23:59:59.000Z

170

Vision 2023: Forecasting Turkey's natural gas demand between 2013 and 2030  

Science Journals Connector (OSTI)

Natural gas is the primary source for electricity production in Turkey. However, Turkey does not have indigenous resources and imports more than 98.0% of the natural gas it consumes. In 2011, more than 20.0% of Turkey's annual trade deficit was due to imported natural gas, estimated at US$ 20.0 billion. Turkish government has very ambitious targets for the country's energy sector in the next decade according to the Vision 2023 agenda. Previously, we have estimated that Turkey's annual electricity demand would be 530,000GWh at the year 2023. Considering current energy market dynamics it is almost evident that a substantial amount of this demand would be supplied from natural gas. However, meticulous analysis of the Vision 2023 goals clearly showed that the information about the natural gas sector is scarce. Most importantly there is no demand forecast for natural gas in the Vision 2023 agenda. Therefore, in this study the aim was to generate accurate forecasts for Turkey's natural gas demand between 2013 and 2030. For this purpose, two semi-empirical models based on econometrics, gross domestic product (GDP) at purchasing power parity (PPP) per capita, and demographics, population change, were developed. The logistic equation, which can be used for long term natural gas demand forecasting, and the linear equation, which can be used for medium term demand forecasting, fitted to the timeline series almost seamlessly. In addition, these two models provided reasonable fits according to the mean absolute percentage error, MAPE %, criteria. Turkey's natural gas demand at the year 2030 was calculated as 76.8 billion m3 using the linear model and 83.8 billion m3 based on the logistic model. Consequently, found to be in better agreement with the official Turkish petroleum pipeline corporation (BOTAS) forecast, 76.4 billion m3, than results published in the literature.

Mehmet Melikoglu

2013-01-01T23:59:59.000Z

171

High Country Rose Greenhouses Greenhouse Low Temperature Geothermal  

Open Energy Info (EERE)

Country Rose Greenhouses Greenhouse Low Temperature Geothermal Country Rose Greenhouses Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name High Country Rose Greenhouses Greenhouse Low Temperature Geothermal Facility Facility High Country Rose Greenhouses Sector Geothermal energy Type Greenhouse Location Helena, Montana Coordinates 46.6002123°, -112.0147188° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

172

Hyannis Country Garden Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Wind Farm Wind Farm Jump to: navigation, search Name Hyannis Country Garden Wind Farm Facility Hyannis Country Garden Sector Wind energy Facility Type Small Scale Wind Facility Status In Service Owner Hyannis Country Garden Energy Purchaser Hyannis Country Garden Location Hyannis MA Coordinates 41.6356667°, -70.2994661° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.6356667,"lon":-70.2994661,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

173

Wind power forecasting in U.S. electricity markets.  

SciTech Connect (OSTI)

Wind power forecasting is becoming an important tool in electricity markets, but the use of these forecasts in market operations and among market participants is still at an early stage. The authors discuss the current use of wind power forecasting in U.S. ISO/RTO markets, and offer recommendations for how to make efficient use of the information in state-of-the-art forecasts.

Botterud, A.; Wang, J.; Miranda, V.; Bessa, R. J.; Decision and Information Sciences; INESC Porto

2010-04-01T23:59:59.000Z

174

Wind power forecasting in U.S. Electricity markets  

SciTech Connect (OSTI)

Wind power forecasting is becoming an important tool in electricity markets, but the use of these forecasts in market operations and among market participants is still at an early stage. The authors discuss the current use of wind power forecasting in U.S. ISO/RTO markets, and offer recommendations for how to make efficient use of the information in state-of-the-art forecasts. (author)

Botterud, Audun; Wang, Jianhui; Miranda, Vladimiro; Bessa, Ricardo J.

2010-04-15T23:59:59.000Z

175

Sandia National Laboratories: Solar Energy Forecasting and Resource...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy, Modeling & Analysis, News, News & Events, Partnership, Photovoltaic, Renewable Energy, Solar, Systems Analysis The book, Solar Energy Forecasting and Resource...

176

Application of a Combination Forecasting Model in Logistics Parks' Demand  

Science Journals Connector (OSTI)

Logistics parks demand is an important basis of establishing the development policy of logistics industry and logistics infrastructure for planning. In order to improve the forecast accuracy of logistics parks demand, a combination forecasting ... Keywords: Logistics parks' demand, combine, simulated annealing algorithm, grey forecast model, exponential smoothing method

Chen Qin; Qi Ming

2010-05-01T23:59:59.000Z

177

A BAYESIAN MODEL COMMITTEE APPROACH TO FORECASTING GLOBAL SOLAR RADIATION  

E-Print Network [OSTI]

in the realm of solar radiation forecasting. In this work, two forecasting models: Autoregressive Moving1 A BAYESIAN MODEL COMMITTEE APPROACH TO FORECASTING GLOBAL SOLAR RADIATION. The very first results show an improvement brought by this approach. 1. INTRODUCTION Solar radiation

Boyer, Edmond

178

PSO (FU 2101) Ensemble-forecasts for wind power  

E-Print Network [OSTI]

PSO (FU 2101) Ensemble-forecasts for wind power Wind Power Ensemble Forecasting Using Wind Speed the problems of (i) transforming the meteorological ensembles to wind power ensembles and, (ii) correcting) data. However, quite often the actual wind power production is outside the range of ensemble forecast

179

Accuracy of near real time updates in wind power forecasting  

E-Print Network [OSTI]

· advantage: no NWP data necessary ­ very actual shortest term forecasts possible · wind power inputAccuracy of near real time updates in wind power forecasting with regard to different weather October 2007 #12;EMS/ECAM 2007 ­ Nadja Saleck Outline · Study site · Wind power forecasting - method

Heinemann, Detlev

180

CSUF ECONOMIC OUTLOOK AND FORECASTS MIDYEAR UPDATE -APRIL 2014  

E-Print Network [OSTI]

CSUF ECONOMIC OUTLOOK AND FORECASTS MIDYEAR UPDATE - APRIL 2014 Anil Puri, Ph.D. -- Director, Center for Economic Analysis and Forecasting -- Dean, Mihaylo College of Business and Economics Mira Farka, Ph.D. -- Co-Director, Center for Economic Analysis and Forecasting -- Associate Professor

de Lijser, Peter

Note: This page contains sample records for the topic "forecast maps countries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Forecasting wave height probabilities with numerical weather prediction models  

E-Print Network [OSTI]

Forecasting wave height probabilities with numerical weather prediction models Mark S. Roulstona; Numerical weather prediction 1. Introduction Wave forecasting is now an integral part of operational weather methods for generating such forecasts from numerical model output from the European Centre for Medium

Stevenson, Paul

182

CALIFORNIA ENERGY DEMAND 2008-2018 STAFF REVISED FORECAST  

E-Print Network [OSTI]

CALIFORNIA ENERGY COMMISSION CALIFORNIA ENERGY DEMAND 2008-2018 STAFF REVISED FORECAST. Mitch Tian prepared the peak demand forecast. Ted Dang prepared the historic energy consumption data in California and for climate zones within those areas. The staff California Energy Demand 2008-2018 forecast

183

AUTOMATION OF ENERGY DEMAND FORECASTING Sanzad Siddique, B.S.  

E-Print Network [OSTI]

AUTOMATION OF ENERGY DEMAND FORECASTING by Sanzad Siddique, B.S. A Thesis submitted to the Faculty OF ENERGY DEMAND FORECASTING Sanzad Siddique, B.S. Marquette University, 2013 Automation of energy demand of the energy demand forecasting are achieved by integrating nonlinear transformations within the models

Povinelli, Richard J.

184

Wind and Load Forecast Error Model for Multiple Geographically Distributed Forecasts  

SciTech Connect (OSTI)

The impact of wind and load forecast errors on power grid operations is frequently evaluated by conducting multi-variant studies, where these errors are simulated repeatedly as random processes based on their known statistical characteristics. To generate these errors correctly, we need to reflect their distributions (which do not necessarily follow a known distribution law), standard deviations, auto- and cross-correlations. For instance, load and wind forecast errors can be closely correlated in different zones of the system. This paper introduces a new methodology for generating multiple cross-correlated random processes to simulate forecast error curves based on a transition probability matrix computed from an empirical error distribution function. The matrix will be used to generate new error time series with statistical features similar to observed errors. We present the derivation of the method and present some experimental results by generating new error forecasts together with their statistics.

Makarov, Yuri V.; Reyes Spindola, Jorge F.; Samaan, Nader A.; Diao, Ruisheng; Hafen, Ryan P.

2010-11-02T23:59:59.000Z

185

Forecasting the Market Penetration of Energy Conservation Technologies: The Decision Criteria for Choosing a Forecasting Model  

E-Print Network [OSTI]

An important determinant of our energy future is the rate at which energy conservation technologies, once developed, are put into use. At Synergic Resources Corporation, we have adapted and applied a methodology to forecast the use of conservation...

Lang, K.

1982-01-01T23:59:59.000Z

186

Forecasting the Locational Dynamics of Transnational Terrorism  

E-Print Network [OSTI]

Forecasting the Locational Dynamics of Transnational Terrorism: A Network Analytic Approach Bruce A-0406 Fax: (919) 962-0432 Email: skyler@unc.edu Abstract--Efforts to combat and prevent transnational terror of terrorism. We construct the network of transnational terrorist attacks, in which source (sender) and target

Massachusetts at Amherst, University of

187

Do quantitative decadal forecasts from GCMs provide  

E-Print Network [OSTI]

' · Empirical models quantify our ability to predict without knowing the laws of physics · Climatology skill' model? 2. Dynamic climatology (DC) is a more appropriate benchmark for near- term (initialised) climate forecasts · A conditional climatology, initialised at launch and built from the historical archive

Stevenson, Paul

188

Sunny outlook for space weather forecasters  

Science Journals Connector (OSTI)

... For decades, companies have tailored public weather data for private customers from farmers to airlines. On Wednesday, a group of businesses said that they ... utilities and satellite operators. But Terry Onsager, a physicist at the SWPC, says that private forecasting firms are starting to realize that they can add value to these predictions. ...

Eric Hand

2012-04-27T23:59:59.000Z

189

Modeling of Uncertainty in Wind Energy Forecast  

E-Print Network [OSTI]

regression and splines are combined to model the prediction error from Tunø Knob wind power plant. This data of the thesis is quantile regression and splines in the context of wind power modeling. Lyngby, February 2006Modeling of Uncertainty in Wind Energy Forecast Jan Kloppenborg Møller Kongens Lyngby 2006 IMM-2006

190

Prediction versus Projection: How weather forecasting and  

E-Print Network [OSTI]

Prediction versus Projection: How weather forecasting and climate models differ. Aaron B. Wilson Context: Global http://data.giss.nasa.gov/ #12;Numerical Weather Prediction Collect Observations alters associated weather patterns. Models used to predict weather depend on the current observed state

Howat, Ian M.

191

Customized forecasting tool improves reserves estimation  

SciTech Connect (OSTI)

Unique producing characteristics of the Teapot sandstone formation, Powder River basin, Wyoming, necessitated the creation of individualized production forecasting methods for wells producing from this reservoir. The development and use of a set of production type curves and correlations for Teapot wells are described herein.

Mian, M.A.

1986-04-01T23:59:59.000Z

192

Storm-in-a-Box Forecasting  

Science Journals Connector (OSTI)

...But the WRF has no immediate...being tuned to local conditions...temperatures and winds with altitude...resulting WRF forecasts...captured the local sea-breeze winds better...spread the local operation of mesoscale...to be the WRF model now...

Richard A. Kerr

2004-05-14T23:59:59.000Z

193

FORECAST OF VACANCIES Until end of 2016  

E-Print Network [OSTI]

#12;FORECAST OF VACANCIES Until end of 2016 (Issue No. 22) #12;Page 2 OVERVIEW OF BASIC REQUIREMENTS FOR PROFESSIONAL VACANCIES IN THE IAEA Education, Experience and Skills: Professional staff the team of professionals. Second half 2015 VACANCY GRADE REQUIREMENTS / ROLE EXPECTED DATE OF VACANCY

194

Online short-term solar power forecasting  

SciTech Connect (OSTI)

This paper describes a new approach to online forecasting of power production from PV systems. The method is suited to online forecasting in many applications and in this paper it is used to predict hourly values of solar power for horizons of up to 36 h. The data used is 15-min observations of solar power from 21 PV systems located on rooftops in a small village in Denmark. The suggested method is a two-stage method where first a statistical normalization of the solar power is obtained using a clear sky model. The clear sky model is found using statistical smoothing techniques. Then forecasts of the normalized solar power are calculated using adaptive linear time series models. Both autoregressive (AR) and AR with exogenous input (ARX) models are evaluated, where the latter takes numerical weather predictions (NWPs) as input. The results indicate that for forecasts up to 2 h ahead the most important input is the available observations of solar power, while for longer horizons NWPs are the most important input. A root mean square error improvement of around 35% is achieved by the ARX model compared to a proposed reference model. (author)

Bacher, Peder; Madsen, Henrik [Informatics and Mathematical Modelling, Richard Pedersens Plads, Technical University of Denmark, Building 321, DK-2800 Lyngby (Denmark); Nielsen, Henrik Aalborg [ENFOR A/S, Lyngsoe Alle 3, DK-2970 Hoersholm (Denmark)

2009-10-15T23:59:59.000Z

195

Mapping the global digital divide  

Science Journals Connector (OSTI)

The global digital divide as a concept is intuitively understood by most academicians, politicians and public policy makers. However, to date little empirical work exists to explain differences in per country access to information and communication technologies (ICTs). The research that does exist places heavy influence on the impact of country wealth, as measured by gross domestic product (GDP) per capita, on the diffusion of ICTs. While GDP per capita certainly influences the diffusion of ICTs within a country, it is not the sole determinant of a country's location versus other countries vis-a-vis the global digital divide. To investigate and map the global digital divide, as it currently exists, the authors utilise model-based cluster analysis to determine cohorts of countries based on three variables: personal computers per 100 population, internet users per 100 population and internet bandwidth per person. The results indicate that the global digital divide consists of four tiers. And although all of the developed countries are included in the first tier, some surprising results are obtained. Implications of the results are discussed and directions for future research are provided.

D. Steven White; Angappa Gunasekaran; Timothy P. Shea; Godwin C. Ariguzo

2011-01-01T23:59:59.000Z

196

Operational forecasting based on a modified Weather Research and Forecasting model  

SciTech Connect (OSTI)

Accurate short-term forecasts of wind resources are required for efficient wind farm operation and ultimately for the integration of large amounts of wind-generated power into electrical grids. Siemens Energy Inc. and Lawrence Livermore National Laboratory, with the University of Colorado at Boulder, are collaborating on the design of an operational forecasting system for large wind farms. The basis of the system is the numerical weather prediction tool, the Weather Research and Forecasting (WRF) model; large-eddy simulations and data assimilation approaches are used to refine and tailor the forecasting system. Representation of the atmospheric boundary layer is modified, based on high-resolution large-eddy simulations of the atmospheric boundary. These large-eddy simulations incorporate wake effects from upwind turbines on downwind turbines as well as represent complex atmospheric variability due to complex terrain and surface features as well as atmospheric stability. Real-time hub-height wind speed and other meteorological data streams from existing wind farms are incorporated into the modeling system to enable uncertainty quantification through probabilistic forecasts. A companion investigation has identified optimal boundary-layer physics options for low-level forecasts in complex terrain, toward employing decadal WRF simulations to anticipate large-scale changes in wind resource availability due to global climate change.

Lundquist, J; Glascoe, L; Obrecht, J

2010-03-18T23:59:59.000Z

197

UNCERTAINTY IN THE GLOBAL FORECAST SYSTEM  

SciTech Connect (OSTI)

We validated one year of Global Forecast System (GFS) predictions of surface meteorological variables (wind speed, air temperature, dewpoint temperature, air pressure) over the entire planet for forecasts extending from zero hours into the future (an analysis) to 36 hours. Approximately 12,000 surface stations world-wide were included in this analysis. Root-Mean-Square- Errors (RMSE) increased as the forecast period increased from zero to 36 hours, but the initial RMSE were almost as large as the 36 hour forecast RMSE for all variables. Typical RMSE were 3 C for air temperature, 2-3mb for sea-level pressure, 3.5 C for dewpoint temperature and 2.5 m/s for wind speed. Approximately 20-40% of the GFS errors can be attributed to a lack of resolution of local features. We attribute the large initial RMSE for the zero hour forecasts to the inability of the GFS to resolve local terrain features that often dominate local weather conditions, e.g., mountain- valley circulations and sea and land breezes. Since the horizontal resolution of the GFS (about 1{sup o} of latitude and longitude) prevents it from simulating these locally-driven circulations, its performance will not improve until model resolution increases by a factor of 10 or more (from about 100 km to less than 10 km). Since this will not happen in the near future, an alternative for the near term to improve surface weather analyses and predictions for specific points in space and time would be implementation of a high-resolution, limited-area mesoscale atmospheric prediction model in regions of interest.

Werth, D.; Garrett, A.

2009-04-15T23:59:59.000Z

198

Forecastability as a Design Criterion in Wind Resource Assessment: Preprint  

SciTech Connect (OSTI)

This paper proposes a methodology to include the wind power forecasting ability, or 'forecastability,' of a site as a design criterion in wind resource assessment and wind power plant design stages. The Unrestricted Wind Farm Layout Optimization (UWFLO) methodology is adopted to maximize the capacity factor of a wind power plant. The 1-hour-ahead persistence wind power forecasting method is used to characterize the forecastability of a potential wind power plant, thereby partially quantifying the integration cost. A trade-off between the maximum capacity factor and the forecastability is investigated.

Zhang, J.; Hodge, B. M.

2014-04-01T23:59:59.000Z

199

ANL Wind Power Forecasting and Electricity Markets | Open Energy  

Open Energy Info (EERE)

ANL Wind Power Forecasting and Electricity Markets ANL Wind Power Forecasting and Electricity Markets Jump to: navigation, search Logo: Wind Power Forecasting and Electricity Markets Name Wind Power Forecasting and Electricity Markets Agency/Company /Organization Argonne National Laboratory Partner Institute for Systems and Computer Engineering of Porto (INESC Porto) in Portugal, Midwest Independent System Operator and Horizon Wind Energy LLC, funded by U.S. Department of Energy Sector Energy Focus Area Wind Topics Pathways analysis, Technology characterizations Resource Type Software/modeling tools Website http://www.dis.anl.gov/project References Argonne National Laboratory: Wind Power Forecasting and Electricity Markets[1] Abstract To improve wind power forecasting and its use in power system and electricity market operations Argonne National Laboratory has assembled a team of experts in wind power forecasting, electricity market modeling, wind farm development, and power system operations.

200

Photovoltaics Manufacturing in Developing Countries  

Science Journals Connector (OSTI)

The need for energy sources in the developing countries might be partially satisfied by using photovoltaic power systems in addition to conventional means. A review of photovoltaic manufacturing in developing ...

G. Darkazalli; S. Hogan

1991-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "forecast maps countries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Weather Research and Forecasting prevision model as a tool to search for the best sites for astronomy: application to La Palma, Canary Islands  

Science Journals Connector (OSTI)

......the capability of WRF to predict the...Palma. Maps of the wind velocity, cloudiness...the use of the WRF model in an astronomical...launched on our local computer every...at 0600-ut (local time is equal to...C_N^2$ The WRF model gives vertical...temperature and the wind velocity forecast......

C. Giordano; J. Vernin; H. Trinquet; C. Muoz-Tun

2014-01-01T23:59:59.000Z

202

China's Present Situation of Coal Consumption and Future Coal Demand Forecast  

Science Journals Connector (OSTI)

This article analyzes China's coal consumption changes since 1991 and proportion change of coal consumption to total energy consumption. It is argued that power, iron and steel, construction material, and chemical industries are the four major coal consumption industries, which account for 85% of total coal consumption in 2005. Considering energy consumption composition characteristics of these four industries, major coal demand determinants, potentials of future energy efficiency improvement, and structural changes, etc., this article makes a forecast of 2010s and 2020s domestic coal demand in these four industries. In addition, considering such relevant factors as our country's future economic growth rate and energy saving target, it forecasts future energy demands, using per unit GDP energy consumption method and energy elasticity coefficient method as well. Then it uses other institution's results about future primary energy demand, excluding primary coal demand, for reference, and forecasts coal demands in 2010 and 2020 indirectly. After results comparison between these two methods, it is believed that coal demands in 2010 might be 26202850 million tons and in 2020 might be 30903490 million tons, in which, coal used in power generation is still the driven force of coal demand growth.

Wang Yan; Li Jingwen

2008-01-01T23:59:59.000Z

203

REDD Country Activity Database | Open Energy Information  

Open Energy Info (EERE)

REDD Country Activity Database REDD Country Activity Database Jump to: navigation, search Tool Summary Name: REDD Country Activity Database Agency/Company /Organization: Global Canopy Programme, Forum on Readiness for REDD Sector: Land Focus Area: Forestry Topics: Background analysis Resource Type: Dataset, Case studies/examples User Interface: Website Website: www.theredddesk.org/countries Country: Brazil, Cameroon, Vietnam, Guyana, Tanzania, Indonesia Cost: Free UN Region: Southern Africa, South America, South-Eastern Asia REDD Country Activity Database Screenshot References: REDD Country Activity Database[1] Logo: REDD Country Activity Database The REDD Countries Database is a centralised and collaborative database of the diverse and rapidly evolving range of ongoing REDD activities in

204

Short-Term World Oil Price Forecast  

Gasoline and Diesel Fuel Update (EIA)

4 4 Notes: This graph shows monthly average spot West Texas Intermediate crude oil prices. Spot WTI crude oil prices peaked last fall as anticipated boosts to world supply from OPEC and other sources did not show up in actual stocks data. So where do we see crude oil prices going from here? Crude oil prices are expected to be about $28-$30 per barrel for the rest of this year, but note the uncertainty bands on this projection. They give an indication of how difficult it is to know what these prices are going to do. Also, EIA does not forecast volatility. This relatively flat forecast could be correct on average, with wide swings around the base line. Let's explore why we think prices will likely remain high, by looking at an important market barometer - inventories - which measures the

205

OpenEI Community - energy data + forecasting  

Open Energy Info (EERE)

FRED FRED http://en.openei.org/community/group/fred Description: Free Energy Database Tool on OpenEI This is an open source platform for assisting energy decision makers and policy makers in formulating policies and energy plans based on easy to use forecasting tools, visualizations, sankey diagrams, and open data. The platform will live on OpenEI and this community was established to initiate discussion around continuous development of this tool, integrating it with new datasets, and connecting with the community of users who will want to contribute data to the tool and use the tool for planning purposes. energy data + forecasting Fri, 22 Jun 2012 15:30:20 +0000 Dbrodt 34

206

Voluntary Green Power Market Forecast through 2015  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

158 158 May 2010 Voluntary Green Power Market Forecast through 2015 Lori Bird National Renewable Energy Laboratory Ed Holt Ed Holt & Associates, Inc. Jenny Sumner and Claire Kreycik National Renewable Energy Laboratory National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Operated by the Alliance for Sustainable Energy, LLC Contract No. DE-AC36-08-GO28308 Technical Report NREL/TP-6A2-48158 May 2010 Voluntary Green Power Market Forecast through 2015 Lori Bird National Renewable Energy Laboratory Ed Holt Ed Holt & Associates, Inc. Jenny Sumner and Claire Kreycik National Renewable Energy Laboratory

207

FORSITE: a geothermal site development forecasting system  

SciTech Connect (OSTI)

The Geothermal Site Development Forecasting System (FORSITE) is a computer-based system being developed to assist DOE geothermal program managers in monitoring the progress of multiple geothermal electric exploration and construction projects. The system will combine conceptual development schedules with site-specific status data to predict a time-phased sequence of development likely to occur at specific geothermal sites. Forecasting includes estimation of industry costs and federal manpower requirements across sites on a year-by-year basis. The main advantage of the system, which relies on reporting of major, easily detectable industry activities, is its ability to use relatively sparse data to achieve a representation of status and future development.

Entingh, D.J.; Gerstein, R.E.; Kenkeremath, L.D.; Ko, S.M.

