National Library of Energy BETA

Sample records for forecast comparisons index

  1. Data Collection and Comparison with Forecasted Unit Sales of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Data Collection and Comparison with Forecasted Unit Sales of Five Lamp Types Data Collection and Comparison with Forecasted Unit Sales of Five Lamp Types PDF icon Data Collection ...

  2. Wind Power Forecasting Error Distributions: An International Comparison; Preprint

    SciTech Connect (OSTI)

    Hodge, B. M.; Lew, D.; Milligan, M.; Holttinen, H.; Sillanpaa, S.; Gomez-Lazaro, E.; Scharff, R.; Soder, L.; Larsen, X. G.; Giebel, G.; Flynn, D.; Dobschinski, J.

    2012-09-01

    Wind power forecasting is expected to be an important enabler for greater penetration of wind power into electricity systems. Because no wind forecasting system is perfect, a thorough understanding of the errors that do occur can be critical to system operation functions, such as the setting of operating reserve levels. This paper provides an international comparison of the distribution of wind power forecasting errors from operational systems, based on real forecast data. The paper concludes with an assessment of similarities and differences between the errors observed in different locations.

  3. Comparison of Wind Power and Load Forecasting Error Distributions: Preprint

    SciTech Connect (OSTI)

    Hodge, B. M.; Florita, A.; Orwig, K.; Lew, D.; Milligan, M.

    2012-07-01

    The introduction of large amounts of variable and uncertain power sources, such as wind power, into the electricity grid presents a number of challenges for system operations. One issue involves the uncertainty associated with scheduling power that wind will supply in future timeframes. However, this is not an entirely new challenge; load is also variable and uncertain, and is strongly influenced by weather patterns. In this work we make a comparison between the day-ahead forecasting errors encountered in wind power forecasting and load forecasting. The study examines the distribution of errors from operational forecasting systems in two different Independent System Operator (ISO) regions for both wind power and load forecasts at the day-ahead timeframe. The day-ahead timescale is critical in power system operations because it serves the unit commitment function for slow-starting conventional generators.

  4. Energy Conservation Program: Data Collection and Comparison with Forecasted Unit Sales for Five Lamp Types, Notice of Data Availability

    Broader source: Energy.gov [DOE]

    Energy Conservation Program: Data Collection and Comparison with Forecasted Unit Sales for Five Lamp Types, Notice of Data Availability

  5. Analysis of Variability and Uncertainty in Wind Power Forecasting: An International Comparison: Preprint

    SciTech Connect (OSTI)

    Zhang, J.; Hodge, B. M.; Gomez-Lazaro, E.; Lovholm, A. L.; Berge, E.; Miettinen, J.; Holttinen, H.; Cutululis, N.; Litong-Palima, M.; Sorensen, P.; Dobschinski, J.

    2013-10-01

    One of the critical challenges of wind power integration is the variable and uncertain nature of the resource. This paper investigates the variability and uncertainty in wind forecasting for multiple power systems in six countries. An extensive comparison of wind forecasting is performed among the six power systems by analyzing the following scenarios: (i) wind forecast errors throughout a year; (ii) forecast errors at a specific time of day throughout a year; (iii) forecast errors at peak and off-peak hours of a day; (iv) forecast errors in different seasons; (v) extreme forecasts with large overforecast or underforecast errors; and (vi) forecast errors when wind power generation is at different percentages of the total wind capacity. The kernel density estimation method is adopted to characterize the distribution of forecast errors. The results show that the level of uncertainty and the forecast error distribution vary among different power systems and scenarios. In addition, for most power systems, (i) there is a tendency to underforecast in winter; and (ii) the forecasts in winter generally have more uncertainty than the forecasts in summer.

  6. Comparison of AEO 2005 natural gas price forecast to NYMEX futures prices

    SciTech Connect (OSTI)

    Bolinger, Mark; Wiser, Ryan

    2004-12-13

    On December 9, the reference case projections from ''Annual Energy Outlook 2005 (AEO 2005)'' were posted on the Energy Information Administration's (EIA) web site. As some of you may be aware, we at LBNL have in the past compared the EIA's reference case long-term natural gas price forecasts from the AEO series to contemporaneous natural gas prices that can be locked in through the forward market, with the goal of better understanding fuel price risk and the role that renewables play in mitigating such risk. As such, we were curious to see how the latest AEO gas price forecast compares to the NYMEX natural gas futures strip. This brief memo presents our findings. As a refresher, our past work in this area has found that over the past four years, forward natural gas contracts (e.g., gas futures, swaps, and physical supply) have traded at a premium relative to contemporaneous long-term reference case gas price forecasts from the EIA. As such, we have concluded that, over the past four years at least, levelized cost comparisons of fixed-price renewable generation with variable price gas-fired generation that have been based on AEO natural gas price forecasts (rather than forward prices) have yielded results that are ''biased'' in favor of gas-fired generation (presuming that long-term price stability is valued). In this memo we simply update our past analysis to include the latest long-term gas price forecast from the EIA, as contained in AEO 2005. For the sake of brevity, we do not rehash information (on methodology, potential explanations for the premiums, etc.) contained in our earlier reports on this topic; readers interested in such information are encouraged to download that work from http://eetd.lbl.gov/ea/EMS/reports/53587.pdf or, more recently (and briefly), http://eetd.lbl.gov/ea/ems/reports/54751.pdf. As was the case in the past four AEO releases (AEO 2001-AE0 2004), we once again find that the AEO 2005 reference case gas price forecast falls well below

  7. Comparison of AEO 2006 Natural Gas Price Forecast to NYMEX FuturesPrices

    SciTech Connect (OSTI)

    Bolinger, Mark; Wiser, Ryan

    2005-12-19

    On December 12, 2005, the reference case projections from ''Annual Energy Outlook 2006'' (AEO 2006) were posted on the Energy Information Administration's (EIA) web site. We at LBNL have in the past compared the EIA's reference case long-term natural gas price forecasts from the AEO series to contemporaneous natural gas prices that can be locked in through the forward market, with the goal of better understanding fuel price risk and the role that renewables play in mitigating such risk (see, for example, http://eetd.lbl.gov/ea/EMS/reports/53587.pdf or http://eetd.lbl.gov/ea/ems/reports/54751.pdf). As such, we were curious to see how the latest AEO gas price forecast compares to the NYMEX natural gas futures strip. This brief memo presents our findings. As a refresher, our past work in this area has found that over the past five years, forward natural gas contracts (with prices that can be locked in--e.g., gas futures, swaps, and physical supply) have traded at a premium relative to contemporaneous long-term reference case gas price forecasts from the EIA. As such, we have concluded that, over the past five years at least, levelized cost comparisons of fixed-price renewable generation with variable price gas-fired generation that have been based on AEO natural gas price forecasts (rather than forward prices) have yielded results that are ''biased'' in favor of gas-fired generation, presuming that long-term price stability is valued. In this memo we simply update our past analysis to include the latest long-term gas price forecast from the EIA, as contained in AEO 2006. For the sake of brevity, we do not rehash information (on methodology, potential explanations for the premiums, etc.) contained in our earlier reports on this topic; readers interested in such information are encouraged to download that work from http://eetd.lbl.gov/ea/EMS/reports/53587.pdf or http://eetd.lbl.gov/ea/ems/reports/54751.pdf. As was the case in the past five AEO releases (AEO 2001-AEO

  8. Comparison of AEO 2007 Natural Gas Price Forecast to NYMEX FuturesPrices

    SciTech Connect (OSTI)

    Bolinger, Mark; Wiser, Ryan

    2006-12-06

    On December 5, 2006, the reference case projections from 'Annual Energy Outlook 2007' (AEO 2007) were posted on the Energy Information Administration's (EIA) web site. We at LBNL have, in the past, compared the EIA's reference case long-term natural gas price forecasts from the AEO series to contemporaneous natural gas prices that can be locked in through the forward market, with the goal of better understanding fuel price risk and the role that renewables play in mitigating such risk (see, for example, http://eetd.lbl.gov/ea/EMS/reports/53587.pdf or http://eetd.lbl.gov/ea/ems/reports/54751.pdf). As such, we were curious to see how the latest AEO gas price forecast compares to the NYMEX natural gas futures strip. This brief memo presents our findings. As a refresher, our past work in this area has found that over the past six years, forward natural gas contracts (with prices that can be locked in--e.g., gas futures, swaps, and physical supply) have traded at a premium relative to contemporaneous long-term reference case gas price forecasts from the EIA. As such, we have concluded that, over the past six years at least, levelized cost comparisons of fixed-price renewable generation with variable-price gas-fired generation that have been based on AEO natural gas price forecasts (rather than forward prices) have yielded results that are 'biased' in favor of gas-fired generation, presuming that long-term price stability is valued. In this memo we simply update our past analysis to include the latest long-term gas price forecast from the EIA, as contained in AEO 2007. For the sake of brevity, we do not rehash information (on methodology, potential explanations for the premiums, etc.) contained in our earlier reports on this topic; readers interested in such information are encouraged to download that work from http://eetd.lbl.gov/ea/EMS/reports/53587.pdf or http://eetd.lbl.gov/ea/ems/reports/54751.pdf. As was the case in the past six AEO releases (AEO 2001-AEO 2006), we

  9. A comparison of water vapor quantities from model short-range forecasts and ARM observations

    SciTech Connect (OSTI)

    Hnilo, J J

    2006-03-17

    Model evolution and improvement is complicated by the lack of high quality observational data. To address a major limitation of these measurements the Atmospheric Radiation Measurement (ARM) program was formed. For the second quarter ARM metric we will make use of new water vapor data that has become available, and called the 'Merged-sounding' value added product (referred to as OBS, within the text) at three sites: the North Slope of Alaska (NSA), Darwin Australia (DAR) and the Southern Great Plains (SGP) and compare these observations to model forecast data. Two time periods will be analyzed March 2000 for the SGP and October 2004 for both DAR and NSA. The merged-sounding data have been interpolated to 37 pressure levels (e.g., from 1000hPa to 100hPa at 25hPa increments) and time averaged to 3 hourly data for direct comparison to our model output.

  10. A comparison of model short-range forecasts and the ARM Microbase data

    SciTech Connect (OSTI)

    Hnilo, J J

    2006-09-22

    For the fourth quarter ARM metric we will make use of new liquid water data that has become available, and called the 'Microbase' value added product (referred to as OBS, within the text) at three sites: the North Slope of Alaska (NSA), Tropical West Pacific (TWP) and the Southern Great Plains (SGP) and compare these observations to model forecast data. Two time periods will be analyzed March 2000 for the SGP and October 2004 for both TWP and NSA. The Microbase data have been averaged to 35 pressure levels (e.g., from 1000hPa to 100hPa at 25hPa increments) and time averaged to 3hourly data for direct comparison to our model output.

  11. A Comparison of Water Vapor Quantities from Model Short-Range Forecasts and ARM Observations

    SciTech Connect (OSTI)

    Hnilo, J.

    2006-03-17

    Model evolution and improvement is complicated by the lack of high quality observational data. To address a major limitation of these measurements the Atmospheric Radiation Measurement (ARM) program was formed. For the second quarter ARM metric we will make use of new water vapor data that has become available, and called the “Mergedsounding” value added product (referred to as OBS, within the text) at three sites: the North Slope of Alaska (NSA), Darwin Australia (DAR) and the Southern Great Plains (SGP) and compare these observations to model forecast data. Two time periods will be analyzed March 2000 for the SGP and October 2004 for both DAR and NSA. The merged-sounding data have been interpolated to 37 pressure levels (e.g., from 1000hPa to 100hPa at 25hPa increments) and time averaged to 3 hourly data for direct comparison to our model output.

  12. Comparison of AEO 2008 Natural Gas Price Forecast to NYMEX Futures Prices

    SciTech Connect (OSTI)

    Bolinger, Mark A; Bolinger, Mark; Wiser, Ryan

    2008-01-07

    On December 12, 2007, the reference-case projections from Annual Energy Outlook 2008 (AEO 2008) were posted on the Energy Information Administration's (EIA) web site. We at LBNL have, in the past, compared the EIA's reference-case long-term natural gas price forecasts from the AEO series to contemporaneous natural gas prices that can be locked in through the forward market, with the goal of better understanding fuel price risk and the role that renewables can play in mitigating such risk. As such, we were curious to see how the latest AEO reference-case gas price forecast compares to the NYMEX natural gas futures strip. This brief memo presents our findings. Note that this memo pertains only to natural gas fuel price risk (i.e., the risk that natural gas prices might differ over the life of a gas-fired generation asset from what was expected when the decision to build the gas-fired unit was made). We do not take into consideration any of the other distinct attributes of gas-fired and renewable generation, such as dispatchability (or lack thereof) or environmental externalities. A comprehensive comparison of different resource types--which is well beyond the scope of this memo--would need to account for differences in all such attributes, including fuel price risk. Furthermore, our analysis focuses solely on natural-gas-fired generation (as opposed to coal-fired generation, for example), for several reasons: (1) price volatility has been more of a concern for natural gas than for other fuels used to generate power; (2) for environmental and other reasons, natural gas has, in recent years, been the fuel of choice among power plant developers (though its appeal has diminished somewhat as prices have increased); and (3) natural gas-fired generators often set the market clearing price in competitive wholesale power markets throughout the United States. That said, a more-complete analysis of how renewables mitigate fuel price risk would also need to consider coal and

  13. Comparison of AEO 2009 Natural Gas Price Forecast to NYMEX Futures Prices

    SciTech Connect (OSTI)

    Bolinger, Mark; Wiser, Ryan

    2009-01-28

    On December 17, 2008, the reference-case projections from Annual Energy Outlook 2009 (AEO 2009) were posted on the Energy Information Administration's (EIA) web site. We at LBNL have, in the past, compared the EIA's reference-case long-term natural gas price forecasts from the AEO series to contemporaneous natural gas prices that can be locked in through the forward market, with the goal of better understanding fuel price risk and the role that renewables can play in mitigating such risk. As such, we were curious to see how the latest AEO reference-case gas price forecast compares to the NYMEX natural gas futures strip. This brief memo presents our findings. Note that this memo pertains only to natural gas fuel price risk (i.e., the risk that natural gas prices might differ over the life of a gas-fired generation asset from what was expected when the decision to build the gas-fired unit was made). We do not take into consideration any of the other distinct attributes of gas-fired and renewable generation, such as dispatchability (or lack thereof), differences in capital costs and O&M expenses, or environmental externalities. A comprehensive comparison of different resource types--which is well beyond the scope of this memo--would need to account for differences in all such attributes, including fuel price risk. Furthermore, our analysis focuses solely on natural-gas-fired generation (as opposed to coal-fired or nuclear generation, for example), for several reasons: (1) price volatility has been more of a concern for natural gas than for other fuels used to generate power; (2) for environmental and other reasons, natural gas has, in recent years, been the fuel of choice among power plant developers; and (3) natural gas-fired generators often set the market clearing price in competitive wholesale power markets throughout the United States. That said, a more-complete analysis of how renewables mitigate fuel price risk would also need to consider coal, uranium, and

  14. Analysis of Variability and Uncertainty in Wind Power Forecasting: An International Comparison (Presentation)

    SciTech Connect (OSTI)

    Zhang, J.; Hodge, B.; Miettinen, J.; Holttinen, H.; Gomez-Lozaro, E.; Cutululis, N.; Litong-Palima, M.; Sorensen, P.; Lovholm, A.; Berge, E.; Dobschinski, J.

    2013-10-01

    This presentation summarizes the work to investigate the uncertainty in wind forecasting at different times of year and compare wind forecast errors in different power systems using large-scale wind power prediction data from six countries: the United States, Finland, Spain, Denmark, Norway, and Germany.

  15. Natural Gas Prices Forecast Comparison--AEO vs. Natural Gas Markets

    SciTech Connect (OSTI)

    Wong-Parodi, Gabrielle; Lekov, Alex; Dale, Larry

    2005-02-09

    This paper evaluates the accuracy of two methods to forecast natural gas prices: using the Energy Information Administration's ''Annual Energy Outlook'' forecasted price (AEO) and the ''Henry Hub'' compared to U.S. Wellhead futures price. A statistical analysis is performed to determine the relative accuracy of the two measures in the recent past. A statistical analysis suggests that the Henry Hub futures price provides a more accurate average forecast of natural gas prices than the AEO. For example, the Henry Hub futures price underestimated the natural gas price by 35 cents per thousand cubic feet (11.5 percent) between 1996 and 2003 and the AEO underestimated by 71 cents per thousand cubic feet (23.4 percent). Upon closer inspection, a liner regression analysis reveals that two distinct time periods exist, the period between 1996 to 1999 and the period between 2000 to 2003. For the time period between 1996 to 1999, AEO showed a weak negative correlation (R-square = 0.19) between forecast price by actual U.S. Wellhead natural gas price versus the Henry Hub with a weak positive correlation (R-square = 0.20) between forecasted price and U.S. Wellhead natural gas price. During the time period between 2000 to 2003, AEO shows a moderate positive correlation (R-square = 0.37) between forecasted natural gas price and U.S. Wellhead natural gas price versus the Henry Hub that show a moderate positive correlation (R-square = 0.36) between forecast price and U.S. Wellhead natural gas price. These results suggest that agencies forecasting natural gas prices should consider incorporating the Henry Hub natural gas futures price into their forecasting models along with the AEO forecast. Our analysis is very preliminary and is based on a very small data set. Naturally the results of the analysis may change, as more data is made available.

  16. Comparison of AEO 2010 Natural Gas Price Forecast to NYMEX Futures Prices

    SciTech Connect (OSTI)

    Bolinger, Mark A.; Wiser, Ryan H.

    2010-01-04

    On December 14, 2009, the reference-case projections from Annual Energy Outlook 2010 were posted on the Energy Information Administration's (EIA) web site. We at LBNL have, in the past, compared the EIA's reference-case long-term natural gas price forecasts from the AEO series to contemporaneous natural gas prices that can be locked in through the forward market, with the goal of better understanding fuel price risk and the role that renewables can play in itigating such risk. As such, we were curious to see how the latest AEO reference-case gas price forecast compares to the NYMEX natural gas futures strip. This brief memo presents our findings.

  17. A Comparison of Model Short-Range Forecasts and the ARM Microbase Data Fourth Quarter ARM Science Metric

    SciTech Connect (OSTI)

    Hnilo, J.

    2006-09-19

    For the fourth quarter ARM metric we will make use of new liquid water data that has become available, and called the “Microbase” value added product (referred to as OBS, within the text) at three sites: the North Slope of Alaska (NSA), Tropical West Pacific (TWP) and the Southern Great Plains (SGP) and compare these observations to model forecast data. Two time periods will be analyzed March 2000 for the SGP and October 2004 for both TWP and NSA. The Microbase data have been averaged to 35 pressure levels (e.g., from 1000hPa to 100hPa at 25hPa increments) and time averaged to 3hourly data for direct comparison to our model output.

  18. Solar Forecasting

    Broader source: Energy.gov [DOE]

    On December 7, 2012, DOE announced $8 million to fund two solar projects that are helping utilities and grid operators better forecast when, where, and how much solar power will be produced at U.S....

  19. Forecast Change

    U.S. Energy Information Administration (EIA) Indexed Site

    Forecast Change 2011 2012 2013 2014 2015 2016 from 2015 United States Usage (kWh) 3,444 3,354 3,129 3,037 3,151 3,302 4.8% Price (cents/kWh) 12.06 12.09 12.58 13.04 12.95 12.84 -0.9% Expenditures $415 $405 $393 $396 $408 $424 3.9% New England Usage (kWh) 2,122 2,188 2,173 1,930 1,992 2,082 4.5% Price (cents/kWh) 15.85 15.50 16.04 17.63 18.64 18.37 -1.5% Expenditures $336 $339 $348 $340 $371 $382 3.0% Mid-Atlantic Usage (kWh) 2,531 2,548 2,447 2,234 2,371 2,497 5.3% Price (cents/kWh) 16.39 15.63

  20. Wind Power Forecasting Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Operations Call 2012 Retrospective Reports 2012 Retrospective Reports 2011 Smart Grid Wind Integration Wind Integration Initiatives Wind Power Forecasting Wind Projects Email...

