Powered by Deep Web Technologies
Note: This page contains sample records for the topic "forecast future demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Expert Panel: Forecast Future Demand for Medical Isotopes  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Expert Panel: Expert Panel: Forecast Future Demand for Medical Isotopes March 1999 Expert Panel: Forecast Future Demand for Medical Isotopes September 25-26, 1998 Arlington, Virginia The Expert Panel ............................................................................................. Page 1 Charge To The Expert Panel........................................................................... Page 2 Executive Summary......................................................................................... Page 3 Introduction ...................................................................................................... Page 4 Rationale.......................................................................................................... Page 6 Economic Analysis...........................................................................................

2

Expert Panel: Forecast Future Demand for Medical Isotopes | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Expert Panel: Forecast Future Demand for Medical Isotopes Expert Panel: Forecast Future Demand for Medical Isotopes Expert Panel: Forecast Future Demand for Medical Isotopes The Expert Panel has concluded that the Department of Energy and National Institutes of Health must develop the capability to produce a diverse supply of radioisotopes for medical use in quantities sufficient to support research and clinical activities. Such a capability would prevent shortages of isotopes, reduce American dependence on foreign radionuclide sources and stimulate biomedical research. The expert panel recommends that the U.S. government build this capability around either a reactor, an accelerator or a combination of both technologies as long as isotopes for clinical and research applications can be supplied reliably, with diversity in adequate

3

ELECTRICITY DEMAND FORECAST COMPARISON REPORT  

E-Print Network (OSTI)

CALIFORNIA ENERGY COMMISSION ELECTRICITY DEMAND FORECAST COMPARISON REPORT STAFFREPORT June 2005 ..............................................................................3 Residential Forecast Comparison ..............................................................................................5 Nonresidential Forecast Comparisons

4

CONSULTANT REPORT DEMAND FORECAST EXPERT  

E-Print Network (OSTI)

CONSULTANT REPORT DEMAND FORECAST EXPERT PANEL INITIAL forecast, end-use demand modeling, econometric modeling, hybrid demand modeling, energyMahon, Carl Linvill 2012. Demand Forecast Expert Panel Initial Assessment. California Energy

5

Demand Forecast INTRODUCTION AND SUMMARY  

E-Print Network (OSTI)

Demand Forecast INTRODUCTION AND SUMMARY A 20-year forecast of electricity demand is a required of any forecast of electricity demand and developing ways to reduce the risk of planning errors that could arise from this and other uncertainties in the planning process. Electricity demand is forecast

6

ENERGY DEMAND FORECAST METHODS REPORT  

E-Print Network (OSTI)

CALIFORNIA ENERGY COMMISSION ENERGY DEMAND FORECAST METHODS REPORT Companion Report to the California Energy Demand 2006-2016 Staff Energy Demand Forecast Report STAFFREPORT June 2005 CEC-400 .......................................................................................................................................1-1 ENERGY DEMAND FORECASTING AT THE CALIFORNIA ENERGY COMMISSION: AN OVERVIEW

7

CALIFORNIA ENERGY DEMAND 20142024 REVISED FORECAST  

E-Print Network (OSTI)

CALIFORNIA ENERGY DEMAND 20142024 REVISED FORECAST Volume 2: Electricity Demand Robert P. Oglesby Executive Director #12;i ACKNOWLEDGEMENTS The demand forecast is the combined prepared the commercial sector forecast. Mehrzad Soltani Nia helped prepare the industrial forecast

8

CALIFORNIA ENERGY DEMAND 20122022 FINAL FORECAST  

E-Print Network (OSTI)

CALIFORNIA ENERGY DEMAND 20122022 FINAL FORECAST Volume 2: Electricity Demand.Oglesby Executive Director #12;i ACKNOWLEDGEMENTS The demand forecast is the combined product to the contributing authors listed previously, Mohsen Abrishami prepared the commercial sector forecast. Mehrzad

9

CALIFORNIA ENERGY DEMAND 20142024 FINAL FORECAST  

E-Print Network (OSTI)

CALIFORNIA ENERGY DEMAND 20142024 FINAL FORECAST Volume 2: Electricity Demand The demand forecast is the combined product of the hard work and expertise of numerous California Energy previously, Mohsen Abrishami prepared the commercial sector forecast. Mehrzad Soltani Nia helped prepare

10

A model for forecasting future air travel demand on the North Atlantic  

E-Print Network (OSTI)

Introduction: One of the key problems in the analysis and planning of any transport properties and facilities is estimating the future volume of traffic that may be expected to use these properties and facilities. Estimates ...

Taneja, Nawal K.

1971-01-01T23:59:59.000Z

11

Forecasting Uncertain Hotel Room Demand  

E-Print Network (OSTI)

Economic systems are characterized by increasing uncertainty in their dynamics. This increasing uncertainty is likely to incur bad decisions that can be costly in financial terms. This makes forecasting of uncertain economic variables an instrumental activity in any organization. This paper takes the hotel industry as a practical application of forecasting using the Holt-Winters method. The problem here is to forecast the uncertain demand for rooms at a hotel for each arrival day. Forecasting is part of hotel revenue management system whose objective is to maximize the revenue by making decisions regarding when to make rooms available for customers and at what price. The forecast approach discussed in this paper is based on quantitative models and does not incorporate management expertise. Even though, forecast results are found to be satisfactory for certain days, this is not the case for other arrival days. It is believed that human judgment is important when dealing with ...

Mihir Rajopadhye Mounir; Mounir Ben Ghaliay; Paul P. Wang; Timothy Baker; Craig V. Eister

2001-01-01T23:59:59.000Z

12

A web-based Hong Kong tourism demand forecasting system  

Science Conference Proceedings (OSTI)

Accurate predictions of future business activities are important for business decision-making. As a consequence, powerful and simple forecasting processes are urgently pursued by decision-makers. This study presents a tourism demand forecasting system ...

Haiyan Song; Zixuan Gao; Xinyan Zhang; Shanshan Lin

2012-04-01T23:59:59.000Z

13

CALIFORNIA ENERGY DEMAND 20122022 FINAL FORECAST  

E-Print Network (OSTI)

CALIFORNIA ENERGY DEMAND 20122022 FINAL FORECAST Volume 1: Statewide Electricity forecast is the combined product of the hard work and expertise of numerous staff members in the Demand the commercial sector forecast. Mehrzad Soltani Nia helped prepare the industrial forecast. Miguel Garcia

14

CALIFORNIA ENERGY DEMAND 2006-2016 STAFF ENERGY DEMAND FORECAST  

E-Print Network (OSTI)

CALIFORNIA ENERGY COMMISSION CALIFORNIA ENERGY DEMAND 2006-2016 STAFF ENERGY DEMAND FORECAST Demand Forecast report is the product of the efforts of many current and former California Energy Commission staff. Staff contributors to the current forecast are: Project Management and Technical Direction

15

CALIFORNIA ENERGY DEMAND 20142024 FINAL FORECAST  

E-Print Network (OSTI)

CALIFORNIA ENERGY DEMAND 2014­2024 FINAL FORECAST Volume 1: Statewide Electricity Demand in this report. #12;i ACKNOWLEDGEMENTS The demand forecast is the combined product of the hard work to the contributing authors listed previously, Mohsen Abrishami prepared the commercial sector forecast. Mehrzad

16

CALIFORNIA ENERGY DEMAND 20142024 REVISED FORECAST  

E-Print Network (OSTI)

CALIFORNIA ENERGY DEMAND 2014­2024 REVISED FORECAST Volume 1: Statewide Electricity Demand in this report. #12;i ACKNOWLEDGEMENTS The demand forecast is the combined product of the hard work listed previously, Mohsen Abrishami prepared the commercial sector forecast. Mehrzad Soltani Nia helped

17

REVISED CALIFORNIA ENERGY DEMAND FORECAST 20122022  

E-Print Network (OSTI)

REVISED CALIFORNIA ENERGY DEMAND FORECAST 20122022 Volume 2: Electricity Demand by Utility ACKNOWLEDGEMENTS The staff demand forecast is the combined product of the hard work and expertise of numerous, Mohsen Abrishami prepared the commercial sector forecast. Mehrzad Soltani Nia helped prepare

18

REVISED CALIFORNIA ENERGY DEMAND FORECAST 20122022  

E-Print Network (OSTI)

REVISED CALIFORNIA ENERGY DEMAND FORECAST 20122022 Volume 1: Statewide Electricity Demand in this report. #12;i ACKNOWLEDGEMENTS The staff demand forecast is the combined product of the hard work listed previously, Mohsen Abrishami prepared the commercial sector forecast. Mehrzad Soltani Nia helped

19

FINAL STAFF FORECAST OF 2008 PEAK DEMAND  

E-Print Network (OSTI)

CALIFORNIA ENERGY COMMISSION FINAL STAFF FORECAST OF 2008 PEAK DEMAND STAFFREPORT June 2007 CEC-200 of the information in this paper. #12;Abstract This document describes staff's final forecast of 2008 peak demand demand forecasts for the respective territories of the state's three investor-owned utilities (IOUs

20

FINAL DEMAND FORECAST FORMS AND INSTRUCTIONS FOR THE 2007  

E-Print Network (OSTI)

CALIFORNIA ENERGY COMMISSION FINAL DEMAND FORECAST FORMS AND INSTRUCTIONS FOR THE 2007 INTEGRATED Table of Contents General Instructions for Demand Forecast Submittals.............................................................................. 4 Protocols for Submitted Demand Forecasts

Note: This page contains sample records for the topic "forecast future demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Forecasting demand of commodities after natural disasters  

Science Conference Proceedings (OSTI)

Demand forecasting after natural disasters is especially important in emergency management. However, since the time series of commodities demand after natural disasters usually has a great deal of nonlinearity and irregularity, it has poor prediction ... Keywords: ARIMA, Demand forecasting, EMD, Emergency management, Natural disaster

Xiaoyan Xu; Yuqing Qi; Zhongsheng Hua

2010-06-01T23:59:59.000Z

22

Density Forecasting for Long-Term Peak Electricity Demand  

E-Print Network (OSTI)

Long-term electricity demand forecasting plays an important role in planning for future generation facilities and transmission augmentation. In a long-term context, planners must adopt a probabilistic view of potential peak demand levels. Therefore density forecasts (providing estimates of the full probability distributions of the possible future values of the demand) are more helpful than point forecasts, and are necessary for utilities to evaluate and hedge the financial risk accrued by demand variability and forecasting uncertainty. This paper proposes a new methodology to forecast the density of long-term peak electricity demand. Peak electricity demand in a given season is subject to a range of uncertainties, including underlying population growth, changing technology, economic conditions, prevailing weather conditions (and the timing of those conditions), as well as the general randomness inherent in individual usage. It is also subject to some known calendar effects due to the time of day, day of week, time of year, and public holidays. A comprehensive forecasting solution is described in this paper. First, semi-parametric additive models are used to estimate the relationships between demand and the driver variables, including temperatures, calendar effects and some demographic and economic variables. Then the demand distributions are forecasted by using a mixture of temperature simulation, assumed future economic scenarios, and residual bootstrapping. The temperature simulation is implemented through a new seasonal bootstrapping method with variable blocks. The proposed methodology has been used to forecast the probability distribution of annual and weekly peak electricity demand for South Australia since 2007. The performance of the methodology is evaluated by comparing the forecast results with the actual demand of the summer 20072008.

Rob J. Hyndman; Shu Fan

2009-01-01T23:59:59.000Z

23

Forecasting the demand for commercial telecommunications satellites  

Science Conference Proceedings (OSTI)

This paper summarizes the key elements of a forecast methodology for predicting demand for commercial satellite services and the resulting demand for satellite hardware and launches. The paper discusses the characterization of satellite services into more than a dozen applications (including emerging satellite Internet applications) used by Futron Corporation in its forecasts. The paper discusses the relationship between demand for satellite services and demand for satellite hardware

Carissa Bryce Christensen; Carie A. Mullins; Linda A. Williams

2001-01-01T23:59:59.000Z

24

CALIFORNIA ENERGY DEMAND 2008-2018 STAFF REVISED FORECAST  

E-Print Network (OSTI)

the entire forecast period, primarily because both weather-adjusted peak and electricity consumption were forecast. Keywords Electricity demand, electricity consumption, demand forecast, weather normalization, annual peak demand, natural gas demand, self-generation, conservation, California Solar Initiative. #12

25

Mathematical and computer modelling reports: Modeling and forecasting energy markets with the intermediate future forecasting system  

Science Conference Proceedings (OSTI)

This paper describes the Intermediate Future Forecasting System (IFFS), which is the model used to forecast integrated energy markets by the U.S. Energy Information Administration. The model contains representations of supply and demand for all of the ...

Frederic H. Murphy; John J. Conti; Susan H. Shaw; Reginald Sanders

1989-09-01T23:59:59.000Z

26

Forecasting Electricity Demand by Time Series Models  

Science Conference Proceedings (OSTI)

Electricity demand is one of the most important variables required for estimating the amount of additional capacity required to ensure a sufficient supply of energy. Demand and technological losses forecasts can be used to control the generation and distribution of electricity more efficiently. The aim of this paper is to utilize time series model

E. Stoimenova; K. Prodanova; R. Prodanova

2007-01-01T23:59:59.000Z

27

U.S. Regional Demand Forecasts Using NEMS and GIS  

E-Print Network (OSTI)

residential and commercial electricity demand forecasts. The23 Electricity Demandand commercial electricity demand per census division from

Cohen, Jesse A.; Edwards, Jennifer L.; Marnay, Chris

2005-01-01T23:59:59.000Z

28

Univariate Modeling and Forecasting of Monthly Energy Demand Time Series  

E-Print Network (OSTI)

in this report. #12;i ABSTRACT These electricity demand forms and instructions ask load-serving entities and Instructions for Electricity Demand Forecasts. California Energy Commission, Electricity Supply Analysis.................................................................................................................................7 Form 1 Historic and Forecast Electricity Demand

Abdel-Aal, Radwan E.

29

Sixth Northwest Conservation and Electric Power Plan Appendix C: Demand Forecast  

E-Print Network (OSTI)

Sixth Northwest Conservation and Electric Power Plan Appendix C: Demand Forecast Energy Demand................................................................................................................................. 1 Demand Forecast Methodology.................................................................................................. 3 New Demand Forecasting Model for the Sixth Plan

30

U.S. Regional Demand Forecasts Using NEMS and GIS  

SciTech Connect

The National Energy Modeling System (NEMS) is a multi-sector, integrated model of the U.S. energy system put out by the Department of Energy's Energy Information Administration. NEMS is used to produce the annual 20-year forecast of U.S. energy use aggregated to the nine-region census division level. The research objective was to disaggregate this regional energy forecast to the county level for select forecast years, for use in a more detailed and accurate regional analysis of energy usage across the U.S. The process of disaggregation using a geographic information system (GIS) was researched and a model was created utilizing available population forecasts and climate zone data. The model's primary purpose was to generate an energy demand forecast with greater spatial resolution than what is currently produced by NEMS, and to produce a flexible model that can be used repeatedly as an add-on to NEMS in which detailed analysis can be executed exogenously with results fed back into the NEMS data flow. The methods developed were then applied to the study data to obtain residential and commercial electricity demand forecasts. The model was subjected to comparative and statistical testing to assess predictive accuracy. Forecasts using this model were robust and accurate in slow-growing, temperate regions such as the Midwest and Mountain regions. Interestingly, however, the model performed with less accuracy in the Pacific and Northwest regions of the country where population growth was more active. In the future more refined methods will be necessary to improve the accuracy of these forecasts. The disaggregation method was written into a flexible tool within the ArcGIS environment which enables the user to output the results in five year intervals over the period 2000-2025. In addition, the outputs of this tool were used to develop a time-series simulation showing the temporal changes in electricity forecasts in terms of absolute, per capita, and density of demand.

Cohen, Jesse A.; Edwards, Jennifer L.; Marnay, Chris

2005-07-01T23:59:59.000Z

31

CALIFORNIA ENERGY DEMAND 2008-2018 STAFF REVISED FORECAST  

E-Print Network (OSTI)

CALIFORNIA ENERGY COMMISSION CALIFORNIA ENERGY DEMAND 2008-2018 STAFF REVISED FORECAST forecast is the combined product of the hard work and expertise of numerous staff members in the Demand prepared the residential sector forecast. Mohsen Abrishami prepared the commercial sector forecast. Lynn

32

PRELIMINARY CALIFORNIA ENERGY DEMAND FORECAST 2012-2022  

E-Print Network (OSTI)

PRELIMINARY CALIFORNIA ENERGY DEMAND FORECAST 2012-2022 AUGUST 2011 CEC-200-2011-011-SD CALIFORNIA or adequacy of the information in this report. #12;i ACKNOWLEDGEMENTS The staff demand forecast forecast. Bryan Alcorn and Mehrzad Soltani Nia prepared the industrial forecast. Miguel Garcia- Cerrutti

33

Revised Draft Forecast of Electricity Demand  

E-Print Network (OSTI)

. Forecasts of higher electricity and natural gas prices will fundamentally challenge energy intensive. These include the reduced growth in natural gas supplies in spite of significant drilling activity and #12;DRAFT the medium-high case, while paper and allied products has been below the medium-low. Future natural gas

34

Draft for Public Comment Appendix A. Demand Forecast  

E-Print Network (OSTI)

Draft for Public Comment A-1 Appendix A. Demand Forecast INTRODUCTION AND SUMMARY A 20-year forecast of electricity demand is a required component of the Council's Northwest Regional Conservation had a tradition of acknowledging the uncertainty of any forecast of electricity demand and developing

35

Sixth Northwest Conservation and Electric Power Plan Chapter 3: Electricity Demand Forecast  

E-Print Network (OSTI)

Sixth Northwest Conservation and Electric Power Plan Chapter 3: Electricity Demand Forecast Summary............................................................................................................ 2 Sixth Power Plan Demand Forecast................................................................................................ 4 Demand Forecast Range

36

Forecast of California car and truck fuel demand  

Science Conference Proceedings (OSTI)

The purpose of this work is to forecast likely future car and truck fuel demand in California in light of recent and possible additional improvements in vehicle efficiency. Forecasts of gasoline and diesel fuel demand are made based on projections of primary economic, demographic, and transportation technology variables. Projections of car and light truck stock and new sales are based on regression equations developed from historical data. Feasible future vehicle fuel economies are determined from technical improvements possible with existing technology. Several different cases of market-induced efficiency improvement are presented. Anticipated fuel economy improvements induced by federal mileage standards and rising fuel costs will cause lower future fuel demand, even though vehicle miles traveled will continue to increase both on a per capita and total basis. If only relatively low-cost fuel economy improvements are adopted after about 1985, when federal standards require no further improvements, fuel demand will decrease from the 1982 level of 11.7 billion gallons (gasoline equivalent) to 10.6 billion gallons in 2002, about a 9% reduction. Higher fuel economy levels, based on further refinements in existing technology, can produce an additional 7% reduction in fuel demand by 2002.

Stamets, L.

1983-01-01T23:59:59.000Z

37

CALIFORNIA ENERGY DEMAND 2008-2018 STAFF DRAFT FORECAST  

E-Print Network (OSTI)

Policy Report, over the entire forecast period, primarily because both weather-adjusted peak and commercial sectors. Keywords Electricity demand, electricity consumption, demand forecast, weather normalization, annual peak demand, natural gas demand, self-generation, California Solar Initiative. #12;ii #12

38

U.S. Regional Demand Forecasts Using NEMS and GIS  

SciTech Connect

The National Energy Modeling System (NEMS) is a multi-sector, integrated model of the U.S. energy system put out by the Department of Energy's Energy Information Administration. NEMS is used to produce the annual 20-year forecast of U.S. energy use aggregated to the nine-region census division level. The research objective was to disaggregate this regional energy forecast to the county level for select forecast years, for use in a more detailed and accurate regional analysis of energy usage across the U.S. The process of disaggregation using a geographic information system (GIS) was researched and a model was created utilizing available population forecasts and climate zone data. The model's primary purpose was to generate an energy demand forecast with greater spatial resolution than what is currently produced by NEMS, and to produce a flexible model that can be used repeatedly as an add-on to NEMS in which detailed analysis can be executed exogenously with results fed back into the NEMS data flow. The methods developed were then applied to the study data to obtain residential and commercial electricity demand forecasts. The model was subjected to comparative and statistical testing to assess predictive accuracy. Forecasts using this model were robust and accurate in slow-growing, temperate regions such as the Midwest and Mountain regions. Interestingly, however, the model performed with less accuracy in the Pacific and Northwest regions of the country where population growth was more active. In the future more refined methods will be necessary to improve the accuracy of these forecasts. The disaggregation method was written into a flexible tool within the ArcGIS environment which enables the user to output the results in five year intervals over the period 2000-2025. In addition, the outputs of this tool were used to develop a time-series simulation showing the temporal changes in electricity forecasts in terms of absolute, per capita, and density of demand.

Cohen, Jesse A.; Edwards, Jennifer L.; Marnay, Chris

2005-07-01T23:59:59.000Z

39

Reducing the demand forecast error due to the bullwhip effect in the computer processor industry  

E-Print Network (OSTI)

Intel's current demand-forecasting processes rely on customers' demand forecasts. Customers do not revise demand forecasts as demand decreases until the last minute. Intel's current demand models provide little guidance ...

Smith, Emily (Emily C.)

2010-01-01T23:59:59.000Z

40

Time Series Prediction Forecasting the Future and ...  

Science Conference Proceedings (OSTI)

Time Series Prediction Forecasting the Future and Understanding the Past Santa Fe Institute Proceedings on the Studies in the Sciences of ...

2012-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "forecast future demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Electric demand growth: An uncertain future for uranium  

SciTech Connect

Broadly conceived, the demand for electricity depends upon three sets of variables: (i) the growths of the many individual demands for energy services; (ii) the competitiveness of electrically driven technologies in meeting these demands; and (iii) the energy-conversion efficiencies of installed electrical technologies. The first set of variables establishes the size of the potential market; the second, the market penetration of electrical equipment; and the third, the quantity of electricity required to operate the equipment. All forecasts of electricity consumption ultimately depend upon inferred or assumed relationships to describe the future behavior of these variables. In this paper, the authors review recent forecasts of electricity demand growth. They also examine, in a qualitative way, some of the causes for the systematic, downward revisions of these forecasts over recent years. Graphical presentations of data are extensively used in the discussions. In an important sense, forecasting, whatever the number of variables, remains a matter of ''curve fitting.''

Asbury, J.G.

1985-01-01T23:59:59.000Z

42

Integrated Forecasting and Inventory Control for Seasonal Demand ...  

E-Print Network (OSTI)

We present a data-driven forecasting technique with integrated inventory ... ponents of inventory management: the random demand is first estimated using...

43

EIA forecasts increased oil demand, need for additional supply ...  

U.S. Energy Information Administration (EIA)

World oil demand is forecast to increase by 1.7 million barrels per day (bbl/d) ... Cooling demand in the Middle East is expected to rise to record levels this summer.

44

Forecasting future volatility from option prices, Working  

E-Print Network (OSTI)

Weisbach are gratefully acknowledged. I bear full responsibility for all remaining errors. Forecasting Future Volatility from Option Prices Evidence exists that option prices produce biased forecasts of future volatility across a wide variety of options markets. This paper presents two main results. First, approximately half of the forecasting bias in the S&P 500 index (SPX) options market is eliminated by constructing measures of realized volatility from five minute observations on SPX futures rather than from daily closing SPX levels. Second, much of the remaining forecasting bias is eliminated by employing an option pricing model that permits a non-zero market price of volatility risk. It is widely believed that option prices provide the best forecasts of the future volatility of the assets which underlie them. One reason for this belief is that option prices have the ability to impound all publicly available information including all information contained in the history of past prices about the future volatility of the underlying assets. A second related reason is that option pricing theory maintains that if an option prices fails to embody optimal forecasts of the future volatility of the underlying asset, a profitable trading strategy should be available whose implementation would push the option price to the level that reflects the best possible forecast of future volatility.

Allen M. Poteshman

2000-01-01T23:59:59.000Z

45

Draft Forecast of Electricity Demand for the 5th  

E-Print Network (OSTI)

products has been below the medium-low. Future natural gas prices are expected to be higher in this power's draft natural gas price forecasts. The medium natural gas price forecast for this plan in 2015 is about Council Document 2001-23, sited above. #12;DRAFT DRAFT DRAFT 11 Table 1 Natural Gas Price Forecasts

46

Using Customers' Reported Forecasts to Predict Future Sales  

E-Print Network (OSTI)

Using Customers' Reported Forecasts to Predict Future Sales Nihat Altintas , Alan Montgomery orders using forecasts provided by their customers. Our goal is to improve the supplier's operations through a better un- derstanding of the customers's forecast behavior. Unfortunately, customer forecasts

Murphy, Robert F.

47

Implementing Innovation in Planning Practice: The Case of Travel Demand Forecasting  

E-Print Network (OSTI)

Urban Travel Demand Forecasting Project. Institute ofTRB. Metropolitan Travel Forecasting: Current Practice andPurvis. Regional Travel Forecasting Model System for the San

Newmark, Gregory Louis

2011-01-01T23:59:59.000Z

48

Controlling inventory by improving demand forecasting within the alcoholic beverage industry : a case study.  

E-Print Network (OSTI)

??This thesis explores how combing statistical demand forecasting methods and causal forecasting methods with judgmental forecasts via a Sales and Operation Planning process can improve (more)

Deng, Xiaomu

2011-01-01T23:59:59.000Z

49

Forecasting the Demand of Woodfuels in Ghana - The Process Analysis...  

NLE Websites -- All DOE Office Websites (Extended Search)

conducted to cover various categories of households to determine their basic energy demand for cooking, which is used to make more reliable projections in the future demand of...

50

Forecasting electricity demand by hybrid machine learning model  

Science Conference Proceedings (OSTI)

This paper proposes a hybrid machine learning model for electricity demand forecasting, based on Bayesian Clustering by Dynamics (BCD) and Support Vector Machine (SVM). In the proposed model, a BCD classifier is firstly applied to cluster the input data ...

Shu Fan; Chengxiong Mao; Jiadong Zhang; Luonan Chen

2006-10-01T23:59:59.000Z

51

Future demand for electricity in the Nassau--Suffolk region  

DOE Green Energy (OSTI)

Brookhaven National Laboratory established a new technology for load forecasting for the Long Island Lighting Company and prepared an independent forecast of the demand for electricity in the LILCO area. The method includes: demand for electricity placed in a total energy perspective so that substitutions between electricity and other fuels can be examined; assessment of the impact of conservation, new technology, gas curtailment, and other factors upon demand for electricity; and construction of the probability distribution of the demand for electricity. A detailed analysis of changing levels of demand for electricity, and other fuels, associated with these new developments is founded upon a disaggregated end-use characterization of energy utilization, including space heat, lighting, process energy, etc., coupled to basic driving forces for future demand, namely: population, housing mix, and economic growth in the region. The range of future events covers conservation, heat pumps, solar systems, storage resistance heaters, electric vehicles, extension of electrified rail, total energy systems, and gas curtailment. Based upon cost and other elements of the competition between technologies, BNL assessed the likelihood of these future developments. An optimistic view toward conservation leads to ''low'' demand for electricity, whereas rapid development of new technologies suggests ''high'' demand. (MCW)

Carroll, T.W.; Palmedo, P.F.; Stern, R.

1977-12-01T23:59:59.000Z

52

Model documentation report: Short-term Integrated Forecasting System demand model 1985. [(STIFS)  

DOE Green Energy (OSTI)

The Short-Term Integrated Forecasting System (STIFS) Demand Model consists of a set of energy demand and price models that are used to forecast monthly demand and prices of various energy products up to eight quarters in the future. The STIFS demand model is based on monthly data (unless otherwise noted), but the forecast is published on a quarterly basis. All of the forecasts are presented at the national level, and no regional detail is available. The model discussed in this report is the April 1985 version of the STIFS demand model. The relationships described by this model include: the specification of retail energy prices as a function of input prices, seasonal factors, and other significant variables; and the specification of energy demand by product as a function of price, a measure of economic activity, and other appropriate variables. The STIFS demand model is actually a collection of 18 individual models representing the demand for each type of fuel. The individual fuel models are listed below: motor gasoline; nonutility distillate fuel oil, (a) diesel, (b) nondiesel; nonutility residual fuel oil; jet fuel, kerosene-type and naphtha-type; liquefied petroleum gases; petrochemical feedstocks and ethane; kerosene; road oil and asphalt; still gas; petroleum coke; miscellaneous products; coking coal; electric utility coal; retail and general industry coal; electricity generation; nonutility natural gas; and utility petroleum. The demand estimates produced by these models are used in the STIFS integrating model to produce a full energy balance of energy supply, demand, and stock change. These forecasts are published quarterly in the Outlook. Details of the major changes in the forecasting methodology and an evaluation of previous forecast errors are presented once a year in Volume 2 of the Outlook, the Methodology publication.

Not Available

1985-07-01T23:59:59.000Z

53

Consensus forecast of U. S. electricity supply and demand to the year 2000  

SciTech Connect

Recent forecasts of total electricity generating capacity and energy demand as well as for electricity produced from nuclear energy and hydroelectric power are presented in tables and graphs to the year 2000. A forecast of the distribution of type of fuel and energy source that will supply the future electricity demand is presented. Use of electricity by each major consuming sector is presented for 1975. Projected demands for electricity in the years 1985 and 2000, as allocated to consuming sectors, are derived and presented.

Lane, J.A.

1976-02-01T23:59:59.000Z

54

Long range forecast of power demands on the Baltimore Gas and Electric Company system. Volume 1  

SciTech Connect

The report presents the results of an econometric forecast of peak and electric power demands for the Baltimore Gas and Electric Company (BGandE) through the year 2003. The report describes the methodology, the results of the econometric estimations and associated summary statistics, the forecast assumptions, and the calculated forecasts of energy usage and peak demand. Separate models were estimated for summer and winter residential electricity usage in both Baltimore city and the non-city portion of the BGandE service area. Equations were also estimated for commercial energy usage, industrial usage, streetlighting, and for losses plus Company use. Non-econometric techniques were used to estimate future energy use by Bethlehem Steel Corporation's Sparrows Point plant in Baltimore County, Conrail, and the Baltimore Mass Transit Administration underground rail system. Models of peak demand for summer and winter were also estimated.

Estomin, S.L.; Kahal, M.I.

1985-09-01T23:59:59.000Z

55

Assessment of the possibility of forecasting future natural gas curtailments  

Science Conference Proceedings (OSTI)

This study provides a preliminary assessment of the potential for determining probabilities of future natural-gas-supply interruptions by combining long-range weather forecasts and natural-gas supply/demand projections. An illustrative example which measures the probability of occurrence of heating-season natural-gas curtailments for industrial users in the southeastern US is analyzed. Based on the information on existing long-range weather forecasting techniques and natural gas supply/demand projections enumerated above, especially the high uncertainties involved in weather forecasting and the unavailability of adequate, reliable natural-gas projections that take account of seasonal weather variations and uncertainties in the nation's energy-economic system, it must be concluded that there is little possibility, at the present time, of combining the two to yield useful, believable probabilities of heating-season gas curtailments in a form useful for corporate and government decision makers and planners. Possible remedial actions are suggested that might render such data more useful for the desired purpose in the future. The task may simply require the adequate incorporation of uncertainty and seasonal weather trends into modeling systems and the courage to report projected data, so that realistic natural gas supply/demand scenarios and the probabilities of their occurrence will be available to decision makers during a time when such information is greatly needed.

Lemont, S.

1980-01-01T23:59:59.000Z

56

United States energy supply and demand forecasts 1979-1995  

SciTech Connect

Forecasts of U.S. energy supply and demand by fuel type and economic sector, as well as historical background information, are presented. Discussion and results pertaining to the development of current and projected marginal energy costs, and their comparison with market prices, are also presented.

Walton, H.L.

1979-01-01T23:59:59.000Z

57

Optimal Updating of Forecasts for the Timing of Future Events  

Science Conference Proceedings (OSTI)

A major problem in forecasting is estimating the time of some future event. traditionally, forecasts are designed to minimize an error cost function that is evaluated once, possibly when the event occurs and forecast accuracy can be determined. However, ... Keywords: Air Transportation, Dynamic Programming Applications, Forecasting

Juhwen Hwang; Medini R. Singh; W. J. Hurley; Robert A. Shumsky

1998-03-01T23:59:59.000Z

58

Behavioral Aspects in Simulating the Future US Building Energy Demand  

E-Print Network (OSTI)

USA, and published in the Conference Proceedings Structure of SBEAM Floor-space forecast to 2050 Gross demandUSA, and published in the Conference Proceedings Structure of SBEAM Floor-space forecast to 2050 Gross demandUSA, and published in the Conference Proceedings Relative Importance Total off- site energy demand (

Stadler, Michael

2011-01-01T23:59:59.000Z

59

Forecasting electricity load demand: analysis of the 2001 rationing period  

E-Print Network (OSTI)

CEPEL e UENF. Abstract. This paper studies the electricity load demand behavior during the 2001 rationing period, which was implemented because of the Brazilian energetic crisis. The hourly data refers to a utility situated in the southeast of the country. We use the model proposed by Soares and Souza (2003), making use of generalized long memory to model the seasonal behavior of the load. The rationing period is shown to have imposed a structural break in the series, decreasing the load at about 20%. Even so, the forecast accuracy is decreased only marginally, and the forecasts rapidly readapt to the new situation. The forecast errors from this model also permit verifying the public response to pieces of information released regarding the crisis.

Leonardo Rocha Souza; Lacir Jorge Soares; Leonardo Rocha Souza; Epge Fundao; Getlio Vargas; Lacir Jorge Soares

2003-01-01T23:59:59.000Z

60

World Petroleum Supply/Demand Forecast - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

... surplus supply over demand for spring and summer quarters compared with some other forecasters such as Oil Market Intelligence, ...

Note: This page contains sample records for the topic "forecast future demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Consensus forecast of U. S. energy supply and demand to the year 2000  

DOE Green Energy (OSTI)

Methods used in forecasting energy supply and demand are described, and recent forecasts are reviewed briefly. Forecasts to the year 2000 are displayed in tables and graphs and are used to prepare consensus forecasts for each form of fuel and energy supply. Fuel demand and energy use by consuming sector are tabulated for 1972 and 1975 for the various fuel forms. The distribution of energy consumption by use sector, as projected for the years 1985 and 2000 in the ERDA-48 planning report (Scenario V), is normalized to match the consensus energy supply forecasts. The results are tabulated listing future demand for each fuel and energy form by each major energy-use category. Recent estimates of U.S. energy resources are also reviewed briefly and are presented in tables for each fuel and energy form. The outlook for fossil fuel resources to the year 2040, as developed by the Institute for Energy Analysis at the Oak Ridge Associated Universities, is also presented.

Lane, J.A.

1976-02-01T23:59:59.000Z

62

Univariate modeling and forecasting of monthly energy demand time series using abductive and neural networks  

Science Conference Proceedings (OSTI)

Neural networks have been widely used for short-term, and to a lesser degree medium and long-term, demand forecasting. In the majority of cases for the latter two applications, multivariate modeling was adopted, where the demand time series is related ... Keywords: Abductive networks, Energy demand, Medium-term load forecasting, Neural networks, Time series forecasting, Univariate time series analysis

R. E. Abdel-Aal

2008-05-01T23:59:59.000Z

63

Operational Forecaster Uncertainty Needs and Future Roles  

Science Conference Proceedings (OSTI)

Key results of a comprehensive survey of U.S. National Weather Service operational forecast managers concerning the assessment and communication of forecast uncertainty are presented and discussed. The survey results revealed that forecasters are ...

David R. Novak; David R. Bright; Michael J. Brennan

2008-12-01T23:59:59.000Z

64

Forecasts of intercity passenger demand and energy use through 2000  

SciTech Connect

The development of national travel demand and energy-use forecasts for automobile and common-carrier intercity travel through the year 2000. The forecasts are driven by the POINTS (Passenger Oriented Intercity Network Travel Simulation) model, a model direct-demand model which accounts for competition among modes and destinations. Developed and used to model SMSA-to-SMSA business and nonbusiness travel, POINTS is an improvement over earlier direct demand models because it includes an explicit representation of cities' relative accessibilities and a utility maximizing behavorial multimodal travel function. Within POINTS, pathbuilding algorithms are used to determine city-pair travel times and costs by mode, including intramodal transfer times. Other input data include projections of SMSA population, public and private sector employment, and hotel and other retail receipts. Outputs include forecasts of SMSA-to-SMSA person trips and person-miles of travel by mode. For the national forecasts, these are expanded to represent all intercity travel (trips greater than 100 miles, one way) for two fuel-price cases. Under both cases rising fuel prices, accompanied by substantial reductions in model-energy intensities, result in moderate growth in total intercity passenger travel. Total intercity passenger travel is predicted to grow at approximately one percent per year, slightly fster than population growth, while air travel grows almost twice as fast as population. The net effect of moderate travel growth and substantial reduction in model energy intensities is a reduction of approximately 50 percent in fuel consumption by the intercity passenger travel market.

Kaplan, M.P.; Vyas, A.D.; Millar, M.; Gur, Y.

1982-01-01T23:59:59.000Z

65

Transportation Energy: Supply, Demand and the Future  

E-Print Network (OSTI)

Transportation Energy: Supply, Demand and the Future http://www.uwm.edu/Dept/CUTS//2050/energy05.pdf Edward Beimborn Center for Urban Transportation Studies University of Wisconsin-Milwaukee Presentation to the District IV Conference Institute of Transportation Engineers June, 2005, updated September

Saldin, Dilano

66

Forecasting Electricity Demand on Short, Medium and Long Time Scales Using Neural Networks  

Science Conference Proceedings (OSTI)

This paper examines the application of artificial neural networks (ANNs) to the modelling and forecasting of electricity demand experienced by an electricity supplier. The data used in the application examples relates to the national electricity demand ... Keywords: BoxJenkins model, artificial neural networks, electrical load, electricity demand, load forecasting

J. V. Ringwood; D. Bofelli; F. T. Murray

2001-05-01T23:59:59.000Z

67

ANN-based residential water end-use demand forecasting model  

Science Conference Proceedings (OSTI)

Bottom-up urban water demand forecasting based on empirical data for individual water end uses or micro-components (e.g., toilet, shower, etc.) for different households of varying characteristics is undoubtedly superior to top-down estimates originating ... Keywords: Artificial neural network, Residential water demand forecasting, Water demand management, Water end use, Water micro-component

Christopher Bennett; Rodney A. Stewart; Cara D. Beal

2013-03-01T23:59:59.000Z

68

Transportation Energy Futures Series: Freight Transportation Demand: Energy-Efficient Scenarios for a Low-Carbon Future  

SciTech Connect

Freight transportation demand is projected to grow to 27.5 billion tons in 2040, and to nearly 30.2 billion tons in 2050. This report describes the current and future demand for freight transportation in terms of tons and ton-miles of commodities moved by truck, rail, water, pipeline, and air freight carriers. It outlines the economic, logistics, transportation, and policy and regulatory factors that shape freight demand, the trends and 2050 outlook for these factors, and their anticipated effect on freight demand. After describing federal policy actions that could influence future freight demand, the report then summarizes the capabilities of available analytical models for forecasting freight demand. This is one in a series of reports produced as a result of the Transportation Energy Futures project, a Department of Energy-sponsored multi-agency effort to pinpoint underexplored strategies for reducing GHGs and petroleum dependence related to transportation.

