Sample records for forecast comparisons annual

  1. ELECTRICITY DEMAND FORECAST COMPARISON REPORT

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION ELECTRICITY DEMAND FORECAST COMPARISON REPORT STAFFREPORT June 2005.................................................................................................................................3 PACIFIC GAS & ELECTRIC PLANNING AREA ........................................................................................9 Commercial Sector

  2. Natural Gas Prices Forecast Comparison--AEO vs. Natural Gas Markets

    E-Print Network [OSTI]

    Wong-Parodi, Gabrielle; Lekov, Alex; Dale, Larry

    2005-01-01T23:59:59.000Z

    2 2. Annual Energy Outlook (Administration’s Annual Energy Outlook forecasted price (of Energy, Annual Energy Outlook 2004 with Projections to

  3. Wind Power Forecasting Error Distributions: An International Comparison; Preprint

    SciTech Connect (OSTI)

    Hodge, B. M.; Lew, D.; Milligan, M.; Holttinen, H.; Sillanpaa, S.; Gomez-Lazaro, E.; Scharff, R.; Soder, L.; Larsen, X. G.; Giebel, G.; Flynn, D.; Dobschinski, J.

    2012-09-01T23:59:59.000Z

    Wind power forecasting is expected to be an important enabler for greater penetration of wind power into electricity systems. Because no wind forecasting system is perfect, a thorough understanding of the errors that do occur can be critical to system operation functions, such as the setting of operating reserve levels. This paper provides an international comparison of the distribution of wind power forecasting errors from operational systems, based on real forecast data. The paper concludes with an assessment of similarities and differences between the errors observed in different locations.

  4. Comparison of Wind Power and Load Forecasting Error Distributions: Preprint

    SciTech Connect (OSTI)

    Hodge, B. M.; Florita, A.; Orwig, K.; Lew, D.; Milligan, M.

    2012-07-01T23:59:59.000Z

    The introduction of large amounts of variable and uncertain power sources, such as wind power, into the electricity grid presents a number of challenges for system operations. One issue involves the uncertainty associated with scheduling power that wind will supply in future timeframes. However, this is not an entirely new challenge; load is also variable and uncertain, and is strongly influenced by weather patterns. In this work we make a comparison between the day-ahead forecasting errors encountered in wind power forecasting and load forecasting. The study examines the distribution of errors from operational forecasting systems in two different Independent System Operator (ISO) regions for both wind power and load forecasts at the day-ahead timeframe. The day-ahead timescale is critical in power system operations because it serves the unit commitment function for slow-starting conventional generators.

  5. Comparison of AEO 2005 natural gas price forecast to NYMEX futures prices

    E-Print Network [OSTI]

    Bolinger, Mark; Wiser, Ryan

    2004-01-01T23:59:59.000Z

    revisions to the EIA’s natural gas price forecasts in AEOsolely on the AEO 2005 natural gas price forecasts willComparison of AEO 2005 Natural Gas Price Forecast to NYMEX

  6. Comparison of AEO 2010 Natural Gas Price Forecast to NYMEX Futures Prices

    E-Print Network [OSTI]

    Bolinger, Mark A.

    2010-01-01T23:59:59.000Z

    to estimate the base-case natural gas price forecast, but toComparison of AEO 2010 Natural Gas Price Forecast to NYMEXs reference-case long-term natural gas price forecasts from

  7. Comparison of AEO 2008 Natural Gas Price Forecast to NYMEX Futures Prices

    E-Print Network [OSTI]

    Bolinger, Mark

    2008-01-01T23:59:59.000Z

    late January 2008, extend its natural gas futures strip anComparison of AEO 2008 Natural Gas Price Forecast to NYMEXs reference-case long-term natural gas price forecasts from

  8. Comparison of AEO 2007 Natural Gas Price Forecast to NYMEX Futures Prices

    E-Print Network [OSTI]

    Bolinger, Mark; Wiser, Ryan

    2006-01-01T23:59:59.000Z

    Comparison of AEO 2007 Natural Gas Price Forecast to NYMEXs reference case long-term natural gas price forecasts fromAEO series to contemporaneous natural gas prices that can be

  9. Comparison of AEO 2006 Natural Gas Price Forecast to NYMEX Futures Prices

    E-Print Network [OSTI]

    Bolinger, Mark; Wiser, Ryan

    2005-01-01T23:59:59.000Z

    Comparison of AEO 2006 Natural Gas Price Forecast to NYMEXs reference case long-term natural gas price forecasts fromAEO series to contemporaneous natural gas prices that can be

  10. Comparison of AEO 2009 Natural Gas Price Forecast to NYMEX Futures Prices

    E-Print Network [OSTI]

    Bolinger, Mark

    2009-01-01T23:59:59.000Z

    Comparison of AEO 2009 Natural Gas Price Forecast to NYMEXs reference-case long-term natural gas price forecasts fromAEO series to contemporaneous natural gas prices that can be

  11. Comparison of Bottom-Up and Top-Down Forecasts: Vision Industry Energy Forecasts with ITEMS and NEMS

    E-Print Network [OSTI]

    Roop, J. M.; Dahowski, R. T

    Comparisons are made of energy forecasts using results from the Industrial module of the National Energy Modeling System (NEMS) and an industrial economic-engineering model called the Industrial Technology and Energy Modeling System (ITEMS), a model...

  12. 2008 European PV Conference, Valencia, Spain COMPARISON OF SOLAR RADIATION FORECASTS FOR THE USA

    E-Print Network [OSTI]

    Perez, Richard R.

    2008 European PV Conference, Valencia, Spain COMPARISON OF SOLAR RADIATION FORECASTS FOR THE USA J models 1 INTRODUCTION Solar radiation and PV production forecasts are becoming increasingly important/) three teams of experts are benchmarking their solar radiation forecast against ground truth data

  13. Energy Conservation Program: Data Collection and Comparison with Forecasted Unit Sales for Five Lamp Types, Notice of Data Availability

    Broader source: Energy.gov [DOE]

    Energy Conservation Program: Data Collection and Comparison with Forecasted Unit Sales for Five Lamp Types, Notice of Data Availability

  14. Analysis of Variability and Uncertainty in Wind Power Forecasting: An International Comparison: Preprint

    SciTech Connect (OSTI)

    Zhang, J.; Hodge, B. M.; Gomez-Lazaro, E.; Lovholm, A. L.; Berge, E.; Miettinen, J.; Holttinen, H.; Cutululis, N.; Litong-Palima, M.; Sorensen, P.; Dobschinski, J.

    2013-10-01T23:59:59.000Z

    One of the critical challenges of wind power integration is the variable and uncertain nature of the resource. This paper investigates the variability and uncertainty in wind forecasting for multiple power systems in six countries. An extensive comparison of wind forecasting is performed among the six power systems by analyzing the following scenarios: (i) wind forecast errors throughout a year; (ii) forecast errors at a specific time of day throughout a year; (iii) forecast errors at peak and off-peak hours of a day; (iv) forecast errors in different seasons; (v) extreme forecasts with large overforecast or underforecast errors; and (vi) forecast errors when wind power generation is at different percentages of the total wind capacity. The kernel density estimation method is adopted to characterize the distribution of forecast errors. The results show that the level of uncertainty and the forecast error distribution vary among different power systems and scenarios. In addition, for most power systems, (i) there is a tendency to underforecast in winter; and (ii) the forecasts in winter generally have more uncertainty than the forecasts in summer.

  15. Comparison of AEO 2005 natural gas price forecast to NYMEX futures prices

    SciTech Connect (OSTI)

    Bolinger, Mark; Wiser, Ryan

    2004-12-13T23:59:59.000Z

    On December 9, the reference case projections from ''Annual Energy Outlook 2005 (AEO 2005)'' were posted on the Energy Information Administration's (EIA) web site. As some of you may be aware, we at LBNL have in the past compared the EIA's reference case long-term natural gas price forecasts from the AEO series to contemporaneous natural gas prices that can be locked in through the forward market, with the goal of better understanding fuel price risk and the role that renewables play in mitigating such risk. As such, we were curious to see how the latest AEO gas price forecast compares to the NYMEX natural gas futures strip. This brief memo presents our findings. As a refresher, our past work in this area has found that over the past four years, forward natural gas contracts (e.g., gas futures, swaps, and physical supply) have traded at a premium relative to contemporaneous long-term reference case gas price forecasts from the EIA. As such, we have concluded that, over the past four years at least, levelized cost comparisons of fixed-price renewable generation with variable price gas-fired generation that have been based on AEO natural gas price forecasts (rather than forward prices) have yielded results that are ''biased'' in favor of gas-fired generation (presuming that long-term price stability is valued). In this memo we simply update our past analysis to include the latest long-term gas price forecast from the EIA, as contained in AEO 2005. For the sake of brevity, we do not rehash information (on methodology, potential explanations for the premiums, etc.) contained in our earlier reports on this topic; readers interested in such information are encouraged to download that work from http://eetd.lbl.gov/ea/EMS/reports/53587.pdf or, more recently (and briefly), http://eetd.lbl.gov/ea/ems/reports/54751.pdf. As was the case in the past four AEO releases (AEO 2001-AE0 2004), we once again find that the AEO 2005 reference case gas price forecast falls well below where NYMEX natural gas futures contracts were trading at the time the EIA finalized its gas price forecast. In fact, the NYMEXAEO 2005 reference case comparison yields by far the largest premium--$1.11/MMBtu levelized over six years--that we have seen over the last five years. In other words, on average, one would have to pay $1.11/MMBtu more than the AEO 2005 reference case natural gas price forecast in order to lock in natural gas prices over the coming six years and thereby replicate the price stability provided intrinsically by fixed-price renewable generation. Fixed-price renewables obviously need not bear this added cost, and moreover can provide price stability for terms well in excess of six years.

  16. Comparison of AEO 2006 Natural Gas Price Forecast to NYMEX FuturesPrices

    SciTech Connect (OSTI)

    Bolinger, Mark; Wiser, Ryan

    2005-12-19T23:59:59.000Z

    On December 12, 2005, the reference case projections from ''Annual Energy Outlook 2006'' (AEO 2006) were posted on the Energy Information Administration's (EIA) web site. We at LBNL have in the past compared the EIA's reference case long-term natural gas price forecasts from the AEO series to contemporaneous natural gas prices that can be locked in through the forward market, with the goal of better understanding fuel price risk and the role that renewables play in mitigating such risk (see, for example, http://eetd.lbl.gov/ea/EMS/reports/53587.pdf or http://eetd.lbl.gov/ea/ems/reports/54751.pdf). As such, we were curious to see how the latest AEO gas price forecast compares to the NYMEX natural gas futures strip. This brief memo presents our findings. As a refresher, our past work in this area has found that over the past five years, forward natural gas contracts (with prices that can be locked in--e.g., gas futures, swaps, and physical supply) have traded at a premium relative to contemporaneous long-term reference case gas price forecasts from the EIA. As such, we have concluded that, over the past five years at least, levelized cost comparisons of fixed-price renewable generation with variable price gas-fired generation that have been based on AEO natural gas price forecasts (rather than forward prices) have yielded results that are ''biased'' in favor of gas-fired generation, presuming that long-term price stability is valued. In this memo we simply update our past analysis to include the latest long-term gas price forecast from the EIA, as contained in AEO 2006. For the sake of brevity, we do not rehash information (on methodology, potential explanations for the premiums, etc.) contained in our earlier reports on this topic; readers interested in such information are encouraged to download that work from http://eetd.lbl.gov/ea/EMS/reports/53587.pdf or http://eetd.lbl.gov/ea/ems/reports/54751.pdf. As was the case in the past five AEO releases (AEO 2001-AEO 2005), we once again find that the AEO 2006 reference case gas price forecast falls well below where NYMEX natural gas futures contracts were trading at the time the EIA finalized its gas price forecast. In fact, the NYMEX-AEO 2006 reference case comparison yields by far the largest premium--$2.3/MMBtu levelized over five years--that we have seen over the last six years. In other words, on average, one would have had to pay $2.3/MMBtu more than the AEO 2006 reference case natural gas price forecast in order to lock in natural gas prices over the coming five years and thereby replicate the price stability provided intrinsically by fixed-price renewable generation (or other forms of generation whose costs are not tied to the price of natural gas). Fixed-price generation (like certain forms of renewable generation) obviously need not bear this added cost, and moreover can provide price stability for terms well in excess of five years.

  17. Comparison of AEO 2007 Natural Gas Price Forecast to NYMEX FuturesPrices

    SciTech Connect (OSTI)

    Bolinger, Mark; Wiser, Ryan

    2006-12-06T23:59:59.000Z

    On December 5, 2006, the reference case projections from 'Annual Energy Outlook 2007' (AEO 2007) were posted on the Energy Information Administration's (EIA) web site. We at LBNL have, in the past, compared the EIA's reference case long-term natural gas price forecasts from the AEO series to contemporaneous natural gas prices that can be locked in through the forward market, with the goal of better understanding fuel price risk and the role that renewables play in mitigating such risk (see, for example, http://eetd.lbl.gov/ea/EMS/reports/53587.pdf or http://eetd.lbl.gov/ea/ems/reports/54751.pdf). As such, we were curious to see how the latest AEO gas price forecast compares to the NYMEX natural gas futures strip. This brief memo presents our findings. As a refresher, our past work in this area has found that over the past six years, forward natural gas contracts (with prices that can be locked in--e.g., gas futures, swaps, and physical supply) have traded at a premium relative to contemporaneous long-term reference case gas price forecasts from the EIA. As such, we have concluded that, over the past six years at least, levelized cost comparisons of fixed-price renewable generation with variable-price gas-fired generation that have been based on AEO natural gas price forecasts (rather than forward prices) have yielded results that are 'biased' in favor of gas-fired generation, presuming that long-term price stability is valued. In this memo we simply update our past analysis to include the latest long-term gas price forecast from the EIA, as contained in AEO 2007. For the sake of brevity, we do not rehash information (on methodology, potential explanations for the premiums, etc.) contained in our earlier reports on this topic; readers interested in such information are encouraged to download that work from http://eetd.lbl.gov/ea/EMS/reports/53587.pdf or http://eetd.lbl.gov/ea/ems/reports/54751.pdf. As was the case in the past six AEO releases (AEO 2001-AEO 2006), we once again find that the AEO 2007 reference case gas price forecast falls well below where NYMEX natural gas futures contracts were trading at the time the EIA finalized its gas price forecast. Specifically, the NYMEX-AEO 2007 premium is $0.73/MMBtu levelized over five years. In other words, on average, one would have had to pay $0.73/MMBtu more than the AEO 2007 reference case natural gas price forecast in order to lock in natural gas prices over the coming five years and thereby replicate the price stability provided intrinsically by fixed-price renewable generation (or other forms of generation whose costs are not tied to the price of natural gas). Fixed-price generation (like certain forms of renewable generation) obviously need not bear this added cost, and moreover can provide price stability for terms well in excess of five years.

  18. Natural Gas Prices Forecast Comparison--AEO vs. Natural Gas Markets

    SciTech Connect (OSTI)

    Wong-Parodi, Gabrielle; Lekov, Alex; Dale, Larry

    2005-02-09T23:59:59.000Z

    This paper evaluates the accuracy of two methods to forecast natural gas prices: using the Energy Information Administration's ''Annual Energy Outlook'' forecasted price (AEO) and the ''Henry Hub'' compared to U.S. Wellhead futures price. A statistical analysis is performed to determine the relative accuracy of the two measures in the recent past. A statistical analysis suggests that the Henry Hub futures price provides a more accurate average forecast of natural gas prices than the AEO. For example, the Henry Hub futures price underestimated the natural gas price by 35 cents per thousand cubic feet (11.5 percent) between 1996 and 2003 and the AEO underestimated by 71 cents per thousand cubic feet (23.4 percent). Upon closer inspection, a liner regression analysis reveals that two distinct time periods exist, the period between 1996 to 1999 and the period between 2000 to 2003. For the time period between 1996 to 1999, AEO showed a weak negative correlation (R-square = 0.19) between forecast price by actual U.S. Wellhead natural gas price versus the Henry Hub with a weak positive correlation (R-square = 0.20) between forecasted price and U.S. Wellhead natural gas price. During the time period between 2000 to 2003, AEO shows a moderate positive correlation (R-square = 0.37) between forecasted natural gas price and U.S. Wellhead natural gas price versus the Henry Hub that show a moderate positive correlation (R-square = 0.36) between forecast price and U.S. Wellhead natural gas price. These results suggest that agencies forecasting natural gas prices should consider incorporating the Henry Hub natural gas futures price into their forecasting models along with the AEO forecast. Our analysis is very preliminary and is based on a very small data set. Naturally the results of the analysis may change, as more data is made available.

  19. Comparison of AEO 2010 Natural Gas Price Forecast to NYMEX Futures Prices

    SciTech Connect (OSTI)

    Bolinger, Mark A.; Wiser, Ryan H.

    2010-01-04T23:59:59.000Z

    On December 14, 2009, the reference-case projections from Annual Energy Outlook 2010 were posted on the Energy Information Administration's (EIA) web site. We at LBNL have, in the past, compared the EIA's reference-case long-term natural gas price forecasts from the AEO series to contemporaneous natural gas prices that can be locked in through the forward market, with the goal of better understanding fuel price risk and the role that renewables can play in itigating such risk. As such, we were curious to see how the latest AEO reference-case gas price forecast compares to the NYMEX natural gas futures strip. This brief memo presents our findings.

  20. Comparison of AEO 2009 Natural Gas Price Forecast to NYMEX Futures Prices

    SciTech Connect (OSTI)

    Bolinger, Mark; Wiser, Ryan

    2009-01-28T23:59:59.000Z

    On December 17, 2008, the reference-case projections from Annual Energy Outlook 2009 (AEO 2009) were posted on the Energy Information Administration's (EIA) web site. We at LBNL have, in the past, compared the EIA's reference-case long-term natural gas price forecasts from the AEO series to contemporaneous natural gas prices that can be locked in through the forward market, with the goal of better understanding fuel price risk and the role that renewables can play in mitigating such risk. As such, we were curious to see how the latest AEO reference-case gas price forecast compares to the NYMEX natural gas futures strip. This brief memo presents our findings. Note that this memo pertains only to natural gas fuel price risk (i.e., the risk that natural gas prices might differ over the life of a gas-fired generation asset from what was expected when the decision to build the gas-fired unit was made). We do not take into consideration any of the other distinct attributes of gas-fired and renewable generation, such as dispatchability (or lack thereof), differences in capital costs and O&M expenses, or environmental externalities. A comprehensive comparison of different resource types--which is well beyond the scope of this memo--would need to account for differences in all such attributes, including fuel price risk. Furthermore, our analysis focuses solely on natural-gas-fired generation (as opposed to coal-fired or nuclear generation, for example), for several reasons: (1) price volatility has been more of a concern for natural gas than for other fuels used to generate power; (2) for environmental and other reasons, natural gas has, in recent years, been the fuel of choice among power plant developers; and (3) natural gas-fired generators often set the market clearing price in competitive wholesale power markets throughout the United States. That said, a more-complete analysis of how renewables mitigate fuel price risk would also need to consider coal, uranium, and other fuel prices. Finally, we caution readers about drawing inferences or conclusions based solely on this memo in isolation: to place the information contained herein within its proper context, we strongly encourage readers interested in this issue to read through our previous, more-detailed studies, available at http://eetd.lbl.gov/ea/EMS/reports/53587.pdf or http://eetd.lbl.gov/ea/ems/reports/54751.pdf.

  1. Comparison of AEO 2008 Natural Gas Price Forecast to NYMEX Futures Prices

    SciTech Connect (OSTI)

    Bolinger, Mark A; Bolinger, Mark; Wiser, Ryan

    2008-01-07T23:59:59.000Z

    On December 12, 2007, the reference-case projections from Annual Energy Outlook 2008 (AEO 2008) were posted on the Energy Information Administration's (EIA) web site. We at LBNL have, in the past, compared the EIA's reference-case long-term natural gas price forecasts from the AEO series to contemporaneous natural gas prices that can be locked in through the forward market, with the goal of better understanding fuel price risk and the role that renewables can play in mitigating such risk. As such, we were curious to see how the latest AEO reference-case gas price forecast compares to the NYMEX natural gas futures strip. This brief memo presents our findings. Note that this memo pertains only to natural gas fuel price risk (i.e., the risk that natural gas prices might differ over the life of a gas-fired generation asset from what was expected when the decision to build the gas-fired unit was made). We do not take into consideration any of the other distinct attributes of gas-fired and renewable generation, such as dispatchability (or lack thereof) or environmental externalities. A comprehensive comparison of different resource types--which is well beyond the scope of this memo--would need to account for differences in all such attributes, including fuel price risk. Furthermore, our analysis focuses solely on natural-gas-fired generation (as opposed to coal-fired generation, for example), for several reasons: (1) price volatility has been more of a concern for natural gas than for other fuels used to generate power; (2) for environmental and other reasons, natural gas has, in recent years, been the fuel of choice among power plant developers (though its appeal has diminished somewhat as prices have increased); and (3) natural gas-fired generators often set the market clearing price in competitive wholesale power markets throughout the United States. That said, a more-complete analysis of how renewables mitigate fuel price risk would also need to consider coal and other fuel prices. Finally, we caution readers about drawing inferences or conclusions based solely on this memo in isolation: to place the information contained herein within its proper context, we strongly encourage readers interested in this issue to read through our previous, more-detailed studies, available at http://eetd.lbl.gov/ea/EMS/reports/53587.pdf or http://eetd.lbl.gov/ea/ems/reports/54751.pdf.

  2. At the 18th annual Health Care Forecast Conference, Norman J. Ornstein, PhD, resident scholar at the American

    E-Print Network [OSTI]

    Rose, Michael R.

    health care in- dustry is ready for reform, but first we have to determine if health care is a right or a privilege." Continued on page 3 ANNUAL HEALTH CARE FORECAST CONFERENCE Health Care Reform ­ When of politics and current health care reform. There, we were pleased to welcome another sellout crowd ­ which

  3. Comparison of AEO 2009 Natural Gas Price Forecast to NYMEX Futures Prices

    E-Print Network [OSTI]

    Bolinger, Mark

    2009-01-01T23:59:59.000Z

    gas price forecasts with contemporaneous natural gas pricesreference-case natural gas price forecast, and that have notof AEO 2009 Natural Gas Price Forecast to NYMEX Futures

  4. Comparison of AEO 2006 Natural Gas Price Forecast to NYMEX Futures Prices

    E-Print Network [OSTI]

    Bolinger, Mark; Wiser, Ryan

    2005-01-01T23:59:59.000Z

    Gas Price Forecast W ith natural gas prices significantlyof AEO 2006 Natural Gas Price Forecast to NYMEX Futurescase long-term natural gas price forecasts from the AEO

  5. Comparison of AEO 2008 Natural Gas Price Forecast to NYMEX Futures Prices

    E-Print Network [OSTI]

    Bolinger, Mark

    2008-01-01T23:59:59.000Z

    gas price forecasts with contemporaneous natural gas pricesreference-case natural gas price forecast, and that have notof AEO 2008 Natural Gas Price Forecast to NYMEX Futures

  6. Comparison of AEO 2010 Natural Gas Price Forecast to NYMEX Futures Prices

    E-Print Network [OSTI]

    Bolinger, Mark A.

    2010-01-01T23:59:59.000Z

    the base-case natural gas price forecast, but to alsogas price forecasts with contemporaneous natural gas pricesof AEO 2010 Natural Gas Price Forecast to NYMEX Futures

  7. Comparison of AEO 2007 Natural Gas Price Forecast to NYMEX Futures Prices

    E-Print Network [OSTI]

    Bolinger, Mark; Wiser, Ryan

    2006-01-01T23:59:59.000Z

    Natural Gas Price Forecast Although natural gas prices areof AEO 2007 Natural Gas Price Forecast to NYMEX Futurescase long-term natural gas price forecasts from the AEO

  8. Energy consumption and expenditure projections by population group on the basis of the annual energy outlook 1999 forecast

    SciTech Connect (OSTI)

    Poyer, D.A.; Balsley, J.H.

    2000-01-07T23:59:59.000Z

    This report presents an analysis of the relative impact of the base-case scenario used in Annual Energy Outlook 1999 on different population groups. Projections of energy consumption and expenditures, as well as energy expenditure as a share of income, from 1996 to 2020 are given. The projected consumption of electricty, natural gas, distillate fuel, and liquefied petroleum gas during this period is also reported for each population group. In addition, this report compares the findings of the Annual Energy Outlook 1999 report with the 1998 report. Changes in certain indicators and information affect energy use forecasts, and these effects are analyzed and discussed.

  9. Short-term energy outlook, annual supplement 1994

    SciTech Connect (OSTI)

    Not Available

    1994-08-01T23:59:59.000Z

    The Short-Term Energy Outlook Annual Supplement (Supplement) is published once a year as a complement to the Short-Term Energy Outlook (Outlook), Quarterly Projections. The purpose of the Supplement is to review the accuracy of the forecasts published in the Outlook, make comparisons with other independent energy forecasts, and examine current energy topics that affect the forecasts.

  10. Short-term energy outlook annual supplement, 1993

    SciTech Connect (OSTI)

    NONE

    1993-08-06T23:59:59.000Z

    The Short-Term Energy Outlook Annual Supplement (supplement) is published once a year as a complement to the Short-Term Energy Outlook (Outlook), Quarterly Projections. The purpose of the Supplement is to review the accuracy of the forecasts published in the Outlook, make comparisons with other independent energy forecasts, and examine current energy topics that affect the forecasts.

  11. Natural Gas Prices Forecast Comparison--AEO vs. Natural Gas Markets

    E-Print Network [OSTI]

    Wong-Parodi, Gabrielle; Lekov, Alex; Dale, Larry

    2005-01-01T23:59:59.000Z

    of two methods to forecast natural gas prices: using theof two methods to forecast natural gas prices is performed:accurate average forecast of natural gas prices than the

  12. Comparison of AEO 2005 natural gas price forecast to NYMEX futures prices

    E-Print Network [OSTI]

    Bolinger, Mark; Wiser, Ryan

    2004-01-01T23:59:59.000Z

    Gas Price Forecast With natural gas prices significantlyto the EIA’s natural gas price forecasts in AEO 2004 and AEOon the AEO 2005 natural gas price forecasts will likely once

  13. A comparison of water vapor quantities from model short-range forecasts and ARM observations

    SciTech Connect (OSTI)

    Hnilo, J J

    2006-03-17T23:59:59.000Z

    Model evolution and improvement is complicated by the lack of high quality observational data. To address a major limitation of these measurements the Atmospheric Radiation Measurement (ARM) program was formed. For the second quarter ARM metric we will make use of new water vapor data that has become available, and called the 'Merged-sounding' value added product (referred to as OBS, within the text) at three sites: the North Slope of Alaska (NSA), Darwin Australia (DAR) and the Southern Great Plains (SGP) and compare these observations to model forecast data. Two time periods will be analyzed March 2000 for the SGP and October 2004 for both DAR and NSA. The merged-sounding data have been interpolated to 37 pressure levels (e.g., from 1000hPa to 100hPa at 25hPa increments) and time averaged to 3 hourly data for direct comparison to our model output.

  14. Comparison of Bottom-Up and Top-Down Forecasts: Vision Industry Energy Forecasts with ITEMS and NEMS 

    E-Print Network [OSTI]

    Roop, J. M.; Dahowski, R. T

    2000-01-01T23:59:59.000Z

    of the Department of Energy's Office of Industrial Technologies, EIA extracted energy use infonnation from the Annual Energy Outlook (AEO) - 2000 (8) for each of the seven # The Pacific Northwest National Laboratory is operated by Battelle Memorial Institute... Energy Technology Conference, Houston, Texas, pp.115-124. 7. U.S. Department of Energy. 1994. Manufacturing Consumption ofEnergy, J99J. DOEIEIA-0512(91). Washington, D. C. 8. U.S. Department of Energy. 1999. Annual Energy Outlook. 2000...

  15. Analysis of Variability and Uncertainty in Wind Power Forecasting: An International Comparison (Presentation)

    SciTech Connect (OSTI)

    Zhang, J.; Hodge, B.; Miettinen, J.; Holttinen, H.; Gomez-Lozaro, E.; Cutululis, N.; Litong-Palima, M.; Sorensen, P.; Lovholm, A.; Berge, E.; Dobschinski, J.

    2013-10-01T23:59:59.000Z

    This presentation summarizes the work to investigate the uncertainty in wind forecasting at different times of year and compare wind forecast errors in different power systems using large-scale wind power prediction data from six countries: the United States, Finland, Spain, Denmark, Norway, and Germany.

  16. Comparison of AEO 2007 Natural Gas Price Forecast to NYMEX Futures Prices

    E-Print Network [OSTI]

    Bolinger, Mark; Wiser, Ryan

    2006-01-01T23:59:59.000Z

    the Energy Information Administration’s (EIA) web site. Wein the past, compared the EIA’s reference case long-termgas price forecasts from the EIA. As such, we have concluded

  17. Comparison of Various Deterministic Forecasting Techniques in Shale Gas Reservoirs with Emphasis on the Duong Method

    E-Print Network [OSTI]

    Joshi, Krunal Jaykant

    2012-10-19T23:59:59.000Z

    There is a huge demand in the industry to forecast production in shale gas reservoirs accurately. There are many methods including volumetric, Decline Curve Analysis (DCA), analytical simulation and numerical simulation. Each one of these methods...

  18. Comparison of Various Deterministic Forecasting Techniques in Shale Gas Reservoirs with Emphasis on the Duong Method 

    E-Print Network [OSTI]

    Joshi, Krunal Jaykant

    2012-10-19T23:59:59.000Z

    variation of the Duong model proves to be a robust model for most of the well cases and flow regimes. The modified Duong has been shown to work best compared to other deterministic models in most cases. For grouped datasets the SPED & Duong models forecast...

  19. Draft forecast of the final report for the comparison to 40 CFR Part 191, Subpart B, for the Waste Isolation Pilot Plant

    SciTech Connect (OSTI)

    Bertram-Howery, S.G.; Marietta, M.G.; Anderson, D.R.; Gomez, L.S.; Rechard, R.P. (Sandia National Labs., Albuquerque, NM (USA)); Brinster, K.F.; Guzowski, R.V. (Science Applications International Corp., Albuquerque, NM (USA))

    1989-12-01T23:59:59.000Z

    The United States Department of Energy is planning to dispose of transuranic wastes, which have been generated by defense programs, at the Waste Isolation Pilot Plant. The WIPP Project will assess compliance with the requirements of the United States Environmental Protection Agency. This report forecasts the planned 1992 document, Comparison to 40 CFR, Part 191, Subpart B, for the Waste Isolation Pilot Plant (WIPP). 130 refs., 36 figs., 11 tabs.

  20. A Comparison of Parallel Programming Paradigms and Data Distributions for a Limited Area Numerical Weather Forecast Routine

    E-Print Network [OSTI]

    van Engelen, Robert A.

    . Published in proceedings of the 9 th ACM International Conference on Supercomputing, July 1995, Barcelona for producing routine weather forecasts at several European meteorological institutes. Results are shown

  1. Short-term planning and forecasting for petroleum. Master's thesis

    SciTech Connect (OSTI)

    Elkins, R.D.

    1988-06-01T23:59:59.000Z

    The Defense Fuel Supply Center (DFSC) has, in recent past, been unable to adequately forecast for short-term petroleum requirements. This has resulted in inaccurate replenishment quantities and required short-notice corrections, which interrupted planned resupply methods. The relationship between the annual CINCLANTFLT DFM budget and sales from the the Norfolk Defense Fuel Support Point (DFSP) is developed and the past sales data from the Norfolk DFSP is used to construct seasonality indices. Finally, the budget/sales relationship is combined with the seasonality indices to provide a new forecasting model. The model is then compared with the current one for FY-88 monthly forecasts. The comparison suggests that the new model can provide accurate, timely requirements data and improve resupply of the Norfolk Defense Fuel Support Point.

  2. The Rationality of EIA Forecasts under Symmetric and Asymmetric Loss

    E-Print Network [OSTI]

    Auffhammer, Maximilian

    2005-01-01T23:59:59.000Z

    Agency: 1982-2005a, Annual Energy Outlook, EIA, Washington,Agency: 2004, Annual Energy Outlook Forecast Evaluation,Agency: 2005b, Annual Energy Outlook, EIA, Washington, D.C.

  3. Energy consumption and expenditure projections by income quintile on the basis of the Annual Energy Outlook 1997 forecast

    SciTech Connect (OSTI)

    Poyer, D.A.; Allison, T.

    1998-03-01T23:59:59.000Z

    This report presents an analysis of the relative impacts of the base-case scenario used in the Annual Energy Outlook 1997, published by the US Department of Energy, Energy Information Administration, on income quintile groups. Projected energy consumption and expenditures, and projected energy expenditures as a share of income, for the period 1993 to 2015 are reported. Projected consumption of electricity, natural gas, distillate fuel, and liquefied petroleum gas over this period is also reported for each income group. 33 figs., 11 tabs.

  4. ANNUAL HEATING AND COOLING REQUIREMENTS AND DESIGN DAY PERFORMANCE FOR A RESIDENTIAL MODEL IN SIX CLIMATES: A COMPARISON OF NBSLD, BLAST 2, AND DOE-2.1

    E-Print Network [OSTI]

    Carroll, William L.

