Powered by Deep Web Technologies
Note: This page contains sample records for the topic "forecast date actual" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Annual Energy Outlook Forecast Evaluation - Tables  

Gasoline and Diesel Fuel Update (EIA)

Annual Energy Outlook Forecast Evaluation Table 2. Total Energy Consumption, Actual vs. Forecasts Table 3. Total Petroleum Consumption, Actual vs. Forecasts Table 4. Total Natural Gas Consumption, Actual vs. Forecasts Table 5. Total Coal Consumption, Actual vs. Forecasts Table 6. Total Electricity Sales, Actual vs. Forecasts Table 7. Crude Oil Production, Actual vs. Forecasts Table 8. Natural Gas Production, Actual vs. Forecasts Table 9. Coal Production, Actual vs. Forecasts Table 10. Net Petroleum Imports, Actual vs. Forecasts Table 11. Net Natural Gas Imports, Actual vs. Forecasts Table 12. Net Coal Exports, Actual vs. Forecasts Table 13. World Oil Prices, Actual vs. Forecasts Table 14. Natural Gas Wellhead Prices, Actual vs. Forecasts Table 15. Coal Prices to Electric Utilities, Actual vs. Forecasts

2

Annual Energy Outlook Forecast Evaluation  

Gasoline and Diesel Fuel Update (EIA)

by Esmeralda Sanchez by Esmeralda Sanchez Errata -(7/14/04) The Office of Integrated Analysis and Forecasting has produced an annual evaluation of the accuracy of the Annual Energy Outlook (AEO) since 1996. Each year, the forecast evaluation expands on the prior year by adding the projections from the most recent AEO and the most recent historical year of data. The Forecast Evaluation examines the accuracy of AEO forecasts dating back to AEO82 by calculating the average absolute forecast errors for each of the major variables for AEO82 through AEO2003. The average absolute forecast error, which for the purpose of this report will also be referred to simply as "average error" or "forecast error", is computed as the simple mean, or average, of all the absolute values of the percent errors, expressed as the percentage difference between the Reference Case projection and actual historic value, shown for every AEO and for each year in the forecast horizon (for a given variable). The historical data are typically taken from the Annual Energy Review (AER). The last column of Table 1 provides a summary of the most recent average absolute forecast errors. The calculation of the forecast error is shown in more detail in Tables 2 through 18. Because data for coal prices to electric generating plants were not available from the AER, data from the Monthly Energy Review (MER), July 2003 were used.

3

Dates  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Dates Dates Nature Bulletin No. 511-A December 15, 1973 Forest Preserve District of Cook County George W. Dunne, President Roland F. Eisenbeis, Supt. of Conservation DATES When the wise men from the east, guided by a mysterious new star, traveled to Jerusalem and thence to Bethlehem where they worshipped the infant Jesus and presented Him with gifts, you can be sure that, in addition to gold and frankincense and myrrh, they carried dates as food to sustain them on their long journey. The Date Palm had been cultivated along the Tigris and Euphrates Rivers since the time of the Sumerians, 3000 years before the birth of Christ. This tree, like the coconut palm, is unknown today in its wild state but is believed to have originated in Ethiopia. In early times it was abundant in Palestine and the scientific name, Phoenix, given to the date palm by the Greeks, may be due to the fact that they first saw it in Phoenicia. The "tree of life, " variously referred to in the Bible, was probably this palm.

4

DATE:  

Office of Legacy Management (LM)

DATE: DATE: AUG 12 1991 REPLY TO ATTN OF: EM-421 (J. Wagoner, 3-8147) SUBIECT: Elimination of the Duriron Company Site TO: The File I have reviewed the attached site summary and elimination recommendation for the Duriron Company Site in Dayton, Ohio. I have determined that there is little likelihood of radioactive contamination at this site. Based on the above, the Ouriron Company Site is hereby eliminated from further consideration under the Formerly Utilized Sites Remedial Action Program. W. Ale~ander~illiams,~PhD Designation and Certification Manager Off-Site Branch Division of Eastern Area Programs Office of Environmental Restoration Attachment -: bee: Weston EM-40 (2) P. Hevner Review: - OTS NOTE DATE: July 15, 1991 TO: Alexander WiTliams FROM: Dan Stou tF

5

DATE:  

Broader source: Energy.gov (indexed) [DOE]

9 9 DATE: April 25, 2011 TO: Procurement Directors FROM: Director, Policy Division Office of Procurement and Assistance Policy Office of Procurement and Assistance Management SUBJECT: Federal Awardee Performance and Integrity Information System (FAPIIS) - Public Access SUMMARY: On April 15, 2011, the public side of the Federal Awardee Performance and Integrity Information System (FAPIIS) website was launched. This means that information posted to FAPIIS on and after this date, with the exception of past performance reviews, will be accessible by the public. Public access to information posted to FAPIIS prior to April 15, 2011, will be subject to the Freedom of Information Act (FOIA) process. (See paragraph (b)(3) of

6

DATE:  

Office of Legacy Management (LM)

-RL5- DATE: September 13, 1990 TO: Alexander Williams (w 39 fusrap6 I FROM: Ed Mitchellzm SUBJECT: Elimination Recommendation for American Machine and Foundry in New York City The purpose of this note is to provide the following with respect to the former American Machine and Foundry Company (AMF) in New York City, New York--FUSRAP Considered Site Recommendation (g/13/90). 1 he recommendation is to eliminate the AMF New York City sites. If you agree, then please return an "approved" and dated copy of this note. Upon receipt of it, we will update the Considered-Sites Data Base for FUSRAP of DOE's intent to eliminate the site. Please call me at 353-1281 if you have +ny questions. cc: J. Wagoner D. Tonkay file FUSRAP NY.59 -------------------------------~---------------------------

7

DATE:  

Broader source: Energy.gov (indexed) [DOE]

4 4 DATE: May 12, 2011 TO: Procurement Directors FROM: Director, Policy Division Office of Procurement and Assistance Policy Office of Procurement and Assistance Management SUBJECT: Acquisition Letter AL 2011-05/Financial Acquisition Letter FAL 2011-01 Congressional Notification of Pending Award of a Contract Action, Announcement of Selected Applications for Negotiation of Financial Assistance Awards, or to Award a Financial Assistance Action in excess of $1 Million SUMMARY: AL 2011-05/FAL 2011-01 (AL/FAL) implements statutory and non-statutory Congressional notification of pending award of a contract action, announcement of selected applications for negotiation of financial assistance awards, or to award a financial assistance

8

Date  

Broader source: Energy.gov (indexed) [DOE]

3, 2009 3, 2009 Tim Meeks, Administrator Western Area Power Administration P.O. Box 281213 Lakewood, CO 80228-8213 Dear Administrator Meeks: East River Electric Power Cooperative, Inc. (East River) offers this letter as comment to the Western Area Power Administration's (Western) Federal Register Notice (FRN), (dated March 4, 2009, pp.9392-9393) concerning implementation of Western's new transmission loan or construction authority. East River is a wholesale electric power supply cooperative which provides twenty rural electric cooperatives and one municipal electric system transmission and power supply services. These twenty-one non-profit retail electric providers, which collectively own East River, serve about 90,000 residential, commercial

9

ANL Software Improves Wind Power Forecasting | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

principal investigator for the project. For wind power point forecasting, ARGUS PRIMA trains a neural network using data from weather forecasts, observations, and actual wind...

10

DATE  

Broader source: Energy.gov (indexed) [DOE]

EC Document No.: DOE-ID-INL-09-002 EC Document No.: DOE-ID-INL-09-002 SECTION A. Project Title: Smoking Shelters SECTION B. Project Description. Install up to three prefabricated outdoor shelters for smokers. Design and install a shelter base so that shelters can be movable. The base shall be designed to prevent shelters from moving or tipping over due to high winds. Specific location for shelters is to be determined, but the shelter bases will be placed atop existing concrete or asphalt such that no subsurface soil disturbance is expected. SECTION C. Environmental Aspects / Potential Sources of Impact none SECTION D. Determine the Level of Environmental Review (or Documentation) and Reference(s): Identify the applicable categorical exclusion from 10 CFR 1021, Appendix B, give the appropriate justification, and the approval date..

11

DATE:  

Broader source: Energy.gov (indexed) [DOE]

3-45 3-45 DATE: April 16, 2013 TO: Procurement Directors FROM: Director Contract and Financial Assistance Policy Division Office of Policy Office of Acquisition and Project Management SUBJECT: DOE Acquisition Guide Chapter 15.1 Source Selection Guide SUMMARY: Attached is a revised Source Selection Guide. The Guide has been updated to reflect changes to DOE policies and practices and includes new topics such as Flow of the Source Selection Process, Source Selection Official Designation, Confidentiality and Conflict of Interest Certificates, Source Selection Training and Roles and Responsibilities. This Flash and its attachments will be available online within a day, at the following website: http://energy.gov/management/office-management/operational-

12

DATE  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

EC Document No.: DOE-ID-INL-09-002 EC Document No.: DOE-ID-INL-09-002 SECTION A. Project Title: Smoking Shelters SECTION B. Project Description. Install up to three prefabricated outdoor shelters for smokers. Design and install a shelter base so that shelters can be movable. The base shall be designed to prevent shelters from moving or tipping over due to high winds. Specific location for shelters is to be determined, but the shelter bases will be placed atop existing concrete or asphalt such that no subsurface soil disturbance is expected. SECTION C. Environmental Aspects / Potential Sources of Impact none SECTION D. Determine the Level of Environmental Review (or Documentation) and Reference(s): Identify the applicable categorical exclusion from 10 CFR 1021, Appendix B, give the appropriate justification, and the approval date..

13

DATE:  

Broader source: Energy.gov (indexed) [DOE]

61 61 DATE: June 19, 2013 TO: Procurement Directors FROM: Director Policy Division Office of Procurement and Assistance Policy Office of Acquisition and Project Management SUBJECT: The Whistleblower Protection Enhancement Act of 2012 and How It Affects Federal Employee Non-Disclosure Policies, Forms, Certificates, Agreements and Acknowledgments SUMMARY: Acquisition Letter (AL) 2013-08 and Financial Assistance Letter (FAL) 2013-05 provide Contracting Officers with notice of the recently passed, Whistleblower Protection Enhancement Act of 2012 (WPEA), Pub.L. 112- 199, and the DOECAST issued in response on April 24, 2013. This AL/FAL informs DOE/NNSA Contracting Officers to update any Non-Disclosure Policies, Forms, Certificates, Agreements, and Acknowledgements

14

DATE:  

Office of Legacy Management (LM)

a? a? ,itbd States Government memorandum Department of Energy DATE: APR 15 893 REPLY TO EM-421 (W. Williams, 903-8149) ATTN OF: Authorization for Remedial Action at the Former Associate Aircraft Site in SUBJECT: Fairfield, Ohio TO: W. Seay, DOE Oak Ridge Field Office The former Associate Aircraft Tool and Manufacturing, Inc., site at 3660 Dixie Highway, Fairfield, Ohio, is designated for remedial action under the Formerly Utilized Sites Remedial Action Program (FUSRAP). Force Control Industries is the current occupant of the site. This designation is based on the results of radiological surveys and conclusions from an authority review. Copies of the radiological survey reports and the authority review are provided for information. The site has been assigned a low priority under the FUSRAP protocol. The

15

DATE:  

Broader source: Energy.gov (indexed) [DOE]

POLICY FLASH 2011-96 POLICY FLASH 2011-96 DATE: August 19, 2011 TO: Procurement Directors FROM: Director, Policy Division Office of Procurement and Assistance Policy Office of Procurement and Assistance Management SUBJECT: RFP Section H Clause Templates SUMMARY: On May 3, 2011, twenty two draft Section H clause templates were distributed for Procurement Director (PD), Head of Contracting Activity (HCA), General Counsel and National Nuclear Security Administration (NNSA) review and comment. All comments received were considered and changes were made as appropriate including the elimination of six clauses. The final version of the sixteen RFP Section H clause templates identified below will be available in STRIPES. 1) COMPLIANCE WITH INTERNET PROTOCOL VERSION 6 (IPV6) IN ACQUIRING

16

DATE:  

Broader source: Energy.gov (indexed) [DOE]

8 8 DATE: April 25, 2011 TO: Procurement Directors FROM: Director, Policy Division Office of Procurement and Assistance Policy Office of Procurement and Assistance Management SUBJECT: Implementation of Division B, Title I, Section 1101(a)(2) of the Department of Defense and Full-Year Continuing Appropriations Act, 2011 SUMMARY: Acquisition Letter 2011-04 provides implementing instructions and guidance for Section 1101(a)(2) of the Full-Year Continuing Appropriations Act of 2011, Pub. L. 112-10 (hereinafter "Full-Year Continuing Appropriations Act of 2011). Section 1101(a)(2) of the Act provides that, unless otherwise specified, the authority and conditions provided for projects or activities (including the costs of direct loans and loan guarantees) appropriated, authorized, or

17

DATE:  

Broader source: Energy.gov (indexed) [DOE]

53 53 DATE: May 15, 2013 TO: Procurement Directors FROM: Director Contract and Financial Assistance Policy Division Office of Policy Office of Acquisition and Project Management SUBJECT: Implementation of Division F, Title I, Title II, and Title III and Division G, Consolidated and Further Continuing Appropriations Act, 2013, Pub. L. No.113-6 SUMMARY: Acquisition Letter (AL) 2013-06 and Financial Assistance Letter (FAL) 2013-04 provides implementing instructions and guidance for Division F, Title I, Title II, and Title III and Division G, Consolidated and Further Continuing Appropriations Act, 2013, Pub. L. No.113-6. The AL addresses the following: Appropriations Act Section 301(a) Unfunded Requests for Proposals

18

DATE:  

Broader source: Energy.gov (indexed) [DOE]

POLICY FLASH 2013-12 POLICY FLASH 2013-12 DATE: December 7, 2012 TO: Procurement Directors FROM: Director Contract and Financial Assistance Policy Division Office of Policy Office of Acquisition and Project Management SUBJECT: Section 301(b) Congressional Notification of Multi-year Contract Award Report Revision for Fiscal Year 2013 SUMMARY: With reference to Acquisition Letter (AL) 2012-08 and Financial Assistance Letter (FAL) 2012-02 regarding Section 301(b) Congressional Notification of Multi-year Contract Award, the spreadsheet is revised for Fiscal Year (FY) 2013 reporting. The revised spreadsheet will now have 5 funding columns that must be filled in for each 301(b) notification instead of 4 columns. The amounts in columns I through L should equal to the

19

DATE:  

Broader source: Energy.gov (indexed) [DOE]

2- 36 2- 36 DATE: April 23, 2012 TO: Procurement Directors FROM: Director, Policy Division Office of Procurement and Assistance Policy Office of Procurement and Assistance Management SUBJECT: Implementation of Division B, Title III, Title V and Division C Title VII, Consolidated Appropriations Act, 2012, Pub. L. No.112- 74 and Related Conference Report SUMMARY: Acquisition Letter (AL) 2012-08 and Financial Assistance Letter (FAL) 2012-01 provides implementing instructions and guidance for Division B, Title III, Title V and Division C Title VII, Consolidated Appropriations Act, 2012, Pub. L. No.112-74 and Related Conference Report. The AL addresses the following: Appropriations Act * Section 301(a) Unfunded Requests for Proposals

20

DATE:  

Broader source: Energy.gov (indexed) [DOE]

22 22 DATE: February 1, 2012 TO: Procurement Directors FROM: Director, Office of Procurement and Assistance Policy Office of Procurement and Assistance Management SUBJECT: Acquisition Letter AL 2012-07/Financial Acquisition Letter FAL 2012-01 Congressional Notification of Pending Award of a Contract Action, Announcement of Selected Applications for Negotiation of Financial Assistance Awards, or to Award a Financial Assistance Action in Excess of $1 Million SUMMARY: AL 2012-07/FAL 2012-01 (AL/FAL) implements statutory Congressional notification of pending award of a contract action, announcement of selected applications for negotiation of financial assistance awards, or to award a financial assistance action in excess of $1 million. The total value of the award includes options, budget periods and cost share. The

Note: This page contains sample records for the topic "forecast date actual" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Q. J. R. Meteorol. Soc. (2006), 132, pp. 29052923 doi: 10.1256/qj.06.25 Measuring forecast skill: is it real skill or is it the varying climatology?  

E-Print Network [OSTI]

that many commonly used systems of measurement (`metrics') in weather forecast verification are capable of weather forecasts from an accumulation of samples spanning many locations and dates. In calculating many is approximately invariant over all samples. If the event frequency actually varies among the samples, the metrics

Hamill, Tom

22

DATE:  

Office of Legacy Management (LM)

OOE F 1325.3 OOE F 1325.3 m e m o randum DATE: SEP 23 1988 Department of Energy IL_. 9 REPLY TO AlTN OF, NE-23 SUElJECT. Owner Searches for Potential Sites in Chicago IL, (7 TO: W . Cottrell, ORNL 0. Kozlouski, OTS W h ile in Chicago, Illinois, on September 13, 14, and 15, 1988, I drove to the suspected addresses of several potential FUSRAP sites. No owners were contacted during this activity because most of the work was done after normal working hours or while on the way to the airport when tim e would not permit the visit. I .?I ' - Former C-B Tool Products Co. 956 E. 58th Street Chicago, Illinois The University of Chicago Ingleside Hall is located at this address. It is the University O ffice of Employment and contains a U.S. Post O ffice. The structure is several stories and looks like it may have existed in the

23

RACORO Forecasting  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Daniel Hartsock CIMMS, University of Oklahoma ARM AAF Wiki page Weather Briefings Observed Weather Cloud forecasting models BUFKIT forecast soundings + guidance...

24

Annual Energy Outlook Forecast Evaluation  

Gasoline and Diesel Fuel Update (EIA)

by Esmeralda Sánchez The Office of Integrated Analysis and Forecasting has produced an annual evaluation of the accuracy of the Annual Energy Outlook (AEO) since 1996. Each year, the forecast evaluation expands on the prior year by adding the projections from the most recent AEO and the most recent historical year of data. The Forecast Evaluation examines the accuracy of AEO forecasts dating back to AEO82 by calculating the average absolute forecast errors for each of the major variables for AEO82 through AEO2003. The average absolute forecast error, which for the purpose of this report will also be referred to simply as "average error" or "forecast error", is computed as the simple mean, or average, of all the absolute values of the percent errors,

25

Annual Energy Outlook Forecast Evaluation  

Gasoline and Diesel Fuel Update (EIA)

Annual Energy Outlook Forecast Evaluation Annual Energy Outlook Forecast Evaluation Annual Energy Outlook Forecast Evaluation by Susan H. Holte In this paper, the Office of Integrated Analysis and Forecasting (OIAF) of the Energy Information Administration (EIA) evaluates the projections published in the Annual Energy Outlook (AEO), (1) by comparing the projections from the Annual Energy Outlook 1982 through the Annual Energy Outlook 2001 with actual historical values. A set of major consumption, production, net import, price, economic, and carbon dioxide emissions variables are included in the evaluation, updating similar papers from previous years. These evaluations also present the reasons and rationales for significant differences. The Office of Integrated Analysis and Forecasting has been providing an

26

PSO (FU 2101) Ensemble-forecasts for wind power  

E-Print Network [OSTI]

PSO (FU 2101) Ensemble-forecasts for wind power Wind Power Ensemble Forecasting Using Wind Speed the problems of (i) transforming the meteorological ensembles to wind power ensembles and, (ii) correcting) data. However, quite often the actual wind power production is outside the range of ensemble forecast

27

Accuracy of near real time updates in wind power forecasting  

E-Print Network [OSTI]

· advantage: no NWP data necessary ­ very actual shortest term forecasts possible · wind power inputAccuracy of near real time updates in wind power forecasting with regard to different weather October 2007 #12;EMS/ECAM 2007 ­ Nadja Saleck Outline · Study site · Wind power forecasting - method

Heinemann, Detlev

28

Forecast Prices  

Gasoline and Diesel Fuel Update (EIA)

Notes: Notes: Prices have already recovered from the spike, but are expected to remain elevated over year-ago levels because of the higher crude oil prices. There is a lot of uncertainty in the market as to where crude oil prices will be next winter, but our current forecast has them declining about $2.50 per barrel (6 cents per gallon) from today's levels by next October. U.S. average residential heating oil prices peaked at almost $1.50 as a result of the problems in the Northeast this past winter. The current forecast has them peaking at $1.08 next winter, but we will be revisiting the outlook in more detail next fall and presenting our findings at the annual Winter Fuels Conference. Similarly, diesel prices are also expected to fall. The current outlook projects retail diesel prices dropping about 14 cents per gallon

29

SPACE TECHNOLOGY Actual Estimate  

E-Print Network [OSTI]

SPACE TECHNOLOGY TECH-1 Actual Estimate Budget Authority (in $ millions) FY 2011 FY 2012 FY 2013 FY.7 247.0 Exploration Technology Development 144.6 189.9 202.0 215.5 215.7 214.5 216.5 Notional SPACE TECHNOLOGY OVERVIEW .............................. TECH- 2 SBIR AND STTR

30

Annual Energy Outlook Forecast Evaluation  

Gasoline and Diesel Fuel Update (EIA)

Analysis Papers > Annual Energy Outlook Forecast Evaluation Analysis Papers > Annual Energy Outlook Forecast Evaluation Release Date: February 2005 Next Release Date: February 2006 Printer-friendly version Annual Energy Outlook Forecast Evaluation* Table 1.Comparison of Absolute Percent Errors for Present and Current AEO Forecast Evaluations Printer Friendly Version Average Absolute Percent Error Variable AEO82 to AEO99 AEO82 to AEO2000 AEO82 to AEO2001 AEO82 to AEO2002 AEO82 to AEO2003 AEO82 to AEO2004 Consumption Total Energy Consumption 1.9 2.0 2.1 2.1 2.1 2.1 Total Petroleum Consumption 2.9 3.0 3.1 3.1 3.0 2.9 Total Natural Gas Consumption 7.3 7.1 7.1 6.7 6.4 6.5 Total Coal Consumption 3.1 3.3 3.5 3.6 3.7 3.8 Total Electricity Sales 1.9 2.0 2.3 2.3 2.3 2.4 Production Crude Oil Production 4.5 4.5 4.5 4.5 4.6 4.7

31

Annual Energy Outlook Forecast Evaluation - Tables  

Gasoline and Diesel Fuel Update (EIA)

Analysis Papers > Annual Energy Outlook Forecast Evaluation>Tables Analysis Papers > Annual Energy Outlook Forecast Evaluation>Tables Annual Energy Outlook Forecast Evaluation Download Adobe Acrobat Reader Printer friendly version on our site are provided in Adobe Acrobat Spreadsheets are provided in Excel Actual vs. Forecasts Formats Table 2. Total Energy Consumption Excel, PDF Table 3. Total Petroleum Consumption Excel, PDF Table 4. Total Natural Gas Consumption Excel, PDF Table 5. Total Coal Consumption Excel, PDF Table 6. Total Electricity Sales Excel, PDF Table 7. Crude Oil Production Excel, PDF Table 8. Natural Gas Production Excel, PDF Table 9. Coal Production Excel, PDF Table 10. Net Petroleum Imports Excel, PDF Table 11. Net Natural Gas Imports Excel, PDF Table 12. World Oil Prices Excel, PDF Table 13. Natural Gas Wellhead Prices

32

Annual Energy Outlook Forecast Evaluation - Tables  

Gasoline and Diesel Fuel Update (EIA)

Modeling and Analysis Papers> Annual Energy Outlook Forecast Evaluation>Tables Modeling and Analysis Papers> Annual Energy Outlook Forecast Evaluation>Tables Annual Energy Outlook Forecast Evaluation Actual vs. Forecasts Available formats Excel (.xls) for printable spreadsheet data (Microsoft Excel required) MS Excel Viewer PDF (Acrobat Reader required Download Acrobat Reader ) Adobe Acrobat Reader Logo Table 2. Total Energy Consumption Excel, PDF Table 3. Total Petroleum Consumption Excel, PDF Table 4. Total Natural Gas Consumption Excel, PDF Table 5. Total Coal Consumption Excel, PDF Table 6. Total Electricity Sales Excel, PDF Table 7. Crude Oil Production Excel, PDF Table 8. Natural Gas Production Excel, PDF Table 9. Coal Production Excel, PDF Table 10. Net Petroleum Imports Excel, PDF Table 11. Net Natural Gas Imports Excel, PDF

33

Ramp Forecasting Performance from Improved Short-Term Wind Power Forecasting: Preprint  

SciTech Connect (OSTI)

The variable and uncertain nature of wind generation presents a new concern to power system operators. One of the biggest concerns associated with integrating a large amount of wind power into the grid is the ability to handle large ramps in wind power output. Large ramps can significantly influence system economics and reliability, on which power system operators place primary emphasis. The Wind Forecasting Improvement Project (WFIP) was performed to improve wind power forecasts and determine the value of these improvements to grid operators. This paper evaluates the performance of improved short-term wind power ramp forecasting. The study is performed for the Electric Reliability Council of Texas (ERCOT) by comparing the experimental WFIP forecast to the current short-term wind power forecast (STWPF). Four types of significant wind power ramps are employed in the study; these are based on the power change magnitude, direction, and duration. The swinging door algorithm is adopted to extract ramp events from actual and forecasted wind power time series. The results show that the experimental short-term wind power forecasts improve the accuracy of the wind power ramp forecasting, especially during the summer.

Zhang, J.; Florita, A.; Hodge, B. M.; Freedman, J.

2014-05-01T23:59:59.000Z

34

Annual Energy Outlook Forecast Evaluation  

Gasoline and Diesel Fuel Update (EIA)

Evaluation Evaluation Annual Energy Outlook Forecast Evaluation by Esmeralda Sanchez The Office of Integrated Analysis and Forecasting has been providing an evaluation of the forecasts in the Annual Energy Outlook (AEO) annually since 1996. Each year, the forecast evaluation expands on that of the prior year by adding the most recent AEO and the most recent historical year of data. However, the underlying reasons for deviations between the projections and realized history tend to be the same from one evaluation to the next. The most significant conclusions are: Over the last two decades, there have been many significant changes in laws, policies, and regulations that could not have been anticipated and were not assumed in the projections prior to their implementation. Many of these actions have had significant impacts on energy supply, demand, and prices; however, the impacts were not incorporated in the AEO projections until their enactment or effective dates in accordance with EIA's requirement to remain policy neutral and include only current laws and regulations in the AEO reference case projections.

35

Annual Energy Outlook Forecast Evaluation 2004  

Gasoline and Diesel Fuel Update (EIA)

2004 2004 * The Office of Integrated Analysis and Forecasting of the Energy Information Administration (EIA) has produced annual evaluations of the accuracy of the Annual Energy Outlook (AEO) since 1996. Each year, the forecast evaluation expands on the prior year by adding the projections from the most recent AEO and replacing the historical year of data with the most recent. The forecast evaluation examines the accuracy of AEO forecasts dating back to AEO82 by calculating the average absolute percent errors for several of the major variables for AEO82 through AEO2004. (There is no report titled Annual Energy Outlook 1988 due to a change in the naming convention of the AEOs.) The average absolute percent error is the simple mean of the absolute values of the percentage difference between the Reference Case projection and the

36

FORECAST OF VACANCIES Until end of 2016  

E-Print Network [OSTI]

#12;FORECAST OF VACANCIES Until end of 2016 (Issue No. 22) #12;Page 2 OVERVIEW OF BASIC REQUIREMENTS FOR PROFESSIONAL VACANCIES IN THE IAEA Education, Experience and Skills: Professional staff the team of professionals. Second half 2015 VACANCY GRADE REQUIREMENTS / ROLE EXPECTED DATE OF VACANCY

37

Survey of Variable Generation Forecasting in the West: August 2011 - June 2012  

SciTech Connect (OSTI)

This report surveyed Western Interconnection Balancing Authorities regarding their implementation of variable generation forecasting, the lessons learned to date, and recommendations they would offer to other Balancing Authorities who are considering variable generation forecasting. Our survey found that variable generation forecasting is at an early implementation stage in the West. Eight of the eleven Balancing Authorities interviewed began forecasting in 2008 or later. It also appears that less than one-half of the Balancing Authorities in the West are currently utilizing variable generation forecasting, suggesting that more Balancing Authorities in the West will engage in variable generation forecasting should more variable generation capacity be added.

Porter, K.; Rogers, J.

2012-04-01T23:59:59.000Z

38

Annual Energy Outlook Forecast Evaluation - Tables  

Gasoline and Diesel Fuel Update (EIA)

Annual Energy Outlook Forecast Evaluation Annual Energy Outlook Forecast Evaluation Actual vs. Forecasts Available formats Excel (.xls) for printable spreadsheet data (Microsoft Excel required) PDF (Acrobat Reader required) Table 2. Total Energy Consumption HTML, Excel, PDF Table 3. Total Petroleum Consumption HTML, Excel, PDF Table 4. Total Natural Gas Consumption HTML, Excel, PDF Table 5. Total Coal Consumption HTML, Excel, PDF Table 6. Total Electricity Sales HTML, Excel, PDF Table 7. Crude Oil Production HTML, Excel, PDF Table 8. Natural Gas Production HTML, Excel, PDF Table 9. Coal Production HTML, Excel, PDF Table 10. Net Petroleum Imports HTML, Excel, PDF Table 11. Net Natural Gas Imports HTML, Excel, PDF Table 12. Net Coal Exports HTML, Excel, PDF Table 13. World Oil Prices HTML, Excel, PDF

39

Forecasting wireless communication technologies  

Science Journals Connector (OSTI)

The purpose of the paper is to present a formal comparison of a variety of multiple regression models in technology forecasting for wireless communication. We compare results obtained from multiple regression models to determine whether they provide a superior fitting and forecasting performance. Both techniques predict the year of wireless communication technology introduction from the first (1G) to fourth (4G) generations. This paper intends to identify the key parameters impacting the growth of wireless communications. The comparison of technology forecasting approaches benefits future researchers and practitioners when developing a prediction of future wireless communication technologies. The items of focus will be to understand the relationship between variable selection and model fit. Because the forecasting error was successfully reduced from previous approaches, the quadratic regression methodology is applied to the forecasting of future technology commercialisation. In this study, the data will show that the quadratic regression forecasting technique provides a better fit to the curve.

Sabrina Patino; Jisun Kim; Tugrul U. Daim

2010-01-01T23:59:59.000Z

40

Wind Power Forecasting  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Retrospective Reports 2011 Smart Grid Wind Integration Wind Integration Initiatives Wind Power Forecasting Wind Projects Email List Self Supplied Balancing Reserves Dynamic...

Note: This page contains sample records for the topic "forecast date actual" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Solar forecasting review  

E-Print Network [OSTI]

2.1.2 European Solar Radiation Atlas (ESRA)2.4 Evaluation of Solar Forecasting . . . . . . . . .2.4.1 Solar Variability . . . . . . . . . . . . .

Inman, Richard Headen

2012-01-01T23:59:59.000Z

42

Wind Power Forecasting  

Science Journals Connector (OSTI)

The National Center for Atmospheric Research (NCAR) has configured a Wind Power Forecasting System for Xcel Energy that integrates high resolution and ensemble...

Sue Ellen Haupt; William P. Mahoney; Keith Parks

2014-01-01T23:59:59.000Z

43

Energy Demand Forecasting  

Science Journals Connector (OSTI)

This chapter presents alternative approaches used in forecasting energy demand and discusses their pros and cons. It... Chaps. 3 and 4 ...

S. C. Bhattacharyya

2011-01-01T23:59:59.000Z

44

A suite of metrics for assessing the performance of solar power forecasting  

Science Journals Connector (OSTI)

Abstract Forecasting solar energy generation is a challenging task because of the variety of solar power systems and weather regimes encountered. Inaccurate forecasts can result in substantial economic losses and power system reliability issues. One of the key challenges is the unavailability of a consistent and robust set of metrics to measure the accuracy of a solar forecast. This paper presents a suite of generally applicable and value-based metrics for solar forecasting for a comprehensive set of scenarios (i.e., different time horizons, geographic locations, and applications) that were developed as part of the U.S. Department of Energy SunShot Initiatives efforts to improve the accuracy of solar forecasting. In addition, a comprehensive framework is developed to analyze the sensitivity of the proposed metrics to three types of solar forecasting improvements using a design-of-experiments methodology in conjunction with response surface, sensitivity analysis, and nonparametric statistical testing methods. The three types of forecasting improvements are (i) uniform forecasting improvements when there is not a ramp, (ii) ramp forecasting magnitude improvements, and (iii) ramp forecasting threshold changes. Day-ahead and 1-hour-ahead forecasts for both simulated and actual solar power plants are analyzed. The results show that the proposed metrics can efficiently evaluate the quality of solar forecasts and assess the economic and reliability impacts of improved solar forecasting. Sensitivity analysis results show that (i) all proposed metrics are suitable to show the changes in the accuracy of solar forecasts with uniform forecasting improvements, and (ii) the metrics of skewness, kurtosis, and Rnyi entropy are specifically suitable to show the changes in the accuracy of solar forecasts with ramp forecasting improvements and a ramp forecasting threshold.

Jie Zhang; Anthony Florita; Bri-Mathias Hodge; Siyuan Lu; Hendrik F. Hamann; Venkat Banunarayanan; Anna M. Brockway

2015-01-01T23:59:59.000Z

45

Improving Inventory Control Using Forecasting  

E-Print Network [OSTI]

This project studied and analyzed Electronic Controls, Inc.s forecasting process for three high-demand products. In addition, alternative forecasting methods were developed to compare to the current forecast method. The ...

Balandran, Juan

2005-12-16T23:59:59.000Z

46

Technology Forecasting Scenario Development  

E-Print Network [OSTI]

Technology Forecasting and Scenario Development Newsletter No. 2 October 1998 Systems Analysis was initiated on the establishment of a new research programme entitled Technology Forecasting and Scenario and commercial applica- tion of new technology. An international Scientific Advisory Panel has been set up

47

CAPP 2010 Forecast.indd  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Forecast, Markets & Pipelines 1 Crude Oil Forecast, Markets & Pipelines June 2010 2 CANADIAN ASSOCIATION OF PETROLEUM PRODUCERS Disclaimer: This publication was prepared by the...

48

Net Interchange Schedule Forecasting of Electric Power Exchange for RTO/ISOs  

SciTech Connect (OSTI)

Neighboring independent system operators (ISOs) exchange electric power to enable efficient and reliable operation of the grid. Net interchange (NI) schedule is the sum of the transactions (in MW) between an ISO and its neighbors. Effective forecasting of the amount of actual NI can improve grid operation efficiency. This paper presents results of a preliminary investigation into various methods of prediction that may result in improved prediction accuracy. The methods studied are linear regression, forward regression, stepwise regression, and support vector machine (SVM) regression. The work to date is not yet conclusive. The hope is to explore the effectiveness of other prediction methods and apply all methods to at least one new data set. This should enable more confidence in the conclusions.

Ferryman, Thomas A.; Haglin, David J.; Vlachopoulou, Maria; Yin, Jian; Shen, Chao; Tuffner, Francis K.; Lin, Guang; Zhou, Ning; Tong, Jianzhong

2012-07-26T23:59:59.000Z

49

Valuing Climate Forecast Information  

Science Journals Connector (OSTI)

The article describes research opportunities associated with evaluating the characteristics of climate forecasts in settings where sequential decisions are made. Illustrative results are provided for corn production in east central Illinois. ...

Steven T. Sonka; James W. Mjelde; Peter J. Lamb; Steven E. Hollinger; Bruce L. Dixon

1987-09-01T23:59:59.000Z

50

Comparing Forecast Skill  

Science Journals Connector (OSTI)

A basic question in forecasting is whether one prediction system is more skillful than another. Some commonly used statistical significance tests cannot answer this question correctly if the skills are computed on a common period or using a common ...

Timothy DelSole; Michael K. Tippett

2014-12-01T23:59:59.000Z

51

Short-Term World Oil Price Forecast  

Gasoline and Diesel Fuel Update (EIA)

4 4 Notes: This graph shows monthly average spot West Texas Intermediate crude oil prices. Spot WTI crude oil prices peaked last fall as anticipated boosts to world supply from OPEC and other sources did not show up in actual stocks data. So where do we see crude oil prices going from here? Crude oil prices are expected to be about $28-$30 per barrel for the rest of this year, but note the uncertainty bands on this projection. They give an indication of how difficult it is to know what these prices are going to do. Also, EIA does not forecast volatility. This relatively flat forecast could be correct on average, with wide swings around the base line. Let's explore why we think prices will likely remain high, by looking at an important market barometer - inventories - which measures the

52

Sandia National Laboratories: solar forecasting  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy, Modeling & Analysis, News, News & Events, Partnership, Photovoltaic, Renewable Energy, Solar, Systems Analysis The book, Solar Energy Forecasting and Resource...

53

Release Date: April 2010  

Gasoline and Diesel Fuel Update (EIA)

April 2010 DOE/EIA-0121 (2009/04Q) April 2010 DOE/EIA-0121 (2009/04Q) Next Release Date: June 2010 Quarterly Coal Report October - December 2009 April 2010 U.S. Energy Information Administration Office of Coal, Nuclear, Electric, and Alternate Fuels U.S. Department of Energy Washington, DC 20585 _____________________________________________________________________________ This report is available on the Web at: http://www.eia.doe.gov/cneaf/coal/quarterly/qcr.pdf _____________________________________________ This report was prepared by the U.S. Energy Information Administration (EIA), the independent statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this

54

Consensus Coal Production Forecast for  

E-Print Network [OSTI]

Rate Forecasts 19 5. EIA Forecast: Regional Coal Production 22 6. Wood Mackenzie Forecast: W.V. Steam to data currently published by the Energy Information Administration (EIA), coal production in the state in this report calls for state production to decline by 11.3 percent in 2009 to 140.2 million tons. During

Mohaghegh, Shahab

55

European Wind Energy Conference & Exhibition EWEC 2003, Madrid, Spain. Forecasting of Regional Wind Generation by a Dynamic  

E-Print Network [OSTI]

European Wind Energy Conference & Exhibition EWEC 2003, Madrid, Spain. Forecasting of Regional Wind forecasting. I. INTRODUCTION HE actual large-scale integration of wind energy in several European countries enhance the position of wind energy compared to other dispatchable forms of generation. Predicting

Paris-Sud XI, Université de

56

On Sequential Probability Forecasting  

E-Print Network [OSTI]

at the same time. [Probability, Statistics and Truth, MacMillan 1957. page 11] ... the collective "denotes a collective wherein the attribute of the single event is the number of points thrown. [Probability, StatisticsOn Sequential Probability Forecasting David A. Bessler 1 David A. Bessler Texas A&M University

McCarl, Bruce A.

57

MEMORANDUfl DATE  

Office of Legacy Management (LM)

DATE DATE cl e-w --we-- SUBJECT: __------------------------ _ OWNER (S) -----w-e Pamt a __---------------------- current: -------------------_______ Owner contacted 0 yes 0 no; if yes, date contacted --------w-w-- TYPE OF OPERATION ------------- erearch & Development a Facility Typr Praduction scale trstinq Pilot Scale Bench Seal e Process Theoretical Studies Sample & Analysis n Production 0 Disposal/Storage TYPE OF CONTRACT ---------------- 0 Prim* 7z Subcontract& Purchase Order . Mmuf l cturing University Research Organization Government Sponsored Facility Rther ----B.-------------- 0 Othrr information (i.e., cost + fixrd fee, unit prier, time 81 material, rte) -m-M--- -------------------------- ---------------------------- Contract/Purchase Order M

58

MEMORANDUM DATE  

Office of Legacy Management (LM)

DATE DATE :;++, -m--s B-w- -w---m-- SUBJECT: , ::;:: JLLiucd ALTERN&TE e---e---- --------------------------- CITY&da NCIME: ---------------------- - --------------------- J&f STATE: OWNER ( S 1 -----m-e Past 0 Current: ------------------------ Owner contacted 0 -------------------------- 0 yes no; if ye=, date contacted ------w---s-- TYPE OF OPERATION ----w------------ F Research & Development 0 Facility Type 0 Production scale testing F Pilot Scale 0 Manufacturing 0 Bench Scale Process 0 University Research 0 Theoretical 0 Organization Studies 0 Sample & Analysis 0 Government Sponsored Facility 0 Other --------------------- 0 Production 0 Disposal/Storage TYPE OF CONTRfiCT a--------------- 0 Prim- 0 Subcontract& s Purchase Order

59

Price forecasting for notebook computers.  

E-Print Network [OSTI]

??This paper proposes a four-step approach that uses statistical regression to forecast notebook computer prices. Notebook computer price is related to constituent features over a (more)

Rutherford, Derek Paul

2012-01-01T23:59:59.000Z

60

Ensemble Forecasts and their Verification  

E-Print Network [OSTI]

· Ensemble forecast verification ­ Performance metrics: Brier Score, CRPSS · New concepts and developments of weather Sources: Insufficient spatial resolution, truncation errors in the dynamical equations

Maryland at College Park, University of

Note: This page contains sample records for the topic "forecast date actual" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

DATE: TO:  

Broader source: Energy.gov (indexed) [DOE]

41 41 4 DATE: TO: September 2,2008 Procurement Directors Office of Procurement and Assistance Policy, MA-61 Office of Procurement and Assistance Management SUBJECT: Federal Procurement Data System Coding (FPDS) for Hurricane Gustav SUMMARY: An emergency declaration was made in preparation for Hurricane Gustav. The effective date for this declaration was August 29,2008. FPDS has been updated to include Hurricane Gustav as a choice in the data field "National Interest Action." When making an award to support the emergency, please ensure FPDS is properly coded. This Flash will be available online within a day, at the following website: http://www.rnananement.ener~y.~ov/policy guidance/policy flasheshtm. Questions concerning this policy flash should be

62

DATE: TO:  

Broader source: Energy.gov (indexed) [DOE]

28 28 - DATE: TO: v POLICY FLASH 2008-28 February 19,2008 Procurement Directors Office of Procurement and Assistance Policy, MA41 Office of Procurement and Assistance Management SUBJECT: Acquisition Letter (AL) 2008-06, Domestic and Foreign Procurement Preference Requirements SUMMARY: AL 2008-06 (attached) replaces AL 2002-06, dated 08/14/02, "Domestic and Foreign Procurement Preference Rules," which is hereby canceled. AL 2002-06 disseminated deviations to FAR provisions and clauses relating to foreign acquisition for use by Department of Energy (DOE), National Nuclear Security Administration (NNSA), and Power Marketing Administration (PMA) contracting activities. This new AL provides updated deviations to the FAR provisions and clauses for use by DOE,

63

Probabilistic manpower forecasting  

E-Print Network [OSTI]

- ing E. Results- Probabilistic Forecasting . 26 27 Z8 29 31 35 36 38 39 IV. CONCLUSIONS. V. GLOSSARY 42 44 APPENDICES REFERENCES 50 70 LIST OF TABLES Table Page Outline of Job-Probability Matrix Job-Probability Matrix. Possible... Outcomes of Job A Possible Outcomes of Jobs A and B 10 Possible Outcomes of Jobs A, B and C II LIST GF FIGURES Figure Page Binary Representation of Numbers 0 Through 7 12 First Cumulative Probability Table 14 3. Graph of Cumulative Probability vs...