1981-10-01T23:59:59.000Z

208

Maps and Mapping Page 1 of 7  

E-Print Network [OSTI]

Maps and Mapping Page 1 of 7 OBJECTIVES This exercise covers map projection, the systematic rendering of the earth's round, three-dimensional surface onto a flat map. Any map projection inherently, and orientation of the earth's surface features. You will use Flex Projector to evaluate various map projections

Clarke, Keith

209

Maps and Mapping Page 1 of 11  

E-Print Network [OSTI]

Maps and Mapping Page 1 of 11 OBJECTIVES Online mapping is redefining the concept of maps in our culture. Cartographic mash-ups, mapping applications that combine content from multiple sources. The relative ease with which anyone can add location based information to a map has inspired a mash

Clarke, Keith

210

Forecasting hotspots using predictive visual analytics approach  

SciTech Connect (OSTI)

A method for forecasting hotspots is provided. The method may include the steps of receiving input data at an input of the computational device, generating a temporal prediction based on the input data, generating a geospatial prediction based on the input data, and generating output data based on the time series and geospatial predictions. The output data may be configured to display at least one user interface at an output of the computational device.

Maciejewski, Ross; Hafen, Ryan; Rudolph, Stephen; Cleveland, William; Ebert, David

2014-12-30T23:59:59.000Z

211

Exponential smoothing model selection for forecasting  

Science Journals Connector (OSTI)

Applications of exponential smoothing to forecasting time series usually rely on three basic methods: simple exponential smoothing, trend corrected exponential smoothing and a seasonal variation thereof. A common approach to selecting the method appropriate to a particular time series is based on prediction validation on a withheld part of the sample using criteria such as the mean absolute percentage error. A second approach is to rely on the most appropriate general case of the three methods. For annual series this is trend corrected exponential smoothing: for sub-annual series it is the seasonal adaptation of trend corrected exponential smoothing. The rationale for this approach is that a general method automatically collapses to its nested counterparts when the pertinent conditions pertain in the data. A third approach may be based on an information criterion when maximum likelihood methods are used in conjunction with exponential smoothing to estimate the smoothing parameters. In this paper, such approaches for selecting the appropriate forecasting method are compared in a simulation study. They are also compared on real time series from the M3 forecasting competition. The results indicate that the information criterion approaches provide the best basis for automated method selection, the Akaike information criteria having a slight edge over its information criteria counterparts.

Baki Billah; Maxwell L. King; Ralph D. Snyder; Anne B. Koehler

2006-01-01T23:59:59.000Z

212

Site Map  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Home » Site Map Home » Site Map Site Map Home About Overview NERSC Mission Contact us Staff Center Leadership Sudip Dosanjh Select Publications Jeff Broughton Katie Antypas John Shalf Francesca Verdier Center Administration James Craw Norma Early Jeff Grounds Betsy MacGowan Zaida McCunney Lynn Rippe Suzanne Stevenson David Tooker Center Communications Jon Bashor Linda Vu Margie Wylie Kathy Kincade Advanced Technologies Group Nicholas Wright Brian Austin Research Projects Matthew Cordery Christopher Daley Analytics Group Peter Nugent David Camp Hank Childs Harinarayan Krishnan Burlen Loring Joerg Meyer Prabhat Oliver Ruebel Daniela Ushizima Gunther Weber Yushu Yao Computational Systems Group Jay Srinivasan James Botts Scott Burrow Tina Butler Nick Cardo Tina Declerck Ilya Malinov David Paul Larry Pezzaglia Iwona Sakrejda

213

Today's Forecast: Improved Wind Predictions | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Today's Forecast: Improved Wind Predictions Today's Forecast: Improved Wind Predictions Today's Forecast: Improved Wind Predictions July 20, 2011 - 6:30pm Addthis Stan Calvert Wind Systems Integration Team Lead, Wind & Water Power Program What does this project do? It will increase the accuracy of weather forecast models for predicting substantial changes in winds at heights important for wind energy up to six hours in advance, allowing grid operators to predict expected wind power production. Accurate weather forecasts are critical for making energy sources -- including wind and solar -- dependable and predictable. These forecasts also play an important role in reducing the cost of renewable energy by allowing electricity grid operators to make timely decisions on what reserve generation they need to operate their systems.

214

Annual Energy Outlook with Projections to 2025-Forecast Comparisons  

Gasoline and Diesel Fuel Update (EIA)

Forecast Comparisons Forecast Comparisons Annual Energy Outlook 2004 with Projections to 2025 Forecast Comparisons Index (click to jump links) Economic Growth World Oil Prices Total Energy Consumption Electricity Natural Gas Petroleum Coal The AEO2004 forecast period extends through 2025. One other organization—Global Insight, Incorporated (GII)—produces a comprehensive energy projection with a similar time horizon. Several others provide forecasts that address one or more aspects of energy markets over different time horizons. Recent projections from GII and others are compared here with the AEO2004 projections. Economic Growth Printer Friendly Version Average annual percentage growth Forecast 2002-2008 2002-2013 2002-2025 AEO2003 3.2 3.3 3.1 AEO2004 Reference 3.3 3.2 3.0

215

Today's Forecast: Improved Wind Predictions | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Today's Forecast: Improved Wind Predictions Today's Forecast: Improved Wind Predictions Today's Forecast: Improved Wind Predictions July 20, 2011 - 6:30pm Addthis Stan Calvert Wind Systems Integration Team Lead, Wind & Water Power Program What does this project do? It will increase the accuracy of weather forecast models for predicting substantial changes in winds at heights important for wind energy up to six hours in advance, allowing grid operators to predict expected wind power production. Accurate weather forecasts are critical for making energy sources -- including wind and solar -- dependable and predictable. These forecasts also play an important role in reducing the cost of renewable energy by allowing electricity grid operators to make timely decisions on what reserve generation they need to operate their systems.

216

Metrics for Evaluating the Accuracy of Solar Power Forecasting: Preprint  

SciTech Connect (OSTI)

Forecasting solar energy generation is a challenging task due to the variety of solar power systems and weather regimes encountered. Forecast inaccuracies can result in substantial economic losses and power system reliability issues. This paper presents a suite of generally applicable and value-based metrics for solar forecasting for a comprehensive set of scenarios (i.e., different time horizons, geographic locations, applications, etc.). In addition, a comprehensive framework is developed to analyze the sensitivity of the proposed metrics to three types of solar forecasting improvements using a design of experiments methodology, in conjunction with response surface and sensitivity analysis methods. The results show that the developed metrics can efficiently evaluate the quality of solar forecasts, and assess the economic and reliability impact of improved solar forecasting.

Zhang, J.; Hodge, B. M.; Florita, A.; Lu, S.; Hamann, H. F.; Banunarayanan, V.

2013-10-01T23:59:59.000Z

217

Gasoline demand in developing Asian countries  

SciTech Connect (OSTI)

This paper presents econometric estimates of motor gasoline demand in eleven developing countries of Asia. The price and GDP per capita elasticities are estimated for each country separately, and for several pooled combinations of the countries. The estimated elasticities for the Asian countries are compared with those of the OECD countries. Generally, one finds that the OECD countries have GDP elasticities that are smaller, and price elasticities that are larger (in absolute value). The price elasticities for the low-income Asian countries are more inelastic than for the middle-income Asian countries, and the GDP elasticities are generally more elastic. 13 refs., 6 tabs.

McRae, R. [Univ. of Calgary, Alberta (Canada)

1994-12-31T23:59:59.000Z

218

Manhattan Project: Maps  

Office of Scientific and Technical Information (OSTI)

MAPS MAPS Resources Scroll down to view thumbnails of each map. Leslie Groves looks at a map of Japan. Manhattan Project: General Manhattan Project Facilities Places map "Signature Facilities of the MED" map Hanford Hanford map Hanford (black and white) map Hanford Site Diagram Hanford Site Location Map Hanford: Native Peoples map Hanford: Town map Los Alamos Map of Los Alamos, New Mexico Los Alamos: "Tech Area" map Oak Ridge Map of Clinton Engineer Works, Oak Ridge Clinton Engineer Works, Oak Ridge (black and white) map Oak Ridge: Projected Site for Atomic Production Plants, 1942, map Other Flight paths for Hiroshima and Nagasaki missions map Map of the Trinity Test Site Post-War U.S. Nuclear Tests map Manhattan Project Facilities Manhattan Project Facilities

219

Electric Grid - Forecasting system licensed | ornl.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electric Grid - Forecasting system licensed Location Based Technologies has signed an agreement to integrate and market an Oak Ridge National Laboratory technology that provides...

220

Managing Wind Power Forecast Uncertainty in Electric Grids.  

E-Print Network [OSTI]

??Electricity generated from wind power is both variable and uncertain. Wind forecasts provide valuable information for wind farm management, but they are not perfect. Chapter (more)

Mauch, Brandon Keith

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "forecast maps countries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Forecasting supply/demand and price of ethylene feedstocks  

SciTech Connect (OSTI)

The history of the petrochemical industry over the past ten years clearly shows that forecasting in a turbulent world is like trying to predict tomorrow's headlines.

Struth, B.W.

1984-08-01T23:59:59.000Z

222

PBL FY 2003 Third Quarter Review Forecast of Generation Accumulated...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for Financial-Based Cost Recovery Adjustment Clause (FB CRAC) and Safety-Net Cost Recovery Adjustment Clause (SN CRAC) FY 2003 Third Quarter Review Forecast in Millions...

223

FY 2004 Second Quarter Review Forecast of Generation Accumulated...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for Financial-Based Cost Recovery Adjustment Clause (FB CRAC) and Safety-Net Cost Recovery Adjustment Clause (SN CRAC) FY 2004 Second Quarter Review Forecast In Millions...

224

Integrating agricultural pest biocontrol into forecasts of energy biomass production  

E-Print Network [OSTI]

Analysis Integrating agricultural pest biocontrol into forecasts of energy biomass production T pollution, greenhouse gas emissions, and soil erosion (Nash, 2007; Searchinger et al., 2008). On the other

Gratton, Claudio

225

Maps - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA) Indexed Site

Maps Maps Overview & General Energy Disruptions Interactive maps with energy infrastructure and real-time storm tracking Historical Disruption reports Gulf of Mexico Fact Sheet Country Analysis Briefs U.S. Census Region Map U.S. Climate Zones for 2003 Commercial Buildings Energy Consumption Survey (CBECS) U.S. Federal Region Map State Energy Profile Maps | Map Details and Data Coal mines Federal lands Market hubs: NGL and natural gas Oil/gas production, refining and processing Pipelines and electric transmission Power plants Resources: coal, oil and gas, shale, tight gas, biomass, geothermal, photovotaic solar, wind Storage Waterborne transport: petroleum ports, waterways, and LNG import/export terminals World Regions Coal Asia coal consumption by country, 1980-2010 (animation)

226

Mapping under the Third Reich: Nazi Restrictions on Map Content and Distribution  

E-Print Network [OSTI]

large- and small-scale products, a 1937 law gave the Ministry of the Interior authority over private mapmakers, who now had to conform to official policy on geographic names as well as the colors used on political maps. Keywords: cartography, Germany... at 1:25,000. Long-range plans called for standardizing Germany?s cadastral maps, which could then be used to compile the 1:5,000 basic topographic map. For parts of the country not requiring more immediate attention, Katasterplankarte (cadastral maps...

Monmonier, Mark

2005-01-31T23:59:59.000Z

227

Forecasting for inventory control with exponential smoothing  

Science Journals Connector (OSTI)

Exponential smoothing, often used in sales forecasting for inventory control, has always been rationalized in terms of statistical models that possess errors with constant variances. It is shown in this paper that exponential smoothing remains appropriate under more general conditions, where the variance is allowed to grow or contract with corresponding movements in the underlying level. The implications for estimation and prediction are explored. In particular, the problem of finding the predictive distribution of aggregate lead-time demand, for use in inventory control calculations, is considered using a bootstrap approach. A method for establishing order-up-to levels directly from the simulated predictive distribution is also explored.

Ralph D. Snyder; Anne B. Koehler; J.Keith Ord

2002-01-01T23:59:59.000Z

228

Probabilistic Verification of Global and Mesoscale Ensemble Forecasts of Tropical Cyclogenesis  

Science Journals Connector (OSTI)

Probabilistic forecasts of tropical cyclogenesis have been evaluated for two samples: a near-homogeneous sample of ECMWF and Weather Research and Forecasting (WRF) Modelensemble Kalman filter (EnKF) ensemble forecasts during the National Science ...

Sharanya J. Majumdar; Ryan D. Torn

2014-10-01T23:59:59.000Z

229

Site Map | DOEpatents  

Office of Scientific and Technical Information (OSTI)

Site Map Site Map Home Basic Search Advanced Search DOEpatents FAQ About DOEpatents Site Map Contact Us Website PoliciesImportant Links...

230

Voluntary Green Power Market Forecast through 2015  

SciTech Connect (OSTI)

Various factors influence the development of the voluntary 'green' power market--the market in which consumers purchase or produce power from non-polluting, renewable energy sources. These factors include climate policies, renewable portfolio standards (RPS), renewable energy prices, consumers' interest in purchasing green power, and utilities' interest in promoting existing programs and in offering new green options. This report presents estimates of voluntary market demand for green power through 2015 that were made using historical data and three scenarios: low-growth, high-growth, and negative-policy impacts. The resulting forecast projects the total voluntary demand for renewable energy in 2015 to range from 63 million MWh annually in the low case scenario to 157 million MWh annually in the high case scenario, representing an approximately 2.5-fold difference. The negative-policy impacts scenario reflects a market size of 24 million MWh. Several key uncertainties affect the results of this forecast, including uncertainties related to growth assumptions, the impacts that policy may have on the market, the price and competitiveness of renewable generation, and the level of interest that utilities have in offering and promoting green power products.

Bird, L.; Holt, E.; Sumner, J.; Kreycik, C.

2010-05-01T23:59:59.000Z

231

Expert Panel: Forecast Future Demand for Medical Isotopes  

Broader source: Energy.gov (indexed) [DOE]

Expert Panel: Expert Panel: Forecast Future Demand for Medical Isotopes March 1999 Expert Panel: Forecast Future Demand for Medical Isotopes September 25-26, 1998 Arlington, Virginia The Expert Panel ............................................................................................. Page 1 Charge To The Expert Panel........................................................................... Page 2 Executive Summary......................................................................................... Page 3 Introduction ...................................................................................................... Page 4 Rationale.......................................................................................................... Page 6 Economic Analysis...........................................................................................

232

A robust automatic phase-adjustment method for financial forecasting  

Science Journals Connector (OSTI)

In this work we present the robust automatic phase-adjustment (RAA) method to overcome the random walk dilemma for financial time series forecasting. It consists of a hybrid model composed of a qubit multilayer perceptron (QuMLP) with a quantum-inspired ... Keywords: Financial forecasting, Hybrid models, Quantum-inspired evolutionary algorithm, Qubit multilayer perceptron, Random walk dilemma

Ricardo de A. Arajo

2012-03-01T23:59:59.000Z

233

Short term forecasting of solar radiation based on satellite data  

E-Print Network [OSTI]

Short term forecasting of solar radiation based on satellite data Elke Lorenz, Annette Hammer University, D-26111 Oldenburg Forecasting of solar irradiance will become a major issue in the future integration of solar energy resources into existing energy supply structures. Fluctuations of solar irradiance

Heinemann, Detlev

234

Developing electricity forecast web tool for Kosovo market  

Science Journals Connector (OSTI)

In this paper is presented a web tool for electricity forecast for Kosovo market for the upcoming ten years. The input data i.e. electricity generation capacities, demand and consume are taken from the document "Kosovo Energy Strategy 2009-2018" compiled ... Keywords: .NET, database, electricity forecast, internet, simulation, web

Blerim Rexha; Arben Ahmeti; Lule Ahmedi; Vjollca Komoni

2011-02-01T23:59:59.000Z

235

FORECASTING WATER DEMAND USING CLUSTER AND REGRESSION ANALYSIS  

E-Print Network [OSTI]

resources resulting in water stress. Effective water management ­ a solution Supply side management Demand side management #12;Developing a regression equation based on cluster analysis for forecasting waterFORECASTING WATER DEMAND USING CLUSTER AND REGRESSION ANALYSIS by Bruce Bishop Professor of Civil

Keller, Arturo A.

236

Impact of PV forecasts uncertainty in batteries management in microgrids  

E-Print Network [OSTI]

production forecast algorithm is used in combination with a battery schedule optimisation algorithm. The size. On the other hand if forecasted high production events do not occur, the cost of de- optimisation Energies and Energy Systems Sophia Antipolis, France andrea.michiorri@mines-paristech.fr Abstract

Paris-Sud XI, Université de

237

Revised 1997 Retail Electricity Price Forecast Principal Author: Ben Arikawa  

E-Print Network [OSTI]

Revised 1997 Retail Electricity Price Forecast March 1998 Principal Author: Ben Arikawa Electricity 1997 FORE08.DOC Page 1 CALIFORNIA ENERGY COMMISSION ELECTRICITY ANALYSIS OFFICE REVISED 1997 RETAIL ELECTRICITY PRICE FORECAST Introduction The Electricity Analysis Office of the California Energy Commission

238

Calibrated Probabilistic Forecasting at the Stateline Wind Energy Center  

E-Print Network [OSTI]

Calibrated Probabilistic Forecasting at the Stateline Wind Energy Center: The Regime at wind energy sites are becoming paramount. Regime-switching space-time (RST) models merge meteorological forecast regimes at the wind energy site and fits a conditional predictive model for each regime

Washington at Seattle, University of

239

A Transformed Lagged Ensemble Forecasting Technique for Increasing Ensemble Size  

E-Print Network [OSTI]

A Transformed Lagged Ensemble Forecasting Technique for Increasing Ensemble Size Andrew. R.Lawrence@ecmwf.int #12;Abstract An ensemble-based data assimilation approach is used to transform old en- semble. The impact of the transformations are propagated for- ward in time over the ensemble's forecast period

Hansens, Jim

240

Improving baseline forecasts in a 500-industry dynamic CGE model of the USA.  

E-Print Network [OSTI]

??MONASH-style CGE models have been used to generate baseline forecasts illustrating how an economy is likely to evolve through time. One application of such forecasts (more)

Mavromatis, Peter George

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "forecast maps countries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

E-Print Network 3.0 - africa conditional forecasts Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Search Powered by Explorit Topic List Advanced Search Sample search results for: africa conditional forecasts Page: << < 1 2 3 4 5 > >> 1 COLORADO STATE UNIVERSITY FORECAST...

242

Uncertainty Reduction in Power Generation Forecast Using Coupled Wavelet-ARIMA  

SciTech Connect (OSTI)

In this paper, we introduce a new approach without implying normal distributions and stationarity of power generation forecast errors. In addition, it is desired to more accurately quantify the forecast uncertainty by reducing prediction intervals of forecasts. We use automatically coupled wavelet transform and autoregressive integrated moving-average (ARIMA) forecasting to reflect multi-scale variability of forecast errors. The proposed analysis reveals slow-changing quasi-deterministic components of forecast errors. This helps improve forecasts produced by other means, e.g., using weather-based models, and reduce forecast errors prediction intervals.

Hou, Zhangshuan; Etingov, Pavel V.; Makarov, Yuri V.; Samaan, Nader A.

2014-10-27T23:59:59.000Z

243

Fermilab Map Instructions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

This Fermilab interactive map is actually a series of maps. The first map in the series--the map that you just clicked on to get this window--is an overview of the entire Fermilab...

244

Maps and Mapping Lab 6: Terrain Representation  

E-Print Network [OSTI]

Maps and Mapping Lab 6: Terrain Representation OBJECTIVES Representing the earth's relief on a two. In this exercise, we will examine some ways that terrain can be represented on a map and in digital form. You exaggeration using Google Earth. MATERIALS USGS Quadrangle map, Ruler, Pencil, Calculator, Google Earth (4

Clarke, Keith

245

Argentina-Mitigation Action Plans and Scenarios (MAPS) | Open Energy  

Open Energy Info (EERE)

Argentina-Mitigation Action Plans and Scenarios (MAPS) Argentina-Mitigation Action Plans and Scenarios (MAPS) Jump to: navigation, search Logo: Argentina-Mitigation Action Plans and Scenarios (MAPS) Name Argentina-Mitigation Action Plans and Scenarios (MAPS) Agency/Company /Organization The Children's Investment Fund Foundation, SouthSouthNorth, University of Cape Town-Energy Research Centre, Danish Government Sector Climate, Energy Topics Baseline projection, Low emission development planning, -LEDS, -NAMA, Pathways analysis Website http://www.mapsprogramme.org Program Start 2010 Program End 2013 Country Argentina South America References Mitigation Action Plans and Scenarios (MAPS)[1] Contents 1 Overview 2 MAPS Processes and Outcomes 2.1 Chile 2.2 Colombia 2.3 Peru 2.4 Brazil 2.5 Resources 2.5.1 Mitigation Action Country Studies

246

Colombia-Mitigation Action Plans and Scenarios (MAPS) | Open Energy  

Open Energy Info (EERE)

Colombia-Mitigation Action Plans and Scenarios (MAPS) Colombia-Mitigation Action Plans and Scenarios (MAPS) Jump to: navigation, search Logo: Colombia-Mitigation Action Plans and Scenarios (MAPS) Name Colombia-Mitigation Action Plans and Scenarios (MAPS) Agency/Company /Organization The Children's Investment Fund Foundation, SouthSouthNorth, University of Cape Town-Energy Research Centre, Danish Government Sector Climate, Energy Topics Baseline projection, Low emission development planning, -LEDS, -NAMA, Pathways analysis Website http://www.mapsprogramme.org Program Start 2010 Program End 2013 Country Colombia South America References Mitigation Action Plans and Scenarios (MAPS)[1] Contents 1 Overview 2 MAPS Processes and Outcomes 2.1 Chile 2.2 Colombia 2.3 Peru 2.4 Brazil 2.5 Resources 2.5.1 Mitigation Action Country Studies

247

Brazil-Mitigation Action Plans and Scenarios (MAPS) | Open Energy  

Open Energy Info (EERE)

Brazil-Mitigation Action Plans and Scenarios (MAPS) Brazil-Mitigation Action Plans and Scenarios (MAPS) Jump to: navigation, search Logo: Brazil-Mitigation Action Plans and Scenarios (MAPS) Name Brazil-Mitigation Action Plans and Scenarios (MAPS) Agency/Company /Organization The Children's Investment Fund Foundation, SouthSouthNorth, University of Cape Town-Energy Research Centre, Danish Government Sector Climate, Energy Topics Baseline projection, Low emission development planning, -LEDS, -NAMA, Pathways analysis Website http://www.mapsprogramme.org Program Start 2010 Program End 2013 Country Brazil South America References Mitigation Action Plans and Scenarios (MAPS)[1] Contents 1 Overview 2 MAPS Processes and Outcomes 2.1 Chile 2.2 Colombia 2.3 Peru 2.4 Brazil 2.5 Resources 2.5.1 Mitigation Action Country Studies

248

Vietnam-USAID Country Report | Open Energy Information  

Open Energy Info (EERE)

Vietnam-USAID Country Report Vietnam-USAID Country Report Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Vietnam-USAID Country Report: From Ideas to Action: Clean Energy Solutions for Asia to Address Climate Change Agency/Company /Organization: U.S. Agency for International Development Sector: Energy Focus Area: Energy Efficiency, Renewable Energy Topics: Implementation, Policies/deployment programs, Pathways analysis Resource Type: Publications Website: usaid.eco-asia.org/programs/cdcp/reports/Ideas-to-Action/annexes/Annex Country: Vietnam UN Region: South-Eastern Asia Coordinates: 14.058324°, 108.277199° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":14.058324,"lon":108.277199,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

249

EIA - Forecasts and Analysis of Energy Data  

Gasoline and Diesel Fuel Update (EIA)

Electricity Electricity Electricity consumption nearly doubles in the IEO2005 projection period. The emerging economies of Asia are expected to lead the increase in world electricity use. Figure 58. World Net Electricity Consumption, 2002-2025 (Billion Kilowatthours). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 59. World Net Electricity Consumption by Region, 2002-2025 (Billion Kilowatthours). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data The International Energy Outlook 2005 (IEO2005) reference case projects that world net electricity consumption will nearly double over the next two decades.10 Over the forecast period, world electricity demand is projected to grow at an average rate of 2.6 percent per year, from 14,275 billion

250

EIA - Forecasts and Analysis of Energy Data  

Gasoline and Diesel Fuel Update (EIA)

Contacts Contacts The International Energy Outlook is prepared by the Energy Information Administration (EIA). General questions concerning the contents of the report should be referred to John J. Conti (john.conti@eia.doe.gov, 202-586-2222), Director, Office of Integrated Analysis and Forecasting. Specific questions about the report should be referred to Linda E. Doman (202/586-1041) or the following analysts: World Energy and Economic Outlook Linda Doman (linda.doman@eia.doe.gov, 202-586-1041) Macroeconomic Assumptions Nasir Khilji (nasir.khilji@eia.doe.gov, 202-586-1294) Energy Consumption by End-Use Sector Residential Energy Use John Cymbalsky (john.cymbalsky@eia.doe.gov, 202-586-4815) Commercial Energy Use Erin Boedecker (erin.boedecker@eia.doe.gov, 202-586-4791)

251

Annual Energy Outlook 1998 Forecasts - Preface  

Gasoline and Diesel Fuel Update (EIA)

1998 With Projections to 2020 1998 With Projections to 2020 Annual Energy Outlook 1999 Report will be Available on December 9, 1998 Preface The Annual Energy Outlook 1998 (AEO98) presents midterm forecasts of energy supply, demand, and prices through 2020 prepared by the Energy Information Administration (EIA). The projections are based on results from EIA's National Energy Modeling System (NEMS). The report begins with an “Overview” summarizing the AEO98 reference case. The next section, “Legislation and Regulations,” describes the assumptions made with regard to laws that affect energy markets and discusses evolving legislative and regulatory issues. “Issues in Focus” discusses three current energy issues—electricity restructuring, renewable portfolio standards, and carbon emissions. It is followed by the analysis

252

Volatility forecasting with smooth transition exponential smoothing  

Science Journals Connector (OSTI)

Adaptive exponential smoothing methods allow smoothing parameters to change over time, in order to adapt to changes in the characteristics of the time series. This paper presents a new adaptive method for predicting the volatility in financial returns. It enables the smoothing parameter to vary as a logistic function of user-specified variables. The approach is analogous to that used to model time-varying parameters in smooth transition generalised autoregressive conditional heteroskedastic (GARCH) models. These non-linear models allow the dynamics of the conditional variance model to be influenced by the sign and size of past shocks. These factors can also be used as transition variables in the new smooth transition exponential smoothing (STES) approach. Parameters are estimated for the method by minimising the sum of squared deviations between realised and forecast volatility. Using stock index data, the new method gave encouraging results when compared to fixed parameter exponential smoothing and a variety of GARCH models.

