National Library of Energy BETA

Sample records for fore cast ing

  1. Ryan Sun Chee Fore | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ryan Sun Chee Fore About Us Ryan Sun Chee Fore - Marine and Hydrokinetic Technology Manager Most Recent Riding the Clean Energy Wave: New Projects Aim to Improve Water Power ...

  2. Ing Arvid Nesheim | Open Energy Information

    Open Energy Info (EERE)

    Name: Ing Arvid Nesheim Address: Hoymyrmarka 123A Place: Vollen Zip: 1391 Region: Norway Sector: Marine and Hydrokinetic Phone Number: 47 951 08 439 Website: www.anwsite.com...

  3. Biography U. Dsterloh Degree: PD Dr.- Ing. habil. Institution...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    U. Dsterloh Degree: PD Dr.- Ing. habil. Institution: Clausthal University of Technology. Chair: chair for waste disposal technologies and geomechanics. 1982- 1988 field of study:...

  4. Modeling Results For the ITER Cryogenic Fore Pump. Final Report

    SciTech Connect (OSTI)

    Pfotenhauer, John M.; Zhang, Dongsheng

    2014-03-31

    A numerical model characterizing the operation of a cryogenic fore-pump (CFP) for ITER has been developed at the University of Wisconsin – Madison during the period from March 15, 2011 through June 30, 2014. The purpose of the ITER-CFP is to separate hydrogen isotopes from helium gas, both making up the exhaust components from the ITER reactor. The model explicitly determines the amount of hydrogen that is captured by the supercritical-helium-cooled pump as a function of the inlet temperature of the supercritical helium, its flow rate, and the inlet conditions of the hydrogen gas flow. Furthermore the model computes the location and amount of hydrogen captured in the pump as a function of time. Throughout the model’s development, and as a calibration check for its results, it has been extensively compared with the measurements of a CFP prototype tested at Oak Ridge National Lab. The results of the model demonstrate that the quantity of captured hydrogen is very sensitive to the inlet temperature of the helium coolant on the outside of the cryopump. Furthermore, the model can be utilized to refine those tests, and suggests methods that could be incorporated in the testing to enhance the usefulness of the measured data.

  5. Modeling results for the ITER cryogenic fore pump

    SciTech Connect (OSTI)

    Zhang, D. S.; Miller, F. K.; Pfotenhauer, J. M.

    2014-01-29

    The cryogenic fore pump (CFP) is designed for ITER to collect and compress hydrogen isotopes during the regeneration process of torus cryopumps. Different from common cryopumps, the ITER-CFP works in the viscous flow regime. As a result, both adsorption boundary conditions and transport phenomena contribute unique features to the pump performance. In this report, the physical mechanisms of cryopumping are studied, especially the diffusion-adsorption process and these are coupled with standard equations of species, momentum and energy balance, as well as the equation of state. Numerical models are developed, which include highly coupled non-linear conservation equations of species, momentum and energy and equation of state. Thermal and kinetic properties are treated as functions of temperature, pressure, and composition. To solve such a set of equations, a novel numerical technique, identified as the Group-Member numerical technique is proposed. It is presented here a 1D numerical model. The results include comparison with the experimental data of pure hydrogen flow and a prediction for hydrogen flow with trace helium. An advanced 2D model and detailed explanation of the Group-Member technique are to be presented in following papers.

  6. WA_02_035_BP_SOLAR_INTERNATIONAL_Waiver_of_Domestic_and_Fore.pdf |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 5_BP_SOLAR_INTERNATIONAL_Waiver_of_Domestic_and_Fore.pdf WA_02_035_BP_SOLAR_INTERNATIONAL_Waiver_of_Domestic_and_Fore.pdf (1.18 MB) More Documents & Publications WA_06_016_BP_SOLAR_INTERNATIONAL_Waiver_of_Patent_Rights_Und.pdf WA_02_034_BP_SOLAR_INTERNATIONAL_LLC_Waiver_of_Domestic_and_

  7. WA_03_010_SHELL_SOLAR_INDUSTRIES_Waiver_of_Domestic_and_Fore.pdf |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 10_SHELL_SOLAR_INDUSTRIES_Waiver_of_Domestic_and_Fore.pdf WA_03_010_SHELL_SOLAR_INDUSTRIES_Waiver_of_Domestic_and_Fore.pdf (1.41 MB) More Documents & Publications WA_02_039_SHELL_SOLAR_SYSTEMS_Waiver_of_Patent_Rights_Under_.pdf WA_05_059_SHELL_SOLAR_INDUSTRIES_LP_Waiver_of_Domestic_and_F.pdf Advance Patent Waiver W(A)2005-060

  8. WC_1992_001__Class_WAIVER_OF_the_Governments_US_and_Fore.pdf | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy WC_1992_001__Class_WAIVER_OF_the_Governments_US_and_Fore.pdf WC_1992_001__Class_WAIVER_OF_the_Governments_US_and_Fore.pdf (915.82 KB) More Documents & Publications WC_2000_001_CLASS_WAIVER_BETWEEN_DOE_and_EMPLOYEES_OF_THE_NE.pdf WC_1993_015_CLASS_WAIVER_of_the_Governments_US_and_Foreign_P.pdf Class_Waiver_W_C-2003-001.pdf

  9. CASTING FURNACES

    DOE Patents [OSTI]

    Ruppel, R.H.; Winters, C.E.

    1961-01-01

    A device is described for casting uranium which comprises a crucible, a rotatable table holding a plurality of molds, and a shell around both the crucible and the table. The bottom of the crucible has an eccentrically arranged pouring hole aligned with one of the molds at a time. The shell can be connected with a vacuum.

  10. Casting methods

    DOE Patents [OSTI]

    Marsden, Kenneth C.; Meyer, Mitchell K.; Grover, Blair K.; Fielding, Randall S.; Wolfensberger, Billy W.

    2012-12-18

    A casting device includes a covered crucible having a top opening and a bottom orifice, a lid covering the top opening, a stopper rod sealing the bottom orifice, and a reusable mold having at least one chamber, a top end of the chamber being open to and positioned below the bottom orifice and a vacuum tap into the chamber being below the top end of the chamber. A casting method includes charging a crucible with a solid material and covering the crucible, heating the crucible, melting the material, evacuating a chamber of a mold to less than 1 atm absolute through a vacuum tap into the chamber, draining the melted material into the evacuated chamber, solidifying the material in the chamber, and removing the solidified material from the chamber without damaging the chamber.

  11. CASTING APPARATUS

    DOE Patents [OSTI]

    Gray, C.F.; Thompson, R.H.

    1958-09-23

    An apparatus is described for casting small quantities of uranlum. It consists of a crucible having a hole in the bottom with a mold positioned below. A vertical rcd passes through the hole in the crucible and has at its upper end a piercing head adapted to break the oxide skin encasing a molten uranium body. An air tight cylinder surrounds the crucible and mold, and is arranged to be evacuated.

  12. Ablation Casting Evaluation for High Volume Structural Castings...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ablation Casting Evaluation for High Volume Structural Castings Ablation Casting Evaluation for High Volume Structural Castings 2012 DOE Hydrogen and Fuel Cells Program and Vehicle ...

  13. Casting materials

    DOE Patents [OSTI]

    Chaudhry, Anil R.; Dzugan, Robert; Harrington, Richard M.; Neece, Faurice D.; Singh, Nipendra P.

    2011-06-14

    A foam material comprises a liquid polymer and a liquid isocyanate which is mixed to make a solution that is poured, injected or otherwise deposited into a corresponding mold. A reaction from the mixture of the liquid polymer and liquid isocyanate inside the mold forms a thermally collapsible foam structure having a shape that corresponds to the inside surface configuration of the mold and a skin that is continuous and unbroken. Once the reaction is complete, the foam pattern is removed from the mold and may be used as a pattern in any number of conventional casting processes.

  14. Thin Wall Iron Castings

    SciTech Connect (OSTI)

    J.F. Cuttino; D.M. Stefanescu; T.S. Piwonka

    2001-10-31

    Results of an investigation made to develop methods of making iron castings having wall thicknesses as small as 2.5 mm in green sand molds are presented. It was found that thin wall ductile and compacted graphite iron castings can be made and have properties consistent with heavier castings. Green sand molding variables that affect casting dimensions were also identified.

  15. Dolomitization of coeval shelf and fore-shelf carbonates, Lower Permian, Midland basin, Texas

    SciTech Connect (OSTI)

    Mazzullo, S.J.; Qiuchang, Ye )

    1991-03-01

    Coeval shelf and fore-shelf carbonates in Lower Permian (Leonardian) rocks in the Midland basin are pervasively dolomitized. Shelf strata consist of a regional mosaic of shelf margin reef, lagoon, and peritidal facies associated with contemporaneous evaporite deposition; fore-shelf facies consist of resedimented shelf margin deposits. Numerous relative sea-level fluctuations that resulted in the formation of Type 1 and 2 unconformities are recognized throughout this section. Mean stable oxygen and carbon isotopic compositions of the shelf strate suggest that dolomitization occurred essentially syndepositionally, likely by interaction with normal marine( ) and hypersaline fluids. In fore-shelf strata petrographic evidence, in combination with paleotemperature estimates from isotopic data and the burial depth-temperature history of these rocks, suggest relatively early (late Permian) dolomitization in rock-dominated systems. Three possible modes of dolomitization could have affected these fore-shelf beds: (1) dolomitization by reflux of normal-marine and/or hypersaline fluids during sea level highstands or lowstands; (2) dolomitization by mixed meteoric-marine fluids during lowstands; and (3) replacement by calcic dolomites via reaction with circulating marine fluids during deposition and early, shallow burial without organic matter influences. The latter mode of origin, however, is favored for most of the rocks examined on the basis of the slightly positive carbon isotopic compositions, Sr versus MgCO{sub 3} compositions (mean Sr 61 ppm, mean MgCO{sub 3} 49.5), and low Mn contents (mean 61 ppm) of the dolomites, although later burial recrystallization is indicated by their relatively depleted isotopic compositions.

  16. Geologic reconnaissance of natural fore-reef slope and a large submarine rockfall exposure, Enewetak Atoll

    SciTech Connect (OSTI)

    Halley, R.B.; Slater, R.A.

    1987-05-01

    In 1958 a submarine rockfall exposed a cross section through the reef and fore-reef deposits along the northwestern margin of Enewetak Atoll, Marshall Islands. Removal of more than 10/sup 8/ MT of rock left a cirque-shaped submarine scarp 220 m high, extending back 190 m into the modern reef, and 1000 m along the reef trend. The scarp exposed older, steeply dipping beds below 220 m along which the rockfall detached. They sampled this exposure and the natural fore-reef slope surrounding it in 1984 and 1985 using a manned submersible. The natural slope in this area is characterized by three zone: (1) the reef plate, crest, and near fore reef that extends from sea level to -16 m, with a slope of less than 10/sup 0/, (2) the bypass slope that extends from -16 to -275 m, with slopes of 55/sup 0/ decreasing to 35/sup 0/ near the base, and (3) a debris slope of less than 35/sup 0/ below -275 m. Vertical walls, grooves, and chutes, common on other fore-reef slopes, are sparse on the northwestern slope of Enewetak. The scarp exposes three stratigraphic units that are differentiated by surficial appearance: (1) a near-vertical wall from the reef crest to 76 m that appears rubbly, has occasional debris-covered ledges, and is composed mainly of coral; (2) a vertical to overhanging wall from -76 m to -220 m that is massive and fractured, and has smooth, blocky surfaces; and (3) inclined bedding below -220 m along which the slump block has fractured, exposing a dip slope of hard, dense, white limestone and dolomite that extends below -400 m. Caves occur in all three units. Open cement-lined fractures and voids layered with cements are most common in the middle unit, which now lies within the thermocline. Along the sides of the scarp are exposed fore-reef boulder beds dipping at 30/sup 0/ toward the open sea; the steeper (55/sup 0/) dipping natural surface truncates these beds, which gives evidence of the erosional nature of the bypass slope.