Koonce, James Fitzhugh

1966-01-01T23:59:59.000Z

64

Diagnosing Forecast Errors in Tropical Cyclone Motion  

Science Journals Connector (OSTI)

This paper reports on the development of a diagnostic approach that can be used to examine the sources of numerical model forecast error that contribute to degraded tropical cyclone (TC) motion forecasts. Tropical cyclone motion forecasts depend ...

Thomas J. Galarneau Jr.; Christopher A. Davis

2013-02-01T23:59:59.000Z

65

Project Profile: Forecasting and Influencing Technological Progress...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Forecasting and Influencing Technological Progress in Solar Energy Project Profile: Forecasting and Influencing Technological Progress in Solar Energy Logos of the University of...

66

Forecasting with adaptive extended exponential smoothing  

Science Journals Connector (OSTI)

Much of product level forecasting is based upon time series techniques. However, traditional time series forecasting techniques have offered either smoothing constant adaptability or consideration of various t...

John T. Mentzer Ph.D.

67

Electricity price forecasting in a grid environment.  

E-Print Network [OSTI]

??Accurate electricity price forecasting is critical to market participants in wholesale electricity markets. Market participants rely on price forecasts to decide their bidding strategies, allocate (more)

Li, Guang, 1974-

2007-01-01T23:59:59.000Z

68

Energy Department Forecasts Geothermal Achievements in 2015 ...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Forecasts Geothermal Achievements in 2015 Energy Department Forecasts Geothermal Achievements in 2015 The 40th annual Stanford Geothermal Workshop in January featured speakers in...

69

Annual Energy Outlook Forecast Evaluation  

Gasoline and Diesel Fuel Update (EIA)

Title of Paper Annual Energy Outlook Forecast Evaluation Title of Paper Annual Energy Outlook Forecast Evaluation by Susan H. Holte OIAF has been providing an evaluation of the forecasts in the Annual Energy Outlook (AEO) annually since 1996. Each year, the forecast evaluation expands on that of the prior year by adding the most recent AEO and the most recent historical year of data. However, the underlying reasons for deviations between the projections and realized history tend to be the same from one evaluation to the next. The most significant conclusions are: Natural gas has generally been the fuel with the least accurate forecasts of consumption, production, and prices. Natural gas was the last fossil fuel to be deregulated following the strong regulation of energy markets in the 1970s and early 1980s. Even after deregulation, the behavior

70

Date Event  

Broader source: Energy.gov (indexed) [DOE]

Timeline of DOE's review of the Solyndra Loan Guarantee Application Timeline of DOE's review of the Solyndra Loan Guarantee Application Date Event 2005 Title XVII Loan Guarantee Program created (as part of EPAct 2005) Aug. 8, 2006 DOE issues solicitation seeking pre-applications for Title XVII loan guarantees Dec. 28, 2006 Solyndra submits pre-application, seeking funding for its Fab 1 manufacturing facility April - June 2007 DOE conducts financial and technical review of Solyndra pre-application Oct. 4, 2007 DOE invites Solyndra, and 15 other applicants, to submit full applications May 6, 2008 Company submits full application, seeking funding for its Fab 2 manufacturing facility. DOE begins due diligence. Sept. 4, 2008 DOE loan programs staff draft memorandum indicating that Solyndra was the "earliest mover" and may receive conditional commitment by January 16, 2009

71

Correcting and combining time series forecasters  

Science Journals Connector (OSTI)

Combined forecasters have been in the vanguard of stochastic time series modeling. In this way it has been usual to suppose that each single model generates a residual or prediction error like a white noise. However, mostly because of disturbances not ... Keywords: Artificial neural networks hybrid systems, Linear combination of forecasts, Maximum likelihood estimation, Time series forecasters, Unbiased forecasters

Paulo Renato A. Firmino; Paulo S. G. De Mattos Neto; Tiago A. E. Ferreira

2014-02-01T23:59:59.000Z

72

Research of least squares support vector regression based on differential evolution algorithm in short-term load forecasting model  

Science Journals Connector (OSTI)

To improve the accuracy of short-term load forecasting a differential evolution algorithm (DE) based least squares support vector regression (LSSVR) method is proposed in this paper. Through optimizing the regularization parameter and kernel parameter of the LSSVR by DE a short-term load forecasting model which can take load affected factors such as meteorology weather and date types into account is built. The proposed LSSVR method is proved by implementing short-term load forecasting on the real historical data of Yangquan power system in China. The average forecasting error is less than 1.6% which shows better accuracy and stability than the traditional LSSVR and Support vector regression. The result of implementation of short-term load forecasting demonstrates that the hybrid model can be used in the short-term forecasting of the power system more efficiently.

2014-01-01T23:59:59.000Z

73

NOAA Harmful Algal Bloom Operational Forecast System Southwest Florida Forecast Region Maps  

E-Print Network [OSTI]

Bloom Operational Forecast System Southwest Florida Forecast Region Maps 0 5 102.5 Miles #12;Bay Harmful Algal Bloom Operational Forecast System Southwest Florida Forecast Region Maps 0 5 102.5 Miles #12 N Collier N Charlotte S Charlotte NOAA Harmful Algal Bloom Operational Forecast System Southwest

74

A hybrid dynamic and fuzzy time series model for mid-term power load forecasting  

Science Journals Connector (OSTI)

Abstract A new hybrid model for forecasting the electric power load several months ahead is proposed. To allow for distinct responses from individual load sectors, this hybrid model, which combines dynamic (i.e., air temperature dependency of power load) and fuzzy time series approaches, is applied separately to the household, public, service, and industrial sectors. The hybrid model is tested using actual load data from the Seoul metropolitan area, and its predictions are compared with those from two typical dynamic models. Our investigation shows that, in the case of four-month forecasting, the proposed model gives the actual monthly power load of every sector with only less than 3% absolute error and satisfactory reduction of forecasting errors compared to other models from previous studies.

Woo-Joo Lee; Jinkyu Hong

2015-01-01T23:59:59.000Z

75

Seasonal Maize Forecasting for South Africa and Zimbabwe Derived from an Agroclimatological Model  

E-Print Network [OSTI]

Seasonal Maize Forecasting for South Africa and Zimbabwe Derived from an Agroclimatological Model, with a hindcast correlation over 16 seasons of 0.92 for South Africa and 0.62 for Zimbabwe. Over 17 seasons and actual maize water-stress in South Africa, and a correlation of 0.79 for the same relationship

Martin, Randall

76

Forecast Energy | Open Energy Information  

Open Energy Info (EERE)

Forecast Energy Forecast Energy Jump to: navigation, search Name Forecast Energy Address 2320 Marinship Way, Suite 300 Place Sausalito, California Zip 94965 Sector Services Product Intelligent Monitoring and Forecasting Services Year founded 2010 Number of employees 11-50 Company Type For profit Website http://www.forecastenergy.net Coordinates 37.865647°, -122.496315° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.865647,"lon":-122.496315,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

77

Price forecasting for notebook computers  

E-Print Network [OSTI]

This paper proposes a four-step approach that uses statistical regression to forecast notebook computer prices. Notebook computer price is related to constituent features over a series of time periods, and the rates of change in the influence...

Rutherford, Derek Paul

2012-06-07T23:59:59.000Z

78

Forecasting phenology under global warming  

Science Journals Connector (OSTI)

...Forrest Forecasting phenology under global warming Ines Ibanez 1 * Richard B. Primack...and site-specific responses to global warming. We found that for most species...climate change|East Asia, global warming|growing season, hierarchical...

2010-01-01T23:59:59.000Z

79

Demand Forecasting of New Products  

E-Print Network [OSTI]

Keeping Unit or SKU) employing attribute analysis techniques. The objective of this thesis is to improve Abstract This thesis is a study into the demand forecasting of new products (also referred to as Stock

Sun, Yu

80

Weather forecasting : the next generation : the potential use and implementation of ensemble forecasting  

E-Print Network [OSTI]

This thesis discusses ensemble forecasting, a promising new weather forecasting technique, from various viewpoints relating not only to its meteorological aspects but also to its user and policy aspects. Ensemble forecasting ...

Goto, Susumu

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "forecast date actual" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Wind Forecast Improvement Project Southern Study Area Final Report...  

Office of Environmental Management (EM)

Wind Forecast Improvement Project Southern Study Area Final Report Wind Forecast Improvement Project Southern Study Area Final Report Wind Forecast Improvement Project Southern...

82

Applying Bayesian Forecasting to Predict New Customers' Heating Oil Demand.  

E-Print Network [OSTI]

??This thesis presents a new forecasting technique that estimates energy demand by applying a Bayesian approach to forecasting. We introduce our Bayesian Heating Oil Forecaster (more)

Sakauchi, Tsuginosuke

2011-01-01T23:59:59.000Z

83

Date | Open Energy Information  

Open Energy Info (EERE)

Properties of type "Date" Properties of type "Date" Showing 47 properties using this type. A Property:ASHRAE 169 End Date Property:ASHRAE 169 Start Date B Property:Building/EndPeriod Property:Building/StartPeriod Property:Building/YearConstruction Property:Building/YearConstruction1 Property:Building/YearConstruction2 Property:Buildings/ModelYear Property:Buildings/PublicationYear C Property:CommercialOnlineDate D Property:DSIRE/LstUpdt E Property:EndDate Property:EndYear Property:EnergyAccessYearInitiated Property:Event/Date Property:ExpActivityDate E cont. Property:ExpActivityDateEnd F Property:File/CreationDate Property:FirstWellDate G Property:GEAReportDate Property:Geothermal/FY Property:Geothermal/ProjectEndDate Property:Geothermal/ProjectStartDate H Property:HPBD/DateOfOccupancy I Property:Incentive/DsireLstSubModSummaryUpdt

84

Solar Energy Market Forecast | Open Energy Information  

Open Energy Info (EERE)

Solar Energy Market Forecast Solar Energy Market Forecast Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Solar Energy Market Forecast Agency/Company /Organization: United States Department of Energy Sector: Energy Focus Area: Solar Topics: Market analysis, Technology characterizations Resource Type: Publications Website: giffords.house.gov/DOE%20Perspective%20on%20Solar%20Market%20Evolution References: Solar Energy Market Forecast[1] Summary " Energy markets / forecasts DOE Solar America Initiative overview Capital market investments in solar Solar photovoltaic (PV) sector overview PV prices and costs PV market evolution Market evolution considerations Balance of system costs Silicon 'normalization' Solar system value drivers Solar market forecast Additional resources"

85

Summary Verification Measures and Their Interpretation for Ensemble Forecasts  

Science Journals Connector (OSTI)

Ensemble prediction systems produce forecasts that represent the probability distribution of a continuous forecast variable. Most often, the verification problem is simplified by transforming the ensemble forecast into probability forecasts for ...

A. Allen Bradley; Stuart S. Schwartz

2011-09-01T23:59:59.000Z

86

Annual Energy Outlook Forecast Evaluation  

Gasoline and Diesel Fuel Update (EIA)

by by Esmeralda Sanchez The Office of Integrated Analysis and Forecasting has been providing an evaluation of the forecasts in the Annual Energy Outlook (AEO) annually since 1996. Each year, the forecast evaluation expands on that of the prior year by adding the most recent AEO and the most recent historical year of data. However, the underlying reasons for deviations between the projections and realized history tend to be the same from one evaluation to the next. The most significant conclusions are: * Over the last two decades, there have been many significant changes in laws, policies, and regulations that could not have been anticipated and were not assumed in the projections prior to their implementation. Many of these actions have had significant impacts on energy supply, demand, and prices; however, the

87

Aggregate vehicle travel forecasting model  

SciTech Connect (OSTI)

This report describes a model for forecasting total US highway travel by all vehicle types, and its implementation in the form of a personal computer program. The model comprises a short-run, econometrically-based module for forecasting through the year 2000, as well as a structural, scenario-based longer term module for forecasting through 2030. The short-term module is driven primarily by economic variables. It includes a detailed vehicle stock model and permits the estimation of fuel use as well as vehicle travel. The longer-tenn module depends on demographic factors to a greater extent, but also on trends in key parameters such as vehicle load factors, and the dematerialization of GNP. Both passenger and freight vehicle movements are accounted for in both modules. The model has been implemented as a compiled program in the Fox-Pro database management system operating in the Windows environment.

Greene, D.L.; Chin, Shih-Miao; Gibson, R. [Tennessee Univ., Knoxville, TN (United States)

1995-05-01T23:59:59.000Z

88

Communication of uncertainty in temperature forecasts  

Science Journals Connector (OSTI)

We used experimental economics to test whether undergraduate students presented with a temperature forecast with uncertainty information in a table and bar graph format were able to use the extra information to interpret a given forecast. ...

Pricilla Marimo; Todd R. Kaplan; Ken Mylne; Martin Sharpe

89

FORECASTING THE ROLE OF RENEWABLES IN HAWAII  

E-Print Network [OSTI]

FORECASTING THE ROLE OF RENEWABLES IN HAWAII Jayant SathayeFORECASTING THE ROLF OF RENEWABLES IN HAWAII J Sa and Henrythe Conservation Role of Renewables November 18, 1980 Page 2

Sathaye, Jayant

2013-01-01T23:59:59.000Z

90

Massachusetts state airport system plan forecasts.  

E-Print Network [OSTI]

This report is a first step toward updating the forecasts contained in the 1973 Massachusetts State System Plan. It begins with a presentation of the forecasting techniques currently available; it surveys and appraises the ...

Mathaisel, Dennis F. X.

91

Antarctic Satellite Meteorology: Applications for Weather Forecasting  

Science Journals Connector (OSTI)

For over 30 years, weather forecasting for the Antarctic continent and adjacent Southern Ocean has relied on weather satellites. Significant advancements in forecasting skill have come via the weather satellite. The advent of the high-resolution ...

Matthew A. Lazzara; Linda M. Keller; Charles R. Stearns; Jonathan E. Thom; George A. Weidner

2003-02-01T23:59:59.000Z

92

Forecasting Water Use in Texas Cities  

E-Print Network [OSTI]

In this research project, a methodology for automating the forecasting of municipal daily water use is developed and implemented in a microcomputer program called WATCAL. An automated forecast system is devised by modifying the previously...

Shaw, Douglas T.; Maidment, David R.

93

The Wind Forecast Improvement Project (WFIP): A Public/Private Partnership for Improving Short Term Wind Energy Forecasts and Quantifying the Benefits of Utility Operations the Northern Study Area.  

SciTech Connect (OSTI)

This report contains the results from research aimed at improving short-range (0-6 hour) hub-height wind forecasts in the NOAA weather forecast models through additional data assimilation and model physics improvements for use in wind energy forecasting. Additional meteorological observing platforms including wind profilers, sodars, and surface stations were deployed for this study by NOAA and DOE, and additional meteorological data at or near wind turbine hub height were provided by South Dakota State University and WindLogics/NextEra Energy Resources over a large geographical area in the U.S. Northern Plains for assimilation into NOAA research weather forecast models. The resulting improvements in wind energy forecasts based on the research weather forecast models (with the additional data assimilation and model physics improvements) were examined in many different ways and compared with wind energy forecasts based on the current operational weather forecast models to quantify the forecast improvements important to power grid system operators and wind plant owners/operators participating in energy markets. Two operational weather forecast models (OP_RUC, OP_RAP) and two research weather forecast models (ESRL_RAP, HRRR) were used as the base wind forecasts for generating several different wind power forecasts for the NextEra Energy wind plants in the study area. Power forecasts were generated from the wind forecasts in a variety of ways, from very simple to quite sophisticated, as they might be used by a wide range of both general users and commercial wind energy forecast vendors. The error characteristics of each of these types of forecasts were examined and quantified using bulk error statistics for both the local wind plant and the system aggregate forecasts. The wind power forecast accuracy was also evaluated separately for high-impact wind energy ramp events. The overall bulk error statistics calculated over the first six hours of the forecasts at both the individual wind plant and at the system-wide aggregate level over the one year study period showed that the research weather model-based power forecasts (all types) had lower overall error rates than the current operational weather model-based power forecasts, both at the individual wind plant level and at the system aggregate level. The bulk error statistics of the various model-based power forecasts were also calculated by season and model runtime/forecast hour as power system operations are more sensitive to wind energy forecast errors during certain times of year and certain times of day. The results showed that there were significant differences in seasonal forecast errors between the various model-based power forecasts. The results from the analysis of the various wind power forecast errors by model runtime and forecast hour showed that the forecast errors were largest during the times of day that have increased significance to power system operators (the overnight hours and the morning/evening boundary layer transition periods), but the research weather model-based power forecasts showed improvement over the operational weather model-based power forecasts at these times. A comprehensive analysis of wind energy forecast errors for the various model-based power forecasts was presented for a suite of wind energy ramp definitions. The results compiled over the year-long study period showed that the power forecasts based on the research models (ESRL_RAP, HRRR) more accurately predict wind energy ramp events than the current operational forecast models, both at the system aggregate level and at the local wind plant level. At the system level, the ESRL_RAP-based forecasts most accurately predict both the total number of ramp events and the occurrence of the events themselves, but the HRRR-based forecasts more accurately predict the ramp rate. At the individual site level, the HRRR-based forecasts most accurately predicted the actual ramp occurrence, the total number of ramps and the ramp rates (40-60% improvement in ramp rates over the coarser resolution forecast

Finley, Cathy [WindLogics

2014-04-30T23:59:59.000Z

94

Energy demand forecasting: industry practices and challenges  

Science Journals Connector (OSTI)

Accurate forecasting of energy demand plays a key role for utility companies, network operators, producers and suppliers of energy. Demand forecasts are utilized for unit commitment, market bidding, network operation and maintenance, integration of renewable ... Keywords: analytics, energy demand forecasting, machine learning, renewable energy sources, smart grids, smart meters

Mathieu Sinn

2014-06-01T23:59:59.000Z

95

Consensus Coal Production And Price Forecast For  

E-Print Network [OSTI]

Consensus Coal Production And Price Forecast For West Virginia: 2011 Update Prepared for the West December 2011 © Copyright 2011 WVU Research Corporation #12;#12;W.Va. Consensus Coal Forecast Update 2011 i Table of Contents Executive Summary 1 Recent Developments 3 Consensus Coal Production And Price Forecast

Mohaghegh, Shahab

96

Generating Spatio-Temporal Descriptions in Pollen Forecasts Ross Turner, Somayajulu Sripada and Ehud Reiter  

E-Print Network [OSTI]

Date AreaID Value 27/06/2005 1 (North) 6 27/06/2005 2 (North West) 5 27/06/2005 3 (Central) 5 27/06/2005 4Generating Spatio-Temporal Descriptions in Pollen Forecasts Ross Turner, Somayajulu Sripada al., 1994) and MultiMeteo (Coch, 1998). 2 Knowledge Acquisition Our knowledge acquisition activities

97

Load Forecasting of Supermarket Refrigeration  

E-Print Network [OSTI]

energy system. Observed refrigeration load and local ambient temperature from a Danish su- permarket renewable energy, is increasing, therefore a flexible energy system is needed. In the present ThesisLoad Forecasting of Supermarket Refrigeration Lisa Buth Rasmussen Kongens Lyngby 2013 M.Sc.-2013

98

Essays on macroeconomics and forecasting  

E-Print Network [OSTI]

explanatory variables. Compared to Stock and Watson (2002)â??s models, the models proposed in this chapter can further allow me to select the factors structurally for each variable to be forecasted. I find advantages to using the structural dynamic factor...

Liu, Dandan

2006-10-30T23:59:59.000Z

99

Table 13. Coal Production, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

Coal Production, Projected vs. Actual" Coal Production, Projected vs. Actual" "Projected" " (million short tons)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011 "AEO 1994",999,1021,1041,1051,1056,1066,1073,1081,1087,1098,1107,1122,1121,1128,1143,1173,1201,1223 "AEO 1995",,1006,1010,1011,1016,1017,1021,1027,1033,1040,1051,1066,1076,1083,1090,1108,1122,1137 "AEO 1996",,,1037,1044,1041,1045,1061,1070,1086,1100,1112,1121,1135,1156,1161,1167,1173,1184,1190 "AEO 1997",,,,1028,1052,1072,1088,1105,1110,1115,1123,1133,1146,1171,1182,1190,1193,1201,1209 "AEO 1998",,,,,1088,1122,1127.746338,1144.767212,1175.662598,1176.493652,1182.742065,1191.246948,1206.99585,1229.007202,1238.69043,1248.505981,1260.836914,1265.159424,1284.229736

100

Table 22. Energy Intensity, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Intensity, Projected vs. Actual" Energy Intensity, Projected vs. Actual" "Projected" " (quadrillion Btu / real GDP in billion 2005 chained dollars)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011 "AEO 1994",11.24893441,11.08565002,10.98332766,10.82852279,10.67400621,10.54170176,10.39583203,10.27184573,10.14478673,10.02575883,9.910410202,9.810812106,9.69894802,9.599821783,9.486985399,9.394733753,9.303329725,9.221322623 "AEO 1995",,10.86137373,10.75116461,10.60467959,10.42268977,10.28668187,10.14461664,10.01081222,9.883759026,9.759022105,9.627404949,9.513643295,9.400418762,9.311729546,9.226142899,9.147374752,9.071102491,8.99599906 "AEO 1996",,,10.71047701,10.59846153,10.43655044,10.27812088,10.12746866,9.9694713,9.824165152,9.714832565,9.621874334,9.532324916,9.428169355,9.32931308,9.232716414,9.170931044,9.086870061,9.019963901,8.945602337

Note: This page contains sample records for the topic "forecast date actual" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

lead-isotope dating  

Science Journals Connector (OSTI)

lead-isotope dating, lead-lead dating, lead-isotope age measurement, lead-lead age measurement ? Blei-Isotopen(-Alters)bestimmung, f, Blei-Isotopen-Datierung

2014-08-01T23:59:59.000Z

102

Forecasting-based SKU classification  

Science Journals Connector (OSTI)

Different spare parts are associated with different underlying demand patterns, which in turn require different forecasting methods. Consequently, there is a need to categorise stock keeping units (SKUs) and apply the most appropriate methods in each category. For intermittent demands, Croston's method (CRO) is currently regarded as the standard method used in industry to forecast the relevant inventory requirements; this is despite the bias associated with Croston's estimates. A bias adjusted modification to CRO (SyntetosBoylan Approximation, SBA) has been shown in a number of empirical studies to perform very well and be associated with a very robust behaviour. In a 2005 article, entitled On the categorisation of demand patterns published by the Journal of the Operational Research Society, Syntetos et al. (2005) suggested a categorisation scheme, which establishes regions of superior forecasting performance between CRO and SBA. The results led to the development of an approximate rule that is expressed in terms of fixed cut-off values for the following two classification criteria: the squared coefficient of variation of the demand sizes and the average inter-demand interval. Kostenko and Hyndman (2006) revisited this issue and suggested an alternative scheme to distinguish between CRO and SBA in order to improve overall forecasting accuracy. Claims were made in terms of the superiority of the proposed approach to the original solution but this issue has never been assessed empirically. This constitutes the main objective of our work. In this paper the above discussed classification solutions are compared by means of experimentation on more than 10,000 \\{SKUs\\} from three different industries. The results enable insights to be gained into the comparative benefits of these approaches. The trade-offs between forecast accuracy and other implementation related considerations are also addressed.

G. Heinecke; A.A. Syntetos; W. Wang

2013-01-01T23:59:59.000Z

103

Forecasting wind speed financial return  

E-Print Network [OSTI]

The prediction of wind speed is very important when dealing with the production of energy through wind turbines. In this paper, we show a new nonparametric model, based on semi-Markov chains, to predict wind speed. Particularly we use an indexed semi-Markov model that has been shown to be able to reproduce accurately the statistical behavior of wind speed. The model is used to forecast, one step ahead, wind speed. In order to check the validity of the model we show, as indicator of goodness, the root mean square error and mean absolute error between real data and predicted ones. We also compare our forecasting results with those of a persistence model. At last, we show an application of the model to predict financial indicators like the Internal Rate of Return, Duration and Convexity.

D'Amico, Guglielmo; Prattico, Flavio

2013-01-01T23:59:59.000Z

104

Table 14. Coal Production, Projected vs. Actual  

Gasoline and Diesel Fuel Update (EIA)

Coal Production, Projected vs. Actual Coal Production, Projected vs. Actual (million short tons) 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 AEO 1982 914 939 963 995 1031 1080 AEO 1983 900 926 947 974 1010 1045 1191 AEO 1984 899 921 948 974 1010 1057 1221 AEO 1985 886 909 930 940 958 985 1015 1041 1072 1094 1116 AEO 1986 890 920 954 962 983 1017 1044 1073 1097 1126 1142 1156 1176 1191 1217 AEO 1987 917 914 932 962 978 996 1020 1043 1068 1149 AEO 1989* 941 946 977 990 1018 1039 1058 1082 1084 1107 1130 1152 1171 AEO 1990 973 987 1085 1178 1379 AEO 1991 1035 1002 1016 1031 1043 1054 1065 1079 1096 1111 1133 1142 1160 1193 1234 1272 1309 1349 1386 1433 AEO 1992 1004 1040 1019 1034 1052 1064 1074 1087 1102 1133 1144 1156 1173 1201 1229 1272 1312 1355 1397 AEO 1993 1039 1043 1054 1065 1076 1086 1094 1102 1125 1136 1148 1161 1178 1204 1237 1269 1302 1327 AEO 1994 999 1021

105

Date created: Date amended: February 2009  

E-Print Network [OSTI]

or on any relevant individual issue � Determining what types of risk are acceptable and which appetite is usually defined as "the amount of risk that an organisation is prepared to accept, tolerateDate created: Date amended: February 2009 - 1 � Risk Management Policy.doc RISK MANAGEMENT POLICY 1

Subramanian, Sriram

106

A Sensitivity Study of Building Performance Using 30-Year Actual Weather  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sensitivity Study of Building Performance Using 30-Year Actual Weather Sensitivity Study of Building Performance Using 30-Year Actual Weather Data Title A Sensitivity Study of Building Performance Using 30-Year Actual Weather Data Publication Type Conference Paper Year of Publication 2013 Authors Hong, Tianzhen, Wen-Kuei Chang, and Hung-Wen Lin Date Published 05/2013 Keywords Actual meteorological year, Building simulation, Energy use, Peak electricity demand, Typical meteorological year, Weather data Abstract Traditional energy performance calculated using building simulation with the typical meteorological year (TMY) weather data represents the energy performance in a typical year but not necessarily the average or typical energy performance of a building in long term. Furthermore, the simulated results do not provide the range of variations due to the change of weather, which is important in building energy management and risk assessment of energy efficiency investment. This study analyzes the weather impact on peak electric demand and energy use by building simulation using 30-year actual meteorological year (AMY) weather data for three types of office buildings at two design efficiency levels across all 17 climate zones. The simulated results from the AMY are compared to those from TMY3 to determine and analyze the differences. It was found that yearly weather variation has significant impact on building performance especially peak electric demand. Energy savings of building technologies should be evaluated using simulations with multi-decade actual weather data to fully consider investment risk and the long term performance.

107

Research Highlights Sorted by Submission Date  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Submission Date Submission Date January 2014 Forecast Calls for Better Models: Examining the Core Components of Arctic Clouds to Clear Their Influence on Climate ARM ASR Ovink, J. December 2013 Effect of Environmental Instability on the Sensitivity of Convection to the Rimed Ice Species ASR Van Weverberg, K. All Mixed Up-Probing Large and Small Scale Turbulence Structures in Continental Stratocumulus Clouds ARM ASR Fang, M., Albrecht, B. A. Ground Stations Likely Get a Boost from Satellites to Estimate Carbon Dioxide Emissions ARM Roeder, L. R. November 2013 Spectro-microscopic Measurements of Carbonaceous Aerosol Aging in Central California ARM ASR Gilles, M., Moffet, R. Digging Into Climate Models' Needs with SPADE ARM ASR Gustafson, W. I. Nailing Down Ice in a Cloud Model ARM ASR

108

Weather Forecast Data an Important Input into Building Management Systems  

E-Print Network [OSTI]

Lewis Poulin Implementation and Operational Services Section Canadian Meteorological Centre, Dorval, Qc National Prediction Operations Division ICEBO 2013, Montreal, Qc October 10 2013 Version 2013-09-27 Weather Forecast Data An Important... and weather information ? Numerical weather forecast production 101 ? From deterministic to probabilistic forecasts ? Some MSC weather forecast (NWP) datasets ? Finding the appropriate data for the appropriate forecast ? Preparing for probabilistic...

Poulin, L.

2013-01-01T23:59:59.000Z

109

BMA Probabilistic Quantitative Precipitation Forecasting over the Huaihe Basin Using TIGGE Multimodel Ensemble Forecasts  

Science Journals Connector (OSTI)

Bayesian model averaging (BMA) probability quantitative precipitation forecast (PQPF) models were established by calibrating their parameters using 17-day ensemble forecasts of 24-h accumulated precipitation, and observations from 43 ...

Jianguo Liu; Zhenghui Xie

2014-04-01T23:59:59.000Z

110

Calibrated Precipitation Forecasts for a Limited-Area Ensemble Forecast System Using Reforecasts  

Science Journals Connector (OSTI)

The calibration of numerical weather forecasts using reforecasts has been shown to increase the skill of weather predictions. Here, the precipitation forecasts from the Consortium for Small Scale Modeling Limited Area Ensemble Prediction System (...

Felix Fundel; Andre Walser; Mark A. Liniger; Christoph Frei; Christof Appenzeller

2010-01-01T23:59:59.000Z

111

The Multiple Peril Crop Insurance Actual Production History (APH) Insurance Plan  

E-Print Network [OSTI]

Economics, Professor and Extension Economist? Management, The Texas A&M System; and Extension Agricultural Economist, Kansas State University Agricultural Experiment Station and Cooperative Extension Service. The U.S. Dept. of Agriculture?s (USDA) Risk..., levels of coverage, price elections, applicable premium rates and subsidy amounts. The special provisions list program calendar dates and contain general and special statements that may further define, limit or modify coverage. MPCI?s Actual...

Stokes, Kenneth; Barnaby, G. A. Art; Waller, Mark L.; Outlaw, Joe

2008-10-07T23:59:59.000Z

112

EIA - Forecasts and Analysis of Energy Data  

Gasoline and Diesel Fuel Update (EIA)

H Tables H Tables Appendix H Comparisons With Other Forecasts, and Performance of Past IEO Forecasts for 1990, 1995, and 2000 Forecast Comparisons Three organizations provide forecasts comparable with those in the International Energy Outlook 2005 (IEO2005). The International Energy Agency (IEA) provides “business as usual” projections to the year 2030 in its World Energy Outlook 2004; Petroleum Economics, Ltd. (PEL) publishes world energy forecasts to 2025; and Petroleum Industry Research Associates (PIRA) provides projections to 2015. For this comparison, 2002 is used as the base year for all the forecasts, and the comparisons extend to 2025. Although IEA’s forecast extends to 2030, it does not publish a projection for 2025. In addition to forecasts from other organizations, the IEO2005 projections are also compared with those in last year’s report (IEO2004). Because 2002 data were not available when IEO2004 forecasts were prepared, the growth rates from IEO2004 are computed from 2001.

113

Funding Opportunity Announcement for Wind Forecasting Improvement...  

Office of Environmental Management (EM)

to improved forecasts, system operators and industry professionals can ensure that wind turbines will operate at their maximum potential. Data collected during this field...

114

Upcoming Funding Opportunity for Wind Forecasting Improvement...  

Office of Environmental Management (EM)

to improved forecasts, system operators and industry professionals can ensure that wind turbines will operate at their maximum potential. Data collected during this field...

115

Huge market forecast for linear LDPE  

Science Journals Connector (OSTI)

Huge market forecast for linear LDPE ... It now appears that the success of the new technology, which rests largely on energy and equipment cost savings, could be overwhelming. ...

1980-08-25T23:59:59.000Z

116

NOAA GREAT LAKES COASTAL FORECASTING SYSTEM Forecasts (up to 5 days in the future)  

E-Print Network [OSTI]

conditions for up to 5 days in the future. These forecasts are run twice daily, and you can step through are generated every 6 hours and you can step backward in hourly increments to view conditions over the previousNOAA GREAT LAKES COASTAL FORECASTING SYSTEM Forecasts (up to 5 days in the future) and Nowcasts

117

Annual Energy Outlook Forecast Evaluation - Table 1. Forecast Evaluations:  

Gasoline and Diesel Fuel Update (EIA)

Average Absolute Percent Errors from AEO Forecast Evaluations: Average Absolute Percent Errors from AEO Forecast Evaluations: 1996 to 2000 Average Absolute Percent Error Average Absolute Percent Error Average Absolute Percent Error Average Absolute Percent Error Average Absolute Percent Error Variable 1996 Evaluation: AEO82 to AEO93 1997 Evaluation: AEO82 to AEO97 1998 Evaluation: AEO82 to AEO98 1999 Evaluation: AEO82 to AEO99 2000 Evaluation: AEO82 to AEO2000 Consumption Total Energy Consumption 1.8 1.6 1.7 1.7 1.8 Total Petroleum Consumption 3.2 2.8 2.9 2.8 2.9 Total Natural Gas Consumption 6.0 5.8 5.7 5.6 5.6 Total Coal Consumption 2.9 2.7 3.0 3.2 3.3 Total Electricity Sales 1.8 1.6 1.7 1.8 2.0 Production Crude Oil Production 5.1 4.2 4.3 4.5 4.5

118

Table 23. Energy Intensity, Projected vs. Actual  

Gasoline and Diesel Fuel Update (EIA)

Energy Intensity, Projected vs. Actual Energy Intensity, Projected vs. Actual (quadrillion Btu / $Billion Nominal GDP) 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 AEO 1982 20.1 18.5 16.9 15.5 14.4 13.2 AEO 1983 19.9 18.7 17.4 16.2 15.1 14.0 9.5 AEO 1984 20.1 19.0 17.7 16.5 15.5 14.5 10.2 AEO 1985 20.0 19.1 18.0 16.9 15.9 14.7 13.7 12.7 11.8 11.0 10.3 AEO 1986 18.3 17.8 16.8 16.1 15.2 14.3 13.4 12.6 11.7 10.9 10.2 9.5 8.9 8.3 7.8 AEO 1987 17.6 17.0 16.3 15.4 14.5 13.7 12.9 12.1 11.4 8.2 AEO 1989* 16.9 16.2 15.2 14.2 13.3 12.5 11.7 10.9 10.2 9.6 9.0 8.5 8.0 AEO 1990 16.1 15.4 11.7 8.6 6.4 AEO 1991 15.5 14.9 14.2 13.6 13.0 12.5 11.9 11.3 10.8 10.3 9.7 9.2 8.7 8.3 7.9 7.4 7.0 6.7 6.3 6.0 AEO 1992 15.0 14.5 13.9 13.3 12.7 12.1 11.6 11.0 10.5 10.0 9.5 9.0 8.6 8.1 7.7 7.3 6.9 6.6 6.2 AEO 1993 14.7 13.9 13.4 12.8 12.3 11.8 11.2 10.7 10.2 9.6 9.2 8.7 8.3 7.8 7.4 7.1 6.7 6.4

119

Optimal combined wind power forecasts using exogeneous variables  

E-Print Network [OSTI]

Optimal combined wind power forecasts using exogeneous variables Fannar ¨Orn Thordarson Kongens of the thesis is combined wind power forecasts using informations from meteorological forecasts. Lyngby, January

120

Ensemble typhoon quantitative precipitation forecasts model in Taiwan  

Science Journals Connector (OSTI)

In this study, an ensemble typhoon quantitative precipitation forecast (ETQPF) model was developed to provide typhoon rainfall forecasts for Taiwan. The ETQPF rainfall forecast is obtained by averaging the pick-out cases, which are screened at a ...

Jing-Shan Hong; Chin-Tzu Fong; Ling-Feng Hsiao; Yi-Chiang Yu; Chian-You Tzeng

Note: This page contains sample records for the topic "forecast date actual" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Forecast of geothermal drilling activity  

SciTech Connect (OSTI)

The numbers of each type of geothermal well expected to be drilled in the United States for each 5-year period to 2000 AD are specified. Forecasts of the growth of geothermally supplied electric power and direct heat uses are presented. The different types of geothermal wells needed to support the forecasted capacity are quantified, including differentiation of the number of wells to be drilled at each major geothermal resource for electric power production. The rate of growth of electric capacity at geothermal resource areas is expected to be 15 to 25% per year (after an initial critical size is reached) until natural or economic limits are approached. Five resource areas in the United States should grow to significant capacity by the end of the century (The Geysers; Imperial Valley; Valles Caldera, NM; Roosevelt Hot Springs, UT; and northern Nevada). About 3800 geothermal wells are expected to be drilled in support of all electric power projects in the United States between 1981 and 2000 AD. Half of the wells are expected to be drilled in the Imperial Valley. The Geysers area is expected to retain most of the drilling activity for the next 5 years. By the 1990's, the Imperial Valley is expected to contain most of the drilling activity.

Brown, G.L.; Mansure, A.J.

1981-10-01T23:59:59.000Z

122

New Concepts in Wind Power Forecasting Models  

E-Print Network [OSTI]

New Concepts in Wind Power Forecasting Models Vladimiro Miranda, Ricardo Bessa, João Gama, Guenter to the training of mappers such as neural networks to perform wind power prediction as a function of wind for more accurate short term wind power forecasting models has led to solid and impressive development

Kemner, Ken

123

QUIKSCAT MEASUREMENTS AND ECMWF WIND FORECASTS  

E-Print Network [OSTI]

. (2004) this forecast error was encountered when assimilating satellite measurements of zonal wind speeds between satellite measurements and meteorological forecasts of near-surface ocean winds. This type of covariance enters in assimilation techniques such as Kalman filtering. In all, six residual fields

Malmberg, Anders

124

QUIKSCAT MEASUREMENTS AND ECMWF WIND FORECASTS  

E-Print Network [OSTI]

. (2004) this forecast error was encountered when assimilating satellite measurements of zonal wind speeds between satellite measurements and meteorological forecasts of near­surface ocean winds. This type of covariance enters in assimilation techniques such as Kalman filtering. In all, six residual fields

Malmberg, Anders

125

PROBLEMS OF FORECAST1 Dmitry KUCHARAVY  

E-Print Network [OSTI]

: Technology Forecast, Laws of Technical systems evolution, Analysis of Contradictions. 1. Introduction Let us: If technology forecasting practice remains at the present level, it is necessary to significantly improve to new demands (like Green House Gases - GHG Effect reduction or covering exploded nuclear reactor

Paris-Sud XI, Université de

126

UHERO FORECAST PROJECT DECEMBER 5, 2014  

E-Print Network [OSTI]

deficits. After solid 3% growth this year, real GDP growth will recede a bit for the next two years. New household spending. Real GDP will firm above 3% in 2015. · The pace of growth in China has continuedUHERO FORECAST PROJECT DECEMBER 5, 2014 Asia-Pacific Forecast: Press Version: Embargoed Until 2

127

Amending Numerical Weather Prediction forecasts using GPS  

E-Print Network [OSTI]

. Satellite images and Numerical Weather Prediction (NWP) models are used together with the synoptic surfaceAmending Numerical Weather Prediction forecasts using GPS Integrated Water Vapour: a case study to validate the amounts of humidity in Numerical Weather Prediction (NWP) model forecasts. This paper presents

Stoffelen, Ad

128

A Forecasting Support System Based on Exponential Smoothing  

Science Journals Connector (OSTI)

This chapter presents a forecasting support system based on the exponential smoothing scheme to forecast time-series data. Exponential smoothing methods are simple to apply, which facilitates...

Ana Corbern-Vallet; Jos D. Bermdez; Jos V. Segura

2010-01-01T23:59:59.000Z

129

Improved Prediction of Runway Usage for Noise Forecast :.  

E-Print Network [OSTI]

??The research deals with improved prediction of runway usage for noise forecast. Since the accuracy of the noise forecast depends on the robustness of runway (more)

Dhanasekaran, D.

2014-01-01T23:59:59.000Z

130

The Wind Forecast Improvement Project (WFIP): A Public/Private...  

Energy Savers [EERE]

Improvement Project (WFIP): A PublicPrivate Partnership for Improving Short Term Wind Energy Forecasts and Quantifying the Benefits of Utility Operations The Wind Forecast...

131

PBL FY 2002 Third Quarter Review Forecast of Generation Accumulated...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Power Business Line Generation Accumulated Net Revenues Forecast for Financial-Based Cost Recovery Adjustment Clause (FB CRAC) FY 2002 Third Quarter Review Forecast in Millions...

132

1993 Pacific Northwest Loads and Resources Study, Pacific Northwest Economic and Electricity Use Forecast, Technical Appendix: Volume 1.  

SciTech Connect (OSTI)

This publication documents the load forecast scenarios and assumptions used to prepare BPA`s Whitebook. It is divided into: intoduction, summary of 1993 Whitebook electricity demand forecast, conservation in the load forecast, projection of medium case electricity sales and underlying drivers, residential sector forecast, commercial sector forecast, industrial sector forecast, non-DSI industrial forecast, direct service industry forecast, and irrigation forecast. Four appendices are included: long-term forecasts, LTOUT forecast, rates and fuel price forecasts, and forecast ranges-calculations.

United States. Bonneville Power Administration.