James W. Taylor

2004-01-01T23:59:59.000Z

253

Incorporating Forecast Uncertainty in Utility Control Center  

SciTech Connect (OSTI)

Uncertainties in forecasting the output of intermittent resources such as wind and solar generation, as well as system loads are not adequately reflected in existing industry-grade tools used for transmission system management, generation commitment, dispatch and market operation. There are other sources of uncertainty such as uninstructed deviations of conventional generators from their dispatch set points, generator forced outages and failures to start up, load drops, losses of major transmission facilities and frequency variation. These uncertainties can cause deviations from the system balance, which sometimes require inefficient and costly last minute solutions in the near real-time timeframe. This Chapter considers sources of uncertainty and variability, overall system uncertainty model, a possible plan for transition from deterministic to probabilistic methods in planning and operations, and two examples of uncertainty-based fools for grid operations.This chapter is based on work conducted at the Pacific Northwest National Laboratory (PNNL)

Makarov, Yuri V.; Etingov, Pavel V.; Ma, Jian

2014-07-09T23:59:59.000Z

254

User:GregZiebold/Program Maps | Open Energy Information  

Open Energy Info (EERE)

Maps Maps < User:GregZiebold Jump to: navigation, search Place Coordinates A Low Carbon Economic Strategy for Scotland United Kingdom A Strategy to Engage the Private Sector in Climate Change Adaptation in Bangladesh Bangladesh A Synthesis of Agricultural Policies in Bangladesh Bangladesh ANL Wind Power Forecasting and Electricity Markets ASEAN-GIZ Regional Environmentally Sustainable Cities Programme - RESCP Brunei Cambodia Indonesia Laos Malaysia Myanmar Philippines Singapore Thailand Vietnam ASEAN-IEA Activities Indonesia Malaysia Singapore Thailand Philippines Vietnam Brunei Myanmar Cambodia Laos Action Plan for Forest Law Enforcement Governance and Trade (FLEGT) Belgium Bulgaria Czech Republic Denmark Germany Estonia Ireland Greece Spain France Italy Cyprus Latvia Lithuania

255

Town 'n' Country, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Town 'n' Country, Florida: Energy Resources Town 'n' Country, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 28.0105745°, -82.5773193° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":28.0105745,"lon":-82.5773193,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

256

Country Club, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Country Club, Florida: Energy Resources Country Club, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 25.9481487°, -80.3169953° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":25.9481487,"lon":-80.3169953,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

257

Chattahoochee Hill Country, Georgia: Energy Resources | Open Energy  

Open Energy Info (EERE)

Country, Georgia: Energy Resources Country, Georgia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 31.721548°, -83.2599068° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.721548,"lon":-83.2599068,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

258

Annual Energy Outlook Forecast Evaluation - Tables  

Gasoline and Diesel Fuel Update (EIA)

Table 1. Comparison of Absolute Percent Errors for Present and Current AEO Forecast Evaluations Table 1. Comparison of Absolute Percent Errors for Present and Current AEO Forecast Evaluations Average Absolute Percent Error Variable AEO82 to AEO98 AEO82 to AEO99 AEO82 to AEO2000 AEO82 to AEO2001 AEO82 to AEO2002 AEO82 to AEO2003 Consumption Total Energy Consumption 1.7 1.7 1.8 1.9 1.9 2.1 Total Petroleum Consumption 2.9 2.8 2.9 3.0 2.9 2.9 Total Natural Gas Consumption 5.7 5.6 5.6 5.5 5.5 6.5 Total Coal Consumption 3.0 3.2 3.3 3.5 3.6 3.7 Total Electricity Sales 1.7 1.8 1.9 2.4 2.5 2.4 Production Crude Oil Production 4.3 4.5 4.5 4.5 4.5 4.7 Natural Gas Production 4.8 4.7 4.6 4.6 4.4 4.4 Coal Production 3.6 3.6 3.5 3.7 3.6 3.8 Imports and Exports Net Petroleum Imports 9.5 8.8 8.4 7.9 7.4 7.5 Net Natural Gas Imports 16.7 16.0 15.9 15.8 15.8 15.4

259

Biotechnology patenting takes off in developing countries  

Science Journals Connector (OSTI)

We investigated the levels and patterns of biotechnology patenting in several developing countries by examining patents registered in the US Patent and Trademark Office (USPTO) database. The results showed, firstly, that developing countries have increased their biotechnology patenting during the period with the leading countries demonstrating inventive strengths in this field. Secondly, whereas in some countries national patenting ownership was high in others it was relatively low, which may limit the ability of the countries to harness their inventions. Thirdly, the research sector has been particularly active in patenting, especially in countries with relatively strong track records in developing biotechnology products, but industrial patenting is still limited in most of the countries studied. Finally, several of the countries we examined have a strong focus on health biotechnology compared to other types of biotechnology in their patenting rates. It remains to be seen if the increased patenting will foster biotechnology innovation.

Uyen Quach; Halla Thorsteinsdottir; James Renihan; Archana Bhatt; Zoe Costa Von Aesch; Peter A. Singer; Abdallah S. Daar

2006-01-01T23:59:59.000Z

260

The Kyoto Protocol and developing countries  

E-Print Network [OSTI]

Under the Kyoto Protocol, the world's wealthier countries assumed binding commitments to reduce greenhouse gas emissions. The agreement requires these countries to consider ways to minimize adverse effects on developing ...

Babiker, Mustafa H.M.; Reilly, John M.; Jacoby, Henry D.

Note: This page contains sample records for the topic "forecast maps countries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

NREL-International Wind Resource Maps | Open Energy Information  

Open Energy Info (EERE)

International Wind Resource Maps International Wind Resource Maps Jump to: navigation, search Tool Summary Name: NREL-International Wind Resource Maps Agency/Company /Organization: National Renewable Energy Laboratory Sector: Energy Focus Area: Wind Topics: Resource assessment Website: www.nrel.gov/wind/international_wind_resources.html NREL-International Wind Resource Maps Screenshot References: International Wind Resource Maps [1] Logo: NREL-International Wind Resource Maps This resource provides access to NREL-developed wind resource maps and atlases for several countries. NREL's wind mapping projects have been supported by the U.S. Department of Energy, U.S. Agency for International Development, and United Nations International Programme. "NREL is helping to develop high-resolution projections of wind resources

262

Tips for Key Maps / Inset Maps How Do I Add a Key Maps or Inset Maps  

E-Print Network [OSTI]

Tips for Key Maps / Inset Maps How Do I Add a Key Maps or Inset Maps You need a new data frame o the properties/look of the extent rectangle Tips Index Map o Should be a simplified version of the map o Should cover at least 5X the area of the main map o Should have its own scale/coordinates/title o Main coverage

Brownstone, Rob

263

Solar irradiance forecasting at multiple time horizons and novel methods to evaluate uncertainty  

E-Print Network [OSTI]

Solar irradiance data . . . . . . . . . . . . .Accuracy . . . . . . . . . . . . . . . . . Solar Resourcev Uncertainty In Solar Resource: Forecasting

Marquez, Ricardo

2012-01-01T23:59:59.000Z

264

18 Bureau of Meteorology Annual Report 201314 Hazards, warnings and forecasts  

E-Print Network [OSTI]

and numerical prediction models. #12;19Bureau of Meteorology Annual Report 2013­14 2 Performance Performance programs: · Weather forecasting services; · Flood forecasting and warning services; · Hazard prediction, Warnings and Forecasts portfolio provides a range of forecast and warning services covering weather, ocean

Greenslade, Diana

265

The Availability and Price of Petroleum and Petroleum Products Produced in Countries Other Than Iran  

U.S. Energy Information Administration (EIA) Indexed Site

The Availability and Price of The Availability and Price of Petroleum and Petroleum Products Produced in Countries Other Than Iran February 29, 2012 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 A report required by section 1245 (d)(4)(A) of the National Defense Authorization Act for Fiscal Year 2012 U.S. Energy Information Administration | Availability and Price of Petroleum and Petroleum Products Produced in Countries Other Than Iran i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views

266

Non Annex B Countries List  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Non Annex B Countries A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, Y, Z A Afghanistan (1949-2007) Albania (1933-2007) Algeria (1900-2007) American Samoa (1954-2007) Angola (1950-2007) Antarctic Fisheries (1970-2007) Antigua & Barbuda (1957-2007) Argentina (1887-2007) Armenia (1992-2007) Aruba (1986-2007) Azerbaijan (1992-2007) B Bahamas (1950-2007) Bahrain (1933-2007) Bangladesh (1972-2007) Barbados (1928-2007) Belarus (1992-2007) Belize (1950-2007) Benin (1958-2007) Bermuda (1950-2007) Bhutan (1970-2007) Bolivia (1928-2007) Bosnia-Herzegovinia (1992-2007) Botswana (1950-2007) Brazil (1901-2007) British Virgin Islands (1957-2007) Brunei (Darussalam) (1930-2007) Burkina Faso (1958-2007) Burundi (1962-2007) C Cambodia (1955-2007) Cameroon (1950-2007)

267

Evidential cognitive maps  

Science Journals Connector (OSTI)

In order to handle uncertain information, this paper proposes evidential cognitive maps (ECMs), similar to the fuzzy cognitive maps (FCMs). ECMs are uncertain-graph structures for representing causal reasoning through the combination of cognitive maps ... Keywords: Data fusion, Decision making, Evidence theory, Evidential cognitive maps, Fuzzy cognitive maps

Bingyi Kang; Yong Deng; Rehan Sadiq; Sankaran Mahadevan

2012-11-01T23:59:59.000Z

268

US Country Studies Program | Open Energy Information  

Open Energy Info (EERE)

Country Studies Program Country Studies Program Jump to: navigation, search Name US Country Studies Program Agency/Company /Organization United States Government Sector Energy, Land Website http://www.gcrio.org/CSP/ Program Start 1993 References US Country Studies Program[1] From: http://www.gcrio.org/CSP/ap.html The U.S. Country Studies Program provides financial and technical assistance to developing and transition countries for climate change studies. The program was announced by the President prior to the United Nations Conference on Environment and Development (UNCED) in Brazil in 1992. The first round of two-year studies began in October 1993, and a second round followed in October 1994. Fifty-six countries on five continents currently participate in the program. Regional and sectoral

269

LBNL Developing Countries Studies | Open Energy Information  

Open Energy Info (EERE)

LBNL Developing Countries Studies LBNL Developing Countries Studies (Redirected from Developing Countries Studies) Jump to: navigation, search Logo: Developing Countries Studies at LBNL Name Developing Countries Studies at LBNL Agency/Company /Organization Lawrence Berkeley National Laboratory Sector Energy Focus Area Energy Efficiency Topics GHG inventory, Resource assessment, Background analysis Resource Type Dataset, Software/modeling tools, Presentation Website http://ies.lbl.gov/node/251 References Lawrence Berkeley [1] Abstract LBNL's International Energy Studies Group is involved in a number of activities relating to energy use in developing countries and climate change. LBNL's International Energy Studies Group is involved in a number of activities relating to energy use in developing countries and climate

270

CCAP Developing Country Project | Open Energy Information  

Open Energy Info (EERE)

CCAP Developing Country Project CCAP Developing Country Project Jump to: navigation, search Name Developing Country Project Agency/Company /Organization Center for Clean Air Policy Sector Climate, Energy Topics Background analysis, Implementation, Low emission development planning, Policies/deployment programs Website http://www.ccap.org/ Program Start 2006 Country Brazil, China, India, Indonesia, Mexico South America, Eastern Asia, Southern Asia, South-Eastern Asia, Central America References Developing Country Project[1] Developing Country Project Screenshot Contents 1 Overview 2 Brazil 3 China 4 India 5 Indonesia 6 Mexico 7 References Overview "As the United Nations Framework Convention on Climate Change (UNFCCC) moves forward, it is critical that developing countries are ready and able

271

Energy Forecasting Framework and Emissions Consensus Tool (EFFECT) | Open  

Open Energy Info (EERE)

Energy Forecasting Framework and Emissions Consensus Tool (EFFECT) Energy Forecasting Framework and Emissions Consensus Tool (EFFECT) Jump to: navigation, search LEDSGP green logo.png FIND MORE DIA TOOLS This tool is part of the Development Impacts Assessment (DIA) Toolkit from the LEDS Global Partnership. Tool Summary LAUNCH TOOL Name: Energy Forecasting Framework and Emissions Consensus Tool (EFFECT) Agency/Company /Organization: Energy Sector Management Assistance Program of the World Bank Sector: Energy Focus Area: Non-renewable Energy Topics: Baseline projection, Co-benefits assessment, GHG inventory Resource Type: Software/modeling tools User Interface: Spreadsheet Complexity/Ease of Use: Simple Website: www.esmap.org/esmap/EFFECT Cost: Free Equivalent URI: www.esmap.org/esmap/EFFECT Energy Forecasting Framework and Emissions Consensus Tool (EFFECT) Screenshot

272

Forecasting Crude Oil Spot Price Using OECD Petroleum Inventory  

Gasoline and Diesel Fuel Update (EIA)

Forecasting Forecasting Crude Oil Spot Price Using OECD Petroleum Inventory Levels MICHAEL YE, ∗ JOHN ZYREN, ∗∗ AND JOANNE SHORE ∗∗ Abstract This paper presents a short-term monthly forecasting model of West Texas Intermedi- ate crude oil spot price using OECD petroleum inventory levels. Theoretically, petroleum inventory levels are a measure of the balance, or imbalance, between petroleum production and demand, and thus provide a good market barometer of crude oil price change. Based on an understanding of petroleum market fundamentals and observed market behavior during the post-Gulf War period, the model was developed with the objectives of being both simple and practical, with required data readily available. As a result, the model is useful to industry and government decision-makers in forecasting price and investigat- ing the impacts of changes on price, should inventories,

273

Adaptive sampling and forecasting with mobile sensor networks  

E-Print Network [OSTI]

This thesis addresses planning of mobile sensor networks to extract the best information possible out of the environment to improve the (ensemble) forecast at some verification region in the future. To define the information ...

Choi, Han-Lim

2009-01-01T23:59:59.000Z

274

Pacific Adaptation Strategy Assistance Program Dynamical Seasonal Forecasting  

E-Print Network [OSTI]

Pacific Adaptation Strategy Assistance Program Dynamical Seasonal Forecasting Seasonal Prediction · POAMA · Issues for future Outline #12;Pacific Adaptation Strategy Assistance Program Major source Adaptation Strategy Assistance Program El Nino Mean State · Easterlies westward surface current upwelling

Lim, Eun-pa

275

Forecasting Volatility in Stock Market Using GARCH Models  

E-Print Network [OSTI]

Forecasting volatility has held the attention of academics and practitioners all over the world. The objective for this master's thesis is to predict the volatility in stock market by using generalized autoregressive ...

Yang, Xiaorong

2008-01-01T23:59:59.000Z

276

Exponential smoothing with covariates applied to electricity demand forecast  

Science Journals Connector (OSTI)

Exponential smoothing methods are widely used as forecasting techniques in industry and business. Their usual formulation, however, does not allow covariates to be used for introducing extra information into the forecasting process. In this paper, we analyse an extension of the exponential smoothing formulation that allows the use of covariates and the joint estimation of all the unknowns in the model, which improves the forecasting results. The whole procedure is detailed with a real example on forecasting the daily demand for electricity in Spain. The time series of daily electricity demand contains two seasonal patterns: here the within-week seasonal cycle is modelled as usual in exponential smoothing, while the within-year cycle is modelled using covariates, specifically two harmonic explanatory variables. Calendar effects, such as national and local holidays and vacation periods, are also introduced using covariates. [Received 28 September 2010; Revised 6 March 2011, 2 October 2011; Accepted 16 October 2011

José D. Bermúdez

2013-01-01T23:59:59.000Z

277

Initial conditions estimation for improving forecast accuracy in exponential smoothing  

Science Journals Connector (OSTI)

In this paper we analyze the importance of initial conditions in exponential smoothing models on forecast errors and prediction intervals. We work with certain exponential smoothing models, namely Holts additive...

E. Vercher; A. Corbern-Vallet; J. V. Segura; J. D. Bermdez

2012-07-01T23:59:59.000Z

278

A Bayesian approach to forecast intermittent demand for seasonal products  

Science Journals Connector (OSTI)

This paper investigates the forecasting of a large fluctuating seasonal demand prior to peak sale season using a practical time series, collected from the US Census Bureau. Due to the extreme natural events (e.g. excessive snow fall and calamities), sales may not occur, inventory may not replenish and demand may set off unrecorded during the peak sale season. This characterises a seasonal time series to an intermittent category. A seasonal autoregressive integrated moving average (SARIMA), a multiplicative exponential smoothing (M-ES) and an effective modelling approach using Bayesian computational process are analysed in the context of seasonal and intermittent forecast. Several forecast error indicators and a cost factor are used to compare the models. In cost factor analysis, cost is measured optimally using dynamic programming model under periodic review policy. Experimental results demonstrate that Bayesian model performance is much superior to SARIMA and M-ES models, and efficient to forecast seasonal and intermittent demand.

Mohammad Anwar Rahman; Bhaba R. Sarker

2012-01-01T23:59:59.000Z

279

Review/Verify Strategic Skills Needs/Forecasts/Future Mission...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ReviewVerify Strategic Skills NeedsForecastsFuture Mission Shifts Annual Lab Plan (1-10 yrs) Fermilab Strategic Agenda (2-5 yrs) Sector program Execution Plans (1-3...

280

A Parameter for Forecasting Tornadoes Associated with Landfalling Tropical Cyclones  

Science Journals Connector (OSTI)

The authors develop a statistical guidance product, the tropical cyclone tornado parameter (TCTP), for forecasting the probability of one or more tornadoes during a 6-h period that are associated with landfalling tropical cyclones affecting the ...

Matthew J. Onderlinde; Henry E. Fuelberg

2014-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "forecast maps countries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Wind Power Forecasting: State-of-the-Art 2009  

E-Print Network [OSTI]

Wind Power Forecasting: State-of-the-Art 2009 ANL/DIS-10-1 Decision and Information Sciences about Argonne and its pioneering science and technology programs, see www.anl.gov. #12;Wind Power

Kemner, Ken

282

2007 National Hurricane Center Forecast Verification Report James L. Franklin  

E-Print Network [OSTI]

storms 17 4. Genesis Forecasts 17 5. Summary and Concluding Remarks 18 a. Atlantic Summary 18 statistical models, provided the best intensity guidance at each time period. The 2007 season marked the first

283

Recently released EIA report presents international forecasting data  

SciTech Connect (OSTI)

This report presents information from the Energy Information Administration (EIA). Articles are included on international energy forecasting data, data on the use of home appliances, gasoline prices, household energy use, and EIA information products and dissemination avenues.

NONE

1995-05-01T23:59:59.000Z

284

FINAL DEMAND FORECAST FORMS AND INSTRUCTIONS FOR THE 2007  

E-Print Network [OSTI]

......................................................................... 11 3. Demand Side Management (DSM) Program Impacts................................... 13 4. Demand Sylvia Bender Manager DEMAND ANALYSIS OFFICE Scott W. Matthews Chief Deputy Director B.B. Blevins Forecast Methods and Models ....................................................... 14 5. Demand-Side

285

Information-Based Skill Scores for Probabilistic Forecasts  

Science Journals Connector (OSTI)

The information content, that is, the predictive capability, of a forecast system is often quantified with skill scores. This paper introduces two ranked mutual information skill (RMIS) scores, RMISO and RMISY, for the evaluation of probabilistic ...

Bodo Ahrens; Andr Walser

2008-01-01T23:59:59.000Z

286

A methodology for forecasting carbon dioxide flooding performance  

E-Print Network [OSTI]

A methodology was developed for forecasting carbon dioxide (CO2) flooding performance quickly and reliably. The feasibility of carbon dioxide flooding in the Dollarhide Clearfork "AB" Unit was evaluated using the methodology. This technique is very...

Marroquin Cabrera, Juan Carlos

2012-06-07T23:59:59.000Z

287

Evolutionary Optimization of an Ice Accretion Forecasting System  

Science Journals Connector (OSTI)

The ability to model and forecast accretion of ice on structures is very important for many industrial sectors. For example, studies conducted by the power transmission industry indicate that the majority of failures are caused by icing on ...

Pawel Pytlak; Petr Musilek; Edward Lozowski; Dan Arnold

2010-07-01T23:59:59.000Z

288

Diagnosing the Origin of Extended-Range Forecast Errors  

Science Journals Connector (OSTI)

Experiments with the ECMWF model are carried out to study the influence that a correct representation of the lower boundary conditions, the tropical atmosphere, and the Northern Hemisphere stratosphere would have on extended-range forecast skill ...

T. Jung; M. J. Miller; T. N. Palmer

2010-06-01T23:59:59.000Z

289

Application of an Improved SVM Algorithm for Wind Speed Forecasting  

Science Journals Connector (OSTI)

An improved Support Vector Machine (SVM) algorithm is used to forecast wind in Doubly Fed Induction Generator (DFIG) wind power system without aerodromometer. The ... Validation (CV) method. Finally, 3.6MW DFIG w...

Huaqiang Zhang; Xinsheng Wang; Yinxiao Wu

2011-01-01T23:59:59.000Z

290

Research on Development Trends of Power Load Forecasting Methods  

Science Journals Connector (OSTI)

In practical problem, number of samples is often limited, for complex issues such as power load forecasting, generally available historical data and information of impact factor are very ... support vector mechan...