  17. Regional distribution and chemical characterization of Permian Capitan fore-reef slope dolomite: Implications for paleohydrology

    SciTech Connect (OSTI)

    Melim, L.A. )

    1990-05-01

    Dolomitized fore-reef slope facies recently have become significant targets for petroleum exploration in the Permian basin and elsewhere. Despite this, very little is known about the dolomitization process that largely controls porosity distribution in this facies. An integrated field, petrographic, and geochemical study has been conducted in the fore-reef slope strata of the Permian Capitan Formation to provide insight into this problem. Dolomitization of the Capitan fore-reef slope facies ranges from 0 to 100%. Regionally, the variation is related to stratigraphic age, with older forereef slope facies more dolomitized than younger facies. This generalization is consistent throughout the Guadalupe Mountains and appears to continue into the subsurface. On a local scale, more permeable beds were the first dolomitized, and within these, dolomitization decreases downslope. In the Capitan reef facies, dolomitization is restricted to vertical karst breccia pipes and other zones of high primary porosity. The majority of Capitan dolomite is finely crystalline (5-30 {mu}) with average {delta}{sup 18}O = 0.9 and {delta}{sup 13}C = 5.9. A second coarser (130-{mu}) dolomite generation is also present but is not as volumetrically important. The relative positive (for the Late Permian) {delta}{sup 18}O values indicates an evaporitively concentrated dolomitizing fluid. The most likely paleohydrologic model for the main phase of forereef slope dolomitization calls for descending hypersaline brines passing through the reef facies in vertical karst breccia pipes and then following permeable beds down the foreslope. Several sources are possible for these brines, with the most likely being the hypersaline back-reef lagoonal environment.

  18. 'Fore!' heads up, wide use of more flexible metallic glass coming your

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    way Flexible metallic glass coming your way 'Fore!' heads up, wide use of more flexible metallic glass coming your way Scientists are working toward even stronger and more elastic glass types which would fail in a ductile fashion instead of shattering. March 3, 2014 A piece of metallic glass that has been bent around onto itself with a 1mm radius and glued into place. It would spring back to a flat piece if the glue were removed. A piece of metallic glass that has been bent around onto

  19. SLIP CASTING METHOD

    DOE Patents [OSTI]

    Allison, A.G.

    1959-09-01

    S>A process is described for preparing a magnesium oxide slip casting slurry which when used in conjunction with standard casting techniques results in a very strong "green" slip casting and a fired piece of very close dimensional tolerance. The process involves aging an aqueous magnestum oxide slurry, having a basic pH value, until it attains a specified critical viscosity at which time a deflocculating agent is added without upsetting the basic pH value.

  20. Q&A: FORGE-ing Ahead to Clean, Low-Cost Geothermal Energy | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy FORGE-ing Ahead to Clean, Low-Cost Geothermal Energy Q&A: FORGE-ing Ahead to Clean, Low-Cost Geothermal Energy July 17, 2014 - 2:48pm Addthis Q&A: FORGE-ing Ahead to Clean, Low-Cost Geothermal Energy Q&A: FORGE-ing Ahead to Clean, Low-Cost Geothermal Energy Q&A: FORGE-ing Ahead to Clean, Low-Cost Geothermal Energy Q&A: FORGE-ing Ahead to Clean, Low-Cost Geothermal Energy Lauren Boyd Lauren Boyd Program Manager, Enhanced Geothermal Systems (EGS) Benjamin Phillips

  1. Metal Casting Project Fact Sheet - Predicting Pattern Tooling and Casting

    SciTech Connect (OSTI)

    None

    2000-12-01

    Factors affecting casting dimension and tools to reduce their impact are being identified in this project.

  2. Clean Metal Casting

    SciTech Connect (OSTI)

    Makhlouf M. Makhlouf; Diran Apelian

    2002-02-05

    The objective of this project is to develop a technology for clean metal processing that is capable of consistently providing a metal cleanliness level that is fit for a given application. The program has five tasks: Development of melt cleanliness assessment technology, development of melt contamination avoidance technology, development of high temperature phase separation technology, establishment of a correlation between the level of melt cleanliness and as cast mechanical properties, and transfer of technology to the industrial sector. Within the context of the first task, WPI has developed a standardized Reduced Pressure Test that has been endorsed by AFS as a recommended practice. In addition, within the context of task1, WPI has developed a melt cleanliness sensor based on the principles of electromagnetic separation. An industrial partner is commercializing the sensor. Within the context of the second task, WPI has developed environmentally friendly fluxes that do not contain fluorine. Within the context of the third task, WPI modeled the process of rotary degassing and verified the model predictions with experimental data. This model may be used to optimize the performance of industrial rotary degassers. Within the context of the fourth task, WPI has correlated the level of melt cleanliness at various foundries, including a sand casting foundry, a permanent mold casting foundry, and a die casting foundry, to the casting process and the resultant mechanical properties. This is useful in tailoring the melt cleansing operations at foundries to the particular casting process and the desired properties of cast components.

  3. CENTRIFUGAL CASTING MACHINE

    DOE Patents [OSTI]

    Shuck, A.B.

    1958-04-01

    A device is described that is specifically designed to cast uraniumn fuel rods in a vacuunn, in order to obtain flawless, nonoxidized castings which subsequently require a maximum of machining or wastage of the expensive processed material. A chamber surrounded with heating elements is connected to the molds, and the entire apparatus is housed in an airtight container. A charge of uranium is placed in the chamber, heated, then is allowed to flow into the molds While being rotated. Water circulating through passages in the molds chills the casting to form a fine grained fuel rod in nearly finished form.

  4. CASTING METHOD AND APPARATUS

    DOE Patents [OSTI]

    Gray, C.F.; Thompson, R.H.

    1958-10-01

    An improved apparatus for the melting and casting of uranium is described. A vacuum chamber is positioned over the casting mold and connected thereto, and a rod to pierce the oxide skin of the molten uranium is fitted into the bottom of the melting chamber. The entire apparatus is surrounded by a jacket, and operations are conducted under a vacuum. The improvement in this apparatus lies in the fact that the top of the melting chamber is fitted with a plunger which allows squeezing of the oxide skin to force out any molten uranium remaining after the skin has been broken and the molten charge has been cast.

  5. ITP Metal Casting: A Vision for the U.S. Metal Casting Industry...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    KB) More Documents & Publications ITP Metal Casting: Metalcasting Industry Technology Roadmap ITP Metal Casting: Implementation of Metal Casting Best Practices ITP Metal Casting: ...

  6. ENERGISE-ing Solutions to Scale Up Distributed Solar | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ENERGISE-ing Solutions to Scale Up Distributed Solar ENERGISE-ing Solutions to Scale Up Distributed Solar May 31, 2016 - 4:10pm Addthis ENERGISE-ing Solutions to Scale Up Distributed Solar Guohui Yuan Systems Integration Program Manager, SunShot Initiative Learn more about ENERGISE If a utility pole falls in a forest and no energy company employee is around to hear it, does it make a sound? Currently, the answer is no. For the most part, utility companies rely on customer calls to react to

  7. Method of casting aerogels

    DOE Patents [OSTI]

    Poco, John F.

    1993-01-01

    The invention describes a method for making monolithic castings of transparent silica aerogel with densities in the range from 0.001 g/cm.sup.3 to 0.6 g/cm.sup.3. Various shapes of aerogels are cast in flexible polymer molds which facilitate removal and eliminate irregular surfaces. Mold dimensions are preselected to account for shrinkage of alcogel which occurs during the drying step of supercritical extraction of solvent.

  8. Method of casting aerogels

    DOE Patents [OSTI]

    Poco, J.F.

    1993-09-07

    The invention describes a method for making monolithic castings of transparent silica aerogel with densities in the range from 0.001 g/cm[sup 3] to 0.6 g/cm[sup 3]. Various shapes of aerogels are cast in flexible polymer molds which facilitate removal and eliminate irregular surfaces. Mold dimensions are preselected to account for shrinkage of aerogel which occurs during the drying step of supercritical extraction of solvent. 2 figures.

  9. MOLDS FOR CASTING PLUTONIUM

    DOE Patents [OSTI]

    Anderson, J.W.; Miley, F.; Pritchard, W.C.

    1962-02-27

    A coated mold for casting plutonium comprises a mold base portion of a material which remains solid and stable at temperatures as high as the pouring temperature of the metal to be cast and having a thin coating of the order of 0.005 inch thick on the interior thereof. The coating is composed of finely divided calcium fluoride having a particle size of about 149 microns. (AEC)

  10. Franciscan-Knoxville Problem: Relationship between an accretionary prism and adjacent fore-arc basin

    SciTech Connect (OSTI)

    Korsch, R.J.

    1983-01-01

    The relationship between the Franciscan complex and Knoxville shales in the Californian Coast Ranges has been the subject of debate for a considerable period of time. Initially, gradational and unconformable relationships for the contact were proposed. This was followed by the recognition, at some localities, of a thrust fault contact. Plate tectonics has provided a framework for interpretation of the Franciscan complex as an accretionary prism related to subduction of oceanic crust and the Great Valley sequence, including the Knoxville shales, as fore-arc basin deposits. Thus, the contact between the two units was the initial site of the Benioff zone, which then migrated westward as the accretionary prism developed. In the Franciscan complex and Great Valley sequence many thrusts have been recognized recently. At different localities, the Franciscan complex can be observed juxtaposed against various units of the Great Valley sequence, suggesting a complicated thrusting history subsequent to initiation of the Benioff zone. Some of the thrusts had movement during development of the accretionary prism, but movement on others may be post-subduction in time. The term ''Coast Range thrust'' has been used to refer to the contact, but in recent years its meaning has become blurred by liberalization and excessive use. It is proposed that the term be used only as originally proposed, that is, as the thrust that juxtaposes the Franciscan complex and the ophiolitic base of the Great Valley sequence.

  11. Wolfcampian and early Leonardian fore-shelf carbonate debris production, Permian basin, west Texas

    SciTech Connect (OSTI)

    Becher, J.W.; Von Der Hoya, H.A. )

    1990-05-01

    Since 1980, a number of Wolfcampian and early Leonardian oil fields have been discovered in a previously unexplored carbonate environment of the Permian basin i.e. basinal fore-shelf debris. These fields range up to 25 MMBOE in size. The Permian basin formed during the Early Pennsylvanian through the earliest Leonardian. Carbonate buildups dominated shelf-edge deposition and a syntectonic wedge of shelf debris was shed into the basins during both high and low sea level stands. Combined eustatic and tectonic sea level fluctuations of over 300 ft have been documented. The geometry, texture, and seismic expression of the debris changes with depositional slope, which ranges from very steep fault-block edges on the Central Basin platform to gentle ramps on the eastern shelf. Productive, low-stand deposits derived from steep shelf edges, consist of turbidite grainstones; clean, very coarse, lithoclastic, debris flaws; and allochthonous slide blocks. These deposits were derived from point sources on the eroded shelf and have a single-lobe or multi-lobe fan geometry. Debris clasts commonly display subaerial lithification and leaching. Lowstand fans extend 4-8 mi into the basin. Productive, lowstand deposits derived from ramp settings have a submarine channel geometry and consist dominantly of grainstone and packstone. Porosity has been enhanced by late subsurface solution. Nonproductive, highstand deposits were derived from a line source and have an apron geometry. These deposits consist of thinly bedded shaly, bioclastic turbidites with no evidence of lithification before final transport.

  12. Salvaged castings and methods of salvaging castings with defective cast cooling bumps

    DOE Patents [OSTI]

    Johnson, Robert Alan; Schaeffer, Jon Conrad; Lee, Ching-Pang; Abuaf, Nesim; Hasz, Wayne Charles

    2002-01-01

    Castings for gas turbine parts exposed on one side to a high-temperature fluid medium have cast-in bumps on an opposite cooling surface side to enhance heat transfer. Areas on the cooling surface having defectively cast bumps, i.e., missing or partially formed bumps during casting, are coated with a braze alloy and cooling enhancement material to salvage the part.

  13. Sedimentology and diagenesis of windward-facing fore-reef calcarenites, Late Pleistocene of Barbados, West Indies

    SciTech Connect (OSTI)

    Humphrey, J.D.; Kimbell, T.N.

    1989-03-01

    Late Pleistocene reef terraces in southeastern Barbardos developed extensive fore-reef sand facies during deposition in response to high-energy windward-facing conditions. Sedimentology and diagenesis of these deposits illustrate significant contrasts with previous studies from the leeward west coast. These calcarenites are dominantly skeletal packstones with less common grainstones and wackestones present. The fore-reef sand facies occurs within progradational reef sequences, being conformably overlain by deep-water head coral facies. Medium-bedded, laterally continuous sand sheets retain original depositional slopes, dipping seaward at 10/degrees/-15/degrees/. These fore-reef deposits, in places, are over 30 m thick (average 20 m) and developed rapidly during late Pleistocene glacio-eustatic sea level highstands. Sedimentation rate ranges from 2 to 5 m/1000 years. Areal extent of fore-reef calcarenites in southeastern Barbados is estimated to be 8-10 km/sup 2/. Lithologically, the packstones are composed of an abundance of coralline red algae and the benthic foraminifer Amphistegina sp. Other volumetrically significant allochems include echinoids, mollusks, rhodoliths, peloids, and micritized grains. Micrite in the wackestone and packstone lithologies is likely derived from intense physical/mechanical abrasion of shoal-water reef facies. Diagenesis of these lithologies reflects a complex interplay of meteoric, mixing zone, and marine environments as a result of glacio-eustasy. Differences in diagenetic character are derived from differences in terrace ages, terrace geometry, a paleotopographic control on meteoric ground-water distribution, and high-energy coastal conditions. Diagenetic fabrics include equant, blocky meteoric phreatic calcite; limpid dolomite of mixing zone origin: and peloidal and isopachous fibrous cements from marine precipitation.

