Powered by Deep Web Technologies
Note: This page contains sample records for the topic "forecast future demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

HIERARCHY OF PRODUCTION DECISIONS Forecasts of future demand  

E-Print Network [OSTI]

HIERARCHY OF PRODUCTION DECISIONS Forecasts of future demand Aggregate plan Master production Planning and Forecast Bias · Forecast error seldom is normally distributed · There are few finite planning

Brock, David

2

Abstract--Forecasting of future electricity demand is very important for decision making in power system operation and  

E-Print Network [OSTI]

Abstract--Forecasting of future electricity demand is very important for decision making in power industry, accurate forecasting of future electricity demand has become an important research area sector. This paper presents a novel approach for mid-term electricity load forecasting. It uses a hybrid

Ducatelle, Frederick

3

CONSULTANT REPORT DEMAND FORECAST EXPERT  

E-Print Network [OSTI]

CONSULTANT REPORT DEMAND FORECAST EXPERT PANEL INITIAL forecast, end-use demand modeling, econometric modeling, hybrid demand modeling, energyMahon, Carl Linvill 2012. Demand Forecast Expert Panel Initial Assessment. California Energy

4

Demand Forecast INTRODUCTION AND SUMMARY  

E-Print Network [OSTI]

Demand Forecast INTRODUCTION AND SUMMARY A 20-year forecast of electricity demand is a required of any forecast of electricity demand and developing ways to reduce the risk of planning errors that could arise from this and other uncertainties in the planning process. Electricity demand is forecast

5

ENERGY DEMAND FORECAST METHODS REPORT  

E-Print Network [OSTI]

CALIFORNIA ENERGY COMMISSION ENERGY DEMAND FORECAST METHODS REPORT Companion Report to the California Energy Demand 2006-2016 Staff Energy Demand Forecast Report STAFFREPORT June 2005 CEC-400 .......................................................................................................................................1-1 ENERGY DEMAND FORECASTING AT THE CALIFORNIA ENERGY COMMISSION: AN OVERVIEW

6

TRAVEL DEMAND AND RELIABLE FORECASTS  

E-Print Network [OSTI]

TRAVEL DEMAND AND RELIABLE FORECASTS FOR TRANSIT MARK FILIPI, AICP PTP 23rd Annual Transportation transportation projects § Develop and maintain Regional Travel Demand Model § Develop forecast socio in cooperative review during all phases of travel demand forecasting 4 #12;Cooperative Review Should Include

Minnesota, University of

7

Demand Forecasting of New Products  

E-Print Network [OSTI]

Demand Forecasting of New Products Using Attribute Analysis Marina Kang A thesis submitted Abstract This thesis is a study into the demand forecasting of new products (also referred to as Stock upon currently employed new-SKU demand forecasting methods which involve the processing of large

Sun, Yu

8

CALIFORNIA ENERGY DEMAND 2006-2016 STAFF ENERGY DEMAND FORECAST  

E-Print Network [OSTI]

CALIFORNIA ENERGY COMMISSION CALIFORNIA ENERGY DEMAND 2006-2016 STAFF ENERGY DEMAND FORECAST Demand Forecast report is the product of the efforts of many current and former California Energy-2 Demand Forecast Disaggregation......................................................1-4 Statewide

9

CALIFORNIA ENERGY DEMAND 20122022 FINAL FORECAST  

E-Print Network [OSTI]

CALIFORNIA ENERGY DEMAND 20122022 FINAL FORECAST Volume 2: Electricity Demand.Oglesby Executive Director #12;i ACKNOWLEDGEMENTS The demand forecast is the combined product estimates. Margaret Sheridan provided the residential forecast. Mitch Tian prepared the peak demand

10

CALIFORNIA ENERGY DEMAND 20142024 REVISED FORECAST  

E-Print Network [OSTI]

CALIFORNIA ENERGY DEMAND 20142024 REVISED FORECAST Volume 2: Electricity Demand Robert P. Oglesby Executive Director #12;i ACKNOWLEDGEMENTS The demand forecast is the combined provided estimates for demand response program impacts and contributed to the residential forecast. Mitch

11

Draft Fourth Northwest Conservation and Electric Power Plan, Appendix D ECONOMIC AND DEMAND FORECASTS  

E-Print Network [OSTI]

AND DEMAND FORECASTS INTRODUCTION AND SUMMARY Role of the Demand Forecast A demand forecast of at least 20 years is one of the explicit requirements of the Northwest Power Act. A demand forecast is, of course analysis. Because the future is inherently uncertain, the Council forecasts a range of future demand levels

12

ELECTRICITY DEMAND FORECAST COMPARISON REPORT  

E-Print Network [OSTI]

CALIFORNIA ENERGY COMMISSION ELECTRICITY DEMAND FORECAST COMPARISON REPORT STAFFREPORT June 2005 Gorin Principal Authors Lynn Marshall Project Manager Kae C. Lewis Acting Manager Demand Analysis Office Valerie T. Hall Deputy Director Energy Efficiency and Demand Analysis Division Scott W. Matthews Acting

13

CALIFORNIA ENERGY DEMAND 20142024 FINAL FORECAST  

E-Print Network [OSTI]

CALIFORNIA ENERGY DEMAND 2014­2024 FINAL FORECAST Volume 1: Statewide Electricity Demand in this report. #12;i ACKNOWLEDGEMENTS The demand forecast is the combined product of the hard work to the residential forecast. Mitch Tian prepared the peak demand forecast. Ravinderpal Vaid provided the projections

14

REVISED CALIFORNIA ENERGY DEMAND FORECAST 20122022  

E-Print Network [OSTI]

REVISED CALIFORNIA ENERGY DEMAND FORECAST 20122022 Volume 2: Electricity Demand by Utility ACKNOWLEDGEMENTS The staff demand forecast is the combined product of the hard work and expertise of numerous the residential forecast. Mitch Tian prepared the peak demand forecast. Ravinderpal Vaid provided the projections

15

REVISED CALIFORNIA ENERGY DEMAND FORECAST 20122022  

E-Print Network [OSTI]

REVISED CALIFORNIA ENERGY DEMAND FORECAST 20122022 Volume 1: Statewide Electricity Demand in this report. #12;i ACKNOWLEDGEMENTS The staff demand forecast is the combined product of the hard work Sheridan provided the residential forecast. Mitch Tian prepared the peak demand forecast. Ravinderpal Vaid

16

CALIFORNIA ENERGY DEMAND 20142024 FINAL FORECAST  

E-Print Network [OSTI]

CALIFORNIA ENERGY DEMAND 20142024 FINAL FORECAST Volume 2: Electricity Demand The demand forecast is the combined product of the hard work and expertise of numerous California Energy for demand response program impacts and contributed to the residential forecast. Mitch Tian prepared

17

CALIFORNIA ENERGY DEMAND 20142024 REVISED FORECAST  

E-Print Network [OSTI]

CALIFORNIA ENERGY DEMAND 2014­2024 REVISED FORECAST Volume 1: Statewide Electricity Demand in this report. #12;i ACKNOWLEDGEMENTS The demand forecast is the combined product of the hard work provided estimates for demand response program impacts and contributed to the residential forecast. Mitch

18

FINAL DEMAND FORECAST FORMS AND INSTRUCTIONS FOR THE 2007  

E-Print Network [OSTI]

CALIFORNIA ENERGY COMMISSION FINAL DEMAND FORECAST FORMS AND INSTRUCTIONS FOR THE 2007 INTEGRATED Table of Contents General Instructions for Demand Forecast Submittals.............................................................................. 4 Protocols for Submitted Demand Forecasts

19

Revised Economic andRevised Economic and Demand ForecastsDemand Forecasts  

E-Print Network [OSTI]

Revised Economic andRevised Economic and Demand ForecastsDemand Forecasts April 14, 2009 Massoud,000 MW #12;6 Demand Forecasts Price Effect (prior to conservation) - 5,000 10,000 15,000 20,000 25,000 30 Jourabchi #12;2 Changes since the Last Draft ForecastChanges since the Last Draft Forecast Improved

20

CALIFORNIA ENERGY DEMAND 20122022 FINAL FORECAST  

E-Print Network [OSTI]

CALIFORNIA ENERGY DEMAND 20122022 FINAL FORECAST Volume 1: Statewide Electricity forecast is the combined product of the hard work and expertise of numerous staff members in the Demand prepared the peak demand forecast. Ravinderpal Vaid provided the projections of commercial floor space

Note: This page contains sample records for the topic "forecast future demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

FINAL STAFF FORECAST OF 2008 PEAK DEMAND  

E-Print Network [OSTI]

CALIFORNIA ENERGY COMMISSION FINAL STAFF FORECAST OF 2008 PEAK DEMAND STAFFREPORT June 2007 CEC-200 of the information in this paper. #12;Abstract This document describes staff's final forecast of 2008 peak demand demand forecasts for the respective territories of the state's three investor-owned utilities (IOUs

22

Structuring and integrating human knowledge in demand forecasting: a judgmental adjustment approach  

E-Print Network [OSTI]

1 Structuring and integrating human knowledge in demand forecasting: a judgmental adjustment.cheikhrouhou@epfl.ch Abstract Demand forecasting consists of using data of the past demand to obtain an approximation of the future demand. Mathematical approaches can lead to reliable forecasts in deterministic context through

Paris-Sud XI, Université de

23

A collaborative demand forecasting process with event-based fuzzy judgments  

E-Print Network [OSTI]

1 A collaborative demand forecasting process with event-based fuzzy judgments Naoufel Cheikhrouhoua to reliable demand forecast in some environments by extrapolating regular patterns in time-series. However for demand planning purposes. Since forecasters have partial knowledge of the context and of future events

Boyer, Edmond

24

Coordinating production quantities and demand forecasts through penalty schemes  

E-Print Network [OSTI]

Coordinating production quantities and demand forecasts through penalty schemes MURUVVET CELIKBAS1 departments which enable organizations to match demand forecasts with production quantities. This research problem where demand is uncertain and the marketing de- partment provides a forecast to manufacturing

Swaminathan, Jayashankar M.

25

Forecasting Market Demand for New Telecommunications Services: An Introduction  

E-Print Network [OSTI]

Forecasting Market Demand for New Telecommunications Services: An Introduction Peter Mc in demand forecasting for new communication services. Acknowledgments: The writing of this paper commenced employers or consultancy clients. KEYWORDS: Demand Forecasting, New Product Marketing, Telecommunica- tions

Parsons, Simon

26

Applying Bayesian Forecasting to Predict New Customers' Heating Oil Demand.  

E-Print Network [OSTI]

??This thesis presents a new forecasting technique that estimates energy demand by applying a Bayesian approach to forecasting. We introduce our Bayesian Heating Oil Forecaster (more)

Sakauchi, Tsuginosuke

2011-01-01T23:59:59.000Z

27

Univariate Modeling and Forecasting of Monthly Energy Demand Time Series  

E-Print Network [OSTI]

Univariate Modeling and Forecasting of Monthly Energy Demand Time Series Using Abductive and Neural demand time series based only on data for six years to forecast the demand for the seventh year. Both networks, Neural networks, Modeling, Forecasting, Energy demand, Time series forecasting, Power system

Abdel-Aal, Radwan E.

28

Sixth Northwest Conservation and Electric Power Plan Appendix C: Demand Forecast  

E-Print Network [OSTI]

Sixth Northwest Conservation and Electric Power Plan Appendix C: Demand Forecast Energy Demand................................................................................................................................. 1 Demand Forecast Methodology.................................................................................................. 3 New Demand Forecasting Model for the Sixth Plan

29

PRELIMINARY CALIFORNIA ENERGY DEMAND FORECAST 2012-2022  

E-Print Network [OSTI]

PRELIMINARY CALIFORNIA ENERGY DEMAND FORECAST 2012-2022 AUGUST 2011 CEC-200-2011-011-SD CALIFORNIA or adequacy of the information in this report. #12;i ACKNOWLEDGEMENTS The staff demand forecast forecast. Mitch Tian prepared the peak demand forecast. Ravinderpal Vaid provided the projections

30

CALIFORNIA ENERGY DEMAND 2008-2018 STAFF DRAFT FORECAST  

E-Print Network [OSTI]

CALIFORNIA ENERGY COMMISSION CALIFORNIA ENERGY DEMAND 2008-2018 STAFF DRAFT FORECAST Energy Demand 2008-2018 forecast supports the analysis and recommendations of the 2007 Integrated Energy Commission demand forecast models. Both the staff draft energy consumption and peak forecasts are slightly

31

AUTOMATION OF ENERGY DEMAND FORECASTING Sanzad Siddique, B.S.  

E-Print Network [OSTI]

AUTOMATION OF ENERGY DEMAND FORECASTING by Sanzad Siddique, B.S. A Thesis submitted to the Faculty OF ENERGY DEMAND FORECASTING Sanzad Siddique, B.S. Marquette University, 2013 Automation of energy demand of the energy demand forecasting are achieved by integrating nonlinear transformations within the models

Povinelli, Richard J.

32

Autoregressive Time Series Forecasting of Computational Demand  

E-Print Network [OSTI]

We study the predictive power of autoregressive moving average models when forecasting demand in two shared computational networks, PlanetLab and Tycoon. Demand in these networks is very volatile, and predictive techniques to plan usage in advance can improve the performance obtained drastically. Our key finding is that a random walk predictor performs best for one-step-ahead forecasts, whereas ARIMA(1,1,0) and adaptive exponential smoothing models perform better for two and three-step-ahead forecasts. A Monte Carlo bootstrap test is proposed to evaluate the continuous prediction performance of different models with arbitrary confidence and statistical significance levels. Although the prediction results differ between the Tycoon and PlanetLab networks, we observe very similar overall statistical properties, such as volatility dynamics.

Sandholm, Thomas

2007-01-01T23:59:59.000Z

33

U.S. Regional Demand Forecasts Using NEMS and GIS  

SciTech Connect (OSTI)

The National Energy Modeling System (NEMS) is a multi-sector, integrated model of the U.S. energy system put out by the Department of Energy's Energy Information Administration. NEMS is used to produce the annual 20-year forecast of U.S. energy use aggregated to the nine-region census division level. The research objective was to disaggregate this regional energy forecast to the county level for select forecast years, for use in a more detailed and accurate regional analysis of energy usage across the U.S. The process of disaggregation using a geographic information system (GIS) was researched and a model was created utilizing available population forecasts and climate zone data. The model's primary purpose was to generate an energy demand forecast with greater spatial resolution than what is currently produced by NEMS, and to produce a flexible model that can be used repeatedly as an add-on to NEMS in which detailed analysis can be executed exogenously with results fed back into the NEMS data flow. The methods developed were then applied to the study data to obtain residential and commercial electricity demand forecasts. The model was subjected to comparative and statistical testing to assess predictive accuracy. Forecasts using this model were robust and accurate in slow-growing, temperate regions such as the Midwest and Mountain regions. Interestingly, however, the model performed with less accuracy in the Pacific and Northwest regions of the country where population growth was more active. In the future more refined methods will be necessary to improve the accuracy of these forecasts. The disaggregation method was written into a flexible tool within the ArcGIS environment which enables the user to output the results in five year intervals over the period 2000-2025. In addition, the outputs of this tool were used to develop a time-series simulation showing the temporal changes in electricity forecasts in terms of absolute, per capita, and density of demand.

Cohen, Jesse A.; Edwards, Jennifer L.; Marnay, Chris

2005-07-01T23:59:59.000Z

34

Sixth Northwest Conservation and Electric Power Plan Chapter 3: Electricity Demand Forecast  

E-Print Network [OSTI]

Sixth Northwest Conservation and Electric Power Plan Chapter 3: Electricity Demand Forecast Summary............................................................................................................ 2 Sixth Power Plan Demand Forecast................................................................................................ 4 Demand Forecast Range

35

CALIFORNIA ENERGY DEMAND 2008-2018 STAFF REVISED FORECAST  

E-Print Network [OSTI]

CALIFORNIA ENERGY COMMISSION CALIFORNIA ENERGY DEMAND 2008-2018 STAFF REVISED FORECAST forecast is the combined product of the hard work and expertise of numerous staff members in the Demand, and utilities. Mitch Tian prepared the peak demand forecast. Ted Dang prepared the historic energy consumption

36

CALIFORNIA ENERGY DEMAND 2008-2018 STAFF REVISED FORECAST  

E-Print Network [OSTI]

CALIFORNIA ENERGY COMMISSION CALIFORNIA ENERGY DEMAND 2008-2018 STAFF REVISED FORECAST forecast is the combined product of the hard work and expertise of numerous staff in the Demand Analysis. Mitch Tian prepared the peak demand forecast. Ted Dang prepared the historic energy consumption data

37

Draft for Public Comment Appendix A. Demand Forecast  

E-Print Network [OSTI]

Draft for Public Comment A-1 Appendix A. Demand Forecast INTRODUCTION AND SUMMARY A 20-year forecast of electricity demand is a required component of the Council's Northwest Regional Conservation had a tradition of acknowledging the uncertainty of any forecast of electricity demand and developing

38

Forecasting Market Demand for New Telecommunications Services: An Introduction  

E-Print Network [OSTI]

Forecasting Market Demand for New Telecommunications Services: An Introduction Peter Mc to redress this situation by presenting a discussion of the issues involved in demand forecasting for new or consultancy clients. KEYWORDS: Demand Forecasting, New Product Marketing, Telecommunica­ tions Services. 1 #12

McBurney, Peter

39

Using Belief Functions to Forecast Demand for Mobile Satellite Services  

E-Print Network [OSTI]

Using Belief Functions to Forecast Demand for Mobile Satellite Services Peter McBurney and Simon.j.mcburney,s.d.parsonsg@elec.qmw.ac.uk Abstract. This paper outlines an application of belief functions to forecasting the demand for a new service in a new category, based on new technology. Forecasting demand for a new product or service

McBurney, Peter

40

Forecast Horizons for Production Planning with Stochastic Demand Alfredo Garcia and Robert L. Smith  

E-Print Network [OSTI]

Forecast Horizons for Production Planning with Stochastic Demand Alfredo Garcia and Robert L. Smith Abstract Forecast horizons, i.e long enough planning horizons that ensure agreement of first period optimal production decisions of finite and infinite horizon problems regardless of changes in future demand

Smith, Robert L.

Note: This page contains sample records for the topic "forecast future demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Demand Forecast and Performance Prediction in Peer-Assisted On-Demand Streaming Systems  

E-Print Network [OSTI]

Demand Forecast and Performance Prediction in Peer-Assisted On-Demand Streaming Systems Di Niu on the Internet. Automated demand forecast and performance prediction, if implemented, can help with capacity an accurate user demand forecast. In this paper, we analyze the operational traces collected from UUSee Inc

Li, Baochun

42

Reducing the demand forecast error due to the bullwhip effect in the computer processor industry  

E-Print Network [OSTI]

Intel's current demand-forecasting processes rely on customers' demand forecasts. Customers do not revise demand forecasts as demand decreases until the last minute. Intel's current demand models provide little guidance ...

Smith, Emily (Emily C.)

2010-01-01T23:59:59.000Z

43

Risk Management for Video-on-Demand Servers leveraging Demand Forecast  

E-Print Network [OSTI]

Risk Management for Video-on-Demand Servers leveraging Demand Forecast Di Niu, Hong Xu, Baochun Li on demand history using time se- ries forecasting techniques. The prediction enables dynamic and efficient}@eecg.toronto.edu Shuqiao Zhao Multimedia Development Group UUSee, Inc. shuqiao.zhao@gmail.com ABSTRACT Video-on-demand (Vo

Li, Baochun

44

FORECASTING WATER DEMAND USING CLUSTER AND REGRESSION ANALYSIS  

E-Print Network [OSTI]

FORECASTING WATER DEMAND USING CLUSTER AND REGRESSION ANALYSIS by Bruce Bishop Professor of Civil resources resulting in water stress. Effective water management ­ a solution Supply side management Demand side management #12;Developing a regression equation based on cluster analysis for forecasting water

Keller, Arturo A.

45

Electricity Demand Forecasting using Gaussian Processes Manuel Blum and Martin Riedmiller  

E-Print Network [OSTI]

Electricity Demand Forecasting using Gaussian Processes Manuel Blum and Martin Riedmiller Abstract We present an electricity demand forecasting algorithm based on Gaussian processes. By introducing. Introduction Electricity demand forecasting is an important aspect of the control and scheduling of power

Teschner, Matthias

46

Evaluation of forecasting techniques for short-term demand of air transportation  

E-Print Network [OSTI]

Forecasting is arguably the most critical component of airline management. Essentially, airlines forecast demand to plan the supply of services to respond to that demand. Forecasts of short-term demand facilitate tactical ...

Wickham, Richard Robert

1995-01-01T23:59:59.000Z

47

A comparison of univariate methods for forecasting electricity demand up to a day ahead  

E-Print Network [OSTI]

A comparison of univariate methods for forecasting electricity demand up to a day ahead James W methods for short-term electricity demand forecasting for lead times up to a day ahead. The very short of Forecasters. Published by Elsevier B.V. All rights reserved. Keywords: Electricity demand forecasting

McSharry, Patrick E.

48

A collaborative demand forecasting process with event-based fuzzy judgements Naoufel Cheikhrouhou a,  

E-Print Network [OSTI]

A collaborative demand forecasting process with event-based fuzzy judgements Naoufel Cheikhrouhou a July 2011 Keywords: Collaborative forecasting Demand planning Judgement Time series Fuzzy logic a b s t r a c t Mathematical forecasting approaches can lead to reliable demand forecast in some

49

Demand forecast accuracy and performance of inventory policies under multi-level rolling  

E-Print Network [OSTI]

Demand forecast accuracy and performance of inventory policies under multi-level rolling schedule is to study the behaviour of lot-sizing rules in a multi- level context when forecast demand is subject Interchange to ameliorate demand forecast. Although the presence or absence of forecast errors matters more

Paris-Sud XI, Université de

50

Transportation Energy: Supply, Demand and the Future  

E-Print Network [OSTI]

Transportation Energy: Supply, Demand and the Future http://www.uwm.edu/Dept/CUTS//2050/energy05 as a source of energy. Global supply and demand trends will have a profound impact on the ability to use our) Transportation energy demand in the U.S. has increased because of the greater use of less fuel efficient vehicles

Saldin, Dilano

51

Functional Forecasting of Demand Decay Rates using Online Virtual Stock Markets  

E-Print Network [OSTI]

Functional Forecasting of Demand Decay Rates using Online Virtual Stock Markets Wolfgang Jank, 2008 Abstract Forecasting product demand is an important yet challenging planning tool for many indus to a product's release. As a result, they are keenly interested in accurately forecasting a product's demand

Jank, Wolfgang

52

EFFECT OF SHARED INFORMATION ON TRUST AND RELIANCE IN A DEMAND FORECASTING TASK  

E-Print Network [OSTI]

EFFECT OF SHARED INFORMATION ON TRUST AND RELIANCE IN A DEMAND FORECASTING TASK Ji Gao1 , John D's trust and reliance. A simulated demand forecasting task required participants to provide an initial. INTRODUCTION Demand forecasting is a task that strongly influences success in supply chains. Inappropriate

Lee, John D.

53

NOAA GREAT LAKES COASTAL FORECASTING SYSTEM Forecasts (up to 5 days in the future)  

E-Print Network [OSTI]

conditions for up to 5 days in the future. These forecasts are run twice daily, and you can step through are generated every 6 hours and you can step backward in hourly increments to view conditions over the previousNOAA GREAT LAKES COASTAL FORECASTING SYSTEM Forecasts (up to 5 days in the future) and Nowcasts

54

Econometric model and futures markets commodity price forecasting  

E-Print Network [OSTI]

Versus CCll1rnercial Econometric M:ldels." Uni- versity ofWorking Paper No. 72 ECONOMETRIC ! 'econometric forecasts with the futures

Just, Richard E.; Rausser, Gordon C.

1979-01-01T23:59:59.000Z

55

Using Customers' Reported Forecasts to Predict Future Sales  

E-Print Network [OSTI]

Using Customers' Reported Forecasts to Predict Future Sales Nihat Altintas , Alan Montgomery , Michael Trick Tepper School of Business, Carnegie Mellon University, Pittsburgh, PA 15213. nihat

Gordon, Geoffrey J.

56

WA-RD 470.1 June 1999 Demand Forecasting for Rural Transit  

E-Print Network [OSTI]

WA-RD 470.1 June 1999 Demand Forecasting for Rural Transit This summary describes the key findings of a WSDOT project that is documented more fully in the technical report titled "Demand Forecasting for Rural to Washington for predicting demand for rural public transportation. Three Washington-based models were

57

Transportation Energy Futures Series: Freight Transportation Demand: Energy-Efficient Scenarios for a Low-Carbon Future  

SciTech Connect (OSTI)

Freight transportation demand is projected to grow to 27.5 billion tons in 2040, and to nearly 30.2 billion tons in 2050. This report describes the current and future demand for freight transportation in terms of tons and ton-miles of commodities moved by truck, rail, water, pipeline, and air freight carriers. It outlines the economic, logistics, transportation, and policy and regulatory factors that shape freight demand, the trends and 2050 outlook for these factors, and their anticipated effect on freight demand. After describing federal policy actions that could influence future freight demand, the report then summarizes the capabilities of available analytical models for forecasting freight demand. This is one in a series of reports produced as a result of the Transportation Energy Futures project, a Department of Energy-sponsored multi-agency effort to pinpoint underexplored strategies for reducing GHGs and petroleum dependence related to transportation.

Grenzeback, L. R.; Brown, A.; Fischer, M. J.; Hutson, N.; Lamm, C. R.; Pei, Y. L.; Vimmerstedt, L.; Vyas, A. D.; Winebrake, J. J.

2013-03-01T23:59:59.000Z

58

Development of Short-term Demand Forecasting Model Application in Analysis of Resource Adequacy  

E-Print Network [OSTI]

Development of Short-term Demand Forecasting Model And its Application in Analysis of Resource will present the methodology, testing and results from short-term forecasting model developed by Northwest and applied the short-term forecasting model to Resource Adequacy analysis. These steps are presented below. 1

59

A Hierarchical Bayesian Model for Improving Short-Term Forecasting of Hospital Demand by Including Meteorological  

E-Print Network [OSTI]

A Hierarchical Bayesian Model for Improving Short-Term Forecasting of Hospital Demand by Including Sarran4 Abstract The effect of weather on health has been widely researched, and the ability to forecast, better predictions of hospital demand that are more sensitive to fluctuations in weather can allow

Sahu, Sujit K

60

Developing a framework for dependable demand forecasts in the consumer packaged goods industry  

E-Print Network [OSTI]

As a consumer packaged goods company, "Company X" manufactures products "make-to-stock"; therefore, having reliable demand forecasts is fundamental for successful planning and execution. Not isolated to "Company X" or to ...

Uriarte, Daniel Antonio

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "forecast future demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

A Transaction Choice Model for Forecasting Demand for Alternative-Fuel Vehicles  

E-Print Network [OSTI]

Forecasting Demand Alternative-Fuel Vehicles for DavldNG DEMANDFOR ALTERNATIVE-FUEL VEHICLES DavidBrownstone,interested in promoting alternative-fuel vehicles. Tlus is

Brownstone, David; Bunch, David S.; Golob, Thomas F.; Ren, Weiping

1996-01-01T23:59:59.000Z

62

A Transactions Choice Model for Forecasting Demand for Alternative-Fuel Vehicles  

E-Print Network [OSTI]

Forecasting Demand Alternative-Fuel Vehicles for DavldNG DEMANDFOR ALTERNATIVE-FUEL VEHICLES DavidBrownstone,interested in promoting alternative-fuel vehicles. Tlus is

Brownstone, David; Bunch, David S; Golob, Thomas F; Ren, Weiping

1996-01-01T23:59:59.000Z

63

Assembling the crystal ball : using demand signal repository to forecast demand  

E-Print Network [OSTI]

Improving forecast accuracy has positive effects on supply chain performance. Forecast accuracy can reduce inventory levels, increase customer service levels and responsiveness, or a combination of the two. However, the ...

Rashad, Ahmed (Ahmed Fathy Mustafa Rashad Abdelaal)

2013-01-01T23:59:59.000Z

64

Strategic safety stocks in supply chains with evolving forecasts  

E-Print Network [OSTI]

we have an evolving demand forecast. Under assumptions about the forecasts, the demand process their supply chain operations based on a forecast of future demand over some planning horizon. Furthermore stock inventory in a supply chain that is subject to a dynamic, evolving demand forecast. In particular

Graves, Stephen C.

65

How USDA Forecasts Production and Supply/Demand  

E-Print Network [OSTI]

USDA publishes crop supply and demand estimates for each month. Producers, merchandisers, processors, traders and other market participants rely on this information when making their buying and selling decisions. This leaflet explains how USDA makes...

Anderson, David P.; O'Brien, Daniel; Welch, Mark

2009-06-01T23:59:59.000Z

66

Electrical ship demand modeling for future generation warships  

E-Print Network [OSTI]

The design of future warships will require increased reliance on accurate prediction of electrical demand as the shipboard consumption continues to rise. Current US Navy policy, codified in design standards, dictates methods ...

Sievenpiper, Bartholomew J. (Bartholomew Jay)

2013-01-01T23:59:59.000Z

67

Machine Learning for Demand Forecasting in Smart Grid Saima Aman, Wei Yin, Yogesh Simmhan, and Viktor Prasanna  

E-Print Network [OSTI]

Machine Learning for Demand Forecasting in Smart Grid Saima Aman, Wei Yin, Yogesh Simmhan for forecasting the energy consumption patterns in the USC campus microgrid, which can be used for energy use of AMIs and data collection in a Smart Grid environment means that all applications, including demand

Prasanna, Viktor K.

68

Patterns of crude demand: Future patterns of demand for crude oil as a func-  

E-Print Network [OSTI]

from the perspective of `peak oil', that is from the pers- pective of the supply of crude, and price#12;2 #12;Patterns of crude demand: Future patterns of demand for crude oil as a func- tion is given on the problems within the value chain, with an explanation of the reasons why the price of oil

Langendoen, Koen

69

Comparison of AEO 2008 Natural Gas Price Forecast to NYMEX Futures Prices  

E-Print Network [OSTI]

late January 2008, extend its natural gas futures strip anComparison of AEO 2008 Natural Gas Price Forecast to NYMEXs reference-case long-term natural gas price forecasts from

Bolinger, Mark

2008-01-01T23:59:59.000Z

70

Expert Panel: Forecast Future Demand for Medical Isotopes | Department of  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office of Audit|Department of Energy56Executive Summit onTransforming

71

Analysis of PG E's residential end-use metered data to improve electricity demand forecasts  

SciTech Connect (OSTI)

It is generally acknowledged that improvements to end-use load shape and peak demand forecasts for electricity are limited primarily by the absence of reliable end-use data. In this report we analyze recent end-use metered data collected by the Pacific Gas and Electric Company from more than 700 residential customers to develop new inputs for the load shape and peak demand electricity forecasting models used by the Pacific Gas and Electric Company and the California Energy Commission. Hourly load shapes are normalized to facilitate separate accounting (by the models) of annual energy use and the distribution of that energy use over the hours of the day. Cooling electricity consumption by central air-conditioning is represented analytically as a function of climate. Limited analysis of annual energy use, including unit energy consumption (UEC), and of the allocation of energy use to seasons and system peak days, is also presented.

Eto, J.H.; Moezzi, M.M.

1992-06-01T23:59:59.000Z

72

Oxygenate Supply/Demand Balances in the Short-Term Integrated Forecasting Model (Released in the STEO March 1998)  

Reports and Publications (EIA)

The blending of oxygenates, such as fuel ethanol and methyl tertiary butyl ether (MTBE), into motor gasoline has increased dramatically in the last few years because of the oxygenated and reformulated gasoline programs. Because of the significant role oxygenates now have in petroleum product markets, the Short-Term Integrated Forecasting System (STIFS) was revised to include supply and demand balances for fuel ethanol and MTBE. The STIFS model is used for producing forecasts in the Short-Term Energy Outlook. A review of the historical data sources and forecasting methodology for oxygenate production, imports, inventories, and demand is presented in this report.