Litong Dong; Jun Xu; Haibo Liu; Ying Guo

2014-01-01T23:59:59.000Z

291

Representing Forecast Error in a Convection-Permitting Ensemble System  

Science Journals Connector (OSTI)

Ensembles provide an opportunity to greatly improve short-term prediction of local weather hazards, yet generating reliable predictions remain a significant challenge. In particular, convection-permitting ensemble forecast systems (CPEFSs) have ...

Glen S. Romine; Craig S. Schwartz; Judith Berner; Kathryn R. Fossell; Chris Snyder; Jeff L. Anderson; Morris L. Weisman

2014-12-01T23:59:59.000Z

292

Weather Research and Forecasting Model 2.2 Documentation  

E-Print Network [OSTI]

................................................................................................. 20 3.1.2 Integrate's Flow of ControlWeather Research and Forecasting Model 2.2 Documentation: A Step-by-step guide of a Model Run .......................................................................................................................... 19 3.1 The Integrate Subroutine

Sadjadi, S. Masoud

293

Network Bandwidth Utilization Forecast Model on High Bandwidth Network  

SciTech Connect (OSTI)

With the increasing number of geographically distributed scientific collaborations and the scale of the data size growth, it has become more challenging for users to achieve the best possible network performance on a shared network. We have developed a forecast model to predict expected bandwidth utilization for high-bandwidth wide area network. The forecast model can improve the efficiency of resource utilization and scheduling data movements on high-bandwidth network to accommodate ever increasing data volume for large-scale scientific data applications. Univariate model is developed with STL and ARIMA on SNMP path utilization data. Compared with traditional approach such as Box-Jenkins methodology, our forecast model reduces computation time by 83.2percent. It also shows resilience against abrupt network usage change. The accuracy of the forecast model is within the standard deviation of the monitored measurements.

Yoo, Wucherl; Sim, Alex

2014-07-07T23:59:59.000Z

294

Wind Speed Forecasting Using a Hybrid Neural-Evolutive Approach  

Science Journals Connector (OSTI)

The design of models for time series prediction has found a solid foundation on statistics. Recently, artificial neural networks have been a good choice as approximators to model and forecast time series. Designing a neural network that provides a good ...

Juan J. Flores; Roberto Loaeza; Hctor Rodrguez; Erasmo Cadenas

2009-11-01T23:59:59.000Z

295

A model for short term electric load forecasting  

E-Print Network [OSTI]

A MODEL FOR SHORT TERM ELECTRIC LOAD FORECASTING A Thesis by JOHN ROBERT TIGUE, III Submitted to the Graduate College of Texas ASM University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE May 1975 Major... Subject: Electrical Engineering A MODEL FOR SHORT TERM ELECTRIC LOAD FORECASTING A Thesis by JOHN ROBERT TIGUE& III Approved as to style and content by: (Chairman of Committee) (Head Depart t) (Member) ;(Me r (Member) (Member) May 1975 ABSTRACT...

Tigue, John Robert

1975-01-01T23:59:59.000Z

296

Radiation fog forecasting using a 1-dimensional model  

E-Print Network [OSTI]

measuring site (Molly Caren), the soil moisture measuring site (Wilmington), and (b) location of the forecast site (Ohio River Basin near Cincinnati including Lunken airport) . . 23 3 An example of a COBEL configuration file for 25 August 1996, showing... measuring site (Molly Caren), the soil moisture measuring site (Wilmington), and (b) location of the forecast site (Ohio River Basin near Cincinnati including Lunken airport) . . 23 3 An example of a COBEL configuration file for 25 August 1996, showing...

Peyraud, Lionel

2012-06-07T23:59:59.000Z

297

Countries Gasoline Prices Including Taxes  

Gasoline and Diesel Fuel Update (EIA)

Countries (U.S. dollars per gallon, including taxes) Countries (U.S. dollars per gallon, including taxes) Date Belgium France Germany Italy Netherlands UK US 01/13/14 7.83 7.76 7.90 8.91 8.76 8.11 3.68 01/06/14 8.00 7.78 7.94 8.92 8.74 8.09 3.69 12/30/13 NA NA NA NA NA NA 3.68 12/23/13 NA NA NA NA NA NA 3.63 12/16/13 7.86 7.79 8.05 9.00 8.78 8.08 3.61 12/9/13 7.95 7.81 8.14 8.99 8.80 8.12 3.63 12/2/13 7.91 7.68 8.07 8.85 8.68 8.08 3.64 11/25/13 7.69 7.61 8.07 8.77 8.63 7.97 3.65 11/18/13 7.99 7.54 8.00 8.70 8.57 7.92 3.57 11/11/13 7.63 7.44 7.79 8.63 8.46 7.85 3.55 11/4/13 7.70 7.51 7.98 8.70 8.59 7.86 3.61 10/28/13 8.02 7.74 8.08 8.96 8.79 8.04 3.64 10/21/13 7.91 7.71 8.11 8.94 8.80 8.05 3.70 10/14/13 7.88 7.62 8.05 8.87 8.74 7.97 3.69

298

A hybrid procedure for MSW generation forecasting at multiple time scales in Xiamen City, China  

SciTech Connect (OSTI)

Highlights: ? We propose a hybrid model that combines seasonal SARIMA model and grey system theory. ? The model is robust at multiple time scales with the anticipated accuracy. ? At month-scale, the SARIMA model shows good representation for monthly MSW generation. ? At medium-term time scale, grey relational analysis could yield the MSW generation. ? At long-term time scale, GM (1, 1) provides a basic scenario of MSW generation. - Abstract: Accurate forecasting of municipal solid waste (MSW) generation is crucial and fundamental for the planning, operation and optimization of any MSW management system. Comprehensive information on waste generation for month-scale, medium-term and long-term time scales is especially needed, considering the necessity of MSW management upgrade facing many developing countries. Several existing models are available but of little use in forecasting MSW generation at multiple time scales. The goal of this study is to propose a hybrid model that combines the seasonal autoregressive integrated moving average (SARIMA) model and grey system theory to forecast MSW generation at multiple time scales without needing to consider other variables such as demographics and socioeconomic factors. To demonstrate its applicability, a case study of Xiamen City, China was performed. Results show that the model is robust enough to fit and forecast seasonal and annual dynamics of MSW generation at month-scale, medium- and long-term time scales with the desired accuracy. In the month-scale, MSW generation in Xiamen City will peak at 132.2 thousand tonnes in July 2015 1.5 times the volume in July 2010. In the medium term, annual MSW generation will increase to 1518.1 thousand tonnes by 2015 at an average growth rate of 10%. In the long term, a large volume of MSW will be output annually and will increase to 2486.3 thousand tonnes by 2020 2.5 times the value for 2010. The hybrid model proposed in this paper can enable decision makers to develop integrated policies and measures for waste management over the long term.

Xu, Lilai, E-mail: llxu@iue.ac.cn [Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021 (China); Xiamen Key Lab of Urban Metabolism, Xiamen 361021 (China); Gao, Peiqing, E-mail: peiqing15@yahoo.com.cn [Xiamen City Appearance and Environmental Sanitation Management Office, 51 Hexiangxi Road, Xiamen 361004 (China); Cui, Shenghui, E-mail: shcui@iue.ac.cn [Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021 (China); Xiamen Key Lab of Urban Metabolism, Xiamen 361021 (China); Liu, Chun, E-mail: xmhwlc@yahoo.com.cn [Xiamen City Appearance and Environmental Sanitation Management Office, 51 Hexiangxi Road, Xiamen 361004 (China)

2013-06-15T23:59:59.000Z

299

Annual Energy Outlook with Projections to 2025 - Forecast Comparisons  

Gasoline and Diesel Fuel Update (EIA)

Forecast Comparisons Forecast Comparisons Annual Energy Outlook 2005 Forecast Comparisons Table 32. Forecasts of annual average economic growth, 2003-2025 Printer Friendly Version Average annual percentage growth Forecast 2003-2009 2003-2014 2003-2025 AEO2004 3.5 3.2 3.0 AEO2005 Reference 3.4 3.3 3.1 Low growth 2.9 2.8 2.5 High growth 4.1 3.9 3.6 GII 3.4 3.2 3.1 OMB 3.6 NA NA CBO 3.5 3.1 NA OEF 3.5 3.5 NA Only one other organization—Global Insight, Incorporated (GII)—produces a comprehensive energy projection with a time horizon similar to that of AEO2005. Other organizations address one or more aspects of the energy markets. The most recent projection from GII, as well as other forecasts that concentrate on economic growth, international oil prices, energy

300

Weather-based forecasts of California crop yields  

SciTech Connect (OSTI)

Crop yield forecasts provide useful information to a range of users. Yields for several crops in California are currently forecast based on field surveys and farmer interviews, while for many crops official forecasts do not exist. As broad-scale crop yields are largely dependent on weather, measurements from existing meteorological stations have the potential to provide a reliable, timely, and cost-effective means to anticipate crop yields. We developed weather-based models of state-wide yields for 12 major California crops (wine grapes, lettuce, almonds, strawberries, table grapes, hay, oranges, cotton, tomatoes, walnuts, avocados, and pistachios), and tested their accuracy using cross-validation over the 1980-2003 period. Many crops were forecast with high accuracy, as judged by the percent of yield variation explained by the forecast, the number of yields with correctly predicted direction of yield change, or the number of yields with correctly predicted extreme yields. The most successfully modeled crop was almonds, with 81% of yield variance captured by the forecast. Predictions for most crops relied on weather measurements well before harvest time, allowing for lead times that were longer than existing procedures in many cases.

Lobell, D B; Cahill, K N; Field, C B

2005-09-26T23:59:59.000Z

Note: This page contains sample records for the topic "forecast maps countries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Wave height forecasting in Dayyer, the Persian Gulf  

Science Journals Connector (OSTI)

Forecasting of wave parameters is necessary for many marine and coastal operations. Different forecasting methodologies have been developed using the wind and wave characteristics. In this paper, artificial neural network (ANN) as a robust data learning method is used to forecast the wave height for the next 3, 6, 12 and 24h in the Persian Gulf. To determine the effective parameters, different models with various combinations of input parameters were considered. Parameters such as wind speed, direction and wave height of the previous 3h, were found to be the best inputs. Furthermore, using the difference between wave and wind directions showed better performance. The results also indicated that if only the wind parameters are used as model inputs the accuracy of the forecasting increases as the time horizon increases up to 6h. This can be due to the lower influence of previous wave heights on larger lead time forecasting and the existing lag between the wind and wave growth. It was also found that in short lead times, the forecasted wave heights primarily depend on the previous wave heights, while in larger lead times there is a greater dependence on previous wind speeds.

B. Kamranzad; A. Etemad-Shahidi; M.H. Kazeminezhad

2011-01-01T23:59:59.000Z

302

Maps and Plans  

E-Print Network [OSTI]

shrouded door to box seats. Rose / Maps and Plans Re-Placing Places 20.1 Rose / Maps and Plans Re-Placing PlacesMaps and Plans Thomas Rose Architectural plans create the

Rose, Thomas

2008-01-01T23:59:59.000Z

303

Holomorphic segre preserving maps  

E-Print Network [OSTI]

for holomorphic Segre maps. Math. Ann. 337, 457-478, (2007).There are no holomorphic maps satisfying criteria (1.37). (j ? C\\{0}, the family of maps given by H = c 1 z 1 , . . . ,

Angle, Robert Blair

2008-01-01T23:59:59.000Z

304

Site Map | ScienceCinema  

Office of Scientific and Technical Information (OSTI)

Site Map Site Map Home Audio Search Fielded Search About Help Site Map Contact Us Website PoliciesImportant Links...

305

Carbon Capture and Storage Road Map | Open Energy Information  

Open Energy Info (EERE)

and Storage Road Map and Storage Road Map Jump to: navigation, search Name Carbon Capture and Storage Road Map Agency/Company /Organization Asian Development Bank Sector Energy Focus Area Renewable Energy, Economic Development, Greenhouse Gas, Industry Topics Adaptation, Implementation, Low emission development planning, -LEDS Website http://www.adb.org/news/adb-he Country China Eastern Asia References ADB Helps People's Republic of China Plan Carbon Capture and Storage Road Map[1] Program Overview "The Asian Development Bank (ADB) is assisting the People's Republic of China (PRC) in the development of a road map for carbon capture and storage (CCS) to help achieve the country's carbon dioxide (CO2) emissions reduction goals. ADB will assist the PRC in developing a detailed plan for a staged

306

Comparison of Bottom-Up and Top-Down Forecasts: Vision Industry Energy Forecasts with ITEMS and NEMS  

E-Print Network [OSTI]

of the Department of Energy's Office of Industrial Technologies, EIA extracted energy use infonnation from the Annual Energy Outlook (AEO) - 2000 (8) for each of the seven # The Pacific Northwest National Laboratory is operated by Battelle Memorial Institute...-6, 2000 NEMS The NEMS industrial module is the official forecasting model for EIA and thus the Department of Energy. For this reason, the energy prices and output forecasts used to drive the ITEMS model were taken from EIA's AEO 2000. Understanding...

Roop, J. M.; Dahowski, R. T

307

Historical Network Maps  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Publications and Presentations Galleries ESnet Awards and Honors ESnet Live Blog Home Engineering Services The Network Network Maps Historical Network Maps Engineering...

308

Deep Maps: A Brief for Digital Palimpsest Mapping Projects (DPMPs, or Deep Maps)  

E-Print Network [OSTI]

DEEP MAPS: A Brief for Digital Palimpsest DPMPs, or Deep Maps) SHELLEY FISHER FISHKIN paintings, drawings, maps, photos, books,

Fishkin, Shelley Fisher

2011-01-01T23:59:59.000Z

309

LBNL Developing Countries Studies | Open Energy Information  

Open Energy Info (EERE)

Countries Studies Countries Studies Jump to: navigation, search Logo: Developing Countries Studies at LBNL Name Developing Countries Studies at LBNL Agency/Company /Organization Lawrence Berkeley National Laboratory Sector Energy Focus Area Energy Efficiency Topics GHG inventory, Resource assessment, Background analysis Resource Type Dataset, Software/modeling tools, Presentation Website http://ies.lbl.gov/node/251 References Lawrence Berkeley [1] Abstract LBNL's International Energy Studies Group is involved in a number of activities relating to energy use in developing countries and climate change. LBNL's International Energy Studies Group is involved in a number of activities relating to energy use in developing countries and climate change. Developed international energy use data and emissions scenarios for

310

Afghanistan-NREL Resource Maps and Toolkits | Open Energy Information  

Open Energy Info (EERE)

Afghanistan-NREL Resource Maps and Toolkits Afghanistan-NREL Resource Maps and Toolkits Jump to: navigation, search Logo: Afghanistan Resources Maps and Toolkits Name Afghanistan Resources Maps and Toolkits Agency/Company /Organization National Renewable Energy Laboratory Sector Energy Focus Area Solar, Wind Topics Resource assessment, Background analysis Resource Type Dataset, Maps, Software/modeling tools Website http://www.nrel.gov/internatio Country Afghanistan Southern Asia References NREL International Activities Website [1] Abstract NREL partnered with Afghanistan to develop high-resolution wind and solar resource maps and data products for Afghanistan. NREL partnered with Afghanistan to develop high-resolution wind and solar resource maps and data products for Afghanistan. The data were output in

311

Allinea MAP at NERSC  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

MAP MAP MAP MAP from Allinea Software is a parallel profiler with a simple graphical user interface. It is installed on Hopper, Edison and Carver. Note that the performance of the X Windows-based MAP Graphical User Interface can be greatly improved if used in conjunction with the free NX software. Introduction Allinea MAP is a parallel profiler with simple Graphical User Interface. MAP can be run with up to 512 processors, to profile serial, OpenMP and MPI codes. The Allinea MAP web page and 'Allinea DDT and MAP User Guide' (available as $ALLINEA_TOOLS_DOCDIR/userguide.pdf after loading an allineatools module) are good resources for learning more about some of the advanced MAP features. Loading the Allinea Tools Module To use MAP, first load the 'allineatools' module to set the correct

312

BIOMASS PRODUCTION FOR ENERGY IN DEVELOPING COUNTRY.  

E-Print Network [OSTI]

?? Most developing countries of the world still uses biomass for domestic energy, this is mostly used in the rural areas and using our case (more)

Liu, Xiaolin

2012-01-01T23:59:59.000Z

313

A suite of metrics for assessing the performance of solar power forecasting  

Science Journals Connector (OSTI)

Abstract Forecasting solar energy generation is a challenging task because of the variety of solar power systems and weather regimes encountered. Inaccurate forecasts can result in substantial economic losses and power system reliability issues. One of the key challenges is the unavailability of a consistent and robust set of metrics to measure the accuracy of a solar forecast. This paper presents a suite of generally applicable and value-based metrics for solar forecasting for a comprehensive set of scenarios (i.e., different time horizons, geographic locations, and applications) that were developed as part of the U.S. Department of Energy SunShot Initiatives efforts to improve the accuracy of solar forecasting. In addition, a comprehensive framework is developed to analyze the sensitivity of the proposed metrics to three types of solar forecasting improvements using a design-of-experiments methodology in conjunction with response surface, sensitivity analysis, and nonparametric statistical testing methods. The three types of forecasting improvements are (i) uniform forecasting improvements when there is not a ramp, (ii) ramp forecasting magnitude improvements, and (iii) ramp forecasting threshold changes. Day-ahead and 1-hour-ahead forecasts for both simulated and actual solar power plants are analyzed. The results show that the proposed metrics can efficiently evaluate the quality of solar forecasts and assess the economic and reliability impacts of improved solar forecasting. Sensitivity analysis results show that (i) all proposed metrics are suitable to show the changes in the accuracy of solar forecasts with uniform forecasting improvements, and (ii) the metrics of skewness, kurtosis, and Rnyi entropy are specifically suitable to show the changes in the accuracy of solar forecasts with ramp forecasting improvements and a ramp forecasting threshold.

Jie Zhang; Anthony Florita; Bri-Mathias Hodge; Siyuan Lu; Hendrik F. Hamann; Venkat Banunarayanan; Anna M. Brockway

2015-01-01T23:59:59.000Z

314

Technology data characterizing space conditioning in commercial buildings: Application to end-use forecasting with COMMEND 4.0  

SciTech Connect (OSTI)

In the US, energy consumption is increasing most rapidly in the commercial sector. Consequently, the commercial sector is becoming an increasingly important target for state and federal energy policies and also for utility-sponsored demand side management (DSM) programs. The rapid growth in commercial-sector energy consumption also makes it important for analysts working on energy policy and DSM issues to have access to energy end-use forecasting models that include more detailed representations of energy-using technologies in the commercial sector. These new forecasting models disaggregate energy consumption not only by fuel type, end use, and building type, but also by specific technology. The disaggregation of space conditioning end uses in terms of specific technologies is complicated by several factors. First, the number of configurations of heating, ventilating, and air conditioning (HVAC) systems and heating and cooling plants is very large. Second, the properties of the building envelope are an integral part of a building`s HVAC energy consumption characteristics. Third, the characteristics of commercial buildings vary greatly by building type. The Electric Power Research Institute`s (EPRI`s) Commercial End-Use Planning System (COMMEND 4.0) and the associated data development presented in this report attempt to address the above complications and create a consistent forecasting framework. This report describes the process by which the authors collected space-conditioning technology data and then mapped it into the COMMEND 4.0 input format. The data are also generally applicable to other end-use forecasting frameworks for the commercial sector.

Sezgen, O.; Franconi, E.M.; Koomey, J.G.; Greenberg, S.E.; Afzal, A.; Shown, L.

1995-12-01T23:59:59.000Z

315

Emergency Exit Maps | Stanford Synchrotron Radiation Lightsource  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Emergency Exit Maps SSRL Exit Maps Exit map 219 exit map trailer 274 exit map 450 trailers exit map trailer 271 exit map trailer 270 exit map trailer 294 exit maps 118 & 117 exit...

316

Career Map: Instrumentation Coordinator  

Broader source: Energy.gov [DOE]

The Wind Program's Career Map provides job description information for Instrumentation Coordinator positions.

317

Career Map: Engineering Manager  

Broader source: Energy.gov [DOE]

The Wind Program's Career Map provides job description information for Engineering Manager positions.

318

Career Map: Environmental Scientist  

Broader source: Energy.gov [DOE]

The Wind Program's Career Map provides job description information for Environmental Scientist positions.

319

Career Map: Construction Worker  

Broader source: Energy.gov [DOE]

The Wind Program's Career Map provides job description information for Construction Worker positions.

320

Career Map: Industrial Engineer  

Broader source: Energy.gov [DOE]

The Wind Program's Career Map provides job description information for Industrial Engineer positions.

Note: This page contains sample records for the topic "forecast maps countries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Career Map: Mechanical Engineer  

Broader source: Energy.gov [DOE]

The Wind Program's Career Map provides job description information for Mechanical Engineer positions.

322

Career Map: Aerospace Engineer  

Broader source: Energy.gov [DOE]

The Wind Program's Career Map provides job description information for Aerospace Engineer positions.

323

Career Map: Resource Scientist  

Broader source: Energy.gov [DOE]

The Wind Program's Career Map provides job description information for Resource Scientist positions.

324

Career Map: Electrical Engineer  

Broader source: Energy.gov [DOE]

The Wind Program's Career Map provides job description information for Electrical Engineer positions.

325

Career Map: Research Scientist  

Broader source: Energy.gov [DOE]

The Wind Program's Career Map provides job description information for Research Scientist positions.

326

Career Map: Transportation Worker  

Broader source: Energy.gov [DOE]

The Wind Program's Career Map provides job description information for Transportation Worker positions.

327

Career Map: Meteorological Technician  

Broader source: Energy.gov [DOE]

The Wind Program's Career Map provides job description information for Meteorological Technician positions.

328

Survey of Variable Generation Forecasting in the West: August 2011 - June 2012  

SciTech Connect (OSTI)

This report surveyed Western Interconnection Balancing Authorities regarding their implementation of variable generation forecasting, the lessons learned to date, and recommendations they would offer to other Balancing Authorities who are considering variable generation forecasting. Our survey found that variable generation forecasting is at an early implementation stage in the West. Eight of the eleven Balancing Authorities interviewed began forecasting in 2008 or later. It also appears that less than one-half of the Balancing Authorities in the West are currently utilizing variable generation forecasting, suggesting that more Balancing Authorities in the West will engage in variable generation forecasting should more variable generation capacity be added.

Porter, K.; Rogers, J.

2012-04-01T23:59:59.000Z

329

Unsupervised neural models for country and political risk analysis  

Science Journals Connector (OSTI)

This interdisciplinary research project focuses on relevant applications of Knowledge Discovery and Artificial Neural Networks in order to identify and analyze levels of country, business and political risk. Its main goal is to help business decision-makers understand the dynamics within the emerging market countries in which they operate. Most of the neural models applied in this study are defined within the framework of unsupervised learning. They are based on Exploratory Projection Pursuit, Topology Preserving Maps and Curvilinear Component Analysis. Two interesting real data sets are analyzed to empirically probe the robustness of these models. The first case study describes information from a significant sample of Spanish multinational enterprises (MNEs). It analyses data pertaining to such aspects as decisions over the location of subsidiary enterprises in various regions across the world, the importance accorded to such decisions and the driving forces behind them. Through a projection-based analysis, this study reveals a range of different reasons underlying the internationalization strategies of Spanish \\{MNEs\\} and the different goals they pursue. It may be concluded that projection connectionist techniques are of immense assistance in the process of identifying the internationalization strategies of Spanish MNEs, their underlying motives and the goals they pursue. The second case study covers several risk categories that include task policy, security, and political stability among others, and it tracks the scores of different countries all over the world. Interesting conclusions are drawn from the application of several business intelligence solutions based on neural projection models, which support data analysis in the context of country and political risk analysis.

lvaro Herrero; Emilio Corchado; Alfredo Jimnez

2011-01-01T23:59:59.000Z

330

Differential maps, difference maps, interpolated maps, and long term prediction  

SciTech Connect (OSTI)

Mapping techniques may be thought to be attractive for the long term prediction of motion in accelerators, especially because a simple map can approximately represent an arbitrarily complicated lattice. The intention of this paper is to develop prejudices as to the validity of such methods by applying them to a simple, exactly solveable, example. It is shown that a numerical interpolation map, such as can be generated in the accelerator tracking program TEAPOT, predicts the evolution more accurately than an analytically derived differential map of the same order. Even so, in the presence of appreciable'' nonlinearity, it is shown to be impractical to achieve accurate'' prediction beyond some hundreds of cycles of oscillation. This suggests that the value of nonlinear maps is restricted to the parameterization of only the leading'' deviation from linearity. 41 refs., 6 figs.