  1. probabilistic energy production forecasts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    energy production forecasts - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary ...

  2. Wind Power Forecasting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    data Presentations BPA Super Forecast Methodology Related Links Near Real-time Wind Animation Meteorological Data Customer Supplied Generation Imbalance Dynamic Transfer Limits...

  3. Forecasting Water Quality & Biodiversity

    Broader source: Energy.gov (indexed) [DOE]

    Forecasting Water Quality & Biodiversity March 25, 2015 Cross-cutting Sustainability ... that measure feedstock production, water quality, water quantity, and biodiversity. ...

  4. NREL: Transmission Grid Integration - Forecasting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Forecasting NREL researchers use solar and wind resource assessment and forecasting techniques to develop models that better characterize the potential benefits and impacts of ...

  5. 2016 Solar Forecasting Workshop

    Office of Energy Efficiency and Renewable Energy (EERE)

    On August 3, 2016, the SunShot Initiative's systems integration subprogram hosted the Solar Forecasting Workshop to convene experts in the areas of bulk power system operations, distribution system operations, weather and solar irradiance forecasting, and photovoltaic system operation and modeling. The goal was to identify the technical challenges and opportunities in solar forecasting as a capability that can significantly reduce the integration cost of high levels of solar energy into the electricity grid. This will help SunShot to assess current technology and practices in this field and identify the gaps and needs for further research.

  6. Today's Forecast: Improved Wind Predictions

    Broader source: Energy.gov [DOE]

    Accurate weather forecasts are critical for making energy sources -- including wind and solar -- dependable and predictable.

  7. Solar Forecast Improvement Project

    Office of Energy Efficiency and Renewable Energy (EERE)

    For the Solar Forecast Improvement Project (SFIP), the Earth System Research Laboratory (ESRL) is partnering with the National Center for Atmospheric Research (NCAR) and IBM to develop more...

  8. Acquisition Forecast | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Acquisition Forecast Acquisition Forecast Acquisition Forecast It is the policy of the U.S. Department of Energy (DOE) to provide timely information to the public regarding DOE's forecast of future prime contracting opportunities and subcontracting opportunities which are available via the Department's major site and facilities management contractors. This forecast has been expanded to also provide timely status information for ongoing prime contracting actions that are valued in excess of the

  9. Comparison

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Comparison of ion temperature diagnostics on the Madison symmetric torus reversed-field pinch J. C. Reardon, a) D. Craig, D. J. Den Hartog, G. Fiksel, and S. C. Prager Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706 ͑Presented on 9 July 2002͒ There have been three ion temperature diagnostics operating on the Madison symmetric torus ͑MST͒ for the past two years: ͑i͒ Charge-exchange recombination spectroscopy ͑CHERS͒, which measures the temperature of fully

  10. A New Prognostic Index and Comparison to Three Other Indices for Patients With Brain Metastases: An Analysis of 1,960 Patients in the RTOG Database

    SciTech Connect (OSTI)

    Sperduto, Paul W. Berkey, Brian M.S.; Gaspar, Laurie E.; Mehta, Minesh; Curran, Walter

    2008-02-01

    Purpose: The purpose of this study is to introduce a new prognostic index for patients with brain metastases and compare it with three published indices. Treatment for brain metastases varies widely. A sound prognostic index is thus important to guide both clinical decision making and outcomes research. Methods and Materials: A new index was developed because of limitations in the three existing indices and new data (Radiation Therapy Oncology Group 9508) are available since the others were developed. All four indices were compared using the Radiation Therapy Oncology Group database of 1,960 patients with brain metastases from five randomized trials. The ability of the four indices to distinguish its separate classes was determined statistically. Advantages and disadvantages of each index are discussed. Results: Recursive partitioning analysis (RPA) and the new Graded Prognostic Assessment (GPA) had the most statistically significant differences between classes (p < 0.001 for all classes). Conclusions: The new index, the GPA, is as prognostic as the RPA and more prognostic than the other indices. The GPA is the least subjective, most quantitative and easiest to use of the four indices. Future clinical trials should compare the GPA with the RPA to prospectively validate these findings.

  11. Development and testing of improved statistical wind power forecasting methods.

    SciTech Connect (OSTI)

    Mendes, J.; Bessa, R.J.; Keko, H.; Sumaili, J.; Miranda, V.; Ferreira, C.; Gama, J.; Botterud, A.; Zhou, Z.; Wang, J.

    2011-12-06

    Wind power forecasting (WPF) provides important inputs to power system operators and electricity market participants. It is therefore not surprising that WPF has attracted increasing interest within the electric power industry. In this report, we document our research on improving statistical WPF algorithms for point, uncertainty, and ramp forecasting. Below, we provide a brief introduction to the research presented in the following chapters. For a detailed overview of the state-of-the-art in wind power forecasting, we refer to [1]. Our related work on the application of WPF in operational decisions is documented in [2]. Point forecasts of wind power are highly dependent on the training criteria used in the statistical algorithms that are used to convert weather forecasts and observational data to a power forecast. In Chapter 2, we explore the application of information theoretic learning (ITL) as opposed to the classical minimum square error (MSE) criterion for point forecasting. In contrast to the MSE criterion, ITL criteria do not assume a Gaussian distribution of the forecasting errors. We investigate to what extent ITL criteria yield better results. In addition, we analyze time-adaptive training algorithms and how they enable WPF algorithms to cope with non-stationary data and, thus, to adapt to new situations without requiring additional offline training of the model. We test the new point forecasting algorithms on two wind farms located in the U.S. Midwest. Although there have been advancements in deterministic WPF, a single-valued forecast cannot provide information on the dispersion of observations around the predicted value. We argue that it is essential to generate, together with (or as an alternative to) point forecasts, a representation of the wind power uncertainty. Wind power uncertainty representation can take the form of probabilistic forecasts (e.g., probability density function, quantiles), risk indices (e.g., prediction risk index) or scenarios

  12. Using Wikipedia to forecast diseases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Using Wikipedia to forecast diseases Using Wikipedia to forecast diseases Scientists can now monitor and forecast diseases around the globe more effectively by analyzing views of Wikipedia articles. November 13, 2014 Del Valle and her team observe findings from their research on disease patterns from analyzing Wikipedia articles. Del Valle and her team observe findings from their research on disease patterns from analyzing Wikipedia articles. Contact Nancy Ambrosiano Communications Office (505)

  13. A Comparison of Water Vapor Quantities from Model Short-Range...

    Office of Scientific and Technical Information (OSTI)

    Comparison of Water Vapor Quantities from Model Short-Range Forecasts and ARM Observations Citation Details In-Document Search Title: A Comparison of Water Vapor Quantities from ...

  14. Baseline and Target Values for PV Forecasts: Toward Improved...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Baseline and Target Values for PV Forecasts: Toward Improved Solar Power Forecasting ... Baseline and Target Values for PV Forecasts: Toward Improved Solar Power Forecasting Jie ...

  15. UWIG Forecasting Workshop -- Albany (Presentation)

    SciTech Connect (OSTI)

    Lew, D.

    2011-04-01

    This presentation describes the importance of good forecasting for variable generation, the different approaches used by industry, and the importance of validated high-quality data.

  16. The forecast calls for flu

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science on the Hill: The forecast calls for flu Using mathematics, computer programs, ... We're getting close. Using mathematics, computer programs, statistics and information ...

  17. Forecast Energy | Open Energy Information

    Open Energy Info (EERE)

    Zip: 94965 Region: Bay Area Sector: Services Product: Intelligent Monitoring and Forecasting Services Year Founded: 2010 Website: www.forecastenergy.net Coordinates:...

  18. Upcoming Funding Opportunity for Wind Forecasting Improvement...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind Forecasting Improvement Project in Complex Terrain Upcoming Funding Opportunity for Wind Forecasting Improvement Project in Complex Terrain February 12, 2014 - 10:47am ...

  19. Solar Energy Market Forecast | Open Energy Information

    Open Energy Info (EERE)

    Market Forecast Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Solar Energy Market Forecast AgencyCompany Organization: United States Department of Energy Sector:...

  20. Project Profile: Forecasting and Influencing Technological Progress...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Soft Costs Project Profile: Forecasting and Influencing Technological Progress in Solar Energy Project Profile: Forecasting and Influencing Technological Progress in Solar ...

  1. National Oceanic and Atmospheric Administration Provides Forecasting...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... will share their expertise with CLASIC and CHAPS forecasters and project leaders as they consult on the forecast that will determine the day's operations plan. -- Storm Prediction ...

  2. Intermediate future forecasting system

    SciTech Connect (OSTI)

    Gass, S.I.; Murphy, F.H.; Shaw, S.H.

    1983-12-01

    The purposes of the Symposium on the Department of Energy's Intermediate Future Forecasting System (IFFS) were: (1) to present to the energy community details of DOE's new energy market model IFFS; and (2) to have an open forum in which IFFS and its major elements could be reviewed and critiqued by external experts. DOE speakers discussed the total system, its software design, and the modeling aspects of oil and gas supply, refineries, electric utilities, coal, and the energy economy. Invited experts critiqued each of these topics and offered suggestions for modifications and improvement. This volume documents the proceedings (papers and discussion) of the Symposium. Separate abstracts have been prepared for each presentation for inclusion in the Energy Data Base.

  3. Energy Conservation Program: Data Collection and Comparison with...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Unit Sales for Five Lamp Types, Notice of Data Availability Energy Conservation Program: Data Collection and Comparison with Forecasted Unit Sales for Five Lamp Types, Notice of ...

  4. Science on Tap - Forecasting illness

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science on Tap - Forecasting illness Science on Tap - Forecasting illness WHEN: Mar 17, 2016 5:30 PM - 7:00 PM WHERE: UnQuarked Wine Room 145 Central Park Square, Los Alamos, New Mexico 87544 USA CONTACT: Linda Anderman (505) 665-9196 CATEGORY: Bradbury INTERNAL: Calendar Login Event Description Mark your calendars for this event held every third Thursday from 5:30 to 7 p.m. A short presentation is followed by a lively discussion on a different subject each month. Forecasting the flu (and other

  5. Solar energy conversion: Technological forecasting. (Latest citations from the Aerospace database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1993-12-01

    The bibliography contains citations concerning current forecasting of Earth surface-bound solar energy conversion technology. Topics consider research, development and utilization of this technology in relation to electric power generation, heat pumps, bioconversion, process heat and the production of renewable gaseous, liquid, and solid fuels for industrial, commercial, and domestic applications. Some citations concern forecasts which compare solar technology with other energy technologies. (Contains 250 citations and includes a subject term index and title list.)

  6. Solar energy conversion: Technological forecasting. (Latest citations from the Aerospace database). Published Search

    SciTech Connect (OSTI)

    1995-01-01

    The bibliography contains citations concerning current forecasting of Earth surface-bound solar energy conversion technology. Topics consider research, development and utilization of this technology in relation to electric power generation, heat pumps, bioconversion, process heat and the production of renewable gaseous, liquid, and solid fuels for industrial, commercial, and domestic applications. Some citations concern forecasts which compare solar technology with other energy technologies. (Contains 250 citations and includes a subject term index and title list.)

  7. Acquisition Forecast Download | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Acquisition Forecast Download Acquisition Forecast Download Click on the link to download a copy of the DOE HQ Acquisition Forecast. Acquisition-Forecast-2016-07-20.xlsx (72.85 KB) More Documents & Publications Small Business Program Manager Directory EA-1900: Notice of Availability of a Draft Environmental Assessment Assessment Report: OAS-V-15-01

  8. Value of Wind Power Forecasting

    SciTech Connect (OSTI)

    Lew, D.; Milligan, M.; Jordan, G.; Piwko, R.

    2011-04-01

    This study, building on the extensive models developed for the Western Wind and Solar Integration Study (WWSIS), uses these WECC models to evaluate the operating cost impacts of improved day-ahead wind forecasts.

  9. Wind Forecast Improvement Project Southern Study Area Final Report...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind Forecast Improvement Project Southern Study Area Final Report Wind Forecast Improvement Project Southern Study Area Final Report Wind Forecast Improvement Project Southern ...

  10. Picture of the Week: Forecasting Flu

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 Forecasting Flu What if we could forecast infectious diseases the same way we forecast the weather, and predict how diseases like Dengue, Typhus or Zika were going to spread? March 6, 2016 flu epidemics modellled using social media Watch the video on YouTube. Forecasting Flu What if we could forecast infectious diseases the same way we forecast the weather, and predict how diseases like Dengue, Typhus or Zika were going to spread? Using real-time data from Wikipedia and social media, Sara del

  11. ARM - Heat Index Calculations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Heat Index Calculations Heat Index is an index that ...

  12. The Value of Wind Power Forecasting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... day-ahead wind generation forecasts yields an average of 195M savings in annual operating costs. Figure 6 shows how operating cost savings vary with improvements in forecasting. ...

  13. EIA lowers forecast for summer gasoline prices

    U.S. Energy Information Administration (EIA) Indexed Site

    EIA lowers forecast for summer gasoline prices U.S. gasoline prices are expected to be ... according to the new monthly forecast from the U.S. Energy Information Administration. ...

  14. UPF Forecast | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Subcontracting / Subcontracting Forecasts / UPF Forecast UPF Forecast UPF Procurement provides the following forecast of subcontracting opportunities. Keep in mind that these requirements may be revised or cancelled, depending on program budget funding or departmental needs. If you have questions or would like to express an interest in any of the opportunities listed below, contact UPF Procurement. Descriptiona Methodb NAICS Est. Dollar Range RFP release/ Award datec Buyer/ Phone Commodities

  15. Wind Forecasting Improvement Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Forecasting Improvement Project Wind Forecasting Improvement Project October 3, 2011 - 12:12pm Addthis This is an excerpt from the Third Quarter 2011 edition of the Wind Program R&D Newsletter. In July, the Department of Energy launched a $6 million project with the National Oceanic and Atmospheric Administration (NOAA) and private partners to improve wind forecasting. Wind power forecasting allows system operators to anticipate the electrical output of wind plants and adjust the electrical

  16. Nucleic acid indexing

    DOE Patents [OSTI]

    Guilfoyle, Richard A.; Guo, Zhen

    1999-01-01

    A restriction site indexing method for selectively amplifying any fragment generated by a Class II restriction enzyme includes adaptors specific to fragment ends containing adaptor indexing sequences complementary to fragment indexing sequences near the termini of fragments generated by Class II enzyme cleavage. A method for combinatorial indexing facilitates amplification of restriction fragments whose sequence is not known.

  17. Nucleic acid indexing

    DOE Patents [OSTI]

    Guilfoyle, Richard A.; Guo, Zhen

    2001-01-01

    A restriction site indexing method for selectively amplifying any fragment generated by a Class II restriction enzyme includes adaptors specific to fragment ends containing adaptor indexing sequences complementary to fragment indexing sequences near the termini of fragments generated by Class II enzyme cleavage. A method for combinatorial indexing facilitates amplification of restriction fragments whose sequence is not known.

  18. Short-Term Load Forecasting Error Distributions and Implications for Renewable Integration Studies: Preprint

    SciTech Connect (OSTI)

    Hodge, B. M.; Lew, D.; Milligan, M.

    2013-01-01

    Load forecasting in the day-ahead timescale is a critical aspect of power system operations that is used in the unit commitment process. It is also an important factor in renewable energy integration studies, where the combination of load and wind or solar forecasting techniques create the net load uncertainty that must be managed by the economic dispatch process or with suitable reserves. An understanding of that load forecasting errors that may be expected in this process can lead to better decisions about the amount of reserves necessary to compensate errors. In this work, we performed a statistical analysis of the day-ahead (and two-day-ahead) load forecasting errors observed in two independent system operators for a one-year period. Comparisons were made with the normal distribution commonly assumed in power system operation simulations used for renewable power integration studies. Further analysis identified time periods when the load is more likely to be under- or overforecast.

  19. Supply Forecast and Analysis (SFA)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Matthew Langholtz Science Team Leader Oak Ridge National Laboratory DOE Bioenergy Technologies Office (BETO) 2015 Project Peer Review Supply Forecast and Analysis (SFA) 2 | Bioenergy Technologies Office Goal Statement * Provide timely and credible estimates of feedstock supplies and prices to support - the development of a bioeconomy; feedstock demand analysis of EISA, RFS2, and RPS mandates - the data and analysis of other projects in Analysis and Sustainability, Feedstock Supply and Logistics,

  20. Site Index - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Site Index Site Index Calendar Hanford Blog Archive Search Site Feeds Site Index Weather What's New Site Index Email Email Page | Print Print Page | Text Increase Font Size Decrease Font Size About Us About Hanford Cleanup Regulators, Boards, Councils Hanford Advisory Board Hanford Natural Resource Trustee Council Environmental Protection Agency Washington State Department of Ecology Defense Nuclear Facilities Safety Board Hanford History Hanford Site Wide Programs DOE Human Resources Management

  1. ARM - CARES - Tracer Forecast for CARES

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CampaignsCarbonaceous Aerosols and Radiative Effects Study (CARES)Tracer Forecast for CARES Related Links CARES Home AAF Home ARM Data Discovery Browse Data Post-Campaign Data Sets Field Updates CARES Wiki Campaign Images Experiment Planning Proposal Abstract and Related Campaigns Science Plan Operations Plan Measurements Forecasts News News & Press Backgrounder (PDF, 1.45MB) G-1 Aircraft Fact Sheet (PDF, 1.3MB) Contacts Rahul Zaveri, Lead Scientist Tracer Forecasts for CARES This webpage

  2. LED Lighting Forecast | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Publications » Market Studies » LED Lighting Forecast LED Lighting Forecast The DOE report Energy Savings Forecast of Solid-State Lighting in General Illumination Applications estimates the energy savings of LED white-light sources over the analysis period of 2013 to 2030. With declining costs and improving performance, LED products have been seeing increased adoption for general illumination applications. This is a positive development in terms of energy consumption, as LEDs use significantly

  3. NREL: Resource Assessment and Forecasting Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    are used to plan and develop renewable energy technologies and support climate change research. Learn more about NREL's resource assessment and forecasting research:...

  4. Funding Opportunity Announcement for Wind Forecasting Improvement...

    Broader source: Energy.gov (indexed) [DOE]

    There is no cost to participate and all applicants are encouraged to attend. To join the ... Related Articles Upcoming Funding Opportunity for Wind Forecasting Improvement Project in ...

  5. Module 6 - Metrics, Performance Measurements and Forecasting...

    Broader source: Energy.gov (indexed) [DOE]

    This module reviews metrics such as cost and schedule variance along with cost and schedule performance indices. In addition, this module will outline forecasting tools such as ...

  6. Forecast and Funding Arrangements - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Annual Waste Forecast and Funding Arrangements About Us Hanford Site Solid Waste Acceptance Program What's New Acceptance Criteria Acceptance Process Becoming a new Hanford...

  7. NREL: Resource Assessment and Forecasting - Webmaster

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    email address: Your message: Send Message Printable Version Resource Assessment & Forecasting Home Capabilities Facilities Working with Us Research Staff Data & Resources Did...