1998-01-01T23:59:59.000Z

73

Artificial Neural Networks and Support Vector Machines for Water Demand Time Series Forecasting  

E-Print Network [OSTI]

Water plays a pivotal role in many physical processes, and most importantly in sustaining human life, animal life and plant life. Water supply entities therefore have the responsibility to supply clean and safe water at the rate required by the consumer. It is therefore necessary to implement mechanisms and systems that can be employed to predict both short-term and long-term water demands. The increasingly growing field of computational intelligence techniques has been proposed as an efficient tool in the modelling of dynamic phenomena. The primary objective of this paper is to compare the efficiency of two computational intelligence techniques in water demand forecasting. The techniques under comparison are the Artificial Neural Networks (ANNs) and the Support Vector Machines (SVMs). In this study it was observed that the ANNs perform better than the SVMs. This performance is measured against the generalisation ability of the two.

Msiza, Ishmael S; Nelwamondo, Fulufhelo Vincent

2007-01-01T23:59:59.000Z

74

Sixth Northwest Conservation and Electric Power Plan Appendix D: Wholesale Electricity Price Forecast  

E-Print Network [OSTI]

Forecast Introduction.................................................................................................................................... 6 Demand................................................................... 16 The Base Case Forecast

75

Behavioral Aspects in Simulating the Future US Building Energy Demand  

E-Print Network [OSTI]

Importance Total off- site energy demand (2030) 20% decreaseImportance Total off-site energy demand (2030) 20% decreaseImportance Total off-site energy demand (2030) 20% decrease

Stadler, Michael

2011-01-01T23:59:59.000Z

76

Forecasting 65+ travel : an integration of cohort analysis and travel demand modeling  

E-Print Network [OSTI]

Over the next 30 years, the Boomers will double the 65+ population in the United States and comprise a new generation of older Americans. This study forecasts the aging Boomers' travel. Previous efforts to forecast 65+ ...

Bush, Sarah, 1973-

2003-01-01T23:59:59.000Z

77

Improved forecasts of extreme weather events by future space borne Doppler wind lidar  

E-Print Network [OSTI]

sensitive areas. To answer these questions simulation experiments with state-of-the-art numerical weather prediction (NWP) models have proved great value to test future meteorological observing systems a prioriImproved forecasts of extreme weather events by future space borne Doppler wind lidar Gert

Marseille, Gert-Jan

78

Analysis of PG&E`s residential end-use metered data to improve electricity demand forecasts  

SciTech Connect (OSTI)

It is generally acknowledged that improvements to end-use load shape and peak demand forecasts for electricity are limited primarily by the absence of reliable end-use data. In this report we analyze recent end-use metered data collected by the Pacific Gas and Electric Company from more than 700 residential customers to develop new inputs for the load shape and peak demand electricity forecasting models used by the Pacific Gas and Electric Company and the California Energy Commission. Hourly load shapes are normalized to facilitate separate accounting (by the models) of annual energy use and the distribution of that energy use over the hours of the day. Cooling electricity consumption by central air-conditioning is represented analytically as a function of climate. Limited analysis of annual energy use, including unit energy consumption (UEC), and of the allocation of energy use to seasons and system peak days, is also presented.

Eto, J.H.; Moezzi, M.M.

1992-06-01T23:59:59.000Z

79

Term Structure of Commodities Futures. Forecasting and Pricing. Marcos Escobar, Nicols Hernndez, Luis Seco  

E-Print Network [OSTI]

1 Term Structure of Commodities Futures. Forecasting and Pricing. Marcos Escobar, Nicolás Hernández that often exhibit sudden changes from backwardation into contango (such as energy, agricultural products generation purposes. It also provides the "risk neutral" processes needed for derivatives pricing, answering

Seco, Luis A.

80

Quantile Forecasting of Commodity Futures' Returns: Are Implied Volatility Factors Informative?  

E-Print Network [OSTI]

This study develops a multi-period log-return quantile forecasting procedure to evaluate the performance of eleven nearby commodity futures contracts (NCFC) using a sample of 897 daily price observations and at-the-money (ATM) put and call implied...

Dorta, Miguel

2012-07-16T23:59:59.000Z

Note: This page contains sample records for the topic "forecast future demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Comparison of AEO 2010 Natural Gas Price Forecast to NYMEX Futures Prices  

SciTech Connect (OSTI)

On December 14, 2009, the reference-case projections from Annual Energy Outlook 2010 were posted on the Energy Information Administration's (EIA) web site. We at LBNL have, in the past, compared the EIA's reference-case long-term natural gas price forecasts from the AEO series to contemporaneous natural gas prices that can be locked in through the forward market, with the goal of better understanding fuel price risk and the role that renewables can play in itigating such risk. As such, we were curious to see how the latest AEO reference-case gas price forecast compares to the NYMEX natural gas futures strip. This brief memo presents our findings.

Bolinger, Mark A.; Wiser, Ryan H.

2010-01-04T23:59:59.000Z

82

The addition of a US Rare Earth Element (REE) supply-demand model improves the characterization and scope of the United States Department of Energy's effort to forecast US REE Supply and Demand  

E-Print Network [OSTI]

This paper presents the development of a new US Rare Earth Element (REE) Supply-Demand Model for the explicit forecast of US REE supply and demand in the 2010 to 2025 time period. In the 2010 Department of Energy (DOE) ...

Mancco, Richard

2012-01-01T23:59:59.000Z

83

Forecasting Model for Crude Oil Price Using Artificial Neural Networks and Commodity Futures Prices  

E-Print Network [OSTI]

This paper presents a model based on multilayer feedforward neural network to forecast crude oil spot price direction in the short-term, up to three days ahead. A great deal of attention was paid on finding the optimal ANN model structure. In addition, several methods of data pre-processing were tested. Our approach is to create a benchmark based on lagged value of pre-processed spot price, then add pre-processed futures prices for 1, 2, 3,and four months to maturity, one by one and also altogether. The results on the benchmark suggest that a dynamic model of 13 lags is the optimal to forecast spot price direction for the short-term. Further, the forecast accuracy of the direction of the market was 78%, 66%, and 53% for one, two, and three days in future conclusively. For all the experiments, that include futures data as an input, the results show that on the short-term, futures prices do hold new information on the spot price direction. The results obtained will generate comprehensive understanding of the cr...

Kulkarni, Siddhivinayak

2009-01-01T23:59:59.000Z

84

THE FUTURE DEMAND FOR ALTERNATIVE FUEL PASSENGER VEHICLES: A DIFFUSION OF INNOVATION APPROACH  

E-Print Network [OSTI]

THE FUTURE DEMAND FOR ALTERNATIVE FUEL PASSENGER VEHICLES: A DIFFUSION OF INNOVATION APPROACH UC ....................................................................23 3 MARKET DEVELOPMENT OF ALTERNATIVE FUEL VEHICLES ............................ 26 3.1 SUPPLY OF ALTERNATIVE FUEL VEHICLES

Levinson, David M.

85

CALIFORNIA ENERGY COMMISSION0 Annual Update to the Forecasted  

E-Print Network [OSTI]

Values in TWh forthe Year2022 Formula Mid Demand Forecast Renewable Net High Demand Forecast Renewable Net Low Demand Forecast Renewable Net #12;CALIFORNIA ENERGY COMMISSION5 Demand Forecast · Retail Sales Forecast from California Energy Demand 2012 2022(CED 2011), Adopted Forecast* ­ Form 1.1c · Demand Forecast

86

Reconstruction of the Past and Forecast of the Future European and British Ice Sheets and Associated SeaLevel Change  

E-Print Network [OSTI]

The aim of this project is to improve our understanding of the past European and British ice sheets as a basis for forecasting their future. The behaviour of these ice sheets is investigated by simulating them using a ...

Hagdorn, Magnus K M

87

June 10, 2013 Canada's energy future meeting demand AND the climate change challenge  

E-Print Network [OSTI]

MEDIA TIP June 10, 2013 Canada's energy future ­meeting demand AND the climate change challenge Energy and business reporters are welcome to attend a high-level energy experts' presentation and panel on "Seeking Common Ground on Canada's Energy Future" during the Pacific Institute for Climate Solutions (PICS

Pedersen, Tom

88

Renewable Electricity Futures Study. Volume 3: End-Use Electricity Demand  

SciTech Connect (OSTI)

The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).

Hostick, D.; Belzer, D.B.; Hadley, S.W.; Markel, T.; Marnay, C.; Kintner-Meyer, M.

2012-06-01T23:59:59.000Z

89

Comparison of AEO 2007 Natural Gas Price Forecast to NYMEX FuturesPrices  

SciTech Connect (OSTI)

On December 5, 2006, the reference case projections from 'Annual Energy Outlook 2007' (AEO 2007) were posted on the Energy Information Administration's (EIA) web site. We at LBNL have, in the past, compared the EIA's reference case long-term natural gas price forecasts from the AEO series to contemporaneous natural gas prices that can be locked in through the forward market, with the goal of better understanding fuel price risk and the role that renewables play in mitigating such risk (see, for example, http://eetd.lbl.gov/ea/EMS/reports/53587.pdf or http://eetd.lbl.gov/ea/ems/reports/54751.pdf). As such, we were curious to see how the latest AEO gas price forecast compares to the NYMEX natural gas futures strip. This brief memo presents our findings. As a refresher, our past work in this area has found that over the past six years, forward natural gas contracts (with prices that can be locked in--e.g., gas futures, swaps, and physical supply) have traded at a premium relative to contemporaneous long-term reference case gas price forecasts from the EIA. As such, we have concluded that, over the past six years at least, levelized cost comparisons of fixed-price renewable generation with variable-price gas-fired generation that have been based on AEO natural gas price forecasts (rather than forward prices) have yielded results that are 'biased' in favor of gas-fired generation, presuming that long-term price stability is valued. In this memo we simply update our past analysis to include the latest long-term gas price forecast from the EIA, as contained in AEO 2007. For the sake of brevity, we do not rehash information (on methodology, potential explanations for the premiums, etc.) contained in our earlier reports on this topic; readers interested in such information are encouraged to download that work from http://eetd.lbl.gov/ea/EMS/reports/53587.pdf or http://eetd.lbl.gov/ea/ems/reports/54751.pdf. As was the case in the past six AEO releases (AEO 2001-AEO 2006), we once again find that the AEO 2007 reference case gas price forecast falls well below where NYMEX natural gas futures contracts were trading at the time the EIA finalized its gas price forecast. Specifically, the NYMEX-AEO 2007 premium is $0.73/MMBtu levelized over five years. In other words, on average, one would have had to pay $0.73/MMBtu more than the AEO 2007 reference case natural gas price forecast in order to lock in natural gas prices over the coming five years and thereby replicate the price stability provided intrinsically by fixed-price renewable generation (or other forms of generation whose costs are not tied to the price of natural gas). Fixed-price generation (like certain forms of renewable generation) obviously need not bear this added cost, and moreover can provide price stability for terms well in excess of five years.

Bolinger, Mark; Wiser, Ryan

2006-12-06T23:59:59.000Z

90

Comparison of AEO 2006 Natural Gas Price Forecast to NYMEX FuturesPrices  

SciTech Connect (OSTI)

On December 12, 2005, the reference case projections from ''Annual Energy Outlook 2006'' (AEO 2006) were posted on the Energy Information Administration's (EIA) web site. We at LBNL have in the past compared the EIA's reference case long-term natural gas price forecasts from the AEO series to contemporaneous natural gas prices that can be locked in through the forward market, with the goal of better understanding fuel price risk and the role that renewables play in mitigating such risk (see, for example, http://eetd.lbl.gov/ea/EMS/reports/53587.pdf or http://eetd.lbl.gov/ea/ems/reports/54751.pdf). As such, we were curious to see how the latest AEO gas price forecast compares to the NYMEX natural gas futures strip. This brief memo presents our findings. As a refresher, our past work in this area has found that over the past five years, forward natural gas contracts (with prices that can be locked in--e.g., gas futures, swaps, and physical supply) have traded at a premium relative to contemporaneous long-term reference case gas price forecasts from the EIA. As such, we have concluded that, over the past five years at least, levelized cost comparisons of fixed-price renewable generation with variable price gas-fired generation that have been based on AEO natural gas price forecasts (rather than forward prices) have yielded results that are ''biased'' in favor of gas-fired generation, presuming that long-term price stability is valued. In this memo we simply update our past analysis to include the latest long-term gas price forecast from the EIA, as contained in AEO 2006. For the sake of brevity, we do not rehash information (on methodology, potential explanations for the premiums, etc.) contained in our earlier reports on this topic; readers interested in such information are encouraged to download that work from http://eetd.lbl.gov/ea/EMS/reports/53587.pdf or http://eetd.lbl.gov/ea/ems/reports/54751.pdf. As was the case in the past five AEO releases (AEO 2001-AEO 2005), we once again find that the AEO 2006 reference case gas price forecast falls well below where NYMEX natural gas futures contracts were trading at the time the EIA finalized its gas price forecast. In fact, the NYMEX-AEO 2006 reference case comparison yields by far the largest premium--$2.3/MMBtu levelized over five years--that we have seen over the last six years. In other words, on average, one would have had to pay $2.3/MMBtu more than the AEO 2006 reference case natural gas price forecast in order to lock in natural gas prices over the coming five years and thereby replicate the price stability provided intrinsically by fixed-price renewable generation (or other forms of generation whose costs are not tied to the price of natural gas). Fixed-price generation (like certain forms of renewable generation) obviously need not bear this added cost, and moreover can provide price stability for terms well in excess of five years.

Bolinger, Mark; Wiser, Ryan

2005-12-19T23:59:59.000Z

91

Comparison of AEO 2005 natural gas price forecast to NYMEX futures prices  

SciTech Connect (OSTI)

On December 9, the reference case projections from ''Annual Energy Outlook 2005 (AEO 2005)'' were posted on the Energy Information Administration's (EIA) web site. As some of you may be aware, we at LBNL have in the past compared the EIA's reference case long-term natural gas price forecasts from the AEO series to contemporaneous natural gas prices that can be locked in through the forward market, with the goal of better understanding fuel price risk and the role that renewables play in mitigating such risk. As such, we were curious to see how the latest AEO gas price forecast compares to the NYMEX natural gas futures strip. This brief memo presents our findings. As a refresher, our past work in this area has found that over the past four years, forward natural gas contracts (e.g., gas futures, swaps, and physical supply) have traded at a premium relative to contemporaneous long-term reference case gas price forecasts from the EIA. As such, we have concluded that, over the past four years at least, levelized cost comparisons of fixed-price renewable generation with variable price gas-fired generation that have been based on AEO natural gas price forecasts (rather than forward prices) have yielded results that are ''biased'' in favor of gas-fired generation (presuming that long-term price stability is valued). In this memo we simply update our past analysis to include the latest long-term gas price forecast from the EIA, as contained in AEO 2005. For the sake of brevity, we do not rehash information (on methodology, potential explanations for the premiums, etc.) contained in our earlier reports on this topic; readers interested in such information are encouraged to download that work from http://eetd.lbl.gov/ea/EMS/reports/53587.pdf or, more recently (and briefly), http://eetd.lbl.gov/ea/ems/reports/54751.pdf. As was the case in the past four AEO releases (AEO 2001-AE0 2004), we once again find that the AEO 2005 reference case gas price forecast falls well below where NYMEX natural gas futures contracts were trading at the time the EIA finalized its gas price forecast. In fact, the NYMEXAEO 2005 reference case comparison yields by far the largest premium--$1.11/MMBtu levelized over six years--that we have seen over the last five years. In other words, on average, one would have to pay $1.11/MMBtu more than the AEO 2005 reference case natural gas price forecast in order to lock in natural gas prices over the coming six years and thereby replicate the price stability provided intrinsically by fixed-price renewable generation. Fixed-price renewables obviously need not bear this added cost, and moreover can provide price stability for terms well in excess of six years.

Bolinger, Mark; Wiser, Ryan

2004-12-13T23:59:59.000Z

92

Demand forecasting at Zara : a look at seasonality, product lifecycle and cannibalization  

E-Print Network [OSTI]

Zara introduces 10,000 new designs every year and distributes 5.2 million clothing articles per week to a network of over 1925 stores in more than 86 countries. Their high product mix and vast global network makes demand ...

Garca, Jos M. (Jos Manuel)

2014-01-01T23:59:59.000Z

93

Comparison of AEO 2005 natural gas price forecast to NYMEX futures prices  

E-Print Network [OSTI]

revisions to the EIAs natural gas price forecasts in AEOsolely on the AEO 2005 natural gas price forecasts willComparison of AEO 2005 Natural Gas Price Forecast to NYMEX

Bolinger, Mark; Wiser, Ryan

2004-01-01T23:59:59.000Z

94

Comparison of AEO 2010 Natural Gas Price Forecast to NYMEX Futures Prices  

E-Print Network [OSTI]

to estimate the base-case natural gas price forecast, but toComparison of AEO 2010 Natural Gas Price Forecast to NYMEXs reference-case long-term natural gas price forecasts from

Bolinger, Mark A.

2010-01-01T23:59:59.000Z

95

Forecasting the conditional volatility of oil spot and futures prices with structural breaks and long memory models  

E-Print Network [OSTI]

Forecasting the conditional volatility of oil spot and futures prices with structural breaks of oil spot and futures prices using three GARCH-type models, i.e., linear GARCH, GARCH with structural that oil price fluctuations influence economic activity and financial sector (e.g., Jones and Kaul, 1996

Paris-Sud XI, Université de

96

Demand forecasting for companies with many branches, low sales numbers per product, and non-recurring orderings  

E-Print Network [OSTI]

We propose the new Top-Dog-Index to quantify the historic deviation of the supply data of many small branches for a commodity group from sales data. On the one hand, the common parametric assumptions on the customer demand distribution in the literature could not at all be supported in our real-world data set. On the other hand, a reasonably-looking non-parametric approach to estimate the demand distribution for the different branches directly from the sales distribution could only provide us with statistically weak and unreliable estimates for the future demand. Based on real-world sales data from our industry partner we provide evidence that our Top-Dog-Index is statistically robust. Using the Top-Dog-Index, we propose a heuristics to improve the branch-dependent proportion between supply and demand. Our approach cannot estimate the branch-dependent demand directly. It can, however, classify the branches into a given number of clusters according to an historic oversupply or undersupply. This classification ...

Kurz, Sascha

2008-01-01T23:59:59.000Z

97

Forecasting future oil production in Norway and the UK: a general improved methodology  

E-Print Network [OSTI]

We present a new Monte-Carlo methodology to forecast the crude oil production of Norway and the U.K. based on a two-step process, (i) the nonlinear extrapolation of the current/past performances of individual oil fields and (ii) a stochastic model of the frequency of future oil field discoveries. Compared with the standard methodology that tends to underestimate remaining oil reserves, our method gives a better description of future oil production, as validated by our back-tests starting in 2008. Specifically, we predict remaining reserves extractable until 2030 to be 188 +/- 10 million barrels for Norway and 98 +/- 10 million barrels for the UK, which are respectively 45% and 66% above the predictions using the standard methodology.

Fievet, Lucas; Cauwels, Peter; Sornette, Didier

2014-01-01T23:59:59.000Z

98

Implications for the Future of Treated Wood in Four U.S. Demand Sectors  

E-Print Network [OSTI]

Implications for the Future of Treated Wood in Four U.S. Demand Sectors Todd F. Shupe Associate extends the life span of lumber, but the Environmental Protection Agency says arsenic treated wood might arsenic-treated wood from Florida's public playgrounds failed to pass. "Wave of opponents kills Crow

99

Advanced Demand Side Management for the Future Smart Grid Using Mechanism Design  

E-Print Network [OSTI]

meter. All smart meters are connected to not only the power grid but also a communication infrastructure. This allows two-way communication among smart meters and the utility company. We analytically model each user1 Advanced Demand Side Management for the Future Smart Grid Using Mechanism Design Pedram Samadi

Wong, Vincent

100

Application of neural networking in live cattle futures market: an approach to price-forecasting  

E-Print Network [OSTI]

. For this reason, cattle futures contracts are not traded on a cash- and-cany basis. The futures prices are foimed through human decision-making based on available information about supply and demand and past conditions on the market (Kofi, 1973). The beef...'s expiration date for cattle is usually around the 20th in the delivery month. A trader who does not want to deliver or receive will liquidate his position before the expiration date. Traders can obtain information of trading from publications...

Chou, Chien-Ju

1993-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "forecast future demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

STAFF FORECAST OF 2007 PEAK STAFFREPORT  

E-Print Network [OSTI]

CALIFORNIA ENERGY COMMISSION STAFF FORECAST OF 2007 PEAK DEMAND STAFFREPORT June 2006 CEC-400....................................................................... .................11 Tables Table 1: Revised versus September 2005 Peak Demand Forecast ......................... 2.............................................................................................. 10 #12;Introduction and Background This document describes staff's updated 2007 peak demand forecasts

102

Electricity Demand-Side Management for an Energy Efficient Future in China: Technology Options and Policy Priorities  

E-Print Network [OSTI]

Electricity Demand-Side Management for an Energy Efficient Future in China: Technology Options Neufville Professor of Engineering Systems Chair, ESD Education Committee #12;2 #12;3 Electricity Demand-Side Management for an Energy Efficient Future in China: Technology Options and Policy Priorities By Chia

de Weck, Olivier L.

103

Comparison of AEO 2007 Natural Gas Price Forecast to NYMEX Futures Prices  

E-Print Network [OSTI]

Comparison of AEO 2007 Natural Gas Price Forecast to NYMEXs reference case long-term natural gas price forecasts fromAEO series to contemporaneous natural gas prices that can be

Bolinger, Mark; Wiser, Ryan

2006-01-01T23:59:59.000Z

104

Comparison of AEO 2006 Natural Gas Price Forecast to NYMEX Futures Prices  

E-Print Network [OSTI]

Comparison of AEO 2006 Natural Gas Price Forecast to NYMEXs reference case long-term natural gas price forecasts fromAEO series to contemporaneous natural gas prices that can be

Bolinger, Mark; Wiser, Ryan

2005-01-01T23:59:59.000Z

105

Comparison of AEO 2009 Natural Gas Price Forecast to NYMEX Futures Prices  

E-Print Network [OSTI]

Comparison of AEO 2009 Natural Gas Price Forecast to NYMEXs reference-case long-term natural gas price forecasts fromAEO series to contemporaneous natural gas prices that can be

Bolinger, Mark

2009-01-01T23:59:59.000Z

106

CALIFORNIA ENERGY DEMAND 2014-2024 PRELIMINARY  

E-Print Network [OSTI]

CALIFORNIA ENERGY DEMAND 2014-2024 PRELIMINARY FORECAST Volume 1 in this report. #12;i ACKNOWLEDGEMENTS The demand forecast is the combined product of the hard. Margaret Sheridan contributed to the residential forecast. Mitch Tian prepared the peak demand

107

CALIFORNIA ENERGY DEMAND 2014-2024 PRELIMINARY  

E-Print Network [OSTI]

CALIFORNIA ENERGY DEMAND 2014-2024 PRELIMINARY FORECAST Volume 2 Director #12; i ACKNOWLEDGEMENTS The demand forecast is the combined product prepared the peak demand forecast. Ravinderpal Vaid provided the projections of commercial

108

The Future of Food Demand: Understanding Differences in Global Economic Models  

SciTech Connect (OSTI)

Understanding the capacity of agricultural systems to feed the world population under climate change requires a good prospective vision on the future development of food demand. This paper reviews modeling approaches from ten global economic models participating to the AgMIP project, in particular the demand function chosen and the set of parameters used. We compare food demand projections at the horizon 2050 for various regions and agricultural products under harmonized scenarios. Depending on models, we find for a business as usual scenario (SSP2) an increase in food demand of 59-98% by 2050, slightly higher than FAO projection (54%). The prospective for animal calories is particularly uncertain with a range of 61-144%, whereas FAO anticipates an increase by 76%. The projections reveal more sensitive to socio-economic assumptions than to climate change conditions or bioenergy development. When considering a higher population lower economic growth world (SSP3), consumption per capita drops by 9% for crops and 18% for livestock. Various assumptions on climate change in this exercise do not lead to world calorie losses greater than 6%. Divergences across models are however notable, due to differences in demand system, income elasticities specification, and response to price change in the baseline.

Valin, Hugo; Sands, Ronald; van der Mensbrugghe, Dominique; Nelson, Gerald; Ahammad, Helal; Blanc, Elodie; Bodirsky, Benjamin; Fujimori, Shinichiro; Hasegawa, Tomoko; Havlik, Petr; Heyhoe, Edwina; Kyle, G. Page; Mason d'Croz, Daniel; Paltsev, S.; Rolinski, Susanne; Tabeau, Andrzej; van Meijl, Hans; von Lampe, Martin; Willenbockel, Dirk

2014-01-01T23:59:59.000Z

109

Proceedings of the Chinese-American symposium on energy markets and the future of energy demand  

SciTech Connect (OSTI)

The Symposium was organized by the Energy Research Institute of the State Economic Commission of China, and the Lawrence Berkeley Laboratory and Johns Hopkins University from the United States. It was held at the Johns Hopkins University Nanjing Center in late June 1988. It was attended by about 15 Chinese and an equal number of US experts on various topics related to energy demand and supply. Each presenter is one of the best observers of the energy situation in their field. A Chinese and US speaker presented papers on each topic. In all, about 30 papers were presented over a period of two and one half days. Each paper was translated into English and Chinese. The Chinese papers provide an excellent overview of the emerging energy demand and supply situation in China and the obstacles the Chinese planners face in managing the expected increase in demand for energy. These are matched by papers that discuss the energy situation in the US and worldwide, and the implications of the changes in the world energy situation on both countries. The papers in Part 1 provide historical background and discuss future directions. The papers in Part 2 focus on the historical development of energy planning and policy in each country and the methodologies and tools used for projecting energy demand and supply. The papers in Part 3 examine the pattern of energy demand, the forces driving demand, and opportunities for energy conservation in each of the major sectors in China and the US. The papers in Part 4 deal with the outlook for global and Pacific region energy markets and the development of the oil and natural gas sector in China.

Meyers, S. (ed.)

1988-11-01T23:59:59.000Z

110

Supply chain planning decisions under demand uncertainty  

E-Print Network [OSTI]

Sales and operational planning that incorporates unconstrained demand forecasts has been expected to improve long term corporate profitability. Companies are considering such unconstrained demand forecasts in their decisions ...

Huang, Yanfeng Anna

2008-01-01T23:59:59.000Z

111

Comparison of AEO 2008 Natural Gas Price Forecast to NYMEX Futures Prices  

SciTech Connect (OSTI)

On December 12, 2007, the reference-case projections from Annual Energy Outlook 2008 (AEO 2008) were posted on the Energy Information Administration's (EIA) web site. We at LBNL have, in the past, compared the EIA's reference-case long-term natural gas price forecasts from the AEO series to contemporaneous natural gas prices that can be locked in through the forward market, with the goal of better understanding fuel price risk and the role that renewables can play in mitigating such risk. As such, we were curious to see how the latest AEO reference-case gas price forecast compares to the NYMEX natural gas futures strip. This brief memo presents our findings. Note that this memo pertains only to natural gas fuel price risk (i.e., the risk that natural gas prices might differ over the life of a gas-fired generation asset from what was expected when the decision to build the gas-fired unit was made). We do not take into consideration any of the other distinct attributes of gas-fired and renewable generation, such as dispatchability (or lack thereof) or environmental externalities. A comprehensive comparison of different resource types--which is well beyond the scope of this memo--would need to account for differences in all such attributes, including fuel price risk. Furthermore, our analysis focuses solely on natural-gas-fired generation (as opposed to coal-fired generation, for example), for several reasons: (1) price volatility has been more of a concern for natural gas than for other fuels used to generate power; (2) for environmental and other reasons, natural gas has, in recent years, been the fuel of choice among power plant developers (though its appeal has diminished somewhat as prices have increased); and (3) natural gas-fired generators often set the market clearing price in competitive wholesale power markets throughout the United States. That said, a more-complete analysis of how renewables mitigate fuel price risk would also need to consider coal and other fuel prices. Finally, we caution readers about drawing inferences or conclusions based solely on this memo in isolation: to place the information contained herein within its proper context, we strongly encourage readers interested in this issue to read through our previous, more-detailed studies, available at http://eetd.lbl.gov/ea/EMS/reports/53587.pdf or http://eetd.lbl.gov/ea/ems/reports/54751.pdf.

Bolinger, Mark A; Bolinger, Mark; Wiser, Ryan

2008-01-07T23:59:59.000Z

112

Comparison of AEO 2009 Natural Gas Price Forecast to NYMEX Futures Prices  

SciTech Connect (OSTI)

On December 17, 2008, the reference-case projections from Annual Energy Outlook 2009 (AEO 2009) were posted on the Energy Information Administration's (EIA) web site. We at LBNL have, in the past, compared the EIA's reference-case long-term natural gas price forecasts from the AEO series to contemporaneous natural gas prices that can be locked in through the forward market, with the goal of better understanding fuel price risk and the role that renewables can play in mitigating such risk. As such, we were curious to see how the latest AEO reference-case gas price forecast compares to the NYMEX natural gas futures strip. This brief memo presents our findings. Note that this memo pertains only to natural gas fuel price risk (i.e., the risk that natural gas prices might differ over the life of a gas-fired generation asset from what was expected when the decision to build the gas-fired unit was made). We do not take into consideration any of the other distinct attributes of gas-fired and renewable generation, such as dispatchability (or lack thereof), differences in capital costs and O&M expenses, or environmental externalities. A comprehensive comparison of different resource types--which is well beyond the scope of this memo--would need to account for differences in all such attributes, including fuel price risk. Furthermore, our analysis focuses solely on natural-gas-fired generation (as opposed to coal-fired or nuclear generation, for example), for several reasons: (1) price volatility has been more of a concern for natural gas than for other fuels used to generate power; (2) for environmental and other reasons, natural gas has, in recent years, been the fuel of choice among power plant developers; and (3) natural gas-fired generators often set the market clearing price in competitive wholesale power markets throughout the United States. That said, a more-complete analysis of how renewables mitigate fuel price risk would also need to consider coal, uranium, and other fuel prices. Finally, we caution readers about drawing inferences or conclusions based solely on this memo in isolation: to place the information contained herein within its proper context, we strongly encourage readers interested in this issue to read through our previous, more-detailed studies, available at http://eetd.lbl.gov/ea/EMS/reports/53587.pdf or http://eetd.lbl.gov/ea/ems/reports/54751.pdf.

Bolinger, Mark; Wiser, Ryan

2009-01-28T23:59:59.000Z

113

ORNL/TM-2002/55 An Assessment of Future Demands for  

E-Print Network [OSTI]

For The U. S. Department Of Energy Under Contract No. DE-AC05-00OR-22725 and Arun Chatterjee Frederick J Model 3.8 3.3 Forecasting Rural Transit Ridership 3.12 3.3.1 Introduction 3.12 3.3.2 Rural Transit Forecasting Model 3.13 3.3.3 Rural Ridership Forecasts 3.18 4. Urban Transit Systems 4.1 4.1 Introduction 4

114

Project Information Form Project Title White Paper on the Future of Passenger Travel Demand in the United  

E-Print Network [OSTI]

each agency or organization) DOT $26,383.66 Total Project Cost $26,383.66 Agency ID or Contract NumberProject Information Form Project Title White Paper on the Future of Passenger Travel Demand Project This white paper will summarize recent research findings pertaining to future passenger travel

California at Davis, University of

115

Forecasting the Standard & Poor's 500 stock index futures price: interest rates, dividend yields, and cointegration  

E-Print Network [OSTI]

forward price series is constructed using interest rate and dividend yield data. Out-of-sample forecasts from error correction models are compared to those from vector autoregressions (VAR) fit to levels and VARs fit to first differences. This comparison...