  14. Extrusion cast explosive

    DOE Patents [OSTI]

    Scribner, Kenneth J.

    1985-01-01

    Improved, multiphase, high performance, high energy, extrusion cast explosive compositions, comprising, a crystalline explosive material; an energetic liquid plasticizer; a urethane prepolymer, comprising a blend of polyvinyl formal, and polycaprolactone; a polyfunctional isocyanate; and a catalyst are disclosed. These new explosive compositions exhibit higher explosive content, a smooth detonation front, excellent stability over long periods of storage, and lower sensitivity to mechanical stimulants.

  15. Extrusion cast explosive

    DOE Patents [OSTI]

    Scribner, K.J.

    1985-11-26

    Disclosed is an improved, multiphase, high performance, high energy, extrusion cast explosive compositions, comprising, a crystalline explosive material; an energetic liquid plasticizer; a urethane prepolymer, comprising a blend of polyvinyl formal, and polycaprolactone; a polyfunctional isocyanate; and a catalyst. These new explosive compositions exhibit higher explosive content, a smooth detonation front, excellent stability over long periods of storage, and lower sensitivity to mechanical stimulants. 1 fig.

  16. Extrusion cast explosive

    DOE Patents [OSTI]

    Scribner, K.J.

    1985-01-29

    Improved, multiphase, high performance, high energy, extrusion cast explosive compositions, comprising, a crystalline explosive material; an energetic liquid plasticizer; a urethane prepolymer, comprising a blend of polyvinyl formal, and polycaprolactone; a polyfunctional isocyanate; and a catalyst are disclosed. These new explosive compositions exhibit higher explosive content, a smooth detonation front, excellent stability over long periods of storage, and lower sensitivity to mechanical stimulants. 1 fig.

  17. LOST FOAM CASTING OF MAGNESIUM ALLOYS

    SciTech Connect (OSTI)

    Han, Qingyou [ORNL; Dinwiddie, Ralph Barton [ORNL; Sklad, Philip S [ORNL; Currie, Kenneth [Tennessee Technological University; Abdelrahman, Mohamed [Tennessee Technological University; Vondra, Fred [Tennessee Technological University; Walford, Graham [Walford Technologies; Nolan, Dennis J [Foseco-Morval

    2007-01-01

    The lost foam casting process has been successfully used for making aluminum and cast iron thin walled castings of complex geometries. Little work has been carried out on cast magnesium alloys using the lost foam process. The article describes the research activities at Oak Ridge National Laboratory and Tennessee Technological University on lost foam casting of magnesium alloys. The work was focused on castings of simple geometries such as plate castings and window castings. The plate castings were designed to investigate the mold filling characteristics of magnesium and aluminum alloys using an infrared camera. The pate castings were then characterized for porosity distribution. The window castings were made to test the castability of the alloys under lost foam conditions. Significant differences between lost foam aluminum casting and lost foam magnesium casting have been observed.

  18. Cast dielectric composite linear accelerator

    DOE Patents [OSTI]

    Sanders, David M.; Sampayan, Stephen; Slenes, Kirk; Stoller, H. M.

    2009-11-10

    A linear accelerator having cast dielectric composite layers integrally formed with conductor electrodes in a solventless fabrication process, with the cast dielectric composite preferably having a nanoparticle filler in an organic polymer such as a thermosetting resin. By incorporating this cast dielectric composite the dielectric constant of critical insulating layers of the transmission lines of the accelerator are increased while simultaneously maintaining high dielectric strengths for the accelerator.

  19. ITP Metal Casting: Metalcasting Industry Technology Roadmap

    Broader source: Energy.gov [DOE]

    Castings are essential building blocks of U. S. industry. More than 90% of all mnaufactured, durable good and 100% of all manufacturing machinery contain castings.

  20. Biography U. Düsterloh Degree: PD Dr.- Ing. habil. Institution: Clausthal University of Technology.

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    U. Düsterloh Degree: PD Dr.- Ing. habil. Institution: Clausthal University of Technology. Chair: chair for waste disposal technologies and geomechanics. 1982- 1988 field of study: mining engineer 1989- 1993 PhD work - geomechanical investigations on the stability of salt caverns for waste disposal. 2009 Habilitation - proof of stability and integrity of underground excavations in saliniferous formations with special regard to lab tests. 1989 - 2012 chief engineer at Clausthal University of

  1. Strip casting with fluxing agent applied to casting roll

    SciTech Connect (OSTI)

    Williams, R.S.; O`Malley, R.J.; Sussman, R.C.

    1997-07-29

    A strip caster for producing a continuous strip includes a tundish for containing a melt, a pair of horizontally disposed water cooled casting rolls and devices for electrostatically coating the outer peripheral chill surfaces of the casting rolls with a powder flux material. The casting rolls are juxtaposed relative to one another for forming a pouting basin for receiving the melt through a teeming tube thereby establishing a meniscus between the rolls for forming the strip. The melt is protected from the outside air by a non-oxidizing gas passed through a supply line to a sealing chamber. A preferred flux is boron oxide having a melting point of about 550 C. The flux coating enhances wetting of the steel melt to the casting roll and dissolves any metal oxide formed on the roll. 3 figs.

  2. Strip casting with fluxing agent applied to casting roll

    DOE Patents [OSTI]

    Williams, Robert S.; O'Malley, Ronald J.; Sussman, Richard C.

    1997-01-01

    A strip caster (10) for producing a continuous strip (24) includes a tundish (12) for containing a melt (14), a pair of horizontally disposed water cooled casting rolls (22) and devices (29) for electrostatically coating the outer peripheral chill surfaces (44) of the casting rolls with a powder flux material (56). The casting rolls are juxtaposed relative to one another for forming a pouting basin (18) for receiving the melt through a teeming tube (16) thereby establishing a meniscus (20) between the rolls for forming the strip. The melt is protected from the outside air by a non-oxidizing gas passed through a supply line (28) to a sealing chamber (26). A preferred flux is boron oxide having a melting point of about 550.degree. C. The flux coating enhances wetting of the steel melt to the casting roll and dissolves any metal oxide formed on the roll.

  3. Strip casting apparatus and method

    DOE Patents [OSTI]

    Williams, R.S.; Baker, D.F.

    1988-09-20

    Strip casting apparatus including a molten-metal-holding container and a nozzle to deposit molten metal onto a moving chill drum to directly cast continuous metallic strip. The nozzle body includes a slot bounded between a back and a front lip. The slot width exceeds about 20 times the gap distance between the nozzle and the chill drum surface. Preferably, the slot width exceeds 0.5 inch. This method of strip casting minimizes pressure drop, insuring better metal-to-chill-drum contact which promotes heat transfer and results in a better quality metallic strip. 6 figs.

  4. Strip casting apparatus and method

    DOE Patents [OSTI]

    Williams, Robert S.; Baker, Donald F.

    1988-01-01

    Strip casting apparatus including a molten-metal-holding container and a nozzle to deposit molten metal onto a moving chill drum to directly cast continuous metallic strip. The nozzle body includes a slot bounded between a back and a front lip. The slot width exceeds about 20 times the gap distance between the nozzle and the chill drum surface. Preferably, the slot width exceeds 0.5 inch. This method of strip casting minimizes pressure drop, insuring better metal-to-chill-drum contact which promotes heat transfer and results in a better quality metallic strip.

  5. Use of Xenon Difluoride to Clean Hazardous By-Products in Ion Implanter Source Housings, Turbo Pumps, and Fore-Lines

    SciTech Connect (OSTI)

    Despres, J.; Chambers, B.; Bishop, S.; Kaim, R.; Letaj, S.; Sergi, S.; Sweeney, J.; Tang, Y.; Wilson, S.; Yedave, S.

    2011-01-07

    This paper describes the use of xenon difluoride to clean deposits in the source housing, source turbo pump, and source turbo pump fore-line of ion implanters. Xenon difluoride has previously been shown to be effective in increasing the lifetime of the ion source{sup 1,2} and this paper presents an extension of the technology to other areas within the tool. Process by-products that are deposited in the source housing, turbo pump, and turbo pump fore-line can not only pose productivity issues, in the case of coatings on insulators, but can also be flammable and toxic in the case of deposits formed within the turbo pump and fore-line. The results presented in this paper detail the initial successful examples of using xenon difluoride to clean these deposits.ATMI has shown that xenon difluoride is capable of cleaning an insulator in an ion implanter. Typically during use an insulator will become increasingly coated with deposits that could lead to productivity problems. By introducing xenon difluoride into the source housing the insulator residues were effectively cleaned in-situ, thereby extending the maintenance interval and resulting in significant consumable savings.Similar deposits that form in the turbo pump and fore-line could not only lead to production problems due to turbo pump failure or fore-line build-up, but pose significant health risks during the ex-situ cleaning process. Through internal testing ATMI has shown that xenon difluoride is able to clean phosphorus and germanium deposits located within a turbo pump. Additionally, testing has demonstrated that the turbo pump fore-line can be cleaned in-situ without the need to remove these components, thereby virtually eliminating the possibility of fires. The cleaning reaction progress and by-products were monitored using FTIR spectrometry and thermocouples.In order to efficiently clean the source housing, turbo pump, and turbo pump fore-line xenon difluoride delivery must be optimized. This paper also

  6. Light Metals Permanent Mold Casting

    SciTech Connect (OSTI)

    None

    2004-11-01

    The research will develop the gravity and/or low-pressure permanent-mold casting processes with sand or permanent-mold cores for aluminum and magnesium based alloys.

  7. Fillability of Thin-Wall Steel Castings

    SciTech Connect (OSTI)

    Robert C. Voigt; Joseph Bertoletti; Andrew Kaley; Sandi Ricotta; Travis Sunday

    2002-07-30

    The use of steel components is being challenged by lighter nonferrous or cast iron components. The development of techniques for enhancing and ensuring the filability of thin-wall mold cavities is most critical for thinner wall cast steel production. The purpose of this research was to develop thin-wall casting techniques that can be used to reliably produce thin-wall castings from traditional gravity poured sand casting processes. The focus of the research was to enhance the filling behavior to prevent misrunds. Experiments were conducted to investigate the influence of various foundry variables on the filling of thin section steel castings. These variables include casting design, heat transfer, gating design, and metal fluidity. Wall thickness and pouring temperature have the greatest effect on casting fill. As wall thickness increases the volume to surface area of the casting increases, which increases the solidification time, allowing the metal to flow further in thicker sect ions. Pouring time is another significant variable affecting casting fill. Increases or decreases of 20% in the pouring time were found to have a significant effect on the filling of thin-wall production castings. Gating variables, including venting, pouring head height, and mold tilting also significantly affected thin-wall casting fill. Filters offer less turbulent, steadier flow, which is appropriate for thicker castings, but they do not enhance thin-wall casting fill.

  8. Energy Consumption of Die Casting Operations

    SciTech Connect (OSTI)

    Jerald Brevick; clark Mount-Campbell; Carroll Mobley

    2004-03-15

    Molten metal processing is inherently energy intensive and roughly 25% of the cost of die-cast products can be traced to some form of energy consumption [1]. The obvious major energy requirements are for melting and holding molten alloy in preparation for casting. The proper selection and maintenance of melting and holding equipment are clearly important factors in minimizing energy consumption in die-casting operations [2]. In addition to energy consumption, furnace selection also influences metal loss due to oxidation, metal quality, and maintenance requirements. Other important factors influencing energy consumption in a die-casting facility include geographic location, alloy(s) cast, starting form of alloy (solid or liquid), overall process flow, casting yield, scrap rate, cycle times, number of shifts per day, days of operation per month, type and size of die-casting form of alloy (solid or liquid), overall process flow, casting yield, scrap rate, cycle times, number of shifts per day, days of operation per month, type and size of die-casting machine, related equipment (robots, trim presses), and downstream processing (machining, plating, assembly, etc.). Each of these factors also may influence the casting quality and productivity of a die-casting enterprise. In a die-casting enterprise, decisions regarding these issues are made frequently and are based on a large number of factors. Therefore, it is not surprising that energy consumption can vary significantly from one die-casting enterprise to the next, and within a single enterprise as function of time.