  8. Development and Demonstration of Advanced Forecasting, Power...

    Broader source: Energy.gov (indexed) [DOE]

    and Demonstration of Advanced Forecasting, Power and Environmental Planning and Management Tools and Best Practices 63wateruseoptimizationprojectanlgasper.ppt (7.72 MB) More ...

  9. Electronic Document Master Index

    Energy Science and Technology Software Center (OSTI)

    2003-05-15

    This is a web-based records index search engine. Through a simple or advanced search, users can find data sources and records of interest.

  10. Sensing, Measurement, and Forecasting | Grid Modernization | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sensing, Measurement, and Forecasting NREL measures weather resources and power systems, forecasts renewable resources and grid conditions, and converts measurements into operational intelligence to support a modern grid. Photo of solar resource monitoring equipment Modernizing the grid involves assessing its health in real time, predicting its behavior and potential disruptions, and quickly responding to events-which requires understanding vital parameters throughout the electric

  11. Study forecasts disappearance of conifers due to climate change

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Study forecasts disappearance of conifers due to climate change Study forecasts disappearance of conifers due to climate change New results, reported in a paper released today in ...

  12. 915 MHz Wind Profiler for Cloud Forecasting at Brookhaven National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Profiler for Cloud Forecasting at Brookhaven National Laboratory M Jensen MJ ... Wind Profiler for Cloud Forecasting at Brookhaven National Laboratory M Jensen, ...

  13. 1993 Pacific Northwest Loads and Resources Study, Pacific Northwest Economic and Electricity Use Forecast, Technical Appendix: Volume 1.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1994-02-01

    This publication documents the load forecast scenarios and assumptions used to prepare BPA`s Whitebook. It is divided into: intoduction, summary of 1993 Whitebook electricity demand forecast, conservation in the load forecast, projection of medium case electricity sales and underlying drivers, residential sector forecast, commercial sector forecast, industrial sector forecast, non-DSI industrial forecast, direct service industry forecast, and irrigation forecast. Four appendices are included: long-term forecasts, LTOUT forecast, rates and fuel price forecasts, and forecast ranges-calculations.

  14. Coal Fired Power Generation Market Forecast | OpenEI Community

    Open Energy Info (EERE)

    Coal Fired Power Generation Market Forecast Home There are currently no posts in this category. Syndicate...

  15. Offshore Lubricants Market Forecast | OpenEI Community

    Open Energy Info (EERE)

    Offshore Lubricants Market Forecast Home There are currently no posts in this category. Syndicate...

  16. Metrics for Evaluating the Accuracy of Solar Power Forecasting (Presentation)

    SciTech Connect (OSTI)

    Zhang, J.; Hodge, B.; Florita, A.; Lu, S.; Hamann, H.; Banunarayanan, V.

    2013-10-01

    This presentation proposes a suite of metrics for evaluating the performance of solar power forecasting.

  17. Distribution of Wind Power Forecasting Errors from Operational Systems (Presentation)

    SciTech Connect (OSTI)

    Hodge, B. M.; Ela, E.; Milligan, M.

    2011-10-01

    This presentation offers new data and statistical analysis of wind power forecasting errors in operational systems.

  18. Flood Forecasting in River System Using ANFIS

    SciTech Connect (OSTI)

    Ullah, Nazrin; Choudhury, P.

    2010-10-26

    The aim of the present study is to investigate applicability of artificial intelligence techniques such as ANFIS (Adaptive Neuro-Fuzzy Inference System) in forecasting flood flow in a river system. The proposed technique combines the learning ability of neural network with the transparent linguistic representation of fuzzy system. The technique is applied to forecast discharge at a downstream station using flow information at various upstream stations. A total of three years data has been selected for the implementation of this model. ANFIS models with various input structures and membership functions are constructed, trained and tested to evaluate efficiency of the models. Statistical indices such as Root Mean Square Error (RMSE), Correlation Coefficient (CORR) and Coefficient of Efficiency (CE) are used to evaluate performance of the ANFIS models in forecasting river flood. The values of the indices show that ANFIS model can accurately and reliably be used to forecast flood in a river system.

  19. Text-Alternative Version LED Lighting Forecast

    Office of Energy Efficiency and Renewable Energy (EERE)

    The DOE report Energy Savings Forecast of Solid-State Lighting in General Illumination Applications estimates the energy savings of LED white-light sources over the analysis period of 2013 to 2030....

  20. energy data + forecasting | OpenEI Community

    Open Energy Info (EERE)

    energy data + forecasting Home FRED Description: Free Energy Database Tool on OpenEI This is an open source platform for assisting energy decision makers and policy makers in...

  1. Nambe Pueblo Water Budget and Forecasting model.

    SciTech Connect (OSTI)

    Brainard, James Robert

    2009-10-01

    This report documents The Nambe Pueblo Water Budget and Water Forecasting model. The model has been constructed using Powersim Studio (PS), a software package designed to investigate complex systems where flows and accumulations are central to the system. Here PS has been used as a platform for modeling various aspects of Nambe Pueblo's current and future water use. The model contains three major components, the Water Forecast Component, Irrigation Scheduling Component, and the Reservoir Model Component. In each of the components, the user can change variables to investigate the impacts of water management scenarios on future water use. The Water Forecast Component includes forecasting for industrial, commercial, and livestock use. Domestic demand is also forecasted based on user specified current population, population growth rates, and per capita water consumption. Irrigation efficiencies are quantified in the Irrigated Agriculture component using critical information concerning diversion rates, acreages, ditch dimensions and seepage rates. Results from this section are used in the Water Demand Forecast, Irrigation Scheduling, and the Reservoir Model components. The Reservoir Component contains two sections, (1) Storage and Inflow Accumulations by Categories and (2) Release, Diversion and Shortages. Results from both sections are derived from the calibrated Nambe Reservoir model where historic, pre-dam or above dam USGS stream flow data is fed into the model and releases are calculated.

  2. Science on the Hill: The forecast calls for flu

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The forecast calls for flu The forecast calls for flu Using mathematics, computer programs, statistics and information about how disease develops and spreads, a research team at Los Alamos National Laboratory found a way to forecast the flu season and even next week's sickness trends. January 15, 2016 Forecasting flu A team from Los Alamos has developed a method to predict flu outbreaks based in part on influenza-related searches of Wikipedia. The forecast calls for flu Beyond the familiar flu,

  3. Indexes of Consumption and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    and backward-index estimates; that is, the two-way indexed estimate is the weighted average of the estimates obtained by forward and backward indexing, with higher weight...

  4. Ramp Forecasting Performance from Improved Short-Term Wind Power Forecasting: Preprint

    SciTech Connect (OSTI)

    Zhang, J.; Florita, A.; Hodge, B. M.; Freedman, J.

    2014-05-01

    The variable and uncertain nature of wind generation presents a new concern to power system operators. One of the biggest concerns associated with integrating a large amount of wind power into the grid is the ability to handle large ramps in wind power output. Large ramps can significantly influence system economics and reliability, on which power system operators place primary emphasis. The Wind Forecasting Improvement Project (WFIP) was performed to improve wind power forecasts and determine the value of these improvements to grid operators. This paper evaluates the performance of improved short-term wind power ramp forecasting. The study is performed for the Electric Reliability Council of Texas (ERCOT) by comparing the experimental WFIP forecast to the current short-term wind power forecast (STWPF). Four types of significant wind power ramps are employed in the study; these are based on the power change magnitude, direction, and duration. The swinging door algorithm is adopted to extract ramp events from actual and forecasted wind power time series. The results show that the experimental short-term wind power forecasts improve the accuracy of the wind power ramp forecasting, especially during the summer.

  5. 1994 Solid waste forecast container volume summary

    SciTech Connect (OSTI)

    Templeton, K.J.; Clary, J.L.

    1994-09-01

    This report describes a 30-year forecast of the solid waste volumes by container type. The volumes described are low-level mixed waste (LLMW) and transuranic/transuranic mixed (TRU/TRUM) waste. These volumes and their associated container types will be generated or received at the US Department of Energy Hanford Site for storage, treatment, and disposal at Westinghouse Hanford Company`s Solid Waste Operations Complex (SWOC) during a 30-year period from FY 1994 through FY 2023. The forecast data for the 30-year period indicates that approximately 307,150 m{sup 3} of LLMW and TRU/TRUM waste will be managed by the SWOC. The main container type for this waste is 55-gallon drums, which will be used to ship 36% of the LLMW and TRU/TRUM waste. The main waste generator forecasting the use of 55-gallon drums is Past Practice Remediation. This waste will be generated by the Environmental Restoration Program during remediation of Hanford`s past practice sites. Although Past Practice Remediation is the primary generator of 55-gallon drums, most waste generators are planning to ship some percentage of their waste in 55-gallon drums. Long-length equipment containers (LECs) are forecasted to contain 32% of the LLMW and TRU/TRUM waste. The main waste generator forecasting the use of LECs is the Long-Length Equipment waste generator, which is responsible for retrieving contaminated long-length equipment from the tank farms. Boxes are forecasted to contain 21% of the waste. These containers are primarily forecasted for use by the Environmental Restoration Operations--D&D of Surplus Facilities waste generator. This waste generator is responsible for the solid waste generated during decontamination and decommissioning (D&D) of the facilities currently on the Surplus Facilities Program Plan. The remaining LLMW and TRU/TRUM waste volume is planned to be shipped in casks and other miscellaneous containers.

  6. Fiber optic refractive index monitor

    DOE Patents [OSTI]

    Weiss, Jonathan David

    2002-01-01

    A sensor for measuring the change in refractive index of a liquid uses the lowest critical angle of a normal fiber optic to achieve sensitivity when the index of the liquid is significantly less than the index of the fiber core. Another embodiment uses a liquid filled core to ensure that its index is approximately the same as the liquid being measured.

  7. Baseline and target values for regional and point PV power forecasts: Toward improved solar forecasting

    SciTech Connect (OSTI)

    Zhang, Jie; Hodge, Bri -Mathias; Lu, Siyuan; Hamann, Hendrik F.; Lehman, Brad; Simmons, Joseph; Campos, Edwin; Banunarayanan, Venkat; Black, Jon; Tedesco, John

    2015-11-10

    Accurate solar photovoltaic (PV) power forecasting allows utilities to reliably utilize solar resources on their systems. However, to truly measure the improvements that any new solar forecasting methods provide, it is important to develop a methodology for determining baseline and target values for the accuracy of solar forecasting at different spatial and temporal scales. This paper aims at developing a framework to derive baseline and target values for a suite of generally applicable, value-based, and custom-designed solar forecasting metrics. The work was informed by close collaboration with utility and independent system operator partners. The baseline values are established based on state-of-the-art numerical weather prediction models and persistence models in combination with a radiative transfer model. The target values are determined based on the reduction in the amount of reserves that must be held to accommodate the uncertainty of PV power output. The proposed reserve-based methodology is a reasonable and practical approach that can be used to assess the economic benefits gained from improvements in accuracy of solar forecasting. Lastly, the financial baseline and targets can be translated back to forecasting accuracy metrics and requirements, which will guide research on solar forecasting improvements toward the areas that are most beneficial to power systems operations.

  8. Baseline and target values for regional and point PV power forecasts: Toward improved solar forecasting

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Jie; Hodge, Bri -Mathias; Lu, Siyuan; Hamann, Hendrik F.; Lehman, Brad; Simmons, Joseph; Campos, Edwin; Banunarayanan, Venkat; Black, Jon; Tedesco, John

    2015-11-10

    Accurate solar photovoltaic (PV) power forecasting allows utilities to reliably utilize solar resources on their systems. However, to truly measure the improvements that any new solar forecasting methods provide, it is important to develop a methodology for determining baseline and target values for the accuracy of solar forecasting at different spatial and temporal scales. This paper aims at developing a framework to derive baseline and target values for a suite of generally applicable, value-based, and custom-designed solar forecasting metrics. The work was informed by close collaboration with utility and independent system operator partners. The baseline values are established based onmore » state-of-the-art numerical weather prediction models and persistence models in combination with a radiative transfer model. The target values are determined based on the reduction in the amount of reserves that must be held to accommodate the uncertainty of PV power output. The proposed reserve-based methodology is a reasonable and practical approach that can be used to assess the economic benefits gained from improvements in accuracy of solar forecasting. Lastly, the financial baseline and targets can be translated back to forecasting accuracy metrics and requirements, which will guide research on solar forecasting improvements toward the areas that are most beneficial to power systems operations.« less

  9. The Value of Improved Short-Term Wind Power Forecasting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... up-ramp reserves c down cost in MWh of down-ramp reserves R down MW range for ... power forecasting and the increased gas usage that comes with less-accurate forecasting. ...

  10. PBL FY 2003 Second Quarter Review Forecast of Generation Accumulated...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the rate period (i.e., FY 2002-2006), a forecast of that end-of-year Accumulated Net Revenue (ANR) will be completed. If the ANR at the end of the forecast year falls below the...

  11. Solar Forecasting Gets a Boost from Watson, Accuracy Improved...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Forecasting Gets a Boost from Watson, Accuracy Improved by 30% Solar Forecasting Gets a Boost from Watson, Accuracy Improved by 30% October 27, 2015 - 11:48am Addthis IBM ...

  12. Wind Power Forecasting Error Distributions over Multiple Timescales (Presentation)

    SciTech Connect (OSTI)

    Hodge, B. M.; Milligan, M.

    2011-07-01

    This presentation presents some statistical analysis of wind power forecast errors and error distributions, with examples using ERCOT data.

  13. Combined Heat And Power Installation Market Forecast | OpenEI...

    Open Energy Info (EERE)

    Combined Heat And Power Installation Market Forecast Home There are currently no posts in this category. Syndicate...

  14. Wind power forecasting in U.S. electricity markets.

    SciTech Connect (OSTI)

    Botterud, A.; Wang, J.; Miranda, V.; Bessa, R. J.; Decision and Information Sciences; INESC Porto

    2010-04-01

    Wind power forecasting is becoming an important tool in electricity markets, but the use of these forecasts in market operations and among market participants is still at an early stage. The authors discuss the current use of wind power forecasting in U.S. ISO/RTO markets, and offer recommendations for how to make efficient use of the information in state-of-the-art forecasts.

  15. Wind power forecasting in U.S. Electricity markets

    SciTech Connect (OSTI)

    Botterud, Audun; Wang, Jianhui; Miranda, Vladimiro; Bessa, Ricardo J.

    2010-04-15

    Wind power forecasting is becoming an important tool in electricity markets, but the use of these forecasts in market operations and among market participants is still at an early stage. The authors discuss the current use of wind power forecasting in U.S. ISO/RTO markets, and offer recommendations for how to make efficient use of the information in state-of-the-art forecasts. (author)

  16. DOE Taking Wind Forecasting to New Heights | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Taking Wind Forecasting to New Heights DOE Taking Wind Forecasting to New Heights May 18, 2015 - 3:24pm Addthis A 2013 study conducted for the U.S. Department of Energy (DOE) by the National Oceanic and Atmospheric Administration (NOAA), AWS Truepower, and WindLogics in the Great Plains and Western Texas, demonstrated that wind power forecasts can be improved substantially using data collected from tall towers, remote sensors, and other devices, and incorporated into improved forecasting models

  17. Issues in midterm analysis and forecasting 1998

    SciTech Connect (OSTI)

    1998-07-01

    Issues in Midterm Analysis and Forecasting 1998 (Issues) presents a series of nine papers covering topics in analysis and modeling that underlie the Annual Energy Outlook 1998 (AEO98), as well as other significant issues in midterm energy markets. AEO98, DOE/EIA-0383(98), published in December 1997, presents national forecasts of energy production, demand, imports, and prices through the year 2020 for five cases -- a reference case and four additional cases that assume higher and lower economic growth and higher and lower world oil prices than in the reference case. The forecasts were prepared by the Energy Information Administration (EIA), using EIA`s National Energy Modeling System (NEMS). The papers included in Issues describe underlying analyses for the projections in AEO98 and the forthcoming Annual Energy Outlook 1999 and for other products of EIA`s Office of Integrated Analysis and Forecasting. Their purpose is to provide public access to analytical work done in preparation for the midterm projections and other unpublished analyses. Specific topics were chosen for their relevance to current energy issues or to highlight modeling activities in NEMS. 59 figs., 44 tabs.

  18. Issues in midterm analysis and forecasting, 1996

    SciTech Connect (OSTI)

    1996-08-01

    This document consists of papers which cover topics in analysis and modeling that underlie the Annual Energy Outlook 1996. Topics include: The Potential Impact of Technological Progress on U.S. Energy Markets; The Outlook for U.S. Import Dependence; Fuel Economy, Vehicle Choice, and Changing Demographics, and Annual Energy Outlook Forecast Evaluation.

  19. Wind Forecast Improvement Project Southern Study Area Final Report |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Wind Forecast Improvement Project Southern Study Area Final Report Wind Forecast Improvement Project Southern Study Area Final Report Wind Forecast Improvement Project Southern Study Area Final Report.pdf (15.76 MB) More Documents & Publications QER - Comment of Edison Electric Institute (EEI) 1 QER - Comment of Canadian Hydropower Association QER - Comment of Edison Electric Institute (EEI) 2

  20. The Wind Forecast Improvement Project (WFIP). A Public-Private Partnership Addressing Wind Energy Forecast Needs

    SciTech Connect (OSTI)

    Wilczak, James M.; Finley, Cathy; Freedman, Jeff; Cline, Joel; Bianco, L.; Olson, J.; Djalaova, I.; Sheridan, L.; Ahlstrom, M.; Manobianco, J.; Zack, J.; Carley, J.; Benjamin, S.; Coulter, R. L.; Berg, Larry K.; Mirocha, Jeff D.; Clawson, K.; Natenberg, E.; Marquis, M.

    2015-10-30

    The Wind Forecast Improvement Project (WFIP) is a public-private research program, the goals of which are to improve the accuracy of short-term (0-6 hr) wind power forecasts for the wind energy industry and then to quantify the economic savings that accrue from more efficient integration of wind energy into the electrical grid. WFIP was sponsored by the U.S. Department of Energy (DOE), with partners that include the National Oceanic and Atmospheric Administration (NOAA), private forecasting companies (WindLogics and AWS Truepower), DOE national laboratories, grid operators, and universities. WFIP employed two avenues for improving wind power forecasts: first, through the collection of special observations to be assimilated into forecast models to improve model initial conditions; and second, by upgrading NWP forecast models and ensembles. The new observations were collected during concurrent year-long field campaigns in two high wind energy resource areas of the U.S. (the upper Great Plains, and Texas), and included 12 wind profiling radars, 12 sodars, 184 instrumented tall towers and over 400 nacelle anemometers (provided by private industry), lidar, and several surface flux stations. Results demonstrate that a substantial improvement of up to 14% relative reduction in power root mean square error (RMSE) was achieved from the combination of improved NOAA numerical weather prediction (NWP) models and assimilation of the new observations. Data denial experiments run over select periods of time demonstrate that up to a 6% relative improvement came from the new observations. The use of ensemble forecasts produced even larger forecast improvements. Based on the success of WFIP, DOE is planning follow-on field programs.

  1. Operational forecasting based on a modified Weather Research and Forecasting model

    SciTech Connect (OSTI)

    Lundquist, J; Glascoe, L; Obrecht, J

    2010-03-18

    Accurate short-term forecasts of wind resources are required for efficient wind farm operation and ultimately for the integration of large amounts of wind-generated power into electrical grids. Siemens Energy Inc. and Lawrence Livermore National Laboratory, with the University of Colorado at Boulder, are collaborating on the design of an operational forecasting system for large wind farms. The basis of the system is the numerical weather prediction tool, the Weather Research and Forecasting (WRF) model; large-eddy simulations and data assimilation approaches are used to refine and tailor the forecasting system. Representation of the atmospheric boundary layer is modified, based on high-resolution large-eddy simulations of the atmospheric boundary. These large-eddy simulations incorporate wake effects from upwind turbines on downwind turbines as well as represent complex atmospheric variability due to complex terrain and surface features as well as atmospheric stability. Real-time hub-height wind speed and other meteorological data streams from existing wind farms are incorporated into the modeling system to enable uncertainty quantification through probabilistic forecasts. A companion investigation has identified optimal boundary-layer physics options for low-level forecasts in complex terrain, toward employing decadal WRF simulations to anticipate large-scale changes in wind resource availability due to global climate change.