Fritsch, Roger Erwin

1997-01-01T23:59:59.000Z

116

CALIFORNIA ENERGY CALIFORNIA ENERGY DEMAND 2010-2020  

E-Print Network [OSTI]

CALIFORNIA ENERGY COMMISSION CALIFORNIA ENERGY DEMAND 2010-2020 ADOPTED FORECAST for this report: Kavalec, Chris and Tom Gorin, 2009. California Energy Demand 20102020, Adopted Forecast. California Energy Commission. CEC2002009012CMF #12; i Acknowledgments The demand forecast

117

Demand Responsive Lighting: A Scoping Study  

E-Print Network [OSTI]

3 2.1 Demand-Side Managementbuildings. The demand side management framework is discussedIssues 2.1 Demand-Side Management Framework Forecasting

Rubinstein, Francis; Kiliccote, Sila

2007-01-01T23:59:59.000Z

118

Project Information Form Project Title White Paper on the Future of Passenger Travel Demand in the United  

E-Print Network [OSTI]

each agency or organization) Caltrans $26,383 Total Project Cost $26,383 Agency ID or Contract NumberProject Information Form Project Title White Paper on the Future of Passenger Travel Demand DTRT13-G-UTC29 Start and End Dates September 2014 to June 2015 Brief Description of Research Project

California at Davis, University of

119

Robust newsvendor problem with autoregressive demand  

E-Print Network [OSTI]

May 19, 2014 ... bust distribution-free autoregressive forecasting method, which copes .... (Bandi and Bertsimas, 2012) to estimate the demand forecast. As.

2014-05-19T23:59:59.000Z

120

Nambe Pueblo Water Budget and Forecasting model.  

SciTech Connect (OSTI)

This report documents The Nambe Pueblo Water Budget and Water Forecasting model. The model has been constructed using Powersim Studio (PS), a software package designed to investigate complex systems where flows and accumulations are central to the system. Here PS has been used as a platform for modeling various aspects of Nambe Pueblo's current and future water use. The model contains three major components, the Water Forecast Component, Irrigation Scheduling Component, and the Reservoir Model Component. In each of the components, the user can change variables to investigate the impacts of water management scenarios on future water use. The Water Forecast Component includes forecasting for industrial, commercial, and livestock use. Domestic demand is also forecasted based on user specified current population, population growth rates, and per capita water consumption. Irrigation efficiencies are quantified in the Irrigated Agriculture component using critical information concerning diversion rates, acreages, ditch dimensions and seepage rates. Results from this section are used in the Water Demand Forecast, Irrigation Scheduling, and the Reservoir Model components. The Reservoir Component contains two sections, (1) Storage and Inflow Accumulations by Categories and (2) Release, Diversion and Shortages. Results from both sections are derived from the calibrated Nambe Reservoir model where historic, pre-dam or above dam USGS stream flow data is fed into the model and releases are calculated.

Brainard, James Robert

2009-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "forecast future demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

2009 CAPS Spring Forecast Program Plan  

E-Print Network [OSTI]

package. · Two 18 UTC update forecasts on demand basis, with the same domain and configuration, running2009 CAPS Spring Forecast Experiment Program Plan April 20, 2009 #12;2 Table of Content 1. Overview .......................................................................................................4 3. Forecast System Configuration

Droegemeier, Kelvin K.

122

TRANSPORTATION ENERGY FORECASTS FOR THE 2007 INTEGRATED ENERGY  

E-Print Network [OSTI]

has developed longterm forecasts of transportation energy demand as well as projected ranges of transportation fuel and crude oil import requirements. The transportation energy demand forecasts makeCALIFORNIA ENERGY COMMISSION TRANSPORTATION ENERGY FORECASTS FOR THE 2007 INTEGRATED ENERGY POLICY

123

Comparing Price Forecast Accuracy of Natural Gas Models and Futures Markets  

E-Print Network [OSTI]

Update on Petroleum, Natural Gas, Heating Oil and Gasoline.of the Market for Natural Gas Futures. Energy Journal 16 (Modeling Forum. 2003. Natural Gas, Fuel Diversity and North

Wong-Parodi, Gabrielle; Dale, Larry; Lekov, Alex

2005-01-01T23:59:59.000Z

124

Agricultural commodity price forecasting accuracy: futures markets versus commercial econometric models  

E-Print Network [OSTI]

versus commercial econometric models Gordon C. RausserMARKETS VERSUS COM4ERCIAL ECONOMETRIC IDDELS by Gordon C.Futures Markets, snd Econometric Models Deeember, 19'7'6,

Rausser, Gordon C.; Just, Richard E.

1979-01-01T23:59:59.000Z

125

Transportation Energy Futures Series: Freight Transportation Demand: Energy-Efficient Scenarios for a Low-Carbon Future  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2Topo II: AnTrainingTransportationsearchDEMAND Freight

126

International Oil Supplies and Demands  

SciTech Connect (OSTI)

The eleventh Energy Modeling Forum (EMF) working group met four times over the 1989--90 period to compare alternative perspectives on international oil supplies and demands through 2010 and to discuss how alternative supply and demand trends influence the world's dependence upon Middle Eastern oil. Proprietors of eleven economic models of the world oil market used their respective models to simulate a dozen scenarios using standardized assumptions. From its inception, the study was not designed to focus on the short-run impacts of disruptions on oil markets. Nor did the working group attempt to provide a forecast or just a single view of the likely future path for oil prices. The model results guided the group's thinking about many important longer-run market relationships and helped to identify differences of opinion about future oil supplies, demands, and dependence.

Not Available

1991-09-01T23:59:59.000Z

127

International Oil Supplies and Demands  

SciTech Connect (OSTI)

The eleventh Energy Modeling Forum (EMF) working group met four times over the 1989--1990 period to compare alternative perspectives on international oil supplies and demands through 2010 and to discuss how alternative supply and demand trends influence the world's dependence upon Middle Eastern oil. Proprietors of eleven economic models of the world oil market used their respective models to simulate a dozen scenarios using standardized assumptions. From its inception, the study was not designed to focus on the short-run impacts of disruptions on oil markets. Nor did the working group attempt to provide a forecast or just a single view of the likely future path for oil prices. The model results guided the group's thinking about many important longer-run market relationships and helped to identify differences of opinion about future oil supplies, demands, and dependence.

Not Available

1992-04-01T23:59:59.000Z

128

1993 Pacific Northwest Loads and Resources Study, Pacific Northwest Economic and Electricity Use Forecast, Technical Appendix: Volume 1.  

SciTech Connect (OSTI)

This publication documents the load forecast scenarios and assumptions used to prepare BPA`s Whitebook. It is divided into: intoduction, summary of 1993 Whitebook electricity demand forecast, conservation in the load forecast, projection of medium case electricity sales and underlying drivers, residential sector forecast, commercial sector forecast, industrial sector forecast, non-DSI industrial forecast, direct service industry forecast, and irrigation forecast. Four appendices are included: long-term forecasts, LTOUT forecast, rates and fuel price forecasts, and forecast ranges-calculations.

United States. Bonneville Power Administration.

1994-02-01T23:59:59.000Z

129

Forecast constraints on cosmic strings from future CMB, pulsar timing and gravitational wave direct detection experiments  

E-Print Network [OSTI]

We study future observational constraints on cosmic string parameters from various types of next-generation experiments: direct detection of gravitational waves (GWs), pulsar timing array, and the cosmic microwave background (CMB). We consider both GW burst and stochastic GW background searches by ground- and space-based interferometers as well as GW background detection in pulsar timing experiments. We also consider cosmic string contributions to the CMB temperature and polarization anisotropies. These different types of observations offer independent probes of cosmic strings and may enable us to investigate cosmic string properties if the signature is detected. In this paper, we evaluate the power of future experiments to constrain cosmic string parameters, such as the string tension Gmu, the initial loop size alpha, and the reconnection probability p, by performing Fisher information matrix calculations. We find that combining the information from the different types of observations breaks parameter degeneracies and provides more stringent constraints on the parameters. We also find future space-borne interferometers independently provide a highly precise determination of the parameters.

Sachiko Kuroyanagi; Koichi Miyamoto; Toyokazu Sekiguchi; Keitaro Takahashi; Joseph Silk

2013-02-19T23:59:59.000Z

130

Learning Energy Demand Domain Knowledge via Feature Transformation  

E-Print Network [OSTI]

Learning Energy Demand Domain Knowledge via Feature Transformation Sanzad Siddique Department -- Domain knowledge is an essential factor for forecasting energy demand. This paper introduces a method knowledge substantially improves energy demand forecasting accuracy. However, domain knowledge may differ

Povinelli, Richard J.

131

Future Water Supply and Demand in the Okanagan Basin, British Columbia: A Scenario-Based Analysis  

E-Print Network [OSTI]

. An integrated water management model (Water Evaluation and Planning system, WEAP) was used to consider future . Reservoir management . Instream flows . Mountain Pine Beetle Water Resour Manage (2012) 26:667­689 DOI 10 misperception of an abundance of renewable freshwater has inhibited integrated planning for water management

132

Consensus Coal Production Forecast for  

E-Print Network [OSTI]

in the consensus forecast produced in 2006, primarily from the decreased demand as a result of the current nationalConsensus Coal Production Forecast for West Virginia 2009-2030 Prepared for the West Virginia Summary 1 Recent Developments 2 Consensus Coal Production Forecast for West Virginia 10 Risks

Mohaghegh, Shahab

133

Enhanced Oil Recovery to Fuel Future Oil Demands | GE Global Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing Zirconia NanoparticlesSmartAffects the Future Energy Mix Click to email this

134

Customer focused collaborative demand planning  

E-Print Network [OSTI]

Many firms worldwide have adopted the process of Sales & Operations Planning (S&OP) process where internal departments within a firm collaborate with each other to generate a demand forecast. In a collaborative demand ...

Jha, Ratan (Ratan Mohan)

2008-01-01T23:59:59.000Z

135

Orphan drugs : future viability of current forecasting models, in light of impending changes to influential market factors  

E-Print Network [OSTI]

Interviews were conducted to establish a baseline for how orphan drug forecasting is currently undertaken by financial market and industry analysts with the intention of understanding the variables typically accounted for ...

Gottlieb, Joshua

2011-01-01T23:59:59.000Z

136

Forecast Correlation Coefficient Matrix of Stock Returns in Portfolio Analysis  

E-Print Network [OSTI]

Unadjusted Forecasts . . . . . . . . . . . . . . . .Forecasts . . . . . . . . . . . . . . . . . . . . . . . . . .Unadjusted Forecasts . . . . . . . . . . . . . . . . . . .

Zhao, Feng

2013-01-01T23:59:59.000Z

137

Load Forecast For use in Resource Adequacy  

E-Print Network [OSTI]

-term Electricity Demand Forecasting System 1) Obtain Daily Regional Temperatures 6) Estimate Daily WeatherLoad Forecast 2019 For use in Resource Adequacy Massoud Jourabchi #12;In today's presentation d l­ Load forecast methodology ­ Drivers of the forecast f i­ Treatment of conservation

138

California Energy Demand Scenario Projections to 2050  

E-Print Network [OSTI]

California Energy Demand Scenario Projections to 2050 RyanCEC (2003a) California energy demand 2003-2013 forecast.CEC (2005a) California energy demand 2006-2016: Staff energy

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2008-01-01T23:59:59.000Z

139

Forecast Technical Document Forecast Types  

E-Print Network [OSTI]

Forecast Technical Document Forecast Types A document describing how different forecast types are implemented in the 2011 Production Forecast system. Tom Jenkins Robert Matthews Ewan Mackie Lesley Halsall #12;PF2011 ­ Forecast Types Background Different `types' of forecast are possible for a specified area

140

International Oil Supplies and Demands. Volume 1  

SciTech Connect (OSTI)

The eleventh Energy Modeling Forum (EMF) working group met four times over the 1989--90 period to compare alternative perspectives on international oil supplies and demands through 2010 and to discuss how alternative supply and demand trends influence the world`s dependence upon Middle Eastern oil. Proprietors of eleven economic models of the world oil market used their respective models to simulate a dozen scenarios using standardized assumptions. From its inception, the study was not designed to focus on the short-run impacts of disruptions on oil markets. Nor did the working group attempt to provide a forecast or just a single view of the likely future path for oil prices. The model results guided the group`s thinking about many important longer-run market relationships and helped to identify differences of opinion about future oil supplies, demands, and dependence.

Not Available

1991-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "forecast future demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

International Oil Supplies and Demands. Volume 2  

SciTech Connect (OSTI)

The eleventh Energy Modeling Forum (EMF) working group met four times over the 1989--1990 period to compare alternative perspectives on international oil supplies and demands through 2010 and to discuss how alternative supply and demand trends influence the world`s dependence upon Middle Eastern oil. Proprietors of eleven economic models of the world oil market used their respective models to simulate a dozen scenarios using standardized assumptions. From its inception, the study was not designed to focus on the short-run impacts of disruptions on oil markets. Nor did the working group attempt to provide a forecast or just a single view of the likely future path for oil prices. The model results guided the group`s thinking about many important longer-run market relationships and helped to identify differences of opinion about future oil supplies, demands, and dependence.

Not Available

1992-04-01T23:59:59.000Z

142

How Can China Lighten Up? Urbanization, Industrialization and Energy Demand Scenarios  

E-Print Network [OSTI]

on the forecast of total energy demand. Based on this, weIndustrialization and Energy Demand Scenarios Nathaniel T.adjustment spurred energy demand for construction of new

Aden, Nathaniel T.

2010-01-01T23:59:59.000Z

143

Sixth Northwest Conservation and Electric Power Plan Appendix B: Economic Forecast  

E-Print Network [OSTI]

Sixth Northwest Conservation and Electric Power Plan Appendix B: Economic Forecast Role of the Economic Forecast ................................................................................................. 2 Economic Drivers of Residential Demand

144

Load forecast and treatment of conservation  

E-Print Network [OSTI]

conservation is implicitly incorporated in the short-term demand forecast? #12;3 Incorporating conservationLoad forecast and treatment of conservation July 28th 2010 Resource Adequacy Technical Committee in the short-term model Our short-term model is an econometric model which can not explicitly forecast

145

Electricity demand-side management for an energy efficient future in China : technology options and policy priorities  

E-Print Network [OSTI]

The main objective of this research is to identify robust technology and policy options which achieve substantial reductions in electricity demand in China's Shandong Province. This research utilizes a scenario-based ...

Cheng, Chia-Chin

2005-01-01T23:59:59.000Z

146

Management Forecast Quality and Capital Investment Decisions  

E-Print Network [OSTI]

Corporate investment decisions require managers to forecast expected future cash flows from potential investments. Although these forecasts are a critical component of successful investing, they are not directly observable ...

Goodman, Theodore H.

147

CE 469 / 569 TRAVEL DEMAND MODELING Spring 2006 Course Syllabus  

E-Print Network [OSTI]

of travel demand data, and should apply these methods to estimating and to forecasting travel demand these to practical modeling scenarios. The student should also use existing computer tools to forecast travel demand1 CE 469 / 569 TRAVEL DEMAND MODELING Spring 2006 Course Syllabus Catalog Detailed investigation

Hickman, Mark

148

AN ANALYSIS OF FORECAST BASED REORDER POINT POLICIES : THE BENEFIT  

E-Print Network [OSTI]

AN ANALYSIS OF FORECAST BASED REORDER POINT POLICIES : THE BENEFIT OF USING FORECASTS Mohamed Zied Ch^atenay-Malabry Cedex, France Abstract: In this paper, we analyze forecast based inventory control policies for a non-stationary demand. We assume that forecasts and the associated uncertainties are given

Paris-Sud XI, Université de

149

IMPACTS OF ADVANCE DEMAND INFORMATION IN MULTI-CLASS PRODUCTION-INVENTORY SYSTEMS  

E-Print Network [OSTI]

coming from an MRP system. They consider demand forecasts as advance demand information. The accuracy a capacitated forecasting-production-inventory system with a stationary demand process and forecast updates1 IMPACTS OF ADVANCE DEMAND INFORMATION IN MULTI-CLASS PRODUCTION-INVENTORY SYSTEMS Seda Tepe

Karaesmen, Fikri

150

California Baseline Energy Demands to 2050 for Advanced Energy Pathways  

E-Print Network [OSTI]

ED2, September. CEC (2005b) Energy demand forecast methodsCalifornia Baseline Energy Demands to 2050 for Advancedof a baseline scenario for energy demand in California for a

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2008-01-01T23:59:59.000Z

151

Future Power Systems 20: The Smart Enterprise, its Objective...  

Broader source: Energy.gov (indexed) [DOE]

0: The Smart Enterprise, its Objective and Forecasting. Future Power Systems 20: The Smart Enterprise, its Objective and Forecasting. More Documents & Publications Future Power...

152

Independent Demand Models Non Linear (Chemical Industry -take or pay)  

E-Print Network [OSTI]

casesshippedperweek #12;High Variability Between Forecast and Actual · Demand in relation to the forecast means almostIndependent Demand Models · Non Linear (Chemical Industry - take or pay) · Deterministic Simulation (make to stock - lumpy demand) · Mathematical Programming (family structure - near optimum) · Heuristic

Brock, David

153

Page 1 of 29 Strategic Inventory Placement in Supply Chains: Non-Stationary Demand  

E-Print Network [OSTI]

difficult to forecast. Furthermore, demand is never really stationary as the demand rate evolves over that product demand is uncertain and difficult to forecast, and that the demand process evolves overPage 1 of 29 Strategic Inventory Placement in Supply Chains: Non-Stationary Demand Stephen C

Graves, Stephen C.

154

Tracking Progress Last updated 5/7/2014 Statewide Energy Demand 1  

E-Print Network [OSTI]

dollars) to $1.8 trillion in 2012 (2012 dollars). Forecast Electricity Demand Although the California Energy Commission's energy demand forecast includes multiple scenarios, the Energy Commission worked together1 to agree upon a single managed demand forecast that incorporates all energy efficiency

155

-Assessment of current water conditions -Precipitation Forecast  

E-Print Network [OSTI]

#12;-Assessment of current water conditions - Precipitation Forecast - Recommendations for Drought of the mountains, so early demand for irrigation water should be minimal as we officially move into spring. Western, it is forecast to bring wet snow to the eastern slope of the Rockies, with less accumulations west of the divide

156

Nuclear energy acceptance and potential role to meet future energy demand. Which technical/scientific achievements are needed?  

SciTech Connect (OSTI)

25 years after Chernobyl, the Fukushima disaster has changed the perspectives of nuclear power. The disaster has shed a negative light on the independence, reliability and rigor of the national nuclear regulator and plant operator and the usefulness of the international IAEA guidelines on nuclear safety. It has become clear that, in the light of the most severe earthquake in the history of Japan, the plants at Fukushima Daiichi were not adequately protected against tsunamis. Nuclear acceptance has suffered enormously and has changed the perspectives of nuclear energy dramatically in countries that have a very risk-sensitive population, Germany is an example. The paper analyses the reactions in major countries and the expected impact on future deployment of reactors and on R and D activities. On the positive side, the disaster has demonstrated a remarkable robustness of most of the 14 reactors closest to the epicentre of the Tohoku Seaquake although not designed to an event of level 9.0. Public acceptance can only be regained with a rigorous and worldwide approach towards inherent reactor safety and design objectives that limit the impact of severe accidents to the plant itself (like many of the new Gen III reactors). A widespread release of radioactivity and the evacuation (temporary or permanent) of the population up to 30 km around a facility are simply not acceptable. Several countries have announced to request more stringent international standards for reactor safety. The IAEA should take this move forward and intensify and strengthen the different peer review mission schemes. The safety guidelines and peer reviews should in fact become legally binding for IAEA members. The paper gives examples of the new safety features developed over the last 20 years and which yield much safer reactors with lesser burden to the environment under severe accident conditions. The compatibility of these safety systems with the current concepts for fusion-fission hybrids, which have recently been proposed for energy production, is critically reviewed. There are major challenges remaining that are shortly outlined. Scientific/technical achievements that are required in the light of the Fukushima accident are highlighted.

Schenkel, Roland [European Commission, Joint Research Centre, Institute for Transuranium Elements, Hermann-von-Helmholtz-Platz 1,76344 Eggenstein-Leopoldshafen (Germany)

2012-06-19T23:59:59.000Z

157

TRANSPORTATION ENERGY FORECASTS FOR THE 2007 INTEGRATED ENERGY  

E-Print Network [OSTI]

requirements. The transportation energy demand forecasts make assumptions about fuel price forecastsCALIFORNIA ENERGY COMMISSION TRANSPORTATION ENERGY FORECASTS FOR THE 2007 INTEGRATED ENERGY POLICY ENERGY COMMISSION Gordon Schremp, Jim Page, and Malachi Weng-Gutierrez Principal Authors Jim Page Project

158

State-of-the art of freight forecast modeling: lessons learned and the road ahead  

E-Print Network [OSTI]

of-the art of freight forecast modeling: lessons learned andof goods as well as to forecast the expected future truckused for the short-term forecasts of freight volumes on

Chow, Joseph Y.; Yang, Choon Heon; Regan, Amelia C.

2010-01-01T23:59:59.000Z

159

Demand forecasting for aircraft engine aftermarket  

E-Print Network [OSTI]

In 2006, Pratt and Whitney launched the Global Material Solutions business model aiming to supply spare parts to non-OEM engines with minimum 95% on-time delivery and fill-rate. Lacking essential technical knowledge of the ...

Ho, Kien K. (Kine Kit)

2008-01-01T23:59:59.000Z

160

Solar Forecasting  

Broader source: Energy.gov [DOE]

On December 7, 2012,DOE announced $8 million to fund two solar projects that are helping utilities and grid operators better forecast when, where, and how much solar power will be produced at U.S....

Note: This page contains sample records for the topic "forecast future demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

FORECASTING THE ROLE OF RENEWABLES IN HAWAII  

E-Print Network [OSTI]

of a range of world oil prices for future energy demand andTo examine the ef feet of oil prices on energy demand andprojections of world oil prices. Th and demand. determined

Sathaye, Jayant

2013-01-01T23:59:59.000Z

162

Forecast Technical Document Restocking in the Forecast  

E-Print Network [OSTI]

Forecast Technical Document Restocking in the Forecast A document describing how restocking of felled areas is handled in the 2011 Production Forecast. Tom Jenkins Robert Matthews Ewan Mackie Lesley in the forecast Background During the period of a production forecast it is assumed that, as forest sub

163

Demand Reduction  

Broader source: Energy.gov [DOE]

Grantees may use funds to coordinate with electricity supply companies and utilities to reduce energy demands on their power systems. These demand reduction programs are usually coordinated through...

164

Drivers of Future Energy Demand  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phasesDataTranslocationDiurnalCommittee Draft Advice9DrillingDrive

165

Resource Adequacy Load Forecast A Report to the Resource Adequacy Advisory Committee  

E-Print Network [OSTI]

one hour peak demand and monthly energy assuming normal weather. The Council forecast includes loadsResource Adequacy Load Forecast A Report to the Resource Adequacy Advisory Committee Tomás of the assessment is the load forecast. The Council staff has recently developed a load forecast to be used

166

California's Summer 2004 Electricity Supply and Demand Outlook  

E-Print Network [OSTI]

forecast for 2004 is higher to reflect increased demand from more robust economic growth. In this newCALIFORNIA ENERGY COMMISSION California's Summer 2004 Electricity Supply and Demand Outlook Supply and Demand Outlook The California Energy Commission staff's electricity supply and demand outlook

167

Transportation Demand  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Annual VMT per vehicle by fleet type stays constant over the forecast period based on the Oak Ridge National Laboratory fleet data. Fleet fuel economy for both conventional and...

168

Inverse Modelling to Forecast Enclosure Fire Dynamics  

E-Print Network [OSTI]

. This thesis proposes and studies a method to use measurements of the real event in order to steer and accelerate fire simulations. This technology aims at providing forecasts of the fire development with a positive lead time, i.e. the forecast of future events...

Jahn, Wolfram

169

> BUREAU HOME > AUSTRALIA > QUEENSLAND > FORECASTS FORECAST IMPROVEMENTS  

E-Print Network [OSTI]

> BUREAU HOME > AUSTRALIA > QUEENSLAND > FORECASTS BRISBANE FORECAST IMPROVEMENTS The Bureau of Meteorology is progressively upgrading its forecast system to provide more detailed forecasts across Australia and Sunshine Coast. FURTHER INFORMATION : www.bom.gov.au/NexGenFWS © Commonwealth of Australia, 2013 Links

Greenslade, Diana

170

Earnings forecast bias -a statistical analysis Franois Dossou  

E-Print Network [OSTI]

Earnings forecast bias - a statistical analysis François Dossou Sandrine Lardic** Karine Michalon' earnings forecasts is an important aspect of research for different reasons: Many empirical studies employ analysts' consensus forecasts as a proxy for the market's expectations of future earnings in order

Paris-Sud XI, Université de

171

Weighted Parametric Operational Hydrology Forecasting Thomas E. Croley II1  

E-Print Network [OSTI]

1 Weighted Parametric Operational Hydrology Forecasting Thomas E. Croley II1 1 Great Lakes forecasts in operational hydrology builds a sample of possibilities for the future, of climate series from-parametric method can be extended into a new weighted parametric hydrological forecasting technique to allow

172

Solid low-level waste forecasting guide  

SciTech Connect (OSTI)

Guidance for forecasting solid low-level waste (LLW) on a site-wide basis is described in this document. Forecasting is defined as an approach for collecting information about future waste receipts. The forecasting approach discussed in this document is based solely on hanford`s experience within the last six years. Hanford`s forecasting technique is not a statistical forecast based upon past receipts. Due to waste generator mission changes, startup of new facilities, and waste generator uncertainties, statistical methods have proven to be inadequate for the site. It is recommended that an approach similar to Hanford`s annual forecasting strategy be implemented at each US Department of Energy (DOE) installation to ensure that forecast data are collected in a consistent manner across the DOE complex. Hanford`s forecasting strategy consists of a forecast cycle that can take 12 to 30 months to complete. The duration of the cycle depends on the number of LLW generators and staff experience; however, the duration has been reduced with each new cycle. Several uncertainties are associated with collecting data about future waste receipts. Volume, shipping schedule, and characterization data are often reported as estimates with some level of uncertainty. At Hanford, several methods have been implemented to capture the level of uncertainty. Collection of a maximum and minimum volume range has been implemented as well as questionnaires to assess the relative certainty in the requested data.

Templeton, K.J.; Dirks, L.L.

1995-03-01T23:59:59.000Z

173

California's Electricity Supply and Demand Balance Over the Next Five Years  

E-Print Network [OSTI]

the resources of the system. The Commission's 2003 Baseline Demand forecast assumes the following assumptions September October 1 CEC 2003 Baseline Demand Forecast (1-in-2 Weather)1, 2 31 California's Electricity Supply and Demand Balance Over the Next Five Years The Energy Commission

174

National forecast for geothermal resource exploration and development with techniques for policy analysis and resource assessment  

SciTech Connect (OSTI)

The backgrund, structure and use of modern forecasting methods for estimating the future development of geothermal energy in the United States are documented. The forecasting instrument may be divided into two sequential submodels. The first predicts the timing and quality of future geothermal resource discoveries from an underlying resource base. This resource base represents an expansion of the widely-publicized USGS Circular 790. The second submodel forecasts the rate and extent of utilization of geothermal resource discoveries. It is based on the joint investment behavior of resource developers and potential users as statistically determined from extensive industry interviews. It is concluded that geothermal resource development, especially for electric power development, will play an increasingly significant role in meeting US energy demands over the next 2 decades. Depending on the extent of R and D achievements in related areas of geosciences and technology, expected geothermal power development will reach between 7700 and 17300 Mwe by the year 2000. This represents between 8 and 18% of the expected electric energy demand (GWh) in western and northwestern states.

Cassel, T.A.V.; Shimamoto, G.T.; Amundsen, C.B.; Blair, P.D.; Finan, W.F.; Smith, M.R.; Edeistein, R.H.

1982-03-31T23:59:59.000Z

175

Forecasted Opportunities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibilityFieldMinds" |beamtheFor yourForForecasted

176

Solar forecasting review  

E-Print Network [OSTI]

and forecasting of solar radiation data: a review,forecasting of solar- radiation data, Solar Energy, vol.sequences of global solar radiation data for isolated sites:

Inman, Richard Headen

2012-01-01T23:59:59.000Z

177

> BUREAU HOME > AUSTRALIA > QUEENSLAND > FORECASTS DISTRICT FORECASTS  

E-Print Network [OSTI]

> BUREAU HOME > AUSTRALIA > QUEENSLAND > FORECASTS DISTRICT FORECASTS IMPROVEMENTS FOR QUEENSLAND across Australia From October 2013, new and improved district forecasts will be introduced in Queensland Protection times FURTHER INFORMATION : www.bom.gov.au/NexGenFWS © Commonwealth of Australia, 2013 PTO> Wind

Greenslade, Diana

178

Forecasting and strategic inventory placement for gas turbine aftermarket spares  

E-Print Network [OSTI]

This thesis addresses the problem of forecasting demand for Life Limited Parts (LLPs) in the gas turbine engine aftermarket industry. It is based on work performed at Pratt & Whitney, a major producer of turbine engines. ...

Simmons, Joshua T. (Joshua Thomas)

2007-01-01T23:59:59.000Z

179

SATELLITE BASED SHORT-TERM FORECASTING OF SOLAR IRRADANCE  

E-Print Network [OSTI]

SATELLITE BASED SHORT-TERM FORECASTING OF SOLAR IRRADANCE - COMPARISON OF METHODS AND ERROR Forecasting of solar irradiance will become a major issue in the future integration of solar energy resources method was used to derive motion vector fields from two consecutive images. The future image

Heinemann, Detlev

180

Combination of Long Term and Short Term Forecasts, with Application to Tourism  

E-Print Network [OSTI]

Combination of Long Term and Short Term Forecasts, with Application to Tourism Demand Forecasting that are combined. As a case study, we consider the problem of forecasting monthly tourism numbers for inbound tourism to Egypt. Specifically, we con- sider 33 source countries, as well as the aggregate. The novel

Abu-Mostafa, Yaser S.

Note: This page contains sample records for the topic "forecast future demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Demand models for U.S. domestic air passenger markets  

E-Print Network [OSTI]

The airline industry in recent years has suffered from the adverse effects of top level planning decisions based upon inaccurate demand forecasts. The air carriers have recognized the immediate need to develop their ...

Eriksen, Steven Edward

1978-01-01T23:59:59.000Z

182

Using Wikipedia to forecast diseases  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Using Wikipedia to forecast diseases Using Wikipedia to forecast diseases Scientists can now monitor and forecast diseases around the globe more effectively by analyzing views of...

183

Careers Bachelor if Sciences in The future is bright for those pursuing an education in geology or a geoscience  

E-Print Network [OSTI]

that geoscientists are in demand and increasing demand is forecast. A recent report pursuing an education in geology or a geoscience related field as demand for geoscientists is high and the opportunities are diverse. With increasing global demand

Walker, Lawrence R.

184

Model documentation report: Commercial Sector Demand Module of the National Energy Modeling System  

SciTech Connect (OSTI)

This report documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Commercial Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated through the synthesis and scenario development based on these components. This report serves three purposes. First, it is a reference document providing a detailed description for model analysts, users, and the public. Second, this report meets the legal requirement of the Energy Information Administration (EIA) to provide adequate documentation in support of its statistical and forecast reports (Public Law 93-275, section 57(b)(1)). Third, it facilitates continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements as future projects.