Grenzeback, L. R.; Brown, A.; Fischer, M. J.; Hutson, N.; Lamm, C. R.; Pei, Y. L.; Vimmerstedt, L.; Vyas, A. D.; Winebrake, J. J.

2013-03-01T23:59:59.000Z

69

Solar future: 1978. [Market forecast to 1992  

SciTech Connect

The growth in sales of solar heating equipment is discussed. Some forecasts are made for the continued market growth of collectors, pool systems, and photovoltaics. (MOW)

Butt, S.H.

1978-03-01T23:59:59.000Z

70

Survey and forecast of marketplace supply and demand for energy- efficient lighting products  

SciTech Connect

The rapid growth in demand for energy-efficient lighting products has led to supply shortages for certain products. To understand the near-term (1- to 5-year) market for energy-efficient lighting products, a selected set of utilities and lighting product manufacturers were surveyed in early 1991. Two major U. S. government programs, EPA's Green Lights and DOE's Federal Relighting Initiative, were also examined to assess their effect on product demand. Lighting product manufacturers predicted significant growth through 1995. Lamp manufacturers indicated that compact fluorescent lamp shipments tripled between 1988 and 1991, and predicted that shipments would again triple, rising from 25 million units in 1991 to 72 million units in 1995. Ballast manufacturers predicted that demand for power-factorcorrected ballasts (both magnetic and electronic) would grow from 59.4 million units in 1991 to 71.1 million units in 1995. Electronic ballasts were predicted to grow from 11% of ballast demand in 1991 to 40% in 1995. Manufacturers projected that electronic ballast supply shortages would continue until late 1992. Lamp and ballast producers indicated that they had difficulty in determining what additional supply requirements might result due to demand created by utility programs. Using forecasts from 27 surveyed utilities and assumptions regarding the growth of U. S. utility lighting DSM programs, low, median, and high forecasts were developed for utility expenditures for lighting incentives through 1994. The projected median figure for 1992 was $316 million, while for 1994, the projected median figure was $547 million. The allocation of incentive dollars to various products and the number of units needed to meet utility-stimulated demand were also projected. To provide a better connection between future supply and demand, a common database is needed that captures detailed DSM program information including incentive dollars and unit-volume mix by product type.

Gough, A. (Lighting Research Inst., New York, NY (United States)); Blevins, R. (Plexus Research, Inc., Donegal, PA (United States))

1992-12-01T23:59:59.000Z

71

Comparison of AEO 2010 Natural Gas Price Forecast to NYMEX Futures Prices  

E-Print Network (OSTI)

forecasts (or any other forecast, for that matter) in makingcase natural gas price forecast, but to also examine a wideAEO 2010 Natural Gas Price Forecast to NYMEX Futures Prices

Bolinger, Mark A.

2010-01-01T23:59:59.000Z

72

U.S. Regional Energy Demand Forecasts Using NEMS and GIS  

E-Print Network (OSTI)

LBNL-57955 U.S. Regional Energy Demand Forecasts Using NEMS and GIS Jesse A. Cohen, Jennifer L Efficiency and Renewable Energy, Office of Planning, Budget, and Analysis of the U.S. Department of Energy-57955 U.S. Regional Energy Demand Forecasts Using NEMS and GIS Prepared for the Office of Planning

73

U.S. Regional Demand Forecasts Using NEMS and GIS  

E-Print Network (OSTI)

Forecasts Using NEMS and GIS National Climatic Data Center.with Changing Boundaries." Use of GIS to Understand Socio-Forecasts Using NEMS and GIS Appendix A. Map Results Gallery

Cohen, Jesse A.; Edwards, Jennifer L.; Marnay, Chris

2005-01-01T23:59:59.000Z

74

Review/Verify Strategic Skills Needs/Forecasts/Future Mission...  

NLE Websites -- All DOE Office Websites (Extended Search)

ReviewVerify Strategic Skills NeedsForecastsFuture Mission Shifts Annual Lab Plan (1-10 yrs) Fermilab Strategic Agenda (2-5 yrs) Sector program Execution Plans (1-3...

75

Day-Ahead/Hour-Ahead Forecasting for Demand Trading: A Guidebook  

Science Conference Proceedings (OSTI)

Demand trading can be an effective hedge against wholesale power price spikes during times of constraint. However, it also can be a high-risk venture. Profitability depends on reliable demand forecasting. Short-term load forecasting (STLF) can minimize the risks of day-ahead purchasing by providing better predictions at the system level. Additionally, STLF can reduce hour-ahead spot market risks and directly support demand trading by providing more accurate assessments of incremental load reductions from...

2001-12-20T23:59:59.000Z

76

Day-Ahead/Hour-Ahead Forecasting for Demand Trading: A Guidebook  

Science Conference Proceedings (OSTI)

Download report 1006016 for FREE. Demand trading can be an effective hedge against wholesale power price spikes during times of constraint. However, it also can be a high-risk venture. Profitability depends on reliable demand forecasting. Short-term load forecasting (STLF) can minimize the risks of day-ahead purchasing by providing better predictions at the system level. Additionally, STLF can reduce hour-ahead spot market risks and directly support demand trading by providing more accurate assessments o...

2001-12-20T23:59:59.000Z

77

Integrated Forecasting and Inventory Control for Seasonal Demand  

E-Print Network (OSTI)

Mar 14, 2008 ... Abstract: We present a data-driven forecasting technique with integrated inventory control for seasonal data and compare it to the traditional...

78

A. G. A. six-month gas demand forecast July-December, 1984  

Science Conference Proceedings (OSTI)

Estimates of the total gas demand for 1984 (including pipeline fuel) range from 18,226 to 19,557 trillion (TBtu). The second half of the year shows a slower recovery rate as economic recovery moderates. The forecast show both actual and projected demand by month, and compares it with 1983 demand and by market sector. 6 tables.

Not Available

1984-01-01T23:59:59.000Z

79

A Demand Forecasting System for Clean-Fuel Vehicles  

E-Print Network (OSTI)

potential demand for electric cars. Journal of Econometrics,car by multi-vehicle households and the demand for electricelectric) vehicles, beginning with 2 percent of annual car

Brownstone, David; Bunch, David S.; Golob, Thomas F.

1994-01-01T23:59:59.000Z

80

Assembling the crystal ball : using demand signal repository to forecast demand  

E-Print Network (OSTI)

Improving forecast accuracy has positive effects on supply chain performance. Forecast accuracy can reduce inventory levels, increase customer service levels and responsiveness, or a combination of the two. However, the ...

Rashad, Ahmed (Ahmed Fathy Mustafa Rashad Abdelaal)

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "forecast future demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

U.S. Regional Demand Forecasts Using NEMS and GIS  

E-Print Network (OSTI)

h. Pacific i. MidAtlantic 4. Climate Zone shapefile a.must have a field with climate zone IDs as an integer in apopulation forecasts and climate zone data. The models

Cohen, Jesse A.; Edwards, Jennifer L.; Marnay, Chris

2005-01-01T23:59:59.000Z

82

Comparison of AEO 2009 Natural Gas Price Forecast to NYMEX Futures Prices  

E-Print Network (OSTI)

AEO 2009 Natural Gas Price Forecast to NYMEX Futures Priceslong-term natural gas price forecasts from the AEO series toAEO reference-case gas price forecast compares to the NYMEX

Bolinger, Mark

2009-01-01T23:59:59.000Z

83

Comparison of AEO 2008 Natural Gas Price Forecast to NYMEX Futures Prices  

E-Print Network (OSTI)

longer-term market-based forecasts that can be used to more-AEO 2008 Natural Gas Price Forecast to NYMEX Futures Priceslong-term natural gas price forecasts from the AEO series to

Bolinger, Mark

2008-01-01T23:59:59.000Z

84

Comparison of AEO 2006 Natural Gas Price Forecast to NYMEX Futures Prices  

E-Print Network (OSTI)

a portion of the gas price forecast through 2010 can beAEO 2006 reference case forecast to conduct a 25-yearAEO 2006 Natural Gas Price Forecast to NYMEX Futures Prices

Bolinger, Mark; Wiser, Ryan

2005-01-01T23:59:59.000Z

85

Comparison of AEO 2007 Natural Gas Price Forecast to NYMEX Futures Prices  

E-Print Network (OSTI)

9: Two Alternative Price Forecasts (denoted by open circlesAEO 2007 Natural Gas Price Forecast to NYMEX Futures Priceslong-term natural gas price forecasts from the AEO series to

Bolinger, Mark; Wiser, Ryan

2006-01-01T23:59:59.000Z

86

Comparing Price Forecast Accuracy of Natural Gas Models and Futures Markets  

E-Print Network (OSTI)

Market and STEO Error Forecast Error from 1998 to 2003 (2 Futures Market and STEO Error Forecast Error from 1998to 2003 (Months 13- Forecast from 1998 to 2003 (Months 1-12)

Wong-Parodi, Gabrielle; Dale, Larry; Lekov, Alex

2005-01-01T23:59:59.000Z

87

Comparison of AEO 2005 natural gas price forecast to NYMEX futures prices  

E-Print Network (OSTI)

to the EIAs natural gas price forecasts in AEO 2004 and AEOon the AEO 2005 natural gas price forecasts will likely onceof AEO 2005 Natural Gas Price Forecast to NYMEX Futures

Bolinger, Mark; Wiser, Ryan

2004-01-01T23:59:59.000Z

88

A System Dynamics Approach for Developing Zone Water Demand Forecasting: A Case Study of Linkong Area  

Science Conference Proceedings (OSTI)

System dynamics (SD) approach for developing zone water demand forecasting was developed based on the analysis of its water resources system which has multi-feedback and nonlinear interactions amongst system elements. As an example, Tianjin Binhai Linkong ... Keywords: developing zone, system dynamics, water resources demand, Linkong

Xuehua Zhang; Hongwei Zhang; Xinhua Zhao

2008-12-01T23:59:59.000Z

89

September 2000Forecasting Future Variance from Option Prices  

E-Print Network (OSTI)

Although it is widely believed that option prices provide the best possible forecasts of the future variance of the assets which underlie them, a large body of empirical evidence concludes that option prices consistently yield biased forecasts of future variance. The prevailing interpretation of these findings is that option investors may be forming unbiased forecasts of the future variance of underlying assets but that these unbiased forecasts fail to get impounded into option prices because of either (1) the difficulty of carrying out the necessary arbitrage strategies that would force the prices to their proper levels, or (2) the availability to market makers of lucrative alternative strategies in which they simply profit from the large bid-ask spreads in the options markets. This interpretation has significant consequences for nearly the entire range of option pricing research, since it implies that non-continuous trading, bid-ask spreads, and other market imperfections substantially influence option prices. This implication is important, both because incorporating these types of market imperfections into option pricing models is much more difficult than, for example, altering the dynamics of the underlying asset and also because it suggests that researchers cannot learn about option investor expectations by filtering option

Allen M. Poteshman; Mark R. Manfredo; Allen M. Poteshman; Allen M. Poteshman; Champaign Helpful; Jegadeesh Narasimhan

2000-01-01T23:59:59.000Z

90

Residential Electricity Demand in China -- Can Efficiency Reverse the Growth?  

E-Print Network (OSTI)

with Residential Electricity Demand in India's Future - How2008). The Boom of Electricity Demand in the residential2005). Forecasting Electricity Demand in Developing

Letschert, Virginie

2010-01-01T23:59:59.000Z

91

Electrical ship demand modeling for future generation warships  

E-Print Network (OSTI)

The design of future warships will require increased reliance on accurate prediction of electrical demand as the shipboard consumption continues to rise. Current US Navy policy, codified in design standards, dictates methods ...

Sievenpiper, Bartholomew J. (Bartholomew Jay)

2013-01-01T23:59:59.000Z

92

Patterns of crude demand: Future patterns of demand for crude oil as a func-  

E-Print Network (OSTI)

from the perspective of `peak oil', that is from the pers- pective of the supply of crude, and price#12;2 #12;Patterns of crude demand: Future patterns of demand for crude oil as a func- tion is given on the problems within the value chain, with an explanation of the reasons why the price of oil

Langendoen, Koen

93

Supply/Demand Forecasts Begin to Show Stock Rebuilding  

Gasoline and Diesel Fuel Update (EIA)

9 9 Notes: During 1999, we saw stock draws during the summer months, when we normally see stock builds, and very large stock draws during the winter of 1999/2000. Normally, crude oil production exceeds product demand in the spring and summer, and stocks build. These stocks are subsequently drawn down during the fourth and first quarters (dark blue areas). When the market is in balance, the stock builds equal the draws. During 2000, stocks have gradually built, but following the large stock draws of 1999, inventories needed to have been built more to get back to normal levels. As we look ahead using EIA's base case assumptions for OPEC production, non-OPEC production, and demand, we expect a more seasonal pattern for the next 3 quarters. But since we are beginning the year with

94

Specification, estimation, and forecasts of industrial demand and price of electricity  

Science Conference Proceedings (OSTI)

This paper discusses the specification of electricity-demand and price equations for manufacturing industries and presents empirical results based on the data for 16 Standard Industrial Classification (SIC) three-digit industries from 1959 to 1976. Performances of estimated equations are evaluated by sample-period simulation tests. The estimated coefficients are then used to forecast electricity demand by industry. Results show that most of the estimated coefficients have expected signs and are statistically significant. The estimated equations perform well in terms of sample-period simulation tests, registering small mean absolute percentage errors and mean square percentage errors for most of the industries studied. Forecasted results indicate that total electricity demand by manufacturing industries would grow at an average annual rate of 3.53% according to the baseline forecast, 2.39% in the high-price scenario, and 4.76% in the low-price scenario. The forecasted growth rates vary substantially among industries. The results also indicate that the price of electricity would continue to grow at a faster rate than the general price level in the forecasted period 1977 to 1990. 19 references, 6 tables.

Chang, H.S. (Univ. of Tennessee, Knoxville); Chern, W.S.

1981-01-01T23:59:59.000Z

95

Comparison of AEO 2005 natural gas price forecast to NYMEX futures prices  

E-Print Network (OSTI)

AEO 2005 reference case oil price forecast and NYMEX oi lthan the reference case oil price forecast for that year. Inoil futures case where oil prices are based on the NYMEX

Bolinger, Mark; Wiser, Ryan

2004-01-01T23:59:59.000Z

96

Comparison of AEO 2006 Natural Gas Price Forecast to NYMEX Futures Prices  

E-Print Network (OSTI)

this hybrid NYMEX-EIA gas price projection still does notonly a portion of the gas price forecast through 2010 of AEO 2006 Natural Gas Price Forecast to NYMEX Futures

Bolinger, Mark; Wiser, Ryan

2005-01-01T23:59:59.000Z

97

Comparison of AEO 2008 Natural Gas Price Forecast to NYMEX Futures Prices  

E-Print Network (OSTI)

late January 2008, extend its natural gas futures strip anComparison of AEO 2008 Natural Gas Price Forecast to NYMEXs reference-case long-term natural gas price forecasts from

Bolinger, Mark

2008-01-01T23:59:59.000Z

98

Comparison of AEO 2007 Natural Gas Price Forecast to NYMEX Futures Prices  

E-Print Network (OSTI)

Figure 9: Two Alternative Price Forecasts (denoted by openComparison of AEO 2007 Natural Gas Price Forecast toNYMEX Futures Prices Date: December 6, 2006 Introduction On

Bolinger, Mark; Wiser, Ryan

2006-01-01T23:59:59.000Z

99

Forecasting the Bayes factor of a future observation  

E-Print Network (OSTI)

I present a new procedure to forecast the Bayes factor of a future observation by computing the Predictive Posterior Odds Distribution (PPOD). This can assess the power of future experiments to answer model selection questions and the probability of the outcome, and can be helpful in the context of experiment design. As an illustration, I consider a central quantity for our understanding of the cosmological concordance model, namely the scalar spectral index of primordial perturbations, n_S. I show that the Planck satellite has over 90% probability of gathering strong evidence against n_S = 1, thus conclusively disproving a scale-invariant spectrum. This result is robust with respect to a wide range of choices for the prior on n_S.

Roberto Trotta

2007-03-05T23:59:59.000Z

100

Comparing Price Forecast Accuracy of Natural Gas Models and Futures Markets  

E-Print Network (OSTI)

against the risk of energy price fluctuations. In theory,The poor track record of energy price forecasting models hasof information about future energy prices, including most

Wong-Parodi, Gabrielle; Dale, Larry; Lekov, Alex

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "forecast future demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Comparison of AEO 2009 Natural Gas Price Forecast to NYMEX Futures Prices  

E-Print Network (OSTI)

range of different plausible price projections, using eitherthat renewables can provide price certainty over even longerof AEO 2009 Natural Gas Price Forecast to NYMEX Futures

Bolinger, Mark

2009-01-01T23:59:59.000Z

102

Taiwanese 3G mobile phone demand forecasting by SVR with hybrid evolutionary algorithms  

Science Conference Proceedings (OSTI)

Taiwan is one of the countries with higher mobile phone penetration rate in the world, along with the increasing maturity of 3G relevant products, the establishments of base stations, and updating regulations of 3G mobile phones, 3G mobile phones are ... Keywords: Autoregressive integrated moving average (ARIMA), Demand forecasting, General regression neural networks (GRNN), Genetic algorithm-simulated annealing (GA-SA), Support vector regression (SVR), Third generation (3G) mobile phone

Wei-Chiang Hong; Yucheng Dong; Li-Yueh Chen; Chien-Yuan Lai

2010-06-01T23:59:59.000Z

103

Analysis of PG&E`s residential end-use metered data to improve electricity demand forecasts -- final report  

SciTech Connect

This report summarizes findings from a unique project to improve the end-use electricity load shape and peak demand forecasts made by the Pacific Gas and Electric Company (PG&E) and the California Energy Commission (CEC). First, the direct incorporation of end-use metered data into electricity demand forecasting models is a new approach that has only been made possible by recent end-use metering projects. Second, and perhaps more importantly, the joint-sponsorship of this analysis has led to the development of consistent sets of forecasting model inputs. That is, the ability to use a common data base and similar data treatment conventions for some of the forecasting inputs frees forecasters to concentrate on those differences (between their competing forecasts) that stem from real differences of opinion, rather than differences that can be readily resolved with better data. The focus of the analysis is residential space cooling, which represents a large and growing demand in the PG&E service territory. Using five years of end-use metered, central air conditioner data collected by PG&E from over 300 residences, we developed consistent sets of new inputs for both PG&E`s and CEC`s end-use load shape forecasting models. We compared the performance of the new inputs both to the inputs previously used by PG&E and CEC, and to a second set of new inputs developed to take advantage of a recently added modeling option to the forecasting model. The testing criteria included ability to forecast total daily energy use, daily peak demand, and demand at 4 P.M. (the most frequent hour of PG&E`s system peak demand). We also tested the new inputs with the weather data used by PG&E and CEC in preparing their forecasts.

Eto, J.H.; Moezzi, M.M.

1993-12-01T23:59:59.000Z

104

An adaptive intelligent algorithm for forecasting long term gasoline demand estimation: The cases of USA, Canada, Japan, Kuwait and Iran  

Science Conference Proceedings (OSTI)

This study presents an adaptive intelligent algorithm for forecasting gasoline demand based of artificial neural network (ANN), conventional regression and design of experiment (DOE). To show the superiority and applicability of the proposed algorithm ... Keywords: Artificial neural network, Design of experiment, Forecasting, Gasoline consumption, Multi-Layer Perceptron, Regression

A. Azadeh; R. Arab; S. Behfard

2010-12-01T23:59:59.000Z

105

Forecasting overview  

E-Print Network (OSTI)

Forecasting is required in many situations: deciding whether to build another power generation plant in the next five years requires forecasts of future demand; scheduling staff in a call centre next week requires forecasts of call volume; stocking an inventory requires forecasts of stock requirements. Forecasts can be required several years in advance (for the case of capital investments), or only a few minutes beforehand (for telecommunication routing). Whatever the circumstances or time horizons involved, forecasting is an important aid in effective and efficient planning. Some things are easier to forecast than others. The time of the sunrise tomorrow morning can be forecast very precisely. On the other hand, currency exchange rates are very difficult to forecast with any accuracy. The predictability of an event or a quantity depends on how well we understand the factors that contribute to it, and how much unexplained variability is involved. Forecasting situations vary widely in their time horizons, factors determining actual outcomes, types of data patterns, and many other aspects. Forecasting methods can be very simple such as using the most recent observation as a forecast (which is called the nave method), or highly complex such as neural nets and econometric systems of simultaneous equations. The

Rob J Hyndman

2009-01-01T23:59:59.000Z

106

Oxygenate Supply/Demand Balances in the Short-Term Integrated Forecasting Model (Released in the STEO March 1998)  

Reports and Publications (EIA)

The blending of oxygenates, such as fuel ethanol and methyl tertiary butyl ether (MTBE), into motor gasoline has increased dramatically in the last few years because of the oxygenated and reformulated gasoline programs. Because of the significant role oxygenates now have in petroleum product markets, the Short-Term Integrated Forecasting System (STIFS) was revised to include supply and demand balances for fuel ethanol and MTBE. The STIFS model is used for producing forecasts in the Short-Term Energy Outlook. A review of the historical data sources and forecasting methodology for oxygenate production, imports, inventories, and demand is presented in this report.

Information Center

1998-03-01T23:59:59.000Z

107

Energy forecasting: the troubled past of looking the future  

SciTech Connect

Energy forecasts have hardly been distinguished by their accuracy. Why forecasts go awry, and the impact these prominent tools have, is explored. A brief review of the record is given. Because of their allure, their popularity in he media, and their usefulness as tools in political battles, forecasts have played a significant role so far. The danger is that they represent and enhance a fix 'em up, tinkering approach, to the detriment of more efficient free-market policies.

Kutler, E.

1986-01-01T23:59:59.000Z

108

Future world oil prices: modeling methodologies and summary of recent forecasts  

SciTech Connect

This paper has three main objectives. First, the various methodologies that have been developed to explain historical oil price changes and forecast future price trends are reviewed and summarized. Second, the paper summarizes recent world oil price forecasts, and, then possible, discusses the methodologies used in formulating those forecasts. Third, utilizing conclusions from the reviews of the modeling methodologies and the recent price forecasts, in combination with an assessment of recent and projected oil market trends, oil price projections are given for the time period 1987 to 2022. The paper argues that modeling methodologies have undergone significant evolution during the past decade as modelers increasingly recognize the complex and constantly changing structure of the world oil market. Unfortunately, at this point in time a consensus about the appropriate methodology to use in formulating oil price forecasts is yet to be reached. There is, however, a general movement toward the opinion that both economic and political factors should be considered when making price projections. Likewise, there is no consensus about future oil price trends. Forecasts differ widely. However, in general, forecasts have been adjusted downwardly in recent years. Further, an overall assessment of the forecasts and recent oil market trends suggests that oil prices will remain constant in real terms for the remainder of the 1980s. Real oil prices are expected to increase by between 2 and 3% during the 1990s and beyond. Forecasters are quick to point out, however, that all forecasts are subject to significant uncertainty. 69 references, 3 figures, 10 tables.

Curlee, T.R.

1985-04-01T23:59:59.000Z

109

A Hybrid ARCH-M and BP Neural Network Model For GSCI Futures Price Forecasting  

Science Conference Proceedings (OSTI)

As a versatile investment tool in energy markets for speculators and hedgers, the Goldman Sachs Commodity Index (GSCI) futures are quite well known. Therefore, this paper proposes a hybrid model incorporating ARCH family models and ANN model to forecast ... Keywords: ANN, ARCH-M, Commodity Index, Forecasting, GSCI

Wen Bo; Wang Shouyang; K. K. Lai

2007-05-01T23:59:59.000Z

110

Behavioral Aspects in Simulating the Future US Building Energy Demand  

E-Print Network (OSTI)

off- site energy demand (2030) 20% decrease to parameter 20%off-site energy demand (2030) 20% decrease to parameter 20%off-site energy demand (2030) 20% decrease to parameter 20%

Stadler, Michael

2011-01-01T23:59:59.000Z

111

Comparing Price Forecast Accuracy of Natural Gas Models and Futures Markets  

E-Print Network (OSTI)

index.html. Appendix A.1 Natural Gas Price Data for FuturesError STEO Error A.1 Natural Gas Price Data for Futuresof forecasts for natural gas prices as reported by the

Wong-Parodi, Gabrielle; Dale, Larry; Lekov, Alex

2005-01-01T23:59:59.000Z

112

An Assessment of Future Demands for and Benefits of Public Transit Services in Tennessee  

SciTech Connect

This report documents results from a study carried out by Oak Ridge National Laboratory and the University of Tennessee at Knoxville for the Office of Public Transportation, Tennessee Department of Transportation. The study team was tasked with developing a process and a supporting methodology for estimating the benefits accruing to the State from the operation of state supported public transit services. The team was also tasked with developing forecasts of the future demands for these State supported transit services at five year intervals through the year 2020, broken down where possible to the local transit system level. Separate ridership benefits and forecasts were also requested for the State's urban and rural transit operations. Tennessee's public transit systems are subsidized to a degree by taxpayers. It is therefore in the public interest that assessments of the benefits of such systems be carried out at intervals, to determine how they are contributing to the well-being of the state's population. For some population groups within the State of Tennessee these transit services have become essential as a means of gaining access to workplaces and job training centers, to educational and health care facilities, as well as to shops, social functions and recreational sites.

Southworth, F.

2003-06-10T23:59:59.000Z

113

An Assessment of Future Demands for and Benefits of Public Transit Srevices in Tennessee  

SciTech Connect

This report documents results from a study carried out by Oak Ridge National Laboratory and the University of Tennessee at Knoxville for the Office of Public Transportation, Tennessee Department of Transportation. The study team was tasked with developing a process and a supporting methodology for estimating the benefits accruing to the State from the operation of state supported public transit services. The team was also tasked with developing forecasts of the future demands for these State supported transit services at five year intervals through the year 2020, broken down where possible to the local transit system level. Separate ridership benefits and forecasts were also requested for the State's urban and rural transit operations. Tennessee's public transit systems are subsidized to a degree by taxpayers. It is therefore in the public interest that assessments of the benefits of such systems be carried out at intervals, to determine how they are contributing to the well-being of the state's population. For some population groups within the State of Tennessee these transit services have become essential as a means of gaining access to workplaces and job training centers, to educational and health care facilities, as well as to shops, social functions and recreational sites.

Southworth, F.

2004-04-29T23:59:59.000Z

114

An Assessment of Future Demands for and Benefits of Public Transit Services in Tennessee  

SciTech Connect

This report documents results from a study carried out by Oak Ridge National Laboratory and the University of Tennessee at Knoxville for the Office of Public Transportation, Tennessee Department of Transportation. The study team was tasked with developing a process and a supporting methodology for estimating the benefits accruing to the State from the operation of state supported public transit services. The team was also tasked with developing forecasts of the future demands for these State supported transit services at five year intervals through the year 2020, broken down where possible to the local transit system level. Separate ridership benefits and forecasts were also requested for the State's urban and rural transit operations. Tennessee's public transit systems are subsidized to a degree by taxpayers. It is therefore in the public interest that assessments of the benefits of such systems be carried out at intervals, to determine how they are contributing to the well-being of the state's population. For some population groups within the State of Tennessee these transit services have become essential as a means of gaining access to workplaces and job training centers, to educational and health care facilities, as well as to shops, social functions and recreational sites.

Southworth, F.

2003-06-10T23:59:59.000Z

115

An Assessment of Future Demands for and Benefits of Public Transit Srevices in Tennessee  

SciTech Connect

This report documents results from a study carried out by Oak Ridge National Laboratory and the University of Tennessee at Knoxville for the Office of Public Transportation, Tennessee Department of Transportation. The study team was tasked with developing a process and a supporting methodology for estimating the benefits accruing to the State from the operation of state supported public transit services. The team was also tasked with developing forecasts of the future demands for these State supported transit services at five year intervals through the year 2020, broken down where possible to the local transit system level. Separate ridership benefits and forecasts were also requested for the State's urban and rural transit operations. Tennessee's public transit systems are subsidized to a degree by taxpayers. It is therefore in the public interest that assessments of the benefits of such systems be carried out at intervals, to determine how they are contributing to the well-being of the state's population. For some population groups within the State of Tennessee these transit services have become essential as a means of gaining access to workplaces and job training centers, to educational and health care facilities, as well as to shops, social functions and recreational sites.

Southworth, F.

2004-04-29T23:59:59.000Z

116

On The MSC Forecasters Forums and the Future Role of the Human Forecaster  

Science Conference Proceedings (OSTI)

The Meteorological Service of Canada held a series of three Forecasters Forum meetings between 2003 and 2005 to seek input from the meteorological community on the best ways to implement a restructuring strategy and to develop a common vision ...

David M. L. Sills

2009-05-01T23:59:59.000Z

117

Irrigation water demand forecasting: a data pre-processing and data mining approach based on spatio-temporal data  

Science Conference Proceedings (OSTI)

World population is increasing at a fast rate resulting in huge pressure on limited water resources. Just about 3% of the earth's total water is freshwater that can be used for various applications including irrigation. Therefore, an efficient irrigation ... Keywords: data mining, data pre-processing, decision support system, decision tree, demand forecasting, water management

Mahmood A. Khan, Zahidul Islam, Mohsin Hafeez

2011-12-01T23:59:59.000Z

118

Integration of Variable Generation Forecasting into System Operations: Current Practices and Future Requirements  

Science Conference Proceedings (OSTI)

This project update provides the first output of the EPRI Bulk Renewable Integration Program Project P173-010, Integration of Variable Generation Forecasts into System Operations. This project, begun in 2013, aims to improve existing methods utilities/independent system operators (ISOs) use to integrate forecasts into system operations and develop new methods. This years goal was to identify current practices and future requirements. This was done by interacting with a wide ...

2013-12-11T23:59:59.000Z

119

Forecasting 65+ travel : an integration of cohort analysis and travel demand modeling  

E-Print Network (OSTI)

Over the next 30 years, the Boomers will double the 65+ population in the United States and comprise a new generation of older Americans. This study forecasts the aging Boomers' travel. Previous efforts to forecast 65+ ...

Bush, Sarah, 1973-

2003-01-01T23:59:59.000Z

120

Quantile Forecasting of Commodity Futures' Returns: Are Implied Volatility Factors Informative?  

E-Print Network (OSTI)

This study develops a multi-period log-return quantile forecasting procedure to evaluate the performance of eleven nearby commodity futures contracts (NCFC) using a sample of 897 daily price observations and at-the-money (ATM) put and call implied volatilities of the corresponding prices for the period from 1/16/2008 to 7/29/2011. The statistical approach employs dynamic log-returns quantile regression models to forecast price densities using implied volatilities (IVs) and factors estimated through principal component analysis (PCA) from the IVs, pooled IVs and lagged returns. Extensive in-sample and out-of-sample analyses are conducted, including assessment of excess trading returns, and evaluations of several combinations of quantiles, model specifications, and NCFC's. The results suggest that the IV-PCA-factors, particularly pooled return-IV-PCA-factors, improve quantile forecasting power relative to models using only individual IV information. The ratio of the put-IV to the call-IV is also found to improve quantile forecasting performance of log returns. Improvements in quantile forecasting performance are found to be better in the tails of the distribution than in the center. Trading performance based on quantile forecasts from the models above generated significant excess returns. Finally, the fact that the single IV forecasts were outperformed by their quantile regression (QR) counterparts suggests that the conditional distribution of the log-returns is not normal.

Dorta, Miguel

2012-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "forecast future demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Impact of Early Forecast Information Sharing on Manufacturers with Capacity Uncertainty  

E-Print Network (OSTI)

251 Impact of Early Forecast Information Sharing on Manufacturers with Capacity Uncertainty of future demand. Advanced forecast information sharing between buyer and seller about these demand patterns) manufacturers receive an early rough forecast with a deterministic due date, however, forecast revisions

Chinnam, Ratna Babu

122

Demand response computation for future smart grids incorporating wind power  

Science Conference Proceedings (OSTI)

In this paper, we study supply and demand management in the presence of conventional and renewable energy sources, where the latter is represented by a single wind turbine. Total social welfare, defined in terms of consumer utility and cost of power ... Keywords: constrained optimization, kuhn-tucker conditions, outage probability, renewable source, smart grid

Nihan iek; Hakan Deli

2013-03-01T23:59:59.000Z

123

Energy conservation and official UK energy forecasts  

SciTech Connect

Behind the latest United Kingdom (UK) official forecasts of energy demand are implicit assumptions about future energy-price elasticities. Mr. Pearce examines the basis of the forecasts and finds that the long-term energy-price elasticities that they imply are two or three times too low. The official forecasts substantially understate the responsiveness of demand to energy price rises. If more-realistic price elasticities were assumed, the official forecasts would imply a zero primary energy-demand growth to 2000. This raises the interesting possibility of a low energy future being brought about entirely by market forces. 15 references, 3 tables.

Pearce, D.

1980-09-01T23:59:59.000Z

124

Comparison of AEO 2010 Natural Gas Price Forecast to NYMEX Futures Prices  

SciTech Connect

On December 14, 2009, the reference-case projections from Annual Energy Outlook 2010 were posted on the Energy Information Administration's (EIA) web site. We at LBNL have, in the past, compared the EIA's reference-case long-term natural gas price forecasts from the AEO series to contemporaneous natural gas prices that can be locked in through the forward market, with the goal of better understanding fuel price risk and the role that renewables can play in itigating such risk. As such, we were curious to see how the latest AEO reference-case gas price forecast compares to the NYMEX natural gas futures strip. This brief memo presents our findings.

Bolinger, Mark A.; Wiser, Ryan H.

2010-01-04T23:59:59.000Z

125

Transportation Energy Futures Series: Freight Transportation Demand: Energy-Efficient Scenarios for a Low-Carbon Future  

NLE Websites -- All DOE Office Websites (Extended Search)

DEMAND DEMAND Freight Transportation Demand: Energy-Efficient Scenarios for a Low-Carbon Future TRANSPORTATION ENERGY FUTURES SERIES: Freight Transportation Demand: Energy-Efficient Scenarios for a Low-Carbon Future A Study Sponsored by U.S. Department of Energy Office of Energy Efficiency and Renewable Energy March 2013 Prepared by CAMBRIDGE SYSTEMATICS Cambridge, MA 02140 under subcontract DGJ-1-11857-01 Technical monitoring performed by NATIONAL RENEWABLE ENERGY LABORATORY Golden, Colorado 80401-3305 managed by Alliance for Sustainable Energy, LLC for the U.S. DEPARTMENT OF ENERGY Under contract DC-A36-08GO28308 This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their

126

Forecasting Model for Crude Oil Price Using Artificial Neural Networks and Commodity Futures Prices  

E-Print Network (OSTI)

This paper presents a model based on multilayer feedforward neural network to forecast crude oil spot price direction in the short-term, up to three days ahead. A great deal of attention was paid on finding the optimal ANN model structure. In addition, several methods of data pre-processing were tested. Our approach is to create a benchmark based on lagged value of pre-processed spot price, then add pre-processed futures prices for 1, 2, 3,and four months to maturity, one by one and also altogether. The results on the benchmark suggest that a dynamic model of 13 lags is the optimal to forecast spot price direction for the short-term. Further, the forecast accuracy of the direction of the market was 78%, 66%, and 53% for one, two, and three days in future conclusively. For all the experiments, that include futures data as an input, the results show that on the short-term, futures prices do hold new information on the spot price direction. The results obtained will generate comprehensive understanding of the cr...

Kulkarni, Siddhivinayak

2009-01-01T23:59:59.000Z

127

Demand Response: Lessons Learned with an Eye to the Future | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Demand Response: Lessons Learned with an Eye to the Future Demand Response: Lessons Learned with an Eye to the Future Demand Response: Lessons Learned with an Eye to the Future July 11, 2013 - 11:56am Addthis Patricia A. Hoffman Patricia A. Hoffman Assistant Secretary, Office of Electricity Delivery & Energy Reliability In today's world of limited resources and rising costs, everyone is looking for ways to use what they have more effectively while, at the same time, controlling - and ideally - reducing expenses. The electricity industry is no exception. Through demand response programs such as time-based rates in which customers are offered financial incentives to reduce or shift their consumption during peak periods, utilities are reducing demand and better managing their assets while also giving consumers more options and lowering the cost of electricity. For example,

128

Survey and Forecast of Marketplace Supply and Demand for Energy-Efficient Lighting Products  

Science Conference Proceedings (OSTI)

Utility incentive programs have placed significant demands on the suppliers of certain types of energy-efficient lighting products--particularly compact fluorescent lamps and electronic ballasts. Two major federal programs may soon place even greater demands on the lighting industry. This report assesses the program-induced demand for efficient lighting products and their likely near-term supply.

1992-12-01T23:59:59.000Z

129

Demand Forecasting and Smart Devices as Building Blocks of Smart Micro Grids  

Science Conference Proceedings (OSTI)

The Internet of Things aims at creating smart environments. One of those fields of applications are smart micro grids. In those grids the energy producers and consumers become smart in the sense that they can plan and coordinate their actions. For those ... Keywords: smart micro grid, forecasting, smart devices, optimization

Rene Schumann; Dominique Genoud

2012-07-01T23:59:59.000Z

130

The addition of a US Rare Earth Element (REE) supply-demand model improves the characterization and scope of the United States Department of Energy's effort to forecast US REE Supply and Demand  

E-Print Network (OSTI)

This paper presents the development of a new US Rare Earth Element (REE) Supply-Demand Model for the explicit forecast of US REE supply and demand in the 2010 to 2025 time period. In the 2010 Department of Energy (DOE) ...

Mancco, Richard

2012-01-01T23:59:59.000Z

131

Advanced Demand Side Management for the Future Smart Grid Using Mechanism Design  

E-Print Network (OSTI)

1 Advanced Demand Side Management for the Future Smart Grid Using Mechanism Design Pedram Samadi.S. Wong, Senior Member, IEEE Abstract--In the future smart grid, both users and power companies can meter. All smart meters are connected to not only the power grid but also a communication infrastructure

Wong, Vincent

132

A short-range forecasting and inventory strategy for new product launches  

E-Print Network (OSTI)

Companies like Procter & Gamble that operate on a make-to-stock strategy use forecasts to drive their manufacturing, selling, and buying processes. Because forecasting future demand is not an exact science, inventory ...