  2. Project Definition Rating Index Workbook

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Project Definition Rating Index (PDRI) Workbook is a tool that was developed to support DOE G-413.3-12A, U. S. Department of Energy Project Definition Rating Index Guide for Traditional Nuclear...

  3. Forecastability as a Design Criterion in Wind Resource Assessment: Preprint

    SciTech Connect (OSTI)

    Zhang, J.; Hodge, B. M.

    2014-04-01

    This paper proposes a methodology to include the wind power forecasting ability, or 'forecastability,' of a site as a design criterion in wind resource assessment and wind power plant design stages. The Unrestricted Wind Farm Layout Optimization (UWFLO) methodology is adopted to maximize the capacity factor of a wind power plant. The 1-hour-ahead persistence wind power forecasting method is used to characterize the forecastability of a potential wind power plant, thereby partially quantifying the integration cost. A trade-off between the maximum capacity factor and the forecastability is investigated.

  4. Compiler Comparisons

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Comparisons Compiler Comparisons Compiler Comparisons on Hopper There are five compilers available to users on Hopper, the NERSC XE6. All of the compilers on this system are...

  5. Forecasting hotspots using predictive visual analytics approach

    SciTech Connect (OSTI)

    Maciejewski, Ross; Hafen, Ryan; Rudolph, Stephen; Cleveland, William; Ebert, David

    2014-12-30

    A method for forecasting hotspots is provided. The method may include the steps of receiving input data at an input of the computational device, generating a temporal prediction based on the input data, generating a geospatial prediction based on the input data, and generating output data based on the time series and geospatial predictions. The output data may be configured to display at least one user interface at an output of the computational device.

  6. A survey on wind power ramp forecasting.

    SciTech Connect (OSTI)

    Ferreira, C.; Gama, J.; Matias, L.; Botterud, A.; Wang, J.

    2011-02-23

    The increasing use of wind power as a source of electricity poses new challenges with regard to both power production and load balance in the electricity grid. This new source of energy is volatile and highly variable. The only way to integrate such power into the grid is to develop reliable and accurate wind power forecasting systems. Electricity generated from wind power can be highly variable at several different timescales: sub-hourly, hourly, daily, and seasonally. Wind energy, like other electricity sources, must be scheduled. Although wind power forecasting methods are used, the ability to predict wind plant output remains relatively low for short-term operation. Because instantaneous electrical generation and consumption must remain in balance to maintain grid stability, wind power's variability can present substantial challenges when large amounts of wind power are incorporated into a grid system. A critical issue is ramp events, which are sudden and large changes (increases or decreases) in wind power. This report presents an overview of current ramp definitions and state-of-the-art approaches in ramp event forecasting.

  7. Global disease monitoring and forecasting with Wikipedia

    SciTech Connect (OSTI)

    Generous, Nicholas; Fairchild, Geoffrey; Deshpande, Alina; Del Valle, Sara Y.; Priedhorsky, Reid; Salathé, Marcel

    2014-11-13

    Infectious disease is a leading threat to public health, economic stability, and other key social structures. Efforts to mitigate these impacts depend on accurate and timely monitoring to measure the risk and progress of disease. Traditional, biologically-focused monitoring techniques are accurate but costly and slow; in response, new techniques based on social internet data, such as social media and search queries, are emerging. These efforts are promising, but important challenges in the areas of scientific peer review, breadth of diseases and countries, and forecasting hamper their operational usefulness. We examine a freely available, open data source for this use: access logs from the online encyclopedia Wikipedia. Using linear models, language as a proxy for location, and a systematic yet simple article selection procedure, we tested 14 location-disease combinations and demonstrate that these data feasibly support an approach that overcomes these challenges. Specifically, our proof-of-concept yields models with up to 0.92, forecasting value up to the 28 days tested, and several pairs of models similar enough to suggest that transferring models from one location to another without re-training is feasible. Based on these preliminary results, we close with a research agenda designed to overcome these challenges and produce a disease monitoring and forecasting system that is significantly more effective, robust, and globally comprehensive than the current state of the art.

  8. Global disease monitoring and forecasting with Wikipedia

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Generous, Nicholas; Fairchild, Geoffrey; Deshpande, Alina; Del Valle, Sara Y.; Priedhorsky, Reid; Salathé, Marcel

    2014-11-13

    Infectious disease is a leading threat to public health, economic stability, and other key social structures. Efforts to mitigate these impacts depend on accurate and timely monitoring to measure the risk and progress of disease. Traditional, biologically-focused monitoring techniques are accurate but costly and slow; in response, new techniques based on social internet data, such as social media and search queries, are emerging. These efforts are promising, but important challenges in the areas of scientific peer review, breadth of diseases and countries, and forecasting hamper their operational usefulness. We examine a freely available, open data source for this use: accessmore » logs from the online encyclopedia Wikipedia. Using linear models, language as a proxy for location, and a systematic yet simple article selection procedure, we tested 14 location-disease combinations and demonstrate that these data feasibly support an approach that overcomes these challenges. Specifically, our proof-of-concept yields models with up to 0.92, forecasting value up to the 28 days tested, and several pairs of models similar enough to suggest that transferring models from one location to another without re-training is feasible. Based on these preliminary results, we close with a research agenda designed to overcome these challenges and produce a disease monitoring and forecasting system that is significantly more effective, robust, and globally comprehensive than the current state of the art.« less

  9. Baseline and Target Values for PV Forecasts: Toward Improved Solar Power Forecasting: Preprint

    SciTech Connect (OSTI)

    Zhang, Jie; Hodge, Bri-Mathias; Lu, Siyuan; Hamann, Hendrik F.; Lehman, Brad; Simmons, Joseph; Campos, Edwin; Banunarayanan, Venkat

    2015-08-05

    Accurate solar power forecasting allows utilities to get the most out of the solar resources on their systems. To truly measure the improvements that any new solar forecasting methods can provide, it is important to first develop (or determine) baseline and target solar forecasting at different spatial and temporal scales. This paper aims to develop baseline and target values for solar forecasting metrics. These were informed by close collaboration with utility and independent system operator partners. The baseline values are established based on state-of-the-art numerical weather prediction models and persistence models. The target values are determined based on the reduction in the amount of reserves that must be held to accommodate the uncertainty of solar power output. forecasting metrics. These were informed by close collaboration with utility and independent system operator partners. The baseline values are established based on state-of-the-art numerical weather prediction models and persistence models. The target values are determined based on the reduction in the amount of reserves that must be held to accommodate the uncertainty of solar power output.

  10. Applied Parallel Metadata Indexing

    SciTech Connect (OSTI)

    Jacobi, Michael R

    2012-08-01

    The GPFS Archive is parallel archive is a parallel archive used by hundreds of users in the Turquoise collaboration network. It houses 4+ petabytes of data in more than 170 million files. Currently, users must navigate the file system to retrieve their data, requiring them to remember file paths and names. A better solution might allow users to tag data with meaningful labels and searach the archive using standard and user-defined metadata, while maintaining security. last summer, I developed the backend to a tool that adheres to these design goals. The backend works by importing GPFS metadata into a MongoDB cluster, which is then indexed on each attribute. This summer, the author implemented security and developed the user interfae for the search tool. To meet security requirements, each database table is associated with a single user, which only stores records that the user may read, and requires a set of credentials to access. The interface to the search tool is implemented using FUSE (Filesystem in USErspace). FUSE is an intermediate layer that intercepts file system calls and allows the developer to redefine how those calls behave. In the case of this tool, FUSE interfaces with MongoDB to issue queries and populate output. A FUSE implementation is desirable because it allows users to interact with the search tool using commands they are already familiar with. These security and interface additions are essential for a usable product.

  11. Auto Indexer for Percussive Hammers

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Auto Indexer for Percussive Hammers April 22-25, 2013 This presentation does not contain any proprietary confidential, or otherwise restricted information. Jiann Su, PI Sandia ...

  12. Metrics for Evaluating the Accuracy of Solar Power Forecasting: Preprint

    SciTech Connect (OSTI)

    Zhang, J.; Hodge, B. M.; Florita, A.; Lu, S.; Hamann, H. F.; Banunarayanan, V.

    2013-10-01

    Forecasting solar energy generation is a challenging task due to the variety of solar power systems and weather regimes encountered. Forecast inaccuracies can result in substantial economic losses and power system reliability issues. This paper presents a suite of generally applicable and value-based metrics for solar forecasting for a comprehensive set of scenarios (i.e., different time horizons, geographic locations, applications, etc.). In addition, a comprehensive framework is developed to analyze the sensitivity of the proposed metrics to three types of solar forecasting improvements using a design of experiments methodology, in conjunction with response surface and sensitivity analysis methods. The results show that the developed metrics can efficiently evaluate the quality of solar forecasts, and assess the economic and reliability impact of improved solar forecasting.

  13. index | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Analysis Focus Area slider_Power-Plant_NETL.jpg Analysis Focus Areas Overview NETL's expertise in Fossil Energy allows the energy analysis team to focus on these technological, economical, and environmental areas in the development of baseline studies, life cycle analyses, analytical tools, and quality guidelines. NETL analysts use economic models to forecast the market penetration of advanced energy systems for a variety of possible futures. The associated benefits are quantified in terms of

  14. Upcoming Funding Opportunity for Wind Forecasting Improvement Project in

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Complex Terrain | Department of Energy Wind Forecasting Improvement Project in Complex Terrain Upcoming Funding Opportunity for Wind Forecasting Improvement Project in Complex Terrain February 12, 2014 - 10:47am Addthis On February 11, 2014 the Wind Program announced a Notice of Intent to issue a funding opportunity entitled "Wind Forecasting Improvement Project in Complex Terrain." By researching the physical processes that take place in complex terrain, this funding would improve

  15. Roel Neggers European Centre for Medium-range Weather Forecasts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    transition from shallow to deep convection using a dual mass flux boundary layer scheme Roel Neggers European Centre for Medium-range Weather Forecasts Introduction " " % % &...

  16. Radar Wind Profiler for Cloud Forecasting at Brookhaven National...

    Office of Scientific and Technical Information (OSTI)

    forecasts for solar-energy applications and 2) to provide vertical profiling capabilities for the study of dynamics (i.e., vertical velocity) and hydrometeors in winter storms. ...

  17. DOE Announces Webinars on Solar Forecasting Metrics, the DOE...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Announces Webinars on Solar Forecasting Metrics, the DOE ... from adopting the latest energy efficiency and renewable ... to liquids technology, advantages of using natural gas, ...

  18. Ensemble Solar Forecasting Statistical Quantification and Sensitivity Analysis: Preprint

    SciTech Connect (OSTI)

    Cheung, WanYin; Zhang, Jie; Florita, Anthony; Hodge, Bri-Mathias; Lu, Siyuan; Hamann, Hendrik F.; Sun, Qian; Lehman, Brad

    2015-12-08

    Uncertainties associated with solar forecasts present challenges to maintain grid reliability, especially at high solar penetrations. This study aims to quantify the errors associated with the day-ahead solar forecast parameters and the theoretical solar power output for a 51-kW solar power plant in a utility area in the state of Vermont, U.S. Forecasts were generated by three numerical weather prediction (NWP) models, including the Rapid Refresh, the High Resolution Rapid Refresh, and the North American Model, and a machine-learning ensemble model. A photovoltaic (PV) performance model was adopted to calculate theoretical solar power generation using the forecast parameters (e.g., irradiance, cell temperature, and wind speed). Errors of the power outputs were quantified using statistical moments and a suite of metrics, such as the normalized root mean squared error (NRMSE). In addition, the PV model's sensitivity to different forecast parameters was quantified and analyzed. Results showed that the ensemble model yielded forecasts in all parameters with the smallest NRMSE. The NRMSE of solar irradiance forecasts of the ensemble NWP model was reduced by 28.10% compared to the best of the three NWP models. Further, the sensitivity analysis indicated that the errors of the forecasted cell temperature attributed only approximately 0.12% to the NRMSE of the power output as opposed to 7.44% from the forecasted solar irradiance.

  19. FY 2004 Second Quarter Review Forecast of Generation Accumulated...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bonneville Power Administration Power Business Line Generation (PBL) Accumulated Net Revenue Forecast for Financial-Based Cost Recovery Adjustment Clause (FB CRAC) and Safety-Net...

  20. PBL FY 2003 Third Quarter Review Forecast of Generation Accumulated...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2003 Bonneville Power Administration Power Business Line Generation Accumulated Net Revenue Forecast for Financial-Based Cost Recovery Adjustment Clause (FB CRAC) and Safety-Net...

  1. Improving the Accuracy of Solar Forecasting Funding Opportunity...

    Energy Savers [EERE]

    Through the Improving the Accuracy of Solar Forecasting Funding Opportunity, DOE is funding solar projects that are helping utilities, grid operators, solar power plant owners, and ...

  2. NREL: Resource Assessment and Forecasting - Data and Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Data and Resources National Solar Radiation Database NREL resource assessment and forecasting research information is available from the following sources. Renewable Resource Data ...

  3. New Forecasting Tools Enhance Wind Energy Integration In Idaho...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... RIT forecasting is saving costs and improving operational practices for IPC and helping integrate wind power more efficiently and cost effectively. Figure 3 shows how the ...

  4. A Review of Variable Generation Forecasting in the West: July...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Cost Assignment - Only a few respondents partly or fully recover forecasting costs from variable generators. Many simply absorb the costs, possibly viewing them as relatively ...

  5. ANL Software Improves Wind Power Forecasting | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    ... The licensing arrangement helps to facilitate transfer of the statistical learning algorithms developed in the project to industry use. A leading forecast provider in the United ...

  6. DOE Benefits Forecasts: Report of the External Peer Review Panel

    Office of Energy Efficiency and Renewable Energy (EERE)

    A report for the FY 2007 GPRA methodology review, highlighting the views of an external expert peer review panel on DOE benefits forecasts.

  7. Selected papers on fuel forecasting and analysis

    SciTech Connect (OSTI)

    Gordon, R.L.; Prast, W.G.

    1983-05-01

    Of the 19 presentations at this seminar, covering coal, uranium, oil, and gas issues as well as related EPRI research projects, eleven papers are published in this volume. Nine of the papers primarily address coal-market analysis, coal transportation, and uranium supply. Two additional papers provide an evaluation and perspective on the art and use of coal-supply forecasting models and on the relationship between coal and oil prices. The authors are energy analysts and EPRI research contractors from academia, the consulting profession, and the coal industry. A separate abstract was prepared for each of the 11 papers.

  8. Turbulence-driven coronal heating and improvements to empirical forecasting of the solar wind

    SciTech Connect (OSTI)

    Woolsey, Lauren N.; Cranmer, Steven R.

    2014-06-01

    Forecasting models of the solar wind often rely on simple parameterizations of the magnetic field that ignore the effects of the full magnetic field geometry. In this paper, we present the results of two solar wind prediction models that consider the full magnetic field profile and include the effects of Alfvn waves on coronal heating and wind acceleration. The one-dimensional magnetohydrodynamic code ZEPHYR self-consistently finds solar wind solutions without the need for empirical heating functions. Another one-dimensional code, introduced in this paper (The Efficient Modified-Parker-Equation-Solving Tool, TEMPEST), can act as a smaller, stand-alone code for use in forecasting pipelines. TEMPEST is written in Python and will become a publicly available library of functions that is easy to adapt and expand. We discuss important relations between the magnetic field profile and properties of the solar wind that can be used to independently validate prediction models. ZEPHYR provides the foundation and calibration for TEMPEST, and ultimately we will use these models to predict observations and explain space weather created by the bulk solar wind. We are able to reproduce with both models the general anticorrelation seen in comparisons of observed wind speed at 1 AU and the flux tube expansion factor. There is significantly less spread than comparing the results of the two models than between ZEPHYR and a traditional flux tube expansion relation. We suggest that the new code, TEMPEST, will become a valuable tool in the forecasting of space weather.

  9. Voluntary Green Power Market Forecast through 2015

    SciTech Connect (OSTI)

    Bird, L.; Holt, E.; Sumner, J.; Kreycik, C.

    2010-05-01

    Various factors influence the development of the voluntary 'green' power market--the market in which consumers purchase or produce power from non-polluting, renewable energy sources. These factors include climate policies, renewable portfolio standards (RPS), renewable energy prices, consumers' interest in purchasing green power, and utilities' interest in promoting existing programs and in offering new green options. This report presents estimates of voluntary market demand for green power through 2015 that were made using historical data and three scenarios: low-growth, high-growth, and negative-policy impacts. The resulting forecast projects the total voluntary demand for renewable energy in 2015 to range from 63 million MWh annually in the low case scenario to 157 million MWh annually in the high case scenario, representing an approximately 2.5-fold difference. The negative-policy impacts scenario reflects a market size of 24 million MWh. Several key uncertainties affect the results of this forecast, including uncertainties related to growth assumptions, the impacts that policy may have on the market, the price and competitiveness of renewable generation, and the level of interest that utilities have in offering and promoting green power products.

  10. Technical analysis in short-term uranium price forecasting

    SciTech Connect (OSTI)

    Schramm, D.S.

    1990-03-01

    As market participants anticipate the end of the current uranium price decline and its subsequent reversal, increased attention will be focused upon forecasting future price movements. Although uranium is economically similar to other mineral commodities, it is questionable whether methodologies used to forecast price movements of such commodities may be successfully applied to uranium.

  11. Index Ventures | Open Energy Information

    Open Energy Info (EERE)

    capital firm that invests in companies in the fields of information technology and the life sciences. References: Index Ventures1 This article is a stub. You can help OpenEI...

  12. 3TIER Environmental Forecast Group Inc 3TIER | Open Energy Information

    Open Energy Info (EERE)

    TIER Environmental Forecast Group Inc 3TIER Jump to: navigation, search Name: 3TIER Environmental Forecast Group Inc (3TIER) Place: Seattle, Washington Zip: 98121 Sector: Renewable...

  13. Short-Term Energy Outlook Model Documentation: Macro Bridge Procedure to Update Regional Macroeconomic Forecasts with National Macroeconomic Forecasts

    Reports and Publications (EIA)

    2010-01-01

    The Regional Short-Term Energy Model (RSTEM) uses macroeconomic variables such as income, employment, industrial production and consumer prices at both the national and regional1 levels as explanatory variables in the generation of the Short-Term Energy Outlook (STEO). This documentation explains how national macroeconomic forecasts are used to update regional macroeconomic forecasts through the RSTEM Macro Bridge procedure.