NONE

1995-02-01T23:59:59.000Z

185

Future Impacts of Coal Distribution Constraints on Coal Cost  

E-Print Network [OSTI]

transportation component of coal price should also increase;investment. Coal costs and prices are functions of a numberto forecast coal demand, supply, and prices from now to

McCollum, David L

2007-01-01T23:59:59.000Z

186

Beyond Renewable Portfolio Standards: An Assessment of Regional Supply and Demand Conditions Affecting the Future of Renewable Energy in the West; Report and Executive Summary  

SciTech Connect (OSTI)

This study assesses the outlook for utility-scale renewable energy development in the West once states have met their renewable portfolio standard (RPS) requirements. In the West, the last state RPS culminates in 2025, so the analysis uses 2025 as a transition point on the timeline of RE development. Most western states appear to be on track to meet their final requirements, relying primarily on renewable resources located relatively close to the customers being served. What happens next depends on several factors including trends in the supply and price of natural gas, greenhouse gas and other environmental regulations, consumer preferences, technological breakthroughs, and future public policies and regulations. Changes in any one of these factors could make future renewable energy options more or less attractive.

Hurlbut, D. J.; McLaren, J.; Gelman, R.

2013-08-01T23:59:59.000Z

187

Leveraging Weather Forecasts in Renewable Energy Navin Sharmaa,  

E-Print Network [OSTI]

Leveraging Weather Forecasts in Renewable Energy Systems Navin Sharmaa, , Jeremy Gummesonb , David, Binghamton, NY 13902 Abstract Systems that harvest environmental energy must carefully regulate their us- age to satisfy their demand. Regulating energy usage is challenging if a system's demands are not elastic, since

Shenoy, Prashant

188

Cloudy Computing: Leveraging Weather Forecasts in Energy Harvesting Sensor Systems  

E-Print Network [OSTI]

Cloudy Computing: Leveraging Weather Forecasts in Energy Harvesting Sensor Systems Navin Sharma,gummeson,irwin,shenoy}@cs.umass.edu Abstract--To sustain perpetual operation, systems that harvest environmental energy must carefully regulate their usage to satisfy their demand. Regulating energy usage is challenging if a system's demands

Shenoy, Prashant

189

Forecast Technical Document Volume Increment  

E-Print Network [OSTI]

Forecast Technical Document Volume Increment Forecasts A document describing how volume increment is handled in the 2011 Production Forecast. Tom Jenkins Robert Matthews Ewan Mackie Lesley Halsall #12;PF2011 ­ Volume increment forecasts Background A volume increment forecast is a fundamental output of the forecast

190

Electricity Demand and Energy Consumption Management System  

E-Print Network [OSTI]

This project describes the electricity demand and energy consumption management system and its application to the Smelter Plant of Southern Peru. It is composted of an hourly demand-forecasting module and of a simulation component for a plant electrical system. The first module was done using dynamic neural networks, with backpropagation training algorithm; it is used to predict the electric power demanded every hour, with an error percentage below of 1%. This information allows management the peak demand before this happen, distributing the raise of electric load to other hours or improving those equipments that increase the demand. The simulation module is based in advanced estimation techniques, such as: parametric estimation, neural network modeling, statistic regression and previously developed models, which simulates the electric behavior of the smelter plant. These modules allow the proper planning because it allows knowing the behavior of the hourly demand and the consumption patterns of the plant, in...

Sarmiento, Juan Ojeda

2008-01-01T23:59:59.000Z

191

Demand Response Programs, 6. edition  

SciTech Connect (OSTI)

The report provides a look at the past, present, and future state of the market for demand/load response based upon market price signals. It is intended to provide significant value to individuals and companies who are considering participating in demand response programs, energy providers and ISOs interested in offering demand response programs, and consultants and analysts looking for detailed information on demand response technology, applications, and participants. The report offers a look at the current Demand Response environment in the energy industry by: defining what demand response programs are; detailing the evolution of program types over the last 30 years; discussing the key drivers of current initiatives; identifying barriers and keys to success for the programs; discussing the argument against subsidization of demand response; describing the different types of programs that exist including:direct load control, interruptible load, curtailable load, time-of-use, real time pricing, and demand bidding/buyback; providing examples of the different types of programs; examining the enablers of demand response programs; and, providing a look at major demand response programs.

NONE

2007-10-15T23:59:59.000Z

192

Distribution Based Data Filtering for Financial Time Series Forecasting  

E-Print Network [OSTI]

recent past. In this paper, we address the challenge of forecasting the behavior of time series using@unimelb.edu.au Abstract. Changes in the distribution of financial time series, particularly stock market prices, can of stock prices, which aims to forecast the future values of the price of a stock, in order to obtain

Bailey, James

193

Model documentation report: Industrial sector demand module of the National Energy Modeling System  

SciTech Connect (OSTI)

This report documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Industrial Demand Model. The report catalogues and describes model assumptions, computational methodology, parameter estimation techniques, and model source code. This document serves three purposes. First, it is a reference document providing a detailed description of the NEMS Industrial Model for model analysts, users, and the public. Second, this report meets the legal requirement of the Energy Information Administration (EIA) to provide adequate documentation in support of its models. Third, it facilitates continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements as future projects. The NEMS Industrial Demand Model is a dynamic accounting model, bringing together the disparate industries and uses of energy in those industries, and putting them together in an understandable and cohesive framework. The Industrial Model generates mid-term (up to the year 2015) forecasts of industrial sector energy demand as a component of the NEMS integrated forecasting system. From the NEMS system, the Industrial Model receives fuel prices, employment data, and the value of industrial output. Based on the values of these variables, the Industrial Model passes back to the NEMS system estimates of consumption by fuel types.

NONE

1997-01-01T23:59:59.000Z

194

Demand Response and Open Automated Demand Response  

E-Print Network [OSTI]

LBNL-3047E Demand Response and Open Automated Demand Response Opportunities for Data Centers G described in this report was coordinated by the Demand Response Research Center and funded by the California. Demand Response and Open Automated Demand Response Opportunities for Data Centers. California Energy

195

Measured energy savings and demand reduction from a reflective roof membrane on a large retail store in Austin  

E-Print Network [OSTI]

the abated annual energy and demand expenditures, simplea/c annual abated energy and demand expenditures and presentof future abated energy and demand expenditures is estimated

Konopacki, Steven J.; Akbari, Hashem

2001-01-01T23:59:59.000Z

196

Forecasting the underlying potential governing climatic time series  

E-Print Network [OSTI]

We introduce a technique of time series analysis, potential forecasting, which is based on dynamical propagation of the probability density of time series. We employ polynomial coefficients of the orthogonal approximation of the empirical probability distribution and extrapolate them in order to forecast the future probability distribution of data. The method is tested on artificial data, used for hindcasting observed climate data, and then applied to forecast Arctic sea-ice time series. The proposed methodology completes a framework for `potential analysis' of climatic tipping points which altogether serves anticipating, detecting and forecasting climate transitions and bifurcations using several independent techniques of time series analysis.

Livina, V N; Mudelsee, M; Lenton, T M

2012-01-01T23:59:59.000Z

197

ENSEMBLE RE-FORECASTING : IMPROVING MEDIUM-RANGE FORECAST SKILL  

E-Print Network [OSTI]

5.5 ENSEMBLE RE-FORECASTING : IMPROVING MEDIUM-RANGE FORECAST SKILL USING RETROSPECTIVE FORECASTS, Colorado 1. INTRODUCTION Improving weather forecasts is a primary goal of the U.S. National Oceanic predictions has been to improve the accuracy of the numerical forecast models. Much effort has been expended

Hamill, Tom

198

COLORADO STATE UNIVERSITY FORECAST OF ATLANTIC HURRICANE ACTIVITY FROM AUGUST 3 AUGUST 16, 2012  

E-Print Network [OSTI]

there is significant uncertainty in its future intensity, the current forecast is for a slowly strengthening TC which, 3) forecast output from global models, 4) the current and projected state of the Madden with these two-week forecasts is the Accumulated Cyclone Energy (ACE) index, which is defined to be all

Gray, William

199

Price forecasting for U.S. cattle feeders: which technique to apply?  

E-Print Network [OSTI]

0. 04 0. 10 0. 08 0. 06 0. 06 0. 06 sAdvantaged forecast as it was compiled a calendar annual forecast with six months of actual data. All forecasts assume a January Benchmark. 27 Table 4 is the one-quarter ahead forecast comparison which... 12. 30 MAPE 0. 05 0. 05 0. 04 0. 04 0. 04 "All forecasts assume a July benchmark. 28 Table 5 is the two-quarter ahead forecast comparison which is for the second half of the calendar year (i. e. , July - December). The Futures Market...

Hicks, Geoff Cody

2012-06-07T23:59:59.000Z

200

Adaptive sampling and forecasting with mobile sensor networks  

E-Print Network [OSTI]

This thesis addresses planning of mobile sensor networks to extract the best information possible out of the environment to improve the (ensemble) forecast at some verification region in the future. To define the information ...

Choi, Han-Lim

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "forecast future demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Pacific Adaptation Strategy Assistance Program Dynamical Seasonal Forecasting  

E-Print Network [OSTI]

Pacific Adaptation Strategy Assistance Program Dynamical Seasonal Forecasting Seasonal Prediction · POAMA · Issues for future Outline #12;Pacific Adaptation Strategy Assistance Program Major source Adaptation Strategy Assistance Program El Nino Mean State · Easterlies westward surface current upwelling

Lim, Eun-pa

202

Residential sector end-use forecasting with EPRI-Reeps 2.1: Summary input assumptions and results  

SciTech Connect (OSTI)

This paper describes current and projected future energy use by end-use and fuel for the U.S. residential sector, and assesses which end-uses are growing most rapidly over time. The inputs to this forecast are based on a multi-year data compilation effort funded by the U.S. Department of Energy. We use the Electric Power Research Institute`s (EPRI`s) REEPS model, as reconfigured to reflect the latest end-use technology data. Residential primary energy use is expected to grow 0.3% per year between 1995 and 2010, while electricity demand is projected to grow at about 0.7% per year over this period. The number of households is expected to grow at about 0.8% per year, which implies that the overall primary energy intensity per household of the residential sector is declining, and the electricity intensity per household is remaining roughly constant over the forecast period. These relatively low growth rates are dependent on the assumed growth rate for miscellaneous electricity, which is the single largest contributor to demand growth in many recent forecasts.

Koomey, J.G.; Brown, R.E.; Richey, R. [and others

1995-12-01T23:59:59.000Z

203

High Temperatures & Electricity Demand  

E-Print Network [OSTI]

High Temperatures & Electricity Demand An Assessment of Supply Adequacy in California Trends.......................................................................................................1 HIGH TEMPERATURES AND ELECTRICITY DEMAND.....................................................................................................................7 SECTION I: HIGH TEMPERATURES AND ELECTRICITY DEMAND ..........................9 BACKGROUND

204

Solar forecasting review  

E-Print Network [OSTI]

2.1.2 European Solar Radiation Atlas (ESRA)2.4 Evaluation of Solar Forecasting . . . . . . . . .2.4.1 Solar Variability . . . . . . . . . . . . .

Inman, Richard Headen

2012-01-01T23:59:59.000Z

205

Projecting Electricity Demand in 2050  

SciTech Connect (OSTI)

This paper describes the development of end-use electricity projections and load curves that were developed for the Renewable Electricity (RE) Futures Study (hereafter RE Futures), which explored the prospect of higher percentages (30% ? 90%) of total electricity generation that could be supplied by renewable sources in the United States. As input to RE Futures, two projections of electricity demand were produced representing reasonable upper and lower bounds of electricity demand out to 2050. The electric sector models used in RE Futures required underlying load profiles, so RE Futures also produced load profile data in two formats: 8760 hourly data for the year 2050 for the GridView model, and in 2-year increments for 17 time slices as input to the Regional Energy Deployment System (ReEDS) model. The process for developing demand projections and load profiles involved three steps: discussion regarding the scenario approach and general assumptions, literature reviews to determine readily available data, and development of the demand curves and load profiles.

Hostick, Donna J.; Belzer, David B.; Hadley, Stanton W.; Markel, Tony; Marnay, Chris; Kintner-Meyer, Michael CW

2014-07-01T23:59:59.000Z

206

Negotiating future climates for public policy: a critical assessment of the development of  

E-Print Network [OSTI]

) or of seasonal forecasting (a few months): Earth system models aim to simulate future climatic evolution over

Hulme, Mike

207

Technology Forecasting Scenario Development  

E-Print Network [OSTI]

Technology Forecasting and Scenario Development Newsletter No. 2 October 1998 Systems Analysis was initiated on the establishment of a new research programme entitled Technology Forecasting and Scenario and commercial applica- tion of new technology. An international Scientific Advisory Panel has been set up

208

Rainfall-River Forecasting  

E-Print Network [OSTI]

;2Rainfall-River Forecasting Joint Summit II NOAA Integrated Water Forecasting Program · Minimize losses due management and enhance America's coastal assets · Expand information for managing America's Water Resources, Precipitation and Water Quality Observations · USACE Reservoir Operation Information, Streamflow, Snowpack

US Army Corps of Engineers

209

5/2/2005 Industry Seminar -April 2005 The Housing Market and Demand for  

E-Print Network [OSTI]

: Consensus forecast ­ NAHB, major banks) #12;Regional shifts in housing demand Graying population will keep5/2/2005 Industry Seminar - April 2005 The Housing Market and Demand for Building Materials Charlotte, NC April 27, 2005 #12;Changes that will impact demand for residential building materials

210

Cooling energy demand evaluation by means of regression models obtained from dynamic simulations  

E-Print Network [OSTI]

Cooling energy demand evaluation by means of regression models obtained from dynamic simulations Ph, Université Lyon1, FRANCE ABSTRACT The forecast of the energy heating/cooling demand would be a good indicator between simple and complex methods of evaluating the cooling energy demand we have proposed to use energy

Paris-Sud XI, Université de

211

The house of the future  

ScienceCinema (OSTI)

Learn what it will take to create tomorrow's net-zero energy home as scientists reveal the secrets of cool roofs, smart windows, and computer-driven energy control systems. The net-zero energy home: Scientists are working to make tomorrow's homes more than just energy efficient -- they want them to be zero energy. Iain Walker, a scientist in the Lab's Energy Performance of Buildings Group, will discuss what it takes to develop net-zero energy houses that generate as much energy as they use through highly aggressive energy efficiency and on-site renewable energy generation. Talking back to the grid: Imagine programming your house to use less energy if the electricity grid is full or price are high. Mary Ann Piette, deputy director of Berkeley Lab's building technology department and director of the Lab's Demand Response Research Center, will discuss how new technologies are enabling buildings to listen to the grid and automatically change their thermostat settings or lighting loads, among other demands, in response to fluctuating electricity prices. The networked (and energy efficient) house: In the future, your home's lights, climate control devices, computers, windows, and appliances could be controlled via a sophisticated digital network. If it's plugged in, it'll be connected. Bruce Nordman, an energy scientist in Berkeley Lab's Energy End-Use Forecasting group, will discuss how he and other scientists are working to ensure these networks help homeowners save energy.

None

2010-09-01T23:59:59.000Z

212

The Role of Demand Response Policy Forum Series  

E-Print Network [OSTI]

The Role of Demand Response Policy Forum Series Beyond 33 Percent: California's Renewable Future and Demand Response #12;Historic focus on Seasonal Grid Stress PG&E Demand Bid Test Day 0 2000 4000 6000 8000 Communication Latency #12;Bottom Up Review of End-Use Loads for Demand Response 5 Commercial Residential

California at Davis, University of

213

APPLICATION OF PROBABILISTIC FORECASTS: DECISION MAKING WITH FORECAST UNCERTAINTY  

E-Print Network [OSTI]

1 APPLICATION OF PROBABILISTIC FORECASTS: DECISION MAKING WITH FORECAST UNCERTAINTY Rick Katz.isse.ucar.edu/HP_rick/dmuu.pdf #12;2 QUOTES ON USE OF PROBABILITY FORECASTS · Lao Tzu (Chinese Philosopher) "He who knows does and Value of Probability Forecasts (4) Cost-Loss Decision-Making Model (5) Simulation Example (6) Economic

Katz, Richard

214

Comparison of Various Deterministic Forecasting Techniques in Shale Gas Reservoirs with Emphasis on the Duong Method  

E-Print Network [OSTI]

There is a huge demand in the industry to forecast production in shale gas reservoirs accurately. There are many methods including volumetric, Decline Curve Analysis (DCA), analytical simulation and numerical simulation. Each one of these methods...

Joshi, Krunal Jaykant

2012-10-19T23:59:59.000Z

215

Forecasting the Hourly Ontario Energy Price by Multivariate Adaptive Regression Splines  

E-Print Network [OSTI]

1 Forecasting the Hourly Ontario Energy Price by Multivariate Adaptive Regression Splines H. In this paper, the MARS technique is applied to forecast the hourly Ontario energy price (HOEP). The MARS models values of the latest pre- dispatch price and demand information, made available by the Ontario

Cañizares, Claudio A.

216

Transportation Demand This  

Gasoline and Diesel Fuel Update (EIA)

(VMT) per vehicle by fleet type stays constant over the forecast period based on the Oak Ridge National Laboratory fleet data. Fleet fuel economy for both conventional and...

217

Device-oriented telecommunications customer call center demand forecasting  

E-Print Network [OSTI]

Verizon Wireless maintains a call center infrastructure employing more than 15,000 customer care representatives across the United States. The current resource management process requires a lead time of several months to ...

Koul, Ashish, 1979-

2014-01-01T23:59:59.000Z

218

U.S. Regional Demand Forecasts Using NEMS and GIS  

E-Print Network [OSTI]

Administration. 2004a. Annual Energy Outlook 2004. U.S.Assumptions of the Annual Energy Outlook 2004. DOE/EIA-0554(and Definitions AEO Annual Energy Outlook ArcGIS - ESRI

Cohen, Jesse A.; Edwards, Jennifer L.; Marnay, Chris

2005-01-01T23:59:59.000Z

219

A model for Long-term Industrial Energy Forecasting (LIEF)  

SciTech Connect (OSTI)

The purpose of this report is to establish the content and structural validity of the Long-term Industrial Energy Forecasting (LIEF) model, and to provide estimates for the model's parameters. The model is intended to provide decision makers with a relatively simple, yet credible tool to forecast the impacts of policies which affect long-term energy demand in the manufacturing sector. Particular strengths of this model are its relative simplicity which facilitates both ease of use and understanding of results, and the inclusion of relevant causal relationships which provide useful policy handles. The modeling approach of LIEF is intermediate between top-down econometric modeling and bottom-up technology models. It relies on the following simple concept, that trends in aggregate energy demand are dependent upon the factors: (1) trends in total production; (2) sectoral or structural shift, that is, changes in the mix of industrial output from energy-intensive to energy non-intensive sectors; and (3) changes in real energy intensity due to technical change and energy-price effects as measured by the amount of energy used per unit of manufacturing output (KBtu per constant $ of output). The manufacturing sector is first disaggregated according to their historic output growth rates, energy intensities and recycling opportunities. Exogenous, macroeconomic forecasts of individual subsector growth rates and energy prices can then be combined with endogenous forecasts of real energy intensity trends to yield forecasts of overall energy demand. 75 refs.

Ross, M. (Lawrence Berkeley Lab., CA (United States) Michigan Univ., Ann Arbor, MI (United States). Dept. of Physics Argonne National Lab., IL (United States). Environmental Assessment and Information Sciences Div.); Hwang, R. (Lawrence Berkeley Lab., CA (United States))

1992-02-01T23:59:59.000Z

220

A model for Long-term Industrial Energy Forecasting (LIEF)  

SciTech Connect (OSTI)

The purpose of this report is to establish the content and structural validity of the Long-term Industrial Energy Forecasting (LIEF) model, and to provide estimates for the model`s parameters. The model is intended to provide decision makers with a relatively simple, yet credible tool to forecast the impacts of policies which affect long-term energy demand in the manufacturing sector. Particular strengths of this model are its relative simplicity which facilitates both ease of use and understanding of results, and the inclusion of relevant causal relationships which provide useful policy handles. The modeling approach of LIEF is intermediate between top-down econometric modeling and bottom-up technology models. It relies on the following simple concept, that trends in aggregate energy demand are dependent upon the factors: (1) trends in total production; (2) sectoral or structural shift, that is, changes in the mix of industrial output from energy-intensive to energy non-intensive sectors; and (3) changes in real energy intensity due to technical change and energy-price effects as measured by the amount of energy used per unit of manufacturing output (KBtu per constant $ of output). The manufacturing sector is first disaggregated according to their historic output growth rates, energy intensities and recycling opportunities. Exogenous, macroeconomic forecasts of individual subsector growth rates and energy prices can then be combined with endogenous forecasts of real energy intensity trends to yield forecasts of overall energy demand. 75 refs.

Ross, M. [Lawrence Berkeley Lab., CA (United States)]|[Michigan Univ., Ann Arbor, MI (United States). Dept. of Physics]|[Argonne National Lab., IL (United States). Environmental Assessment and Information Sciences Div.; Hwang, R. [Lawrence Berkeley Lab., CA (United States)

1992-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "forecast future demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Global Energy: Supply, Demand, Consequences, Opportunities  

ScienceCinema (OSTI)

July 29, 2008 Berkeley Lab lecture: Arun Majumdar, Director of the Environmental Energy Technologies Division, discusses current and future projections of economic growth, population, and global energy demand and supply, and explores the implications of these trends for the environment.

Arun Majumdar

2010-01-08T23:59:59.000Z

222

Comparison of Wind Power and Load Forecasting Error Distributions: Preprint  

SciTech Connect (OSTI)

The introduction of large amounts of variable and uncertain power sources, such as wind power, into the electricity grid presents a number of challenges for system operations. One issue involves the uncertainty associated with scheduling power that wind will supply in future timeframes. However, this is not an entirely new challenge; load is also variable and uncertain, and is strongly influenced by weather patterns. In this work we make a comparison between the day-ahead forecasting errors encountered in wind power forecasting and load forecasting. The study examines the distribution of errors from operational forecasting systems in two different Independent System Operator (ISO) regions for both wind power and load forecasts at the day-ahead timeframe. The day-ahead timescale is critical in power system operations because it serves the unit commitment function for slow-starting conventional generators.

Hodge, B. M.; Florita, A.; Orwig, K.; Lew, D.; Milligan, M.

2012-07-01T23:59:59.000Z

223

Issues in midterm analysis and forecasting 1998  

SciTech Connect (OSTI)

Issues in Midterm Analysis and Forecasting 1998 (Issues) presents a series of nine papers covering topics in analysis and modeling that underlie the Annual Energy Outlook 1998 (AEO98), as well as other significant issues in midterm energy markets. AEO98, DOE/EIA-0383(98), published in December 1997, presents national forecasts of energy production, demand, imports, and prices through the year 2020 for five cases -- a reference case and four additional cases that assume higher and lower economic growth and higher and lower world oil prices than in the reference case. The forecasts were prepared by the Energy Information Administration (EIA), using EIA`s National Energy Modeling System (NEMS). The papers included in Issues describe underlying analyses for the projections in AEO98 and the forthcoming Annual Energy Outlook 1999 and for other products of EIA`s Office of Integrated Analysis and Forecasting. Their purpose is to provide public access to analytical work done in preparation for the midterm projections and other unpublished analyses. Specific topics were chosen for their relevance to current energy issues or to highlight modeling activities in NEMS. 59 figs., 44 tabs.

NONE

1998-07-01T23:59:59.000Z

224

A Vision of Demand Response - 2016  

SciTech Connect (OSTI)

Envision a journey about 10 years into a future where demand response is actually integrated into the policies, standards, and operating practices of electric utilities. Here's a bottom-up view of how demand response actually works, as seen through the eyes of typical customers, system operators, utilities, and regulators. (author)

Levy, Roger

2006-10-15T23:59:59.000Z

225

Demand for NGL as olefin plant feedstock  

SciTech Connect (OSTI)

Olefin plant demand for natural gas liquids as feedstock constitutes a key market for the NGL industry. Feedstock flexibility and the price sensitive nature of petrochemical demand are described. Future trends are presented. The formation and objectives of the Petrochemical Feedstock Association of the Americas are discussed.

Dodds, A.R. [Quantum Chemical Corp., Houston, TX (United States)

1997-12-31T23:59:59.000Z

226

Cooling Energy Demand Evaluation by Meansof Regression Models Obtained From Dynamic Simulations  

E-Print Network [OSTI]

The forecast of the energy heating/cooling demand would be a good indicator for the choice between different conception solutions according to the building characteristics and the local climate. A previous study (Catalina T. et al 2008...

Catalina, T.; Virgone, J.

2011-01-01T23:59:59.000Z

227

Probabilistic manpower forecasting  

E-Print Network [OSTI]

PROBABILISTIC MANPOWER FORECASTING A Thesis JAMES FITZHUGH KOONCE Submitted to the Graduate College of the Texas ASSAM University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May, 1966 Major Subject...: Computer Science and Statistics PROBABILISTIC MANPOWER FORECASTING A Thesis By JAMES FITZHUGH KOONCE Submitted to the Graduate College of the Texas A@M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May...

Koonce, James Fitzhugh

1966-01-01T23:59:59.000Z

228

Short-Termed Integrated Forecasting System: 1993 Model documentation report  

SciTech Connect (OSTI)

The purpose of this report is to define the Short-Term Integrated Forecasting System (STIFS) and describe its basic properties. The Energy Information Administration (EIA) of the US Energy Department (DOE) developed the STIFS model to generate short-term (up to 8 quarters), monthly forecasts of US supplies, demands, imports exports, stocks, and prices of various forms of energy. The models that constitute STIFS generate forecasts for a wide range of possible scenarios, including the following ones done routinely on a quarterly basis: A base (mid) world oil price and medium economic growth. A low world oil price and high economic growth. A high world oil price and low economic growth. This report is written for persons who want to know how short-term energy markets forecasts are produced by EIA. The report is intended as a reference document for model analysts, users, and the public.

Not Available

1993-05-01T23:59:59.000Z

229

Renewable Electricity Futures Study  

E-Print Network [OSTI]

Renewable Electricity Futures Study End-use Electricity Demand Volume 3 of 4 Volume 2 PDF Volume 3;Renewable Electricity Futures Study Edited By Hand, M.M. National Renewable Energy Laboratory Baldwin, S. U Sandor, D. National Renewable Energy Laboratory Suggested Citations Renewable Electricity Futures Study

230

Multivariate Forecast Evaluation And Rationality Testing  

E-Print Network [OSTI]

10621088. MULTIVARIATE FORECASTS Chaudhuri, P. (1996): OnKingdom. MULTIVARIATE FORECASTS Kirchgssner, G. , and U. K.2005): Estimation and Testing of Forecast Rationality under

Komunjer, Ivana; OWYANG, MICHAEL

2007-01-01T23:59:59.000Z

231

Addressing Energy Demand through Demand Response: International Experiences and Practices  

E-Print Network [OSTI]

of integrating demand response and energy efficiencyand D. Kathan (2009), Demand Response in U.S. ElectricityFRAMEWORKS THAT PROMOTE DEMAND RESPONSE 3.1. Demand Response

Shen, Bo

2013-01-01T23:59:59.000Z

232

Addressing Energy Demand through Demand Response: International Experiences and Practices  

E-Print Network [OSTI]

Addressing Energy Demand through Demand Response:both the avoided energy costs (and demand charges) as wellCoordination of Energy Efficiency and Demand Response,

Shen, Bo

2013-01-01T23:59:59.000Z

233

Advanced Demand Responsive Lighting  

E-Print Network [OSTI]

Advanced Demand Responsive Lighting Host: Francis Rubinstein Demand Response Research Center demand responsive lighting systems ­ Importance of dimming ­ New wireless controls technologies · Advanced Demand Responsive Lighting (commenced March 2007) #12;Objectives · Provide up-to-date information

234

Demand Response Valuation Frameworks Paper  

E-Print Network [OSTI]

benefits of Demand Side Management (DSM) are insufficient toefficiency, demand side management (DSM) cost effectivenessResearch Center Demand Side Management Demand Side Resources

Heffner, Grayson

2010-01-01T23:59:59.000Z

235

3, 21452173, 2006 Probabilistic forecast  

E-Print Network [OSTI]

HESSD 3, 2145­2173, 2006 Probabilistic forecast verification F. Laio and S. Tamea Title Page for probabilistic forecasts of continuous hydrological variables F. Laio and S. Tamea DITIC ­ Department­2173, 2006 Probabilistic forecast verification F. Laio and S. Tamea Title Page Abstract Introduction

Paris-Sud XI, Université de

236

4, 189212, 2007 Forecast and  

E-Print Network [OSTI]

OSD 4, 189­212, 2007 Forecast and analysis assessment through skill scores M. Tonani et al. Title Science Forecast and analysis assessment through skill scores M. Tonani 1 , N. Pinardi 2 , C. Fratianni 1 Forecast and analysis assessment through skill scores M. Tonani et al. Title Page Abstract Introduction

Paris-Sud XI, Université de

237

Forecast Technical Document Technical Glossary  

E-Print Network [OSTI]

Forecast Technical Document Technical Glossary A document defining some of the terms used in the 2011 Production Forecast technical documentation. Tom Jenkins Robert Matthews Ewan Mackie Lesley in the Forecast documentation. In some cases, the terms and the descriptions are "industry standard", in others

238

Forecast Technical Document Tree Species  

E-Print Network [OSTI]

Forecast Technical Document Tree Species A document listing the tree species included in the 2011 Production Forecast Tom Jenkins Justin Gilbert Ewan Mackie Robert Matthews #12;PF2011 ­ List of tree species The following is the list of species used within the Forecast System. Species are ordered alphabetically

239

Improving Inventory Control Using Forecasting  

E-Print Network [OSTI]

EMGT 835 FIELD PROJECT: Improving Inventory Control Using Forecasting By Juan Mario Balandran jmbg@hotmail.com Master of Science The University of Kansas Fall Semester, 2005 An EMGT Field Project report submitted...............................................................................................................................................10 Current Inventory Forecast Process ...........................................................................................10 Development of Alternative Forecast Process...

Balandran, Juan

2005-12-16T23:59:59.000Z

240

Fuel Price Forecasts INTRODUCTION  

E-Print Network [OSTI]

Fuel Price Forecasts INTRODUCTION Fuel prices affect electricity planning in two primary ways and water heating, and other end-uses as well. Fuel prices also influence electricity supply and price because oil, coal, and natural gas are potential fuels for electricity generation. Natural gas

Note: This page contains sample records for the topic "forecast future demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Solar forecasting review  

E-Print Network [OSTI]

Quantifying PV power output variability, Solar Energy, vol.each solar sen at node i, P(t) the total power output of theSolar Forecasting Historically, traditional power generation technologies such as fossil and nu- clear power which were designed to run in stable output

Inman, Richard Headen

2012-01-01T23:59:59.000Z

242

Long-term Industrial Energy Forecasting (LIEF) model (18-sector version)  

SciTech Connect (OSTI)

The new 18-sector Long-term Industrial Energy Forecasting (LIEF) model is designed for convenient study of future industrial energy consumption, taking into account the composition of production, energy prices, and certain kinds of policy initiatives. Electricity and aggregate fossil fuels are modeled. Changes in energy intensity in each sector are driven by autonomous technological improvement (price-independent trend), the opportunity for energy-price-sensitive improvements, energy price expectations, and investment behavior. Although this decision-making framework involves more variables than the simplest econometric models, it enables direct comparison of an econometric approach with conservation supply curves from detailed engineering analysis. It also permits explicit consideration of a variety of policy approaches other than price manipulation. The model is tested in terms of historical data for nine manufacturing sectors, and parameters are determined for forecasting purposes. Relatively uniform and satisfactory parameters are obtained from this analysis. In this report, LIEF is also applied to create base-case and demand-side management scenarios to briefly illustrate modeling procedures and outputs.