1994-02-01T23:59:59.000Z

133

Annual Energy Outlook Forecast Evaluation - Tables 2-18  

Gasoline and Diesel Fuel Update (EIA)

Total Energy Consumption: AEO Forecasts, Actual Values, and Total Energy Consumption: AEO Forecasts, Actual Values, and Absolute and Percent Errors, 1985-1999 Publication 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 Average Absolute Error (Quadrillion Btu) AEO82 79.1 79.6 79.9 80.8 82.0 83.3 1.8 AEO83 78.0 79.5 81.0 82.4 83.8 84.6 89.5 1.2 AEO84 78.5 79.4 81.2 83.1 85.0 86.4 93.5 1.5 AEO85 77.6 78.5 79.8 81.2 82.6 83.3 84.2 85.2 85.9 86.7 87.7 1.3 AEO86 77.0 78.8 79.8 80.6 81.5 82.9 84.0 84.8 85.7 86.5 87.9 88.4 87.8 88.7 3.6 AEO87 78.9 80.0 81.9 82.8 83.9 85.3 86.4 87.5 88.4 1.5 AEO89 82.2 83.7 84.5 85.4 86.4 87.3 88.2 89.2 90.8 91.4 90.9 91.7 1.8

134

1993 Solid Waste Reference Forecast Summary  

SciTech Connect (OSTI)

This report, which updates WHC-EP-0567, 1992 Solid Waste Reference Forecast Summary, (WHC 1992) forecasts the volumes of solid wastes to be generated or received at the US Department of Energy Hanford Site during the 30-year period from FY 1993 through FY 2022. The data used in this document were collected from Westinghouse Hanford Company forecasts as well as from surveys of waste generators at other US Department of Energy sites who are now shipping or plan to ship solid wastes to the Hanford Site for disposal. These wastes include low-level and low-level mixed waste, transuranic and transuranic mixed waste, and nonradioactive hazardous waste.

Valero, O.J.; Blackburn, C.L. [Westinghouse Hanford Co., Richland, WA (United States); Kaae, P.S.; Armacost, L.L.; Garrett, S.M.K. [Pacific Northwest Lab., Richland, WA (United States)

1993-08-01T23:59:59.000Z

135

Metrics for Evaluating the Accuracy of Solar Power Forecasting (Presentation)  

SciTech Connect (OSTI)

This presentation proposes a suite of metrics for evaluating the performance of solar power forecasting.

Zhang, J.; Hodge, B.; Florita, A.; Lu, S.; Hamann, H.; Banunarayanan, V.

2013-10-01T23:59:59.000Z

136

PSO (FU 2101) Ensemble-forecasts for wind power  

E-Print Network [OSTI]

PSO (FU 2101) Ensemble-forecasts for wind power Analysis of the Results of an On-line Wind Power Ensemble- forecasts for wind power (FU2101) a demo-application producing quantile forecasts of wind power correct) quantile forecasts of the wind power production are generated by the application. However

137

Forecasting Uncertainty Related to Ramps of Wind Power Production  

E-Print Network [OSTI]

Forecasting Uncertainty Related to Ramps of Wind Power Production Arthur Bossavy, Robin Girard - The continuous improvement of the accuracy of wind power forecasts is motivated by the increasing wind power study. Key words : wind power forecast, ramps, phase er- rors, forecasts ensemble. 1 Introduction Most

Boyer, Edmond

138

The effect of multinationality on management earnings forecasts  

E-Print Network [OSTI]

and number of countries withforeign subsidiaries) are significantly positively related to more optimistic management earnings forecasts....

Runyan, Bruce Wayne

2005-08-29T23:59:59.000Z

139

Distribution of Wind Power Forecasting Errors from Operational Systems (Presentation)  

SciTech Connect (OSTI)

This presentation offers new data and statistical analysis of wind power forecasting errors in operational systems.

Hodge, B. M.; Ela, E.; Milligan, M.

2011-10-01T23:59:59.000Z

140

COUNTRY INSTITUTION SIGNING DATE  

E-Print Network [OSTI]

COUNTRY INSTITUTION SIGNING DATE /RENEWAL WEB SITE ALBANIA University of Tirana 11.12.2001 www /RENEWAL WEB SITE FINLAND JAMK University of Applied Sciences 29.10.2009 www.jamk.fi/ FRANCE ?cole INSTITUTION SIGNING DATE /RENEWAL WEB SITE MACEDONIA St. Cyril and Methodius" University of Skopje 11

Di Pillo, Gianni

Note: This page contains sample records for the topic "forecast date actual" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Iraq Produces Date Sugar  

Science Journals Connector (OSTI)

Iraq will soon begin manufacture of sugar from dates as a result of experiments carried out under a UNESCO program by a Swiss scientist. Development of this industry will save the country some $16 million annually formerly spent for imported sugar.Dates ...

1955-04-18T23:59:59.000Z

142

Advanced Numerical Weather Prediction Techniques for Solar Irradiance Forecasting : : Statistical, Data-Assimilation, and Ensemble Forecasting  

E-Print Network [OSTI]

J.B. , 2004: Probabilistic wind power forecasts using localforecast intervals for wind power output using NWP-predictedsources such as wind and solar power. Integration of this

Mathiesen, Patrick James

2013-01-01T23:59:59.000Z

143

Advanced Numerical Weather Prediction Techniques for Solar Irradiance Forecasting : : Statistical, Data-Assimilation, and Ensemble Forecasting  

E-Print Network [OSTI]

United States California Solar Initiative Coastally Trappedparticipants in the California Solar Initiative (CSI)on location. In California, solar irradiance forecasts near

Mathiesen, Patrick James

2013-01-01T23:59:59.000Z

144

Date: Thursday May 23, 2013 Program: UHV Helium Ion Microscopy HR  

E-Print Network [OSTI]

Date: Thursday May 23, 2013 Program: UHV Helium Ion Microscopy HR Speakers: Gregor Hlawacek Helium selected investigations performed with the UTwente UHV-HIM in the last few years. The actual challenge, why

Twente, Universiteit

145

Annual Energy Outlook 2001 - Forecast Comparisons  

Gasoline and Diesel Fuel Update (EIA)

Forecast Comparisons Forecast Comparisons Economic Growth World Oil Prices Total Energy Consumption Residential and Commercial Sectors Industrial Sector Transportation Sector Electricity Natural Gas Petroleum Coal Three other organizations—Standard & Poor’s DRI (DRI), the WEFA Group (WEFA), and the Gas Research Institute (GRI) [95]—also produce comprehensive energy projections with a time horizon similar to that of AEO2001. The most recent projections from those organizations (DRI, Spring/Summer 2000; WEFA, 1st Quarter 2000; GRI, January 2000), as well as other forecasts that concentrate on petroleum, natural gas, and international oil markets, are compared here with the AEO2001 projections. Economic Growth Differences in long-run economic forecasts can be traced primarily to

146

energy data + forecasting | OpenEI Community  

Open Energy Info (EERE)

energy data + forecasting energy data + forecasting Home FRED Description: Free Energy Database Tool on OpenEI This is an open source platform for assisting energy decision makers and policy makers in formulating policies and energy plans based on easy to use forecasting tools, visualizations, sankey diagrams, and open data. The platform will live on OpenEI and this community was established to initiate discussion around continuous development of this tool, integrating it with new datasets, and connecting with the community of users who will want to contribute data to the tool and use the tool for planning purposes. Links: FRED beta demo energy data + forecasting Syndicate content 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2084382122

147

Wind Speed Forecasting for Power System Operation  

E-Print Network [OSTI]

In order to support large-scale integration of wind power into current electric energy system, accurate wind speed forecasting is essential, because the high variation and limited predictability of wind pose profound challenges to the power system...

Zhu, Xinxin

2013-07-22T23:59:59.000Z

148

Evaluation of hierarchical forecasting for substitutable products  

Science Journals Connector (OSTI)

This paper addresses hierarchical forecasting in a production planning environment. Specifically, we examine the relative effectiveness of Top-Down (TD) and Bottom-Up (BU) strategies for forecasting the demand for a substitutable product (which belongs to a family) as well as the demand for the product family under different types of family demand processes. Through a simulation study, it is revealed that the TD strategy consistently outperforms the BU strategy for forecasting product family demand. The relative superiority of the TD strategy further improves by as much as 52% as the product demand variability increases and the degree of substitutability between the products decreases. This phenomenon, however, is not always true for forecasting the demand for the products within the family. In this case, it is found that there are a few situations wherein the BU strategy marginally outperforms the TD strategy, especially when the product demand variability is high and the degree of product substitutability is low.

S. Viswanathan; Handik Widiarta; R. Piplani

2008-01-01T23:59:59.000Z

149

Testing Competing High-Resolution Precipitation Forecasts  

E-Print Network [OSTI]

Testing Competing High-Resolution Precipitation Forecasts Eric Gilleland Research Prediction Comparison Test D1 D2 D = D1 ­ D2 copyright NCAR 2013 Loss Differential Field #12;Spatial Prediction Comparison Test Introduced by Hering and Genton

Gilleland, Eric

150

Forecasting Capital Expenditure with Plan Data  

Science Journals Connector (OSTI)

The short-term forecasting of capital expenditure presents one of the most difficult problems ... reason is that year-to-year fluctuations in capital expenditure are extremely wide. Some simple methods which...

W. Gerstenberger

1977-01-01T23:59:59.000Z

151

Forecasting Agriculturally Driven Global Environmental Change  

Science Journals Connector (OSTI)

...of each variable on GDP (13, 17), combined with global GDP projections (14...population, and per capita GDP, combined with projected...measure of agricultural demand for water, is forecast...Just as demand for energy is the major cause...

David Tilman; Joseph Fargione; Brian Wolff; Carla D'Antonio; Andrew Dobson; Robert Howarth; David Schindler; William H. Schlesinger; Daniel Simberloff; Deborah Swackhamer

2001-04-13T23:59:59.000Z

152

Medium- and Long-Range Forecasting  

Science Journals Connector (OSTI)

In contrast to short and extended range forecasts, predictions for periods beyond 5 days use time-averaged, midtropospheric height fields as their primary guidance. As time ranges are increased to 3O- and 90-day outlooks, guidance increasingly ...

A. James Wagner

1989-09-01T23:59:59.000Z

153

Updated Satellite Technique to Forecast Heavy Snow  

Science Journals Connector (OSTI)

Certain satellite interpretation techniques have proven quite useful in the heavy snow forecast process. Those considered best are briefly reviewed, and another technique is introduced. This new technique was found to be most valuable in cyclonic ...

Edward C. Johnston

1995-06-01T23:59:59.000Z

154

Annual Energy Outlook Forecast Evaluation 2005  

Gasoline and Diesel Fuel Update (EIA)

Forecast Evaluation 2005 Forecast Evaluation 2005 Annual Energy Outlook Forecast Evaluation 2005 Annual Energy Outlook Forecast Evaluation 2005 * Then Energy Information Administration (EIA) produces projections of energy supply and demand each year in the Annual Energy Outlook (AEO). The projections in the AEO are not statements of what will happen but of what might happen, given the assumptions and methodologies used. The projections are business-as-usual trend projections, given known technology, technological and demographic trends, and current laws and regulations. Thus, they provide a policy-neutral reference case that can be used to analyze policy initiatives. EIA does not propose or advocate future legislative and regulatory changes. All laws are assumed to remain as currently enacted; however, the impacts of emerging regulatory changes, when defined, are reflected.

155

Forecasting energy markets using support vector machines  

Science Journals Connector (OSTI)

Abstract In this paper we investigate the efficiency of a support vector machine (SVM)-based forecasting model for the next-day directional change of electricity prices. We first adjust the best autoregressive SVM model and then we enhance it with various related variables. The system is tested on the daily Phelix index of the German and Austrian control area of the European Energy Exchange (???) wholesale electricity market. The forecast accuracy we achieved is 76.12% over a 200day period.

Theophilos Papadimitriou; Periklis Gogas; Efthimios Stathakis

2014-01-01T23:59:59.000Z

156

,"Table 2b. Noncoincident Winter Peak Load, Actual and Projected...  

U.S. Energy Information Administration (EIA) Indexed Site

January 23, 2008" ,"Next Update: October 2007" ,"Table 2b. Noncoincident Winter Peak Load, Actual and Projected by North American Electric Reliability Council Region, " ,"2005...

157

TO: FILE DATE------  

Office of Legacy Management (LM)

DATE------ DATE------ la Fp7 ---------__ OWNER(.=) m-----z- Past: -----_------------------ Current: ------------i----------- Owner c:nntacted q ye' s y "0; !' L-----J if yea, date contacted TYPE OF OPERATION -------_------___ 0 Research & Development cl Facility Type 0 Production scale testins 0 Pilot Scale 0 Bench Scale Process E Theoretical Studies Sample SI Analysis [7 Manufacturing i University $ Resear.& Organization Government Sponsored Facility 0 Other -~------------------- 0 Production G Di spo5alfStorage TYPE OF CONTRACT ~------~--~~---- 0 Prime 0 Suhccntractnr 0 Purchase Order q Other information (i.e., crJst + fixed fee, unit price, time & material, etc) ------- ---------------------------- ~Canfrakt/Purchase Order # ----------------___---------

158

Dating the Vinland Map  

ScienceCinema (OSTI)

Scientists from Brookhaven National Laboratory, the University of Arizona, and the Smithsonian Institution used carbon-dating technology to determine the age of a controversial parchment that might be the first-ever map of North America.

None

2013-07-17T23:59:59.000Z

159

Shale Gas Production: Potential versus Actual GHG Emissions  

E-Print Network [OSTI]

Shale Gas Production: Potential versus Actual GHG Emissions Francis O'Sullivan and Sergey Paltsev://globalchange.mit.edu/ Printed on recycled paper #12;1 Shale Gas Production: Potential versus Actual GHG Emissions Francis O'Sullivan* and Sergey Paltsev* Abstract Estimates of greenhouse gas (GHG) emissions from shale gas production and use

160

Forecasting aggregate time series with intermittent subaggregate components: top-down versus bottom-up forecasting  

Science Journals Connector (OSTI)

......optimum value through a grid-search algorithm...method outperformed TD for estimating the aggregate data series...variable, there is no benefit of forecasting each subaggregate...forecasting strategies in estimating the `component'-level...WILLEMAIN, T. R., SMART, C. N., SHOCKOR......

S. Viswanathan; Handik Widiarta; Rajesh Piplani

2008-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "forecast date actual" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

COST BREAKDOWN AWARD NO: START DATE: EXPIRATION DATE: FISCAL...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

COST BREAKDOWN AWARD NO: START DATE: EXPIRATION DATE: FISCAL YEAR BREAKDOWN OF FUNDS ELEMENTS FY FY FY FY FY TOTAL Direct Labor Overhead Materials Supplies Travel Other Direct...

162

Fuzzy rule-based methodology for residential load behaviour forecasting during power systems restoration  

Science Journals Connector (OSTI)

Inadequate load pickup during power system restoration can lead to overload and underfrequency conditions, and even restart the blackout process, due to thermal energy losses. Thus, load behaviour estimation during restoration is desirable to avoid inadequate pickups. This work describes an artificial intelligence method to aid the operator in taking decisions during system restoration by estimating residential load behaviour parameters such as overload in buses and the necessary time to recover steady-state power consumption. This method uses a fuzzy rule-based system to forecast the residential load, obtaining correct estimates with low computational cost. Test results using actual substation data are presented.

Lia Toledo Moreira Mota; Alexandre Assis Mota; Andre Luiz Morelato Franca

2005-01-01T23:59:59.000Z

163

DATE: TO: FROM:  

Broader source: Energy.gov (indexed) [DOE]

d d POLICY FLASH 2010-64 DATE: TO: FROM: July 7,201 0 Procurement Directors Office of Procurement and Assistance Policy, MA-6 I Office of Procurement and Assistance Management SUBJECT: Federal Acquisition Circular 2005-42 SUMMARY: Attached for your information is a summary of Federal Acquisition Circular (FAC) 2005-42 which makes changes to the Federal Acquisition Regulation (FAR). The FAC has eleven rules (seven final and four interim) and one technical amendment. Attached is a short overview of the rules to include its effective date and applicability date. To view FAC 2005-42 go to the Federal Register Browse web link at http://www.~~oaccess.~ov/fr/browse.html and search for the Federal Register Volume 75, Number 115 for Wednesday, June 16,2010.

164

MEMORANDUfl J: FILE DATE  

Office of Legacy Management (LM)

J: FILE DATE J: FILE DATE // //r /so -----------w------m FROM: 9. 34oyc -w--------v----- SUBJECT: D3 Bo;s CL&;C J mL-;+J; - Rcc cap 049 /'A :j$: &336;s L-.fh~ w-f L-1 ALE"nirTE __ ------------- --- ---_------------------ CITY: &u+M- - &. -w---v------ ---B-------w STATE: 0 h' -a---- OWNER(S) --pi::;- l>cl, b af.5 CA.-*>J CD Current: Gr;W i- ~U~&;P~ -------------,,' ,-,,,,-, Owner contacted 0 yes jg no; -------------------------- if yes, date contacted ------m------ TYPE OF OPERATION --w--w----------- & Research & Development a Facility Type 0 Production scale testing Cl Pilot Scale 0 Bench Scale Process 0 Theoretical Studies w Sample & Analysis 0 Manufacturing 0 University 0 Research Organization 0 Government Sponsored Facility

165

History of Radiocarbon Dating  

DOE R&D Accomplishments [OSTI]

The development is traced of radiocarbon dating from its birth in curiosity regarding the effects of cosmic radiation on Earth. Discussed in historical perspective are: the significance of the initial measurements in determining the course of developments; the advent of the low-level counting technique; attempts to avoid low-level counting by the use of isotopic enrichment; the gradual appearance of the environmental effect due to the combustion of fossil fuel (Suess effect); recognition of the atmosphere ocean barrier for carbon dioxide exchange; detailed understanding of the mixing mechanism from the study of fallout radiocarbon; determination of the new half-life; indexing and the assimilation problem for the massive accumulation of dates; and the proliferation of measurement techniques and the impact of archaeological insight on the validity of radiocarbon dates. (author)

Libby, W. F.

1967-08-15T23:59:59.000Z

166

Radar-Derived Forecasts of Cloud-to-Ground Lightning Over Houston, Texas  

E-Print Network [OSTI]

Lightning Forecasts..........................................................................................45 2.7 First Flash Forecasts and Lead Times.....................................................................47 vii... Cell Number ? 25 August 2000..............................................68 3.4 First Flash Forecast Time........................................................................................70 3.5 Lightning Forecasting Algorithm (LFA) Development...

Mosier, Richard Matthew

2011-02-22T23:59:59.000Z

167

File:Theoretical vs Actual Data Lesson Plan .pdf | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search File Edit History Facebook icon Twitter icon » File:Theoretical vs Actual Data Lesson Plan .pdf Jump to: navigation, search File File history File usage Metadata File:Theoretical vs Actual Data Lesson Plan .pdf Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Go to page 1 2 Go! next page → next page → Full resolution ‎(1,275 × 1,650 pixels, file size: 257 KB, MIME type: application/pdf, 2 pages) File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 09:33, 3 January 2014 Thumbnail for version as of 09:33, 3 January 2014 1,275 × 1,650, 2 pages (257 KB) Foteri (Talk | contribs) Category:Wind for Schools Portal CurriculaCategory:Wind for Schools High School Curricula

168

Estimation of Regional Actual Evapotranspiration in the Panama Canal Watershed  

Science Journals Connector (OSTI)

The upper Ro Chagres basin is a part of the Panama Canal Watershed. The least known water balance...SEBAL...). We use an image from March 27, 2000, for estimation of the distribution of the regional actual evapo...

Jan M.H. Hendrickx; Wim G.M. Bastiaanssen; Edwin J.M. Noordman

2005-01-01T23:59:59.000Z

169

12-32021E2_Forecast  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

FORECAST OF VACANCIES FORECAST OF VACANCIES Until end of 2014 (Issue No. 20) Page 2 OVERVIEW OF BASIC REQUIREMENTS FOR PROFESSIONAL VACANCIES IN THE IAEA Education, Experience and Skills: Professional staff at the P4-P5 levels: * Advanced university degree (or equivalent postgraduate degree); * 7 or 10 years, respectively, of experience in a field of relevance to the post; * Resource management experience; * Strong analytical skills; * Computer skills: standard Microsoft Office software; * Languages: Fluency in English. Working knowledge of other official languages (Arabic, Chinese, French, Russian, Spanish) advantageous; * Ability to work effectively in multidisciplinary and multicultural teams; * Ability to communicate effectively. Professional staff at the P1-P3 levels:

170

Building Energy Software Tools Directory: Degree Day Forecasts  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Forecasts Forecasts Degree Day Forecasts example chart Quick and easy web-based tool that provides free 14-day ahead degree day forecasts for 1,200 stations in the U.S. and Canada. Degree Day Forecasts charts show this year, last year and three-year average. Historical degree day charts and energy usage forecasts are available from the same site. Keywords degree days, historical weather, mean daily temperature Validation/Testing Degree day data provided by AccuWeather.com, updated daily at 0700. Expertise Required No special expertise required. Simple to use. Users Over 1,000 weekly users. Audience Anyone who needs degree day forecasts (next 14 days) for the U.S. and Canada. Input Select a weather station (1,200 available) and balance point temperature. Output Charts show (1) degree day (heating and cooling) forecasts for the next 14

171

Building Energy Software Tools Directory: Energy Usage Forecasts  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Usage Forecasts Energy Usage Forecasts Energy Usage Forecasts Quick and easy web-based tool that provides free 14-day ahead energy usage forecasts based on the degree day forecasts for 1,200 stations in the U.S. and Canada. The user enters the daily non-weather base load and the usage per degree day weather factor; the tool applies the degree day forecast and displays the total energy usage forecast. Helpful FAQs explain the process and describe various options for the calculation of the base load and weather factor. Historical degree day reports and 14-day ahead degree day forecasts are available from the same site. Keywords degree days, historical weather, mean daily temperature, load calculation, energy simulation Validation/Testing Degree day data provided by AccuWeather.com, updated daily at 0700.

172

Forecasting Market Demand for New Telecommunications Services: An Introduction  

E-Print Network [OSTI]

Forecasting Market Demand for New Telecommunications Services: An Introduction Peter Mc The marketing team of a new telecommunications company is usually tasked with producing forecasts for diverse three decades of experience working with telecommunications operators around the world we seek

McBurney, Peter

173

River Forecast Application for Water Management: Oil and Water?  

Science Journals Connector (OSTI)

Managing water resources generally and managing reservoir operations specifically have been touted as opportunities for applying forecasts to improve decision making. Previous studies have shown that the application of forecasts into water ...

Kevin Werner; Kristen Averyt; Gigi Owen

2013-07-01T23:59:59.000Z

174

Data Mining in Load Forecasting of Power System  

Science Journals Connector (OSTI)

This project applies Data Mining technology to the prediction of electric power system load forecast. It proposes a mining program of electric power load forecasting data based on the similarity of time series .....

Guang Yu Zhao; Yan Yan; Chun Zhou Zhao

2013-01-01T23:59:59.000Z

175

Operational Rainfall and Flow Forecasting for the Panama Canal Watershed  

Science Journals Connector (OSTI)

An integrated hydrometeorological system was designed for the utilization of data from various sensors in the 3300 km2 Panama Canal Watershed for the purpose of producing ... forecasts. These forecasts are used b...

Konstantine P. Georgakakos; Jason A. Sperfslage

2005-01-01T23:59:59.000Z

176

Power System Load Forecasting Based on EEMD and ANN  

Science Journals Connector (OSTI)

In order to fully mine the characteristics of load data and improve the accuracy of power system load forecasting, a load forecasting model based on Ensemble Empirical Mode ... is proposed in this paper. Firstly,...

Wanlu Sun; Zhigang Liu; Wenfan Li

2011-01-01T23:59:59.000Z

177

U.S. Regional Demand Forecasts Using NEMS and GIS  

E-Print Network [OSTI]

Forecasts Using NEMS and GIS National Climatic Data Center.with Changing Boundaries." Use of GIS to Understand Socio-Forecasts Using NEMS and GIS Appendix A. Map Results Gallery

Cohen, Jesse A.; Edwards, Jennifer L.; Marnay, Chris

2005-01-01T23:59:59.000Z

178

Beyond "Partly Sunny": A Better Solar Forecast | Department of...  

Energy Savers [EERE]

Beyond "Partly Sunny": A Better Solar Forecast Beyond "Partly Sunny": A Better Solar Forecast December 7, 2012 - 10:00am Addthis The Energy Department is investing in better solar...

179

The Energy Demand Forecasting System of the National Energy Board  

Science Journals Connector (OSTI)

This paper presents the National Energy Boards long term energy demand forecasting model in its present state of ... results of recent research at the NEB. Energy demand forecasts developed with the aid of this....

R. A. Preece; L. B. Harsanyi; H. M. Webster

1980-01-01T23:59:59.000Z

180

Forecasting Energy Demand Using Fuzzy Seasonal Time Series  

Science Journals Connector (OSTI)

Demand side energy management has become an important issue for energy management. In order to support energy planning and policy decisions forecasting the future demand is very important. Thus, forecasting the f...

?Irem Ual Sar?; Basar ztaysi

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "forecast date actual" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Create Date: Create Time  

E-Print Network [OSTI]

provisions. AB 0074 Ch. 666 Assembly Member Ma Public event action plans and cooperative agreements. AB 0080 Ch. 138 Assembly Member Fong Presidential primary: election date. AB 0082 Ch. 92 * Assembly Assembly Member Fong Elections: new citizens. AB 0089 Ch. 390 * Assembly Member Hill County employees

182

Quantum Dating Market  

E-Print Network [OSTI]

We consider the dating market decision problem under the quantum mechanics point of view. Quantum states whose associated amplitudes are modified by men strategies are used to represent women. Grover quantum search algorithm is used as a playing strategy. Success is more frequently obtained by playing quantum than playing classic.

O. G. Zabaleta; C. M. Arizmendi

2010-03-04T23:59:59.000Z

183

Wind power forecasting in U.S. electricity markets.  

SciTech Connect (OSTI)

Wind power forecasting is becoming an important tool in electricity markets, but the use of these forecasts in market operations and among market participants is still at an early stage. The authors discuss the current use of wind power forecasting in U.S. ISO/RTO markets, and offer recommendations for how to make efficient use of the information in state-of-the-art forecasts.

Botterud, A.; Wang, J.; Miranda, V.; Bessa, R. J.; Decision and Information Sciences; INESC Porto

2010-04-01T23:59:59.000Z

184

Wind power forecasting in U.S. Electricity markets  

SciTech Connect (OSTI)

Wind power forecasting is becoming an important tool in electricity markets, but the use of these forecasts in market operations and among market participants is still at an early stage. The authors discuss the current use of wind power forecasting in U.S. ISO/RTO markets, and offer recommendations for how to make efficient use of the information in state-of-the-art forecasts. (author)

Botterud, Audun; Wang, Jianhui; Miranda, Vladimiro; Bessa, Ricardo J.

2010-04-15T23:59:59.000Z

185

Sandia National Laboratories: Solar Energy Forecasting and Resource...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy, Modeling & Analysis, News, News & Events, Partnership, Photovoltaic, Renewable Energy, Solar, Systems Analysis The book, Solar Energy Forecasting and Resource...

186

Application of a Combination Forecasting Model in Logistics Parks' Demand  

Science Journals Connector (OSTI)

Logistics parks demand is an important basis of establishing the development policy of logistics industry and logistics infrastructure for planning. In order to improve the forecast accuracy of logistics parks demand, a combination forecasting ... Keywords: Logistics parks' demand, combine, simulated annealing algorithm, grey forecast model, exponential smoothing method

Chen Qin; Qi Ming

2010-05-01T23:59:59.000Z

187

A BAYESIAN MODEL COMMITTEE APPROACH TO FORECASTING GLOBAL SOLAR RADIATION  

E-Print Network [OSTI]

in the realm of solar radiation forecasting. In this work, two forecasting models: Autoregressive Moving1 A BAYESIAN MODEL COMMITTEE APPROACH TO FORECASTING GLOBAL SOLAR RADIATION. The very first results show an improvement brought by this approach. 1. INTRODUCTION Solar radiation

Boyer, Edmond

188

CSUF ECONOMIC OUTLOOK AND FORECASTS MIDYEAR UPDATE -APRIL 2014  

E-Print Network [OSTI]

CSUF ECONOMIC OUTLOOK AND FORECASTS MIDYEAR UPDATE - APRIL 2014 Anil Puri, Ph.D. -- Director, Center for Economic Analysis and Forecasting -- Dean, Mihaylo College of Business and Economics Mira Farka, Ph.D. -- Co-Director, Center for Economic Analysis and Forecasting -- Associate Professor

de Lijser, Peter

189

Forecasting wave height probabilities with numerical weather prediction models  

E-Print Network [OSTI]

Forecasting wave height probabilities with numerical weather prediction models Mark S. Roulstona; Numerical weather prediction 1. Introduction Wave forecasting is now an integral part of operational weather methods for generating such forecasts from numerical model output from the European Centre for Medium

Stevenson, Paul

190

CALIFORNIA ENERGY DEMAND 2008-2018 STAFF REVISED FORECAST  

E-Print Network [OSTI]

CALIFORNIA ENERGY COMMISSION CALIFORNIA ENERGY DEMAND 2008-2018 STAFF REVISED FORECAST. Mitch Tian prepared the peak demand forecast. Ted Dang prepared the historic energy consumption data in California and for climate zones within those areas. The staff California Energy Demand 2008-2018 forecast

191

AUTOMATION OF ENERGY DEMAND FORECASTING Sanzad Siddique, B.S.  

E-Print Network [OSTI]

AUTOMATION OF ENERGY DEMAND FORECASTING by Sanzad Siddique, B.S. A Thesis submitted to the Faculty OF ENERGY DEMAND FORECASTING Sanzad Siddique, B.S. Marquette University, 2013 Automation of energy demand of the energy demand forecasting are achieved by integrating nonlinear transformations within the models

Povinelli, Richard J.

192

Wind and Load Forecast Error Model for Multiple Geographically Distributed Forecasts  

SciTech Connect (OSTI)

The impact of wind and load forecast errors on power grid operations is frequently evaluated by conducting multi-variant studies, where these errors are simulated repeatedly as random processes based on their known statistical characteristics. To generate these errors correctly, we need to reflect their distributions (which do not necessarily follow a known distribution law), standard deviations, auto- and cross-correlations. For instance, load and wind forecast errors can be closely correlated in different zones of the system. This paper introduces a new methodology for generating multiple cross-correlated random processes to simulate forecast error curves based on a transition probability matrix computed from an empirical error distribution function. The matrix will be used to generate new error time series with statistical features similar to observed errors. We present the derivation of the method and present some experimental results by generating new error forecasts together with their statistics.

Makarov, Yuri V.; Reyes Spindola, Jorge F.; Samaan, Nader A.; Diao, Ruisheng; Hafen, Ryan P.

2010-11-02T23:59:59.000Z

193

Forecasting the Market Penetration of Energy Conservation Technologies: The Decision Criteria for Choosing a Forecasting Model  

E-Print Network [OSTI]

An important determinant of our energy future is the rate at which energy conservation technologies, once developed, are put into use. At Synergic Resources Corporation, we have adapted and applied a methodology to forecast the use of conservation...

Lang, K.

1982-01-01T23:59:59.000Z

194

Forecasting the Locational Dynamics of Transnational Terrorism  

E-Print Network [OSTI]

Forecasting the Locational Dynamics of Transnational Terrorism: A Network Analytic Approach Bruce A-0406 Fax: (919) 962-0432 Email: skyler@unc.edu Abstract--Efforts to combat and prevent transnational terror of terrorism. We construct the network of transnational terrorist attacks, in which source (sender) and target

Massachusetts at Amherst, University of

195

Do quantitative decadal forecasts from GCMs provide  

E-Print Network [OSTI]

' · Empirical models quantify our ability to predict without knowing the laws of physics · Climatology skill' model? 2. Dynamic climatology (DC) is a more appropriate benchmark for near- term (initialised) climate forecasts · A conditional climatology, initialised at launch and built from the historical archive

Stevenson, Paul

196

Sunny outlook for space weather forecasters  

Science Journals Connector (OSTI)

... For decades, companies have tailored public weather data for private customers from farmers to airlines. On Wednesday, a group of businesses said that they ... utilities and satellite operators. But Terry Onsager, a physicist at the SWPC, says that private forecasting firms are starting to realize that they can add value to these predictions. ...

Eric Hand

2012-04-27T23:59:59.000Z

197

Modeling of Uncertainty in Wind Energy Forecast  

E-Print Network [OSTI]

regression and splines are combined to model the prediction error from Tunø Knob wind power plant. This data of the thesis is quantile regression and splines in the context of wind power modeling. Lyngby, February 2006Modeling of Uncertainty in Wind Energy Forecast Jan Kloppenborg Møller Kongens Lyngby 2006 IMM-2006

198

Prediction versus Projection: How weather forecasting and  

E-Print Network [OSTI]

Prediction versus Projection: How weather forecasting and climate models differ. Aaron B. Wilson Context: Global http://data.giss.nasa.gov/ #12;Numerical Weather Prediction Collect Observations alters associated weather patterns. Models used to predict weather depend on the current observed state

Howat, Ian M.

199

Customized forecasting tool improves reserves estimation  

SciTech Connect (OSTI)

Unique producing characteristics of the Teapot sandstone formation, Powder River basin, Wyoming, necessitated the creation of individualized production forecasting methods for wells producing from this reservoir. The development and use of a set of production type curves and correlations for Teapot wells are described herein.

Mian, M.A.

1986-04-01T23:59:59.000Z

200

Storm-in-a-Box Forecasting  

Science Journals Connector (OSTI)

...But the WRF has no immediate...being tuned to local conditions...temperatures and winds with altitude...resulting WRF forecasts...captured the local sea-breeze winds better...spread the local operation of mesoscale...to be the WRF model now...

Richard A. Kerr

2004-05-14T23:59:59.000Z

Note: This page contains sample records for the topic "forecast date actual" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Online short-term solar power forecasting  

SciTech Connect (OSTI)

This paper describes a new approach to online forecasting of power production from PV systems. The method is suited to online forecasting in many applications and in this paper it is used to predict hourly values of solar power for horizons of up to 36 h. The data used is 15-min observations of solar power from 21 PV systems located on rooftops in a small village in Denmark. The suggested method is a two-stage method where first a statistical normalization of the solar power is obtained using a clear sky model. The clear sky model is found using statistical smoothing techniques. Then forecasts of the normalized solar power are calculated using adaptive linear time series models. Both autoregressive (AR) and AR with exogenous input (ARX) models are evaluated, where the latter takes numerical weather predictions (NWPs) as input. The results indicate that for forecasts up to 2 h ahead the most important input is the available observations of solar power, while for longer horizons NWPs are the most important input. A root mean square error improvement of around 35% is achieved by the ARX model compared to a proposed reference model. (author)

Bacher, Peder; Madsen, Henrik [Informatics and Mathematical Modelling, Richard Pedersens Plads, Technical University of Denmark, Building 321, DK-2800 Lyngby (Denmark); Nielsen, Henrik Aalborg [ENFOR A/S, Lyngsoe Alle 3, DK-2970 Hoersholm (Denmark)

2009-10-15T23:59:59.000Z

202

HEMORANDUH TO: FILE DATE  

Office of Legacy Management (LM)

HEMORANDUH HEMORANDUH TO: FILE DATE 1123 lLjl ---WV-------------- FROM: P. s&w+ -------v-----s-- SUBJECT: lJ+ - e;& SITE NAME: LJo"zL - /L,' de Cd -J--h=- ALTERNATE l --e-e-- ------w------- ---,,,' ,m--, NAME: ---------------------- CITY: LL-pL~ ------------ ------------- STATE3 e--w-- OWNER tS) -----w-- Past I --k-!!.l~ -pa L . -v-----w------- Current: Owner contac?-ed 0 yes 0 no; if yes, I+Lff A zid;&m - -------------------------- date contacted ------B--m--- TYPE OF OPERATION ----------------- a Research 81 Development a Facility Type 0 Production scale testing 0 Pilot Scale 0 Bench Scale Procesr 0 Theoretical Studies 0 Sample & Analysis m Manuf acturinq 0 University 0 Research Organization 0 Government Sponrored Facility 0 Other

203

FROM: DATE: TO:  

Broader source: Energy.gov (indexed) [DOE]

DATE: DATE: TO: POLICY FLASH 2010-48 May 06,20 1 0 Procurement Directors Office of Procurement and Assistance Policy, MA-6 1 Office of Procurement and Assistance Management SUBJECT: Acquisition LetterIFinancial Assistance Letter (ALIFAL) 201 0-06, Acquiring Information Technology, Requirement to Comply With Internet Protocol Version 6 (IPv6) SUMMARY: ALIFAL 201 0-06 provides notice that the Civilian Agency Acquisition Council and the Defense Acquisition Regulations Council are issuing a final rule amending the Federal Acquisition Regulation (FAR) to require that Internet Protocol Version 6 (IPv6) compliant products be included in all new information technology (IT) acquisitions using Internet Protocol (IP). ALIFAL 2010-06, accordingly, updates the IPv6 guidance provided in AL-2006-04.

204

TO: FILE DATE  

Office of Legacy Management (LM)

tlEi?ORANDUH tlEi?ORANDUH TO: FILE DATE FFtOil: c ----'- Y '%d 6- ----_----_ SUBJECT: SITE NAME: ----------STATE: Owner contacted 0 yes qno; if yes, date contacted ---------__-- TYPE OF OPERATION ----~_--_--~----_ &Research & Development @ Praduction scale testing. 0 Pilat Scale 0 Bench Scale Process a Theoretical Studies 0 Sample & Analysis tin Facility Type R Manufacturing IJ University 0 Research Organization IJ Gavernment Sponsored Facility 0 Other ----------------' --~- 0 Production E Disposal/Storage TYPE OF CONTRACT ~~_-~--_---_--__ P Prime 0 I Cl Subcontractor Other information (i.e., cost K Purchase Order jZM pati !& MC4 + fixed fee, unit price, time 81 material, etc) ---------------------_----~-- OWNERSHIP: AEC/MED AEC/MED GOVT GOVT

205

Operational forecasting based on a modified Weather Research and Forecasting model  

SciTech Connect (OSTI)

Accurate short-term forecasts of wind resources are required for efficient wind farm operation and ultimately for the integration of large amounts of wind-generated power into electrical grids. Siemens Energy Inc. and Lawrence Livermore National Laboratory, with the University of Colorado at Boulder, are collaborating on the design of an operational forecasting system for large wind farms. The basis of the system is the numerical weather prediction tool, the Weather Research and Forecasting (WRF) model; large-eddy simulations and data assimilation approaches are used to refine and tailor the forecasting system. Representation of the atmospheric boundary layer is modified, based on high-resolution large-eddy simulations of the atmospheric boundary. These large-eddy simulations incorporate wake effects from upwind turbines on downwind turbines as well as represent complex atmospheric variability due to complex terrain and surface features as well as atmospheric stability. Real-time hub-height wind speed and other meteorological data streams from existing wind farms are incorporated into the modeling system to enable uncertainty quantification through probabilistic forecasts. A companion investigation has identified optimal boundary-layer physics options for low-level forecasts in complex terrain, toward employing decadal WRF simulations to anticipate large-scale changes in wind resource availability due to global climate change.

Lundquist, J; Glascoe, L; Obrecht, J

2010-03-18T23:59:59.000Z

206

UNCERTAINTY IN THE GLOBAL FORECAST SYSTEM  

SciTech Connect (OSTI)

We validated one year of Global Forecast System (GFS) predictions of surface meteorological variables (wind speed, air temperature, dewpoint temperature, air pressure) over the entire planet for forecasts extending from zero hours into the future (an analysis) to 36 hours. Approximately 12,000 surface stations world-wide were included in this analysis. Root-Mean-Square- Errors (RMSE) increased as the forecast period increased from zero to 36 hours, but the initial RMSE were almost as large as the 36 hour forecast RMSE for all variables. Typical RMSE were 3 C for air temperature, 2-3mb for sea-level pressure, 3.5 C for dewpoint temperature and 2.5 m/s for wind speed. Approximately 20-40% of the GFS errors can be attributed to a lack of resolution of local features. We attribute the large initial RMSE for the zero hour forecasts to the inability of the GFS to resolve local terrain features that often dominate local weather conditions, e.g., mountain- valley circulations and sea and land breezes. Since the horizontal resolution of the GFS (about 1{sup o} of latitude and longitude) prevents it from simulating these locally-driven circulations, its performance will not improve until model resolution increases by a factor of 10 or more (from about 100 km to less than 10 km). Since this will not happen in the near future, an alternative for the near term to improve surface weather analyses and predictions for specific points in space and time would be implementation of a high-resolution, limited-area mesoscale atmospheric prediction model in regions of interest.

Werth, D.; Garrett, A.

2009-04-15T23:59:59.000Z

207

Forecastability as a Design Criterion in Wind Resource Assessment: Preprint  

SciTech Connect (OSTI)

This paper proposes a methodology to include the wind power forecasting ability, or 'forecastability,' of a site as a design criterion in wind resource assessment and wind power plant design stages. The Unrestricted Wind Farm Layout Optimization (UWFLO) methodology is adopted to maximize the capacity factor of a wind power plant. The 1-hour-ahead persistence wind power forecasting method is used to characterize the forecastability of a potential wind power plant, thereby partially quantifying the integration cost. A trade-off between the maximum capacity factor and the forecastability is investigated.

Zhang, J.; Hodge, B. M.

2014-04-01T23:59:59.000Z

208

Categorical Exclusion (CX) Determinations By Date | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

3, 2011 3, 2011 CX-005016: Categorical Exclusion Determination A Public/Private Partnership for Improving Short Term Wind Energy Forecasts and Quantifying the Benefits to Utility CX(s) Applied: A9, B3.1 Date: 01/13/2011 Location(s): Saint Paul, Minnesota Office(s): Energy Efficiency and Renewable Energy, Golden Field Office January 13, 2011 CX-005011: Categorical Exclusion Determination Modeling the Physical and Biochemical Influence of Ocean Thermal Energy Conversion Plant Discharges into their Adjacent Waters CX(s) Applied: A9, A11 Date: 01/13/2011 Location(s): West Oahu, Hawaii Office(s): Energy Efficiency and Renewable Energy, Golden Field Office January 13, 2011 CX-005007: Categorical Exclusion Determination State of Florida Energy Efficiency and Conservation Block Grant - Sunset

209

ANL Wind Power Forecasting and Electricity Markets | Open Energy  

Open Energy Info (EERE)

ANL Wind Power Forecasting and Electricity Markets ANL Wind Power Forecasting and Electricity Markets Jump to: navigation, search Logo: Wind Power Forecasting and Electricity Markets Name Wind Power Forecasting and Electricity Markets Agency/Company /Organization Argonne National Laboratory Partner Institute for Systems and Computer Engineering of Porto (INESC Porto) in Portugal, Midwest Independent System Operator and Horizon Wind Energy LLC, funded by U.S. Department of Energy Sector Energy Focus Area Wind Topics Pathways analysis, Technology characterizations Resource Type Software/modeling tools Website http://www.dis.anl.gov/project References Argonne National Laboratory: Wind Power Forecasting and Electricity Markets[1] Abstract To improve wind power forecasting and its use in power system and electricity market operations Argonne National Laboratory has assembled a team of experts in wind power forecasting, electricity market modeling, wind farm development, and power system operations.