Cheung, Christine

2005-01-01T23:59:59.000Z

133

Renewable Electricity Futures Study. Volume 3: End-Use Electricity Demand  

DOE Green Energy (OSTI)

The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).

Hostick, D.; Belzer, D.B.; Hadley, S.W.; Markel, T.; Marnay, C.; Kintner-Meyer, M.

2012-06-01T23:59:59.000Z

134

Comparison of AEO 2006 Natural Gas Price Forecast to NYMEX FuturesPrices  

SciTech Connect

On December 12, 2005, the reference case projections from ''Annual Energy Outlook 2006'' (AEO 2006) were posted on the Energy Information Administration's (EIA) web site. We at LBNL have in the past compared the EIA's reference case long-term natural gas price forecasts from the AEO series to contemporaneous natural gas prices that can be locked in through the forward market, with the goal of better understanding fuel price risk and the role that renewables play in mitigating such risk (see, for example, http://eetd.lbl.gov/ea/EMS/reports/53587.pdf or http://eetd.lbl.gov/ea/ems/reports/54751.pdf). As such, we were curious to see how the latest AEO gas price forecast compares to the NYMEX natural gas futures strip. This brief memo presents our findings. As a refresher, our past work in this area has found that over the past five years, forward natural gas contracts (with prices that can be locked in--e.g., gas futures, swaps, and physical supply) have traded at a premium relative to contemporaneous long-term reference case gas price forecasts from the EIA. As such, we have concluded that, over the past five years at least, levelized cost comparisons of fixed-price renewable generation with variable price gas-fired generation that have been based on AEO natural gas price forecasts (rather than forward prices) have yielded results that are ''biased'' in favor of gas-fired generation, presuming that long-term price stability is valued. In this memo we simply update our past analysis to include the latest long-term gas price forecast from the EIA, as contained in AEO 2006. For the sake of brevity, we do not rehash information (on methodology, potential explanations for the premiums, etc.) contained in our earlier reports on this topic; readers interested in such information are encouraged to download that work from http://eetd.lbl.gov/ea/EMS/reports/53587.pdf or http://eetd.lbl.gov/ea/ems/reports/54751.pdf. As was the case in the past five AEO releases (AEO 2001-AEO 2005), we once again find that the AEO 2006 reference case gas price forecast falls well below where NYMEX natural gas futures contracts were trading at the time the EIA finalized its gas price forecast. In fact, the NYMEX-AEO 2006 reference case comparison yields by far the largest premium--$2.3/MMBtu levelized over five years--that we have seen over the last six years. In other words, on average, one would have had to pay $2.3/MMBtu more than the AEO 2006 reference case natural gas price forecast in order to lock in natural gas prices over the coming five years and thereby replicate the price stability provided intrinsically by fixed-price renewable generation (or other forms of generation whose costs are not tied to the price of natural gas). Fixed-price generation (like certain forms of renewable generation) obviously need not bear this added cost, and moreover can provide price stability for terms well in excess of five years.

Bolinger, Mark; Wiser, Ryan

2005-12-19T23:59:59.000Z

135

Comparison of AEO 2005 natural gas price forecast to NYMEX futures prices  

SciTech Connect

On December 9, the reference case projections from ''Annual Energy Outlook 2005 (AEO 2005)'' were posted on the Energy Information Administration's (EIA) web site. As some of you may be aware, we at LBNL have in the past compared the EIA's reference case long-term natural gas price forecasts from the AEO series to contemporaneous natural gas prices that can be locked in through the forward market, with the goal of better understanding fuel price risk and the role that renewables play in mitigating such risk. As such, we were curious to see how the latest AEO gas price forecast compares to the NYMEX natural gas futures strip. This brief memo presents our findings. As a refresher, our past work in this area has found that over the past four years, forward natural gas contracts (e.g., gas futures, swaps, and physical supply) have traded at a premium relative to contemporaneous long-term reference case gas price forecasts from the EIA. As such, we have concluded that, over the past four years at least, levelized cost comparisons of fixed-price renewable generation with variable price gas-fired generation that have been based on AEO natural gas price forecasts (rather than forward prices) have yielded results that are ''biased'' in favor of gas-fired generation (presuming that long-term price stability is valued). In this memo we simply update our past analysis to include the latest long-term gas price forecast from the EIA, as contained in AEO 2005. For the sake of brevity, we do not rehash information (on methodology, potential explanations for the premiums, etc.) contained in our earlier reports on this topic; readers interested in such information are encouraged to download that work from http://eetd.lbl.gov/ea/EMS/reports/53587.pdf or, more recently (and briefly), http://eetd.lbl.gov/ea/ems/reports/54751.pdf. As was the case in the past four AEO releases (AEO 2001-AE0 2004), we once again find that the AEO 2005 reference case gas price forecast falls well below where NYMEX natural gas futures contracts were trading at the time the EIA finalized its gas price forecast. In fact, the NYMEXAEO 2005 reference case comparison yields by far the largest premium--$1.11/MMBtu levelized over six years--that we have seen over the last five years. In other words, on average, one would have to pay $1.11/MMBtu more than the AEO 2005 reference case natural gas price forecast in order to lock in natural gas prices over the coming six years and thereby replicate the price stability provided intrinsically by fixed-price renewable generation. Fixed-price renewables obviously need not bear this added cost, and moreover can provide price stability for terms well in excess of six years.

Bolinger, Mark; Wiser, Ryan

2004-12-13T23:59:59.000Z

136

Comparison of AEO 2006 Natural Gas Price Forecast to NYMEX FuturesPrices  

DOE Green Energy (OSTI)

On December 12, 2005, the reference case projections from ''Annual Energy Outlook 2006'' (AEO 2006) were posted on the Energy Information Administration's (EIA) web site. We at LBNL have in the past compared the EIA's reference case long-term natural gas price forecasts from the AEO series to contemporaneous natural gas prices that can be locked in through the forward market, with the goal of better understanding fuel price risk and the role that renewables play in mitigating such risk (see, for example, http://eetd.lbl.gov/ea/EMS/reports/53587.pdf or http://eetd.lbl.gov/ea/ems/reports/54751.pdf). As such, we were curious to see how the latest AEO gas price forecast compares to the NYMEX natural gas futures strip. This brief memo presents our findings. As a refresher, our past work in this area has found that over the past five years, forward natural gas contracts (with prices that can be locked in--e.g., gas futures, swaps, and physical supply) have traded at a premium relative to contemporaneous long-term reference case gas price forecasts from the EIA. As such, we have concluded that, over the past five years at least, levelized cost comparisons of fixed-price renewable generation with variable price gas-fired generation that have been based on AEO natural gas price forecasts (rather than forward prices) have yielded results that are ''biased'' in favor of gas-fired generation, presuming that long-term price stability is valued. In this memo we simply update our past analysis to include the latest long-term gas price forecast from the EIA, as contained in AEO 2006. For the sake of brevity, we do not rehash information (on methodology, potential explanations for the premiums, etc.) contained in our earlier reports on this topic; readers interested in such information are encouraged to download that work from http://eetd.lbl.gov/ea/EMS/reports/53587.pdf or http://eetd.lbl.gov/ea/ems/reports/54751.pdf. As was the case in the past five AEO releases (AEO 2001-AEO 2005), we once again find that the AEO 2006 reference case gas price forecast falls well below where NYMEX natural gas futures contracts were trading at the time the EIA finalized its gas price forecast. In fact, the NYMEX-AEO 2006 reference case comparison yields by far the largest premium--$2.3/MMBtu levelized over five years--that we have seen over the last six years. In other words, on average, one would have had to pay $2.3/MMBtu more than the AEO 2006 reference case natural gas price forecast in order to lock in natural gas prices over the coming five years and thereby replicate the price stability provided intrinsically by fixed-price renewable generation (or other forms of generation whose costs are not tied to the price of natural gas). Fixed-price generation (like certain forms of renewable generation) obviously need not bear this added cost, and moreover can provide price stability for terms well in excess of five years.

Bolinger, Mark; Wiser, Ryan

2005-12-19T23:59:59.000Z

137

Comparison of AEO 2007 Natural Gas Price Forecast to NYMEX FuturesPrices  

Science Conference Proceedings (OSTI)

On December 5, 2006, the reference case projections from 'Annual Energy Outlook 2007' (AEO 2007) were posted on the Energy Information Administration's (EIA) web site. We at LBNL have, in the past, compared the EIA's reference case long-term natural gas price forecasts from the AEO series to contemporaneous natural gas prices that can be locked in through the forward market, with the goal of better understanding fuel price risk and the role that renewables play in mitigating such risk (see, for example, http://eetd.lbl.gov/ea/EMS/reports/53587.pdf or http://eetd.lbl.gov/ea/ems/reports/54751.pdf). As such, we were curious to see how the latest AEO gas price forecast compares to the NYMEX natural gas futures strip. This brief memo presents our findings. As a refresher, our past work in this area has found that over the past six years, forward natural gas contracts (with prices that can be locked in--e.g., gas futures, swaps, and physical supply) have traded at a premium relative to contemporaneous long-term reference case gas price forecasts from the EIA. As such, we have concluded that, over the past six years at least, levelized cost comparisons of fixed-price renewable generation with variable-price gas-fired generation that have been based on AEO natural gas price forecasts (rather than forward prices) have yielded results that are 'biased' in favor of gas-fired generation, presuming that long-term price stability is valued. In this memo we simply update our past analysis to include the latest long-term gas price forecast from the EIA, as contained in AEO 2007. For the sake of brevity, we do not rehash information (on methodology, potential explanations for the premiums, etc.) contained in our earlier reports on this topic; readers interested in such information are encouraged to download that work from http://eetd.lbl.gov/ea/EMS/reports/53587.pdf or http://eetd.lbl.gov/ea/ems/reports/54751.pdf. As was the case in the past six AEO releases (AEO 2001-AEO 2006), we once again find that the AEO 2007 reference case gas price forecast falls well below where NYMEX natural gas futures contracts were trading at the time the EIA finalized its gas price forecast. Specifically, the NYMEX-AEO 2007 premium is $0.73/MMBtu levelized over five years. In other words, on average, one would have had to pay $0.73/MMBtu more than the AEO 2007 reference case natural gas price forecast in order to lock in natural gas prices over the coming five years and thereby replicate the price stability provided intrinsically by fixed-price renewable generation (or other forms of generation whose costs are not tied to the price of natural gas). Fixed-price generation (like certain forms of renewable generation) obviously need not bear this added cost, and moreover can provide price stability for terms well in excess of five years.

Bolinger, Mark; Wiser, Ryan

2006-12-06T23:59:59.000Z

138

Comparison of AEO 2005 natural gas price forecast to NYMEX futures prices  

DOE Green Energy (OSTI)

On December 9, the reference case projections from ''Annual Energy Outlook 2005 (AEO 2005)'' were posted on the Energy Information Administration's (EIA) web site. As some of you may be aware, we at LBNL have in the past compared the EIA's reference case long-term natural gas price forecasts from the AEO series to contemporaneous natural gas prices that can be locked in through the forward market, with the goal of better understanding fuel price risk and the role that renewables play in mitigating such risk. As such, we were curious to see how the latest AEO gas price forecast compares to the NYMEX natural gas futures strip. This brief memo presents our findings. As a refresher, our past work in this area has found that over the past four years, forward natural gas contracts (e.g., gas futures, swaps, and physical supply) have traded at a premium relative to contemporaneous long-term reference case gas price forecasts from the EIA. As such, we have concluded that, over the past four years at least, levelized cost comparisons of fixed-price renewable generation with variable price gas-fired generation that have been based on AEO natural gas price forecasts (rather than forward prices) have yielded results that are ''biased'' in favor of gas-fired generation (presuming that long-term price stability is valued). In this memo we simply update our past analysis to include the latest long-term gas price forecast from the EIA, as contained in AEO 2005. For the sake of brevity, we do not rehash information (on methodology, potential explanations for the premiums, etc.) contained in our earlier reports on this topic; readers interested in such information are encouraged to download that work from http://eetd.lbl.gov/ea/EMS/reports/53587.pdf or, more recently (and briefly), http://eetd.lbl.gov/ea/ems/reports/54751.pdf. As was the case in the past four AEO releases (AEO 2001-AE0 2004), we once again find that the AEO 2005 reference case gas price forecast falls well below where NYMEX natural gas futures contracts were trading at the time the EIA finalized its gas price forecast. In fact, the NYMEXAEO 2005 reference case comparison yields by far the largest premium--$1.11/MMBtu levelized over six years--that we have seen over the last five years. In other words, on average, one would have to pay $1.11/MMBtu more than the AEO 2005 reference case natural gas price forecast in order to lock in natural gas prices over the coming six years and thereby replicate the price stability provided intrinsically by fixed-price renewable generation. Fixed-price renewables obviously need not bear this added cost, and moreover can provide price stability for terms well in excess of six years.

Bolinger, Mark; Wiser, Ryan

2004-12-13T23:59:59.000Z

139

Forecasting the Locations of Future Large Earthquakes: An Analysis and Verification  

E-Print Network (OSTI)

its uses in earthquake forecasting, Pure Appl. Geophys. 162,D.L. (2005), Earthquake forecasting and its veri?ca- tion,hazard assessment and forecasting, Pure Appl. Geophys. 157,

Shcherbakov, Robert; Turcotte, Donald L.; Rundle, John B.; Tiampo, Kristy F.; Holliday, James R.

2010-01-01T23:59:59.000Z

140

Comparison of AEO 2005 natural gas price forecast to NYMEX futures prices  

E-Print Network (OSTI)

revisions to the EIAs natural gas price forecasts in AEOon the AEO 2005 natural gas price forecasts will likely onceComparison of AEO 2005 Natural Gas Price Forecast to NYMEX

Bolinger, Mark; Wiser, Ryan

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "forecast future demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Comparison of AEO 2010 Natural Gas Price Forecast to NYMEX Futures Prices  

E-Print Network (OSTI)

to estimate the base-case natural gas price forecast, but toComparison of AEO 2010 Natural Gas Price Forecast to NYMEXcase long-term natural gas price forecasts from the AEO

Bolinger, Mark A.

2010-01-01T23:59:59.000Z

142

Comparison of AEO 2010 Natural Gas Price Forecast to NYMEX Futures Prices  

E-Print Network (OSTI)

the base-case natural gas price forecast, but to alsoof AEO 2010 Natural Gas Price Forecast to NYMEX Futurescase long-term natural gas price forecasts from the AEO

Bolinger, Mark A.

2010-01-01T23:59:59.000Z

143

Comparison of AEO 2005 natural gas price forecast to NYMEX futures prices  

E-Print Network (OSTI)

revisions to the EIAs natural gas price forecasts in AEOsolely on the AEO 2005 natural gas price forecasts willComparison of AEO 2005 Natural Gas Price Forecast to NYMEX

Bolinger, Mark; Wiser, Ryan

2004-01-01T23:59:59.000Z

144

Comparison of AEO 2010 Natural Gas Price Forecast to NYMEX Futures Prices  

E-Print Network (OSTI)

to estimate the base-case natural gas price forecast, but toComparison of AEO 2010 Natural Gas Price Forecast to NYMEXs reference-case long-term natural gas price forecasts from

Bolinger, Mark A.

2010-01-01T23:59:59.000Z

145

Comparing Price Forecast Accuracy of Natural Gas Models and Futures Markets  

E-Print Network (OSTI)

the forecast. In 1978 the Natural Gas Policy Act was passedof Other Natural Gas Price Forecasts Researchers and policyresearchers and policy makers who utilize natural gas prices

Wong-Parodi, Gabrielle; Dale, Larry; Lekov, Alex

2005-01-01T23:59:59.000Z

146

Comparison of AEO 2006 Natural Gas Price Forecast to NYMEX Futures Prices  

E-Print Network (OSTI)

Comparison of AEO 2006 Natural Gas Price Forecast to NYMEXcase long-term natural gas price forecasts from theto contemporaneous natural gas prices that can be locked in

Bolinger, Mark; Wiser, Ryan

2005-01-01T23:59:59.000Z

147

Comparison of AEO 2008 Natural Gas Price Forecast to NYMEX Futures Prices  

E-Print Network (OSTI)

Comparison of AEO 2008 Natural Gas Price Forecast to NYMEXcase long-term natural gas price forecasts from theto contemporaneous natural gas prices that can be locked in

Bolinger, Mark

2008-01-01T23:59:59.000Z

148

Comparison of AEO 2007 Natural Gas Price Forecast to NYMEX Futures Prices  

E-Print Network (OSTI)

Comparison of AEO 2007 Natural Gas Price Forecast to NYMEXcase long-term natural gas price forecasts from theto contemporaneous natural gas prices that can be locked in

Bolinger, Mark; Wiser, Ryan

2006-01-01T23:59:59.000Z

149

Comparison of AEO 2009 Natural Gas Price Forecast to NYMEX Futures Prices  

E-Print Network (OSTI)

Comparison of AEO 2009 Natural Gas Price Forecast to NYMEXcase long-term natural gas price forecasts from theto contemporaneous natural gas prices that can be locked in

Bolinger, Mark

2009-01-01T23:59:59.000Z

150

Forecasting a state-specific demand for highway fuels: the case for Hawaii  

SciTech Connect

An econometric model is developed to predict the demand for highway fuels in Hawaii over the next 20 years. The stock of motor vehicles is separated into six classes, and the demand for new vehicles is estimated using seemingly unrelated regression. Average fuel efficiency for the entire fleet stock, gasoline price, per capita income, and per capita stock are used to estimate per capita vehicle-miles traveled. Highway fuel consumption is then calculated as the quotient of vehicle-miles traveled and average fleet fuel efficiency. The model performs well within and outside the historical sample period. A historical simulation is performed which shows what might have happened had gasoline prices not skyrocketed in the 1970s. Predictions of highway fuel consumption through the year 2000 under three different gasoline price scenarios are then made. 29 references, 3 figures, 9 tables.

Leung, P.; Vesenka, M.H.

1987-01-01T23:59:59.000Z

151

Demand forecasting for companies with many branches, low sales numbers per product, and non-recurring orderings  

E-Print Network (OSTI)

We propose the new Top-Dog-Index to quantify the historic deviation of the supply data of many small branches for a commodity group from sales data. On the one hand, the common parametric assumptions on the customer demand distribution in the literature could not at all be supported in our real-world data set. On the other hand, a reasonably-looking non-parametric approach to estimate the demand distribution for the different branches directly from the sales distribution could only provide us with statistically weak and unreliable estimates for the future demand. Based on real-world sales data from our industry partner we provide evidence that our Top-Dog-Index is statistically robust. Using the Top-Dog-Index, we propose a heuristics to improve the branch-dependent proportion between supply and demand. Our approach cannot estimate the branch-dependent demand directly. It can, however, classify the branches into a given number of clusters according to an historic oversupply or undersupply. This classification ...

Kurz, Sascha

2008-01-01T23:59:59.000Z

152

Coal supply/demand, 1980 to 2000. Task 3. Resource applications industrialization system data base. Final review draft. [USA; forecasting 1980 to 2000; sector and regional analysis  

SciTech Connect

This report is a compilation of data and forecasts resulting from an analysis of the coal market and the factors influencing supply and demand. The analyses performed for the forecasts were made on an end-use-sector basis. The sectors analyzed are electric utility, industry demand for steam coal, industry demand for metallurgical coal, residential/commercial, coal demand for synfuel production, and exports. The purpose is to provide coal production and consumption forecasts that can be used to perform detailed, railroad company-specific coal transportation analyses. To make the data applicable for the subsequent transportation analyses, the forecasts have been made for each end-use sector on a regional basis. The supply regions are: Appalachia, East Interior, West Interior and Gulf, Northern Great Plains, and Mountain. The demand regions are the same as the nine Census Bureau regions. Coal production and consumption in the United States are projected to increase dramatically in the next 20 years due to increasing requirements for energy and the unavailability of other sources of energy to supply a substantial portion of this increase. Coal comprises 85 percent of the US recoverable fossil energy reserves and could be mined to supply the increasing energy demands of the US. The NTPSC study found that the additional traffic demands by 1985 may be met by the railways by the way of improved signalization, shorter block sections, centralized traffic control, and other modernization methods without providing for heavy line capacity works. But by 2000 the incremental traffic on some of the major corridors was projected to increase very significantly and is likely to call for special line capacity works involving heavy investment.

Fournier, W.M.; Hasson, V.

1980-10-10T23:59:59.000Z

153

Comparing Price Forecast Accuracy of Natural Gas Models andFutures Markets  

SciTech Connect

The purpose of this article is to compare the accuracy of forecasts for natural gas prices as reported by the Energy Information Administration's Short-Term Energy Outlook (STEO) and the futures market for the period from 1998 to 2003. The analysis tabulates the existing data and develops a statistical comparison of the error between STEO and U.S. wellhead natural gas prices and between Henry Hub and U.S. wellhead spot prices. The results indicate that, on average, Henry Hub is a better predictor of natural gas prices with an average error of 0.23 and a standard deviation of 1.22 than STEO with an average error of -0.52 and a standard deviation of 1.36. This analysis suggests that as the futures market continues to report longer forward prices (currently out to five years), it may be of interest to economic modelers to compare the accuracy of their models to the futures market. The authors would especially like to thank Doug Hale of the Energy Information Administration for supporting and reviewing this work.

Wong-Parodi, Gabrielle; Dale, Larry; Lekov, Alex

2005-06-30T23:59:59.000Z

154

Comparison of AEO 2008 Natural Gas Price Forecast to NYMEX Futures Prices  

E-Print Network (OSTI)

of AEO 2008 Natural Gas Price Forecast to NYMEX Futurescase long-term natural gas price forecasts from the AEOto contemporaneous natural gas prices that can be locked in

Bolinger, Mark

2008-01-01T23:59:59.000Z

155

Comparison of AEO 2007 Natural Gas Price Forecast to NYMEX Futures Prices  

E-Print Network (OSTI)

of AEO 2007 Natural Gas Price Forecast to NYMEX Futurescase long-term natural gas price forecasts from the AEOto contemporaneous natural gas prices that can be locked in

Bolinger, Mark; Wiser, Ryan

2006-01-01T23:59:59.000Z

156

Comparison of AEO 2009 Natural Gas Price Forecast to NYMEX Futures Prices  

E-Print Network (OSTI)

of AEO 2009 Natural Gas Price Forecast to NYMEX Futurescase long-term natural gas price forecasts from the AEOto contemporaneous natural gas prices that can be locked in

Bolinger, Mark

2009-01-01T23:59:59.000Z

157

Comparison of AEO 2006 Natural Gas Price Forecast to NYMEX Futures Prices  

E-Print Network (OSTI)

Comparison of AEO 2006 Natural Gas Price Forecast to NYMEXs reference case long-term natural gas price forecasts fromAEO series to contemporaneous natural gas prices that can be

Bolinger, Mark; Wiser, Ryan

2005-01-01T23:59:59.000Z

158

Comparison of AEO 2009 Natural Gas Price Forecast to NYMEX Futures Prices  

E-Print Network (OSTI)

Comparison of AEO 2009 Natural Gas Price Forecast to NYMEXs reference-case long-term natural gas price forecasts fromAEO series to contemporaneous natural gas prices that can be

Bolinger, Mark

2009-01-01T23:59:59.000Z

159

Comparison of AEO 2007 Natural Gas Price Forecast to NYMEX Futures Prices  

E-Print Network (OSTI)

Comparison of AEO 2007 Natural Gas Price Forecast to NYMEXs reference case long-term natural gas price forecasts fromAEO series to contemporaneous natural gas prices that can be

Bolinger, Mark; Wiser, Ryan

2006-01-01T23:59:59.000Z

160

Proceedings of the Chinese-American symposium on energy markets and the future of energy demand  

SciTech Connect

The Symposium was organized by the Energy Research Institute of the State Economic Commission of China, and the Lawrence Berkeley Laboratory and Johns Hopkins University from the United States. It was held at the Johns Hopkins University Nanjing Center in late June 1988. It was attended by about 15 Chinese and an equal number of US experts on various topics related to energy demand and supply. Each presenter is one of the best observers of the energy situation in their field. A Chinese and US speaker presented papers on each topic. In all, about 30 papers were presented over a period of two and one half days. Each paper was translated into English and Chinese. The Chinese papers provide an excellent overview of the emerging energy demand and supply situation in China and the obstacles the Chinese planners face in managing the expected increase in demand for energy. These are matched by papers that discuss the energy situation in the US and worldwide, and the implications of the changes in the world energy situation on both countries. The papers in Part 1 provide historical background and discuss future directions. The papers in Part 2 focus on the historical development of energy planning and policy in each country and the methodologies and tools used for projecting energy demand and supply. The papers in Part 3 examine the pattern of energy demand, the forces driving demand, and opportunities for energy conservation in each of the major sectors in China and the US. The papers in Part 4 deal with the outlook for global and Pacific region energy markets and the development of the oil and natural gas sector in China.

Meyers, S. (ed.)

1988-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "forecast future demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Future world oil supply and demand-the impact on domestic exploration  

SciTech Connect

Current world oil consumption (demand) of about 68 million B/D will increase to over 81 million B/D in 10 years. World oil production capacity (supply), currently 6-8% over current demand, cannot meet this demand without adequate investments to boost capacity, particularly in the Middle East. Because of low oil prices these investments are not being made. In 10 years the Middle East needs to supply over 50% of the worlds oil; the Far East will by then surpass North America in demand. It is very possible that there will soon be a period of time when the supply/demand balance will be, or will perceived to be failing. This may cause rapid rises in crude oil prices until the balance is again achieved. Crude oil prices are actually quite volatile; the steadiness and abnormally low prices in recent years has been due to several factors that probably won`t be present in the period when the supply/demand situation is seen to be unbalanced. Domestic oil exploration is strongly affected by the price of crude oil and domestic producers should soon benefit by rising oil prices. Exploration will be stimulated, and small incremental amounts of new oil should be economically viable. Oil has been estimated to be only 2% of the total cost of producing all U.S. goods and services-if so, then oil price increase should not create any real problems in the total economic picture. Nevertheless, certain industries and life styles heavily dependent on cheap fuel will have problems, as the days of cheap oil will be gone. Future undiscovered oil in the Earth could be one trillion barrels or more, equal to the amount now considered as proved reserves. There will soon be more of a challenge to find and produce this oil in sufficient quantity and at a competitive cost with other sources of energy. This challenge should keep us busy.

Townes, H.L.

1995-09-01T23:59:59.000Z

162

Comparing Price Forecast Accuracy of Natural Gas Models and Futures Markets  

E-Print Network (OSTI)

about natural gas supply and demand. As a result, someCalibrating natural gas supply and demand conditions withelectricity and natural gas markets, demand-side management

Wong-Parodi, Gabrielle; Dale, Larry; Lekov, Alex

2005-01-01T23:59:59.000Z

163

Forecasting new product penetration with flexible substitution patterns  

E-Print Network (OSTI)

choice model for forecasting demand for alternative-fuel7511, Urban Travel Demand Forecasting Project, Institute of89 (1999) 109129 Forecasting new product penetration with ?

Brownstone, David; Train, Kenneth

1999-01-01T23:59:59.000Z

164

Forecasting new product penetration with flexible substitution patterns  

E-Print Network (OSTI)

7511, Urban Travel Demand Forecasting Project, Institute ofchoice model for forecasting demand for alternative-fuel89 (1999) 109129 Forecasting new product penetration with

Brownstone, David; Train, Kenneth

1999-01-01T23:59:59.000Z

165

Neural-wavelet Methodology for Load Forecasting  

Science Conference Proceedings (OSTI)

Intelligent demand-side management represents a future trend of power system regulation. A key issue in intelligent demand-side management is accurate prediction of load within a local area grid (LAG), which is defined as a set of customers with an appropriate ... Keywords: load forecasting, load identification, neural-wavelet

Rong Gao; Lefteri H. Tsoukalas

2001-05-01T23:59:59.000Z

166

Comparison of AEO 2010 Natural Gas Price Forecast to NYMEX Futures Prices  

E-Print Network (OSTI)

approach to evaluating price risk would be to use suchthe base-case natural gas price forecast, but to alsorange of different plausible price projections, using either

Bolinger, Mark A.

2010-01-01T23:59:59.000Z

167

Comparison of AEO 2006 Natural Gas Price Forecast to NYMEX Futures Prices  

E-Print Network (OSTI)

this hybrid NYMEX-EIA gas price projection still does notcomparison with fixed- price renewable generation (becauseonly a portion of the gas price forecast through 2010

Bolinger, Mark; Wiser, Ryan

2005-01-01T23:59:59.000Z

168

EIA projections of coal supply and demand  

SciTech Connect

Contents of this report include: EIA projections of coal supply and demand which covers forecasted coal supply and transportation, forecasted coal demand by consuming sector, and forecasted coal demand by the electric utility sector; and policy discussion.

Klein, D.E.

1989-10-23T23:59:59.000Z

169

Comparison of AEO 2009 Natural Gas Price Forecast to NYMEX Futures Prices  

SciTech Connect

On December 17, 2008, the reference-case projections from Annual Energy Outlook 2009 (AEO 2009) were posted on the Energy Information Administration's (EIA) web site. We at LBNL have, in the past, compared the EIA's reference-case long-term natural gas price forecasts from the AEO series to contemporaneous natural gas prices that can be locked in through the forward market, with the goal of better understanding fuel price risk and the role that renewables can play in mitigating such risk. As such, we were curious to see how the latest AEO reference-case gas price forecast compares to the NYMEX natural gas futures strip. This brief memo presents our findings. Note that this memo pertains only to natural gas fuel price risk (i.e., the risk that natural gas prices might differ over the life of a gas-fired generation asset from what was expected when the decision to build the gas-fired unit was made). We do not take into consideration any of the other distinct attributes of gas-fired and renewable generation, such as dispatchability (or lack thereof), differences in capital costs and O&M expenses, or environmental externalities. A comprehensive comparison of different resource types--which is well beyond the scope of this memo--would need to account for differences in all such attributes, including fuel price risk. Furthermore, our analysis focuses solely on natural-gas-fired generation (as opposed to coal-fired or nuclear generation, for example), for several reasons: (1) price volatility has been more of a concern for natural gas than for other fuels used to generate power; (2) for environmental and other reasons, natural gas has, in recent years, been the fuel of choice among power plant developers; and (3) natural gas-fired generators often set the market clearing price in competitive wholesale power markets throughout the United States. That said, a more-complete analysis of how renewables mitigate fuel price risk would also need to consider coal, uranium, and other fuel prices. Finally, we caution readers about drawing inferences or conclusions based solely on this memo in isolation: to place the information contained herein within its proper context, we strongly encourage readers interested in this issue to read through our previous, more-detailed studies, available at http://eetd.lbl.gov/ea/EMS/reports/53587.pdf or http://eetd.lbl.gov/ea/ems/reports/54751.pdf.

Bolinger, Mark; Wiser, Ryan

2009-01-28T23:59:59.000Z

170

Comparison of AEO 2008 Natural Gas Price Forecast to NYMEX Futures Prices  

Science Conference Proceedings (OSTI)

On December 12, 2007, the reference-case projections from Annual Energy Outlook 2008 (AEO 2008) were posted on the Energy Information Administration's (EIA) web site. We at LBNL have, in the past, compared the EIA's reference-case long-term natural gas price forecasts from the AEO series to contemporaneous natural gas prices that can be locked in through the forward market, with the goal of better understanding fuel price risk and the role that renewables can play in mitigating such risk. As such, we were curious to see how the latest AEO reference-case gas price forecast compares to the NYMEX natural gas futures strip. This brief memo presents our findings. Note that this memo pertains only to natural gas fuel price risk (i.e., the risk that natural gas prices might differ over the life of a gas-fired generation asset from what was expected when the decision to build the gas-fired unit was made). We do not take into consideration any of the other distinct attributes of gas-fired and renewable generation, such as dispatchability (or lack thereof) or environmental externalities. A comprehensive comparison of different resource types--which is well beyond the scope of this memo--would need to account for differences in all such attributes, including fuel price risk. Furthermore, our analysis focuses solely on natural-gas-fired generation (as opposed to coal-fired generation, for example), for several reasons: (1) price volatility has been more of a concern for natural gas than for other fuels used to generate power; (2) for environmental and other reasons, natural gas has, in recent years, been the fuel of choice among power plant developers (though its appeal has diminished somewhat as prices have increased); and (3) natural gas-fired generators often set the market clearing price in competitive wholesale power markets throughout the United States. That said, a more-complete analysis of how renewables mitigate fuel price risk would also need to consider coal and other fuel prices. Finally, we caution readers about drawing inferences or conclusions based solely on this memo in isolation: to place the information contained herein within its proper context, we strongly encourage readers interested in this issue to read through our previous, more-detailed studies, available at http://eetd.lbl.gov/ea/EMS/reports/53587.pdf or http://eetd.lbl.gov/ea/ems/reports/54751.pdf.

Bolinger, Mark A; Bolinger, Mark; Wiser, Ryan

2008-01-07T23:59:59.000Z

171

LOAD FORECASTING Eugene A. Feinberg  

E-Print Network (OSTI)

's electricity price forecasting model, produces forecast of gas demand consistent with electric load. #12Gas demand Council's Market Price of Electricity Forecast Natural GasDemand Electric Load Aggregating Natural between the natural gas and electricity and new uses of natural gas emerge. T natural gas forecasts

Feinberg, Eugene A.

172

Comparing Price Forecast Accuracy of Natural Gas Models and Futures Markets  

E-Print Network (OSTI)

information about natural gas supply and demand. As amarket Calibrating natural gas supply and demand conditionsnation-wide natural gas market, equalizing supply with

Wong-Parodi, Gabrielle; Dale, Larry; Lekov, Alex

2005-01-01T23:59:59.000Z

173

Regional load-curve models: QUERI's model long-run forecasts and sensitivity analysis. Volume 4. Final report. [Hourly demand in 32 US regions  

SciTech Connect

This report presents detailed forecasts of the hourly demand for electricity in 32 regions of the US through the year 2000. The forecasts are generated by a load curve model estimated by QUERI and described in Volume II of this report. Two primary sets of input assumptions for this model are utilized: one based on DRI's macro, regional and sectoral models is called the Baseline Scenario while the other, which is a projection of historical trends, is the Extrapolation Scenario. Under both assumptions, the growth rates of electricity are forecast to slow from historical levels. Load factors are generally projected to continue to decline; most regions are forecast to remain Summer peaking but this is rather sensitive to the choice of scenario. By considering other scenarios which are small perturbations of the Baseline assumptions, elasticities of average, peak and hourly loads are calculated. Different weather assumptions are also examined for the sensitivity of the load shapes to changes in the weather.

Engle, R.F.; Granger, C.W.J.; Ramanathan, R.

1981-09-01T23:59:59.000Z

174

From: Mark Bolinger and Ryan Wiser, Berkeley Lab (LBNL) Subject: Comparison of AEO 2010 Natural Gas Price Forecast to NYMEX Futures Prices  

E-Print Network (OSTI)

of AEO 2010 Natural Gas Price Forecast to NYMEX Futures Prices Date: January 4, 2010 1. Introduction, compared the EIA's reference-case long-term natural gas price forecasts from the AEO series to contemporaneous natural gas prices that can be locked in through the forward market, with the goal of better

175

An Assessment of Future Demands for and Benefits of Public Transit Services in Tennessee  

NLE Websites -- All DOE Office Websites (Extended Search)

2/55 2/55 An Assessment of Future Demands for and Benefits of Public Transit Services in Tennessee March 2002 Prepared by Frank Southworth David P. Vogt T. Randall Curlee Center for Transportation Analysis Oak Ridge National Laboratory P.O. Box 2008 Oak Ridge, TN 37831 Managed By UT-Battelle, Llc For The U. S. Department Of Energy Under Contract No. DE-AC05-00OR-22725 and Arun Chatterjee Frederick J. Wegmann Civil and Environmental Engineering Department The University of Tennessee Knoxville, TN 37996-2010 Prepared for Office of Public Transportation Tennessee Department of Transportation Nashville, TN 37243 i Contents Page Executive Summary vi 1. Introduction 1.1 1.1 Study Purpose 1.1 1.2 Report Organization and Content 1.2 1.3 Glossary of Terms Used 1.3 2. Transit Benefits Analysis Process 2.1

176

Using artificial neural networks to forecast the futures prices of crude oil  

Science Conference Proceedings (OSTI)

Crude oil is the commodity de jour and its pricing is of paramount importance to the layperson as well as to any responsible government. However, one of the main challenges facing econometric pricing models is the forecasting accuracy. ...

Hassan A. Khazem / A. K. Mazouz

2008-01-01T23:59:59.000Z

177

Comparison of AEO 2005 natural gas price forecast to NYMEX futures prices  

E-Print Network (OSTI)

to the EIAs natural gas price forecasts in AEO 2004 and AEOcost comparisons of fixed-price renewable generationwith variable price gas-fired generation that are based

Bolinger, Mark; Wiser, Ryan

2004-01-01T23:59:59.000Z

178

Comparing Price Forecast Accuracy of Natural Gas Models and Futures Markets  

E-Print Network (OSTI)

Energy futures markets are hubs that price and marketenergy price fluctuations. In theory, futures market pricesenergy prices, including most prominently, energy futures markets.

Wong-Parodi, Gabrielle; Dale, Larry; Lekov, Alex

2005-01-01T23:59:59.000Z

179

The past, present, and future of U.S. utility demand-side management programs  

SciTech Connect

Demand-side management or DSM refers to active efforts by electric and gas utilities to modify customers` energy use patterns. The experience in the US shows that utilities, when provided with appropriate incentives, can provide a powerful stimulus to energy efficiency in the private sector. This paper describes the range and history of DSM programs offered by US electric utilities, with a focus on the political, economic, and regulatory events that have shaped their evolution. It also describes the changes these programs are undergoing as a result of US electricity industry restructuring. DSM programs began modestly in the 1970s in response to growing concerns about dependence on foreign sources of oil and environmental consequences of electricity generation, especially nuclear power. The foundation for the unique US partnership between government and utility interests can be traced first to the private-ownership structure of the vertically integrated electricity industry and second to the monopoly franchise granted by state regulators. Electricity industry restructuring calls into question both of these basic conditions, and thus the future of utility DSM programs for the public interest. Future policies guiding ratepayer-funded energy-efficiency DSM programs will need to pay close attention to the specific market objectives of the programs and to the balance between public and private interests.

Eto, J. [Lawrence Berkeley National Lab., CA (United States). Environmental Energy Technologies Div.