    2011-01-01T23:59:59.000Z

    Comparison of NBSLD, BLAST 2. and Effect of Selected Changessignificant effect on annual heating loads, BLAST 2 predictsComparison of NBSLD, BLAST 2, and DOE~2.1 Effect of Climate

  5. The Rationality of EIA Forecasts under Symmetric and Asymmetric Loss

    E-Print Network [OSTI]

    Auffhammer, Maximilian

    2005-01-01T23:59:59.000Z

    2005a, Annual Energy Outlook, EIA, Washington, D.C. Energy2005b, Annual Energy Outlook, EIA, Washington, D.C. Granger,Paper ???? The Rationality of EIA Forecasts under Symmetric

  6. 2013 Midyear Economic Forecast Sponsorship Opportunity

    E-Print Network [OSTI]

    de Lijser, Peter

    2013 Midyear Economic Forecast Sponsorship Opportunity Thursday, April 18, 2013, ­ Hyatt Regency Irvine 11:30 a.m. ­ 1:30 p.m. Dr. Anil Puri presents his annual Midyear Economic Forecast addressing and Economics at California State University, Fullerton, the largest accredited business school in California

  7. Test application of a semi-objective approach to wind forecasting for wind energy applications

    SciTech Connect (OSTI)

    Wegley, H.L.; Formica, W.J.

    1983-07-01T23:59:59.000Z

    The test application of the semi-objective (S-O) wind forecasting technique at three locations is described. The forecasting sites are described as well as site-specific forecasting procedures. Verification of the S-O wind forecasts is presented, and the observed verification results are interpreted. Comparisons are made between S-O wind forecasting accuracy and that of two previous forecasting efforts that used subjective wind forecasts and model output statistics. (LEW)

  8. Annual energy outlook 1995, with projections to 2010

    SciTech Connect (OSTI)

    NONE

    1995-01-01T23:59:59.000Z

    The Annual Energy Outlook 1995 (AEO95) presents the midterm energy forecasts of the Energy Information Administration (EIA). This year`s report presents projections and analyses of energy supply, demand, and prices through 2010, based on results from the National Energy Modeling System (NEMS). Quarterly forecasts of energy supply and demand for 1995 and 1996 are published in the Short-Term Energy Outlook (February 1995). Forecast tables for the five cases examined in the AEO95 are provided in Appendixes A through C. Appendix A gives historical data and forecasts for selected years from 1992 through 2010 for the reference case. Appendix B presents two additional cases, which assume higher and lower economic growth than the reference case. Appendix C presents two cases that assume higher and lower world oil prices. Appendix D presents a summary of the forecasts in units of oil equivalence. Appendix E presents a summary of household energy expenditures. Appendix F provides detailed comparisons of the AEO95 forecasts with those of other organizations. Appendix G briefly describes NEMS and the major AEO95 forecast assumptions. Appendix H presents a stand-alone high electricity demand case. Appendix 1 provides a table of energy conversion factors and a table of metric conversion factors. 89 figs., 23 tabs.

  9. Issues in midterm analysis and forecasting, 1996

    SciTech Connect (OSTI)

    NONE

    1996-08-01T23:59:59.000Z

    This document consists of papers which cover topics in analysis and modeling that underlie the Annual Energy Outlook 1996. Topics include: The Potential Impact of Technological Progress on U.S. Energy Markets; The Outlook for U.S. Import Dependence; Fuel Economy, Vehicle Choice, and Changing Demographics, and Annual Energy Outlook Forecast Evaluation.

  10. Annual Energy Outlook 2012

    Gasoline and Diesel Fuel Update (EIA)

    end of table. (continued on next page) U.S. Energy Information Administration | Annual Energy Outlook 2012 116 Comparison with other projections Table 28. Comparison of coal...

  11. Annual energy outlook 1994: With projections to 2010

    SciTech Connect (OSTI)

    Not Available

    1994-01-01T23:59:59.000Z

    The Annual Energy Outlook 1994 (AEO94) presents the midterm energy forecasts of the Energy Information Administration (EIA). This year`s report presents projects and analyses of energy supply, demand, and prices through 2010, based for the first time on results from the National Energy Modeling System (NEMS). NEMS is the latest in a series of computer-based energy modeling systems used over the past 2 decades by EIA and its predecessor organization, the Federal Energy Administration, to analyze and forecast energy consumption and supply in the midterm period (about 20 years). Quarterly forecasts of energy supply and demand for 1994 and 1995 are published in the Short-Term Energy Outlook (February 1994). Forecast tables for 2000, 2005, and 2010 for each of the five scenarios examined in the AEO94 are provided in Appendices A through E. The five scenarios include a reference case and four additional cases that assume higher and lower economic growth and higher and lower world oil prices. Appendix F provides detailed comparisons of the AEO94 forecasts with those of other organizations. Appendix G briefly described the NEMS and the major AEO94 forecast assumptions. Appendix H summarizes the key results for the five scenarios.

  12. Solid low-level waste forecasting guide

    SciTech Connect (OSTI)

    Templeton, K.J.; Dirks, L.L.

    1995-03-01T23:59:59.000Z

    Guidance for forecasting solid low-level waste (LLW) on a site-wide basis is described in this document. Forecasting is defined as an approach for collecting information about future waste receipts. The forecasting approach discussed in this document is based solely on hanford`s experience within the last six years. Hanford`s forecasting technique is not a statistical forecast based upon past receipts. Due to waste generator mission changes, startup of new facilities, and waste generator uncertainties, statistical methods have proven to be inadequate for the site. It is recommended that an approach similar to Hanford`s annual forecasting strategy be implemented at each US Department of Energy (DOE) installation to ensure that forecast data are collected in a consistent manner across the DOE complex. Hanford`s forecasting strategy consists of a forecast cycle that can take 12 to 30 months to complete. The duration of the cycle depends on the number of LLW generators and staff experience; however, the duration has been reduced with each new cycle. Several uncertainties are associated with collecting data about future waste receipts. Volume, shipping schedule, and characterization data are often reported as estimates with some level of uncertainty. At Hanford, several methods have been implemented to capture the level of uncertainty. Collection of a maximum and minimum volume range has been implemented as well as questionnaires to assess the relative certainty in the requested data.

  13. Apples with apples: accounting for fuel price risk in comparisons of gas-fired and renewable generation

    E-Print Network [OSTI]

    Bolinger, Mark; Wiser, Ryan

    2003-01-01T23:59:59.000Z

    from the EIA’s Annual Energy Outlook 2001 and 2002,forecast contained in Annual Energy Outlook 2003 a seven-forecast contained in Annual Energy Outlook 2003. the six-

  14. Solar forecasting review

    E-Print Network [OSTI]

    Inman, Richard Headen

    2012-01-01T23:59:59.000Z

    and forecasting of solar radiation data: a review,”forecasting of solar- radiation data,” Solar Energy, vol.sequences of global solar radiation data for isolated sites:

  15. Managing Wind Power Forecast Uncertainty in Electric Brandon Keith Mauch

    E-Print Network [OSTI]

    i Managing Wind Power Forecast Uncertainty in Electric Grids Brandon Keith Mauch Co for the modeled wind- CAES system would not cover annualized capital costs. We also estimate market prices-ahead market is roughly $100, with large variability due to electric power prices. Wind power forecast errors

  16. Comparison of the 1984 DOE/EIA annual energy outlook and the 1984 GRI baseline projection

    SciTech Connect (OSTI)

    Ashby, A.; Holtberg, P.; Woods, T.

    1985-01-01T23:59:59.000Z

    A comparative analysis of the Gas Research Institute (GRI) Baseline Projection of US Energy Supply and Demand with the DOE/EIA 1984 Annual Energy Outlook shows many similar assumptions, but many cases of widening differences between the projections of primary energy consumption and sector-specific energy consumption. The DOE/EIA expects a faster and more significant decline in the electricity to natural gas price ratio, lower sector-specific end-use prices of refined petroleum products, and a faster growth in industrial raw material energy demand. In contrast to the GRI report, it also omits an estimate of industrial cogeneration and does not retire any exisiting generating capacity. The report examines the basic assumptions and results of both projections using five scenarios. 17 tables.

  17. annual health check: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    or a privilege." Continued on page 3 ANNUAL HEALTH CARE FORECAST CONFERENCE Health Care Reform - When of politics and current health care reform. There, we were pleased to...

  18. 1992 five year battery forecast

    SciTech Connect (OSTI)

    Amistadi, D.

    1992-12-01T23:59:59.000Z

    Five-year trends for automotive and industrial batteries are projected. Topic covered include: SLI shipments; lead consumption; automotive batteries (5-year annual growth rates); industrial batteries (standby power and motive power); estimated average battery life by area/country for 1989; US motor vehicle registrations; replacement battery shipments; potential lead consumption in electric vehicles; BCI recycling rates for lead-acid batteries; US average car/light truck battery life; channels of distribution; replacement battery inventory end July; 2nd US battery shipment forecast.

  19. Forecast Energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A PotentialJumpGermanFife Energy Park atFisiaFlorida:Forecast Energy Jump to:

  20. Issues in midterm analysis and forecasting 1998

    SciTech Connect (OSTI)

    NONE

    1998-07-01T23:59:59.000Z

    Issues in Midterm Analysis and Forecasting 1998 (Issues) presents a series of nine papers covering topics in analysis and modeling that underlie the Annual Energy Outlook 1998 (AEO98), as well as other significant issues in midterm energy markets. AEO98, DOE/EIA-0383(98), published in December 1997, presents national forecasts of energy production, demand, imports, and prices through the year 2020 for five cases -- a reference case and four additional cases that assume higher and lower economic growth and higher and lower world oil prices than in the reference case. The forecasts were prepared by the Energy Information Administration (EIA), using EIA`s National Energy Modeling System (NEMS). The papers included in Issues describe underlying analyses for the projections in AEO98 and the forthcoming Annual Energy Outlook 1999 and for other products of EIA`s Office of Integrated Analysis and Forecasting. Their purpose is to provide public access to analytical work done in preparation for the midterm projections and other unpublished analyses. Specific topics were chosen for their relevance to current energy issues or to highlight modeling activities in NEMS. 59 figs., 44 tabs.

  1. Solar forecasting review

    E-Print Network [OSTI]

    Inman, Richard Headen

    2012-01-01T23:59:59.000Z

    2.1.2 European Solar Radiation Atlas (ESRA)2.4 Evaluation of Solar Forecasting . . . . . . . . .2.4.1 Solar Variability . . . . . . . . . . . . .

  2. Technology Forecasting Scenario Development

    E-Print Network [OSTI]

    Technology Forecasting and Scenario Development Newsletter No. 2 October 1998 Systems Analysis was initiated on the establishment of a new research programme entitled Technology Forecasting and Scenario and commercial applica- tion of new technology. An international Scientific Advisory Panel has been set up

  3. Rainfall-River Forecasting

    E-Print Network [OSTI]

    US Army Corps of Engineers

    ;2Rainfall-River Forecasting Joint Summit II NOAA Integrated Water Forecasting Program · Minimize losses due management and enhance America's coastal assets · Expand information for managing America's Water Resources, Precipitation and Water Quality Observations · USACE Reservoir Operation Information, Streamflow, Snowpack

  4. Verification of hourly forecasts of wind turbine power output

    SciTech Connect (OSTI)

    Wegley, H.L.

    1984-08-01T23:59:59.000Z

    A verification of hourly average wind speed forecasts in terms of hourly average power output of a MOD-2 was performed for four sites. Site-specific probabilistic transformation models were developed to transform the forecast and observed hourly average speeds to the percent probability of exceedance of an hourly average power output. (This transformation model also appears to have value in predicting annual energy production for use in wind energy feasibility studies.) The transformed forecasts were verified in a deterministic sense (i.e., as continuous values) and in a probabilistic sense (based upon the probability of power output falling in a specified category). Since the smoothing effects of time averaging are very pronounced, the 90% probability of exceedance was built into the transformation models. Semiobjective and objective (model output statistics) forecasts were made compared for the four sites. The verification results indicate that the correct category can be forecast an average of 75% of the time over a 24-hour period. Accuracy generally decreases with projection time out to approx. 18 hours and then may increase due to the fairly regular diurnal wind patterns that occur at many sites. The ability to forecast the correct power output category increases with increasing power output because occurrences of high hourly average power output (near rated) are relatively rare and are generally not forecast. The semiobjective forecasts proved superior to model output statistics in forecasting high values of power output and in the shorter time frames (1 to 6 hours). However, model output statistics were slightly more accurate at other power output levels and times. Noticeable differences were observed between deterministic and probabilistic (categorical) forecast verification results.

  5. Probabilistic manpower forecasting

    E-Print Network [OSTI]

    Koonce, James Fitzhugh

    1966-01-01T23:59:59.000Z

    PROBABILISTIC MANPOWER FORECASTING A Thesis JAMES FITZHUGH KOONCE Submitted to the Graduate College of the Texas ASSAM University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May, 1966 Major Subject...: Computer Science and Statistics PROBABILISTIC MANPOWER FORECASTING A Thesis By JAMES FITZHUGH KOONCE Submitted to the Graduate College of the Texas A@M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May...

  6. UPF Forecast | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Uranium Processing Facility UPF Forecast UPF Forecast UPF Procurement provides the following forecast of subcontracting opportunities. Keep in mind that these requirements may be...

  7. Long Term Forecast ofLong Term Forecast of TsunamisTsunamis

    E-Print Network [OSTI]

    : ImproveImprove NOAANOAA''ss understandingunderstanding and forecast capabilityand forecast capability inin

  8. Comparison

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration would like submit the followingth Lomonosov1CompactComparison of ion

  9. U.S. Regional Demand Forecasts Using NEMS and GIS

    SciTech Connect (OSTI)

    Cohen, Jesse A.; Edwards, Jennifer L.; Marnay, Chris

    2005-07-01T23:59:59.000Z

    The National Energy Modeling System (NEMS) is a multi-sector, integrated model of the U.S. energy system put out by the Department of Energy's Energy Information Administration. NEMS is used to produce the annual 20-year forecast of U.S. energy use aggregated to the nine-region census division level. The research objective was to disaggregate this regional energy forecast to the county level for select forecast years, for use in a more detailed and accurate regional analysis of energy usage across the U.S. The process of disaggregation using a geographic information system (GIS) was researched and a model was created utilizing available population forecasts and climate zone data. The model's primary purpose was to generate an energy demand forecast with greater spatial resolution than what is currently produced by NEMS, and to produce a flexible model that can be used repeatedly as an add-on to NEMS in which detailed analysis can be executed exogenously with results fed back into the NEMS data flow. The methods developed were then applied to the study data to obtain residential and commercial electricity demand forecasts. The model was subjected to comparative and statistical testing to assess predictive accuracy. Forecasts using this model were robust and accurate in slow-growing, temperate regions such as the Midwest and Mountain regions. Interestingly, however, the model performed with less accuracy in the Pacific and Northwest regions of the country where population growth was more active. In the future more refined methods will be necessary to improve the accuracy of these forecasts. The disaggregation method was written into a flexible tool within the ArcGIS environment which enables the user to output the results in five year intervals over the period 2000-2025. In addition, the outputs of this tool were used to develop a time-series simulation showing the temporal changes in electricity forecasts in terms of absolute, per capita, and density of demand.

  10. Forecast and Funding Arrangements - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental Assessments (EA)Budget(DANCE) Target 1Annual Waste Forecast and Funding

  11. American Solar Energy Society Proc. ASES Annual Conference, Raleigh, NC, EVALUATION OF NUMERICAL WEATHER PREDICTION

    E-Print Network [OSTI]

    Perez, Richard R.

    © American Solar Energy Society ­ Proc. ASES Annual Conference, Raleigh, NC, EVALUATION;© American Solar Energy Society ­ Proc. ASES Annual Conference, Raleigh, NC, irradiance forecasts over OF NUMERICAL WEATHER PREDICTION SOLAR IRRADIANCE FORECASTS IN THE US Richard Perez ASRC, Albany, NY, Perez

  12. Steam System Forecasting and Management

    E-Print Network [OSTI]

    Mongrue, D. M.; Wittke, D. O.

    1982-01-01T23:59:59.000Z

    '. This and the complex and integrated nature of the plants energy balance makes steam system forecasting and management essential for optimum use of the plant's energy. This paper discusses the method used by Union carbide to accomplish effective forecasting...

  13. Consensus Coal Production Forecast for

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    Consensus Coal Production Forecast for West Virginia 2009-2030 Prepared for the West Virginia Summary 1 Recent Developments 2 Consensus Coal Production Forecast for West Virginia 10 Risks References 27 #12;W.Va. Consensus Coal Forecast Update 2009 iii List of Tables 1. W.Va. Coal Production

  14. Improving Inventory Control Using Forecasting

    E-Print Network [OSTI]

    Balandran, Juan

    2005-12-16T23:59:59.000Z

    EMGT 835 FIELD PROJECT: Improving Inventory Control Using Forecasting By Juan Mario Balandran jmbg@hotmail.com Master of Science The University of Kansas Fall Semester, 2005 An EMGT Field Project report submitted...............................................................................................................................................10 Current Inventory Forecast Process ...........................................................................................10 Development of Alternative Forecast Process...

  15. timber quality Modelling and forecasting

    E-Print Network [OSTI]

    Forest and timber quality in Europe Modelling and forecasting yield and quality in Europe Forest and timber quality in Europe Modelling and forecasting yield and quality in Europe M E F Y Q U E #12;Valuing and the UK ­ are working closely together to develop a model to help forecast timber growth, yield, quality

  16. Demand Forecast INTRODUCTION AND SUMMARY

    E-Print Network [OSTI]

    electricity demand forecast means that the region's electricity needs would grow by 5,343 average megawattsDemand Forecast INTRODUCTION AND SUMMARY A 20-year forecast of electricity demand is a required in electricity demand is, of course, crucial to determining the need for new electricity resources and helping

  17. METEOROLOGICAL Weather and Forecasting

    E-Print Network [OSTI]

    AMERICAN METEOROLOGICAL SOCIETY Weather and Forecasting EARLY ONLINE RELEASE This is a preliminary and interpretation of information from National Weather Service watches and warnings by10 decision makers such an outlier to the regional severe weather climatology. An analysis of the synoptic and13 mesoscale

  18. Fuel Price Forecasts INTRODUCTION

    E-Print Network [OSTI]

    Fuel Price Forecasts INTRODUCTION Fuel prices affect electricity planning in two primary ways and water heating, and other end-uses as well. Fuel prices also influence electricity supply and price because oil, coal, and natural gas are potential fuels for electricity generation. Natural gas

  19. Solar forecasting review

    E-Print Network [OSTI]

    Inman, Richard Headen

    2012-01-01T23:59:59.000Z

    Quantifying PV power output variability,” Solar Energy, vol.each solar sen at node i, P(t) the total power output of theSolar Forecasting Historically, traditional power generation technologies such as fossil and nu- clear power which were designed to run in stable output

  20. 2001 annual report 2001 annual report

    E-Print Network [OSTI]

    New Mexico, University of

    2001 annual report 2001 annual report 2001 annual report 2001 annual report 2001 annual report 2001 annual report 2001 annual report 2001 annual reportelectrical & computer engineering 2001 annual report the university of new mexico department of 2001 annual report 2001 annual report 2001 annual report 2001 annual

  1. ANNUAL HEATING AND COOLING REQUIREMENTS AND DESIGN DAY PERFORMANCE FOR A RESIDENTIAL MODEL IN SIX CLIMATES: A COMPARISON OF NBSLD, BLAST 2, AND DOE-2.1

    E-Print Network [OSTI]

    Carroll, William L.

    2011-01-01T23:59:59.000Z

    COMPARISON - HOURLY INTERNAL LOAD PROFILES LightingA Comparison of NBSLD, BLAST 2. and DOE-2.1 (b) Lighting:

  2. Voluntary Green Power Market Forecast through 2015

    SciTech Connect (OSTI)

    Bird, L.; Holt, E.; Sumner, J.; Kreycik, C.

    2010-05-01T23:59:59.000Z

    Various factors influence the development of the voluntary 'green' power market--the market in which consumers purchase or produce power from non-polluting, renewable energy sources. These factors include climate policies, renewable portfolio standards (RPS), renewable energy prices, consumers' interest in purchasing green power, and utilities' interest in promoting existing programs and in offering new green options. This report presents estimates of voluntary market demand for green power through 2015 that were made using historical data and three scenarios: low-growth, high-growth, and negative-policy impacts. The resulting forecast projects the total voluntary demand for renewable energy in 2015 to range from 63 million MWh annually in the low case scenario to 157 million MWh annually in the high case scenario, representing an approximately 2.5-fold difference. The negative-policy impacts scenario reflects a market size of 24 million MWh. Several key uncertainties affect the results of this forecast, including uncertainties related to growth assumptions, the impacts that policy may have on the market, the price and competitiveness of renewable generation, and the level of interest that utilities have in offering and promoting green power products.

  3. Advanced Numerical Weather Prediction Techniques for Solar Irradiance Forecasting : : Statistical, Data-Assimilation, and Ensemble Forecasting

    E-Print Network [OSTI]

    Mathiesen, Patrick James

    2013-01-01T23:59:59.000Z

    Forecasting and Resource Assessment, 1 st Edition, Editors:Forecasting and Resource Assessment, 1 st Edition, Editors:Forecasting and Resource Assessment, 1 st Ed.. Editor: Jan

  4. Forecasting the Standard & Poor's 500 stock index futures price: interest rates, dividend yields, and cointegration

    E-Print Network [OSTI]

    Fritsch, Roger Erwin

    1997-01-01T23:59:59.000Z

    forward price series is constructed using interest rate and dividend yield data. Out-of-sample forecasts from error correction models are compared to those from vector autoregressions (VAR) fit to levels and VARs fit to first differences. This comparison...

  5. ANNUAL HEATING AND COOLING REQUIREMENTS AND DESIGN DAY PERFORMANCE FOR A RESIDENTIAL MODEL IN SIX CLIMATES: A COMPARISON OF NBSLD, BLAST 2, AND DOE-2.1

    E-Print Network [OSTI]

    Carroll, William L.

    2011-01-01T23:59:59.000Z

    BLAST DOE-2 (SWF) Annual Cooling Requirements (10 6 Btu)Btu) I'" I NBSLD III DOE-2 (SW'F) DOE-2 (CW'F) DOE-2 (CWF)Heating (1 Annual Total Btu) City Jan HINNEAPOLIS NBSLD

  6. Forecasting oilfield economic performance

    SciTech Connect (OSTI)

    Bradley, M.E. (Univ. of Chicago, IL (United States)); Wood, A.R.O. (BP Exploration, Anchorage, AK (United States))

    1994-11-01T23:59:59.000Z

    This paper presents a general method for forecasting oilfield economic performance that integrates cost data with operational, reservoir, and financial information. Practices are developed for determining economic limits for an oil field and its components. The economic limits of marginal wells and the role of underground competition receive special attention. Also examined is the influence of oil prices on operating costs. Examples illustrate application of these concepts. Categorization of costs for historical tracking and projections is recommended.

  7. Subhourly wind forecasting techniques for wind turbine operations

    SciTech Connect (OSTI)

    Wegley, H.L.; Kosorok, M.R.; Formica, W.J.

    1984-08-01T23:59:59.000Z

    Three models for making automated forecasts of subhourly wind and wind power fluctuations were examined to determine the models' appropriateness, accuracy, and reliability in wind forecasting for wind turbine operation. Such automated forecasts appear to have value not only in wind turbine control and operating strategies, but also in improving individual wind turbine control and operating strategies, but also in improving individual wind turbine operating strategies (such as determining when to attempt startup). A simple persistence model, an autoregressive model, and a generalized equivalent Markhov (GEM) model were developed and tested using spring season data from the WKY television tower located near Oklahoma City, Oklahoma. The three models represent a pure measurement approach, a pure statistical method and a statistical-dynamical model, respectively. Forecasting models of wind speed means and measures of deviations about the mean were developed and tested for all three forecasting techniques for the 45-meter level and for the 10-, 30- and 60-minute time intervals. The results of this exploratory study indicate that a persistence-based approach, using onsite measurements, will probably be superior in the 10-minute time frame. The GEM model appears to have the most potential in 30-minute and longer time frames, particularly when forecasting wind speed fluctuations. However, several improvements to the GEM model are suggested. In comparison to the other models, the autoregressive model performed poorly at all time frames; but, it is recommended that this model be upgraded to an autoregressive moving average (ARMA or ARIMA) model. The primary constraint in adapting the forecasting models to the production of wind turbine cluster power output forecasts is the lack of either actual data, or suitable models, for simulating wind turbine cluster performance.

  8. UWIG Forecasting Workshop -- Albany (Presentation)

    SciTech Connect (OSTI)

    Lew, D.

    2011-04-01T23:59:59.000Z

    This presentation describes the importance of good forecasting for variable generation, the different approaches used by industry, and the importance of validated high-quality data.

  9. Arnold Schwarzenegger INTEGRATED FORECAST AND

    E-Print Network [OSTI]

    Arnold Schwarzenegger Governor INTEGRATED FORECAST AND RESERVOIR MANAGEMENT (INFORM) FOR NORTHERN Manager Joseph O' Hagan Project Manager Kelly Birkinshaw Program Area Manager ENERGY-RELATED ENVIRONMENTAL

  10. CALIFORNIA ENERGY DEMAND 20122022 FINAL FORECAST

    E-Print Network [OSTI]

    Energy Commission's final forecasts for 2012­2022 electricity consumption, peak, and natural gas demand Electricity, demand, consumption, forecast, weather normalization, peak, natural gas, self generation CALIFORNIA ENERGY DEMAND 20122022 FINAL FORECAST Volume 2: Electricity Demand

  11. REVISED CALIFORNIA ENERGY DEMAND FORECAST 20122022

    E-Print Network [OSTI]

    the California Energy Commission staff's revised forecasts for 2012­2022 electricity consumption, peak Electricity, demand, consumption, forecast, weather normalization, peak, natural gas, self generation REVISED CALIFORNIA ENERGY DEMAND FORECAST 20122022 Volume 1: Statewide Electricity Demand

  12. REVISED CALIFORNIA ENERGY DEMAND FORECAST 20122022

    E-Print Network [OSTI]

    Energy Commission staff's revised forecasts for 2012­2022 electricity consumption, peak, and natural Electricity, demand, consumption, forecast, weather normalization, peak, natural gas, self generation REVISED CALIFORNIA ENERGY DEMAND FORECAST 20122022 Volume 2: Electricity Demand by Utility

  13. NATIONAL AND GLOBAL FORECASTS WEST VIRGINIA PROFILES AND FORECASTS

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    · NATIONAL AND GLOBAL FORECASTS · WEST VIRGINIA PROFILES AND FORECASTS · ENERGY · HEALTHCARE Research West Virginia University College of Business and Economics P.O. Box 6527, Morgantown, WV 26506 EXPERT OPINION PROVIDED BY Keith Burdette Cabinet Secretary West Virginia Department of Commerce

  14. Conservation The Northwest ForecastThe Northwest Forecast

    E-Print Network [OSTI]

    & Resources Creating Mr. Toad's Wild Ride for the PNW's Energy Efficiency InCreating Mr. Toad's Wild RideNorthwest Power and Conservation Council The Northwest ForecastThe Northwest Forecast ­­ Energy EfficiencyEnergy Efficiency Dominates ResourceDominates Resource DevelopmentDevelopment Tom EckmanTom Eckman

  15. Annual Energy Outlook Retrospective Review

    Reports and Publications (EIA)

    2015-01-01T23:59:59.000Z

    The Annual Energy Outlook Retrospective Review provides a yearly comparison between realized energy outcomes and the Reference case projections included in previous Annual Energy Outlooks (AEO) beginning with 1982. This edition of the report adds the AEO 2012 projections and updates the historical data to incorporate the latest data revisions.

  16. ENERGY DEMAND FORECAST METHODS REPORT

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION ENERGY DEMAND FORECAST METHODS REPORT Companion Report to the California Energy Demand 2006-2016 Staff Energy Demand Forecast Report STAFFREPORT June 2005 CEC-400. Hall Deputy Director Energy Efficiency and Demand Analysis Division Scott W. Matthews Acting Executive

  17. Mathematical Forecasting Donald I. Good

    E-Print Network [OSTI]

    Boyer, Robert Stephen

    Mathematical Forecasting Donald I. Good Technical Report 47 September 1989 Computational Logic Inc the physical behavior of computer programs can reduce these risks for software engineering in the same way that it does for aerospace and other fields of engineering. Present forecasting capabilities for computer

  18. Regional-seasonal weather forecasting

    SciTech Connect (OSTI)

    Abarbanel, H.; Foley, H.; MacDonald, G.; Rothaus, O.; Rudermann, M.; Vesecky, J.

    1980-08-01T23:59:59.000Z

    In the interest of allocating heating fuels optimally, the state-of-the-art for seasonal weather forecasting is reviewed. A model using an enormous data base of past weather data is contemplated to improve seasonal forecasts, but present skills do not make that practicable. 90 references. (PSB)

  19. Paper presented at EWEC 2008, Brussels, Belgium (31 March-03 April) Uncertainty Estimation of Wind Power Forecasts

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    -Antipolis, France Abstract--Short-term wind power forecasting tools providing "single-valued" (spot) predictions associated to the future wind power produc- tion for performing more efficiently functions such as reserves and modelling architec- tures for probabilistic wind power forecasting. Then, a comparison is carried out

  20. ANNUAL HEATING AND COOLING REQUIREMENTS AND DESIGN DAY PERFORMANCE FOR A RESIDENTIAL MODEL IN SIX CLIMATES: A COMPARISON OF NBSLD, BLAST 2, AND DOE-2.1

    E-Print Network [OSTI]

    Carroll, William L.

    2011-01-01T23:59:59.000Z

    Lf.20 i 2.4E (1) Cumulative heating and cooling loads only.at the American Society of Heating, Refrigerating, and AirDecember 3-5, 1979 ANNUAL HEATING AND COOLING REQUIREMENTS

  1. Arnold Schwarzenegger INTEGRATED FORECAST AND

    E-Print Network [OSTI]

    Arnold Schwarzenegger Governor INTEGRATED FORECAST AND RESERVOIR MANAGEMENT (INFORM) FOR NORTHERN with primary contributions in the area of decision support for reservoir planning and management Commission Energy-Related Environmental Research Joseph O' Hagan Contract Manager Joseph O' Hagan Project

  2. Arnold Schwarzenegger INTEGRATED FORECAST AND

    E-Print Network [OSTI]

    Arnold Schwarzenegger Governor INTEGRATED FORECAST AND RESERVOIR MANAGEMENT (INFORM) FOR NORTHERN: California Energy Commission Energy-Related Environmental Research Joseph O' Hagan Contract Manager Joseph O' Hagan Project Manager Kelly Birkinshaw Program Area Manager ENERGY-RELATED ENVIRONMENTAL RESEARCH Martha

  3. Value of Wind Power Forecasting

    SciTech Connect (OSTI)

    Lew, D.; Milligan, M.; Jordan, G.; Piwko, R.

    2011-04-01T23:59:59.000Z

    This study, building on the extensive models developed for the Western Wind and Solar Integration Study (WWSIS), uses these WECC models to evaluate the operating cost impacts of improved day-ahead wind forecasts.

  4. Weather forecasting : the next generation : the potential use and implementation of ensemble forecasting

    E-Print Network [OSTI]

    Goto, Susumu

    2007-01-01T23:59:59.000Z

    This thesis discusses ensemble forecasting, a promising new weather forecasting technique, from various viewpoints relating not only to its meteorological aspects but also to its user and policy aspects. Ensemble forecasting ...

  5. Optimal combined wind power forecasts using exogeneous variables

    E-Print Network [OSTI]

    Optimal combined wind power forecasts using exogeneous variables Fannar ¨Orn Thordarson Kongens of the thesis is combined wind power forecasts using informations from meteorological forecasts. Lyngby, January

  6. Forecasting consumer products using prediction markets

    E-Print Network [OSTI]

    Trepte, Kai

    2009-01-01T23:59:59.000Z

    Prediction Markets hold the promise of improving the forecasting process. Research has shown that Prediction Markets can develop more accurate forecasts than polls or experts. Our research concentrated on analyzing Prediction ...

  7. Massachusetts state airport system plan forecasts.

    E-Print Network [OSTI]

    Mathaisel, Dennis F. X.

    This report is a first step toward updating the forecasts contained in the 1973 Massachusetts State System Plan. It begins with a presentation of the forecasting techniques currently available; it surveys and appraises the ...

  8. Management Forecast Quality and Capital Investment Decisions

    E-Print Network [OSTI]

    Goodman, Theodore H.

    Corporate investment decisions require managers to forecast expected future cash flows from potential investments. Although these forecasts are a critical component of successful investing, they are not directly observable ...

  9. Wind Power Forecasting andWind Power Forecasting and Electricity Market Operations

    E-Print Network [OSTI]

    Kemner, Ken

    forecasting methods and better integration of advanced wind power forecasts into system and plant operations and wind power plants) ­ Review and assess current practices Propose and test new and improved approachesWind Power Forecasting andWind Power Forecasting and Electricity Market Operations Audun Botterud

  10. Supplement to the annual energy outlook 1994

    SciTech Connect (OSTI)

    NONE

    1994-03-01T23:59:59.000Z

    This report is a companion document to the Annual Energy Outlook 1994 (AEO94), (DOE/EIA-0383(94)), released in Jan. 1994. Part I of the Supplement presents the key quantitative assumptions underlying the AEO94 projections, responding to requests by energy analysts for additional information on the forecasts. In Part II, the Supplement provides regional projections and other underlying details of the reference case projections in the AEO94. The AEO94 presents national forecasts of energy production, demand and prices through 2010 for five scenarios, including a reference case and four additional cases that assume higher and lower economic growth and higher and lower world oil prices. These forecasts are used by Federal, State, and local governments, trade associations, and other planners and decisionmakers in the public and private sectors.