210

Self-actualization as it relates to aerobic physical fitness  

E-Print Network [OSTI]

higher than the aerobic and archery group on the TC, Ex, and C scales. The archery group was significantly higher than the preaerobic and aerobic groups on the Fr and S scales. Females from the preaerobic group were significantly lower than archery... Inventory Sav Self-actualization values measures how well a person holds and lives by values of se 1f- ac tualizing people Ex Existentiality measures ability to flexibly apply self-actualizing values to one's own life Fr Feeling reactivity measures...

Russell, Kathryn Terese Vecchio

2012-06-07T23:59:59.000Z

211

DATE: February 7, 1996  

Broader source: Energy.gov (indexed) [DOE]

Department of Energy Department of Energy Memorandum DATE: July 8, 2011 Report Number: INS-L-11-02 REPLY TO ATTN OF: IG-40 (S10IS001) SUBJECT: Letter Report on "Implementation of Nuclear Weapons Quality Assurance Requirements at Los Alamos National Laboratory" TO: Manager, Los Alamos Site Office INTRODUCTION AND OBJECTIVE The National Nuclear Security Administration's (NNSA) Los Alamos National Laboratory (Los Alamos) is a multidisciplinary research and production institution responsible for the design and production of nuclear weapons components. In its effort to attain the highest quality in weapons engineering design and manufacturing, the Department of Energy

212

DATE: TO: FROM:  

Broader source: Energy.gov (indexed) [DOE]

> POLICY FLASH 2010-25 DATE: TO: FROM: February 22,201 0 Procurement Directors Office of Procurement and Assistance Policy, MA-61 Office of Procurement and Assistance Management SUBJECT: DOE Acquisition Guide Chapter 1.4 Establishing the Position of Source Evaluation Board (SEB) Secretariat and Knowledge Manager SUMMARY: As discussed at the December 2009 Procurement Directors' Meeting, a position titled "Source Evaluation Board (SEB) Secretariat and Knowledge Manager" has been established in the Acquisition Planning and Liaison Division, MA-621 Attached is the subject new DOE Acquisition Guide Chapter 1.4 which provides guidance on the establishment of the aforementioned position and the duties and responsibilities of the position.

213

experiment actually sees," Smith says. "When we were  

E-Print Network [OSTI]

experiment actually sees," Smith says. "When we were finished, we got much more ­ a method in science depend on atoms and molecules moving," Smith says. "We want to create movies of molecules science development," Smith says.--Morgan McCorkle A theoretical technique developed at ORNL is bringing

Pennycook, Steve

214

COORDINATING ADVICE AND ACTUAL TREATMENT Thomas A. Russ  

E-Print Network [OSTI]

. Unfortunately, this information is not always immediately available. For example, the exact fluid infused via an intravenous line can only be determined after someone checks the infusion bottle to determine how much fluid differ in timing and exact amount from what is actually done. For example, an infusion order might call

Russ, Thomas A.

215

OpenEI Community - energy data + forecasting  

Open Energy Info (EERE)

FRED FRED http://en.openei.org/community/group/fred Description: Free Energy Database Tool on OpenEI This is an open source platform for assisting energy decision makers and policy makers in formulating policies and energy plans based on easy to use forecasting tools, visualizations, sankey diagrams, and open data. The platform will live on OpenEI and this community was established to initiate discussion around continuous development of this tool, integrating it with new datasets, and connecting with the community of users who will want to contribute data to the tool and use the tool for planning purposes. energy data + forecasting Fri, 22 Jun 2012 15:30:20 +0000 Dbrodt 34

216

Voluntary Green Power Market Forecast through 2015  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

158 158 May 2010 Voluntary Green Power Market Forecast through 2015 Lori Bird National Renewable Energy Laboratory Ed Holt Ed Holt & Associates, Inc. Jenny Sumner and Claire Kreycik National Renewable Energy Laboratory National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Operated by the Alliance for Sustainable Energy, LLC Contract No. DE-AC36-08-GO28308 Technical Report NREL/TP-6A2-48158 May 2010 Voluntary Green Power Market Forecast through 2015 Lori Bird National Renewable Energy Laboratory Ed Holt Ed Holt & Associates, Inc. Jenny Sumner and Claire Kreycik National Renewable Energy Laboratory

217

EIA - Forecasts and Analysis of Energy Data  

Gasoline and Diesel Fuel Update (EIA)

Highlights Highlights World energy consumption is projected to increase by 57 percent from 2002 to 2025. Much of the growth in worldwide energy use in the IEO2005 reference case forecast is expected in the countries with emerging economies. Figure 1. World Marketed Energy Consumptiion by Region, 1970-2025. Need help, contact the National Energy Information Center at 202-586-8800. Figure Data In the International Energy Outlook 2005 (IEO2005) reference case, world marketed energy consumption is projected to increase on average by 2.0 percent per year over the 23-year forecast horizon from 2002 to 2025—slightly lower than the 2.2-percent average annual growth rate from 1970 to 2002. Worldwide, total energy use is projected to grow from 412 quadrillion British thermal units (Btu) in 2002 to 553 quadrillion Btu in

218

FORSITE: a geothermal site development forecasting system  

SciTech Connect (OSTI)

The Geothermal Site Development Forecasting System (FORSITE) is a computer-based system being developed to assist DOE geothermal program managers in monitoring the progress of multiple geothermal electric exploration and construction projects. The system will combine conceptual development schedules with site-specific status data to predict a time-phased sequence of development likely to occur at specific geothermal sites. Forecasting includes estimation of industry costs and federal manpower requirements across sites on a year-by-year basis. The main advantage of the system, which relies on reporting of major, easily detectable industry activities, is its ability to use relatively sparse data to achieve a representation of status and future development.

Entingh, D.J.; Gerstein, R.E.; Kenkeremath, L.D.; Ko, S.M.

1981-10-01T23:59:59.000Z

219

Forecasting hotspots using predictive visual analytics approach  

SciTech Connect (OSTI)

A method for forecasting hotspots is provided. The method may include the steps of receiving input data at an input of the computational device, generating a temporal prediction based on the input data, generating a geospatial prediction based on the input data, and generating output data based on the time series and geospatial predictions. The output data may be configured to display at least one user interface at an output of the computational device.

Maciejewski, Ross; Hafen, Ryan; Rudolph, Stephen; Cleveland, William; Ebert, David

2014-12-30T23:59:59.000Z

220

Exponential smoothing model selection for forecasting  

Science Journals Connector (OSTI)

Applications of exponential smoothing to forecasting time series usually rely on three basic methods: simple exponential smoothing, trend corrected exponential smoothing and a seasonal variation thereof. A common approach to selecting the method appropriate to a particular time series is based on prediction validation on a withheld part of the sample using criteria such as the mean absolute percentage error. A second approach is to rely on the most appropriate general case of the three methods. For annual series this is trend corrected exponential smoothing: for sub-annual series it is the seasonal adaptation of trend corrected exponential smoothing. The rationale for this approach is that a general method automatically collapses to its nested counterparts when the pertinent conditions pertain in the data. A third approach may be based on an information criterion when maximum likelihood methods are used in conjunction with exponential smoothing to estimate the smoothing parameters. In this paper, such approaches for selecting the appropriate forecasting method are compared in a simulation study. They are also compared on real time series from the M3 forecasting competition. The results indicate that the information criterion approaches provide the best basis for automated method selection, the Akaike information criteria having a slight edge over its information criteria counterparts.

Baki Billah; Maxwell L. King; Ralph D. Snyder; Anne B. Koehler

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "forecast date actual" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Solar Wind Forecasting with Coronal Holes  

E-Print Network [OSTI]

An empirical model for forecasting solar wind speed related geomagnetic events is presented here. The model is based on the estimated location and size of solar coronal holes. This method differs from models that are based on photospheric magnetograms (e.g., Wang-Sheeley model) to estimate the open field line configuration. Rather than requiring the use of a full magnetic synoptic map, the method presented here can be used to forecast solar wind velocities and magnetic polarity from a single coronal hole image, along with a single magnetic full-disk image. The coronal hole parameters used in this study are estimated with Kitt Peak Vacuum Telescope He I 1083 nm spectrograms and photospheric magnetograms. Solar wind and coronal hole data for the period between May 1992 and September 2003 are investigated. The new model is found to be accurate to within 10% of observed solar wind measurements for its best one-month periods, and it has a linear correlation coefficient of ~0.38 for the full 11 years studied. Using a single estimated coronal hole map, the model can forecast the Earth directed solar wind velocity up to 8.5 days in advance. In addition, this method can be used with any source of coronal hole area and location data.

S. Robbins; C. J. Henney; J. W. Harvey

2007-01-09T23:59:59.000Z

222

DATE: TO: FROM:  

Broader source: Energy.gov (indexed) [DOE]

65 65 ' July 7,20 1 0 Procurement Directors Office of Procurement and Assistance Policy, MA-61 Office of Procurement and Assistance Management SUBJECT: Notification of Employee Rights under the National Labor Relations Act SUMMARY: This Flash forwards a draft Federal Acquisition Regulation (FAR) clause, 52.222- 40, Notification of Employee Rights under the National Labor Relations Act. Executive Order (EO) 13496, Notification of Employee Rights under Federal Labor Laws, dated January 30,2009, requires contractors and subcontractors to post a notice that informs employees of their rights under Federal labor laws, including the National Labor Relations Act. This Act encourages collective bargaining and protects the exercise by workers of their freedom

223

Issuance Date:: February  

Office of Legacy Management (LM)

Issuance Issuance Date:: February 11, 1966 POST-SHOT HYDROLOGI C SAFETY 68296 VUF-1014 FINAL REPORT FALLON, NEVADA OCTOBER 26, 1963 Hazleton-Nuclear Science Corporation October 30, 1965 SPONSORED BY THE ADVANCED RESEARCH PROJECTS AGENCY OF THE DEPARTMENT OF DEFENSE AND THE U. S.ATOMIC ENERGY COMMISSION VELA UNIFORM PROJECT LEG A L NOTICE This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission: A. Makes any warranty or representation, expressed or implied, with respect to the accu- racy, completeness, or usefulness of the information contained in this report, or that the use of any information. apparatus, method, or process disclosed in this report may not infringe privately owned rights; or B. Assumes any liabilities with respect to the use of, or for damages resulting from the

224

MEMORANDUM TO: FILE DATE  

Office of Legacy Management (LM)

/I // /s 3 /I // /s 3 ------------------- FROM: D. I&+ ---------------- SUBJECT: 5;le r 3-&-F.. SITE /+yNJs l3 ALTERNATE NAME: -w---- -SF ------------------------------ NAME: CITY: c ;A< ;,+,ZJ+ ------------,-L-----,,,,,, STATE: OH --w-w- OWNER(S) -w---s-- past: /" ' A--F5 ---w-m- -e----v-------- Current: 0~. A-+A.~~ -------------------------- Owner contacted 0 yes 0 no; if yes, date contacted ------------- TYPE OF OPERATION -------e--------w 0 Research & Development 0 Facility Type 0 Production scale testing 0 Pilot Scale 0 Bench Scale Process 0 Theoretical Studies 0 Sample 84 Analysis x Manufacturing 0 University 0 Research Organization 0 Government Sponsored Facility 0 Other --------------------- B Production 0 Disposal/Storage TYPE OF CONTRACT

225

MEMORANDUM TO: FILE DATE  

Office of Legacy Management (LM)

-.. -.. 37qg: MEMORANDUM TO: FILE DATE =b-- FROM: ---L- _------__ u . SUBJECT: SITE ACl= ALTERNATE NAME: -_______-~-----------------NA~E:__( CITY:--~---------_-STATE:-~~ (2 OWNE!sI_SL f Past- L&cl= w ------------------- ----- Current- w buL.r - ------------ ownq cm-ltacted 0 yes @ "no; if yes, data cnntacte TYPE OF OPERATION -------------_~-~ q Research & Development 0 Production %.cale testing 0 Pilot Scale 0 Bench Scale Process 0 Theoretical Studies 0 Sample 84 Analysis 0 Production i2 Disposal/Storage 0 Facility T 0 Hanufac 0 Univerrj 0 .R esearc 0 Governm 14 Other 1 I lil IrJ y,/3 Prime 0 Other infcrkion Subcwkractbr (i.e., ?bst + fixed fee! &nit price, Cl Purchase Order time & mate

226

United States Government DATE:  

Office of Legacy Management (LM)

5oE(E;,8 ' 0 H .2+ L-1 5oE(E;,8 ' 0 H .2+ L-1 United States Government DATE: MAR 0 8 1994 REPLY TO AlTN OF: EM-421 (W. A. Williams, 903-8149) SUBJECT: Authority Determination -- Former Herring-Hall-Marvin Safe Co., Hamilton, Ohio TO: The File The attached review documents the basis for determining whether the Department of Energy (DOE) has authority for taking remedial action at the former Herring-Hall-Marvin Safe Co. facility in Hamilton, Ohio, under the Formerly Utilized Sites Remedial Action Program (FUSRAP). The facility was used for the shaping and machining of uranium metal by the Manhattan Engineer District (MED) during the Second World War. The following factors are significant in reaching a decision and are discussed in more detail in the attached authority review:

227

DATE: TO: FROM:  

Broader source: Energy.gov (indexed) [DOE]

-7' -7' August 20,2010 Procurement Directors Office of Procurement and Assistance Policy, MA-61 Office of Procurement and Assistance Management SUBJECT: Class Deviation by General Services Administration (GSA) to Federal Acquisition Regulation (FAR) 51.1, Contractor Use of Government Supply Sources, for Time and Material or Labor Hour Procurements SUMMARY: The attached GSA class deviation to FAR Part 51, Contractor Use of Government Supply Sources, dated October 8,2009, permits contracting officers to authorize all GSA contractors, who are performing an order on a time and material (T&M) or labor-hour (LH) basis, to purchase supplies and service from other schedule contractors or process requisitions through the GSA Supply Program. This deviation is effective for five years to October 7,2014,

228

DATE: TO: FROM:  

Broader source: Energy.gov (indexed) [DOE]

1 1,2008 1 1,2008 Procurement Directors Office of Procurement and Assistance Policy, MA-61 Office of Procurement and Assistance Management SUBTECT: Past Performance Data SIJMMARY: Beginning October 01,2008, all contractor past performance data shall be submitted through the Department of Defense (DoD) Contractor Performance Assessment Reporting System (CPARS) at htt~://www.c~ars.csd.disa.mil/cr>arsmain.htm. Thus, the Department will no longer use the National Institute of Health (NIH) Contractor Performance System (CPS). To ensure all Contracting Officers understand how to use this new system, Web Cast Training has been scheduled for the following dates and times: October 8- 1:30-430 including construction and A/E training during the last hour November 6- 1:30-4:30 including construction and A/E training during the last hour

229

DATE: REPLY TO  

Office of Legacy Management (LM)

DOE F 1325.8 DOE F 1325.8 (NW ed States Governhent ilmemorandum DATE: REPLY TO ' bPfl29 1993 Al-fN OF: EM-421 (W. W illiams, 903-8149) SUBJECT: Authorization for Remedial Action at the Former Associate Aircraft Site, Fairfield, Ohio TO: Manager, DOE Oak Ridge Field Office This is to notify you that the Former Associated Aircraft Site in Fairfield, Ohio, is designated,for remedial action under the Formerly Utilized Sites Remedial Action Program (FUSRAP). This notification does not constitute a FUSRAP baseline change control approval. Approval of the baseline change will be accomplished through the normal change control procedures. The site was used by the former Atomic Energy Commission for the machining and shaping of uranium metal during the 1950s. A radiological survey

230

DATE: TO: FROM: SUBJECT:  

Broader source: Energy.gov (indexed) [DOE]

DATE: TO: FROM: SUBJECT: - - -- . POLICY FLASH 2005-18 February 14, 2005 Procurement Directors Office of Procurement and Assistance Policy, ME-61 Office of Procurement and Assistance Management Small Business Contracting Policy Update SUMMARY: This Policy Flash forwards (1) information on locating Service-Disabled Veteran-Owned Small Business (SDVOSBs) and (2) a solicitation provision which provides guidance to prospective offerors on the impact of teaming arrangements on their small business status. 1 -- -- --------- 1. To locate SDVOSBs, you can go to the Department of Veteran Affairs' website for the Center for Veterans Enterprise site at http://www.vetbiz.gov/default2.htm. From that site you can link to the "Search for a Business" at http://vip.vetbiz.gov/search/default.asp to find SDVQSBs. 2. The following provision is recommended for solicitations

231

DATE: TO: FROM:  

Broader source: Energy.gov (indexed) [DOE]

1 . 1 . January 20,20 1 0 Procurement Directors Office of Procurement and Assistance Policy, MA-61 Office of Procurement and Assistance Management SUBJECT: Commercial Items Test Program SUMMARY: Attached for your information is a copy of Civilian Agency Acquisition Council (CAAC) Letter 2009-04. It advises that the National Defense Authorization Act for Fiscal Year 201 0, Section 8 16 authorizes extension of the Commercial Items Test Program from January 1,20 10 to January 1,20 12 and that an expedited FAR Case is being processed to insert the new date at FAR 13.500(d). Also attached is a class deviation authorizing the use of simplified acquisition procedures for commercial items up to $5.5 million [$I1 million for acquisitions of commercial items under FAR

232

DATE: TO: FROM:  

Broader source: Energy.gov (indexed) [DOE]

POLICY FLASH 2010-08 POLICY FLASH 2010-08 DATE: TO: FROM: October 28,2009 Procurement Directors Office of Procurement and Assistance Policy, MA-6 1 Office of Procurement and Assistance Management SUBJECT: Amendment to Extend the Partnership Agreement between the U.S. Small Business Administration (SBA) and the Department of Energy (DOE) SUMMARY: The purpose of this flash is to advise you that an amendment was issued pursuant to Section VII of the Partnership Agreement (PA) between the SBA and the DOE. The amendment extends the current PA until November 30,2009. All other terms and conditions of the PA remain unchanged. This flash and its attachment will be available online at the following website: http://mana~ement.enerm.nov/policy nuidancelpolicy flashes.htm.

233

MEMORANDUM TO: FILE DATE  

Office of Legacy Management (LM)

5/22/w 5/22/w ------..------------- FROM: D- f&u+ ---------------- SUBJECT: E/;-+&o.. ReC*-C.AB&;O* +L /z&J; &DC,, /Ptrr; CLonr z-r. SITE NAME: _ ALTERNATE ----------WV-- --------------------- NAME: EAT ---- ------------------ CAY: r-led 4' or k -------------------------- STATE: ti Y VW---- OWNER tS) -------- Past: ---Cl&zt.t.r-----~-~- ---- =urr=nt: ti& LPdA Owner cnntacted 0 yes mo; i+ ye8, -------------------------- date contacted ------------- TYPE OF OPERATION ----------------- w Research & Development E3 Facility Type 0 Production scale testing Cl Pilot Scale a Bench Scale Process B Theoretical Studies 0 Sample & Analysis 0 Manufacturing 0 University @ Research Organization 0 Government Sponsored Facility 17 Other

234

DATE: TO: FROM:  

Broader source: Energy.gov (indexed) [DOE]

1 < 1 < DATE: TO: FROM: July 1,2010 Procurement Directors Office of Procurement and Assistance Policy, MA-61 Office of Procurement and Assistance Management SUBJECT: Revised DOE Acquisition Guide Chapter 71.1 Headquarters Business Clearance Process SUMMARY: There was mention in the National Academy of Public Administration (NAPA) report titled "Managing at the Speed of Light - Improving Mission Support Performance" that Departmental procurement personnel don't understand the Business Clearance (BC) process. In an effort to address this issue, each Procurement Director (PD) and Head of Contracting Activity (HCA) was ask to review Acquisition Guide Chapter 7 1.1 Headquarters Business Clearance Process and identify anything that was unclear, as well as recommend changes or ideas which

235

DATE: TO: FROM:  

Broader source: Energy.gov (indexed) [DOE]

6 6 DATE: TO: FROM: March 25,2010 Procurement Directors Office of Procurement and Assistance Policy, MA-61 Office of Procurement and Assistance Management SUBJECT: Rescind Policy Flashes 201 0-04 "Cease All Funding of the Association of Community Organizations for Reform Now (ACORN)" and 201 0-06 "Additional Documentation Regarding Policy Flash Number 201 0-04" SUMMARY: The purpose of this flash to inform you that on March 10,201 0, the United States District Court for the Eastern District of New York issued an opinion regarding ACORN. In its opinion, the District Court concluded that the funding prohibitions regarding ACORN and related entities in FY 201 0 Continuing Resolution and in several of FY 201 0 appropriations acts

236

Date: Re: Department  

Broader source: Energy.gov (indexed) [DOE]

~ ~ ~~ Date: Re: Department of Energy Washington, DC 20585 April 5, 2007 TRADEMARK l APPLICATION AND LICENSING PROCEDURES, IPI Trademarks may be used by DOE or its contractors for identification of goods and services and serve as an intellectual property tool to enhance technology transfer. Registration in the PTO also helps to ensure that marks closely associated with DOE are not debased or devalued, and also helps to protect the public from those who may use marks closely associated with DOE to suggest "goods or services" are authorized by DOE. This IPI contains guidance on trademarks once the decision has been made to use a particular mark in commerce and obtain protection therefor. This IPI does not contain guidance as to when, in the first instance, a mark should be coined for association with a particular good/service, except at B.4 with respect to use of DOE as part of a mark.

237

J DATE: TO: FROM:  

Broader source: Energy.gov (indexed) [DOE]

ICY FLASH 2010-5- - ICY FLASH 2010-5- - J DATE: TO: FROM: June 10,2010 Procurement Directors Office of Procurement and Assistance Policy, MA-61 Office of Procurement and Assistance Management SUBJECT: DOE Acquisition Guide Chapter 13 Policy and Operating Procedures for Use of the GSA Smartpay2 Purchase Card SUMMARY: Attached for your information is an updated and revised copy of DOE Acquisition Guide Chapter 13, Purchase Card Policy and Operating Procedures. This Flash and its attachment will be posted online, at the following website: http:llwww.mananement.enerliy.gov/~olicy guidance/policy flashes.htm. Questions concerning this policy flash should be directed to Denise Clarke at (202) 287-1 748 or DeniseT.Clarke@,hq.doe.~ov . Director Office of Procurement and

238

Procurement Directors DATE: TO:  

Broader source: Energy.gov (indexed) [DOE]

18 18 1 POLICY FLASH 2008-1 8 January 29,2008 Procurement Directors DATE: TO: FROM: Office of Procurement and Assistance Policy, MA-6 1 Ofice of Procurement and Assistance Management SUBJECT: Federal Acquisition Circular 2008-18 SUMMARY: The General Services Administration has issued Federal Acquisition Circular 2005-23. This Circular can be found at page 732 14 of the December 26,2007 Federal Register. The Circular covers three subjects for which interim or final rules have been issued amending the Federal Acquisition Regulation. A description of each revision is contained in the attachment. None of these necessitates a revision of the DEAR. One of the revisions dealing with the Electronic Product Environmental Assessment Tool (EPEAT) replaces

239

DATE: TO: FROM:  

Broader source: Energy.gov (indexed) [DOE]

8 8 December 16,2009 Procurement Directors Office of Procurement and Assistance Policy, MA-61 Ofice of Procurement and Assistance Management SUBJECT: Federal Acquisition Circular 2005-38 SUMMARY: Federal Acquisition Circular 2005-3 8, which makes miscellaneous changes to the Federal Acquisition Regulation (FAR), was published in the December 10, 2009 issue of the Federal Register. A summary of the changes is attached. Due to the publication of two rules item I11 and item V, additional guidance is provided in this flash. Item I11 - Internet Protocol Version 6 (IPv6) (FAR Case 2005-041) - The Acquisition Letter 2006-04, Acquiring Information Technology - Requirement to Comply with Internet Protocol Version 6, dated December 14,2005, is being reviewed to determine if

240

Today's Forecast: Improved Wind Predictions | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Today's Forecast: Improved Wind Predictions Today's Forecast: Improved Wind Predictions Today's Forecast: Improved Wind Predictions July 20, 2011 - 6:30pm Addthis Stan Calvert Wind Systems Integration Team Lead, Wind & Water Power Program What does this project do? It will increase the accuracy of weather forecast models for predicting substantial changes in winds at heights important for wind energy up to six hours in advance, allowing grid operators to predict expected wind power production. Accurate weather forecasts are critical for making energy sources -- including wind and solar -- dependable and predictable. These forecasts also play an important role in reducing the cost of renewable energy by allowing electricity grid operators to make timely decisions on what reserve generation they need to operate their systems.

Note: This page contains sample records for the topic "forecast date actual" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Annual Energy Outlook with Projections to 2025-Forecast Comparisons  

Gasoline and Diesel Fuel Update (EIA)

Forecast Comparisons Forecast Comparisons Annual Energy Outlook 2004 with Projections to 2025 Forecast Comparisons Index (click to jump links) Economic Growth World Oil Prices Total Energy Consumption Electricity Natural Gas Petroleum Coal The AEO2004 forecast period extends through 2025. One other organization—Global Insight, Incorporated (GII)—produces a comprehensive energy projection with a similar time horizon. Several others provide forecasts that address one or more aspects of energy markets over different time horizons. Recent projections from GII and others are compared here with the AEO2004 projections. Economic Growth Printer Friendly Version Average annual percentage growth Forecast 2002-2008 2002-2013 2002-2025 AEO2003 3.2 3.3 3.1 AEO2004 Reference 3.3 3.2 3.0

242

Today's Forecast: Improved Wind Predictions | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Today's Forecast: Improved Wind Predictions Today's Forecast: Improved Wind Predictions Today's Forecast: Improved Wind Predictions July 20, 2011 - 6:30pm Addthis Stan Calvert Wind Systems Integration Team Lead, Wind & Water Power Program What does this project do? It will increase the accuracy of weather forecast models for predicting substantial changes in winds at heights important for wind energy up to six hours in advance, allowing grid operators to predict expected wind power production. Accurate weather forecasts are critical for making energy sources -- including wind and solar -- dependable and predictable. These forecasts also play an important role in reducing the cost of renewable energy by allowing electricity grid operators to make timely decisions on what reserve generation they need to operate their systems.

243

Metrics for Evaluating the Accuracy of Solar Power Forecasting: Preprint  

SciTech Connect (OSTI)

Forecasting solar energy generation is a challenging task due to the variety of solar power systems and weather regimes encountered. Forecast inaccuracies can result in substantial economic losses and power system reliability issues. This paper presents a suite of generally applicable and value-based metrics for solar forecasting for a comprehensive set of scenarios (i.e., different time horizons, geographic locations, applications, etc.). In addition, a comprehensive framework is developed to analyze the sensitivity of the proposed metrics to three types of solar forecasting improvements using a design of experiments methodology, in conjunction with response surface and sensitivity analysis methods. The results show that the developed metrics can efficiently evaluate the quality of solar forecasts, and assess the economic and reliability impact of improved solar forecasting.

Zhang, J.; Hodge, B. M.; Florita, A.; Lu, S.; Hamann, H. F.; Banunarayanan, V.

2013-10-01T23:59:59.000Z

244

Attachment Implementation Procedures to Report Deferred, Actual, and Required Maintenance  

Broader source: Energy.gov (indexed) [DOE]

Final July 01, 2010 Final July 01, 2010 1 Attachment Implementation Procedures to Report Deferred, Actual, and Required Maintenance On Real Property 1. The following is the FY 2010 implementation procedures for the field offices/sites to determine and report deferred maintenance on real property as required by the Statement of Federal Financial Accounting Standards (SFFAS) No. 6, Accounting for Property, Plant, and Equipment (PP&E) and DOE Order 430.1B, Real Property Asset Management (RPAM). a. This document is intended to assist field offices/sites in consistently and accurately applying the appropriate methods to determine and report deferred maintenance estimates and reporting of annual required and actual maintenance costs. b. This reporting satisfies the Department's obligation to recognize and record deferred

245

Table 5. Domestic Crude Oil Production, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

Domestic Crude Oil Production, Projected vs. Actual Domestic Crude Oil Production, Projected vs. Actual Projected (million barrels) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1994 2508 2373 2256 2161 2088 2022 1953 1891 1851 1825 1799 1781 1767 1759 1778 1789 1807 1862 AEO 1995 2402 2307 2205 2095 2037 1967 1953 1924 1916 1905 1894 1883 1887 1887 1920 1945 1967 AEO 1996 2387 2310 2248 2172 2113 2062 2011 1978 1953 1938 1916 1920 1927 1949 1971 1986 2000 AEO 1997 2362 2307 2245 2197 2143 2091 2055 2033 2015 2004 1997 1989 1982 1975 1967 1949 AEO 1998 2340 2332 2291 2252 2220 2192 2169 2145 2125 2104 2087 2068 2050 2033 2016 AEO 1999 2340 2309 2296 2265 2207 2171 2141 2122 2114 2092 2074 2057 2040 2025 AEO 2000 2193 2181 2122 2063 2016 1980 1957 1939 1920 1904 1894 1889 1889

246

Attachment Implementation Procedures to Report Deferred, Actual, and Required Maintenance  

Broader source: Energy.gov (indexed) [DOE]

Draft July 9, 2009 Draft July 9, 2009 1 Attachment Implementation Procedures to Report Deferred, Actual, and Required Maintenance On Real Property 1. The following is the FY 2009 implementation procedures for the field offices/sites to determine and report deferred maintenance on real property as required by the Statement of Federal Financial Accounting Standards (SFFAS) No. 6, Accounting for Property, Plant, and Equipment (PP&E) and DOE Order 430.1B, Real Property Asset Management (RPAM). a. This document is intended to assist field offices/sites in consistently and accurately applying the appropriate methods to determine and report deferred maintenance estimates and reporting of annual required and actual maintenance costs. b. This reporting satisfies the Department's obligation to recognize and record deferred

247

Table 12. Total Coal Consumption, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

Coal Consumption, Projected vs. Actual" Coal Consumption, Projected vs. Actual" "Projected" " (million short tons)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011 "AEO 1994",920,928,933,938,943,948,953,958,962,967,978,990,987,992,1006,1035,1061,1079 "AEO 1995",,935,940,941,947,948,951,954,958,963,971,984,992,996,1002,1013,1025,1039 "AEO 1996",,,937,942,954,962,983,990,1004,1017,1027,1033,1046,1067,1070,1071,1074,1082,1087 "AEO 1997",,,,948,970,987,1003,1017,1020,1025,1034,1041,1054,1075,1086,1092,1092,1099,1104 "AEO 1998",,,,,1009,1051,1043.875977,1058.292725,1086.598145,1084.446655,1089.787109,1096.931763,1111.523926,1129.833862,1142.338257,1148.019409,1159.695312,1162.210815,1180.029785

248

Table 4. Total Petroleum Consumption, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

Petroleum Consumption, Projected vs. Actual Petroleum Consumption, Projected vs. Actual Projected (million barrels) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1994 6450 6566 6643 6723 6811 6880 6957 7059 7125 7205 7296 7377 7446 7523 7596 7665 7712 7775 AEO 1995 6398 6544 6555 6676 6745 6822 6888 6964 7048 7147 7245 7337 7406 7472 7537 7581 7621 AEO 1996 6490 6526 6607 6709 6782 6855 6942 7008 7085 7176 7260 7329 7384 7450 7501 7545 7581 AEO 1997 6636 6694 6826 6953 7074 7183 7267 7369 7461 7548 7643 7731 7793 7833 7884 7924 AEO 1998 6895 6906 7066 7161 7278 7400 7488 7597 7719 7859 7959 8074 8190 8286 8361 AEO 1999 6884 7007 7269 7383 7472 7539 7620 7725 7841 7949 8069 8174 8283 8351 AEO 2000 7056 7141 7266 7363 7452 7578 7694 7815 7926 8028 8113 8217 8288

249

Table 6. Petroleum Net Imports, Projected vs. Actual Projected  

U.S. Energy Information Administration (EIA) Indexed Site

Petroleum Net Imports, Projected vs. Actual Petroleum Net Imports, Projected vs. Actual Projected (million barrels) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1994 2935 3201 3362 3504 3657 3738 3880 3993 4099 4212 4303 4398 4475 4541 4584 4639 4668 4672 AEO 1995 2953 3157 3281 3489 3610 3741 3818 3920 4000 4103 4208 4303 4362 4420 4442 4460 4460 AEO 1996 3011 3106 3219 3398 3519 3679 3807 3891 3979 4070 4165 4212 4260 4289 4303 4322 4325 AEO 1997 3099 3245 3497 3665 3825 3975 4084 4190 4285 4380 4464 4552 4617 4654 4709 4760 AEO 1998 3303 3391 3654 3713 3876 4053 4137 4298 4415 4556 4639 4750 4910 4992 5087 AEO 1999 3380 3442 3888 4022 4153 4238 4336 4441 4545 4652 4780 4888 4999 5073 AEO 2000 3599 3847 4036 4187 4320 4465 4579 4690 4780 4882 4968 5055 5113

250

Tropical Africa: Calculated Actual Aboveground Live Biomass in Open and  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Calculated Actual Aboveground Live Biomass in Open and Calculated Actual Aboveground Live Biomass in Open and Closed Forests (1980) image Brown, S., and G. Gaston. 1996. Tropical Africa: Land Use, Biomass, and Carbon Estimates For 1980. ORNL/CDIAC-92, NDP-055. Carbon Dioxide Information Analysis Center, U.S. Department of Energy, Oak Ridge National Laboratory, Oak Ridge, Tennessee, U.S.A. More Maps Land Use Maximum Potential Biomass Density Area of Closed Forests (By Country) Mean Biomass of Closed Forests (By Country) Area of Open Forests (By Country) Mean Biomass of Open Forests (By County) Percent Forest Cover (By Country) Total Forest Biomass (By Country) Population Density - 1990 (By Administrative Unit) Population Density - 1980 (By Administrative Unit) Population Density - 1970 (By Administrative Unit) Population Density - 1960 (By Administrative Unit)

251

Table 7b. Natural Gas Wellhead Prices, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

b. Natural Gas Wellhead Prices, Projected vs. Actual" b. Natural Gas Wellhead Prices, Projected vs. Actual" "Projected Price in Nominal Dollars" " (nominal dollars per thousand cubic feet)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011 "AEO 1994",1.983258692,2.124739238,2.26534793,2.409252566,2.585728477,2.727400662,2.854942053,2.980927152,3.13861755,3.345819536,3.591100993,3.849544702,4.184279801,4.510016556,4.915074503,5.29147351,5.56022351,5.960471854 "AEO 1995",,1.891706924,1.998384058,1.952818035,2.064227053,2.152302174,2.400016103,2.569033816,2.897681159,3.160088567,3.556344605,3.869033816,4.267391304,4.561932367,4.848599034,5.157246377,5.413405797,5.660917874 "AEO 1996",,,1.630674532,1.740334763,1.862956911,1.9915856,2.10351261,2.194934146,2.287655669,2.378991658,2.476043002,2.589847464,2.717610782,2.836870306,2.967124845,3.117719429,3.294003735,3.485657428,3.728419409

252

Solid waste integrated forecast technical (SWIFT) report: FY1997 to FY 2070, Revision 1  

SciTech Connect (OSTI)

This web site provides an up-to-date report on the radioactive solid waste expected to be managed by Hanford's Waste Management (WM) Project from onsite and offsite generators. It includes: an overview of Hanford-wide solid waste to be managed by the WM Project; program-level and waste class-specific estimates; background information on waste sources; and comparisons with previous forecasts and with other national data sources. This web site does not include: liquid waste (current or future generation); waste to be managed by the Environmental Restoration (EM-40) contractor (i.e., waste that will be disposed of at the Environmental Restoration Disposal Facility (ERDF)); or waste that has been received by the WM Project to date (i.e., inventory waste). The focus of this web site is on low-level mixed waste (LLMW), and transuranic waste (both non-mixed and mixed) (TRU(M)). Some details on low-level waste and hazardous waste are also provided. Currently, this web site is reporting data th at was requested on 10/14/96 and submitted on 10/25/96. The data represent a life cycle forecast covering all reported activities from FY97 through the end of each program's life cycle. Therefore, these data represent revisions from the previous FY97.0 Data Version, due primarily to revised estimates from PNNL. There is some useful information about the structure of this report in the SWIFT Report Web Site Overview.

Valero, O.J.; Templeton, K.J.; Morgan, J.

1997-01-07T23:59:59.000Z

253

Electric Grid - Forecasting system licensed | ornl.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electric Grid - Forecasting system licensed Location Based Technologies has signed an agreement to integrate and market an Oak Ridge National Laboratory technology that provides...

254

Managing Wind Power Forecast Uncertainty in Electric Grids.  

E-Print Network [OSTI]

??Electricity generated from wind power is both variable and uncertain. Wind forecasts provide valuable information for wind farm management, but they are not perfect. Chapter (more)

Mauch, Brandon Keith

2012-01-01T23:59:59.000Z

255

Forecasting supply/demand and price of ethylene feedstocks  

SciTech Connect (OSTI)

The history of the petrochemical industry over the past ten years clearly shows that forecasting in a turbulent world is like trying to predict tomorrow's headlines.

Struth, B.W.

1984-08-01T23:59:59.000Z

256

PBL FY 2003 Third Quarter Review Forecast of Generation Accumulated...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for Financial-Based Cost Recovery Adjustment Clause (FB CRAC) and Safety-Net Cost Recovery Adjustment Clause (SN CRAC) FY 2003 Third Quarter Review Forecast in Millions...

257

FY 2004 Second Quarter Review Forecast of Generation Accumulated...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for Financial-Based Cost Recovery Adjustment Clause (FB CRAC) and Safety-Net Cost Recovery Adjustment Clause (SN CRAC) FY 2004 Second Quarter Review Forecast In Millions...

258

Integrating agricultural pest biocontrol into forecasts of energy biomass production  

E-Print Network [OSTI]

Analysis Integrating agricultural pest biocontrol into forecasts of energy biomass production T pollution, greenhouse gas emissions, and soil erosion (Nash, 2007; Searchinger et al., 2008). On the other

Gratton, Claudio

259

Forecasting for inventory control with exponential smoothing  

Science Journals Connector (OSTI)

Exponential smoothing, often used in sales forecasting for inventory control, has always been rationalized in terms of statistical models that possess errors with constant variances. It is shown in this paper that exponential smoothing remains appropriate under more general conditions, where the variance is allowed to grow or contract with corresponding movements in the underlying level. The implications for estimation and prediction are explored. In particular, the problem of finding the predictive distribution of aggregate lead-time demand, for use in inventory control calculations, is considered using a bootstrap approach. A method for establishing order-up-to levels directly from the simulated predictive distribution is also explored.

Ralph D. Snyder; Anne B. Koehler; J.Keith Ord

2002-01-01T23:59:59.000Z

260

Probabilistic Verification of Global and Mesoscale Ensemble Forecasts of Tropical Cyclogenesis  

Science Journals Connector (OSTI)

Probabilistic forecasts of tropical cyclogenesis have been evaluated for two samples: a near-homogeneous sample of ECMWF and Weather Research and Forecasting (WRF) Modelensemble Kalman filter (EnKF) ensemble forecasts during the National Science ...

Sharanya J. Majumdar; Ryan D. Torn

2014-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "forecast date actual" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Type Policy Title Here Effective Date: [Insert Date  

E-Print Network [OSTI]

Type Policy Title Here Effective Date: [Insert Date] Policy Statement [Type Statement Text Here] Reason(s) for the Policy [Type Reason Text Here] Primary Guidance to Which This Policy Responds [Type Primary Policy Here ­ If there is NOT a Primary Policy indicate that] Responsible University Office

Salzman, Daniel

262

Absolute Time Radiometric Dating: the source of the dates on  

E-Print Network [OSTI]

Absolute Time Radiometric Dating: the source of the dates on the Geologic Time Scale Radiometric.g. uranium to lead. · The parent element is radioactive, the daughter element is stable. · The decay rate nucleosynthesis. Common Radioactive Elements, Parents and Daughters · Carbon-14, C14 Nitrogen-14, N14 · Uranium

Kammer, Thomas

263

Random switching exponential smoothing and inventory forecasting  

Science Journals Connector (OSTI)

Abstract Exponential smoothing models represent an important prediction tool both in business and in macroeconomics. This paper provides the analytical forecasting properties of the random coefficient exponential smoothing model in the multiple source of error framework. The random coefficient state-space representation allows for switching between simple exponential smoothing and local linear trend. Therefore it enables controlling, in a flexible manner, the random changing dynamic behavior of the time series. The paper establishes the algebraic mapping between the state-space parameters and the implied reduced form ARIMA parameters. In addition, it shows that the parametric mapping allows overcoming the difficulties that are likely to emerge in estimating directly the random coefficient state-space model. Finally, it presents an empirical application comparing the forecast accuracy of the suggested model vis--vis other benchmark models, both in the ARIMA and in the exponential smoothing class. Using time series relative to wholesalers inventories in the USA, the out-of-sample results show that the reduced form of the random coefficient exponential smoothing model tends to be superior to its competitors.

Giacomo Sbrana; Andrea Silvestrini

2014-01-01T23:59:59.000Z

264

Voluntary Green Power Market Forecast through 2015  

SciTech Connect (OSTI)

Various factors influence the development of the voluntary 'green' power market--the market in which consumers purchase or produce power from non-polluting, renewable energy sources. These factors include climate policies, renewable portfolio standards (RPS), renewable energy prices, consumers' interest in purchasing green power, and utilities' interest in promoting existing programs and in offering new green options. This report presents estimates of voluntary market demand for green power through 2015 that were made using historical data and three scenarios: low-growth, high-growth, and negative-policy impacts. The resulting forecast projects the total voluntary demand for renewable energy in 2015 to range from 63 million MWh annually in the low case scenario to 157 million MWh annually in the high case scenario, representing an approximately 2.5-fold difference. The negative-policy impacts scenario reflects a market size of 24 million MWh. Several key uncertainties affect the results of this forecast, including uncertainties related to growth assumptions, the impacts that policy may have on the market, the price and competitiveness of renewable generation, and the level of interest that utilities have in offering and promoting green power products.