Talman, R.

1988-06-01T23:59:59.000Z

331

A model for Long-term Industrial Energy Forecasting (LIEF)  

SciTech Connect (OSTI)

The purpose of this report is to establish the content and structural validity of the Long-term Industrial Energy Forecasting (LIEF) model, and to provide estimates for the model's parameters. The model is intended to provide decision makers with a relatively simple, yet credible tool to forecast the impacts of policies which affect long-term energy demand in the manufacturing sector. Particular strengths of this model are its relative simplicity which facilitates both ease of use and understanding of results, and the inclusion of relevant causal relationships which provide useful policy handles. The modeling approach of LIEF is intermediate between top-down econometric modeling and bottom-up technology models. It relies on the following simple concept, that trends in aggregate energy demand are dependent upon the factors: (1) trends in total production; (2) sectoral or structural shift, that is, changes in the mix of industrial output from energy-intensive to energy non-intensive sectors; and (3) changes in real energy intensity due to technical change and energy-price effects as measured by the amount of energy used per unit of manufacturing output (KBtu per constant $ of output). The manufacturing sector is first disaggregated according to their historic output growth rates, energy intensities and recycling opportunities. Exogenous, macroeconomic forecasts of individual subsector growth rates and energy prices can then be combined with endogenous forecasts of real energy intensity trends to yield forecasts of overall energy demand. 75 refs.

Ross, M. (Lawrence Berkeley Lab., CA (United States) Michigan Univ., Ann Arbor, MI (United States). Dept. of Physics Argonne National Lab., IL (United States). Environmental Assessment and Information Sciences Div.); Hwang, R. (Lawrence Berkeley Lab., CA (United States))

1992-02-01T23:59:59.000Z

332

A model for Long-term Industrial Energy Forecasting (LIEF)  

SciTech Connect (OSTI)

The purpose of this report is to establish the content and structural validity of the Long-term Industrial Energy Forecasting (LIEF) model, and to provide estimates for the model`s parameters. The model is intended to provide decision makers with a relatively simple, yet credible tool to forecast the impacts of policies which affect long-term energy demand in the manufacturing sector. Particular strengths of this model are its relative simplicity which facilitates both ease of use and understanding of results, and the inclusion of relevant causal relationships which provide useful policy handles. The modeling approach of LIEF is intermediate between top-down econometric modeling and bottom-up technology models. It relies on the following simple concept, that trends in aggregate energy demand are dependent upon the factors: (1) trends in total production; (2) sectoral or structural shift, that is, changes in the mix of industrial output from energy-intensive to energy non-intensive sectors; and (3) changes in real energy intensity due to technical change and energy-price effects as measured by the amount of energy used per unit of manufacturing output (KBtu per constant $ of output). The manufacturing sector is first disaggregated according to their historic output growth rates, energy intensities and recycling opportunities. Exogenous, macroeconomic forecasts of individual subsector growth rates and energy prices can then be combined with endogenous forecasts of real energy intensity trends to yield forecasts of overall energy demand. 75 refs.

Ross, M. [Lawrence Berkeley Lab., CA (United States)]|[Michigan Univ., Ann Arbor, MI (United States). Dept. of Physics]|[Argonne National Lab., IL (United States). Environmental Assessment and Information Sciences Div.; Hwang, R. [Lawrence Berkeley Lab., CA (United States)

1992-02-01T23:59:59.000Z

333

An assessment of electrical load forecasting using artificial neural network  

Science Journals Connector (OSTI)

The forecasting of electricity demand has become one of the major research fields in electrical engineering. The supply industry requires forecasts with lead times, which range from the short term (a few minutes, hours, or days ahead) to the long term (up to 20 years ahead). The major priority for an electrical power utility is to provide uninterrupted power supply to its customers. Long term peak load forecasting plays an important role in electrical power systems in terms of policy planning and budget allocation. This paper presents a peak load forecasting model using artificial neural networks (ANN). The approach in the paper is based on multi-layered back-propagation feed forward neural network. For annual forecasts, there should be 10 to 12 years of historical monthly data available for each electrical system or electrical buss. A case study is performed by using the proposed method of peak load data of a state electricity board of India which maintain high quality, reliable, historical data providing the best possible results. Model's quality is directly dependent upon data integrity.

V. Shrivastava; R.B. Misra; R.C. Bansal

2012-01-01T23:59:59.000Z

334

Thailand: Asia Pacific energy series: Country report  

SciTech Connect (OSTI)

As part of our continuing assessment of the Asia-Pacific energy markets, the Energy Program has embarked upon country studies that discuss in detail the structure of the energy sector in each country within the region. The country studies also provide the reader with an overview of the economic situation and, when possible, of the political situation in the country under study. We have particularly highlighted petroleum and gas issues in the country studies and have attempted to show the foreign trade implications of oil and gas trade. Finally, as much as possible, we have provided the latest available statistics---more often than not, from unpublished sources. Staff members have traveled extensively in the countries under review and have spoken to top policymakers in government and industry. Thus, these reports provide not only information but the latest thinking on energy issues in various countries. It is our hope that over the next few years these country studies can be updated and will provide a continuous, long-term source of energy sector analysis for the Asia-Pacific region. 48 refs., 23 figs., 56 tabs.

Fridley, D.

1988-11-01T23:59:59.000Z

335

Energy and Mineral Development in Indian Country  

Broader source: Energy.gov [DOE]

The Rocky Mountain Mineral Law Foundation is hosting the Special Institute on Energy and Mineral Development in Indian Country. This two-day conference will cover laws, policies, and practices regarding natural resources development in Indian Country and how they've evolved in the recent years.

336

Numerical Simulation of 2010 Pakistan Flood in the Kabul River Basin by Using Lagged Ensemble Rainfall Forecasting  

Science Journals Connector (OSTI)

Lagged ensemble forecasting of rainfall and rainfallrunoffinundation (RRI) forecasting were applied to the devastating flood in the Kabul River basin, the first strike of the 2010 Pakistan flood. The forecasts were performed using the Global ...

Tomoki Ushiyama; Takahiro Sayama; Yuya Tatebe; Susumu Fujioka; Kazuhiko Fukami

2014-02-01T23:59:59.000Z

337

Expert Panel: Forecast Future Demand for Medical Isotopes | Department of  

Broader source: Energy.gov (indexed) [DOE]

Expert Panel: Forecast Future Demand for Medical Isotopes Expert Panel: Forecast Future Demand for Medical Isotopes Expert Panel: Forecast Future Demand for Medical Isotopes The Expert Panel has concluded that the Department of Energy and National Institutes of Health must develop the capability to produce a diverse supply of radioisotopes for medical use in quantities sufficient to support research and clinical activities. Such a capability would prevent shortages of isotopes, reduce American dependence on foreign radionuclide sources and stimulate biomedical research. The expert panel recommends that the U.S. government build this capability around either a reactor, an accelerator or a combination of both technologies as long as isotopes for clinical and research applications can be supplied reliably, with diversity in adequate

338

Forecasting correlated time series with exponential smoothing models  

Science Journals Connector (OSTI)

This paper presents the Bayesian analysis of a general multivariate exponential smoothing model that allows us to forecast time series jointly, subject to correlated random disturbances. The general multivariate model, which can be formulated as a seemingly unrelated regression model, includes the previously studied homogeneous multivariate Holt-Winters model as a special case when all of the univariate series share a common structure. MCMC simulation techniques are required in order to approach the non-analytically tractable posterior distribution of the model parameters. The predictive distribution is then estimated using Monte Carlo integration. A Bayesian model selection criterion is introduced into the forecasting scheme for selecting the most adequate multivariate model for describing the behaviour of the time series under study. The forecasting performance of this procedure is tested using some real examples.

Ana Corbern-Vallet; Jos D. Bermdez; Enriqueta Vercher

2011-01-01T23:59:59.000Z

339

Application of GIS on forecasting water disaster in coal mines  

SciTech Connect (OSTI)

In many coal mines of China, water disasters occur very frequently. It is the most important problem that water gets inrush into drifts and coal faces, locally known as water gush, during extraction and excavation. Its occurrence is controlled by many factors such as geological, hydrogeological and mining technical conditions, and very difficult to be predicted and prevented by traditional methods. By making use of overlay analysis of Geographic Information System, a multi-factor model can be built to forecast the potential of water gush. This paper introduced the method of establishment of the water disaster forecasting system and forecasting model and two practical successful cases of application in Jiaozuo and Yinzhuang coal mines. The GIS proved helpful for ensuring the safety of coal mines.

Sun Yajun; Jiang Dong; Ji Jingxian [China Univ. of Mining and Technology, Jiangshy (China)] [and others

1996-08-01T23:59:59.000Z

340

NREL: Energy Analysis - Energy Forecasting and Modeling Staff  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Forecasting and Modeling Energy Forecasting and Modeling The following includes summary bios of staff expertise and interests in analysis relating to energy economics, energy system planning, risk and uncertainty modeling, and energy infrastructure planning. Team Lead: Nate Blair Administrative Support: Geraly Amador Clayton Barrows Greg Brinkman Brian W Bush Stuart Cohen Carolyn Davidson Paul Denholm Victor Diakov Aron Dobos Easan Drury Kelly Eurek Janine Freeman Marissa Hummon Jennie Jorganson Jordan Macknick Trieu Mai David Mulcahy David Palchak Ben Sigrin Daniel Steinberg Patrick Sullivan Aaron Townsend Laura Vimmerstedt Andrew Weekley Owen Zinaman Photo of Clayton Barrows. Clayton Barrows Postdoctoral Researcher Areas of expertise Power system modeling Primary research interests Power and energy systems

Note: This page contains sample records for the topic "forecast maps countries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Conceptual design of a geothermal site development forecasting system  

SciTech Connect (OSTI)

A site development forecasting system has been designed in response to the need to monitor and forecast the development of specific geothermal resource sites for electrical power generation and direct heat applications. The system is comprised of customized software, a site development status data base, and a set of complex geothermal project development schedules. The system would use site-specific development status information obtained from the Geothermal Progress Monitor and other data derived from economic and market penetration studies to produce reports on the rates of geothermal energy development, federal agency manpower requirements to ensure these developments, and capital expenditures and technical/laborer manpower required to achieve these developments.

Neham, E.A.; Entingh, D.J.

1980-03-01T23:59:59.000Z

342

CCPP-ARM Parameterization Testbed Model Forecast Data  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Dataset contains the NCAR CAM3 (Collins et al., 2004) and GFDL AM2 (GFDL GAMDT, 2004) forecast data at locations close to the ARM research sites. These data are generated from a series of multi-day forecasts in which both CAM3 and AM2 are initialized at 00Z every day with the ECMWF reanalysis data (ERA-40), for the year 1997 and 2000 and initialized with both the NASA DAO Reanalyses and the NCEP GDAS data for the year 2004. The DOE CCPP-ARM Parameterization Testbed (CAPT) project assesses climate models using numerical weather prediction techniques in conjunction with high quality field measurements (e.g. ARM data).

Klein, Stephen

343

Forecast of contracting and subcontracting opportunities. Fiscal year 1996  

SciTech Connect (OSTI)

This forecast of prime and subcontracting opportunities with the U.S. Department of Energy and its MAO contractors and environmental restoration and waste management contractors, is the Department`s best estimate of small, small disadvantaged and women-owned small business procurement opportunities for fiscal year 1996. The information contained in the forecast is published in accordance with Public Law 100-656. It is not an invitation for bids, a request for proposals, or a commitment by DOE to purchase products or services. Each procurement opportunity is based on the best information available at the time of publication and may be revised or cancelled.

NONE

1996-02-01T23:59:59.000Z

344

Sales forecasting strategies for small businesses: an empirical investigation of statistical and judgemental methods  

Science Journals Connector (OSTI)

This study evolved from the mixed results shown in the reviewed forecasting literature and from the lack of sufficient forecasting research dealing with micro data. The main purpose of this study is to investigate and compare the accuracy of different quantitative and qualitative forecasting techniques, and to recommend a forecasting strategy for small businesses. Emphasis is placed on the testing of combining as a tool to improve forecasting accuracy. Of particular interest is whether combining time series and judgemental forecasts provides more accurate results than individual methods. A case study of a small business was used for this purpose to assess the accuracy and applicability of combining forecasts. The evidence indicates that combining qualitative and quantitative methods results in better and improved forecasts.

Imad J. Zbib

2006-01-01T23:59:59.000Z

345

Forecasting 65+ travel : an integration of cohort analysis and travel demand modeling  

E-Print Network [OSTI]

Over the next 30 years, the Boomers will double the 65+ population in the United States and comprise a new generation of older Americans. This study forecasts the aging Boomers' travel. Previous efforts to forecast 65+ ...

Bush, Sarah, 1973-

2003-01-01T23:59:59.000Z

346

Distributed quantitative precipitation forecasts combining information from radar and numerical weather prediction model outputs  

E-Print Network [OSTI]

Applications of distributed Quantitative Precipitation Forecasts (QPF) range from flood forecasting to transportation. Obtaining QPF is acknowledged to be one of the most challenging areas in hydrology and meteorology. ...

Ganguly, Auroop Ratan

2002-01-01T23:59:59.000Z

347

A Comparison of Measures-Oriented and Distributions-Oriented Approaches to Forecast Verification  

Science Journals Connector (OSTI)

The authors have carried out verification of 590 1224-h high-temperature forecasts from numerical guidance products and human forecasters for Oklahoma City, Oklahoma, using both a measures-oriented verification scheme and a distributions-...

Harold E. Brooks; Charles A. Doswell III

1996-09-01T23:59:59.000Z

348

Correspondence among the Correlation, RMSE, and Heidke Forecast Verification Measures; Refinement of the Heidke Score  

Science Journals Connector (OSTI)

The correspondence among the following three forecast verification scores, based on forecasts and their associated observations, is described: 1) the correlation score, 2) the root-mean-square error (RMSE) score, and 3) the Heidke score (based on ...

Anthony G. Barnston

1992-12-01T23:59:59.000Z

349

Improving Seasonal Forecast Skill of North American Surface Air Temperature in Fall Using a Postprocessing Method  

Science Journals Connector (OSTI)

A statistical postprocessing approach is applied to seasonal forecasts of surface air temperatures (SAT) over North America in fall, when the original uncalibrated predictions have little skill. The data used are ensemble-mean seasonal forecasts ...

XiaoJing Jia; Hai Lin; Jacques Derome

2010-05-01T23:59:59.000Z

350

Computing electricity spot price prediction intervals using quantile regression and forecast averaging  

Science Journals Connector (OSTI)

We examine possible accuracy gains from forecast averaging in the context of interval forecasts of electricity spot prices. First, we test whether constructing empirical prediction intervals (PI) from combined electricity

Jakub Nowotarski; Rafa? Weron

2014-08-01T23:59:59.000Z

351

Medium-term forecasting of demand prices on example of electricity prices for industry  

Science Journals Connector (OSTI)

In the paper, a method of forecasting demand prices for electric energy for the industry has been suggested. An algorithm of the forecast for 20062010 based on the data for 19972005 has been presented.

V. V. Kossov

2014-09-01T23:59:59.000Z

352

Price Forecasting and Optimal Operation of Wholesale Customers in a Competitive Electricity Market.  

E-Print Network [OSTI]

??This thesis addresses two main issues: first, forecasting short-term electricity market prices; and second, the application of short-term electricity market price forecasts to operation planning (more)

Zareipour, Hamidreza

2006-01-01T23:59:59.000Z

353

Impacts of Improved Day-Ahead Wind Forecasts on Power Grid Operations: September 2011  

SciTech Connect (OSTI)

This study analyzed the potential benefits of improving the accuracy (reducing the error) of day-ahead wind forecasts on power system operations, assuming that wind forecasts were used for day ahead security constrained unit commitment.

Piwko, R.; Jordan, G.

2011-11-01T23:59:59.000Z

354

Combining Multi Wavelet and Multi NN for Power Systems Load Forecasting  

Science Journals Connector (OSTI)

In the paper, two pre-processing methods for load forecast sampling data including multiwavelet transformation and chaotic time series ... introduced. In addition, multi neural network for load forecast including...

Zhigang Liu; Qi Wang; Yajun Zhang

2008-01-01T23:59:59.000Z

355

Application of the Stretched Exponential Production Decline Model to Forecast Production in Shale Gas Reservoirs  

E-Print Network [OSTI]

Production forecasting in shale (ultra-low permeability) gas reservoirs is of great interest due to the advent of multi-stage fracturing and horizontal drilling. The well renowned production forecasting model, Arps? Hyperbolic Decline Model...

Statton, James Cody

2012-07-16T23:59:59.000Z

356

E-Print Network 3.0 - air pollution forecast Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

forecast Search Powered by Explorit Topic List Advanced Search Sample search results for: air pollution forecast Page: << < 1 2 3 4 5 > >> 1 DISCOVER-AQ Outlook for Wednesay, July...

357

Evaluation of numerical weather prediction for intra-day solar forecasting in the continental United States  

E-Print Network [OSTI]

andvalidation. SolarEnergy. 73:5,307? Perez,R. ,irradianceforecastsforsolarenergyapplicationsbasedonforecastdatabase. SolarEnergy. 81:6,809?812.

Mathiesen, Patrick; Kleissl, Jan

2011-01-01T23:59:59.000Z

358

A WRF Ensemble for Improved Wind Speed Forecasts at Turbine Height  

Science Journals Connector (OSTI)

The Weather Research and Forecasting Model (WRF) with 10-km horizontal grid spacing was used to explore improvements in wind speed forecasts at a typical wind turbine hub height (80 m). An ensemble consisting of WRF model simulations with ...

Adam J. Deppe; William A. Gallus Jr.; Eugene S. Takle

2013-02-01T23:59:59.000Z

359

UNFCCC-Global Map-Annex 1 | Open Energy Information  

Open Energy Info (EERE)

UNFCCC-Global Map-Annex 1 UNFCCC-Global Map-Annex 1 Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Global Map-Annex 1 Agency/Company /Organization: United Nations Framework Convention on Climate Change, United Nations Environment Programme Sector: Climate Topics: Baseline projection, Co-benefits assessment, GHG inventory Resource Type: Maps, Software/modeling tools User Interface: Website Website: maps.unfccc.int/di/map/ Country: Australia, Austria, Belarus, Belgium, Bulgaria, Canada, Croatia, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Japan, Latvia, Liechtenstein, Lithuania, Luxembourg, Malta, Monaco, Netherlands, New Zealand, Norway, Poland, Portugal, Romania, Russia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey, Ukraine, United Kingdom, United States

360

Thematic Maps 9 Thematic Maps: Visualizing  

E-Print Network [OSTI]

Thematic Maps 9 Thematic Maps: Visualizing Spatial Variability and Shared Benefits SSSSSpatial Agreements Figure 5. GIS and visualization: from bottom to top -- topography, social water stress index and Mexico..... By superimposing several different data sets within a Geographic Information System (GIS

Wolf, Aaron

Note: This page contains sample records for the topic "forecast maps countries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Property:Country | Open Energy Information  

Open Energy Info (EERE)

Country Country Jump to: navigation, search This is a property of type Page. Pages using the property "Country" Showing 25 pages using this property. (previous 25) (next 25) 4 4C Offshore Limited + United Kingdom + A A1 Sun, Inc. + United States + ALDACOR INC + United States + Abu Dhabi Supreme Petroleum Council + United Arab Emirates + Algeria Ministry of Energy and Mining + Algeria + Alternate Energy LLC + United States + B Bahrain National Gas and Oil Authority + Bahrain + Balloon Eólica + Brazil + Buffalo Software + United States + C CSBC Corporation + Taiwan + Community Energy Inc + United States + E EXEN Holdings LLC + United States + Ecoforest + Spain + H HOMER + Armenia + HOMER + Yugoslavia + HOMER + Gabon + HOMER + Sri Lanka + HOMER + Canada +

362

Improving the forecasting function for a Credit Hire operator in the UK  

Science Journals Connector (OSTI)

This study aims to test on the predictability of Credit Hire services for the automobile and insurance industry. A relatively sophisticated time series forecasting procedure, which conducts a competition among exponential smoothing models, is employed to forecast demand for a leading UK Credit Hire operator (CHO). The generated forecasts are compared against the Naive method, resulting that demand for CHO services is indeed extremely hard to forecast, as the underlying variable is the number of road accidents a truly stochastic variable.

Nicolas D. Savio; K. Nikolopoulos; Konstantinos Bozos

2009-01-01T23:59:59.000Z

363

Central Wind Power Forecasting Programs in North America by Regional Transmission Organizations and Electric Utilities  

SciTech Connect (OSTI)

The report addresses the implementation of central wind power forecasting by electric utilities and regional transmission organizations in North America.

Porter, K.; Rogers, J.

2009-12-01T23:59:59.000Z

364

Alternative Fuels Data Center: Maps and Data  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Laws & Incentives Laws & Incentives All Categories Vehicles AFVs and HEVs Fuel Consumption and Efficiency Vehicle Market Driving Patterns Fuels & Infrastructure Fuel Trends Emissions Alternative Fueling Stations Idle Reduction Transportation Infrastructure Biofuels Production Laws & Incentives Regulated Fleets Federal Fleets State & Alt Fuel Providers Clean Cities Vehicles Petroleum Use Reduction Program OR Go Sort by: Category Most Recent Most Popular 11 results - Biodiesel_li_by_state Biodiesel Incentives and Laws, by State Biodiesel_li_by_state View Map Graph L_i-electric Electric Vehicle Incentives and Laws, by State L_i-electric View Map Graph L_i-ethanol Ethanol Incentives and Laws, by State L_i-ethanol View Map Graph Generated_thumb20130810-31804-1h8ookf Fuel Taxes by Country Generated_thumb20130810-31804-1h8ookf

365

Mapping mental health finances in Ghana, Uganda, Sri Lanka, India and Lao PDR  

Science Journals Connector (OSTI)

Limited evidence about mental health finances in low and middle-income countries is a key challenge to mental health care policy initiatives. This study aimed to map mental health finances in Ghana, Uganda, In...

Shoba Raja; Sarah K Wood; Victoria de Menil

2010-05-01T23:59:59.000Z

366

Next Generation Short-Term Forecasting of Wind Power Overview of the ANEMOS Project.  

E-Print Network [OSTI]

1 Next Generation Short-Term Forecasting of Wind Power ­ Overview of the ANEMOS Project. G outperform current state-of-the-art methods, for onshore and offshore wind power forecasting. Advanced forecasts for the power system management and market integration of wind power. Keywords: Wind power, short

Boyer, Edmond

367

COLORADO STATE UNIVERSITY FORECAST OF ATLANTIC HURRICANE ACTIVITY FROM AUGUST 3 AUGUST 16, 2012  

E-Print Network [OSTI]

there is significant uncertainty in its future intensity, the current forecast is for a slowly strengthening TC which, 3) forecast output from global models, 4) the current and projected state of the Madden with these two-week forecasts is the Accumulated Cyclone Energy (ACE) index, which is defined to be all

Gray, William

368

VALIDATION OF SHORT AND MEDIUM TERM OPERATIONAL SOLAR RADIATION FORECASTS IN THE US  

E-Print Network [OSTI]

, and medium term forecasts (up to seven days ahead) from numerical weather prediction models [1]. Forecasts radiation forecasting. One approach relies on numerical weather prediction (NWP) models which can be global modeling of the atmosphere. NWP models cannot, at this stage of their development, predict the exact

Perez, Richard R.