  11. 1995 shipment review & five year forecast

    SciTech Connect (OSTI)

    Fetherolf, D.J. Jr. [East Penn Manufacturing Co., Inc., Lyon Station, PA (United States)

    1996-01-01T23:59:59.000Z

    This report describes the 1995 battery shipment review and five year forecast for the battery market. Historical data is discussed.

  12. CALIFORNIA ENERGY COMMISSION0 Annual Update to the Forecasted

    E-Print Network [OSTI]

    Additional Rooftop PV 6 Additional Combined Heat and Power 7 Adjusted Statewide Retail Sales for RPS 7.5 12.6 5 AdditionalRooftop PV - 0.4 0.7 6 AdditionalCombined Heatand Power 20.8 11.6 9.9 7 Adjusted Adjustments CED 2011 ­ Form 1.1c - CDWR, MWD, WAPA - pumping loads ­ Small LSEs (

  13. Consensus Coal Production And Price Forecast For

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    Consensus Coal Production And Price Forecast For West Virginia: 2011 Update Prepared for the West December 2011 © Copyright 2011 WVU Research Corporation #12;#12;W.Va. Consensus Coal Forecast Update 2011 i Table of Contents Executive Summary 1 Recent Developments 3 Consensus Coal Production And Price Forecast

  14. CALIFORNIA ENERGY DEMAND 20142024 REVISED FORECAST

    E-Print Network [OSTI]

    CALIFORNIA ENERGY DEMAND 20142024 REVISED FORECAST Volume 2: Electricity Demand The California Energy Demand 2014 ­ 2024 Revised Forecast, Volume 2: Electricity Demand by Utility Planning Area Energy Policy Report. The forecast includes three full scenarios: a high energy demand case, a low

  15. Short-Term Load Forecasting Error Distributions and Implications for Renewable Integration Studies: Preprint

    SciTech Connect (OSTI)

    Hodge, B. M.; Lew, D.; Milligan, M.

    2013-01-01T23:59:59.000Z

    Load forecasting in the day-ahead timescale is a critical aspect of power system operations that is used in the unit commitment process. It is also an important factor in renewable energy integration studies, where the combination of load and wind or solar forecasting techniques create the net load uncertainty that must be managed by the economic dispatch process or with suitable reserves. An understanding of that load forecasting errors that may be expected in this process can lead to better decisions about the amount of reserves necessary to compensate errors. In this work, we performed a statistical analysis of the day-ahead (and two-day-ahead) load forecasting errors observed in two independent system operators for a one-year period. Comparisons were made with the normal distribution commonly assumed in power system operation simulations used for renewable power integration studies. Further analysis identified time periods when the load is more likely to be under- or overforecast.

  16. Supplement to the Annual Energy Outlook 1993

    SciTech Connect (OSTI)

    Not Available

    1993-02-17T23:59:59.000Z

    The Supplement to the Annual Energy Outlook 1993 is a companion document to the Energy Information Administration`s (EIA) Annual Energy Outlook 1993 (AEO). Supplement tables provide the regional projections underlying the national data and projections in the AEO. The domestic coal, electric power, commercial nuclear power, end-use consumption, and end-use price tables present AEO forecasts at the 10 Federal Region level. World coal tables provide data and projections on international flows of steam coal and metallurgical coal, and the oil and gas tables provide the AEO oil and gas supply forecasts by Oil and Gas Supply Regions and by source of supply. All tables refer to cases presented in the AEO, which provides a range of projections for energy markets through 2010.

  17. LOAD FORECASTING Eugene A. Feinberg

    E-Print Network [OSTI]

    Feinberg, Eugene A.

    , regression, artificial intelligence. 1. Introduction Accurate models for electric power load forecasting to make important decisions including decisions on pur- chasing and generating electric power, load for different operations within a utility company. The natures 269 #12;270 APPLIED MATHEMATICS FOR POWER SYSTEMS

  18. Calculator simplifies field production forecasting

    SciTech Connect (OSTI)

    Bixler, B.

    1982-05-01T23:59:59.000Z

    A method of forecasting future field production from an assumed average well production schedule and drilling schedule has been programmed for the HP-41C hand-held programmable computer. No longer must tedious row summations be made by hand for staggered well production schedules. Details of the program are provided.

  19. Radar-Derived Forecasts of Cloud-to-Ground Lightning Over Houston, Texas

    E-Print Network [OSTI]

    Mosier, Richard Matthew

    2011-02-22T23:59:59.000Z

    .1.6 Comparison to Previous Studies......................................................................59 3.2 VII Forecast Method...............................................................................................61 3.2.1 Percentile Value...) percentile values for the entire dataset (1997-2006) when considering only cells with a minimum track count of 2.......................................................................... 117 3.5 Same as Figure 3.4 for the POD values...

  20. NREL: Transmission Grid Integration - Forecasting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: Grid IntegrationReport AvailableForecasting NREL researchers use

  1. Analysis of PG E's residential end-use metered data to improve electricity demand forecasts

    SciTech Connect (OSTI)

    Eto, J.H.; Moezzi, M.M.

    1992-06-01T23:59:59.000Z

    It is generally acknowledged that improvements to end-use load shape and peak demand forecasts for electricity are limited primarily by the absence of reliable end-use data. In this report we analyze recent end-use metered data collected by the Pacific Gas and Electric Company from more than 700 residential customers to develop new inputs for the load shape and peak demand electricity forecasting models used by the Pacific Gas and Electric Company and the California Energy Commission. Hourly load shapes are normalized to facilitate separate accounting (by the models) of annual energy use and the distribution of that energy use over the hours of the day. Cooling electricity consumption by central air-conditioning is represented analytically as a function of climate. Limited analysis of annual energy use, including unit energy consumption (UEC), and of the allocation of energy use to seasons and system peak days, is also presented.

  2. Funding Opportunity Announcement for Wind Forecasting Improvement...

    Broader source: Energy.gov (indexed) [DOE]

    collects data on a variety of physical processes that impact the wind forecasts used by wind farms, system operators and other industry professionals. By having access to...

  3. Upcoming Funding Opportunity for Wind Forecasting Improvement...

    Broader source: Energy.gov (indexed) [DOE]

    collects data on a variety of physical processes that impact the wind forecasts used by wind farms, system operators and other industry professionals. By having access to...

  4. Geothermal wells: a forecast of drilling activity

    SciTech Connect (OSTI)

    Brown, G.L.; Mansure, A.J.; Miewald, J.N.

    1981-07-01T23:59:59.000Z

    Numbers and problems for geothermal wells expected to be drilled in the United States between 1981 and 2000 AD are forecasted. The 3800 wells forecasted for major electric power projects (totaling 6 GWe of capacity) are categorized by type (production, etc.), and by location (The Geysers, etc.). 6000 wells are forecasted for direct heat projects (totaling 0.02 Quads per year). Equations are developed for forecasting the number of wells, and data is presented. Drilling and completion problems in The Geysers, The Imperial Valley, Roosevelt Hot Springs, the Valles Caldera, northern Nevada, Klamath Falls, Reno, Alaska, and Pagosa Springs are discussed. Likely areas for near term direct heat projects are identified.

  5. Online Forecast Combination for Dependent Heterogeneous Data

    E-Print Network [OSTI]

    Sancetta, Alessio

    the single individual forecasts. Several studies have shown that combining forecasts can be a useful hedge against structural breaks, and forecast combinations are often more stable than single forecasts (e.g. Hendry and Clements, 2004, Stock and Watson, 2004... in expectations. Hence, we have the following. Corollary 4 Suppose maxt?T kl (Yt, hwt,Xti)kr ? A taking expectation on the left hand side, adding 2A ? T and setting ? = 0 in mT (?), i.e. TX t=1 E [lt (wt)? lt (ut...

  6. The Value of Wind Power Forecasting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Power Forecasting Preprint Debra Lew and Michael Milligan National Renewable Energy Laboratory Gary Jordan and Richard Piwko GE Energy Presented at the 91 st American...

  7. U-M Construction Forecast December 15, 2011 U-M Construction Forecast

    E-Print Network [OSTI]

    Kamat, Vineet R.

    U-M Construction Forecast December 15, 2011 U-M Construction Forecast Spring ­ Fall 2012 As of December 15, 2011 Prepared by AEC Preliminary & Advisory #12;U-M Construction Forecast December 15, 2011 Overview · Campus by campus · Snapshot in time ­ Not all projects · Construction coordination efforts

  8. TRANSPORTATION ENERGY FORECASTS FOR THE 2007 INTEGRATED ENERGY

    E-Print Network [OSTI]

    has developed longterm forecasts of transportation energy demand as well as projected ranges of transportation fuel and crude oil import requirements. The transportation energy demand forecasts makeCALIFORNIA ENERGY COMMISSION TRANSPORTATION ENERGY FORECASTS FOR THE 2007 INTEGRATED ENERGY POLICY

  9. Dynamic Filtering and Mining Triggers in Mesoscale Meteorology Forecasting

    E-Print Network [OSTI]

    Plale, Beth

    Dynamic Filtering and Mining Triggers in Mesoscale Meteorology Forecasting Nithya N. Vijayakumar {rramachandran, xli}@itsc.uah.edu Abstract-- Mesoscale meteorology forecasting as a data driven application Triggers, Data Mining, Stream Processing, Meteorology Forecasting I. INTRODUCTION Mesoscale meteorologists

  10. The Wind Forecast Improvement Project (WFIP): A Public/Private...

    Office of Environmental Management (EM)

    The Wind Forecast Improvement Project (WFIP): A PublicPrivate Partnership for Improving Short Term Wind Energy Forecasts and Quantifying the Benefits of Utility Operations The...

  11. Forecasting of Solar Radiation Detlev Heinemann, Elke Lorenz, Marco Girodo

    E-Print Network [OSTI]

    Heinemann, Detlev

    Forecasting of Solar Radiation Detlev Heinemann, Elke Lorenz, Marco Girodo Oldenburg University have been presented more than twenty years ago (Jensenius, 1981), when daily solar radiation forecasts

  12. Annual Reports

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternative FuelsSanta3 Table 3.EnergyAug412 Archive DataAnnualAnnual

  13. Alternative methods for forecasting GDP Dominique Gugan

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    analysis. Better forecast performance for macroeconomic variables will lead to Paris School of Economics the speed of computers that can develop search algorithms from appropriate selection criteria, Devroye. 1 Introduction Forecasting macroeconomic variables such as GDP and inflation play an important role

  14. A NEW APPROACH FOR EVALUATING ECONOMIC FORECASTS

    E-Print Network [OSTI]

    Vertes, Akos

    APPROACH FOR EVALUATING ECONOMIC FORECASTS Tara M. Sinclair , H.O. Stekler, and Warren Carnow Department of Economics The George Washington University Monroe Hall #340 2115 G Street NW Washington, DC 20052 JEL Codes, Mahalanobis Distance Abstract This paper presents a new approach to evaluating multiple economic forecasts

  15. Dynamic Algorithm for Space Weather Forecasting System

    E-Print Network [OSTI]

    Fischer, Luke D.

    2011-08-08T23:59:59.000Z

    /effective forecasts, and we have performed preliminary benchmarks on this algorithm. The preliminary benchmarks yield surprisingly effective results thus far?forecasts have been made 8-16 hours into the future with significant magnitude and trend accuracy, which is a...

  16. Nonparametric models for electricity load forecasting

    E-Print Network [OSTI]

    Genève, Université de

    Electricity consumption is constantly evolving due to changes in people habits, technological innovations1 Nonparametric models for electricity load forecasting JANUARY 23, 2015 Yannig Goude, Vincent at University Paris-Sud 11 Orsay. His research interests are electricity load forecasting, more generally time

  17. CALIFORNIA ENERGY DEMAND 20142024 REVISED FORECAST

    E-Print Network [OSTI]

    CALIFORNIA ENERGY DEMAND 2014­2024 REVISED FORECAST Volume 1: Statewide Electricity Demand, EndUser Natural Gas Demand, and Energy Efficiency SEPTEMBER 2013 CEC2002013004SDV1REV CALIFORNIA The California Energy Demand 2014 ­ 2024 Revised Forecast, Volume 1: Statewide Electricity Demand and Methods

  18. 1993 Pacific Northwest Loads and Resources Study, Pacific Northwest Economic and Electricity Use Forecast, Technical Appendix: Volume 1.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1994-02-01T23:59:59.000Z

    This publication documents the load forecast scenarios and assumptions used to prepare BPA`s Whitebook. It is divided into: intoduction, summary of 1993 Whitebook electricity demand forecast, conservation in the load forecast, projection of medium case electricity sales and underlying drivers, residential sector forecast, commercial sector forecast, industrial sector forecast, non-DSI industrial forecast, direct service industry forecast, and irrigation forecast. Four appendices are included: long-term forecasts, LTOUT forecast, rates and fuel price forecasts, and forecast ranges-calculations.

  19. Uranium industry annual 1994

    SciTech Connect (OSTI)

    NONE

    1995-07-05T23:59:59.000Z

    The Uranium Industry Annual 1994 (UIA 1994) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing during that survey year. The UIA 1994 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. It contains data for the 10-year period 1985 through 1994 as collected on the Form EIA-858, ``Uranium Industry Annual Survey.`` Data collected on the ``Uranium Industry Annual Survey`` (UIAS) provide a comprehensive statistical characterization of the industry`s activities for the survey year and also include some information about industry`s plans and commitments for the near-term future. Where aggregate data are presented in the UIA 1994, care has been taken to protect the confidentiality of company-specific information while still conveying accurate and complete statistical data. A feature article, ``Comparison of Uranium Mill Tailings Reclamation in the United States and Canada,`` is included in the UIA 1994. Data on uranium raw materials activities including exploration activities and expenditures, EIA-estimated resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities, including purchases of uranium and enrichment services, and uranium inventories, enrichment feed deliveries (actual and projected), and unfilled market requirements are shown in Chapter 2.

  20. Annual Training Plan Template

    Broader source: Energy.gov [DOE]

    The Annual Training Plan Template is used by an organization's training POC to draft their organization's annual training plan.

  1. CALIFORNIA ENERGY DEMAND 2008-2018 STAFF DRAFT FORECAST

    E-Print Network [OSTI]

    procurement process at the California Public Utilities Commission. This forecast was produced with the Energy Commission demand forecast models. Both the staff draft energy consumption and peak forecasts are slightly and commercial sectors. Keywords Electricity demand, electricity consumption, demand forecast, weather

  2. CALIFORNIA ENERGY DEMAND 2008-2018 STAFF REVISED FORECAST

    E-Print Network [OSTI]

    and water pumping sectors. Mark Ciminelli forecasted energy for transportation, communication and utilities. Mitch Tian prepared the peak demand forecast. Ted Dang prepared the historic energy consumption data at the California Public Utilities Commission. This forecast was produced with the Energy Commission demand forecast

  3. Distribution of Wind Power Forecasting Errors from Operational Systems (Presentation)

    SciTech Connect (OSTI)

    Hodge, B. M.; Ela, E.; Milligan, M.

    2011-10-01T23:59:59.000Z

    This presentation offers new data and statistical analysis of wind power forecasting errors in operational systems.

  4. Metrics for Evaluating the Accuracy of Solar Power Forecasting (Presentation)

    SciTech Connect (OSTI)

    Zhang, J.; Hodge, B.; Florita, A.; Lu, S.; Hamann, H.; Banunarayanan, V.

    2013-10-01T23:59:59.000Z

    This presentation proposes a suite of metrics for evaluating the performance of solar power forecasting.

  5. Solar Resource and Forecasting QuestionnaireSolar Resource and Forecasting QuestionnaireSolar Resource and Forecasting QuestionnaireSolar Resource and Forecasting Questionnaire As someone who is familiar with solar energy issues, we hope that you will tak

    E-Print Network [OSTI]

    Islam, M. Saif

    Page 1 Solar Resource and Forecasting QuestionnaireSolar Resource and Forecasting QuestionnaireSolar Resource and Forecasting QuestionnaireSolar Resource and Forecasting Questionnaire As someone who is familiar with solar energy issues, we hope that you will take a few moments to answer this short survey

  6. PSO (FU 2101) Ensemble-forecasts for wind power

    E-Print Network [OSTI]

    PSO (FU 2101) Ensemble-forecasts for wind power Analysis of the Results of an On-line Wind Power Ensemble- forecasts for wind power (FU2101) a demo-application producing quantile forecasts of wind power correct) quantile forecasts of the wind power production are generated by the application. However

  7. 1993 Solid Waste Reference Forecast Summary

    SciTech Connect (OSTI)

    Valero, O.J.; Blackburn, C.L. [Westinghouse Hanford Co., Richland, WA (United States); Kaae, P.S.; Armacost, L.L.; Garrett, S.M.K. [Pacific Northwest Lab., Richland, WA (United States)

    1993-08-01T23:59:59.000Z

    This report, which updates WHC-EP-0567, 1992 Solid Waste Reference Forecast Summary, (WHC 1992) forecasts the volumes of solid wastes to be generated or received at the US Department of Energy Hanford Site during the 30-year period from FY 1993 through FY 2022. The data used in this document were collected from Westinghouse Hanford Company forecasts as well as from surveys of waste generators at other US Department of Energy sites who are now shipping or plan to ship solid wastes to the Hanford Site for disposal. These wastes include low-level and low-level mixed waste, transuranic and transuranic mixed waste, and nonradioactive hazardous waste.

  8. Annual Reports | Department of Energy

    Energy Savers [EERE]

    2000 (pdf) Annual Report for 1999 (pdf) Annual Report for 1998 (pdf) Annual Report for 1997 (pdf) Annual Report for 1996 (pdf) Annual Report for 1995 (pdf) Annual Report for 1994...

  9. Geothermal Technologies Office Annual Report 2012

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaefer To: Congestion StudyForecasting.EnergyAlthoughYEAR IN REVIEW Annual

  10. CALIFORNIA ENERGY DEMAND 20142024 FINAL FORECAST

    E-Print Network [OSTI]

    supervised data preparation. Steven Mac and Keith O'Brien prepared the historical energy consumption data. Nahid Movassagh forecasted consumption for the agriculture and water pumping sectors. Cynthia Rogers generation, conservation, energy efficiency, climate zone, investorowned, public, utilities, additional

  11. Wind Speed Forecasting for Power System Operation 

    E-Print Network [OSTI]

    Zhu, Xinxin

    2013-07-22T23:59:59.000Z

    In order to support large-scale integration of wind power into current electric energy system, accurate wind speed forecasting is essential, because the high variation and limited predictability of wind pose profound challenges to the power system...

  12. STAFF FORECAST: AVERAGE RETAIL ELECTRICITY PRICES

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION STAFF FORECAST: AVERAGE RETAIL ELECTRICITY PRICES 2005 TO 2018 Mignon Marks Principal Author Mignon Marks Project Manager David Ashuckian Manager ELECTRICITY ANALYSIS OFFICE Sylvia Bender Acting Deputy Director ELECTRICITY SUPPLY DIVISION B.B. Blevins Executive Director

  13. Wind Speed Forecasting for Power System Operation

    E-Print Network [OSTI]

    Zhu, Xinxin

    2013-07-22T23:59:59.000Z

    In order to support large-scale integration of wind power into current electric energy system, accurate wind speed forecasting is essential, because the high variation and limited predictability of wind pose profound challenges to the power system...

  14. Potential Economic Value of Seasonal Hurricane Forecasts

    E-Print Network [OSTI]

    Emanuel, Kerry Andrew

    This paper explores the potential utility of seasonal Atlantic hurricane forecasts to a hypothetical property insurance firm whose insured properties are broadly distributed along the U.S. Gulf and East Coasts. Using a ...

  15. Text-Alternative Version LED Lighting Forecast

    Broader source: Energy.gov [DOE]

    The DOE report Energy Savings Forecast of Solid-State Lighting in General Illumination Applications estimates the energy savings of LED white-light sources over the analysis period of 2013 to 2030....

  16. Essays in International Macroeconomics and Forecasting

    E-Print Network [OSTI]

    Bejarano Rojas, Jesus Antonio

    2012-10-19T23:59:59.000Z

    This dissertation contains three essays in international macroeconomics and financial time series forecasting. In the first essay, I show, numerically, that a two-country New-Keynesian Sticky Prices model, driven by monetary and productivity shocks...

  17. Petroleum supply annual 1993. Volume 1

    SciTech Connect (OSTI)

    Not Available

    1994-06-01T23:59:59.000Z

    The Petroleum Supply Annual (PSA) contains information on the supply and disposition of crude oil and petroleum products. The publication reflects data that were collected from the petroleum industry during 1993 through annual and monthly surveys. The PSA is divided into two volumes. This first volume contains four sections: Summary Statistics, Detailed Statistics, Refinery Capacity, and Oxygenate Capacity each with final annual data. The second volume contains final statistics for each month of 1993, and replaces data previously published in the Petroleum Supply Monthly (PSM). The tables in Volumes 1 and 2 are similarly numbered to facilitate comparison between them. Below is a description of each section in Volume 1 of the PSA.

  18. Petroleum supply annual 1994. Volume 1

    SciTech Connect (OSTI)

    NONE

    1995-05-22T23:59:59.000Z

    The Petroleum Supply Annual (PSA) contains information on the supply and disposition of crude oil and petroleum products. The publication reflects data that were collected from the petroleum industry during 1994 through annual and monthly surveys. The PSA is divided into two volumes. This first volume contains four sections: Summary Statistics, Detailed Statistics, Refinery Capacity, and Oxygenate Capacity each with final annual data. The second volume contains final statistics for each month of 1994, and replaces data previously published in the Petroleum Supply Monthly (PSM). The tables in Volumes 1 and 2 are similarly numbered to facilitate comparison between them. Below is a description of each section in Volume 1 of the PSA.

  19. Petroleum supply annual, 1997. Volume 1

    SciTech Connect (OSTI)

    NONE

    1998-06-01T23:59:59.000Z

    The Petroleum Supply Annual (PSA) contains information on the supply and disposition of crude oil and petroleum products. The publication reflects data that were collected from the petroleum industry during 1997 through annual and monthly surveys. The PSA is divided into two volumes. This first volume contains three sections: Summary Statistics, Detailed Statistics, and Refinery Statistics; each with final annual data. The second volume contains final statistics for each month of 1997, and replaces data previously published in the Petroleum Supply Monthly (PSM). The tables in Volumes 1 and 2 are similarly numbered to facilitate comparison between them. 16 figs., 48 tabs.

  20. Petroleum supply annual 1998: Volume 1

    SciTech Connect (OSTI)

    NONE

    1999-06-01T23:59:59.000Z

    The ``Petroleum Supply Annual`` (PSA) contains information on the supply and disposition of crude oil and petroleum products. The publication reflects data that were collected from the petroleum industry during 1998 through annual and monthly surveys. The PSA is divided into two volumes. This first volume contains three sections: Summary Statistics, Detailed Statistics, and Refinery Statistics; each with final annual data. The second volume contains final statistics for each month of 1998, and replaces data previously published in the PSA. The tables in Volumes 1 and 2 are similarly numbered to facilitate comparison between them. 16 figs., 59 tabs.

  1. Nambe Pueblo Water Budget and Forecasting model.

    SciTech Connect (OSTI)

    Brainard, James Robert

    2009-10-01T23:59:59.000Z

    This report documents The Nambe Pueblo Water Budget and Water Forecasting model. The model has been constructed using Powersim Studio (PS), a software package designed to investigate complex systems where flows and accumulations are central to the system. Here PS has been used as a platform for modeling various aspects of Nambe Pueblo's current and future water use. The model contains three major components, the Water Forecast Component, Irrigation Scheduling Component, and the Reservoir Model Component. In each of the components, the user can change variables to investigate the impacts of water management scenarios on future water use. The Water Forecast Component includes forecasting for industrial, commercial, and livestock use. Domestic demand is also forecasted based on user specified current population, population growth rates, and per capita water consumption. Irrigation efficiencies are quantified in the Irrigated Agriculture component using critical information concerning diversion rates, acreages, ditch dimensions and seepage rates. Results from this section are used in the Water Demand Forecast, Irrigation Scheduling, and the Reservoir Model components. The Reservoir Component contains two sections, (1) Storage and Inflow Accumulations by Categories and (2) Release, Diversion and Shortages. Results from both sections are derived from the calibrated Nambe Reservoir model where historic, pre-dam or above dam USGS stream flow data is fed into the model and releases are calculated.

  2. TOWARD RELIABLE BENCHMARKING OF SOLAR FLARE FORECASTING METHODS

    SciTech Connect (OSTI)

    Bloomfield, D. Shaun; Higgins, Paul A.; Gallagher, Peter T. [Astrophysics Research Group, School of Physics, Trinity College Dublin, College Green, Dublin 2 (Ireland); McAteer, R. T. James, E-mail: shaun.bloomfield@tcd.ie [Department of Astronomy, New Mexico State University, Las Cruces, NM 88003-8001 (United States)

    2012-03-10T23:59:59.000Z

    Solar flares occur in complex sunspot groups, but it remains unclear how the probability of producing a flare of a given magnitude relates to the characteristics of the sunspot group. Here, we use Geostationary Operational Environmental Satellite X-ray flares and McIntosh group classifications from solar cycles 21 and 22 to calculate average flare rates for each McIntosh class and use these to determine Poisson probabilities for different flare magnitudes. Forecast verification measures are studied to find optimum thresholds to convert Poisson flare probabilities into yes/no predictions of cycle 23 flares. A case is presented to adopt the true skill statistic (TSS) as a standard for forecast comparison over the commonly used Heidke skill score (HSS). In predicting flares over 24 hr, the maximum values of TSS achieved are 0.44 (C-class), 0.53 (M-class), 0.74 (X-class), 0.54 ({>=}M1.0), and 0.46 ({>=}C1.0). The maximum values of HSS are 0.38 (C-class), 0.27 (M-class), 0.14 (X-class), 0.28 ({>=}M1.0), and 0.41 ({>=}C1.0). These show that Poisson probabilities perform comparably to some more complex prediction systems, but the overall inaccuracy highlights the problem with using average values to represent flaring rate distributions.

  3. Analysis of PG&E`s residential end-use metered data to improve electricity demand forecasts

    SciTech Connect (OSTI)

    Eto, J.H.; Moezzi, M.M.

    1992-06-01T23:59:59.000Z

    It is generally acknowledged that improvements to end-use load shape and peak demand forecasts for electricity are limited primarily by the absence of reliable end-use data. In this report we analyze recent end-use metered data collected by the Pacific Gas and Electric Company from more than 700 residential customers to develop new inputs for the load shape and peak demand electricity forecasting models used by the Pacific Gas and Electric Company and the California Energy Commission. Hourly load shapes are normalized to facilitate separate accounting (by the models) of annual energy use and the distribution of that energy use over the hours of the day. Cooling electricity consumption by central air-conditioning is represented analytically as a function of climate. Limited analysis of annual energy use, including unit energy consumption (UEC), and of the allocation of energy use to seasons and system peak days, is also presented.

  4. Annual Report

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you0 ARRA NewslettersPartnership of the Americas |AnchorageAnnaofAnnual

  5. Annual Report

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergyDepartment ofATVMAgriculturalAn1 Annual FOIA09 THROUGH 09/30/2010

  6. Annual Report

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T, Inc.'s Reply Comments AT&T,FACT SAmesEnergyAnnual Planning Summaries:1

  7. Annual Report

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO Overview OCHCOSystemsProgram OverviewAdvocate -AmirAnnual Report Fiscal Year 2011 Office of

  8. Comparing Price Forecast Accuracy of Natural Gas Models and Futures Markets

    E-Print Network [OSTI]

    Wong-Parodi, Gabrielle; Dale, Larry; Lekov, Alex

    2005-01-01T23:59:59.000Z

    to accurately forecast natural gas prices. Many policyseek alternative methods to forecast natural gas prices. Thethe accuracy of forecasts for natural gas prices as reported

  9. FY08 Annual Report for Nuclear Resonance Fluorescence Imaging

    SciTech Connect (OSTI)

    Warren, Glen A.; Caggiano, Joseph A.

    2009-01-06T23:59:59.000Z

    FY08 annual report for project the "Nuclear Resonance Fluorescence Imaging" project. Reviews accomplishments of last 3 years, including U-235 signature search, comparison of different photon sources, and examination of NRF measurements using monochromatic photon source.

  10. Supplement to the annual energy outlook 1995

    SciTech Connect (OSTI)

    Not Available

    1995-02-01T23:59:59.000Z

    This section of the Supplement to the Annual Energy Outlook 1995 present the major assumptions of the modeling system used to generate the projections in the Annual Energy Outlook 1995 (AEO95). In this context, assumptions include general features of the model structure, assumptions concerning energy markets, and the key input data and parameters that are most significant in formulating the model results. Detailed documentation of the modeling system is available in a series of documentation reports listed in Appendix B. A synopsis of the National Energy Modeling System (NEMS), the model components, and the interrelationships of the modules is presented. The NEMS is developed and maintained by the office of Integrated Analysis and Forecasting of the Energy Information Administration (EIA) to provide projection of domestic energy-economy markets in the midterm time period and perform policy analyses requested by various government agencies and the private sector.

  11. Ramp Forecasting Performance from Improved Short-Term Wind Power Forecasting: Preprint

    SciTech Connect (OSTI)

    Zhang, J.; Florita, A.; Hodge, B. M.; Freedman, J.

    2014-05-01T23:59:59.000Z

    The variable and uncertain nature of wind generation presents a new concern to power system operators. One of the biggest concerns associated with integrating a large amount of wind power into the grid is the ability to handle large ramps in wind power output. Large ramps can significantly influence system economics and reliability, on which power system operators place primary emphasis. The Wind Forecasting Improvement Project (WFIP) was performed to improve wind power forecasts and determine the value of these improvements to grid operators. This paper evaluates the performance of improved short-term wind power ramp forecasting. The study is performed for the Electric Reliability Council of Texas (ERCOT) by comparing the experimental WFIP forecast to the current short-term wind power forecast (STWPF). Four types of significant wind power ramps are employed in the study; these are based on the power change magnitude, direction, and duration. The swinging door algorithm is adopted to extract ramp events from actual and forecasted wind power time series. The results show that the experimental short-term wind power forecasts improve the accuracy of the wind power ramp forecasting, especially during the summer.

  12. Waste generation forecast for DOE-ORO`s Environmental Restoration OR-1 Project: FY 1995-FY 2002, September 1994 revision

    SciTech Connect (OSTI)

    Not Available

    1994-12-01T23:59:59.000Z

    A comprehensive waste-forecasting task was initiated in FY 1991 to provide a consistent, documented estimate of the volumes of waste expected to be generated as a result of U.S. Department of Energy-Oak Ridge Operations (DOE-ORO) Environmental Restoration (ER) OR-1 Project activities. Continual changes in the scope and schedules for remedial action (RA) and decontamination and decommissioning (D&D) activities have required that an integrated data base system be developed that can be easily revised to keep pace with changes and provide appropriate tabular and graphical output. The output can then be analyzed and used to drive planning assumptions for treatment, storage, and disposal (TSD) facilities. The results of this forecasting effort and a description of the data base developed to support it are provided herein. The initial waste-generation forecast results were compiled in November 1991. Since the initial forecast report, the forecast data have been revised annually. This report reflects revisions as of September 1994.

  13. 1994 Solid waste forecast container volume summary

    SciTech Connect (OSTI)

    Templeton, K.J.; Clary, J.L.

    1994-09-01T23:59:59.000Z

    This report describes a 30-year forecast of the solid waste volumes by container type. The volumes described are low-level mixed waste (LLMW) and transuranic/transuranic mixed (TRU/TRUM) waste. These volumes and their associated container types will be generated or received at the US Department of Energy Hanford Site for storage, treatment, and disposal at Westinghouse Hanford Company`s Solid Waste Operations Complex (SWOC) during a 30-year period from FY 1994 through FY 2023. The forecast data for the 30-year period indicates that approximately 307,150 m{sup 3} of LLMW and TRU/TRUM waste will be managed by the SWOC. The main container type for this waste is 55-gallon drums, which will be used to ship 36% of the LLMW and TRU/TRUM waste. The main waste generator forecasting the use of 55-gallon drums is Past Practice Remediation. This waste will be generated by the Environmental Restoration Program during remediation of Hanford`s past practice sites. Although Past Practice Remediation is the primary generator of 55-gallon drums, most waste generators are planning to ship some percentage of their waste in 55-gallon drums. Long-length equipment containers (LECs) are forecasted to contain 32% of the LLMW and TRU/TRUM waste. The main waste generator forecasting the use of LECs is the Long-Length Equipment waste generator, which is responsible for retrieving contaminated long-length equipment from the tank farms. Boxes are forecasted to contain 21% of the waste. These containers are primarily forecasted for use by the Environmental Restoration Operations--D&D of Surplus Facilities waste generator. This waste generator is responsible for the solid waste generated during decontamination and decommissioning (D&D) of the facilities currently on the Surplus Facilities Program Plan. The remaining LLMW and TRU/TRUM waste volume is planned to be shipped in casks and other miscellaneous containers.