Bird, L.; Holt, E.; Sumner, J.; Kreycik, C.

2010-05-01T23:59:59.000Z

265

Expert Panel: Forecast Future Demand for Medical Isotopes  

Broader source: Energy.gov (indexed) [DOE]

Expert Panel: Expert Panel: Forecast Future Demand for Medical Isotopes March 1999 Expert Panel: Forecast Future Demand for Medical Isotopes September 25-26, 1998 Arlington, Virginia The Expert Panel ............................................................................................. Page 1 Charge To The Expert Panel........................................................................... Page 2 Executive Summary......................................................................................... Page 3 Introduction ...................................................................................................... Page 4 Rationale.......................................................................................................... Page 6 Economic Analysis...........................................................................................

266

A robust automatic phase-adjustment method for financial forecasting  

Science Journals Connector (OSTI)

In this work we present the robust automatic phase-adjustment (RAA) method to overcome the random walk dilemma for financial time series forecasting. It consists of a hybrid model composed of a qubit multilayer perceptron (QuMLP) with a quantum-inspired ... Keywords: Financial forecasting, Hybrid models, Quantum-inspired evolutionary algorithm, Qubit multilayer perceptron, Random walk dilemma

Ricardo de A. Arajo

2012-03-01T23:59:59.000Z

267

Short term forecasting of solar radiation based on satellite data  

E-Print Network [OSTI]

Short term forecasting of solar radiation based on satellite data Elke Lorenz, Annette Hammer University, D-26111 Oldenburg Forecasting of solar irradiance will become a major issue in the future integration of solar energy resources into existing energy supply structures. Fluctuations of solar irradiance

Heinemann, Detlev

268

Developing electricity forecast web tool for Kosovo market  

Science Journals Connector (OSTI)

In this paper is presented a web tool for electricity forecast for Kosovo market for the upcoming ten years. The input data i.e. electricity generation capacities, demand and consume are taken from the document "Kosovo Energy Strategy 2009-2018" compiled ... Keywords: .NET, database, electricity forecast, internet, simulation, web

Blerim Rexha; Arben Ahmeti; Lule Ahmedi; Vjollca Komoni

2011-02-01T23:59:59.000Z

269

FORECASTING WATER DEMAND USING CLUSTER AND REGRESSION ANALYSIS  

E-Print Network [OSTI]

resources resulting in water stress. Effective water management ­ a solution Supply side management Demand side management #12;Developing a regression equation based on cluster analysis for forecasting waterFORECASTING WATER DEMAND USING CLUSTER AND REGRESSION ANALYSIS by Bruce Bishop Professor of Civil

Keller, Arturo A.

270

Impact of PV forecasts uncertainty in batteries management in microgrids  

E-Print Network [OSTI]

production forecast algorithm is used in combination with a battery schedule optimisation algorithm. The size. On the other hand if forecasted high production events do not occur, the cost of de- optimisation Energies and Energy Systems Sophia Antipolis, France andrea.michiorri@mines-paristech.fr Abstract

Paris-Sud XI, Université de

271

Revised 1997 Retail Electricity Price Forecast Principal Author: Ben Arikawa  

E-Print Network [OSTI]

Revised 1997 Retail Electricity Price Forecast March 1998 Principal Author: Ben Arikawa Electricity 1997 FORE08.DOC Page 1 CALIFORNIA ENERGY COMMISSION ELECTRICITY ANALYSIS OFFICE REVISED 1997 RETAIL ELECTRICITY PRICE FORECAST Introduction The Electricity Analysis Office of the California Energy Commission

272

Calibrated Probabilistic Forecasting at the Stateline Wind Energy Center  

E-Print Network [OSTI]

Calibrated Probabilistic Forecasting at the Stateline Wind Energy Center: The Regime at wind energy sites are becoming paramount. Regime-switching space-time (RST) models merge meteorological forecast regimes at the wind energy site and fits a conditional predictive model for each regime

Washington at Seattle, University of

273

A Transformed Lagged Ensemble Forecasting Technique for Increasing Ensemble Size  

E-Print Network [OSTI]

A Transformed Lagged Ensemble Forecasting Technique for Increasing Ensemble Size Andrew. R.Lawrence@ecmwf.int #12;Abstract An ensemble-based data assimilation approach is used to transform old en- semble. The impact of the transformations are propagated for- ward in time over the ensemble's forecast period

Hansens, Jim

274

Improving baseline forecasts in a 500-industry dynamic CGE model of the USA.  

E-Print Network [OSTI]

??MONASH-style CGE models have been used to generate baseline forecasts illustrating how an economy is likely to evolve through time. One application of such forecasts (more)

Mavromatis, Peter George

2013-01-01T23:59:59.000Z

275

E-Print Network 3.0 - africa conditional forecasts Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Search Powered by Explorit Topic List Advanced Search Sample search results for: africa conditional forecasts Page: << < 1 2 3 4 5 > >> 1 COLORADO STATE UNIVERSITY FORECAST...

276

Uncertainty Reduction in Power Generation Forecast Using Coupled Wavelet-ARIMA  

SciTech Connect (OSTI)

In this paper, we introduce a new approach without implying normal distributions and stationarity of power generation forecast errors. In addition, it is desired to more accurately quantify the forecast uncertainty by reducing prediction intervals of forecasts. We use automatically coupled wavelet transform and autoregressive integrated moving-average (ARIMA) forecasting to reflect multi-scale variability of forecast errors. The proposed analysis reveals slow-changing quasi-deterministic components of forecast errors. This helps improve forecasts produced by other means, e.g., using weather-based models, and reduce forecast errors prediction intervals.

Hou, Zhangshuan; Etingov, Pavel V.; Makarov, Yuri V.; Samaan, Nader A.

2014-10-27T23:59:59.000Z

277

Conference dates 1620 April 2012  

E-Print Network [OSTI]

Conference dates 16­20 April 2012 Location The Square Conference Centre Brussels, Belgium www/nanotechnologies Mark your Calendar #12;Conference dates 16­20 April 2012 The Square Conference Centre Brussels, Belgium success, Photonics Europe 2012 will again feature choice conferences and plenary presentations

Jahns, Jürgen

278

Table 10. Natural Gas Net Imports, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas Net Imports, Projected vs. Actual" Natural Gas Net Imports, Projected vs. Actual" "Projected" " (trillion cubic feet)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011 "AEO 1994",2.02,2.4,2.66,2.74,2.81,2.85,2.89,2.93,2.95,2.97,3,3.16,3.31,3.5,3.57,3.63,3.74,3.85 "AEO 1995",,2.46,2.54,2.8,2.87,2.87,2.89,2.9,2.9,2.92,2.95,2.97,3,3.03,3.19,3.35,3.51,3.6 "AEO 1996",,,2.56,2.75,2.85,2.88,2.93,2.98,3.02,3.06,3.07,3.09,3.12,3.17,3.23,3.29,3.37,3.46,3.56 "AEO 1997",,,,2.82,2.96,3.16,3.43,3.46,3.5,3.53,3.58,3.64,3.69,3.74,3.78,3.83,3.87,3.92,3.97 "AEO 1998",,,,,2.95,3.19,3.531808376,3.842532873,3.869043112,3.894513845,3.935930967,3.976293564,4.021911621,4.062207222,4.107616425,4.164502144,4.221304417,4.277039051,4.339964867

279

Table 12. Total Coal Consumption, Projected vs. Actual Projected  

U.S. Energy Information Administration (EIA) Indexed Site

Total Coal Consumption, Projected vs. Actual Total Coal Consumption, Projected vs. Actual Projected (million short tons) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1994 920 928 933 938 943 948 953 958 962 967 978 990 987 992 1006 1035 1061 1079 AEO 1995 935 940 941 947 948 951 954 958 963 971 984 992 996 1002 1013 1025 1039 AEO 1996 937 942 954 962 983 990 1004 1017 1027 1033 1046 1067 1070 1071 1074 1082 1087 AEO 1997 948 970 987 1003 1017 1020 1025 1034 1041 1054 1075 1086 1092 1092 1099 1104 AEO 1998 1009 1051 1044 1058 1087 1084 1090 1097 1112 1130 1142 1148 1160 1162 1180 AEO 1999 1040 1075 1092 1109 1113 1118 1120 1120 1133 1139 1150 1155 1156 1173 AEO 2000 1053 1086 1103 1124 1142 1164 1175 1184 1189 1194 1199 1195 1200 AEO 2001 1078 1112 1135 1153 1165 1183 1191 1220 1228 1228 1235 1240

280

Table 22. Total Carbon Dioxide Emissions, Projected vs. Actual  

Gasoline and Diesel Fuel Update (EIA)

Total Carbon Dioxide Emissions, Projected vs. Actual Total Carbon Dioxide Emissions, Projected vs. Actual (million metric tons) 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 AEO 1982 AEO 1983 AEO 1984 AEO 1985 AEO 1986 AEO 1987 AEO 1989* AEO 1990 AEO 1991 AEO 1992 AEO 1993 5009 5053 5130 5207 5269 5335 5401 5449 5504 5562 5621 5672 5724 5771 5819 5867 5918 5969 AEO 1994 5060 5130 5185 5240 5287 5335 5379 5438 5482 5529 5599 5658 5694 5738 5797 5874 5925 AEO 1995 5137 5174 5188 5262 5309 5361 5394 5441.3 5489.0 5551.3 5621.0 5679.7 5727.3 5775.0 5841.0 5888.7 AEO 1996 5182 5224 5295 5355 5417 5464 5525 5589 5660 5735 5812 5879 5925 5981 6030 AEO 1997 5295 5381 5491 5586 5658 5715 5781 5863 5934 6009 6106 6184 6236 6268 AEO 1998 5474 5621 5711 5784 5893 5957 6026 6098 6192 6292 6379 6465 6542 AEO 1999 5522 5689 5810 5913 5976 6036 6084 6152 6244 6325 6418 6493 AEO 2000

Note: This page contains sample records for the topic "forecast date actual" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Table 16. Total Electricity Sales, Projected vs. Actual  

Gasoline and Diesel Fuel Update (EIA)

Electricity Sales, Projected vs. Actual Electricity Sales, Projected vs. Actual (billion kilowatt-hours) 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 AEO 1982 2364 2454 2534 2626 2708 2811 AEO 1983 2318 2395 2476 2565 2650 2739 3153 AEO 1984 2321 2376 2461 2551 2637 2738 3182 AEO 1985 2317 2360 2427 2491 2570 2651 2730 2808 2879 2949 3026 AEO 1986 2363 2416 2479 2533 2608 2706 2798 2883 2966 3048 3116 3185 3255 3324 3397 AEO 1987 2460 2494 2555 2622 2683 2748 2823 2902 2977 3363 AEO 1989* 2556 2619 2689 2760 2835 2917 2994 3072 3156 3236 3313 3394 3473 AEO 1990 2612 2689 3083 3488.0 3870.0 AEO 1991 2700 2762 2806 2855 2904 2959 3022 3088 3151 3214 3282 3355 3427 3496 3563 3632 3704 3776 3846 3916 AEO 1992 2746 2845 2858 2913 2975 3030 3087 3146 3209 3276 3345 3415 3483 3552 3625 3699 3774 3847 3921 AEO 1993 2803 2840 2893 2946 2998 3052 3104 3157 3214 3271 3327

282

Table 5. Domestic Crude Oil Production, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

Domestic Crude Oil Production, Projected vs. Actual" Domestic Crude Oil Production, Projected vs. Actual" "Projected" " (million barrels)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011 "AEO 1994",2507.55,2372.5,2255.7,2160.8,2087.8,2022.1,1952.75,1890.7,1850.55,1825,1799.45,1781.2,1766.6,1759.3,1777.55,1788.5,1806.75,1861.5 "AEO 1995",,2401.7,2306.8,2204.6,2095.1,2036.7,1967.35,1952.75,1923.55,1916.25,1905.3,1894.35,1883.4,1887.05,1887.05,1919.9,1945.45,1967.35 "AEO 1996",,,2387.1,2310.45,2248.4,2171.75,2113.35,2062.25,2011.15,1978.3,1952.75,1938.15,1916.25,1919.9,1927.2,1949.1,1971,1985.6,2000.2 "AEO 1997",,,,2361.55,2306.8,2244.75,2197.3,2142.55,2091.45,2054.95,2033.05,2014.8,2003.85,1996.55,1989.25,1981.95,1974.65,1967.35,1949.1

283

Table 16. Total Energy Consumption, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

Total Energy Consumption, Projected vs. Actual" Total Energy Consumption, Projected vs. Actual" "Projected" " (quadrillion Btu)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011 "AEO 1994",88.02,89.53,90.72,91.73,92.71,93.61,94.56,95.73,96.69,97.69,98.89,100,100.79,101.7,102.7,103.6,104.3,105.23 "AEO 1995",,89.21,89.98,90.57,91.91,92.98,93.84,94.61,95.3,96.19,97.18,98.38,99.37,100.3,101.2,102.1,102.9,103.88 "AEO 1996",,,90.6,91.26,92.54,93.46,94.27,95.07,95.94,96.92,97.98,99.2,100.38,101.4,102.1,103.1,103.8,104.69,105.5 "AEO 1997",,,,92.64,93.58,95.13,96.59,97.85,98.79,99.9,101.2,102.4,103.4,104.7,105.8,106.6,107.2,107.9,108.6 "AEO 1998",,,,,94.68,96.71,98.61027527,99.81855774,101.254303,102.3907928,103.3935776,104.453476,105.8160553,107.2683716,108.5873566,109.8798981,111.0723877,112.166893,113.0926208

284

Table 7a. Natural Gas Wellhead Prices, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

a. Natural Gas Wellhead Prices, Projected vs. Actual" a. Natural Gas Wellhead Prices, Projected vs. Actual" "Projected Price in Constant Dollars" " (constant dollars per thousand cubic feet in ""dollar year"" specific to each AEO)" ,"AEO Dollar Year",1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011 "AEO 1994",1992,1.9399,2.029,2.1099,2.1899,2.29,2.35,2.39,2.42,2.47,2.55,2.65,2.75,2.89,3.01,3.17,3.3,3.35,3.47 "AEO 1995",1993,,1.85,1.899,1.81,1.87,1.8999,2.06,2.14,2.34,2.47,2.69,2.83,3.02,3.12,3.21,3.3,3.35,3.39 "AEO 1996",1994,,,1.597672343,1.665446997,1.74129355,1.815978527,1.866241336,1.892736554,1.913619637,1.928664207,1.943216205,1.964540124,1.988652706,2.003382921,2.024799585,2.056392431,2.099974155,2.14731431,2.218094587

285

Table 14a. Average Electricity Prices, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

a. Average Electricity Prices, Projected vs. Actual a. Average Electricity Prices, Projected vs. Actual Projected Price in Constant Dollars (constant dollars, cents per kilowatt-hour in "dollar year" specific to each AEO) AEO Dollar Year 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1995 1993 6.80 6.80 6.70 6.70 6.70 6.70 6.70 6.80 6.80 6.90 6.90 6.90 7.00 7.00 7.10 7.10 7.20 AEO 1996 1994 7.09 6.99 6.94 6.93 6.96 6.96 6.96 6.97 6.98 6.97 6.98 6.95 6.95 6.94 6.96 6.95 6.91 AEO 1997 1995 6.94 6.89 6.90 6.91 6.86 6.84 6.78 6.73 6.66 6.60 6.58 6.54 6.49 6.48 6.45 6.36

286

Table 4. Total Petroleum Consumption, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

Total Petroleum Consumption, Projected vs. Actual" Total Petroleum Consumption, Projected vs. Actual" "Projected" " (million barrels)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011 "AEO 1994",6449.55,6566.35,6643,6723.3,6810.9,6880.25,6956.9,7059.1,7124.8,7205.1,7296.35,7376.65,7446,7522.65,7595.65,7665,7712.45,7774.5 "AEO 1995",,6398.45,6544.45,6555.4,6675.85,6745.2,6821.85,6887.55,6964.2,7048.15,7146.7,7245.25,7336.5,7405.85,7471.55,7537.25,7581.05,7621.2 "AEO 1996",,,6489.7,6526.2,6606.5,6708.7,6781.7,6854.7,6942.3,7008,7084.65,7175.9,7259.85,7329.2,7383.95,7449.65,7500.75,7544.55,7581.05 "AEO 1997",,,,6635.7,6694.1,6825.5,6953.25,7073.7,7183.2,7267.15,7369.35,7460.6,7548.2,7643.1,7730.7,7792.75,7832.9,7884,7924.15

287

Table 9. Natural Gas Production, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas Production, Projected vs. Actual" Natural Gas Production, Projected vs. Actual" "Projected" " (trillion cubic feet)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011 "AEO 1994",17.71,17.68,17.84,18.12,18.25,18.43,18.58,18.93,19.28,19.51,19.8,19.92,20.13,20.18,20.38,20.35,20.16,20.19 "AEO 1995",,18.28,17.98,17.92,18.21,18.63,18.92,19.08,19.2,19.36,19.52,19.75,19.94,20.17,20.28,20.6,20.59,20.88 "AEO 1996",,,18.9,19.15,19.52,19.59,19.59,19.65,19.73,19.97,20.36,20.82,21.25,21.37,21.68,22.11,22.47,22.83,23.36 "AEO 1997",,,,19.1,19.7,20.17,20.32,20.54,20.77,21.26,21.9,22.31,22.66,22.93,23.38,23.68,23.99,24.25,24.65 "AEO 1998",,,,,18.85,19.06,20.34936142,20.27427673,20.60257721,20.94442177,21.44076347,21.80969238,22.25416183,22.65365219,23.176651,23.74545097,24.22989273,24.70069313,24.96691322

288

Table 7a. Natural Gas Wellhead Prices, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

a. Natural Gas Wellhead Prices, Projected vs. Actual a. Natural Gas Wellhead Prices, Projected vs. Actual Projected Price in Constant Dollars (constant dollars per thousand cubic feet in "dollar year" specific to each AEO) AEO Dollar Year 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1994 1992 1.94 2.03 2.11 2.19 2.29 2.35 2.39 2.42 2.47 2.55 2.65 2.75 2.89 3.01 3.17 3.30 3.35 3.47 AEO 1995 1993 1.85 1.90 1.81 1.87 1.90 2.06 2.14 2.34 2.47 2.69 2.83 3.02 3.12 3.21 3.30 3.35 3.39 AEO 1996 1994 1.60 1.67 1.74 1.82 1.87 1.89 1.91 1.93 1.94 1.96 1.99 2.00 2.02 2.06 2.10 2.15 2.22

289

Pose estimation of an uncooperative spacecraft from actual space imagery  

Science Journals Connector (OSTI)

This paper addresses the preliminary design of a spaceborne monocular vision-based navigation system for on-orbit-servicing and formation-flying applications. The aim is to estimate the pose of a passive space resident object using its known three-dimensional model and single low-resolution two-dimensional images collected on-board the active spacecraft. In contrast to previous work, no supportive means are available on the target satellite (e.g., light emitting diodes) and no a-priori knowledge of the relative position and attitude is available (i.e., lost-in-space scenario). Three fundamental mechanisms - perceptual organisation, true perspective projection, and random sample consensus - are exploited to overcome the limitations of monocular passive optical navigation in space. The preliminary design is conducted and validated making use of actual images collected in the frame of the PRISMA mission at about 700 km altitude and 10 m inter-spacecraft separation.

Simone D'Amico; Mathias Benn; John L. Jørgensen

2014-01-01T23:59:59.000Z

290

EIA - Forecasts and Analysis of Energy Data  

Gasoline and Diesel Fuel Update (EIA)

Electricity Electricity Electricity consumption nearly doubles in the IEO2005 projection period. The emerging economies of Asia are expected to lead the increase in world electricity use. Figure 58. World Net Electricity Consumption, 2002-2025 (Billion Kilowatthours). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 59. World Net Electricity Consumption by Region, 2002-2025 (Billion Kilowatthours). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data The International Energy Outlook 2005 (IEO2005) reference case projects that world net electricity consumption will nearly double over the next two decades.10 Over the forecast period, world electricity demand is projected to grow at an average rate of 2.6 percent per year, from 14,275 billion

291

EIA - Forecasts and Analysis of Energy Data  

Gasoline and Diesel Fuel Update (EIA)

Contacts Contacts The International Energy Outlook is prepared by the Energy Information Administration (EIA). General questions concerning the contents of the report should be referred to John J. Conti (john.conti@eia.doe.gov, 202-586-2222), Director, Office of Integrated Analysis and Forecasting. Specific questions about the report should be referred to Linda E. Doman (202/586-1041) or the following analysts: World Energy and Economic Outlook Linda Doman (linda.doman@eia.doe.gov, 202-586-1041) Macroeconomic Assumptions Nasir Khilji (nasir.khilji@eia.doe.gov, 202-586-1294) Energy Consumption by End-Use Sector Residential Energy Use John Cymbalsky (john.cymbalsky@eia.doe.gov, 202-586-4815) Commercial Energy Use Erin Boedecker (erin.boedecker@eia.doe.gov, 202-586-4791)

292

EIA - Forecasts and Analysis of Energy Data  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas Natural Gas Natural gas is the fastest growing primary energy source in the IEO2005 forecast. Consumption of natural gas is projected to increase by nearly 70 percent between 2002 and 2025, with the most robust growth in demand expected among the emerging economies. Figure 34. World Natural Gas Consumption, 1980-2025 (Trillion Cubic Feet). Need help, contact the National Energy Information Center on 202-586-8800. Figure Data Figure 35. Natural Gas Consumption by Region, 1980-2025 (Trillion Cubic Feet). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 36. Increase in Natural Gas Consumption by Region and Country, 2002-2025. Need help, contact the National Energy Information Center at 202-586-8800. Figure Data

293

Annual Energy Outlook 1998 Forecasts - Preface  

Gasoline and Diesel Fuel Update (EIA)

1998 With Projections to 2020 1998 With Projections to 2020 Annual Energy Outlook 1999 Report will be Available on December 9, 1998 Preface The Annual Energy Outlook 1998 (AEO98) presents midterm forecasts of energy supply, demand, and prices through 2020 prepared by the Energy Information Administration (EIA). The projections are based on results from EIA's National Energy Modeling System (NEMS). The report begins with an “Overview” summarizing the AEO98 reference case. The next section, “Legislation and Regulations,” describes the assumptions made with regard to laws that affect energy markets and discusses evolving legislative and regulatory issues. “Issues in Focus” discusses three current energy issues—electricity restructuring, renewable portfolio standards, and carbon emissions. It is followed by the analysis

294

EIA - Forecasts and Analysis of Energy Data  

Gasoline and Diesel Fuel Update (EIA)

Energy Consumption by End-Use Sector Energy Consumption by End-Use Sector In the IEO2005 projections, end-use energy consumption in the residential, commercial, industrial, and transportation sectors varies widely among regions and from country to country. One way of looking at the future of world energy markets is to consider trends in energy consumption at the end-use sector level. With the exception of the transportation sector, which is almost universally dominated by petroleum products at present, the mix of energy use in the residential, commercial, and industrial sectors can vary widely from country to country, depending on a combination of regional factors, such as the availability of energy resources, the level of economic development, and political, social, and demographic factors. This chapter outlines the International Energy Outlook 2005 (IEO2005) forecast for regional energy consumption by end-use sector.

295

Volatility forecasting with smooth transition exponential smoothing  

Science Journals Connector (OSTI)

Adaptive exponential smoothing methods allow smoothing parameters to change over time, in order to adapt to changes in the characteristics of the time series. This paper presents a new adaptive method for predicting the volatility in financial returns. It enables the smoothing parameter to vary as a logistic function of user-specified variables. The approach is analogous to that used to model time-varying parameters in smooth transition generalised autoregressive conditional heteroskedastic (GARCH) models. These non-linear models allow the dynamics of the conditional variance model to be influenced by the sign and size of past shocks. These factors can also be used as transition variables in the new smooth transition exponential smoothing (STES) approach. Parameters are estimated for the method by minimising the sum of squared deviations between realised and forecast volatility. Using stock index data, the new method gave encouraging results when compared to fixed parameter exponential smoothing and a variety of GARCH models.

James W. Taylor

2004-01-01T23:59:59.000Z

296

Incorporating Forecast Uncertainty in Utility Control Center  

SciTech Connect (OSTI)

Uncertainties in forecasting the output of intermittent resources such as wind and solar generation, as well as system loads are not adequately reflected in existing industry-grade tools used for transmission system management, generation commitment, dispatch and market operation. There are other sources of uncertainty such as uninstructed deviations of conventional generators from their dispatch set points, generator forced outages and failures to start up, load drops, losses of major transmission facilities and frequency variation. These uncertainties can cause deviations from the system balance, which sometimes require inefficient and costly last minute solutions in the near real-time timeframe. This Chapter considers sources of uncertainty and variability, overall system uncertainty model, a possible plan for transition from deterministic to probabilistic methods in planning and operations, and two examples of uncertainty-based fools for grid operations.This chapter is based on work conducted at the Pacific Northwest National Laboratory (PNNL)

Makarov, Yuri V.; Etingov, Pavel V.; Ma, Jian

2014-07-09T23:59:59.000Z

297

Annual Energy Outlook Forecast Evaluation - Tables  

Gasoline and Diesel Fuel Update (EIA)

Table 1. Comparison of Absolute Percent Errors for Present and Current AEO Forecast Evaluations Table 1. Comparison of Absolute Percent Errors for Present and Current AEO Forecast Evaluations Average Absolute Percent Error Variable AEO82 to AEO98 AEO82 to AEO99 AEO82 to AEO2000 AEO82 to AEO2001 AEO82 to AEO2002 AEO82 to AEO2003 Consumption Total Energy Consumption 1.7 1.7 1.8 1.9 1.9 2.1 Total Petroleum Consumption 2.9 2.8 2.9 3.0 2.9 2.9 Total Natural Gas Consumption 5.7 5.6 5.6 5.5 5.5 6.5 Total Coal Consumption 3.0 3.2 3.3 3.5 3.6 3.7 Total Electricity Sales 1.7 1.8 1.9 2.4 2.5 2.4 Production Crude Oil Production 4.3 4.5 4.5 4.5 4.5 4.7 Natural Gas Production 4.8 4.7 4.6 4.6 4.4 4.4 Coal Production 3.6 3.6 3.5 3.7 3.6 3.8 Imports and Exports Net Petroleum Imports 9.5 8.8 8.4 7.9 7.4 7.5 Net Natural Gas Imports 16.7 16.0 15.9 15.8 15.8 15.4

298

Coal production forecast and low carbon policies in China  

Science Journals Connector (OSTI)

With rapid economic growth and industrial expansion, China consumes more coal than any other nation. Therefore, it is particularly crucial to forecast China's coal production to help managers make strategic decisions concerning China's policies intended to reduce carbon emissions and concerning the country's future needs for domestic and imported coal. Such decisions, which must consider results from forecasts, will have important national and international effects. This article proposes three improved forecasting models based on grey systems theory: the Discrete Grey Model (DGM), the Rolling DGM (RDGM), and the p value RDGM. We use the statistical data of coal production in China from 1949 to 2005 to validate the effectiveness of these improved models to forecast the data from 2006 to 2010. The performance of the models demonstrates that the p value RDGM has the best forecasting behaviour over this historical time period. Furthermore, this paper forecasts coal production from 2011 to 2015 and suggests some policies for reducing carbon and other emissions that accompany the rise in forecasted coal production.

Jianzhou Wang; Yao Dong; Jie Wu; Ren Mu; He Jiang

2011-01-01T23:59:59.000Z

299

Estimated Cost Description Determination Date:  

Broader source: Energy.gov (indexed) [DOE]

and posted 2/10/2011 and posted 2/10/2011 *Title, Location Estimated Cost Description Determination Date: uncertain Transmittal to State: uncertain EA Approval: uncertain $50,000 FONSI: uncertain Determination Date: uncertain Transmittal to State: uncertain EA Approval: uncertain FONSI: uncertain Total Estimated Cost $70,000 Attachment: Memo, Moody to Marcinowski, III, SUBJECT: NEPA 2011 APS for DOE-SRS, Dated: Annual NEPA Planning Summary Environmental Assessments (EAs) Expected to be Initiated in the Next 12 Months Department of Energy (DOE) Savannah River Site (SRS) Jan-11 Estimated Schedule (**NEPA Milestones) South Carolina Department of Health and Environmental Control (SCDHEC) issued a National Pollutant Discharge Elimination System (NPDES) Industrial Stormwater General Permit (IGP) # SCR000000 November 12, with an effective date of January

300

U.S. Regional Demand Forecasts Using NEMS and GIS  

SciTech Connect (OSTI)

The National Energy Modeling System (NEMS) is a multi-sector, integrated model of the U.S. energy system put out by the Department of Energy's Energy Information Administration. NEMS is used to produce the annual 20-year forecast of U.S. energy use aggregated to the nine-region census division level. The research objective was to disaggregate this regional energy forecast to the county level for select forecast years, for use in a more detailed and accurate regional analysis of energy usage across the U.S. The process of disaggregation using a geographic information system (GIS) was researched and a model was created utilizing available population forecasts and climate zone data. The model's primary purpose was to generate an energy demand forecast with greater spatial resolution than what is currently produced by NEMS, and to produce a flexible model that can be used repeatedly as an add-on to NEMS in which detailed analysis can be executed exogenously with results fed back into the NEMS data flow. The methods developed were then applied to the study data to obtain residential and commercial electricity demand forecasts. The model was subjected to comparative and statistical testing to assess predictive accuracy. Forecasts using this model were robust and accurate in slow-growing, temperate regions such as the Midwest and Mountain regions. Interestingly, however, the model performed with less accuracy in the Pacific and Northwest regions of the country where population growth was more active. In the future more refined methods will be necessary to improve the accuracy of these forecasts. The disaggregation method was written into a flexible tool within the ArcGIS environment which enables the user to output the results in five year intervals over the period 2000-2025. In addition, the outputs of this tool were used to develop a time-series simulation showing the temporal changes in electricity forecasts in terms of absolute, per capita, and density of demand.

Cohen, Jesse A.; Edwards, Jennifer L.; Marnay, Chris

2005-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "forecast date actual" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Measuring the forecasting accuracy of models: evidence from industrialised countries  

Science Journals Connector (OSTI)

This paper uses the approach suggested by Akrigay (1989), Tse and Tung (1992) and Dimson and Marsh (1990) to examine the forecasting accuracy of stock price index models for industrialised markets. The focus of this paper is to compare the Mean Absolute Percentage Error (MAPE) of three models, that is, the Random Walk model, the Single Exponential Smoothing model and the Conditional Heteroskedastic model with the MAPE of the benchmark Naive Forecast 1 case. We do not evidence that a single model to provide better forecasting accuracy results compared to other models.

Athanasios Koulakiotis; Apostolos Dasilas

2009-01-01T23:59:59.000Z

302

Solar irradiance forecasting at multiple time horizons and novel methods to evaluate uncertainty  

E-Print Network [OSTI]

Solar irradiance data . . . . . . . . . . . . .Accuracy . . . . . . . . . . . . . . . . . Solar Resourcev Uncertainty In Solar Resource: Forecasting

Marquez, Ricardo

2012-01-01T23:59:59.000Z

303

18 Bureau of Meteorology Annual Report 201314 Hazards, warnings and forecasts  

E-Print Network [OSTI]

and numerical prediction models. #12;19Bureau of Meteorology Annual Report 2013­14 2 Performance Performance programs: · Weather forecasting services; · Flood forecasting and warning services; · Hazard prediction, Warnings and Forecasts portfolio provides a range of forecast and warning services covering weather, ocean

Greenslade, Diana

304

Table 18. Total Delivered Commercial Energy Consumption, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

Total Delivered Commercial Energy Consumption, Projected vs. Actual Total Delivered Commercial Energy Consumption, Projected vs. Actual Projected (quadrillion Btu) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1994 6.8 6.9 6.9 7.0 7.1 7.1 7.2 7.2 7.3 7.3 7.4 7.4 7.4 7.5 7.5 7.5 7.5 7.6 AEO 1995 6.9 6.9 7.0 7.0 7.0 7.1 7.1 7.1 7.1 7.1 7.2 7.2 7.2 7.2 7.3 7.3 7.3 AEO 1996 7.1 7.2 7.2 7.3 7.3 7.4 7.4 7.5 7.6 7.6 7.7 7.7 7.8 7.9 8.0 8.0 8.1 AEO 1997 7.4 7.4 7.4 7.5 7.5 7.6 7.7 7.7 7.8 7.8 7.9 7.9 8.0 8.1 8.1 8.2 AEO 1998 7.5 7.6 7.7 7.8 7.9 8.0 8.0 8.1 8.2 8.3 8.4 8.4 8.5 8.6 8.7 AEO 1999 7.4 7.8 7.9 8.0 8.1 8.2 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 AEO 2000 7.7 7.8 7.9 8.0 8.1 8.2 8.3 8.4 8.5 8.5 8.7 8.7 8.8 AEO 2001 7.8 8.1 8.3 8.6 8.7 8.9 9.0 9.2 9.3 9.5 9.6 9.7 AEO 2002 8.2 8.4 8.7 8.9 9.0 9.2 9.4 9.6 9.7 9.9 10.1

305

Table 21. Total Transportation Energy Consumption, Projected vs. Actual  

Gasoline and Diesel Fuel Update (EIA)

Transportation Energy Consumption, Projected vs. Actual Transportation Energy Consumption, Projected vs. Actual (quadrillion Btu) 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 AEO 1982 18.6 18.2 17.7 17.3 17.0 16.9 AEO 1983 19.8 20.1 20.4 20.4 20.5 20.5 20.7 AEO 1984 19.2 19.0 19.0 19.0 19.1 19.2 20.1 AEO 1985 20.0 19.8 20.0 20.0 20.0 20.1 20.3 AEO 1986 20.5 20.8 20.8 20.6 20.7 20.3 21.0 AEO 1987 21.3 21.5 21.6 21.7 21.8 22.0 22.0 22.0 21.9 22.3 AEO 1989* 21.8 22.2 22.4 22.4 22.5 22.5 22.5 22.5 22.6 22.7 22.8 23.0 23.2 AEO 1990 22.0 22.4 23.2 24.3 25.5 AEO 1991 22.1 21.6 21.9 22.1 22.3 22.5 22.8 23.1 23.4 23.8 24.1 24.5 24.8 25.1 25.4 25.7 26.0 26.3 26.6 26.9 AEO 1992 21.7 22.0 22.5 22.9 23.2 23.4 23.6 23.9 24.1 24.4 24.8 25.1 25.4 25.7 26.0 26.3 26.6 26.9 27.1 AEO 1993 22.5 22.8 23.4 23.9 24.3 24.7 25.1 25.4 25.7 26.1 26.5 26.8 27.2 27.6 27.9 28.1 28.4 28.7 AEO 1994 23.6

306

Table 10. Natural Gas Production, Projected vs. Actual  

Gasoline and Diesel Fuel Update (EIA)

Production, Projected vs. Actual Production, Projected vs. Actual (trillion cubic feet) 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 AEO 1982 14.74 14.26 14.33 14.89 15.39 15.88 AEO 1983 16.48 16.27 16.20 16.31 16.27 16.29 14.89 AEO 1984 17.48 17.10 17.44 17.58 17.52 17.32 16.39 AEO 1985 16.95 17.08 17.11 17.29 17.40 17.33 17.32 17.27 17.05 16.80 16.50 AEO 1986 16.30 16.27 17.15 16.68 16.90 16.97 16.87 16.93 16.86 16.62 16.40 16.33 16.57 16.23 16.12 AEO 1987 16.21 16.09 16.38 16.32 16.30 16.30 16.44 16.62 16.81 17.39 AEO 1989* 16.71 16.71 16.94 17.01 16.83 17.09 17.35 17.54 17.67 17.98 18.20 18.25 18.49 AEO 1990 16.91 17.25 18.84 20.58 20.24 AEO 1991 17.40 17.48 18.11 18.22 18.15 18.22 18.39 18.82 19.03 19.28 19.62 19.89 20.13 20.07 19.95 19.82 19.64 19.50 19.30 19.08 AEO 1992 17.43 17.69 17.95 18.00 18.29 18.27 18.51 18.75 18.97

307

Table 17. Total Energy Consumption, Projected vs. Actual  

Gasoline and Diesel Fuel Update (EIA)

Energy Consumption, Projected vs. Actual Energy Consumption, Projected vs. Actual (quadrillion Btu) 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 AEO 1982 79.1 79.6 79.9 80.8 82.1 83.3 AEO 1983 78.0 79.5 81.0 82.4 83.9 84.6 89.0 AEO 1984 78.5 79.4 81.2 83.1 85.1 86.4 93.0 AEO 1985 77.6 78.5 79.8 81.2 82.7 83.3 84.2 85.0 85.7 86.3 87.2 AEO 1986 77.0 78.8 79.8 80.7 81.5 82.9 83.8 84.6 85.3 86.0 86.6 87.4 88.3 89.4 90.2 AEO 1987 78.9 80.0 82.0 82.8 83.9 85.1 86.2 87.1 87.9 92.5 AEO 1989* 82.2 83.8 84.5 85.4 86.2 87.1 87.8 88.7 89.5 90.4 91.4 92.4 93.5 AEO 1990 84.2 85.4 91.9 97.4 102.8 AEO 1991 84.4 85.0 86.0 87.0 87.9 89.1 90.4 91.8 93.1 94.3 95.6 97.1 98.4 99.4 100.3 101.4 102.5 103.6 104.7 105.8 AEO 1992 84.7 87.0 88.0 89.2 90.5 91.4 92.4 93.4 94.5 95.6 96.9 98.0 99.0 100.0 101.2 102.2 103.2 104.3 105.2 AEO 1993 87.0 88.3 89.8 91.4 92.7 94.0 95.3 96.3 97.5 98.6

308

Table 3. Gross Domestic Product, Projected vs. Actual  

Gasoline and Diesel Fuel Update (EIA)

Gross Domestic Product, Projected vs. Actual Gross Domestic Product, Projected vs. Actual (cumulative average percent growth in projected real GDP from first year shown for each AEO) 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 AEO 1982 4.3% 3.8% 3.6% 3.3% 3.2% 3.2% AEO 1983 3.3% 3.3% 3.4% 3.3% 3.2% 3.1% 2.7% AEO 1984 2.7% 2.4% 2.9% 3.1% 3.1% 3.1% 2.7% AEO 1985 2.3% 2.2% 2.7% 2.8% 2.9% 3.0% 3.0% 3.0% 2.9% 2.8% 2.8% AEO 1986 2.6% 2.5% 2.7% 2.5% 2.5% 2.6% 2.6% 2.6% 2.5% 2.5% 2.5% 2.5% 2.5% 2.5% 2.5% AEO 1987 2.7% 2.3% 2.4% 2.5% 2.5% 2.6% 2.6% 2.5% 2.4% 2.3% AEO 1989* 4.0% 3.4% 3.1% 3.0% 2.9% 2.8% 2.7% 2.7% 2.7% 2.6% 2.6% 2.6% 2.6% AEO 1990 2.9% 2.3% 2.5% 2.5% 2.4% AEO 1991 0.8% 1.0% 1.7% 1.8% 1.8% 1.9% 2.0% 2.1% 2.1% 2.1% 2.2% 2.2% 2.2% 2.2% 2.2% 2.2% 2.2% 2.2% 2.2% 2.2% AEO 1992 -0.1% 1.6% 2.0% 2.2% 2.3% 2.2% 2.2% 2.2% 2.2% 2.3% 2.3% 2.3% 2.3% 2.2%

309

Table 20. Total Industrial Energy Consumption, Projected vs. Actual  

Gasoline and Diesel Fuel Update (EIA)

Industrial Energy Consumption, Projected vs. Actual Industrial Energy Consumption, Projected vs. Actual (quadrillion Btu) 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 AEO 1982 24.0 24.1 24.4 24.9 25.5 26.1 AEO 1983 23.2 23.6 23.9 24.4 24.9 25.0 25.4 AEO 1984 24.1 24.5 25.4 25.5 27.1 27.4 28.7 AEO 1985 23.2 23.6 23.9 24.4 24.8 24.8 24.4 AEO 1986 22.2 22.8 23.1 23.4 23.4 23.6 22.8 AEO 1987 22.4 22.8 23.7 24.0 24.3 24.6 24.6 24.7 24.9 22.6 AEO 1989* 23.6 24.0 24.1 24.3 24.5 24.3 24.3 24.5 24.6 24.8 24.9 24.4 24.1 AEO 1990 25.0 25.4 27.1 27.3 28.6 AEO 1991 24.6 24.5 24.8 24.8 25.0 25.3 25.7 26.2 26.5 26.1 25.9 26.2 26.4 26.6 26.7 27.0 27.2 27.4 27.7 28.0 AEO 1992 24.6 25.3 25.4 25.6 26.1 26.3 26.5 26.5 26.0 25.6 25.8 26.0 26.1 26.2 26.4 26.7 26.9 27.2 27.3 AEO 1993 25.5 25.9 26.2 26.8 27.1 27.5 27.8 27.4 27.1 27.4 27.6 27.8 28.0 28.2 28.4 28.7 28.9 29.1 AEO 1994 25.4 25.9

310

Table 8. Natural Gas Wellhead Prices, Projected vs. Actual  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas Wellhead Prices, Projected vs. Actual Natural Gas Wellhead Prices, Projected vs. Actual (current dollars per thousand cubic feet) 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 AEO 1982 4.32 5.47 6.67 7.51 8.04 8.57 AEO 1983 2.93 3.11 3.46 3.93 4.56 5.26 12.74 AEO 1984 2.77 2.90 3.21 3.63 4.13 4.79 9.33 AEO 1985 2.60 2.61 2.66 2.71 2.94 3.35 3.85 4.46 5.10 5.83 6.67 AEO 1986 1.73 1.96 2.29 2.54 2.81 3.15 3.73 4.34 5.06 5.90 6.79 7.70 8.62 9.68 10.80 AEO 1987 1.83 1.95 2.11 2.28 2.49 2.72 3.08 3.51 4.07 7.54 AEO 1989* 1.62 1.70 1.91 2.13 2.58 3.04 3.48 3.93 4.76 5.23 5.80 6.43 6.98 AEO 1990 1.78 1.88 2.93 5.36 9.2 AEO 1991 1.77 1.90 2.11 2.30 2.42 2.51 2.60 2.74 2.91 3.29 3.75 4.31 5.07 5.77 6.45 7.29 8.09 8.94 9.62 10.27 AEO 1992 1.69 1.85 2.03 2.15 2.35 2.51 2.74 3.01 3.40 3.81 4.24 4.74 5.25 5.78 6.37 6.89 7.50 8.15 9.05 AEO 1993 1.85 1.94 2.09 2.30