1996-12-01T23:59:59.000Z

180

The Non-alcoholic Beverage Market in the United States: Demand Interrelationships, Dynamics, Nutrition Issues and Probability Forecast Evaluation  

E-Print Network (OSTI)

There are many different types of non-alcoholic beverages (NAB) available in the United States today compared to a decade ago. Additionally, the needs of beverage consumers have evolved over the years centering attention on functionality and health dimensions. These trends in volume of consumption are a testament to the growth in the NAB industry. Our study pertains to ten NAB categories. We developed and employed a unique cross-sectional and time-series data set based on Nielsen Homescan data associated with household purchases of NAB from 1998 through 2003. First, we considered demographic and economic profiling of the consumption of NAB in a two-stage model. Race, region, age and presence of children and gender of household head were the most important factors affecting the choice and level of consumption. Second, we used expectation-prediction success tables, calibration, resolution, the Brier score and the Yates partition of the Brier score to measure the accuracy of predictions generated from qualitative choice models used to model the purchase decision of NAB by U.S. households. The Yates partition of the Brier score outperformed all other measures. Third, we modeled demand interrelationships, dynamics and habits of NAB consumption estimating own-price, cross-price and expenditure elasticities. The Quadratic Almost Ideal Demand System, the synthetic Barten model and the State Adjustment Model were used. Soft drinks were substitutes and fruit juices were complements for most of non-alcoholic beverages. Investigation of a proposed tax on sugar-sweetened beverages revealed the importance of centering attention not only to direct effects but also to indirect effects of taxes on beverage consumption. Finally, we investigated factors affecting nutritional contributions derived from consumption of NAB. Also, we ascertained the impact of the USDA year 2000 Dietary Guidelines for Americans associated with the consumption of NAB. Significant factors affecting caloric and nutrient intake from NAB were price, employment status of household head, region, race, presence of children and the gender of household food manager. Furthermore, we found that USDA nutrition intervention program was successful in reducing caloric and caffeine intake from consumption of NAB. The away-from-home intake of beverages and potential impacts of NAB advertising are not captured in our work. In future work, we plan to address these limitations.

Dharmasena, Kalu Arachchillage Senarath

2010-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "forecast future demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

General Electric Uses an Integrated Framework for Product Costing, Demand Forecasting, and Capacity Planning of New Photovoltaic Technology Products  

Science Conference Proceedings (OSTI)

General Electric (GE) Energy's nascent solar business has revenues of over $100 million, expects those revenues to grow to over $1 billion in the next three years, and has plans to rapidly grow the business beyond this period. GE Global Research (GEGR), ... Keywords: capital budgeting, cost analysis, facilities planning, forecasting, mathematical programming, risk

Bex George Thomas; Srinivas Bollapragada

2010-09-01T23:59:59.000Z

182

STAFF FORECAST OF 2007 PEAK STAFFREPORT  

E-Print Network (OSTI)

CALIFORNIA ENERGY COMMISSION STAFF FORECAST OF 2007 PEAK DEMAND STAFFREPORT June 2006 CEC-400.................................................................................. 9 Sources of Forecast Error....................................................................... .................11 Tables Table 1: Revised versus September 2005 Peak Demand Forecast ......................... 2

183

Comparing Price Forecast Accuracy of Natural Gas Models and Futures Markets  

E-Print Network (OSTI)

energy price fluctuations. In theory, futures market prices summarize privately available informationEnergy; Brookhaven National Laboratory Canadian Energy Research Institute U.S. Energy Information Administration Energy Marketsinformation about future energy prices, including most prominently, energy futures markets.

Wong-Parodi, Gabrielle; Dale, Larry; Lekov, Alex

2005-01-01T23:59:59.000Z

184

Comparison of AEO 2007 Natural Gas Price Forecast to NYMEX Futures Prices  

E-Print Network (OSTI)

Daily price history of 1st-nearby NYMEX natural gas futuresNatural Gas Futures Prices Figure 1 focuses on the historythe daily history of the average 5-year natural gas futures

Bolinger, Mark; Wiser, Ryan

2006-01-01T23:59:59.000Z

185

Material World: Forecasting Household Appliance Ownership in a Growing Global Economy  

E-Print Network (OSTI)

and V. Letschert (2005). Forecasting Electricity Demand in8364 Material World: Forecasting Household ApplianceMcNeil, 2008). Forecasting Diffusion Forecasting Variables

Letschert, Virginie

2010-01-01T23:59:59.000Z

186

Development of a commercial-sector data base and forecasting model for electricity usage and demand. Volume I. Preliminary model specification. [Description of subprograms BEHAV, DEMAND, ECON, ENER, and INGEN  

SciTech Connect

This is the first of twelve major technical reports under the Commission's contract with Hittman Associates. The contract will lead to the development of a data base on commercial space, and the development of a model to forecast electricity usage and demand. This report presents a preliminary specification of the model to be developed. The model being developed combines econometric and engineering approaches, and consists of five subprograms and an overall executing program. The first subprogram forecasts the stock of commercial space, based on employment data and other economic inputs. It also distinguishes among various types of commercial space, and breaks the commercial space into segments according to fuels for various end uses, such as heating, cooling, etc. The second subprogram uses detailed building-survey data to specify a typical, or characteristic building for each unique type of floorspace considered in the study. The third subprogram calculates monthly electricity usage for the typical buildings specified, using standard engineering techniques, and then scales up the electricity use for each building type according to the amount of space, of that type, in the entire building stock. The fourth subprogram performs a similar function, but produces hourly electricity demands, rather than monthly electricity usage. The fifth, and final subprogram adjusts the energy usage and demand values calculated to simulate the impact of certain economic conditions or policy measures. The report presents a flow chart for each subprogram, and a table of inputs and outputs required for each. The logic, structure, flow, and information transfer of each is described.

1980-02-01T23:59:59.000Z

187

Free World energy survey: historical overview and long-term forecast  

SciTech Connect

This report gives a historical overview of international energy markets from the 1950s to date, and an analysis of future energy prices, economic growth, and potential supply instabilities. Forecasts of energy demand by region and fuel type are provided.

1983-01-01T23:59:59.000Z

188

Ensemble-based methods for forecasting census in hospital units  

E-Print Network (OSTI)

P, Fitzgerald G: Regression forecasting of patient admissionapproach to modeling and forecasting demand in the emergencySJ, Haug PJ, Snow GL: Forecasting daily patient volumes in

Koestler, Devin C; Ombao, Hernando; Bender, Jesse

2013-01-01T23:59:59.000Z

189

Comparison of AEO 2008 Natural Gas Price Forecast to NYMEX Futures Prices  

E-Print Network (OSTI)

Daily price history of 1st-nearby NYMEX natural gas futuresthe daily history of the average 5-year natural gas futuresNatural Gas Futures Prices F igure 1 focuses on the history

Bolinger, Mark

2008-01-01T23:59:59.000Z

190

Comparison of AEO 2006 Natural Gas Price Forecast to NYMEX Futures Prices  

E-Print Network (OSTI)

Daily price history of 1st-nearby NYMEX natural gas futuresNatural Gas Futures Prices F igure 1 focuses on the historynatural gas prices. Figure 1 shows the daily price history

Bolinger, Mark; Wiser, Ryan

2005-01-01T23:59:59.000Z

191

Comparing Price Forecast Accuracy of Natural Gas Models and Futures Markets  

E-Print Network (OSTI)

Appendix A.1 Natural Gas Price Data for Futures Market andSTEO Error A.1 Natural Gas Price Data for Futures Market andforecasts for natural gas prices as reported by the Energy

Wong-Parodi, Gabrielle; Dale, Larry; Lekov, Alex

2005-01-01T23:59:59.000Z

192

Demand responsive programs - an emerging resource for competitive electricity markets?  

E-Print Network (OSTI)

difference between Strike Price & forecast wholesale priceon day-ahead forecast of demand & price Wholesale utilitiesday-of forecast, or actual hourly spot price. A quick

Heffner, Dr. Grayson C.; Goldman, Charles A.

2001-01-01T23:59:59.000Z

193

Constraints on primordial non-Gaussianity from WMAP7 and luminous red galaxies power spectrum and forecast for future surveys  

Science Conference Proceedings (OSTI)

We place new constraints on the primordial local non-Gaussianity parameter f{sub NL} using recent cosmic microwave background anisotropy and galaxy clustering data. We model the galaxy power spectrum according to the halo model, accounting for a scale-dependent bias correction proportional to f{sub NL}/k{sup 2}. We first constrain f{sub NL} in a full 13 parameters analysis that includes 5 parameters of the halo model and 7 cosmological parameters. Using the WMAP7 CMB data and the SDSS DR4 galaxy power spectrum, we find f{sub NL}=171{sub -139}{sup +140} at 68% C.L. and -69forecast the constraints on f{sub NL} from future surveys as EUCLID and from CMB missions as Planck showing that their combined analysis could detect f{sub NL{approx}}5.

De Bernardis, Francesco [Physics Department and INFN, Universita di Roma 'La Sapienza', Ple Aldo Moro 2, 00185, Rome (Italy); Center for Cosmology, Department of Physics and Astronomy, University of California Irvine, Irvine, California 92697 (United States); Serra, Paolo; Cooray, Asantha [Center for Cosmology, Department of Physics and Astronomy, University of California Irvine, Irvine, California 92697 (United States); Melchiorri, Alessandro [Physics Department and INFN, Universita di Roma 'La Sapienza', Ple Aldo Moro 2, 00185, Rome (Italy)

2010-10-15T23:59:59.000Z

194

Forecasting future economic growth : the term structure of interest rates, volatility and inflation as leading indicators  

E-Print Network (OSTI)

The broad literature documents the empirical regularity that slope of the term structure of interest rates is a reliable predictor of future real economic activity. Steeper slopes presage increasing growth, and downward ...

Khait, Maria

2012-01-01T23:59:59.000Z

195

Comparing Price Forecast Accuracy of Natural Gas Models and Futures Markets  

E-Print Network (OSTI)

Update on Petroleum, Natural Gas, Heating Oil and Gasoline.of the Market for Natural Gas Futures. Energy Journal 16 (Modeling Forum. 2003. Natural Gas, Fuel Diversity and North

Wong-Parodi, Gabrielle; Dale, Larry; Lekov, Alex

2005-01-01T23:59:59.000Z

196

Assessing the impacts of future demand for saline groundwater on commercial deployment of CCS in the United States  

SciTech Connect

This paper provides a preliminary assessment of the potential impact that future demand for groundwater might have on the commercial deployment of carbon dioxide capture and storage (CCS) technologies within the United States. A number of regions within the U.S. have populations, agriculture and industries that are particularly dependent upon groundwater. Moreover, some key freshwater aquifers are already over-utilized or depleted, and others are likely to be moving toward depletion as demand grows. The need to meet future water demands may lead some parts of the nation to consider supplementing existing supplies with lower quality groundwater resources, including brackish waters that are currently not considered sources of drinking water but which could provide supplemental water via desalination. In some areas, these same deep saline-filled geologic formations also represent possible candidate carbon dioxide (CO2) storage reservoirs. The analysis presented here suggests that future constraints on CCS deployment due to potential needs to supplement conventional water supplies by desalinating deeper and more brackish waters are likely to be necessary only in limited regions across the country, particularly in areas that are already experiencing water stress.

Davidson, Casie L.; Dooley, James J.; Dahowski, Robert T.

2009-04-20T23:59:59.000Z

197

Context-aware parameter estimation for forecast models in the energy domain  

Science Conference Proceedings (OSTI)

Continuous balancing of energy demand and supply is a fundamental prerequisite for the stability and efficiency of energy grids. This balancing task requires accurate forecasts of future electricity consumption and production at any point in time. For ... Keywords: energy, forecasting, maintenance, parameter estimation

Lars Dannecker; Robert Schulze; Matthias Bhm; Wolfgang Lehner; Gregor Hackenbroich

2011-07-01T23:59:59.000Z

198

Nambe Pueblo Water Budget and Forecasting model.  

SciTech Connect

This report documents The Nambe Pueblo Water Budget and Water Forecasting model. The model has been constructed using Powersim Studio (PS), a software package designed to investigate complex systems where flows and accumulations are central to the system. Here PS has been used as a platform for modeling various aspects of Nambe Pueblo's current and future water use. The model contains three major components, the Water Forecast Component, Irrigation Scheduling Component, and the Reservoir Model Component. In each of the components, the user can change variables to investigate the impacts of water management scenarios on future water use. The Water Forecast Component includes forecasting for industrial, commercial, and livestock use. Domestic demand is also forecasted based on user specified current population, population growth rates, and per capita water consumption. Irrigation efficiencies are quantified in the Irrigated Agriculture component using critical information concerning diversion rates, acreages, ditch dimensions and seepage rates. Results from this section are used in the Water Demand Forecast, Irrigation Scheduling, and the Reservoir Model components. The Reservoir Component contains two sections, (1) Storage and Inflow Accumulations by Categories and (2) Release, Diversion and Shortages. Results from both sections are derived from the calibrated Nambe Reservoir model where historic, pre-dam or above dam USGS stream flow data is fed into the model and releases are calculated.

Brainard, James Robert

2009-10-01T23:59:59.000Z

199

Forecast constraints on cosmic strings from future CMB, pulsar timing and gravitational wave direct detection experiments  

E-Print Network (OSTI)

We study future observational constraints on cosmic string parameters from various types of next-generation experiments: direct detection of gravitational waves (GWs), pulsar timing array, and the cosmic microwave background (CMB). We consider both GW burst and stochastic GW background searches by ground- and space-based interferometers as well as GW background detection in pulsar timing experiments. We also consider cosmic string contributions to the CMB temperature and polarization anisotropies. These different types of observations offer independent probes of cosmic strings and may enable us to investigate cosmic string properties if the signature is detected. In this paper, we evaluate the power of future experiments to constrain cosmic string parameters, such as the string tension Gmu, the initial loop size alpha, and the reconnection probability p, by performing Fisher information matrix calculations. We find that combining the information from the different types of observations breaks parameter degeneracies and provides more stringent constraints on the parameters. We also find future space-borne interferometers independently provide a highly precise determination of the parameters.

Sachiko Kuroyanagi; Koichi Miyamoto; Toyokazu Sekiguchi; Keitaro Takahashi; Joseph Silk

2012-10-10T23:59:59.000Z

200

Demand-side-management: DSM must create a future as a profit center  

Science Conference Proceedings (OSTI)

As utilities prepare for more direct competition, demand-side management (DSM) must also become competitive to survive. DSM has traditionally been a loss leader for utilities - good public relations but expensive. In the coming years, DSM must turn that around and become a source of revenue to continue to flourish. DSm must become a profit center, contributing not only to a positive public image for the utility and appeasing government mandates, but assisting in keeping the utility on the black side of the ledger books. This article examines Central Vermont Public Service`s SmartEnergy subsidiary and it`s GreenPlugs program.

Chambers, A.

1995-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "forecast future demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

FORECASTING COSMOLOGICAL PARAMETER CONSTRAINTS FROM NEAR-FUTURE SPACE-BASED GALAXY SURVEYS  

Science Conference Proceedings (OSTI)

The next generation of space-based galaxy surveys is expected to measure the growth rate of structure to a level of about one percent over a range of redshifts. The rate of growth of structure as a function of redshift depends on the behavior of dark energy and so can be used to constrain parameters of dark energy models. In this work, we investigate how well these future data will be able to constrain the time dependence of the dark energy density. We consider parameterizations of the dark energy equation of state, such as XCDM and {omega}CDM, as well as a consistent physical model of time-evolving scalar field dark energy, {phi}CDM. We show that if the standard, specially flat cosmological model is taken as a fiducial model of the universe, these near-future measurements of structure growth will be able to constrain the time dependence of scalar field dark energy density to a precision of about 10%, which is almost an order of magnitude better than what can be achieved from a compilation of currently available data sets.

Pavlov, Anatoly; Ratra, Bharat [Department of Physics, Kansas State University, 116 Cardwell Hall, Manhattan, KS 66506 (United States); Samushia, Lado, E-mail: pavlov@phys.ksu.edu, E-mail: ratra@phys.ksu.edu, E-mail: lado.samushia@port.ac.uk [Institute of Cosmology and Gravitation, University of Portsmouth, Dennis Sciama Building, Portsmouth PO1 3FX (United Kingdom)

2012-11-20T23:59:59.000Z

202

Hawaii Energy Strategy: Program guide. [Contains special sections on analytical energy forecasting, renewable energy resource assessment, demand-side energy management, energy vulnerability assessment, and energy strategy integration  

SciTech Connect

The Hawaii Energy Strategy program, or HES, is a set of seven projects which will produce an integrated energy strategy for the State of Hawaii. It will include a comprehensive energy vulnerability assessment with recommended courses of action to decrease Hawaii's energy vulnerability and to better prepare for an effective response to any energy emergency or supply disruption. The seven projects are designed to increase understanding of Hawaii's energy situation and to produce recommendations to achieve the State energy objectives of: Dependable, efficient, and economical state-wide energy systems capable of supporting the needs of the people, and increased energy self-sufficiency. The seven projects under the Hawaii Energy Strategy program include: Project 1: Develop Analytical Energy Forecasting Model for the State of Hawaii. Project 2: Fossil Energy Review and Analysis. Project 3: Renewable Energy Resource Assessment and Development Program. Project 4: Demand-Side Management Program. Project 5: Transportation Energy Strategy. Project 6: Energy Vulnerability Assessment Report and Contingency Planning. Project 7: Energy Strategy Integration and Evaluation System.

1992-09-01T23:59:59.000Z

203

Abstract--Forecasting of future electricity demand is very important for decision making in power system operation and  

E-Print Network (OSTI)

. In the 20 years prior to the Northwest Power Act, regional electrical loads were growing at 5 percent per predicted 2000 electricity loads of 23,400 average megawatts (average of medium-low and medium, and regional electricity loads in that year are estimated to have been 21,200. The third decade following

Ducatelle, Frederick

204

Annual Energy Outlook Forecast Evaluation 2005  

Gasoline and Diesel Fuel Update (EIA)

Forecast Evaluation 2005 Forecast Evaluation 2005 Annual Energy Outlook Forecast Evaluation 2005 Annual Energy Outlook Forecast Evaluation 2005 * Then Energy Information Administration (EIA) produces projections of energy supply and demand each year in the Annual Energy Outlook (AEO). The projections in the AEO are not statements of what will happen but of what might happen, given the assumptions and methodologies used. The projections are business-as-usual trend projections, given known technology, technological and demographic trends, and current laws and regulations. Thus, they provide a policy-neutral reference case that can be used to analyze policy initiatives. EIA does not propose or advocate future legislative and regulatory changes. All laws are assumed to remain as currently enacted; however, the impacts of emerging regulatory changes, when defined, are reflected.

205

Demand Forecast INTRODUCTION AND SUMMARY  

E-Print Network (OSTI)

: · natural gas-fired reciprocating engines, gas turbines, microturbines, and fuel cells; · photovoltaics, waste heat or solar heat; · hot-water and space-heating loads that can be met by recovered heat: Microturbine, FC: Fuel cell, HX: Heat exchanger. Technologies with HX can utilize waste heat for heating

206

1993 Pacific Northwest Loads and Resources Study, Pacific Northwest Economic and Electricity Use Forecast, Technical Appendix: Volume 1.  

Science Conference Proceedings (OSTI)

This publication documents the load forecast scenarios and assumptions used to prepare BPA`s Whitebook. It is divided into: intoduction, summary of 1993 Whitebook electricity demand forecast, conservation in the load forecast, projection of medium case electricity sales and underlying drivers, residential sector forecast, commercial sector forecast, industrial sector forecast, non-DSI industrial forecast, direct service industry forecast, and irrigation forecast. Four appendices are included: long-term forecasts, LTOUT forecast, rates and fuel price forecasts, and forecast ranges-calculations.

United States. Bonneville Power Administration.

1994-02-01T23:59:59.000Z

207

Geothermal resources, present and future demand for power and legislation in the State of Wyoming. Public information series 1  

DOE Green Energy (OSTI)

Data on thermal springs and wells in Wyoming, exclusive of Yellowstone Park, are summarized. The presentation includes a map showing general spring and well locations outside the Park and lands in Wyoming that have been classified as being prospectively of geothermal value. Locations and geothermal data on the springs and wells are tabulated and a short table of chemical analyses of spring waters is also presented. Although thermal data constitute most of the material presented, the present and future demands for electrical energy in Wyoming are also summarized, and state legislation pertaining to exploration near thermal springs is reviewed. A list of state and federal agencies is included so that interested parties may obtain copies of pertinent legislation and information on the status of land.

Decker, E.R.

1976-03-01T23:59:59.000Z

208

ORNL integrated forecasting system  

SciTech Connect

This paper describes the integrated system for forecasting electric energy and load. In the system, service area models of electrical energy (kWh) and load distribution (minimum and maximum loads and load duration curve) are linked to a state-level model of electrical energy (kWh). Thus, the service area forecasts are conditional upon the state-level forecasts. Such a linkage reduces considerably the data requirements for modeling service area electricity demand.

Rizy, C.G.

1983-01-01T23:59:59.000Z

209

Economic Value of Seasonal Climate Forecasts for Agriculture: Review of Ex-Ante Assessments and Recommendations for Future Research  

Science Conference Proceedings (OSTI)

Advanced information in the form of seasonal climate forecasts has the potential to improve farmers decision making, leading to increases in farm profits. Interdisciplinary initiatives seeking to understand and exploit the potential benefits of ...

Francisco J. Meza; James W. Hansen; Daniel Osgood

2008-05-01T23:59:59.000Z

210

Orphan drugs : future viability of current forecasting models, in light of impending changes to influential market factors  

E-Print Network (OSTI)

Interviews were conducted to establish a baseline for how orphan drug forecasting is currently undertaken by financial market and industry analysts with the intention of understanding the variables typically accounted for ...

Gottlieb, Joshua

2011-01-01T23:59:59.000Z

211

Synoptic Forecasting of the Oceanic Mixed Layer Using the Navy's Operational Environmental Data Base: Present Capabilities and Future Applications  

Science Conference Proceedings (OSTI)

A synoptic forecast model of the oceanic mixed layer has been developed for operational use at the U.S. Navy's Fleet Numerical Oceanography Center (FNOC), Monterey, Calif. The potential success of this model depends critically on the quality of ...

R. Michael Clancy; Paul J. Martin

1981-06-01T23:59:59.000Z

212

Factors Driving Prices & Forecast  

Gasoline and Diesel Fuel Update (EIA)

This spread is a function of the balance between demand and fresh supply (production and net imports). Finally I will discuss the current forecast for distillate prices this winter...

213

How Do You Like Your Weather?: Using Weather Forecast Data to Improve Short-Term Load Forecasts  

Science Conference Proceedings (OSTI)

This document provides a quick overview of weather forecasts as a data issue in the development of electricity demand forecasts. These are three sections in this Brief: o reasons behind the rise in interest in using weather forecasts in electricity forecasting models, o an overview of what some utilities are doing to evaluate weather forecasts, and o a resource list of weather forecast providers.

2001-09-28T23:59:59.000Z

214

Forecast Correlation Coefficient Matrix of Stock Returns in Portfolio Analysis  

E-Print Network (OSTI)

Unadjusted Forecasts . . . . . . . . . . . . . . . .Forecasts . . . . . . . . . . . . . . . . . . . . . . . . . .Unadjusted Forecasts . . . . . . . . . . . . . . . . . . .

Zhao, Feng

2013-01-01T23:59:59.000Z

215

Application of DSM evaluation studies to utility forecasting and planning  

SciTech Connect

Utilities and their customers have made substantial investments in utility demand-side management (DSM) programs. These DSM programs also represent a substantial electricity resource. DSM program performance has been studied more systematically in recent years than over any previous period. DSM program evaluations are traditionally targeted to meet the program manager`s need for information on program costs and performance and, more recently, to verify savings to regulators for incentive awards and lost revenue recovery. Yet evaluations may also be used to produce results relevant to utility forecasting and planning. Applying evaluation results is especially important for utilities with substantial current and future commitments to acquiring demand-side resources. This report discusses the application of evaluation results to utility forecasting and planning. The report has three objectives. First, we identify what demand forecasters, DSM forecasters, and resource planners want to learn from evaluations. Second, we identify and describe the major obstacles and problems associated with applying evaluation results and illustrate many of these issues through a specific evaluation application exercise. Finally, we suggest approaches for addressing these major problems. The report summarizes results from interviews with utilities, regulators, and consultants to determine how the industry currently applies evaluation results in forecasting and planning. The report also includes results from case studies of Sacramento Municipal Utility District and Southern California Edison Company, utilities with large DSM programs and active evaluation efforts. Finally, we draw on a specific application exercise in which we used a set of impact evaluations to revise a utility DSM forecast.

Baxter, L.W.

1995-02-01T23:59:59.000Z

216

Business forecasting methods  

E-Print Network (OSTI)

Forecasting is a common statistical task in business, where it helps inform decisions about scheduling of production, transportation and personnel, and provides a guide to long-term strategic planning. However, business forecasting is often done poorly and is frequently confused with planning and goals. They are three different things. Forecasting is about predicting the future as accurately as possible, given all the information available including historical data and knowledge of any future events that might impact the forecasts. Goals are what you would like to happen. Goals should be linked to forecasts and plans, but this does not always occur. Too often, goals are set without any plan for how to achieve them, and no forecasts for whether they are realistic. Planning is a response to forecasts and goals. Planning involves determining the appropriate actions that are required to make your forecasts match your goals. Forecasting should be an integral part of the decision-making activities of management, as it can play an important role in many areas of a company. Modern organizations require short-, medium- and long-term forecasts, depending on the specific application.

Rob J Hyndman

2009-01-01T23:59:59.000Z

217

Forecast Technical Document Forecast Types  

E-Print Network (OSTI)

Forecast Technical Document Forecast Types A document describing how different forecast types are implemented in the 2011 Production Forecast system. Tom Jenkins Robert Matthews Ewan Mackie Lesley Halsall #12;PF2011 ­ Forecast Types Background Different `types' of forecast are possible for a specified area

218

Update On The Wholesale Electricity Price Forecast & Modeling Results  

E-Print Network (OSTI)

Forecast Base Case includes § Medium Demand Forecast § Medium Natural Gas Price Forecast § Federal CO2 Rathdrum Power LLC-ID 4) CO2 Emissions - 2009 Selected Natural Gas Plants Plant level, emission percentage § Significantly lower electricity prices than 6th Plan Forecast, due to lower demand, lower gas prices, deferred

219

RESERVOIR INFLOW FORECASTING USING NEURAL NETWORKS CHANDRASHEKAR SUBRAMANIAN  

E-Print Network (OSTI)

or over predicting electricity demand due to poor weather forecasts is several hundred million dollars outages that many in the area experienced. Deep Thunder can also improve generation-side load forecasting by providing high-resolution weather forecast data for use in electricity demand forecast models. Integrating

Manry, Michael

220

Electricity demand-side management for an energy efficient future in China : technology options and policy priorities  

E-Print Network (OSTI)

The main objective of this research is to identify robust technology and policy options which achieve substantial reductions in electricity demand in China's Shandong Province. This research utilizes a scenario-based ...

Cheng, Chia-Chin

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "forecast future demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

RACORO Forecasting  

NLE Websites -- All DOE Office Websites (Extended Search)

Weather Briefings Observed Weather Cloud forecasting models BUFKIT forecast soundings + guidance from Norman NWS enhanced pages and discussions NAM-WRF updated...

222

Promotional forecasting in the grocery retail business  

E-Print Network (OSTI)

Predicting customer demand in the highly competitive grocery retail business has become extremely difficult, especially for promotional items. The difficulty in promotional forecasting has resulted from numerous internal ...

Koottatep, Pakawkul

2006-01-01T23:59:59.000Z

223

Forecasting market prices in a supply chain game q Christopher Kiekintveld a,*, Jason Miller b  

E-Print Network (OSTI)

), the simulation day, and the linear trend of selling prices from the previous ten days. For predicting future prices, we used the same set of features with the addition of the estimated customer demand trend (s). 4Forecasting market prices in a supply chain game q Christopher Kiekintveld a,*, Jason Miller b

Wellman, Michael P.

224

Future gas consumption in the United States. [Monograph  

SciTech Connect

The ninth biennial market report on consumption and forecasts of future demand provides a planning tool for consumers and government officials as well as for the natural-gas industry. The report summarizes the actual 1980 consumption by market sector, notes changes in consumption patterns and market restrictions, and presents an operational forecast of sales to each sector through 1995 and in each of eleven regions surveyed by the Gas Requirements Committee. 9 references, 4 figures, 11 tables. (DCK)

1982-01-01T23:59:59.000Z

225

Assumptions to the Annual Energy Outlook - Residential Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Residential Demand Module Residential Demand Module Assumption to the Annual Energy Outlook Residential Demand Module The NEMS Residential Demand Module forecasts future residential sector energy requirements based on projections of the number of households and the stock, efficiency, and intensity of use of energy-consuming equipment. The Residential Demand Module projections begin with a base year estimates of the housing stock, the types and numbers of energy-consuming appliances servicing the stock, and the “unit energy consumption” by appliance (or UEC—in million Btu per household per year). The projection process adds new housing units to the stock, determines the equipment installed in new units, retires existing housing units, and retires and replaces appliances. The primary exogenous drivers for the module are housing starts by type (single-family, multifamily and mobile homes) and Census Division and prices for each energy source for each of the nine Census Divisions (see Figure 5). The Residential Demand Module also requires projections of available equipment and their installed costs over the forecast horizon. Over time, equipment efficiency tends to increase because of general technological advances and also because of Federal and/or state efficiency standards. As energy prices and available equipment changes over the forecast horizon, the module includes projected changes to the type and efficiency of equipment purchased as well as projected changes in the usage intensity of the equipment stock.

226

Forecasting Forecast Skill  

Science Conference Proceedings (OSTI)

We have shown that it is possible to predict the skill of numerical weather forecastsa quantity which is variable from day to day and region to region. This has been accomplished using as predictor the dispersion (measured by the average ...

Eugenia Kalnay; Amnon Dalcher

1987-02-01T23:59:59.000Z

227

Forecasting exurban development to evaluate the influence of land-use policies on wildland and farmland conservation  

E-Print Network (OSTI)

Planning Vol 1 (2005) 4057 Forecasting exurban developmentof general plans for forecasting future development can be

Merenlender, Adina M.; Brooks, Colin; Shabazian, David; Gao, Shengyi; Johnston, Robert A.

2005-01-01T23:59:59.000Z

228

The role of building technologies in reducing and controlling peak electricity demand  

E-Print Network (OSTI)

AND CONTROLLING PEAK ELECTRICITY DEMAND Jonathan Koomey* andData to Improve Electricity Demand ForecastsFinal Report.further research. Electricity demand varies constantly. At

Koomey, Jonathan; Brown, Richard E.

2002-01-01T23:59:59.000Z

229

Uses and Applications of Climate Forecasts for Power Utilities  

Science Conference Proceedings (OSTI)

The uses and potential applications of climate forecasts for electric and gas utilities were assessed 1) to discern needs for improving climate forecasts and guiding future research, and 2) to assist utilities in making wise use of forecasts. In-...

Stanley A. Changnon; Joyce M. Changnon; David Changnon

1995-05-01T23:59:59.000Z

230

Forecast Combinations  

E-Print Network (OSTI)

Forecast combinations have frequently been found in empirical studies to produce better forecasts on average than methods based on the ex-ante best individual forecasting model. Moreover, simple combinations that ignore correlations between forecast errors often dominate more refined combination schemes aimed at estimating the theoretically optimal combination weights. In this chapter we analyze theoretically the factors that determine the advantages from combining forecasts (for example, the degree of correlation between forecast errors and the relative size of the individual models forecast error variances). Although the reasons for the success of simple combination schemes are poorly understood, we discuss several possibilities related to model misspecification, instability (non-stationarities) and estimation error in situations where thenumbersofmodelsislargerelativetothe available sample size. We discuss the role of combinations under asymmetric loss and consider combinations of point, interval and probability forecasts. Key words: Forecast combinations; pooling and trimming; shrinkage methods; model misspecification, diversification gains

Allan Timmermann; Jel Codes C

2006-01-01T23:59:59.000Z

231

Load forecast and treatment of conservation  

E-Print Network (OSTI)

Load forecast and treatment of conservation July 28th 2010 Resource Adequacy Technical Committee conservation is implicitly incorporated in the short-term demand forecast? #12;3 Incorporating conservation in the short-term model Our short-term model is an econometric model which can not explicitly forecast

232

Commercial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

4 4 The commercial module forecasts consumption by fuel 15 at the Census division level using prices from the NEMS energy supply modules, and macroeconomic variables from the NEMS Macroeconomic Activity Module (MAM), as well as external data sources (technology characterizations, for example). Energy demands are forecast for ten end-use services 16 for eleven building categories 17 in each of the nine Census divisions (see Figure 5). The model begins by developing forecasts of floorspace for the 99 building category and Census division combinations. Next, the ten end-use service demands required for the projected floorspace are developed. The electricity generation and water and space heating supplied by distributed generation and combined heat and power technologies are projected. Technologies are then

233

Commercial Sector Demand Module  

Reports and Publications (EIA)

Documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Commercial Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated through the synthesis and scenario development based on these components.

Kevin Jarzomski

2012-11-15T23:59:59.000Z

234

Commercial Sector Demand Module  

Reports and Publications (EIA)

Documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Commercial Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated through the synthesis and scenario development based on these components.

Kevin Jarzomski

2013-10-10T23:59:59.000Z

235

AN ANALYSIS OF FORECAST BASED REORDER POINT POLICIES : THE BENEFIT  

E-Print Network (OSTI)

AN ANALYSIS OF FORECAST BASED REORDER POINT POLICIES : THE BENEFIT OF USING FORECASTS Mohamed Zied Ch^atenay-Malabry Cedex, France Abstract: In this paper, we analyze forecast based inventory control policies for a non-stationary demand. We assume that forecasts and the associated uncertainties are given

Paris-Sud XI, Université de

236

Future Power Systems 20: The Smart Enterprise, its Objective...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0: The Smart Enterprise, its Objective and Forecasting. Future Power Systems 20: The Smart Enterprise, its Objective and Forecasting. Future Power Systems 20: The Smart Enterprise,...

237

Regionalization in Fine-Grid GFS MOS 6-h Quantitative Precipitation Forecasts  

Science Conference Proceedings (OSTI)

The recent emergence of the National Digital Forecast Database as the flagship product of the National Weather Service has resulted in an increased demand for forecast guidance products on fine-mesh grids. Unfortunately, fine-grid forecasts with ...

Jerome P. Charba; Frederick G. Samplatsky

2011-01-01T23:59:59.000Z

238

Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 12 manufacturing and 6 nonmanufacturing industries. The manufacturing industries are further subdivided into the energy-intensive manufacturing industries and nonenergy-intensive manufacturing industries. The manufacturing industries are modeled through the use of a detailed process flow or end use accounting procedure, whereas the nonmanufacturing industries are modeled with substantially less detail (Table 17). The Industrial Demand Module forecasts energy consumption at the four Census region level (see Figure 5); energy consumption at the Census Division level is estimated by allocating the Census region forecast using the SEDS 27 data.

239

Stock returns and the dispersion in earnings forecasts, Working Paper No  

E-Print Network (OSTI)

Abstract: The efficient market hypothesis based on homogeneous expectations implies that future stock returns are unpredictable. However, the forecastability of stock returns has been well documented in a substantial literature. This paper introduces a new forecasting variable, dispersion in analysts earnings forecasts. The implication from this finding is not only that we have another piece of evidence that stock returns are predictable, but also that alternative models should be used to explain movements of stock prices. Hence, this paper derives a relation between the dispersion in forecasts and future stock returns based on Harrison and Kreps (1978) and shows that the dispersion in forecasts exerts its own positive effect on demand in the market. Furthermore, this paper shows empirically that the dispersion in expectations has particularly strong predictive power for future stock returns at intermediate horizons (between 24 months and 43 months) and that it contains information about future stock returns aside from the information contained in other variables. In addition, the direction of predictive power from the dispersion for future stock returns is consistent with the derived relation from Harrison and Kreps (1978). This paper also shows that most of the movements in dispersion cannot be explained by other variables, such as common financial indicators, macroeconomic variables, market volatility, or non-economic events. Finally, Monte Carlo simulation shows that finite sample biases in long-horizon regressions using the dispersion do not seem so serious.

Cheolbeom Park

2001-01-01T23:59:59.000Z

240

Nuclear energy acceptance and potential role to meet future energy demand. Which technical/scientific achievements are needed?  

SciTech Connect

25 years after Chernobyl, the Fukushima disaster has changed the perspectives of nuclear power. The disaster has shed a negative light on the independence, reliability and rigor of the national nuclear regulator and plant operator and the usefulness of the international IAEA guidelines on nuclear safety. It has become clear that, in the light of the most severe earthquake in the history of Japan, the plants at Fukushima Daiichi were not adequately protected against tsunamis. Nuclear acceptance has suffered enormously and has changed the perspectives of nuclear energy dramatically in countries that have a very risk-sensitive population, Germany is an example. The paper analyses the reactions in major countries and the expected impact on future deployment of reactors and on R and D activities. On the positive side, the disaster has demonstrated a remarkable robustness of most of the 14 reactors closest to the epicentre of the Tohoku Seaquake although not designed to an event of level 9.0. Public acceptance can only be regained with a rigorous and worldwide approach towards inherent reactor safety and design objectives that limit the impact of severe accidents to the plant itself (like many of the new Gen III reactors). A widespread release of radioactivity and the evacuation (temporary or permanent) of the population up to 30 km around a facility are simply not acceptable. Several countries have announced to request more stringent international standards for reactor safety. The IAEA should take this move forward and intensify and strengthen the different peer review mission schemes. The safety guidelines and peer reviews should in fact become legally binding for IAEA members. The paper gives examples of the new safety features developed over the last 20 years and which yield much safer reactors with lesser burden to the environment under severe accident conditions. The compatibility of these safety systems with the current concepts for fusion-fission hybrids, which have recently been proposed for energy production, is critically reviewed. There are major challenges remaining that are shortly outlined. Scientific/technical achievements that are required in the light of the Fukushima accident are highlighted.