Ross, M.H. (Univ. of Michigan, Ann Arbor, MI (United States). Dept. of Physics); Thimmapuram, P.; Fisher, R.E.; Maciorowski, W. (Argonne National Lab., IL (United States))

1993-05-01T23:59:59.000Z

243

Advanced Numerical Weather Prediction Techniques for Solar Irradiance Forecasting : : Statistical, Data-Assimilation, and Ensemble Forecasting  

E-Print Network [OSTI]

Forecasting and Resource Assessment, 1 st Edition, Editors:Forecasting and Resource Assessment, 1 st Edition, Editors:Forecasting and Resource Assessment, 1 st Ed.. Editor: Jan

Mathiesen, Patrick James

2013-01-01T23:59:59.000Z

244

Voluntary Green Power Market Forecast through 2015  

SciTech Connect (OSTI)

Various factors influence the development of the voluntary 'green' power market--the market in which consumers purchase or produce power from non-polluting, renewable energy sources. These factors include climate policies, renewable portfolio standards (RPS), renewable energy prices, consumers' interest in purchasing green power, and utilities' interest in promoting existing programs and in offering new green options. This report presents estimates of voluntary market demand for green power through 2015 that were made using historical data and three scenarios: low-growth, high-growth, and negative-policy impacts. The resulting forecast projects the total voluntary demand for renewable energy in 2015 to range from 63 million MWh annually in the low case scenario to 157 million MWh annually in the high case scenario, representing an approximately 2.5-fold difference. The negative-policy impacts scenario reflects a market size of 24 million MWh. Several key uncertainties affect the results of this forecast, including uncertainties related to growth assumptions, the impacts that policy may have on the market, the price and competitiveness of renewable generation, and the level of interest that utilities have in offering and promoting green power products.

Bird, L.; Holt, E.; Sumner, J.; Kreycik, C.

2010-05-01T23:59:59.000Z

245

Addressing Energy Demand through Demand Response: International Experiences and Practices  

E-Print Network [OSTI]

Data for Automated Demand Response in Commercial Buildings,Demand Response Infrastructure for Commercial Buildings",demand response and energy efficiency functions into the design of buildings,

Shen, Bo

2013-01-01T23:59:59.000Z

246

Uranium 2009 resources, production and demand  

E-Print Network [OSTI]

With several countries currently building nuclear power plants and planning the construction of more to meet long-term increases in electricity demand, uranium resources, production and demand remain topics of notable interest. In response to the projected growth in demand for uranium and declining inventories, the uranium industry the first critical link in the fuel supply chain for nuclear reactors is boosting production and developing plans for further increases in the near future. Strong market conditions will, however, be necessary to trigger the investments required to meet projected demand. The "Red Book", jointly prepared by the OECD Nuclear Energy Agency and the International Atomic Energy Agency, is a recognised world reference on uranium. It is based on information compiled in 40 countries, including those that are major producers and consumers of uranium. This 23rd edition provides a comprehensive review of world uranium supply and demand as of 1 January 2009, as well as data on global ur...

Organisation for Economic Cooperation and Development. Paris

2010-01-01T23:59:59.000Z

247

Forecasting oilfield economic performance  

SciTech Connect (OSTI)

This paper presents a general method for forecasting oilfield economic performance that integrates cost data with operational, reservoir, and financial information. Practices are developed for determining economic limits for an oil field and its components. The economic limits of marginal wells and the role of underground competition receive special attention. Also examined is the influence of oil prices on operating costs. Examples illustrate application of these concepts. Categorization of costs for historical tracking and projections is recommended.

Bradley, M.E. (Univ. of Chicago, IL (United States)); Wood, A.R.O. (BP Exploration, Anchorage, AK (United States))

1994-11-01T23:59:59.000Z

248

Demand Response Spinning Reserve Demonstration  

E-Print Network [OSTI]

F) Enhanced ACP Date RAA ACP Demand Response SpinningReserve Demonstration Demand Response Spinning Reservesupply spinning reserve. Demand Response Spinning Reserve

2007-01-01T23:59:59.000Z

249

Automated Demand Response and Commissioning  

E-Print Network [OSTI]

Fully-Automated Demand Response Test in Large Facilities14in DR systems. Demand Response using HVAC in Commercialof Fully Automated Demand Response in Large Facilities

Piette, Mary Ann; Watson, David S.; Motegi, Naoya; Bourassa, Norman

2005-01-01T23:59:59.000Z

250

Automated Demand Response and Commissioning  

E-Print Network [OSTI]

and Demand Response in Commercial Buildings, Lawrencesystems. Demand Response using HVAC in Commercial BuildingsDemand Response Test in Large Facilities13 National Conference on Building

Piette, Mary Ann; Watson, David S.; Motegi, Naoya; Bourassa, Norman

2005-01-01T23:59:59.000Z

251

Application of Fast Marching Methods for Rapid Reservoir Forecast and Uncertainty Quantification  

E-Print Network [OSTI]

Rapid economic evaluations of investment alternatives in the oil and gas industry are typically contingent on fast and credible evaluations of reservoir models to make future forecasts. It is often important to also quantify inherent risks...

Olalotiti-Lawal, Feyisayo

2013-05-17T23:59:59.000Z

252

Forecast Technical Document Growing Stock Volume  

E-Print Network [OSTI]

Forecast Technical Document Growing Stock Volume Forecasts A document describing how growing stock (`standing') volume is handled in the 2011 Production Forecast. Tom Jenkins Robert Matthews Ewan Mackie Lesley Halsall #12;PF2011 ­ Growing stock volume forecasts Background A forecast of standing volume (or

253

SOLAR IRRADIANCE FORECASTING FOR THE MANAGEMENT OF SOLAR ENERGY SYSTEMS  

E-Print Network [OSTI]

SOLAR IRRADIANCE FORECASTING FOR THE MANAGEMENT OF SOLAR ENERGY SYSTEMS Detlev Heinemann Oldenburg.girodo@uni-oldenburg.de ABSTRACT Solar energy is expected to contribute major shares of the future global energy supply. Due to its and solar energy conversion processes has to account for this behaviour in respective operating strategies

Heinemann, Detlev

254

Introduction An important goal in operational weather forecasting  

E-Print Network [OSTI]

sensitive areas. To answer these questions simulation experiments with state-of-the-art numerical weather prediction (NWP) models have proved great value to test future meteorological observing systems a priori102 Introduction An important goal in operational weather forecasting is to reduce the number

Haak, Hein

255

Journey data based arrival forecasting for bicycle hire schemes  

E-Print Network [OSTI]

Journey data based arrival forecasting for bicycle hire schemes Marcel C. Guenther and Jeremy T. The global emergence of city bicycle hire schemes has re- cently received a lot of attention of future bicycle migration trends, as these assist service providers to ensure availability of bicycles

Imperial College, London

256

Investigating the Correlation Between Wind and Solar Power Forecast Errors in the Western Interconnection: Preprint  

SciTech Connect (OSTI)

Wind and solar power generations differ from conventional energy generation because of the variable and uncertain nature of their power output. This variability and uncertainty can have significant impacts on grid operations. Thus, short-term forecasting of wind and solar generation is uniquely helpful for power system operations to balance supply and demand in an electricity system. This paper investigates the correlation between wind and solar power forecasting errors.

Zhang, J.; Hodge, B. M.; Florita, A.

2013-05-01T23:59:59.000Z

257

Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Boiler, Steam, and Cogeneration (BSC) Component. The BSC Component satisfies the steam demand from the PA and BLD Components. In some industries, the PA Component produces...

258

Demand Response In California  

Broader source: Energy.gov [DOE]

Presentation covers the demand response in California and is given at the FUPWG 2006 Fall meeting, held on November 1-2, 2006 in San Francisco, California.

259

NOAA Harmful Algal Bloom Operational Forecast System Southwest Florida Forecast Region Maps  

E-Print Network [OSTI]

Forecast System Southwest Florida Forecast Region Maps 0 20 4010 Miles #12;Bay-S Pinellas Bay-UPR Bay Bloom Operational Forecast System Southwest Florida Forecast Region Maps 0 5 102.5 Miles #12;Bay Harmful Algal Bloom Operational Forecast System Southwest Florida Forecast Region Maps 0 5 102.5 Miles #12

260

Price forecasting for notebook computers.  

E-Print Network [OSTI]

??This paper proposes a four-step approach that uses statistical regression to forecast notebook computer prices. Notebook computer price is related to constituent features over a (more)

Rutherford, Derek Paul

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "forecast future demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

UWIG Forecasting Workshop -- Albany (Presentation)  

SciTech Connect (OSTI)

This presentation describes the importance of good forecasting for variable generation, the different approaches used by industry, and the importance of validated high-quality data.

Lew, D.

2011-04-01T23:59:59.000Z

262

Arnold Schwarzenegger INTEGRATED FORECAST AND  

E-Print Network [OSTI]

Arnold Schwarzenegger Governor INTEGRATED FORECAST AND RESERVOIR MANAGEMENT (INFORM) FOR NORTHERN Manager Joseph O' Hagan Project Manager Kelly Birkinshaw Program Area Manager ENERGY-RELATED ENVIRONMENTAL

263

Energy technologies and their impact on demand  

SciTech Connect (OSTI)

Despite the uncertainties, energy demand forecasts must be made to guide government policies and public and private-sector capital investment programs. Three principles can be identified in considering long-term energy prospects. First energy demand will continue to grow, driven by population growth, economic development, and the current low per capita energy consumption in developing countries. Second, energy technology advancements alone will not solve the problem. Energy-efficient technologies, renewable resource technologies, and advanced electric power technologies will all play a major role but will not be able to keep up with the growth in world energy demand. Third, environmental concerns will limit the energy technology choices. Increasing concern for environmental protection around the world will restrict primarily large, centralized energy supply facilities. The conclusion is that energy system diversity is the only solution. The energy system must be planned with consideration of both supply and demand technologies, must not rely on a single source of energy, must take advantage of all available technologies that are specially suited to unique local conditions, must be built with long-term perspectives, and must be able to adapt to change.

Drucker, H.

1995-06-01T23:59:59.000Z

264

Natural Gas Prices Forecast Comparison--AEO vs. Natural Gas Markets  

SciTech Connect (OSTI)

This paper evaluates the accuracy of two methods to forecast natural gas prices: using the Energy Information Administration's ''Annual Energy Outlook'' forecasted price (AEO) and the ''Henry Hub'' compared to U.S. Wellhead futures price. A statistical analysis is performed to determine the relative accuracy of the two measures in the recent past. A statistical analysis suggests that the Henry Hub futures price provides a more accurate average forecast of natural gas prices than the AEO. For example, the Henry Hub futures price underestimated the natural gas price by 35 cents per thousand cubic feet (11.5 percent) between 1996 and 2003 and the AEO underestimated by 71 cents per thousand cubic feet (23.4 percent). Upon closer inspection, a liner regression analysis reveals that two distinct time periods exist, the period between 1996 to 1999 and the period between 2000 to 2003. For the time period between 1996 to 1999, AEO showed a weak negative correlation (R-square = 0.19) between forecast price by actual U.S. Wellhead natural gas price versus the Henry Hub with a weak positive correlation (R-square = 0.20) between forecasted price and U.S. Wellhead natural gas price. During the time period between 2000 to 2003, AEO shows a moderate positive correlation (R-square = 0.37) between forecasted natural gas price and U.S. Wellhead natural gas price versus the Henry Hub that show a moderate positive correlation (R-square = 0.36) between forecast price and U.S. Wellhead natural gas price. These results suggest that agencies forecasting natural gas prices should consider incorporating the Henry Hub natural gas futures price into their forecasting models along with the AEO forecast. Our analysis is very preliminary and is based on a very small data set. Naturally the results of the analysis may change, as more data is made available.

Wong-Parodi, Gabrielle; Lekov, Alex; Dale, Larry

2005-02-09T23:59:59.000Z

265

Conservation The Northwest ForecastThe Northwest Forecast  

E-Print Network [OSTI]

& Resources Creating Mr. Toad's Wild Ride for the PNW's Energy Efficiency InCreating Mr. Toad's Wild RideNorthwest Power and Conservation Council The Northwest ForecastThe Northwest Forecast Energy EfficiencyEnergy Efficiency Dominates ResourceDominates Resource DevelopmentDevelopment Tom EckmanTom Eckman

266

NATIONAL AND GLOBAL FORECASTS WEST VIRGINIA PROFILES AND FORECASTS  

E-Print Network [OSTI]

· NATIONAL AND GLOBAL FORECASTS · WEST VIRGINIA PROFILES AND FORECASTS · ENERGY · HEALTHCARE Research West Virginia University College of Business and Economics P.O. Box 6527, Morgantown, WV 26506 EXPERT OPINION PROVIDED BY Keith Burdette Cabinet Secretary West Virginia Department of Commerce

Mohaghegh, Shahab

267

CORPORATE GOVERNANCE AND MANAGEMENT EARNINGS FORECAST  

E-Print Network [OSTI]

1 CORPORATE GOVERNANCE AND MANAGEMENT EARNINGS FORECAST QUALITY: EVIDENCE FROM FRENCH IPOS Anis attributes, ownership retained, auditor quality, and underwriter reputation and management earnings forecast quality measured by management earnings forecast accuracy and bias. Using 117 French IPOs, we find

Paris-Sud XI, Université de

268

Electricity price forecasting in a grid environment.  

E-Print Network [OSTI]

??Accurate electricity price forecasting is critical to market participants in wholesale electricity markets. Market participants rely on price forecasts to decide their bidding strategies, allocate (more)

Li, Guang, 1974-

2007-01-01T23:59:59.000Z

269

Regional-seasonal weather forecasting  

SciTech Connect (OSTI)

In the interest of allocating heating fuels optimally, the state-of-the-art for seasonal weather forecasting is reviewed. A model using an enormous data base of past weather data is contemplated to improve seasonal forecasts, but present skills do not make that practicable. 90 references. (PSB)

Abarbanel, H.; Foley, H.; MacDonald, G.; Rothaus, O.; Rudermann, M.; Vesecky, J.

1980-08-01T23:59:59.000Z

270

MTBE demand as a oxygenated fuel additive  

SciTech Connect (OSTI)

The MTBE markets are in the state of flux. In the U.S. the demand has reached a plateau while in other parts of the world, it is increasing. The various factors why MTBE is experiencing a global shift will be examined and future volumes projected.

NONE

1996-10-01T23:59:59.000Z

271

Atmospheric Lagrangian coherent structures considering unresolved turbulence and forecast uncertainty  

E-Print Network [OSTI]

Atmospheric Lagrangian coherent structures considering unresolved turbulence and forecast structures Stochastic trajectory Stochastic FTLE field Ensemble forecasting Uncertainty analysis a b s t r of the forecast FTLE fields is analyzed using ensemble forecasting. Unavoidable errors of the forecast velocity

Ross, Shane

272

ArizonaArizona''s Electricity Future:s Electricity Future: The Demand for WaterThe Demand for Water  

E-Print Network [OSTI]

Groundwater Management ActAct Assured Water Supply ProgramAssured Water Supply Program #12;Arizona water 20002000 Residential & Business 16% Self-supplied 4% Irrigation 80% #12;Year 2006 Water UseYear 2006 Water/crystallizer systems Dry cooling plantsDry cooling plants Hybrid cooling systemsHybrid cooling systems Renewable

Keller, Arturo A.

273

Economy key to 1992 U. S. oil, gas demand  

SciTech Connect (OSTI)

This paper provides a forecast US oil and gas markets and industry in 1992. An end to economic recession in the U.S. will boost petroleum demand modestly in 1992 after 2 years of decline. U.S. production will resume its slide after a fractional increase in 1991. Drilling in the U.S. will set a record low. Worldwide, the key questions are economic growth and export volumes from Iraq, Kuwait, and former Soviet republics.

Beck, R.J.

1992-01-27T23:59:59.000Z

274

Residential Electricity Demand in China -- Can Efficiency Reverse the Growth?  

SciTech Connect (OSTI)

The time when energy-related carbon emissions come overwhelmingly from developed countries is coming to a close. China has already overtaken the United States as the world's leading emitter of greenhouse gas emissions. The economic growth that China has experienced is not expected to slow down significantly in the long term, which implies continued massive growth in energy demand. This paper draws on the extensive expertise from the China Energy Group at LBNL on forecasting energy consumption in China, but adds to it by exploring the dynamics of demand growth for electricity in the residential sector -- and the realistic potential for coping with it through efficiency. This paper forecasts ownership growth of each product using econometric modeling, in combination with historical trends in China. The products considered (refrigerators, air conditioners, fans, washing machines, lighting, standby power, space heaters, and water heating) account for 90percent of household electricity consumption in China. Using this method, we determine the trend and dynamics of demandgrowth and its dependence on macroeconomic drivers at a level of detail not accessible by models of a more aggregate nature. In addition, we present scenarios for reducing residential consumption through efficiency measures defined at the product level. The research takes advantage of an analytical framework developed by LBNL (BUENAS) which integrates end use technology parameters into demand forecasting and stock accounting to produce detailed efficiency scenarios, thus allowing for a technologically realistic assessment of efficiency opportunities specifically in the Chinese context.

Letschert, Virginie; McNeil, Michael A.; Zhou, Nan

2009-05-18T23:59:59.000Z

275

Alternative future scenarios for the SPS comparative assessment  

SciTech Connect (OSTI)

The objective of the comparative assessment is to develop an initial understanding of the SPS with respect to a limited set of energy alternatives. A comparative methodology report describes the multi-step process in the comparative assessment. The first step is the selection and characterization of alternative energy systems. Terrestrial alternatives are selected, and their cost, performance, and environmental and social attributes are specified for use in the comparison with the SPS in the post-2000 era. Data on alternative technologies were sought from previous research and from other comparisons. The object of this study is to provide a futures framework for evaluating SPS (i.e., factor prices, primary energy prices, and energy demands for the US from 1980 to 2030). The economic/energy interactions are discussed, and a number of specific modelling schemes that have been used for long-range forecasting purposes are described. This discussion provides the rationale for the choice of a specific model and methodology, which is described. Long-range cost assumptions used in the forecast are detailed, and the basis for the selection of specific scenarios follows. Results of the analysis are detailed. (WHK)

Ayres, R.U.; Ridker, R.G.; Watson, W.D. Jr.; Arnold, J.; Tayi, G.

1980-08-01T23:59:59.000Z

276

Demand and Price Volatility: Rational Habits in International Gasoline Demand  

E-Print Network [OSTI]

shift in the short-run price elasticity of gasoline demand.A meta-analysis of the price elasticity of gasoline demand.2007. Consumer demand un- der price uncertainty: Empirical

Scott, K. Rebecca

2011-01-01T23:59:59.000Z

277

Demand and Price Volatility: Rational Habits in International Gasoline Demand  

E-Print Network [OSTI]

H. , and James M. Gri n. 1983. Gasoline demand in the OECDof dynamic demand for gasoline. Journal of Econometrics 77(An empirical analysis of gasoline demand in Denmark using

Scott, K. Rebecca

2011-01-01T23:59:59.000Z

278

Demand and Price Volatility: Rational Habits in International Gasoline Demand  

E-Print Network [OSTI]

analysis of the demand for oil in the Middle East. EnergyEstimates elasticity of demand for crude oil, not gasoline.World crude oil and natural gas: a demand and supply model.

Scott, K. Rebecca

2011-01-01T23:59:59.000Z

279

Demand and Price Uncertainty: Rational Habits in International Gasoline Demand  

E-Print Network [OSTI]

analysis of the demand for oil in the Middle East. EnergyEstimates elasticity of demand for crude oil, not gasoline.World crude oil and natural gas: a demand and supply model.

Scott, K. Rebecca

2013-01-01T23:59:59.000Z

280

PROBLEMS OF FORECAST1 Dmitry KUCHARAVY  

E-Print Network [OSTI]

1 PROBLEMS OF FORECAST1 Dmitry KUCHARAVY dmitry.kucharavy@insa-strasbourg.fr Roland DE GUIO roland for the purpose of Innovative Design. First, a brief analysis of problems for existing forecasting methods of the forecast errors. Second, using a contradiction analysis, a set of problems related to technology forecast

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "forecast future demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Using reforecasts for probabilistic forecast calibration  

E-Print Network [OSTI]

1 Using reforecasts for probabilistic forecast calibration Tom Hamill NOAA Earth System Research that is currently operational. #12;3 Why compute reforecasts? · For many forecast problems, such as long-lead forecasts or high-precipitation events, a few past forecasts may be insufficient for calibrating

Hamill, Tom

282

Forecast Combination With Outlier Protection Gang Chenga,  

E-Print Network [OSTI]

Forecast Combination With Outlier Protection Gang Chenga, , Yuhong Yanga,1 a313 Ford Hall, 224 Church St SE, Minneapolis, MN 55455 Abstract Numerous forecast combination schemes with distinct on combining forecasts with minimizing the occurrence of forecast outliers in mind. An unnoticed phenomenon

Yuhong, Yang

283

Forecast Technical Document Felling and Removals  

E-Print Network [OSTI]

Forecast Technical Document Felling and Removals Forecasts A document describing how volume fellings and removals are handled in the 2011 Production Forecast system. Tom Jenkins Robert Matthews Ewan Mackie Lesley Halsall #12;PF2011 ­ Felling and removals forecasts Background A fellings and removals

284

Assessing Forecast Accuracy Measures Department of Economics  

E-Print Network [OSTI]

Assessing Forecast Accuracy Measures Zhuo Chen Department of Economics Heady Hall 260 Iowa State forecast accuracy measures. In the theoretical direction, for comparing two forecasters, only when the errors are stochastically ordered, the ranking of the forecasts is basically independent of the form

285

Paper presented at EWEC 2008, Brussels, Belgium (31 March-03 April) Uncertainty Estimation of Wind Power Forecasts  

E-Print Network [OSTI]

-Antipolis, France Abstract--Short-term wind power forecasting tools providing "single-valued" (spot) predictions associated to the future wind power produc- tion for performing more efficiently functions such as reserves and modelling architec- tures for probabilistic wind power forecasting. Then, a comparison is carried out

Paris-Sud XI, Université de

286

Global Energy: Supply, Demand, Consequences, Opportunities (LBNL Summer Lecture Series)  

SciTech Connect (OSTI)

Summer Lecture Series 2009: Arun Majumdar, Director of the Environmental Energy Technologies Division, discusses current and future projections of economic growth, population, and global energy demand and supply, and explores the implications of these trends for the environment.

Majumdar, Arun

2008-07-29T23:59:59.000Z

287

Global Energy: Supply, Demand, Consequences, Opportunities (LBNL Summer Lecture Series)  

ScienceCinema (OSTI)

Summer Lecture Series 2009: Arun Majumdar, Director of the Environmental Energy Technologies Division, discusses current and future projections of economic growth, population, and global energy demand and supply, and explores the implications of these trends for the environment.

Majumdar, Arun

2011-04-28T23:59:59.000Z

288

Current status of ForecastCurrent status of Forecast 2005 EPACT is in the model  

E-Print Network [OSTI]

1 1 Current status of ForecastCurrent status of Forecast 2005 EPACT is in the model 2007 Federal prices are being inputted into the model 2 Sales forecast Select yearsSales forecast Select years --Draft 0.53% Irrigation 2.76% Annual Growth Rates Preliminary Electricity ForecastAnnual Growth Rates

289

Can earnings forecasts be improved by taking into account the forecast bias?  

E-Print Network [OSTI]

Can earnings forecasts be improved by taking into account the forecast bias? François DOSSOU allow the calculation of earnings adjusted forecasts, for horizons from 1 to 24 months. We explain variables. From the forecast evaluation statistics viewpoints, the adjusted forecasts make it possible quasi

Paris-Sud XI, Université de

290

Demand and Price Uncertainty: Rational Habits in International Gasoline Demand  

E-Print Network [OSTI]

Sterner. 1991. Analysing gasoline demand elasticities: A2011. Measuring global gasoline and diesel price and incomeMutairi. 1995. Demand for gasoline in Kuwait: An empirical

Scott, K. Rebecca

2013-01-01T23:59:59.000Z

291

Use of wind power forecasting in operational decisions.  

SciTech Connect (OSTI)

The rapid expansion of wind power gives rise to a number of challenges for power system operators and electricity market participants. The key operational challenge is to efficiently handle the uncertainty and variability of wind power when balancing supply and demand in ths system. In this report, we analyze how wind power forecasting can serve as an efficient tool toward this end. We discuss the current status of wind power forecasting in U.S. electricity markets and develop several methodologies and modeling tools for the use of wind power forecasting in operational decisions, from the perspectives of the system operator as well as the wind power producer. In particular, we focus on the use of probabilistic forecasts in operational decisions. Driven by increasing prices for fossil fuels and concerns about greenhouse gas (GHG) emissions, wind power, as a renewable and clean source of energy, is rapidly being introduced into the existing electricity supply portfolio in many parts of the world. The U.S. Department of Energy (DOE) has analyzed a scenario in which wind power meets 20% of the U.S. electricity demand by 2030, which means that the U.S. wind power capacity would have to reach more than 300 gigawatts (GW). The European Union is pursuing a target of 20/20/20, which aims to reduce greenhouse gas (GHG) emissions by 20%, increase the amount of renewable energy to 20% of the energy supply, and improve energy efficiency by 20% by 2020 as compared to 1990. Meanwhile, China is the leading country in terms of installed wind capacity, and had 45 GW of installed wind power capacity out of about 200 GW on a global level at the end of 2010. The rapid increase in the penetration of wind power into power systems introduces more variability and uncertainty in the electricity generation portfolio, and these factors are the key challenges when it comes to integrating wind power into the electric power grid. Wind power forecasting (WPF) is an important tool to help efficiently address this challenge, and significant efforts have been invested in developing more accurate wind power forecasts. In this report, we document our work on the use of wind power forecasting in operational decisions.

Botterud, A.; Zhi, Z.; Wang, J.; Bessa, R.J.; Keko, H.; Mendes, J.; Sumaili, J.; Miranda, V. (Decision and Information Sciences); (INESC Porto)

2011-11-29T23:59:59.000Z

292

Demand Response Valuation Frameworks Paper  

E-Print Network [OSTI]

No. ER06-615-000 CAISO Demand Response Resource User Guide -8 2.1. Demand Response Provides a Range of Benefits to8 2.2. Demand Response Benefits can be Quantified in Several

Heffner, Grayson

2010-01-01T23:59:59.000Z

293

Price forecasting for notebook computers  

E-Print Network [OSTI]

This paper proposes a four-step approach that uses statistical regression to forecast notebook computer prices. Notebook computer price is related to constituent features over a series of time periods, and the rates of change in the influence...

Rutherford, Derek Paul

2012-06-07T23:59:59.000Z

294

Arnold Schwarzenegger INTEGRATED FORECAST AND  

E-Print Network [OSTI]

Arnold Schwarzenegger Governor INTEGRATED FORECAST AND RESERVOIR MANAGEMENT (INFORM) FOR NORTHERN with primary contributions in the area of decision support for reservoir planning and management Commission Energy-Related Environmental Research Joseph O' Hagan Contract Manager Joseph O' Hagan Project

295

Arnold Schwarzenegger INTEGRATED FORECAST AND  

E-Print Network [OSTI]

Arnold Schwarzenegger Governor INTEGRATED FORECAST AND RESERVOIR MANAGEMENT (INFORM) FOR NORTHERN: California Energy Commission Energy-Related Environmental Research Joseph O' Hagan Contract Manager Joseph O' Hagan Project Manager Kelly Birkinshaw Program Area Manager ENERGY-RELATED ENVIRONMENTAL RESEARCH Martha

296

Value of Wind Power Forecasting  

SciTech Connect (OSTI)

This study, building on the extensive models developed for the Western Wind and Solar Integration Study (WWSIS), uses these WECC models to evaluate the operating cost impacts of improved day-ahead wind forecasts.

Lew, D.; Milligan, M.; Jordan, G.; Piwko, R.

2011-04-01T23:59:59.000Z

297

On Demand Guarantees in Iran.  

E-Print Network [OSTI]

??On Demand Guarantees in Iran This thesis examines on demand guarantees in Iran concentrating on bid bonds and performance guarantees. The main guarantee types and (more)

Ahvenainen, Laura

2009-01-01T23:59:59.000Z

298

Weather forecasting : the next generation : the potential use and implementation of ensemble forecasting  

E-Print Network [OSTI]

This thesis discusses ensemble forecasting, a promising new weather forecasting technique, from various viewpoints relating not only to its meteorological aspects but also to its user and policy aspects. Ensemble forecasting ...

Goto, Susumu

2007-01-01T23:59:59.000Z

299

Impact of forecasting error on the performance of capacitated multi-item production systems  

E-Print Network [OSTI]

Impact of forecasting error on the performance of capacitated multi-item production systems Jinxing multi-item production system under demand uncertainty and a rolling time horizon. The output from parameters, thus improving the performance of production systems. q 2004 Elsevier Ltd. All rights reserved

Xie, Jinxing

300

most are government agencies --local, national and international. A ten-year industry forecast put together  

E-Print Network [OSTI]

most are government agencies -- local, national and international. A ten-year industry forecast put environmental, civil government, defence and security, and transportation as the most active market segments combine geographic information systems with satellite data are in demand in a variety of disciplines

Wisconsin at Madison, University of

Note: This page contains sample records for the topic "forecast future demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Wind Forecast Improvement Project Southern Study Area Final Report...  

Office of Environmental Management (EM)

Wind Forecast Improvement Project Southern Study Area Final Report Wind Forecast Improvement Project Southern Study Area Final Report Wind Forecast Improvement Project Southern...

302

U.S. Department of Energy Workshop Report: Solar Resources and Forecasting  

SciTech Connect (OSTI)

This report summarizes the technical presentations, outlines the core research recommendations, and augments the information of the Solar Resources and Forecasting Workshop held June 20-22, 2011, in Golden, Colorado. The workshop brought together notable specialists in atmospheric science, solar resource assessment, solar energy conversion, and various stakeholders from industry and academia to review recent developments and provide input for planning future research in solar resource characterization, including measurement, modeling, and forecasting.

Stoffel, T.

2012-06-01T23:59:59.000Z

303

Energy Demand Staff Scientist  

E-Print Network [OSTI]

Energy Demand in China Lynn Price Staff Scientist February 2, 2010 #12;Founded in 1988 Focused on End-Use Energy Efficiency ~ 40 Current Projects in China Collaborations with ~50 Institutions in China Researcher #12;Talk OutlineTalk Outline · Overview · China's energy use and CO2 emission trends · Energy

Eisen, Michael

304

Researcher explores economics of U.S. urban water demand  

E-Print Network [OSTI]

Story by Kathy Wythe tx H2O | pg. 24 Researcher explores economics of U.S. urban water demand Photo by: Danielle Supercinski tx H2O | pg. 25 With projected demands for future water supplies becoming more critical, understand- ing urban... contributing to urban water demand in the United States. They analyzed how water use is affected by water prices in nearly 200 U.S. cities. ?It?s interesting that many people still buy into the myth that water demand is not price- sensitive, even though...

Wythe, Kathy

2009-01-01T23:59:59.000Z

305

A Cosmology Forecast Toolkit -- CosmoLib  

E-Print Network [OSTI]

The package CosmoLib is a combination of a cosmological Boltzmann code and a simulation toolkit to forecast the constraints on cosmological parameters from future observations. In this paper we describe the released linear-order part of the package. We discuss the stability and performance of the Boltzmann code. This is written in Newtonian gauge and including dark energy perturbations. In CosmoLib the integrator that computes the CMB angular power spectrum is optimized for a $\\ell$-by-$\\ell$ brute-force integration, which is useful for studying inflationary models predicting sharp features in the primordial power spectrum of metric fluctuations. The numerical code and its documentation are available at http://www.cita.utoronto.ca/~zqhuang/CosmoLib.