311

Table 16. Total Energy Consumption, Projected vs. Actual Projected  

U.S. Energy Information Administration (EIA) Indexed Site

Total Energy Consumption, Projected vs. Actual Total Energy Consumption, Projected vs. Actual Projected (quadrillion Btu) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1994 88.0 89.5 90.7 91.7 92.7 93.6 94.6 95.7 96.7 97.7 98.9 100.0 100.8 101.7 102.7 103.6 104.3 105.2 AEO 1995 89.2 90.0 90.6 91.9 93.0 93.8 94.6 95.3 96.2 97.2 98.4 99.4 100.3 101.2 102.1 102.9 103.9 AEO 1996 90.6 91.3 92.5 93.5 94.3 95.1 95.9 96.9 98.0 99.2 100.4 101.4 102.1 103.1 103.8 104.7 105.5 AEO 1997 92.6 93.6 95.1 96.6 97.9 98.8 99.9 101.2 102.4 103.4 104.7 105.8 106.6 107.2 107.9 108.6 AEO 1998 94.7 96.7 98.6 99.8 101.3 102.4 103.4 104.5 105.8 107.3 108.6 109.9 111.1 112.2 113.1 AEO 1999 94.6 97.0 99.2 100.9 102.0 102.8 103.6 104.7 106.0 107.2 108.5 109.7 110.8 111.8

312

Table 9. Natural Gas Production, Projected vs. Actual Projected  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas Production, Projected vs. Actual Natural Gas Production, Projected vs. Actual Projected (trillion cubic feet) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1994 17.71 17.68 17.84 18.12 18.25 18.43 18.58 18.93 19.28 19.51 19.80 19.92 20.13 20.18 20.38 20.35 20.16 20.19 AEO 1995 18.28 17.98 17.92 18.21 18.63 18.92 19.08 19.20 19.36 19.52 19.75 19.94 20.17 20.28 20.60 20.59 20.88 AEO 1996 18.90 19.15 19.52 19.59 19.59 19.65 19.73 19.97 20.36 20.82 21.25 21.37 21.68 22.11 22.47 22.83 23.36 AEO 1997 19.10 19.70 20.17 20.32 20.54 20.77 21.26 21.90 22.31 22.66 22.93 23.38 23.68 23.99 24.25 24.65 AEO 1998 18.85 19.06 20.35 20.27 20.60 20.94 21.44 21.81 22.25 22.65 23.18 23.75 24.23 24.70 24.97 AEO 1999 18.80 19.13 19.28 19.82 20.23 20.77 21.05 21.57 21.98 22.47 22.85 23.26 23.77 24.15

313

Table 19. Total Delivered Industrial Energy Consumption, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

Total Delivered Industrial Energy Consumption, Projected vs. Actual Total Delivered Industrial Energy Consumption, Projected vs. Actual Projected (quadrillion Btu) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1994 25.4 25.9 26.3 26.7 27.0 27.1 26.8 26.6 26.9 27.2 27.7 28.1 28.3 28.7 29.1 29.4 29.7 30.0 AEO 1995 26.2 26.3 26.5 27.0 27.3 26.9 26.6 26.8 27.1 27.5 27.9 28.2 28.4 28.7 29.0 29.3 29.6 AEO 1996 26.5 26.6 27.3 27.5 26.9 26.5 26.7 26.9 27.2 27.6 27.9 28.2 28.3 28.5 28.7 28.9 29.2 AEO 1997 26.2 26.5 26.9 26.7 26.6 26.8 27.1 27.4 27.8 28.0 28.4 28.7 28.9 29.0 29.2 29.4 AEO 1998 27.2 27.5 27.2 26.9 27.1 27.5 27.7 27.9 28.3 28.7 29.0 29.3 29.7 29.9 30.1 AEO 1999 26.7 26.4 26.4 26.8 27.1 27.3 27.5 27.9 28.3 28.6 28.9 29.2 29.5 29.7 AEO 2000 25.8 25.5 25.7 26.0 26.5 26.9 27.4 27.8 28.1 28.3 28.5 28.8 29.0

314

Table 18. Total Residential Energy Consumption, Projected vs. Actual  

Gasoline and Diesel Fuel Update (EIA)

Residential Energy Consumption, Projected vs. Actual Residential Energy Consumption, Projected vs. Actual (quadrillion Btu) 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 AEO 1982 10.1 10.1 10.1 10.1 10.2 10.2 AEO 1983 9.8 9.9 10.0 10.1 10.2 10.1 10.0 AEO 1984 9.9 9.9 10.0 10.2 10.3 10.3 10.5 AEO 1985 9.8 10.0 10.1 10.3 10.6 10.6 10.9 AEO 1986 9.6 9.8 10.0 10.3 10.4 10.8 10.9 AEO 1987 9.9 10.2 10.3 10.3 10.4 10.5 10.5 10.5 10.5 10.6 AEO 1989* 10.3 10.5 10.4 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 AEO 1990 10.4 10.7 10.8 11.0 11.3 AEO 1991 10.2 10.7 10.7 10.8 10.8 10.8 10.9 10.9 10.9 11.0 11.0 11.0 11.1 11.2 11.2 11.3 11.4 11.4 11.5 11.6 AEO 1992 10.6 11.1 11.1 11.1 11.1 11.1 11.2 11.2 11.3 11.3 11.4 11.5 11.5 11.6 11.7 11.8 11.8 11.9 12.0 AEO 1993 10.7 10.9 11.0 11.0 11.0 11.1 11.1 11.1 11.1 11.2 11.2 11.2 11.2 11.3 11.3 11.4 11.4 11.5 AEO 1994 10.3 10.4 10.4 10.4

315

Table 6. Domestic Crude Oil Production, Projected vs. Actual  

Gasoline and Diesel Fuel Update (EIA)

Domestic Crude Oil Production, Projected vs. Actual Domestic Crude Oil Production, Projected vs. Actual (million barrels per day) 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 AEO 1982 8.79 8.85 8.84 8.80 8.66 8.21 AEO 1983 8.67 8.71 8.66 8.72 8.80 8.63 8.11 AEO 1984 8.86 8.70 8.59 8.45 8.28 8.25 7.19 AEO 1985 8.92 8.96 9.01 8.78 8.38 8.05 7.64 7.27 6.89 6.68 6.53 AEO 1986 8.80 8.63 8.30 7.90 7.43 6.95 6.60 6.36 6.20 5.99 5.80 5.66 5.54 5.45 5.43 AEO 1987 8.31 8.18 8.00 7.63 7.34 7.09 6.86 6.64 6.54 6.03 AEO 1989* 8.18 7.97 7.64 7.25 6.87 6.59 6.37 6.17 6.05 6.00 5.94 5.90 5.89 AEO 1990 7.67 7.37 6.40 5.86 5.35 AEO 1991 7.23 6.98 7.10 7.11 7.01 6.79 6.48 6.22 5.92 5.64 5.36 5.11 4.90 4.73 4.62 4.59 4.58 4.53 4.46 4.42 AEO 1992 7.37 7.17 6.99 6.89 6.68 6.45 6.28 6.16 6.06 5.91 5.79 5.71 5.66 5.64 5.62 5.63 5.62 5.55 5.52 AEO 1993 7.20 6.94 6.79 6.52 6.22 6.00 5.84 5.72

316

Table 17. Total Delivered Residential Energy Consumption, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

Total Delivered Residential Energy Consumption, Projected vs. Actual Total Delivered Residential Energy Consumption, Projected vs. Actual Projected (quadrillion Btu) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1994 10.3 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.5 10.5 10.5 10.5 10.5 10.6 10.6 AEO 1995 11.0 10.8 10.8 10.8 10.8 10.8 10.8 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.8 10.8 10.9 AEO 1996 10.4 10.7 10.7 10.7 10.8 10.8 10.9 10.9 11.0 11.2 11.2 11.3 11.4 11.5 11.6 11.7 11.8 AEO 1997 11.1 10.9 11.1 11.1 11.2 11.2 11.2 11.3 11.4 11.5 11.5 11.6 11.7 11.8 11.9 12.0 AEO 1998 10.7 11.1 11.2 11.4 11.5 11.5 11.6 11.7 11.8 11.9 11.9 12.1 12.1 12.2 12.3 AEO 1999 10.5 11.1 11.3 11.3 11.4 11.5 11.5 11.6 11.6 11.7 11.8 11.9 12.0 12.1 AEO 2000 10.7 10.9 11.0 11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8 11.9 12.0

317

Table 2. Real Gross Domestic Product, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

Real Gross Domestic Product, Projected vs. Actual Real Gross Domestic Product, Projected vs. Actual Projected Real GDP Growth Trend (cumulative average percent growth in projected real GDP from first year shown for each AEO) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1994 3.1% 3.2% 2.9% 2.8% 2.7% 2.7% 2.6% 2.6% 2.6% 2.5% 2.5% 2.5% 2.4% 2.4% 2.4% 2.4% 2.3% 2.3% AEO 1995 3.7% 2.8% 2.5% 2.7% 2.7% 2.6% 2.6% 2.5% 2.5% 2.5% 2.5% 2.4% 2.4% 2.4% 2.3% 2.3% 2.2% AEO 1996 2.6% 2.2% 2.5% 2.5% 2.5% 2.5% 2.4% 2.4% 2.4% 2.4% 2.4% 2.3% 2.3% 2.2% 2.2% 2.2% 1.6% AEO 1997 2.1% 1.9% 2.0% 2.2% 2.3% 2.3% 2.2% 2.2% 2.2% 2.2% 2.2% 2.2% 2.2% 2.1% 2.1% 1.5% AEO 1998 3.4% 2.9% 2.6% 2.5% 2.4% 2.4% 2.3% 2.3% 2.3% 2.3% 2.3% 2.3% 2.3% 2.2% 1.8% AEO 1999 3.4% 2.5% 2.5% 2.4% 2.4% 2.4% 2.3% 2.4% 2.4% 2.4% 2.4% 2.4% 2.4% 1.8% AEO 2000 3.8% 2.9% 2.7% 2.6% 2.6% 2.6% 2.6% 2.6% 2.5% 2.5%

318

Table 7. Petroleum Net Imports, Projected vs. Actual  

Gasoline and Diesel Fuel Update (EIA)

Petroleum Net Imports, Projected vs. Actual Petroleum Net Imports, Projected vs. Actual (million barrels per day) 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 AEO 1982 7.58 7.45 7.12 6.82 6.66 7.09 AEO 1983 5.15 5.44 5.73 5.79 5.72 5.95 6.96 AEO 1984 4.85 5.11 5.53 5.95 6.31 6.59 8.65 AEO 1985 4.17 4.38 4.73 4.93 5.36 5.72 6.23 6.66 7.14 7.39 7.74 AEO 1986 5.15 5.38 5.46 5.92 6.46 7.09 7.50 7.78 7.96 8.20 8.47 8.74 9.04 9.57 9.76 AEO 1987 5.81 6.04 6.81 7.28 7.82 8.34 8.71 8.94 8.98 10.01 AEO 1989* 6.28 6.84 7.49 7.96 8.53 8.83 9.04 9.28 9.60 9.64 9.75 10.02 10.20 AEO 1990 7.20 7.61 9.13 9.95 11.02 AEO 1991 7.28 7.25 7.34 7.48 7.72 8.10 8.57 9.09 9.61 10.07 10.51 11.00 11.44 11.72 11.86 12.11 12.30 12.49 12.71 12.91 AEO 1992 6.86 7.42 7.88 8.16 8.55 8.80 9.06 9.32 9.50 9.80 10.17 10.35 10.56 10.61 10.85 11.00 11.15 11.29 11.50 AEO 1993 7.25 8.01 8.49 9.06

319

Table 7b. Natural Gas Wellhead Prices, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

b. Natural Gas Wellhead Prices, Projected vs. Actual b. Natural Gas Wellhead Prices, Projected vs. Actual Projected Price in Nominal Dollars (nominal dollars per thousand cubic feet) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1994 1.98 2.12 2.27 2.41 2.59 2.73 2.85 2.98 3.14 3.35 3.59 3.85 4.18 4.51 4.92 5.29 5.56 5.96 AEO 1995 1.89 2.00 1.95 2.06 2.15 2.40 2.57 2.90 3.16 3.56 3.87 4.27 4.56 4.85 5.16 5.41 5.66 AEO 1996 1.63 1.74 1.86 1.99 2.10 2.19 2.29 2.38 2.48 2.59 2.72 2.84 2.97 3.12 3.29 3.49 3.73 AEO 1997 2.03 1.82 1.90 1.99 2.06 2.13 2.21 2.32 2.43 2.54 2.65 2.77 2.88 3.00 3.11 3.24 AEO 1998 2.30 2.20 2.26 2.31 2.38 2.44 2.52 2.60 2.69 2.79 2.93 3.06 3.20 3.35 3.48 AEO 1999 1.98 2.15 2.20 2.32 2.43 2.53 2.63 2.76 2.90 3.02 3.12 3.23 3.35 3.47

320

Table 20. Total Delivered Transportation Energy Consumption, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

Total Delivered Transportation Energy Consumption, Projected vs. Actual Total Delivered Transportation Energy Consumption, Projected vs. Actual Projected (quadrillion Btu) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1994 23.6 24.1 24.5 24.7 25.1 25.4 25.7 26.2 26.5 26.9 27.2 27.6 27.9 28.3 28.6 28.9 29.2 29.5 AEO 1995 23.3 24.0 24.2 24.7 25.1 25.5 25.9 26.2 26.5 26.9 27.3 27.7 28.0 28.3 28.5 28.7 28.9 AEO 1996 23.9 24.1 24.5 24.8 25.3 25.7 26.0 26.4 26.7 27.1 27.5 27.8 28.1 28.4 28.6 28.9 29.1 AEO 1997 24.7 25.3 25.9 26.4 27.0 27.5 28.0 28.5 28.9 29.4 29.8 30.3 30.6 30.9 31.1 31.3 AEO 1998 25.3 25.9 26.7 27.1 27.7 28.3 28.8 29.4 30.0 30.6 31.2 31.7 32.3 32.8 33.1 AEO 1999 25.4 26.0 27.0 27.6 28.2 28.8 29.4 30.0 30.6 31.2 31.7 32.2 32.8 33.1 AEO 2000 26.2 26.8 27.4 28.0 28.5 29.1 29.7 30.3 30.9 31.4 31.9 32.5 32.9

Note: This page contains sample records for the topic "forecast date actual" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Table 22. Energy Intensity, Projected vs. Actual Projected  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Intensity, Projected vs. Actual Energy Intensity, Projected vs. Actual Projected (quadrillion Btu / real GDP in billion 2005 chained dollars) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1994 11.2 11.1 11.0 10.8 10.7 10.5 10.4 10.3 10.1 10.0 9.9 9.8 9.7 9.6 9.5 9.4 9.3 9.2 AEO 1995 10.9 10.8 10.6 10.4 10.3 10.1 10.0 9.9 9.8 9.6 9.5 9.4 9.3 9.2 9.1 9.1 9.0 AEO 1996 10.7 10.6 10.4 10.3 10.1 10.0 9.8 9.7 9.6 9.5 9.4 9.3 9.2 9.2 9.1 9.0 8.9 AEO 1997 10.3 10.3 10.2 10.1 9.9 9.8 9.7 9.6 9.5 9.4 9.3 9.2 9.2 9.1 9.0 8.9 AEO 1998 10.1 10.1 10.1 10.0 9.9 9.8 9.7 9.6 9.5 9.5 9.4 9.3 9.2 9.1 9.0 AEO 1999 9.6 9.7 9.7 9.7 9.6 9.4 9.3 9.1 9.0 8.9 8.8 8.7 8.6 8.5 AEO 2000 9.4 9.4 9.3 9.2 9.1 9.0 8.9 8.8 8.7 8.7 8.6 8.5 8.4 AEO 2001 8.7 8.6 8.5 8.4 8.3 8.1 8.0 7.9 7.8 7.6 7.5 7.4

322

Table 15. Average Electricity Prices, Projected vs. Actual  

Gasoline and Diesel Fuel Update (EIA)

Average Electricity Prices, Projected vs. Actual Average Electricity Prices, Projected vs. Actual (nominal cents per kilowatt-hour) 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 AEO 1982 6.38 6.96 7.63 8.23 8.83 9.49 AEO 1983 6.85 7.28 7.74 8.22 8.68 9.18 13.12 AEO 1984 6.67 7.05 7.48 7.89 8.25 8.65 11.53 AEO 1985 6.62 6.94 7.32 7.63 7.89 8.15 8.46 8.85 9.20 9.61 10.04 AEO 1986 6.67 6.88 7.05 7.18 7.35 7.52 7.65 7.87 8.31 8.83 9.41 10.01 10.61 11.33 12.02 AEO 1987 6.63 6.65 6.92 7.12 7.38 7.62 7.94 8.36 8.86 11.99 AEO 1989* 6.50 6.75 7.14 7.48 7.82 8.11 8.50 8.91 9.39 9.91 10.49 11.05 11.61 AEO 1990 6.49 6.72 8.40 10.99 14.5 AEO 1991 6.94 7.31 7.59 7.82 8.18 8.38 8.54 8.73 8.99 9.38 9.83 10.29 10.83 11.36 11.94 12.58 13.21 13.88 14.58 15.21 AEO 1992 6.97 7.16 7.32 7.56 7.78 8.04 8.29 8.57 8.93 9.38 9.82 10.26 10.73 11.25 11.83 12.37 12.96 13.58 14.23 AEO 1993

323

Table 11. Natural Gas Net Imports, Projected vs. Actual  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas Net Imports, Projected vs. Actual Natural Gas Net Imports, Projected vs. Actual (trillion cubic feet) 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 AEO 1982 1.19 1.19 1.19 1.19 1.19 1.19 AEO 1983 1.08 1.16 1.23 1.23 1.23 1.23 1.23 AEO 1984 0.99 1.05 1.16 1.27 1.43 1.57 2.11 AEO 1985 0.94 1.00 1.19 1.45 1.58 1.86 1.94 2.06 2.17 2.32 2.44 AEO 1986 0.74 0.88 0.62 1.03 1.05 1.27 1.39 1.47 1.66 1.79 1.96 2.17 2.38 2.42 2.43 AEO 1987 0.84 0.89 1.07 1.16 1.26 1.36 1.46 1.65 1.75 2.50 AEO 1989* 1.15 1.32 1.44 1.52 1.61 1.70 1.79 1.87 1.98 2.06 2.15 2.23 2.31 AEO 1990 1.26 1.43 2.07 2.68 2.95 AEO 1991 1.36 1.53 1.70 1.82 2.11 2.30 2.33 2.36 2.42 2.49 2.56 2.70 2.75 2.83 2.90 2.95 3.02 3.09 3.17 3.19 AEO 1992 1.48 1.62 1.88 2.08 2.25 2.41 2.56 2.68 2.70 2.72 2.76 2.84 2.92 3.05 3.10 3.20 3.25 3.30 3.30 AEO 1993 1.79 2.08 2.35 2.49 2.61 2.74 2.89 2.95 3.00 3.05 3.10

324

Table 8. Total Natural Gas Consumption, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

Total Natural Gas Consumption, Projected vs. Actual Total Natural Gas Consumption, Projected vs. Actual Projected (trillion cubic feet) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1994 19.87 20.21 20.64 20.99 21.20 21.42 21.60 21.99 22.37 22.63 22.95 23.22 23.58 23.82 24.09 24.13 24.02 24.14 AEO 1995 20.82 20.66 20.85 21.21 21.65 21.95 22.12 22.25 22.43 22.62 22.87 23.08 23.36 23.61 24.08 24.23 24.59 AEO 1996 21.32 21.64 22.11 22.21 22.26 22.34 22.46 22.74 23.14 23.63 24.08 24.25 24.63 25.11 25.56 26.00 26.63 AEO 1997 22.15 22.75 23.24 23.64 23.86 24.13 24.65 25.34 25.82 26.22 26.52 27.00 27.35 27.70 28.01 28.47 AEO 1998 21.84 23.03 23.84 24.08 24.44 24.81 25.33 25.72 26.22 26.65 27.22 27.84 28.35 28.84 29.17 AEO 1999 21.35 22.36 22.54 23.18 23.65 24.17 24.57 25.19 25.77 26.41 26.92 27.42 28.02 28.50

325

Era el actual supervit de neurocirujanos previsible en 2009? Anlisis de la situacin sobre la base de los datos del Informe de oferta y necesidad de especialistas mdicos en Espaa (2008-2025)  

Science Journals Connector (OSTI)

ResumenIntroduccin En el ao 2009 el Ministerio de Sanidad y Consumo (MSC), en el Informe de oferta y necesidad de especialistas mdicos en Espaa (2008-2025), categoriz el escenario de nuestra especialidad como de dficit moderado de especialistas. Sin embargo, la neurociruga espaola vive actualmente una situacin caracterizada por un excedente de neurocirujanos. Objetivos Determinar si, tras el informe del MSC, era posible en el ao 2009 prever el exceso actual de neurocirujanos, as como cul ser la proyeccin ms probable de oferta y demanda en el ao 2017. Material y mtodos A partir de los datos crudos extrados del informe del MSC, del estudio sobre la edad de los neurocirujanos espaoles realizado por la Junta Directiva de la SENEC en 2001 y de las tasas de mortalidad anual para los distintos rangos de edad ofrecidas por el Instituto Nacional de Estadstica, realizamos una prediccin de la evolucin de la oferta y la demanda de neurocirujanos para los periodos 2008-2012 y 2013-2017. Resultados La situacin actual de exceso de especialistas era previsible en 2009 y, de no tomarse las medidas oportunas, en el ao 2017 probablemente existir un supervit de ms de 100 neurocirujanos en nuestro pas, pudiendo alcanzarse una tasa de paro superior al 26% en el peor escenario. Conclusiones Es necesario y urgente limitar la oferta de plazas de residencia de neurociruga y adecuarlas a la demanda real de especialistas existente. Para ello resulta imprescindible recabar informacin estructural actualizada y peridica de los distintos Servicios y Unidades de Neurociruga, as como revisar las condiciones de acreditacin de las ms de 50 unidades docentes existentes en nuestro pas. Introduction In 2009 the Spanish Ministry of Health (SMH) published the report of supply and demand of medical specialists in Spain (2008-2025), in which our specialty was considered as presenting a moderate deficit of consultants. However, Spanish neurosurgery is currently in a situation of having a surplus of neurosurgeons. Objectives To determine whether it was possible to predict the current excess of neurosurgeons in 2009 and to forecast the most likely perspective of supply and demand in 2017. Material and methods Raw data extracted from the SMH report, information on the ages of the Spanish neurosurgeons obtained from the study performed by our Board of Directors in 2001, and annual mortality rates for different age ranges provided by the National Institute of Statistics, were used to predict the evolution of supply and demand of neurosurgeons for the periods 2008-2012 and 2013-2017. Results The current situation of an excess of specialists was predictable in 2009, and if appropriate measures are not taken, a surplus of more than 100 neurosurgeons is likely in 2017, with an unemployment rate above 26% in the worst scenario. Conclusions In order to match the actual and future demand of specialists, it is necessary and urgent to reduce the number of neurosurgical in-training positions. To achieve this goal, it is essential to obtain periodical and up-to-date structural information of the different Neurosurgery Departments and Units, and to revisit the accreditation terms of the more than fifty current teaching units.

Rubn Martn-Lez; Javier Ibez; Alfonso Lagares; Jos Fernndez-Aln; Ramiro Dez-Lobato

2012-01-01T23:59:59.000Z

326

Energy Forecasting Framework and Emissions Consensus Tool (EFFECT) | Open  

Open Energy Info (EERE)

Energy Forecasting Framework and Emissions Consensus Tool (EFFECT) Energy Forecasting Framework and Emissions Consensus Tool (EFFECT) Jump to: navigation, search LEDSGP green logo.png FIND MORE DIA TOOLS This tool is part of the Development Impacts Assessment (DIA) Toolkit from the LEDS Global Partnership. Tool Summary LAUNCH TOOL Name: Energy Forecasting Framework and Emissions Consensus Tool (EFFECT) Agency/Company /Organization: Energy Sector Management Assistance Program of the World Bank Sector: Energy Focus Area: Non-renewable Energy Topics: Baseline projection, Co-benefits assessment, GHG inventory Resource Type: Software/modeling tools User Interface: Spreadsheet Complexity/Ease of Use: Simple Website: www.esmap.org/esmap/EFFECT Cost: Free Equivalent URI: www.esmap.org/esmap/EFFECT Energy Forecasting Framework and Emissions Consensus Tool (EFFECT) Screenshot

327

Forecasting Crude Oil Spot Price Using OECD Petroleum Inventory  

Gasoline and Diesel Fuel Update (EIA)

Forecasting Forecasting Crude Oil Spot Price Using OECD Petroleum Inventory Levels MICHAEL YE, ∗ JOHN ZYREN, ∗∗ AND JOANNE SHORE ∗∗ Abstract This paper presents a short-term monthly forecasting model of West Texas Intermedi- ate crude oil spot price using OECD petroleum inventory levels. Theoretically, petroleum inventory levels are a measure of the balance, or imbalance, between petroleum production and demand, and thus provide a good market barometer of crude oil price change. Based on an understanding of petroleum market fundamentals and observed market behavior during the post-Gulf War period, the model was developed with the objectives of being both simple and practical, with required data readily available. As a result, the model is useful to industry and government decision-makers in forecasting price and investigat- ing the impacts of changes on price, should inventories,

328

Adaptive sampling and forecasting with mobile sensor networks  

E-Print Network [OSTI]

This thesis addresses planning of mobile sensor networks to extract the best information possible out of the environment to improve the (ensemble) forecast at some verification region in the future. To define the information ...

Choi, Han-Lim

2009-01-01T23:59:59.000Z

329

Pacific Adaptation Strategy Assistance Program Dynamical Seasonal Forecasting  

E-Print Network [OSTI]

Pacific Adaptation Strategy Assistance Program Dynamical Seasonal Forecasting Seasonal Prediction · POAMA · Issues for future Outline #12;Pacific Adaptation Strategy Assistance Program Major source Adaptation Strategy Assistance Program El Nino Mean State · Easterlies westward surface current upwelling

Lim, Eun-pa

330

Forecasting Volatility in Stock Market Using GARCH Models  

E-Print Network [OSTI]

Forecasting volatility has held the attention of academics and practitioners all over the world. The objective for this master's thesis is to predict the volatility in stock market by using generalized autoregressive ...

Yang, Xiaorong

2008-01-01T23:59:59.000Z

331

Exponential smoothing with covariates applied to electricity demand forecast  

Science Journals Connector (OSTI)

Exponential smoothing methods are widely used as forecasting techniques in industry and business. Their usual formulation, however, does not allow covariates to be used for introducing extra information into the forecasting process. In this paper, we analyse an extension of the exponential smoothing formulation that allows the use of covariates and the joint estimation of all the unknowns in the model, which improves the forecasting results. The whole procedure is detailed with a real example on forecasting the daily demand for electricity in Spain. The time series of daily electricity demand contains two seasonal patterns: here the within-week seasonal cycle is modelled as usual in exponential smoothing, while the within-year cycle is modelled using covariates, specifically two harmonic explanatory variables. Calendar effects, such as national and local holidays and vacation periods, are also introduced using covariates. [Received 28 September 2010; Revised 6 March 2011, 2 October 2011; Accepted 16 October 2011

José D. Bermúdez

2013-01-01T23:59:59.000Z

332

Initial conditions estimation for improving forecast accuracy in exponential smoothing  

Science Journals Connector (OSTI)

In this paper we analyze the importance of initial conditions in exponential smoothing models on forecast errors and prediction intervals. We work with certain exponential smoothing models, namely Holts additive...

E. Vercher; A. Corbern-Vallet; J. V. Segura; J. D. Bermdez

2012-07-01T23:59:59.000Z

333

A Bayesian approach to forecast intermittent demand for seasonal products  

Science Journals Connector (OSTI)

This paper investigates the forecasting of a large fluctuating seasonal demand prior to peak sale season using a practical time series, collected from the US Census Bureau. Due to the extreme natural events (e.g. excessive snow fall and calamities), sales may not occur, inventory may not replenish and demand may set off unrecorded during the peak sale season. This characterises a seasonal time series to an intermittent category. A seasonal autoregressive integrated moving average (SARIMA), a multiplicative exponential smoothing (M-ES) and an effective modelling approach using Bayesian computational process are analysed in the context of seasonal and intermittent forecast. Several forecast error indicators and a cost factor are used to compare the models. In cost factor analysis, cost is measured optimally using dynamic programming model under periodic review policy. Experimental results demonstrate that Bayesian model performance is much superior to SARIMA and M-ES models, and efficient to forecast seasonal and intermittent demand.

Mohammad Anwar Rahman; Bhaba R. Sarker

2012-01-01T23:59:59.000Z

334

Review/Verify Strategic Skills Needs/Forecasts/Future Mission...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ReviewVerify Strategic Skills NeedsForecastsFuture Mission Shifts Annual Lab Plan (1-10 yrs) Fermilab Strategic Agenda (2-5 yrs) Sector program Execution Plans (1-3...

335

A Parameter for Forecasting Tornadoes Associated with Landfalling Tropical Cyclones  

Science Journals Connector (OSTI)

The authors develop a statistical guidance product, the tropical cyclone tornado parameter (TCTP), for forecasting the probability of one or more tornadoes during a 6-h period that are associated with landfalling tropical cyclones affecting the ...

Matthew J. Onderlinde; Henry E. Fuelberg

2014-10-01T23:59:59.000Z

336

Wind Power Forecasting: State-of-the-Art 2009  

E-Print Network [OSTI]

Wind Power Forecasting: State-of-the-Art 2009 ANL/DIS-10-1 Decision and Information Sciences about Argonne and its pioneering science and technology programs, see www.anl.gov. #12;Wind Power

Kemner, Ken

337

2007 National Hurricane Center Forecast Verification Report James L. Franklin  

E-Print Network [OSTI]

storms 17 4. Genesis Forecasts 17 5. Summary and Concluding Remarks 18 a. Atlantic Summary 18 statistical models, provided the best intensity guidance at each time period. The 2007 season marked the first

338

Recently released EIA report presents international forecasting data  

SciTech Connect (OSTI)

This report presents information from the Energy Information Administration (EIA). Articles are included on international energy forecasting data, data on the use of home appliances, gasoline prices, household energy use, and EIA information products and dissemination avenues.

NONE

1995-05-01T23:59:59.000Z

339

FINAL DEMAND FORECAST FORMS AND INSTRUCTIONS FOR THE 2007  

E-Print Network [OSTI]

......................................................................... 11 3. Demand Side Management (DSM) Program Impacts................................... 13 4. Demand Sylvia Bender Manager DEMAND ANALYSIS OFFICE Scott W. Matthews Chief Deputy Director B.B. Blevins Forecast Methods and Models ....................................................... 14 5. Demand-Side

340

Information-Based Skill Scores for Probabilistic Forecasts  

Science Journals Connector (OSTI)

The information content, that is, the predictive capability, of a forecast system is often quantified with skill scores. This paper introduces two ranked mutual information skill (RMIS) scores, RMISO and RMISY, for the evaluation of probabilistic ...

Bodo Ahrens; Andr Walser

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "forecast date actual" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

A methodology for forecasting carbon dioxide flooding performance  

E-Print Network [OSTI]

A methodology was developed for forecasting carbon dioxide (CO2) flooding performance quickly and reliably. The feasibility of carbon dioxide flooding in the Dollarhide Clearfork "AB" Unit was evaluated using the methodology. This technique is very...

Marroquin Cabrera, Juan Carlos

2012-06-07T23:59:59.000Z

342

Evolutionary Optimization of an Ice Accretion Forecasting System  

Science Journals Connector (OSTI)

The ability to model and forecast accretion of ice on structures is very important for many industrial sectors. For example, studies conducted by the power transmission industry indicate that the majority of failures are caused by icing on ...

Pawel Pytlak; Petr Musilek; Edward Lozowski; Dan Arnold

2010-07-01T23:59:59.000Z

343

Diagnosing the Origin of Extended-Range Forecast Errors  

Science Journals Connector (OSTI)

Experiments with the ECMWF model are carried out to study the influence that a correct representation of the lower boundary conditions, the tropical atmosphere, and the Northern Hemisphere stratosphere would have on extended-range forecast skill ...

T. Jung; M. J. Miller; T. N. Palmer

2010-06-01T23:59:59.000Z

344

Application of an Improved SVM Algorithm for Wind Speed Forecasting  

Science Journals Connector (OSTI)

An improved Support Vector Machine (SVM) algorithm is used to forecast wind in Doubly Fed Induction Generator (DFIG) wind power system without aerodromometer. The ... Validation (CV) method. Finally, 3.6MW DFIG w...

Huaqiang Zhang; Xinsheng Wang; Yinxiao Wu

2011-01-01T23:59:59.000Z

345

Research on Development Trends of Power Load Forecasting Methods  

Science Journals Connector (OSTI)

In practical problem, number of samples is often limited, for complex issues such as power load forecasting, generally available historical data and information of impact factor are very ... support vector mechan...

Litong Dong; Jun Xu; Haibo Liu; Ying Guo

2014-01-01T23:59:59.000Z

346

Representing Forecast Error in a Convection-Permitting Ensemble System  

Science Journals Connector (OSTI)

Ensembles provide an opportunity to greatly improve short-term prediction of local weather hazards, yet generating reliable predictions remain a significant challenge. In particular, convection-permitting ensemble forecast systems (CPEFSs) have ...

Glen S. Romine; Craig S. Schwartz; Judith Berner; Kathryn R. Fossell; Chris Snyder; Jeff L. Anderson; Morris L. Weisman

2014-12-01T23:59:59.000Z

347

Weather Research and Forecasting Model 2.2 Documentation  

E-Print Network [OSTI]

................................................................................................. 20 3.1.2 Integrate's Flow of ControlWeather Research and Forecasting Model 2.2 Documentation: A Step-by-step guide of a Model Run .......................................................................................................................... 19 3.1 The Integrate Subroutine

Sadjadi, S. Masoud

348

Network Bandwidth Utilization Forecast Model on High Bandwidth Network  

SciTech Connect (OSTI)

With the increasing number of geographically distributed scientific collaborations and the scale of the data size growth, it has become more challenging for users to achieve the best possible network performance on a shared network. We have developed a forecast model to predict expected bandwidth utilization for high-bandwidth wide area network. The forecast model can improve the efficiency of resource utilization and scheduling data movements on high-bandwidth network to accommodate ever increasing data volume for large-scale scientific data applications. Univariate model is developed with STL and ARIMA on SNMP path utilization data. Compared with traditional approach such as Box-Jenkins methodology, our forecast model reduces computation time by 83.2percent. It also shows resilience against abrupt network usage change. The accuracy of the forecast model is within the standard deviation of the monitored measurements.

Yoo, Wucherl; Sim, Alex

2014-07-07T23:59:59.000Z

349

Wind Speed Forecasting Using a Hybrid Neural-Evolutive Approach  

Science Journals Connector (OSTI)

The design of models for time series prediction has found a solid foundation on statistics. Recently, artificial neural networks have been a good choice as approximators to model and forecast time series. Designing a neural network that provides a good ...

Juan J. Flores; Roberto Loaeza; Hctor Rodrguez; Erasmo Cadenas

2009-11-01T23:59:59.000Z

350

E-Print Network 3.0 - actual results satellitenexperiment Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The actual case here corresponds to the minor windows (U0.5) case in Table 6. Table A1: Load and energy... .96) 6343.77 (3316.14) 933.65 (901.44) Major windows (Actual) Diff. - -...

351

A model for short term electric load forecasting  

E-Print Network [OSTI]

A MODEL FOR SHORT TERM ELECTRIC LOAD FORECASTING A Thesis by JOHN ROBERT TIGUE, III Submitted to the Graduate College of Texas ASM University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE May 1975 Major... Subject: Electrical Engineering A MODEL FOR SHORT TERM ELECTRIC LOAD FORECASTING A Thesis by JOHN ROBERT TIGUE& III Approved as to style and content by: (Chairman of Committee) (Head Depart t) (Member) ;(Me r (Member) (Member) May 1975 ABSTRACT...

Tigue, John Robert

1975-01-01T23:59:59.000Z

352

Radiation fog forecasting using a 1-dimensional model  

E-Print Network [OSTI]

measuring site (Molly Caren), the soil moisture measuring site (Wilmington), and (b) location of the forecast site (Ohio River Basin near Cincinnati including Lunken airport) . . 23 3 An example of a COBEL configuration file for 25 August 1996, showing... measuring site (Molly Caren), the soil moisture measuring site (Wilmington), and (b) location of the forecast site (Ohio River Basin near Cincinnati including Lunken airport) . . 23 3 An example of a COBEL configuration file for 25 August 1996, showing...

Peyraud, Lionel

2012-06-07T23:59:59.000Z

353

Annual Energy Outlook with Projections to 2025 - Forecast Comparisons  

Gasoline and Diesel Fuel Update (EIA)

Forecast Comparisons Forecast Comparisons Annual Energy Outlook 2005 Forecast Comparisons Table 32. Forecasts of annual average economic growth, 2003-2025 Printer Friendly Version Average annual percentage growth Forecast 2003-2009 2003-2014 2003-2025 AEO2004 3.5 3.2 3.0 AEO2005 Reference 3.4 3.3 3.1 Low growth 2.9 2.8 2.5 High growth 4.1 3.9 3.6 GII 3.4 3.2 3.1 OMB 3.6 NA NA CBO 3.5 3.1 NA OEF 3.5 3.5 NA Only one other organization—Global Insight, Incorporated (GII)—produces a comprehensive energy projection with a time horizon similar to that of AEO2005. Other organizations address one or more aspects of the energy markets. The most recent projection from GII, as well as other forecasts that concentrate on economic growth, international oil prices, energy

354

Weather-based forecasts of California crop yields  

SciTech Connect (OSTI)

Crop yield forecasts provide useful information to a range of users. Yields for several crops in California are currently forecast based on field surveys and farmer interviews, while for many crops official forecasts do not exist. As broad-scale crop yields are largely dependent on weather, measurements from existing meteorological stations have the potential to provide a reliable, timely, and cost-effective means to anticipate crop yields. We developed weather-based models of state-wide yields for 12 major California crops (wine grapes, lettuce, almonds, strawberries, table grapes, hay, oranges, cotton, tomatoes, walnuts, avocados, and pistachios), and tested their accuracy using cross-validation over the 1980-2003 period. Many crops were forecast with high accuracy, as judged by the percent of yield variation explained by the forecast, the number of yields with correctly predicted direction of yield change, or the number of yields with correctly predicted extreme yields. The most successfully modeled crop was almonds, with 81% of yield variance captured by the forecast. Predictions for most crops relied on weather measurements well before harvest time, allowing for lead times that were longer than existing procedures in many cases.

Lobell, D B; Cahill, K N; Field, C B

2005-09-26T23:59:59.000Z

355

Wave height forecasting in Dayyer, the Persian Gulf  

Science Journals Connector (OSTI)

Forecasting of wave parameters is necessary for many marine and coastal operations. Different forecasting methodologies have been developed using the wind and wave characteristics. In this paper, artificial neural network (ANN) as a robust data learning method is used to forecast the wave height for the next 3, 6, 12 and 24h in the Persian Gulf. To determine the effective parameters, different models with various combinations of input parameters were considered. Parameters such as wind speed, direction and wave height of the previous 3h, were found to be the best inputs. Furthermore, using the difference between wave and wind directions showed better performance. The results also indicated that if only the wind parameters are used as model inputs the accuracy of the forecasting increases as the time horizon increases up to 6h. This can be due to the lower influence of previous wave heights on larger lead time forecasting and the existing lag between the wind and wave growth. It was also found that in short lead times, the forecasted wave heights primarily depend on the previous wave heights, while in larger lead times there is a greater dependence on previous wind speeds.