  14. Sixth Northwest Conservation and Electric Power Plan Appendix B: Economic Forecast

    E-Print Network [OSTI]

    Sixth Northwest Conservation and Electric Power Plan Appendix B: Economic Forecast Role of the Economic Forecast..................................................................................................................................... 2 Economic Growth Assumptions

  15. 2008 Annual Report

    SciTech Connect (OSTI)

    none,

    2008-01-01T23:59:59.000Z

    This annual report includes: a brief overview of Western; FY 2008 operational highlights; and financial data.

  16. Viability, Development, and Reliability Assessment of Coupled Coastal Forecasting Systems

    E-Print Network [OSTI]

    Singhal, Gaurav

    2012-10-19T23:59:59.000Z

    disaster, Cook Inlet (CI) and Prince William Sound (PWS) are regions that suffer from a lack of accurate wave forecast information. This dissertation develops high- resolution integrated wave forecasting schemes for these regions in order to meet...

  17. Potential to Improve Forecasting Accuracy: Advances in Supply Chain Management

    E-Print Network [OSTI]

    Datta, Shoumen

    2008-07-31T23:59:59.000Z

    Forecasting is a necessity almost in any operation. However, the tools of forecasting are still primitive in view of the great strides made by research and the increasing abundance of data made possible by automatic ...

  18. Calibrated Probabilistic Mesoscale Weather Field Forecasting: The Geostatistical Output Perturbation

    E-Print Network [OSTI]

    Washington at Seattle, University of

    Calibrated Probabilistic Mesoscale Weather Field Forecasting: The Geostatistical Output. This is typically not feasible for mesoscale weather prediction carried out locally by organizations without by simulating realizations of the geostatistical model. The method is applied to 48-hour mesoscale forecasts

  19. The effect of multinationality on management earnings forecasts

    E-Print Network [OSTI]

    Runyan, Bruce Wayne

    2005-08-29T23:59:59.000Z

    This study examines the relationship between a firm??s degree of multinationality and its managers?? earnings forecasts. Firms with a high degree of multinationality are subject to greater uncertainty regarding earnings forecasts due...

  20. Wind Power Forecasting Error Distributions over Multiple Timescales (Presentation)

    SciTech Connect (OSTI)

    Hodge, B. M.; Milligan, M.

    2011-07-01T23:59:59.000Z

    This presentation presents some statistical analysis of wind power forecast errors and error distributions, with examples using ERCOT data.

  1. Weighted Parametric Operational Hydrology Forecasting Thomas E. Croley II1

    E-Print Network [OSTI]

    1 Weighted Parametric Operational Hydrology Forecasting Thomas E. Croley II1 1 Great Lakes forecasts in operational hydrology builds a sample of possibilities for the future, of climate series from-parametric method can be extended into a new weighted parametric hydrological forecasting technique to allow

  2. A BAYESIAN MODEL COMMITTEE APPROACH TO FORECASTING GLOBAL SOLAR RADIATION

    E-Print Network [OSTI]

    Boyer, Edmond

    1 A BAYESIAN MODEL COMMITTEE APPROACH TO FORECASTING GLOBAL SOLAR RADIATION in the realm of solar radiation forecasting. In this work, two forecasting models: Autoregressive Moving. The very first results show an improvement brought by this approach. 1. INTRODUCTION Solar radiation

  3. FORECASTING SOLAR RADIATION PRELIMINARY EVALUATION OF AN APPROACH

    E-Print Network [OSTI]

    Perez, Richard R.

    FORECASTING SOLAR RADIATION -- PRELIMINARY EVALUATION OF AN APPROACH BASED UPON THE NATIONAL, and undertake a preliminary evaluation of, a simple solar radiation forecast model using sky cover predictions forecasts is 0.05o in latitude and longitude. Solar Radiation model: The model presented in this paper

  4. AUTOMATION OF ENERGY DEMAND FORECASTING Sanzad Siddique, B.S.

    E-Print Network [OSTI]

    Povinelli, Richard J.

    AUTOMATION OF ENERGY DEMAND FORECASTING by Sanzad Siddique, B.S. A Thesis submitted to the Faculty OF ENERGY DEMAND FORECASTING Sanzad Siddique, B.S. Marquette University, 2013 Automation of energy demand of the energy demand forecasting are achieved by integrating nonlinear transformations within the models

  5. Univariate Modeling and Forecasting of Monthly Energy Demand Time Series

    E-Print Network [OSTI]

    Abdel-Aal, Radwan E.

    Univariate Modeling and Forecasting of Monthly Energy Demand Time Series Using Abductive and Neural dedicated models to forecast the 12 individual months directly. Results indicate better performance is superior to naïve forecasts based on persistence and seasonality, and is better than results quoted

  6. TRANSPORTATION ENERGY FORECASTS FOR THE 2007 INTEGRATED ENERGY

    E-Print Network [OSTI]

    requirements. The transportation energy demand forecasts make assumptions about fuel price forecastsCALIFORNIA ENERGY COMMISSION TRANSPORTATION ENERGY FORECASTS FOR THE 2007 INTEGRATED ENERGY POLICY ENERGY COMMISSION Gordon Schremp, Jim Page, and Malachi Weng-Gutierrez Principal Authors Jim Page Project

  7. PSO (FU 2101) Ensemble-forecasts for wind power

    E-Print Network [OSTI]

    PSO (FU 2101) Ensemble-forecasts for wind power Wind Power Ensemble Forecasting Using Wind Speed the problems of (i) transforming the meteorological ensembles to wind power ensembles and, (ii) correcting) data. However, quite often the actual wind power production is outside the range of ensemble forecast

  8. Forecasting the Market Penetration of Energy Conservation Technologies: The Decision Criteria for Choosing a Forecasting Model

    E-Print Network [OSTI]

    Lang, K.

    1982-01-01T23:59:59.000Z

    capital requirements and research and development programs in the alum inum industry. : CONCLUSIONS Forecasting the use of conservation techndlo gies with a market penetration model provides la more accountable method of projecting aggrega...

  9. CALIFORNIA ENERGY DEMAND 20122022 FINAL FORECAST

    E-Print Network [OSTI]

    , Gary Occhiuzzo, and Keith O'Brien prepared the historical energy consumption data. Nahid Movassagh forecasted consumption for the agriculture and water pumping sectors. Don Schultz and Doug Kemmer developed. California Energy Commission, Electricity Supply Analysis Division. Publication Number: CEC2002012001CMFVI

  10. Facebook IPO updated valuation and user forecasting

    E-Print Network [OSTI]

    Facebook IPO ­ updated valuation and user forecasting Based on: Amendment No. 6 to Form S-1 (May 9. Peter Cauwels and Didier Sornette, Quis pendit ipsa pretia: facebook valuation and diagnostic Extreme Growth JPMPaper Cauwels and Sornette 840 1110 1820 S1- filing- May 9 2012 1006 1105 1371 Facebook

  11. Modeling of Uncertainty in Wind Energy Forecast

    E-Print Network [OSTI]

    regression and splines are combined to model the prediction error from Tunø Knob wind power plant. This data of the thesis is quantile regression and splines in the context of wind power modeling. Lyngby, February 2006Modeling of Uncertainty in Wind Energy Forecast Jan Kloppenborg Møller Kongens Lyngby 2006 IMM-2006

  12. Segmenting Time Series for Weather Forecasting

    E-Print Network [OSTI]

    Sripada, Yaji

    for generating textual summaries. Our algorithm has been implemented in a weather forecast generation system. 1 presentation, aid human understanding of the underlying data sets. SUMTIME is a research project aiming turbines. In the domain of meteorology, time series data produced by numerical weather prediction (NWP

  13. Forecasting sudden changes in environmental pollution patterns

    E-Print Network [OSTI]

    Olascoaga, Maria Josefina

    Forecasting sudden changes in environmental pollution patterns María J. Olascoagaa,1 and George of Mexico in 2010. We present a methodology to predict major short-term changes in en- vironmental River's mouth in the Gulf of Mexico. The resulting fire could not be extinguished and the drilling rig

  14. New Concepts in Wind Power Forecasting Models

    E-Print Network [OSTI]

    Kemner, Ken

    New Concepts in Wind Power Forecasting Models Vladimiro Miranda, Ricardo Bessa, João Gama, Guenter to the training of mappers such as neural networks to perform wind power prediction as a function of wind characteristics (mainly speed and direction) in wind parks connected to a power grid. Renyi's Entropy is combined

  15. CALIFORNIA ENERGY DEMAND 20142024 FINAL FORECAST

    E-Print Network [OSTI]

    CALIFORNIA ENERGY DEMAND 2014­2024 FINAL FORECAST Volume 1: Statewide Electricity Demand, EndUser Natural Gas Demand, and Energy Efficiency DECEMBER 2013 CEC2002013004SFV1 CALIFORNIA and expertise of numerous California Energy Commission staff members in the Demand Analysis Office. In addition

  16. SIMULATION AND FORECASTING IN INTERMODAL CONTAINER TERMINAL

    E-Print Network [OSTI]

    Gambardella, Luca Maria

    SIMULATION AND FORECASTING IN INTERMODAL CONTAINER TERMINAL Luca Maria Gambardella1 , Gianluca@idsia.ch 2 LCST, La Spezia Container Terminal, La Spezia (IT) 3 DSP, Data System & Planning sa, Manno (CH working in intermodal container terminals. INTRODUCTION The amount of work a container terminal deals

  17. Forecast Technical Document Felling and Removals

    E-Print Network [OSTI]

    of local investment and business planning. Timber volume production will be estimated at sub. Planning of operations. Control of the growing stock. Wider reporting (under UKWAS). The calculation fellings and removals are handled in the 2011 Production Forecast system. Tom Jenkins Robert Matthews Ewan

  18. Forecasting Turbulent Modes with Nonparametric Diffusion Models

    E-Print Network [OSTI]

    Tyrus Berry; John Harlim

    2015-01-27T23:59:59.000Z

    This paper presents a nonparametric diffusion modeling approach for forecasting partially observed noisy turbulent modes. The proposed forecast model uses a basis of smooth functions (constructed with the diffusion maps algorithm) to represent probability densities, so that the forecast model becomes a linear map in this basis. We estimate this linear map by exploiting a previously established rigorous connection between the discrete time shift map and the semi-group solution associated to the backward Kolmogorov equation. In order to smooth the noisy data, we apply diffusion maps to a delay embedding of the noisy data, which also helps to account for the interactions between the observed and unobserved modes. We show that this delay embedding biases the geometry of the data in a way which extracts the most predictable component of the dynamics. The resulting model approximates the semigroup solutions of the generator of the underlying dynamics in the limit of large data and in the observation noise limit. We will show numerical examples on a wide-range of well-studied turbulent modes, including the Fourier modes of the energy conserving Truncated Burgers-Hopf (TBH) model, the Lorenz-96 model in weakly chaotic to fully turbulent regimes, and the barotropic modes of a quasi-geostrophic model with baroclinic instabilities. In these examples, forecasting skills of the nonparametric diffusion model are compared to a wide-range of stochastic parametric modeling approaches, which account for the nonlinear interactions between the observed and unobserved modes with white and colored noises.

  19. Wholesale Electricity Price Forecast This appendix describes the wholesale electricity price forecast of the Fifth Northwest Power

    E-Print Network [OSTI]

    Wholesale Electricity Price Forecast This appendix describes the wholesale electricity price as traded on the wholesale, short-term (spot) market at the Mid-Columbia trading hub. This price represents noted. BASE CASE FORECAST The base case wholesale electricity price forecast uses the Council's medium

  20. Short-term energy outlook, Annual supplement 1995

    SciTech Connect (OSTI)

    NONE

    1995-07-25T23:59:59.000Z

    This supplement is published once a year as a complement to the Short- Term Energy Outlook, Quarterly Projections. The purpose of the Supplement is to review the accuracy of the forecasts published in the Outlook, make comparisons with other independent energy forecasts, and examine current energy topics that affect the forecasts. Chap. 2 analyzes the response of the US petroleum industry to the recent four Federal environmental rules on motor gasoline. Chap. 3 compares the EIA base or mid case energy projections for 1995 and 1996 (as published in the first quarter 1995 Outlook) with recent projections made by four other major forecasting groups. Chap. 4 evaluates the overall accuracy. Chap. 5 presents the methology used in the Short- Term Integrated Forecasting Model for oxygenate supply/demand balances. Chap. 6 reports theoretical and empirical results from a study of non-transportation energy demand by sector. The empirical analysis involves the short-run energy demand in the residential, commercial, industrial, and electrical utility sectors in US.

  1. Operational forecasting based on a modified Weather Research and Forecasting model

    SciTech Connect (OSTI)

    Lundquist, J; Glascoe, L; Obrecht, J

    2010-03-18T23:59:59.000Z

    Accurate short-term forecasts of wind resources are required for efficient wind farm operation and ultimately for the integration of large amounts of wind-generated power into electrical grids. Siemens Energy Inc. and Lawrence Livermore National Laboratory, with the University of Colorado at Boulder, are collaborating on the design of an operational forecasting system for large wind farms. The basis of the system is the numerical weather prediction tool, the Weather Research and Forecasting (WRF) model; large-eddy simulations and data assimilation approaches are used to refine and tailor the forecasting system. Representation of the atmospheric boundary layer is modified, based on high-resolution large-eddy simulations of the atmospheric boundary. These large-eddy simulations incorporate wake effects from upwind turbines on downwind turbines as well as represent complex atmospheric variability due to complex terrain and surface features as well as atmospheric stability. Real-time hub-height wind speed and other meteorological data streams from existing wind farms are incorporated into the modeling system to enable uncertainty quantification through probabilistic forecasts. A companion investigation has identified optimal boundary-layer physics options for low-level forecasts in complex terrain, toward employing decadal WRF simulations to anticipate large-scale changes in wind resource availability due to global climate change.

  2. Forecastability as a Design Criterion in Wind Resource Assessment: Preprint

    SciTech Connect (OSTI)

    Zhang, J.; Hodge, B. M.

    2014-04-01T23:59:59.000Z

    This paper proposes a methodology to include the wind power forecasting ability, or 'forecastability,' of a site as a design criterion in wind resource assessment and wind power plant design stages. The Unrestricted Wind Farm Layout Optimization (UWFLO) methodology is adopted to maximize the capacity factor of a wind power plant. The 1-hour-ahead persistence wind power forecasting method is used to characterize the forecastability of a potential wind power plant, thereby partially quantifying the integration cost. A trade-off between the maximum capacity factor and the forecastability is investigated.

  3. Annual energy outlook 1999, with projections to 2020

    SciTech Connect (OSTI)

    NONE

    1998-12-01T23:59:59.000Z

    The Annual Energy Outlook 1999 (AEO99) presents midterm forecasts of energy supply, demand, and prices through 2020 prepared by the Energy Information Administration (EIA). The projections are based on results from EIA`s National Energy Modeling System (NEMS). The report begins with an Overview summarizing the AEO99 reference case. The next section, Legislation and Regulations, describes the assumptions made with regard to laws that affect energy markets and discusses evolving legislative and regulatory issues. Issues in Focus discusses current energy issues--the economic decline in East Asia, growth in demand for natural gas, vehicle emissions standards, competitive electricity pricing, renewable portfolio standards, and carbon emissions. It is followed by the analysis of energy market trends. The analysis in AEO99 focuses primarily on a reference case and four other cases that assume higher and lower economic growth and higher and lower world oil prices than in the reference case. Forecast tables for these cases are provided in Appendixes A through C. Appendixes D and E present a summary of the reference case forecasts in units of oil equivalence and household energy expenditures. The AEO99 projections are based on Federal, State, and local laws and regulations in effect on July 1, 1998. Pending legislation and sections of existing legislation for which funds have not been appropriated are not reflected in the forecasts. Historical data used for the AEOI99 projections were the most current available as of July 31, 1998, when most 1997 data but only partial 1998 data were available.

  4. PRI Annual Report 2004

    E-Print Network [OSTI]

    Maynard-Moody, Steven

    2005-04-01T23:59:59.000Z

    research found within the pages of this annual report. To bring you closer to some of our research projects, the 2004 Annual Report focuses on three projects. Two teams of researchers are using innovative methods to examine important international issues...

  5. Annual Report 2001 Annual Report 2001

    E-Print Network [OSTI]

    Habib, Ayman

    The Arctic Institute of North America Annual Report 2001 The Arctic Institute of North America Annual Report 2001 #12;2000 Board of Directors · James Raffan,Seeley's Bay,Ontario (Chair until September 2001) · Murray B. Todd, Calgary,Alberta (Chair as of September 2001) · Luc Bouthillier,Québec City

  6. Library Annual Report Library Annual Report

    E-Print Network [OSTI]

    Tobar, Michael

    Library Annual Report 2007 Library Annual Report 2007 #12;www.library.uwa.edu.au Our mission: By delivering excellent information resources and services the Library is integral to the University's mission of advancing, transmitting and sustaining knowledge. Our vision: The Library will continue to be at the heart

  7. NASEO 2015 Annual Meeting

    Broader source: Energy.gov [DOE]

    The National Association of State Energy Officials (NASEO) Annual Meeting will be held in San Diego, California.

  8. Wind Energy Forecasting: A Collaboration of the National Center for Atmospheric Research (NCAR) and Xcel Energy

    SciTech Connect (OSTI)

    Parks, K.; Wan, Y. H.; Wiener, G.; Liu, Y.

    2011-10-01T23:59:59.000Z

    The focus of this report is the wind forecasting system developed during this contract period with results of performance through the end of 2010. The report is intentionally high-level, with technical details disseminated at various conferences and academic papers. At the end of 2010, Xcel Energy managed the output of 3372 megawatts of installed wind energy. The wind plants span three operating companies1, serving customers in eight states2, and three market structures3. The great majority of the wind energy is contracted through power purchase agreements (PPAs). The remainder is utility owned, Qualifying Facilities (QF), distributed resources (i.e., 'behind the meter'), or merchant entities within Xcel Energy's Balancing Authority footprints. Regardless of the contractual or ownership arrangements, the output of the wind energy is balanced by Xcel Energy's generation resources that include fossil, nuclear, and hydro based facilities that are owned or contracted via PPAs. These facilities are committed and dispatched or bid into day-ahead and real-time markets by Xcel Energy's Commercial Operations department. Wind energy complicates the short and long-term planning goals of least-cost, reliable operations. Due to the uncertainty of wind energy production, inherent suboptimal commitment and dispatch associated with imperfect wind forecasts drives up costs. For example, a gas combined cycle unit may be turned on, or committed, in anticipation of low winds. The reality is winds stayed high, forcing this unit and others to run, or be dispatched, to sub-optimal loading positions. In addition, commitment decisions are frequently irreversible due to minimum up and down time constraints. That is, a dispatcher lives with inefficient decisions made in prior periods. In general, uncertainty contributes to conservative operations - committing more units and keeping them on longer than may have been necessary for purposes of maintaining reliability. The downside is costs are higher. In organized electricity markets, units that are committed for reliability reasons are paid their offer price even when prevailing market prices are lower. Often, these uplift charges are allocated to market participants that caused the inefficient dispatch in the first place. Thus, wind energy facilities are burdened with their share of costs proportional to their forecast errors. For Xcel Energy, wind energy uncertainty costs manifest depending on specific market structures. In the Public Service of Colorado (PSCo), inefficient commitment and dispatch caused by wind uncertainty increases fuel costs. Wind resources participating in the Midwest Independent System Operator (MISO) footprint make substantial payments in the real-time markets to true-up their day-ahead positions and are additionally burdened with deviation charges called a Revenue Sufficiency Guarantee (RSG) to cover out of market costs associated with operations. Southwest Public Service (SPS) wind plants cause both commitment inefficiencies and are charged Southwest Power Pool (SPP) imbalance payments due to wind uncertainty and variability. Wind energy forecasting helps mitigate these costs. Wind integration studies for the PSCo and Northern States Power (NSP) operating companies have projected increasing costs as more wind is installed on the system due to forecast error. It follows that reducing forecast error would reduce these costs. This is echoed by large scale studies in neighboring regions and states that have recommended adoption of state-of-the-art wind forecasting tools in day-ahead and real-time planning and operations. Further, Xcel Energy concluded reduction of the normalized mean absolute error by one percent would have reduced costs in 2008 by over $1 million annually in PSCo alone. The value of reducing forecast error prompted Xcel Energy to make substantial investments in wind energy forecasting research and development.

  9. 2011 -2012 Annual Report

    E-Print Network [OSTI]

    Yang, Zong-Liang

    2011 2012 Annual Report #12;2011 - 2012 Annual Report 2 INTRODUCING CAR SHARING Since the car share,116 Carpools 420 430 430 Car Share Members -- -- 661 #12;2011 - 2012 Annual Report 4 GARAGE PARKING INVENTORY or day, and gives the com- munity yet another reason to leave their cars at home. In its launch

  10. Forecasting hotspots using predictive visual analytics approach

    DOE Patents [OSTI]

    Maciejewski, Ross; Hafen, Ryan; Rudolph, Stephen; Cleveland, William; Ebert, David

    2014-12-30T23:59:59.000Z

    A method for forecasting hotspots is provided. The method may include the steps of receiving input data at an input of the computational device, generating a temporal prediction based on the input data, generating a geospatial prediction based on the input data, and generating output data based on the time series and geospatial predictions. The output data may be configured to display at least one user interface at an output of the computational device.

  11. A survey on wind power ramp forecasting.

    SciTech Connect (OSTI)

    Ferreira, C.; Gama, J.; Matias, L.; Botterud, A.; Wang, J. (Decision and Information Sciences); (INESC Porto)

    2011-02-23T23:59:59.000Z

    The increasing use of wind power as a source of electricity poses new challenges with regard to both power production and load balance in the electricity grid. This new source of energy is volatile and highly variable. The only way to integrate such power into the grid is to develop reliable and accurate wind power forecasting systems. Electricity generated from wind power can be highly variable at several different timescales: sub-hourly, hourly, daily, and seasonally. Wind energy, like other electricity sources, must be scheduled. Although wind power forecasting methods are used, the ability to predict wind plant output remains relatively low for short-term operation. Because instantaneous electrical generation and consumption must remain in balance to maintain grid stability, wind power's variability can present substantial challenges when large amounts of wind power are incorporated into a grid system. A critical issue is ramp events, which are sudden and large changes (increases or decreases) in wind power. This report presents an overview of current ramp definitions and state-of-the-art approaches in ramp event forecasting.

  12. Metrics for Evaluating the Accuracy of Solar Power Forecasting: Preprint

    SciTech Connect (OSTI)

    Zhang, J.; Hodge, B. M.; Florita, A.; Lu, S.; Hamann, H. F.; Banunarayanan, V.

    2013-10-01T23:59:59.000Z

    Forecasting solar energy generation is a challenging task due to the variety of solar power systems and weather regimes encountered. Forecast inaccuracies can result in substantial economic losses and power system reliability issues. This paper presents a suite of generally applicable and value-based metrics for solar forecasting for a comprehensive set of scenarios (i.e., different time horizons, geographic locations, applications, etc.). In addition, a comprehensive framework is developed to analyze the sensitivity of the proposed metrics to three types of solar forecasting improvements using a design of experiments methodology, in conjunction with response surface and sensitivity analysis methods. The results show that the developed metrics can efficiently evaluate the quality of solar forecasts, and assess the economic and reliability impact of improved solar forecasting.

  13. Petroleum supply annual 1994, Volume 2

    SciTech Connect (OSTI)

    NONE

    1995-06-01T23:59:59.000Z

    The Petroleum Supply Annual (PSA) contains information on the supply and disposition of crude oil and petroleum products. The publication reflects data that were collected from the petroleum industry during 1994 through annual and monthly surveys. The PSA is divided into two volumes. This first volume contains four sections: Summary Statistics, Detailed Statistics, Refinery Capacity, and Oxygenate Capacity each with final annual data. The second volume contains final statistics for each month of 1994, and replaces data previously published in the Petroleum Supply Monthly (PSM). The tables in Volumes 1 and 2 are similarly numbered to facilitate comparison between them. Explanatory Notes, located at the end of this publication, present information describing data collection, sources, estimation methodology, data quality control procedures, modifications to reporting requirements and interpretation of tables. Industry terminology and product definitions are listed alphabetically in the Glossary.

  14. Weather Forecast Data an Important Input into Building Management Systems

    E-Print Network [OSTI]

    Poulin, L.

    2013-01-01T23:59:59.000Z

    it can generate as much or more energy that it needs ? Building activities need N kWhrs per day (solar panels, heating, etc) ? Harvested from solar panels & passive solar. Amount depends on weather ? NWP models forecast DSWRF @ surface (MJ/m2...://collaboration.cmc.ec.gc.ca/cmc/cmoi/SolarScribe/SolarScribe/ CMC NWP datasets for Day 2 Forecasts ? Regional Deterministic Prediction System (RDPS) ? RDPS raw model data ? 10 km resolution, North America, 000-054 forecasts ? Data at: http...

  15. Forecasting model of the PEPCO service area economy. Volume 3

    SciTech Connect (OSTI)

    Not Available

    1984-03-01T23:59:59.000Z

    Volume III describes and documents the regional economic model of the PEPCO service area which was relied upon to develop many of the assumptions of future values of economic and demographic variables used in the forecast. The PEPCO area model is mathematically linked to the Wharton long-term forecast of the U.S. Volume III contains a technical discussion of the structure of the regional model and presents the regional economic forecast.

  16. Wind Forecast Improvement Project Southern Study Area Final Report...

    Office of Environmental Management (EM)

    Project Southern Study Area Final Report Wind Forecast Improvement Project Southern Study Area Final Report.pdf More Documents & Publications Computational Advances in Applied...

  17. Forecasting Dangerous Inmate Misconduct: An Applications of Ensemble Statistical Procedures

    E-Print Network [OSTI]

    Richard A. Berk; Brian Kriegler; Jong-Ho Baek

    2011-01-01T23:59:59.000Z

    Forecasting Dangerous Inmate Misconduct: An Applications ofof Term Length more dangerous than other inmates servingIV beds or moving less dangerous Level IV inmates to Level

  18. Forecasting Dangerous Inmate Misconduct: An Applications of Ensemble Statistical Procedures

    E-Print Network [OSTI]

    Berk, Richard; Kriegler, Brian; Baek, Jong-Ho

    2005-01-01T23:59:59.000Z

    Forecasting Dangerous Inmate Misconduct: An Applications ofof Term Length more dangerous than other inmates servingIV beds or moving less dangerous Level IV inmates to Level

  19. Forecasting the underlying potential governing climatic time series

    E-Print Network [OSTI]

    Livina, V N; Mudelsee, M; Lenton, T M

    2012-01-01T23:59:59.000Z

    We introduce a technique of time series analysis, potential forecasting, which is based on dynamical propagation of the probability density of time series. We employ polynomial coefficients of the orthogonal approximation of the empirical probability distribution and extrapolate them in order to forecast the future probability distribution of data. The method is tested on artificial data, used for hindcasting observed climate data, and then applied to forecast Arctic sea-ice time series. The proposed methodology completes a framework for `potential analysis' of climatic tipping points which altogether serves anticipating, detecting and forecasting climate transitions and bifurcations using several independent techniques of time series analysis.

  20. Sandia National Laboratories: Solar Energy Forecasting and Resource...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Events, Partnership, Photovoltaic, Renewable Energy, Solar, Systems Analysis The book, Solar Energy Forecasting and Resource Assessment, provides an authoritative voice on the...

  1. analytical energy forecasting: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    COMMISSION Tom Gorin Lynn Marshall Principal Author Tom Gorin Project 11 Short-Term Solar Energy Forecasting Using Wireless Sensor Networks Computer Technologies and...

  2. Econometric model and futures markets commodity price forecasting

    E-Print Network [OSTI]

    Just, Richard E.; Rausser, Gordon C.

    1979-01-01T23:59:59.000Z

    Versus CCll1rnercial Econometric M:ldels." Uni- versity ofWorking Paper No. 72 ECONOMETRIC ! 'econometric forecasts with the futures

  3. Optimization Online - Data Assimilation in Weather Forecasting: A ...

    E-Print Network [OSTI]

    M. Fisher

    2007-02-14T23:59:59.000Z

    Feb 14, 2007 ... Data Assimilation in Weather Forecasting: A Case Study in PDE-Constrained Optimization. M. Fisher(Mike.Fisher ***at*** ecmwf.int)

  4. Weather-based yield forecasts developed for 12 California crops

    E-Print Network [OSTI]

    Lobell, David; Cahill, Kimberly Nicholas; Field, Christopher

    2006-01-01T23:59:59.000Z

    RESEARCH ARTICLE Weather-based yield forecasts developed fordepend largely on the weather, measurements from existingpredictions. We developed weather-based models of statewide

  5. Using Customers' Reported Forecasts to Predict Future Sales

    E-Print Network [OSTI]

    Gordon, Geoffrey J.

    Using Customers' Reported Forecasts to Predict Future Sales Nihat Altintas , Alan Montgomery , Michael Trick Tepper School of Business, Carnegie Mellon University, Pittsburgh, PA 15213. nihat

  6. FY 1996 solid waste integrated life-cycle forecast characteristics summary. Volumes 1 and 2

    SciTech Connect (OSTI)

    Templeton, K.J.

    1996-05-23T23:59:59.000Z

    For the past six years, a waste volume forecast has been collected annually from onsite and offsite generators that currently ship or are planning to ship solid waste to the Westinghouse Hanford Company`s Central Waste Complex (CWC). This document provides a description of the physical waste forms, hazardous waste constituents, and radionuclides of the waste expected to be shipped to the CWC from 1996 through the remaining life cycle of the Hanford Site (assumed to extend to 2070). In previous years, forecast data has been reported for a 30-year time period; however, the life-cycle approach was adopted this year to maintain consistency with FY 1996 Multi-Year Program Plans. This document is a companion report to two previous reports: the more detailed report on waste volumes, WHC-EP-0900, FY1996 Solid Waste Integrated Life-Cycle Forecast Volume Summary and the report on expected containers, WHC-EP-0903, FY1996 Solid Waste Integrated Life-Cycle Forecast Container Summary. All three documents are based on data gathered during the FY 1995 data call and verified as of January, 1996. These documents are intended to be used in conjunction with other solid waste planning documents as references for short and long-term planning of the WHC Solid Waste Disposal Division`s treatment, storage, and disposal activities over the next several decades. This document focuses on two main characteristics: the physical waste forms and hazardous waste constituents of low-level mixed waste (LLMW) and transuranic waste (both non-mixed and mixed) (TRU(M)). The major generators for each waste category and waste characteristic are also discussed. The characteristics of low-level waste (LLW) are described in Appendix A. In addition, information on radionuclides present in the waste is provided in Appendix B. The FY 1996 forecast data indicate that about 100,900 cubic meters of LLMW and TRU(M) waste is expected to be received at the CWC over the remaining life cycle of the site. Based on ranges provided by the waste generators, this baseline volume could fluctuate between a minimum of about 59,720 cubic meters and a maximum of about 152,170 cubic meters. The range is primarily due to uncertainties associated with the Tank Waste Remediation System (TWRS) program, including uncertainties regarding retrieval of long-length equipment, scheduling, and tank retrieval technologies.

  7. Reducing the demand forecast error due to the bullwhip effect in the computer processor industry

    E-Print Network [OSTI]

    Smith, Emily (Emily C.)

    2010-01-01T23:59:59.000Z

    Intel's current demand-forecasting processes rely on customers' demand forecasts. Customers do not revise demand forecasts as demand decreases until the last minute. Intel's current demand models provide little guidance ...

  8. Evaluation of forecasting techniques for short-term demand of air transportation

    E-Print Network [OSTI]

    Wickham, Richard Robert

    1995-01-01T23:59:59.000Z

    Forecasting is arguably the most critical component of airline management. Essentially, airlines forecast demand to plan the supply of services to respond to that demand. Forecasts of short-term demand facilitate tactical ...

  9. U.S. Regional Demand Forecasts Using NEMS and GIS

    E-Print Network [OSTI]

    Cohen, Jesse A.; Edwards, Jennifer L.; Marnay, Chris

    2005-01-01T23:59:59.000Z

    Administration. 2004a. Annual Energy Outlook 2004. U.S.Assumptions of the Annual Energy Outlook 2004. DOE/EIA-0554(and Definitions AEO – Annual Energy Outlook ArcGIS - ESRI

  10. Annual Report 2007 Swiss National Supercomputing Centre

    E-Print Network [OSTI]

    for Petaflops - The Years Ahead by Dominik Ulmer Quantum Leap in Weather Forecasting by Neil Stringfellow

  11. Renewable Forecast Min-Max2020.xls

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 c/)RenewableRenewable EnergyForecast of

  12. EMSL 2009 Annual Report

    SciTech Connect (OSTI)

    Showalter, Mary Ann; Kathmann, Loel E.; Manke, Kristin L.; Wiley, Julie G.; Reed, Jennifer R.

    2010-02-26T23:59:59.000Z

    The EMSL 2009 Annual Report describes the science conducted at EMSL during 2009 as well as outreach activities and awards and honors received by users and staff.

  13. Historical Natural Gas Annual

    U.S. Energy Information Administration (EIA) Indexed Site

    Annual . 1996 Published October 1997 1997 Published October 1998 1998 Published October 1999 1999 Published October 2000 2000 Published December 2001...

  14. Annual Energy Outlook 2012

    Gasoline and Diesel Fuel Update (EIA)

    Administration Annual Energy Outlook 2012 17 Table A7. Transportation sector key indicators and delivered energy consumption (continued) Key indicators and consumption...