Schenkel, Roland [European Commission, Joint Research Centre, Institute for Transuranium Elements, Hermann-von-Helmholtz-Platz 1,76344 Eggenstein-Leopoldshafen (Germany)

2012-06-19T23:59:59.000Z

Note: This page contains sample records for the topic "forecast future demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Beyond Renewable Portfolio Standards: An Assessment of Regional Supply and Demand Conditions Affecting the Future of Renewable Energy in the West; Executive Summary  

NLE Websites -- All DOE Office Websites (Extended Search)

National Renewable Energy Laboratory 15013 Denver West Parkway Golden, CO 80401 303-275-3000 * www.nrel.gov Beyond Renewable Portfolio Standards: An Assessment of Regional Supply and Demand Conditions Affecting the Future of Renewable Energy in the West Executive Summary David J. Hurlbut, Joyce McLaren, and Rachel Gelman National Renewable Energy Laboratory Prepared under Task No. AROE.2000 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. Technical Report NREL/TP-6A20-57830 August 2013 Contract No. DE-AC36-08GO28308

242

Beyond Renewable Portfolio Standards: An Assessment of Regional Supply and Demand Conditions Affecting the Future of Renewable Energy in the West  

NLE Websites -- All DOE Office Websites (Extended Search)

(This page intentionally left blank) (This page intentionally left blank) National Renewable Energy Laboratory 15013 Denver West Parkway Golden, CO 80401 303-275-3000 * www.nrel.gov Beyond Renewable Portfolio Standards: An Assessment of Regional Supply and Demand Conditions Affecting the Future of Renewable Energy in the West David J. Hurlbut, Joyce McLaren, and Rachel Gelman National Renewable Energy Laboratory Prepared under Task No. AROE.2000 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. Technical Report NREL/TP-6A20-57830 August 2013 Contract No. DE-AC36-08GO28308

243

Post-construction evaluation of traffic forecast accuracy Pavithra Parthasarathi , David Levinson  

E-Print Network (OSTI)

Post-construction evaluation of traffic forecast accuracy Pavithra Parthasarathi ?, David Levinson: Transportation demand forecasting Project evaluation Forecast accuracy Model evaluation a b s t r a c t This research evaluates the accuracy of demand forecasts using a sample of recently-completed projects

Levinson, David M.

244

The National Energy Modeling System: An Overview 2000 - Residential Demand  

Gasoline and Diesel Fuel Update (EIA)

residential demand module (RDM) forecasts energy consumption by Census division for seven marketed energy sources plus solar and geothermal energy. RDM is a structural model and its forecasts are built up from projections of the residential housing stock and of the energy-consuming equipment contained therein. The components of RDM and its interactions with the NEMS system are shown in Figure 5. NEMS provides forecasts of residential energy prices, population, and housing starts, which are used by RDM to develop forecasts of energy consumption by fuel and Census division. residential demand module (RDM) forecasts energy consumption by Census division for seven marketed energy sources plus solar and geothermal energy. RDM is a structural model and its forecasts are built up from projections of the residential housing stock and of the energy-consuming equipment contained therein. The components of RDM and its interactions with the NEMS system are shown in Figure 5. NEMS provides forecasts of residential energy prices, population, and housing starts, which are used by RDM to develop forecasts of energy consumption by fuel and Census division. Figure 5. Residential Demand Module Structure RDM incorporates the effects of four broadly-defined determinants of energy consumption: economic and demographic effects, structural effects, technology turnover and advancement effects, and energy market effects. Economic and demographic effects include the number, dwelling type (single-family, multi-family or mobile homes), occupants per household, and location of housing units. Structural effects include increasing average dwelling size and changes in the mix of desired end-use services provided by energy (new end uses and/or increasing penetration of current end uses, such as the increasing popularity of electronic equipment and computers). Technology effects include changes in the stock of installed equipment caused by normal turnover of old, worn out equipment with newer versions which tend to be more energy efficient, the integrated effects of equipment and building shell (insulation level) in new construction, and in the projected availability of even more energy-efficient equipment in the future. Energy market effects include the short-run effects of energy prices on energy demands, the longer-run effects of energy prices on the efficiency of purchased equipment and the efficiency of building shells, and limitations on minimum levels of efficiency imposed by legislated efficiency standards.

245

Assumptions to the Annual Energy Outlook 2002 - Residential Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Residential Demand Module Residential Demand Module The NEMS Residential Demand Module forecasts future residential sector energy requirements based on projections of the number of households and the stock, efficiency, and intensity of use of energy-consuming equipment. The Residential Demand Module projections begin with a base year estimates of the housing stock, the types and numbers of energy-consuming appliances servicing the stock, and the “unit energy consumption” by appliance (or UEC—in million Btu per household per year). The projection process adds new housing units to the stock, determines the equipment installed in new units, retires existing housing units, and retires and replaces appliances. The primary exogenous drivers for the module are housing starts by type (single-family, multifamily and mobile homes) and

246

Assumptions to the Annual Energy Outlook 2001 - Residential Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Residential Demand Module Residential Demand Module The NEMS Residential Demand Module forecasts future residential sector energy requirements based on projections of the number of households and the stock, efficiency, and intensity of use of energy-consuming equipment. The Residential Demand Module projections begin with a base year estimates of the housing stock, the types and numbers of energy-consuming appliances servicing the stock, and the “unit energy consumption” by appliance (or UEC—in million Btu per household per year). The projection process adds new housing units to the stock, determines the equipment installed in new units, retires existing housing units, and retires and replaces appliances. The primary exogenous drivers for the module are housing starts by type (single-family, multifamily and mobile homes) and

247

Uncertainties in forecasting future climate  

SciTech Connect

The increasing atmospheric concentrations of carbon dioxide, methane, chlorofluorocarbons, and other trace gases (collectively, greenhouse gases) pose a three-part challenge: (1) What the changes to atmospheric composition and the climate system will be; (2) What impacts (both detrimental and beneficial) these changes will induce on the biosphere and natural and societal resources; and (3) What the appropriate response, if any, might be when considering the changes themselves, the resulting impacts, and the benefits and other impacts of the activities generating the emissions. This brief summary will address only areas of agreement and areas of uncertainty related to the first challenge.

MacCracken, M.C.

1990-11-01T23:59:59.000Z

248

Demand Response Valuation Frameworks Paper  

E-Print Network (OSTI)

million Market Price Benefits $2.109 billion (PV) None $52PV of a future option to curtail a given load, constructed to reflect forward energy curves as modified by forecast price &

Heffner, Grayson

2010-01-01T23:59:59.000Z

249

DRAFT DRAFT DRAFT Forecasting Electricity Demand  

E-Print Network (OSTI)

prices. With the medium natural gas price assumptions, the Council currently is seeing draft spot market for Northwest smelters. Since electricity prices are related to natural gas prices in the long-term, and high natural gas prices are associated with the high economic growth case, it may now make more sense to assume

250

Demand forecasting for aircraft engine aftermarket  

E-Print Network (OSTI)

In 2006, Pratt and Whitney launched the Global Material Solutions business model aiming to supply spare parts to non-OEM engines with minimum 95% on-time delivery and fill-rate. Lacking essential technical knowledge of the ...

Ho, Kien K. (Kine Kit)

2008-01-01T23:59:59.000Z

251

Geothermal: Sponsored by OSTI -- Consensus forecast of U. S....  

Office of Scientific and Technical Information (OSTI)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - Sponsored by OSTI -- Consensus forecast of U. S. energy supply and demand to the year 2000 Geothermal Technologies Legacy Collection...

252

Western Area Power Administration Starting Forecast Month: Sierra...  

NLE Websites -- All DOE Office Websites (Extended Search)

Starting Forecast Month: Sierra Nevada Region Through Values at Load Center (Tracy Substation) Reg & Res CVP Maximum Capability CVP Energy Generation Peak Project Use Demand...

253

Forecast error metrics for Navy inventory management performance .  

E-Print Network (OSTI)

??This research establishes metrics for determining overall Navy secondary inventory forecasting accuracy when compared to actual demands at the Naval Inventory Control Point (NAVICP). Specifically, (more)

Jackson, Kenneth J.

2011-01-01T23:59:59.000Z

254

Travel Demand Modeling  

SciTech Connect

This chapter describes the principal types of both passenger and freight demand models in use today, providing a brief history of model development supported by references to a number of popular texts on the subject, and directing the reader to papers covering some of the more recent technical developments in the area. Over the past half century a variety of methods have been used to estimate and forecast travel demands, drawing concepts from economic/utility maximization theory, transportation system optimization and spatial interaction theory, using and often combining solution techniques as varied as Box-Jenkins methods, non-linear multivariate regression, non-linear mathematical programming, and agent-based microsimulation.

Southworth, Frank [ORNL; Garrow, Dr. Laurie [Georgia Institute of Technology

2011-01-01T23:59:59.000Z

255

Assumptions to the Annual Energy Outlook 1999 - Residential Demand Module  

Gasoline and Diesel Fuel Update (EIA)

residential.gif (5487 bytes) residential.gif (5487 bytes) The NEMS Residential Demand Module forecasts future residential sector energy requirements based on projections of the number of households and the stock, efficiency, and intensity of use of energy-consuming equipment. The Residential Demand Module projections begin with a base year estimates of the housing stock, the types and numbers of energy-consuming appliances servicing the stock, and the “unit energy consumption” by appliance (or UEC—in million Btu per household per year). The projection process adds new housing units to the stock, determines the equipment installed in new units, retires existing housing units, and retires and replaces appliances. The primary exogenous drivers for the module are housing starts by type (single-family, multifamily and mobile homes) and Census Division and prices for each energy source for each of the nine Census Divisions. The Residential Demand Module also requires projections of available equipment over the forecast horizon. Over time, equipment efficiency tends to increase because of general technological advances and also because of Federal and/or state efficiency standards. As energy prices and available equipment changes over the forecast horizon, the module includes projected changes to the type and efficiency of equipment purchased as well as projected changes in the usage intensity of the equipment stock.

256

Assumptions to the Annual Energy Outlook 2000 - Residential Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Residential Demand Module forecasts future residential sector energy requirements based on projections of the number of households and the stock, efficiency, and intensity of use of energy-consuming equipment. The Residential Demand Module projections begin with a base year estimates of the housing stock, the types and numbers of energy-consuming appliances servicing the stock, and the “unit energy consumption” by appliance (or UEC—in million Btu per household per year). The projection process adds new housing units to the stock, determines the equipment installed in new units, retires existing housing units, and retires and replaces appliances. The primary exogenous drivers for the module are housing starts by type (single-family, multifamily and mobile homes) and Census Division and prices for each energy source for each of the nine Census Divisions. The Residential Demand Module also requires projections of available equipment over the forecast horizon. Over time, equipment efficiency tends to increase because of general technological advances and also because of Federal and/or state efficiency standards. As energy prices and available equipment changes over the forecast horizon, the module includes projected changes to the type and efficiency of equipment purchased as well as projected changes in the usage intensity of the equipment stock.

257

Heat wave contributes to higher summer electricity demand in...  

U.S. Energy Information Administration (EIA) Indexed Site

contributes to higher summer electricity demand in the Northeast In its new energy forecast, the U.S. Energy Information Administration expects summer retail electricity prices...

258

Incentives for Retailer Forecasting: Rebates vs. Returns  

Science Conference Proceedings (OSTI)

This paper studies a manufacturer that sells to a newsvendor retailer who can improve the quality of her demand information by exerting costly forecasting effort. In such a setting, contracts play two roles: providing incentives to influence the retailer's ... Keywords: endogenous adverse selection, forecasting, rebates, returns, supply chain contracting

Terry A. Taylor; Wenqiang Xiao

2009-10-01T23:59:59.000Z

259

Demand Response  

NLE Websites -- All DOE Office Websites (Extended Search)

Peak load diagram Demand Response Demand Response (DR) is a set of time-dependent activities that reduce or shift electricity use to improve electric grid reliability, manage...

260

Demand Response  

NLE Websites -- All DOE Office Websites (Extended Search)

Peak load diagram Demand Response Demand response (DR) is a set of time-dependent activities that reduce or shift electricity use to improve electric grid reliability, manage...

Note: This page contains sample records for the topic "forecast future demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

EUROCONTROL EUROCONTROL Long-Term Forecast: IFR Flight Movements 2010-2030  

E-Print Network (OSTI)

published in September 2010 (Ref.1). This forecast replaces the EUROCONTROL Long-Term Forecast issued in November 2008. The forecast uses four scenarios to explore the future of the aviation and the risks that lie

Flight Movements

2010-01-01T23:59:59.000Z

262

State-of-the art of freight forecast modeling: lessons learned and the road ahead  

E-Print Network (OSTI)

of-the art of freight forecast modeling: lessons learned andof goods as well as to forecast the expected future truckused for the short-term forecasts of freight volumes on

Chow, Joseph Y.; Yang, Choon Heon; Regan, Amelia C.

2010-01-01T23:59:59.000Z

263

Projecting market demand for residential heat pumps  

SciTech Connect

Primarily because of technological improvements and sharp increases in energy prices after the 1970s energy crises, the sale of residential electric heat pumps rose ninefold from 1970 to 1983. This report describes current and future market demand for heat pumps used for space heating and cooling. A three-step approach was followed. In the first step, the historical growth of residential electric heat pumps was analyzed, and factors that may have affected market growth were examined. Also examined were installation trends of heat pumps in new single-family and multifamily homes. A market segmentation analysis was used to estimate market size by categories. In the second step, several methods for forecasting future market demand were reviewed and evaluated to select the most suitable one for this study. The discrete-choice approach was chosen. In the third step, a market penetration model based on selected discrete-choice methods was developed to project heat pump demand in key market segments such as home type (single-family or multifamily), new or existing construction, and race-ethnic origin of household (black, Hispanic, or white).

Teotia, A.P.S.; Raju, P.S.; Karvelas, D.; Anderson, J.

1987-04-01T23:59:59.000Z

264

Solar forecasting review  

E-Print Network (OSTI)

of Solar Forecasting . . . . . . . . . 2.4.1 Solarbudget at the foundation of satellite based forecastingWeather Research and Forecasting (WRF) Model 7.1 Global

Inman, Richard Headen

2012-01-01T23:59:59.000Z

265

NFI Forecasts Methodology NFI Forecasts Methodology  

E-Print Network (OSTI)

NFI Forecasts Methodology NFI Forecasts Methodology Overview Issued by: National Forest Inventory.brewer@forestry.gsi.gov.uk Website: www.forestry.gov.uk/inventory 1 NFI Softwood Forecasts Methodology Overview #12;NFI Forecasts ........................................................................................................4 Rationale behind the new approach to the GB Private sector production forecast ........4 Volume

266

Forecast Technical Document Restocking in the Forecast  

E-Print Network (OSTI)

Forecast Technical Document Restocking in the Forecast A document describing how restocking of felled areas is handled in the 2011 Production Forecast. Tom Jenkins Robert Matthews Ewan Mackie Lesley in the forecast Background During the period of a production forecast it is assumed that, as forest sub

267

> BUREAU HOME > AUSTRALIA > QUEENSLAND > FORECASTS FORECAST IMPROVEMENTS  

E-Print Network (OSTI)

> BUREAU HOME > AUSTRALIA > QUEENSLAND > FORECASTS BRISBANE FORECAST IMPROVEMENTS The Bureau of Meteorology is progressively upgrading its forecast system to provide more detailed forecasts across Australia. From October 2013 new and improved 7 day forecasts will be introduced for Brisbane, Gold Coast

Greenslade, Diana

268

Estimating disaggregated price elasticities in industrial energy demand  

Science Conference Proceedings (OSTI)

Econometric energy models are used to evaluate past policy experiences, assess the impact of future policies and forecast energy demand. This paper estimates an industrial energy demand model for the province of Ontario using a linear-logit specification for fuel type equations which are embedded in an aggregate energy demand equation. Short-term, long-term, own- and cross-price elasticities are estimated for electricity, natural gas, oil and coal. Own- and cross-price elasticities are disaggregated to show that overall price elasticities and the energy-constant price elasticities when aggregate energy use is held unchanged. These disaggregations suggest that a substantial part of energy conservation comes from the higher aggregate price of energy and not from interfuel substitution. 13 refs., 2 tabs.

Elkhafif, M.A.T. (Ontario Ministry of Energy, Toronto (Canada))

1992-01-01T23:59:59.000Z

269

Post-Construction Evaluation of Forecast Accuracy Pavithra Parthasarathi1  

E-Print Network (OSTI)

Post-Construction Evaluation of Forecast Accuracy Pavithra Parthasarathi1 David Levinson 2 February the accuracy of demand forecasts using a sample of recently-completed projects in Minnesota and identifies the factors influencing the inaccuracy in forecasts. The fore- cast traffic data for this study is drawn from

Levinson, David M.

270

Home Network Technologies and Automating Demand Response  

NLE Websites -- All DOE Office Websites (Extended Search)

electricity generation capacity to meet unrestrained future demand. To address peak electricity use Demand Response (DR) systems are being proposed to motivate reductions in...

271

Extended-Range Probability Forecasts Based on Dynamical Model Output  

Science Conference Proceedings (OSTI)

A probability forecast has advantages over a deterministic forecast as the former offers information about the probabilities of various possible future states of the atmosphere. As physics-based numerical models find their success in modern ...

Jianfu Pan; Huug van den Dool

1998-12-01T23:59:59.000Z

272

Potential Economic Value of Ensemble-Based Surface Weather Forecasts  

Science Conference Proceedings (OSTI)

The possible economic value of the quantification of uncertainty in future ensemble-based surface weather forecasts is investigated using a formal, idealized decision model. Current, or baseline, weather forecasts are represented by probabilistic ...

Daniel S. Wilks; Thomas M. Hamill

1995-12-01T23:59:59.000Z

273

Oxygenate Supply/Demand Balances  

Gasoline and Diesel Fuel Update (EIA)

Oxygenate Supply/Demand Oxygenate Supply/Demand Balances in the Short-Term Integrated Forecasting Model By Tancred C.M. Lidderdale This article first appeared in the Short-Term Energy Outlook Annual Supplement 1995, Energy Information Administration, DOE/EIA-0202(95) (Washington, DC, July 1995), pp. 33-42, 83-85. The regression results and historical data for production, inventories, and imports have been updated in this presentation. Contents * Introduction o Table 1. Oxygenate production capacity and demand * Oxygenate demand o Table 2. Estimated RFG demand share - mandated RFG areas, January 1998 * Fuel ethanol supply and demand balance o Table 3. Fuel ethanol annual statistics * MTBE supply and demand balance o Table 4. EIA MTBE annual statistics * Refinery balances

274

A Review of Quantitative Precipitation Forecasts and Their Use in Short- to Medium-Range Streamflow Forecasting  

Science Conference Proceedings (OSTI)

Unknown future precipitation is the dominant source of uncertainty for many streamflow forecasts. Numerical weather prediction (NWP) models can be used to generate quantitative precipitation forecasts (QPF) to reduce this uncertainty. The ...

Lan Cuo; Thomas C. Pagano; Q. J. Wang

2011-10-01T23:59:59.000Z

275

Another Approach to Forecasting Forecast Skill  

Science Conference Proceedings (OSTI)

The skill of a medium-range numerical forecast can fluctuate widely from day to day. Providing an a priori estimate of the skill of the forecast is therefore important. Existing approaches include Monte Carlo Forecasting and Lagged Average ...

W. Y. Chen

1989-02-01T23:59:59.000Z

276

322 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 25, NO. 1, FEBRUARY 2010 Short-Term Load Forecasting: Similar  

E-Print Network (OSTI)

: Progress Report on Electricity Price Forecast As part of the Mid Term Assessment, staff is preparing a long-term wholesale electricity market price forecast. Staff will review how the forecasts are made and some Forecast Update #12;Process Overview 2 Regional Portfolio Model Electric Demand Forecasting System (Long

Luh, Peter

277

EIA-Assumptions to the Annual Energy Outlook - Residential Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Residential Demand Module Residential Demand Module Assumptions to the Annual Energy Outlook 2007 Residential Demand Module Figure 5. United States Census Divisions. Need help, contact the National Energy Information Center at 202-586-8800. The NEMS Residential Demand Module forecasts future residential sector energy requirements based on projections of the number of households and the stock, efficiency, and intensity of use of energy-consuming equipment. The Residential Demand Module projections begin with a base year estimate of the housing stock, the types and numbers of energy-consuming appliances servicing the stock, and the "unit energy consumption" by appliance (or UEC-in million Btu per household per year). The projection process adds new housing units to the stock, determines the equipment installed in new

278

A Demand Response (DR) Event: Benefits, Strategies, Automation...  

NLE Websites -- All DOE Office Websites (Extended Search)

A Demand Response (DR) Event: Benefits, Strategies, Automation and Future of DR Title A Demand Response (DR) Event: Benefits, Strategies, Automation and Future of DR Publication...

279

Addressing Energy Demand through Demand Response: International...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Demand through Demand Response: International Experiences and Practices Title Addressing Energy Demand through Demand Response: International Experiences and Practices...

280

Addressing Energy Demand through Demand Response: International...  

NLE Websites -- All DOE Office Websites (Extended Search)

Addressing Energy Demand through Demand Response: International Experiences and Practices Title Addressing Energy Demand through Demand Response: International Experiences and...

Note: This page contains sample records for the topic "forecast future demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Electrical Demand Management  

E-Print Network (OSTI)

The Demand Management Plan set forth in this paper has proven to be a viable action to reduce a 3 million per year electric bill at the Columbus Works location of Western Electric. Measures are outlined which have reduced the peak demand 5% below the previous year's level and yielded $150,000 annual savings. These measures include rescheduling of selected operations and demand limiting techniques such as fuel switching to alternate power sources during periods of high peak demand. For example, by rescheduling the startup of five heat treat annealing ovens to second shift, 950 kW of load was shifted off peak. Also, retired, non-productive steam turbine chillers and a diesel air compressor have been effectively operated to displaced 1330 kW during peak periods each day. Installed metering devices have enabled the recognition of critical demand periods. The paper concludes with a brief look at future plans and long range objectives of the Demand Management Plan.

Fetters, J. L.; Teets, S. J.

1983-01-01T23:59:59.000Z

282

A forecasting model of tourist arrivals from major markets to Thailand  

E-Print Network (OSTI)

International tourism is a rapidly growing phenomenon hics. worldwide. However, the East Asia and Pacific Region is expected to be the focus of the worldwide tourism industry in the new millennium because tourist arrivals and receipts registered a growth about twice the rates of industrialized countries in the last decade. The tourism industry has become a powerful engine for economic development and a major foreign exchange generator. With such growth and increased competition, it is vitally important to forecast tourism demand in the region and understand the factors affecting demand. Considering the national importance of tourism, Thailand was chosen as the destination country with nine major markets as the countries of origin. A model was developed for each country to forecast tourism demand from that market. Multiple regression analysis was applied over time series data. The empirical results suggest that independent variables, such as income level in the country of origin, prices of tourism goods in the destination country, currency exchange rate between the origin and destination country, and rooms supply in destination, do affect tourism demand. Qualitative factors, represented by dummy variables, namely special promotional program and political unrest, show slight impact on demand. The study reveals that there are differences in the relative impacts of variables among the tourist generating countries. Thus, country-specific forecasting models and strategies must be formulated to reflect the uniqueness of each country of origin. Furthermore, forecasting techniques should include more qualitative factors to better asses their impacts on tourism demand. For future research, it is suggested that the models developed be updated regularly to reflect changes in the selected independent variables. Surveys and studies dealing with consumer motivation should be carried out to understand more about the tourists themselves and how they select particular destinations and types of tourism. Finally, in order to take advantage of modern technologies, the Internet is suggested as a tool to promote tourism.

Hao, Ching

1998-01-01T23:59:59.000Z

283

Electricity Market Price Forecasting in a Price-responsive Smart Grid Environment  

E-Print Network (OSTI)

of this load is to use electricity market price forecasts to op- timally schedule a combination of the gas of Electricity Market Price Forecasting Errors: A Demand-Side Analysis Hamidreza Zareipour, Member, IEEE, Claudio--Several techniques have been proposed in the liter- ature to forecast electricity market prices and improve forecast

284

A new hybrid iterative method for short-term wind speed forecasting  

E-Print Network (OSTI)

Electric Load Model (HELM).1 HELM takes many specific end-use forecasts for each sector and applies for electricity. It is driven by detailed forecasts of economic activity, demographic patterns, and alternative of electricity. Demand forecasts both determine, and are determined by, electricity prices. Therefore demand

285

Forecast Prices  

Gasoline and Diesel Fuel Update (EIA)

Notes: Notes: Prices have already recovered from the spike, but are expected to remain elevated over year-ago levels because of the higher crude oil prices. There is a lot of uncertainty in the market as to where crude oil prices will be next winter, but our current forecast has them declining about $2.50 per barrel (6 cents per gallon) from today's levels by next October. U.S. average residential heating oil prices peaked at almost $1.50 as a result of the problems in the Northeast this past winter. The current forecast has them peaking at $1.08 next winter, but we will be revisiting the outlook in more detail next fall and presenting our findings at the annual Winter Fuels Conference. Similarly, diesel prices are also expected to fall. The current outlook projects retail diesel prices dropping about 14 cents per gallon

286

The Forecast Gap: Linking Forwards and Forecasts  

Science Conference Proceedings (OSTI)

This report addresses a common problem in price forecasting: What to do when confronted with a persistent gap between results obtained from a structural forecast model and actual forward or spot prices? The report examines examples taken from natural gas and electric power forecasts and presents a novel approach to closing this forecast gap. Inspection reveals that the ratio of actual prices to forecast prices often exhibits stochastic movements that resemble those of commodity price movements. By usin...

2008-12-15T23:59:59.000Z

287

Worldwide transportation/energy demand, 1975-2000. Revised Variflex model projections  

SciTech Connect

The salient features of the transportation-energy relationships that characterize the world of 1975 are reviewed, and worldwide (34 countries) long-range transportation demand by mode to the year 2000 is reviewed. A worldwide model is used to estimate future energy demand for transportation. Projections made by the forecasting model indicate that in the year 2000, every region will be more dependent on petroleum for the transportation sector than it was in 1975. This report is intended to highlight certain trends and to suggest areas for further investigation. Forecast methodology and model output are described in detail in the appendices. The report is one of a series addressing transportation energy consumption; it supplants and replaces an earlier version published in October 1978 (ORNL/Sub-78/13536/1).

Ayres, R.U.; Ayres, L.W.

1980-03-01T23:59:59.000Z

288

Earnings forecast bias -a statistical analysis Franois Dossou  

E-Print Network (OSTI)

Earnings forecast bias - a statistical analysis François Dossou Sandrine Lardic** Karine Michalon' earnings forecasts is an important aspect of research for different reasons: Many empirical studies employ analysts' consensus forecasts as a proxy for the market's expectations of future earnings in order

Paris-Sud XI, Université de

289

Distribution Based Data Filtering for Financial Time Series Forecasting  

E-Print Network (OSTI)

of stock prices, which aims to forecast the future values of the price of a stock, in order to obtain/selling strategies to gain competitive advantage. Classic and popular methods for stock price forecasting [3Distribution Based Data Filtering for Financial Time Series Forecasting Goce Ristanoski1 , James

Bailey, James

290

Objective Debiasing for Improved Forecasting of Tropical Cyclone Intensity with a Global Circulation Model  

Science Conference Proceedings (OSTI)

The damage potential of a tropical cyclone is proportional to a power (generally greater than one) of intensity, which demands high accuracy in forecasting intensity for managing this natural disaster. However, the current skill in forecasting ...

P. Goswami; S. Mallick; K. C. Gouda

2011-08-01T23:59:59.000Z

291

Annual Energy Outlook Forecast Evaluation  

Gasoline and Diesel Fuel Update (EIA)

by by Esmeralda Sanchez The Office of Integrated Analysis and Forecasting has been providing an evaluation of the forecasts in the Annual Energy Outlook (AEO) annually since 1996. Each year, the forecast evaluation expands on that of the prior year by adding the most recent AEO and the most recent historical year of data. However, the underlying reasons for deviations between the projections and realized history tend to be the same from one evaluation to the next. The most significant conclusions are: * Over the last two decades, there have been many significant changes in laws, policies, and regulations that could not have been anticipated and were not assumed in the projections prior to their implementation. Many of these actions have had significant impacts on energy supply, demand, and prices; however, the

292

River flow forecasting with constructive neural network  

Science Conference Proceedings (OSTI)

In utilities using a mixture of hydroelectric and non-hydroelectric power, the economics of the hydroelectric plants depend upon the reservoir height and the inflow into the reservoir for several months into the future. Accurate forecasts of reservoir ...

Muser Valena; Teresa Ludermir; Anelle Valena

2005-12-01T23:59:59.000Z

293

Forecasting in Meteorology  

Science Conference Proceedings (OSTI)

Public weather forecasting heralded the beginning of modern meteorology less than 150 years ago. Since then, meteorology has been largely a forecasting discipline. Thus, forecasting could have easily been used to test and develop hypotheses, ...

C. S. Ramage

1993-10-01T23:59:59.000Z

294

Maintaining the Role of Humans in the Forecast Process: Analyzing the Psyche of Expert Forecasters  

Science Conference Proceedings (OSTI)

The Second Forum on the Future Role of the Human in the Forecast Process occurred on 23 August 2005 at the American Meteorological Society's Weather Analysis and Forecasting Conference in Washington, D.C. The forum consisted of three sessions. ...

Neil A. Stuart; David M. Schultz; Gary Klein

2007-12-01T23:59:59.000Z

295

Mercury emissions from municipal solid waste combustors. An assessment of the current situation in the United States and forecast of future emissions  

Science Conference Proceedings (OSTI)

This report examines emissions of mercury (Hg) from municipal solid waste (MSW) combustion in the United States (US). It is projected that total annual nationwide MSW combustor emissions of mercury could decrease from about 97 tonnes (1989 baseline uncontrolled emissions) to less than about 4 tonnes in the year 2000. This represents approximately a 95 percent reduction in the amount of mercury emitted from combusted MSW compared to the 1989 mercury emissions baseline. The likelihood that routinely achievable mercury emissions removal efficiencies of about 80 percent or more can be assured; it is estimated that MSW combustors in the US could prove to be a comparatively minor source of mercury emissions after about 1995. This forecast assumes that diligent measures to control mercury emissions, such as via use of supplemental control technologies (e.g., carbon adsorption), are generally employed at that time. However, no present consensus was found that such emissions control measures can be implemented industry-wide in the US within this time frame. Although the availability of technology is apparently not a limiting factor, practical implementation of necessary control technology may be limited by administrative constraints and other considerations (e.g., planning, budgeting, regulatory compliance requirements, etc.). These projections assume that: (a) about 80 percent mercury emissions reduction control efficiency is achieved with air pollution control equipment likely to be employed by that time; (b) most cylinder-shaped mercury-zinc (CSMZ) batteries used in hospital applications can be prevented from being disposed into the MSW stream or are replaced with alternative batteries that do not contain mercury; and (c) either the amount of mercury used in fluorescent lamps is decreased to an industry-wide average of about 27 milligrams of mercury per lamp or extensive diversion from the MSW stream of fluorescent lamps that contain mercury is accomplished.

Not Available

1993-05-01T23:59:59.000Z

296

National forecast for geothermal resource exploration and development with techniques for policy analysis and resource assessment  

DOE Green Energy (OSTI)

The backgrund, structure and use of modern forecasting methods for estimating the future development of geothermal energy in the United States are documented. The forecasting instrument may be divided into two sequential submodels. The first predicts the timing and quality of future geothermal resource discoveries from an underlying resource base. This resource base represents an expansion of the widely-publicized USGS Circular 790. The second submodel forecasts the rate and extent of utilization of geothermal resource discoveries. It is based on the joint investment behavior of resource developers and potential users as statistically determined from extensive industry interviews. It is concluded that geothermal resource development, especially for electric power development, will play an increasingly significant role in meeting US energy demands over the next 2 decades. Depending on the extent of R and D achievements in related areas of geosciences and technology, expected geothermal power development will reach between 7700 and 17300 Mwe by the year 2000. This represents between 8 and 18% of the expected electric energy demand (GWh) in western and northwestern states.

Cassel, T.A.V.; Shimamoto, G.T.; Amundsen, C.B.; Blair, P.D.; Finan, W.F.; Smith, M.R.; Edeistein, R.H.

1982-03-31T23:59:59.000Z

297

Appendix A: Fuel Price Forecast Introduction..................................................................................................................................... 1  

E-Print Network (OSTI)

Appendix A: Fuel Price Forecast Introduction................................................................................................................................. 3 Price Forecasts............................................................................................................................... 12 Oil Price Forecast Range

298

Beyond Renewable Portfolio Standards: An Assessment of Regional Supply and Demand Conditions Affecting the Future of Renewable Energy in the West; Report and Executive Summary  

SciTech Connect

This study assesses the outlook for utility-scale renewable energy development in the West once states have met their renewable portfolio standard (RPS) requirements. In the West, the last state RPS culminates in 2025, so the analysis uses 2025 as a transition point on the timeline of RE development. Most western states appear to be on track to meet their final requirements, relying primarily on renewable resources located relatively close to the customers being served. What happens next depends on several factors including trends in the supply and price of natural gas, greenhouse gas and other environmental regulations, consumer preferences, technological breakthroughs, and future public policies and regulations. Changes in any one of these factors could make future renewable energy options more or less attractive.

Hurlbut, D. J.; McLaren, J.; Gelman, R.

2013-08-01T23:59:59.000Z

299

Testing Electric Vehicle Demand in "Hybrid Households" Using a Reflexive Survey  

E-Print Network (OSTI)

the demand electric vehicles, TransportationResearchA,1994) ~tive NewsCalifornia Electric Vehicle ConsumerStudy.1995) Forecasting Electric Vehicle Ownership Use in the

Kurani, Kenneth S.; Turrentine, Thomas; Sperling, Daniel

2001-01-01T23:59:59.000Z

300

Developing electricity forecast web tool for Kosovo market  

Science Conference Proceedings (OSTI)

In this paper is presented a web tool for electricity forecast for Kosovo market for the upcoming ten years. The input data i.e. electricity generation capacities, demand and consume are taken from the document "Kosovo Energy Strategy 2009-2018" compiled ... Keywords: .NET, database, electricity forecast, internet, simulation, web

Blerim Rexha; Arben Ahmeti; Lule Ahmedi; Vjollca Komoni

2011-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "forecast future demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

TRANSPORTATION ENERGY FORECASTS FOR THE 2007 INTEGRATED ENERGY  

E-Print Network (OSTI)

CALIFORNIA ENERGY COMMISSION TRANSPORTATION ENERGY FORECASTS FOR THE 2007 INTEGRATED ENERGY POLICY AND TRANSPORTATION DIVISION B.B. Blevins Executive Director DISCLAIMER This report was prepared by a California has developed longterm forecasts of transportation energy demand as well as projected ranges

302

Forecasting and strategic inventory placement for gas turbine aftermarket spares  

E-Print Network (OSTI)

This thesis addresses the problem of forecasting demand for Life Limited Parts (LLPs) in the gas turbine engine aftermarket industry. It is based on work performed at Pratt & Whitney, a major producer of turbine engines. ...

Simmons, Joshua T. (Joshua Thomas)

2007-01-01T23:59:59.000Z

303

Forecasts, Meteorology Services, Environmental Sciences Department  

NLE Websites -- All DOE Office Websites (Extended Search)

Forecasts Short Term Forecast Suffolk County Northern Nassau Southern Nassau Area Forecast Discussion - OKX Area Forecast Discussion - NYS Area Forecast Discussion Mount Holly Area...

304

Annual Energy Outlook Forecast Evaluation  

Gasoline and Diesel Fuel Update (EIA)

Evaluation Evaluation Annual Energy Outlook Forecast Evaluation by Esmeralda Sanchez The Office of Integrated Analysis and Forecasting has been providing an evaluation of the forecasts in the Annual Energy Outlook (AEO) annually since 1996. Each year, the forecast evaluation expands on that of the prior year by adding the most recent AEO and the most recent historical year of data. However, the underlying reasons for deviations between the projections and realized history tend to be the same from one evaluation to the next. The most significant conclusions are: Over the last two decades, there have been many significant changes in laws, policies, and regulations that could not have been anticipated and were not assumed in the projections prior to their implementation. Many of these actions have had significant impacts on energy supply, demand, and prices; however, the impacts were not incorporated in the AEO projections until their enactment or effective dates in accordance with EIA's requirement to remain policy neutral and include only current laws and regulations in the AEO reference case projections.

305

The National Energy Modeling System: An Overview 2000 - Industrial Demand  

Gasoline and Diesel Fuel Update (EIA)

industrial demand module (IDM) forecasts energy consumption for fuels and feedstocks for nine manufacturing industries and six nonmanufactur- ing industries, subject to delivered prices of energy and macroeconomic variables representing the value of output for each industry. The module includes industrial cogeneration of electricity that is either used in the industrial sector or sold to the electricity grid. The IDM structure is shown in Figure 7. industrial demand module (IDM) forecasts energy consumption for fuels and feedstocks for nine manufacturing industries and six nonmanufactur- ing industries, subject to delivered prices of energy and macroeconomic variables representing the value of output for each industry. The module includes industrial cogeneration of electricity that is either used in the industrial sector or sold to the electricity grid. The IDM structure is shown in Figure 7. Figure 7. Industrial Demand Module Structure Industrial energy demand is projected as a combination of “bottom up” characterizations of the energy-using technology and “top down” econometric estimates of behavior. The influence of energy prices on industrial energy consumption is modeled in terms of the efficiency of use of existing capital, the efficiency of new capital acquisitions, and the mix of fuels utilized, given existing capital stocks. Energy conservation from technological change is represented over time by trend-based “technology possibility curves.” These curves represent the aggregate efficiency of all new technologies that are likely to penetrate the future markets as well as the aggregate improvement in efficiency of 1994 technology.

306

Transportation Demand  

Gasoline and Diesel Fuel Update (EIA)

page intentionally left blank page intentionally left blank 69 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2011 Transportation Demand Module The NEMS Transportation Demand Module estimates transportation energy consumption across the nine Census Divisions (see Figure 5) and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars and light trucks), commercial light trucks (8,501-10,000 lbs gross vehicle weight), freight trucks (>10,000 lbs gross vehicle weight), buses, freight and passenger aircraft, freight and passenger rail, freight shipping, and miscellaneous

307

International Journal of Forecasting 26 (2010) 652654 www.elsevier.com/locate/ijforecast  

E-Print Network (OSTI)

of electricity they have scheduled with the grid operators at the agreedupon time. When load exceeds forecasted with load demands and diversity of electricity costs in different parts of the interconnection. Up to now constraints would occur, under the current assumption about the short term load forecast and the forecast

Shen, Haipeng

308

Short-Term Load Forecasting by Feed-Forward Neural Networks Saied S. Sharif1  

E-Print Network (OSTI)

1 Sixth Northwest Conservation & Electric Power Plan Draft Wholesale Power Price Forecasts Maury Price Forecasts 4. Updated load-resource balance by zones\\ regions · Energy · Capacity 5. Impact. Updated transmission links between the modeled load-resource zones 3. Updated demand forecasts for each

Taylor, James H.