B. Kamranzad; A. Etemad-Shahidi; M.H. Kazeminezhad

2011-01-01T23:59:59.000Z

356

Table 19. Total Commercial Energy Consumption, Projected vs. Actual  

Gasoline and Diesel Fuel Update (EIA)

Commercial Energy Consumption, Projected vs. Actual Commercial Energy Consumption, Projected vs. Actual (quadrillion Btu) 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 AEO 1982 6.6 6.7 6.8 6.8 6.8 6.9 AEO 1983 6.4 6.6 6.8 6.9 7.0 7.1 7.2 AEO 1984 6.2 6.4 6.5 6.7 6.8 6.9 7.3 AEO 1985 5.9 6.1 6.2 6.3 6.4 6.5 6.7 AEO 1986 6.2 6.3 6.4 6.4 6.5 7.1 7.4 AEO 1987 6.1 6.1 6.3 6.4 6.6 6.7 6.8 6.9 6.9 7.3 AEO 1989* 6.6 6.7 6.9 7.0 7.0 7.1 7.2 7.3 7.3 7.4 7.5 7.6 7.7 AEO 1990 6.6 6.8 7.1 7.4 7.8 AEO 1991 6.7 6.9 7.0 7.1 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 8.0 8.1 8.2 8.3 8.4 8.6 8.7 AEO 1992 6.8 7.1 7.2 7.3 7.3 7.4 7.5 7.6 7.7 7.8 7.9 8.0 8.1 8.2 8.3 8.4 8.5 8.6 8.7 AEO 1993 7.2 7.3 7.4 7.4 7.5 7.6 7.7 7.7 7.8 7.9 7.9 8.0 8.0 8.1 8.1 8.1 8.2 8.2 AEO 1994 6.8 6.9 6.9 7.0 7.1 7.1 7.2 7.2 7.3 7.3 7.4 7.4 7.4 7.5 7.5 7.5 7.5 AEO 1995 6.94 6.9 7.0 7.0 7.0 7.1 7.1 7.1 7.1 7.1 7.2 7.2 7.2 7.2 7.3 7.3 AEO 1996 7.1 7.2 7.2 7.3 7.3 7.4 7.4 7.5 7.6 7.6 7.7 7.7 7.8 7.9 8.0

357

MEMORANDUM I TO: FILE DATE  

Office of Legacy Management (LM)

MEMORANDUM MEMORANDUM I TO: FILE DATE -----_-_- FaOM: ~~,~hkcid!,~- ' ALTERNATE CITY: I\ptw)a.yk --~---_--___-~--~---______ STATE: I current: ------------_------_-~~~~~ if yes, date contacted ____ TYPE OF OPERATION -_---_---------__ 0 Research & Development 6 Facility Type 0 Production scale testing 0 Pilat Scale 0 Bench Scale Process 0 Theoretical Studies Sample $ rraductian & Analysis a Manufacturing I 0 University I (1 Research Organization 0 Government Sponao&ed Facility 0 Cither I ----e------y-------- 0 Disposal/Storage TYPE OF CONTRACT --~_----~__~~~-- ' 0 Prime q Subcontract& q Purchase Order cl Other informatian (i.e., cost + fixed fee, unit pri'ce, time & material, qtc) ------- --------------------~------ Contract/Purchase Order #

358

DATE:  

Broader source: Energy.gov (indexed) [DOE]

12 Request for Pre-Applications 12 Request for Pre-Applications Workscope Descriptions FY 2012 Request for Pre-Applications PROGRAM SUPPORTING: FUEL CYCLE R&D SEPARATIONS AND WASTE FORMS (F E DE R A L POC - J I M B R E SE E & T E C H NI C A L POC - T E R R Y T ODD) Separations and Waste Forms (FC-1) - The separations and waste forms campaign develops the next generation of fuel cycle and waste management technologies that enable a sustainable fuel cycle, with minimal processing, waste generation, and potential for material diversion. Today's technology challenges include the economical recovery of transuranic elements for recycle/transmutation; and minimizing waste generation (including both high level and low level waste). Priority research efforts revolve around achieving near-zero radioactive off-gas emissions; developing a simplified, single-step

359

DATE  

Broader source: Energy.gov (indexed) [DOE]

2 2 SECTION A. Project Title: INL - Off-Road ATV Use In Support of Engineering Surveys SECTION B. Project Description The proposed action will allow for off-road ATV use near T-24 and T-25 at the Idaho National Laboratory Site. The ATV(s) will be used to survey in support of engineering design for a proposed upgraded haul road within the INL Site. Currently, an Environmental Assessment is being prepared to address upgrading either T-24 or T-25 to establish a site transportation route for the out-of-commerce shipment of materials and wastes from MFC to other site areas to reduce U.S. Highway 20 road closures, improve safety, and reduce cost. Since off-road use of motorized vehicles is prohibited unless approval is obtained, this Environmental Checklist will document that

360

DATE:  

Broader source: Energy.gov (indexed) [DOE]

MEASUREMENT SENSITIVE DOE G 440.2B-1A 9-19-05 IMPLEMENTATION GUIDE AVIATION PROGRAM PERFORMANCE INDICATORS (METRICS) for use with DOE O 440.2B, Aviation Management and Safety [This Guide describes suggested nonmandatory approaches for meeting requirements. Guides are not requirements documents and may not be construed as requirements in any audit or appraisal for compliance with the parent Policy, Order, Notice, or Manual.] U.S. Department of Energy Washington, D.C. 20585 AVAILABLE ONLINE AT: INITIATED BY: www.directives.doe.gov Office of Aviation Management/OMBE/CFO DOE G 440.2B-1A i (and ii) 9-19-05 FOREWORD This Department of Energy (DOE) Aviation Program performance indicators interim guide is approved by the Office of Aviation Management (OAM) and is available for use by all DOE and

Note: This page contains sample records for the topic "forecast date actual" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

DATE  

Broader source: Energy.gov (indexed) [DOE]

09-003 09-003 SECTION A. Project Title: Removal of Central Facilities Area (CFA)-661 Interior Walls and Mezzanine. SECTION B. Project Description The initial action to be covered under this Environmental Checklist will be removal of the mezzanines from CFA-661 to provide for material storage and work space for the National and Homeland Security (N&HS) Wireless Test Bed project. More specifically, this involves storage of electronic equipment, antennas and antenna masts, personnel supplies, and a variety of spare parts to support the project. In addition to storage, plans include a staging and lay down area where partial assembly of project equipment can be performed. Following completion of N&HS work within CFA-661, Facilities and Site Services will then remove the interior walls.

362

DATE  

Broader source: Energy.gov (indexed) [DOE]

ICP-12-003 ICP-12-003 SECTION A. Project Title: CPP-684 - Remote Analytical Laboratory Facility Modifications SECTION B. Project Description The proposed activities are intended to render CPP-684 Remote Analytical Laboratory (RAL) as a limited access area by removing existing operational functions that are currently performed in the facility. In general, the activities will involve (1) removing the need for building heat and overall reduction of power consumption; (2) converting the existing fire protection system to an anti-freeze charged system; (3) relocating the Remote Distribution Module (RDM), which is part of installed equipment used for the emergency communication system from CPP-684 to CPP-663; and, if pursued, (4) perform specific tasks which would allow a downgrade CPP-684

363

DATE  

Broader source: Energy.gov (indexed) [DOE]

3 3 SECTION A. Project Title: Relocation of National and Homeland Security New Generation Wireless Test Bed Equipment and Personnel SECTION B. Project Description: This activity is to relocate and consolidate Battelle Energy Alliance, LLC (BEA) National and Homeland Security (NHS) New Generation Wireless Test Bed (NGWTB) program personnel and equipment from Critical Infrastructure Test Range Complex (CITRC) to Central Facilitis Area (CFA). This activity also includes relocating the antenna field from vicinity Power Burst Facility (PBF)-641 to the vicinity of PBF-620 Cell Site 9 area. The Remote Testing Monitoring Facility will be relocated from the vicinity of Gate 3 to the Cell Site 9 area. The Cell Site 9 area near PBF-620 is previously disturbed soil and asphalt.

364

DATE  

Broader source: Energy.gov (indexed) [DOE]

16 16 SECTION A. Project Title: GaRDS Vehicle X-Ray System Procurement, Installation and Operations SECTION B. Project Description: . This effort will be to procure, install, and operate a Gamma Radiation Detection System (GaRDS) capable of providing X-Ray images of incoming vehicles and delivery trucks. The scanner will be equipped with a 1 Ci Cobalt-60 gamma source and will be installed in building MFC-736. This security building is located on Taylor Blvd approximately one mile south of the Materials and Fuels Complex (MFC) and already houses a Vehicle Explosives Detection System equipped with two 50 microgram Cf-252 sources. The purpose of the proposed detection system is to enhance the security capability for MFC facilities, research programs, and personnel.

365

DATE  

Broader source: Energy.gov (indexed) [DOE]

2 2 SECTION A. Project Title: MFC Dial Room Replacement Project SECTION B. Project Description: The proposed project is to construct and operate a new dial room at the Materials and Fuels Complex (MFC) to continue operation of the telecommunications system at the Idaho National Laboratory (INL). As part of the INL Private Branch Exchange (PBX) consolidation effort, the need to replace Central Facilities Area (CFA), Radioactive Waste Management Complex (RWMC), and Power Burst Facility (PBF) PBX switches will eliminate the current switches potential failure and provide the necessary maintainable hardware and software to support INL missions. The project will maintain the existing dial room in the basement of MFC-752 as a splice/conduit/equipment

366

DATE  

Broader source: Energy.gov (indexed) [DOE]

09-001 09-001 SECTION A. Project Title: ICP Routine Maintenance SECTION B. Project Description The purpose of this document is to address actions that meet the intent of the categorical exclusion (CX) B1.3 as described in 10 CFR 1021, Appendix B to Subpart D. Both typical and non-typical types of actions, such as routine maintenance, minor modifications, and custodial services required to support safe and efficient plant operations even if performed on an infrequent basis are addressed. All of the activities will be performed in support of CWI operations. The actions will occur within site boundaries of the INL and ICP facilities and within leased facilities in Idaho Falls, Idaho. Routine maintenance includes custodial services for buildings, structures, rights-of-way, infrastructures (e.g., pathways, roads, and

367

DATE  

Broader source: Energy.gov (indexed) [DOE]

3 3 SECTION A. Project Title: INL - Site Wide Well Abandonment Activities SECTION B. Project Description The proposed action will abandon inactive wells and injection wells at the Idaho National Laboratory (INL) Site. Wells and injection wells will be abandoned as per MCP-1442, MCP-3480 and the Idaho Department of Water Resources (IDWR) requirements, as applicable. The wells to be abandoned are located both within the INL facility boundaries and outside of the INL facility boundaries. The proposed action will address all classes of wells including Class IV and V injection wells. The wells will be abandoned in accordance with instructions provided in this Environmental Checklist, MCP-3480 and Section 4.5 in MCP-1442, Well Drilling, Maintenance, Surveillance, and Abandonment Activities. The MCPs identify the process to be followed for

368

DATE  

Broader source: Energy.gov (indexed) [DOE]

5 5 CX Posting No.: DOE-ID-ICP-12-002 SECTION A. Project Title: ICP Routine Maintenance SECTION B. Project Description The purpose of this document is to address actions that meet the intent of the categorical exclusion (CX) B1.3 as described in 10 CFR 1021, Appendix B to Subpart D. Both typical and non-typical types of actions, such as routine maintenance, minor modifications, and custodial services required to support safe and efficient plant operations even if performed on an infrequent basis are addressed. All of the activities will be performed in support of CWI operations. The actions will occur within site boundaries of the INL and ICP facilities and within leased facilities in Idaho Falls, Idaho. Routine maintenance includes custodial services for buildings, structures, rights-of-way,

369

DATE  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 1 SECTION A. Project Title: CFA-696 Power and Plumbing Upgrades SECTION B. Project Description: There is insufficient electrical power in the East Bay and the West Bay of the Central Facility Area (CFA) Transportation Complex to allow the craftsmen to fully utilize the available floor space without the use of extension cords. Additionally, a new hydraulic hose clamper is to be installed in the Parts Room and it needs a dedicated 30A power supply. The craftsmen also need another wash sink in the East Bay. The current method of connecting to the internet using Local Area Network (LAN) cables is cumbersome and inefficient. There is not enough lighting in the north side of the southeast section of the East Bay. This project installs the necessary electrical service, additional plumbing, and wireless internet capability as itemized below:

370

DATE  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5 5 CX Posting No.: DOE-ID-ICP-12-002 SECTION A. Project Title: ICP Routine Maintenance SECTION B. Project Description The purpose of this document is to address actions that meet the intent of the categorical exclusion (CX) B1.3 as described in 10 CFR 1021, Appendix B to Subpart D. Both typical and non-typical types of actions, such as routine maintenance, minor modifications, and custodial services required to support safe and efficient plant operations even if performed on an infrequent basis are addressed. All of the activities will be performed in support of CWI operations. The actions will occur within site boundaries of the INL and ICP facilities and within leased facilities in Idaho Falls, Idaho. Routine maintenance includes custodial services for buildings, structures, rights-of-way,

371

DATE  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CX Posting No.: DOE-ID-INL-10-008 CX Posting No.: DOE-ID-INL-10-008 SECTION A. Project Title: Maintenance and Modification of Well TRA-08 SECTION B. Project Description: TRA-08, a groundwater monitoring well located approximately 1.5 miles south of the ATR Complex was drilled and constructed in 1990. The well is currently used as a groundwater monitoring compliance point for the ATR Complex Cold Waste Pond Industrial Wastewater Reuse Permit (IWRP). It is also used for CERCLA groundwater monitoring by CWI. Over the life of the well, corrosion of the carbon steel casing has resulted in an accumulation of rust flakes in the bottom of the well thus adversely affecting the efficiency of the well. In addition, the water level in the well has dropped from a depth of approximately 477 ft below ground surface at

372

DATE  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 2 __________________________ 1 DOE's strategic plans included the Nuclear Energy Research and Development Roadmap" (2010 Predecisional draft) and reports such as "Facilities for the Future of Nuclear Energy Research: A Twenty-year Outlook". SECTION A. Project Title: Materials and Fuel Complex (MFC) Infrastructure Upgrades: Sewage Lagoons Upgrades SECTION B. Project Description: MFC Infrastructure Upgrades - MFC Sewage Lagoon Upgrades This EC focuses on upgrades to the existing 2.4 acre evaporative sewage lagoons, located north-east and outside of the MFC fenced area. These existing lagoons are currently at capacity with the approximately 800 personnel based at MFC. The number of researchers and operations

373

DATE  

Broader source: Energy.gov (indexed) [DOE]

10-009 10-009 SECTION A. Project Title Idaho Falls (IF)-608 Uninterrupted Power Supply Upgrade Project SECTION B. Project Description: This project increases the Uninterrupted Power Supply (UPS) capacity in the IF-608 Information Operations and Research Center (IORC) by removing two existing UPS systems (50 KVA and 36 KVA) and installing a 225 KVA system. A ~15 ton cooling unit will be installed on the roof for heat removal. Associated work will include additional electrical panel(s) and electrical conduit rerouting and installation. Disposal of the existing UPS systems may be required depending on whether they are claimed off the excess list. This work will be performed either under blanket subcontracts or by a separate construction contractor and is planned for completion by

374

DATE  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

6 6 SECTION A. Project Title: TRA-653 HVAC Modifications SECTION B. Project Description: The proposed project plans to replace the existing blowers, swamp coolers and electric heaters in the Idaho National Laboratory (INL) Test Reactor Area-653 (TRA-653) office area with three roof mounted heating, ventilating and air conditioning (HVAC) units; and install six roof mounted HVAC units at the TRA-653 machine shop area. These modifications are needed to enhance workplace habitability, maintain a more consistent building environment, and achieve a more energy efficient system. The TRA- 653 machine shop currently uses portable swamp coolers to cool their shop. TRA-653 is eligible for the National Historic Register, however, the activity as described is exempt from cultural resource review (INL Cultural Resource Management Plan;

375

DATE  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

7 7 SECTION A. Project Title: TRA-609 Compressed Air System Drain Line Modification and Valve Replacement SECTION B. Project Description: Due to periods of insufficient water flow to the sewer ponds, the clay liners in the ponds can dry out and crack. This proposed action is to add an additional drain line, which will allow clean well water that has been used to cool compressors to then be drained into the sewer system ponds during low flow periods in order to maintain a higher, more consistent water level. There are no chemicals added to the water. This project will replace the 1.5" compressor oil cooling water solenoid valves with ball valves on M-6, M-7 and M-8; replace the 2" compressor oil and air cooling system flow control valves on M-6, M-8 and M-9; install a new check valve in the compressed air system auxiliary compressor line; install a drain line

376

DATE  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

10-009 10-009 SECTION A. Project Title Idaho Falls (IF)-608 Uninterrupted Power Supply Upgrade Project SECTION B. Project Description: This project increases the Uninterrupted Power Supply (UPS) capacity in the IF-608 Information Operations and Research Center (IORC) by removing two existing UPS systems (50 KVA and 36 KVA) and installing a 225 KVA system. A ~15 ton cooling unit will be installed on the roof for heat removal. Associated work will include additional electrical panel(s) and electrical conduit rerouting and installation. Disposal of the existing UPS systems may be required depending on whether they are claimed off the excess list. This work will be performed either under blanket subcontracts or by a separate construction contractor and is planned for completion by

377

DATE  

Broader source: Energy.gov (indexed) [DOE]

7 7 SECTION A. Project Title: TRA-609 Compressed Air System Drain Line Modification and Valve Replacement SECTION B. Project Description: Due to periods of insufficient water flow to the sewer ponds, the clay liners in the ponds can dry out and crack. This proposed action is to add an additional drain line, which will allow clean well water that has been used to cool compressors to then be drained into the sewer system ponds during low flow periods in order to maintain a higher, more consistent water level. There are no chemicals added to the water. This project will replace the 1.5" compressor oil cooling water solenoid valves with ball valves on M-6, M-7 and M-8; replace the 2" compressor oil and air cooling system flow control valves on M-6, M-8 and M-9; install a new check valve in the compressed air system auxiliary compressor line; install a drain line

378

DATE  

Broader source: Energy.gov (indexed) [DOE]

4 4 SECTION A. Project Title: Materials and Fuels Complex (MFC) Infrastructure Upgrades - Technical Support Building SECTION B. Project Description: Materials and Fuels Complex (MFC) Infrastructure Upgrades - General The number of researchers and operators at the Materials and Fuels Complex has significantly increased, and is projected to increase further in the future to support the expanding research activities at the facility. These activities will require infrastructure upgrades (office space, potable water, wastewater treatment, communications, etc.) to accommodate the increasing number of personnel and work shifts. The INL will prepare a separate environmental checklist (EC) and conduct the appropriate level of environmental review for each

379

DATE  

Broader source: Energy.gov (indexed) [DOE]

2 2 CX Posting No.: DOE-ID-INL-10-003 SECTION A. Project Title: American Recovery and Reinvestment Act (ARRA) Reactive Tracers. SECTION B. Project Description The American Recovery and Reinvestment Act (ARRA) Reactive Tracers project will be conducted at both the Raft River hydrothermal site in South Central Idaho and at the INL Research Center in Idaho Falls. The purpose of this work is to characterize tracers and test these tracers at the Raft River project through use of tracers and methods under realistic conditions. INL researchers will use an existing commercial hydrothermal site at Raft River that is currently operated by U.S. Geothermal, Inc. (USG), with whom INL has established a Cooperative Research and Development Agreement (CRADA) partnership. Numerous wells have previously been

380

DATE  

Broader source: Energy.gov (indexed) [DOE]

5 5 SECTION A. Project Title: Materials and Fuel Complex (MFC) Infrastructure Upgrades: Modular Office Units SECTION B. Project Description: MFC Infrastructure Upgrades - General The number of researchers and operators at MFC has significantly increased, and is projected to increase further in the future to support the expanding research activities at the facility. These activities will require Infrastructure upgrades (office space, potable water, wastewater treatment, communications, etc.) to accommodate the increasing number of personnel and work shifts. The Idaho National Laboratory (INL) will prepare a separate environmental checklist (EC) and conduct the appropriate level of environmental review for each infrastructure improvement project.

Note: This page contains sample records for the topic "forecast date actual" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

DATE  

Broader source: Energy.gov (indexed) [DOE]

4 4 SECTION A. Project Title: Characterization of Fluidized Beds via Pressure Fluctuation Analysis SECTION B. Project Description: The purpose of this work is to conduct research using pressure as a measure of performance for fluidized beds (spouted, bubbling, or slugging) at the Center for Advanced Energy Studies (CAES). The approach to this research activity consists of two main tasks: 1. Sieving the bed media with a motorized sieve shaker - sintered aluminosilicate spheres (used in the petroleum industry as a proppant to hold fractures open when the rock formation has been hydro-fractured) and assorted seeds (mustard, canola, sorghum, etc.). The aluminosilicate spheres have very little dust potential. Some of the aluminosilicates may have free silica

382

DATE  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 2 CX Posting No.: DOE-ID-INL-10-003 SECTION A. Project Title: American Recovery and Reinvestment Act (ARRA) Reactive Tracers. SECTION B. Project Description The American Recovery and Reinvestment Act (ARRA) Reactive Tracers project will be conducted at both the Raft River hydrothermal site in South Central Idaho and at the INL Research Center in Idaho Falls. The purpose of this work is to characterize tracers and test these tracers at the Raft River project through use of tracers and methods under realistic conditions. INL researchers will use an existing commercial hydrothermal site at Raft River that is currently operated by U.S. Geothermal, Inc. (USG), with whom INL has established a Cooperative Research and Development Agreement (CRADA) partnership. Numerous wells have previously been

383

DATE  

Broader source: Energy.gov (indexed) [DOE]

6 6 SECTION A. Project Title: TRA-653 HVAC Modifications SECTION B. Project Description: The proposed project plans to replace the existing blowers, swamp coolers and electric heaters in the Idaho National Laboratory (INL) Test Reactor Area-653 (TRA-653) office area with three roof mounted heating, ventilating and air conditioning (HVAC) units; and install six roof mounted HVAC units at the TRA-653 machine shop area. These modifications are needed to enhance workplace habitability, maintain a more consistent building environment, and achieve a more energy efficient system. The TRA- 653 machine shop currently uses portable swamp coolers to cool their shop. TRA-653 is eligible for the National Historic Register, however, the activity as described is exempt from cultural resource review (INL Cultural Resource Management Plan;

384

DATE  

Broader source: Energy.gov (indexed) [DOE]

12 12 SECTION A. Project Title: Reactor Power Up Rate, Compressor Replacement, Neutron Radiography Restore, Liquid Scintillation Counter - Texas A&M University SECTION B. Project Description Texas A&M will replace an existing 54-year old compressor to improve reliability of the reactor operation and purchase a liquid scintillator counter to give the facility the ability to perform tritium analysis. Additionally, under NRC License R-83, Texas A&M will up rate the reactor power from 1MW to 1.5 MW and purchase equipment to restore capability to perform Neutron Radiography. SECTION C. Environmental Aspects / Potential Sources of Impact Radioactive Material Use - To calibrate the liquid scintillator, radioactive standards are used. Procedures are in place to handle.

385

DATE  

Broader source: Energy.gov (indexed) [DOE]

42 42 SECTION A. Project Title: Innovative Manufacturing Process for Improving the Erosion/Corrosion Resistance of Power Plant Components via Powder Metallurgy & Hot Isostatic Processing Methods - Electric Power Research Institute SECTION B. Project Description The objective of this project is to conduct the necessary design, processing, manufacturing, and validation studies to assess powder metallurgy/hot isostatic processing (PM/HIP) as a method to produce very large near-net shaped (NNS) components with erosion/corrosion resistant surfaces for use in nuclear and electrical power generation equipment. * Project tasks include the following: * Modeling of NNS Component Alloy & Mold/Can design * Test coupon development, demonstration, and screening for surface applications

386

DATE  

Broader source: Energy.gov (indexed) [DOE]

EC Document No.: DOE-ID-INL-10-011 EC Document No.: DOE-ID-INL-10-011 DIRECTIONS: Responsible Managers, Project Environmental Lead, and Environmental Support personnel complete this form by following the instructions found at the beginning of each section and submit to Environmental Support & Services (environmental.checklist@inl.gov). SECTION A. Project Title: CFA and ATR-Complex Analytical and R&D Laboratory Operation (Overarching) SECTION B. Project Description: This EC replaces overarching EC INL-05-017 due to changes in the laboratories identified in EC INL-05-017. The proposed action will continue to cover laboratory-based analytical and research and development (R&D) activities in laboratories located at the Central Facility Area (CFA) and the Advanced Test Reactor Complex (ATR-C) at the Idaho National Laboratory (INL). These activities include

387

DATE  

Broader source: Energy.gov (indexed) [DOE]

0 0 SECTION A. Project Title: Test Reactor Cask Implementation. SECTION B. Project Description: This proposed action is a process and facility modification. Background / Purpose & Need The Advanced Test Reactor (ATR) uses the Naval Reactors (NR) Casks to transport test trains between the Naval Reactors Facility (NRF) Expended Core Facility and the ATR. The Naval Reactor (NR) Casks, however, are approaching the end of their design life. In 1997, Bettis initiated a contract for construction of the NR Cask replacement, the Test Reactor Cask (TRC). The TRC is a revised and updated design of the NR cask and will be more robust structurally and provide more shielding than the current NR Casks. Construction of two TRCs is nearly finished and the INL must now modify the ATR facility and update ATR safety

388

DATE  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5 5 SECTION A. Project Title: Replace 200,000 Gallon Water Storage Tank at MFC SECTION B. Project Description: The project is to replace the current 200,000 gallon potable water tank at the Idaho National Laboratory (INL) Materials and Fuels Complex (MFC) with a new 300,000 gallon water tank. The existing tank and foundation will be removed and the waste materials managed and disposed under the direction of Waste Generator Services (WGS). The installation area for the new tank will be excavated and the new tank put in place. The new tank will be connected to the existing water system and will be coated on both exterior and interior surfaces to prevent corrosion. All valves and lines will be closed off to the construction area until the new tank is in place and the valves reconnected.

389

DATE  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5 5 SECTION A. Project Title: Materials and Fuel Complex (MFC) Infrastructure Upgrades: Modular Office Units SECTION B. Project Description: MFC Infrastructure Upgrades - General The number of researchers and operators at MFC has significantly increased, and is projected to increase further in the future to support the expanding research activities at the facility. These activities will require Infrastructure upgrades (office space, potable water, wastewater treatment, communications, etc.) to accommodate the increasing number of personnel and work shifts. The Idaho National Laboratory (INL) will prepare a separate environmental checklist (EC) and conduct the appropriate level of environmental review for each infrastructure improvement project.

390

DATE  

Broader source: Energy.gov (indexed) [DOE]

CX Posting No.: DOE-ID-INL-10-008 CX Posting No.: DOE-ID-INL-10-008 SECTION A. Project Title: Maintenance and Modification of Well TRA-08 SECTION B. Project Description: TRA-08, a groundwater monitoring well located approximately 1.5 miles south of the ATR Complex was drilled and constructed in 1990. The well is currently used as a groundwater monitoring compliance point for the ATR Complex Cold Waste Pond Industrial Wastewater Reuse Permit (IWRP). It is also used for CERCLA groundwater monitoring by CWI. Over the life of the well, corrosion of the carbon steel casing has resulted in an accumulation of rust flakes in the bottom of the well thus adversely affecting the efficiency of the well. In addition, the water level in the well has dropped from a depth of approximately 477 ft below ground surface at

391

DATE  

Broader source: Energy.gov (indexed) [DOE]

3 3 CX Posting No.: DOE-ID-ICP-12-005 SECTION A. Project Title: INTEC - U-233 Waste Stream Disposition SECTION B. Project Description The proposed action will transfer 171 drums of U-233 waste from the Advanced Mixed Waste Treatment Project (AMWTP) to INTEC for verification, treatment, and repackaging for final disposition at the Nevada National Security Site (NNSS). The U233 drums are a portion of waste historically managed as transuranic as part of the 1995 Idaho Settlement Agreement.The waste management actions will be performed in CPP-659 or the Radioactive Mixed Waste Staging Facility (CPP-1617). The bulk of the U-233 waste is from the Bettis Atomic Power Laboratory and consists of U-233/Th-232 contaminated materials (minor amounts of enriched, depleted and natural powders) generated in the 1970's during development of a

392

Date:  

Office of Legacy Management (LM)

1.45 10.06 0.99 0.04786 2.85 0.13 1.30 Froude Number Flow Type Notes Messages 0.66 Subcritical 0.64 Subcritical 0.41 Subcritical 0.58 Subcritical 0.48 Subcritical 0.42...

393

DATE  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

understand what is required to be a nuclear supplier. 6. Gen IV Fabrication Centric Roadmap The objective of this program is to develop a succinct document that will allow...

394

Date  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

that Sandia contracts are settled for a reasonable amount and that no instances of fraud related to these contracts is apparent. We will not report on the adequacy of your...

395

DATE:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 E-2 IWFDP Volume 1 (Process Strategy) provides the basis for how the double-shell tanks (DST) will be used to stage and deliver waste feed to the WTP. This volume provides an...

396

DATE:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of approximately 55 Mgal 1 of radioactive waste contained in the Hanford Site waste tanks and closure of all the tanks and associated facilities. The Hanford Federal Facility...

397

DATE  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The Advanced Test Reactor (ATR) uses the Naval Reactors (NR) Casks to transport test trains between the Naval Reactors Facility (NRF) Expended Core Facility and the ATR. The...

398

DATE  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

operations (such as preparation of chemical standards and sample analysis); and small-scale pilot projects (generally less than 2 years) frequently conducted to verify a...

399

DATE:  

Office of Legacy Management (LM)

(w 39 fusrap6 I FROM: Ed Mitchellzm SUBJECT: Elimination Recommendation for American Machine and Foundry in New York City The purpose of this note is to provide the following...

400

DATE  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and repairing wastewater systems lines and connections that could impact the discharge to wastewater systems. 8. Drinking Water Contamination - Performing maintenance activities on...

Note: This page contains sample records for the topic "forecast date actual" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

DATE:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Release; Further Dissemination Unlimited By Janis D. Aardal at 1:25 pm, Jan 31, 2013 DOERL-2001-41 Revision 6 SITEWIDE INSTITUTIONAL CONTROLS PLAN FOR HANFORD CERCLA RESPONSE...

402

DATE  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

buildings"..., and Overarching EC INL-05-002 "Critical Infrastructure Protection (CIP) Program ... Justification: Removal of the interior walls and mezzanines will be a...

403

DATE:  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Corporations Section 743 Any Payment for the Election for a Federal Office or to a Political Committee Section 3003 Reporting on Conference Spending 2 The FAL addresses the...

404

DATE:  

Energy Savers [EERE]

Corporations * Section 735 Any Payment for the Election for a Federal Office or to a Political Committee * Section 742 Reporting on Conference Spending The FAL addresses the...

405

DATE  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of Impact: Generating and Managing Waste - The proposed activity would generate scrap metal and industrial waste. Project personnel will contact Waste Generator Services (WGS) to...

406

DATE:  

Energy Savers [EERE]

Letter (AL) 2013-08 and Financial Assistance Letter (FAL) 2013-05 provide Contracting Officers with notice of the recently passed, Whistleblower Protection Enhancement...

407

DATE  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

will rest on a new concrete foundation and house the necessary heating, ventilation and air conditioning (HVAC), electrical, life safety and communications systems but will not...

408

DATE  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mixed Waste Staging Facility (CPP-1617). The bulk of the U-233 waste is from the Bettis Atomic Power Laboratory and consists of U-233Th-232 contaminated materials (minor...

409

DATE:  

Broader source: Energy.gov (indexed) [DOE]

Consolidated Appropriations Act, 2014, Pub. L. No. 113-76. SUMMARY: Acquisition Letter (AL) 2014-04 and Financial Assistance Letter (FAL) 2014-01 provides implementing...

410

DATE  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Building The INL must operate and maintain infrastructure and facilities to support the nuclear energy research, development, demonstration, and commercial application programs,...

411

DATE:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

es...A-i Appendix B Estimation of Selected Single-Shell Tank Heat Generation Rates...B-i RPP-RPT-54981, Revision 0 ii List of...

412

DATE  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SECTION B. Project Description The proposed activities are intended to render CPP-684 Remote Analytical Laboratory (RAL) as a limited access area by removing existing...

413

DATE:  

Office of Environmental Management (EM)

has been revised. The subject form has been posted on the DOE Financial Assistance web page on the Recipients Page under the Financial Assistance Forms and Information for...

414

DATE  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A. Project Title: Innovative Manufacturing Process for Improving the ErosionCorrosion Resistance of Power Plant Components via Powder Metallurgy & Hot Isostatic Processing...

415

DATE  

Broader source: Energy.gov (indexed) [DOE]

01 01 SECTION A. Project Title: Nuclear Fabrication Consortium SECTION B. Project Description The mission of the NFC will be accomplished through both public and private funding. The list below outlines the programs that have identified for initiation under the initial DOE funding. Additional programs are envisioned and will be proposed, subject to any applicable budget constraints, to DOE-NE as they become known to EWI, the NFC, and DOE. 1. Automation of Advanced Non-Destructive Evaluation (NDE) Technologies The objective of the first phase of this project is to improve the reliability of NDE methods by increasing the automation content. 2. Advanced Laser Technology The objective is to identify laser applications that offer significant productivity gains over the current processes being used, and

416

DATE  

Broader source: Energy.gov (indexed) [DOE]

2 2 __________________________ 1 DOE's strategic plans included the Nuclear Energy Research and Development Roadmap" (2010 Predecisional draft) and reports such as "Facilities for the Future of Nuclear Energy Research: A Twenty-year Outlook". SECTION A. Project Title: Materials and Fuel Complex (MFC) Infrastructure Upgrades: Sewage Lagoons Upgrades SECTION B. Project Description: MFC Infrastructure Upgrades - MFC Sewage Lagoon Upgrades This EC focuses on upgrades to the existing 2.4 acre evaporative sewage lagoons, located north-east and outside of the MFC fenced area. These existing lagoons are currently at capacity with the approximately 800 personnel based at MFC. The number of researchers and operations

417

DATE  

Broader source: Energy.gov (indexed) [DOE]

5 5 SECTION A. Project Title: Replace 200,000 Gallon Water Storage Tank at MFC SECTION B. Project Description: The project is to replace the current 200,000 gallon potable water tank at the Idaho National Laboratory (INL) Materials and Fuels Complex (MFC) with a new 300,000 gallon water tank. The existing tank and foundation will be removed and the waste materials managed and disposed under the direction of Waste Generator Services (WGS). The installation area for the new tank will be excavated and the new tank put in place. The new tank will be connected to the existing water system and will be coated on both exterior and interior surfaces to prevent corrosion. All valves and lines will be closed off to the construction area until the new tank is in place and the valves reconnected.

418

Comparison of Bottom-Up and Top-Down Forecasts: Vision Industry Energy Forecasts with ITEMS and NEMS  

E-Print Network [OSTI]

of the Department of Energy's Office of Industrial Technologies, EIA extracted energy use infonnation from the Annual Energy Outlook (AEO) - 2000 (8) for each of the seven # The Pacific Northwest National Laboratory is operated by Battelle Memorial Institute...-6, 2000 NEMS The NEMS industrial module is the official forecasting model for EIA and thus the Department of Energy. For this reason, the energy prices and output forecasts used to drive the ITEMS model were taken from EIA's AEO 2000. Understanding...

Roop, J. M.; Dahowski, R. T

419

DOE/EIA-0131(10) Natural Gas Annual 2010 Publication Date:  

Gasoline and Diesel Fuel Update (EIA)

10) 10) Natural Gas Annual 2010 Publication Date: December 2011 Energy Information Administration Office of Oil, Gas, and Coal Supply Statistics U.S. Department of Energy Washington, DC 20585 This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the Department of Energy or other Federal agencies. ii Energy Information Administration/Natural Gas Annual 2010

420

Radiokrypton dating finally takes off  

Science Journals Connector (OSTI)

...dating, based on the well-known radioactive decay...essentially has a single, well-mixed, and steady source, the...fortunately it works well for noble gases...Isolation Pilot Plant, New Mexico . J Contam Hydrol 160...radionuclides in Yellowstone geothermal gas emissions: A reconnaissance...

Werner Aeschbach-Hertig

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "forecast date actual" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

EIA - Forecasts and Analysis of Energy Data  

Gasoline and Diesel Fuel Update (EIA)

Oil Markets Oil Markets IEO2005 projects that world crude oil prices in real 2003 dollars will decline from their current level by 2010, then rise gradually through 2025. In the International Energy Outlook 2005 (IEO2005) reference case, world demand for crude oil grows from 78 million barrels per day in 2002 to 103 million barrels per day in 2015 and to just over 119 million barrels per day in 2025. Much of the growth in oil consumption is projected for the emerging Asian nations, where strong economic growth results in a robust increase in oil demand. Emerging Asia (including China and India) accounts for 45 percent of the total world increase in oil use over the forecast period in the IEO2005 reference case. The projected increase in world oil demand would require an increment to world production capability of more than 42 million barrels per day relative to the 2002 crude oil production capacity of 80.0 million barrels per day. Producers in the Organization of Petroleum Exporting Countries (OPEC) are expected to be the major source of production increases. In addition, non-OPEC supply is expected to remain highly competitive, with major increments to supply coming from offshore resources, especially in the Caspian Basin, Latin America, and deepwater West Africa. The estimates of incremental production are based on current proved reserves and a country-by-country assessment of ultimately recoverable petroleum. In the IEO2005 oil price cases, the substantial investment capital required to produce the incremental volumes is assumed to exist, and the investors are expected to receive at least a 10-percent return on investment.

422

A model for Long-term Industrial Energy Forecasting (LIEF)  

SciTech Connect (OSTI)

The purpose of this report is to establish the content and structural validity of the Long-term Industrial Energy Forecasting (LIEF) model, and to provide estimates for the model's parameters. The model is intended to provide decision makers with a relatively simple, yet credible tool to forecast the impacts of policies which affect long-term energy demand in the manufacturing sector. Particular strengths of this model are its relative simplicity which facilitates both ease of use and understanding of results, and the inclusion of relevant causal relationships which provide useful policy handles. The modeling approach of LIEF is intermediate between top-down econometric modeling and bottom-up technology models. It relies on the following simple concept, that trends in aggregate energy demand are dependent upon the factors: (1) trends in total production; (2) sectoral or structural shift, that is, changes in the mix of industrial output from energy-intensive to energy non-intensive sectors; and (3) changes in real energy intensity due to technical change and energy-price effects as measured by the amount of energy used per unit of manufacturing output (KBtu per constant $ of output). The manufacturing sector is first disaggregated according to their historic output growth rates, energy intensities and recycling opportunities. Exogenous, macroeconomic forecasts of individual subsector growth rates and energy prices can then be combined with endogenous forecasts of real energy intensity trends to yield forecasts of overall energy demand. 75 refs.

Ross, M. (Lawrence Berkeley Lab., CA (United States) Michigan Univ., Ann Arbor, MI (United States). Dept. of Physics Argonne National Lab., IL (United States). Environmental Assessment and Information Sciences Div.); Hwang, R. (Lawrence Berkeley Lab., CA (United States))

1992-02-01T23:59:59.000Z

423

A model for Long-term Industrial Energy Forecasting (LIEF)  

SciTech Connect (OSTI)

The purpose of this report is to establish the content and structural validity of the Long-term Industrial Energy Forecasting (LIEF) model, and to provide estimates for the model`s parameters. The model is intended to provide decision makers with a relatively simple, yet credible tool to forecast the impacts of policies which affect long-term energy demand in the manufacturing sector. Particular strengths of this model are its relative simplicity which facilitates both ease of use and understanding of results, and the inclusion of relevant causal relationships which provide useful policy handles. The modeling approach of LIEF is intermediate between top-down econometric modeling and bottom-up technology models. It relies on the following simple concept, that trends in aggregate energy demand are dependent upon the factors: (1) trends in total production; (2) sectoral or structural shift, that is, changes in the mix of industrial output from energy-intensive to energy non-intensive sectors; and (3) changes in real energy intensity due to technical change and energy-price effects as measured by the amount of energy used per unit of manufacturing output (KBtu per constant $ of output). The manufacturing sector is first disaggregated according to their historic output growth rates, energy intensities and recycling opportunities. Exogenous, macroeconomic forecasts of individual subsector growth rates and energy prices can then be combined with endogenous forecasts of real energy intensity trends to yield forecasts of overall energy demand. 75 refs.

Ross, M. [Lawrence Berkeley Lab., CA (United States)]|[Michigan Univ., Ann Arbor, MI (United States). Dept. of Physics]|[Argonne National Lab., IL (United States). Environmental Assessment and Information Sciences Div.; Hwang, R. [Lawrence Berkeley Lab., CA (United States)

1992-02-01T23:59:59.000Z

424

An assessment of electrical load forecasting using artificial neural network  

Science Journals Connector (OSTI)

The forecasting of electricity demand has become one of the major research fields in electrical engineering. The supply industry requires forecasts with lead times, which range from the short term (a few minutes, hours, or days ahead) to the long term (up to 20 years ahead). The major priority for an electrical power utility is to provide uninterrupted power supply to its customers. Long term peak load forecasting plays an important role in electrical power systems in terms of policy planning and budget allocation. This paper presents a peak load forecasting model using artificial neural networks (ANN). The approach in the paper is based on multi-layered back-propagation feed forward neural network. For annual forecasts, there should be 10 to 12 years of historical monthly data available for each electrical system or electrical buss. A case study is performed by using the proposed method of peak load data of a state electricity board of India which maintain high quality, reliable, historical data providing the best possible results. Model's quality is directly dependent upon data integrity.

V. Shrivastava; R.B. Misra; R.C. Bansal

2012-01-01T23:59:59.000Z

425

OTS NOTE DATE: TO: FROM:  

Office of Legacy Management (LM)

TO: FROM: March 25, 1991 A. Williams D. stout P SUBJECT: Elimination Recommendation for the Star Cutter Corporation The .attached memorandum and supporting documents are the basis for our recommendation to eliminate the former Star Cutter Corporation site from further consideration under FUSRAP. The site is located in Farmington Hills, Michigan. Documents discovered to date which indicate use or handling of radioactive material by Star Cutter consist of two Analytical Data Sheets, dated June 29, 1956, prepared by the National Lead Company of Ohio (NLO), an Atomic Energy Commission (AEC) prime contractor. The data sheets report the results of radiological monitoring conducted during operation of an oil- cooled drilling/hollowing machine. The sheets record measurements during

426

Save the Date - NTSF 2013  

Broader source: Energy.gov (indexed) [DOE]

Save the Date Save the Date U.S. Department of Energy National Transportation Stakeholders Forum May 14-16 th , 2013 Buffalo, New York Please mark your calendar to attend the next meeting of the U.S. Department of Energy (DOE) National Transportation Stakeholders Forum (NTSF) scheduled for May 14-16, 2013. This annual event will be held at the Hyatt Regency Hotel, located near the downtown business and entertainment districts in Buffalo, New York. The 2013 meeting is co-sponsored by DOE's Offices of Environmental Management and Nuclear Energy and follows several highly successful yearly gatherings. It is co-hosted by the Council of State Governments Eastern Regional Conference and the Northeast High-Level Radioactive Waste Transportation Task Force.

427

Numerical Simulation of 2010 Pakistan Flood in the Kabul River Basin by Using Lagged Ensemble Rainfall Forecasting  

Science Journals Connector (OSTI)

Lagged ensemble forecasting of rainfall and rainfallrunoffinundation (RRI) forecasting were applied to the devastating flood in the Kabul River basin, the first strike of the 2010 Pakistan flood. The forecasts were performed using the Global ...