Zhiqi Huang

2012-06-11T23:59:59.000Z

306

A Dynamic Inventory Control Policy Under Demand, Yield and Lead Time Uncertainties  

E-Print Network [OSTI]

A Dynamic Inventory Control Policy Under Demand, Yield and Lead Time Uncertainties Mohamed Zied@lgi.ecp.fr, dallery@lgi.ecp.fr) ABSTRACT In this paper, we analyze a single-stage and single-item inventory control it. Keywords: inventory control, forecasts, cycle service level, fill rate, safety stock, policy

Boyer, Edmond

307

China's Coal: Demand, Constraints, and Externalities  

SciTech Connect (OSTI)

This study analyzes China's coal industry by focusing on four related areas. First, data are reviewed to identify the major drivers of historical and future coal demand. Second, resource constraints and transport bottlenecks are analyzed to evaluate demand and growth scenarios. The third area assesses the physical requirements of substituting coal demand growth with other primary energy forms. Finally, the study examines the carbon- and environmental implications of China's past and future coal consumption. There are three sections that address these areas by identifying particular characteristics of China's coal industry, quantifying factors driving demand, and analyzing supply scenarios: (1) reviews the range of Chinese and international estimates of remaining coal reserves and resources as well as key characteristics of China's coal industry including historical production, resource requirements, and prices; (2) quantifies the largest drivers of coal usage to produce a bottom-up reference projection of 2025 coal demand; and (3) analyzes coal supply constraints, substitution options, and environmental externalities. Finally, the last section presents conclusions on the role of coal in China's ongoing energy and economic development. China has been, is, and will continue to be a coal-powered economy. In 2007 Chinese coal production contained more energy than total Middle Eastern oil production. The rapid growth of coal demand after 2001 created supply strains and bottlenecks that raise questions about sustainability. Urbanization, heavy industrial growth, and increasing per-capita income are the primary interrelated drivers of rising coal usage. In 2007, the power sector, iron and steel, and cement production accounted for 66% of coal consumption. Power generation is becoming more efficient, but even extensive roll-out of the highest efficiency units would save only 14% of projected 2025 coal demand for the power sector. A new wedge of future coal consumption is likely to come from the burgeoning coal-liquefaction and chemicals industries. If coal to chemicals capacity reaches 70 million tonnes and coal-to-liquids capacity reaches 60 million tonnes, coal feedstock requirements would add an additional 450 million tonnes by 2025. Even with more efficient growth among these drivers, China's annual coal demand is expected to reach 3.9 to 4.3 billion tonnes by 2025. Central government support for nuclear and renewable energy has not reversed China's growing dependence on coal for primary energy. Substitution is a matter of scale: offsetting one year of recent coal demand growth of 200 million tonnes would require 107 billion cubic meters of natural gas (compared to 2007 growth of 13 BCM), 48 GW of nuclear (compared to 2007 growth of 2 GW), or 86 GW of hydropower capacity (compared to 2007 growth of 16 GW). Ongoing dependence on coal reduces China's ability to mitigate carbon dioxide emissions growth. If coal demand remains on a high growth path, carbon dioxide emissions from coal combustion alone would exceed total US energy-related carbon emissions by 2010. Within China's coal-dominated energy system, domestic transportation has emerged as the largest bottleneck for coal industry growth and is likely to remain a constraint to further expansion. China has a low proportion of high-quality reserves, but is producing its best coal first. Declining quality will further strain production and transport capacity. Furthermore, transporting coal to users has overloaded the train system and dramatically increased truck use, raising transportation oil demand. Growing international imports have helped to offset domestic transport bottlenecks. In the long term, import demand is likely to exceed 200 million tonnes by 2025, significantly impacting regional markets.

Aden, Nathaniel; Fridley, David; Zheng, Nina

2009-07-01T23:59:59.000Z

308

Aggregate vehicle travel forecasting model  

SciTech Connect (OSTI)

This report describes a model for forecasting total US highway travel by all vehicle types, and its implementation in the form of a personal computer program. The model comprises a short-run, econometrically-based module for forecasting through the year 2000, as well as a structural, scenario-based longer term module for forecasting through 2030. The short-term module is driven primarily by economic variables. It includes a detailed vehicle stock model and permits the estimation of fuel use as well as vehicle travel. The longer-tenn module depends on demographic factors to a greater extent, but also on trends in key parameters such as vehicle load factors, and the dematerialization of GNP. Both passenger and freight vehicle movements are accounted for in both modules. The model has been implemented as a compiled program in the Fox-Pro database management system operating in the Windows environment.

Greene, D.L.; Chin, Shih-Miao; Gibson, R. [Tennessee Univ., Knoxville, TN (United States)

1995-05-01T23:59:59.000Z

309

Open Automated Demand Response Communications in Demand Response for Wholesale Ancillary Services  

SciTech Connect (OSTI)

The Pacific Gas and Electric Company (PG&E) is conducting a pilot program to investigate the technical feasibility of bidding certain demand response (DR) resources into the California Independent System Operator's (CAISO) day-ahead market for ancillary services nonspinning reserve. Three facilities, a retail store, a local government office building, and a bakery, are recruited into the pilot program. For each facility, hourly demand, and load curtailment potential are forecasted two days ahead and submitted to the CAISO the day before the operation as an available resource. These DR resources are optimized against all other generation resources in the CAISO ancillary service. Each facility is equipped with four-second real time telemetry equipment to ensure resource accountability and visibility to CAISO operators. When CAISO requests DR resources, PG&E's OpenADR (Open Automated DR) communications infrastructure is utilized to deliver DR signals to the facilities energy management and control systems (EMCS). The pre-programmed DR strategies are triggered without a human in the loop. This paper describes the automated system architecture and the flow of information to trigger and monitor the performance of the DR events. We outline the DR strategies at each of the participating facilities. At one site a real time electric measurement feedback loop is implemented to assure the delivery of CAISO dispatched demand reductions. Finally, we present results from each of the facilities and discuss findings.

Kiliccote, Sila; Piette, Mary Ann; Ghatikar, Girish; Koch, Ed; Hennage, Dan; Hernandez, John; Chiu, Albert; Sezgen, Osman; Goodin, John

2009-11-06T23:59:59.000Z

310

Management forecast credibility and underreaction to news  

E-Print Network [OSTI]

In this paper, we first document evidence of underreaction to management forecast news. We then hypothesize that the credibility of the forecast influences the magnitude of this underreaction. Relying on evidence that more ...

Ng, Jeffrey

311

FORECASTING THE ROLE OF RENEWABLES IN HAWAII  

E-Print Network [OSTI]

FORECASTING THE ROLE OF RENEWABLES IN HAWAII Jayant SathayeFORECASTING THE ROLF OF RENEWABLES IN HAWAII J Sa and Henrythe Conservation Role of Renewables November 18, 1980 Page 2

Sathaye, Jayant

2013-01-01T23:59:59.000Z

312

Weather forecast-based optimization of integrated energy systems.  

SciTech Connect (OSTI)

In this work, we establish an on-line optimization framework to exploit detailed weather forecast information in the operation of integrated energy systems, such as buildings and photovoltaic/wind hybrid systems. We first discuss how the use of traditional reactive operation strategies that neglect the future evolution of the ambient conditions can translate in high operating costs. To overcome this problem, we propose the use of a supervisory dynamic optimization strategy that can lead to more proactive and cost-effective operations. The strategy is based on the solution of a receding-horizon stochastic dynamic optimization problem. This permits the direct incorporation of economic objectives, statistical forecast information, and operational constraints. To obtain the weather forecast information, we employ a state-of-the-art forecasting model initialized with real meteorological data. The statistical ambient information is obtained from a set of realizations generated by the weather model executed in an operational setting. We present proof-of-concept simulation studies to demonstrate that the proposed framework can lead to significant savings (more than 18% reduction) in operating costs.

Zavala, V. M.; Constantinescu, E. M.; Krause, T.; Anitescu, M.

2009-03-01T23:59:59.000Z

313

Improving week two forecasts with multi-model re-forecast ensembles  

E-Print Network [OSTI]

Improving week two forecasts with multi-model re-forecast ensembles Jeffrey S. Whitaker and Xue Wei NOAA-CIRES Climate Diagnostics Center, Boulder, CO Fr´ed´eric Vitart Seasonal Forecasting Group, ECMWF dataset of ensemble 're-forecasts' from a single model can significantly improve the skill

Whitaker, Jeffrey S.

314

Addressing Energy Demand through Demand Response: International Experiences and Practices  

E-Print Network [OSTI]

BEST PRACTICES AND RESULTS OF DR IMPLEMENTATION . 31 Encouraging End-User Participation: The Role of Incentives 16 Demand Response

Shen, Bo

2013-01-01T23:59:59.000Z

315

5, 183218, 2008 A rainfall forecast  

E-Print Network [OSTI]

HESSD 5, 183­218, 2008 A rainfall forecast model using Artificial Neural Network N. Q. Hung et al An artificial neural network model for rainfall forecasting in Bangkok, Thailand N. Q. Hung, M. S. Babel, S Geosciences Union. 183 #12;HESSD 5, 183­218, 2008 A rainfall forecast model using Artificial Neural Network N

Paris-Sud XI, Université de

316

Ensemble Forecast of Analyses With Uncertainty Estimation  

E-Print Network [OSTI]

Ensemble Forecast of Analyses With Uncertainty Estimation Vivien Mallet1,2, Gilles Stoltz3 2012 Mallet, Stoltz, Zhuk, Nakonechniy Ensemble Forecast of Analyses November 2012 1 / 14 hal-00947755,version1-21Feb2014 #12;Objective To produce the best forecast of a model state using a data assimilation

Boyer, Edmond

317

(1) Ensemble forecast calibration & (2) using reforecasts  

E-Print Network [OSTI]

1 (1) Ensemble forecast calibration & (2) using reforecasts Tom Hamill NOAA Earth System Research · Calibration: ; the statistical adjustment of the (ensemble) forecast ­ Rationale 1: Infer large-sample probabilities from small ensemble. ­ Rationale 2: Remove bias, increase forecast reliability while preserving

Hamill, Tom

318

Consensus Coal Production And Price Forecast For  

E-Print Network [OSTI]

Consensus Coal Production And Price Forecast For West Virginia: 2011 Update Prepared for the West December 2011 Copyright 2011 WVU Research Corporation #12;#12;W.Va. Consensus Coal Forecast Update 2011 i Table of Contents Executive Summary 1 Recent Developments 3 Consensus Coal Production And Price Forecast

Mohaghegh, Shahab

319

(2013) 128 Data Center Demand Response: Avoiding the Coincident Peak via  

E-Print Network [OSTI]

(2013) 1­28 Data Center Demand Response: Avoiding the Coincident Peak via Workload Shifting.chen@hp.com Abstract Demand response is a crucial aspect of the future smart grid. It has the potential to provide centers' participation in demand response is becoming increasingly important given their high

Wierman, Adam

320

Demand Dispatch-Intelligent  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phasesData Files Data FilesFeFe-HydrogenaseDemand

Note: This page contains sample records for the topic "forecast future demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Load Forecasting of Supermarket Refrigeration  

E-Print Network [OSTI]

energy system. Observed refrigeration load and local ambient temperature from a Danish su- permarket renewable energy, is increasing, therefore a flexible energy system is needed. In the present ThesisLoad Forecasting of Supermarket Refrigeration Lisa Buth Rasmussen Kongens Lyngby 2013 M.Sc.-2013

322

Demand Response: Load Management Programs  

E-Print Network [OSTI]

CenterPoint Load Management Programs CATEE Conference October, 2012 Agenda Outline I. General Demand Response Definition II. General Demand Response Program Rules III. CenterPoint Commercial Program IV. CenterPoint Residential Programs... V. Residential Discussion Points Demand Response Definition of load management per energy efficiency rule 25.181: ? Load control activities that result in a reduction in peak demand, or a shifting of energy usage from a peak to an off...

Simon, J.

2012-01-01T23:59:59.000Z

323

Assessment of Demand Response Resource  

E-Print Network [OSTI]

Assessment of Demand Response Resource Potentials for PGE and Pacific Power Prepared for: Portland January 15, 2004 K:\\Projects\\2003-53 (PGE,PC) Assess Demand Response\\Report\\Revised Report_011504.doc #12;#12;quantec Assessment of Demand Response Resource Potentials for I-1 PGE and Pacific Power I. Introduction

324

Analysis and Synthesis of Load Forecasting Data for Renewable Integration Studies: Preprint  

SciTech Connect (OSTI)

As renewable energy constitutes greater portions of the generation fleet, the importance of modeling uncertainty as part of integration studies also increases. In pursuit of optimal system operations, it is important to capture not only the definitive behavior of power plants, but also the risks associated with systemwide interactions. This research examines the dependence of load forecast errors on external predictor variables such as temperature, day type, and time of day. The analysis was utilized to create statistically relevant instances of sequential load forecasts with only a time series of historic, measured load available. The creation of such load forecasts relies on Bayesian techniques for informing and updating the model, thus providing a basis for networked and adaptive load forecast models in future operational applications.

Steckler, N.; Florita, A.; Zhang, J.; Hodge, B. M.

2013-11-01T23:59:59.000Z

325

FORECASTING THE ROLE OF RENEWABLES IN HAWAII  

E-Print Network [OSTI]

Av:l.at:i.on Fuel Total Oil Demand 0:!.1 Demand w:t thoutthe ef feet of oil prices on energy demand and supply, \\veSince electric:! ty prices oil prices, the demand for will :

Sathaye, Jayant

2013-01-01T23:59:59.000Z

326

Choosing an electrical energy future for the Pacific Northwest: an Alternative Scenario  

SciTech Connect (OSTI)

An Alternative Scenario for the electric energy future of the Pacific Northwest is presented. The Scenario includes an analysis of each major end use of electricity in the residential, commercial, manufacturing, and agricultural sectors. This approach affords the most direct means of projecting the likely long-term growth in consumption and the opportunities for increasing the efficiency with which electricity is used in each instance. The total demand for electricity by these end uses then provides a basis for determining whether additional central station generation is required to 1995. A projection of total demand for electricity depends on the combination of many independent variables and assumptions. Thus, the approach is a resilient one; no single assumption or set of linked assumptions dominates the analysis. End-use analysis allows policymakers to visualize the benefits of alternative programs, and to make comparison with the findings of other studies. It differs from the traditional load forecasts for the Pacific Northwest, which until recently were based largely on straightforward extrapolations of historical trends in the growth of electrical demand. The Scenario addresses the supply potential of alternative energy sources. Data are compiled for 1975, 1985, and 1995 in each end-use sector.

Cavanagh, R.C.; Mott, L.; Beers, J.R.; Lash, T.L.

1980-08-01T23:59:59.000Z

327

Call center demand forecasting : improving sales calls prediction accuracy through the combination of statistical methods and judgmental forecast  

E-Print Network [OSTI]

Call centers are important for developing and maintaining healthy relationships with customers. At Dell, call centers are also at the core of the company's renowned direct model. For sales call centers in particular, the ...

Boulin, Juan Manuel

2010-01-01T23:59:59.000Z

328

The importance of food demand management for climate mitigation  

E-Print Network [OSTI]

and fertiliser, and the inclusion of climate change as a driver of yield changes and irrigation demand. This would enable estimation of how shortfalls in irrigation water availability might affect future food production. Bioenergy scenarios also lie outside... the scope of the current paper; unless food demand patterns change significantly, there seems to be little spare land for bioenergy developments without a reduction of food availability. However, it is important to note that the model results we present...

Bajelj, Bojana; Richards, Keith S.; Allwood, Julian M.; Smith, Pete; Dennis, John S.; Curmi, Elizabeth; Gilligan, Christopher A.

2014-08-31T23:59:59.000Z

329

The state-of-the-art in air transportation demand and systems analysis : a report on the proceedings of a workshop sponsored by the Civil Aeronautics Board, Department of Transportation, and National Aeronautics and Space Administration (June 1975)  

E-Print Network [OSTI]

Introduction and summary: Forecasting air transportation demand has indeed become a complex and risky business in recent years, especially in view of unpredictable fuel prices, high inflation rates, a declining rate of ...

Taneja, Nawal K.

1975-01-01T23:59:59.000Z

330

Characterist Passenger Demand  

E-Print Network [OSTI]

LaCrescent CityofMorris LincolnCounty RiverRiderPublicTransitSystem ClayCounty Semcac WatonwanCounty Tri-CountyActionProgram,Inc RedLakeBandofChippewaIndians HubbardCounty BeckerCountyTransit Tri-ValleyOpportunityCouncil,Inc. Mille1 #12;2 #12;3 #12;4 #12;5 #12;6 #12;7 #12;8 #12;9 #12;10 County Population Characterist ics Future

Minnesota, University of

331

Current Status and Future Scenarios of Residential Building Energy Consumption in China  

SciTech Connect (OSTI)

China's rapid economic expansion has propelled it into the ranks of the largest energy consuming nation in the world, with energy demand growth continuing at a pace commensurate with its economic growth. Even though the rapid growth is largely attributable to heavy industry, this in turn is driven by rapid urbanization process, by construction materials and equipment produced for use in buildings. Residential energy is mostly used in urban areas, where rising incomes have allowed acquisition of home appliances, as well as increased use of heating in southern China. The urban population is expected to grow by 20 million every year, accompanied by construction of 2 billion square meters of buildings every year through 2020. Thus residential energy use is very likely to continue its very rapid growth. Understanding the underlying drivers of this growth helps to identify the key areas to analyze energy efficiency potential, appropriate policies to reduce energy use, as well as to understand future energy in the building sector. This paper provides a detailed, bottom-up analysis of residential building energy consumption in China using data from a wide variety of sources and a modeling effort that relies on a very detailed characterization of China's energy demand. It assesses the current energy situation with consideration of end use, intensity, and efficiency etc, and forecast the future outlook for the critical period extending to 2020, based on assumptions of likely patterns of economic activity, availability of energy services, technology improvement and energy intensities.

Zhou, Nan; Nishida, Masaru; Gao, Weijun

2008-12-01T23:59:59.000Z

332

Africa planned gas lines will meet future demand  

SciTech Connect (OSTI)

The burgeoning European market for natural gas is expected to create major gas line construction. The potential for North Africa looks particularly promising in 1991. Italy's ENI has proposed a 6,000-km (3,728-mi) gas network in North Africa to connect gas-rich Libya and Algeria with Morocco and Mauritania, making large volumes available to the European market. According to the proposal, a gas line would run from the Sirte Basin in Libya west to Mauritania. Extending the line eastward through Egypt and on to the Arabian Peninsula would provide export access. In this paper initial studies are examine reserve projections for the next 20 years, then based on results, a transmission/distribution network will be designed, including an offshore gathering system.

Not Available

1991-11-01T23:59:59.000Z

333

Forecasting Distributions with Experts Advice  

E-Print Network [OSTI]

) is the probability forecast based on an arbitrary vector wE in the unit simplex, experts forecasts ?E , and model {p?} . Remark 2 In most cases, we can choose c = 1/?, implying in the result below that c? = 1. Example 3 The prediction function is a mixture... 0 = 1, and #IT (k) = tk+1 ? tk. Define ek ? E. Theorem 12 Under Conditions 1 and 7, R1,...,t (pW ) ? c? K? k=0 Rt(k),...,t(k+1)?1 ( p?(e(k)) ) + c ln (#E) ?c K? k=1 ln ut(k) (ek, ek?1)? c K? k=0 t(k+1)?2? s=t(k) ln (us+1 (ek, ek)) . 9 Remark 13...

Sancetta, Alessio

2006-03-14T23:59:59.000Z

334

Forecasting wind speed financial return  

E-Print Network [OSTI]

The prediction of wind speed is very important when dealing with the production of energy through wind turbines. In this paper, we show a new nonparametric model, based on semi-Markov chains, to predict wind speed. Particularly we use an indexed semi-Markov model that has been shown to be able to reproduce accurately the statistical behavior of wind speed. The model is used to forecast, one step ahead, wind speed. In order to check the validity of the model we show, as indicator of goodness, the root mean square error and mean absolute error between real data and predicted ones. We also compare our forecasting results with those of a persistence model. At last, we show an application of the model to predict financial indicators like the Internal Rate of Return, Duration and Convexity.

D'Amico, Guglielmo; Prattico, Flavio

2013-01-01T23:59:59.000Z

335

Forecast Energy | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (TheEtelligence (SmartHome Kyoung's pictureFlintFlowerForecast

336

Coordination of Energy Efficiency and Demand Response  

E-Print Network [OSTI]

and D. Kathan (2009). Demand Response in U.S. ElectricityEnergy Financial Group. Demand Response Research Center [2008). Assessment of Demand Response and Advanced Metering.

Goldman, Charles

2010-01-01T23:59:59.000Z

337

Hawaiian Electric Company Demand Response Roadmap Project  

E-Print Network [OSTI]

Like HECO actual utility demand response implementations canindustry-wide utility demand response applications tend toobjective. Figure 4. Demand Response Objectives 17

Levy, Roger

2014-01-01T23:59:59.000Z

338

Retail Demand Response in Southwest Power Pool  

E-Print Network [OSTI]

23 ii Retail Demand Response in SPP List of Figures and10 Figure 3. Demand Response Resources by11 Figure 4. Existing Demand Response Resources by Type of

Bharvirkar, Ranjit

2009-01-01T23:59:59.000Z

339

Coupling Renewable Energy Supply with Deferrable Demand  

E-Print Network [OSTI]

for each day type for the demand response study - moderate8.4 Demand Response Integration . . . . . . . . . . .for each day type for the demand response study - moderate

Papavasiliou, Anthony

2011-01-01T23:59:59.000Z

340

Installation and Commissioning Automated Demand Response Systems  

E-Print Network [OSTI]

their partnership in demand response automation research andand Techniques for Demand Response. LBNL Report 59975. Mayof Fully Automated Demand Response in Large Facilities.

Kiliccote, Sila; Global Energy Partners; Pacific Gas and Electric Company

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "forecast future demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Strategies for Demand Response in Commercial Buildings  

E-Print Network [OSTI]

Fully Automated Demand Response Tests in Large Facilitiesof Fully Automated Demand Response in Large Facilities,was coordinated by the Demand Response Research Center and

Watson, David S.; Kiliccote, Sila; Motegi, Naoya; Piette, Mary Ann

2006-01-01T23:59:59.000Z

342

Demand Responsive Lighting: A Scoping Study  

E-Print Network [OSTI]

2 2.0 Demand ResponseFully Automated Demand Response Tests in Large Facilities,was coordinated by the Demand Response Research Center and

Rubinstein, Francis; Kiliccote, Sila

2007-01-01T23:59:59.000Z

343

Coordination of Energy Efficiency and Demand Response  

E-Print Network [OSTI]

of Energy demand-side management energy information systemdemand response. Demand-side management (DSM) program goalsa goal for demand-side management (DSM) coordination and

Goldman, Charles

2010-01-01T23:59:59.000Z

344

Hawaiian Electric Company Demand Response Roadmap Project  

E-Print Network [OSTI]

and best practices to guide HECO demand response developmentbest practices for DR renewable integration Technically demand responseof best practices. This is partially because demand response

Levy, Roger

2014-01-01T23:59:59.000Z

345

Hawaiian Electric Company Demand Response Roadmap Project  

E-Print Network [OSTI]

of control. Water heater demand response options are notcurrent water heater and air conditioning demand responsecustomer response Demand response water heater participation

Levy, Roger

2014-01-01T23:59:59.000Z

346

Coordination of Energy Efficiency and Demand Response  

E-Print Network [OSTI]

District Small Business Summer Solutions: Energy and DemandSummer Solutions: Energy and Demand Impacts Monthly Energy> B-2 Coordination of Energy Efficiency and Demand Response

Goldman, Charles

2010-01-01T23:59:59.000Z

347

Coupling Renewable Energy Supply with Deferrable Demand  

E-Print Network [OSTI]

World: Renewable Energy and Demand Response Proliferation intogether the renewable energy and demand response communityimpacts of renewable energy and demand response integration

Papavasiliou, Anthony

2011-01-01T23:59:59.000Z

348

Strategies for Demand Response in Commercial Buildings  

E-Print Network [OSTI]

Strategies for Demand Response in Commercial Buildings DavidStrategies for Demand Response in Commercial Buildings Davidadjusted for demand response in commercial buildings. The

Watson, David S.; Kiliccote, Sila; Motegi, Naoya; Piette, Mary Ann

2006-01-01T23:59:59.000Z

349

Installation and Commissioning Automated Demand Response Systems  

E-Print Network [OSTI]

Demand Response Systems National Conference on BuildingDemand Response Systems National Conference on BuildingDemand Response Systems National Conference on Building

Kiliccote, Sila; Global Energy Partners; Pacific Gas and Electric Company

2008-01-01T23:59:59.000Z

350

Coordination of Energy Efficiency and Demand Response  

E-Print Network [OSTI]

In terms of demand response capability, building operatorsautomated demand response and improve building energy andand demand response features directly into building design

Goldman, Charles

2010-01-01T23:59:59.000Z

351

China's Coal: Demand, Constraints, and Externalities  

E-Print Network [OSTI]

raising transportation oil demand. Growing internationalcoal by wire could reduce oil demand by stemming coal roadEastern oil production. The rapid growth of coal demand

Aden, Nathaniel

2010-01-01T23:59:59.000Z

352

Addressing Energy Demand through Demand Response: International Experiences and Practices  

E-Print Network [OSTI]

DEMAND RESPONSE .7 Wholesale Marketuse at times of high wholesale market prices or when systemenergy expenditure. In wholesale markets, spot energy prices

Shen, Bo

2013-01-01T23:59:59.000Z

353

Improved water allocation utilizing probabilistic climate forecasts: Short-term water contracts in a risk management framework  

E-Print Network [OSTI]

. Thus, integrated supply and demand management can be achieved. In this paper, a single period multiuser, forecast consumers, water managers and reservoir operators, have difficulty interpreting such products in a risk management framework A. Sankarasubramanian,1 Upmanu Lall,2 Francisco Assis Souza Filho,3

Arumugam, Sankar

354

A B S T R A C T Forecasting in a risky situation is a very important  

E-Print Network [OSTI]

the model forecasts a relevant trend and can be used as a DSS for a manager. KEYWORDS: Efficient Market to assist in decision making. One of the fluctuated markets in stock exchange market is chemical market for textile industries and its very sensitive on oil prices and the demand and supply ratio. The main idea

Paris-Sud XI, Université de

355

Demand-Side Response from Industrial Loads  

SciTech Connect (OSTI)

Through a research study funded by the Department of Energy, Smart Grid solutions company ENBALA Power Networks along with the Oak Ridge National Laboratory (ORNL) have geospatially quantified the potential flexibility within industrial loads to leverage their inherent process storage to help support the management of the electricity grid. The study found that there is an excess of 12 GW of demand-side load flexibility available in a select list of top industrial facilities in the United States. Future studies will expand on this quantity of flexibility as more in-depth analysis of different industries is conducted and demonstrations are completed.

Starke, Michael R [ORNL; Alkadi, Nasr E [ORNL; Letto, Daryl [Enbala Power Networks; Johnson, Brandon [University of Tennessee, Knoxville (UTK); Dowling, Kevin [University of Tennessee, Knoxville (UTK); George, Raoule [Enbala Power Networks; Khan, Saqib [University of Texas, Austin

2013-01-01T23:59:59.000Z

356

Demand Response and Energy Efficiency  

E-Print Network [OSTI]

Demand Response & Energy Efficiency International Conference for Enhanced Building Operations ESL-IC-09-11-05 Proceedings of the Ninth International Conference for Enhanced Building Operations, Austin, Texas, November 17 - 19, 2009 2 ?Less than 5... for Enhanced Building Operations, Austin, Texas, November 17 - 19, 2009 5 What is Demand Response? ?The temporary reduction of electricity demanded from the grid by an end-user in response to capacity shortages, system reliability events, or high wholesale...

357

Driving Demand | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

strategies, results achieved to date, and advice for other programs. Driving Demand for Home Energy Improvements. This guide, developed by the Lawrence Berkeley National...

358

Demand Response Technology Roadmap A  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

workshop agendas, presentation materials, and transcripts. For the background to the Demand Response Technology Roadmap and to make use of individual roadmaps, the reader is...

359

Demand Response Technology Roadmap M  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

between May 2014 and February 2015. The Bonneville Power Administration (BPA) Demand Response Executive Sponsor Team decided upon the scope of the project in May. Two subsequent...

360

VALIDATION OF SHORT AND MEDIUM TERM OPERATIONAL SOLAR RADIATION FORECASTS IN THE US  

E-Print Network [OSTI]

VALIDATION OF SHORT AND MEDIUM TERM OPERATIONAL SOLAR RADIATION FORECASTS IN THE US Richard Perez This paper presents an initial validation of a solar radiation service that provides historical, as well observed solar radiation conditions based on immediate measured history: The position and impact of future

Perez, Richard R.

Note: This page contains sample records for the topic "forecast future demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Possible global warming futures Minh Ha-Duong  

E-Print Network [OSTI]

Possible global warming futures Minh Ha-Duong Minh.Ha.Duong@cmu.edu CNRS, France HDGC, Carnegie Mellon Possible global warming futures ­ p.1/36 #12;SRES: Forecasts or scenarios? +5.5 C in 2100 the controversy using imprecise probabilities, a more general information theory. . . Possible global warming

362

What Do Consumers Believe About Future Gasoline Soren T. Anderson  

E-Print Network [OSTI]

What Do Consumers Believe About Future Gasoline Prices? Soren T. Anderson Michigan State University of consumers about their expectations of future gasoline prices. Overall, we find that consumer beliefs follow a random walk, which we deem a reasonable forecast of gasoline prices, but we find a deviation from

Silver, Whendee

363

FUTURE POWER GRID INITIATIVE Intelligent Networked Sensors  

E-Print Network [OSTI]

, demand- response, and plug-in electric vehicles. It: » Lays the software platform groundwork and planning and ensure a more secure, efficient and reliable future grid. Building on the Electricity

364

Geothermal wells: a forecast of drilling activity  

SciTech Connect (OSTI)

Numbers and problems for geothermal wells expected to be drilled in the United States between 1981 and 2000 AD are forecasted. The 3800 wells forecasted for major electric power projects (totaling 6 GWe of capacity) are categorized by type (production, etc.), and by location (The Geysers, etc.). 6000 wells are forecasted for direct heat projects (totaling 0.02 Quads per year). Equations are developed for forecasting the number of wells, and data is presented. Drilling and completion problems in The Geysers, The Imperial Valley, Roosevelt Hot Springs, the Valles Caldera, northern Nevada, Klamath Falls, Reno, Alaska, and Pagosa Springs are discussed. Likely areas for near term direct heat projects are identified.

Brown, G.L.; Mansure, A.J.; Miewald, J.N.

1981-07-01T23:59:59.000Z

365

Online Forecast Combination for Dependent Heterogeneous Data  

E-Print Network [OSTI]

the single individual forecasts. Several studies have shown that combining forecasts can be a useful hedge against structural breaks, and forecast combinations are often more stable than single forecasts (e.g. Hendry and Clements, 2004, Stock and Watson, 2004... in expectations. Hence, we have the following. Corollary 4 Suppose maxt?T kl (Yt, hwt,Xti)kr ? A taking expectation on the left hand side, adding 2A ? T and setting ? = 0 in mT (?), i.e. TX t=1 E [lt (wt)? lt (ut...

Sancetta, Alessio

366

Funding Opportunity Announcement for Wind Forecasting Improvement...  

Office of Environmental Management (EM)

to improved forecasts, system operators and industry professionals can ensure that wind turbines will operate at their maximum potential. Data collected during this field...

367

Upcoming Funding Opportunity for Wind Forecasting Improvement...  

Office of Environmental Management (EM)

to improved forecasts, system operators and industry professionals can ensure that wind turbines will operate at their maximum potential. Data collected during this field...

368

The Value of Wind Power Forecasting  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Wind Power Forecasting Preprint Debra Lew and Michael Milligan National Renewable Energy Laboratory Gary Jordan and Richard Piwko GE Energy Presented at the 91 st American...

369

Retail Demand Response in Southwest Power Pool  

E-Print Network [OSTI]

Data Collection for Demand-side Management for QualifyingPrepared by Demand-side Management Task Force of the

Bharvirkar, Ranjit

2009-01-01T23:59:59.000Z

370

Honeywell Demonstrates Automated Demand Response Benefits for...  