  9. Improvement of the Lost Foam Casting Process

    Broader source: Energy.gov [DOE]

    Casting is an energy-intensive manufacturing process within the metal casting and aluminum industries, requiring natural gas to melt aluminum and electricity to run equipment. The higher-than...

  10. Tape casting of magnesium oxide.

    SciTech Connect (OSTI)

    Ayala, Alicia; Corral, Erica L.; Loehman, Ronald E.; Bencoe, Denise Nora; Reiterer, Markus; Shah, Raja A.

    2008-02-01

    A tape casting procedure for fabricating ceramic magnesium oxide tapes has been developed as a method to produce flat sheets of sintered MgO that are thin and porous. Thickness of single layer tapes is in the range of 200-400 {micro}m with corresponding surface roughness values in the range of 10-20 {micro}m as measured by laser profilometry. Development of the tape casting technique required optimization of pretreatment for the starting magnesium oxide (MgO) powder as well as a detailed study of the casting slurry preparation and subsequent heat treatments for sintering and final tape flattening. Milling time of the ceramic powder, plasticizer, and binder mixture was identified as a primary factor affecting surface morphology of the tapes. In general, longer milling times resulted in green tapes with a noticeably smoother surface. This work demonstrates that meticulous control of the entire tape casting operation is necessary to obtain high-quality MgO tapes.

  11. Process development of thin strip steel casting

    SciTech Connect (OSTI)

    Sussman, R.C.; Williams, R.S.

    1990-12-01

    An important new frontier is being opened in steel processing with the emergence of thin strip casting. Casting steel directly to thin strip has enormous benefits in energy savings by potentially eliminating the need for hot reduction in a hot strip mill. This has been the driving force for numerous current research efforts into the direct strip casting of steel. The US Department of Energy initiated a program to evaluate the development of thin strip casting in the steel industry. In earlier phases of this program, planar flow casting on an experimental caster was studied by a team of engineers from Westinghouse Electric corporation and Armco Inc. A subsequent research program was designed as a fundamental and developmental study of both planar and melt overflow casting processes. This study was arranged as several separate and distinct tasks which were often completed by different teams of researchers. An early task was to design and build a water model to study fluid flow through different designs of planar flow casting nozzles. Another important task was mathematically modeling of melt overflow casting process. A mathematical solidification model for the formation of the strip in the melt overflow process was written. A study of the material and conditioning of casting substrates was made on the small wheel caster using the melt overflow casting process. This report discusses work on the development of thin steel casting.

  12. Prediction of Part Distortion in Die Casting

    SciTech Connect (OSTI)

    R. Allen Miller

    2005-03-30

    The die casting process is one of the net shape manufacturing techniques and is widely used to produce high production castings with tight tolerances for many industries. An understanding of the stress distribution and the deformation pattern of parts produced by die casting will result in less deviation from the part design specification, a better die design and eventually more productivity and cost savings. This report presents methods that can be used to simulate the die casting process in order to predict the deformation and stresses in the produced part and assesses the degree to which distortion modeling is practical for die casting at the current time. A coupled thermal-mechanical finite elements model was used to simulate the die casting process. The simulation models the effect of thermal and mechanical interaction between the casting and the die. It also includes the temperature dependant material properties of the casting. Based on a designed experiment, a sensitivity analysis was conducted on the model to investigate the effect of key factors. These factors include the casting material model, material properties and thermal interaction between casting and dies. To verify the casting distortion predictions, it was compared against the measured dimensions of produced parts. The comparison included dimensions along and across the parting plane and the flatness of one surface.

  13. Method for casting thin metal objects

    SciTech Connect (OSTI)

    Pehrson, Brandon P; Moore, Alan F

    2015-04-14

    Provided herein are various embodiments of systems for casting thin metal plates and sheets. Typical embodiments include layers of mold cavities that are oriented vertically for casting the metal plates. In some embodiments, the mold cavities include a beveled edge such that the plates that are cast have a beveled edge. In some embodiments, the mold cavities are filled with a molten metal through an open horizontal edge of the cavity. In some embodiments, the mold cavities are filled through one or more vertical feed orifices. Further disclosed are methods for forming a thin cast metal plate or sheet where the thickness of the cast part is in a range from 0.005 inches to 0.2 inches, and the surface area of the cast part is in a range from 16 square inches to 144 square inches.

  14. A Benchmark Study on Casting Residual Stress

    SciTech Connect (OSTI)

    Johnson, Eric M. [John Deere -- Moline Tech Center; Watkins, Thomas R [ORNL; Schmidlin, Joshua E [ORNL; Dutler, S. A. [MAGMA Foundry Technologies, Inc.

    2012-01-01

    Stringent regulatory requirements, such as Tier IV norms, have pushed the cast iron for automotive applications to its limit. The castings need to be designed with closer tolerances by incorporating hitherto unknowns, such as residual stresses arising due to thermal gradients, phase and microstructural changes during solidification phenomenon. Residual stresses were earlier neglected in the casting designs by incorporating large factors of safety. Experimental measurement of residual stress in a casting through neutron or X-ray diffraction, sectioning or hole drilling, magnetic, electric or photoelastic measurements is very difficult and time consuming exercise. A detailed multi-physics model, incorporating thermo-mechanical and phase transformation phenomenon, provides an attractive alternative to assess the residual stresses generated during casting. However, before relying on the simulation methodology, it is important to rigorously validate the prediction capability by comparing it to experimental measurements. In the present work, a benchmark study was undertaken for casting residual stress measurements through neutron diffraction, which was subsequently used to validate the accuracy of simulation prediction. The stress lattice specimen geometry was designed such that subsequent castings would generate adequate residual stresses during solidification and cooling, without any cracks. The residual stresses in the cast specimen were measured using neutron diffraction. Considering the difficulty in accessing the neutron diffraction facility, these measurements can be considered as benchmark for casting simulation validations. Simulations were performed using the identical specimen geometry and casting conditions for predictions of residual stresses. The simulation predictions were found to agree well with the experimentally measured residual stresses. The experimentally validated model can be subsequently used to predict residual stresses in different cast

  15. Yield Improvement in Steel Casting (Yield II)

    SciTech Connect (OSTI)

    Richard A. Hardin; Christoph Beckermann; Tim Hays

    2002-02-18

    This report presents work conducted on the following main projects tasks undertaken in the Yield Improvement in Steel Casting research program: Improvement of Conventional Feeding and Risering Methods, Use of Unconventional Yield Improvement Techniques, and Case Studies in Yield Improvement. Casting trials were conducted and then simulated using the precise casting conditions as recorded by the participating SFSA foundries. These results present a statistically meaningful set of experimental data on soundness versus feeding length. Comparisons between these casting trials and casting trials performed more than forty years ago by Pellini and the SFSA are quite good and appear reasonable. Comparisons between the current SFSA feeding rules and feeding rules based on the minimum Niyama criterion reveal that the Niyama-based rules are generally less conservative. The niyama-based rules also agree better with both the trials presented here, and the casting trails performed by Pellini an d the SFSA years ago. Furthermore, the use of the Niyama criterion to predict centerline shrinkage for horizontally fed plate sections has a theoretical basis according to the casting literature reviewed here. These results strongly support the use of improved feeding rules for horizontal plate sections based on the Niyama criterion, which can be tailored to the casting conditions for a given alloy and to a desired level of soundness. The reliability and repeatability of ASTM shrinkage x-ray ratings was investigated in a statistical study performed on 128 x-rays, each of which were rated seven different times. A manual ''Feeding and Risering Guidelines for Steel Castings' is given in this final report. Results of casting trials performed to test unconventional techniques for improving casting yield are presented. These use a stacked arrangement of castings and riser pressurization to increase the casting yield. Riser pressurization was demonstrated to feed a casting up to four time s the

  16. Clean cast steel technology. Final report

    SciTech Connect (OSTI)

    Bates, C.E.; Griffin, J.A.

    1998-06-01

    This report documents the results obtained from the Clean Cast Steel Technology Program financially supported by the DOE Metal Casting Competitiveness Research Program and industry. The primary objective of this program is to develop technology for delivering steel free of oxide macroinclusions to mold cavities. The overall objective is to improve the quality of cast steel by developing and demonstrating the technology for substantially reducing surface and sub-surface oxide inclusions. Two approaches are discussed here. A total of 23 castings were produced by submerge pouring along with sixty conventionally poured castings. The submerged poured castings contained, on average, 96% fewer observable surface inclusions (11.9 vs 0.4) compared to the conventionally poured cast parts. The variation in the population of surface inclusions also decreased by 88% from 5.5 to 0.7. The machinability of the casting was also improved by submerged pouring. The submerge poured castings required fewer cutting tool changes and less operator intervention during machining. Subsequent to these trials, the foundry has decided to purchase more shrouds for continued experimentation on other problem castings where submerge pouring is possible. An examination of melting and pouring practices in four foundries has been carried out. Three of the four foundries showed significant improvement in casting quality by manipulating the melting practice. These melting practice variables can be grouped into two separate categories. The first category is the pouring and filling practice. The second category concerns the concentration of oxidizable elements contained in the steel. Silicon, manganese, and aluminum concentrations were important factors in all four foundries. Clean heats can consistently be produced through improved melting practice and reducing exposure of the steel to atmospheric oxygen during pouring and filling.

  17. Uranium at Y-12: Casting | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Casting Uranium at Y-12: Casting Posted: July 22, 2013 - 3:42pm | Y-12 Report | Volume 10, Issue 1 | 2013 Buttons and other recycled metal are used in casting components for ...

  18. ITP Metal Casting: Energy and Environmental Profile of the U...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Environmental Profile of the U.S. Metal casting Industry ITP Metal Casting: Energy and Environmental Profile of the U.S. Metal casting Industry profile.pdf (1.51 MB) More ...

  19. Energy use in selected metal casting facilities - 2003

    SciTech Connect (OSTI)

    Eppich, Robert E.

    2004-05-01

    This report represents an energy benchmark for various metal casting processes. It describes process flows and energy use by fuel type and processes for selected casting operations. It also provides recommendations for improving energy efficiency in casting.

  20. Casting fine grained, fully dense, strong inorganic materials

    SciTech Connect (OSTI)

    Brown, Sam W.; Spencer, Larry S.; Phillips, Michael R.

    2015-11-24

    Methods and apparatuses for casting inorganic materials are provided. The inorganic materials include metals, metal alloys, metal hydrides and other materials. Thermal control zones may be established to control the propagation of a freeze front through the casting. Agitation from a mechanical blade or ultrasonic energy may be used to reduce porosity and shrinkage in the casting. After solidification of the casting, the casting apparatus may be used to anneal the cast part.

  1. ITP Metal Casting: Advanced Melting Technologies: Energy Saving Concepts

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Opportunities for the Metal Casting Industry | Department of Energy Advanced Melting Technologies: Energy Saving Concepts and Opportunities for the Metal Casting Industry ITP Metal Casting: Advanced Melting Technologies: Energy Saving Concepts and Opportunities for the Metal Casting Industry advancedmeltingtechnologies.pdf (1.83 MB) More Documents & Publications ITP Metal Casting: Theoretical/Best Practice Energy Use in Metalcasting Operations ITP Metal Casting: Energy and

  2. PRODUCTION OF SLIP CAST CALCIA HOLLOWWARE

    DOE Patents [OSTI]

    Stoddard, S.D.; Nuckolls, D.E.; Cowan, R.E.

    1963-12-31

    A method for producing slip cast calcia hollow ware in which a dense calcia grain is suspended in isobutyl acetate or a mixture of tertiary amyl alcohol and o-xylene is presented. A minor amount of triethanolamine and oleic acid is added to the suspension vehicle as viscosity adjusting agents and the suspension is cast in a plaster mold, dried, and fired. (AEC)

  3. Enhancements in Magnesium Die Casting Impact Properties (Technical...

    Office of Scientific and Technical Information (OSTI)

    ... Further improvement in impact resistance depends on the processing condition of the casting. Sound castings without porosity and impurities will have better mechanical properties. ...

  4. Manufacturing Advanced Engineered Components Using Lost Foam Casting Technology

    SciTech Connect (OSTI)

    None

    2004-11-01

    The project will further reduce porosity and fold defects in lost foam casting to improve production efficiency, mechanical properties, and marketability of castings.

  5. ITP Metal Casting: Advanced Melting Technologies: Energy Saving...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Melting Technologies: Energy Saving Concepts and Opportunities for the Metal Casting Industry ITP Metal Casting: Advanced Melting Technologies: Energy Saving Concepts and ...

  6. Characterization of Technetium Speciation in Cast Stone

    SciTech Connect (OSTI)

    Um, Wooyong; Jung, Hun Bok; Wang, Guohui; Westsik, Joseph H.; Peterson, Reid A.