Tomoki Ushiyama; Takahiro Sayama; Yuya Tatebe; Susumu Fujioka; Kazuhiko Fukami

2014-02-01T23:59:59.000Z

428

Request Log Closedl Date Yes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

6 FOIA 6 FOIA - Request Log Closedl Date Yes 01 127106 Yes 02/23/06 Yes 04/05/06 Yes 04/03/06 Yes 04/03/06 Yes 05/22/06 Yes 35/30/06 - No. - 00 1 - 002 - 003 - 004 005 006 - 307 - Dated 01 125106 0211 6106 03/29/06 03/31 106 14/03/06 1511 8/06 )5/22/06 Date Rec'd 0 I I2 5/06 02/23/06 03130/06 0313 1 106 04/03/06 05/22/06 05/22/06 HQ or Dir. Direct Transfer from HQ Direct Trans from HQ Direct Direct Transfer 'rom HQ Subject Requesting a list of all your Procurement card holders Requesting copies of any and all Freedom of Information Act (FOIA) requests submitted to the Department of Energy (DOE) by Donna Wright, the Bradenton Herald, or any other individual that requested documentation or information pertaining to the Loral American Beryllium Corporation (also known as the

429

Accounting for fuel price risk: Using forward natural gas prices instead of gas price forecasts to compare renewable to natural gas-fired generation  

SciTech Connect (OSTI)

Against the backdrop of increasingly volatile natural gas prices, renewable energy resources, which by their nature are immune to natural gas fuel price risk, provide a real economic benefit. Unlike many contracts for natural gas-fired generation, renewable generation is typically sold under fixed-price contracts. Assuming that electricity consumers value long-term price stability, a utility or other retail electricity supplier that is looking to expand its resource portfolio (or a policymaker interested in evaluating different resource options) should therefore compare the cost of fixed-price renewable generation to the hedged or guaranteed cost of new natural gas-fired generation, rather than to projected costs based on uncertain gas price forecasts. To do otherwise would be to compare apples to oranges: by their nature, renewable resources carry no natural gas fuel price risk, and if the market values that attribute, then the most appropriate comparison is to the hedged cost of natural gas-fired generation. Nonetheless, utilities and others often compare the costs of renewable to gas-fired generation using as their fuel price input long-term gas price forecasts that are inherently uncertain, rather than long-term natural gas forward prices that can actually be locked in. This practice raises the critical question of how these two price streams compare. If they are similar, then one might conclude that forecast-based modeling and planning exercises are in fact approximating an apples-to-apples comparison, and no further consideration is necessary. If, however, natural gas forward prices systematically differ from price forecasts, then the use of such forecasts in planning and modeling exercises will yield results that are biased in favor of either renewable (if forwards < forecasts) or natural gas-fired generation (if forwards > forecasts). In this report we compare the cost of hedging natural gas price risk through traditional gas-based hedging instruments (e.g., futures, swaps, and fixed-price physical supply contracts) to contemporaneous forecasts of spot natural gas prices, with the purpose of identifying any systematic differences between the two. Although our data set is quite limited, we find that over the past three years, forward gas prices for durations of 2-10 years have been considerably higher than most natural gas spot price forecasts, including the reference case forecasts developed by the Energy Information Administration (EIA). This difference is striking, and implies that resource planning and modeling exercises based on these forecasts over the past three years have yielded results that are biased in favor of gas-fired generation (again, presuming that long-term stability is desirable). As discussed later, these findings have important ramifications for resource planners, energy modelers, and policy-makers.

Bolinger, Mark; Wiser, Ryan; Golove, William

2003-08-13T23:59:59.000Z

430

Expert Panel: Forecast Future Demand for Medical Isotopes | Department of  

Broader source: Energy.gov (indexed) [DOE]

Expert Panel: Forecast Future Demand for Medical Isotopes Expert Panel: Forecast Future Demand for Medical Isotopes Expert Panel: Forecast Future Demand for Medical Isotopes The Expert Panel has concluded that the Department of Energy and National Institutes of Health must develop the capability to produce a diverse supply of radioisotopes for medical use in quantities sufficient to support research and clinical activities. Such a capability would prevent shortages of isotopes, reduce American dependence on foreign radionuclide sources and stimulate biomedical research. The expert panel recommends that the U.S. government build this capability around either a reactor, an accelerator or a combination of both technologies as long as isotopes for clinical and research applications can be supplied reliably, with diversity in adequate

431

Forecasting correlated time series with exponential smoothing models  

Science Journals Connector (OSTI)

This paper presents the Bayesian analysis of a general multivariate exponential smoothing model that allows us to forecast time series jointly, subject to correlated random disturbances. The general multivariate model, which can be formulated as a seemingly unrelated regression model, includes the previously studied homogeneous multivariate Holt-Winters model as a special case when all of the univariate series share a common structure. MCMC simulation techniques are required in order to approach the non-analytically tractable posterior distribution of the model parameters. The predictive distribution is then estimated using Monte Carlo integration. A Bayesian model selection criterion is introduced into the forecasting scheme for selecting the most adequate multivariate model for describing the behaviour of the time series under study. The forecasting performance of this procedure is tested using some real examples.

Ana Corbern-Vallet; Jos D. Bermdez; Enriqueta Vercher

2011-01-01T23:59:59.000Z

432

Application of GIS on forecasting water disaster in coal mines  

SciTech Connect (OSTI)

In many coal mines of China, water disasters occur very frequently. It is the most important problem that water gets inrush into drifts and coal faces, locally known as water gush, during extraction and excavation. Its occurrence is controlled by many factors such as geological, hydrogeological and mining technical conditions, and very difficult to be predicted and prevented by traditional methods. By making use of overlay analysis of Geographic Information System, a multi-factor model can be built to forecast the potential of water gush. This paper introduced the method of establishment of the water disaster forecasting system and forecasting model and two practical successful cases of application in Jiaozuo and Yinzhuang coal mines. The GIS proved helpful for ensuring the safety of coal mines.

Sun Yajun; Jiang Dong; Ji Jingxian [China Univ. of Mining and Technology, Jiangshy (China)] [and others

1996-08-01T23:59:59.000Z

433

NREL: Energy Analysis - Energy Forecasting and Modeling Staff  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Forecasting and Modeling Energy Forecasting and Modeling The following includes summary bios of staff expertise and interests in analysis relating to energy economics, energy system planning, risk and uncertainty modeling, and energy infrastructure planning. Team Lead: Nate Blair Administrative Support: Geraly Amador Clayton Barrows Greg Brinkman Brian W Bush Stuart Cohen Carolyn Davidson Paul Denholm Victor Diakov Aron Dobos Easan Drury Kelly Eurek Janine Freeman Marissa Hummon Jennie Jorganson Jordan Macknick Trieu Mai David Mulcahy David Palchak Ben Sigrin Daniel Steinberg Patrick Sullivan Aaron Townsend Laura Vimmerstedt Andrew Weekley Owen Zinaman Photo of Clayton Barrows. Clayton Barrows Postdoctoral Researcher Areas of expertise Power system modeling Primary research interests Power and energy systems

434

Conceptual design of a geothermal site development forecasting system  

SciTech Connect (OSTI)

A site development forecasting system has been designed in response to the need to monitor and forecast the development of specific geothermal resource sites for electrical power generation and direct heat applications. The system is comprised of customized software, a site development status data base, and a set of complex geothermal project development schedules. The system would use site-specific development status information obtained from the Geothermal Progress Monitor and other data derived from economic and market penetration studies to produce reports on the rates of geothermal energy development, federal agency manpower requirements to ensure these developments, and capital expenditures and technical/laborer manpower required to achieve these developments.

Neham, E.A.; Entingh, D.J.

1980-03-01T23:59:59.000Z

435

CCPP-ARM Parameterization Testbed Model Forecast Data  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Dataset contains the NCAR CAM3 (Collins et al., 2004) and GFDL AM2 (GFDL GAMDT, 2004) forecast data at locations close to the ARM research sites. These data are generated from a series of multi-day forecasts in which both CAM3 and AM2 are initialized at 00Z every day with the ECMWF reanalysis data (ERA-40), for the year 1997 and 2000 and initialized with both the NASA DAO Reanalyses and the NCEP GDAS data for the year 2004. The DOE CCPP-ARM Parameterization Testbed (CAPT) project assesses climate models using numerical weather prediction techniques in conjunction with high quality field measurements (e.g. ARM data).

Klein, Stephen

436

Forecast of contracting and subcontracting opportunities. Fiscal year 1996  

SciTech Connect (OSTI)

This forecast of prime and subcontracting opportunities with the U.S. Department of Energy and its MAO contractors and environmental restoration and waste management contractors, is the Department`s best estimate of small, small disadvantaged and women-owned small business procurement opportunities for fiscal year 1996. The information contained in the forecast is published in accordance with Public Law 100-656. It is not an invitation for bids, a request for proposals, or a commitment by DOE to purchase products or services. Each procurement opportunity is based on the best information available at the time of publication and may be revised or cancelled.

NONE

1996-02-01T23:59:59.000Z

437

Sales forecasting strategies for small businesses: an empirical investigation of statistical and judgemental methods  

Science Journals Connector (OSTI)

This study evolved from the mixed results shown in the reviewed forecasting literature and from the lack of sufficient forecasting research dealing with micro data. The main purpose of this study is to investigate and compare the accuracy of different quantitative and qualitative forecasting techniques, and to recommend a forecasting strategy for small businesses. Emphasis is placed on the testing of combining as a tool to improve forecasting accuracy. Of particular interest is whether combining time series and judgemental forecasts provides more accurate results than individual methods. A case study of a small business was used for this purpose to assess the accuracy and applicability of combining forecasts. The evidence indicates that combining qualitative and quantitative methods results in better and improved forecasts.

Imad J. Zbib

2006-01-01T23:59:59.000Z

438

Forecasting 65+ travel : an integration of cohort analysis and travel demand modeling  

E-Print Network [OSTI]

Over the next 30 years, the Boomers will double the 65+ population in the United States and comprise a new generation of older Americans. This study forecasts the aging Boomers' travel. Previous efforts to forecast 65+ ...

Bush, Sarah, 1973-

2003-01-01T23:59:59.000Z

439

Distributed quantitative precipitation forecasts combining information from radar and numerical weather prediction model outputs  

E-Print Network [OSTI]

Applications of distributed Quantitative Precipitation Forecasts (QPF) range from flood forecasting to transportation. Obtaining QPF is acknowledged to be one of the most challenging areas in hydrology and meteorology. ...

Ganguly, Auroop Ratan

2002-01-01T23:59:59.000Z

440

A Comparison of Measures-Oriented and Distributions-Oriented Approaches to Forecast Verification  

Science Journals Connector (OSTI)

The authors have carried out verification of 590 1224-h high-temperature forecasts from numerical guidance products and human forecasters for Oklahoma City, Oklahoma, using both a measures-oriented verification scheme and a distributions-...

Harold E. Brooks; Charles A. Doswell III

1996-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "forecast date actual" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Correspondence among the Correlation, RMSE, and Heidke Forecast Verification Measures; Refinement of the Heidke Score  

Science Journals Connector (OSTI)

The correspondence among the following three forecast verification scores, based on forecasts and their associated observations, is described: 1) the correlation score, 2) the root-mean-square error (RMSE) score, and 3) the Heidke score (based on ...

Anthony G. Barnston

1992-12-01T23:59:59.000Z

442

Improving Seasonal Forecast Skill of North American Surface Air Temperature in Fall Using a Postprocessing Method  

Science Journals Connector (OSTI)

A statistical postprocessing approach is applied to seasonal forecasts of surface air temperatures (SAT) over North America in fall, when the original uncalibrated predictions have little skill. The data used are ensemble-mean seasonal forecasts ...

XiaoJing Jia; Hai Lin; Jacques Derome

2010-05-01T23:59:59.000Z

443

Computing electricity spot price prediction intervals using quantile regression and forecast averaging  

Science Journals Connector (OSTI)

We examine possible accuracy gains from forecast averaging in the context of interval forecasts of electricity spot prices. First, we test whether constructing empirical prediction intervals (PI) from combined electricity

Jakub Nowotarski; Rafa? Weron

2014-08-01T23:59:59.000Z

444

Medium-term forecasting of demand prices on example of electricity prices for industry  

Science Journals Connector (OSTI)

In the paper, a method of forecasting demand prices for electric energy for the industry has been suggested. An algorithm of the forecast for 20062010 based on the data for 19972005 has been presented.

V. V. Kossov

2014-09-01T23:59:59.000Z

445

Price Forecasting and Optimal Operation of Wholesale Customers in a Competitive Electricity Market.  

E-Print Network [OSTI]

??This thesis addresses two main issues: first, forecasting short-term electricity market prices; and second, the application of short-term electricity market price forecasts to operation planning (more)

Zareipour, Hamidreza

2006-01-01T23:59:59.000Z

446

Impacts of Improved Day-Ahead Wind Forecasts on Power Grid Operations: September 2011  

SciTech Connect (OSTI)

This study analyzed the potential benefits of improving the accuracy (reducing the error) of day-ahead wind forecasts on power system operations, assuming that wind forecasts were used for day ahead security constrained unit commitment.

Piwko, R.; Jordan, G.

2011-11-01T23:59:59.000Z

447

Combining Multi Wavelet and Multi NN for Power Systems Load Forecasting  

Science Journals Connector (OSTI)

In the paper, two pre-processing methods for load forecast sampling data including multiwavelet transformation and chaotic time series ... introduced. In addition, multi neural network for load forecast including...

Zhigang Liu; Qi Wang; Yajun Zhang

2008-01-01T23:59:59.000Z

448

Application of the Stretched Exponential Production Decline Model to Forecast Production in Shale Gas Reservoirs  

E-Print Network [OSTI]

Production forecasting in shale (ultra-low permeability) gas reservoirs is of great interest due to the advent of multi-stage fracturing and horizontal drilling. The well renowned production forecasting model, Arps? Hyperbolic Decline Model...

Statton, James Cody

2012-07-16T23:59:59.000Z

449

E-Print Network 3.0 - air pollution forecast Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

forecast Search Powered by Explorit Topic List Advanced Search Sample search results for: air pollution forecast Page: << < 1 2 3 4 5 > >> 1 DISCOVER-AQ Outlook for Wednesay, July...

450

Evaluation of numerical weather prediction for intra-day solar forecasting in the continental United States  

E-Print Network [OSTI]

andvalidation. SolarEnergy. 73:5,307? Perez,R. ,irradianceforecastsforsolarenergyapplicationsbasedonforecastdatabase. SolarEnergy. 81:6,809?812.

Mathiesen, Patrick; Kleissl, Jan

2011-01-01T23:59:59.000Z

451

A WRF Ensemble for Improved Wind Speed Forecasts at Turbine Height  

Science Journals Connector (OSTI)

The Weather Research and Forecasting Model (WRF) with 10-km horizontal grid spacing was used to explore improvements in wind speed forecasts at a typical wind turbine hub height (80 m). An ensemble consisting of WRF model simulations with ...

Adam J. Deppe; William A. Gallus Jr.; Eugene S. Takle

2013-02-01T23:59:59.000Z

452

EIA - Forecasts and Analysis of Energy Data  

Gasoline and Diesel Fuel Update (EIA)

Regional Definitions in the International Energy Outlook 2005 Regional Definitions in the International Energy Outlook 2005 Regular readers of the International Energy Outlook (IEO) will notice that, in this edition, the names used to describe country groupings have been changed. Although the organization of countries within the three major groupings has not changed, the nomenclature used in previous editions to describe the groups— namely, industrialized, EE/FSU, and developing— had become somewhat dated and did not accurately reflect the countries within them. Some analysts have argued that several of the countries in the “developing” group (South Korea and China, for instance) could fairly be called “industrialized” today. IEO2005 World Regions Map. Need help, contact the National Energy Information Center at 202-586-8800.

453

Solid waste integrated forecast technical (SWEFT) report: FY1997 to FY 2070 - Document number changed to HNF-0918 at revision 1 - 1/7/97  

SciTech Connect (OSTI)

This web site provides an up-to-date report on the radioactive solid waste expected to be managed at Hanford`s Solid Waste (SW) Program from onsite and offsite generators. It includes: an overview of Hanford-wide solid waste to be managed by the SW Program; program- level and waste class-specific estimates; background information on waste sources; and Li comparisons with previous forecasts and with other national data sources. The focus of this web site is on low- level mixed waste (LLMW), and transuranic waste (both non-mixed and mixed) (TRU(M)). Some details on low-level waste and hazardous waste are also provided. Currently, this site is reporting data current as of 9/96. The data represent a life cycle forecast covering all reported activities from FY97 through the end of each program`s life cycle.

Valero, O.J.

1996-10-03T23:59:59.000Z

454

E-Print Network 3.0 - actuales relacionadas con Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for: actuales relacionadas con Page: << < 1 2 3 4 5 > >> 1 Departamento de Fsica (EPS) Universidad Carlos III de Madrid Summary: fsica relacionada con la implosin de los...

455

E-Print Network 3.0 - actuales clasificaciones del Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Collection: Mathematics 30 MTODO DE CENSO Y ESTIMA DE POBLACIN DEL PINZN AZUL DE GRAN CANARIA Summary: distribucin actual de la especie en Inagua, Ojeda y Pajonales. El...

456

E-Print Network 3.0 - actuales del sector Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Collection: Engineering 60 MTODO DE CENSO Y ESTIMA DE POBLACIN DEL PINZN AZUL DE GRAN CANARIA Summary: distribucin actual de la especie en Inagua, Ojeda y Pajonales. El...

457

Forecasting GHG emissions using an optimized artificial neural network model based on correlation and principal component analysis  

Science Journals Connector (OSTI)

Abstract The prediction of GHG emissions is very important due to their negative impacts on climate and global warming. The aim of this study was to develop a model for GHG forecasting emissions at the national level using a new approach based on artificial neural networks (ANN) and broadly available sustainability, economical and industrial indicators acting as inputs. The ANN model architecture and training parameters were optimized, with inputs being selected using correlation analysis and principal component analysis. The developed ANN models were compared with the corresponding multiple linear regression (MLR) model, while an ANN model created using transformed inputs (principal components) was compared with a principal component regression (PCR) model. Since the best results were obtained with the ANN model based on correlation analysis, that particular model was selected for the actual 2011 GHG emissions forecasting. The relative errors of the 2010 GHG emissions predictions were used to adjust the ANN model predictions for 2011, which subsequently resulted in the adjusted 2011 predictions having a MAPE value of only 3.60%. Sensitivity analysis showed that gross inland energy consumption had the highest sensitivity to GHG emissions.

Davor Z. Antanasijevi?; Mirjana ?. Risti?; Aleksandra A. Peri?-Gruji?; Viktor V. Pocajt

2014-01-01T23:59:59.000Z

458

Improving the forecasting function for a Credit Hire operator in the UK  

Science Journals Connector (OSTI)

This study aims to test on the predictability of Credit Hire services for the automobile and insurance industry. A relatively sophisticated time series forecasting procedure, which conducts a competition among exponential smoothing models, is employed to forecast demand for a leading UK Credit Hire operator (CHO). The generated forecasts are compared against the Naive method, resulting that demand for CHO services is indeed extremely hard to forecast, as the underlying variable is the number of road accidents a truly stochastic variable.

Nicolas D. Savio; K. Nikolopoulos; Konstantinos Bozos

2009-01-01T23:59:59.000Z

459

Central Wind Power Forecasting Programs in North America by Regional Transmission Organizations and Electric Utilities  

SciTech Connect (OSTI)

The report addresses the implementation of central wind power forecasting by electric utilities and regional transmission organizations in North America.

Porter, K.; Rogers, J.

2009-12-01T23:59:59.000Z

460

Next Generation Short-Term Forecasting of Wind Power Overview of the ANEMOS Project.  

E-Print Network [OSTI]

1 Next Generation Short-Term Forecasting of Wind Power ­ Overview of the ANEMOS Project. G outperform current state-of-the-art methods, for onshore and offshore wind power forecasting. Advanced forecasts for the power system management and market integration of wind power. Keywords: Wind power, short

Boyer, Edmond

Note: This page contains sample records for the topic "forecast date actual" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Combination of Long Term and Short Term Forecasts, with Application to Tourism  

E-Print Network [OSTI]

Combination of Long Term and Short Term Forecasts, with Application to Tourism Demand Forecasting that are combined. As a case study, we consider the problem of forecasting monthly tourism numbers for inbound tourism to Egypt. Specifically, we con- sider 33 source countries, as well as the aggregate. The novel

Abu-Mostafa, Yaser S.

462

COLORADO STATE UNIVERSITY FORECAST OF ATLANTIC HURRICANE ACTIVITY FROM AUGUST 3 AUGUST 16, 2012  

E-Print Network [OSTI]

there is significant uncertainty in its future intensity, the current forecast is for a slowly strengthening TC which, 3) forecast output from global models, 4) the current and projected state of the Madden with these two-week forecasts is the Accumulated Cyclone Energy (ACE) index, which is defined to be all

Gray, William

463

VALIDATION OF SHORT AND MEDIUM TERM OPERATIONAL SOLAR RADIATION FORECASTS IN THE US  

E-Print Network [OSTI]

, and medium term forecasts (up to seven days ahead) from numerical weather prediction models [1]. Forecasts radiation forecasting. One approach relies on numerical weather prediction (NWP) models which can be global modeling of the atmosphere. NWP models cannot, at this stage of their development, predict the exact

Perez, Richard R.

464

Products and Service of Center for Weather Forecast and Climate Studies  

E-Print Network [OSTI]

) Seasonal Climate Forecast (1-6 months) #12;Weather Forecast Weather Bulletin PCD SCD1 SCD2 SX6 SatelliteLOG O Products and Service of Center for Weather Forecast and Climate Studies Simone Sievert da AND DEVELOP. DIVISION SATELLITE DIVISION ENVIROM. SYSTEM OPERATIONAL DIVISION CPTEC/INPE Msc / PHD &TRAINING

465

Lessons from Deploying NLG Technology for Marine Weather Forecast Text Generation  

E-Print Network [OSTI]

model along with other sources of weather data such as satellite pictures and their own forecastingLessons from Deploying NLG Technology for Marine Weather Forecast Text Generation Somayajulu G Language Generation (NLG) system that produces textual weather forecasts for offshore oilrigs from

Sripada, Yaji

466

Ensemble-based air quality forecasts: A multimodel approach applied to ozone  

E-Print Network [OSTI]

Ensemble-based air quality forecasts: A multimodel approach applied to ozone Vivien Mallet1., and B. Sportisse (2006), Ensemble-based air quality forecasts: A multimodel approach applied to ozone, J, the uncertainty in chem- istry transport models is a major limitation of air quality forecasting. The source

Boyer, Edmond

467

WasteStreamForecast2010.xls  

Office of Environmental Management (EM)

Reporting Reporting Site Disposition Facility Field Stream ID Actual Dispos 2009 Starting Inventory 2010 2010 2011 2012 2013 2014 2015 to 2019 2020 to 2024 2025 to 2029 2030 to 2034 2035 to 2039 2040-50 1 Ames Energy Solutions-Clive (formerly Envirocare) 8020-01 0.00 0.00 0.00 0.00 0.00 20.00 0.00 0.00 20.00 20.00 20.00 0.00 60.00 2 Argonne Area 5 LLW Disposal Unit (NTS) AEL105DOEa 55.12 50.45 72.36 29.22 29.22 29.22 29.22 29.22 0.00 0.00 0.00 0.00 0.00 3 Argonne Area 5 LLW Disposal Unit (NTS) AEL106DOEa 0.38 0.07 0.09 0.21 0.21 0.21 0.21 0.21 0.00 0.00 0.00 0.00 0.00 4 Argonne Area 5 LLW Disposal Unit (NTS) AE-L104DOE 0.19 10.85 11.19 0.42 0.42 0.42 0.42 0.42 0.00 0.00 0.00 0.00 0.00 5 Argonne Area 5 LLW Disposal Unit (NTS) AEL103DOE 74.13 87.37 110.16 30.39 30.39 30.39 30.39 30.39 0.00 0.00 0.00 0.00 0.00 6 Argonne Area 5 LLW Disposal Unit (NTS)

468

Optimal Bidding Strategies for Wind Power Producers with Meteorological Forecasts  

E-Print Network [OSTI]

Optimal Bidding Strategies for Wind Power Producers with Meteorological Forecasts Antonio that the inherent variability in wind power generation and the related difficulty in predicting future generation profiles, raise major challenges to wind power integration into the electricity grid. In this work we study

Giannitrapani, Antonello

469

Does Money Matter in Inflation Forecasting? JM Binner 1  

E-Print Network [OSTI]

1 Does Money Matter in Inflation Forecasting? JM Binner 1 P Tino 2 J Tepper 3 R Anderson4 B Jones 5 range of different definitions of money, including different methods of aggregation and different that there exists a long-run relationship between the growth rate of the money supply and the growth rate of prices

Tino, Peter

470

Detecting and Forecasting Economic Regimes in Automated Exchanges  

E-Print Network [OSTI]

, such as over- supply or scarcity, from historical data using computational methods to construct price density. The agent can use this information to make both tactical decisions such as pricing and strategic decisions historical data and identified from observable data. We outline how to identify regimes and forecast regime

Ketter, Wolfgang

471

Forecasting Market Demand for New Telecommunications Services: An Introduction  

E-Print Network [OSTI]

Forecasting Market Demand for New Telecommunications Services: An Introduction Peter Mc, 2000 Abstract The marketing team of a new telecommunications company is usually tasked with producing involved in doing so. Based on our three decades of experience working with telecommunications operators

Parsons, Simon

472

SOLAR IRRADIANCE FORECASTING FOR THE MANAGEMENT OF SOLAR ENERGY SYSTEMS  

E-Print Network [OSTI]

SOLAR IRRADIANCE FORECASTING FOR THE MANAGEMENT OF SOLAR ENERGY SYSTEMS Detlev Heinemann Oldenburg.girodo@uni-oldenburg.de ABSTRACT Solar energy is expected to contribute major shares of the future global energy supply. Due to its and solar energy conversion processes has to account for this behaviour in respective operating strategies

Heinemann, Detlev

473

Short-Term Solar Energy Forecasting Using Wireless Sensor Networks  

E-Print Network [OSTI]

Short-Term Solar Energy Forecasting Using Wireless Sensor Networks Stefan Achleitner, Tao Liu an advantage for output power prediction. Solar Energy Prediction System Our prediction model is based variability of more then 100 kW per minute. For practical usage of solar energy, predicting times of high

Cerpa, Alberto E.

474

Solar Resource and Forecasting QuestionnaireSolar Resource and Forecasting QuestionnaireSolar Resource and Forecasting QuestionnaireSolar Resource and Forecasting Questionnaire As someone who is familiar with solar energy issues, we hope that you will tak  

E-Print Network [OSTI]

is familiar with solar energy issues, we hope that you will take a few moments to answer this short survey on your needs for information on solar energy resources and forecasting. This survey is conducted with the California Solar Energy Collaborative (CSEC) and the California Solar Initiative (CSI) our objective

Islam, M. Saif

475

A FORECAST MODEL OF AGRICULTURAL AND LIVESTOCK PRODUCTS PRICE  

E-Print Network [OSTI]

A FORECAST MODEL OF AGRICULTURAL AND LIVESTOCK PRODUCTS PRICE Wensheng Zhang1,* , Hongfu Chen1 and excessive fluctuation of agricultural and livestock products price is not only harmful to residents' living, but also affects CPI (Consumer Price Index) values, and even leads to social crisis, which influences

Boyer, Edmond

476

Forecasting Building Occupancy Using Sensor Network James Howard  

E-Print Network [OSTI]

) into the future. Our approach is to train a set of standard forecasting models to our time series data. Each model conditioning (HVAC) systems. In particular, if occupancy can be accurately pre- dicted, HVAC systems can potentially be controlled to op- erate more efficiently. For example, an HVAC system can pre-heat or pre

Hoff, William A.

477

Forecasting Hospital Bed Availability Using Simulation and Neural Networks  

E-Print Network [OSTI]

Forecasting Hospital Bed Availability Using Simulation and Neural Networks Matthew J. Daniels is a critical factor for decision-making in hospitals. Bed availability (or alternatively the bed occupancy in emergency departments, and many other important hospital decisions. To better enable a hospital to make

Kuhl, Michael E.

478

Predicting Solar Generation from Weather Forecasts Using Machine Learning  

E-Print Network [OSTI]

Predicting Solar Generation from Weather Forecasts Using Machine Learning Navin Sharma, Pranshu Sharma, David Irwin, and Prashant Shenoy Department of Computer Science University of Massachusetts Amherst Amherst, Massachusetts 01003 {nksharma,pranshus,irwin,shenoy}@cs.umass.edu Abstract--A key goal

Shenoy, Prashant

479

Review of Wind Energy Forecasting Methods for Modeling Ramping Events  

SciTech Connect (OSTI)

Tall onshore wind turbines, with hub heights between 80 m and 100 m, can extract large amounts of energy from the atmosphere since they generally encounter higher wind speeds, but they face challenges given the complexity of boundary layer flows. This complexity of the lowest layers of the atmosphere, where wind turbines reside, has made conventional modeling efforts less than ideal. To meet the nation's goal of increasing wind power into the U.S. electrical grid, the accuracy of wind power forecasts must be improved. In this report, the Lawrence Livermore National Laboratory, in collaboration with the University of Colorado at Boulder, University of California at Berkeley, and Colorado School of Mines, evaluates innovative approaches to forecasting sudden changes in wind speed or 'ramping events' at an onshore, multimegawatt wind farm. The forecast simulations are compared to observations of wind speed and direction from tall meteorological towers and a remote-sensing Sound Detection and Ranging (SODAR) instrument. Ramping events, i.e., sudden increases or decreases in wind speed and hence, power generated by a turbine, are especially problematic for wind farm operators. Sudden changes in wind speed or direction can lead to large power generation differences across a wind farm and are very difficult to predict with current forecasting tools. Here, we quantify the ability of three models, mesoscale WRF, WRF-LES, and PF.WRF, which vary in sophistication and required user expertise, to predict three ramping events at a North American wind farm.

Wharton, S; Lundquist, J K; Marjanovic, N; Williams, J L; Rhodes, M; Chow, T K; Maxwell, R

2011-03-28T23:59:59.000Z

480

Development and Deployment of an Advanced Wind Forecasting Technique  

E-Print Network [OSTI]

findings. Part 2 addresses how operators of wind power plants and power systems can incorporate advanced the output of advanced wind energy forecasts into decision support models for wind power plant and power in Porto) Power Systems Unit Porto, Portugal Industry Partners Horizon Wind Energy, LLC Midwest Independent

Kemner, Ken

Note: This page contains sample records for the topic "forecast date actual" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Power load forecasting using data mining and knowledge discovery technology  

Science Journals Connector (OSTI)

Considering the importance of the peak load to the dispatching and management of the electric system, the error of peak load is proposed in this paper as criteria to evaluate the effect of the forecasting model. This paper proposes a systemic framework that attempts to use data mining and knowledge discovery (DMKD) to pretreat the data. And a new model is proposed which combines artificial neural networks with data mining and knowledge discovery for electric load forecasting. With DMKD technology, the system not only could mine the historical daily loading which had the same meteorological category as the forecasting day to compose data sequence with highly similar meteorological features, but also could eliminate the redundant influential factors. Then an artificial neural network is constructed to predict according to its characteristics. Using this new model, it could eliminate the redundant information, accelerate the training speed of neural network and improve the stability of the convergence. Compared with single BP neural network, this new method can achieve greater forecasting accuracy.

Yongli Wang; Dongxiao Niu; Ling Ji

2011-01-01T23:59:59.000Z

482

What constrains spread growth in forecasts ini2alized from  

E-Print Network [OSTI]

1 What constrains spread growth in forecasts ini2alized from ensemble Kalman filters? Tom from manner in which ini2al condi2ons are generated, some due to the model (e.g., stochas2c physics as error; part of spread growth from manner in which ini2al condi2ons are generated, some due

Hamill, Tom

483

Probabilistic Forecasts of Wind Speed: Ensemble Model Output Statistics  

E-Print Network [OSTI]

. Over the past two decades, ensembles of numerical weather prediction (NWP) models have been developed and phrases: Continuous ranked probability score; Density forecast; Ensem- ble system; Numerical weather prediction; Heteroskedastic censored regression; Tobit model; Wind energy. 1 #12;1 Introduction Accurate

Washington at Seattle, University of

484

Introduction An important goal in operational weather forecasting  

E-Print Network [OSTI]

sensitive areas. To answer these questions simulation experiments with state-of-the-art numerical weather prediction (NWP) models have proved great value to test future meteorological observing systems a priori102 Introduction An important goal in operational weather forecasting is to reduce the number

Haak, Hein

485

Operational Forecasts of Cloud Cover and Water Vapour  

E-Print Network [OSTI]

of the forecast programme, which involved the additional use of 10.7 µm GOES-8 satellite data and surface weather cirrus cloud cover 15 5. A satellite-derived extinction parameter 17 5.1 Background 17 5.2 Previous work 20 5.3 Continued development of a satellite-derived 22 extinction parameter 6. Suggestions

486

Increasing NOAA's computational capacity to improve global forecast modeling  

E-Print Network [OSTI]

competing numerical weather prediction centers such as the European Center for MediumRange Weather Forecasts (ECMWF). For most sensibleweather metrics, we lag 1 to 1.5 days (i.e., they make a 3.5day of NOAA's current investment in weather satellites. Without a modern data assimilation system

Hamill, Tom

487

Measuring forecast skill: is it real skill or  

E-Print Network [OSTI]

samples, then many verification metrics will credit a forecast with extra skill it doesn't deserve islands, zero meteorologists Imagine a planet with a global ocean and two isolated islands. Weather three metrics... (1) Brier Skill Score (2) Relative Operating Characteristic (3) Equitable Threat Score

Hamill, Tom

488

URBAN OZONE CONCENTRATION FORECASTING WITH ARTIFICIAL NEURAL NETWORK IN CORSICA  

E-Print Network [OSTI]

Perceptron; Ozone concentration. 1. Introduction Tropospheric ozone is a major air pollution problem, both, Ajaccio, France, e-mail: balu@univ-corse.fr Abstract: Atmospheric pollutants concentration forecasting is an important issue in air quality monitoring. Qualitair Corse, the organization responsible for monitoring air

Boyer, Edmond

489

Leveraging Weather Forecasts in Renewable Energy Navin Sharmaa,  

E-Print Network [OSTI]

Leveraging Weather Forecasts in Renewable Energy Systems Navin Sharmaa, , Jeremy Gummesonb , David, Binghamton, NY 13902 Abstract Systems that harvest environmental energy must carefully regulate their us- age to satisfy their demand. Regulating energy usage is challenging if a system's demands are not elastic, since

Shenoy, Prashant

490

Cloudy Computing: Leveraging Weather Forecasts in Energy Harvesting Sensor Systems  

E-Print Network [OSTI]

Cloudy Computing: Leveraging Weather Forecasts in Energy Harvesting Sensor Systems Navin Sharma,gummeson,irwin,shenoy}@cs.umass.edu Abstract--To sustain perpetual operation, systems that harvest environmental energy must carefully regulate their usage to satisfy their demand. Regulating energy usage is challenging if a system's demands

Shenoy, Prashant

491

Weather forecast-based optimization of integrated energy systems.  

SciTech Connect (OSTI)

In this work, we establish an on-line optimization framework to exploit detailed weather forecast information in the operation of integrated energy systems, such as buildings and photovoltaic/wind hybrid systems. We first discuss how the use of traditional reactive operation strategies that neglect the future evolution of the ambient conditions can translate in high operating costs. To overcome this problem, we propose the use of a supervisory dynamic optimization strategy that can lead to more proactive and cost-effective operations. The strategy is based on the solution of a receding-horizon stochastic dynamic optimization problem. This permits the direct incorporation of economic objectives, statistical forecast information, and operational constraints. To obtain the weather forecast information, we employ a state-of-the-art forecasting model initialized with real meteorological data. The statistical ambient information is obtained from a set of realizations generated by the weather model executed in an operational setting. We present proof-of-concept simulation studies to demonstrate that the proposed framework can lead to significant savings (more than 18% reduction) in operating costs.

Zavala, V. M.; Constantinescu, E. M.; Krause, T.; Anitescu, M.

2009-03-01T23:59:59.000Z

492

Journey data based arrival forecasting for bicycle hire schemes  

E-Print Network [OSTI]

Journey data based arrival forecasting for bicycle hire schemes Marcel C. Guenther and Jeremy T. The global emergence of city bicycle hire schemes has re- cently received a lot of attention of future bicycle migration trends, as these assist service providers to ensure availability of bicycles

Imperial College, London

493

FORECAST VERIFICATION OF EXTREMES: USE OF EXTREME VALUE THEORY  

E-Print Network [OSTI]

1 FORECAST VERIFICATION OF EXTREMES: USE OF EXTREME VALUE THEORY Rick Katz Institute for Study ON EXTREMES · Emil Gumbel (1891 ­ 1966) -- Pioneer in application of statistics of extremes (Germany, France) Conventional Methods (3) Extreme Value Theory (EVT) (4) Application of EVT to Verification (5) Frost

Katz, Richard

494

FORECAST VERIFICATION OF EXTREMES: USE OF EXTREME VALUE THEORY  

E-Print Network [OSTI]

1 FORECAST VERIFICATION OF EXTREMES: USE OF EXTREME VALUE THEORY Rick Katz Institute for Study on Extremes · Emil Gumbel (1891 ­ 1966) -- Pioneer in application of statistics of extremes "Il est impossible que l'improbable n'arrive jamais." #12;3 OUTLINE (1) Motivation (2) Conventional Methods (3) Extreme

Katz, Richard

495

FORECAST VERIFICATION OF EXTREMES: USE OF EXTREME VALUE THEORY  

E-Print Network [OSTI]

1 FORECAST VERIFICATION OF EXTREMES: USE OF EXTREME VALUE THEORY Rick Katz Institute for Study ON EXTREMES · Emil Gumbel (1891 ­ 1966) -- Pioneer in application of statistics of extremes "Il est impossible que l'improbable n'arrive jamais." #12;3 OUTLINE (1) Motivation (2) Conventional Methods (3) Extreme

Katz, Richard

496

Seasonal Forecasting of Extreme Wind and Precipitation Frequencies in Europe  

E-Print Network [OSTI]

Seasonal Forecasting of Extreme Wind and Precipitation Frequencies in Europe Matthew J. Swann;Abstract Flood and wind damage to property and livelihoods resulting from extreme precipitation events variability of these extreme events can be closely related to the large-scale atmospheric circulation

Feigon, Brooke

497

Use of wind power forecasting in operational decisions.  

SciTech Connect (OSTI)

The rapid expansion of wind power gives rise to a number of challenges for power system operators and electricity market participants. The key operational challenge is to efficiently handle the uncertainty and variability of wind power when balancing supply and demand in ths system. In this report, we analyze how wind power forecasting can serve as an efficient tool toward this end. We discuss the current status of wind power forecasting in U.S. electricity markets and develop several methodologies and modeling tools for the use of wind power forecasting in operational decisions, from the perspectives of the system operator as well as the wind power producer. In particular, we focus on the use of probabilistic forecasts in operational decisions. Driven by increasing prices for fossil fuels and concerns about greenhouse gas (GHG) emissions, wind power, as a renewable and clean source of energy, is rapidly being introduced into the existing electricity supply portfolio in many parts of the world. The U.S. Department of Energy (DOE) has analyzed a scenario in which wind power meets 20% of the U.S. electricity demand by 2030, which means that the U.S. wind power capacity would have to reach more than 300 gigawatts (GW). The European Union is pursuing a target of 20/20/20, which aims to reduce greenhouse gas (GHG) emissions by 20%, increase the amount of renewable energy to 20% of the energy supply, and improve energy efficiency by 20% by 2020 as compared to 1990. Meanwhile, China is the leading country in terms of installed wind capacity, and had 45 GW of installed wind power capacity out of about 200 GW on a global level at the end of 2010. The rapid increase in the penetration of wind power into power systems introduces more variability and uncertainty in the electricity generation portfolio, and these factors are the key challenges when it comes to integrating wind power into the electric power grid. Wind power forecasting (WPF) is an important tool to help efficiently address this challenge, and significant efforts have been invested in developing more accurate wind power forecasts. In this report, we document our work on the use of wind power forecasting in operational decisions.

Botterud, A.; Zhi, Z.; Wang, J.; Bessa, R.J.; Keko, H.; Mendes, J.; Sumaili, J.; Miranda, V. (Decision and Information Sciences); (INESC Porto)

2011-11-29T23:59:59.000Z

498

Home Energy Score: Analysis & Improvements to Date  

Broader source: Energy.gov (indexed) [DOE]

Home Energy Score: Home Energy Score: � Analysis & Improvements to Date � Joan Glickman Senior Advisor/Program Manager U.S. Department of Energy July 24, 2012 1 eere.energy.gov Presentation Overview 1) Background 2) Program Improvements 3) Analysis: Efficacy of Tool & Program - Asset Perturbations - Behavior Perturbations - Estimated Energy Use vs. Actual Energy Use (from utility bills) - Time Required for Assessment and Scoring - Blower Door Test Analysis 4) Next Steps & Ongoing Analysis 2 eere.energy.gov 1. Background � 3 eere.energy.gov Guiding Principles * Information must be credible, reliable, and replicable. * Information must be transparent and easy to understand. � * Implementation costs must be affordable. * Program must include effective quality assurance.

499

An evaluation of forecasting methods for aircraft non-routine maintenance material demand  

Science Journals Connector (OSTI)

Aircraft maintenance can be divided into routine and non-routine activities. Material demand associated with non-routine maintenance is typically intermittent or lumpy: it has a large variance in frequency and quantity. Consequently, this type of demand is hard to predict. This paper introduces a method to collect time series datasets for aircraft non-routine maintenance material demand. Non-routine material consumption is linked to scheduled maintenance tasks to gain insight in demand patterns. A structural part selection of the Boeing 737NG fleet of an aviation partner has been sampled to generate various test cases. Subsequently, various forecasting methods are applied to these test cases and evaluated using various accuracy metrics. For the small time series datasets associated with non-routine maintenance, exponentially weighted moving average (EMA) outperformed smoothing methods such as Croston's method (CR) and the Syntetos-Boylan approximation (SBA). To validate the practical applicability of EMA for non-routine maintenance material demand, the method has been applied and verified in the prediction of actual demand for a separate maintenance C-check.

Maarten Zorgdrager; Wim J.C. Verhagen; Richard Curran

2014-01-01T23:59:59.000Z

500

Navy mobility fuels forecasting system report: World petroleum trade forecasts for the year 2000  

SciTech Connect (OSTI)

The Middle East will continue to play the dominant role of a petroleum supplier in the world oil market in the year 2000, according to business-as-usual forecasts published by the US Department of Energy. However, interesting trade patterns will emerge as a result of the democratization in the Soviet Union and Eastern Europe. US petroleum imports will increase from 46% in 1989 to 49% in 2000. A significantly higher level of US petroleum imports (principally products) will be coming from Japan, the Soviet Union, and Eastern Europe. Several regions, the Far East, Japan, Latin American, and Africa will import more petroleum. Much uncertainty remains about of the level future Soviet crude oil production. USSR net petroleum exports will decrease; however, the United States and Canada will receive some of their imports from the Soviet Union due to changes in the world trade patterns. The Soviet Union can avoid becoming a net petroleum importer as long as it (1) maintains enough crude oil production to meet its own consumption and (2) maintains its existing refining capacities. Eastern Europe will import approximately 50% of its crude oil from the Middle East.

Das, S.

1991-12-01T23:59:59.000Z