Office of Environmental Management (EM)

Honeywell Demonstrates Automated Demand Response Benefits for Utility, Commercial, and Industrial Customers Honeywell Demonstrates Automated Demand Response Benefits for Utility,...

371

Wind Power Forecasting andWind Power Forecasting and Electricity Market Operations  

E-Print Network [OSTI]

Wind Power Forecasting andWind Power Forecasting and Electricity Market Operations Audun Botterud://www.dis.anl.gov/projects/windpowerforecasting.html IAWind 2010 Ames, IA, April 6, 2010 #12;Outline Background Using wind power forecasts in market operations ­ Current status in U.S. markets ­ Handling uncertainties in system operations ­ Wind power

Kemner, Ken

372

U-M Construction Forecast December 15, 2011 U-M Construction Forecast  

E-Print Network [OSTI]

U-M Construction Forecast December 15, 2011 U-M Construction Forecast Spring Fall 2012 As of December 15, 2011 Prepared by AEC Preliminary & Advisory #12;U-M Construction Forecast December 15, 2011 Overview Campus by campus Snapshot in time Not all projects Construction coordination efforts

Kamat, Vineet R.

373

China, India demand cushions prices  

SciTech Connect (OSTI)

Despite the hopes of coal consumers, coal prices did not plummet in 2006 as demand stayed firm. China and India's growing economies, coupled with solid supply-demand fundamentals in North America and Europe, and highly volatile prices for alternatives are likely to keep physical coal prices from wide swings in the coming year.

Boyle, M.

2006-11-15T23:59:59.000Z

374

Harnessing the power of demand  

SciTech Connect (OSTI)

Demand response can provide a series of economic services to the market and also provide ''insurance value'' under low-likelihood, but high-impact circumstances in which grid reliablity is enhanced. Here is how ISOs and RTOs are fostering demand response within wholesale electricity markets. (author)

Sheffrin, Anjali; Yoshimura, Henry; LaPlante, David; Neenan, Bernard

2008-03-15T23:59:59.000Z

375

Supply Chain Management in the Computer Industry Katta G. Murty  

E-Print Network [OSTI]

management in manufacturing industries is to forecast the demand for each item and to determine when to place culties. Key words: Supplycontracts, demand distributionand its updating, forecast- ing demand, shortage systems depend heavily on good demand forecasts. The main aim of forecasting methods is to predict future

Murty, Katta G.

376

Demand Response for Ancillary Services  

SciTech Connect (OSTI)

Many demand response resources are technically capable of providing ancillary services. In some cases, they can provide superior response to generators, as the curtailment of load is typically much faster than ramping thermal and hydropower plants. Analysis and quantification of demand response resources providing ancillary services is necessary to understand the resources economic value and impact on the power system. Methodologies used to study grid integration of variable generation can be adapted to the study of demand response. In the present work, we describe and illustrate a methodology to construct detailed temporal and spatial representations of the demand response resource and to examine how to incorporate those resources into power system models. In addition, the paper outlines ways to evaluate barriers to implementation. We demonstrate how the combination of these three analyses can be used to translate the technical potential for demand response providing ancillary services into a realizable potential.

Alkadi, Nasr E [ORNL; Starke, Michael R [ORNL

2013-01-01T23:59:59.000Z

377

Automated Demand Response and Commissioning  

SciTech Connect (OSTI)

This paper describes the results from the second season of research to develop and evaluate the performance of new Automated Demand Response (Auto-DR) hardware and software technology in large facilities. Demand Response (DR) is a set of activities to reduce or shift electricity use to improve the electric grid reliability and manage electricity costs. Fully-Automated Demand Response does not involve human intervention, but is initiated at a home, building, or facility through receipt of an external communications signal. We refer to this as Auto-DR. The evaluation of the control and communications must be properly configured and pass through a set of test stages: Readiness, Approval, Price Client/Price Server Communication, Internet Gateway/Internet Relay Communication, Control of Equipment, and DR Shed Effectiveness. New commissioning tests are needed for such systems to improve connecting demand responsive building systems to the electric grid demand response systems.

Piette, Mary Ann; Watson, David S.; Motegi, Naoya; Bourassa, Norman

2005-04-01T23:59:59.000Z

378

Optimal combined wind power forecasts using exogeneous variables  

E-Print Network [OSTI]

Optimal combined wind power forecasts using exogeneous variables Fannar ¨Orn Thordarson Kongens of the thesis is combined wind power forecasts using informations from meteorological forecasts. Lyngby, January

379

Ensemble forecast of analyses: Coupling data assimilation and sequential aggregation  

E-Print Network [OSTI]

Ensemble forecast of analyses: Coupling data assimilation and sequential aggregation Vivien Mallet1. [1] Sequential aggregation is an ensemble forecasting approach that weights each ensemble member based on past observations and past forecasts. This approach has several limitations: The weights

Mallet, Vivien

380

Probabilistic Wind Speed Forecasting using Ensembles and Bayesian Model Averaging  

E-Print Network [OSTI]

is to issue deterministic forecasts based on numerical weather prediction models. Uncertainty canProbabilistic Wind Speed Forecasting using Ensembles and Bayesian Model Averaging J. Mc discretization than is seen in other weather quantities. The prevailing paradigm in weather forecasting

Washington at Seattle, University of

Note: This page contains sample records for the topic "forecast future demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Future Accelerators (?)  

E-Print Network [OSTI]

I describe the future accelerator facilities that are currently foreseen for electroweak scale physics, neutrino physics, and nuclear structure. I will explore the physics justification for these machines, and suggest how the case for future accelerators can be made.

John Womersley

2003-08-09T23:59:59.000Z

382

NREL: Transmission Grid Integration - Forecasting  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andData and ResourcesOtherForecasting NREL researchers use solar and

383

Energy Demand Modelling Introduction to the PhD project  

E-Print Network [OSTI]

Energy Demand Modelling Introduction to the PhD project Erika Zvingilaite Risø DTU System Analysis for optimization of energy systems Environmental effects Global externalities cost of CO2 Future scenarios for the Nordic energy systems 2010, 2020, 2030, 2040, 2050 (energy-production, consumption, emissions, net costs

384

The Wind Forecast Improvement Project (WFIP): A Public/Private...  

Energy Savers [EERE]

The Wind Forecast Improvement Project (WFIP): A PublicPrivate Partnership for Improving Short Term Wind Energy Forecasts and Quantifying the Benefits of Utility Operations The...

385

Forecasting of Solar Radiation Detlev Heinemann, Elke Lorenz, Marco Girodo  

E-Print Network [OSTI]

Forecasting of Solar Radiation Detlev Heinemann, Elke Lorenz, Marco Girodo Oldenburg University have been presented more than twenty years ago (Jensenius, 1981), when daily solar radiation forecasts

Heinemann, Detlev

386

MODELING THE DEMAND FOR E85 IN THE UNITED STATES  

SciTech Connect (OSTI)

How demand for E85 might evolve in the future in response to changing economics and policies is an important subject to include in the National Energy Modeling System (NEMS). This report summarizes a study to develop an E85 choice model for NEMS. Using the most recent data from the states of Minnesota, North Dakota, and Iowa, this study estimates a logit model that represents E85 choice as a function of prices of E10 and E85, as well as fuel availability of E85 relative to gasoline. Using more recent data than previous studies allows a better estimation of non-fleet demand and indicates that the price elasticity of E85 choice appears to be higher than previously estimated. Based on the results of the econometric analysis, a model for projecting E85 demand at the regional level is specified. In testing, the model produced plausible predictions of US E85 demand to 2040.

Liu, Changzheng [ORNL; Greene, David L [ORNL

2013-10-01T23:59:59.000Z

387

New Concepts in Wind Power Forecasting Models  

E-Print Network [OSTI]

New Concepts in Wind Power Forecasting Models Vladimiro Miranda, Ricardo Bessa, João Gama, Guenter to the training of mappers such as neural networks to perform wind power prediction as a function of wind for more accurate short term wind power forecasting models has led to solid and impressive development

Kemner, Ken

388

QUIKSCAT MEASUREMENTS AND ECMWF WIND FORECASTS  

E-Print Network [OSTI]

. (2004) this forecast error was encountered when assimilating satellite measurements of zonal wind speeds between satellite measurements and meteorological forecasts of near-surface ocean winds. This type of covariance enters in assimilation techniques such as Kalman filtering. In all, six residual fields

Malmberg, Anders

389

QUIKSCAT MEASUREMENTS AND ECMWF WIND FORECASTS  

E-Print Network [OSTI]

. (2004) this forecast error was encountered when assimilating satellite measurements of zonal wind speeds between satellite measurements and meteorological forecasts of near­surface ocean winds. This type of covariance enters in assimilation techniques such as Kalman filtering. In all, six residual fields

Malmberg, Anders

390

Nonparametric models for electricity load forecasting  

E-Print Network [OSTI]

Electricity consumption is constantly evolving due to changes in people habits, technological innovations1 Nonparametric models for electricity load forecasting JANUARY 23, 2015 Yannig Goude, Vincent at University Paris-Sud 11 Orsay. His research interests are electricity load forecasting, more generally time

Genève, Université de

391

UHERO FORECAST PROJECT DECEMBER 5, 2014  

E-Print Network [OSTI]

deficits. After solid 3% growth this year, real GDP growth will recede a bit for the next two years. New household spending. Real GDP will firm above 3% in 2015. · The pace of growth in China has continuedUHERO FORECAST PROJECT DECEMBER 5, 2014 Asia-Pacific Forecast: Press Version: Embargoed Until 2

392

A NEW APPROACH FOR EVALUATING ECONOMIC FORECASTS  

E-Print Network [OSTI]

APPROACH FOR EVALUATING ECONOMIC FORECASTS Tara M. Sinclair , H.O. Stekler, and Warren Carnow Department of Economics The George Washington University Monroe Hall #340 2115 G Street NW Washington, DC 20052 JEL Codes, Mahalanobis Distance Abstract This paper presents a new approach to evaluating multiple economic forecasts

Vertes, Akos

393

2013 Midyear Economic Forecast Sponsorship Opportunity  

E-Print Network [OSTI]

2013 Midyear Economic Forecast Sponsorship Opportunity Thursday, April 18, 2013, ­ Hyatt Regency Irvine 11:30 a.m. ­ 1:30 p.m. Dr. Anil Puri presents his annual Midyear Economic Forecast addressing and Economics at California State University, Fullerton, the largest accredited business school in California

de Lijser, Peter

394

Demand and Price Uncertainty: Rational Habits in International Gasoline Demand  

E-Print Network [OSTI]

global gasoline and diesel price and income elasticities.shift in the short-run price elasticity of gasoline demand.Habits and Uncertain Relative Prices: Simulating Petrol Con-

Scott, K. Rebecca

2013-01-01T23:59:59.000Z

395

Primordial Helium Abundance from CMB: a constraint from recent observations and a forecast  

E-Print Network [OSTI]

We studied a constraint on the primordial helium abundance Y_p from current and future observations of CMB. Using the currently available data from WMAP, ACBAR, CBI and BOOMERANG, we obtained the constraint as Y_p = 0.25^{+0.10}_{-0.07} at 68% C.L. We also provide a forecast for the Planck experiment using the Markov chain Monte Carlo approach. In addition to forecasting the constraint on Y_p, we investigate how assumptions for Y_p affect constraints on the other cosmological parameters.

Kazuhide Ichikawa; Toyokazu Sekiguchi; Tomo Takahashi

2008-08-18T23:59:59.000Z

396

Full Rank Rational Demand Systems  

E-Print Network [OSTI]

as a nominal income full rank QES. R EFERENCES (A.84)S. G. Donald. Inferring the Rank of a Matrix. Journal of97-102. . A Demand System Rank Theorem. Econometrica 57 (

LaFrance, Jeffrey T; Pope, Rulon D.

2006-01-01T23:59:59.000Z

397

Marketing Demand-Side Management  

E-Print Network [OSTI]

Demand-Side Management is an organizational tool that has proven successful in various realms of the ever changing business world in the past few years. It combines the multi-faceted desires of the customers with the increasingly important...

O'Neill, M. L.

1988-01-01T23:59:59.000Z

398

Community Water Demand in Texas  

E-Print Network [OSTI]

Solutions to Texas water policy and planning problems will be easier to identify once the impact of price upon community water demand is better understood. Several important questions cannot be addressed in the absence of such information...

Griffin, Ronald C.; Chang, Chan

399

Demand Response Spinning Reserve Demonstration  

SciTech Connect (OSTI)

The Demand Response Spinning Reserve project is a pioneeringdemonstration of how existing utility load-management assets can providean important electricity system reliability resource known as spinningreserve. Using aggregated demand-side resources to provide spinningreserve will give grid operators at the California Independent SystemOperator (CAISO) and Southern California Edison (SCE) a powerful, newtool to improve system reliability, prevent rolling blackouts, and lowersystem operating costs.

Eto, Joseph H.; Nelson-Hoffman, Janine; Torres, Carlos; Hirth,Scott; Yinger, Bob; Kueck, John; Kirby, Brendan; Bernier, Clark; Wright,Roger; Barat, A.; Watson, David S.

2007-05-01T23:59:59.000Z

400

Demand Response and Open Automated Demand Response Opportunities for Data Centers  

E-Print Network [OSTI]

Standardized Automated Demand Response Signals. Presented atand Automated Demand Response in Industrial RefrigeratedActions for Industrial Demand Response in California. LBNL-

Mares, K.C.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "forecast future demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Open Automated Demand Response Communications in Demand Response for Wholesale Ancillary Services  

E-Print Network [OSTI]

A. Barat, D. Watson. 2006 Demand Response Spinning ReserveKueck, and B. Kirby 2008. Demand Response Spinning ReserveReport 2009. Open Automated Demand Response Communications

Kiliccote, Sila

2010-01-01T23:59:59.000Z

402

for the Future The Case for  

E-Print Network [OSTI]

Building for the Future The Case for Green Buildings and Energy Security for the University a contract from the Greenpeace Clean Energy Now! campaign. Building for the Future: The Case for Green and growing demand for renewable energy, energy efficiency, and green building practices from a wide range

California at Berkeley, University of

403

Earthquake Forecast via Neutrino Tomography  

E-Print Network [OSTI]

We discuss the possibility of forecasting earthquakes by means of (anti)neutrino tomography. Antineutrinos emitted from reactors are used as a probe. As the antineutrinos traverse through a region prone to earthquakes, observable variations in the matter effect on the antineutrino oscillation would provide a tomography of the vicinity of the region. In this preliminary work, we adopt a simplified model for the geometrical profile and matter density in a fault zone. We calculate the survival probability of electron antineutrinos for cases without and with an anomalous accumulation of electrons which can be considered as a clear signal of the coming earthquake, at the geological region with a fault zone, and find that the variation may reach as much as 3% for $\\bar \

Bin Wang; Ya-Zheng Chen; Xue-Qian Li

2011-03-29T23:59:59.000Z

404

MSSM Forecast for the LHC  

E-Print Network [OSTI]

We perform a forecast of the MSSM with universal soft terms (CMSSM) for the LHC, based on an improved Bayesian analysis. We do not incorporate ad hoc measures of the fine-tuning to penalize unnatural possibilities: such penalization arises from the Bayesian analysis itself when the experimental value of $M_Z$ is considered. This allows to scan the whole parameter space, allowing arbitrarily large soft terms. Still the low-energy region is statistically favoured (even before including dark matter or g-2 constraints). Contrary to other studies, the results are almost unaffected by changing the upper limits taken for the soft terms. The results are also remarkable stable when using flat or logarithmic priors, a fact that arises from the larger statistical weight of the low-energy region in both cases. Then we incorporate all the important experimental constrains to the analysis, obtaining a map of the probability density of the MSSM parameter space, i.e. the forecast of the MSSM. Since not all the experimental information is equally robust, we perform separate analyses depending on the group of observables used. When only the most robust ones are used, the favoured region of the parameter space contains a significant portion outside the LHC reach. This effect gets reinforced if the Higgs mass is not close to its present experimental limit and persits when dark matter constraints are included. Only when the g-2 constraint (based on $e^+e^-$ data) is considered, the preferred region (for $\\mu>0$) is well inside the LHC scope. We also perform a Bayesian comparison of the positive- and negative-$\\mu$ possibilities.

Maria Eugenia Cabrera; Alberto Casas; Roberto Ruiz de Austri

2010-12-10T23:59:59.000Z

405

Home Network Technologies and Automating Demand Response  

SciTech Connect (OSTI)

Over the past several years, interest in large-scale control of peak energy demand and total consumption has increased. While motivated by a number of factors, this interest has primarily been spurred on the demand side by the increasing cost of energy and, on the supply side by the limited ability of utilities to build sufficient electricity generation capacity to meet unrestrained future demand. To address peak electricity use Demand Response (DR) systems are being proposed to motivate reductions in electricity use through the use of price incentives. DR systems are also be design to shift or curtail energy demand at critical times when the generation, transmission, and distribution systems (i.e. the 'grid') are threatened with instabilities. To be effectively deployed on a large-scale, these proposed DR systems need to be automated. Automation will require robust and efficient data communications infrastructures across geographically dispersed markets. The present availability of widespread Internet connectivity and inexpensive, reliable computing hardware combined with the growing confidence in the capabilities of distributed, application-level communications protocols suggests that now is the time for designing and deploying practical systems. Centralized computer systems that are capable of providing continuous signals to automate customers reduction of power demand, are known as Demand Response Automation Servers (DRAS). The deployment of prototype DRAS systems has already begun - with most initial deployments targeting large commercial and industrial (C & I) customers. An examination of the current overall energy consumption by economic sector shows that the C & I market is responsible for roughly half of all energy consumption in the US. On a per customer basis, large C & I customers clearly have the most to offer - and to gain - by participating in DR programs to reduce peak demand. And, by concentrating on a small number of relatively sophisticated energy consumers, it has been possible to improve the DR 'state of the art' with a manageable commitment of technical resources on both the utility and consumer side. Although numerous C & I DR applications of a DRAS infrastructure are still in either prototype or early production phases, these early attempts at automating DR have been notably successful for both utilities and C & I customers. Several factors have strongly contributed to this success and will be discussed below. These successes have motivated utilities and regulators to look closely at how DR programs can be expanded to encompass the remaining (roughly) half of the state's energy load - the light commercial and, in numerical terms, the more important residential customer market. This survey examines technical issues facing the implementation of automated DR in the residential environment. In particular, we will look at the potential role of home automation networks in implementing wide-scale DR systems that communicate directly to individual residences.

McParland, Charles

2009-12-01T23:59:59.000Z

406

Smart finite state devices: A modeling framework for demand response technologies  

E-Print Network [OSTI]

We introduce and analyze Markov Decision Process (MDP) machines to model individual devices which are expected to participate in future demand-response markets on distribution grids. We differentiate devices into the ...

Turitsyn, Konstantin

407

The process of resort second home development demand quantification : exploration of methodologies and case study application  

E-Print Network [OSTI]

Prevalent methodologies utilized by resort second home development professionals to quantify demand for future projects are identified and critiqued. The strengths of each model are synthesized in order to formulate an ...

Wholey, Christopher J. (Christoper John)

2011-01-01T23:59:59.000Z

408

Demand Forecast Advisory Committee in Preparation for the Seventh Power Plan  

E-Print Network [OSTI]

products, electric motors, commercial water heaters, and heating, ventilation, and air conditioning and Ovens R Ai C diti Direct heating equipment Electric Motors Exit Signs General Service Fluorescent (HVAC) systems. EPAct also authorized DOE to develop of standards for products and directed DOE

409

New product demand forecasting and distribution optimization : a case study at Zara  

E-Print Network [OSTI]

The problem of optimally distributing new products is common to many companies and industries. This thesis describes how this challenge was addressed at Zara, a leading retailer in the "fast fashion" industry. The thesis ...

Garro, Andres

2011-01-01T23:59:59.000Z

410

The Origins of Metropolitan Transportation Planning in Travel Demand Forecasting, 1944-1962  

E-Print Network [OSTI]

J. (1955). The law of retail gravitation applied to trafficas Reillys Law of Retail Gravitation. Concepts like

Deutsch, Cheryl

2013-01-01T23:59:59.000Z

411

1993 Solid Waste Reference Forecast Summary  

SciTech Connect (OSTI)

This report, which updates WHC-EP-0567, 1992 Solid Waste Reference Forecast Summary, (WHC 1992) forecasts the volumes of solid wastes to be generated or received at the US Department of Energy Hanford Site during the 30-year period from FY 1993 through FY 2022. The data used in this document were collected from Westinghouse Hanford Company forecasts as well as from surveys of waste generators at other US Department of Energy sites who are now shipping or plan to ship solid wastes to the Hanford Site for disposal. These wastes include low-level and low-level mixed waste, transuranic and transuranic mixed waste, and nonradioactive hazardous waste.

Valero, O.J.; Blackburn, C.L. [Westinghouse Hanford Co., Richland, WA (United States); Kaae, P.S.; Armacost, L.L.; Garrett, S.M.K. [Pacific Northwest Lab., Richland, WA (United States)

1993-08-01T23:59:59.000Z

412

PSO (FU 2101) Ensemble-forecasts for wind power  

E-Print Network [OSTI]

PSO (FU 2101) Ensemble-forecasts for wind power Analysis of the Results of an On-line Wind Power Ensemble- forecasts for wind power (FU2101) a demo-application producing quantile forecasts of wind power correct) quantile forecasts of the wind power production are generated by the application. However

413

A New Measure of Earnings Forecast Uncertainty Xuguang Sheng  

E-Print Network [OSTI]

A New Measure of Earnings Forecast Uncertainty Xuguang Sheng American University Washington, D of earnings forecast uncertainty as the sum of dispersion among analysts and the variance of mean forecast available to analysts at the time they make their forecasts. Hence, it alleviates some of the limitations

Kim, Kiho

414

The Complexity of Forecast Testing Lance Fortnow # Rakesh V. Vohra +  

E-Print Network [OSTI]

The Complexity of Forecast Testing Lance Fortnow # Rakesh V. Vohra + Abstract Consider a weather forecaster predicting a probability of rain for the next day. We consider tests that given a finite sequence of forecast predictions and outcomes will either pass or fail the forecaster. Sandroni shows that any test

Fortnow, Lance

415

Does increasing model stratospheric resolution improve extended range forecast skill?  

E-Print Network [OSTI]

Does increasing model stratospheric resolution improve extended range forecast skill? Greg Roff,1 forecast skill at high Southern latitudes is explored. Ensemble forecasts are made for two model configurations that differ only in vertical resolution above 100 hPa. An ensemble of twelve 30day forecasts

416

Distribution of Wind Power Forecasting Errors from Operational Systems (Presentation)  

SciTech Connect (OSTI)

This presentation offers new data and statistical analysis of wind power forecasting errors in operational systems.

Hodge, B. M.; Ela, E.; Milligan, M.

2011-10-01T23:59:59.000Z

417

Metrics for Evaluating the Accuracy of Solar Power Forecasting (Presentation)  

SciTech Connect (OSTI)

This presentation proposes a suite of metrics for evaluating the performance of solar power forecasting.

Zhang, J.; Hodge, B.; Florita, A.; Lu, S.; Hamann, H.; Banunarayanan, V.

2013-10-01T23:59:59.000Z

418

Demand Response as a System Reliability Resource  

E-Print Network [OSTI]

Barat, and D. Watson. 2007. Demand Response Spinning ReserveKueck, and B. Kirby. 2009. Demand Response Spinning ReserveFormat of 2009-2011 Demand Response Activity Applications.

Joseph, Eto

2014-01-01T23:59:59.000Z

419

Industrial demand side management: A status report  

SciTech Connect (OSTI)

This report provides an overview of and rationale for industrial demand side management (DSM) programs. Benefits and barriers are described, and data from the Manufacturing Energy Consumption Survey are used to estimate potential energy savings in kilowatt hours. The report presents types and examples of programs and explores elements of successful programs. Two in-depth case studies (from Boise Cascade and Eli Lilly and Company) illustrate two types of effective DSM programs. Interviews with staff from state public utility commissions indicate the current thinking about the status and future of industrial DSM programs. A comprehensive bibliography is included, technical assistance programs are listed and described, and a methodology for evaluating potential or actual savings from projects is delineated.

Hopkins, M.F.; Conger, R.L.; Foley, T.J. [and others

1995-05-01T23:59:59.000Z

420

Coordination of Energy Efficiency and Demand Response  

E-Print Network [OSTI]

and Demand Response A pilot program from NSTAR in Massachusetts,Massachusetts, aiming to test whether an intensive program of energy efficiency and demand response

Goldman, Charles

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "forecast future demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Coordination of Energy Efficiency and Demand Response  

E-Print Network [OSTI]

California Long-term Energy Efficiency Strategic Plan. B-2 Coordination of Energy Efficiency and Demand Response> B-4 Coordination of Energy Efficiency and Demand Response

Goldman, Charles

2010-01-01T23:59:59.000Z

422

California Energy Demand Scenario Projections to 2050  

E-Print Network [OSTI]

annual per-capita electricity consumption by demand15 California electricity consumption projections by demandannual per-capita electricity consumption by demand

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2008-01-01T23:59:59.000Z

423

California Energy Demand Scenario Projections to 2050  

E-Print Network [OSTI]

Vehicle Conventional and Alternative Fuel Response Simulatormodified to include alternative fuel demand scenarios (whichvehicle adoption and alternative fuel demand) later in the

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2008-01-01T23:59:59.000Z

424

Demand Response as a System Reliability Resource  

E-Print Network [OSTI]

for Demand Response Technology Development The objective ofin planning demand response technology RD&D by conductingNew and Emerging Technologies into the California Smart Grid

Joseph, Eto

2014-01-01T23:59:59.000Z

425

Demand Responsive Lighting: A Scoping Study  

E-Print Network [OSTI]

sector, the demand response potential of California buildinga demand response event prohibit a buildings participationdemand response strategies in California buildings are

Rubinstein, Francis; Kiliccote, Sila

2007-01-01T23:59:59.000Z

426

SolarAnywhere forecast (Perez & Hoff) This chapter describes, and presents an evaluation of, the forecast models imbedded in the  

E-Print Network [OSTI]

SolarAnywhere forecast (Perez & Hoff) ABSTRACT This chapter describes, and presents an evaluation of, the forecast models imbedded in the SolarAnywhere platform. The models include satellite derived cloud motion based forecasts for the short to medium horizon (1 5 hours) and forecasts derived from NOAA

Perez, Richard R.

427

Advanced Numerical Weather Prediction Techniques for Solar Irradiance Forecasting : : Statistical, Data-Assimilation, and Ensemble Forecasting  

E-Print Network [OSTI]

J.B. , 2004: Probabilistic wind power forecasts using localforecast intervals for wind power output using NWP-predictedsources such as wind and solar power. Integration of this

Mathiesen, Patrick James

2013-01-01T23:59:59.000Z

428

Advanced Numerical Weather Prediction Techniques for Solar Irradiance Forecasting : : Statistical, Data-Assimilation, and Ensemble Forecasting  

E-Print Network [OSTI]

United States California Solar Initiative Coastally Trappedparticipants in the California Solar Initiative (CSI)on location. In California, solar irradiance forecasts near

Mathiesen, Patrick James

2013-01-01T23:59:59.000Z

429

Addressing an Uncertain Future Using Scenario Analysis  

SciTech Connect (OSTI)

The Office of Energy Efficiency and Renewable Energy (EERE) has had a longstanding goal of introducing uncertainty into the analysis it routinely conducts in compliance with the Government Performance and Results Act (GPRA) and for strategic management purposes. The need to introduce some treatment of uncertainty arises both because it would be good general management practice, and because intuitively many of the technologies under development by EERE have a considerable advantage in an uncertain world. For example, an expected kWh output from a wind generator in a future year, which is not exposed to volatile and unpredictable fuel prices, should be truly worth more than an equivalent kWh from an alternative fossil fuel fired technology. Indeed, analysts have attempted to measure this value by comparing the prices observed in fixed-price natural gas contracts compared to ones in which buyers are exposed to market prices (see Bolinger, Wiser, and Golove and (2004)). In addition to the routine reasons for exploring uncertainty given above, the history of energy markets appears to have exhibited infrequent, but troubling, regime shifts, i.e., historic turning points at which the center of gravity or fundamental nature of the system appears to have abruptly shifted. Figure 1 below shows an estimate of how the history of natural gas fired generating costs has evolved over the last three decades. The costs shown incorporate both the well-head gas price and an estimate of how improving generation technology has gradually tended to lower costs. The purpose of this paper is to explore scenario analysis as a method for introducing uncertainty into EERE's forecasting in a manner consistent with the preceding observation. The two questions are how could it be done, and what is its academic basis, if any. Despite the interest in uncertainty methods, applying them poses some major hurdles because of the heavy reliance of EERE on forecasting tools that are deterministic in nature, such as the Energy Information Administration's (EIA's) National Energy Modeling System (NEMS). NEMS is the source of the influential Annual Energy Outlook whose business-as-usual (BAU) case, the Reference Case, forms the baseline for most of the U.S. energy policy discussion. NEMS is an optimizing model because: 1. it iterates to an equilibrium among modules representing the supply, demand, and energy conversion subsectors; and 2. several subsectoral models are individually solved using linear programs (LP). Consequently, it is deeply rooted in the recent past and any effort to simulate the consequences of a major regime shift as depicted in Figure 1 must come by applying an exogenously specified scenario. And, more generally, simulating futures that lie outside of our recent historic experience, even if they do not include regime switches suggest some form of scenario approach. At the same time, the statistical validity of scenarios that deviate significantly outside the ranges of historic inputs should be questioned.

Siddiqui, Afzal S.; Marnay, Chris

2006-12-15T23:59:59.000Z

430

Turkey's energy demand and supply  

SciTech Connect (OSTI)

The aim of the present article is to investigate Turkey's energy demand and the contribution of domestic energy sources to energy consumption. Turkey, the 17th largest economy in the world, is an emerging country with a buoyant economy challenged by a growing demand for energy. Turkey's energy consumption has grown and will continue to grow along with its economy. Turkey's energy consumption is high, but its domestic primary energy sources are oil and natural gas reserves and their production is low. Total primary energy production met about 27% of the total primary energy demand in 2005. Oil has the biggest share in total primary energy consumption. Lignite has the biggest share in Turkey's primary energy production at 45%. Domestic production should be to be nearly doubled by 2010, mainly in coal (lignite), which, at present, accounts for almost half of the total energy production. The hydropower should also increase two-fold over the same period.

Balat, M. [Sila Science, Trabzon (Turkey)

2009-07-01T23:59:59.000Z

431

Wind Speed Forecasting for Power System Operation  

E-Print Network [OSTI]

In order to support large-scale integration of wind power into current electric energy system, accurate wind speed forecasting is essential, because the high variation and limited predictability of wind pose profound challenges to the power system...

Zhu, Xinxin

2013-07-22T23:59:59.000Z

432

Appendix A: Fuel Price Forecast Introduction..................................................................................................................................... 1  

E-Print Network [OSTI]

Appendix A: Fuel Price Forecast Introduction ................................................................................................................... 17 INTRODUCTION Since the millennium, the trend for fuel prices has been one of uncertainty prices, which have traditionally been relatively stable, increased by about 50 percent in 2008. Fuel

433

STAFF FORECAST: AVERAGE RETAIL ELECTRICITY PRICES  

E-Print Network [OSTI]

CALIFORNIA ENERGY COMMISSION STAFF FORECAST: AVERAGE RETAIL ELECTRICITY PRICES 2005 TO 2018 Mignon Marks Principal Author Mignon Marks Project Manager David Ashuckian Manager ELECTRICITY ANALYSIS OFFICE Sylvia Bender Acting Deputy Director ELECTRICITY SUPPLY DIVISION B.B. Blevins Executive Director

434

Essays in International Macroeconomics and Forecasting  

E-Print Network [OSTI]

This dissertation contains three essays in international macroeconomics and financial time series forecasting. In the first essay, I show, numerically, that a two-country New-Keynesian Sticky Prices model, driven by monetary and productivity shocks...