369

Products and Service of Center for Weather Forecast and Climate Studies  

E-Print Network [OSTI]

) Seasonal Climate Forecast (1-6 months) #12;Weather Forecast Weather Bulletin PCD SCD1 SCD2 SX6 SatelliteLOG O Products and Service of Center for Weather Forecast and Climate Studies Simone Sievert da AND DEVELOP. DIVISION SATELLITE DIVISION ENVIROM. SYSTEM OPERATIONAL DIVISION CPTEC/INPE Msc / PHD &TRAINING

370

Lessons from Deploying NLG Technology for Marine Weather Forecast Text Generation  

E-Print Network [OSTI]

model along with other sources of weather data such as satellite pictures and their own forecastingLessons from Deploying NLG Technology for Marine Weather Forecast Text Generation Somayajulu G Language Generation (NLG) system that produces textual weather forecasts for offshore oilrigs from

Sripada, Yaji

371

Ensemble-based air quality forecasts: A multimodel approach applied to ozone  

E-Print Network [OSTI]

Ensemble-based air quality forecasts: A multimodel approach applied to ozone Vivien Mallet1., and B. Sportisse (2006), Ensemble-based air quality forecasts: A multimodel approach applied to ozone, J, the uncertainty in chem- istry transport models is a major limitation of air quality forecasting. The source

Boyer, Edmond

372

Digital Geologic Field Mapping Using Arcpad, In: Digital Mapping...  

Open Energy Info (EERE)

Field Mapping Using Arcpad, In: Digital Mapping Techniques '02- Workshop Proceedings Abstract Research into the practicality of digital mapping by Placer Dome Exploration...

373

Category:Countries | Open Energy Information  

Open Energy Info (EERE)

Countries Countries Jump to: navigation, search This category contains sovereign nations and uses the form Country. Pages in category "Countries" The following 200 pages are in this category, out of 211 total. (previous 200) (next 200) A Afghanistan Albania Algeria Andorra Angola Anguilla Antigua and Barbuda Argentina Armenia Aruba Australia Austria Azerbaijan B Bahamas Bahrain Bangladesh Barbados Belarus Belgium Belize Benin Bermuda Bhutan Bolivia Bosnia and Herzegovina Botswana Brazil Brunei Bulgaria Burkina Faso Burundi C Cambodia Cameroon Canada Cape Verde Cayman Islands Central African Republic Chad Chile China Colombia Comoros Cook Islands Costa Rica Croatia Cuba Cyprus Czech Republic D Democratic Republic of Congo Denmark Djibouti Dominica Dominican Republic E Ecuador Egypt El Salvador Equatorial Guinea

374

Oil prices and the developing countries  

Science Journals Connector (OSTI)

Many of the present difficulties of the world economy have been blamed on the two oil-price explosions of the 1970s. Professor Chichilnisky shows ... , at least in the case of the oil-importing developing countri...

Graciela Chichilnisky

375

Quality Renewable Energy Training in Developing Countries  

Science Journals Connector (OSTI)

What about the developing countries where Renewable Energy is still needed to meet the needs ... growing market. But the growing market needs quality trained technicians. How are the thousands of...

Geoff Stapleton; Zhu Li; Stephen Garrett

2009-01-01T23:59:59.000Z

376

Health Labor Markets in Developing Countries  

Science Journals Connector (OSTI)

Abstract The health workforce plays a key role in increasing access to health services for populations in developing countries. Yet there are numerous challenges in this critical area of health policy in developing countries, including labor shortages, geographic disparities, and variation in health worker productivity and quality. A labor economics perspective is extremely useful in understanding why, for example, countries with relatively similar epidemiological and disease profiles have vastly different numbers of doctors and nurses, or why there are unemployed nurses when the need for care is so great. This article reviews the key factors that influence the demand for and supply of health workers and reviews the special features of the health labor market in developing countries.

M. Vujicic

2014-01-01T23:59:59.000Z

377

EM Tribal Programs in Indian Country | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Tribal Programs in Tribal Programs in Indian Country EM Tribal Programs in Indian Country EM Tribal Programs in Indian Country EM Tribal Programs in Indian Country EM Tribal Programs in Indian Country EM Tribal Programs in Indian Country EM Tribal Programs in Indian Country EM Tribal Programs in Indian Country EM Tribal Programs in Indian Country EM Tribal Programs in Indian Country EM Tribal Programs in Indian Country EM Tribal Programs in Indian Country EM Tribal Programs in Indian Country EM Tribal Programs in Indian Country The U.S. Department of Energy is committed to the cleanup of sites that were once part of the Nation's nuclear weapons complex. Several of these sites are located close or adjacent to sovereign Tribal nations and impact Indian lands and/or resources. Consistent with the Department's American

378

COBE Sky Map  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

COBE sky map COBE sky map This map of the ancient sky shows the minute variations in the microwave background discovered by the team led by Lawrence Berkeley Laboratory astrophysicist George Smoot. As seen in the map, vast regions of space have minute variations in temperature. Over billions of years, gravity magnified these small differences into the clusters of galaxies we observe today. Displayed horizontally across the middle of the map is the Milky Way galaxy. The image, a 360-degree map of the whole sky, shows the relic radiation from the Big Bang. The map was derived from one year of data taken by the Differential Microwave Radiometers onboard NASA's Cosmic Background Explorer satellite. Using Galactic coordinates, the map shows the plane of the Milky Way galaxy horizontally and the center of our galaxy at its

379

Memory-mapped transactions  

E-Print Network [OSTI]

Memory-mapped transactions combine the advantages of both memory mapping and transactions to provide a programming interface for concurrently accessing data on disk without explicit I/O or locking operations. This interface ...

Sukha, Jim

2005-01-01T23:59:59.000Z

380

Integrable quantum mappings  

Science Journals Connector (OSTI)

A quantum R-matrix structure is presented for a family of exactly integrable multidimensional rational mappings related to lattice versions of the Kortewegde Vries equation. It is shown that these mappings possess a commuting family of invariants.

F. W. Nijhoff; H. W. Capel; V. G. Papageorgiou

1992-08-15T23:59:59.000Z

Note: This page contains sample records for the topic "forecast maps countries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

WIPP Projects Interative Map  

Broader source: Energy.gov [DOE]

View WIPP Projects in a larger map. To report corrections, please emailWeatherizationInnovation@ee.doe.gov.

382

National Hydropower Map  

Broader source: Energy.gov [DOE]

High-resolution map produced by Oak Ridge National Laboratory showing hydropower resources throughout the United States.

383

SERC Grants Interactive Map  

Broader source: Energy.gov [DOE]

View SERC Grants in a larger map. To report corrections, please email SustainableEnergyWAP@ee.doe.gov.

384

Electric network interconnection of Mashreq Arab Countries  

SciTech Connect (OSTI)

Power system interconnection is a well established practice for a variety of technical and economical reasons. Several interconnected networks exist worldwide for a number of factors. Some of these networks cross international boundaries. This presentation discusses the future developments of the power systems of Mashreq Arab Countries (MAC). MAC consists of Bahrain, Egypt, Iraq, Jordan, Kuwait, Lebanon, Oman, Qatar, Saudi Arabia, United Arab Emirates (UAE), and Yemen. Mac power systems are operated by government or semigovernment bodies. Many of these countries have national or regional electric grids but are generally isolated from each other. With the exception of Saudi Arabia power systems, which employ 60 Hz, all other MAC utilities use 50 Hz frequency. Each country is served by one utility, except Saudi Arabia, which is served by four major utilities and some smaller utilities serving remote towns and small load centers. The major utilities are the Saudi Consolidated electric Company in the Eastern Province (SCECO East), SCECO Center, SCECO West, and SCECO South. These are the ones considered in this study. The energy resources in MAC are varied. Countries such as Egypt, Iraq, and Syria have significant hydro resources.The gulf countries and Iraq have abundant fossil fuel, The variation in energy resources as well as the characteristics of the electric load make it essential to look into interconnections beyond the national boundaries. Most of the existing or planned interconnections involve few power systems. A study involving 12 countries and over 20 utilities with different characteristics represents a very large scale undertaking.

El-Amin, I.M.; Al-Shehri, A.M.; Opoku, G.; Al-Baiyat, S.A.; Zedan, F.M.

1994-12-01T23:59:59.000Z

385

Optimal Bidding Strategies for Wind Power Producers with Meteorological Forecasts  

E-Print Network [OSTI]

Optimal Bidding Strategies for Wind Power Producers with Meteorological Forecasts Antonio that the inherent variability in wind power generation and the related difficulty in predicting future generation profiles, raise major challenges to wind power integration into the electricity grid. In this work we study

Giannitrapani, Antonello

386

Does Money Matter in Inflation Forecasting? JM Binner 1  

E-Print Network [OSTI]

1 Does Money Matter in Inflation Forecasting? JM Binner 1 P Tino 2 J Tepper 3 R Anderson4 B Jones 5 range of different definitions of money, including different methods of aggregation and different that there exists a long-run relationship between the growth rate of the money supply and the growth rate of prices

Tino, Peter

387

Detecting and Forecasting Economic Regimes in Automated Exchanges  

E-Print Network [OSTI]

, such as over- supply or scarcity, from historical data using computational methods to construct price density. The agent can use this information to make both tactical decisions such as pricing and strategic decisions historical data and identified from observable data. We outline how to identify regimes and forecast regime

Ketter, Wolfgang

388

Forecasting Market Demand for New Telecommunications Services: An Introduction  

E-Print Network [OSTI]

Forecasting Market Demand for New Telecommunications Services: An Introduction Peter Mc, 2000 Abstract The marketing team of a new telecommunications company is usually tasked with producing involved in doing so. Based on our three decades of experience working with telecommunications operators

Parsons, Simon

389

SOLAR IRRADIANCE FORECASTING FOR THE MANAGEMENT OF SOLAR ENERGY SYSTEMS  

E-Print Network [OSTI]

SOLAR IRRADIANCE FORECASTING FOR THE MANAGEMENT OF SOLAR ENERGY SYSTEMS Detlev Heinemann Oldenburg.girodo@uni-oldenburg.de ABSTRACT Solar energy is expected to contribute major shares of the future global energy supply. Due to its and solar energy conversion processes has to account for this behaviour in respective operating strategies

Heinemann, Detlev

390

Short-Term Solar Energy Forecasting Using Wireless Sensor Networks  

E-Print Network [OSTI]

Short-Term Solar Energy Forecasting Using Wireless Sensor Networks Stefan Achleitner, Tao Liu an advantage for output power prediction. Solar Energy Prediction System Our prediction model is based variability of more then 100 kW per minute. For practical usage of solar energy, predicting times of high

Cerpa, Alberto E.

391

Solar Resource and Forecasting QuestionnaireSolar Resource and Forecasting QuestionnaireSolar Resource and Forecasting QuestionnaireSolar Resource and Forecasting Questionnaire As someone who is familiar with solar energy issues, we hope that you will tak  

E-Print Network [OSTI]

is familiar with solar energy issues, we hope that you will take a few moments to answer this short survey on your needs for information on solar energy resources and forecasting. This survey is conducted with the California Solar Energy Collaborative (CSEC) and the California Solar Initiative (CSI) our objective

Islam, M. Saif

392

A FORECAST MODEL OF AGRICULTURAL AND LIVESTOCK PRODUCTS PRICE  

E-Print Network [OSTI]

A FORECAST MODEL OF AGRICULTURAL AND LIVESTOCK PRODUCTS PRICE Wensheng Zhang1,* , Hongfu Chen1 and excessive fluctuation of agricultural and livestock products price is not only harmful to residents' living, but also affects CPI (Consumer Price Index) values, and even leads to social crisis, which influences

Boyer, Edmond

393

Forecasting Building Occupancy Using Sensor Network James Howard  

E-Print Network [OSTI]

) into the future. Our approach is to train a set of standard forecasting models to our time series data. Each model conditioning (HVAC) systems. In particular, if occupancy can be accurately pre- dicted, HVAC systems can potentially be controlled to op- erate more efficiently. For example, an HVAC system can pre-heat or pre

Hoff, William A.

394

Forecasting Hospital Bed Availability Using Simulation and Neural Networks  

E-Print Network [OSTI]

Forecasting Hospital Bed Availability Using Simulation and Neural Networks Matthew J. Daniels is a critical factor for decision-making in hospitals. Bed availability (or alternatively the bed occupancy in emergency departments, and many other important hospital decisions. To better enable a hospital to make

Kuhl, Michael E.

395

Predicting Solar Generation from Weather Forecasts Using Machine Learning  

E-Print Network [OSTI]

Predicting Solar Generation from Weather Forecasts Using Machine Learning Navin Sharma, Pranshu Sharma, David Irwin, and Prashant Shenoy Department of Computer Science University of Massachusetts Amherst Amherst, Massachusetts 01003 {nksharma,pranshus,irwin,shenoy}@cs.umass.edu Abstract--A key goal

Shenoy, Prashant

396

Review of Wind Energy Forecasting Methods for Modeling Ramping Events  

SciTech Connect (OSTI)

Tall onshore wind turbines, with hub heights between 80 m and 100 m, can extract large amounts of energy from the atmosphere since they generally encounter higher wind speeds, but they face challenges given the complexity of boundary layer flows. This complexity of the lowest layers of the atmosphere, where wind turbines reside, has made conventional modeling efforts less than ideal. To meet the nation's goal of increasing wind power into the U.S. electrical grid, the accuracy of wind power forecasts must be improved. In this report, the Lawrence Livermore National Laboratory, in collaboration with the University of Colorado at Boulder, University of California at Berkeley, and Colorado School of Mines, evaluates innovative approaches to forecasting sudden changes in wind speed or 'ramping events' at an onshore, multimegawatt wind farm. The forecast simulations are compared to observations of wind speed and direction from tall meteorological towers and a remote-sensing Sound Detection and Ranging (SODAR) instrument. Ramping events, i.e., sudden increases or decreases in wind speed and hence, power generated by a turbine, are especially problematic for wind farm operators. Sudden changes in wind speed or direction can lead to large power generation differences across a wind farm and are very difficult to predict with current forecasting tools. Here, we quantify the ability of three models, mesoscale WRF, WRF-LES, and PF.WRF, which vary in sophistication and required user expertise, to predict three ramping events at a North American wind farm.

Wharton, S; Lundquist, J K; Marjanovic, N; Williams, J L; Rhodes, M; Chow, T K; Maxwell, R

2011-03-28T23:59:59.000Z

397

Development and Deployment of an Advanced Wind Forecasting Technique  

E-Print Network [OSTI]

findings. Part 2 addresses how operators of wind power plants and power systems can incorporate advanced the output of advanced wind energy forecasts into decision support models for wind power plant and power in Porto) Power Systems Unit Porto, Portugal Industry Partners Horizon Wind Energy, LLC Midwest Independent

Kemner, Ken

398

Power load forecasting using data mining and knowledge discovery technology  

Science Journals Connector (OSTI)

Considering the importance of the peak load to the dispatching and management of the electric system, the error of peak load is proposed in this paper as criteria to evaluate the effect of the forecasting model. This paper proposes a systemic framework that attempts to use data mining and knowledge discovery (DMKD) to pretreat the data. And a new model is proposed which combines artificial neural networks with data mining and knowledge discovery for electric load forecasting. With DMKD technology, the system not only could mine the historical daily loading which had the same meteorological category as the forecasting day to compose data sequence with highly similar meteorological features, but also could eliminate the redundant influential factors. Then an artificial neural network is constructed to predict according to its characteristics. Using this new model, it could eliminate the redundant information, accelerate the training speed of neural network and improve the stability of the convergence. Compared with single BP neural network, this new method can achieve greater forecasting accuracy.

Yongli Wang; Dongxiao Niu; Ling Ji

2011-01-01T23:59:59.000Z

399

What constrains spread growth in forecasts ini2alized from  

E-Print Network [OSTI]

1 What constrains spread growth in forecasts ini2alized from ensemble Kalman filters? Tom from manner in which ini2al condi2ons are generated, some due to the model (e.g., stochas2c physics as error; part of spread growth from manner in which ini2al condi2ons are generated, some due

Hamill, Tom

400

Probabilistic Forecasts of Wind Speed: Ensemble Model Output Statistics  

E-Print Network [OSTI]

. Over the past two decades, ensembles of numerical weather prediction (NWP) models have been developed and phrases: Continuous ranked probability score; Density forecast; Ensem- ble system; Numerical weather prediction; Heteroskedastic censored regression; Tobit model; Wind energy. 1 #12;1 Introduction Accurate

Washington at Seattle, University of

Note: This page contains sample records for the topic "forecast maps countries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Introduction An important goal in operational weather forecasting  

E-Print Network [OSTI]

sensitive areas. To answer these questions simulation experiments with state-of-the-art numerical weather prediction (NWP) models have proved great value to test future meteorological observing systems a priori102 Introduction An important goal in operational weather forecasting is to reduce the number

Haak, Hein

402

Operational Forecasts of Cloud Cover and Water Vapour  

E-Print Network [OSTI]

of the forecast programme, which involved the additional use of 10.7 µm GOES-8 satellite data and surface weather cirrus cloud cover 15 5. A satellite-derived extinction parameter 17 5.1 Background 17 5.2 Previous work 20 5.3 Continued development of a satellite-derived 22 extinction parameter 6. Suggestions

403

Increasing NOAA's computational capacity to improve global forecast modeling  

E-Print Network [OSTI]

competing numerical weather prediction centers such as the European Center for MediumRange Weather Forecasts (ECMWF). For most sensibleweather metrics, we lag 1 to 1.5 days (i.e., they make a 3.5day of NOAA's current investment in weather satellites. Without a modern data assimilation system

Hamill, Tom

404

Measuring forecast skill: is it real skill or  

E-Print Network [OSTI]

samples, then many verification metrics will credit a forecast with extra skill it doesn't deserve islands, zero meteorologists Imagine a planet with a global ocean and two isolated islands. Weather three metrics... (1) Brier Skill Score (2) Relative Operating Characteristic (3) Equitable Threat Score

Hamill, Tom

405

URBAN OZONE CONCENTRATION FORECASTING WITH ARTIFICIAL NEURAL NETWORK IN CORSICA  

E-Print Network [OSTI]

Perceptron; Ozone concentration. 1. Introduction Tropospheric ozone is a major air pollution problem, both, Ajaccio, France, e-mail: balu@univ-corse.fr Abstract: Atmospheric pollutants concentration forecasting is an important issue in air quality monitoring. Qualitair Corse, the organization responsible for monitoring air

Boyer, Edmond

406

Leveraging Weather Forecasts in Renewable Energy Navin Sharmaa,  

E-Print Network [OSTI]

Leveraging Weather Forecasts in Renewable Energy Systems Navin Sharmaa, , Jeremy Gummesonb , David, Binghamton, NY 13902 Abstract Systems that harvest environmental energy must carefully regulate their us- age to satisfy their demand. Regulating energy usage is challenging if a system's demands are not elastic, since

Shenoy, Prashant

407

Cloudy Computing: Leveraging Weather Forecasts in Energy Harvesting Sensor Systems  

E-Print Network [OSTI]

Cloudy Computing: Leveraging Weather Forecasts in Energy Harvesting Sensor Systems Navin Sharma,gummeson,irwin,shenoy}@cs.umass.edu Abstract--To sustain perpetual operation, systems that harvest environmental energy must carefully regulate their usage to satisfy their demand. Regulating energy usage is challenging if a system's demands

Shenoy, Prashant

408

Weather forecast-based optimization of integrated energy systems.  

SciTech Connect (OSTI)

In this work, we establish an on-line optimization framework to exploit detailed weather forecast information in the operation of integrated energy systems, such as buildings and photovoltaic/wind hybrid systems. We first discuss how the use of traditional reactive operation strategies that neglect the future evolution of the ambient conditions can translate in high operating costs. To overcome this problem, we propose the use of a supervisory dynamic optimization strategy that can lead to more proactive and cost-effective operations. The strategy is based on the solution of a receding-horizon stochastic dynamic optimization problem. This permits the direct incorporation of economic objectives, statistical forecast information, and operational constraints. To obtain the weather forecast information, we employ a state-of-the-art forecasting model initialized with real meteorological data. The statistical ambient information is obtained from a set of realizations generated by the weather model executed in an operational setting. We present proof-of-concept simulation studies to demonstrate that the proposed framework can lead to significant savings (more than 18% reduction) in operating costs.

Zavala, V. M.; Constantinescu, E. M.; Krause, T.; Anitescu, M.

2009-03-01T23:59:59.000Z

409

Journey data based arrival forecasting for bicycle hire schemes  

E-Print Network [OSTI]

Journey data based arrival forecasting for bicycle hire schemes Marcel C. Guenther and Jeremy T. The global emergence of city bicycle hire schemes has re- cently received a lot of attention of future bicycle migration trends, as these assist service providers to ensure availability of bicycles

Imperial College, London

410

FORECAST VERIFICATION OF EXTREMES: USE OF EXTREME VALUE THEORY  

E-Print Network [OSTI]

1 FORECAST VERIFICATION OF EXTREMES: USE OF EXTREME VALUE THEORY Rick Katz Institute for Study ON EXTREMES · Emil Gumbel (1891 ­ 1966) -- Pioneer in application of statistics of extremes (Germany, France) Conventional Methods (3) Extreme Value Theory (EVT) (4) Application of EVT to Verification (5) Frost

Katz, Richard

411

FORECAST VERIFICATION OF EXTREMES: USE OF EXTREME VALUE THEORY  

E-Print Network [OSTI]

1 FORECAST VERIFICATION OF EXTREMES: USE OF EXTREME VALUE THEORY Rick Katz Institute for Study on Extremes · Emil Gumbel (1891 ­ 1966) -- Pioneer in application of statistics of extremes "Il est impossible que l'improbable n'arrive jamais." #12;3 OUTLINE (1) Motivation (2) Conventional Methods (3) Extreme

Katz, Richard

412

FORECAST VERIFICATION OF EXTREMES: USE OF EXTREME VALUE THEORY  

E-Print Network [OSTI]

1 FORECAST VERIFICATION OF EXTREMES: USE OF EXTREME VALUE THEORY Rick Katz Institute for Study ON EXTREMES · Emil Gumbel (1891 ­ 1966) -- Pioneer in application of statistics of extremes "Il est impossible que l'improbable n'arrive jamais." #12;3 OUTLINE (1) Motivation (2) Conventional Methods (3) Extreme

Katz, Richard

413

Seasonal Forecasting of Extreme Wind and Precipitation Frequencies in Europe  

E-Print Network [OSTI]

Seasonal Forecasting of Extreme Wind and Precipitation Frequencies in Europe Matthew J. Swann;Abstract Flood and wind damage to property and livelihoods resulting from extreme precipitation events variability of these extreme events can be closely related to the large-scale atmospheric circulation

Feigon, Brooke

414

MAPS MANUAL 2010 PROTOCOL  

E-Print Network [OSTI]

MAPS MANUAL 2010 PROTOCOL INSTRUCTIONS FOR THE ESTABLISHMENT AND OPERATION OF CONSTANT-EFFORT BIRD-BANDING STATIONS AS PART OF THE MONITORING AVIAN PRODUCTIVITY AND SURVIVORSHIP (MAPS) PROGRAM David F. De;ACKNOWLEDGEMENTS We thank MAPS biologists Eric Feuss, Denise Jones, Sara Martin, Eric (Zed) Ruhlen, Hillary Smith

DeSante, David F.

415

MAPS MANUAL 2014 PROTOCOL  

E-Print Network [OSTI]

MAPS MANUAL 2014 PROTOCOL INSTRUCTIONS FOR THE ESTABLISHMENT AND OPERATION OF CONSTANT-EFFORT BIRD-BANDING STATIONS AS PART OF THE MONITORING AVIAN PRODUCTIVITY AND SURVIVORSHIP (MAPS) PROGRAM David F. De;ACKNOWLEDGEMENTS We thank MAPS biologists Eric Feuss, Denise Jones, Sara Martin, Eric (Zed) Ruhlen, Hillary Smith

DeSante, David F.

416

MAPS MANUAL 2008 PROTOCOL  

E-Print Network [OSTI]

MAPS MANUAL 2008 PROTOCOL INSTRUCTIONS FOR THE ESTABLISHMENT AND OPERATION OF CONSTANT-EFFORT BIRD-BANDING STATIONS AS PART OF THE MONITORING AVIAN PRODUCTIVITY AND SURVIVORSHIP (MAPS) PROGRAM David F. De;ACKNOWLEDGEMENTS We thank MAPS biologists Eric Feuss, Denise Jones, Sara Martin, Eric (Zed) Ruhlen, Jim Saracco

DeSante, David F.