    2013-11-11

    This report describes the results from laboratory tests performed at Pacific Northwest National Laboratory (PNNL) for the U.S. Department of Energy (DOE) EM-31 Support Program (EMSP) subtask, “Production and Long-Term Performance of Low Temperature Waste Forms” to provide additional information on technetium (Tc) speciation characterization in the Cast Stone waste form. To support the use of Cast Stone as an alternative to vitrification for solidifying low-activity waste (LAW) and as the current baseline waste form for secondary waste streams at the Hanford Site, additional understanding of Tc speciation in Cast Stone is needed to predict the long-term Tc leachability from Cast Stone and to meet the regulatory disposal-facility performance requirements for the Integrated Disposal Facility (IDF). Characterizations of the Tc speciation within the Cast Stone after leaching under various conditions provide insights into how the Tc is retained and released. The data generated by the laboratory tests described in this report provide both empirical and more scientific information to increase our understanding of Tc speciation in Cast Stone and its release mechanism under relevant leaching processes for the purpose of filling data gaps and to support the long-term risk and performance assessments of Cast Stone in the IDF at the Hanford Site.

  7. Subcritical Measurements Multiple HEU Metal Castings

    SciTech Connect (OSTI)

    Mihalczo, John T [ORNL] [ORNL; Archer, Daniel E [ORNL] [ORNL; Wright, Michael C [ORNL] [ORNL

    2008-01-01

    Experiments with the standard annular highly enriched uranium (HEU) metal castings at Y-12 were performed in which up to 5 castings ({approx}90kg) were assembled in a tightly packed array with minimal spacing between castings. The fission chain multiplication process was initiated by a time tagged {sup 253}Cf spontaneously fissioning neutron source or time and directionally tagged neutrons from a small portable DT neutron generator and the prompt neutron time behavior measured with plastic scintillation detectors sensitive the fast neutron (>1 MeV) and gamma ray without distinction. These experiments were performed to provide data to benchmark methods for the calculation of the prompt neutron time behavior. Previous measurements with a single casting have been reported. This paper presents the experimental results for multiple castings. The prompt time decay was obtained by time coincidence correlation measurements between the detectors and the time tagged neutron source emission (equivalent to randomly pulsed neutron measurements) and between pairs of plastic scintillation detectors (equivalent to a 2-detector Rossi-alpha measurement). These standard HEU storage castings at the Y-12 plant had 5.000-in-OD, 3.500-in-ID, masses between 17,636 and 17,996 g, impurity content of 992 ppm, density of 18.75 g/cm{sup 3} and average enrichment of 93.16 wt % {sup 235}U. The castings were in tight fitting 025-in.-thick, 8.0-in-high stainless steel (SS-304) cylindrical cans for contamination control which were 8.0 in high. One can had an inside diameter of 3.0 in so that the Cf source could be located on the axes of this casting. Four 1 x 1 x 6 in plastic scintillators with the long dimension perpendicular to axes of the castings and adjacent to the outer surface of the casting cans were used. The detectors were enclosed in 1/4.-in.-thick lead shields on four 1 x 6 surfaces and on the 1 x 1 surface. The small surface of the lead shield was adjacent to the steel table. The

  8. Advanced lost foam from casting technology

    SciTech Connect (OSTI)

    Bates, C. E.; Littleton, H. E.; Askeland, D.; Griffin, J.; Miller, B. A.; Sheldon, D. S.

    1996-05-01

    Previous research made significant advances in understanding the Lost Foam Casting (LFC) Process and clearly identified areas where additional research was needed to improve the process and make it more functional in an industrial environment. The current project focused on five areas listed as follows: Task 1: Precision Pattern Production Task 2: Pattern Coating Consistency Task 3: Sand Fill and Compaction Effects Task 4: Pattern Gating Task 5: Mechanical Properties of Castings. This report summarizes the work done under the current contract in all five areas in the period of October 1, 1994 through December 31, 1995. Twenty-eight (28) companies jointly participate in the project. These companies represent a variety of disciplines, including pattern designers, pattern producers, coating manufacturers, plant design companies, compaction equipment manufacturers, casting producers, and casting buyers.

  9. Roll Casting of Aluminum Alloy Clad Strip

    SciTech Connect (OSTI)

    Nakamura, R.; Tsuge, H. [Graduate School of Osaka Institute of Technology (Japan); Haga, T. [Osaka Institute of Technology, 5-16-1 Omiya Asahiku Osaka city 535-8585 (Japan); Watari, H. [Tokyo Institute of Technology, 4259 Nagatsuda Midoriku Yokohama city 226-8502 (Japan); Kumai, S. [Gunma University, 1-5-1 tenjin cho Kiryu city 376-8515 (Japan)

    2011-01-17

    Casting of aluminum alloy three layers of clad strip was tried using the two sets of twin roll casters, and effects of the casting parameters on the cladding conditions were investigated. One twin roll caster was mounted on the other twin roll caster. Base strip was 8079 aluminum alloy and overlay strips were 6022 aluminum alloy. Effects of roll-load of upper and lower casters and melt temperature of the lower caster were investigated. When the roll-load of the upper and lower caster was large enough, the overlay strip could be solidified and be connected. The overlay strip could be connected when the melt of the overlay strip cast by the lower caster was low enough. Sound three layers of clad strip could be cast by proper conditions.

  10. H-Series Cast Austenitic Stainless Steels

    Broader source: Energy.gov [DOE]

    Cast H-Series austenitic steels are used extensively in several industries for a broad range of high-temperature applications. The H-Series stainless steels have evolved over many years of complex...

  11. Arc Casting Intermetallic Alloy (Materials Preparation Center)

    SciTech Connect (OSTI)

    2010-01-01

    Arc casting of intermetallic (La-Ni-Sn) AB5 alloy used for metal hydride hydrogen storage. Upon solidification the Sn is partially rejected and increases in concentration in the remaining liquid. Upon completing solidification there is a great deal of internal stress in the ingot. As the ingot cools further the stress is relieved. This material was cast at the Ames Laboratorys Materials Preparation Center http://www.mpc.ameslab.gov

  12. Methods and apparatus for manufacturing monocrystalline cast silicon and monocrystalline cast silicon bodies for photovoltaics

    DOE Patents [OSTI]

    Stoddard, Nathan G

    2014-01-14

    Methods and apparatuses are provided for casting silicon for photovoltaic cells and other applications. With such methods and apparatuses, a cast body of monocrystalline silicon may be formed that is free of, or substantially free of, radially-distributed impurities and defects and having at least two dimensions that are each at least about 35 cm is provided.

  13. Methods and apparatuses for manufacturing monocrystalline cast silicon and monocrystalline cast silicon bodies for photovoltaics

    DOE Patents [OSTI]

    Stoddard, Nathan G.

    2011-11-01

    Methods and apparatuses are provided for casting silicon for photovoltaic cells and other applications. With such methods and apparatuses, a cast body of monocrystalline silicon may be formed that is free of, or substantially free of, radially-distributed impurities and defects and having at least two dimensions that are each at least about 35 cm is provided.

  14. National Metal Casting Research Institute final report. Volume 2, Die casting research

    SciTech Connect (OSTI)

    Jensen, D.

    1994-06-01

    Four subprojects were completed: development and evaluation of die coatings, accelerated die life characterization of die materials, evaluation of fluid flow and solidification modeling programs, selection and characterization of Al-based die casting alloys, and influence of die materials and coatings on die casting quality.

  15. Advanced Pattern Material for Investment Casting Applications

    SciTech Connect (OSTI)

    F. Douglas Neece Neil Chaudhry

    2006-02-08

    Cleveland Tool and Machine (CTM) of Cleveland, Ohio in conjunction with Harrington Product Development Center (HPDC) of Cincinnati, Ohio have developed an advanced, dimensionally accurate, temperature-stable, energy-efficient and cost-effective material and process to manufacture patterns for the investment casting industry. In the proposed technology, FOPAT (aFOam PATtern material) has been developed which is especially compatible with the investment casting process and offers the following advantages: increased dimensional accuracy; increased temperature stability; lower cost per pattern; less energy consumption per pattern; decreased cost of pattern making equipment; decreased tooling cost; increased casting yield. The present method for investment casting is "the lost wax" process, which is exactly that, the use of wax as a pattern material, which is then melted out or "lost" from the ceramic shell. The molten metal is then poured into the ceramic shell to produce a metal casting. This process goes back thousands of years and while there have been improvements in the wax and processing technology, the material is basically the same, wax. The proposed technology is based upon an established industrial process of "Reaction Injection Molding" (RIM) where two components react when mixed and then "molded" to form a part. The proposed technology has been modified and improved with the needs of investment casting in mind. A proprietary mix of components has been formulated which react and expand to form a foam-like product. The result is an investment casting pattern with smooth surface finish and excellent dimensional predictability along with the other key benefits listed above.

  16. Predicting Pattern Tooling and Casting Dimensions for Investment Casting - Phase II

    SciTech Connect (OSTI)

    Sabau, Adrian S

    2005-09-01

    The investment casting process allows the production of complex-shape parts and close dimensional tolerances. One of the most important phases in the investment casting process is the design of the pattern die. Pattern dies are used to create wax patterns by injecting wax into dies. The wax patterns are used to create a ceramic shell by the application of a series of ceramic coatings, and the alloy is cast into the dewaxed shell mold (Fig. 1.1). However, the complexity of shape and the close dimensional tolerances required in the final casting make it difficult to determine tooling dimensions. The final linear dimension of the casting depends on the cumulative effects of the linear expansions or contractions in each step of the investment casting process (Fig. 1.2). In most cases, the mold geometry or cores restrict the shrinkage of the pattern or the cast part, and the final casting dimensions may be affected by time-dependent processes such as viscoelastic deformation of the wax, and viscoplastic creep and plastic deformations of the shell and alloy. The pattern die is often reworked several times to produce castings whose dimensions are within acceptable tolerances. To date, investment casting technology has been based on hands-on training and experience. Technical literature is limited to experimental, phenomenological studies aimed at obtaining empirical correlations for quick and easy application in industry. The goal of this project was to predict casting dimensions for investment castings in order to meet blueprint nominal during the first casting run. Several interactions have to be considered in a coupled manner to determine the shrinkage factors: these are the die-wax, wax-shell, and shell-alloy interactions (as illustrated in Fig. 1.3). In this work, the deformations of the die-wax and shell-alloy systems were considered in a coupled manner, while the coupled deformation of the wax-shell system was not considered. Future work is needed in order to

  17. METALLURGICAL EVALUATION OF CAST DUPLEX STAINLESS STEELS AND...

    Office of Scientific and Technical Information (OSTI)

    ... small nitrogen of paramount importance. 4 ing of DSS 4.1. Welding Metallurgy As welding ... on the HAZ structure since multipass welding is a requirement in industrial practice. ...

  18. A new casting defect healing technology

    SciTech Connect (OSTI)

    Hodge, E.S.; Reddoch, T.W.; Viswanathan, S.

    1997-01-01

    A new technology is presented for healing of defects in 356 aluminium alloys that provides economic upgrading of these cast alloys. It uses pneumatic isostatic forging (PIF) to produce high quality Al alloys products with enhanced mechanical properties uniform throughout the part, allowing higher design allowables and increased usage of Al alloy castings. The fundamental mechanism underlying PIF is a single mode plastic deformation process that uses isostatic application of pressures for 10-30 seconds at temperature. The process can be integrated in-line with other production operations, i.e., using the latent heat from the previous casting step. Results of applying the PIF process indicate lower cost and significant improvement in mechanical properties that rival and often exceed corresponding properties of other technologies like hot isostatic pressing and related processes. This process offers many advantages that are described in this paper in addition to presenting case histories of property enhancement by PIF and the mechanism responsible for property enhancement.

  19. Compound cast product and method for producing a compound cast product

    DOE Patents [OSTI]

    Meyer, Thomas N.; Viswanathan, Srinath

    2002-09-17

    A compound cast product is formed in a casting mold (14) having a mold cavity (16) sized and shaped to form the cast product. A plurality of injectors (24) is supported from a bottom side (26) of the casting mold (14). The injectors (24) are in fluid communication with the mold cavity (16) through the bottom side (26) of the casting mold (14). A molten material holder furnace (12) is located beneath the casting mold (14). The holder furnace (12) defines molten material receiving chambers (36) configured to separately contain supplies of two different molten materials (37, 38). The holder furnace (12) is positioned such that the injectors (24) extend downward into the receiving chamber (36). The receiving chamber (36) is separated into at least two different flow circuits (51, 52). A first molten material (37) is received in a first flow circuit (51), and a second molten material (38) is received into a second flow circuit (52). The first and second molten materials (37, 38) are injected into the mold cavity (16) by the injectors (24) acting against the force of gravity. The injectors (24) are positioned such that the first and second molten materials (37, 38) are injected into different areas of the mold cavity (16). The molten materials (37, 38) are allowed to solidify and the resulting compound cast product is removed from the mold cavity (16).