309

Residential Demand Module  

Gasoline and Diesel Fuel Update (EIA)

2 2 Residential Demand Module The NEMS Residential Demand Module projects future residential sector energy requirements based on projections of the number of households and the stock, efficiency, and intensity of energy-consuming equipment. The Residential Demand Module projections begin with a base year estimate of the housing stock, the types and numbers of energy-consuming appliances servicing the stock, and the "unit energy consumption" (UEC) by appliance (in million Btu per household per year). The projection process adds new housing units to the stock, determines the equipment installed in new units, retires existing housing units, and retires and replaces appliances. The primary exogenous drivers for the module are housing starts by type

310

Are they equal yet. [Demand side management  

Science Conference Proceedings (OSTI)

Demand-side management (DSM) is considered an important tool in meeting the load growth of many utilities. Northwest regional and utility resource plans forecast demand-side resources to meet from one-half to two-thirds of additional electrical energy needs over the next 10 years. Numerous sources have stated that barriers, both regulatory and financial, exist to utility acquisition of demand-side resources. Regulatory actions are being implemented in Oregon to make demand-side investments competitive with supply-side investments. In 1989, the Oregon Public Utility Commission (PUC) took two actions regarding demand-side investments. The PUC's Order 89-1700 directed utilities to capitalize demand-side investments to properly match amortization expense with the multiyear benefits provided by DSM. The PUC also began an informal investigation concerning incentives for Oregon's regulated electric utilities to acquire demand-side resources.

Irwin, K.; Phillips-Israel, K.; Busch, E.

1994-05-15T23:59:59.000Z

311

Proceedings: 1987 Annual Review of Demand-Side Planning Research  

Science Conference Proceedings (OSTI)

Recent EPRI research in demand-side planning (DSP) has focused on forecasting, end-use technology assessment, demand-side management (DSM), and innovative pricing. These 23 papers discuss vital DSP research, including customer response to interruptible rates, personal computer forecasting tools, integrated value-based planning, customer preference and behavior studies, and a database of end-use load shapes and DSM impacts.

None

1988-08-01T23:59:59.000Z

312

Model documentation report: Commercial Sector Demand Module of the National Energy Modeling System  

SciTech Connect

This report documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Commercial Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated through the synthesis and scenario development based on these components. This report serves three purposes. First, it is a reference document providing a detailed description for model analysts, users, and the public. Second, this report meets the legal requirement of the Energy Information Administration (EIA) to provide adequate documentation in support of its statistical and forecast reports (Public Law 93-275, section 57(b)(1)). Third, it facilitates continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements as future projects.

NONE

1995-02-01T23:59:59.000Z

313

Verifying Forecasts Spatially  

Science Conference Proceedings (OSTI)

Numerous new methods have been proposed for using spatial information to better quantify and diagnose forecast performance when forecasts and observations are both available on the same grid. The majority of the new spatial verification methods can be ...

Eric Gilleland; David A. Ahijevych; Barbara G. Brown; Elizabeth E. Ebert

2010-10-01T23:59:59.000Z

314

Forecasting of Supercooled Clouds  

Science Conference Proceedings (OSTI)

Using parameterizations of cloud microphysics, a technique to forecast supercooled cloud events is suggested. This technique can be coupled on the mesoscale with a prognostic equation for cloud water to improve aircraft icing forecasts. The ...

Andr Tremblay; Anna Glazer; Wanda Szyrmer; George Isaac; Isztar Zawadzki

1995-07-01T23:59:59.000Z

315

Time Series and Forecasting  

Science Conference Proceedings (OSTI)

Time Series and Forecasting. Leigh, Stefan and Perlman, S. (1991). "An Index for Comovement of Time Sequences With ...

316

Letters: Energy demand prediction using GMDH networks  

Science Conference Proceedings (OSTI)

The electric power industry is in transition as it moves towards a competitive and deregulated environment. In this emerging market, traditional electric utilities as well as energy traders, power pools and independent system operators (ISOs) need the ... Keywords: Artificial neural networks, Energy demand, Forecasting, Group method of data handling (GMDH) networks, Self-organizing networks

Dipti Srinivasan

2008-12-01T23:59:59.000Z

317

Modular neural networks for recursive collaborative forecasting in the service chain  

Science Conference Proceedings (OSTI)

In order to honour customer demand and sustain quality of service in BT's service chain, accurate forecasting for customer demand is critical for optimal resource planning. In the more general context of service organisations, failure to allocate sufficient ... Keywords: Collaborative forecasting, Neural networks, Service chain

P. Stubbings; B. Virginas; G. Owusu; C. Voudouris

2008-08-01T23:59:59.000Z

318

Forecast Technical Document Volume Increment  

E-Print Network (OSTI)

Forecast Technical Document Volume Increment Forecasts A document describing how volume increment is handled in the 2011 Production Forecast. Tom Jenkins Robert Matthews Ewan Mackie Lesley Halsall #12;PF2011 ­ Volume increment forecasts Background A volume increment forecast is a fundamental output of the forecast

319

A non-parametric data-based approach for probabilistic flood forecasting in support of uncertainty communication  

Science Conference Proceedings (OSTI)

In addition to structural measures, governmental authorities have set up flood forecasting systems to be used as early warning systems, to minimize the damage of future floods. These flood forecasting systems make use of hydrological and hydrodynamic ... Keywords: Non parametric approach, Operational flood forecasting, Probabilistic forecasting, Uncertainty estimation

N. Van Steenbergen; J. Ronsyn; P. Willems

2012-07-01T23:59:59.000Z

320

Demand Response  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Assessment for Eastern Interconnection Youngsun Baek, Stanton W. Hadley, Rocio Martinez, Gbadebo Oladosu, Alexander M. Smith, Fran Li, Paul Leiby and Russell Lee Prepared for FY12 DOE-CERTS Transmission Reliability R&D Internal Program Review September 20, 2012 2 Managed by UT-Battelle for the U.S. Department of Energy DOE National Laboratory Studies Funded to Support FOA 63 * DOE set aside $20 million from transmission funding for national laboratory studies. * DOE identified four areas of interest: 1. Transmission Reliability 2. Demand Side Issues 3. Water and Energy 4. Other Topics * Argonne, NREL, and ORNL support for EIPC/SSC/EISPC and the EISPC Energy Zone is funded through Area 4. * Area 2 covers LBNL and NREL work in WECC and

Note: This page contains sample records for the topic "forecast future demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Electricity Demand and Energy Consumption Management System  

E-Print Network (OSTI)

This project describes the electricity demand and energy consumption management system and its application to the Smelter Plant of Southern Peru. It is composted of an hourly demand-forecasting module and of a simulation component for a plant electrical system. The first module was done using dynamic neural networks, with backpropagation training algorithm; it is used to predict the electric power demanded every hour, with an error percentage below of 1%. This information allows management the peak demand before this happen, distributing the raise of electric load to other hours or improving those equipments that increase the demand. The simulation module is based in advanced estimation techniques, such as: parametric estimation, neural network modeling, statistic regression and previously developed models, which simulates the electric behavior of the smelter plant. These modules allow the proper planning because it allows knowing the behavior of the hourly demand and the consumption patterns of the plant, in...

Sarmiento, Juan Ojeda

2008-01-01T23:59:59.000Z

322

The Strategy of Professional Forecasting  

E-Print Network (OSTI)

This paper develops and compares two theories of strategic behavior of professional forecasters. The first theory posits that forecasters compete in a forecasting contest with pre-specified rules. In equilibrium of a winner-take-all contest, forecasts are excessively differentiated. According to the alternative reputational cheap talk theory, forecasters aim at convincing the market that they are well informed. The market evaluates their forecasting talent on the basis of the forecasts and the realized state. If the market expects forecaster honesty, forecasts are shaded toward the prior mean. With correct market expectations, equilibrium forecasts are imprecise but not shaded.

Marco Ottaviani; Peter Norman Srensen

2003-01-01T23:59:59.000Z

323

Dynamic Algorithm for Space Weather Forecasting System  

E-Print Network (OSTI)

We propose to develop a dynamic algorithm that intelligently analyzes existing solar weather data and constructs an increasingly more accurate equation/algorithm for predicting solar weather accurately in real time. This dynamic algorithm analyzes a wealth of data derived from scientific research and provides increasingly accurate solar forecasts. As the database of information grows over time, this algorithm perfects itself and reduces forecast uncertainties. This will provide a vastly more effective way of processing existing data for practical use in the public and private sectors. Specifically, we created an algorithm that stores data from several sources in a way that is useable, we created the ?dynamic algorithm? used for creating accurate/effective forecasts, and we have performed preliminary benchmarks on this algorithm. The preliminary benchmarks yield surprisingly effective results thus far?forecasts have been made 8-16 hours into the future with significant magnitude and trend accuracy, which is a vast improvement over current methods employed.

Fischer, Luke D.

2010-05-01T23:59:59.000Z

324

Demand Response Programs, 6. edition  

Science Conference Proceedings (OSTI)

The report provides a look at the past, present, and future state of the market for demand/load response based upon market price signals. It is intended to provide significant value to individuals and companies who are considering participating in demand response programs, energy providers and ISOs interested in offering demand response programs, and consultants and analysts looking for detailed information on demand response technology, applications, and participants. The report offers a look at the current Demand Response environment in the energy industry by: defining what demand response programs are; detailing the evolution of program types over the last 30 years; discussing the key drivers of current initiatives; identifying barriers and keys to success for the programs; discussing the argument against subsidization of demand response; describing the different types of programs that exist including:direct load control, interruptible load, curtailable load, time-of-use, real time pricing, and demand bidding/buyback; providing examples of the different types of programs; examining the enablers of demand response programs; and, providing a look at major demand response programs.

NONE

2007-10-15T23:59:59.000Z

325

Estimating relative confidence of conditional world oil supply and demand equilibrium  

SciTech Connect

This paper draws from the survey by the National Petroleum Council (NPC) of industry representatives and consulting/forecasting organizations on the likely market configuration under two different world oil price scenarios. The pseudo-data approach treats the forecast price and quantity variables from the various forecasts as pooled time-series, cross-sectional data, and applies traditional econometric techniques to estimate supply and demand curves. We focus on estimating US domestic supply and demand curves and respondent-specific shift factors from a subsample of the NPC survey. We find that all respondents in the survey are more confident about demand than supply forecasts. The underlying differences in individual GNP forecasts account for much of the uncertainty in demand for most respondents, but are still 2 to 6 times more confident of demand than supply. 4 refs., 1 fig., 6 tabs.

Boyd, G.A.; Hanson, D.A.; Hochheiser, H.W.

1987-01-01T23:59:59.000Z

326

On Modeling and Forecasting Time Series of Smooth Curves  

E-Print Network (OSTI)

/fertility rate curves (Hyndman and Ullah, 2007; Erbas et al., 2007). Other examples include electricity system the rates are unobservable; hence one needs to forecast future rate profiles based on historical call of telephone customer service centers, where forecasts of daily call arrival rate profiles are needed

Shen, Haipeng

327

Fast Automated Demand Response to Enable the Integration of Renewable Resources  

E-Print Network (OSTI)

peak demand, and natural gas demand forecasts for eachnatural gas and other fossil fuels are the predominant heating fuels for Californias commercial buildings, heating electricity demandDemand. The California End Use Survey 2004 (CEUS 2004) provides statewide hourly electricity and natural gas

Watson, David S.

2013-01-01T23:59:59.000Z

328

ENSEMBLE RE-FORECASTING : IMPROVING MEDIUM-RANGE FORECAST SKILL  

E-Print Network (OSTI)

5.5 ENSEMBLE RE-FORECASTING : IMPROVING MEDIUM-RANGE FORECAST SKILL USING RETROSPECTIVE FORECASTS, Colorado 1. INTRODUCTION Improving weather forecasts is a primary goal of the U.S. National Oceanic predictions has been to improve the accuracy of the numerical forecast models. Much effort has been expended

Hamill, Tom

329

Annual Review of Demand-Side Planning Research: 1985 Proceedings  

Science Conference Proceedings (OSTI)

EPRI's demand-side planning research spans a wide range of utility activities: planning and evaluating demand-side management programs, investigating end-use forecasting techniques, and analyzing the effect of innovative rates. Reflecting efforts to develop utility applications of EPRI research products in 1985, this report focuses on computer models such as REEPS, COMMEND, HELM, and INDEPTH.

None

1987-01-01T23:59:59.000Z

330

Short-Term Wind Speed Forecasting for Power System Operations  

E-Print Network (OSTI)

Global large scale penetration of wind energy is accompanied by significant challenges due to the intermittent and unstable nature of wind. High quality short-term wind speed forecasting is critical to reliable and secure power system operations. This paper gives an overview of the current status of worldwide wind power developments and future trends, and reviews some statistical short-term wind speed forecasting models, including traditional time series models and advanced space-time statistical models. It also discusses the evaluation of forecast accuracy, in particular the need for realistic loss functions. New challenges in wind speed forecasting regarding ramp events and offshore wind farms are also presented.

Xinxin Zhu; Marc G. Genton

2011-01-01T23:59:59.000Z

331

Large-scale Probabilistic Forecasting in Energy Systems using Sparse Gaussian Conditional Random Fields  

E-Print Network (OSTI)

pricing. Although it is known that probabilistic forecasts (which give a distribution over possible futureLarge-scale Probabilistic Forecasting in Energy Systems using Sparse Gaussian Conditional Random Fields Matt Wytock and J. Zico Kolter Abstract-- Short-term forecasting is a ubiquitous practice

Kolter, J. Zico

332

High Temperatures & Electricity Demand  

E-Print Network (OSTI)

High Temperatures & Electricity Demand An Assessment of Supply Adequacy in California Trends.......................................................................................................1 HIGH TEMPERATURES AND ELECTRICITY DEMAND.....................................................................................................................7 SECTION I: HIGH TEMPERATURES AND ELECTRICITY DEMAND ..........................9 BACKGROUND

333

River Flow Forecasting for Reservoir management through Neural Networks  

Science Conference Proceedings (OSTI)

In utilities using a mixture of hydroelectric and nonhydroelectric power, the economics of the hydroelectric plants depend upon the reservoir height and the inflow into the reservoir for several months into the future. Accurate forecasts of reservoir ...

Meuser Valenca; Teresa Ludermir; Anelle Valenca

2005-12-01T23:59:59.000Z

334

Adaptive sampling and forecasting with mobile sensor networks  

E-Print Network (OSTI)

This thesis addresses planning of mobile sensor networks to extract the best information possible out of the environment to improve the (ensemble) forecast at some verification region in the future. To define the information ...

Choi, Han-Lim

2009-01-01T23:59:59.000Z

335

Solar forecasting review  

E-Print Network (OSTI)

Online 24-h solar power forecasting based on weather typeweather observations at blue hill massachusetts, Solarof weather patterns on the intensity of solar irradiance;

Inman, Richard Headen

2012-01-01T23:59:59.000Z

336

Solar forecasting review  

E-Print Network (OSTI)

2.1.2 European Solar Radiation Atlas (ESRA)2.4 Evaluation of Solar Forecasting . . . . . . . . .2.4.1 Solar Variability . . . . . . . . . . . . .

Inman, Richard Headen

2012-01-01T23:59:59.000Z

337

forecast | OpenEI  

Open Energy Info (EERE)

Browse Upload data GDR Community Login | Sign Up Search Facebook icon Twitter icon forecast Dataset Summary Description The EIA's annual energy outlook (AEO) contains yearly...

338

Seasonal tropical cyclone forecasts  

E-Print Network (OSTI)

Seasonal forecasts of tropical cyclone activity in various regions have been developed since the first attempts in the early 1980s by Neville

Suzana J. Camargo; Anthony G. Barnston; Philip J. Klotzbach; Christopher W. Landsea

2007-01-01T23:59:59.000Z

339

Probabilistic Forecasts from the National Digital Forecast Database  

Science Conference Proceedings (OSTI)

The Bayesian processor of forecast (BPF) is developed for a continuous predictand. Its purpose is to process a deterministic forecast (a point estimate of the predictand) into a probabilistic forecast (a distribution function, a density function, ...

Roman Krzysztofowicz; W. Britt Evans

2008-04-01T23:59:59.000Z

340

A RELM earthquake forecast based on pattern informatics  

E-Print Network (OSTI)

We present a RELM forecast of future earthquakes in California that is primarily based on the pattern informatics (PI) method. This method identifies regions that have systematic fluctuations in seismicity, and it has been demonstrated to be successful. A PI forecast map originally published on 19 February 2002 for southern California successfully forecast the locations of sixteen of eighteen M>5 earthquakes during the past three years. The method has also been successfully applied to Japan and on a worldwide basis. An alternative approach to earthquake forecasting is the relative intensity (RI) method. The RI forecast map is based on recent levels of seismic activity of small earthquakes. Recent advances in the PI method show considerable improvement, particularly when compared with the RI method using relative operating characteristic (ROC) diagrams for binary forecasts. The RELM application requires a probability for each location for a number of magnitude bins over a five year period. We have therefore co...

Holliday, J R; Donnelan, A; Rundle, J B; Tiampo, K F; Turcotte, D L; Chen, Chien-chih; Donnelan, Andrea; Holliday, James R.; Rundle, John B.; Tiampo, Kristy F.; Turcotte, Donald L.

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "forecast future demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Light truck forecasts  

SciTech Connect

The recent dramatic increase in the number of light trucks (109% between 1963 and 1974) has prompted concern about the energy consequences of the growing popularity of the light truck. An estimate of the future number of light trucks is considered to be a reasonable first step in assessing the energy impact of these vehicles. The monograph contains forecasts based on two models and six scenarios. The coefficients for the models have been derived by ordinary least squares regression of national level time series data. The first model is a two stage model. The first stage estimates the number of light trucks and cars (together), and the second stage applies a share's submodel to determine the number of light trucks. The second model is a simultaneous equation model. The two models track one another remarkably well, within about 2%. The scenarios were chosen to be consistent with those used in the Lindsey-Kaufman study Projection of Light Truck Population to Year 2025. Except in the case of the most dismal economic scenario, the number of light trucks is expected to increase from the 1974 level of 0.09 light truck per person to about 0.12 light truck per person in 1995.

Liepins, G.E.

1979-09-01T23:59:59.000Z

342

Global and Local Skill Forecasts  

Science Conference Proceedings (OSTI)

A skill forecast gives the probability distribution for the error in a forecast. Statistically, Well-founded skill forecasting methods have so far only been applied within the context of simple models. In this paper, the growth of analysis errors ...

P. L. Houtekamer

1993-06-01T23:59:59.000Z

343

Distortion Representation of Forecast Errors  

Science Conference Proceedings (OSTI)

Forecast error is decomposed into three components, termed displacement error, amplitude error, mid residual error, respectively. Displacement error measures how much of the forecast error can be accounted for by moving the forecast to best fit ...

Ross N. Hoffman; Zheng Liu; Jean-Francois Louis; Christopher Grassoti

1995-09-01T23:59:59.000Z

344

Composite forecasting in commodity systems  

E-Print Network (OSTI)

Paper No. COMPOSI1E FORECASTING IN CO/Yt.flDITI SYSTfu\\1S1980 .i CfIAPTER COMPOSITE FORECASTING IN COMMOOITY SYSTEMS*to utilizeeconometric .modelsfor forecasting ! ,urposes. The

Johnson, Stanley R; Rausser, Gordon C.

1980-01-01T23:59:59.000Z

345

Arnold Schwarzenegger INTEGRATED FORECAST AND  

E-Print Network (OSTI)

Arnold Schwarzenegger Governor INTEGRATED FORECAST AND RESERVOIR MANAGEMENT (INFORM) FOR NORTHERN; the former with primary contributions in the areas of climate and hydrologic forecasting and the latter Service (NWS) California Nevada River Forecast Center (CNRFC), the California Department of Water

346

Does the term structure forecast  

E-Print Network (OSTI)

provides more accurate forecasts of real consumption growth14. Harvey, C.R. (1989): \\Forecasts of economic growth fromC.R. (1993): \\Term structure forecasts economic growth", Fi-

Berardi, Andrea; Torous, Walter

2002-01-01T23:59:59.000Z

347

Future risks of satellite-based tracking  

Science Conference Proceedings (OSTI)

This study finds out if in the future, some special risks concerning satellite-based tracking and navigation occur. To find out possible future risks, future research methods such as scenarios were being used. Forecasting the future is impossible, but ... Keywords: future research, risk management, satellite-base tracking, satellite-based navigation, tracking

Miikka Ohisalo; Otto Tiuri; Tatu Urpila; Jyri Rajamki

2011-03-01T23:59:59.000Z

348

Colorado uranium production forecast for 1981 to 1990. [Monograph  

SciTech Connect

A decline in demand for yellowcake, a single-use commodity of which Colorado is the fourth largest producer, is influenced by several interrelated factors. The revised forecasts for 1990 assume that electric-power capacity will be lower than previous forecasts and that domestic production will supply 80% of the yellowcake. Production will be lower until inventory depletion allows a balanced market. Production rates will begin increasing after 1987. An appendix summarizes the factors influencing production rates. 10 references, 3 tables.

Morse, J.G.

1980-01-01T23:59:59.000Z

349

Coefficients for Debiasing Forecasts  

Science Conference Proceedings (OSTI)

Skill-score decompositions can be used to analyze the effects of bias on forecasting skill. However, since bias terms are typically squared, and bias is measured in skill-score units rather than in units of the forecasts, such decompositions only ...

Thomas R. Stewart; Patricia Reagan-Cirincione

1991-08-01T23:59:59.000Z

350

Evaluating Point Forecasts  

E-Print Network (OSTI)

Typically, point forecasting methods are compared and assessed by means of an error measure or scoring function, such as the absolute error or the squared error. The individual scores are then averaged over forecast cases, to result in a summary measure of the predictive performance, such as the mean absolute error or the (root) mean squared error. I demonstrate that this common practice can lead to grossly misguided inferences, unless the scoring function and the forecasting task are carefully matched. Effective point forecasting requires that the scoring function be specified ex ante, or that the forecaster receives a directive in the form of a statistical functional, such as the mean or a quantile of the predictive distribution. If the scoring function is specified ex ante, the forecaster can issue the optimal point forecast, namely, the Bayes rule. If the forecaster receives a directive in the form of a functional, it is critical that the scoring function be consistent for it, in the sense that the expect...

Gneiting, Tilmann

2009-01-01T23:59:59.000Z

351

Forecasters Objectives and Strategies ?  

E-Print Network (OSTI)

This chapter develops a unified modeling framework for analyzing the strategic behavior of forecasters. The theoretical model encompasses reputational objectives, competition for the best accuracy, and bias. Also drawing from the extensive literature on analysts, we review the empirical evidence on strategic forecasting and illustrate how our model can be structurally estimated.

Ivn Marinovic; Marco Ottaviani; Peter Norman Srensen

2011-01-01T23:59:59.000Z

352

Residential sector end-use forecasting with EPRI-Reeps 2.1: Summary input assumptions and results  

SciTech Connect

This paper describes current and projected future energy use by end-use and fuel for the U.S. residential sector, and assesses which end-uses are growing most rapidly over time. The inputs to this forecast are based on a multi-year data compilation effort funded by the U.S. Department of Energy. We use the Electric Power Research Institute`s (EPRI`s) REEPS model, as reconfigured to reflect the latest end-use technology data. Residential primary energy use is expected to grow 0.3% per year between 1995 and 2010, while electricity demand is projected to grow at about 0.7% per year over this period. The number of households is expected to grow at about 0.8% per year, which implies that the overall primary energy intensity per household of the residential sector is declining, and the electricity intensity per household is remaining roughly constant over the forecast period. These relatively low growth rates are dependent on the assumed growth rate for miscellaneous electricity, which is the single largest contributor to demand growth in many recent forecasts.

Koomey, J.G.; Brown, R.E.; Richey, R. [and others

1995-12-01T23:59:59.000Z

353

The Boom of Electricity Demand in the Residential Sector in the Developing World and the Potential for Energy Efficiency  

E-Print Network (OSTI)

with Residential Electricity Demand in India's Future - HowThe Boom of Electricity Demand in the Residential Sector instraightforward. Electricity demand per end use and region

Letschert, Virginie

2010-01-01T23:59:59.000Z

354

Wind Speed Forecasting for Power System Operation  

E-Print Network (OSTI)

In order to support large-scale integration of wind power into current electric energy system, accurate wind speed forecasting is essential, because the high variation and limited predictability of wind pose profound challenges to the power system operation in terms of the efficiency of the system. The goal of this dissertation is to develop advanced statistical wind speed predictive models to reduce the uncertainties in wind, especially the short-term future wind speed. Moreover, a criterion is proposed to evaluate the performance of models. Cost reduction in power system operation, as proposed, is more realistic than prevalent criteria, such as, root mean square error (RMSE) and absolute mean error (MAE). Two advanced space-time statistical models are introduced for short-term wind speed forecasting. One is a modified regime-switching, space-time wind speed fore- casting model, which allows the forecast regimes to vary according to the dominant wind direction and seasons. Thus, it avoids a subjective choice of regimes. The other one is a novel model that incorporates a new variable, geostrophic wind, which has strong influence on the surface wind, into one of the advanced space-time statistical forecasting models. This model is motivated by the lack of improvement in forecast accuracy when using air pressure and temperature directly. Using geostrophic wind in the model is not only critical, it also has a meaningful geophysical interpretation. The importance of model evaluation is emphasized in the dissertation as well. Rather than using RMSE or MAE, the performance of both wind forecasting models mentioned above are assessed by economic benefits with real wind farm data from Pacific Northwest of the U.S and West Texas. Wind forecasts are incorporated into power system economic dispatch models, and the power system operation cost is used as a loss measure for the performance of the forecasting models. From another perspective, the new criterion leads to cost-effective scheduling of system-wide wind generation with potential economic benefits arising from the system-wide generation of cost savings and ancillary services cost savings. As an illustration, the integrated forecasts and economic dispatch framework are applied to the Electric Reliability Council of Texas (ERCOT) equivalent 24- bus system. Compared with persistence and autoregressive models, the first model suggests that cost savings from integration of wind power could be on the scale of tens of millions of dollars. For the second model, numerical simulations suggest that the overall generation cost can be reduced by up to 6.6% using look-ahead dispatch coupled with spatio-temporal wind forecast as compared with dispatch with persistent wind forecast model.

Zhu, Xinxin

2013-08-01T23:59:59.000Z

355

U.S. Regional Demand Forecasts Using NEMS and GIS  

E-Print Network (OSTI)

Administration. 2004c. "Energy Glossary Website."http://www.eia.doe.gov/glossary/. Energy InformationGIS Appendix G. Glossary AEO : The Annual Energy Outlook,

Cohen, Jesse A.; Edwards, Jennifer L.; Marnay, Chris

2005-01-01T23:59:59.000Z

356

U.S. Regional Demand Forecasts Using NEMS and GIS  

E-Print Network (OSTI)

Efficiency and Renewable Energy U.S. Department of Energyor consumption of energy in the U.S. Figure 2: The 13California Energy Commission 2002) U.S. Regional Energy

Cohen, Jesse A.; Edwards, Jennifer L.; Marnay, Chris

2005-01-01T23:59:59.000Z

357

U.S. Regional Demand Forecasts Using NEMS and GIS  

E-Print Network (OSTI)

Figure 29: Residential electricity growth rate (percentage)Over Time The residential electricity growth rate indicatesFigure 29: Residential electricity growth rate (percentage)

Cohen, Jesse A.; Edwards, Jennifer L.; Marnay, Chris

2005-01-01T23:59:59.000Z

358

A Demand Forecasting System for Clean-Fuel Vehicles  

E-Print Network (OSTI)

at-home refueling (compressed natural gas), the availabilitygasoline, compressed natural gas, and electricity -- haveclean fuels. For compressed natural gas and methanol this is

Brownstone, David; Bunch, David S.; Golob, Thomas F.

1994-01-01T23:59:59.000Z

359

World Petroleum Supply/Demand Forecast - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

With the major problem being price, what does EIA expect for the rest of this year? After two relatively mild winters with growing crude oil supplies and the Asian ...

360

The Ethical Challenges and Professional Responses of Travel Demand Forecasters  

E-Print Network (OSTI)

of rail mass transit in developing countries: TRRL researchrail transit in North America. Journal of Planning Education and Researchrail transit in North America. Journal of Planning Education and Research

Brinkman, Anthony P.

2003-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "forecast future demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

A New Verification Score for Public Forecasts  

Science Conference Proceedings (OSTI)

CREF, a new verification score for public forecasts, is introduced. This verification score rewards a forecaster who forecasts a rare event accurately. CREF was used to verify local forecasts at the Weather Service Forecast Office (WSFO) in ...

Dean P. Gulezian

1981-02-01T23:59:59.000Z

362

Residential Sector Demand Module 1998, Model Documentation  

Reports and Publications (EIA)

This is the fourth edition of the Model Documentation Report: Residential Sector DemandModule of the National Energy Modeling System (NEMS). It reflects changes made to themodule over the past year for the Annual Energy Outlook 1998. Since last year, severalnew end-use services were added to the module, including: Clothes washers,dishwashers, furnace fans, color televisions, and personal computers. Also, as with allNEMS modules, the forecast horizon has been extended to the year 2020.

John H. Cymbalsky

1998-01-01T23:59:59.000Z

363

Framing Scenarios of Electricity Generation and Gas Use: EPRI Report Series on Gas Demands for Power Generation  

Science Conference Proceedings (OSTI)

This report provides a systematic appraisal of trends in electric generation and demands for gas for power generation. Gas-fired generation is the leading driver of forecasted growth in demand for natural gas in the United States, and natural gas is a leading fuel for planned new generating capacity. The report goes behind the numbers and forecasts to quantify key drivers and uncertainties.

1996-08-28T23:59:59.000Z

364

NATIONAL AND GLOBAL FORECASTS WEST VIRGINIA PROFILES AND FORECASTS  

E-Print Network (OSTI)

· NATIONAL AND GLOBAL FORECASTS · WEST VIRGINIA PROFILES AND FORECASTS · ENERGY · HEALTHCARE Industry Insight: West Virginia Fiscal Forecast 34 CHAPTER 4: WEST ViRGiNiA'S 35 COUNTiES AND MSAs West Forecast Summary 2 CHAPTER 1: THE UNiTED STATES ECONOMY Figure 1.1: United States Real GDP Growth 3 Figure

Mohaghegh, Shahab

365

APPLICATION OF PROBABILISTIC FORECASTS: DECISION MAKING WITH FORECAST UNCERTAINTY  

E-Print Network (OSTI)

1 APPLICATION OF PROBABILISTIC FORECASTS: DECISION MAKING WITH FORECAST UNCERTAINTY Rick Katz.isse.ucar.edu/HP_rick/dmuu.pdf #12;2 QUOTES ON USE OF PROBABILITY FORECASTS · Lao Tzu (Chinese Philosopher) "He who knows does and Value of Probability Forecasts (4) Cost-Loss Decision-Making Model (5) Simulation Example (6) Economic

Katz, Richard

366

Why are survey forecasts superior to model forecasts?  

E-Print Network (OSTI)

We investigate two characteristics of survey forecasts that are shown to contribute to their superiority over purely model-based forecasts. These are that the consensus forecasts incorporate the effects of perceived changes in the long-run outlook, as well as embodying departures from the path toward the long-run expectation. Both characteristics on average tend to enhance forecast accuracy. At the level of the individual forecasts, there is scant evidence that the second characteristic enhances forecast accuracy, and the average accuracy of the individual forecasts can be improved by applying a mechanical correction.

Michael P. Clements; Michael P. Clements

2010-01-01T23:59:59.000Z

367

The National Energy Modeling System: An Overview 1998 - Residential Demand  

Gasoline and Diesel Fuel Update (EIA)

RESIDENTIAL DEMAND MODULE RESIDENTIAL DEMAND MODULE blueball.gif (205 bytes) Housing Stock Submodule blueball.gif (205 bytes) Appliance Stock Submodule blueball.gif (205 bytes) Technology Choice Submodule blueball.gif (205 bytes) Shell Integrity Submodule blueball.gif (205 bytes) Fuel Consumption Submodule The residential demand module (RDM) forecasts energy consumption by Census division for seven marketed energy sources plus solar thermal and geothermal energy. The RDM is a structural model and its forecasts are built up from projections of the residential housing stock and of the energy-consuming equipment contained therein. The components of the RDM and its interactions with the NEMS system are shown in Figure 5. NEMS provides forecasts of residential energy prices, population, and housing starts,

368

Modeling and Forecasting Aurora  

Science Conference Proceedings (OSTI)

Modeling the physical processes needed for forecasting space-weather events requires multiscale modeling. This article discusses several modelsresearchers use to treat the various auroral processes that influence space weather.

Dirk Lummerzheim

2007-01-01T23:59:59.000Z

369

Valuing Climate Forecast Information  

Science Conference Proceedings (OSTI)

The article describes research opportunities associated with evaluating the characteristics of climate forecasts in settings where sequential decisions are made. Illustrative results are provided for corn production in east central Illinois. ...

Steven T. Sonka; James W. Mjelde; Peter J. Lamb; Steven E. Hollinger; Bruce L. Dixon

1987-09-01T23:59:59.000Z

370

Geographically Based Hydrogen Demand & Infrastructure Analysis (Presentation)  

DOE Green Energy (OSTI)

Presentation given at the 2006 DOE Hydrogen, Fuel Cells & Infrastructure Technologies Program Annual Merit Review in Washington, D.C., May 16-19, 2006, discusses potential future hydrogen demand and the infrastructure needed to support hydrogen vehicles.

Melendez, M.

2006-05-18T23:59:59.000Z

371

Advanced Demand Responsive Lighting  

NLE Websites -- All DOE Office Websites (Extended Search)

Demand Demand Responsive Lighting Host: Francis Rubinstein Demand Response Research Center Technical Advisory Group Meeting August 31, 2007 10:30 AM - Noon Meeting Agenda * Introductions (10 minutes) * Main Presentation (~ 1 hour) * Questions, comments from panel (15 minutes) Project History * Lighting Scoping Study (completed January 2007) - Identified potential for energy and demand savings using demand responsive lighting systems - Importance of dimming - New wireless controls technologies * Advanced Demand Responsive Lighting (commenced March 2007) Objectives * Provide up-to-date information on the reliability, predictability of dimmable lighting as a demand resource under realistic operating load conditions * Identify potential negative impacts of DR lighting on lighting quality Potential of Demand Responsive Lighting Control

372

Transportation Demand This  

Annual Energy Outlook 2012 (EIA)

69 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2012 Transportation Demand Module The NEMS Transportation Demand Module estimates...

373

Demand Response Spinning Reserve  

NLE Websites -- All DOE Office Websites (Extended Search)

Demand Response Spinning Reserve Title Demand Response Spinning Reserve Publication Type Report Year of Publication 2007 Authors Eto, Joseph H., Janine Nelson-Hoffman, Carlos...

374

Addressing Energy Demand  

NLE Websites -- All DOE Office Websites (Extended Search)

Addressing Energy Demand through Demand Response: International Experiences and Practices Bo Shen, Girish Ghatikar, Chun Chun Ni, and Junqiao Dudley Environmental Energy...

375

Propane Sector Demand Shares  

U.S. Energy Information Administration (EIA)

... agricultural demand does not impact regional propane markets except when unusually high and late demand for propane for crop drying combines with early cold ...

376

Comparison of Wind Power and Load Forecasting Error Distributions: Preprint  

DOE Green Energy (OSTI)

The introduction of large amounts of variable and uncertain power sources, such as wind power, into the electricity grid presents a number of challenges for system operations. One issue involves the uncertainty associated with scheduling power that wind will supply in future timeframes. However, this is not an entirely new challenge; load is also variable and uncertain, and is strongly influenced by weather patterns. In this work we make a comparison between the day-ahead forecasting errors encountered in wind power forecasting and load forecasting. The study examines the distribution of errors from operational forecasting systems in two different Independent System Operator (ISO) regions for both wind power and load forecasts at the day-ahead timeframe. The day-ahead timescale is critical in power system operations because it serves the unit commitment function for slow-starting conventional generators.

Hodge, B. M.; Florita, A.; Orwig, K.; Lew, D.; Milligan, M.

2012-07-01T23:59:59.000Z

377

Using adaptive network-based fuzzy inference system to forecast automobile sales  

Science Conference Proceedings (OSTI)

Improving the sales forecasting accuracy has become a primary concern for automobile industry. Here, we only focus on new automobile sales in Taiwan. The data set is based on monthly sales, and the data can be divided into three styles of automobile ... Keywords: ANFIS, ANN, ARIMA, Demand forecasting

Fu-Kwun Wang; Ku-Kuang Chang; Chih-Wei Tzeng

2011-08-01T23:59:59.000Z

378

Issues in midterm analysis and forecasting 1998  

SciTech Connect

Issues in Midterm Analysis and Forecasting 1998 (Issues) presents a series of nine papers covering topics in analysis and modeling that underlie the Annual Energy Outlook 1998 (AEO98), as well as other significant issues in midterm energy markets. AEO98, DOE/EIA-0383(98), published in December 1997, presents national forecasts of energy production, demand, imports, and prices through the year 2020 for five cases -- a reference case and four additional cases that assume higher and lower economic growth and higher and lower world oil prices than in the reference case. The forecasts were prepared by the Energy Information Administration (EIA), using EIA`s National Energy Modeling System (NEMS). The papers included in Issues describe underlying analyses for the projections in AEO98 and the forthcoming Annual Energy Outlook 1999 and for other products of EIA`s Office of Integrated Analysis and Forecasting. Their purpose is to provide public access to analytical work done in preparation for the midterm projections and other unpublished analyses. Specific topics were chosen for their relevance to current energy issues or to highlight modeling activities in NEMS. 59 figs., 44 tabs.

NONE

1998-07-01T23:59:59.000Z

379

What Do We Learn from the Price of Crude Oil Futures? working paper  

E-Print Network (OSTI)

Abstract: Based on a two-country, multi-period general equilibrium model of the spot and futures markets for crude oil, we show that there is no theoretical support for the common view that oil futures prices are accurate predictors of the spot price in the mean-squared prediction error (MSPE) sense; yet under certain conditions there is support for the view that oil futures prices are unbiased predictors. Our empirical analysis documents that futures-based forecasts typically are less accurate than the no-change forecast and biased, although the bias is small. Much of the MSPE is driven by the variability of the futures price about the expected spot price, as captured by the basis. Empirically, the fluctuations in the oil futures basis are larger and more persistent than fluctuations in the basis of foreign exchange futures. Within the context of our theoretical model, this anomaly can be explained by the marginal convenience yield of oil inventories. We show that increased uncertainty about future oil supply shortfalls under plausible assumptions causes the basis to decline and precautionary demand for crude oil to increase, resulting in an immediate increase in the real spot price that is not necessarily associated with an accumulation of oil inventories. Our main result is that the negative of the basis may be viewed as an index of fluctuations in the price of crude oil driven by precautionary demand for oil. An empirical analysis of this index provides independent evidence of how shifts in market expectations about future oil supply shortfalls affect the spot price of crude oil. Such expectation shifts have been difficult to quantify, yet have been shown to play an important role in explaining oil price fluctuations. Our empirical results are consistent with related evidence in the literature obtained by alternative methodologies.