  14. Incorporating Forecast Uncertainty in Utility Control Center

    SciTech Connect (OSTI)

    Makarov, Yuri V.; Etingov, Pavel V.; Ma, Jian

    2014-07-09

    Uncertainties in forecasting the output of intermittent resources such as wind and solar generation, as well as system loads are not adequately reflected in existing industry-grade tools used for transmission system management, generation commitment, dispatch and market operation. There are other sources of uncertainty such as uninstructed deviations of conventional generators from their dispatch set points, generator forced outages and failures to start up, load drops, losses of major transmission facilities and frequency variation. These uncertainties can cause deviations from the system balance, which sometimes require inefficient and costly last minute solutions in the near real-time timeframe. This Chapter considers sources of uncertainty and variability, overall system uncertainty model, a possible plan for transition from deterministic to probabilistic methods in planning and operations, and two examples of uncertainty-based fools for grid operations.This chapter is based on work conducted at the Pacific Northwest National Laboratory (PNNL)

  15. U.S. Regional Demand Forecasts Using NEMS and GIS

    SciTech Connect (OSTI)

    Cohen, Jesse A.; Edwards, Jennifer L.; Marnay, Chris

    2005-07-01

    The National Energy Modeling System (NEMS) is a multi-sector, integrated model of the U.S. energy system put out by the Department of Energy's Energy Information Administration. NEMS is used to produce the annual 20-year forecast of U.S. energy use aggregated to the nine-region census division level. The research objective was to disaggregate this regional energy forecast to the county level for select forecast years, for use in a more detailed and accurate regional analysis of energy usage across the U.S. The process of disaggregation using a geographic information system (GIS) was researched and a model was created utilizing available population forecasts and climate zone data. The model's primary purpose was to generate an energy demand forecast with greater spatial resolution than what is currently produced by NEMS, and to produce a flexible model that can be used repeatedly as an add-on to NEMS in which detailed analysis can be executed exogenously with results fed back into the NEMS data flow. The methods developed were then applied to the study data to obtain residential and commercial electricity demand forecasts. The model was subjected to comparative and statistical testing to assess predictive accuracy. Forecasts using this model were robust and accurate in slow-growing, temperate regions such as the Midwest and Mountain regions. Interestingly, however, the model performed with less accuracy in the Pacific and Northwest regions of the country where population growth was more active. In the future more refined methods will be necessary to improve the accuracy of these forecasts. The disaggregation method was written into a flexible tool within the ArcGIS environment which enables the user to output the results in five year intervals over the period 2000-2025. In addition, the outputs of this tool were used to develop a time-series simulation showing the temporal changes in electricity forecasts in terms of absolute, per capita, and density of demand.

  16. Science and Engineering of an Operational Tsunami Forecasting System

    ScienceCinema (OSTI)

    Gonzalez, Frank

    2010-01-08

    After a review of tsunami statistics and the destruction caused by tsunamis, a means of forecasting tsunamis is discussed as part of an overall program of reducing fatalities through hazard assessment, education, training, mitigation, and a tsunami warning system. The forecast is accomplished via a concept called Deep Ocean Assessment and Reporting of Tsunamis (DART). Small changes of pressure at the sea floor are measured and relayed to warning centers. Under development is an international modeling network to transfer, maintain, and improve tsunami forecast models.

  17. Forest Carbon Index | Open Energy Information

    Open Energy Info (EERE)

    Forest Carbon Index Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Forest Carbon Index AgencyCompany Organization: Resources for the Future Partner: United Nations...

  18. Energy Development Index (EDI) | Open Energy Information

    Open Energy Info (EERE)

    Index (EDI) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Energy Development Index (EDI) AgencyCompany Organization: International Energy Agency (IEA) Sector:...

  19. INDEX

    Office of Environmental Management (EM)

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 CLAUSE 6 - COST ACCOUNTING STANDARDS (CAS) LIABILITY . . . . . . . . . . . 9 CLAUSE 7 - DISCLOSURE AND USE...

  20. Index

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    WIPP Baseline Tool - 2004 Home CRA - 2004 Final Recertification Decision CRA Comments & Responses CCA - 1996 CRA CARDs & TSDs CCA CARDs & TSDs Regulatory Tools The Environmental Protection Agency (EPA) on May 18, 1998, certified the Waste Isolation Pilot Plant (WIPP), located near Carlsbad, New Mexico, as the nations first geologic repository for the disposal of transuranic (TRU) wastes generated by atomic energy defense activities. The EPA next Recertified the WIPP's continuing

  1. Development and Demonstration of Advanced Forecasting, Power and Environmental Planning and Management Tools and Best Practices

    Office of Energy Efficiency and Renewable Energy (EERE)

    Development and Demonstration of Advanced Forecasting, Power and Environmental Planning and Management Tools and Best Practices

  2. Wind Energy Technology Trends: Comparing and Contrasting Recent Cost and Performance Forecasts (Poster)

    SciTech Connect (OSTI)

    Lantz, E.; Hand, M.

    2010-05-01

    Poster depicts wind energy technology trends, comparing and contrasting recent cost and performance forecasts.

  3. 915 MHz Wind Profiler for Cloud Forecasting at Brookhaven National...

    Office of Scientific and Technical Information (OSTI)

    U.S. DEPARTMENT OF HP IENERGY Office of Science DOESC-ARM-15-024 915-MHz Wind Profiler ... M Jensen et al., March 2016, DOESC-ARM-15-024 915-MHz Wind Profiler for Cloud Forecasting ...

  4. World oil inventories forecast to grow significantly in 2016...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    World oil inventories forecast to grow significantly in 2016 and 2017 Global oil inventories are expected to continue strong growth over the next two years which should keep oil ...

  5. PBL FY 2002 Second Quarter Review Forecast of Generation Accumulated...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Slice true-ups, and actual expense levels. Any variation of these can change the net revenue situation. FY 2002 Forecasted Second Quarter Results 170 (418) FY 2002 Unaudited...

  6. Forecasting Crude Oil Spot Price Using OECD Petroleum Inventory Levels

    Reports and Publications (EIA)

    2003-01-01

    This paper presents a short-term monthly forecasting model of West Texas Intermediate crude oil spot price using Organization for Economic Cooperation and Development (OECD) petroleum inventory levels.

  7. Improving the Accuracy of Solar Forecasting Funding Opportunity

    Broader source: Energy.gov [DOE]

    Through the Improving the Accuracy of Solar Forecasting Funding Opportunity, DOE is funding solar projects that are helping utilities, grid operators, solar power plant owners, and other...

  8. DOE Publishes New Forecast of Energy Savings from LED Lighting

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy has just published the latest edition of its biannual report, Energy Savings Forecast of Solid-State Lighting in General Illumination Applications, which models the...

  9. Value of Improved Short-Term Wind Power Forecasting

    SciTech Connect (OSTI)

    Hodge, B. M.; Florita, A.; Sharp, J.; Margulis, M.; Mcreavy, D.

    2015-02-01

    This report summarizes an assessment of improved short-term wind power forecasting in the California Independent System Operator (CAISO) market and provides a quantification of its potential value.

  10. Network Bandwidth Utilization Forecast Model on High Bandwidth Network

    SciTech Connect (OSTI)

    Yoo, Wucherl; Sim, Alex

    2014-07-07

    With the increasing number of geographically distributed scientific collaborations and the scale of the data size growth, it has become more challenging for users to achieve the best possible network performance on a shared network. We have developed a forecast model to predict expected bandwidth utilization for high-bandwidth wide area network. The forecast model can improve the efficiency of resource utilization and scheduling data movements on high-bandwidth network to accommodate ever increasing data volume for large-scale scientific data applications. Univariate model is developed with STL and ARIMA on SNMP path utilization data. Compared with traditional approach such as Box-Jenkins methodology, our forecast model reduces computation time by 83.2percent. It also shows resilience against abrupt network usage change. The accuracy of the forecast model is within the standard deviation of the monitored measurements.

  11. The Wind Forecast Improvement Project (WFIP): A Public/Private...

    Broader source: Energy.gov (indexed) [DOE]

    The Wind Forecast Improvement Project (WFIP) is a U. S. Department of Energy (DOE) sponsored research project whose overarching goals are to improve the accuracy of short-term wind ...

  12. Recently released EIA report presents international forecasting data

    SciTech Connect (OSTI)

    1995-05-01

    This report presents information from the Energy Information Administration (EIA). Articles are included on international energy forecasting data, data on the use of home appliances, gasoline prices, household energy use, and EIA information products and dissemination avenues.

  13. Solar Trackers Market Forecast | OpenEI Community

    Open Energy Info (EERE)

    Solar Trackers Market Forecast Home John55364's picture Submitted by John55364(100) Contributor 12 May, 2015 - 03:54 Solar Trackers Market - Global Industry Analysis, Size, Share,...

  14. Energy Forecasting Framework and Emissions Consensus Tool (EFFECT...

    Open Energy Info (EERE)

    Tool (EFFECT) EFFECT is an open, Excel-based modeling tool used to forecast greenhouse gas emissions from a range of development scenarios at the regional and national levels....

  15. Lawrence Berkeley Lab Indexing Toolbox

    Energy Science and Technology Software Center (OSTI)

    2003-09-08

    The Lawrence Berkeley Lab Indexing Toolbox is intended to be used in the context of X-ray crystallography experiments involving biological macromolecules. Macromolecules such as proteins form 3-dimensional periodic arrays (crystal) which in turn lead to lattice-like diffraction patterns when the crystal sample is irradiated with collimated X-rays from a synchrotron or other X-ray source. Once the diffraction pattern is captured on an imaging device the next step is to deduce the periodic nature of themore » crystal sample, along with its internal symmetry. this analysis, known as "indexing" is a well-studied problem. However, there are no other implementations designed to operate in an automated setting, in which the human experimentalist is not prosent to manually verify the results of indexing. In particular LABELIT uses three novel algorithms to facilitate automation: a more robust way to verify the position of the incident X-ray beam on the image, a better way to verify that the deduced lattice is consistent with the observed crystal lattice, and new method to deduce the internal symmetry from measurements of the lattice. Moreover, the algorithms are implemented in a Python framework that permits indexing to fail (in rare cases) without crashing the program, thus allowing the software to be incorporated in robotic systems where unattended operation is expected. It will be especially useful for high throughput operations at snychrotron beamlines.« less

  16. New Climate Research Centers Forecast Changes and Challenges | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Climate Research Centers Forecast Changes and Challenges New Climate Research Centers Forecast Changes and Challenges October 25, 2013 - 12:24pm Addthis This artist's rendering illustrates the full site installation, including a new aerosol observing system (far left) and a precipitation radar (far right, with 20-ft tower). The site is located near the Graciosa Island aiport terminal, hidden by the image inset. | Image courtesy of ARM Climate Research Facility. This artist's

  17. Study forecasts disappearance of conifers due to climate change

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Study forecasts disappearance of conifers due to climate change Study forecasts disappearance of conifers due to climate change New results, reported in a paper released today in the journal Nature Climate Change, suggest that global models may underestimate predictions of forest death. December 21, 2015 Los Alamos scientist Nate McDowell discusses how climate change is killing trees with PBS NewsHour reporter Miles O'Brien. Los Alamos scientist Nate McDowell discusses how climate change is

  18. Energy Department Forecasts Geothermal Achievements in 2015 | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Forecasts Geothermal Achievements in 2015 Energy Department Forecasts Geothermal Achievements in 2015 The 40th annual Stanford Geothermal Workshop in January featured speakers in the geothermal sector, including Jay Nathwani, Acting Director of the Energy Department's Geothermal Technologies Office. Nathwani shared achievements and challenges in the program's technical portfolio. The 40th annual Stanford Geothermal Workshop in January featured speakers in the geothermal sector,

  19. Laboratory Equipment Donation Program - Site Index

    Office of Scientific and Technical Information (OSTI)

    Site Index Home About Us FAQ Application Contact Us Administrative Login RSS Widget

  20. AVLIS: a technical and economic forecast

    SciTech Connect (OSTI)

    Davis, J.I.; Spaeth, M.L.

    1986-01-01

    The AVLIS process has intrinsically large isotopic selectivity and hence high separative capacity per module. The critical components essential to achieving the high production rates represent a small fraction (approx.10%) of the total capital cost of a production facility, and the reference production designs are based on frequent replacement of these components. The specifications for replacement frequencies in a plant are conservative with respect to our expectations; it is reasonable to expect that, as the plant is operated, the specifications will be exceeded and production costs will continue to fall. Major improvements in separator production rates and laser system efficiencies (approx.power) are expected to occur as a natural evolution in component improvements. With respect to the reference design, such improvements have only marginal economic value, but given the exigencies of moving from engineering demonstration to production operations, we continue to pursue these improvements in order to offset any unforeseen cost increases. Thus, our technical and economic forecasts for the AVLIS process remain very positive. The near-term challenge is to obtain stable funding and a commitment to bring the process to full production conditions within the next five years. If the funding and commitment are not maintained, the team will disperse and the know-how will be lost before it can be translated into production operations. The motivation to preserve the option for low-cost AVLIS SWU production is integrally tied to the motivation to maintain a competitive nuclear option. The US industry can certainly survive without AVLIS, but our tradition as technology leader in the industry will certainly be lost.

  1. index | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    index Below are links to Carbon Storage Program documents and reference materials. Each of the 10 categories has a variety of documents posted for easy access to current information - just click on the category link to view all related materials. cs-ref-shelf-3.jpg The Carbon Storage Newsletter Subscribe to Newsletter Newsletter Archive Carbon Storage Educational Resources Atlas V - Whole Document (Sept 2015) [PDF] The North American Carbon Storage Atlas 2012 [PDF] Atlas IV - Whole Document (Dec

  2. Solid waste integrated forecast technical (SWIFT) report: FY1997 to FY 2070, Revision 1

    SciTech Connect (OSTI)

    Valero, O.J.; Templeton, K.J.; Morgan, J.

    1997-01-07

    This web site provides an up-to-date report on the radioactive solid waste expected to be managed by Hanford's Waste Management (WM) Project from onsite and offsite generators. It includes: an overview of Hanford-wide solid waste to be managed by the WM Project; program-level and waste class-specific estimates; background information on waste sources; and comparisons with previous forecasts and with other national data sources. This web site does not include: liquid waste (current or future generation); waste to be managed by the Environmental Restoration (EM-40) contractor (i.e., waste that will be disposed of at the Environmental Restoration Disposal Facility (ERDF)); or waste that has been received by the WM Project to date (i.e., inventory waste). The focus of this web site is on low-level mixed waste (LLMW), and transuranic waste (both non-mixed and mixed) (TRU(M)). Some details on low-level waste and hazardous waste are also provided. Currently, this web site is reporting data th at was requested on 10/14/96 and submitted on 10/25/96. The data represent a life cycle forecast covering all reported activities from FY97 through the end of each program's life cycle. Therefore, these data represent revisions from the previous FY97.0 Data Version, due primarily to revised estimates from PNNL. There is some useful information about the structure of this report in the SWIFT Report Web Site Overview.

  3. Forecasting the 2013–2014 influenza season using Wikipedia

    SciTech Connect (OSTI)

    Hickmann, Kyle S.; Fairchild, Geoffrey; Priedhorsky, Reid; Generous, Nicholas; Hyman, James M.; Deshpande, Alina; Del Valle, Sara Y.; Salathé, Marcel

    2015-05-14

    Infectious diseases are one of the leading causes of morbidity and mortality around the world; thus, forecasting their impact is crucial for planning an effective response strategy. According to the Centers for Disease Control and Prevention (CDC), seasonal influenza affects 5% to 20% of the U.S. population and causes major economic impacts resulting from hospitalization and absenteeism. Understanding influenza dynamics and forecasting its impact is fundamental for developing prevention and mitigation strategies. We combine modern data assimilation methods with Wikipedia access logs and CDC influenza-like illness (ILI) reports to create a weekly forecast for seasonal influenza. The methods are applied to the 2013-2014 influenza season but are sufficiently general to forecast any disease outbreak, given incidence or case count data. We adjust the initialization and parametrization of a disease model and show that this allows us to determine systematic model bias. In addition, we provide a way to determine where the model diverges from observation and evaluate forecast accuracy. Wikipedia article access logs are shown to be highly correlated with historical ILI records and allow for accurate prediction of ILI data several weeks before it becomes available. The results show that prior to the peak of the flu season, our forecasting method produced 50% and 95% credible intervals for the 2013-2014 ILI observations that contained the actual observations for most weeks in the forecast. However, since our model does not account for re-infection or multiple strains of influenza, the tail of the epidemic is not predicted well after the peak of flu season has passed.

  4. Forecasting the 2013–2014 influenza season using Wikipedia

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hickmann, Kyle S.; Fairchild, Geoffrey; Priedhorsky, Reid; Generous, Nicholas; Hyman, James M.; Deshpande, Alina; Del Valle, Sara Y.; Salathé, Marcel

    2015-05-14

    Infectious diseases are one of the leading causes of morbidity and mortality around the world; thus, forecasting their impact is crucial for planning an effective response strategy. According to the Centers for Disease Control and Prevention (CDC), seasonal influenza affects 5% to 20% of the U.S. population and causes major economic impacts resulting from hospitalization and absenteeism. Understanding influenza dynamics and forecasting its impact is fundamental for developing prevention and mitigation strategies. We combine modern data assimilation methods with Wikipedia access logs and CDC influenza-like illness (ILI) reports to create a weekly forecast for seasonal influenza. The methods are appliedmore » to the 2013-2014 influenza season but are sufficiently general to forecast any disease outbreak, given incidence or case count data. We adjust the initialization and parametrization of a disease model and show that this allows us to determine systematic model bias. In addition, we provide a way to determine where the model diverges from observation and evaluate forecast accuracy. Wikipedia article access logs are shown to be highly correlated with historical ILI records and allow for accurate prediction of ILI data several weeks before it becomes available. The results show that prior to the peak of the flu season, our forecasting method produced 50% and 95% credible intervals for the 2013-2014 ILI observations that contained the actual observations for most weeks in the forecast. However, since our model does not account for re-infection or multiple strains of influenza, the tail of the epidemic is not predicted well after the peak of flu season has passed.« less

  5. Compiler Comparisons

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Compiler Comparisons Compiler Comparisons Compiler Comparisons on Hopper There are five compilers available to users on Hopper, the NERSC XE6. All of the compilers on this system are provided by Cray, and they are invoked with wrapper modules that ensure that each compiler links with the proper system and MPI libraries. Each of the compilers have a wide variety of options that control the level of optimization of the exectuable code they produce. We have collected several optimization

  6. Solid Waste Integrated Forecast Technical (SWIFT) Report FY2001 to FY2046 Volume 1

    SciTech Connect (OSTI)

    BARCOT, R.A.

    2000-08-31

    This report provides up-to-date life cycle information about the radioactive solid waste expected to be managed by Hanford's Waste Management (WM) Project from onsite and offsite generators. It includes: an overview of Hanford-wide solid waste to be managed by the WM Project; program-level and waste class-specific estimates; background information on waste sources; and comparisons to previous forecasts and other national data sources. This report does not include: waste to be managed by the Environmental Restoration (EM-40) contractor (i.e., waste that will be disposed of at the Environmental Restoration Disposal Facility (ERDF)); waste that has been received by the WM Project to date (i.e., inventory waste); mixed low-level waste that will be processed and disposed by the River Protection Program; and liquid waste (current or future generation). Although this report currently does not include liquid wastes, they may be added as information becomes available.

  7. Survey of Variable Generation Forecasting in the West: August 2011 - June 2012

    SciTech Connect (OSTI)

    Porter, K.; Rogers, J.

    2012-04-01

    This report surveyed Western Interconnection Balancing Authorities regarding their implementation of variable generation forecasting, the lessons learned to date, and recommendations they would offer to other Balancing Authorities who are considering variable generation forecasting. Our survey found that variable generation forecasting is at an early implementation stage in the West. Eight of the eleven Balancing Authorities interviewed began forecasting in 2008 or later. It also appears that less than one-half of the Balancing Authorities in the West are currently utilizing variable generation forecasting, suggesting that more Balancing Authorities in the West will engage in variable generation forecasting should more variable generation capacity be added.