Bejarano Rojas, Jesus Antonio

2012-10-19T23:59:59.000Z

435

Demand Response | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecember 2005Department ofDOE AccidentWasteZone Modeling |Demand Response Demand

436

Dynamic Algorithm for Space Weather Forecasting System  

E-Print Network [OSTI]

for the designation as UNDERGRADUATE RESEARCH SCHOLAR April 2010 Major: Nuclear Engineering DYNAMIC ALGORITHM FOR SPACE WEATHER FORECASTING SYSTEM A Junior Scholars Thesis by LUKE DUNCAN FISCHER Submitted to the Office of Undergraduate... 2010 Major: Nuclear Engineering iii ABSTRACT Dynamic Algorithm for Space Weather Forecasting System. (April 2010) Luke Duncan Fischer Department of Nuclear Engineering Texas A&M University Research Advisor: Dr. Stephen Guetersloh...

Fischer, Luke D.

2011-08-08T23:59:59.000Z

437

Navy mobility fuels forecasting system report: World petroleum trade forecasts for the year 2000  

SciTech Connect (OSTI)

The Middle East will continue to play the dominant role of a petroleum supplier in the world oil market in the year 2000, according to business-as-usual forecasts published by the US Department of Energy. However, interesting trade patterns will emerge as a result of the democratization in the Soviet Union and Eastern Europe. US petroleum imports will increase from 46% in 1989 to 49% in 2000. A significantly higher level of US petroleum imports (principally products) will be coming from Japan, the Soviet Union, and Eastern Europe. Several regions, the Far East, Japan, Latin American, and Africa will import more petroleum. Much uncertainty remains about of the level future Soviet crude oil production. USSR net petroleum exports will decrease; however, the United States and Canada will receive some of their imports from the Soviet Union due to changes in the world trade patterns. The Soviet Union can avoid becoming a net petroleum importer as long as it (1) maintains enough crude oil production to meet its own consumption and (2) maintains its existing refining capacities. Eastern Europe will import approximately 50% of its crude oil from the Middle East.

Das, S.

1991-12-01T23:59:59.000Z

438

Future Healthcare  

E-Print Network [OSTI]

Patients want answers, not numbers. Evidence-based medicine must have numbers to generate answers. Therefore, analysis of numbers to provide answers is the Holy Grail of healthcare professionals and its future systems. ...

Datta, Shoumen

2010-12-15T23:59:59.000Z

439

Demand Response Programs for Oregon  

E-Print Network [OSTI]

wholesale prices and looming shortages in Western power markets in 2000-01, Portland General Electric programs for large customers remain, though they are not active at current wholesale prices. Other programs demand response for the wholesale market -- by passing through real-time prices for usage above a set

440

Water demand management in Kuwait  

E-Print Network [OSTI]

Kuwait is an arid country located in the Middle East, with limited access to water resources. Yet water demand per capita is much higher than in other countries in the world, estimated to be around 450 L/capita/day. There ...

Milutinovic, Milan, M. Eng. Massachusetts Institute of Technology

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "forecast future demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Global Energy Partners, LLC 500 Ygnacio Valley Road, Suite 450  

E-Print Network [OSTI]

of this study, we developed baseline peak demand and electricity use forecasts that do not include any future DR of the forecast. The baseline peak demand forecast increases from 98,963 MW in 2010 to 116,165 MW in 2030, the first forecast year, the peak demand savings from DR and EE programs combined within the Midwest ISO

442

2007 Wholesale Power Rate Case Initial Proposal : Market Price Forecast Study.  

SciTech Connect (OSTI)

This chapter presents BPA's market price forecasts, which are based on AURORA modeling. AURORA calculates the variable cost of the marginal resource in a competitively priced energy market. In competitive market pricing, the marginal cost of production is equivalent to the market-clearing price. Market-clearing prices are important factors for informing BPA's rates. AURORA is used as the primary tool for (a) calculation of the demand rate, (b) shaping the PF rate, (c) estimating the forward price for the IOU REP settlement benefits calculation for fiscal years 2008 and 2009, (d) estimating the uncertainty surrounding DSI payments, (e) informing the secondary revenue forecast and (f) providing a price input used for the risk analysis.

United States. Bonneville Power Administration.

2005-11-01T23:59:59.000Z

443

Northwest Open Automated Demand Response Technology Demonstration Project  

E-Print Network [OSTI]

Report 2009. Open Automated Demand Response Communicationsand Techniques for Demand Response. California Energyand S. Kiliccote. Estimating Demand Response Load Impacts:

Kiliccote, Sila

2010-01-01T23:59:59.000Z

444

Opportunities, Barriers and Actions for Industrial Demand Response in California  

E-Print Network [OSTI]

and Techniques for Demand Response, report for theand Reliability Demand Response Programs: Final Report.Demand Response

McKane, Aimee T.

2009-01-01T23:59:59.000Z

445

Automated Demand Response Opportunities in Wastewater Treatment Facilities  

E-Print Network [OSTI]

Interoperable Automated Demand Response Infrastructure,study of automated demand response in wastewater treatmentopportunities for demand response control strategies in

Thompson, Lisa

2008-01-01T23:59:59.000Z

446

INTEGRATION OF PV IN DEMAND RESPONSE  

E-Print Network [OSTI]

INTEGRATION OF PV IN DEMAND RESPONSE PROGRAMS Prepared by Richard Perez et al. NREL subcontract response programs. This is because PV generation acts as a catalyst to demand response, markedly enhancing by solid evidence from three utility case studies. BACKGROUND Demand Response: demand response (DR

Perez, Richard R.

447

Assessment of Demand Response and Advanced Metering  

E-Print Network [OSTI]

#12;#12;2008 Assessment of Demand Response and Advanced Metering Staff Report Federal Energy metering penetration and potential peak load reduction from demand response have increased since 2006. Significant activity to promote demand response or to remove barriers to demand response occurred at the state

Tesfatsion, Leigh

448

Renewable Electricity Futures Study. Executive Summary  

SciTech Connect (OSTI)

The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).

Mai, T.; Sandor, D.; Wiser, R.; Schneider, T.

2012-12-01T23:59:59.000Z

449

Ramp Forecasting Performance from Improved Short-Term Wind Power Forecasting: Preprint  

SciTech Connect (OSTI)

The variable and uncertain nature of wind generation presents a new concern to power system operators. One of the biggest concerns associated with integrating a large amount of wind power into the grid is the ability to handle large ramps in wind power output. Large ramps can significantly influence system economics and reliability, on which power system operators place primary emphasis. The Wind Forecasting Improvement Project (WFIP) was performed to improve wind power forecasts and determine the value of these improvements to grid operators. This paper evaluates the performance of improved short-term wind power ramp forecasting. The study is performed for the Electric Reliability Council of Texas (ERCOT) by comparing the experimental WFIP forecast to the current short-term wind power forecast (STWPF). Four types of significant wind power ramps are employed in the study; these are based on the power change magnitude, direction, and duration. The swinging door algorithm is adopted to extract ramp events from actual and forecasted wind power time series. The results show that the experimental short-term wind power forecasts improve the accuracy of the wind power ramp forecasting, especially during the summer.

Zhang, J.; Florita, A.; Hodge, B. M.; Freedman, J.

2014-05-01T23:59:59.000Z

450

AN APPLICATION OF URBANSIM TO THE AUSTIN, TEXAS REGION: INTEGRATED-MODEL FORECASTS FOR THE YEAR 2030  

E-Print Network [OSTI]

AN APPLICATION OF URBANSIM TO THE AUSTIN, TEXAS REGION: INTEGRATED-MODEL FORECASTS FOR THE YEAR, as well as energy consumption and greenhouse gas emissions. This work describes the modeling of year-2030 policies significantly impact the region's future land use patterns, traffic conditions, greenhouse gas

Kockelman, Kara M.

451

The alchemy of demand response: turning demand into supply  

SciTech Connect (OSTI)

Paying customers to refrain from purchasing products they want seems to run counter to the normal operation of markets. Demand response should be interpreted not as a supply-side resource but as a secondary market that attempts to correct the misallocation of electricity among electric users caused by regulated average rate tariffs. In a world with costless metering, the DR solution results in inefficiency as measured by deadweight losses. (author)

Rochlin, Cliff

2009-11-15T23:59:59.000Z

452

A Unit Commitment Model with Demand Response for the Integration of Renewable Energies  

E-Print Network [OSTI]

The output of renewable energy fluctuates significantly depending on weather conditions. We develop a unit commitment model to analyze requirements of the forecast output and its error for renewable energies. Our model obtains the time series for the operational state of thermal power plants that would maximize the profits of an electric power utility by taking into account both the forecast of output its error for renewable energies and the demand response of consumers. We consider a power system consisting of thermal power plants, photovoltaic systems (PV), and wind farms and analyze the effect of the forecast error on the operation cost and reserves. We confirm that the operation cost was increases with the forecast error. The effect of a sudden decrease in wind power is also analyzed. More thermal power plants need to be operated to generate power to absorb this sudden decrease in wind power. The increase in the number of operating thermal power plants within a short period does not affect the total opera...

Ikeda, Yuichi; Kataoka, Kazuto; Ogimoto, Kazuhiko

2011-01-01T23:59:59.000Z

453

The Future of Material Science & Engineering A Polymer Industry Perspective  

E-Print Network [OSTI]

&D Solvay Specialty Polymers #12;The Industry Forecasting Challenge... This "telephone" has too many William Leahy, US Atomic Bomb Project Deep Insight can Impair Foresight... #12;© 2013 Solvay Specialty Into the Future © 2013 Solvay Specialty Polymers5 Equally Dangerous Approaches... #12;© 2012 Solvay Specialty

Li, Mo

454

Electric-utility DSM programs: 1990 data and forecasts to 2000  

SciTech Connect (OSTI)

In April 1992, the Energy Information Administration (EIA) released data on 1989 and 1990 electric-utility demand-site management (DMS) programs. These data represent a census of US utility DSM programs, with reports of utility expenditures, energy savings, and load reductions caused by these programs. In addition, EIA published utility estimates of the costs and effects of these programs from 1991 to 2000. These data provide the first comprehensive picture of what utilities are spending and accomplishing by utility, state, and region. This report presents, summarizes, and interprets the 1990 data and the utility forecasts of their DSM-program expenditures and impacts to the year 2000. Only utilities with annual sales greater than 120 GWh were required to report data on their DSM programs to EIA. Of the 1194 such utilities, 363 reported having a DSM program that year. These 363 electric utilities spent $1.2 billion on their DSM programs in 1990, up from $0.9 billion in 1989. Estimates of energy savings (17,100 GWh in 1990 and 14,800 GWh in 1989) and potential reductions in peak demand (24,400 MW in 1990 and about 19,400 MW in 1989) also showed substantial increases. Overall, utility DSM expenditures accounted for 0.7% of total US electric revenues, while the reductions in energy and demand accounted for 0.6% and 4.9% of their respective 1990 national totals. The investor-owned utilities accounted for 70 to 90% of the totals for DSM costs, energy savings, and demand reductions. The public utilities reported larger percentage reductions in peak demand and energy smaller percentage DSM expenditures. These averages hide tremendous variations across utilities. Utility forecasts of DSM expenditures and effects show substantial growth in both absolute and relative terms.

Hirst, E.

1992-06-01T23:59:59.000Z

455

Thirty-year solid waste generation forecast for facilities at SRS  

SciTech Connect (OSTI)

The information supplied by this 30-year solid waste forecast has been compiled as a source document to the Waste Management Environmental Impact Statement (WMEIS). The WMEIS will help to select a sitewide strategic approach to managing present and future Savannah River Site (SRS) waste generated from ongoing operations, environmental restoration (ER) activities, transition from nuclear production to other missions, and decontamination and decommissioning (D&D) programs. The EIS will support project-level decisions on the operation of specific treatment, storage, and disposal facilities within the near term (10 years or less). In addition, the EIS will provide a baseline for analysis of future waste management activities and a basis for the evaluation of the specific waste management alternatives. This 30-year solid waste forecast will be used as the initial basis for the EIS decision-making process. The Site generates and manages many types and categories of waste. With a few exceptions, waste types are divided into two broad groups-high-level waste and solid waste. High-level waste consists primarily of liquid radioactive waste, which is addressed in a separate forecast and is not discussed further in this document. The waste types discussed in this solid waste forecast are sanitary waste, hazardous waste, low-level mixed waste, low-level radioactive waste, and transuranic waste. As activities at SRS change from primarily production to primarily decontamination and decommissioning and environmental restoration, the volume of each waste s being managed will change significantly. This report acknowledges the changes in Site Missions when developing the 30-year solid waste forecast.

Not Available

1994-07-01T23:59:59.000Z

456

Global energy demand to 2060  

SciTech Connect (OSTI)

The projection of global energy demand to the year 2060 is of particular interest because of its relevance to the current greenhouse concerns. The long-term growth of global energy demand in the time scale of climatic change has received relatively little attention in the public discussion of national policy alternatives. The sociological, political, and economic issues have rarely been mentioned in this context. This study emphasizes that the two major driving forces are global population growth and economic growth (gross national product per capita), as would be expected. The modest annual increases assumed in this study result in a year 2060 annual energy use of >4 times the total global current use (year 1986) if present trends continue, and >2 times with extreme efficiency improvements in energy use. Even assuming a zero per capita growth for energy and economics, the population increase by the year 2060 results in a 1.5 times increase in total annual energy use.

Starr, C. (Electric Power Research Institute, Palo Alto, CA (USA))

1989-01-01T23:59:59.000Z

457

Open Automated Demand Response Communications in Demand Response for Wholesale Ancillary Services  

E-Print Network [OSTI]

shows how the actual load profile follows the hourly bidscriteria were as follows: Low load variability enhancesloads, the actual loads do not closely follow the forecasted

Kiliccote, Sila

2010-01-01T23:59:59.000Z

458

Residential and Transport Energy Use in India: Past Trend and Future Outlook  

E-Print Network [OSTI]

GDP per capita Transport Future outlook Drivers of Transport Energyenergy demand per passenger-km. Figure 20. Car Ownership and GDP

de la Rue du Can, Stephane

2009-01-01T23:59:59.000Z

459

Near Optimal Demand-Side Energy Management Under Real-time Demand-Response Pricing  

E-Print Network [OSTI]

Near Optimal Demand-Side Energy Management Under Real-time Demand-Response Pricing Jin Xiao, Jae--In this paper, we present demand-side energy manage- ment under real-time demand-response pricing as a task, demand-response, energy management I. INTRODUCTION The growing awareness of global climate change has

Boutaba, Raouf

460

Do Investors Forecast Fat Firms? Evidence from the Gold Mining Industry  

E-Print Network [OSTI]

Economists Gold Price Forecasts, Australian Journal ofDo Investors Forecast Fat Firms? Evidence from the Gold

Borenstein, Severin; Farrell, Joseph

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "forecast future demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Potential to Improve Forecasting Accuracy: Advances in Supply Chain Management  

E-Print Network [OSTI]

Forecasting is a necessity almost in any operation. However, the tools of forecasting are still primitive in view of the great strides made by research and the increasing abundance of data made possible by automatic ...

Datta, Shoumen

2008-07-31T23:59:59.000Z

462

Market perceptions of efficiency and news in analyst forecast errors  

E-Print Network [OSTI]

Financial analysts are considered inefficient when they do not fully incorporate relevant information into their forecasts. In this dissertation, I investigate differences in the observable efficiency of analysts' earnings forecasts between firms...

Chevis, Gia Marie

2004-11-15T23:59:59.000Z

463

The effect of multinationality on management earnings forecasts  

E-Print Network [OSTI]

This study examines the relationship between a firm??s degree of multinationality and its managers?? earnings forecasts. Firms with a high degree of multinationality are subject to greater uncertainty regarding earnings forecasts due...

Runyan, Bruce Wayne

2005-08-29T23:59:59.000Z

464

Fuse Control for Demand Side Management: A Stochastic Pricing Analysis  

E-Print Network [OSTI]

a service contract for load curtailment. Index Terms--Demand side management, aggregated demand response

Oren, Shmuel S.

465

Wind power forecasting in U.S. electricity markets.  

SciTech Connect (OSTI)

Wind power forecasting is becoming an important tool in electricity markets, but the use of these forecasts in market operations and among market participants is still at an early stage. The authors discuss the current use of wind power forecasting in U.S. ISO/RTO markets, and offer recommendations for how to make efficient use of the information in state-of-the-art forecasts.

Botterud, A.; Wang, J.; Miranda, V.; Bessa, R. J.; Decision and Information Sciences; INESC Porto

2010-04-01T23:59:59.000Z

466

Wind power forecasting in U.S. Electricity markets  

SciTech Connect (OSTI)

Wind power forecasting is becoming an important tool in electricity markets, but the use of these forecasts in market operations and among market participants is still at an early stage. The authors discuss the current use of wind power forecasting in U.S. ISO/RTO markets, and offer recommendations for how to make efficient use of the information in state-of-the-art forecasts. (author)

Botterud, Audun; Wang, Jianhui; Miranda, Vladimiro; Bessa, Ricardo J.

2010-04-15T23:59:59.000Z

467

Wind Power Forecasting Error Distributions over Multiple Timescales (Presentation)  

SciTech Connect (OSTI)

This presentation presents some statistical analysis of wind power forecast errors and error distributions, with examples using ERCOT data.

Hodge, B. M.; Milligan, M.

2011-07-01T23:59:59.000Z

468

0 20 4010 Miles NOAA Harmful Algal Bloom Operational Forecast System  

E-Print Network [OSTI]

0 20 4010 Miles NOAA Harmful Algal Bloom Operational Forecast System Texas Forecast Region Maps to Sargent BCH NOAA Harmful Algal Bloom Operational Forecast System Texas Forecast Region Maps 0 5 102 Bloom Operational Forecast System Texas Forecast Region Maps 0 5 102.5 Miles West Bay #12;Aransas Bay

469

Open Automated Demand Response Communications in Demand Response for Wholesale Ancillary Services  

E-Print Network [OSTI]

in Demand Response for Wholesale Ancillary Services Silain Demand Response for Wholesale Ancillary Services Silasuccessfully in the wholesale non- spinning ancillary

Kiliccote, Sila

2010-01-01T23:59:59.000Z

470

PSO (FU 2101) Ensemble-forecasts for wind power  

E-Print Network [OSTI]

PSO (FU 2101) Ensemble-forecasts for wind power Wind Power Ensemble Forecasting Using Wind Speed the problems of (i) transforming the meteorological ensembles to wind power ensembles and, (ii) correcting) data. However, quite often the actual wind power production is outside the range of ensemble forecast

471

Using Bayesian Model Averaging to Calibrate Forecast Ensembles 1  

E-Print Network [OSTI]

Using Bayesian Model Averaging to Calibrate Forecast Ensembles 1 Adrian E. Raftery, Fadoua forecasting often exhibit a spread-skill relationship, but they tend to be underdispersive. This paper of PDFs centered around the individual (possibly bias-corrected) forecasts, where the weights are equal

Washington at Seattle, University of

472

Forecast Combinations of Computational Intelligence and Linear Models for the  

E-Print Network [OSTI]

Forecast Combinations of Computational Intelligence and Linear Models for the NN5 Time Series Forecasting competition Robert R. Andrawis Dept Computer Engineering Cairo University, Giza, Egypt robertrezk@eg.ibm.com November 6, 2010 Abstract In this work we introduce a forecasting model with which we participated

Atiya, Amir

473

GET your forecast at the click of a button.  

E-Print Network [OSTI]

GET your forecast at the click of a button. EXPLORE your local weather in detail. PLAN your days favourite locations; · Pan and zoom to any area in Australia; · Combine the latest weather and forecast current temperatures across Australia. MetEyeTM computer screen image displaying the weather forecast

Greenslade, Diana

474

Compatibility of Stand Basal Area Predictions Based on Forecast Combination  

E-Print Network [OSTI]

Compatibility of Stand Basal Area Predictions Based on Forecast Combination Xiongqing Zhang Carr.) in Beijing, forecast combination was used to adjust predicted stand basal areas from these three types of models. The forecast combination method combines information and disperses errors from

Cao, Quang V.

475

MOUNTAIN WEATHER PREDICTION: PHENOMENOLOGICAL CHALLENGES AND FORECAST METHODOLOGY  

E-Print Network [OSTI]

MOUNTAIN WEATHER PREDICTION: PHENOMENOLOGICAL CHALLENGES AND FORECAST METHODOLOGY Michael P. Meyers of the American Meteorological Society Mountain Weather and Forecasting Monograph Draft from Friday, May 21, 2010 of weather analysis and forecasting in complex terrain with special emphasis placed on the role of humans

Steenburgh, Jim

476

WP1: Targeted and informative forecast system design  

E-Print Network [OSTI]

WP1: Targeted and informative forecast system design Emma Suckling, Leonard A. Smith and David Stainforth EQUIP Meeting ­ August 2011 Edinburgh #12;Targeted and informative forecast system design Develop models to support decision making (1.4) #12;Targeted and informative forecast system design KEY QUESTIONS

Stevenson, Paul

477

Using Large Datasets to Forecast Sectoral Employment Rangan Gupta*  

E-Print Network [OSTI]

Using Large Datasets to Forecast Sectoral Employment Rangan Gupta* Department of Economics Bayesian and classical methods to forecast employment for eight sectors of the US economy. In addition-sample period and January 1990 to March 2009 as the out-of- sample horizon, we compare the forecast performance

Ahmad, Sajjad

478

Power load forecasting Organization: Huizhou Electric Power, P. R. China  

E-Print Network [OSTI]

Power load forecasting Organization: Huizhou Electric Power, P. R. China Presenter: Zhifeng Hao can be divided into load forecasting and electrical consumption predicting according to forecasting in generators macroeconomic control, power exchange plan and so on. And the prediction is from one day to seven

479

Accuracy of near real time updates in wind power forecasting  

E-Print Network [OSTI]

· advantage: no NWP data necessary ­ very actual shortest term forecasts possible · wind power inputAccuracy of near real time updates in wind power forecasting with regard to different weather October 2007 #12;EMS/ECAM 2007 ­ Nadja Saleck Outline · Study site · Wind power forecasting - method

Heinemann, Detlev

480

Forecasting wave height probabilities with numerical weather prediction models  

E-Print Network [OSTI]

Forecasting wave height probabilities with numerical weather prediction models Mark S. Roulstona; Numerical weather prediction 1. Introduction Wave forecasting is now an integral part of operational weather methods for generating such forecasts from numerical model output from the European Centre for Medium

Stevenson, Paul

Note: This page contains sample records for the topic "forecast future demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

CSUF ECONOMIC OUTLOOK AND FORECASTS MIDYEAR UPDATE -APRIL 2014  

E-Print Network [OSTI]

CSUF ECONOMIC OUTLOOK AND FORECASTS MIDYEAR UPDATE - APRIL 2014 Anil Puri, Ph.D. -- Director, Center for Economic Analysis and Forecasting -- Dean, Mihaylo College of Business and Economics Mira Farka, Ph.D. -- Co-Director, Center for Economic Analysis and Forecasting -- Associate Professor

de Lijser, Peter

482

A BAYESIAN MODEL COMMITTEE APPROACH TO FORECASTING GLOBAL SOLAR RADIATION  

E-Print Network [OSTI]

1 A BAYESIAN MODEL COMMITTEE APPROACH TO FORECASTING GLOBAL SOLAR RADIATION in the realm of solar radiation forecasting. In this work, two forecasting models: Autoregressive Moving. The very first results show an improvement brought by this approach. 1. INTRODUCTION Solar radiation

Boyer, Edmond

483

FORECASTING SOLAR RADIATION PRELIMINARY EVALUATION OF AN APPROACH  

E-Print Network [OSTI]

FORECASTING SOLAR RADIATION -- PRELIMINARY EVALUATION OF AN APPROACH BASED UPON THE NATIONAL, and undertake a preliminary evaluation of, a simple solar radiation forecast model using sky cover predictions forecasts is 0.05o in latitude and longitude. Solar Radiation model: The model presented in this paper

Perez, Richard R.

484

Industrial Equipment Demand and Duty Factors  

E-Print Network [OSTI]

Demand and duty factors have been measured for selected equipment (air compressors, electric furnaces, injection molding machines, centrifugal loads, and others) in industrial plants. Demand factors for heavily loaded air compressors were near 100...

Dooley, E. S.; Heffington, W. M.

485

Marketing & Driving Demand Collaborative - Social Media Tools...  

Energy Savers [EERE]

drivingdemandsocialmedia010611.pdf More Documents & Publications Marketing & Driving Demand: Social Media Tools & Strategies - January 16, 2011 Social Media for Natural...

486

Wireless Demand Response Controls for HVAC Systems  

E-Print Network [OSTI]

temperature-based demand response in buildings that havedemand response advantages of global zone temperature setup in buildings

Federspiel, Clifford

2010-01-01T23:59:59.000Z

487

Demand Responsive Lighting: A Scoping Study  

E-Print Network [OSTI]

demand-side management (DSM) framework presented in Table x provides three major areas for changing electric loads in buildings:

Rubinstein, Francis; Kiliccote, Sila

2007-01-01T23:59:59.000Z

488

Hawaii demand-side management resource assessment. Final report: DSM opportunity report  

SciTech Connect (OSTI)

The Hawaii Demand-Side Management Resource Assessment was the fourth of seven projects in the Hawaii Energy Strategy (HES) program. HES was designed by the Department of Business, Economic Development, and Tourism (DBEDT) to produce an integrated energy strategy for the State of Hawaii. The purpose of Project 4 was to develop a comprehensive assessment of Hawaii`s demand-side management (DSM) resources. To meet this objective, the project was divided into two phases. The first phase included development of a DSM technology database and the identification of Hawaii commercial building characteristics through on-site audits. These Phase 1 products were then used in Phase 2 to identify expected energy impacts from DSM measures in typical residential and commercial buildings in Hawaii. The building energy simulation model DOE-2.1E was utilized to identify the DSM energy impacts. More detailed information on the typical buildings and the DOE-2.1E modeling effort is available in Reference Volume 1, ``Building Prototype Analysis``. In addition to the DOE-2.1E analysis, estimates of residential and commercial sector gas and electric DSM potential for the four counties of Honolulu, Hawaii, Maui, and Kauai through 2014 were forecasted by the new DBEDT DSM Assessment Model. Results from DBEDTs energy forecasting model, ENERGY 2020, were linked with results from DOE-2.1E building energy simulation runs and estimates of DSM measure impacts, costs, lifetime, and anticipated market penetration rates in the DBEDT DSM Model. Through its algorithms, estimates of DSM potential for each forecast year were developed. Using the load shape information from the DOE-2.1E simulation runs, estimates of electric peak demand impacts were developed. 10 figs., 55 tabs.

NONE

1995-08-01T23:59:59.000Z

489

Forecasting the Market Penetration of Energy Conservation Technologies: The Decision Criteria for Choosing a Forecasting Model  

E-Print Network [OSTI]

capital requirements and research and development programs in the alum inum industry. : CONCLUSIONS Forecasting the use of conservation techndlo gies with a market penetration model provides la more accountable method of projecting aggrega...

Lang, K.

1982-01-01T23:59:59.000Z

490

Renewable Electricity Futures Study. Volume 1: Exploration of High-Penetration Renewable Electricity Futures  

SciTech Connect (OSTI)

The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).

Mai, T.; Wiser, R.; Sandor, D.; Brinkman, G.; Heath, G.; Denholm, P.; Hostick, D.J.; Darghouth, N.; Schlosser, A.; Strzepek, K.

2012-06-01T23:59:59.000Z

491

Response to changes in demand/supply  

E-Print Network [OSTI]

Response to changes in demand/supply through improved marketing 21.2 #12;#12;111 Impacts of changes log demand in 1995. The composites board mills operating in Korea took advantage of flexibility environment changes on the production mix, some economic indications, statistics of demand and supply of wood

492

Response to changes in demand/supply  

E-Print Network [OSTI]

Response to changes in demand/supply through improved marketing 21.2 http with the mill consuming 450 000 m3 , amounting to 30% of total plywood log demand in 1995. The composites board, statistics of demand and supply of wood, costs and competitiveness were analysed. The reactions

493

THE STATE OF DEMAND RESPONSE IN CALIFORNIA  

E-Print Network [OSTI]

THE STATE OF DEMAND RESPONSE IN CALIFORNIA Prepared For: California Energy in this report. #12; ABSTRACT By reducing system loads during criticalpeak times, demand response (DR) can.S. and internationally and lay out ideas that could help move California forward. KEY WORDS demand response, peak

494

THE STATE OF DEMAND RESPONSE IN CALIFORNIA  

E-Print Network [OSTI]

THE STATE OF DEMAND RESPONSE IN CALIFORNIA Prepared For: California Energy in this report. #12; ABSTRACT By reducing system loads during criticalpeak times, demand response can help reduce the threat of planned rotational outages. Demand response is also widely regarded as having

495

Demand Response Resources in Pacific Northwest  

E-Print Network [OSTI]

Demand Response Resources in Pacific Northwest Chuck Goldman Lawrence Berkeley National Laboratory cagoldman@lbl.gov Pacific Northwest Demand Response Project Portland OR May 2, 2007 #12;Overview · Typology Annual Reports ­ Journal articles/Technical reports #12;Demand Response Resources · Incentive

496

Barrier Immune Radio Communications for Demand Response  

E-Print Network [OSTI]

LBNL-2294E Barrier Immune Radio Communications for Demand Response F. Rubinstein, G. Ghatikar, J Ann Piette of Lawrence Berkeley National Laboratory's (LBNL) Demand Response Research Center (DRRC and Environment's (CIEE) Demand Response Emerging Technologies Development (DRETD) Program, under Work for Others

497

Demand Response and Ancillary Services September 2008  

E-Print Network [OSTI]

Demand Response and Ancillary Services September 2008 #12;© 2008 EnerNOC, Inc. All Rights Reserved programs The purpose of this presentation is to offer insight into the mechanics of demand response and industrial demand response resources across North America in both regulated and restructured markets As of 6

498

Demand Responsive Lighting: A Scoping Study  

E-Print Network [OSTI]

LBNL-62226 Demand Responsive Lighting: A Scoping Study F. Rubinstein, S. Kiliccote Energy Environmental Technologies Division January 2007 #12;LBNL-62226 Demand Responsive Lighting: A Scoping Study in this report was coordinated by the Demand Response Research Center and funded by the California Energy

499

Modeling Energy Demand Aggregators for Residential Consumers  

E-Print Network [OSTI]

Modeling Energy Demand Aggregators for Residential Consumers G. Di Bella, L. Giarr`e, M. Ippolito, A. Jean-Marie, G. Neglia and I. Tinnirello § January 2, 2014 Abstract Energy demand aggregators are new actors in the energy scenario: they gather a group of energy consumers and implement a demand

Paris-Sud XI, Université de

500

Demand Side Bidding. Final Report  

SciTech Connect (OSTI)

This document sets forth the final report for a financial assistance award for the National Association of Regulatory Utility Commissioners (NARUC) to enhance coordination between the building operators and power system operators in terms of demand-side responses to Location Based Marginal Pricing (LBMP). Potential benefits of this project include improved power system reliability, enhanced environmental quality, mitigation of high locational prices within congested areas, and the reduction of market barriers for demand-side market participants. NARUC, led by its Committee on Energy Resources and the Environment (ERE), actively works to promote the development and use of energy efficiency and clean distributive energy policies within the framework of a dynamic regulatory environment. Electric industry restructuring, energy shortages in California, and energy market transformation intensifies the need for reliable information and strategies regarding electric reliability policy and practice. NARUC promotes clean distributive generation and increased energy efficiency in the context of the energy sector restructuring process. NARUC, through ERE's Subcommittee on Energy Efficiency, strives to improve energy efficiency by creating working markets. Market transformation seeks opportunities where small amounts of investment can create sustainable markets for more efficient products, services, and design practices.

Spahn, Andrew

2003-12-31T23:59:59.000Z