  15. Annual Energy Outlook 2012

    Gasoline and Diesel Fuel Update (EIA)

    3 U.S. Energy Information Administration | Annual Energy Outlook 2012 Reference case Table A6. Industrial sector key indicators and consumption Energy Information Administration ...

  16. Annual Energy Outlook 2012

    Gasoline and Diesel Fuel Update (EIA)

    36 Reference case Energy Information Administration Annual Energy Outlook 2012 6 Table A3. Energy prices by sector and source (2010 dollars per million Btu, unless otherwise...

  17. Annual Energy Outlook 2012

    Gasoline and Diesel Fuel Update (EIA)

    1 U.S. Energy Information Administration | Annual Energy Outlook 2012 Reference case Table A5. Commercial sector key indicators and consumption (quadrillion Btu per year, unless...

  18. Annual Energy Outlook 2012

    Gasoline and Diesel Fuel Update (EIA)

    9 U.S. Energy Information Administration | Annual Energy Outlook 2012 Table G1. Heat rates Fuel Units Approximate heat content Coal 1 Production . . . . . . . . . . . . . . . . . ....

  19. Annual Energy Outlook 2012

    Gasoline and Diesel Fuel Update (EIA)

    for Defense Districts 216 U.S. Energy Information Administration Annual Energy Outlook 2010 Figure F3. Petroleum Administration for Defense Districts AK WA NV AZ OR...

  20. Required Annual Notices

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Required Annual Notices The Women's Health and Cancer Rights Act of 1998 (WHCRA) The medical programs sponsored by LANS will not restrict benefits if you or your dependent...

  1. Required Annual Notices

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Annual Notices The Women's Health and Cancer Rights Act of 1998 (WHCRA) The medical programs sponsored by LANS will not restrict benefits if you or your dependent receives...

  2. OPSI Annual Meeting

    Broader source: Energy.gov [DOE]

    The Organization of PJM States, Inc. (OPSI) is hosting its annual meeting in Chicago, IL, on October 13-14, 2014.

  3. SFU LIBRARY ANNUAL REPORT

    E-Print Network [OSTI]

    SFU LIBRARY ANNUAL REPORT 2006/07 #12;22 TABLE OF CONTENTS Message from the University Librarian................................................... ....................................... 7 WAC Bennett Library.................................................................. ....................................... 8 Samuel and Frances Belzberg Library

  4. 2007 Annual Report

    SciTech Connect (OSTI)

    none,

    2007-01-01T23:59:59.000Z

    This annual report includes: a brief overview of Western; FY 2007 highlights; FY 2007 Integrated Resource Planning, or IRP, survey; and financial data.

  5. Historical Natural Gas Annual

    U.S. Energy Information Administration (EIA) Indexed Site

    8 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at...

  6. Historical Natural Gas Annual

    U.S. Energy Information Administration (EIA) Indexed Site

    6 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at...

  7. Historical Natural Gas Annual

    U.S. Energy Information Administration (EIA) Indexed Site

    7 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at...

  8. Evaluation of numerical weather prediction for intra-day solar forecasting in the continental United States

    E-Print Network [OSTI]

    Mathiesen, Patrick; Kleissl, Jan

    2011-01-01T23:59:59.000Z

    to  predict daily solar radiation.   Agriculture and Forest and Chuo, S.   2008.  Solar radiation forecasting using Short?term forecasting of solar radiation:   A statistical 

  9. Uncertainty Reduction in Power Generation Forecast Using Coupled Wavelet-ARIMA

    SciTech Connect (OSTI)

    Hou, Zhangshuan; Etingov, Pavel V.; Makarov, Yuri V.; Samaan, Nader A.

    2014-10-27T23:59:59.000Z

    In this paper, we introduce a new approach without implying normal distributions and stationarity of power generation forecast errors. In addition, it is desired to more accurately quantify the forecast uncertainty by reducing prediction intervals of forecasts. We use automatically coupled wavelet transform and autoregressive integrated moving-average (ARIMA) forecasting to reflect multi-scale variability of forecast errors. The proposed analysis reveals slow-changing “quasi-deterministic” components of forecast errors. This helps improve forecasts produced by other means, e.g., using weather-based models, and reduce forecast errors prediction intervals.

  10. Short term forecasting of solar radiation based on satellite data

    E-Print Network [OSTI]

    Heinemann, Detlev

    Short term forecasting of solar radiation based on satellite data Elke Lorenz, Annette Hammer University, D-26111 Oldenburg Forecasting of solar irradiance will become a major issue in the future integration of solar energy resources into existing energy supply structures. Fluctuations of solar irradiance

  11. Calibrated Probabilistic Forecasting at the Stateline Wind Energy Center

    E-Print Network [OSTI]

    Washington at Seattle, University of

    Calibrated Probabilistic Forecasting at the Stateline Wind Energy Center: The Regime meteorological data from sites upwind of wind farms can be efficiently used to improve short-term forecasts acknowledges the support of PPM Energy, Inc. The data used in this work were obtained from Oregon State

  12. Revised 1997 Retail Electricity Price Forecast Principal Author: Ben Arikawa

    E-Print Network [OSTI]

    Revised 1997 Retail Electricity Price Forecast March 1998 Principal Author: Ben Arikawa Electricity 1997 FORE08.DOC Page 1 CALIFORNIA ENERGY COMMISSION ELECTRICITY ANALYSIS OFFICE REVISED 1997 RETAIL ELECTRICITY PRICE FORECAST Introduction The Electricity Analysis Office of the California Energy Commission

  13. A Transformed Lagged Ensemble Forecasting Technique for Increasing Ensemble Size

    E-Print Network [OSTI]

    Hansens, Jim

    A Transformed Lagged Ensemble Forecasting Technique for Increasing Ensemble Size Andrew. R.Lawrence@ecmwf.int #12;Abstract An ensemble-based data assimilation approach is used to transform old en- semble. The impact of the transformations are propagated for- ward in time over the ensemble's forecast period

  14. RESERVOIR INFLOW FORECASTING USING NEURAL NETWORKS CHANDRASHEKAR SUBRAMANIAN

    E-Print Network [OSTI]

    Manry, Michael

    a mixture of hydroelectric and non- hydroelectric power, the economics of the hydroelectric plants depend, and to economically allocate the load between various non-hydroelectric plants. Neural networks provide an attractive technology for inflow forecasting, because of (1) their success in power load forecasting 1- 6 , and (2

  15. Introducing the Canadian Crop Yield Forecaster Aston Chipanshi1

    E-Print Network [OSTI]

    Miami, University of

    for crop yield forecasting and risk analysis. Using the Census Agriculture Region (CAR) as the unit Climate Decision Support and Adaptation, Agriculture and Agri-Food Canada, 1011, Innovation Blvd, Saskatoon, SK S7V 1B7, Canada The Canadian Crop Yield Forecaster (CCYF) is a statistical modelling tool

  16. Wind-Wave Probabilistic Forecasting based on Ensemble

    E-Print Network [OSTI]

    have to be jointly taken into account in some decision-making problems, e.g. offshore wind farmWind-Wave Probabilistic Forecasting based on Ensemble Predictions Maxime FORTIN Kongens Lyngby 2012.imm.dtu.dk IMM-PhD-2012-86 #12;Summary Wind and wave forecasts are of a crucial importance for a number

  17. Wind Power Forecasting: State-of-the-Art 2009

    E-Print Network [OSTI]

    Kemner, Ken

    Wind Power Forecasting: State-of-the-Art 2009 ANL/DIS-10-1 Decision and Information Sciences about Argonne and its pioneering science and technology programs, see www.anl.gov. #12;Wind Power................................................ 14 2.2.3 Critical Processes for Wind Forecast

  18. PRELIMINARY CALIFORNIA ENERGY DEMAND FORECAST 2012-2022

    E-Print Network [OSTI]

    PRELIMINARY CALIFORNIA ENERGY DEMAND FORECAST 2012-2022 AUGUST 2011 CEC-200-2011-011-SD CALIFORNIA for electric vehicles. #12;ii #12;iii ABSTRACT The Preliminary California Energy Demand Forecast 2012 includes three full scenarios: a high energy demand case, a low energy demand case, and a mid energy demand

  19. CALIFORNIA ENERGY DEMAND 2008-2018 STAFF REVISED FORECAST

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION CALIFORNIA ENERGY DEMAND 2008-2018 STAFF REVISED FORECAST, and utilities. Mitch Tian prepared the peak demand forecast. Ted Dang prepared the historic energy consumption STAFFFINALREPORT NOVEMBER 2007 CEC-200-2007-015-SF2 Arnold Schwarzenegger, Governor #12;CALIFORNIA ENERGY

  20. CALIFORNIA ENERGY DEMAND 2006-2016 STAFF ENERGY DEMAND FORECAST

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION CALIFORNIA ENERGY DEMAND 2006-2016 STAFF ENERGY DEMAND FORECAST Manager Kae Lewis Acting Manager Demand Analysis Office Valerie T. Hall Deputy Director Energy Efficiency Demand Forecast report is the product of the efforts of many current and former California Energy

  1. Distribution Based Data Filtering for Financial Time Series Forecasting

    E-Print Network [OSTI]

    Bailey, James

    recent past. In this paper, we address the challenge of forecasting the behavior of time series using@unimelb.edu.au Abstract. Changes in the distribution of financial time series, particularly stock market prices, can of stock prices, which aims to forecast the future values of the price of a stock, in order to obtain

  2. Draft for Public Comment Appendix A. Demand Forecast

    E-Print Network [OSTI]

    in the planning process. Electricity demand is forecast to grow from 20,080 average megawatts in 2000 to 25 forecast of electricity demand is a required component of the Council's Northwest Regional Conservation and Electric Power Plan.1 Understanding growth in electricity demand is, of course, crucial to determining

  3. FORECASTING WATER DEMAND USING CLUSTER AND REGRESSION ANALYSIS

    E-Print Network [OSTI]

    Keller, Arturo A.

    resources resulting in water stress. Effective water management ­ a solution Supply side management Demand side management #12;Developing a regression equation based on cluster analysis for forecasting waterFORECASTING WATER DEMAND USING CLUSTER AND REGRESSION ANALYSIS by Bruce Bishop Professor of Civil

  4. Forecasting Uncertainty Related to Ramps of Wind Power Production

    E-Print Network [OSTI]

    Boyer, Edmond

    - namic reserve quantification [8], for the optimal oper- ation of combined wind-hydro power plants [5, 1Forecasting Uncertainty Related to Ramps of Wind Power Production Arthur Bossavy, Robin Girard - The continuous improvement of the accuracy of wind power forecasts is motivated by the increasing wind power

  5. Impact of PV forecasts uncertainty in batteries management in microgrids

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    -- Photovoltaic systems, Batteries, Forecasting I. INTRODUCTION This paper presents first results of a study Energies and Energy Systems Sophia Antipolis, France andrea.michiorri@mines-paristech.fr Abstract production forecast algorithm is used in combination with a battery schedule optimisation algorithm. The size

  6. Forecasting Building Occupancy Using Sensor Network James Howard

    E-Print Network [OSTI]

    Hoff, William A.

    of the forecasting algorithm for the different conditions. 1. INTRODUCTION According to the U.S. Department of Energy could take advantage of times when electricity cost is lower, to chill a cold water storage tankForecasting Building Occupancy Using Sensor Network Data James Howard Colorado School of Mines

  7. THE 2005 ANNUAL REPORT OF THE MONITORING AVIAN PRODUCTIVITY AND SURVIVORSHIP

    E-Print Network [OSTI]

    DeSante, David F.

    THE 2005 ANNUAL REPORT OF THE MONITORING AVIAN PRODUCTIVITY AND SURVIVORSHIP (MAPS) PROGRAM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Adult Population Sizes and Productivity in 2005 and Comparison with Previous Years . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Population and Productivity Trends in Yosemite's Landbirds

  8. NatioNal aNd Global Forecasts West VirGiNia ProFiles aNd Forecasts

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    · NatioNal aNd Global Forecasts · West VirGiNia ProFiles aNd Forecasts · eNerGy · Healt Global Insight, paid for by the West Virginia Department of Revenue. 2013 WEST VIRGINIA ECONOMIC OUTLOOKWest Virginia Economic Outlook 2013 is published by: Bureau of Business & Economic Research West

  9. UNIVERSITY POLICE ANNUAL SECURITY

    E-Print Network [OSTI]

    Kulp, Mark

    UNIVERSITY POLICE 2013 ANNUAL SECURITY AND FIRE SAFETY GUIDE In compliance with the Jeanne Clery Disclosure of Campus Security Policy and Campus Crime Statistics Act The University of New Orleans. Please take a moment to read the following information. #12;ANNUAL SECURITY AND FIRE SAFETY GUIDE 2013

  10. Annual Energy Review, 2008

    SciTech Connect (OSTI)

    None

    2009-06-01T23:59:59.000Z

    The Annual Energy Review (AER) is the Energy Information Administration's (EIA) primary report of annual historical energy statistics. For many series, data begin with the year 1949. Included are statistics on total energy production, consumption, trade, and energy prices; overviews of petroleum, natural gas, coal, electricity, nuclear energy, renewable energy, and international energy; financial and environment indicators; and data unit conversions.

  11. Annual energy outlook 1997 with projections to 2015

    SciTech Connect (OSTI)

    NONE

    1996-12-01T23:59:59.000Z

    The Annual Energy Outlook 1997 (AEO97) presents midterm forecasts of energy supply, demand, and prices through 2015 prepared by the Energy Information Administration (EIA). These projections are based on results of EIA`s National Energy Modeling System (NEMS). This report begins with a summary of the reference case, followed by a discussion of the legislative assumptions and evolving legislative and regulatory issues. ``Issues in Focus`` discusses emerging energy issues and other topics of particular interest. It is followed by the analysis of energy market trends. The analysis in AEO97 focuses primarily on a reference case and four other cases that assume higher and lower economic growth and higher and lower world oil prices than in the reference case. Forecast tables for these cases are provided in Appendixes A through C. Appendixes D and E present summaries of the reference case forecasts in units of oil equivalence and household energy expenditures. Twenty-three other cases explore the impacts of varying key assumptions in NEMS--generally, technology penetration, with the major results shown in Appendix F. Appendix G briefly describes NEMS and the major AEO97 assumptions, with a summary table. 114 figs., 22 tabs.

  12. Annual energy outlook 2005 with projections to 2025

    SciTech Connect (OSTI)

    NONE

    2005-02-01T23:59:59.000Z

    The Annual Energy Outlook 2005 (AEO2005) presents midterm forecasts of energy supply, demand, and prices through 2025 prepared by the Energy Information Administration (EIA). The projections are based on results from EIA's National Energy Modelling System (NEMS). The report begins with an 'Overview' summarizing the AEO2005 reference case. The next section, 'Legislation and Regulations', discusses evolving legislative and regulatory issues in the USA. Issues in Focus includes discussions on key energy market issues and examines their potential impacts. In particular, it includes a discussion of the world oil price assumptions used in the reference case and four alternative world oil price cases examined in AEO2005. 'Issues in Focus' is followed by 'Market Trends', which provides a summary of energy market trends in the AEO2005 forecast. The analysis in AEO2005 focuses primarily on a reference case, lower and higher economic growth cases, and four alternative oil price cases, a low world oil price case, an October oil futures case, and two high world oil price cases. Forecast tables for those cases are provided in Appendixes A through D. The major results for the alterative cases, which explore the impacts of varying key assumption in NEMS (such as rates of technology penetration), are summarized in Appendix E. Appendix F briefly describes NEMS and the alternative cases. 115 figs., 38 tabs., 8 apps.

  13. SWEIS annual review - CY2002 : a comparison of CY2002 operations to projections included in the site-wide environmental impact statement for continued operation of Sandia National Laboratories/New Mexico.

    SciTech Connect (OSTI)

    Bayliss, Linda Sue (Outrider Environmental Planning & Technical Services, Cedar Crest, NM); White, Brenda Bailey (The Plus Group, Inc., Albuquerque, NM); Guerrero, Joseph Vincent; Catechis, Christopher Spyros (Outrider Environmental Planning & Technical Services, Cedar Crest, NM)

    2003-10-01T23:59:59.000Z

    The SNL/NM CY2002 SWEIS Annual Review discusses changes in facilities and facility operations that have occurred in selected and notable facilities since source data were collected for the SNL/NM SWEIS (DOE/EIS-0281). The following information is presented: {sm_bullet} An updated overview of SNL/NM selected and notable facilities and infrastructure capabilities. {sm_bullet} An overview of SNL/NM environment, safety, and health programs, including summaries of the purpose, operations, activities, hazards, and hazard controls at relevant facilities and risk management methods for SNL/NM. {sm_bullet} Updated base year activities data, together with related inventories, material consumption, emissions, waste, and resource consumption. {sm_bullet} Appendices summarizing activities and related hazards at SNL/NM individual special, general, and highbay laboratories, and chemical purchases.

  14. 2004 ANNUAL REPORT 2004 NHMFL ANNUAL REPORT

    E-Print Network [OSTI]

    Weston, Ken

    1 Year in Review 11 Year in Review 11 Year in Review 11 Year in Review 1 2 Science & Research formats for individuals with print-related accessibility needs. #12;2004 ANNUAL REPORT 1 Chapter 1 YEAR IN REVIEW 2004: The Magnet Lab Transitions into Its Second Decade Less than six months after stepping down

  15. Development and testing of improved statistical wind power forecasting methods.

    SciTech Connect (OSTI)

    Mendes, J.; Bessa, R.J.; Keko, H.; Sumaili, J.; Miranda, V.; Ferreira, C.; Gama, J.; Botterud, A.; Zhou, Z.; Wang, J. (Decision and Information Sciences); (INESC Porto)

    2011-12-06T23:59:59.000Z

    Wind power forecasting (WPF) provides important inputs to power system operators and electricity market participants. It is therefore not surprising that WPF has attracted increasing interest within the electric power industry. In this report, we document our research on improving statistical WPF algorithms for point, uncertainty, and ramp forecasting. Below, we provide a brief introduction to the research presented in the following chapters. For a detailed overview of the state-of-the-art in wind power forecasting, we refer to [1]. Our related work on the application of WPF in operational decisions is documented in [2]. Point forecasts of wind power are highly dependent on the training criteria used in the statistical algorithms that are used to convert weather forecasts and observational data to a power forecast. In Chapter 2, we explore the application of information theoretic learning (ITL) as opposed to the classical minimum square error (MSE) criterion for point forecasting. In contrast to the MSE criterion, ITL criteria do not assume a Gaussian distribution of the forecasting errors. We investigate to what extent ITL criteria yield better results. In addition, we analyze time-adaptive training algorithms and how they enable WPF algorithms to cope with non-stationary data and, thus, to adapt to new situations without requiring additional offline training of the model. We test the new point forecasting algorithms on two wind farms located in the U.S. Midwest. Although there have been advancements in deterministic WPF, a single-valued forecast cannot provide information on the dispersion of observations around the predicted value. We argue that it is essential to generate, together with (or as an alternative to) point forecasts, a representation of the wind power uncertainty. Wind power uncertainty representation can take the form of probabilistic forecasts (e.g., probability density function, quantiles), risk indices (e.g., prediction risk index) or scenarios (with spatial and/or temporal dependence). Statistical approaches to uncertainty forecasting basically consist of estimating the uncertainty based on observed forecasting errors. Quantile regression (QR) is currently a commonly used approach in uncertainty forecasting. In Chapter 3, we propose new statistical approaches to the uncertainty estimation problem by employing kernel density forecast (KDF) methods. We use two estimators in both offline and time-adaptive modes, namely, the Nadaraya-Watson (NW) and Quantilecopula (QC) estimators. We conduct detailed tests of the new approaches using QR as a benchmark. One of the major issues in wind power generation are sudden and large changes of wind power output over a short period of time, namely ramping events. In Chapter 4, we perform a comparative study of existing definitions and methodologies for ramp forecasting. We also introduce a new probabilistic method for ramp event detection. The method starts with a stochastic algorithm that generates wind power scenarios, which are passed through a high-pass filter for ramp detection and estimation of the likelihood of ramp events to happen. The report is organized as follows: Chapter 2 presents the results of the application of ITL training criteria to deterministic WPF; Chapter 3 reports the study on probabilistic WPF, including new contributions to wind power uncertainty forecasting; Chapter 4 presents a new method to predict and visualize ramp events, comparing it with state-of-the-art methodologies; Chapter 5 briefly summarizes the main findings and contributions of this report.

  16. Incorporating Forecast Uncertainty in Utility Control Center

    SciTech Connect (OSTI)

    Makarov, Yuri V.; Etingov, Pavel V.; Ma, Jian

    2014-07-09T23:59:59.000Z

    Uncertainties in forecasting the output of intermittent resources such as wind and solar generation, as well as system loads are not adequately reflected in existing industry-grade tools used for transmission system management, generation commitment, dispatch and market operation. There are other sources of uncertainty such as uninstructed deviations of conventional generators from their dispatch set points, generator forced outages and failures to start up, load drops, losses of major transmission facilities and frequency variation. These uncertainties can cause deviations from the system balance, which sometimes require inefficient and costly last minute solutions in the near real-time timeframe. This Chapter considers sources of uncertainty and variability, overall system uncertainty model, a possible plan for transition from deterministic to probabilistic methods in planning and operations, and two examples of uncertainty-based fools for grid operations.This chapter is based on work conducted at the Pacific Northwest National Laboratory (PNNL)

  17. FY 1996 solid waste integrated life-cycle forecast container summary volume 1 and 2

    SciTech Connect (OSTI)

    Valero, O.J.

    1996-04-23T23:59:59.000Z

    For the past six years, a waste volume forecast has been collected annually from onsite and offsite generators that currently ship or are planning to ship solid waste to the Westinghouse Hanford Company`s Central Waste Complex (CWC). This document provides a description of the containers expected to be used for these waste shipments from 1996 through the remaining life cycle of the Hanford Site. In previous years, forecast data have been reported for a 30-year time period; however, the life-cycle approach was adopted this year to maintain consistency with FY 1996 Multi-Year Program Plans. This document is a companion report to the more detailed report on waste volumes: WHC-EP0900, FY 1996 Solid Waste Integrated Life-Cycle Forecast Volume Summary. Both of these documents are based on data gathered during the FY 1995 data call and verified as of January, 1996. These documents are intended to be used in conjunction with other solid waste planning documents as references for short and long-term planning of the WHC Solid Waste Disposal Division`s treatment, storage, and disposal activities over the next several decades. This document focuses on the types of containers that will be used for packaging low-level mixed waste (LLMW) and transuranic waste (both non-mixed and mixed) (TRU(M)). The major waste generators for each waste category and container type are also discussed. Containers used for low-level waste (LLW) are described in Appendix A, since LLW requires minimal treatment and storage prior to onsite disposal in the LLW burial grounds. The FY 1996 forecast data indicate that about 100,900 cubic meters of LLMW and TRU(M) waste are expected to be received at the CWC over the remaining life cycle of the site. Based on ranges provided by the waste generators, this baseline volume could fluctuate between a minimum of about 59,720 cubic meters and a maximum of about 152,170 cubic meters.

  18. Annual Report 2008 -- Office of the Chief Financial Officer (OCFO)

    SciTech Connect (OSTI)

    Fernandez, Jeffrey

    2008-12-22T23:59:59.000Z

    It is with great pleasure that I present to you the 2008 Chief Financial Officer's Annual Report. The data included in this report has been compiled from the Budget Office, the Controller, Procurement and Property Management and the Sponsored Projects Office. Also included are some financial comparisons with other DOE Laboratories and a glossary of commonly used acronyms.

  19. November 14, 2000 A Quarterly Forecast of U.S. Trade

    E-Print Network [OSTI]

    Shyy, Wei

    November 14, 2000 A Quarterly Forecast of U.S. Trade in Services and the Current Account, 2000 of Forecast*** We forecast that the services trade surplus, which declined from 1997 to 1998 and edged upward. That is, from a level of $80.6 billion in 1999, we forecast that the services trade surplus will be $80

  20. Smard Grid Software Applications for Distribution Network Load Forecasting Eugene A. Feinberg, Jun Fei

    E-Print Network [OSTI]

    Feinberg, Eugene A.

    of the distribution network. Keywords: load forecasting, feeder, transformer, load pocket, SmartGrid I. INTRODUCTION

  1. Solar irradiance forecasting at multiple time horizons and novel methods to evaluate uncertainty

    E-Print Network [OSTI]

    Marquez, Ricardo

    2012-01-01T23:59:59.000Z

    Solar irradiance data . . . . . . . . . . . . .Accuracy . . . . . . . . . . . . . . . . . Solar Resourcev Uncertainty In Solar Resource: Forecasting

  2. Wind Energy Technology Trends: Comparing and Contrasting Recent Cost and Performance Forecasts (Poster)

    SciTech Connect (OSTI)

    Lantz, E.; Hand, M.

    2010-05-01T23:59:59.000Z

    Poster depicts wind energy technology trends, comparing and contrasting recent cost and performance forecasts.

  3. USING BOX-JENKINS MODELS TO FORECAST FISHERY DYNAMICS: IDENTIFICATION, ESTIMATION, AND CHECKING

    E-Print Network [OSTI]

    ~ is illustrated by developing a model that makes monthly forecasts of skipjack tuna, Katsuwonus pelamis, catches

  4. Development and Demonstration of Advanced Forecasting, Power and Environmental Planning and Management Tools and Best Practices

    Broader source: Energy.gov [DOE]

    Development and Demonstration of Advanced Forecasting, Power and Environmental Planning and Management Tools and Best Practices

  5. ASSESSING THE QUALITY AND ECONOMIC VALUE OF WEATHER AND CLIMATE FORECASTS

    E-Print Network [OSTI]

    Katz, Richard

    INFORMATION SYSTEM · Forecast -- Conditional probability distribution for event Z = z indicates forecast tornado #12;(1.2) FRAMEWORK · Joint Distribution of Observations & Forecasts Observed Weather = Forecast probability p (e.g., induced by Z) · Reliability Diagram Observed weather: = 1 (Adverse weather occurs) = 0

  6. Weather Forecast Data an Important Input into Building Management Systems 

    E-Print Network [OSTI]

    Poulin, L.

    2013-01-01T23:59:59.000Z

    GEPS 21 members ? Provides probabilistic forecasts ? Can give useful outlooks for longer term weather forecasts ? Scribe matrix from GDPS ? includes UMOS post processed model data ? Variables like Temperature, humidity post processed by UMOS ? See...://collaboration.cmc.ec.gc.ca/cmc/cmoi/cmc-prob-products/ ? Link to experimental 3-day outlook of REPS quilts ? http://collaboration.cmc.ec.gc.ca/cmc/cmoi/cmc-prob-products.reps Users can also make their own products from ensemble forecast data? Sample ascii matrix of 2m temperature could be fed...

  7. Natural Priors, CMSSM Fits and LHC Weather Forecasts

    E-Print Network [OSTI]

    Allanach, B C; Cranmer, Kyle; Lester, Christopher G; Weber, Arne M

    2007-08-07T23:59:59.000Z

    ar X iv :0 70 5. 04 87 v3 [ he p- ph ] 5 J ul 20 07 Preprint typeset in JHEP style - HYPER VERSION DAMTP-2007-18 Cavendish-HEP-2007-03 MPP-2007-36 Natural Priors, CMSSM Fits and LHC Weather Forecasts Benjamin C Allanach1, Kyle Cranmer2... ’s likely discoveries. There are big differences between nature of the questions answered by a forecast, and the ques- tions that will be answered by the experiments themselves when they have acquired compelling data. A weather forecast predicting “severe...

  8. Petroleum Marketing Annual 2009

    U.S. Energy Information Administration (EIA) Indexed Site

    the 2010 data. Petroleum Marketing Annual --- Full report in PDF (1.2 MB) Summary Statistics Summary Statistics Tables PDF 1 Crude Oil Prices PDF TXT 1A Refiner Acquisition Cost...

  9. JAHRESBERICHT ANNUAL REPORT07

    E-Print Network [OSTI]

    Falge, Eva

    JAHRESBERICHT ANNUAL REPORT07 #12;Forschungsausblick Klaus J. Hopt über Corporate Governance Ferdi Schüth über zukünftige Energiesysteme Axel Ullrich über innovative Krebsmedikamente Research Outlook Klaus J. Hopt about Corporate Governance Ferdi Schüth about Future Energy Systems Axel Ullrich about New

  10. 2010 Annual Report

    SciTech Connect (OSTI)

    none,

    2010-01-01T23:59:59.000Z

    This annual report includes: an overview of Western; approaches for future hydropower and transmission service; major achievements in FY 2010; FY 2010 customer Integrated Resource Planning, or IRP, survey; and financial data.

  11. AFN Annual Convention

    Broader source: Energy.gov [DOE]

    The Alaska Federation of Natives (AFN) Convention is the largest representative annual gathering in the United States of any Native peoples. Delegates are elected on a population formula of one...

  12. Annual Energy Outlook 2013

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mayer Brown Annual Global Energy Conference May 15, 2014 | Houston, TX By Adam Sieminski, EIA Administrator The U.S. has experienced a rapid increase in natural gas and oil...

  13. Annual Energy Outlook 2012

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    5 U.S. Energy Information Administration | Annual Energy Outlook 2012 Regional maps Figure F4. Oil and gas supply model regions Figure F4. Oil and Gas Supply Model Regions Atlantic...

  14. 2009 Annual Report

    SciTech Connect (OSTI)

    none,

    2009-01-01T23:59:59.000Z

    This annual report includes: a brief overview of Western; some of our major achievements in FY 2009; FY 2009 customer Integrated Resource Planning, or IRP, survey; and financial data.

  15. BCP Annual Rate Process

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2015 BCP Annual Rate Process (FY 2016 Base Charge & Rate) Informal Process Rate Activity Schedule (doc) Informal Customer Meeting Thursday March 11, 2015 at 10:30 A.M. Conf Rms 3&4...

  16. Petroleum supply annual, 1997. Volume 2

    SciTech Connect (OSTI)

    NONE

    1998-06-01T23:59:59.000Z

    The Petroleum Supply Annual (PSA) contains information on the supply and disposition of crude oil and petroleum products. The publication reflects data that were collected from the petroleum industry during 1997 through monthly surveys. The PSA is divided into two volumes. The first volume contains three sections: Summary Statistics, Detailed Statistics, and Refinery Statistics; each with final annual data. The second volume contains final statistics for each month of 1997, and replaces data previously published in the Petroleum Supply Monthly (PSM). The tables in Volumes 1 and 2 are similarly numbered to facilitate comparison between them. Explanatory Notes, located at the end of this publication, present information describing data collection, sources, estimation methodology, data quality control procedures, modifications to reporting requirements and interpretation of tables. Industry terminology and product definitions are listed alphabetically in the Glossary. 35 tabs.

  17. Petroleum supply annual 1998: Volume 2

    SciTech Connect (OSTI)

    NONE

    1999-06-01T23:59:59.000Z

    The Petroleum Supply Annual (PSA) contains information on the supply and disposition of crude oil and petroleum products. The publication reflects data that were collected from the petroleum industry during 1998 through monthly surveys. The PSA is divided into two volumes. The first volume contains three sections: Summary Statistics, Detailed Statistics, and Refinery Statistics; each with final annual data. This second volume contains final statistics for each month of 1998, and replaces data previously published in the Petroleum Supply Monthly (PSM). The tables in Volumes 1 and 2 are similarly numbered to facilitate comparison between them. Explanatory Notes, located at the end of this publication, present information describing data collection, sources, estimation methodology, data quality control procedures, modifications to reporting requirements and interpretation of tables. Industry terminology and product definitions are listed alphabetically in the Glossary. 35 tabs.

  18. Petroleum supply annual 1996: Volume 2

    SciTech Connect (OSTI)

    NONE

    1997-06-01T23:59:59.000Z

    The Petroleum Supply Annual (PSA) contains information on the supply and disposition of crude oil and petroleum products. The publication reflects data that were collected from the petroleum industry during 1996 through monthly surveys. The PSA is divided into two volumes. The first volume contains three sections: Summary Statistics, Detailed Statistics, and Refinery Capacity; each with final annual data. The second volume contains final statistics for each month of 1996, and replaces data previously published in the Petroleum Supply Monthly (PSM). The tables in Volumes 1 and 2 are similarly numbered to facilitate comparison between them. Explanatory Notes, located at the end of this publication, present information describing data collection, sources, estimation methodology, data quality control procedures, modifications to reporting requirements and interpretation of tables. Industry terminology and product definitions are listed alphabetically in the Glossary. 35 tabs.

  19. Petroleum supply annual 1995: Volume 2

    SciTech Connect (OSTI)

    NONE

    1996-06-01T23:59:59.000Z

    The Petroleum Supply Annual (PSA) contains information on the supply and disposition of crude oil and petroleum products. The publication reflects data that were collected from the petroleum industry during 1995 through monthly surveys. The PSA is divided into two volumes. This first volume contains three sections: Summary Statistics, Detailed Statistics, and selected Refinery Statistics each with final annual data. The second volume contains final statistics for each month of 1995, and replaces data previously published in the Petroleum Supply Monthly (PSM). The tables in Volumes 1 and 2 are similarly numbered to facilitate comparison between them. Explanatory Notes, located at the end of this publication, present information describing data collection, sources, estimation methodology, data quality control procedures, modifications to reporting requirements and interpretation of tables. Industry terminology and product definitions are listed alphabetically in the Glossary.