  8. 1980 annual report to Congress: Volume three, Forecasts: Summary

    SciTech Connect (OSTI)

    Not Available

    1981-05-27

    This report presents an overview of forecasts of domestic energy consumption, production, and prices for the year 1990. These results are selected from more detailed projections prepared and published in Volume 3 of the Energy Information Administration 1980 Annual Report to Congress. This report focuses specifically upon the 1980's and concentrates upon similarities and differences in the domestic energy system, as forecast, compared to the national experience in the years immediately following the 1973--1974 oil embargo. Interest in the 1980's stems not only from its immediacy in time, but also from its importance as a time in which certain adjustments to higher energy prices are expected to take place. The forecasts presented do not attempt to account for all of this wide range of potentially important forces that could conceivably alter the energy situation. Instead, the projections are based on a particular set of assumptions that seems reasonable in light of what is currently known. 9 figs., 25 tabs.

  9. index | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Quality Guidelines slider_Fort-Martin_Power-Plant_NETL.jpg Quality Guidelines for Energy Systems Studies OVERVIEW The Quality Guidelines for Energy System Studies (QGESS) documents present the methodology employed by NETL in its assessment of energy conversion facility and CO2 transport and storage performance and cost. A clear, transparent methodology is essential for the comparison of different technologies on a consistent basis. These guidelines are intended for use in all NETL studies as

  10. Ardour Global Indexes LLC | Open Energy Information

    Open Energy Info (EERE)

    Name: Ardour Global Indexes LLC Place: New York City, New York Zip: 10016 Product: New-York based company that manages the Ardour Global Indexes, a set of alternative energy...

  11. CCPP-ARM Parameterization Testbed Model Forecast Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Klein, Stephen

    Dataset contains the NCAR CAM3 (Collins et al., 2004) and GFDL AM2 (GFDL GAMDT, 2004) forecast data at locations close to the ARM research sites. These data are generated from a series of multi-day forecasts in which both CAM3 and AM2 are initialized at 00Z every day with the ECMWF reanalysis data (ERA-40), for the year 1997 and 2000 and initialized with both the NASA DAO Reanalyses and the NCEP GDAS data for the year 2004. The DOE CCPP-ARM Parameterization Testbed (CAPT) project assesses climate models using numerical weather prediction techniques in conjunction with high quality field measurements (e.g. ARM data).

  12. Making Wind Energy Predictable: New Profilers Provide Hourly Forecasts |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Making Wind Energy Predictable: New Profilers Provide Hourly Forecasts Making Wind Energy Predictable: New Profilers Provide Hourly Forecasts May 11, 2016 - 6:48pm Addthis Balancing the power grid is an art-or at least a scientific study in chaos-and the Energy Department is hoping wind energy can take a greater role in the act. Yet, the intermittency of wind-sometimes it's blowing, sometimes it's not-makes adding it smoothly to the nation's electrical grid a challenge.

  13. Forecast of contracting and subcontracting opportunities. Fiscal year 1996

    SciTech Connect (OSTI)

    1996-02-01

    This forecast of prime and subcontracting opportunities with the U.S. Department of Energy and its MAO contractors and environmental restoration and waste management contractors, is the Department`s best estimate of small, small disadvantaged and women-owned small business procurement opportunities for fiscal year 1996. The information contained in the forecast is published in accordance with Public Law 100-656. It is not an invitation for bids, a request for proposals, or a commitment by DOE to purchase products or services. Each procurement opportunity is based on the best information available at the time of publication and may be revised or cancelled.

  14. CCPP-ARM Parameterization Testbed Model Forecast Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Klein, Stephen

    2008-01-15

    Dataset contains the NCAR CAM3 (Collins et al., 2004) and GFDL AM2 (GFDL GAMDT, 2004) forecast data at locations close to the ARM research sites. These data are generated from a series of multi-day forecasts in which both CAM3 and AM2 are initialized at 00Z every day with the ECMWF reanalysis data (ERA-40), for the year 1997 and 2000 and initialized with both the NASA DAO Reanalyses and the NCEP GDAS data for the year 2004. The DOE CCPP-ARM Parameterization Testbed (CAPT) project assesses climate models using numerical weather prediction techniques in conjunction with high quality field measurements (e.g. ARM data).

  15. Index2.doc | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Index2.doc Index2.doc Index2.doc (11.46 KB) More Documents & Publications Sylvania Corporation, Hicksville, NY and Bayside, NY - Addendum to July 8, 2004 O:\HOMEPAGE\FOIA\report99.PDF&#0; U.S. Department of Energy 2004 Annual Report

  16. EIA revises up forecast for U.S. 2013 crude oil production by...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    EIA revises up forecast for U.S. 2013 crude oil production by 70,000 barrels per day The forecast for U.S. crude oil production keeps going higher. The U.S. Energy Information ...

  17. Final Report - Integration of Behind-the-Meter PV Fleet Forecasts...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integration of Behind-the-Meter PV Fleet Forecasts into Utility Grid System Operations Final Report - Integration of Behind-the-Meter PV Fleet Forecasts into Utility Grid System ...

  18. Impacts of Improved Day-Ahead Wind Forecasts on Power Grid Operations: September 2011

    SciTech Connect (OSTI)

    Piwko, R.; Jordan, G.

    2011-11-01

    This study analyzed the potential benefits of improving the accuracy (reducing the error) of day-ahead wind forecasts on power system operations, assuming that wind forecasts were used for day ahead security constrained unit commitment.

  19. DOE Releases Latest Report on Energy Savings Forecast of Solid-State Lighting

    Broader source: Energy.gov [DOE]

    DOE has published a new report forecasting the energy savings of LED white-light sources compared with conventional white-light sources. The sixth iteration of the Energy Savings Forecast of Solid...

  20. Status of Centralized Wind Power Forecasting in North America: May 2009-May 2010

    SciTech Connect (OSTI)

    Porter, K.; Rogers, J.

    2010-04-01

    Report surveys grid wind power forecasts for all wind generators, which are administered by utilities or regional transmission organizations (RTOs), typically with the assistance of one or more wind power forecasting companies.

  1. Locking mechanism for indexing device

    DOE Patents [OSTI]

    Lindemeyer, Carl W. (Aurora, IL)

    1984-01-01

    Disclosed is a locking mechanism for an indexing spindle. A conventional r gear having outwardly extending teeth is affixed to the spindle. Also included is a rotatably mounted camshaft whose axis is arranged in skewed relationship with the axis of the spindle. A disk-like wedge having opposing camming surfaces is eccentrically mounted on the camshaft. As the camshaft is rotated, the camming surfaces of the disc-like member are interposed between adjacent gear teeth with a wiping action that wedges the disc-like member between the gear teeth. A zero backlash engagement between disc-like member and gear results, with the engagement having a high mechanical advantage so as to effectively lock the spindle against bidirectional rotation.

  2. Accounting for fuel price risk: Using forward natural gas prices instead of gas price forecasts to compare renewable to natural gas-fired generation

    SciTech Connect (OSTI)

    Bolinger, Mark; Wiser, Ryan; Golove, William

    2003-08-13

    Against the backdrop of increasingly volatile natural gas prices, renewable energy resources, which by their nature are immune to natural gas fuel price risk, provide a real economic benefit. Unlike many contracts for natural gas-fired generation, renewable generation is typically sold under fixed-price contracts. Assuming that electricity consumers value long-term price stability, a utility or other retail electricity supplier that is looking to expand its resource portfolio (or a policymaker interested in evaluating different resource options) should therefore compare the cost of fixed-price renewable generation to the hedged or guaranteed cost of new natural gas-fired generation, rather than to projected costs based on uncertain gas price forecasts. To do otherwise would be to compare apples to oranges: by their nature, renewable resources carry no natural gas fuel price risk, and if the market values that attribute, then the most appropriate comparison is to the hedged cost of natural gas-fired generation. Nonetheless, utilities and others often compare the costs of renewable to gas-fired generation using as their fuel price input long-term gas price forecasts that are inherently uncertain, rather than long-term natural gas forward prices that can actually be locked in. This practice raises the critical question of how these two price streams compare. If they are similar, then one might conclude that forecast-based modeling and planning exercises are in fact approximating an apples-to-apples comparison, and no further consideration is necessary. If, however, natural gas forward prices systematically differ from price forecasts, then the use of such forecasts in planning and modeling exercises will yield results that are biased in favor of either renewable (if forwards < forecasts) or natural gas-fired generation (if forwards > forecasts). In this report we compare the cost of hedging natural gas price risk through traditional gas-based hedging instruments (e

  3. Compiler Comparisons

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Comparisons Compiler Comparisons Using a set of benchmarks described below, different optimization options for the different compilers on Edison are compared. The compilers are also compared against one another on the benchmarks. Benchmarks used Using a set of benchmarks described below, different optimization options for the different compilers on Edison. The compilers are also compared against one another on the benchmarks. NERSC6 Benchmarks We used these benchmarks from the NERSC6

  4. Beyond "Partly Sunny": A Better Solar Forecast | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    "Partly Sunny": A Better Solar Forecast Beyond "Partly Sunny": A Better Solar Forecast December 7, 2012 - 10:00am Addthis The Energy Department is investing in better solar forecasting techniques to improve the reliability and stability of solar power plants during periods of cloud coverage. | Photo by Dennis Schroeder/NREL. The Energy Department is investing in better solar forecasting techniques to improve the reliability and stability of solar power plants during periods

  5. Central Wind Power Forecasting Programs in North America by Regional Transmission Organizations and Electric Utilities

    SciTech Connect (OSTI)

    Porter, K.; Rogers, J.

    2009-12-01

    The report addresses the implementation of central wind power forecasting by electric utilities and regional transmission organizations in North America.

  6. Review of Wind Energy Forecasting Methods for Modeling Ramping Events

    SciTech Connect (OSTI)

    Wharton, S; Lundquist, J K; Marjanovic, N; Williams, J L; Rhodes, M; Chow, T K; Maxwell, R

    2011-03-28

    Tall onshore wind turbines, with hub heights between 80 m and 100 m, can extract large amounts of energy from the atmosphere since they generally encounter higher wind speeds, but they face challenges given the complexity of boundary layer flows. This complexity of the lowest layers of the atmosphere, where wind turbines reside, has made conventional modeling efforts less than ideal. To meet the nation's goal of increasing wind power into the U.S. electrical grid, the accuracy of wind power forecasts must be improved. In this report, the Lawrence Livermore National Laboratory, in collaboration with the University of Colorado at Boulder, University of California at Berkeley, and Colorado School of Mines, evaluates innovative approaches to forecasting sudden changes in wind speed or 'ramping events' at an onshore, multimegawatt wind farm. The forecast simulations are compared to observations of wind speed and direction from tall meteorological towers and a remote-sensing Sound Detection and Ranging (SODAR) instrument. Ramping events, i.e., sudden increases or decreases in wind speed and hence, power generated by a turbine, are especially problematic for wind farm operators. Sudden changes in wind speed or direction can lead to large power generation differences across a wind farm and are very difficult to predict with current forecasting tools. Here, we quantify the ability of three models, mesoscale WRF, WRF-LES, and PF.WRF, which vary in sophistication and required user expertise, to predict three ramping events at a North American wind farm.

  7. Weather forecast-based optimization of integrated energy systems.

    SciTech Connect (OSTI)

    Zavala, V. M.; Constantinescu, E. M.; Krause, T.; Anitescu, M.

    2009-03-01

    In this work, we establish an on-line optimization framework to exploit detailed weather forecast information in the operation of integrated energy systems, such as buildings and photovoltaic/wind hybrid systems. We first discuss how the use of traditional reactive operation strategies that neglect the future evolution of the ambient conditions can translate in high operating costs. To overcome this problem, we propose the use of a supervisory dynamic optimization strategy that can lead to more proactive and cost-effective operations. The strategy is based on the solution of a receding-horizon stochastic dynamic optimization problem. This permits the direct incorporation of economic objectives, statistical forecast information, and operational constraints. To obtain the weather forecast information, we employ a state-of-the-art forecasting model initialized with real meteorological data. The statistical ambient information is obtained from a set of realizations generated by the weather model executed in an operational setting. We present proof-of-concept simulation studies to demonstrate that the proposed framework can lead to significant savings (more than 18% reduction) in operating costs.

  8. Weather Research and Forecasting Model with the Immersed Boundary Method

    Energy Science and Technology Software Center (OSTI)

    2012-05-01

    The Weather Research and Forecasting (WRF) Model with the immersed boundary method is an extension of the open-source WRF Model available for wwww.wrf-model.org. The new code modifies the gridding procedure and boundary conditions in the WRF model to improve WRF's ability to simutate the atmosphere in environments with steep terrain and additionally at high-resolutions.

  9. Use of wind power forecasting in operational decisions.

    SciTech Connect (OSTI)

    Botterud, A.; Zhi, Z.; Wang, J.; Bessa, R.J.; Keko, H.; Mendes, J.; Sumaili, J.; Miranda, V.

    2011-11-29

    The rapid expansion of wind power gives rise to a number of challenges for power system operators and electricity market participants. The key operational challenge is to efficiently handle the uncertainty and variability of wind power when balancing supply and demand in ths system. In this report, we analyze how wind power forecasting can serve as an efficient tool toward this end. We discuss the current status of wind power forecasting in U.S. electricity markets and develop several methodologies and modeling tools for the use of wind power forecasting in operational decisions, from the perspectives of the system operator as well as the wind power producer. In particular, we focus on the use of probabilistic forecasts in operational decisions. Driven by increasing prices for fossil fuels and concerns about greenhouse gas (GHG) emissions, wind power, as a renewable and clean source of energy, is rapidly being introduced into the existing electricity supply portfolio in many parts of the world. The U.S. Department of Energy (DOE) has analyzed a scenario in which wind power meets 20% of the U.S. electricity demand by 2030, which means that the U.S. wind power capacity would have to reach more than 300 gigawatts (GW). The European Union is pursuing a target of 20/20/20, which aims to reduce greenhouse gas (GHG) emissions by 20%, increase the amount of renewable energy to 20% of the energy supply, and improve energy efficiency by 20% by 2020 as compared to 1990. Meanwhile, China is the leading country in terms of installed wind capacity, and had 45 GW of installed wind power capacity out of about 200 GW on a global level at the end of 2010. The rapid increase in the penetration of wind power into power systems introduces more variability and uncertainty in the electricity generation portfolio, and these factors are the key challenges when it comes to integrating wind power into the electric power grid. Wind power forecasting (WPF) is an important tool to help

  10. Navy mobility fuels forecasting system report: World petroleum trade forecasts for the year 2000

    SciTech Connect (OSTI)

    Das, S.

    1991-12-01

    The Middle East will continue to play the dominant role of a petroleum supplier in the world oil market in the year 2000, according to business-as-usual forecasts published by the US Department of Energy. However, interesting trade patterns will emerge as a result of the democratization in the Soviet Union and Eastern Europe. US petroleum imports will increase from 46% in 1989 to 49% in 2000. A significantly higher level of US petroleum imports (principally products) will be coming from Japan, the Soviet Union, and Eastern Europe. Several regions, the Far East, Japan, Latin American, and Africa will import more petroleum. Much uncertainty remains about of the level future Soviet crude oil production. USSR net petroleum exports will decrease; however, the United States and Canada will receive some of their imports from the Soviet Union due to changes in the world trade patterns. The Soviet Union can avoid becoming a net petroleum importer as long as it (1) maintains enough crude oil production to meet its own consumption and (2) maintains its existing refining capacities. Eastern Europe will import approximately 50% of its crude oil from the Middle East.

  11. Final Report- Integration of Behind-the-Meter PV Fleet Forecasts into Utility Grid System Operations

    Office of Energy Efficiency and Renewable Energy (EERE)

    Four major research objectives were completed over the course of this study. Three of the objectives were to evaluate three, new, state-of-the-art solar irradiance forecasting models. The fourth objective was to improve the California independent system operator’s load forecasts by integrating behind-the-meter photovoltaic forecasts.

  12. Image indexing using color correlograms

    DOE Patents [OSTI]

    Huang, Jing; Kumar, Shanmugasundaram Ravi; Mitra, Mandar; Zhu, Wei-Jing

    2001-01-01

    A color correlogram is a three-dimensional table indexed by color and distance between pixels which expresses how the spatial correlation of color changes with distance in a stored image. The color correlogram may be used to distinguish an image from other images in a database. To create a color correlogram, the colors in the image are quantized into m color values, c.sub.i . . . c.sub.m. Also, the distance values k.epsilon.[d] to be used in the correlogram are determined where [d] is the set of distances between pixels in the image, and where dmax is the maximum distance measurement between pixels in the image. Each entry (i, j, k) in the table is the probability of finding a pixel of color c.sub.i at a selected distance k from a pixel of color c.sub.i. A color autocorrelogram, which is a restricted version of the color correlogram that considers color pairs of the form (i,i) only, may also be used to identify an image.

  13. Topic Index to the DOE Administrative Records Disposition Schedules...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Topic Index to the DOE Administrative Records Disposition Schedules Topic Index to the DOE Administrative Records Disposition Schedules Topic Index to the DOE Administrative...

  14. A Comparison

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Comparison of Monte-Carlo Simulations and Data from MicroBooNE - Public Note - MICROBOONE-NOTE-1014-PUB The MicroBooNE Collaboration July 5, 2016 Abstract This note presents a first comparison of data and Monte-Carlo (MC) simulation at the MicroBooNE experiment, a surface-level liquid argon time projection chamber (LArTPC) located in the Booster Neutrino Beam (BNB) at Fermi National Accelerator Laboratory. Before any analysis can be validated, it is important to ensure understanding of both the

  15. Berkeley Lab Research Review Magazine Index

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Review Magazine A-Z Index Search Phone Book Comments Ernest Orlando Lawrence Berkeley National Laboratory Public Information Department News Archive Listing by Subject...

  16. A comparison of model short-range forecasts and the ARM Microbase...

    Office of Scientific and Technical Information (OSTI)

    For the fourth quarter ARM metric we will make use of new liquid water data that has become available, and called the 'Microbase' value added product (referred to as OBS, within ...

  17. A Comparison of Model Short-Range Forecasts and the ARM Microbase...

    Office of Scientific and Technical Information (OSTI)

    ARM Science Metric For the fourth quarter ARM metric we will make use of new liquid water data that has become available, and called the "Microbase" value added product ...

  18. A 24-h forecast of solar irradiance using artificial neural network: Application for performance prediction of a grid-connected PV plant at Trieste, Italy

    SciTech Connect (OSTI)

    Mellit, Adel; Pavan, Alessandro Massi

    2010-05-15

    Forecasting of solar irradiance is in general significant for planning the operations of power plants which convert renewable energies into electricity. In particular, the possibility to predict the solar irradiance (up to 24 h or even more) can became - with reference to the Grid Connected Photovoltaic Plants (GCPV) - fundamental in making power dispatching plans and - with reference to stand alone and hybrid systems - also a useful reference for improving the control algorithms of charge controllers. In this paper, a practical method for solar irradiance forecast using artificial neural network (ANN) is presented. The proposed Multilayer Perceptron MLP-model makes it possible to forecast the solar irradiance on a base of 24 h using the present values of the mean daily solar irradiance and air temperature. An experimental database of solar irradiance and air temperature data (from July 1st 2008 to May 23rd 2009 and from November 23rd 2009 to January 24th 2010) has been used. The database has been collected in Trieste (latitude 45 40'N, longitude 13 46'E), Italy. In order to check the generalization capability of the MLP-forecaster, a K-fold cross-validation was carried out. The results indicate that the proposed model performs well, while the correlation coefficient is in the range 98-99% for sunny days and 94-96% for cloudy days. As an application, the comparison between the forecasted one and the energy produced by the GCPV plant installed on the rooftop of the municipality of Trieste shows the goodness of the proposed model. (author)

  19. Solid waste integrated forecast technical (SWEFT) report: FY1997 to FY 2070 - Document number changed to HNF-0918 at revision 1 - 1/7/97

    SciTech Connect (OSTI)

    Valero, O.J.