417

MAPS MANUAL 2013 PROTOCOL  

E-Print Network [OSTI]

MAPS MANUAL 2013 PROTOCOL INSTRUCTIONS FOR THE ESTABLISHMENT AND OPERATION OF CONSTANT-EFFORT BIRD-BANDING STATIONS AS PART OF THE MONITORING AVIAN PRODUCTIVITY AND SURVIVORSHIP (MAPS) PROGRAM David F. De;ACKNOWLEDGEMENTS We thank MAPS biologists Eric Feuss, Denise Jones, Sara Martin, Eric (Zed) Ruhlen, Hillary Smith

DeSante, David F.

418

MAPS MANUAL 2011 PROTOCOL  

E-Print Network [OSTI]

MAPS MANUAL 2011 PROTOCOL INSTRUCTIONS FOR THE ESTABLISHMENT AND OPERATION OF CONSTANT-EFFORT BIRD-BANDING STATIONS AS PART OF THE MONITORING AVIAN PRODUCTIVITY AND SURVIVORSHIP (MAPS) PROGRAM David F. De;ACKNOWLEDGEMENTS We thank MAPS biologists Eric Feuss, Denise Jones, Sara Martin, Eric (Zed) Ruhlen, Hillary Smith

DeSante, David F.

419

MAPS MANUAL 2012 PROTOCOL  

E-Print Network [OSTI]

MAPS MANUAL 2012 PROTOCOL INSTRUCTIONS FOR THE ESTABLISHMENT AND OPERATION OF CONSTANT-EFFORT BIRD-BANDING STATIONS AS PART OF THE MONITORING AVIAN PRODUCTIVITY AND SURVIVORSHIP (MAPS) PROGRAM David F. De;ACKNOWLEDGEMENTS We thank MAPS biologists Eric Feuss, Denise Jones, Sara Martin, Eric (Zed) Ruhlen, Hillary Smith

DeSante, David F.

420

The Availability and Price of Petroleum and Petroleum Products Produced in Countries Other Than Iran  

U.S. Energy Information Administration (EIA) Indexed Site

June 26, 2012 June 26, 2012 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 The third in a series of reports required by section 1245 (d) (4) (A) of the National Defense Authorization Act for Fiscal Year 2012 U.S. Energy Information Administration | Availability and Price of Petroleum and Petroleum Products Produced in Countries Other Than Iran i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views

Note: This page contains sample records for the topic "forecast maps countries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

The Availability and Price of Petroleum and Petroleum Products Produced in Countries Other Than Iran  

U.S. Energy Information Administration (EIA) Indexed Site

October 25, 2012 October 25, 2012 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 The fifth in a series of reports required by section 1245 (d) (4) (A) of the National Defense Authorization Act for Fiscal Year 2012 U.S. Energy Information Administration | Availability and Price of Petroleum and Petroleum Products Produced in Countries Other Than Iran i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the U.S. Government. The views in this report, therefore, should not be construed as representing those of the U.S. Department of Energy or

422

The Availability and Price of Petroleum and Petroleum Products Produced in Countries Other Than Iran  

U.S. Energy Information Administration (EIA) Indexed Site

August 24, 2012 August 24, 2012 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 The fourth in a series of reports required by section 1245 (d) (4) (A) of the National Defense Authorization Act for Fiscal Year 2012 U.S. Energy Information Administration | Availability and Price of Petroleum and Petroleum Products Produced in Countries Other Than Iran i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the U.S. Government. The views in this

423

The Availability and Price of Petroleum and Petroleum Products Produced in Countries Other Than Iran  

U.S. Energy Information Administration (EIA) Indexed Site

April 27, 2012 April 27, 2012 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 The second in a series of reports required by section 1245 (d) (4) (A) of the National Defense Authorization Act for Fiscal Year 2012 U.S. Energy Information Administration | Availability and Price of Petroleum and Petroleum Products Produced in Countries Other Than Iran i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views

424

The Availability and Price of Petroleum and Petroleum Products Produced in Countries Other Than Iran  

U.S. Energy Information Administration (EIA) Indexed Site

December 20, 2012 December 20, 2012 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 The sixth in a series of reports required by section 1245 (d) (4) (A) of the National Defense Authorization Act for Fiscal Year 2012 U.S. Energy Information Administration | Availability and Price of Petroleum and Petroleum Products Produced in Countries Other Than Iran i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the U.S. Government. The views in this report, therefore, should not be construed as representing those of the U.S. Department of Energy or

425

Real-Time Traffic Maps  

E-Print Network [OSTI]

d. (2007). Barcelona Traffic Map. Barcelona. 2007. Berendt,Spatial Thinking with Geographic Maps: An Empirical Study.Data on Choropleth Maps in Series." Annals of the

Goldsberry, Kirk Patrick

2007-01-01T23:59:59.000Z

426

Site Map - EERE Commercialization Office  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Site Map Site Map Printable Version Share this resource Quick Links Energy Innovation Portal Site Map Commercialization Home Page About Success Stories Legacy Initiatives Small...

427

Site Map | DOE Data Explorer  

Office of Scientific and Technical Information (OSTI)

Site Map Site Map Home Basic Search Advanced Search DDE FAQ About DDE Site Map Data ID Service Contact Us Website PoliciesImportant Links...

428

Maps & Web Mapping: An Introduction to Cartography Edition (2015)  

E-Print Network [OSTI]

Maps & Web Mapping: An Introduction to Cartography 1st Edition (2015) By Keith Clarke Links Showcase Site http://www.pearsonhighered.com/clarke-1e-info/index.html Catalog Link Maps & Web Mapping

Clarke, Keith

429

Navy mobility fuels forecasting system report: World petroleum trade forecasts for the year 2000  

SciTech Connect (OSTI)

The Middle East will continue to play the dominant role of a petroleum supplier in the world oil market in the year 2000, according to business-as-usual forecasts published by the US Department of Energy. However, interesting trade patterns will emerge as a result of the democratization in the Soviet Union and Eastern Europe. US petroleum imports will increase from 46% in 1989 to 49% in 2000. A significantly higher level of US petroleum imports (principally products) will be coming from Japan, the Soviet Union, and Eastern Europe. Several regions, the Far East, Japan, Latin American, and Africa will import more petroleum. Much uncertainty remains about of the level future Soviet crude oil production. USSR net petroleum exports will decrease; however, the United States and Canada will receive some of their imports from the Soviet Union due to changes in the world trade patterns. The Soviet Union can avoid becoming a net petroleum importer as long as it (1) maintains enough crude oil production to meet its own consumption and (2) maintains its existing refining capacities. Eastern Europe will import approximately 50% of its crude oil from the Middle East.

Das, S.

1991-12-01T23:59:59.000Z

430

EWEC 2006, Athens, The Anemos Wind Power Forecasting Platform Technology The Anemos Wind Power Forecasting Platform Technology -  

E-Print Network [OSTI]

EWEC 2006, Athens, The Anemos Wind Power Forecasting Platform Technology 1 The Anemos Wind Power a professional, flexible platform for operating wind power prediction models, laying the main focus on state models from all over Europe are able to work on this platform. Keywords: wind energy, wind power

Boyer, Edmond

431

Sustainable energy for developing countries : modelling transitions to renewable and clean energy in rapidly developing countries.  

E-Print Network [OSTI]

??The main objective of this thesis is first to adapt energy models for the use in developing countries and second to model sustainable energy transitions (more)

Urban, Frauke

2009-01-01T23:59:59.000Z

432

Photovoltaic Potential Assessment to Support Renewable Energies Growth in 10 EU Candidate Countries  

E-Print Network [OSTI]

Abstract: We present a GIS database of solar radiation and photovoltaic (PV) potential estimations of 10 European Union Candidate Countries created to support. The database was integrated with a web application to provide access also for a broad public. An application was developed to browse and query GIS maps and to do a simple calculation for any location in the region. The established web site provides access also to analyses and relevant documents

E. D. Dunlop; M. ri; T. A. Huld

433

Aeromagnetic map | Open Energy Information  

Open Energy Info (EERE)

map Jump to: navigation, search OpenEI Reference LibraryAdd to library Map: Aeromagnetic mapInfo GraphicMapChart Cartographer Zietz and Kirby Published U.S. Geological Survey,...

434

Maps of Selected State Subdivisions  

U.S. Energy Information Administration (EIA) Indexed Site

Crude Oil, Natural Gas, and Natural Gas Liquids Crude Oil, Natural Gas, and Natural Gas Liquids Proved Reserves Summary Maps of Selected State Subdivisions Map 1: Alaska Map 2: California Map 3: Louisiana Map 4: New Mexico Map 5: Texas Map 6: Western Planning Area, Gulf of Mexico Map 7: Central Planning Area, Gulf of Mexico Map 8: Eastern Planning Area, Gulf of Mexico Map 1: Alaska AK 50 - North Onshore and Offshore AK 10 - South Onshore AK 05 - South State Offshore AK 00 - South Federal Offshore Map 2: California CA 50 - Coastal Region Onshore CA 90 - Los Angeles Basin Onshore CA 10 - San Joaquin Basin Onshore

435

Country-Fried Biofuels | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Country-Fried Biofuels Country-Fried Biofuels Country-Fried Biofuels December 9, 2010 - 5:33pm Addthis Shannon Brescher Shea Communications Manager, Clean Cities Program Editor's Note: This entry is crossposted from the Energy Savers Blog. Every Thanksgiving, we hear stories about an imprudent cook deep frying a turkey inside, resulting in fiery disaster. But a more humdrum risk of deep-frying is improperly disposing of the grease. Pouring it down the drain, which can clog municipal pipes and pollute local waterways, is actually illegal in many places. A better option is to have it recycled into biodiesel. Some Clean Cities coalitions, supported by the Office of Energy Efficiency and Renewable Energy's (EERE) Vehicle Technologies Program, have worked with their local governments to make holiday drippings

436

Country-Fried Biofuels | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Country-Fried Biofuels Country-Fried Biofuels Country-Fried Biofuels December 7, 2010 - 12:37pm Addthis Shannon Brescher Shea Communications Manager, Clean Cities Program Every Thanksgiving, we hear stories about an imprudent cook deep frying a turkey inside, resulting in fiery disaster. But a more humdrum risk of deep-frying is improperly disposing of the grease. Pouring it down the drain, which can clog municipal pipes and pollute local waterways, is actually illegal in many places. A better option is to have it recycled into biodiesel. Some Clean Cities coalitions, supported by the Vehicle Technologies Program in EERE, have worked with their local governments to make holiday drippings into clean fuel. This year, Pima County (Tucson), Arizona collected more than 4,400 pounds of used oil at their sixth annual Day After Thanksgiving Grease Recycling

437

Property:Project Country | Open Energy Information  

Open Energy Info (EERE)

Project Country Project Country Property Type Page Pages using the property "Project Country" Showing 25 pages using this property. (previous 25) (next 25) M MHK Projects/40MW Lewis project + United Kingdom + MHK Projects/ADM 3 + Ireland + MHK Projects/ADM 4 + United Kingdom + MHK Projects/ADM 5 + Portugal + MHK Projects/AW Energy EMEC + United Kingdom + MHK Projects/AWS II + United Kingdom + MHK Projects/Admirality Inlet Tidal Energy Project + United States + MHK Projects/Agucadoura + Portugal + MHK Projects/Alaska 1 + United States + MHK Projects/Alaska 13 + United States + MHK Projects/Alaska 17 + United States + MHK Projects/Alaska 18 + United States + MHK Projects/Alaska 24 + United States + MHK Projects/Alaska 25 + United States + MHK Projects/Alaska 28 + United States +

438

Gold Country Energy | Open Energy Information  

Open Energy Info (EERE)

Gold Country Energy Gold Country Energy Place Alaska Utility Id 56739 Utility Location Yes Ownership I NERC WECC Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes References EIA Form EIA-861 Final Data File for 2010 - File2_2010[1] EIA Form EIA-861 Final Data File for 2010 - File1_a[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Residential: $0.6670/kWh Commercial: $0.6430/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File2_2010" ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Gold_Country_Energy&oldid=412919"

439

Carbon Dioxide Emissions from Industrialized Countries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

6 6 Carbon Dioxide Emissions from Industrialized Countries Extended discussion here Carbon emissions per capita 1973 vs. 1991 by major end use. (Denmark comparison is 1972 and 1991) With the third Conference of the Parties (COP-3) in Kyoto approaching, there is a great deal of excitement over policies designed to reduce future carbon dioxide (CO2) emissions from fossil fuels. At COP-3, more than 130 nations will meet to create legally binding targets for CO2 reductions. Accordingly, we have analyzed the patterns of emissions arising from the end uses of energy (and electricity production) in ten industrialized countries, with surprising and, in some cases, worrisome results. The surprise is that emissions in many countries in the early 1990s were lower than in the 1970s in an absolute sense and on a per capita basis; the worry

440

Mitigation Action Plans and Scenarios (MAPS) | Open Energy Information  

Open Energy Info (EERE)

(Redirected from CIFF-Chile-Mitigation Action Plans and Scenarios (MAPS)) (Redirected from CIFF-Chile-Mitigation Action Plans and Scenarios (MAPS)) Jump to: navigation, search Logo: Mitigation Action Plans and Scenarios (MAPS) Name Mitigation Action Plans and Scenarios (MAPS) Agency/Company /Organization The Children's Investment Fund Foundation, SouthSouthNorth, University of Cape Town-Energy Research Centre, Danish Government Sector Climate, Energy Topics Baseline projection, Low emission development planning, -LEDS, -NAMA, Pathways analysis Website http://www.mapsprogramme.org Program Start 2010 Program End 2013 Country Argentina, Brazil, Chile, Colombia, Peru, South Africa South America, South America, South America, South America, South America, Southern Africa References Mitigation Action Plans and Scenarios (MAPS)[1]

Note: This page contains sample records for the topic "forecast maps countries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Chile-Mitigation Action Plans and Scenarios (MAPS) | Open Energy  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Chile-Mitigation Action Plans and Scenarios (MAPS) Jump to: navigation, search Logo: Chile-Mitigation Action Plans and Scenarios (MAPS) Name Chile-Mitigation Action Plans and Scenarios (MAPS) Agency/Company /Organization The Children's Investment Fund Foundation, SouthSouthNorth, University of Cape Town-Energy Research Centre, Danish Government Sector Climate, Energy Topics Baseline projection, Low emission development planning, -LEDS, -NAMA, Pathways analysis Website http://www.mapsprogramme.org Program Start 2010 Program End 2013 Country Chile South America References Mitigation Action Plans and Scenarios (MAPS)[1] Contents 1 Overview 2 MAPS Processes and Outcomes 2.1 Chile 2.2 Colombia 2.3 Peru

442

HEALTH IN FRAGILE STATES COUNTRY CASE STUDY: NORTHERN UGANDA  

E-Print Network [OSTI]

HEALTH IN FRAGILE STATES COUNTRY CASE STUDY: NORTHERN UGANDA JUNE 2006 This publication COUNTRY CASE STUDY: NORTHERN UGANDA The authors' views expressed in this publication do not necessarily States, Country Case Study: Northern Uganda. Arlington, Virginia, USA: Basic Support

Scharfstein, Daniel

443

Peru-Mitigation Action Plans and Scenarios (MAPS) | Open Energy Information  

Open Energy Info (EERE)

Peru-Mitigation Action Plans and Scenarios (MAPS) Peru-Mitigation Action Plans and Scenarios (MAPS) Jump to: navigation, search Logo: Peru-Mitigation Action Plans and Scenarios (MAPS) Name Peru-Mitigation Action Plans and Scenarios (MAPS) Agency/Company /Organization The Children's Investment Fund Foundation, SouthSouthNorth, University of Cape Town-Energy Research Centre, Danish Government Sector Climate, Energy Topics Baseline projection, Low emission development planning, -LEDS, -NAMA, Pathways analysis Website http://www.mapsprogramme.org Program Start 2010 Program End 2013 Country Peru South America References Mitigation Action Plans and Scenarios (MAPS)[1] Contents 1 Overview 2 MAPS Processes and Outcomes 2.1 Chile 2.2 Colombia 2.3 Peru 2.4 Brazil 2.5 Resources 2.5.1 Mitigation Action Country Studies

444

Forecast Calls for Better Models: Examining the Core  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Forecast Calls for Better Models: Examining the Core Forecast Calls for Better Models: Examining the Core Components of Arctic Clouds to Clear Their Influence on Climate For original submission and image(s), see ARM Research Highlights http://www.arm.gov/science/highlights/ Research Highlight Predicting how atmospheric aerosols influence cloud formation and the resulting feedback to climate is a challenge that limits the accuracy of atmospheric models. This is especially true in the Arctic, where mixed-phase (both ice- and liquid-based) clouds are frequently observed, but the processes that determine their composition are poorly understood. To obtain a closer look at what makes up Arctic clouds, scientists characterized cloud droplets and ice crystals collected at the North Slope of Alaska as part of the Indirect and Semi-Direct Aerosol Campaign (ISDAC) field study

445

Fundamentals, forecast combinations and nominal exchange-rate predictability  

Science Journals Connector (OSTI)

This paper investigates the out-predictability of fundamentals and forecast combinations. By adopting a panel-based specification, the paper obtains several interesting results. First, the Taylor-rule-based fundamental is the best among the four different fundamentals under consideration in out-of-sample contests. It provides strong evidence to out-predict the random walk over the PBW period. Second, relative to a single-equation prediction, panel predictions are generally able to enhance the statistical significance of beating the random walk. Third, combining forecasts from different fundamentals that have relatively strong out-predictability at a specific horizon does enhance both the statistical and economic significances of beating the random walk for the PBW period at short horizons.

Jyh-Lin Wu; Yi-Chiuan Wang

2013-01-01T23:59:59.000Z

446

Generalized qudit Choi maps  

E-Print Network [OSTI]

Following the linear programming prescription of Ref. \\cite{PRA72}, the $d\\otimes d$ Bell diagonal entanglement witnesses are provided. By using Jamiolkowski isomorphism, it is shown that the corresponding positive maps are the generalized qudit Choi maps. Also by manipulating particular $d\\otimes d$ Bell diagonal separable states and constructing corresponding bound entangled states, it is shown that thus obtained $d\\otimes d$ BDEW's (consequently qudit Choi maps) are non-decomposable in certain range of their parameters.

M. A. Jafarizadeh; M. Rezaeen; S. Ahadpour

2006-07-24T23:59:59.000Z

447

Dot Density Maps Dot density maps, or dot maps, portray the geographic distribution of discrete phenomena  

E-Print Network [OSTI]

Dot Density Maps Dot density maps, or dot maps, portray the geographic distribution of discrete for representing geographic patterns. Dot density maps are particularly useful for understanding global distribution of the mapped phenomenon and comparing relative densities of different regions on the map. Dot

Klippel, Alexander

448

The Wind Forecast Improvement Project (WFIP): A Public/Private Partnership for Improving Short Term Wind Energy Forecasts and Quantifying the Benefits of Utility Operations  

Broader source: Energy.gov [DOE]

The Wind Forecast Improvement Project (WFIP) is a U. S. Department of Energy (DOE) sponsored research project whose overarching goals are to improve the accuracy of short-term wind energy forecasts, and to demonstrate the economic value of these improvements.

449

Continuous Model Updating and Forecasting for a Naturally Fractured Reservoir  

E-Print Network [OSTI]

CONTINUOUS MODEL UPDATING AND FORECASTING FOR A NATURALLY FRACTURED RESERVOIR A Thesis by HISHAM HASSAN S. ALMOHAMMADI Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements... guidance and support throughout my time here in Texas A&M University. I also would like to thank my committee members, Dr. Eduardo Gildin and Dr. Michael Sherman, for providing valued insight and help during the course of this research. I am indebted...

Almohammadi, Hisham

2013-07-26T23:59:59.000Z

450

NOAA National Weather Service I'm a weather forecaster.  

E-Print Network [OSTI]

.S.D EPARTMENT OF COM M ERCE How Do You Make a Weather Satellite? How Do You Make a Weather Satellite? #12;Well you put a truck in orbit? So it can carry all the things needed to make a working weather satelliteNOAA National Weather Service I'm a weather forecaster. I need to see clouds and storms from way up

Waliser, Duane E.

451

Maps | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

About Energy.gov » News & Blog » Maps About Energy.gov » News & Blog » Maps Maps Map Title Topics - Any - Tax Credits, Rebates, Savings Energy Efficiency -Homes --Heating & Cooling ---Heating ---Cooling ---Heat Pumps --Water Heating ---Swimming Pool Heaters --Home Weatherization ---Home Energy Audits ---Insulation ---Sealing Your Home ---Ventilation --Saving Electricity ---Lighting ---Appliances & Electronics ---Buying & Making Electricity --Design & Remodeling ---Windows, Doors, & Skylights --Landscaping -Vehicles --Alternative Fuel Vehicles --Fuel Economy --Batteries --Biofuels --Clean Cities -Building Design --Construction --Commercial Weatherization --Commercial Heating & Cooling --Commercial Lighting --Solar Decathlon -Manufacturing Energy Sources -Renewables --Solar ---SunShot --Wind --Water

452

Maps | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

About Energy.gov » News & Blog » Maps About Energy.gov » News & Blog » Maps Maps Map Title Topics - Any - Tax Credits, Rebates, Savings Energy Efficiency -Homes --Heating & Cooling ---Heating ---Cooling ---Heat Pumps --Water Heating ---Swimming Pool Heaters --Home Weatherization ---Home Energy Audits ---Insulation ---Sealing Your Home ---Ventilation --Saving Electricity ---Lighting ---Appliances & Electronics ---Buying & Making Electricity --Design & Remodeling ---Windows, Doors, & Skylights --Landscaping -Vehicles --Alternative Fuel Vehicles --Fuel Economy --Batteries --Biofuels --Clean Cities -Building Design --Construction --Commercial Weatherization --Commercial Heating & Cooling --Commercial Lighting --Solar Decathlon -Manufacturing Energy Sources -Renewables --Solar ---SunShot --Wind --Water

453

Maps of Svalbard  

Science Journals Connector (OSTI)

... NORGES SVALBARD og Ishavs-undersokelser, now known as Norsk Polarinstitutt, has begun the issue of a detailed map of Svalbard in folded sheets, ...

1948-07-03T23:59:59.000Z

454

Mercury and the Gold Country Angler Survey  

E-Print Network [OSTI]

#12;#12;Mercury and the Gold Rush #12;#12;#12;#12;#12;#12;#12;#12;#12;Gold Country Angler Survey A Pilot Study to Assess Mercury Exposure from Sport Fish Consumption in the Sierra Nevada Carrie Monohan, Ph.D. #12;Mercury and the Gold Rush Deer Creek 1908 Greenhorn Creek 2011 Mercury was used during

455

Public and Private Enterprise in Developing Countries  

Science Journals Connector (OSTI)

... investment on the following day was intended to call attention to the importance of British private investment, and in opening the debate Lord Aldington was particularly concerned with the possible ... publication of the Overseas Development Institute, Investment and Development, in which the role of private investment in developing countries is discussed *. Following an introduc tion by Sir Leslie ...

1965-07-17T23:59:59.000Z

456

Policies for the 2011 Assessment of country  

E-Print Network [OSTI]

. This means huge investments, totalling 1.4% of global GDP per year by 2030, which will have to be madePolicies for the future 2011 Assessment of country energy and climate policies World Energy Council Project Partner OLIVER WYMAN #12;Officers of the World Energy Council Pierre Gadonneix Chair Abubakar

Kammen, Daniel M.