  20. Technetium Getters to Improve Cast Stone Performance

    SciTech Connect (OSTI)

    Neeway, James J.; Lawter, Amanda R.; Serne, R. Jeffrey; Asmussen, Robert M.; Qafoku, Nikolla

    2015-10-15

    The cementitious material known as Cast Stone has been selected as the preferred waste form for solidification of aqueous secondary liquid effluents from the Hanford Tank Waste Treatment and Immobilization Plant (WTP) process condensates and low-activity waste (LAW) melter off-gas caustic scrubber effluents. Cast Stone is also being evaluated as a supplemental immobilization technology to provide the necessary LAW treatment capacity to complete the Hanford tank waste cleanup mission in a timely and cost effective manner. Two radionuclides of particular concern in these waste streams are technetium-99 (99Tc) and iodine-129 (129I). These radioactive tank waste components contribute the most to the environmental impacts associated with the cleanup of the Hanford site. A recent environmental assessment of Cast Stone performance, which assumes a diffusion controlled release of contaminants from the waste form, calculates groundwater in excess of the allowable maximum permissible concentrations for both contaminants. There is, therefore, a need and an opportunity to improve the retention of both 99Tc and 129I in Cast Stone. One method to improve the performance of Cast Stone is through the addition of “getters” that selectively sequester Tc and I, therefore reducing their diffusion out of Cast Stone. In this paper, we present results of Tc and I removal from solution with various getters with batch sorption experiments conducted in deionized water (DIW) and a highly caustic 7.8 M Na Ave LAW simulant. In general, the data show that the selected getters are effective in DIW but their performance is comprised when experiments are performed with the 7.8 M Na Ave LAW simulant. Reasons for the mitigated performance in the LAW simulant may be due to competition with Cr present in the 7.8 M Na Ave LAW simulant and to a pH effect.

  1. Modeling of casting microstructures and defects

    SciTech Connect (OSTI)

    Shapiro, A.B.; Summers, L.T.; Eckels, D.J.; Sahai, V.

    1997-09-26

    Casting is an ancient art that has been a trial-and-error process for more than 4000 years. To predict the size, shape, and quality of a cast product, casting manufacturers typically cast full-size prototypes. If one part of the process is done incorrectly, the entire process is repeated until an acceptable product is achieved. One way to reduce the time, cost, and waste associated with casting is to use computer modeling to predict not only the quality of a product on the macro- scale, such as distortion and part shape, but also on the micro-scale such as grain defects. Modeling of solidification is becoming increasingly feasible with the advent of parallel computers. There are essentially two approaches to solidification modeling.The first is that of macro-modeling where heat transfer codes model latent heat release during solidification as a constant and based solely on the local temperature. This approach is useful in predicting large scale distortion and final part shape. The second approach, micro-modeling, is more fundamental. The micro-models estimate the latent heat release during solidification using nucleation and grain growth kinetics. Micro-models give insight into cast grain morphology and show promise in the future to predict engineering properties such as tensile strength. The micro-model solidification kinetics can be evaluated using first principles or they can be evaluated using experiments. This work describes an implementation of a micro-model for uranium which uses experimental results to estimate nucleation and growth kinetics.

  2. Fluxing agent for metal cast joining

    DOE Patents [OSTI]

    Gunkel, Ronald W.; Podey, Larry L.; Meyer, Thomas N.

    2002-11-05

    A method of joining an aluminum cast member to an aluminum component. The method includes the steps of coating a surface of an aluminum component with flux comprising cesium fluoride, placing the flux coated component in a mold, filling the mold with molten aluminum alloy, and allowing the molten aluminum alloy to solidify thereby joining a cast member to the aluminum component. The flux preferably includes aluminum fluoride and alumina. A particularly preferred flux includes about 60 wt. % CsF, about 30 wt. % AlF.sub.3, and about 10 wt. % Al.sub.2 O.sub.3.

  3. Magnesium Replacement of Aluminum Cast Components in a Production...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Replacement of Aluminum Cast Components in a Production V6 Engine to Effect Cost-Effective Mass Reduction Magnesium Replacement of Aluminum Cast Components in a Production V6 ...

  4. Optimization of Squeeze Casting for Aluminum Alloy Parts (Technical...

    Office of Scientific and Technical Information (OSTI)

    This study was initiated with the installation of a new production size UBE 350 Ton VSC Squeeze Casting system in the Metal Casting Laboratory at Case Western University. A ...

  5. Clean Cast Steel Technology - Machinability and Technology Transfer

    SciTech Connect (OSTI)

    C. E. Bates; J. A. Griffin

    2000-05-01

    There were two main tasks in the Clean Cast Steel Technology - Machinability and Technology Transfer Project. These were (1) determine the processing facts that control the machinability of cast steel and (2) determine the ability of ladle stirring to homogenize ladle temperature, reduce the tap and pouring temperatures, and reduce casting scrap.

  6. APPARATUS AND METHOD FOR INJECTION CASTING

    DOE Patents [OSTI]

    Shuck, A.B.

    1960-09-13

    S>A single-chamber metal casting apparatus is described wherein molten metal in a vertically movable container can be brought directly into contact with molds. By increasing the gas pressure within the chamber the metal is forced upward into the molds.

  7. Gelcasting Alumina Cores for Investment Casting

    SciTech Connect (OSTI)

    Janney, M A; Klug, F J

    2001-01-01

    General Electric currently uses silica investment casting cores for making superalloy turbine blades. The silica core technology does not provide the degree of dimensional control needed for advanced turbine system manufacture. The sum of the various process variables in silica core manufacturing produces cores that have more variability than is allowed for in advanced, power-generation gas turbine airfoils.

  8. Roll Casting of Al-25%Si

    SciTech Connect (OSTI)

    Haga, Toshio [Osaka Institute of Technology, Omiya Asahiku Osaka city 535-8585 (Japan); Harada, Hideto [Graduate School of Osaka Institute of Technology, Omiya Asahiku Osaka city 535-8585 (Japan); Watari, Hisaki [Gunma University, Kiryu city, 376-8515 (Japan)

    2011-05-04

    Strip casting of Al-25%Si strip was tried using an unequal diameter twin roll caster. The diameter of the lower roll (large roll) was 1000 mm and the diameter of the upper roll (small roll) was 250 mm. Roll material was mild steel. The sound strip could be cast at the speeds ranging from 8 m/min to 12 m/min. The strip did not stick to the roll without the parting material. The primary Si, which existed at centre area of the thickness direction, was larger than that which existed at other area. The size of the primary Si was smaller than 0.2 mm. Eutectic Si was smaller 5 {mu}m. The as-cast strip was ranging from 2 mm to 3 mm thick and its width was 100 mm. The as-cast strip could be hot rolled down to 1 mm. The hot rolled strip was cold rolled. The primary Si became smaller and the pore occurred around the primary Si after the rolling.

  9. Cast Stainless Steel Ferrite and Grain Structure

    SciTech Connect (OSTI)

    Ruud, Clayton O.; Ramuhalli, Pradeep; Meyer, Ryan M.; Mathews, Royce; Diaz, Aaron A.; Anderson, Michael T.

    2012-09-01

    In-service inspection requirements dictate that piping welds in the primary pressure boundary of light-water reactors be subject to a volumetric examination based on the rules contained within the American Society of Mechanical Engineers Boiler and Pressure Vessel Code, Section XI. The purpose of the inspection is the reliable detection and accurate sizing of service-induced degradation and/or material flaws introduced during fabrication. The volumetric inspection is usually carried out using ultrasonic testing (UT) methods. However, the varied metallurgical macrostructures and microstructures of cast austenitic stainless steel piping and fittings, including statically cast stainless steel and centrifugally cast stainless steel (CCSS), introduce significant variations in the propagation and attenuation of ultrasonic energy. These variations complicate interpretation of the UT responses and may compromise the reliability of UT inspection. A review of the literature indicated that a correlation may exist between the microstructure and the delta ferrite content of the casting alloy. This paper discusses the results of a recent study where the goal was to determine if a correlation existed between measured and/or calculated ferrite content and grain structure in CCSS pipe.

  10. Metallic Fuel Casting Development and Parameter Optimization Simulations

    SciTech Connect (OSTI)

    R.S. Fielding; J. Crapps; C. Unal; J.R. Kennedy

    2013-03-01

    One of the advantages of metallic fuel is the abilility to cast the fuel slugs to near net shape with little additional processing. However, the high aspect ratio of the fuel is not ideal for casting. EBR-II fuel was cast using counter gravity injection casting (CGIC) but, concerns have been raised concerning the feasibility of this process for americium bearing alloys. The Fuel Cycle Research and Development program has begun developing gravity casting techniques suitable for fuel production. Compared to CGIC gravity casting does not require a large heel that then is recycled, does not require application of a vacuum during melting, and is conducive to re-usable molds. Development has included fabrication of two separate benchscale, approximately 300 grams, systems. To shorten development time computer simulations have been used to ensure mold and crucible designs are feasible and to identify which fluid properties most affect casting behavior and therefore require more characterization.

  11. Material development in the SI sub 3 N sub 4 system using glass encapsulated Hip'ing

    SciTech Connect (OSTI)

    Corbin, N.D.; Sundberg, G.J.; Siebein, K.N.; Willkens, C.A.; Pujari, V.K.; Rossi, G.A.; Hansen, J.S.; Chang, C.L.; Hammarstrom, J.L.

    1992-04-01

    This report covers a two-year program to develop fully dense Si{sub 3}N{sub 4} matrix SiC whisker composites with enhanced properties over monolithic Si{sub 3}N{sub 4} materials. The primary goal was to develop a composite with a fracture toughness > 10 MPa{radical}m, capable of using high pressure glass encapsulated HIP'ing. Coating methods were developed to apply thin (<150nm) stoichiometric BN layers to SiC whiskers and also to apply a dual coating of SiC over carbon to the whiskers. Fracture toughness of the composites was determined to increase as the quantity of whiskers (or elongated grains) with their axis perpendicular to the crack plane increased. Of the interface compositions evaluated in this effort, carbon was determined to be the most effective for increasing toughness. The highest toughnesses (6.8--7.0 MPa{radical}m) were obtained with uniaxially aligned carbon coated whiskers. There was no evidence of the carbon coating compromising the oxidation resistance of the composites at 1370{degree}C.

  12. Volatile Species Retention During Metallic Fuel Casting

    SciTech Connect (OSTI)

    Randall S. Fielding; Douglas L. Proter

    2013-10-01

    Metallic nuclear fuels are candidate transmutation fuel forms for advanced fuel cycles. Through the operation of the Experimental Breeder Reactor II metallic nuclear fuels have been shown to be robust and easily manufactured. However, concerns have been raised concerning loss of americium during the casting process because of its high vapor pressure. In order to address these concerns a gaseous diffusion model was developed and a series of experiments using both manganese and samarium as surrogates for americium were conducted. The modeling results showed that volatility losses can be controlled to essentially no losses with a modest overpressure. Experimental results also showed volatile species retention down to no detectable losses through overpressure, although the loss values varied from the model results the same trend was seen. Bases on these results it is very probably that americium losses through volatility can be controlled to no detectable losses through application of a modest overpressure during casting.

  13. Process for slip casting textured tubular structures

    DOE Patents [OSTI]

    Steinlage, Greg A.; Trumble, Kevin P.; Bowman, Keith J.

    2002-01-01

    A process for centrifugal slip casting a textured hollow tube. A slip made up of a carrier fluid and a suspended powder is introduced into a porous mold which is rotated at a speed sufficient to create a centrifugal force that forces the slip radially outward toward the inner surface of the mold. The suspended powder, which is formed of particles having large dimensional aspect ratios such as particles of superconductive BSCCO, settles in a textured fashion radially outward toward the mold surface. The carrier fluid of the slip passes by capillary action radially outward around the settled particles and into the absorbent mold. A layer of mold release material is preferably centrifugally slip cast to cover the mold inner surface prior to the introduction of the BSCCO slip, and the mold release layer facilitates removal of the BSCCO greenbody from the mold without fracturing.