    1996-10-03

    This web site provides an up-to-date report on the radioactive solid waste expected to be managed at Hanford`s Solid Waste (SW) Program from onsite and offsite generators. It includes: an overview of Hanford-wide solid waste to be managed by the SW Program; program- level and waste class-specific estimates; background information on waste sources; and Li comparisons with previous forecasts and with other national data sources. The focus of this web site is on low- level mixed waste (LLMW), and transuranic waste (both non-mixed and mixed) (TRU(M)). Some details on low-level waste and hazardous waste are also provided. Currently, this site is reporting data current as of 9/96. The data represent a life cycle forecast covering all reported activities from FY97 through the end of each program`s life cycle.

  20. Cloudy Sky RRTM Shortwave Radiative Transfer and Comparison to the Revised ECMWF Shortwave Model

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cloudy Sky RRTM Shortwave Radiative Transfer and Comparison to the Revised ECMWF Shortwave Model M. J. Iacono, J. S. Delamere, E. J. Mlawer, and S. A. Clough Atmospheric and Environmental Research, Inc. Lexington, Massachusetts J.-J. Morcrette European Centre for Medium-Range Weather Forecasts Reading, United Kingdom Introduction An important step toward improving radiative transfer codes in general circulation models (GCMs) is their thorough evaluation by comparison to measurements directly, or

  1. Forecast of transportation energy demand through the year 2010

    SciTech Connect (OSTI)

    Mintz, M.M.; Vyas, A.D.

    1991-04-01

    Since 1979, the Center for Transportation Research (CTR) at Argonne National Laboratory (ANL) has produced baseline projections of US transportation activity and energy demand. These projections and the methodologies used to compute them are documented in a series of reports and research papers. As the lastest in this series of projections, this report documents the assumptions, methodologies, and results of the most recent projection -- termed ANL-90N -- and compares those results with other forecasts from the current literature, as well as with the selection of earlier Argonne forecasts. This current forecast may be used as a baseline against which to analyze trends and evaluate existing and proposed energy conservation programs and as an illustration of how the Transportation Energy and Emission Modeling System (TEEMS) works. (TEEMS links disaggregate models to produce an aggregate forecast of transportation activity, energy use, and emissions). This report and the projections it contains were developed for the US Department of Energy's Office of Transportation Technologies (OTT). The projections are not completely comprehensive. Time and modeling effort have been focused on the major energy consumers -- automobiles, trucks, commercial aircraft, rail and waterborne freight carriers, and pipelines. Because buses, rail passengers services, and general aviation consume relatively little energy, they are projected in the aggregate, as other'' modes, and used primarily as scaling factors. These projections are also limited to direct energy consumption. Projections of indirect energy consumption, such as energy consumed in vehicle and equipment manufacturing, infrastructure, fuel refining, etc., were judged outside the scope of this effort. The document is organized into two complementary sections -- one discussing passenger transportation modes, and the other discussing freight transportation modes. 99 refs., 10 figs., 43 tabs.

  2. Microsoft Word - Documentation - Price Forecast Uncertainty.doc

    U.S. Energy Information Administration (EIA) Indexed Site

    October 2009 1 October 2009 Short-Term Energy Outlook Supplement: Energy Price Volatility and Forecast Uncertainty 1 Summary It is often noted that energy prices are quite volatile, reflecting market participants' adjustments to new information from physical energy markets and/or markets in energy- related financial derivatives. Price volatility is an indication of the level of uncertainty, or risk, in the market. This paper describes how markets price risk and how the market- clearing process

  3. Assessment of the possibility of forecasting future natural gas curtailments

    SciTech Connect (OSTI)

    Lemont, S.

    1980-01-01

    This study provides a preliminary assessment of the potential for determining probabilities of future natural-gas-supply interruptions by combining long-range weather forecasts and natural-gas supply/demand projections. An illustrative example which measures the probability of occurrence of heating-season natural-gas curtailments for industrial users in the southeastern US is analyzed. Based on the information on existing long-range weather forecasting techniques and natural gas supply/demand projections enumerated above, especially the high uncertainties involved in weather forecasting and the unavailability of adequate, reliable natural-gas projections that take account of seasonal weather variations and uncertainties in the nation's energy-economic system, it must be concluded that there is little possibility, at the present time, of combining the two to yield useful, believable probabilities of heating-season gas curtailments in a form useful for corporate and government decision makers and planners. Possible remedial actions are suggested that might render such data more useful for the desired purpose in the future. The task may simply require the adequate incorporation of uncertainty and seasonal weather trends into modeling systems and the courage to report projected data, so that realistic natural gas supply/demand scenarios and the probabilities of their occurrence will be available to decision makers during a time when such information is greatly needed.

  4. Towards a Science of Tumor Forecast for Clinical Oncology

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yankeelov, Tom; Quaranta, Vito; Evans, Katherine J; Rericha, Erin

    2015-01-01

    We propose that the quantitative cancer biology community make a concerted effort to apply the methods of weather forecasting to develop an analogous theory for predicting tumor growth and treatment response. Currently, the time course of response is not predicted, but rather assessed post hoc by physical exam or imaging methods. This fundamental limitation of clinical oncology makes it extraordinarily difficult to select an optimal treatment regimen for a particular tumor of an individual patient, as well as to determine in real time whether the choice was in fact appropriate. This is especially frustrating at a time when a panoplymore » of molecularly targeted therapies is available, and precision genetic or proteomic analyses of tumors are an established reality. By learning from the methods of weather and climate modeling, we submit that the forecasting power of biophysical and biomathematical modeling can be harnessed to hasten the arrival of a field of predictive oncology. With a successful theory of tumor forecasting, it should be possible to integrate large tumor specific datasets of varied types, and effectively defeat cancer one patient at a time.« less

  5. Towards a Science of Tumor Forecast for Clinical Oncology

    SciTech Connect (OSTI)

    Yankeelov, Tom; Quaranta, Vito; Evans, Katherine J; Rericha, Erin

    2015-01-01

    We propose that the quantitative cancer biology community make a concerted effort to apply the methods of weather forecasting to develop an analogous theory for predicting tumor growth and treatment response. Currently, the time course of response is not predicted, but rather assessed post hoc by physical exam or imaging methods. This fundamental limitation of clinical oncology makes it extraordinarily difficult to select an optimal treatment regimen for a particular tumor of an individual patient, as well as to determine in real time whether the choice was in fact appropriate. This is especially frustrating at a time when a panoply of molecularly targeted therapies is available, and precision genetic or proteomic analyses of tumors are an established reality. By learning from the methods of weather and climate modeling, we submit that the forecasting power of biophysical and biomathematical modeling can be harnessed to hasten the arrival of a field of predictive oncology. With a successful theory of tumor forecasting, it should be possible to integrate large tumor specific datasets of varied types, and effectively defeat cancer one patient at a time.

  6. Toward a science of tumor forecasting for clinical oncology

    SciTech Connect (OSTI)

    Yankeelov, Thomas E.; Quaranta, Vito; Evans, Katherine J.; Rericha, Erin C.

    2015-03-15

    We propose that the quantitative cancer biology community makes a concerted effort to apply lessons from weather forecasting to develop an analogous methodology for predicting and evaluating tumor growth and treatment response. Currently, the time course of tumor response is not predicted; instead, response is only assessed post hoc by physical examination or imaging methods. This fundamental practice within clinical oncology limits optimization of a treatment regimen for an individual patient, as well as to determine in real time whether the choice was in fact appropriate. This is especially frustrating at a time when a panoply of molecularly targeted therapies is available, and precision genetic or proteomic analyses of tumors are an established reality. By learning from the methods of weather and climate modeling, we submit that the forecasting power of biophysical and biomathematical modeling can be harnessed to hasten the arrival of a field of predictive oncology. Furthermore, with a successful methodology toward tumor forecasting, it should be possible to integrate large tumor-specific datasets of varied types and effectively defeat one cancer patient at a time.

  7. Toward a science of tumor forecasting for clinical oncology

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yankeelov, Thomas E.; Quaranta, Vito; Evans, Katherine J.; Rericha, Erin C.

    2015-03-15

    We propose that the quantitative cancer biology community makes a concerted effort to apply lessons from weather forecasting to develop an analogous methodology for predicting and evaluating tumor growth and treatment response. Currently, the time course of tumor response is not predicted; instead, response is only assessed post hoc by physical examination or imaging methods. This fundamental practice within clinical oncology limits optimization of a treatment regimen for an individual patient, as well as to determine in real time whether the choice was in fact appropriate. This is especially frustrating at a time when a panoply of molecularly targeted therapiesmore » is available, and precision genetic or proteomic analyses of tumors are an established reality. By learning from the methods of weather and climate modeling, we submit that the forecasting power of biophysical and biomathematical modeling can be harnessed to hasten the arrival of a field of predictive oncology. Furthermore, with a successful methodology toward tumor forecasting, it should be possible to integrate large tumor-specific datasets of varied types and effectively defeat one cancer patient at a time.« less

  8. Method of identifying features in indexed data

    DOE Patents [OSTI]

    Jarman, Kristin H. [Richland, WA; Daly, Don Simone [Richland, WA; Anderson, Kevin K. [Richland, WA; Wahl, Karen L. [Richland, WA

    2001-06-26

    The present invention is a method of identifying features in indexed data, especially useful for distinguishing signal from noise in data provided as a plurality of ordered pairs. Each of the plurality of ordered pairs has an index and a response. The method has the steps of: (a) providing an index window having a first window end located on a first index and extending across a plurality of indices to a second window end; (b) selecting responses corresponding to the plurality of indices within the index window and computing a measure of dispersion of the responses; and (c) comparing the measure of dispersion to a dispersion critical value. Advantages of the present invention include minimizing signal to noise ratio, signal drift, varying baseline signal and combinations thereof.

  9. Microelectromechanical reciprocating-tooth indexing apparatus

    DOE Patents [OSTI]

    Allen, James J. (Albuquerque, NM)

    1999-01-01

    An indexing apparatus is disclosed that can be used to rotate a gear or move a rack in a precise, controllable manner. The indexing apparatus, based on a reciprocating shuttle driven by one or more actuators, can be formed either as a micromachine, or as a millimachine. The reciprocating shuttle of the indexing apparatus can be driven by a thermal, electrostatic or electromagnetic actuator, with one or more wedge-shaped drive teeth of the shuttle being moveable to engage and slide against indexing teeth on the gear or rack, thereby moving the gear or rack. The indexing apparatus can be formed by either surface micromachining processes or LIGA processes, depending on the size of the apparatus that is to be formed.

  10. The Wind Forecast Improvement Project (WFIP): A Public/Private Partnership for Improving Short Term Wind Energy Forecasts and Quantifying the Benefits of Utility Operations

    Broader source: Energy.gov [DOE]

    The Wind Forecast Improvement Project (WFIP) is a U. S. Department of Energy (DOE) sponsored research project whose overarching goals are to improve the accuracy of short-term wind energy forecasts, and to demonstrate the economic value of these improvements.

  11. Formation of bulk refractive index structures

    DOE Patents [OSTI]

    Potter, Jr., Barrett George; Potter, Kelly Simmons; Wheeler, David R.; Jamison, Gregory M.

    2003-07-15

    A method of making a stacked three-dimensional refractive index structure in photosensitive materials using photo-patterning where first determined is the wavelength at which a photosensitive material film exhibits a change in refractive index upon exposure to optical radiation, a portion of the surfaces of the photosensitive material film is optically irradiated, the film is marked to produce a registry mark. Multiple films are produced and aligned using the registry marks to form a stacked three-dimensional refractive index structure.

  12. Economic Evaluation of Short-Term Wind Power Forecasts in ERCOT: Preliminary Results; Preprint

    SciTech Connect (OSTI)

    Orwig, K.; Hodge, B. M.; Brinkman, G.; Ela, E.; Milligan, M.; Banunarayanan, V.; Nasir, S.; Freedman, J.

    2012-09-01

    Historically, a number of wind energy integration studies have investigated the value of using day-ahead wind power forecasts for grid operational decisions. These studies have shown that there could be large cost savings gained by grid operators implementing the forecasts in their system operations. To date, none of these studies have investigated the value of shorter-term (0 to 6-hour-ahead) wind power forecasts. In 2010, the Department of Energy and National Oceanic and Atmospheric Administration partnered to fund improvements in short-term wind forecasts and to determine the economic value of these improvements to grid operators, hereafter referred to as the Wind Forecasting Improvement Project (WFIP). In this work, we discuss the preliminary results of the economic benefit analysis portion of the WFIP for the Electric Reliability Council of Texas. The improvements seen in the wind forecasts are examined, then the economic results of a production cost model simulation are analyzed.

  13. SOLID WASTE INTEGRATED FORECAST TECHNICAL (SWIFT) REPORT FY2005 THRU FY2035 2005.0 VOLUME 2

    SciTech Connect (OSTI)

    BARCOT, R.A.

    2005-08-17

    This report provides up-to-date life cycle information about the radioactive solid waste expected to be managed by Hanford's Waste Management (WM) Project from onsite and offsite generators. It includes: (1) an overview of Hanford-wide solid waste to be managed by the WM Project; (2) multi-level and waste class-specific estimates; (3) background information on waste sources; and (4) comparisons to previous forecasts and other national data sources. The focus of this report is low-level waste (LLW), mixed low-level waste (MLLW), and transuranic waste, both non-mixed and mixed (TRU(M)). Some details on hazardous waste are also provided, however, this information is not considered comprehensive. This report includes data requested in December, 2004 with updates through March 31,2005. The data represent a life cycle forecast covering all reported activities from FY2005 through the end of each program's life cycle and are an update of the previous FY2004.1 data version.

  14. Watt-Sun: A Multi-Scale, Multi-Model, Machine-Learning Solar Forecasting

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology | Department of Energy Watt-Sun: A Multi-Scale, Multi-Model, Machine-Learning Solar Forecasting Technology Watt-Sun: A Multi-Scale, Multi-Model, Machine-Learning Solar Forecasting Technology IBM logo.png As part of this project, new solar forecasting technology will be developed that leverages big data processing, deep machine learning, and cloud modeling integrated in a universal platform with an open architecture. Similar to the Watson computer system, this proposed technology

  15. Integration of Behind-the-Meter PV Fleet Forecasts into Utility Grid System

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Operations | Department of Energy Integration of Behind-the-Meter PV Fleet Forecasts into Utility Grid System Operations Integration of Behind-the-Meter PV Fleet Forecasts into Utility Grid System Operations Clean Power Research logo.jpg This project will address the need for a more accurate approach to forecasting net utility load by taking into consideration the contribution of customer-sited PV energy generation. Tasks within the project are designed to integrate novel PV power

  16. Central Wind Forecasting Programs in North America by Regional Transmission Organizations and Electric Utilities: Revised Edition

    SciTech Connect (OSTI)

    Rogers, J.; Porter, K.

    2011-03-01

    The report and accompanying table addresses the implementation of central wind power forecasting by electric utilities and regional transmission organizations in North America. The first part of the table focuses on electric utilities and regional transmission organizations that have central wind power forecasting in place; the second part focuses on electric utilities and regional transmission organizations that plan to adopt central wind power forecasting in 2010. This is an update of the December 2009 report, NREL/SR-550-46763.

  17. Laboratory Equipment Donation Program - Site Index

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Site Index Home About Us FAQ Application Contact Us Administrative Login RSS Widget U.S. Department of Energy U.S. Deparment of Energy Office of Science Office of Scientific and...

  18. NEPA Guidance and Requirements- Search Index

    Office of Energy Efficiency and Renewable Energy (EERE)

    The NEPA Guidance and Requirements - Search Index is a one-stop solution providing you with DOE's Guidance and Requirements documents combined into one file for easy download and use.

  19. The Value of Improved Wind Power Forecasting in the Western Interconne...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of this research will facilitate a better functional understanding of wind forecasting accuracy and power system operations at various spatial and temporal scales.* Of particular ...

  20. ARM - PI Product - CCPP-ARM Parameterization Testbed Model Forecast Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ProductsCCPP-ARM Parameterization Testbed Model Forecast Data ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send PI Product : CCPP-ARM Parameterization Testbed Model Forecast Data Dataset contains the NCAR CAM3 (Collins et al., 2004) and GFDL AM2 (GFDL GAMDT, 2004) forecast data at locations close to the ARM research sites. These data are generated from a series of multi-day forecasts in which both CAM3 and AM2 are

  1. Integration of Behind-the-Meter PV Fleet Forecasts into Utility...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Forecasting behind-the-meter distributed PV generation power production within a region ... This project is expected to reduce the costs of integrating higher penetrations of PV into ...

  2. Energy Department Announces $2.5 Million to Improve Wind Forecasting...

    Broader source: Energy.gov (indexed) [DOE]

    turbines operate closer to maximum capacity, leading to lower energy costs for consumers. ... for the Weather Research and Forecasting model, a widely used weather prediction system. ...

  3. Value of Improved Wind Power Forecasting in the Western Interconnection (Poster)

    SciTech Connect (OSTI)

    Hodge, B.

    2013-12-01

    Wind power forecasting is a necessary and important technology for incorporating wind power into the unit commitment and dispatch process. It is expected to become increasingly important with higher renewable energy penetration rates and progress toward the smart grid. There is consensus that wind power forecasting can help utility operations with increasing wind power penetration; however, there is far from a consensus about the economic value of improved forecasts. This work explores the value of improved wind power forecasting in the Western Interconnection of the United States.

  4. EERE Success Story-Solar Forecasting Gets a Boost from Watson...

    Broader source: Energy.gov (indexed) [DOE]

    electric system operators, and solar project owners better predict when and how much ... production varies, an accurate solar forecast is needed in order to maintain an ...

  5. Report of the external expert peer review panel: DOE benefits forecasts

    SciTech Connect (OSTI)

    None, None

    2006-12-20

    A report for the FY 2007 GPRA methodology review, highlighting the views of an external expert peer review panel on DOE benefits forecasts.

  6. Navy Mobility Fuels Forecasting System report: Navy fuel production in the year 2000

    SciTech Connect (OSTI)

    Hadder, G.R.; Davis, R.M.

    1991-09-01

    The Refinery Yield Model of the Navy Mobility Fuels Forecasting System has been used to study the feasibility and quality of Navy JP-5 jet fuel and F-76 marine diesel fuel for two scenarios in the year 2000. Both scenarios account for environmental regulations for fuels produced in the US and assume that Eastern Europe, the USSR, and the People`s Republic of China have free market economies. One scenario is based on business-as-usual market conditions for the year 2000. The second scenario is similar to first except that USSR crude oil production is 24 percent lower. During lower oil production in the USSR., there are no adverse effects on Navy fuel availability, but JP-5 is generally a poorer quality fuel relative to business-as-usual in the year 2000. In comparison with 1990, there are two potential problems areas for future Navy fuel quality. The first problem is increased aromaticity of domestically produced Navy fuels. Higher percentages of aromatics could have adverse effects on storage, handling, and combustion characteristics of both JP-5 and F-76. The second, and related, problem is that highly aromatic light cycle oils are blended into F-76 at percentages which promote fuel instability. It is recommended that the Navy continue to monitor the projected trend toward increased aromaticity in JP-5 and F-76 and high percentages of light cycle oils in F-76. These potential problems should be important considerations in research and development for future Navy engines.

  7. Navy Mobility Fuels Forecasting System report: Navy fuel production in the year 2000

    SciTech Connect (OSTI)

    Hadder, G.R.; Davis, R.M.