457

Application of a medium-range global hydrologic probabilistic forecast scheme to the Ohio River Basin  

SciTech Connect (OSTI)

A 10-day globally applicable flood prediction scheme was evaluated using the Ohio River basin as a test site for the period 2003-2007. The Variable Infiltration Capacity (VIC) hydrology model was initialized with the European Centre for Medium Range Weather Forecasts (ECMWF) analysis temperatures and wind, and Tropical Rainfall Monitoring Mission Multi Satellite Precipitation Analysis (TMPA) precipitation up to the day of forecast. In forecast mode, the VIC model was then forced with a calibrated and statistically downscaled ECMWF ensemble prediction system (EPS) 10-day ensemble forecast. A parallel set up was used where ECMWF EPS forecasts were interpolated to the spatial scale of the hydrology model. Each set of forecasts was extended by 5 days using monthly mean climatological variables and zero precipitation in order to account for the effect of initial conditions. The 15-day spatially distributed ensemble runoff forecasts were then routed to four locations in the basin, each with different drainage areas. Surrogates for observed daily runoff and flow were provided by the reference run, specifically VIC simulation forced with ECMWF analysis fields and TMPA precipitation fields. The flood prediction scheme using the calibrated and downscaled ECMWF EPS forecasts was shown to be more accurate and reliable than interpolated forecasts for both daily distributed runoff forecasts and daily flow forecasts. Initial and antecedent conditions dominated the flow forecasts for lead times shorter than the time of concentration depending on the flow forecast amounts and the drainage area sizes. The flood prediction scheme had useful skill for the 10 following days at all sites.

Voisin, Nathalie; Pappenberger, Florian; Lettenmaier, D. P.; Buizza, Roberto; Schaake, John

2011-08-15T23:59:59.000Z

458

Annual Energy Outlook 2006 with Projections to 2030 - Forecast Comparisons  

Gasoline and Diesel Fuel Update (EIA)

Forecast Comparisons Forecast Comparisons Annual Energy Outlook 2006 with Projections to 2030 Only GII produces a comprehensive energy projection with a time horizon similar to that of AEO2006. Other organizations address one or more aspects of the energy markets. The most recent projection from GII, as well as others that concentrate on economic growth, international oil prices, energy consumption, electricity, natural gas, petroleum, and coal, are compared here with the AEO2006 projections. Economic Growth In the AEO2006 reference case, the projected growth in real GDP, based on 2000 chain-weighted dollars, is 3.0 percent per year from 2004 to 2030 (Table 19). For the period from 2004 to 2025, real GDP growth in the AEO2006 reference case is similar to the average annual growth projected in AEO2005. The AEO2006 projections of economic growth are based on the August short-term forecast of GII, extended by EIA through 2030 and modified to reflect EIA’s view on energy prices, demand, and production.

459

Integrated Management Requirements mapping  

SciTech Connect (OSTI)

This document contains five appendices documenting how Sandia implemented the DOE Conduct of Operations (5480.19) and DOE Quality Assurance (5700.6C) orders. It provides a mapping of the Sandia integrated requirements to the specific requirements of each Order and a mapping to Sandia`s approved program for implementing the Conduct of Operations Order.

Holmes, J.T.; Andrews, N.S.

1992-06-01T23:59:59.000Z

460

Integrated Management Requirements mapping  

SciTech Connect (OSTI)

This document contains five appendices documenting how Sandia implemented the DOE Conduct of Operations (5480.19) and DOE Quality Assurance (5700.6C) orders. It provides a mapping of the Sandia integrated requirements to the specific requirements of each Order and a mapping to Sandia's approved program for implementing the Conduct of Operations Order.

Holmes, J.T.; Andrews, N.S.

1992-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "forecast maps countries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Enridged contour maps  

Science Journals Connector (OSTI)

The visualization of scalar functions of two variables is a classic and ubiquitous application. We present a new method to visualize such data. The method is based on a non-linear mapping of the function to a height field, followed by visualization as ... Keywords: contours, flow visualization, height fields, mapping, multivariate visualization

Jarke J. van Wijk; Alexandru Telea

2001-10-01T23:59:59.000Z

462

Maps & Geographic Information  

E-Print Network [OSTI]

Geog 380 Maps & Geographic Information Geog 488/588 GIS 1: Introduction to GIS Geog 475/575 Digital 495/595 Maps, Models & GIS Geog 489/589 Building a GIS Data Base with GPS Geog 492/592 GIS 2: Advanced Compilation & Data Base Design Geog 490/590 GIS Programming Geog 410/510 Applied GIS: 3-D Visualization Geog

463

Introgression & mapping Fiber cell  

E-Print Network [OSTI]

Germplasm Introgression Genomics & mapping Fiber cell initiation Radiation hybrid (RH) mapping and breeding. Research activities commonly include plant breeding, genetics, genomics, cytogenetics, molecular methods. (C, S) · Contribute uniquely to genomics and its relevance to genetic improvement (C,S) · Harness

464

Beyond "Partly Sunny": A Better Solar Forecast | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Beyond "Partly Sunny": A Better Solar Forecast Beyond "Partly Sunny": A Better Solar Forecast Beyond "Partly Sunny": A Better Solar Forecast December 7, 2012 - 10:00am Addthis The Energy Department is investing in better solar forecasting techniques to improve the reliability and stability of solar power plants during periods of cloud coverage. | Photo by Dennis Schroeder/NREL. The Energy Department is investing in better solar forecasting techniques to improve the reliability and stability of solar power plants during periods of cloud coverage. | Photo by Dennis Schroeder/NREL. Minh Le Minh Le Program Manager, Solar Program What Do These Projects Do? The Energy Department is investing $8 million in two cutting-edge projects to increase the accuracy of solar forecasting at sub-hourly,

465

Mid-term electricity market clearing price forecasting: A hybrid LSSVM and ARMAX approach  

Science Journals Connector (OSTI)

Abstract A hybrid mid-term electricity market clearing price (MCP) forecasting model combining both least squares support vector machine (LSSVM) and auto-regressive moving average with external input (ARMAX) modules is presented in this paper. Mid-term electricity MCP forecasting has become essential for resources reallocation, maintenance scheduling, bilateral contracting, budgeting and planning purposes. Currently, there are many techniques available for short-term electricity market clearing price (MCP) forecasting, but very little has been done in the area of mid-term electricity MCP forecasting. PJM interconnection data have been utilized to illustrate the proposed model with numerical examples. The proposed hybrid model showed improved forecasting accuracy compared to a forecasting model using a single LSSVM.

Xing Yan; Nurul A. Chowdhury

2013-01-01T23:59:59.000Z

466

Log-normal distribution based EMOS models for probabilistic wind speed forecasting  

E-Print Network [OSTI]

Ensembles of forecasts are obtained from multiple runs of numerical weather forecasting models with different initial conditions and typically employed to account for forecast uncertainties. However, biases and dispersion errors often occur in forecast ensembles, they are usually under-dispersive and uncalibrated and require statistical post-processing. We present an Ensemble Model Output Statistics (EMOS) method for calibration of wind speed forecasts based on the log-normal (LN) distribution, and we also show a regime-switching extension of the model which combines the previously studied truncated normal (TN) distribution with the LN. Both presented models are applied to wind speed forecasts of the eight-member University of Washington mesoscale ensemble, of the fifty-member ECMWF ensemble and of the eleven-member ALADIN-HUNEPS ensemble of the Hungarian Meteorological Service, and their predictive performances are compared to those of the TN and general extreme value (GEV) distribution based EMOS methods an...

Baran, Sndor

2014-01-01T23:59:59.000Z

467

map | OpenEI  

Open Energy Info (EERE)

map map Dataset Summary Description (Abstract): A map depicting model estimates of monthly average daily total radiation using inputs derived from satellite and surface observations of cloud cover, aerosol optical depth, precipitable water vapor, albedo, atmospheric pressure and ozone sampled at a 40km resolution. (Purpose): A visual depiction of solar energy resource for photovoltaic power systems. Source NREL Date Released December 11th, 2003 (11 years ago) Date Updated October 30th, 2007 (7 years ago) Keywords Cuba GEF GHI map NREL solar SWERA UNEP Data application/pdf icon Download Maps (pdf, 1.3 MiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period License License Open Data Commons Attribution License Comment Please cite NREL and UNEP SWERA.

468

maps | OpenEI  

Open Energy Info (EERE)

maps maps Dataset Summary Description (Abstract): 50 m wind power density (W/m2) maps of Sri Lanka (Purpose): To provide information on the wind resource potential within Sri Lanka, with supplemental information on political boundaries, transmission lines, roads, and terrain relief. Source NREL Date Released June 30th, 2004 (10 years ago) Date Updated November 01st, 2007 (7 years ago) Keywords GEF GIS maps NREL Sri Lanka SWERA UNEP wind Data application/zip icon Download Maps (zip, 799.1 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period License License Open Data Commons Public Domain Dedication and Licence (PDDL) Comment Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset

469

Forecasts on the Dark Energy and Primordial Non-Gaussianity Observations with the Tianlai Cylinder Array  

E-Print Network [OSTI]

The Tianlai experiment is dedicated to the observation of large scale structures (LSS) by the 21 cm intensity mapping technique. In this paper we make forecasts on its capability at observing or constraining the dark energy parameters and the primordial non-Gaussianity. From the LSS data one can use the baryon acoustic oscillation (BAO) and the growth rate derived from the redshift space distortion (RSD) to measure the dark energy density and equation of state. The primordial non-Gaussianity can be constrained either by looking for scale-dependent bias in the power spectrum, or by using the bispectrum. Here we consider three cases: the Tianlai cylinder array pathfinder which is currently being built, an upgrade of the pathfinder array with more receiver units, and the full-scale Tianlai cylinder array. Using the full-scale Tianlai experiment, we expect $\\sigma_{w_0} \\sim 0.082$ and $\\sigma_{w_a} \\sim 0.21$ from the BAO and RSD measurements, $\\sigma_{\\rm f_{NL}}^{\\rm local} \\sim 14$ from the power spectrum mea...

Xu, Yidong; Chen, Xuelei

2014-01-01T23:59:59.000Z

470

Central Wind Forecasting Programs in North America by Regional Transmission Organizations and Electric Utilities: Revised Edition  

SciTech Connect (OSTI)

The report and accompanying table addresses the implementation of central wind power forecasting by electric utilities and regional transmission organizations in North America. The first part of the table focuses on electric utilities and regional transmission organizations that have central wind power forecasting in place; the second part focuses on electric utilities and regional transmission organizations that plan to adopt central wind power forecasting in 2010. This is an update of the December 2009 report, NREL/SR-550-46763.

Rogers, J.; Porter, K.

2011-03-01T23:59:59.000Z

471

Comparison of Airbus, Boeing, Rolls-Royce and AVITAS market forecasts  

Science Journals Connector (OSTI)

Forecasts of future world demand for commercial aircraft are published fairly regularly by Airbus and Boeing. Other players in the aviation business, Rolls Royce and AVITAS, have also published forecasts in the past year. This article analyses and compares the methods used and assumptions made by the several forecasters. It concludes that there are wide areas of similarity in the approaches used and highlights the most significant area of divergence.

Ralph Anker

2000-01-01T23:59:59.000Z

472

Forecasting the monthly volume of orders for southern pine lumber - an econometric model  

E-Print Network [OSTI]

to measure various aspects of the California redwood lumber industry. The first sought to explain the economic struc- ture of the short-run market for redwood lumber by preparing short-range forecasts of price, new orders, shipments, produc- tion, stocks... regression coefficients (20) . The second study was directed at developing a short-run forecast of new orders for redwood lumber (21) . Several forecasting techniques were developed, but econometrics, i. e. , multiple regression analysis, provided...

Jackson, Ben Douglas

2012-06-07T23:59:59.000Z

473

Low Carbon Growth Country Studies Program | Open Energy Information  

Open Energy Info (EERE)

Country Studies Program Country Studies Program Jump to: navigation, search Name Low Carbon Growth Country Studies Program Agency/Company /Organization Energy Sector Management Assistance Program of the World Bank Sector Climate, Energy Focus Area Buildings, Energy Efficiency, Industry, Transportation Topics Background analysis, Baseline projection, Low emission development planning, Policies/deployment programs Website http://www.esmap.org/esmap/ Country Poland, Republic of Macedonia UN Region Northern Europe References ESMAP-Macedonia-Low Carbon Growth Country Studies Program[1] References ↑ "ESMAP-Macedonia-Low Carbon Growth Country Studies Program" Retrieved from "http://en.openei.org/w/index.php?title=Low_Carbon_Growth_Country_Studies_Program&oldid=576259"

474

Products Produced in Countries Other Than Iran  

U.S. Energy Information Administration (EIA) Indexed Site

April 25, 2013 April 25, 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 The eighth in a series of reports required by section 1245 (d) (4) (A) of the National Defense Authorization Act for Fiscal Year 2012 April 2013 U.S. Energy Information Administration | Availability and Price of Petroleum and Petroleum Products Produced in Countries Other Than Iran 1 Table of Contents March - April 2013 Update ........................................................................................................................... 2 Tables ............................................................................................................................................................ 4 Figures ......................................................................................................................................................... 10

475

OSIRIS-Country-by-Country Opportunity Cost Curves | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » OSIRIS-Country-by-Country Opportunity Cost Curves Jump to: navigation, search Tool Summary Name: OSIRIS-Country-by-Country Opportunity Cost Curves Agency/Company /Organization: Conservation International Sector: Climate, Land Focus Area: Agriculture, Forestry Topics: Market analysis Resource Type: Dataset, Software/modeling tools User Interface: Spreadsheet Website: www.conservation.org/osiris/Pages/overview.aspx Cost: Free UN Region: Eastern Africa, Middle Africa, Northern Africa, Southern Africa, Western Africa, Caribbean, Central America, South America, Northern America, Central Asia, Eastern Asia, Southern Asia, South-Eastern Asia, Western Asia, Eastern Europe, Northern Europe, Southern Europe, Western Europe, Australia and New Zealand, Melanesia, Micronesia, Polynesia

476

NREL: Dynamic Maps, GIS Data, and Analysis Tools - Wind Maps  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the MapSearch site. For information on how the 50m maps were developed, access the GIS Data Background page. For information on how some of the other wind maps were...

477

NREL: Dynamic Maps, GIS Data, and Analysis Tools - Solar Maps  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

For more PV resource maps, access the MapSearch site. For Geographic Information System (GIS) solar resource data, access the Data Resources page. For interactive maps and tools...

478

Energy Department Announces $2.5 Million to Improve Wind Forecasting...  

Energy Savers [EERE]

better forecasts, wind energy plant operators and industry professionals can ensure wind turbines operate closer to maximum capacity, leading to lower energy costs for consumers....

479

Intra-hour wind power variability assessment using the conditional range metric : quantification, forecasting and applications.  

E-Print Network [OSTI]

??The research presented herein concentrates on the quantification, assessment and forecasting of intra-hour wind power variability. Wind power is intrinsically variable and, due to the (more)

Boutsika, Thekla

2013-01-01T23:59:59.000Z

480

Crude oil prices and petroleum inventories : remedies for a broken oil price forecasting model.  

E-Print Network [OSTI]

??The empirical relationship between crude oil prices and petroleum inventories has been exploited in a number of short-term oil price forecasting models. Some of the (more)

Grimstad, Dan

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "forecast maps countries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Study and implementation of mesoscale weather forecasting models in the wind industry.  

E-Print Network [OSTI]

?? As the wind industry is developing, it is asking for more reliable short-term wind forecasts to better manage the wind farms operations and electricity (more)

Jourdier, Bndicte

2012-01-01T23:59:59.000Z

482

Value of Improved Wind Power Forecasting in the Western Interconnection (Poster)  

SciTech Connect (OSTI)

Wind power forecasting is a necessary and important technology for incorporating wind power into the unit commitment and dispatch process. It is expected to become increasingly important with higher renewable energy penetration rates and progress toward the smart grid. There is consensus that wind power forecasting can help utility operations with increasing wind power penetration; however, there is far from a consensus about the economic value of improved forecasts. This work explores the value of improved wind power forecasting in the Western Interconnection of the United States.

Hodge, B.

2013-12-01T23:59:59.000Z

483

A high-resolution, cloud-assimilating numerical weather prediction model for solar irradiance forecasting  

E-Print Network [OSTI]

iscriticalforcoastalCaliforniasolarforecasting. affectingsolarirradianceinsouthernCalifornia. solar photovoltaicgeneration(thesouthernCalifornia

Mathiesen, Patrick; Collier, Craig; Kleissl, Jan

2013-01-01T23:59:59.000Z

484

E-Print Network 3.0 - analytical energy forecasting Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of PV energy production using... Short term forecasting of solar radiation based on satellite data Elke Lorenz, Annette Hammer... , Detlev Heinemann Energy and Semiconductor...

485

Upcoming Funding Opportunity for Wind Forecasting Improvement Project in Complex Terrain  

Broader source: Energy.gov [DOE]

The DOE Wind Program has issued a Notice of Intent for a funding opportunity, tentatively titled Wind Forecasting Improvement Project in Complex Terrain.

486

Comparison of numerical weather prediction solar irradiance forecasts in the US, Canada and Europe  

Science Journals Connector (OSTI)

Abstract This article combines and discusses three independent validations of global horizontal irradiance (GHI) multi-day forecast models that were conducted in the US, Canada and Europe. All forecast models are based directly or indirectly on numerical weather prediction (NWP). Two models are common to the three validation efforts the ECMWF global model and the GFS-driven WRF mesoscale model and allow general observations: (1) the GFS-based WRF- model forecasts do not perform as well as global forecast-based approaches such as ECMWF and (2) the simple averaging of models output tends to perform better than individual models.

Richard Perez; Elke Lorenz; Sophie Pelland; Mark Beauharnois; Glenn Van Knowe; Karl Hemker Jr.; Detlev Heinemann; Jan Remund; Stefan C. Mller; Wolfgang Traunmller; Gerald Steinmauer; David Pozo; Jose A. Ruiz-Arias; Vicente Lara-Fanego; Lourdes Ramirez-Santigosa; Martin Gaston-Romero; Luis M. Pomares

2013-01-01T23:59:59.000Z

487

Unit I-2 Linear Maps 1 Linear maps  

E-Print Network [OSTI]

Unit I-2 Linear Maps 1 Unit I-2 Linear maps Unit I-2 Linear Maps 2 Linear map · V & U are vector spaces over the same scalars · a function f: VU is a linear map if it preserves the vector space transformation [particularly when f: RnRm] ­ linear operator when f: V V [same v.s.] ­ linear mapping ­ linear

Birkett, Stephen

488

Site Map - Pantex Plant  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Site Map Site Map Site Map Page Content Pantex.com Mission & Strategies Mission National Security Nuclear Explosive Operations Nuclear Material Operations HE Operations Strategies Advance HE Center of Excellence Exemplify a High Reliability Organization Health & Safety Safety Training Occupational Medicine Contractor Safety Environment Environmental Projects & Operations Regulatory Compliance Waste Operations Environmental Management System Environmental Document Library Public Meetings Doing Business With Pantex Procurement How We Buy Subcontracting Opportunities Supplier Information Profile Suspect/Counterfiet Items Business Definitions Documents and Forms Accounts Payable Work for Others Our Capabilities How to do Business with the Pantex eXMC Employee Information Benefits

489

Fractional Standard Map  

E-Print Network [OSTI]

Properties of the phase space of the standard map with memory are investigated. This map was obtained from a kicked fractional differential equation. Depending on the value of the parameter of the map and the fractional order of the derivative in the original differential equation this nonlinear dynamical system demonstrates attractors (fixed points, stables periodic trajectories, slow converging and slow diverging trajectories, ballistic trajectories, and fractal-like structures) and/or chaotic trajectories. At least one type of fractal-like sticky attractors in the chaotic sea was observed.

Mark Edelman; Vasily E. Tarasov

2009-11-24T23:59:59.000Z

490

Dynamics of acyclic interval maps  

E-Print Network [OSTI]

Vol. 6 (2009) Dynamics of acyclic interval maps [16] D.orbits and bifurcation of maps of the interval. SIAM J.Dynamics of acyclic interval maps Morris W. Hirsch He who

Hirsch, Morris W

2009-01-01T23:59:59.000Z

491

Maps of Selected State Subdivisions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Map 8: Eastern Planning Area, Gulf of Mexico Map 1: Alaska AK 50 - North Onshore and Offshore AK 10 - South Onshore AK 05 - South State Offshore AK 00 - South Federal Offshore Map...

492

Forecast of Contracting and Subcontracting Opportunities, Fiscal year 1995  

SciTech Connect (OSTI)

Welcome to the US Department of Energy`s Forecast of Contracting and Subcontracting Opportunities. This forecast, which is published pursuant to Public Low 100--656, ``Business Opportunity Development Reform Act of 1988,`` is intended to inform small business concerns, including those owned and controlled by socially and economically disadvantaged individuals, and women-owned small business concerns, of the anticipated fiscal year 1995 contracting and subcontracting opportunities with the Department of Energy and its management and operating contractors and environmental restoration and waste management contractors. This document will provide the small business contractor with advance notice of the Department`s procurement plans as they pertain to small, small disadvantaged and women-owned small business concerns.Opportunities contained in the forecast support the mission of the Department, to serve as advocate for the notion`s energy production, regulation, demonstration, conservation, reserve maintenance, nuclear weapons and defense research, development and testing, when it is a national priority. The Department`s responsibilities include long-term, high-risk research and development of energy technology, the marketing of Federal power, and maintenance of a central energy data collection and analysis program. A key mission for the Department is to identify and reduce risks, as well as manage waste at more than 100 sites in 34 states and territories, where nuclear energy or weapons research and production resulted in radioactive, hazardous, and mixed waste contamination. Each fiscal year, the Department establishes contracting goals to increase contracts to small business concerns and meet our mission objectives.

Not Available

1995-02-01T23:59:59.000Z

493

Data transforms with exponential smoothing methods of forecasting  

Science Journals Connector (OSTI)

Abstract In this paper, transforms are used with exponential smoothing, in the quest for better forecasts. Two types of transforms are explored: those which are applied to a time series directly, and those which are applied indirectly to the prediction errors. The various transforms are tested on a large number of time series from the M3 competition, and ANOVA is applied to the results. We find that the non-transformed time series is significantly worse than some transforms on the monthly data, and on a distribution-based performance measure for both annual and quarterly data.

Adrian N. Beaumont

2014-01-01T23:59:59.000Z

494

Web Site Map  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Help » Web Site Map Help » Web Site Map Web Site Map The links listed below include all pages on the site except document topic pages. Home Privacy/Security Help Web Site Map Mailing Services Remove me from the List Contact Us About Us News and Events News Archives News/Media FAQs Internet Resources Documents DUF6 EIS Historical Context What is an EIS? Why EIS is Needed Who is Responsible? EIS Process EIS Topics EIS Alternatives EIS Schedule Public Involvement Opportunities Public Comment Form For More Info DUF6 Management and Uses Management Responsibilities DUF6 Storage How DUF6 is Stored Where DUF6 is Stored Cylinder Leakage DUF6 Storage Safety DUF6 PEIS Cylinder Surveillance and Maintenance Conversion Potential DU Uses "Business Case" for R&D on Beneficial Uses of DU Catalysts for Destruction of Air Pollutants

495

Surveying & Mapping Surveying  

E-Print Network [OSTI]

in many states. Tuition Discount Residents from New Hampshire, Vermont, Massachusetts services involve locating boundaries, land development, and mapping. Most careers. Employers Graduates work for both private firms and public agencies. The Bureau

Thomas, Andrew

496

ARM - Instrument - maps  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

govInstrumentsmaps Documentation MAPS : XDC documentation ARM Data Discovery Browse Data Comments? We would love to hear from you Send us a note below or call us at...

497

RMOTC - Contact Us - Maps  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Maps M ap - RMOTCs testing facility is located 35 miles north of Casper, Wyoming RMOTC's test site, NPR-3, is located about 35 miles north of Casper, Wyoming. For driving...

498

Dating the Vinland Map  

ScienceCinema (OSTI)

Scientists from Brookhaven National Laboratory, the University of Arizona, and the Smithsonian Institution used carbon-dating technology to determine the age of a controversial parchment that might be the first-ever map of North America.

None

2013-07-17T23:59:59.000Z

499

SRNL Site Map  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DOE DOE-EM DOE-SR NNSA SRS SRNS Site Map Disclaimer Legal Information SRNL * Aiken * SC * 29808-0001 * SRNL Operator: 803-725-6211 SRNL is the DOE Office of Environmental...

500

Logistic Map Potentials  

E-Print Network [OSTI]

We develop and illustrate methods to compute all single particle potentials that underlie the logistic map, x --> sx(1-x) for 02. We illustrate the methods numerically for the cases s=5/2 and s=10/3.

Thomas Curtright; Andrzej Veitia

2010-05-27T23:59:59.000Z