  20. Exploring the Forecasting Potential of Company Annual Reports Xin Ying Qiu

    E-Print Network [OSTI]

    Street, Nick

    features can be further studied to understand their roles as indicators of company's future performance that is as useful as the financial ratios to financial analysts while predicting the company's future prospects changes, reasons for revenue and cost changes, planned expenditures, known trends, and future liquidity

  1. 18 Bureau of Meteorology Annual Report 201314 Hazards, warnings and forecasts

    E-Print Network [OSTI]

    Greenslade, Diana

    Australia Package and the United Nations International Strategy for Disaster Reduction. The portfolio also of Foreign Affairs and Trade. Key stakeholders and users include: · the general public and local communities; · industry sectors such as aviation, finance and insurance, transport, mining and energy, marine

  2. Natural gas annual 1995

    SciTech Connect (OSTI)

    NONE

    1996-11-01T23:59:59.000Z

    The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1995 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. This is followed by tables summarizing natural gas supply and disposition from 1991 to 1995 for each Census Division and each State. Annual historical data are shown at the national level.

  3. Natural gas annual 1994

    SciTech Connect (OSTI)

    NONE

    1995-11-17T23:59:59.000Z

    The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1994 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. This is followed by tables summarizing natural gas supply and disposition from 1990 to 1994 for each Census Division and each State. Annual historical data are shown at the national level.

  4. Optimally controlling hybrid electric vehicles using path forecasting

    E-Print Network [OSTI]

    Katsargyri, Georgia-Evangelina

    2008-01-01T23:59:59.000Z

    Hybrid Electric Vehicles (HEVs) with path-forecasting belong to the class of fuel efficient vehicles, which use external sensory information and powertrains with multiple operating modes in order to increase fuel economy. ...

  5. Recently released EIA report presents international forecasting data

    SciTech Connect (OSTI)

    NONE

    1995-05-01T23:59:59.000Z

    This report presents information from the Energy Information Administration (EIA). Articles are included on international energy forecasting data, data on the use of home appliances, gasoline prices, household energy use, and EIA information products and dissemination avenues.

  6. Grid-scale Fluctuations and Forecast Error in Wind Power

    E-Print Network [OSTI]

    G. Bel; C. P. Connaughton; M. Toots; M. M. Bandi

    2015-03-29T23:59:59.000Z

    The fluctuations in wind power entering an electrical grid (Irish grid) were analyzed and found to exhibit correlated fluctuations with a self-similar structure, a signature of large-scale correlations in atmospheric turbulence. The statistical structure of temporal correlations for fluctuations in generated and forecast time series was used to quantify two types of forecast error: a timescale error ($e_{\\tau}$) that quantifies the deviations between the high frequency components of the forecast and the generated time series, and a scaling error ($e_{\\zeta}$) that quantifies the degree to which the models fail to predict temporal correlations in the fluctuations of the generated power. With no $a$ $priori$ knowledge of the forecast models, we suggest a simple memory kernel that reduces both the timescale error ($e_{\\tau}$) and the scaling error ($e_{\\zeta}$).

  7. OCTOBER-NOVEMBER FORECAST FOR 2014 CARIBBEAN BASIN HURRICANE ACTIVITY

    E-Print Network [OSTI]

    Collett Jr., Jeffrey L.

    and hurricanes, but instead predicts both hurricane days and Accumulated Cyclone Energy (ACE). Typically, while) tropical cyclone (TC) activity. We have decided to issue this forecast, because Klotzbach (2011) has

  8. Network Bandwidth Utilization Forecast Model on High Bandwidth Network

    SciTech Connect (OSTI)

    Yoo, Wucherl; Sim, Alex

    2014-07-07T23:59:59.000Z

    With the increasing number of geographically distributed scientific collaborations and the scale of the data size growth, it has become more challenging for users to achieve the best possible network performance on a shared network. We have developed a forecast model to predict expected bandwidth utilization for high-bandwidth wide area network. The forecast model can improve the efficiency of resource utilization and scheduling data movements on high-bandwidth network to accommodate ever increasing data volume for large-scale scientific data applications. Univariate model is developed with STL and ARIMA on SNMP path utilization data. Compared with traditional approach such as Box-Jenkins methodology, our forecast model reduces computation time by 83.2percent. It also shows resilience against abrupt network usage change. The accuracy of the forecast model is within the standard deviation of the monitored measurements.

  9. A methodology for forecasting carbon dioxide flooding performance

    E-Print Network [OSTI]

    Marroquin Cabrera, Juan Carlos

    1998-01-01T23:59:59.000Z

    A methodology was developed for forecasting carbon dioxide (CO2) flooding performance quickly and reliably. The feasibility of carbon dioxide flooding in the Dollarhide Clearfork "AB" Unit was evaluated using the methodology. This technique is very...

  10. Forecasting and strategic inventory placement for gas turbine aftermarket spares

    E-Print Network [OSTI]

    Simmons, Joshua T. (Joshua Thomas)

    2007-01-01T23:59:59.000Z

    This thesis addresses the problem of forecasting demand for Life Limited Parts (LLPs) in the gas turbine engine aftermarket industry. It is based on work performed at Pratt & Whitney, a major producer of turbine engines. ...

  11. Optimally Controlling Hybrid Electric Vehicles using Path Forecasting

    E-Print Network [OSTI]

    Kolmanovsky, Ilya V.

    The paper examines path-dependent control of Hybrid Electric Vehicles (HEVs). In this approach we seek to improve HEV fuel economy by optimizing charging and discharging of the vehicle battery depending on the forecasted ...

  12. Post-Construction Evaluation of Forecast Accuracy Pavithra Parthasarathi1

    E-Print Network [OSTI]

    Levinson, David M.

    Post-Construction Evaluation of Forecast Accuracy Pavithra Parthasarathi1 David Levinson 2 February, the assumed networks to the actual in-place networks and other travel behavior assumptions that went

  13. africa conditional forecasts: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    forecasts had the potential to improve resource management but instead played only a marginal role in real-world decision making. 1 A widespread perception that the quality of the...

  14. accident risk forecasting: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    forecasts had the potential to improve resource management but instead played only a marginal role in real-world decision making. 1 A widespread perception that the quality of the...

  15. Forecasting Volatility in Stock Market Using GARCH Models

    E-Print Network [OSTI]

    Yang, Xiaorong

    2008-01-01T23:59:59.000Z

    Forecasting volatility has held the attention of academics and practitioners all over the world. The objective for this master's thesis is to predict the volatility in stock market by using generalized autoregressive conditional heteroscedasticity(GARCH...

  16. Forecasting Returns and Volatilities in GARCH Processes Using the Bootstrap

    E-Print Network [OSTI]

    Romo, Juan

    Forecasting Returns and Volatilities in GARCH Processes Using the Bootstrap Lorenzo Pascual, Juan generated by GARCH processes. The main advantage over other bootstrap methods previously proposed for GARCH by having conditional heteroscedasticity. Generalized Autoregressive Conditionally Heteroscedastic (GARCH

  17. Adaptive sampling and forecasting with mobile sensor networks

    E-Print Network [OSTI]

    Choi, Han-Lim

    2009-01-01T23:59:59.000Z

    This thesis addresses planning of mobile sensor networks to extract the best information possible out of the environment to improve the (ensemble) forecast at some verification region in the future. To define the information ...

  18. Dispersion in analysts' forecasts: does it make a difference? 

    E-Print Network [OSTI]

    Adut, Davit

    2004-09-30T23:59:59.000Z

    Financial analysts are an important group of information intermediaries in the capital markets. Their reports, including both earnings forecasts and stock recommendations, are widely transmitted and have a significant impact on stock prices (Womack...

  19. FINAL DEMAND FORECAST FORMS AND INSTRUCTIONS FOR THE 2007

    E-Print Network [OSTI]

    ......................................................................... 11 3. Demand Side Management (DSM) Program Impacts................................... 13 4. Demand Sylvia Bender Manager DEMAND ANALYSIS OFFICE Scott W. Matthews Chief Deputy Director B.B. Blevins Forecast Methods and Models ....................................................... 14 5. Demand-Side

  20. An econometric analysis and forecasting of Seoul office market

    E-Print Network [OSTI]

    Kim, Kyungmin

    2011-01-01T23:59:59.000Z

    This study examines and forecasts the Seoul office market, which is going to face a big supply in the next few years. After reviewing several previous studies on the Dynamic model and the Seoul Office market, this thesis ...

  1. Improving the Accuracy of Solar Forecasting Funding Opportunity

    Broader source: Energy.gov [DOE]

    Through the Improving the Accuracy of Solar Forecasting Funding Opportunity, DOE is funding solar projects that are helping utilities, grid operators, solar power plant owners, and other...

  2. Variable Selection and Inference for Multi-period Forecasting Problems

    E-Print Network [OSTI]

    Pesaran, M Hashem; Pick, Andreas; Timmermann, Allan

    Variable Selection and Inference for Multi-period Forecasting Problems? M. Hashem Pesaran Cambridge University and USC Andreas Pick De Nederlandsche Bank and Cambridge University, CIMF Allan Timmermann UC San Diego and CREATES January 26, 2009...

  3. Grid-scale Fluctuations and Forecast Error in Wind Power

    E-Print Network [OSTI]

    Bel, G; Toots, M; Bandi, M M

    2015-01-01T23:59:59.000Z

    The fluctuations in wind power entering an electrical grid (Irish grid) were analyzed and found to exhibit correlated fluctuations with a self-similar structure, a signature of large-scale correlations in atmospheric turbulence. The statistical structure of temporal correlations for fluctuations in generated and forecast time series was used to quantify two types of forecast error: a timescale error ($e_{\\tau}$) that quantifies the deviations between the high frequency components of the forecast and the generated time series, and a scaling error ($e_{\\zeta}$) that quantifies the degree to which the models fail to predict temporal correlations in the fluctuations of the generated power. With no $a$ $priori$ knowledge of the forecast models, we suggest a simple memory kernel that reduces both the timescale error ($e_{\\tau}$) and the scaling error ($e_{\\zeta}$).

  4. Dispersion in analysts' forecasts: does it make a difference?

    E-Print Network [OSTI]

    Adut, Davit

    2004-09-30T23:59:59.000Z

    Financial analysts are an important group of information intermediaries in the capital markets. Their reports, including both earnings forecasts and stock recommendations, are widely transmitted and have a significant impact on stock prices (Womack...

  5. Mesoscale predictability and background error convariance estimation through ensemble forecasting

    E-Print Network [OSTI]

    Ham, Joy L

    2002-01-01T23:59:59.000Z

    Over the past decade, ensemble forecasting has emerged as a powerful tool for numerical weather prediction. Not only does it produce the best estimate of the state of the atmosphere, it also could quantify the uncertainties associated with the best...

  6. Streamflow forecasting for large-scale hydrologic systems

    E-Print Network [OSTI]

    Awwad, Haitham Munir

    1991-01-01T23:59:59.000Z

    STREAMFLOW FORECASTING FOR LARGE-SCALE HYDROLOGIC SYSTEMS A Thesis by HAITHAM MUNIR AWWAD Submitted to the Office of Graduate Studies of Texas AkM University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May... 1991 Major Subject: Civil Engineering STREAMFLOW FORECASTING FOR LARGE-SCALE HYDROLOGIC SYSTEMS A Thesis by HAITHAM MUNIR AWWAD Approved as to style and content by: uan B. Valdes (Chair of Committee) alph A. Wurbs (Member) Marshall J. Mc...

  7. A model for short term electric load forecasting

    E-Print Network [OSTI]

    Tigue, John Robert

    1975-01-01T23:59:59.000Z

    A MODEL FOR SHORT TERM ELECTRIC LOAD FORECASTING A Thesis by JOHN ROBERT TIGUE, III Submitted to the Graduate College of Texas ASM University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE May 1975 Major... Subject: Electrical Engineering A MODEL FOR SHORT TERM ELECTRIC LOAD FORECASTING A Thesis by JOHN ROBERT TIGUE& III Approved as to style and content by: (Chairman of Committee) (Head Depart t) (Member) ;(Me r (Member) (Member) May 1975 ABSTRACT...

  8. Compiler Comparisons

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Compiler Comparisons Using a set of benchmarks described below, different optimization options for the different compilers on Edison are compared. The compilers are also...

  9. Solid waste integrated forecast technical (SWIFT) report: FY1997 to FY 2070, Revision 1

    SciTech Connect (OSTI)

    Valero, O.J.; Templeton, K.J.; Morgan, J.

    1997-01-07T23:59:59.000Z

    This web site provides an up-to-date report on the radioactive solid waste expected to be managed by Hanford's Waste Management (WM) Project from onsite and offsite generators. It includes: an overview of Hanford-wide solid waste to be managed by the WM Project; program-level and waste class-specific estimates; background information on waste sources; and comparisons with previous forecasts and with other national data sources. This web site does not include: liquid waste (current or future generation); waste to be managed by the Environmental Restoration (EM-40) contractor (i.e., waste that will be disposed of at the Environmental Restoration Disposal Facility (ERDF)); or waste that has been received by the WM Project to date (i.e., inventory waste). The focus of this web site is on low-level mixed waste (LLMW), and transuranic waste (both non-mixed and mixed) (TRU(M)). Some details on low-level waste and hazardous waste are also provided. Currently, this web site is reporting data th at was requested on 10/14/96 and submitted on 10/25/96. The data represent a life cycle forecast covering all reported activities from FY97 through the end of each program's life cycle. Therefore, these data represent revisions from the previous FY97.0 Data Version, due primarily to revised estimates from PNNL. There is some useful information about the structure of this report in the SWIFT Report Web Site Overview.

  10. Long-term Industrial Energy Forecasting (LIEF) model (18-sector version)

    SciTech Connect (OSTI)

    Ross, M.H. [Univ. of Michigan, Ann Arbor, MI (US). Dept. of Physics; Thimmapuram, P.; Fisher, R.E.; Maciorowski, W. [Argonne National Lab., IL (US)

    1993-05-01T23:59:59.000Z

    The new 18-sector Long-term Industrial Energy Forecasting (LIEF) model is designed for convenient study of future industrial energy consumption, taking into account the composition of production, energy prices, and certain kinds of policy initiatives. Electricity and aggregate fossil fuels are modeled. Changes in energy intensity in each sector are driven by autonomous technological improvement (price-independent trend), the opportunity for energy-price-sensitive improvements, energy price expectations, and investment behavior. Although this decision-making framework involves more variables than the simplest econometric models, it enables direct comparison of an econometric approach with conservation supply curves from detailed engineering analysis. It also permits explicit consideration of a variety of policy approaches other than price manipulation. The model is tested in terms of historical data for nine manufacturing sectors, and parameters are determined for forecasting purposes. Relatively uniform and satisfactory parameters are obtained from this analysis. In this report, LIEF is also applied to create base-case and demand-side management scenarios to briefly illustrate modeling procedures and outputs.

  11. Probabilistic wind power forecasting -European Wind Energy Conference -Milan, Italy, 7-10 May 2007 Probabilistic short-term wind power forecasting

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Probabilistic wind power forecasting - European Wind Energy Conference - Milan, Italy, 7-10 May 2007 Probabilistic short-term wind power forecasting based on kernel density estimators J´er´emie Juban jeremie.juban@ensmp.fr; georges.kariniotakis@ensmp.fr Abstract Short-term wind power forecasting tools

  12. Accounting for fuel price risk: Using forward natural gas prices instead of gas price forecasts to compare renewable to natural gas-fired generation

    E-Print Network [OSTI]

    Bolinger, Mark; Wiser, Ryan; Golove, William

    2003-01-01T23:59:59.000Z

    vs. AEO 2001 Price Forecast Natural Gas Price (nominal $/if forwards forecasts) or natural gas-fired generation (ifs reference case forecast of natural gas prices delivered to

  13. energy data + forecasting | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindey Wind Home Rmckeel's Home Kyoung's picture Submitted

  14. Solid Waste Integrated Forecast Technical (SWIFT) Report FY2001 to FY2046 Volume 1

    SciTech Connect (OSTI)

    BARCOT, R.A.

    2000-08-31T23:59:59.000Z

    This report provides up-to-date life cycle information about the radioactive solid waste expected to be managed by Hanford's Waste Management (WM) Project from onsite and offsite generators. It includes: an overview of Hanford-wide solid waste to be managed by the WM Project; program-level and waste class-specific estimates; background information on waste sources; and comparisons to previous forecasts and other national data sources. This report does not include: waste to be managed by the Environmental Restoration (EM-40) contractor (i.e., waste that will be disposed of at the Environmental Restoration Disposal Facility (ERDF)); waste that has been received by the WM Project to date (i.e., inventory waste); mixed low-level waste that will be processed and disposed by the River Protection Program; and liquid waste (current or future generation). Although this report currently does not include liquid wastes, they may be added as information becomes available.

  15. Annual Report GreenTouch 20102011 Annual Report

    E-Print Network [OSTI]

    Lefèvre, Laurent

    2010­2011 Annual Report #12;1 GreenTouch 2010­2011 Annual Report Contents Chairman's Letter............................................................ 30 Service Energy Aware Sustainable Optical Networks (SEASON............................................................................................ 43 Beyond Cellular Green Generation (BCG2

  16. Annual Performance Report FY 2004 Annual Performance Plan FY...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DOEIG-APP-007 Annual Performance Report FY 2004 Annual Performance Plan FY 2005, DOEIG-APP-007 I am pleased to present the Office of Inspector General's (OIG's) combined...

  17. Annual Site EnvironmentalAnnual Site Environmental ReportReport

    E-Print Network [OSTI]

    ) .................................................8 3.1.3 National Environmental Policy Act (NEPA#12;Annual Site EnvironmentalAnnual Site Environmental ReportReport for Calendar Year1997 ENVIRONMENTAL REPORT Table of Contents Page 1.0 EXECUTIVE SUMMARY

  18. Survey of Variable Generation Forecasting in the West: August 2011 - June 2012

    SciTech Connect (OSTI)

    Porter, K.; Rogers, J.

    2012-04-01T23:59:59.000Z

    This report surveyed Western Interconnection Balancing Authorities regarding their implementation of variable generation forecasting, the lessons learned to date, and recommendations they would offer to other Balancing Authorities who are considering variable generation forecasting. Our survey found that variable generation forecasting is at an early implementation stage in the West. Eight of the eleven Balancing Authorities interviewed began forecasting in 2008 or later. It also appears that less than one-half of the Balancing Authorities in the West are currently utilizing variable generation forecasting, suggesting that more Balancing Authorities in the West will engage in variable generation forecasting should more variable generation capacity be added.

  19. Natural gas annual 1997

    SciTech Connect (OSTI)

    NONE

    1998-10-01T23:59:59.000Z

    The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1997 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. This is followed by tables summarizing natural gas supply and disposition from 1993 to 1997 for each Census Division and each State. Annual historical data are shown at the national level. 27 figs., 109 tabs.

  20. International energy annual 1996

    SciTech Connect (OSTI)

    NONE

    1998-02-01T23:59:59.000Z

    The International Energy Annual presents an overview of key international energy trends for production, consumption, imports, and exports of primary energy commodities in over 220 countries, dependencies, and areas of special sovereignty. Also included are population and gross domestic product data, as well as prices for crude oil and petroleum products in selected countries. Renewable energy reported in the International Energy Annual includes hydroelectric power, geothermal, solar, and wind electric power, biofuels energy for the US, and biofuels electric power for Brazil. New in the 1996 edition are estimates of carbon dioxide emissions from the consumption of petroleum and coal, and the consumption and flaring of natural gas. 72 tabs.

  1. Annual Site Environmental Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternative FuelsSanta3 Table 3.EnergyAug412 ArchiveAnnualAnnual2013

  2. ANNUAL SECURITY FIRE SAFETY REPORT

    E-Print Network [OSTI]

    ANNUAL SECURITY AND FIRE SAFETY REPORT OCTOBER 1, 2013 DARTMOUTH COLLEGE http://www.dartmouth.edu/~security/ #12;1 Table of Contents MESSAGE FROM THE DIRECTOR OF SAFETY AND SECURITY................................................................................................................................................................... 7 ANNUAL SECURITY REPORT

  3. Accounting for fuel price risk: Using forward natural gas prices instead of gas price forecasts to compare renewable to natural gas-fired generation

    SciTech Connect (OSTI)

    Bolinger, Mark; Wiser, Ryan; Golove, William

    2003-08-13T23:59:59.000Z

    Against the backdrop of increasingly volatile natural gas prices, renewable energy resources, which by their nature are immune to natural gas fuel price risk, provide a real economic benefit. Unlike many contracts for natural gas-fired generation, renewable generation is typically sold under fixed-price contracts. Assuming that electricity consumers value long-term price stability, a utility or other retail electricity supplier that is looking to expand its resource portfolio (or a policymaker interested in evaluating different resource options) should therefore compare the cost of fixed-price renewable generation to the hedged or guaranteed cost of new natural gas-fired generation, rather than to projected costs based on uncertain gas price forecasts. To do otherwise would be to compare apples to oranges: by their nature, renewable resources carry no natural gas fuel price risk, and if the market values that attribute, then the most appropriate comparison is to the hedged cost of natural gas-fired generation. Nonetheless, utilities and others often compare the costs of renewable to gas-fired generation using as their fuel price input long-term gas price forecasts that are inherently uncertain, rather than long-term natural gas forward prices that can actually be locked in. This practice raises the critical question of how these two price streams compare. If they are similar, then one might conclude that forecast-based modeling and planning exercises are in fact approximating an apples-to-apples comparison, and no further consideration is necessary. If, however, natural gas forward prices systematically differ from price forecasts, then the use of such forecasts in planning and modeling exercises will yield results that are biased in favor of either renewable (if forwards < forecasts) or natural gas-fired generation (if forwards > forecasts). In this report we compare the cost of hedging natural gas price risk through traditional gas-based hedging instruments (e.g., futures, swaps, and fixed-price physical supply contracts) to contemporaneous forecasts of spot natural gas prices, with the purpose of identifying any systematic differences between the two. Although our data set is quite limited, we find that over the past three years, forward gas prices for durations of 2-10 years have been considerably higher than most natural gas spot price forecasts, including the reference case forecasts developed by the Energy Information Administration (EIA). This difference is striking, and implies that resource planning and modeling exercises based on these forecasts over the past three years have yielded results that are biased in favor of gas-fired generation (again, presuming that long-term stability is desirable). As discussed later, these findings have important ramifications for resource planners, energy modelers, and policy-makers.

  4. 2011 Quality Council Annual Report

    Broader source: Energy.gov [DOE]

    DEPARTMENT OF ENERGY QUALITY COUNCIL ANNUAL REPORT For Calendar Year 2011 Office of Health Safety and Security

  5. NCAI 71st Annual Convention

    Broader source: Energy.gov [DOE]

    Save the date for the National Congress of American Indians (NCAI) 71st Annual Convention at the Hyatt Regency Atlanta.

  6. Postdoctoral Research Awards Annual Research Meeting: Joseph...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Joseph Mondloch Postdoctoral Research Awards Annual Research Meeting: Joseph Mondloch Postdoctoral Research Awards Annual Research Meeting: Joseph Mondloch poster presentation....

  7. AnnualReport Franz Graf

    E-Print Network [OSTI]

    Middeldorp, Aart

    2011 AnnualReport #12;Franz Graf Cover design adapted from "76543210" Graphite and India ink with symbolic representations of CoSMIC DIMEnSIonS. [...] And yet the sequences of lines are laced Schmidt (excerpts) Ornament, symbol, reversed writing, shadow lines #12;#12;AnnuAl RepoRt 2011 Annual

  8. Data Management Group Annual Report

    E-Print Network [OSTI]

    Toronto, University of

    Data Management Group Annual Report 1997 #12;Data Management Group Annual Report 1997 A co-operative project that is jointly funded by members of the Toronto Area Transportation Planning Data Collection: (416) 978-3941 #12;Data Management Group 1997 Annual Report Table of Contents 1 INTRODUCTION

  9. 2012ANNUAL REPORT AND ACCOUNTS

    E-Print Network [OSTI]

    Birmingham, University of

    and Estimation Techniques 21 Consolidated Income and Expenditure Account 25 Balance Sheets 26 Consolidated Cash Flow Statement 28 Consolidated Statement of Total Recognised Gains and Losses 29 Notes to the Accounts2011 2012ANNUAL REPORT AND ACCOUNTS #12;Annual Report and Accounts 2011/12 32 Annual Report

  10. A NOVEL METHODOLOGY FOR COMPARISON OF DIFFERENT WIND POWER RAMP CHARACTERIZATION APPROACHES

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    A NOVEL METHODOLOGY FOR COMPARISON OF DIFFERENT WIND POWER RAMP CHARACTERIZATION APPROACHES Arthur.bossavy@mines-paristech.fr Telephone : +33.4.93.95.74.80, Fax : +33.4.93.95.75.35 ABSTRACT Wind power forecasting is recognized as a means to facilitate large scale wind power integration into power systems. Recently, focus has been

  11. University Library Annual Report

    E-Print Network [OSTI]

    Brierley, Andrew

    and a recognition of the need to provide zones within the building for different types of library user behaviourUniversity Library Annual Report 2011-2012 #12;Academic Year 2011-12 brought with it another period of turbulent change ­ most of it positive ­ for the University Library. The major and very tangible difference

  12. International Energy Annual, 1992

    SciTech Connect (OSTI)

    Not Available

    1994-01-14T23:59:59.000Z

    This report is prepared annually and presents the latest information and trends on world energy production and consumption for petroleum, natural gas, coal, and electricity. Trade and reserves are shown for petroleum, natural gas, and coal. Prices are included for selected petroleum products. Production and consumption data are reported in standard units as well as British thermal units (Btu) and joules.

  13. Annual Report and Accounts

    E-Print Network [OSTI]

    ;#12;Forest Research Annual Report and Accounts 2010­2011 Presented to the House of Commons pursuant to Section 7 of The Government Resources and Accounts Act 2000 Ordered by the House of Commons to be printed ...................................................... 12 Centre for Human and Ecological Sciences

  14. NERSC Annual Report 2005

    SciTech Connect (OSTI)

    Hules (Ed.), John

    2006-07-31T23:59:59.000Z

    The National Energy Research Scientific Computing Center (NERSC) is the premier computational resource for scientific research funded by the DOE Office of Science. The Annual Report includes summaries of recent significant and representative computational science projects conducted on NERSC systems as well as information about NERSC's current and planned systems and services.

  15. Annual Report Competence Center

    E-Print Network [OSTI]

    Sandoghdar, Vahid

    : Fröhlich Druck AG www.froehlich.ch 4 #12;Contents 1 About C4 7 2 The Year in Review 9 3 The C4 Network;2 The Year in Review About this C4 Annual Report Over the past two decades, the C4 Network has grown

  16. 2008 annual report Chapterhead

    E-Print Network [OSTI]

    Weston, Ken

    -mail hedick@magnet.fsu.edu. Chapter 1 2008 Year in review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194 researChhighlights #12;2008 annual report CHapter 1 3 2008-Yearinreview Chapter 1: 2008 - Year in review all user programs and magnets operated throughout 2008! that is really saying something, because

  17. NERSC Annual Report 2002

    SciTech Connect (OSTI)

    Hules, John

    2003-01-31T23:59:59.000Z

    The National Energy Research Scientific Computing Center (NERSC) is the primary computational resource for scientific research funded by the DOE Office of Science. The Annual Report for FY2002 includes a summary of recent computational science conducted on NERSC systems (with abstracts of significant and representative projects), and information about NERSC's current and planned systems and service

  18. ANNUAL REPORT 2011 OFFICEOFSPONSOREDPROJECTS

    E-Print Network [OSTI]

    Karonis, Nicholas T.

    Projects presents the Fiscal Year 2011 Annual Report on external funding at Northern Illinois University where the University experienced a significant increase in funding due to both the continued to comprehensively account for external funding for the university's core mission activities, this year's report also

  19. TRANSPORTATION Annual Report

    E-Print Network [OSTI]

    Minnesota, University of

    2003 CENTER FOR TRANSPORTATION STUDIES Annual Report #12;Center for Transportation Studies University of Minnesota 200 Transportation and Safety Building 511 Washington Avenue S.E. Minneapolis, MN publication is a report of transportation research, education, and outreach activities for the period July

  20. Guaranteed annual wages

    E-Print Network [OSTI]

    Weber, Donald Albert

    1957-01-01T23:59:59.000Z

    in the world, wms in a serious soon omio slump in 1937? At, that time, U? S? Steel had 260, %R employees on 17 7'guaranteed Annual Wag~ill It Workt?" ~Sio ~S +~s i , Narch 2, 1955, Vol. 66, No. 5, p, 7, 5? 6. 70 its payrolls If the company would have...

  1. Uranium industry annual 1998

    SciTech Connect (OSTI)

    NONE

    1999-04-22T23:59:59.000Z

    The Uranium Industry Annual 1998 (UIA 1998) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing. It contains data for the period 1989 through 2008 as collected on the Form EIA-858, ``Uranium Industry Annual Survey.`` Data provides a comprehensive statistical characterization of the industry`s activities for the survey year and also include some information about industry`s plans and commitments for the near-term future. Data on uranium raw materials activities for 1989 through 1998, including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment, are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2008, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, and uranium inventories, are shown in Chapter 2. The methodology used in the 1998 survey, including data edit and analysis, is described in Appendix A. The methodologies for estimation of resources and reserves are described in Appendix B. A list of respondents to the ``Uranium Industry Annual Survey`` is provided in Appendix C. The Form EIA-858 ``Uranium Industry Annual Survey`` is shown in Appendix D. For the readers convenience, metric versions of selected tables from Chapters 1 and 2 are presented in Appendix E along with the standard conversion factors used. A glossary of technical terms is at the end of the report. 24 figs., 56 tabs.

  2. Annual Energy Outlook 2012

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    A n n u a l E n e r g y Ou t l o o k 2 0 1 2 For further information . . . The Annual Energy Outlook 2012 was prepared by the U.S. Energy Information Administration (EIA), under...

  3. NERSC Annual Report 2004

    SciTech Connect (OSTI)

    Hules, John; Bashor, Jon; Yarris, Lynn; McCullough, Julie; Preuss, Paul; Bethel, Wes

    2005-04-15T23:59:59.000Z

    The National Energy Research Scientific Computing Center (NERSC) is the premier computational resource for scientific research funded by the DOE Office of Science. The Annual Report includes summaries of recent significant and representative computational science projects conducted on NERSC systems as well as information about NERSC's current and planned systems and services.

  4. Trinity College Annual Fund

    E-Print Network [OSTI]

    Lasenby, Joan

    Trinity College Annual Fund 2014 #12;How did Trinity influence your future? By introducing Trinity the Trinity in Cambe programme. Working together, we expect Trin and IntoUniversity to make highe education, the likelihood of getting university and attitudes to learning" Trinity has a long history of nurturing

  5. 2014 Annual AFN Convention

    Broader source: Energy.gov [DOE]

    The AFN Convention is the largest representative annual gathering in the United States of any Native peoples. In addition to the memorable keynote speeches, the expert panels and special reports, the Convention features several evenings of cultural performances known as Quyana Alaska.

  6. Sixth Northwest Conservation and Electric Power Plan Appendix D: Wholesale Electricity Price Forecast

    E-Print Network [OSTI]

    Sixth Northwest Conservation and Electric Power Plan Appendix D: Wholesale Electricity Price.................................................................................................................................. 27 INTRODUCTION The Council prepares and periodically updates a 20-year forecast of wholesale to forecast wholesale power prices. AURORAxmp® provides the ability to inco

  7. Evaluation of numerical weather prediction for intra-day solar forecasting in the continental United States

    E-Print Network [OSTI]

    Mathiesen, Patrick; Kleissl, Jan

    2011-01-01T23:59:59.000Z

    and validation.   Solar Energy.   73:5, 307? Perez, R. , forecast database.   Solar Energy.   81:6, 809?812.  forecasts in the US.   Solar Energy.   84:12, 2161?2172.  

  8. Integration of Behind-the-Meter PV Fleet Forecasts into Utility...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integration of Behind-the-Meter PV Fleet Forecasts into Utility Grid System Operations Integration of Behind-the-Meter PV Fleet Forecasts into Utility Grid System Operations Clean...

  9. Application of the Stretched Exponential Production Decline Model to Forecast Production in Shale Gas Reservoirs

    E-Print Network [OSTI]

    Statton, James Cody

    2012-07-16T23:59:59.000Z

    . This study suggests a type curve is most useful when 24 months or less is available to forecast. The SEPD model generally provides more conservative forecasts and EUR estimates than Arps' model with a minimum decline rate of 5%....

  10. SHORT-TERM FORECASTING OF SOLAR RADIATION BASED ON SATELLITE DATA WITH STATISTICAL METHODS

    E-Print Network [OSTI]

    Heinemann, Detlev

    SHORT-TERM FORECASTING OF SOLAR RADIATION BASED ON SATELLITE DATA WITH STATISTICAL METHODS Annette governing the insolation, forecasting of solar radiation makes the description of development of the cloud

  11. Sixth Northwest Conservation and Electric Power Plan Appendix A: Fuel Price Forecast

    E-Print Network [OSTI]

    ............................................................................................................................... 12 Oil Price Forecast Range. The price of crude oil was $25 a barrel in January of 2000. In July 2008 it averaged $127, even approachingSixth Northwest Conservation and Electric Power Plan Appendix A: Fuel Price Forecast Introduction

  12. Impacts of Improved Day-Ahead Wind Forecasts on Power Grid Operations: September 2011

    SciTech Connect (OSTI)

    Piwko, R.; Jordan, G.