Ron Alquist; Lutz Kilian

2007-01-01T23:59:59.000Z

380

A model for Long-term Industrial Energy Forecasting (LIEF)  

SciTech Connect

The purpose of this report is to establish the content and structural validity of the Long-term Industrial Energy Forecasting (LIEF) model, and to provide estimates for the model's parameters. The model is intended to provide decision makers with a relatively simple, yet credible tool to forecast the impacts of policies which affect long-term energy demand in the manufacturing sector. Particular strengths of this model are its relative simplicity which facilitates both ease of use and understanding of results, and the inclusion of relevant causal relationships which provide useful policy handles. The modeling approach of LIEF is intermediate between top-down econometric modeling and bottom-up technology models. It relies on the following simple concept, that trends in aggregate energy demand are dependent upon the factors: (1) trends in total production; (2) sectoral or structural shift, that is, changes in the mix of industrial output from energy-intensive to energy non-intensive sectors; and (3) changes in real energy intensity due to technical change and energy-price effects as measured by the amount of energy used per unit of manufacturing output (KBtu per constant $ of output). The manufacturing sector is first disaggregated according to their historic output growth rates, energy intensities and recycling opportunities. Exogenous, macroeconomic forecasts of individual subsector growth rates and energy prices can then be combined with endogenous forecasts of real energy intensity trends to yield forecasts of overall energy demand. 75 refs.

Ross, M. (Lawrence Berkeley Lab., CA (United States) Michigan Univ., Ann Arbor, MI (United States). Dept. of Physics Argonne National Lab., IL (United States). Environmental Assessment and Information Sciences Div.); Hwang, R. (Lawrence Berkeley Lab., CA (United States))

1992-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "forecast future demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

A model for Long-term Industrial Energy Forecasting (LIEF)  

SciTech Connect

The purpose of this report is to establish the content and structural validity of the Long-term Industrial Energy Forecasting (LIEF) model, and to provide estimates for the model`s parameters. The model is intended to provide decision makers with a relatively simple, yet credible tool to forecast the impacts of policies which affect long-term energy demand in the manufacturing sector. Particular strengths of this model are its relative simplicity which facilitates both ease of use and understanding of results, and the inclusion of relevant causal relationships which provide useful policy handles. The modeling approach of LIEF is intermediate between top-down econometric modeling and bottom-up technology models. It relies on the following simple concept, that trends in aggregate energy demand are dependent upon the factors: (1) trends in total production; (2) sectoral or structural shift, that is, changes in the mix of industrial output from energy-intensive to energy non-intensive sectors; and (3) changes in real energy intensity due to technical change and energy-price effects as measured by the amount of energy used per unit of manufacturing output (KBtu per constant $ of output). The manufacturing sector is first disaggregated according to their historic output growth rates, energy intensities and recycling opportunities. Exogenous, macroeconomic forecasts of individual subsector growth rates and energy prices can then be combined with endogenous forecasts of real energy intensity trends to yield forecasts of overall energy demand. 75 refs.

Ross, M. [Lawrence Berkeley Lab., CA (United States)]|[Michigan Univ., Ann Arbor, MI (United States). Dept. of Physics]|[Argonne National Lab., IL (United States). Environmental Assessment and Information Sciences Div.; Hwang, R. [Lawrence Berkeley Lab., CA (United States)

1992-02-01T23:59:59.000Z

382

Forecasting the Impact of the Irregular Events with DIPA Methodology  

Science Conference Proceedings (OSTI)

The impact of the irregular events on oil futures markets is so great that it is even superior to the variation tendency of the time series itself. In order to forecast the influence of the irregular events on oil futures price, based on the thorough ...

Jinrong Zhu

2008-01-01T23:59:59.000Z

383

Assumptions to the Annual Energy Outlook 2002 - Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Industrial Demand Module Industrial Demand Module The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 9 manufacturing and 6 nonmanufacturing industries. The manufacturing industries are further subdivided into the energy-intensive manufacturing industries and nonenergy-intensive manufacturing industries. The distinction between the two sets of manufacturing industries pertains to the level of modeling. The manufacturing industries are modeled through the use of a detailed process flow or end use accounting procedure, whereas the nonmanufacturing industries are modeled with substantially less detail (Table 19). The Industrial Demand Module forecasts energy consumption at the four Census region levels; energy consumption at the Census Division level is allocated

384

Forecasting in the Presence of Level Shifts  

E-Print Network (OSTI)

accuracy. Journal of Forecasting 19 : 537-560. Hamilton JD.430. Harvey AC. 1989. Forecasting, structural time seriesMH, Timmermann A. 1994. Forecasting stock returns: An

Smith, Aaron

2004-01-01T23:59:59.000Z

385

Multivariate Forecast Evaluation And Rationality Testing  

E-Print Network (OSTI)

10621088. MULTIVARIATE FORECASTS Chaudhuri, P. (1996): OnKingdom. MULTIVARIATE FORECASTS Kirchgssner, G. , and U. K.2005): Estimation and Testing of Forecast Rationality under

Komunjer, Ivana; OWYANG, MICHAEL

2007-01-01T23:59:59.000Z

386

U.S. summer gasoline demand expected to be at 11-year low ...  

U.S. Energy Information Administration (EIA)

U.S. gasoline demand this summer is expected to be the lowest in 11 years, while the average summer fuel price is forecast to be at a record level.

387

Forecasting technology costs via the Learning Curve - Myth or Magic?  

E-Print Network (OSTI)

is generally considered to be traditional fossil fuel power stations, hence making a further assumption that such a value for cost can be forecasted). In situations where niche markets exist (for example solar PV electricity for remote areas or hand held... Solar PV provides a good example of the use and dangers of using experience curves to forecast future costs of an energy technology. It is a good example since solar PV modules are generally accessed by an international market allowing for worldwide...

Alberth, Stephan

388

Forecasting Crude Oil Spot Price Using OECD Petroleum Inventory  

Gasoline and Diesel Fuel Update (EIA)

Forecasting Forecasting Crude Oil Spot Price Using OECD Petroleum Inventory Levels MICHAEL YE, ∗ JOHN ZYREN, ∗∗ AND JOANNE SHORE ∗∗ Abstract This paper presents a short-term monthly forecasting model of West Texas Intermedi- ate crude oil spot price using OECD petroleum inventory levels. Theoretically, petroleum inventory levels are a measure of the balance, or imbalance, between petroleum production and demand, and thus provide a good market barometer of crude oil price change. Based on an understanding of petroleum market fundamentals and observed market behavior during the post-Gulf War period, the model was developed with the objectives of being both simple and practical, with required data readily available. As a result, the model is useful to industry and government decision-makers in forecasting price and investigat- ing the impacts of changes on price, should inventories,

389

Short-Termed Integrated Forecasting System: 1993 Model documentation report  

Science Conference Proceedings (OSTI)

The purpose of this report is to define the Short-Term Integrated Forecasting System (STIFS) and describe its basic properties. The Energy Information Administration (EIA) of the US Energy Department (DOE) developed the STIFS model to generate short-term (up to 8 quarters), monthly forecasts of US supplies, demands, imports exports, stocks, and prices of various forms of energy. The models that constitute STIFS generate forecasts for a wide range of possible scenarios, including the following ones done routinely on a quarterly basis: A base (mid) world oil price and medium economic growth. A low world oil price and high economic growth. A high world oil price and low economic growth. This report is written for persons who want to know how short-term energy markets forecasts are produced by EIA. The report is intended as a reference document for model analysts, users, and the public.

Not Available

1993-05-01T23:59:59.000Z

390

Forecasting Cosmological Constraints from Redshift Surveys  

E-Print Network (OSTI)

Observations of redshift-space distortions in spectroscopic galaxy surveys offer an attractive method for observing the build-up of cosmological structure, which depends both on the expansion rate of the Universe and our theory of gravity. In this paper we present a formalism for forecasting the constraints on the growth of structure which would arise in an idealized survey. This Fisher matrix based formalism can be used to study the power and aid in the design of future surveys.

Martin White; Yong-Seon Song; Will J. Percival

2008-10-08T23:59:59.000Z

391

Demand Response and Open Automated Demand Response Opportunities...  

NLE Websites -- All DOE Office Websites (Extended Search)

Demand Response and Open Automated Demand Response Opportunities for Data Centers Title Demand Response and Open Automated Demand Response Opportunities for Data Centers...

392

Addressing Energy Demand through Demand Response: International Experiences and Practices  

E-Print Network (OSTI)

of integrating demand response and energy efficiencyand D. Kathan (2009), Demand Response in U.S. ElectricityFRAMEWORKS THAT PROMOTE DEMAND RESPONSE 3.1. Demand Response

Shen, Bo

2013-01-01T23:59:59.000Z

393

Demand Trading: Building Liquidity  

Science Conference Proceedings (OSTI)

Demand trading holds substantial promise as a mechanism for efficiently integrating demand-response resources into regional power markets. However, regulatory uncertainty, the lack of proper price signals, limited progress toward standardization, problems in supply-side markets, and other factors have produced illiquidity in demand-trading markets and stalled the expansion of demand-response resources. This report shows how key obstacles to demand trading can be overcome, including how to remove the unce...

2002-11-27T23:59:59.000Z

394

The National Energy Modeling System: An Overview 1998 - Commercial Demand  

Gasoline and Diesel Fuel Update (EIA)

COMMERCIAL DEMAND MODULE COMMERCIAL DEMAND MODULE blueball.gif (205 bytes) Floorspace Submodule blueball.gif (205 bytes) Energy Service Demand Submodule blueball.gif (205 bytes) Equipment Choice Submodule blueball.gif (205 bytes) Energy Consumption Submodule The commercial demand module (CDM) forecasts energy consumption by Census division for eight marketed energy sources plus solar thermal energy. For the three major commercial sector fuels, electricity, natural gas and distillate oil, the CDM is a "structural" model and its forecasts are built up from projections of the commercial floorspace stock and of the energy-consuming equipment contained therein. For the remaining five marketed "minor fuels," simple econometric projections are made. The commercial sector encompasses business establishments that are not

395

FROM ANALYSTS ' EARNINGS FORECASTS  

E-Print Network (OSTI)

We examine the accuracy and bias of intrinsic equity prices estimated from three accounting-based valuation models using analysts earnings forecasts over a four-year horizon. The models are: (a) the earnings capitalization model, (b) the residual income model without a terminal value, and (c) the residual income model with a terminal value that assumes residual income will grow beyond the horizon at a constant rate determined from the expected residual income growth rate over the forecast horizon. Our analysis is based on valuation errors that are calculated by comparing estimated prices to actual prices. We contribute to the literature by examining whether: (i) the analysts earnings forecasts convey information about value beyond that conveyed by current earnings, book value and dividends, (ii) the use of firm specific growth rates in terminal value calculations results in more unbiased and accurate valuations than the use of constant growth rates, and (iii) different models perform better under different ex-ante conditions. We find that analysts earnings forecasts convey information about value beyond that conveyed by current earnings, book values and dividends. Each of the models that we used has valuation errors that decline monotonically as the horizon increases implying that earnings forecasts at each horizon convey new value relevant information. We cannot find a clear advantage to using firm specific growth rates instead of a constant rate of 4 % across all sample

Theodore Sougiannis; Takashi Yaekura

2000-01-01T23:59:59.000Z

396

Decision support for financial forecasting  

SciTech Connect

A primary mission of the Budget Management Division of the Air Force is fiscal analysis. This involves formulating, justifying, and tracking financial data during budget preparation and execution. An essential requirement of this process is the ready availability and easy manipulation of past and current budget data. This necessitates the decentralization of the data. A prototypical system, BAFS (Budget Analysis and Forecasting System), that provides such a capability is presented. In its current state, the system is designed to be a decision support tool. A brief report of the budget decisions and activities is presented. The system structure and its major components are discussed. An insight into the implementation strategies and the tool used is provided. The paper concludes with a discussion of future enhancements and the system's evolution into an expert system. 4 refs., 3 figs.

Jairam, B.N.; Morris, J.D.; Emrich, M.L.; Hardee, H.K.

1988-10-01T23:59:59.000Z

397

Short term wind speed forecasting with evolved neural networks  

Science Conference Proceedings (OSTI)

Concerns about climate change, energy security and the volatility of the price of fossil fuels has led to an increased demand for renewable energy. With wind turbines being one of the most mature renewable energy technologies available, the global use ... Keywords: forecasting, renewable energy, wind-speed

David Corne; Alan Reynolds; Stuart Galloway; Edward Owens; Andrew Peacock

2013-07-01T23:59:59.000Z

398

UNCERTAINTY IN THE GLOBAL FORECAST SYSTEM  

SciTech Connect

We validated one year of Global Forecast System (GFS) predictions of surface meteorological variables (wind speed, air temperature, dewpoint temperature, air pressure) over the entire planet for forecasts extending from zero hours into the future (an analysis) to 36 hours. Approximately 12,000 surface stations world-wide were included in this analysis. Root-Mean-Square- Errors (RMSE) increased as the forecast period increased from zero to 36 hours, but the initial RMSE were almost as large as the 36 hour forecast RMSE for all variables. Typical RMSE were 3 C for air temperature, 2-3mb for sea-level pressure, 3.5 C for dewpoint temperature and 2.5 m/s for wind speed. Approximately 20-40% of the GFS errors can be attributed to a lack of resolution of local features. We attribute the large initial RMSE for the zero hour forecasts to the inability of the GFS to resolve local terrain features that often dominate local weather conditions, e.g., mountain- valley circulations and sea and land breezes. Since the horizontal resolution of the GFS (about 1{sup o} of latitude and longitude) prevents it from simulating these locally-driven circulations, its performance will not improve until model resolution increases by a factor of 10 or more (from about 100 km to less than 10 km). Since this will not happen in the near future, an alternative for the near term to improve surface weather analyses and predictions for specific points in space and time would be implementation of a high-resolution, limited-area mesoscale atmospheric prediction model in regions of interest.

Werth, D.; Garrett, A.

2009-04-15T23:59:59.000Z

399

Supply and demand of lube oils  

Science Conference Proceedings (OSTI)

Lube oil consumption in the world has reached about 40 million tonnes per year, of which 24 million tonnes is used outside the communist areas. There are large regional differences in annual consumption per head from one kilogramme (kg) in India to 35 kg in North America. A statistical analysis of historical data over twenty years in about ninety countries has lead to the conclusion that national income, measured as GDP per head, is the key determinant of total lube oil consumption per head. The functional relationship, however, is different in different countries. Starting from GDP projections until the year 2000, regional forecasts of lube oil demand have been made which show that the share of developing nations outside the communist area in world demand will grow. This will increase the regional imbalance between base oil capacity and demand.

Vlemmings, J.M.L.M.

1988-01-01T23:59:59.000Z

400

Consensus Coal Production Forecast for  

E-Print Network (OSTI)

Consensus Coal Production Forecast for West Virginia 2009-2030 Prepared for the West Virginia Summary 1 Recent Developments 2 Consensus Coal Production Forecast for West Virginia 10 Risks References 27 #12;W.Va. Consensus Coal Forecast Update 2009 iii List of Tables 1. W.Va. Coal Production

Mohaghegh, Shahab

Note: This page contains sample records for the topic "forecast future demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Forecast Technical Document Technical Glossary  

E-Print Network (OSTI)

Forecast Technical Document Technical Glossary A document defining some of the terms used in the 2011 Production Forecast technical documentation. Tom Jenkins Robert Matthews Ewan Mackie Lesley in the Forecast documentation. In some cases, the terms and the descriptions are "industry standard", in others

402

Forecast Technical Document Tree Species  

E-Print Network (OSTI)

Forecast Technical Document Tree Species A document listing the tree species included in the 2011 Production Forecast Tom Jenkins Justin Gilbert Ewan Mackie Robert Matthews #12;PF2011 ­ List of tree species The following is the list of species used within the Forecast System. Species are ordered alphabetically

403

3, 21452173, 2006 Probabilistic forecast  

E-Print Network (OSTI)

HESSD 3, 2145­2173, 2006 Probabilistic forecast verification F. Laio and S. Tamea Title Page for probabilistic forecasts of continuous hydrological variables F. Laio and S. Tamea DITIC ­ Department­2173, 2006 Probabilistic forecast verification F. Laio and S. Tamea Title Page Abstract Introduction

Paris-Sud XI, Université de

404

4, 189212, 2007 Forecast and  

E-Print Network (OSTI)

OSD 4, 189­212, 2007 Forecast and analysis assessment through skill scores M. Tonani et al. Title Science Forecast and analysis assessment through skill scores M. Tonani 1 , N. Pinardi 2 , C. Fratianni 1 Forecast and analysis assessment through skill scores M. Tonani et al. Title Page Abstract Introduction

Paris-Sud XI, Université de

405

FINANCIAL FORECASTING USING GENETIC ALGORITHMS  

E-Print Network (OSTI)

predecessors to forecast stock prices and manage portfolios for approximately 3 years.) We examineFINANCIAL FORECASTING USING GENETIC ALGORITHMS SAM MAHFOUD and GANESH MANI LBS Capital Management entitled Genetic Algorithms for Inductive Learning). Time-series forecasting is a special type

Boetticher, Gary D.

406

Essays in International Macroeconomics and Forecasting  

E-Print Network (OSTI)

This dissertation contains three essays in international macroeconomics and financial time series forecasting. In the first essay, I show, numerically, that a two-country New-Keynesian Sticky Prices model, driven by monetary and productivity shocks, is capable of explaining the highly positive correlation across the industrialized countries' inflation even though their cross-country correlation in money growth rate is negligible. The structure of this model generates cross-country correlations of inflation, output and consumption that appear to closely correspond to the data. Additionally, this model can explain the internal correlation between inflation and output observed in the data. The second essay presents two important results. First, gains from monetary policy cooperation are different from zero when the elasticity of substitution between domestic and imported goods consumption is different from one. Second, when monetary policy is endogenous in a two-country model, the only Nash equilibria supported by this model are those that are symmetrical. That is, all exporting firms in both countries choose to price in their own currency, or all exporting firms in both countries choose to price in the importer's currency. The last essay provides both conditional and unconditional predictive ability evaluations of the aluminum futures contracts prices, by using five different econometric models, in forecasting the aluminum spot price monthly return 3, 15, and 27-months ahead for the sample period 1989.01-2010.10. From these evaluations, the best model in forecasting the aluminum spot price monthly return 3 and 15 months ahead is followed by a (VAR) model whose variables are aluminum futures contracts price, aluminum spot price and risk free interest rate, whereas for the aluminum spot price monthly return 27 months ahead is a single equation model in which the aluminum spot price today is explained by the aluminum futures price 27 months earlier. Finally, it shows that iterated multiperiod-ahead time series forecasts have a better conditional out-of-sample forecasting performance of the aluminum spot price monthly return when an estimated (VAR) model is used as a forecasting tool.

Bejarano Rojas, Jesus Antonio

2011-08-01T23:59:59.000Z

407

Mass Market Demand Response  

NLE Websites -- All DOE Office Websites (Extended Search)

Mass Market Demand Response Mass Market Demand Response Speaker(s): Karen Herter Date: July 24, 2002 - 12:00pm Location: Bldg. 90 Demand response programs are often quickly and poorly crafted in reaction to an energy crisis and disappear once the crisis subsides, ensuring that the electricity system will be unprepared when the next crisis hits. In this paper, we propose to eliminate the event-driven nature of demand response programs by considering demand responsiveness a component of the utility obligation to serve. As such, demand response can be required as a condition of service, and the offering of demand response rates becomes a requirement of utilities as an element of customer service. Using this foundation, we explore the costs and benefits of a smart thermostat-based demand response system capable of two types of programs: (1) a mandatory,

408

Demand Impacted by Weather  

U.S. Energy Information Administration (EIA)

When you look at demand, its also interesting to note the weather. The weather has a big impact on the demand of heating fuels, if its cold, consumers will use ...

409

Forecast of auroral activity  

Science Conference Proceedings (OSTI)

A new technique is developed to predict auroral activity based on a sample of over 9000 auroral sites identified in global auroral images obtained by an ultraviolet imager on the NASA Polar satellite during a 6-month period. Four attributes of auroral activity sites are utilized in forecasting

A. T. Y. Lui

2004-01-01T23:59:59.000Z

410

Demand Trading Toolkit  

Science Conference Proceedings (OSTI)

Download report 1006017 for FREE. The global movement toward competitive markets is paving the way for a variety of market mechanisms that promise to increase market efficiency and expand customer choice options. Demand trading offers customers, energy service providers, and other participants in power markets the opportunity to buy and sell demand-response resources, just as they now buy and sell blocks of power. EPRI's Demand Trading Toolkit (DTT) describes the principles and practice of demand trading...

2001-12-10T23:59:59.000Z

411

Chinese Oil Demand: Steep Incline Ahead  

U.S. Energy Information Administration (EIA) Indexed Site

Chinese Oil Demand: Chinese Oil Demand: Steep Incline Ahead Malcolm Shealy Alacritas, Inc. April 7, 2008 Oil Demand: China, India, Japan, South Korea 0 2 4 6 8 1995 2000 2005 2010 Million Barrels/Day China South Korea Japan India IEA China Oil Forecast 0 2 4 6 8 10 12 14 16 18 2000 2005 2010 2015 2020 2025 2030 Million Barrels/Day WEO 2007 16.3 mbd 12.7 mbd IEA China Oil Forecasts 0 2 4 6 8 10 12 14 16 18 2000 2005 2010 2015 2020 2025 2030 Million Barrels/Day WEO 2007 WEO 2006 WEO 2004 WEO 2002 Vehicle Sales in China 0 2 4 6 8 10 1990 1995 2000 2005 2010 Million Vehicles/Year Vehicle Registrations in China 0 10 20 30 40 50 1990 1995 2000 2005 2010 Million Vehicles/Year Vehicle Density vs GDP per Capita 0 20 40 60 80 100 120 140 160 180 200 0 4,000 8,000 12,000 16,000 GDP per capita, 2005$ PPP Vehicles per thousand people Taiwan South Korea China Vehicle Density vs GDP per Capita

412

Annual Energy Outlook Forecast Evaluation - Tables  

Gasoline and Diesel Fuel Update (EIA)

Annual Energy Outlook Forecast Evaluation Table 2. Total Energy Consumption, Actual vs. Forecasts Table 3. Total Petroleum Consumption, Actual vs. Forecasts Table 4. Total Natural Gas Consumption, Actual vs. Forecasts Table 5. Total Coal Consumption, Actual vs. Forecasts Table 6. Total Electricity Sales, Actual vs. Forecasts Table 7. Crude Oil Production, Actual vs. Forecasts Table 8. Natural Gas Production, Actual vs. Forecasts Table 9. Coal Production, Actual vs. Forecasts Table 10. Net Petroleum Imports, Actual vs. Forecasts Table 11. Net Natural Gas Imports, Actual vs. Forecasts Table 12. Net Coal Exports, Actual vs. Forecasts Table 13. World Oil Prices, Actual vs. Forecasts Table 14. Natural Gas Wellhead Prices, Actual vs. Forecasts Table 15. Coal Prices to Electric Utilities, Actual vs. Forecasts

413

Statistical Wind Power Forecasting Models: Results for U.S. Wind Farms; Preprint  

DOE Green Energy (OSTI)

Electricity markets in the United States are evolving. Accurate wind power forecasts are beneficial for wind plant operators, utility operators, and utility customers. An accurate forecast makes it possible for grid operators to schedule the economically efficient generation to meet the demand of electrical customers. In the evolving markets, some form of auction is held for various forward markets, such as hour ahead or day ahead. This paper develops several statistical forecasting models that can be useful in hour-ahead markets that have a similar tariff. Although longer-term forecasting relies on numerical weather models, the statistical models used here focus on the short-term forecasts that can be useful in the hour-ahead markets. We investigate the extent to which time-series analysis can improve on simplistic persistence forecasts. This project applied a class of models known as autoregressive moving average (ARMA) models to both wind speed and wind power output.

Milligan, M.; Schwartz, M.; Wan, Y.

2003-05-01T23:59:59.000Z

414

Regional load-curve models: scenario and forecast using the DRI model. Final report. [Forecasts of electric power loads in 32 US regions  

SciTech Connect

Regional load curve models were constructed for 32 regions that have been created by aggregating hourly load data from 146 electric utilities. These utilities supply approximately 95% of the electricity consumed in the continental US. The 32 models forecast electricity demands by hour, 8784 regional load forecasts per year. Because projections are made for each hour in the year, contemporaneous forecasts are available for peak demands, megawatt hour demands, load factors, load duration curves, and typical load shapes. The forecast scenario is described and documented in this volume and the forecast resulting from the use of this scenario is presented. The highlights of this forecast are two observations: (1) peak demands will once again become winter phenomena. By the year 2000, 18 of the 32 regions peak in a winter month as compared with the 8 winter peaking regions in 1977. In the heating season, the model is responsive to the number of heating degree-hours, the penetration rate of electric heating equipment, and the rate at which this space conditioning equipment is utilized, which itself is functionally dependent on the level of real electricity prices and real incomes. Thus, as the penetration rate of electric heating equipment increases, winter season demands grow more rapidly than demands in other seasons and peaks begin to appear in winter months; and (2) load factors begin to increase in the forecast, reversing the trend which began in the early 1960s. Nationally, load factors do not leap upwards, instead they increase gradually from .609 in 1977 to .629 in the year 2000. The improvement is more consequential in some regions, with load factors increasing, at times, by .10 or more. In some regions, load factors continue to decline.

Platt, H.D.

1981-08-01T23:59:59.000Z

415

Mass Market Demand Response and Variable Generation Integration Issues: A  

NLE Websites -- All DOE Office Websites (Extended Search)

Mass Market Demand Response and Variable Generation Integration Issues: A Mass Market Demand Response and Variable Generation Integration Issues: A Scoping Study Title Mass Market Demand Response and Variable Generation Integration Issues: A Scoping Study Publication Type Report Refereed Designation Unknown Year of Publication 2011 Authors Cappers, Peter, Andrew D. Mills, Charles A. Goldman, Ryan H. Wiser, and Joseph H. Eto Pagination 76 Date Published 10/2011 Publisher LBNL City Berkeley Keywords demand response, electricity markets and policy group, energy analysis and environmental impacts department, renewable generation integration, smart grid Abstract The penetration of renewable generation technology (e.g., wind, solar) is expected to dramatically increase in the United States during the coming years as many states are implementing policies to expand this sector through regulation and/or legislation. It is widely understood, though, that large scale deployment of certain renewable energy sources, namely wind and solar, poses system integration challenges because of its variable and often times unpredictable production characteristics (NERC, 2009). Strategies that rely on existing thermal generation resources and improved wind and solar energy production forecasts to manage this variability are currently employed by bulk power system operators, although a host of additional options are envisioned for the near future. Demand response (DR), when properly designed, could be a viable resource for managing many of the system balancing issues associated with integrating large-scale variable generation (VG) resources (NERC, 2009). However, demand-side options would need to compete against strategies already in use or contemplated for the future to integrate larger volumes of wind and solar generation resources. Proponents of smart grid (of which Advanced Metering Infrastructure or AMI is an integral component) assert that the technologies associated with this new investment can facilitate synergies and linkages between demand-side management and bulk power system needs. For example, smart grid proponents assert that system-wide implementation of advanced metering to mass market customers (i.e., residential and small commercial customers) as part of a smart grid deployment enables a significant increase in demand response capability.1 Specifically, the implementation of AMI allows electricity consumption information to be captured, stored and utilized at a highly granular level (e.g., 15-60 minute intervals in most cases) and provides an opportunity for utilities and public policymakers to more fully engage electricity customers in better managing their own usage through time-based rates and near-real time feedback to customers on their usage patterns while also potentially improving the management of the bulk power system. At present, development of time-based rates and demand response programs and the installation of variable generation resources are moving forward largely independent of each other in state and regional regulatory and policy forums and without much regard to the complementary nature of their operational characteristics.2 By 2020, the electric power sector is expected to add ~65 million advanced meters3 (which would reach ~47% of U.S. households) as part of smart grid and AMI4 deployments (IEE, 2010) and add ~40-80 GW of wind and solar capacity (EIA, 2010). Thus, in this scoping study, we focus on a key question posed by policymakers: what role can the smart grid (and its associated enabling technology) play over the next 5-10 years in helping to integrate greater penetration of variable generation resources by providing mass market customers with greater access to demand response opportunities? There is a well-established body of research that examines variable generation integration issues as well as demand response potential, but the nexus between the two has been somewhat neglected by the industry. The studies that have been conducted are informative concerning what could be accomplished with strong broad-based support for the expansion of demand response opportunities, but typically do not discuss the many barriers that stand in the way of reaching this potential. This study examines how demand side resources could be used to integrate wind and solar resources in the bulk power system, identifies barriers that currently limit the use of demand side strategies, and suggests several factors that should be considered in assessing alternative strategies that can be employed to integrate wind and solar resources in the bulk power system. It is difficult to properly gauge the role that DR could play in managing VG integration issues in the near future without acknowledging and understanding the entities and institutions that govern the interactions between variable generation and mass market customers (see Figure ES-1). Retail entities, like load-serving entities (LSE) and aggregators of retail customers (ARC), harness the demand response opportunities of mass market customers through tariffs (and DR programs) that are approved by state regulatory agencies or local governing entities (in the case of public power). The changes in electricity consumption induced by DR as well as the changes in electricity production due to the variable nature of wind and solar generation technologies is jointly managed by bulk power system operators. Bulk power system operators function under tariffs approved by the Federal Energy Regulatory Commission (FERC) and must operate their systems in accordance with rules set by regional reliability councils. These reliability rules are derived from enforceable standards that are set by the North American Electric Reliability Corporation (NERC) and approved by federal regulators. Thus, the role that DR can play in managing VG integration issues is contingent on what opportunities state and local regulators are willing to approve and how customers' response to the DR opportunities can be integrated into the bulk power system both electrically (due to reliability rules) and financially (due to market rules).

416

Forecasting world oil prices: the evolution of modeling methodologies and summary of recent projections  

SciTech Connect

This paper has three main objectives: (1) to review and summarize the varios methodologies that have been developed to explain historical oil price changes and forecast future price trends, (2) to summarize recent world oil price forecasts, and, when possible, discuss the methodologies used in formulating those forecasts, and (3) utilizing conclusions from the reviews of the modeling methodologies and the recent price forecasts, in combination with an assessment of recent and projected oil market trends, to give oil price projections for the time period 1987 to 2022. The paper argues that modeling methodologies have undergone significant evolution during the past decade as modelers increasingly recognize the complex and constantly changing structure of the world oil market. Unfortunately, a consensus about the appropriate methodology to use in formulating oil price forecasts is yet to be reached. There is, however, a general movement toward the opinion that both economic and political factors should be considered when making price projections. Likewise, there is no consensus about future oil price trends. Forecasts differ widely. However, in general, forecasts have been adjusted downwardly in recent years. Further, an overall assessment of the forecasts and recent oil market trends suggests that oil prices will remain constant in real terms for the remainder of the 1980s. Real oil prices are expected to increase by between 2 and 3% during the 1990s and beyond. Forecasters are quick to point out, however, that all forecasts are subject to significant uncertainty. 68 references, 1 figure, 6 tables.

Curlee, T.R.

1985-01-01T23:59:59.000Z

417

Annual Energy Outlook Forecast Evaluation  

Gasoline and Diesel Fuel Update (EIA)

by Esmeralda Sánchez The Office of Integrated Analysis and Forecasting has produced an annual evaluation of the accuracy of the Annual Energy Outlook (AEO) since 1996. Each year, the forecast evaluation expands on the prior year by adding the projections from the most recent AEO and the most recent historical year of data. The Forecast Evaluation examines the accuracy of AEO forecasts dating back to AEO82 by calculating the average absolute forecast errors for each of the major variables for AEO82 through AEO2003. The average absolute forecast error, which for the purpose of this report will also be referred to simply as "average error" or "forecast error", is computed as the simple mean, or average, of all the absolute values of the percent errors,

418

Residential sector: the demand for energy services  

Science Conference Proceedings (OSTI)

The purpose of this report is to project the demand for residential services, and, thereby, the demand for energy into the future. The service demands which best represent a complete breakdown of residential energy consumption is identified and estimates of the amount of energy, by fuel type, used to satisfy each service demand for an initial base year (1978) are detailed. These estimates are reported for both gross (or input) energy use and net or useful energy use, in the residential sector. The various factors which affect the consumption level for each type of energy and each identified service demand are discussed. These factors include number of households, appliance penetration, choice of fuel type, technical conversion efficiency of energy using devices, and relative energy efficiency of the building shell (extent of insulation, resistance to air infiltration, etc.). These factors are discussed relative to both the present and expected future values, for the purpose of projections. The importance of the housing stock to service demand estimation and projection and trends in housing in Illinois are discussed. How the housing stock is projected based on population and household projections is explained. The housing projections to the year 2000 are detailed. The projections of energy consumption by service demand and fuel type are contrasted with the various energy demand projections in Illinois Energy Consumption Trends: 1960 to 2000 and explains how and why the two approaches differ. (MCW)

Not Available

1981-01-01T23:59:59.000Z

419

Analysis of recent projections of electric power demand  

Science Conference Proceedings (OSTI)

This report reviews the changes and potential changes in the outlook for electric power demand since the publication of Review and Analysis of Electricity Supply Market Projections (B. Swezey, SERI/MR-360-3322, National Renewable Energy Laboratory). Forecasts of the following organizations were reviewed: DOE/Energy Information Administration, DOE/Policy Office, DRI/McGraw-Hill, North American Electric Reliability Council, and Gas Research Institute. Supply uncertainty was briefly reviewed to place the uncertainties of the demand outlook in perspective. Also discussed were opportunities for modular technologies, such as renewable energy technologies, to fill a potential gap in energy demand and supply.

Hudson, D.V. Jr.

1993-08-01T23:59:59.000Z

420

Chaotic Time Series Forecasting Base on Fuzzy Adaptive PSO for Feedforward Neural Network Training  

Science Conference Proceedings (OSTI)

Short-term electricity demand forecasting for the next hour to several days out is one of the most important tools by which an electric utility plans and dispatches the loading of generating units in order to meet system demand. But there exists chaos ... Keywords: Particle Swarm Optimization (PSO), chaotic time Series, fuzzy system, feedforward neural network

Wenyu Zhang; Jinzhao Liang; Jianzhou Wang; Jinxing Che

2008-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "forecast future demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Residential Demand Module...................................................................................................................... 27  

E-Print Network (OSTI)

analytical agency within the U.S. Department of Energy. By law, EIAs data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the Department of Energy or

unknown authors

2013-01-01T23:59:59.000Z

422

Forecasting Dangerous Inmate Misconduct: An Applications of Ensemble Statistical Procedures  

E-Print Network (OSTI)

Forecasting Dangerous Inmate Misconduct: An Applications ofidentify with useful forecasting skill the very few inmatescontribute substantially to forecasting skill necessarily

Berk, Richard; Kriegler, Brian; Baek, Jong-Ho

2005-01-01T23:59:59.000Z

423

Information and Inference in Econometrics: Estimation, Testing and Forecasting  

E-Print Network (OSTI)

Application: Forecasting Equity Premium . . . . . . . . . .2.6.1 Forecasting4 Forecasting Using Supervised Factor Models 4.1

Tu, Yundong

2012-01-01T23:59:59.000Z

424

Forecasting Dangerous Inmate Misconduct: An Applications of Ensemble Statistical Procedures  

E-Print Network (OSTI)

Forecasting Dangerous Inmate Misconduct: An Applications ofidentify with useful forecasting skill the very few inmatescontribute substantially to forecasting skill necessarily

Richard A. Berk; Brian Kriegler; Jong-Ho Baek

2011-01-01T23:59:59.000Z

425

Demand Response and Open Automated Demand Response Opportunities...  

NLE Websites -- All DOE Office Websites (Extended Search)

Response and Open Automated Demand Response Opportunities for Data Centers Title Demand Response and Open Automated Demand Response Opportunities for Data Centers Publication Type...

426

Voluntary Green Power Market Forecast through 2015  

SciTech Connect

Various factors influence the development of the voluntary 'green' power market--the market in which consumers purchase or produce power from non-polluting, renewable energy sources. These factors include climate policies, renewable portfolio standards (RPS), renewable energy prices, consumers' interest in purchasing green power, and utilities' interest in promoting existing programs and in offering new green options. This report presents estimates of voluntary market demand for green power through 2015 that were made using historical data and three scenarios: low-growth, high-growth, and negative-policy impacts. The resulting forecast projects the total voluntary demand for renewable energy in 2015 to range from 63 million MWh annually in the low case scenario to 157 million MWh annually in the high case scenario, representing an approximately 2.5-fold difference. The negative-policy impacts scenario reflects a market size of 24 million MWh. Several key uncertainties affect the results of this forecast, including uncertainties related to growth assumptions, the impacts that policy may have on the market, the price and competitiveness of renewable generation, and the level of interest that utilities have in offering and promoting green power products.

Bird, L.; Holt, E.; Sumner, J.; Kreycik, C.

2010-05-01T23:59:59.000Z

427

Voluntary Green Power Market Forecast through 2015  

SciTech Connect

Various factors influence the development of the voluntary 'green' power market--the market in which consumers purchase or produce power from non-polluting, renewable energy sources. These factors include climate policies, renewable portfolio standards (RPS), renewable energy prices, consumers' interest in purchasing green power, and utilities' interest in promoting existing programs and in offering new green options. This report presents estimates of voluntary market demand for green power through 2015 that were made using historical data and three scenarios: low-growth, high-growth, and negative-policy impacts. The resulting forecast projects the total voluntary demand for renewable energy in 2015 to range from 63 million MWh annually in the low case scenario to 157 million MWh annually in the high case scenario, representing an approximately 2.5-fold difference. The negative-policy impacts scenario reflects a market size of 24 million MWh. Several key uncertainties affect the results of this forecast, including uncertainties related to growth assumptions, the impacts that policy may have on the market, the price and competitiveness of renewable generation, and the level of interest that utilities have in offering and promoting green power products.

Bird, L.; Holt, E.; Sumner, J.; Kreycik, C.