    1991-09-01

    The Refinery Yield Model of the Navy Mobility Fuels Forecasting System has been used to study the feasibility and quality of Navy JP-5 jet fuel and F-76 marine diesel fuel for two scenarios in the year 2000. Both scenarios account for environmental regulations for fuels produced in the US and assume that Eastern Europe, the USSR, and the People's Republic of China have free market economies. One scenario is based on business-as-usual market conditions for the year 2000. The second scenario is similar to first except that USSR crude oil production is 24 percent lower. During lower oil production in the USSR., there are no adverse effects on Navy fuel availability, but JP-5 is generally a poorer quality fuel relative to business-as-usual in the year 2000. In comparison with 1990, there are two potential problems areas for future Navy fuel quality. The first problem is increased aromaticity of domestically produced Navy fuels. Higher percentages of aromatics could have adverse effects on storage, handling, and combustion characteristics of both JP-5 and F-76. The second, and related, problem is that highly aromatic light cycle oils are blended into F-76 at percentages which promote fuel instability. It is recommended that the Navy continue to monitor the projected trend toward increased aromaticity in JP-5 and F-76 and high percentages of light cycle oils in F-76. These potential problems should be important considerations in research and development for future Navy engines.

  8. Comparing Price Forecast Accuracy of Natural Gas Models andFutures Markets

    SciTech Connect (OSTI)

    Wong-Parodi, Gabrielle; Dale, Larry; Lekov, Alex

    2005-06-30

    The purpose of this article is to compare the accuracy of forecasts for natural gas prices as reported by the Energy Information Administration's Short-Term Energy Outlook (STEO) and the futures market for the period from 1998 to 2003. The analysis tabulates the existing data and develops a statistical comparison of the error between STEO and U.S. wellhead natural gas prices and between Henry Hub and U.S. wellhead spot prices. The results indicate that, on average, Henry Hub is a better predictor of natural gas prices with an average error of 0.23 and a standard deviation of 1.22 than STEO with an average error of -0.52 and a standard deviation of 1.36. This analysis suggests that as the futures market continues to report longer forward prices (currently out to five years), it may be of interest to economic modelers to compare the accuracy of their models to the futures market. The authors would especially like to thank Doug Hale of the Energy Information Administration for supporting and reviewing this work.

  9. The Wind Forecast Improvement Project (WFIP). A Public/Private Partnership for Improving Short Term Wind Energy Forecasts and Quantifying the Benefits of Utility Operations -- the Northern Study Area

    SciTech Connect (OSTI)

    Finley, Cathy

    2014-04-30

    This report contains the results from research aimed at improving short-range (0-6 hour) hub-height wind forecasts in the NOAA weather forecast models through additional data assimilation and model physics improvements for use in wind energy forecasting. Additional meteorological observing platforms including wind profilers, sodars, and surface stations were deployed for this study by NOAA and DOE, and additional meteorological data at or near wind turbine hub height were provided by South Dakota State University and WindLogics/NextEra Energy Resources over a large geographical area in the U.S. Northern Plains for assimilation into NOAA research weather forecast models. The resulting improvements in wind energy forecasts based on the research weather forecast models (with the additional data assimilation and model physics improvements) were examined in many different ways and compared with wind energy forecasts based on the current operational weather forecast models to quantify the forecast improvements important to power grid system operators and wind plant owners/operators participating in energy markets. Two operational weather forecast models (OP_RUC, OP_RAP) and two research weather forecast models (ESRL_RAP, HRRR) were used as the base wind forecasts for generating several different wind power forecasts for the NextEra Energy wind plants in the study area. Power forecasts were generated from the wind forecasts in a variety of ways, from very simple to quite sophisticated, as they might be used by a wide range of both general users and commercial wind energy forecast vendors. The error characteristics of each of these types of forecasts were examined and quantified using bulk error statistics for both the local wind plant and the system aggregate forecasts. The wind power forecast accuracy was also evaluated separately for high-impact wind energy ramp events. The overall bulk error statistics calculated over the first six hours of the forecasts at both the

  10. 3D cloud detection and tracking system for solar forecast using multiple sky imagers

    SciTech Connect (OSTI)

    Peng, Zhenzhou; Yu, Dantong; Huang, Dong; Heiser, John; Yoo, Shinjae; Kalb, Paul

    2015-06-23

    We propose a system for forecasting short-term solar irradiance based on multiple total sky imagers (TSIs). The system utilizes a novel method of identifying and tracking clouds in three-dimensional space and an innovative pipeline for forecasting surface solar irradiance based on the image features of clouds. First, we develop a supervised classifier to detect clouds at the pixel level and output cloud mask. In the next step, we design intelligent algorithms to estimate the block-wise base height and motion of each cloud layer based on images from multiple TSIs. Thus, this information is then applied to stitch images together into larger views, which are then used for solar forecasting. We examine the systems ability to track clouds under various cloud conditions and investigate different irradiance forecast models at various sites. We confirm that this system can 1) robustly detect clouds and track layers, and 2) extract the significant global and local features for obtaining stable irradiance forecasts with short forecast horizons from the obtained images. Finally, we vet our forecasting system at the 32-megawatt Long Island Solar Farm (LISF). Compared with the persistent model, our system achieves at least a 26% improvement for all irradiance forecasts between one and fifteen minutes.

  11. Recent Trends in Variable Generation Forecasting and Its Value to the Power System

    SciTech Connect (OSTI)

    Orwig, Kirsten D.; Ahlstrom, Mark L.; Banunarayanan, Venkat; Sharp, Justin; Wilczak, James M.; Freedman, Jeffrey; Haupt, Sue Ellen; Cline, Joel; Bartholomy, Obadiah; Hamann, Hendrik F.; Hodge, Bri-Mathias; Finley, Catherine; Nakafuji, Dora; Peterson, Jack L.; Maggio, David; Marquis, Melinda

    2014-12-23

    We report that the rapid deployment of wind and solar energy generation systems has resulted in a need to better understand, predict, and manage variable generation. The uncertainty around wind and solar power forecasts is still viewed by the power industry as being quite high, and many barriers to forecast adoption by power system operators still remain. In response, the U.S. Department of Energy has sponsored, in partnership with the National Oceanic and Atmospheric Administration, public, private, and academic organizations, two projects to advance wind and solar power forecasts. Additionally, several utilities and grid operators have recognized the value of adopting variable generation forecasting and have taken great strides to enhance their usage of forecasting. In parallel, power system markets and operations are evolving to integrate greater amounts of variable generation. This paper will discuss the recent trends in wind and solar power forecasting technologies in the U.S., the role of forecasting in an evolving power system framework, and the benefits to intended forecast users.

  12. 3D cloud detection and tracking system for solar forecast using multiple sky imagers

    SciTech Connect (OSTI)

    Peng, Zhenzhou; Yu, Dantong; Huang, Dong; Heiser, John; Yoo, Shinjae; Kalb, Paul

    2015-06-23

    We propose a system for forecasting short-term solar irradiance based on multiple total sky imagers (TSIs). The system utilizes a novel method of identifying and tracking clouds in three-dimensional space and an innovative pipeline for forecasting surface solar irradiance based on the image features of clouds. First, we develop a supervised classifier to detect clouds at the pixel level and output cloud mask. In the next step, we design intelligent algorithms to estimate the block-wise base height and motion of each cloud layer based on images from multiple TSIs. Thus, this information is then applied to stitch images together into larger views, which are then used for solar forecasting. We examine the system’s ability to track clouds under various cloud conditions and investigate different irradiance forecast models at various sites. We confirm that this system can 1) robustly detect clouds and track layers, and 2) extract the significant global and local features for obtaining stable irradiance forecasts with short forecast horizons from the obtained images. Finally, we vet our forecasting system at the 32-megawatt Long Island Solar Farm (LISF). Compared with the persistent model, our system achieves at least a 26% improvement for all irradiance forecasts between one and fifteen minutes.

  13. Recent Trends in Variable Generation Forecasting and Its Value to the Power System

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Orwig, Kirsten D.; Ahlstrom, Mark L.; Banunarayanan, Venkat; Sharp, Justin; Wilczak, James M.; Freedman, Jeffrey; Haupt, Sue Ellen; Cline, Joel; Bartholomy, Obadiah; Hamann, Hendrik F.; et al

    2014-12-23

    We report that the rapid deployment of wind and solar energy generation systems has resulted in a need to better understand, predict, and manage variable generation. The uncertainty around wind and solar power forecasts is still viewed by the power industry as being quite high, and many barriers to forecast adoption by power system operators still remain. In response, the U.S. Department of Energy has sponsored, in partnership with the National Oceanic and Atmospheric Administration, public, private, and academic organizations, two projects to advance wind and solar power forecasts. Additionally, several utilities and grid operators have recognized the value ofmore » adopting variable generation forecasting and have taken great strides to enhance their usage of forecasting. In parallel, power system markets and operations are evolving to integrate greater amounts of variable generation. This paper will discuss the recent trends in wind and solar power forecasting technologies in the U.S., the role of forecasting in an evolving power system framework, and the benefits to intended forecast users.« less

  14. 3D cloud detection and tracking system for solar forecast using multiple sky imagers

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Peng, Zhenzhou; Yu, Dantong; Huang, Dong; Heiser, John; Yoo, Shinjae; Kalb, Paul

    2015-06-23

    We propose a system for forecasting short-term solar irradiance based on multiple total sky imagers (TSIs). The system utilizes a novel method of identifying and tracking clouds in three-dimensional space and an innovative pipeline for forecasting surface solar irradiance based on the image features of clouds. First, we develop a supervised classifier to detect clouds at the pixel level and output cloud mask. In the next step, we design intelligent algorithms to estimate the block-wise base height and motion of each cloud layer based on images from multiple TSIs. Thus, this information is then applied to stitch images together intomore » larger views, which are then used for solar forecasting. We examine the system’s ability to track clouds under various cloud conditions and investigate different irradiance forecast models at various sites. We confirm that this system can 1) robustly detect clouds and track layers, and 2) extract the significant global and local features for obtaining stable irradiance forecasts with short forecast horizons from the obtained images. Finally, we vet our forecasting system at the 32-megawatt Long Island Solar Farm (LISF). Compared with the persistent model, our system achieves at least a 26% improvement for all irradiance forecasts between one and fifteen minutes.« less

  15. Low Carbon Economy Index 2010 | Open Energy Information

    Open Energy Info (EERE)

    Economy Index 2010 Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Low Carbon Economy Index 2010 AgencyCompany Organization: PricewaterhouseCoopers Sector: Energy,...

  16. Plasmonic crystal enhanced refractive index sensing

    SciTech Connect (OSTI)

    Stein, Benedikt; Devaux, Eloïse; Genet, Cyriaque Ebbesen, Thomas W.

    2014-06-23

    We demonstrate experimentally how the local anisotropy of the dispersion relation of surface plasmon modes propagating over periodic metal gratings can lead to an enhancement of the figure of merit of refractive index sensors. Exploiting the possibility to acquire defocused images of the Fourier space of a highly stable leakage radiation microscope, we report a twofold increase in sensing sensitivity close to the band gap of a one-dimensional plasmonic crystal where the anisotropy of the band structure is the most important. A practical sensing resolution of O(10{sup −6}) refractive index units is demonstrated.

  17. Master EM Project Definition Rating Index - Facility Disposition...

    Office of Environmental Management (EM)

    ... both approved and pending changes, as appropriate. The forecast of cost at completion is a reasonable projection based on the status of the project and the experience to-date. ...

  18. Master EM Project Definition Rating Index - Traditional (Conventional...

    Office of Environmental Management (EM)

    ... both approved and pending changes, as appropriate. The forecast of cost at completion is a reasonable projection based on the status of the project and the experience to-date. ...

  19. Master EM Project Definition Rating Index - Environmental Restoration...

    Office of Environmental Management (EM)

    ... both approved and pending changes, as appropriate. The forecast of cost at completion is a reasonable projection based on the status of the project and the experience to-date. ...

  20. Thirty-Year Solid Waste Generation Maximum and Minimum Forecast for SRS

    SciTech Connect (OSTI)

    Thomas, L.C.

    1994-10-01

    This report is the third phase (Phase III) of the Thirty-Year Solid Waste Generation Forecast for Facilities at the Savannah River Site (SRS). Phase I of the forecast, Thirty-Year Solid Waste Generation Forecast for Facilities at SRS, forecasts the yearly quantities of low-level waste (LLW), hazardous waste, mixed waste, and transuranic (TRU) wastes generated over the next 30 years by operations, decontamination and decommissioning and environmental restoration (ER) activities at the Savannah River Site. The Phase II report, Thirty-Year Solid Waste Generation Forecast by Treatability Group (U), provides a 30-year forecast by waste treatability group for operations, decontamination and decommissioning, and ER activities. In addition, a 30-year forecast by waste stream has been provided for operations in Appendix A of the Phase II report. The solid wastes stored or generated at SRS must be treated and disposed of in accordance with federal, state, and local laws and regulations. To evaluate, select, and justify the use of promising treatment technologies and to evaluate the potential impact to the environment, the generic waste categories described in the Phase I report were divided into smaller classifications with similar physical, chemical, and radiological characteristics. These smaller classifications, defined within the Phase II report as treatability groups, can then be used in the Waste Management Environmental Impact Statement process to evaluate treatment options. The waste generation forecasts in the Phase II report includes existing waste inventories. Existing waste inventories, which include waste streams from continuing operations and stored wastes from discontinued operations, were not included in the Phase I report. Maximum and minimum forecasts serve as upper and lower boundaries for waste generation. This report provides the maximum and minimum forecast by waste treatability group for operation, decontamination and decommissioning, and ER activities.

  1. Weather Research and Forecasting Model with Vertical Nesting Capability

    Energy Science and Technology Software Center (OSTI)

    2014-08-01

    The Weather Research and Forecasting (WRF) model with vertical nesting capability is an extension of the WRF model, which is available in the public domain, from www.wrf-model.org. The new code modifies the nesting procedure, which passes lateral boundary conditions between computational domains in the WRF model. Previously, the same vertical grid was required on all domains, while the new code allows different vertical grids to be used on concurrently run domains. This new functionality improvesmore » WRF's ability to produce high-resolution simulations of the atmosphere by allowing a wider range of scales to be efficiently resolved and more accurate lateral boundary conditions to be provided through the nesting procedure.« less

  2. Regulatory and technical reports (Abstract Index Journal)

    SciTech Connect (OSTI)

    Not Available

    1993-02-01

    This journal includes all formal reports in the NUREG series prepared by the NRC staff and contractors, proceedings of conferences and workshops, grants, and international agreement reports. The entries in this compilation are indexed for access by title and abstract, secondary report number, personal author, subject, NRC organization for staff and international agreements, contractor, international organization, and licensed facility.

  3. Wind Power Forecasting Error Distributions over Multiple Timescales: Preprint

    SciTech Connect (OSTI)

    Hodge, B. M.; Milligan, M.

    2011-03-01

    In this paper, we examine the shape of the persistence model error distribution for ten different wind plants in the ERCOT system over multiple timescales. Comparisons are made between the experimental distribution shape and that of the normal distribution.

  4. An Optimized Autoregressive Forecast Error Generator for Wind and Load Uncertainty Study

    SciTech Connect (OSTI)

    De Mello, Phillip; Lu, Ning; Makarov, Yuri V.

    2011-01-17

    This paper presents a first-order autoregressive algorithm to generate real-time (RT), hour-ahead (HA), and day-ahead (DA) wind and load forecast errors. The methodology aims at producing random wind and load forecast time series reflecting the autocorrelation and cross-correlation of historical forecast data sets. Five statistical characteristics are considered: the means, standard deviations, autocorrelations, and cross-correlations. A stochastic optimization routine is developed to minimize the differences between the statistical characteristics of the generated time series and the targeted ones. An optimal set of parameters are obtained and used to produce the RT, HA, and DA forecasts in due order of succession. This method, although implemented as the first-order regressive random forecast error generator, can be extended to higher-order. Results show that the methodology produces random series with desired statistics derived from real data sets provided by the California Independent System Operator (CAISO). The wind and load forecast error generator is currently used in wind integration studies to generate wind and load inputs for stochastic planning processes. Our future studies will focus on reflecting the diurnal and seasonal differences of the wind and load statistics and implementing them in the random forecast generator.

  5. Review of Variable Generation Forecasting in the West: July 2013 - March 2014

    SciTech Connect (OSTI)

    Widiss, R.; Porter, K.

    2014-03-01

    This report interviews 13 operating entities (OEs) in the Western Interconnection about their implementation of wind and solar forecasting. The report updates and expands upon one issued by NREL in 2012. As in the 2012 report, the OEs interviewed vary in size and character; the group includes independent system operators, balancing authorities, utilities, and other entities. Respondents' advice for other utilities includes starting sooner rather than later as it can take time to plan, prepare, and train a forecast; setting realistic expectations; using multiple forecasts; and incorporating several performance metrics.

  6. Hazard index for underground toxic material

    SciTech Connect (OSTI)

    Smith, C.F.; Cohen, J.J.; McKone, T.E.

    1980-06-01

    To adequately define the problem of waste management, quantitative measures of hazard must be used. This study reviews past work in the area of hazard indices and proposes a geotoxicity hazard index for use in characterizing the hazard of toxic material buried underground. Factors included in this index are: an intrinsic toxicity factor, formulated as the volume of water required for dilution to public drinking-water levels; a persistence factor to characterize the longevity of the material, ranging from unity for stable materials to smaller values for shorter-lived materials; an availability factor that relates the transport potential for the particular material to a reference value for its naturally occurring analog; and a correction factor to accommodate the buildup of decay progeny, resulting in increased toxicity.

  7. Evolution of the spectral index after inflation

    SciTech Connect (OSTI)

    Asgari, A.A.; Abbassi, A.H. E-mail: ahabbasi@modares.ac.ir

    2014-09-01

    In this article we investigate the time evolution of the adiabatic (curvature) and isocurvature (entropy) spectral indices after inflation era for all cosmological scales with two different initial conditions. For this purpose, we first extract an explicit equation for the time evolution of the comoving curvature perturbation (which may be known as the generalized Mukhanov-Sasaki equation). It would be cleared that the evolution of adiabatic spectral index severely depends on the initial conditions moreover, as expected it is constant only for the super-Hubble scales and adiabatic initial conditions. Additionally, the adiabatic spectral index after recombination approaches a constant value for the isocurvature perturbations. Finally, we re-investigate the Sachs-Wolfe effect and show that the fudge factor  1/3 in the adiabatic ordinary Sachs-Wolfe formula must be replaced by 0.4.

  8. Matched Index of Refraction Flow Facility

    ScienceCinema (OSTI)

    Mcllroy, Hugh

    2013-05-28

    What's 27 feet long, 10 feet tall and full of mineral oil (3000 gallons' worth)? If you said INL's Matched Index of Refraction facility, give yourself a gold star. Scientists use computers to model the inner workings of nuclear reactors, and MIR helps validate those models. INL's Hugh McIlroy explains in this video. You can learn more about INL energy research at the lab's facebook site http://www.facebook.com/idahonationallaboratory.

  9. U.S. oil production forecast update reflects lower rig count

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    U.S. oil production forecast update reflects lower rig count Lower oil prices and fewer rigs drilling for crude oil are expected to slow U.S. oil production growth this year and in ...

  10. U.S. Crude Oil Production Forecast-Analysis of Crude Types

    U.S. Energy Information Administration (EIA) Indexed Site

    of Energy Washington, DC 20585 U.S. Energy Information Administration | U.S. Crude Oil Production Forecast-Analysis of Crude Types i This report was prepared by the U.S....