    2011-11-01T23:59:59.000Z

    This study analyzed the potential benefits of improving the accuracy (reducing the error) of day-ahead wind forecasts on power system operations, assuming that wind forecasts were used for day ahead security constrained unit commitment.

  13. Solar Variability and Forecasting Jan Kleissl, Chi Chow, Matt Lave, Patrick Mathiesen,

    E-Print Network [OSTI]

    Homes, Christopher C.

    Forecasting Benefits Use of state-of-art wind and solar forecasts reduces WECC operating costs by up to 14/MWh of wind and solar generation). WECC operating costs could be reduced by an additional $500 million

  14. Status of Centralized Wind Power Forecasting in North America: May 2009-May 2010

    SciTech Connect (OSTI)

    Porter, K.; Rogers, J.

    2010-04-01T23:59:59.000Z

    Report surveys grid wind power forecasts for all wind generators, which are administered by utilities or regional transmission organizations (RTOs), typically with the assistance of one or more wind power forecasting companies.

  15. Improving Groundwater Predictions Utilizing Seasonal Precipitation Forecasts from General Circulation Models

    E-Print Network [OSTI]

    Arumugam, Sankar

    Improving Groundwater Predictions Utilizing Seasonal Precipitation Forecasts from General. The research reported in this paper evaluates the potential in developing 6-month-ahead groundwater Surface Temperature forecasts. Ten groundwater wells and nine streamgauges from the USGS Groundwater

  16. Earnings Management Pressure on Audit Clients: Auditor Response to Analyst Forecast Signals

    E-Print Network [OSTI]

    Newton, Nathan J.

    2013-06-26T23:59:59.000Z

    This study investigates whether auditors respond to earnings management pressure created by analyst forecasts. Analyst forecasts create an important earnings target for management, and professional standards direct auditors to consider how...

  17. Forecasting the demand for electric vehicles: accounting for attitudes and perceptions

    E-Print Network [OSTI]

    Bierlaire, Michel

    prediction, transportation, attitudes and perceptions, hybrid choice models, fractional factorial design: survey design, model estimation and forecasting. We develop a stated preferences (SP) survey with issues related to the application of models designed to forecast demand for new alternatives, most

  18. Price forecasting for U.S. cattle feeders: which technique to apply?

    E-Print Network [OSTI]

    Hicks, Geoff Cody

    1997-01-01T23:59:59.000Z

    both feeder cattle costs and corn costs, and maximizing fed cattle prices. This research strives to evaluate the accuracy of six distinct price forecasting techniques over an eleven year period. The forecast techniques selected for this analysisare...

  19. Streamflow Forecasting Based on Statistical Applications and Measurements Made with Rain Gage and Weather Radar

    E-Print Network [OSTI]

    Hudlow, M.D.

    Techniques for streamflow forecasting are developed and tested for the Little Washita River in Oklahoma. The basic input for streamflow forecasts is rainfall. the rainfall amounts may be obtained from several sources; however, this study...

  20. Forecast of contracting and subcontracting opportunities. Fiscal year 1996

    SciTech Connect (OSTI)

    NONE

    1996-02-01T23:59:59.000Z

    This forecast of prime and subcontracting opportunities with the U.S. Department of Energy and its MAO contractors and environmental restoration and waste management contractors, is the Department`s best estimate of small, small disadvantaged and women-owned small business procurement opportunities for fiscal year 1996. The information contained in the forecast is published in accordance with Public Law 100-656. It is not an invitation for bids, a request for proposals, or a commitment by DOE to purchase products or services. Each procurement opportunity is based on the best information available at the time of publication and may be revised or cancelled.

  1. CCPP-ARM Parameterization Testbed Model Forecast Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Klein, Stephen

    Dataset contains the NCAR CAM3 (Collins et al., 2004) and GFDL AM2 (GFDL GAMDT, 2004) forecast data at locations close to the ARM research sites. These data are generated from a series of multi-day forecasts in which both CAM3 and AM2 are initialized at 00Z every day with the ECMWF reanalysis data (ERA-40), for the year 1997 and 2000 and initialized with both the NASA DAO Reanalyses and the NCEP GDAS data for the year 2004. The DOE CCPP-ARM Parameterization Testbed (CAPT) project assesses climate models using numerical weather prediction techniques in conjunction with high quality field measurements (e.g. ARM data).

  2. Central Wind Power Forecasting Programs in North America by Regional Transmission Organizations and Electric Utilities

    SciTech Connect (OSTI)

    Porter, K.; Rogers, J.

    2009-12-01T23:59:59.000Z

    The report addresses the implementation of central wind power forecasting by electric utilities and regional transmission organizations in North America.

  3. Annual energy outlook 1998 with projections to 2020

    SciTech Connect (OSTI)

    NONE

    1997-12-01T23:59:59.000Z

    The Annual Energy Outlook 1998 (AEO98) is the first AEO with projections to 2020. Key issues for the forecast extension are trends in energy efficiency improvements, the effects of increasing production and productivity improvements on energy prices, and the reduction in nuclear generating capacity. Projections in AEO98 also reflect a greater shift to electricity market restructuring. Restructuring is addressed through several changes that are assumed to occur in the industry, including a shorter capital recovery period for capacity expansion decisions and a revised financial structure that features a higher cost of capital as the result of higher competitive risk. Both assumptions tend to favor less capital-intensive generation technologies, such as natural gas, over coal or baseload renewable technologies. The forecasts include specific restructuring plans in those regions that have announced plans. California, New York, and New England are assumed to begin competitive pricing in 1998. The provisions of the California legislation for stranded cost recovery and price caps are incorporated. In New York and New England, stranded cost recovery is assumed to be phased out by 2008.

  4. COLORADO STATE UNIVERSITY FORECAST OF ATLANTIC HURRICANE ACTIVITY FROM SEPTEMBER 15 SEPTEMBER 28, 2010

    E-Print Network [OSTI]

    Gray, William

    with these two-week forecasts is the Accumulated Cyclone Energy (ACE) index, which is defined to be all This is the second year that we have issued shorter-term forecasts of tropical cyclone (TC) activity starting such as named storms and hurricanes. We issue forecasts for ACE using three categories as defined in Table 1

  5. COLORADO STATE UNIVERSITY FORECAST OF ATLANTIC HURRICANE ACTIVITY FROM SEPTEMBER 27 OCTOBER 10, 2013

    E-Print Network [OSTI]

    Gray, William

    with these two-week forecasts is the Accumulated Cyclone Energy (ACE) index, which is defined to be all This is the fifth year that we have issued shorter-term forecasts of tropical cyclone (TC) activity starting such as named storms and hurricanes. We issue forecasts for ACE using three categories as defined in Table 1

  6. COLORADO STATE UNIVERSITY FORECAST OF ATLANTIC HURRICANE ACTIVITY FROM AUGUST 16 AUGUST 29, 2013

    E-Print Network [OSTI]

    that we are trying to predict with these two-week forecasts is the Accumulated Cyclone Energy (ACE) index This is the fifth year that we have issued shorter-term forecasts of tropical cyclone activity starting in early for ACE using three categories as defined in Table 1. Table 1: ACE forecast definition. Parameter

  7. COLORADO STATE UNIVERSITY FORECAST OF ATLANTIC HURRICANE ACTIVITY FROM AUGUST 3 AUGUST 16, 2012

    E-Print Network [OSTI]

    Gray, William

    with these two-week forecasts is the Accumulated Cyclone Energy (ACE) index, which is defined to be all This is the fourth year that we have issued shorter-term forecasts of tropical cyclone activity starting in early such as named storms and hurricanes. We issue forecasts for ACE using three categories as defined in Table 1

  8. COLORADO STATE UNIVERSITY FORECAST OF ATLANTIC HURRICANE ACTIVITY FROM OCTOBER 12 OCTOBER 25, 2012

    E-Print Network [OSTI]

    Gray, William

    to predict with these two-week forecasts is the Accumulated Cyclone Energy (ACE) index, which is defined This is the fourth year that we have issued shorter-term forecasts of tropical cyclone (TC) activity starting for individual event parameters such as named storms and hurricanes. We issue forecasts for ACE using three

  9. COLORADO STATE UNIVERSITY FORECAST OF ATLANTIC HURRICANE ACTIVITY FROM SEPTEMBER 28 OCTOBER 11, 2012

    E-Print Network [OSTI]

    Gray, William

    with these two-week forecasts is the Accumulated Cyclone Energy (ACE) index, which is defined to be all This is the fourth year that we have issued shorter-term forecasts of tropical cyclone (TC) activity starting such as named storms and hurricanes. We issue forecasts for ACE using three categories as defined in Table 1

  10. COLORADO STATE UNIVERSITY FORECAST OF ATLANTIC HURRICANE ACTIVITY FROM SEPTEMBER 13 SEPTEMBER 26, 2013

    E-Print Network [OSTI]

    Gray, William

    with these two-week forecasts is the Accumulated Cyclone Energy (ACE) index, which is defined to be all This is the fifth year that we have issued shorter-term forecasts of tropical cyclone activity starting in early such as named storms and hurricanes. We issue forecasts for ACE using three categories as defined in Table 1

  11. COLORADO STATE UNIVERSITY FORECAST OF ATLANTIC HURRICANE ACTIVITY FROM AUGUST 18 AUGUST 31, 2010

    E-Print Network [OSTI]

    Gray, William

    with these two-week forecasts is the Accumulated Cyclone Energy (ACE) index, which is defined to be all This is the second year that we have issued shorter-term forecasts of tropical cyclone (TC) activity starting such as named storms and hurricanes. We issue forecasts for ACE using three categories as defined in Table 1

  12. COLORADO STATE UNIVERSITY FORECAST OF ATLANTIC HURRICANE ACTIVITY FROM OCTOBER 11 OCTOBER 24, 2013

    E-Print Network [OSTI]

    Gray, William

    to predict with these two-week forecasts is the Accumulated Cyclone Energy (ACE) index, which is defined This is the fifth year that we have issued shorter-term forecasts of tropical cyclone (TC) activity starting for individual event parameters such as named storms and hurricanes. We issue forecasts for ACE using three

  13. COLORADO STATE UNIVERSITY FORECAST OF ATLANTIC HURRICANE ACTIVITY FROM AUGUST 2 AUGUST 15, 2013

    E-Print Network [OSTI]

    Gray, William

    that we are trying to predict with these two-week forecasts is the Accumulated Cyclone Energy (ACE) index This is the fifth year that we have issued shorter-term forecasts of tropical cyclone (TC) activity starting for ACE using three categories as defined in Table 1. Table 1: ACE forecast definition. Parameter

  14. COLORADO STATE UNIVERSITY FORECAST OF ATLANTIC HURRICANE ACTIVITY FROM AUGUST 31 SEPTEMBER 13, 2012

    E-Print Network [OSTI]

    with these two-week forecasts is the Accumulated Cyclone Energy (ACE) index, which is defined to be all This is the fourth year that we have issued shorter-term forecasts of tropical cyclone activity starting in early such as named storms and hurricanes. We issue forecasts for ACE using three categories as defined in Table 1

  15. COLORADO STATE UNIVERSITY FORECAST OF ATLANTIC HURRICANE ACTIVITY FROM AUGUST 17 AUGUST 30, 2012

    E-Print Network [OSTI]

    Gray, William

    with these two-week forecasts is the Accumulated Cyclone Energy (ACE) index, which is defined to be all This is the fourth year that we have issued shorter-term forecasts of tropical cyclone activity starting in early such as named storms and hurricanes. We issue forecasts for ACE using three categories as defined in Table 1

  16. COLORADO STATE UNIVERSITY FORECAST OF ATLANTIC HURRICANE ACTIVITY FROM AUGUST 4 AUGUST 17, 2010

    E-Print Network [OSTI]

    Gray, William

    with these two-week forecasts is the Accumulated Cyclone Energy (ACE) index, which is defined to be all This is the second year that we have issued shorter-term forecasts of tropical cyclone activity starting in early such as named storms and hurricanes. We issue forecasts for ACE using three categories as defined in Table 1

  17. COLORADO STATE UNIVERSITY FORECAST OF ATLANTIC HURRICANE ACTIVITY FROM SEPTEMBER 29 OCTOBER 12, 2010

    E-Print Network [OSTI]

    Gray, William

    with these two-week forecasts is the Accumulated Cyclone Energy (ACE) index, which is defined to be all This is the second year that we have issued shorter-term forecasts of tropical cyclone (TC) activity starting such as named storms and hurricanes. We issue forecasts for ACE using three categories as defined in Table 1

  18. COLORADO STATE UNIVERSITY FORECAST OF ATLANTIC HURRICANE ACTIVITY FROM SEPTEMBER 11 SEPTEMBER 24, 2014

    E-Print Network [OSTI]

    with these two-week forecasts is the Accumulated Cyclone Energy (ACE) index, which is defined to be all This is the sixth year that we have issued shorter-term forecasts of tropical cyclone activity starting in early such as named storms and hurricanes. We issue forecasts for ACE using three categories as defined in Table 1

  19. COLORADO STATE UNIVERSITY FORECAST OF ATLANTIC HURRICANE ACTIVITY FROM AUGUST 30 SEPTEMBER 12, 2013

    E-Print Network [OSTI]

    with these two-week forecasts is the Accumulated Cyclone Energy (ACE) index, which is defined to be all This is the fifth year that we have issued shorter-term forecasts of tropical cyclone activity starting in early such as named storms and hurricanes. We issue forecasts for ACE using three categories as defined in Table 1

  20. COLORADO STATE UNIVERSITY FORECAST OF ATLANTIC HURRICANE ACTIVITY FROM AUGUST 31 SEPTEMBER 13, 2011

    E-Print Network [OSTI]

    Birner, Thomas

    with these two-week forecasts is the Accumulated Cyclone Energy (ACE) index, which is defined to be all This is the third year that we have issued shorter-term forecasts of tropical cyclone activity starting in early such as named storms and hurricanes. We issue forecasts for ACE using three categories as defined in Table 1

  1. COLORADO STATE UNIVERSITY FORECAST OF ATLANTIC HURRICANE ACTIVITY FROM AUGUST 28 SEPTEMBER 10, 2014

    E-Print Network [OSTI]

    Collett Jr., Jeffrey L.

    with these two-week forecasts is the Accumulated Cyclone Energy (ACE) index, which is defined to be all This is the sixth year that we have issued shorter-term forecasts of tropical cyclone activity starting in early such as named storms and hurricanes. We issue forecasts for ACE using three categories as defined in Table 1

  2. COLORADO STATE UNIVERSITY FORECAST OF ATLANTIC HURRICANE ACTIVITY FROM OCTOBER 13 OCTOBER 26, 2010

    E-Print Network [OSTI]

    Gray, William

    with these two-week forecasts is the Accumulated Cyclone Energy (ACE) index, which is defined to be all This is the second year that we have issued shorter-term forecasts of tropical cyclone (TC) activity starting such as named storms and hurricanes. We issue forecasts for ACE using three categories as defined in Table 1

  3. Large-scale Probabilistic Forecasting in Energy Systems using Sparse Gaussian Conditional Random Fields

    E-Print Network [OSTI]

    Kolter, J. Zico

    -Gaussian case using the copula transform. On a wind power forecasting task, we show that this probabilisticLarge-scale Probabilistic Forecasting in Energy Systems using Sparse Gaussian Conditional Random high-dimensional conditional Gaussian distributions to forecasting wind power and extend it to the non

  4. EUROBRISA: A EURO-BRazilian Initiative for improving South American seasonal forecasts

    E-Print Network [OSTI]

    EUROBRISA: A EURO-BRazilian Initiative for improving South American seasonal forecasts by Caio A. S. van Oldenborgh, 2006: Towards an integrated seasonal forecasting system for South America. J. Climate and promote exchange of expertise and information between European and South American seasonal forecasters

  5. Hourly Temperature Forecasting Using Abductive Networks R. E. Abdel-Aal

    E-Print Network [OSTI]

    Abdel-Aal, Radwan E.

    ANNGSF) and for forecasting the one-hour-ahead heat load for a district heat load network (Seppälä et al and network analysis functions in power utilities. Since high-low temperature forecasts are usually provided-Rohani & Maratukulam, 1998). In other agricultural and environmental applications, even high-low temperature forecasts

  6. Development, testing, and applications of site-specific tsunami inundation models for real-time forecasting

    E-Print Network [OSTI]

    can the forecasts completely cover the evolution of earthquake-generated tsunami waves: generationDevelopment, testing, and applications of site-specific tsunami inundation models for real and applications of site-specific tsunami inundation models (forecast models) for use in NOAA's tsunami forecast

  7. Forecast of the electricity consumption by aggregation of specialized experts; application to Slovakian and French

    E-Print Network [OSTI]

    Forecast of the electricity consumption by aggregation of specialized experts; application-term forecast of electricity consumption based on ensemble methods. That is, we use several possibly independent´erieure and CNRS. hal-00484940,version1-19May2010 #12;Forecast of the electricity consumption by aggregation

  8. Robust Pareto Optimum Routing of Ships Deterministic and Ensemble Weather Forecasts

    E-Print Network [OSTI]

    Berlin,Technische Universität

    Robust Pareto ­ Optimum Routing of Ships utilizing Deterministic and Ensemble Weather Forecasts the SEAROUTES project, who provided me with exquisite weather forecasts, and who inspired me to apply ensemble ship operation. The more reliable weather forecasts and performance simulation of ships in a seaway

  9. Renewable energy annual 1995

    SciTech Connect (OSTI)

    NONE

    1995-12-01T23:59:59.000Z

    The Renewable Energy Annual 1995 is the first in an expected series of annual reports the Energy Information Administration (EIA) intends to publish to provide a comprehensive assessment of renewable energy. This report presents the following information on the history, status, and prospects of renewable energy data: estimates of renewable resources; characterizations of renewable energy technologies; descriptions of industry infrastructures for individual technologies; evaluations of current market status; and assessments of near-term prospects for market growth. An international section is included, as well as two feature articles that discuss issues of importance for renewable energy as a whole. The report also contains a number of technical appendices and a glossary. The renewable energy sources included are biomass (wood), municipal solid waste, biomass-derived liquid fuels, geothermal, wind, and solar and photovoltaic.

  10. International energy annual 1997

    SciTech Connect (OSTI)

    NONE

    1999-04-01T23:59:59.000Z

    The International Energy Annual presents an overview of key international energy trends for production, consumption, imports, and exports of primary energy commodities in over 220 countries, dependencies, and areas of special sovereignty. Also included are population and gross domestic product data, as well as prices for crude oil and petroleum products in selected countries. Renewable energy reported in the International Energy Annual includes hydroelectric power and geothermal, solar, and wind electric power. Also included are biomass electric power for Brazil and the US, and biomass, geothermal, and solar energy produced in the US and not used for electricity generation. This report is published to keep the public and other interested parties fully informed of primary energy supplies on a global basis. The data presented have been largely derived from published sources. The data have been converted to units of measurement and thermal values (Appendices E and F) familiar to the American public. 93 tabs.

  11. Coal industry annual 1997

    SciTech Connect (OSTI)

    NONE

    1998-12-01T23:59:59.000Z

    Coal Industry Annual 1997 provides comprehensive information about US coal production, number of mines, prices, productivity, employment, productive capacity, and recoverable reserves. US Coal production for 1997 and previous years is based on the annual survey EIA-7A, Coal Production Report. This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report includes a national total coal consumption for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. 14 figs., 145 tabs.

  12. Petroleum marketing annual 1994

    SciTech Connect (OSTI)

    NONE

    1995-08-24T23:59:59.000Z

    The Petroleum Marketing Annual (PMA) provides information and statistical data on a variety of crude oils and refined petroleum products. The publication presents statistics on crude oil costs and refined petroleum products sales for use by industry, government, private sector analysis, educational institutions, and consumers. Data on crude oil include the domestic first purchase price, the fob and landed cost of imported crude oil, and the refiners` acquisition cost of crude oil. Refined petroleum product sales data include motor gasoline, distillates, residuals, aviation fuels, kerosene, and propane. The Petroleum Marketing Division, Office of Oil and Gas, Energy Information Administration ensures the accuracy, quality, and confidentiality of the published data in the Petroleum Marketing Annual. For this production, all estimates have been recalculated since their earlier publication in the Petroleum Marketing Monthly (PMM). These calculations made use of additional data and corrections that were received after the PMM publication date.

  13. Uranium industry annual 1995

    SciTech Connect (OSTI)

    NONE

    1996-05-01T23:59:59.000Z

    The Uranium Industry Annual 1995 (UIA 1995) provides current statistical data on the U.S. uranium industry`s activities relating to uranium raw materials and uranium marketing. The UIA 1995 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. It contains data for the period 1986 through 2005 as collected on the Form EIA-858, ``Uranium Industry Annual Survey``. Data collected on the ``Uranium Industry Annual Survey`` provide a comprehensive statistical characterization of the industry`s plans and commitments for the near-term future. Where aggregate data are presented in the UIA 1995, care has been taken to protect the confidentiality of company-specific information while still conveying accurate and complete statistical data. Data on uranium raw materials activities for 1986 through 1995 including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2005, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, uranium imports and exports, and uranium inventories are shown in Chapter 2. The methodology used in the 1995 survey, including data edit and analysis, is described in Appendix A. The methodologies for estimation of resources and reserves are described in Appendix B. A list of respondents to the ``Uranium Industry Annual Survey`` is provided in Appendix C. For the reader`s convenience, metric versions of selected tables from Chapters 1 and 2 are presented in Appendix D along with the standard conversion factors used. A glossary of technical terms is at the end of the report. 14 figs., 56 tabs.

  14. NERSC 2001 Annual Report

    SciTech Connect (OSTI)

    Hules, John (editor)

    2001-12-12T23:59:59.000Z

    The National Energy Research Scientific Computing Center (NERSC) is the primary computational resource for scientific research funded by the DOE Office of Science. The Annual Report for FY2001 includes a summary of recent computational science conducted on NERSC systems (with abstracts of significant and representative projects); information about NERSC's current systems and services; descriptions of Berkeley Lab's current research and development projects in applied mathematics, computer science, and computational science; and a brief summary of NERSC's Strategic Plan for 2002-2005.

  15. NERSC 1998 annual report

    SciTech Connect (OSTI)

    Hules, John (ed.)

    1999-03-01T23:59:59.000Z

    This 1998 annual report from the National Scientific Energy Research Computing Center (NERSC) presents the year in review of the following categories: Computational Science; Computer Science and Applied Mathematics; and Systems and Services. Also presented are science highlights in the following categories: Basic Energy Sciences; Biological and Environmental Research; Fusion Energy Sciences; High Energy and Nuclear Physics; and Advanced Scientific Computing Research and Other Projects.

  16. NSLS annual report 1984

    SciTech Connect (OSTI)

    Klaffky, R.; Thomlinson, W. (eds.)

    1984-01-01T23:59:59.000Z

    The first comprehensive Annual Report of the National Synchrotron Light Source comes at a time of great activity and forward motion for the facility. In the following pages we outline the management changes that have taken place in the past year, the progress that has been made in the commissioning of the x-ray ring and in the enhanced utilization of the uv ring, together with an extensive discussion of the interesting scientific experiments that have been carried out.

  17. DOE Releases Latest Report on Energy Savings Forecast of Solid...

    Broader source: Energy.gov (indexed) [DOE]

    of Solid-State Lighting in General Illumination Applications compares the annual lighting energy consumption in the U.S. with and without further market penetration of LED...

  18. A 24-h forecast of solar irradiance using artificial neural network: Application for performance prediction of a grid-connected PV plant at Trieste, Italy

    SciTech Connect (OSTI)

    Mellit, Adel [Department of Electronics, Faculty of Sciences and Technology, LAMEL, Jijel University, Ouled-aissa, P.O. Box 98, Jijel 18000 (Algeria); Pavan, Alessandro Massi [Department of Materials and Natural Resources, University of Trieste Via A. Valerio, 2 - 34127 Trieste (Italy)

    2010-05-15T23:59:59.000Z

    Forecasting of solar irradiance is in general significant for planning the operations of power plants which convert renewable energies into electricity. In particular, the possibility to predict the solar irradiance (up to 24 h or even more) can became - with reference to the Grid Connected Photovoltaic Plants (GCPV) - fundamental in making power dispatching plans and - with reference to stand alone and hybrid systems - also a useful reference for improving the control algorithms of charge controllers. In this paper, a practical method for solar irradiance forecast using artificial neural network (ANN) is presented. The proposed Multilayer Perceptron MLP-model makes it possible to forecast the solar irradiance on a base of 24 h using the present values of the mean daily solar irradiance and air temperature. An experimental database of solar irradiance and air temperature data (from July 1st 2008 to May 23rd 2009 and from November 23rd 2009 to January 24th 2010) has been used. The database has been collected in Trieste (latitude 45 40'N, longitude 13 46'E), Italy. In order to check the generalization capability of the MLP-forecaster, a K-fold cross-validation was carried out. The results indicate that the proposed model performs well, while the correlation coefficient is in the range 98-99% for sunny days and 94-96% for cloudy days. As an application, the comparison between the forecasted one and the energy produced by the GCPV plant installed on the rooftop of the municipality of Trieste shows the goodness of the proposed model. (author)

  19. Forecasting potential project risks through leading indicators to project outcome

    E-Print Network [OSTI]

    Choi, Ji Won

    2007-09-17T23:59:59.000Z

    , the Construction Industry Institute (CII) formed a research team to develop a new tool that can forecast the potential risk of not meeting specific project outcomes based on assessing leading indicators. Thus, the leading indicators were identified and then the new...

  20. Scenario Generation for Price Forecasting in Restructured Wholesale Power Markets

    E-Print Network [OSTI]

    Tesfatsion, Leigh

    1 Scenario Generation for Price Forecasting in Restructured Wholesale Power Markets Qun Zhou--In current restructured wholesale power markets, the short length of time series for prices makes are fitted between D&O and wholesale power prices in order to obtain price scenarios for a specified time

  1. Review of Wind Energy Forecasting Methods for Modeling Ramping Events

    SciTech Connect (OSTI)

    Wharton, S; Lundquist, J K; Marjanovic, N; Williams, J L; Rhodes, M; Chow, T K; Maxwell, R

    2011-03-28T23:59:59.000Z

    Tall onshore wind turbines, with hub heights between 80 m and 100 m, can extract large amounts of energy from the atmosphere since they generally encounter higher wind speeds, but they face challenges given the complexity of boundary layer flows. This complexity of the lowest layers of the atmosphere, where wind turbines reside, has made conventional modeling efforts less than ideal. To meet the nation's goal of increasing wind power into the U.S. electrical grid, the accuracy of wind power forecasts must be improved. In this report, the Lawrence Livermore National Laboratory, in collaboration with the University of Colorado at Boulder, University of California at Berkeley, and Colorado School of Mines, evaluates innovative approaches to forecasting sudden changes in wind speed or 'ramping events' at an onshore, multimegawatt wind farm. The forecast simulations are compared to observations of wind speed and direction from tall meteorological towers and a remote-sensing Sound Detection and Ranging (SODAR) instrument. Ramping events, i.e., sudden increases or decreases in wind speed and hence, power generated by a turbine, are especially problematic for wind farm operators. Sudden changes in wind speed or direction can lead to large power generation differences across a wind farm and are very difficult to predict with current forecasting tools. Here, we quantify the ability of three models, mesoscale WRF, WRF-LES, and PF.WRF, which vary in sophistication and required user expertise, to predict three ramping events at a North American wind farm.

  2. Classification of Commodity Price Forecast With Random Forests and Bayesian

    E-Print Network [OSTI]

    de Freitas, Nando

    economy. Commodity prices are key economical20 drivers in the market. Raw products such as oil, gold 15 1 Introduction16 17 1.1 Forecasting the commodities market18 The commodities market focuses of prices in both the short and long-term view25 point to help market participants gage a greater

  3. Optimal Storage Policies with Wind Forecast Uncertainties [Extended Abstract

    E-Print Network [OSTI]

    Dalang, Robert C.

    Optimal Storage Policies with Wind Forecast Uncertainties [Extended Abstract] Nicolas Gast EPFL, IC generation. The use of energy storage compensates to some extent these negative effects; it plays a buffer role between demand and production. We revisit a model of real storage proposed by Bejan et al.[1]. We

  4. 1994 battery shipment review and five-year forecast report

    SciTech Connect (OSTI)

    Fetherolf, D. [East Penn Manufacturing Co., Lyon Station, PA (United States)

    1995-12-31T23:59:59.000Z

    This paper presents a 1994 battery shipment review and five year forecast report. Data is presented on replacement battery shipments, battery shipments, car and truck production, truck sales, original equipment, shipments for passenger cars and light commercial vehicles, and ten year battery service life trend.

  5. The Galactic Center Weather Forecast M. Moscibrodzka1

    E-Print Network [OSTI]

    Gammie, Charles F.

    The Galactic Center Weather Forecast M. Mo´scibrodzka1 , H. Shiokawa2 , C. F. Gammie2,3 , J*. The > 3M cloud will #12;­ 2 ­ interact strongly with gas near nominal pericenter at rp 300AU 8000GM/c2 transient phase while the flow circularizes-- accompanied by transient emission--it is natural to think

  6. GenForecast(26yr)(avg).PDF

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SLCAIP Historical & Forecast Generation at Plant Total Range of Hydrology 0 2,000,000,000 4,000,000,000 6,000,000,000 8,000,000,000 10,000,000,000 12,000,000,000 1 9 7 0 1 9 7 2 1...

  7. WIND POWER ENSEMBLE FORECASTING Henrik Aalborg Nielsen1

    E-Print Network [OSTI]

    WIND POWER ENSEMBLE FORECASTING Henrik Aalborg Nielsen1 , Henrik Madsen1 , Torben Skov Nielsen1. In this paper we address the problems of (i) transforming the mete- orological ensembles to wind power ensembles the uncertainty which follow from historical (climatological) data. However, quite often the actual wind power

  8. Weather forecast-based optimization of integrated energy systems.

    SciTech Connect (OSTI)

    Zavala, V. M.; Constantinescu, E. M.; Krause, T.; Anitescu, M.

    2009-03-01T23:59:59.000Z

    In this work, we establish an on-line optimization framework to exploit detailed weather forecast information in the operation of integrated energy systems, such as buildings and photovoltaic/wind hybrid systems. We first discuss how the use of traditional reactive operation strategies that neglect the future evolution of the ambient conditions can translate in high operating costs. To overcome this problem, we propose the use of a supervisory dynamic optimization strategy that can lead to more proactive and cost-effective operations. The strategy is based on the solution of a receding-horizon stochastic dynamic optimization problem. This permits the direct incorporation of economic objectives, statistical forecast information, and operational constraints. To obtain the weather forecast information, we employ a state-of-the-art forecasting model initialized with real meteorological data. The statistical ambient information is obtained from a set of realizations generated by the weather model executed in an operational setting. We present proof-of-concept simulation studies to demonstrate that the proposed framework can lead to significant savings (more than 18% reduction) in operating costs.

  9. URBAN OZONE CONCENTRATION FORECASTING WITH ARTIFICIAL NEURAL NETWORK IN CORSICA

    E-Print Network [OSTI]

    Boyer, Edmond

    Perceptron; Ozone concentration. 1. Introduction Tropospheric ozone is a major air pollution problem, both, Ajaccio, France, e-mail: balu@univ-corse.fr Abstract: Atmospheric pollutants concentration forecasting is an important issue in air quality monitoring. Qualitair Corse, the organization responsible for monitoring air

  10. Navy Mobility Fuels Forecasting System. Phase I report

    SciTech Connect (OSTI)

    Davis, R.M.; Hadder, G.R.; Singh, S.P.N.; Whittle, C.

    1985-07-01T23:59:59.000Z

    The Department of the Navy (DON) requires an improved capability to forecast mobility fuel availability and quality. The changing patterns in fuel availability and quality are important in planning the Navy's Mobility Fuels R and D Program. These changes come about primarily because of the decline in the quality of crude oil entering world markets as well as the shifts in refinery capabilities domestically and worldwide. The DON requested ORNL's assistance in assembling and testing a methodology for forecasting mobility fuel trends. ORNL reviewed and analyzed domestic and world oil reserve estimates, production and price trends, and recent refinery trends. Three publicly available models developed by the Department of Energy were selected as the basis of the Navy Mobility Fuels Forecasting System. The system was used to analyze the availability and quality of jet fuel (JP-5) that could be produced on the West Coast of the United States under an illustrative business-as-usual and a world oil disruption scenario in 1990. Various strategies were investigated for replacing the lost JP-5 production. This exercise, which was strictly a test case for the forecasting system, suggested that full recovery of lost fuel production could be achieved by relaxing the smoke point specifications or by increasing the refiners' gate price for the jet fuel. A more complete analysis of military mobility fuel trends is currently under way.