2010-05-01T23:59:59.000Z

428

Management Earnings Forecasts and Value of Analyst Forecast Revisions  

E-Print Network (OSTI)

Prior studies evaluate the relative importance of the sources of value that financial analysts bring to the market based on the price impact of forecast revisions over the event time. We find that management earnings forecasts influence the timing and precision of analyst forecasts. More importantly, evidence suggests that prior studies finding of weaker (stronger) stock-price responses to forecast revisions in the period immediately after (before) the prior-quarter earnings announcement is likely to be the artifact of a temporal pattern of management earnings forecasts over the event time. To the extent that management earnings forecasts are public disclosures, our results suggest that the relative importance of analysts ' information discovery role documented in prior studies is likely to be overstated.

Yongtae Kim; Minsup Song

2013-01-01T23:59:59.000Z

429

Annual Energy Outlook Forecast Evaluation  

Gasoline and Diesel Fuel Update (EIA)

by Esmeralda Sanchez by Esmeralda Sanchez Errata -(7/14/04) The Office of Integrated Analysis and Forecasting has produced an annual evaluation of the accuracy of the Annual Energy Outlook (AEO) since 1996. Each year, the forecast evaluation expands on the prior year by adding the projections from the most recent AEO and the most recent historical year of data. The Forecast Evaluation examines the accuracy of AEO forecasts dating back to AEO82 by calculating the average absolute forecast errors for each of the major variables for AEO82 through AEO2003. The average absolute forecast error, which for the purpose of this report will also be referred to simply as "average error" or "forecast error", is computed as the simple mean, or average, of all the absolute values of the percent errors, expressed as the percentage difference between the Reference Case projection and actual historic value, shown for every AEO and for each year in the forecast horizon (for a given variable). The historical data are typically taken from the Annual Energy Review (AER). The last column of Table 1 provides a summary of the most recent average absolute forecast errors. The calculation of the forecast error is shown in more detail in Tables 2 through 18. Because data for coal prices to electric generating plants were not available from the AER, data from the Monthly Energy Review (MER), July 2003 were used.

430

ArizonaArizona''s Electricity Future:s Electricity Future: The Demand for WaterThe Demand for Water  

E-Print Network (OSTI)

;Estimated water use by plant typeEstimated water use by plant type 0 100 200 300 400 500 600 700 800 900nuclear pulverized coalw et integrated gasification C C w et com bined cycle w et integrated gasification

Keller, Arturo A.

431

Demand Dispatch-Intelligent  

NLE Websites -- All DOE Office Websites (Extended Search)

and energy efficiency throughout the value chain resulting in the most economical price for electricity. Having adequate quantities and capacities of demand resources is a...

432

Chapter 11 Forecasting breaks and forecasting during breaks  

E-Print Network (OSTI)

Success in accurately forecasting breaks requires that they are predictable from relevant information available at the forecast origin using an appropriate model form, which can be selected and estimated before the break. To clarify the roles of these six necessary conditions, we distinguish between the information set for normal forces and the one for break drivers, then outline sources of potential information. Relevant non-linear, dynamic models facing multiple breaks can have more candidate variables than observations, so we discuss automatic model selection. As a failure to accurately forecast breaks remains likely, we augment our strategy by modelling breaks during their progress, and consider robust forecasting devices.

Jennifer L. Castle; Nicholas W. P. Fawcett; David F. Hendry

2011-01-01T23:59:59.000Z

433

Demand Response Valuation Frameworks Paper  

E-Print Network (OSTI)

xxxv Option Value of Electricity Demand Response, Osmanelasticity in aggregate electricity demand. With these newii) reduction in electricity demand during peak periods (

Heffner, Grayson

2010-01-01T23:59:59.000Z

434

U.S. Propane Demand  

U.S. Energy Information Administration (EIA)

Demand is higher in 1999 due to higher petrochemical demand and a strong economy. We are also seeing strong demand in the first quarter of 2000; however, ...

435

Automated Demand Response and Commissioning  

E-Print Network (OSTI)

Fully-Automated Demand Response Test in Large Facilities14in DR systems. Demand Response using HVAC in Commercialof Fully Automated Demand Response in Large Facilities

Piette, Mary Ann; Watson, David S.; Motegi, Naoya; Bourassa, Norman

2005-01-01T23:59:59.000Z

436

Demand Response Spinning Reserve Demonstration  

E-Print Network (OSTI)

F) Enhanced ACP Date RAA ACP Demand Response SpinningReserve Demonstration Demand Response Spinning Reservesupply spinning reserve. Demand Response Spinning Reserve

2007-01-01T23:59:59.000Z

437

Forecast Technical Document Growing Stock Volume  

E-Print Network (OSTI)

Forecast Technical Document Growing Stock Volume Forecasts A document describing how growing stock (`standing') volume is handled in the 2011 Production Forecast. Tom Jenkins Robert Matthews Ewan Mackie Lesley Halsall #12;PF2011 ­ Growing stock volume forecasts Background A forecast of standing volume (or

438

On the Use of Mesoscale and Cloud-Scale Models in Operational Forecasting  

Science Conference Proceedings (OSTI)

In the near future, the technological capability will be available to use mesoscale and cloud-scale numerical models for forecasting convective weather in operational meteorology. We address some of the issues concerning effective utilization of ...

Harold E. Brooks; Charles A. Doswell III; Robert A. Maddox

1992-03-01T23:59:59.000Z

439

NeuroInflow: The New Model to Forecast Average Monthly Inflow  

Science Conference Proceedings (OSTI)

In utilities using a mixture of hydroelectric and non-hydroelectricpower, the economics of the hydroelectricplants depend upon the reservoir height and the inflowinto the reservoir for several months into the future.Accurate forecasts of reservoir inflow ...

Muser Valena; Teresa Ludermir

2002-11-01T23:59:59.000Z

440

Representing Serial Correlation of Meteorological Events and Forecasts in Dynamic DecisionAnalytic Models  

Science Conference Proceedings (OSTI)

A recursive solution for optimal sequences of decisions given uncertainty in future weather events, and forecasts of those events, is presented. The formulation incorporates a representation of the autocorrelation that is typically exhibited. The ...

Daniel S. Wilks

1991-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "forecast future demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Forecasting the Market Penetration of Energy Conservation Technologies: The Decision Criteria for Choosing a Forecasting Model  

E-Print Network (OSTI)

An important determinant of our energy future is the rate at which energy conservation technologies, once developed, are put into use. At Synergic Resources Corporation, we have adapted and applied a methodology to forecast the use of conservation technologies. This paper briefly discusses the observed patterns of the diffusion of new' technologies and the determinants (both sociological and economic) which have been proposed to explain the variation in the diffusion rates. Existing market penetration models are reviewed and their capability to forecast the use of conservation technologies is assessed using a set of criteria developed for this purpose. The reasoning behind the choice of criteria is discussed. The criteria includes the range of hypothesized influences to market penetration that are incorporated into the models and the applicability of the available parameter estimates. The attributes of our methodology and forecasting model choice (a behavioral lag equation developed by Mathtech, Inc.), are displayed using a list of the judgment criteria. This method was used to forecast the use of electricity conservation technologies in industries located in the Pacific Northwest for the Bonneville Power Administration.

Lang, K.

1982-01-01T23:59:59.000Z

442

TRANSPORTATION ENERGY FORECASTS FOR THE 2007 INTEGRATED ENERGY  

E-Print Network (OSTI)

of future contributions from various emerging transportation fuels and technologies is unknown. PotentiallyCALIFORNIA ENERGY COMMISSION TRANSPORTATION ENERGY FORECASTS FOR THE 2007 INTEGRATED ENERGY POLICY AND TRANSPORTATION DIVISION B. B. Blevins Executive Director DISCLAIMER This report was prepared by a California

443

Application of Polynomial Neural Networks to Exchange Rate Forecasting  

Science Conference Proceedings (OSTI)

This research investigates the use of Ridge Polynomial Neural Network (RPNN) as non-linear prediction model to forecast the future trends of financial time series. The network was used for the prediction of one step ahead and five steps ahead of two ... Keywords: Dynamic Ridge Polynomial Neural Network, Financial time series, Multilayer Perceptron, Ridge Polynomial Neural Network

R. Ghazali; A. J. Hussain; M. N. Mohd. Salleh

2008-11-01T23:59:59.000Z

444

Building simulation weather forecast files for predictive control strategies  

Science Conference Proceedings (OSTI)

Model-Based Predictive Control (MPC) has received significant attention in recent years as a tool for load management in buildings. MPC is based on predicting the response of a system based on knowledge of future inputs, such as weather and occupancy. ... Keywords: EPW files, building simulation, predictive control, weather forecast

Jos. A. Candanedo; ric Paradis; Meli Stylianou

2013-04-01T23:59:59.000Z

445

Aviation forecasting and systems analyses  

SciTech Connect

The 9 papers in this report deal with the following areas: method of allocating airport runway slots; method for forecasting general aviation activity; air traffic control network-planning model based on second-order Markov chains; analyzing ticket-choice decisions of air travelers; assessing the safety and risk of air traffic control systems: risk estimation from rare events; forecasts of aviation fuel consumption in Virginia; estimating the market share of international air carriers; forecasts of passenger and air-cargo activity at Logan International Airport; and forecasting method for general aviation aircraft and their activity.

Geisinger, K.E.; Brander, J.R.G.; Wilson, F.R.; Kohn, H.M.; Polhemus, N.W.

1980-01-01T23:59:59.000Z

446

Studies of inflation and forecasting.  

E-Print Network (OSTI)

??This dissertation contains five research papers in the area of applied econometrics. The two broad themes of the research are inflation and forecasting. The first (more)

Bermingham, Colin

2011-01-01T23:59:59.000Z

447

UWIG Forecasting Workshop -- Albany (Presentation)  

SciTech Connect

This presentation describes the importance of good forecasting for variable generation, the different approaches used by industry, and the importance of validated high-quality data.

Lew, D.

2011-04-01T23:59:59.000Z

448

Comparison of Energy Information Administration and Bonneville Power Administration load forecasts  

SciTech Connect

Comparisons of the modeling methodologies underlying the project Independence Evaluation System (PIES) and the Bonneville Power Administration forecasts are discussed in this paper. This Technical Memorandum is presented in order to reconcile apparent inconsistencies between the forecasts. These represent different purposes for the modeling effort as well as different forecasts. Nonetheless, both are appropriate within the context that they are intended. The BPA forecasts are site-specific, detailed, micro-level, yearly forecasts of the demand for electricity. PIES develops regional, macro forecasts and does not contain estimates of the timing of the completion of plants within the period of the forecast. The BPA forecast is intended to be utilized in analyzing a sub-regional capacity expansion program. PIES is a regional energy market-clearing, non-normative model which allows different scenarios to be compared by changing input variables. Clearly, both forecasts are dependent upon the accuracy of the assumptions and input variables included. However, the differing levels of aggregation and objectives require different types of input variables.

Reed, H.J.

1978-06-01T23:59:59.000Z

449

Statistical Wind Power Forecasting for U.S. Wind Farms: Preprint  

DOE Green Energy (OSTI)

Electricity markets in the United States are evolving. Accurate wind power forecasts are beneficial for wind plant operators, utility operators, and utility customers. An accurate forecast allows grid operators to schedule economically efficient generation to meet the demand of electrical customers. The evolving markets hold some form of auction for various forward markets, such as hour ahead or day ahead. This paper describes several statistical forecasting models that can be useful in hour-ahead markets. Although longer-term forecasting relies on numerical weather models, the statistical models used here focus on the short-term forecasts that can be useful in the hour-ahead markets. The purpose of the paper is not to develop forecasting models that can compete with commercially available models. Instead, we investigate the extent to which time-series analysis can improve simplistic persistence forecasts. This project applied a class of models known as autoregressive moving average (A RMA) models to both wind speed and wind power output. The results from wind farms in Minnesota, Iowa, and along the Washington-Oregon border indicate that statistical modeling can provide a significant improvement in wind forecasts compared to persistence forecasts.

Milligan, M.; Schwartz, M. N.; Wan, Y.

2003-11-01T23:59:59.000Z

450

Automated Demand Response and Commissioning  

E-Print Network (OSTI)

internal conditions. Maximum Demand Saving Intensity [W/ft2]automated electric demand sheds. The maximum electric shed

Piette, Mary Ann; Watson, David S.; Motegi, Naoya; Bourassa, Norman

2005-01-01T23:59:59.000Z

451

Evaluating Density Forecasts: Forecast Combinations, Model Mixtures, Calibration and Sharpness  

E-Print Network (OSTI)

In a recent article Gneiting, Balabdaoui and Raftery (JRSSB, 2007) propose the criterion of sharpness for the evaluation of predictive distributions or density forecasts. They motivate their proposal by an example in which standard evaluation procedures based on probability integral transforms cannot distinguish between the ideal forecast and several competing forecasts. In this paper we show that their example has some unrealistic features from the perspective of the time-series forecasting literature, hence it is an insecure foundation for their argument that existing calibration procedures are inadequate in practice. We present an alternative, more realistic example in which relevant statistical methods, including information-based methods, provide the required discrimination between competing forecasts. We conclude that there is no need for a subsidiary criterion of sharpness.

James Mitchell; Kenneth F. Wallis

2008-01-01T23:59:59.000Z

452

On the Prediction of Forecast Skill  

Science Conference Proceedings (OSTI)

Using 10-day forecast 500 mb height data from the last 7 yr, the potential to predict the skill of numerical weather forecasts is discussed. Four possible predictor sets are described. The first, giving the consistency between adjacent forecasts, ...

T. N. Palmer; S. Tibaldi

1988-12-01T23:59:59.000Z

453

Equitable Skill Scores for Categorical Forecasts  

Science Conference Proceedings (OSTI)

Many skill scores used to evaluate categorical forecasts of discrete variables are inequitable, in the sense that constant forecasts of some events lead to better scores than constant forecasts of other events. Inequitable skill scores may ...

Lev S. Gandin; Allan H. Murphy

1992-02-01T23:59:59.000Z

454

Whither the Weather Analysis and Forecasting Process?  

Science Conference Proceedings (OSTI)

An argument is made that if human forecasters are to continue to maintain a skill advantage over steadily improving model and guidance forecasts, then ways have to be found to prevent the deterioration of forecaster skills through disuse. The ...

Lance F. Bosart

2003-06-01T23:59:59.000Z

455

Lagged Ensembles, Forecast Configuration, and Seasonal Predictions  

Science Conference Proceedings (OSTI)

An analysis of lagged ensemble seasonal forecasts from the National Centers for Environmental Prediction (NCEP) Climate Forecast System version 2 (CFSv2) is presented. The focus of the analysis is on the construction of lagged ensemble forecasts ...

Mingyue Chen; Wanqiu Wang; Arun Kumar

456

Improving Forecast Communication: Linguistic and Cultural Considerations  

Science Conference Proceedings (OSTI)

One goal of weather and climate forecasting is to inform decision making. Effective communication of forecasts to various sectors of the public is essential for meeting that goal, yet studies repeatedly show that forecasts are not well understood ...

Karen Pennesi

2007-07-01T23:59:59.000Z

457

Lagged Ensembles, Forecast Configuration, and Seasonal Predictions  

Science Conference Proceedings (OSTI)

An analysis of lagged ensemble seasonal forecasts from the National Centers for Environmental Prediction (NCEP) Climate Forecast System, version 2 (CFSv2), is presented. The focus of the analysis is on the construction of lagged ensemble forecasts ...

Mingyue Chen; Wanqiu Wang; Arun Kumar

2013-10-01T23:59:59.000Z

458

Evaluation of errors in national energy forecasts.  

E-Print Network (OSTI)

??Energy forecasts are widely used by the U.S. government, politicians, think tanks, and utility companies. While short-term forecasts were reasonably accurate, medium and long-range forecasts (more)

Sakva, Denys

2005-01-01T23:59:59.000Z

459

What Is the True Value of Forecasts?  

Science Conference Proceedings (OSTI)

Understanding the economic value of weather and climate forecasts is of tremendous practical importance. Traditional models that have attempted to gauge forecast value have focused on a best-case scenario, in which forecast users are assumed to ...

Antony Millner

2009-10-01T23:59:59.000Z

460

Diagnosing Forecast Errors in Tropical Cyclone Motion  

Science Conference Proceedings (OSTI)

This paper reports on the development of a diagnostic approach that can be used to examine the sources of numerical model forecast error that contribute to degraded tropical cyclone (TC) motion forecasts. Tropical cyclone motion forecasts depend ...

Thomas J. Galarneau Jr.; Christopher A. Davis

2013-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "forecast future demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Forecasting Electric Vehicle Costs with Experience Curves  

E-Print Network (OSTI)

April, 5. R 2~1. Dino. "Forecasting the Price Evolution of 1ElectromcProducts," Ioumal of Forecasting, oL4, No I, 1985.costs and a set of forecasting tools that can be refined as

Lipman, Timonthy E.; Sperling, Daniel

2001-01-01T23:59:59.000Z

462

Probabilistic Verification of Monthly Temperature Forecasts  

Science Conference Proceedings (OSTI)

Monthly forecasting bridges the gap between medium-range weather forecasting and seasonal predictions. While such forecasts in the prediction range of 14 weeks are vital to many applications in the context of weather and climate risk management, ...

Andreas P. Weigel; Daniel Baggenstos; Mark A. Liniger; Frdric Vitart; Christof Appenzeller

2008-12-01T23:59:59.000Z

463

A Forecast for the California Labor Market  

E-Print Network (OSTI)

issue for the state. A Forecast for the California Laborto Go? The UCLA Anderson Forecast for the Nation andAngeles: UCLA Anderson Forecast: Nation 1.1 1.9. Dhawan,

Mitchell, Daniel J. B.

2001-01-01T23:59:59.000Z

464

Calibration of Probabilistic Forecasts of Binary Events  

Science Conference Proceedings (OSTI)

Probabilistic forecasts of atmospheric variables are often given as relative frequencies obtained from ensembles of deterministic forecasts. The detrimental effects of imperfect models and initial conditions on the quality of such forecasts can ...

Cristina Primo; Christopher A. T. Ferro; Ian T. Jolliffe; David B. Stephenson

2009-03-01T23:59:59.000Z

465

CORPORATE GOVERNANCE AND MANAGEMENT EARNINGS FORECAST  

E-Print Network (OSTI)

1 CORPORATE GOVERNANCE AND MANAGEMENT EARNINGS FORECAST QUALITY: EVIDENCE FROM FRENCH IPOS Anis attributes, ownership retained, auditor quality, and underwriter reputation and management earnings forecast quality measured by management earnings forecast accuracy and bias. Using 117 French IPOs, we find

Paris-Sud XI, Université de

466

Forecasting women's apparel sales using mathematical  

E-Print Network (OSTI)

Forecasting women's apparel sales using mathematical modeling Celia Frank and Ashish Garg, USA Les Sztandera Philadelphia University, Philadelphia, PA, USA Keywords Apparel, Forecasting average (MA), auto- regression (AR), or combinations of them are used for forecasting sales. Since

Raheja, Amar

467

Calibration of Probabilistic Quantitative Precipitation Forecasts  

Science Conference Proceedings (OSTI)

From 1 August 1990 to 31 July 1995, the Weather Service Forecast Office in Pittsburgh prepared 6159 probabilistic quantitative precipitation forecasts. Forecasts were made twice a day for 24-h periods beginning at 0000 and 1200 UTC for two river ...

Roman Krzysztofowicz; Ashley A. Sigrest

1999-06-01T23:59:59.000Z

468

Evaluating Probabilistic Forecasts Using Information Theory  

Science Conference Proceedings (OSTI)

The problem of assessing the quality of an operational forecasting system that produces probabilistic forecasts is addressed using information theory. A measure of the quality of the forecasting scheme, based on the amount of a data compression ...

Mark S. Roulston; Leonard A. Smith

2002-06-01T23:59:59.000Z

469

Virtual Floe Ice Drift Forecast Model Intercomparison  

Science Conference Proceedings (OSTI)

Both sea ice forecast models and methods to measure their skill are needed for operational sea ice forecasting. Two simple sea ice models are described and tested here. Four different measures of skill are also tested. The forecasts from the ...

Robert W. Grumbine

1998-09-01T23:59:59.000Z

470

Ensemble Cloud Model Applications to Forecasting Thunderstorms  

Science Conference Proceedings (OSTI)

A cloud model ensemble forecasting approach is developed to create forecasts that describe the range and distribution of thunderstorm lifetimes that may be expected to occur on a particular day. Such forecasts are crucial for anticipating severe ...

Kimberly L. Elmore; David J. Stensrud; Kenneth C. Crawford

2002-04-01T23:59:59.000Z

471

Natural Gas Prices Forecast Comparison--AEO vs. Natural Gas Markets  

Science Conference Proceedings (OSTI)

This paper evaluates the accuracy of two methods to forecast natural gas prices: using the Energy Information Administration's ''Annual Energy Outlook'' forecasted price (AEO) and the ''Henry Hub'' compared to U.S. Wellhead futures price. A statistical analysis is performed to determine the relative accuracy of the two measures in the recent past. A statistical analysis suggests that the Henry Hub futures price provides a more accurate average forecast of natural gas prices than the AEO. For example, the Henry Hub futures price underestimated the natural gas price by 35 cents per thousand cubic feet (11.5 percent) between 1996 and 2003 and the AEO underestimated by 71 cents per thousand cubic feet (23.4 percent). Upon closer inspection, a liner regression analysis reveals that two distinct time periods exist, the period between 1996 to 1999 and the period between 2000 to 2003. For the time period between 1996 to 1999, AEO showed a weak negative correlation (R-square = 0.19) between forecast price by actual U.S. Wellhead natural gas price versus the Henry Hub with a weak positive correlation (R-square = 0.20) between forecasted price and U.S. Wellhead natural gas price. During the time period between 2000 to 2003, AEO shows a moderate positive correlation (R-square = 0.37) between forecasted natural gas price and U.S. Wellhead natural gas price versus the Henry Hub that show a moderate positive correlation (R-square = 0.36) between forecast price and U.S. Wellhead natural gas price. These results suggest that agencies forecasting natural gas prices should consider incorporating the Henry Hub natural gas futures price into their forecasting models along with the AEO forecast. Our analysis is very preliminary and is based on a very small data set. Naturally the results of the analysis may change, as more data is made available.

Wong-Parodi, Gabrielle; Lekov, Alex; Dale, Larry

2005-02-09T23:59:59.000Z

472

Commercial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

2 2 Commercial Demand Module The NEMS Commercial Sector Demand Module generates projections of commercial sector energy demand through 2035. The definition of the commercial sector is consistent with EIA's State Energy Data System (SEDS). That is, the commercial sector includes business establishments that are not engaged in transportation or in manufacturing or other types of industrial activity (e.g., agriculture, mining or construction). The bulk of commercial sector energy is consumed within buildings; however, street lights, pumps, bridges, and public services are also included if the establishment operating them is considered commercial. Since most of commercial energy consumption occurs in buildings, the commercial module relies on the data from the EIA

473

The evolution of consensus in macroeconomic forecasting  

E-Print Network (OSTI)

When professional forecasters repeatedly forecast macroeconomic variables, their forecasts may converge over time towards a consensus. The evolution of consensus is analyzed with Blue Chip data under a parametric polynomial decay function that permits flexibility in the decay path. For the most part, this specification fits the data. We test whether forecast differences decay to zero at the same point in time for a panel of forecasters, and discuss possible explanations for this, along with its implications for studies using panels of forecasters.

Allan W. Gregory; James Yetman; Jel Codes C E; Robert Eggert; Fred Joutz

2004-01-01T23:59:59.000Z

474

Investigating the Correlation Between Wind and Solar Power Forecast Errors in the Western Interconnection: Preprint  

DOE Green Energy (OSTI)

Wind and solar power generations differ from conventional energy generation because of the variable and uncertain nature of their power output. This variability and uncertainty can have significant impacts on grid operations. Thus, short-term forecasting of wind and solar generation is uniquely helpful for power system operations to balance supply and demand in an electricity system. This paper investigates the correlation between wind and solar power forecasting errors.

Zhang, J.; Hodge, B. M.; Florita, A.

2013-05-01T23:59:59.000Z

475

Background pollution forecast over bulgaria  

Science Conference Proceedings (OSTI)

Both, the current level of air pollution studies and social needs in the country, are in a stage mature enough for creating Bulgarian Chemical Weather Forecasting and Information System The system is foreseen to provide in real time forecast of the spatial/temporal ...

D. Syrakov; K. Ganev; M. Prodanova; N. Miloshev; G. Jordanov; E. Katragkou; D. Melas; A. Poupkou; K. Markakis

2009-06-01T23:59:59.000Z

476

Frequency Dependence in Forecast Skill  

Science Conference Proceedings (OSTI)

A method is proposed to calculate measures of forecast skill for high, medium and low temporal frequency variations in the atmosphere. This method is applied to a series of 128 consecutive 1 to 10-day forecasts produced at NMC with their ...

H. M. van Den Dool; Suranjana Saha

1990-01-01T23:59:59.000Z

477

Electricity price forecasting in a grid environment.  

E-Print Network (OSTI)

??Accurate electricity price forecasting is critical to market participants in wholesale electricity markets. Market participants rely on price forecasts to decide their bidding strategies, allocate (more)

Li, Guang, 1974-

2007-01-01T23:59:59.000Z

478

Improving Forecasting: A plea for historical retrospectives  

NLE Websites -- All DOE Office Websites (Extended Search)

Improving Forecasting: A plea for historical retrospectives Title Improving Forecasting: A plea for historical retrospectives Publication Type Journal Article Year of Publication...

479

Annual Energy Outlook Forecast Evaluation  

Gasoline and Diesel Fuel Update (EIA)

Annual Energy Outlook Forecast Evaluation Annual Energy Outlook Forecast Evaluation Annual Energy Outlook Forecast Evaluation by Susan H. Holte In this paper, the Office of Integrated Analysis and Forecasting (OIAF) of the Energy Information Administration (EIA) evaluates the projections published in the Annual Energy Outlook (AEO), (1) by comparing the projections from the Annual Energy Outlook 1982 through the Annual Energy Outlook 2001 with actual historical values. A set of major consumption, production, net import, price, economic, and carbon dioxide emissions variables are included in the evaluation, updating similar papers from previous years. These evaluations also present the reasons and rationales for significant differences. The Office of Integrated Analysis and Forecasting has been providing an

480

Annual Energy Outlook Forecast Evaluation  

Gasoline and Diesel Fuel Update (EIA)

Title of Paper Annual Energy Outlook Forecast Evaluation Title of Paper Annual Energy Outlook Forecast Evaluation by Susan H. Holte OIAF has been providing an evaluation of the forecasts in the Annual Energy Outlook (AEO) annually since 1996. Each year, the forecast evaluation expands on that of the prior year by adding the most recent AEO and the most recent historical year of data. However, the underlying reasons for deviations between the projections and realized history tend to be the same from one evaluation to the next. The most significant conclusions are: Natural gas has generally been the fuel with the least accurate forecasts of consumption, production, and prices. Natural gas was the last fossil fuel to be deregulated following the strong regulation of energy markets in the 1970s and early 1980s. Even after deregulation, the behavior

Note: This page contains sample records for the topic "forecast future demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

2 2 Industrial Demand Module The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 15 manufacturing and 6 non-manufacturing industries. The manufacturing industries are further subdivided into the energy- intensive manufacturing industries and non-energy-intensive manufacturing industries (Table 6.1). The manufacturing industries are modeled through the use of a detailed process-flow or end-use accounting procedure, whereas the non- manufacturing industries are modeled with substantially less detail. The petroleum refining industry is not included in the Industrial Demand Module, as it is simulated separately in the Petroleum Market Module of NEMS. The Industrial Demand Module calculates energy consumption for the four Census Regions (see Figure 5) and disaggregates the energy consumption

482

demand | OpenEI  

Open Energy Info (EERE)

demand demand Dataset Summary Description This dataset contains hourly load profile data for 16 commercial building types (based off the DOE commercial reference building models) and residential buildings (based off the Building America House Simulation Protocols). This dataset also includes the Residential Energy Consumption Survey (RECS) for statistical references of building types by location. Source Commercial and Residential Reference Building Models Date Released April 18th, 2013 (9 months ago) Date Updated July 02nd, 2013 (7 months ago) Keywords building building demand building load Commercial data demand Energy Consumption energy data hourly kWh load profiles Residential Data Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Annually

483

Demand Response Database & Demo  

NLE Websites -- All DOE Office Websites (Extended Search)

Demand Response Database & Demo Speaker(s): Mike Graveley William M. Smith Date: June 7, 2005 - 12:00pm Location: Bldg. 90 Seminar HostPoint of Contact: Mary Ann Piette Infotility...

484

Tankless Demand Water Heaters  

Energy.gov (U.S. Department of Energy (DOE))

Demand (tankless or instantaneous) water heaters have heating devices that are activated by the flow of water, so they provide hot water only as needed and without the use of a storage tank. They...

485

Residential Sector Demand Module  

Reports and Publications (EIA)

Model Documentation - Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Residential Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, and FORTRAN source code.

Owen Comstock

2012-12-19T23:59:59.000Z

486

Industrial Demand Module  

Reports and Publications (EIA)

Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Industrial Demand Module. The report catalogues and describes model assumptions, computational methodology, parameter estimation techniques, and model source code.

Kelly Perl

2013-05-14T23:59:59.000Z

487

Industrial Demand Module  

Reports and Publications (EIA)

Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Industrial Demand Module. The report catalogues and describes model assumptions, computational methodology, parameter estimation techniques, and model source code.

Kelly Perl

2013-09-30T23:59:59.000Z

488

Residential Sector Demand Module  

Reports and Publications (EIA)

Model Documentation - Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Residential Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, and FORTRAN source code.

Owen Comstock

2013-11-05T23:59:59.000Z

489

Transportation Demand This  

U.S. Energy Information Administration (EIA) Indexed Site

Transportation Demand Transportation Demand This page inTenTionally lefT blank 75 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2013 Transportation Demand Module The NEMS Transportation Demand Module estimates transportation energy consumption across the nine Census Divisions (see Figure 5) and over ten fuel types. Each fuel type is modeled according to fuel-specific and associated technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars and light trucks), commercial light trucks (8,501-10,000 lbs gross vehicle weight), freight trucks (>10,000 lbs gross vehicle weight), buses, freight and passenger aircraft, freight

490

Automated Demand Response Tests  

Science Conference Proceedings (OSTI)

This report includes assessments and test results of four end-use technologies, representing products in the residential, commercial, and industrial sectors, each configured to automatically receive real-time pricing information and critical peak pricing (CPP) demand response (DR) event notifications. Four different vendors were asked to follow the interface requirements set forth in the Open Automated Demand Response (OpenADR) standard that was introduced to the public in 2008 and currently used in two ...

2008-12-22T23:59:59.000Z

491

Automated Demand Response Tests  

Science Conference Proceedings (OSTI)

This report, which is an update to EPRI Report 1016082, includes assessments and test results of four end-use vendor technologies. These technologies represent products in the residential, commercial, and industrial sectors, each configured to automatically receive real-time pricing information and critical peak pricing (CPP) demand response (DR) event notifications. Four different vendors were asked to follow the interface requirements set forth in the Open Automated Demand Response (OpenADR) Communicat...

2009-03-30T23:59:59.000Z

492

Forecasts for CMB ?- and i-type spectral distortion constraints on the primordial power spectrum on scales 8 < k < 10^4 Mpc^-1 with the future Pixie-like experiments  

E-Print Network (OSTI)

Silk damping at redshifts 1.5 x 10^4 < z < 2 x 10^6 erases CMB anisotropies on scales corresponding to the comoving wavenumbers 8 < k < 10^4 Mpc^-1 (10^5 < \\ell < 10^8). This dissipated energy is gained by the CMB monopole, creating distortions from a blackbody in the CMB spectrum of the \\mu-type and the i-type. We study, using Fisher matrices, the constraints we can get from measurements of these spectral distortions on the primordial power spectrum from future experiments such as Pixie, and how these constraints change as we change the frequency resolution and the sensitivity of the experiment. We show that the additional information in the shape of the $i$-type distortions, in combination with the \\mu-type distortions, allows us to break the degeneracy between the amplitude and the spectral index of the power spectrum on these scales and leads to much tighter constraints. We quantify the information contained in both the \\mu-type distortions and the i-type distortions taking into account the partial degeneracy with the y-type distortions and the temperature of the blackbody part of the CMB. We also calculate the constraints possible on the primordial power spectrum when the spectral distortion information is combined with the CMB anisotropies measured by the WMAP, SPT, ACT and Planck experiments.

Rishi Khatri; Rashid A. Sunyaev

2013-03-28T23:59:59.000Z

493

Model documentation: electricity market module. [15 year forecasts  

SciTech Connect

This report documents the electricity market model. This model is a component of the Intermediate Future Forecasting System (IFFS), the energy market model used to provide projections of energy markets up to 15 years into the future. The electricity market model was developed by the Supply Analysis and Integration Branch as part of building the larger system. This report is written for an audience consisting of mathematical economists, statisticians, operations research analysts, and utility planners. This report contains an overview and a mathematical specification of the electricity market module. It includes a description of the model logic and the individual subroutines in the computer code. A companion document Intermediate Future Forecasting System: Executive Summary (DOE/EIA-430) provides an overview of the components in IFFS and their linkages. 22 figures, 2 tables.

Sanders, R.C.; Murphy, F.H.

1984-12-01T23:59:59.000Z

494

Assumptions to the Annual Energy Outlook 2001 - Commercial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Commercial Demand Module Commercial Demand Module The NEMS Commercial Sector Demand Module generates forecasts of commercial sector energy demand through 2020. The definition of the commercial sector is consistent with EIA’s State Energy Data System (SEDS). That is, the commercial sector includes business establishments that are not engaged in transportation or in manufacturing or other types of industrial activity (e.g., agriculture, mining or construction). The bulk of commercial sector energy is consumed within buildings; however, street lights, pumps, bridges, and public services are also included if the establishment operating them is considered commercial. Since most of commercial energy consumption occurs in buildings, the commercial module relies on the data from the EIA Commercial Buildings Energy Consumption Survey (CBECS) for

495

Assumptions to the Annual Energy Outlook 2002 - Commercial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Commercial Demand Module Commercial Demand Module The NEMS Commercial Sector Demand Module generates forecasts of commercial sector energy demand through 2020. The definition of the commercial sector is consistent with EIA’s State Energy Data System (SEDS). That is, the commercial sector includes business establishments that are not engaged in transportation or in manufacturing or other types of industrial activity (e.g., agriculture, mining or construction). The bulk of commercial sector energy is consumed within buildings; however, street lights, pumps, bridges, and public services are also included if the establishment operating them is considered commercial. Since most of commercial energy consumption occurs in buildings, the commercial module relies on the data from the EIA Commercial Buildings Energy Consumption Survey (CBECS) for

496

Model documentation report: Residential sector demand module of the national energy modeling system  

SciTech Connect

This report documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Residential Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, and FORTRAN source code. This reference document provides a detailed description for energy analysts, other users, and the public. The NEMS Residential Sector Demand Module is currently used for mid-term forecasting purposes and energy policy analysis over the forecast horizon of 1993 through 2020. The model generates forecasts of energy demand for the residential sector by service, fuel, and Census Division. Policy impacts resulting from new technologies, market incentives, and regulatory changes can be estimated using the module. 26 refs., 6 figs., 5 tabs.

NONE

1998-01-01T23:59:59.000Z

497

EIA-Assumptions to the Annual Energy Outlook - Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Industrial Demand Module Industrial Demand Module Assumptions to the Annual Energy Outlook 2007 Industrial Demand Module The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 21 manufacturing and 6 nonmanufacturing industries. The manufacturing industries are further subdivided into the energy-intensive manufacturing industries and nonenergy-intensive manufacturing industries. The manufacturing industries are modeled through the use of a detailed process flow or end use accounting procedure, whereas the nonmanufacturing industries are modeled with substantially less detail (Table 17). The Industrial Demand Module forecasts energy consumption at the four Census region level (see Figure 5); energy consumption at the Census Division level is estimated by allocating the Census region forecast using the SEDS25 data.

498

Residential Electricity Demand in China -- Can Efficiency Reverse the Growth?  

SciTech Connect

The time when energy-related carbon emissions come overwhelmingly from developed countries is coming to a close. China has already overtaken the United States as the world's leading emitter of greenhouse gas emissions. The economic growth that China has experienced is not expected to slow down significantly in the long term, which implies continued massive growth in energy demand. This paper draws on the extensive expertise from the China Energy Group at LBNL on forecasting energy consumption in China, but adds to it by exploring the dynamics of demand growth for electricity in the residential sector -- and the realistic potential for coping with it through efficiency. This paper forecasts ownership growth of each product using econometric modeling, in combination with historical trends in China. The products considered (refrigerators, air conditioners, fans, washing machines, lighting, standby power, space heaters, and water heating) account for 90percent of household electricity consumption in China. Using this method, we determine the trend and dynamics of demandgrowth and its dependence on macroeconomic drivers at a level of detail not accessible by models of a more aggregate nature. In addition, we present scenarios for reducing residential consumption through efficiency measures defined at the product level. The research takes advantage of an analytical framework developed by LBNL (BUENAS) which integrates end use technology parameters into demand forecasting and stock accounting to produce detailed efficiency scenarios, thus allowing for a technologically realistic assessment of efficiency opportunities specifically in the Chinese context.

Letschert, Virginie; McNeil, Michael A.; Zhou, Nan

2009-05-18T23:59:59.000Z

499

EIA - Forecasts and Analysis of Energy Data  

Gasoline and Diesel Fuel Update (EIA)

Electricity Electricity Electricity consumption nearly doubles in the IEO2005 projection period. The emerging economies of Asia are expected to lead the increase in world electricity use. Figure 58. World Net Electricity Consumption, 2002-2025 (Billion Kilowatthours). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 59. World Net Electricity Consumption by Region, 2002-2025 (Billion Kilowatthours). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data The International Energy Outlook 2005 (IEO2005) reference case projects that world net electricity consumption will nearly double over the next two decades.10 Over the forecast period, world electricity demand is projected to grow at an average rate of 2.6 percent per year, from 14,275 billion

500

EIA - Forecasts and Analysis of Energy Data  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas Natural Gas Natural gas is the fastest growing primary energy source in the IEO2005 forecast. Consumption of natural gas is projected to increase by nearly 70 percent between 2002 and 2025, with the most robust growth in demand expected among the emerging economies. Figure 34. World Natural Gas Consumption, 1980-2025 (Trillion Cubic Feet). Need help, contact the National Energy Information Center on 202-586-8800. Figure Data Figure 35. Natural Gas Consumption by Region, 1980-2025 (Trillion Cubic Feet). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 36. Increase in Natural Gas Consumption by Region and Country, 2002-2025. Need help, contact the National Energy Information Center at 202-586-8800. Figure Data