  14. Phase Transformation in Cast Superaustenitic Stainless Steels

    SciTech Connect (OSTI)

    Nathaniel Steven Lee Phillips

    2006-12-12

    Superaustenitic stainless steels constitute a group of Fe-based alloys that are compositionally balanced to have a purely austenitic matrix and exhibit favorable pitting and crevice corrosion resistant properties and mechanical strength. However, intermetallic precipitates such as sigma and Laves can form during casting or exposure to high-temperature processing, which degrade the corrosion and mechanical properties of the material. The goal of this study was to accurately characterize the solid-solid phase transformations seen in cast superaustenitic stainless steels. Heat treatments were performed to understand the time and temperature ranges for intermetallic phase formations in alloys CN3MN and CK3MCuN. Microstructures were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy and wavelength dispersive spectroscopy (EDS, WDS). The equilibrium microstructures, composed primarily of sigma and Laves within purely austenitic matrices, showed slow transformation kinetics. Factors that determine the extent of transformation, including diffusion, nucleation, and growth, are discussed.

  15. Thin sheet casting with electromagnetic pressurization

    DOE Patents [OSTI]

    Walk, Steven R.; Slepian, R. Michael; Nathenson, Richard D.; Williams, Robert S.

    1991-01-01

    An apparatus, method and system for the casting of thin strips or strips of metal upon a moving chill block that includes an electromagnet located so that molten metal poured from a reservoir onto the chill block passes into the magnetic field produced by the electromagnet. The electromagnet produces a force on the molten metal on said chill block in the direction toward said chill block in order to enhance thermal contact between the molten metal and the chill block.

  16. IMPROVED MAGNESIUM OXIDE SLIP CASTING METHOD

    DOE Patents [OSTI]

    Stoddard, S.D.; Nuckolls, D.E.

    1963-12-31

    A process for making an aqueous magnesium oxide slip casting slurry comprising the steps of mixing finely ground fused magnesium oxide with water, milling the slurry for at least 30 hours at a temperature of 2-10 deg C (the low temperature during milling inhibiting the formation of hydrated magnesium oxide), discharging the slurry from the mill, adding hydrochloric acid as a deflocculent, and adding a scum inhibitor is presented. (AEC)

  17. Thin Wall Cast Iron: Phase II

    SciTech Connect (OSTI)

    Doru M. Stefanescu

    2005-07-21

    The development of thin-wall technology allows the designers of energy consuming equipment to select the most appropriate material based on cost/material properties considerations, and not solely on density. The technology developed in this research project will permit the designers working for the automotive industry to make a better informed choice between competing materials and thin wall cast iron, thus decreasing the overall cost of the automobile.

  18. Seal welded cast iron nuclear waste container

    DOE Patents [OSTI]

    Filippi, Arthur M.; Sprecace, Richard P.

    1987-01-01

    This invention identifies methods and articles designed to circumvent metallurgical problems associated with hermetically closing an all cast iron nuclear waste package by welding. It involves welding nickel-carbon alloy inserts which are bonded to the mating plug and main body components of the package. The welding inserts might be bonded in place during casting of the package components. When the waste package closure weld is made, the most severe thermal effects of the process are restricted to the nickel-carbon insert material which is far better able to accommodate them than is cast iron. Use of nickel-carbon weld inserts should eliminate any need for pre-weld and post-weld heat treatments which are a problem to apply to nuclear waste packages. Although the waste package closure weld approach described results in a dissimilar metal combination, the relative surface area of nickel-to-iron, their electrochemical relationship, and the presence of graphite in both materials will act to prevent any galvanic corrosion problem.

  19. Symposium on electroslag component casting: proceedings

    SciTech Connect (OSTI)

    Judkins, R.R.; Hobday, J.M.

    1984-03-01

    The US Department of Energy (DOE), Office of Fossil Energy, Office of Surface Coal Gasification, has established a Materials Program to develop and apply appropriate materials to coal gasification plant components. The overall goals of the Surface Gasification Materials Program (SGMP) are to improve operational reliability and system durability and to reduce fabrication and operating costs of coal gasification plant components. The SGMP Electroslag Component Casting Project is directed to the development of electroslag casting (ESC) technology for use in coal conversion components such as valve bodies, pump housings, and pipe fittings. The aim is to develop a sufficient data base to permit ESC to become an ASME Code-accepted process. It is also intended to transfer the ESC process technology to private industry. This symposium was planned to discuss not only the SGMP Electroslag Component Casting Project but the activities and experiences of other organizations as well. The symposium addressed descriptions of electroslag processes; a worldwide perspective on the status of ESC technology; and details of production, mechanical properties, economics, and use of ESC for coal gasification components. Ten papers were presented, and a panel discussion was held to provide participants an opportunity to express their opinions and to offer recommendations on the content of the DOE program. This document constitutes the proceedings of that symposium. The papers included here are minimally edited transcripts of the presentations made at the symposium. All papers have been processed for inclusion in the Energy Data Base.

  20. Comparison of Lost Foam Casting of AM60B Alloy and A356 Alloy

    SciTech Connect (OSTI)

    Han, Qingyou [ORNL; Dinwiddie, Ralph Barton [ORNL; Sklad, Philip S [ORNL; Currie, Kenneth [Tennessee Technological University; Vondra, Fred [Tennessee Technological University; Abdelrahman, Mohamed [Tennessee Technological University; Walford, Graham [Walford Technologies; Nolan, Dennis J [Foseco-Morval; Nedkova, Teodora [Kaiser Aluminum

    2007-01-01

    The article describes the research activities at Oak Ridge National Laboratory and Tennessee Technological University on lost foam casting of magnesium alloys. The work was focused on castings of simple geometries such as plate castings and window castings in order to compare the difference in castability between magnesium alloys and aluminum alloy using the lost foam casting process. Significant differences between lost foam aluminum casting and lost foam magnesium casting have been observed.

  1. Centrifugal Casting Features/Metallurgical Characterization of Aluminum Alloys

    SciTech Connect (OSTI)

    Chirita, G.; Soares, D.; Cruz, D.; Silva, F. S. [Mechanical Engineering Department, School of Engineering, Minho University (Portugal); Stefanescu, I. [Faculty of Mechanical Engineering, Dunarea de Jos University Galati (Romania)

    2008-02-15

    This paper deals with the study of centrifugal effects on aluminium castings under high G values. Most of the studies in this domain (FGMs obtained by centrifugal casting) deal with functionally graded composites reinforced with a solid phase such as silicon particles or others. However, in this study it will be shown that unreinforced aluminium alloys may be significantly influenced by the centrifugal effect and that functionally graded castings are also obtained. It has been observed that the centrifugal effect may increase in some alloys, depending on the relative position in the castings, the rupture strength by approx. 50%, and rupture strain by about 300%, as compared to the gravity casting technique. The Young's modulus may also increase by about 20%. It has also been reported that in vertical centrifugal castings there are mainly three aspects that affect the components thus obtained, namely: fluid dynamics; vibration (inherent to the system); and centrifugal force. These features have a different effect on the castings depending on the aluminium alloy. In this paper, an analysis of the most important effects of the centrifugal casting process on metallurgical features is conducted. A solidification characterization at several points along the mould will be made in order to have an accurate idea of both the fluid dynamics inside the mould during the casting and the solidification behavior in different parts of the component. These two analyses will be related to the metallurgical properties (phase distribution; SDAS; eutectic silicon content and shape, pores density and shape) along the component and mainly along the direction of the centrifugal pressure. A comparison between castings obtained by both centrifugal casting technique and gravity casting technique is made for reference (gravity casting)

  2. Method and mold for casting thin metal objects

    SciTech Connect (OSTI)

    Pehrson, Brandon P; Moore, Alan F

    2014-04-29

    Provided herein are various embodiments of systems for casting thin metal plates and sheets. Typical embodiments include layers of mold cavities that are oriented vertically for casting the metal plates. In some embodiments, the mold cavities include a beveled edge such that the plates that are cast have a beveled edge. In some embodiments, the mold cavities are filled with a molten metal through an open horizontal edge of the cavity. In some embodiments, the mold cavities are filled through one or more vertical feed orifices. Further disclosed are methods for forming a thin cast metal plate or sheet where the thickness of the cast part is in a range from 0.005 inches to 0.2 inches, and the surface area of the cast part is in a range from 16 square inches to 144 square inches.

  3. Cast Stainless Steel Aging Research Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cast Stainless Steel Aging Research Plan Cast Stainless Steel Aging Research Plan This work plan proposes to build a systematic knowledge base for the thermal aging behavior of cast stainless steels (CASSs) within a limited time of five years. The final output of execution of the plan is expected to provide conclusive predictions for the integrity of the CASS components of LWR power plants during the extended service life up to and beyond 60 years. Mechanical and microstructural data obtained

  4. Optimization of Squeeze Casting for Aluminum Alloy Parts (Technical...

    Office of Scientific and Technical Information (OSTI)

    project, primarily for squeeze casting different configurations of test bars and plates. ... die of various thickness, a number of test bar inserts with different gating designs ...

  5. AIS/DOE Technology Roadmap Program: Strip Casting: Anticipating...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: AISDOE Technology Roadmap Program: Strip Casting: Anticipating New Routes To Steel Sheet Citation Details In-Document Search Title: AISDOE Technology Roadmap...

  6. AIS/DOE Technology Roadmap Program: Strip Casting: Anticipating...

    Office of Scientific and Technical Information (OSTI)

    AISDOE Technology Roadmap Program: Strip Casting: Anticipating New Routes To Steel Sheet Citation Details In-Document Search Title: AISDOE Technology Roadmap Program: Strip...

  7. Casting Process Simulator 3D Mold Fill an Solidification

    Energy Science and Technology Software Center (OSTI)

    1997-03-06

    The CAPS software is a tool used to setup, simulate, and examine the results from three-dimensional filling and solidification of a sand casting.

  8. Microstructural Modification of a Cast Iron by Magnetic Field Processing

    SciTech Connect (OSTI)

    Kenik, Edward A; Ludtka, Gail Mackiewicz-; Ludtka, Gerard Michael; Wilgen, John B; Kisner, Roger A

    2010-01-01

    The current study deals with the microstructural modification of a nodular cast iron during solidification under the influence of high magnetic fields (up to 18 tesla).

  9. ITP Steel: Hydrogen and Nitrogen Control in Ladle and Casting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ITP Steel: Hydrogen and Nitrogen Control in Ladle and Casting Operations castingops.pdf (875.11 KB) More Documents & Publications Steel Industry Technology Roadmap ITP Steel: ...

  10. Virtual Aluminum Castings An Industrial Application of Integrated...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and cost challenges. Nowhere is this more evident than in the development of designs and manufacturing processes for cast aluminum engine blocks and cylinder heads. Increasing...

  11. ITP Metal Casting: Energy Use in Selected Metalcasting Facilities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Use in Selected Metalcasting Facilities - 2003 ITP Metal Casting: Energy Use in Selected Metalcasting Facilities - 2003 energyuseinselectedmetalcasting52804.pdf (1.2 MB) More ...

  12. Casting Process Simulator 2D Mold Fill and Solidification

    Energy Science and Technology Software Center (OSTI)

    1995-05-06

    The CaPS software is a tool used to setup, simulate, and examine the results from two-dimensional filling and solidification of a sand casting.

  13. Development of Integrated Die Casting Process for Large Thin...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Enabling Production of Lightweight Magnesium Parts for Near-Term Automotive Applications. ... cost and most productive casting process for producing large and complex automotive parts. ...

  14. ITP Metal Casting: Corrosion Testing Practices - High Alloy Corrosion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Corrosion Testing Practices - High Alloy Corrosion Program ITP Metal Casting: Corrosion Testing Practices - High Alloy Corrosion Program lehighfs.pdf (151.33 KB) More Documents & ...

  15. Final Report, Volume 1, Metallurgical Evaluation of Cast Duplex...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Final Report, Volume 1, Metallurgical Evaluation of Cast Duplex Stainless Steels and their Weldments Citation Details In-Document Search Title: Final Report, ...

  16. Electromagnetic continuous casting project: Final report

    SciTech Connect (OSTI)

    Battles, J.E.; Rote, D.M.; Misra, B.; Praeg, W.F.; Hull, J.R.; Turner, L.R.; Shah, V.L.; Lari, R.J.; Gopalsami, N.; Wiencek, T.

    1988-10-01

    This report describes the work on development of an electromagnetic casting process for steel, which was carried out at Argonne National Laboratory between January 1985 and December 1987. This effort was concerned principally with analysis and design work on magnet technology, liquid metal feed system, coolant system, and sensors and process controllers. Experimentation primarily involved (1) electromagnetic studies to determine the conditions and controlling parameters for stable levitation and (2) feed-system studies to establish important parameters that control and influence fluid flow from the liquid metal source to the caster. 73 refs., 91 figs., 11 tabs.