  11. Probabilistic Wind Speed Forecasting Using Ensembles and Bayesian Model Averaging

    E-Print Network [OSTI]

    Raftery, Adrian

    the chance of winds high enough to pose dangers for boats or aircraft. In situations calling for a cost/loss analysis, the probabilities of different outcomes need to be known. For wind speed, this issue often arisesProbabilistic Wind Speed Forecasting Using Ensembles and Bayesian Model Averaging J. Mc

  12. Cloudy Computing: Leveraging Weather Forecasts in Energy Harvesting Sensor Systems

    E-Print Network [OSTI]

    Shenoy, Prashant

    Cloudy Computing: Leveraging Weather Forecasts in Energy Harvesting Sensor Systems Navin Sharma,gummeson,irwin,shenoy}@cs.umass.edu Abstract--To sustain perpetual operation, systems that harvest environmental energy must carefully regulate their usage to satisfy their demand. Regulating energy usage is challenging if a system's demands

  13. Leveraging Weather Forecasts in Renewable Energy Navin Sharmaa,

    E-Print Network [OSTI]

    Shenoy, Prashant

    Leveraging Weather Forecasts in Renewable Energy Systems Navin Sharmaa, , Jeremy Gummesonb , David, Binghamton, NY 13902 Abstract Systems that harvest environmental energy must carefully regulate their us- age to satisfy their demand. Regulating energy usage is challenging if a system's demands are not elastic, since

  14. Risk Forecasting with GARCH, Skewed t Distributions, and Multiple Timescales

    E-Print Network [OSTI]

    Risk Forecasting with GARCH, Skewed t Distributions, and Multiple Timescales Alec N. Kercheval describe how the histori- cal data can first be GARCH filtered and then used to calibrate parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.2 Data and Stylized Facts . . . . . . . . . . . . . . . . . . . . . . . 16 3.3 GARCH Filter

  15. Forecasting Hospital Bed Availability Using Simulation and Neural Networks

    E-Print Network [OSTI]

    Kuhl, Michael E.

    Forecasting Hospital Bed Availability Using Simulation and Neural Networks Matthew J. Daniels, NY 14623 Elisabeth Hager Hager Consulting Pittsford, NY 14534 Abstract The availability of beds is a critical factor for decision-making in hospitals. Bed availability (or alternatively the bed occupancy

  16. Short-Term Solar Energy Forecasting Using Wireless Sensor Networks

    E-Print Network [OSTI]

    Cerpa, Alberto E.

    Short-Term Solar Energy Forecasting Using Wireless Sensor Networks Stefan Achleitner, Tao Liu an advantage for output power prediction. Solar Energy Prediction System Our prediction model is based variability of more then 100 kW per minute. For practical usage of solar energy, predicting times of high

  17. SOLAR IRRADIANCE FORECASTING FOR THE MANAGEMENT OF SOLAR ENERGY SYSTEMS

    E-Print Network [OSTI]

    Heinemann, Detlev

    SOLAR IRRADIANCE FORECASTING FOR THE MANAGEMENT OF SOLAR ENERGY SYSTEMS Detlev Heinemann Oldenburg.girodo@uni-oldenburg.de ABSTRACT Solar energy is expected to contribute major shares of the future global energy supply. Due to its and solar energy conversion processes has to account for this behaviour in respective operating strategies

  18. Development and Deployment of an Advanced Wind Forecasting Technique

    E-Print Network [OSTI]

    Kemner, Ken

    findings. Part 2 addresses how operators of wind power plants and power systems can incorporate advanced the output of advanced wind energy forecasts into decision support models for wind power plant and power and applications of power market simulation models around the world. Argonne's software tools are used extensively

  19. Integrating agricultural pest biocontrol into forecasts of energy biomass production

    E-Print Network [OSTI]

    Gratton, Claudio

    Analysis Integrating agricultural pest biocontrol into forecasts of energy biomass production T), University of Lome, 114 Rue Agbalepedogan, BP: 20679, Lome, Togo e Center for Agricultural & Energy Policy model of potential biomass supply that incorporates the effect of biological control on crop choice

  20. Radiation fog forecasting using a 1-dimensional model

    E-Print Network [OSTI]

    Peyraud, Lionel

    2001-01-01T23:59:59.000Z

    The importance of fog forecasting to the aviation community, to road transportation and to the public at large is irrefutable. The deadliest aviation accident in history was in fact partly a result of fog back on 27 March 1977. This has, along...

  1. Classification and forecasting of load curves Nolwen Huet

    E-Print Network [OSTI]

    Cuesta, Juan Antonio

    Classification and forecasting of load curves Nolwen Huet Abstract The load curve, which gives of electricity customer uses. This load curve is only available for customers with automated meter reading. For the others, EDF must estimate this curve. Usually a clustering of the load curves is performed, followed

  2. What constrains spread growth in forecasts ini2alized from

    E-Print Network [OSTI]

    Hamill, Tom

    1 What constrains spread growth in forecasts ini2alized from ensemble Kalman filters? Tom from manner in which ini2al condi2ons are generated, some due to the model (e.g., stochas2c physics as error; part of spread growth from manner in which ini2al condi2ons are generated, some due

  3. CSUF ECONOMIC OUTLOOK AND FORECASTS MIDYEAR UPDATE -APRIL 2014

    E-Print Network [OSTI]

    de Lijser, Peter

    CSUF ECONOMIC OUTLOOK AND FORECASTS MIDYEAR UPDATE - APRIL 2014 Anil Puri, Ph.D. -- Director-year increase in the debt ceiling -- both of which proceeded without the usual drama. Second, the private sector, corporate coffers are flush with cash, and low US energy prices have dramatically improved the global

  4. Exploiting weather forecasts for sizing photovoltaic energy bids

    E-Print Network [OSTI]

    Giannitrapani, Antonello

    1 Exploiting weather forecasts for sizing photovoltaic energy bids Antonio Giannitrapani, Simone for a photovoltaic (PV) power producer taking part into a competitive electricity market characterized by financial set from an Italian PV plant. Index Terms--Energy market, bidding strategy, photovoltaic power

  5. Adaptive Energy Forecasting and Information Diffusion for Smart Power Grids

    E-Print Network [OSTI]

    Prasanna, Viktor K.

    1 Adaptive Energy Forecasting and Information Diffusion for Smart Power Grids Yogesh Simmhan, prasanna}@usc.edu I. INTRODUCTION Smart Power Grids exemplify an emerging class of Cyber Physical-on paradigm to support operational needs. Smart Grids are an outcome of instrumentation, such as Phasor

  6. TRANSPORTATION ENERGY FORECASTS AND ANALYSES FOR THE 2009

    E-Print Network [OSTI]

    Page Manager FOSSIL FUELS OFFICE Mike Smith Deputy Director FUELS AND TRANSPORTATION DIVISION Melissa, Weights and Measurements/Gary Castro, Allan Morrison, John Mough, Ed Williams Clean Energy FuelsCALIFORNIA ENERGY COMMISSION TRANSPORTATION ENERGY FORECASTS AND ANALYSES FOR THE 2009 INTEGRATED

  7. Optimal Bidding Strategies for Wind Power Producers with Meteorological Forecasts

    E-Print Network [OSTI]

    Giannitrapani, Antonello

    bid is computed by exploiting the forecast energy price for the day ahead market, the historical wind renewable energy resources, such as wind and photovoltaic, has grown rapidly. It is well known the problem of optimizing energy bids for an independent Wind Power Producer (WPP) taking part

  8. Detecting and Forecasting Economic Regimes in Automated Exchanges

    E-Print Network [OSTI]

    Ketter, Wolfgang

    Detecting and Forecasting Economic Regimes in Automated Exchanges Wolfgang Ketter , John Collins. of Mgmt., Erasmus University Dept. of Computer Science and Engineering, University of Minnesota Dept,gini,schrater}@cs.umn.edu, agupta@csom.umn.edu Abstract We present basic building blocks of an agent that can use observable market

  9. Detecting and Forecasting Economic Regimes in Automated Exchanges

    E-Print Network [OSTI]

    Ketter, Wolfgang

    Detecting and Forecasting Economic Regimes in Automated Exchanges Wolfgang Ketter # , John Collins, Rotterdam Sch. of Mgmt., Erasmus University + Dept. of Computer Science and Engineering, University wketter@rsm.nl, {jcollins,gini,schrater}@cs.umn.edu, agupta@csom.umn.edu Abstract We present basic

  10. THE DESIRE TO ACQUIRE: FORECASTING THE EVOLUTION OF HOUSEHOLD

    E-Print Network [OSTI]

    energy-using devices in the average U.S. household that used over 4,700 kWh of electricity, natural gas-using devices to energy price, household income, and the cost of these devices. This analysis findsTHE DESIRE TO ACQUIRE: FORECASTING THE EVOLUTION OF HOUSEHOLD ENERGY SERVICES by Steven Groves BASc

  11. Probabilistic Quantitative Precipitation Forecasting Using Bayesian Model Averaging

    E-Print Network [OSTI]

    Washington at Seattle, University of

    February 24, 2006 1J. McLean Sloughter is Graduate Research Assistant, Adrian E. Raftery is BlumsteinProbabilistic Quantitative Precipitation Forecasting Using Bayesian Model Averaging J. McLean Sloughter, Adrian E. Raftery and Tilmann Gneiting 1 Department of Statistics, University of Washington

  12. Probabilistic Wind Vector Forecasting Using Ensembles and Bayesian Model Averaging

    E-Print Network [OSTI]

    Raftery, Adrian

    : J. McLean Sloughter, Department of Mathematics, Seattle University, 901 12th Ave., P.O. Box 222000Probabilistic Wind Vector Forecasting Using Ensembles and Bayesian Model Averaging J. MCLEAN SLOUGHTER Seattle University, Seattle, Washington TILMANN GNEITING Heidelberg University, Heidelberg

  13. air pollution forecast: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    air pollution forecast First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 ENVIRONMENTAL INFORMATION SYSTEM...

  14. annual implementation work: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... 38 Foundations' Support and Financial Information 97 2013 Annual Report | 1 2013 ANNUAL REPORT Mathematics Websites Summary: 2013 Annual Report |...

  15. Use of wind power forecasting in operational decisions.

    SciTech Connect (OSTI)

    Botterud, A.; Zhi, Z.; Wang, J.; Bessa, R.J.; Keko, H.; Mendes, J.; Sumaili, J.; Miranda, V. (Decision and Information Sciences); (INESC Porto)

    2011-11-29T23:59:59.000Z

    The rapid expansion of wind power gives rise to a number of challenges for power system operators and electricity market participants. The key operational challenge is to efficiently handle the uncertainty and variability of wind power when balancing supply and demand in ths system. In this report, we analyze how wind power forecasting can serve as an efficient tool toward this end. We discuss the current status of wind power forecasting in U.S. electricity markets and develop several methodologies and modeling tools for the use of wind power forecasting in operational decisions, from the perspectives of the system operator as well as the wind power producer. In particular, we focus on the use of probabilistic forecasts in operational decisions. Driven by increasing prices for fossil fuels and concerns about greenhouse gas (GHG) emissions, wind power, as a renewable and clean source of energy, is rapidly being introduced into the existing electricity supply portfolio in many parts of the world. The U.S. Department of Energy (DOE) has analyzed a scenario in which wind power meets 20% of the U.S. electricity demand by 2030, which means that the U.S. wind power capacity would have to reach more than 300 gigawatts (GW). The European Union is pursuing a target of 20/20/20, which aims to reduce greenhouse gas (GHG) emissions by 20%, increase the amount of renewable energy to 20% of the energy supply, and improve energy efficiency by 20% by 2020 as compared to 1990. Meanwhile, China is the leading country in terms of installed wind capacity, and had 45 GW of installed wind power capacity out of about 200 GW on a global level at the end of 2010. The rapid increase in the penetration of wind power into power systems introduces more variability and uncertainty in the electricity generation portfolio, and these factors are the key challenges when it comes to integrating wind power into the electric power grid. Wind power forecasting (WPF) is an important tool to help efficiently address this challenge, and significant efforts have been invested in developing more accurate wind power forecasts. In this report, we document our work on the use of wind power forecasting in operational decisions.

  16. EWEC 2006, Athens, The Anemos Wind Power Forecasting Platform Technology The Anemos Wind Power Forecasting Platform Technology -

    E-Print Network [OSTI]

    Boyer, Edmond

    the fluctuating output from wind farms into power plant dispatching and energy trading, wind power predictionsEWEC 2006, Athens, The Anemos Wind Power Forecasting Platform Technology 1 The Anemos Wind Power a professional, flexible platform for operating wind power prediction models, laying the main focus on state

  17. Navy mobility fuels forecasting system report: World petroleum trade forecasts for the year 2000

    SciTech Connect (OSTI)

    Das, S.

    1991-12-01T23:59:59.000Z

    The Middle East will continue to play the dominant role of a petroleum supplier in the world oil market in the year 2000, according to business-as-usual forecasts published by the US Department of Energy. However, interesting trade patterns will emerge as a result of the democratization in the Soviet Union and Eastern Europe. US petroleum imports will increase from 46% in 1989 to 49% in 2000. A significantly higher level of US petroleum imports (principally products) will be coming from Japan, the Soviet Union, and Eastern Europe. Several regions, the Far East, Japan, Latin American, and Africa will import more petroleum. Much uncertainty remains about of the level future Soviet crude oil production. USSR net petroleum exports will decrease; however, the United States and Canada will receive some of their imports from the Soviet Union due to changes in the world trade patterns. The Soviet Union can avoid becoming a net petroleum importer as long as it (1) maintains enough crude oil production to meet its own consumption and (2) maintains its existing refining capacities. Eastern Europe will import approximately 50% of its crude oil from the Middle East.

  18. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Calibrated Probabilistic Mesoscale Weather Field Forecasting: The Geostatist...

    E-Print Network [OSTI]

    Raftery, Adrian

    permission. Calibrated Probabilistic Mesoscale Weather Field Forecasting: The Geostatist... Yulia Gel; Adrian

  19. CANCER PROGRAM ANNUAL REPORT CANCER PROGRAM

    E-Print Network [OSTI]

    Illinois at Chicago, University of

    CANCER PROGRAM ANNUAL REPORT CANCER PROGRAM 2010 ANNUAL REPORT WITH STATISTICAL DATA FROM 2009 UNIVERSITY OF ILLINOIS MEDICAL CENTER #12;2 CANCER PROGRAM ANNUAL REPORT 2 #12;3 CANCER PROGRAM ANNUAL REPORT 3 UIMC CANCER PROGRAM CHANGING MULTIDISCIPLINARY CARE. FOR GOOD. #12;4 CANCER PROGRAM ANNUAL REPORT

  20. Historical Natural Gas Annual 1999

    U.S. Energy Information Administration (EIA) Indexed Site

    1999 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at...

  1. 2006 Annual Report: Discovering Solutions

    SciTech Connect (OSTI)

    none,

    2006-01-01T23:59:59.000Z

    This annual report includes: a brief overview of Western; FY 2006 highlights; FY 2006 Integrated Resource Planning, or IRP, summary; and financial data.

  2. Tanana Chiefs Conference Annual Convention

    Broader source: Energy.gov [DOE]

    The Tanana Chiefs Conference is holding its annual convention to discuss issues in the region, hold elections, and adopt resolutions presented by Tribes.

  3. Comparison of advanced distillation control methods. Fourth annual report

    SciTech Connect (OSTI)

    Riggs, J.B.

    1998-09-01T23:59:59.000Z

    Detailed dynamic simulations of three industrial columns (a propylene/propane splitter, a xylene/toluene column, and a depropanizer) have been used to evaluate configuration selection for single-ended and dual-composition control as well as compare conventional and advanced control approaches. For each case considered, the controllers were tuned by using setpoint changes and tested using feed composition upsets. Proportional Integral (PI) control performance was used to evaluate the configuration selection problem. For single ended control, the energy balance configuration was found to yield the best performance. For dual composition control, nine configurations were considered. It was determined that in order to identify the optimum configuration, detailed testing using dynamic simulation is required. The optimum configurations were used to evaluate the control performance of conventional PI controllers, DMC (Dynamic Matrix Control), PMBC (Process Model Based Control), and ANN (Artificial Neural Networks) control. It was determined that DMC works best when one product is much more important than the other while PI was superior when both products were equally important. PMBC and ANN were not found to offer significant advantages over PI and DMC.

  4. Comparison of advanced distillation control methods. Third annual report

    SciTech Connect (OSTI)

    Riggs, J.B.

    1997-07-01T23:59:59.000Z

    Detailed dynamic simulations of three industrial distillation columns (a propylene/propane splitter, a xylene/toluene column, and a depropanizer) have been used to study the issue of configuration selection for diagonal PI dual composition controls, feedforward from a feed composition analyzer, and decouplers. Auto Tune Variation (ATV) identification with on-line detuning for setpoint changes was used for tuning the diagonal proportional integral (PI) composition controls. In addition, robustness tests were conducted by inducting reboiler duty upsets. For single composition control, the (L, V) configuration was found to be best. For dual composition control, the optimum configuration changes from one column to another. Moreover, the use of analysis tools, such as RGA, appears to be of little value in identifying the optimum configuration for dual composition control. Using feedforward from a feed composition analyzer and using decouplers are shown to offer significant advantages for certain specific cases.

  5. Comparison of advanced distillation control methods. First annual report

    SciTech Connect (OSTI)

    Riggs, J.B.

    1996-11-01T23:59:59.000Z

    A detailed dynamic simulator of a propylene/propane (C{sub 3}) splitter, which was bench-marked against industrial data, has been used to compare dual composition control performance for a diagonal PI controller and several advanced controllers. The advanced controllers considered are dynamic matrix control (DMC), nonlinear process model based control, and artificial neutral networks. Each controller was tuned based upon setpoint changes in the overhead product composition using 50% changes in the impurity levels. Overall, there was not a great deal of difference in controller performance based upon the setpoint and disturbance tests. Periodic step changes in feed composition were also used to compare controller performance. In this case, oscillatory variations of the product composition were observed and the variabilities of the DC and nonlinear process model based controllers were substantially smaller than that of the PI controller. The sensitivity of each controller to the frequency of the periodic step changes in feed composition was also investigated.

  6. Comparison of advanced distillation control methods. Second annual report

    SciTech Connect (OSTI)

    NONE

    1996-11-01T23:59:59.000Z

    Detailed dynamic simulations of three industrial distillation columns (a propylene/propane splitter, a xylene/toluene column, and a depropanizer) have been used to study the issue of configuration selection for diagonal PI dual composition controls. ATV identification with on-line detuning was used for tuning the diagonal PI composition controllers. Each configuration was evaluated with respect to steady-state RGA values, sensitivity to feed composition changes, and open loop dynamic performance. Each configuration was tuned using setpoint changes over a wider range of operation for robustness and tested for feed composition upsets. Overall, configuration selection was shown to have a dominant effect upon control performance. Configuration analysis tools (e.g., RGA, condition number, disturbance sensitivity), were found to reject configuration choices that are obviously poor choices, but were unable to critically differentiate between the remaining viable choices. Configuration selection guidelines are given although it is demonstrated that the most reliable configuration selection approach is based upon testing the viable configurations using dynamic column simulators.

  7. Comparison of advanced distillation control methods. Second annual report

    SciTech Connect (OSTI)

    Riggs, J.B.

    1996-11-01T23:59:59.000Z

    Detailed dynamic simulations of two industrial distillation columns (a propylene/propane splitter and a xylene/toluene column) have been used to study the issue of configuration selection for diagonal PI dual composition controls. Auto Tune Variation (ATV) identification with on-line detuning was used for tuning the diagonal proportional integral (PI) composition controls. Each configuration was evaluated with respect to steady-state relative gain array (RGA) values, sensitivity to feed composition changes, and open loop dynamic performance. Each configuration was tuned using setpoint changes over a wider range of operation for robustness and tested for feed composition upsets. Overall, configuration selection was shown to have a dominant effect upon control performance. Configuration analysis tools (e.g., RGA, condition number, disturbance sensitivity) were found to reject configuration choices that are obviously poor choices, but were unable to critically differentiate between the remaining viable choices. Configuration selection guidelines are given although it is demonstrated that the most reliable configuration selection approach is based upon testing the viable configurations using dynamic column simulators.

  8. Renewable energy annual 1996

    SciTech Connect (OSTI)

    NONE

    1997-03-01T23:59:59.000Z

    This report presents summary data on renewable energy consumption, the status of each of the primary renewable technologies, a profile of each of the associated industries, an analysis of topical issues related to renewable energy, and information on renewable energy projects worldwide. It is the second in a series of annual reports on renewable energy. The renewable energy resources included in the report are biomass (wood and ethanol); municipal solid waste, including waste-to-energy and landfill gas; geothermal; wind; and solar energy, including solar thermal and photovoltaic. The report also includes various appendices and a glossary.

  9. NPL 1999 Annual Report

    SciTech Connect (OSTI)

    None

    2000-01-01T23:59:59.000Z

    OAK-B135 NPL 1999 Annual Report. The Nuclear Physics Laboratory at the University of Washington in Seattle pursues a broad program of nuclear physics research. Research activities are conducted locally and at remote sites. The current program includes ''in-house'' research on nuclear collisions using the local tandem Van de Graaff and superconducting linac accelerators as well as local and remote non-accelerator research on fundamental symmetries and weak interactions and user-mode research on relativistic heavy ions at large accelerator facilities around the world.

  10. International energy annual 1995

    SciTech Connect (OSTI)

    NONE

    1996-12-01T23:59:59.000Z

    The International Energy Annual presents information and trends on world energy production and consumption for petroleum, natural gas, coal, and electricity. Production and consumption data are reported in standard units as well as British thermal units (Btu). Trade and reserves are shown for petroleum, natural gas, and coal. Data are provided on crude oil refining capacity and electricity installed capacity by type. Prices are included for selected crude oils and for refined petroleum products in selected countries. Population and Gross Domestic Product data are also provided.

  11. Annual Energy Review 2010

    SciTech Connect (OSTI)

    None

    2011-10-01T23:59:59.000Z

    This twenty-ninth edition of the Annual Energy Review (AER) presents the U.S. Energy Information Administration’s (EIA) most comprehensive look at integrated energy statistics. The summary statistics on the Nation’s energy production, consumption, trade, stocks, and prices cover all major energy commodities and all energy-consuming sectors of the U.S. economy from 1949 through 2010. The AER is EIA’s historical record of energy statistics and, because the coverage spans six decades, the statistics in this report are well-suited to long-term trend analysis.

  12. Annual Coal Report 2013

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices4 OilU.S. OffshoreOilAnnual Coal Report

  13. Annual Energy Outlook 2015

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices4 OilU.S. OffshoreOilAnnual38 Reference

  14. Annual Reports - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternative FuelsSanta3 Table 3.EnergyAug412 ArchiveAnnual Reports

  15. 2007 TEPP Annual Report

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2UraniumEnergy CityDepartment ofNuclear| Department7 Annual Plan 2007 U.S.

  16. Annual Report on U

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T, Inc.'s Reply Comments AT&T,FACT SAmesEnergyAnnual PlanningAUGUST 2014

  17. Annual Site Environmental Report

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T, Inc.'s Reply Comments AT&T,FACT SAmesEnergyAnnual PlanningAUGUST

  18. NERSC Annual Reports

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gif Directorate - Events - FermilabEnergyNERSC Annual

  19. Annual Reports - SRSCRO

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms About BecomeTechnologiesVehicle PartsAnnual Energy Outlook

  20. ARM - Annual Reports

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearchSOLICITATIONIMODI FICATION OFMaterialsAnnual Reports Publications Journal

  1. 2013 NUFO Annual Meeting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isNFebruary 2004AugustApril 20133 Audit2013 NUFO Annual

  2. Annual Report 2008.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWPAlumni Alumni PARC/I-CARESAnalysis for NationalTotalAnnualSRS Cold

  3. NERSC Annual Reports

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1Allocations NERSC Allocations: forNERSC AnnouncesAnnual

  4. Electric power annual 1992

    SciTech Connect (OSTI)

    Not Available

    1994-01-06T23:59:59.000Z

    The Electric Power Annual presents a summary of electric utility statistics at national, regional and State levels. The objective of the publication is to provide industry decisionmakers, government policymakers, analysts and the general public with historical data that may be used in understanding US electricity markets. The Electric Power Annual is prepared by the Survey Management Division; Office of Coal, Nuclear, Electric and Alternate Fuels; Energy Information Administration (EIA); US Department of Energy. ``The US Electric Power Industry at a Glance`` section presents a profile of the electric power industry ownership and performance, and a review of key statistics for the year. Subsequent sections present data on generating capability, including proposed capability additions; net generation; fossil-fuel statistics; retail sales; revenue; financial statistics; environmental statistics; electric power transactions; demand-side management; and nonutility power producers. In addition, the appendices provide supplemental data on major disturbances and unusual occurrences in US electricity power systems. Each section contains related text and tables and refers the reader to the appropriate publication that contains more detailed data on the subject matter. Monetary values in this publication are expressed in nominal terms.

  5. Annual Energy Review 1993

    SciTech Connect (OSTI)

    Not Available

    1994-07-14T23:59:59.000Z

    This twelfth edition of the Annual Energy Review (AER) presents the Energy Information Administration`s historical energy statistics. For most series, statistics are given for every year from 1949 through 1993. Because coverage spans four and a half decades, the statistics in this report are well-suited to long-term trend analyses. The AER is comprehensive. It covers all major energy activities, including consumption, production, trade, stocks, and prices, for all major energy commodities, including fossil fuels and electricity. The AER also presents Energy Information Administration (EIA) statistics on some renewable energy sources. EIA estimates that its consumption series include about half of the renewable energy used in the United States. For a more complete discussion of EIA`s renewables data, see p. xix, ``Introducing Expanded Coverage of Renewable Energy Data Into the Historical Consumption Series.`` Copies of the 1993 edition of the Annual Energy Review may be obtained by using the order form in the back of this publication. Most of the data in the 1993 edition also are available on personal computer diskette. For more information about the diskettes, see the back of this publication. In addition, the data are available as part of the National Economic, Social, and Environmental Data Bank on a CD-ROM. For more information about the data bank, contact the US Department of Commerce Economics and Statistics Administration, on 202-482-1986.

  6. Comparison of AEO 2008 Natural Gas Price Forecast to NYMEX Futures Prices

    E-Print Network [OSTI]

    Bolinger, Mark

    2008-01-01T23:59:59.000Z

    as opposed to coal-fired generation, for example), forprojects much more coal-fired generation (and consequently

  7. Comparison of AEO 2008 Natural Gas Price Forecast to NYMEX Futures Prices

    E-Print Network [OSTI]

    Bolinger, Mark

    2008-01-01T23:59:59.000Z

    the Energy Information Administration’s (EIA) web site. Wein the past, compared the EIA’s reference-case long-termfuel price projection from the EIA or some other long-term

  8. Comparison of AEO 2009 Natural Gas Price Forecast to NYMEX Futures Prices

    E-Print Network [OSTI]

    Bolinger, Mark

    2009-01-01T23:59:59.000Z

    the Energy Information Administration’s (EIA) web site. Wein the past, compared the EIA’s reference-case long-termfuel price projection from the EIA or some other long-term

  9. Comparison of AEO 2010 Natural Gas Price Forecast to NYMEX Futures Prices

    E-Print Network [OSTI]

    Bolinger, Mark A.

    2010-01-01T23:59:59.000Z

    the Energy Information Administration’s (EIA) web site. Wein the past, compared the EIA’s reference-case long-termfuel price projection from the EIA or some other long-term

  10. Comparison of AEO 2007 Natural Gas Price Forecast to NYMEX Futures Prices

    E-Print Network [OSTI]

    Bolinger, Mark; Wiser, Ryan

    2006-01-01T23:59:59.000Z

    Figure 2 for 5-year price projections), the EIA has, in AEOgenerators to the same price projections from AEO 2001-2006.Strip to AEO 2007 Gas Price Projection Picking the Correct

  11. Comparison of AEO 2008 Natural Gas Price Forecast to NYMEX Futures Prices

    E-Print Network [OSTI]

    Bolinger, Mark

    2008-01-01T23:59:59.000Z

    market-based forward price projections argues for furtherAEO 2008 and NYMEX price projections. Nominal ¢/kWh (at 7000that exceed the AEO price projection) described above. If

  12. Comparison of AEO 2010 Natural Gas Price Forecast to NYMEX Futures Prices

    E-Print Network [OSTI]

    Bolinger, Mark A.

    2010-01-01T23:59:59.000Z

    range of different plausible price projections, using eitherreference-case fuel price projection from the EIA or someprices and the AEO gas price projections over the past two

  13. Comparison of AEO 2009 Natural Gas Price Forecast to NYMEX Futures Prices

    E-Print Network [OSTI]

    Bolinger, Mark

    2009-01-01T23:59:59.000Z

    range of different plausible price projections, using eitherreference-case fuel price projection from the EIA or someHenry Hub to the same price projections from AEO 2007-2008.

  14. Comparison of AEO 2008 Natural Gas Price Forecast to NYMEX Futures Prices

    E-Print Network [OSTI]

    Bolinger, Mark

    2008-01-01T23:59:59.000Z

    to electricity generators to the same price projections fromPrices Delivered to Electricity Generators, Nominal $/MMBtu Each AEO projection

  15. Comparison of AEO 2007 Natural Gas Price Forecast to NYMEX Futures Prices

    E-Print Network [OSTI]

    Bolinger, Mark; Wiser, Ryan

    2006-01-01T23:59:59.000Z

    to electricity generators to the same price projections fromPrices Delivered to Electricity Generators, Nominal $/MMBtu Each AEO projection

  16. Natural Gas Prices Forecast Comparison--AEO vs. Natural Gas Markets

    E-Print Network [OSTI]

    Wong-Parodi, Gabrielle; Lekov, Alex; Dale, Larry

    2005-01-01T23:59:59.000Z

    1 1.1 History of Natural Gas8 4.1 U.S. Wellhead and AEO Natural Gas8 4.2 U.S. Wellhead and Henry Hub Natural Gas

  17. Eighth Annual Risk Management Conference

    E-Print Network [OSTI]

    Chaudhuri, Sanjay

    Eighth Annual Risk Management Conference Risk Management Amidst Global Rebalancing 10 ­ 11 July 2014, Singapore The Risk Management Institute (RMI) at the National University of Singapore invites submissions for its 8th annual conference on risk management in Singapore on 10 and 11 July 2014. We

  18. ANNUAL SECURITY & FIRE SAFETY REPORT

    E-Print Network [OSTI]

    Maxwell, Bruce D.

    ANNUAL SECURITY & FIRE SAFETY REPORT 2014 A guide to policies, procedures, practices, and programs implemented to keep students, faculty, and staff safe and facilities secure. www.montana.edu/reports/security.pdf #12;Inside this Report 2014 Annual Security and Fire Safety Report for Reporting Year 2013

  19. Value of medium range weather forecasts in the improvement of seasonal hydrologic prediction skill

    SciTech Connect (OSTI)

    Shukla, Shraddhanand; Voisin, Nathalie; Lettenmaier, D. P.

    2012-08-15T23:59:59.000Z

    We investigated the contribution of medium range weather forecasts with lead times up to 14 days to seasonal hydrologic prediction skill over the Conterminous United States (CONUS). Three different Ensemble Streamflow Prediction (ESP)-based experiments were performed for the period 1980-2003 using the Variable Infiltration Capacity (VIC) hydrology model to generate forecasts of monthly runoff and soil moisture (SM) at lead-1 (first month of the forecast period) to lead-3. The first experiment (ESP) used a resampling from the retrospective period 1980-2003 and represented full climatological uncertainty for the entire forecast period. In the second and third experiments, the first 14 days of each ESP ensemble member were replaced by either observations (perfect 14-day forecast) or by a deterministic 14-day weather forecast. We used Spearman rank correlations of forecasts and observations as the forecast skill score. We estimated the potential and actual improvement in baseline skill as the difference between the skill of experiments 2 and 3 relative to ESP, respectively. We found that useful runoff and SM forecast skill at lead-1 to -3 months can be obtained by exploiting medium range weather forecast skill in conjunction with the skill derived by the knowledge of initial hydrologic conditions. Potential improvement in baseline skill by using medium range weather forecasts, for runoff (SM) forecasts generally varies from 0 to 0.8 (0 to 0.5) as measured by differences in correlations, with actual improvement generally from 0 to 0.8 of the potential improvement. With some exceptions, most of the improvement in runoff is for lead-1 forecasts, although some improvement in SM was achieved at lead-2.

  20. Application of a medium-range global hydrologic probabilistic forecast scheme to the Ohio River Basin

    SciTech Connect (OSTI)

    Voisin, Nathalie; Pappenberger, Florian; Lettenmaier, D. P.; Buizza, Roberto; Schaake, John

    2011-08-15T23:59:59.000Z

    A 10-day globally applicable flood prediction scheme was evaluated using the Ohio River basin as a test site for the period 2003-2007. The Variable Infiltration Capacity (VIC) hydrology model was initialized with the European Centre for Medium Range Weather Forecasts (ECMWF) analysis temperatures and wind, and Tropical Rainfall Monitoring Mission Multi Satellite Precipitation Analysis (TMPA) precipitation up to the day of forecast. In forecast mode, the VIC model was then forced with a calibrated and statistically downscaled ECMWF ensemble prediction system (EPS) 10-day ensemble forecast. A parallel set up was used where ECMWF EPS forecasts were interpolated to the spatial scale of the hydrology model. Each set of forecasts was extended by 5 days using monthly mean climatological variables and zero precipitation in order to account for the effect of initial conditions. The 15-day spatially distributed ensemble runoff forecasts were then routed to four locations in the basin, each with different drainage areas. Surrogates for observed daily runoff and flow were provided by the reference run, specifically VIC simulation forced with ECMWF analysis fields and TMPA precipitation fields. The flood prediction scheme using the calibrated and downscaled ECMWF EPS forecasts was shown to be more accurate and reliable than interpolated forecasts for both daily distributed runoff forecasts and daily flow forecasts. Initial and antecedent conditions dominated the flow forecasts for lead times shorter than the time of concentration depending on the flow forecast amounts and the drainage area sizes. The flood prediction scheme had useful skill for the 10 following days at all sites.