  17. Method and apparatus for strip casting

    DOE Patents [OSTI]

    Follstaedt, D.W.; Powell, J.C.; Sussman, R.C.; Williams, R.S.

    1991-11-12

    Casting nozzles will provide improved flow conditions with the parameters controlled according to the present invention. The gap relationships between the nozzle slot and exit orifice must be controlled in combination with converging exit passageway to provide a smooth flow without shearing and turbulence in the stream. The nozzle lips are also rounded to improve flow and increase refractory life of the lips of the nozzle. The tundish walls are tapered to provide improve flow for supplying the melt to the nozzle. The nozzle is located about 45[degree] below top dead center for optimum conditions. 2 figures.

  18. Method and apparatus for strip casting

    DOE Patents [OSTI]

    Follstaedt, Donald W.; Powell, John C.; Sussman, Richard C.; Williams, Robert S.

    1991-01-01

    Casting nozzles will provide improved flow conditions with the parameters controlled according to the present invention. The gap relationships between the nozzle slot and exit orifice must be controlled in combination with converging exit passageway to provide a smooth flow without shearing and turbulence in the stream. The nozzle lips are also rounded to improve flow and increase refractory life of the lips of the nozzle. The tundish walls are tapered to provide improve flow for supplying the melt to the nozzle. The nozzle is located about 45.degree. below top dead center for optimum conditions.

  19. Phase Transformations in Cast Duplex Stainless Steels

    SciTech Connect (OSTI)

    Yoon-Jun Kim

    2004-12-19

    Duplex stainless steels (DSS) constitute both ferrite and austenite as a matrix. Such a microstructure confers a high corrosion resistance with favorable mechanical properties. However, intermetallic phases such as {sigma} and {chi} can also form during casting or high-temperature processing and can degrade the properties of the DSS. This research was initiated to develop time-temperature-transformation (TTT) and continuous-cooling-transformation (CCT) diagrams of two types of cast duplex stainless steels, CD3MN (Fe-22Cr-5Ni-Mo-N) and CD3MWCuN (Fe-25Cr-7Ni-Mo-W-Cu-N), in order to understand the time and temperature ranges for intermetallic phase formation. The alloys were heat treated isothermally or under controlled cooling conditions and then characterized using conventional metallographic methods that included tint etching, and also using electron microscopy (SEM, TEM) and wavelength dispersive spectroscopy (WDS). The kinetics of intermetallic-phase ({sigma} + {chi}) formation were analyzed using the Johnson-Mehl-Avrami (MA) equation in the case of isothermal transformations and a modified form of this equation in the case of continuous cooling transformations. The rate of intermetallic-phase formation was found to be much faster in CD3MWCuN than CD3MN due mainly to differences in the major alloying contents such as Cr, Ni and Mo. To examine in more detail the effects of these elements of the phase stabilities; a series of eight steel castings was designed with the Cr, Ni and Mo contents systematically varied with respect to the nominal composition of CD3MN. The effects of varying the contents of alloying additions on the formation of intermetallic phases were also studied computationally using the commercial thermodynamic software package, Thermo-Calc. In general, {sigma} was stabilized with increasing Cr addition and {chi} by increasing Mo addition. However, a delicate balance among Ni and other minor elements such as N and Si also exists. Phase equilibria in

  20. Continuation of Crosscutting Technology Development at Cast

    SciTech Connect (OSTI)

    Yoon, Roe-Hoan

    2012-03-31

    This Final Technical Report describes progress made on the sub-projects awarded in the Cooperative Agreement DE-FC26-05NT42457: Continuation of Crosscutting Technology Development at Center for Advanced Separation Technologies (CAST). The final reports for each sub-project are attached in the appendix. Much of the research to be conducted with Cooperative Agreement funds will be longer-term, high-risk, basic research and will be carried out in five broad areas: a) Solid-solid separation b) Solid-liquid separation c) Chemical/Biological Extraction d) Modeling and Control, and e) Environmental Control.

  1. Spall behavior of cast iron with varying microstructures

    SciTech Connect (OSTI)

    Plume, Gifford; Rousseau, Carl-Ernst

    2014-07-21

    The spall strength of cast iron with varying microstructures has been investigated using plate impact at moderate speed. Stress history measurements were made with manganin stress gauges embedded between the back face of the specimen and a low impedance polycarbonate backing. Five separate cast irons were tested. Four of these consisted of gray cast iron with graphite in flake form, with three classified as Type VII A2 and the fourth containing a bimodal distribution of Types VII A4 and VII D8. The fifth casting consisted of ductile cast iron with graphite in nodular form, classified as Type I, size class 5. The spall strength for the Type VII A2 gray cast irons varied between 40 and 370 MPa, and that of the additional gray cast iron, between 410 and 490 MPa. The spall strength of the ductile cast iron fell within the range of 0.94–1.2 GPa. It is shown that the spall strength is linked to the damage level at the spall plane, where an increased level of tensile stress is required to generate higher levels of damage. Post mortem analysis was performed on the recovered samples, revealing the graphite phase to be the primary factor governing the spall fracture of cast irons, where crack nucleation is directly correlated to the debonding of graphite from the metal matrix. The average length of graphite found within a casting is linked to the material's strength, where strength increases as a function of decreasing length. The morphology and mean free path of graphite precipitates further govern the subsequent coalescence of initiated cracks to form a complete fracture plane. In cases where graphite spacing is large, increased energy level is required to complete the fracture process. A secondary factor governing the spall fracture of cast irons has also been linked to the microstructure of the metal matrix, with pearlite yielding higher spall strengths than free ferrite.

  2. Advanced Lost Foam Casting Technology - Phase V

    SciTech Connect (OSTI)

    Wanliang Sun; Harry E. Littleton; Charles E. Bates

    2004-04-29

    Previous research, conducted under DOE Contracts DE-FC07-89ID12869, DE-FC07-93ID12230 and DE-FC07-95ID113358 made significant advances in understanding the Lost Foam Casting (LFC) Process and clearly identified areas where additional developments were needed to improve the process and make it more functional in industrial environments. The current project focused on eight tasks listed as follows: Task 1--Computational Model for the Process and Data Base to Support the Model; Task 2--Casting Dimensional Accuracy; Task 3--Pattern Production; Task 4--Improved Pattern Materials; Task 5--Coating Control; Task 6--In-Plant Case Studies; Task 7--Energy and the Environmental Data; and Task 8--Technology Transfer. This report summarizes the work done on all tasks in the period of October 1, 1999 through September 30, 2004. The results obtained in each task and subtask are summarized in this Executive Summary and details are provided in subsequent sections of the report.

  3. Horizontal electromagnetic casting of thin metal sheets

    DOE Patents [OSTI]

    Hull, John R.; Lari, Robert J.; Praeg, Walter F.; Turner, Larry R.

    1987-01-01

    Thin metal sheets are cast by magnetically suspending molten metal deposited within a ferromagnetic yoke and between AC conducting coils and linearly displacing the magnetically levitated liquid metal while it is being cooled to form a solid metal sheet. Magnetic flux increases as the molten metal sheet moves downward and decreases as the molten metal sheet moves upward to stabilize the sheet and maintain it in equilibrium as it is linearly displaced and solidified by cooling gases. A conducting shield is electrically coupled to the molten metal sheet by means of either metal sheet engaging rollers or brushes on the solidified metal, and by means of an electrode in the vessel containing the molten metal thereby providing a return path for the eddy currents induced in the metal sheet by the AC coil generated magnetic flux. Variation in the geometry of the conducting shield allows the magnetic flux between the metal sheet and the conducting shield to be varied and the thickness in surface quality of the metal sheet to be controlled. Side guards provide lateral containment for the molten metal sheet and stabilize and shape the magnetic field while a leader sheet having electromagnetic characteristics similar to those of the metal sheet is used to start the casting process and precedes the molten metal sheet through the magnet and forms a continuous sheet therewith. The magnet may be either U-shaped with a single racetrack coil or may be rectangular with a pair of facing bedstead coils.

  4. Horizontal electromagnetic casting of thin metal sheets

    DOE Patents [OSTI]

    Hull, John R.; Lari, Robert J.; Praeg, Walter F.; Turner, Larry R.

    1988-01-01

    Thin metal sheets are cast by magnetically suspending molten metal deposited within a ferromagnetic yoke and between AC conducting coils and linearly displacing the magnetically levitated liquid metal while it is being cooled to form a solid metal sheet. Magnetic flux increases as the molten metal sheet moves downward and decreases as the molten metal sheet moves upward to stabilize the sheet and maintain it in equilibrium as it is linearly displaced and solidified by cooling gases. A conducting shield is electrically coupled to the molten metal sheet by means of either metal sheet engaging rollers or brushes on the solidified metal, and by means of an electrode in the vessel containing the molten metal thereby providing a return path for the eddy currents induced in the metal sheet by the AC coil generated magnetic flux. Variation in the geometry of the conducting shield allows the magnetic flux between the metal sheet and the conducting shield to be varied and the thickness in surface quality of the metal sheet to be controlled. Side guards provide lateral containment for the molten metal sheet and stabilize and shape the magnetic field while a leader sheet having electromagnetic characteristics similar to those of the metal sheet is used to start the casting process and precedes the molten metal sheet through the magnet and forms a continuous sheet therewith. The magnet may be either U-shaped with a single racetrack coil or may be rectangular with a pair of facing bedstead coils.

  5. Energy Saving Melting andRevert Reduction Technology (E0SMARRT): Predicting Pattern Tooling and Casting Dimension for Investment Casting

    SciTech Connect (OSTI)

    Nick Cannell; Dr. Mark Samonds; Adi Sholapurwalla; Sam Scott

    2008-11-21

    The investment casting process is an expendable mold process where wax patterns of the part and rigging are molded, assembled, shelled and melted to produce a ceramic mold matching the shape of the component to be cast. Investment casting is an important manufacturing method for critical parts because of the ability to maintain dimensional shape and tolerances. However, these tolerances can be easily exceeded if the molding components do not maintain their individual shapes well. In the investment casting process there are several opportunities for the final casting shape to not maintain the intended size and shape, such as shrinkage of the wax in the injection tool, the modification of the shape during shell heating, and with the thermal shrink and distortion in the casting process. Studies have been completed to look at the casting and shell distortions through the process in earlier phases of this project. Dr. Adrian Sabau at Oak Ridge National Labs performed characterizations and validations of 17-4 PH stainless steel in primarily fused silica shell systems with good agreement between analysis results and experimental data. Further tasks provided material property measurements of wax and methodology for employing a viscoelastic definition of wax materials into software. The final set of tasks involved the implementation of the findings into the commercial casting analysis software ProCAST, owned and maintained by ESI Group. This included: o the transfer of the wax material property data from its raw form into separate temperature-dependent thermophysical and mechanical property datasets o adding this wax material property data into an easily viewable and modifiable user interface within the pre-processing application of the ProCAST suite, namely PreCAST o and validating the data and viscoelastic wax model with respect to experimental results

  6. Mold with improved core for metal casting operation

    DOE Patents [OSTI]

    Gritzner, Verne B.; Hackett, Donald W.

    1977-01-01

    The present invention is directed to a mold containing an improved core for use in casting hollow, metallic articles. The core is formed of, or covered with, a layer of cellular material which possesses sufficient strength to maintain its structural integrity during casting, but will crush to alleviate the internal stresses that build up if the normal contraction during solidification and cooling is restricted.

  7. Casting Porosity-Free Grain Refined Magnesium Alloys

    SciTech Connect (OSTI)

    Schwam, David

    2013-08-12

    The objective of this project was to identify the root causes for micro-porosity in magnesium alloy castings and recommend remedies that can be implemented in production. The findings confirm the key role played by utilizing optimal gating and risering practices in minimizing porosity in magnesium castings. 

  8. Method and apparatus for planar drag strip casting

    DOE Patents [OSTI]

    Powell, J.C.; Campbell, S.L.

    1991-11-12

    The present invention is directed to an improved process and apparatus for strip casting. The combination of a planar flow casting nozzle positioned back from the top dead center position with an attached nozzle extension, provides an increased level of casting control and quality. The nozzle extension provides a means of containing the molten pool above the rotating substrate to increase the control of molten metal at the edges of the strip and increase the range of coating thicknesses which may be produced. The level of molten metal in the containment means is regulated to be above the level of melt supplying the casting nozzle which produces a condition of planar drag flow with the casting substrate prior to solidification. 5 figures.

  9. Method and apparatus for planar drag strip casting

    DOE Patents [OSTI]

    Powell, John C.; Campbell, Steven L.

    1991-01-01

    The present invention is directed to an improved process and apparatus for strip casting. The combination of a planar flow casting nozzle positioned back from the top dead center position with an attached nozzle extension, provides an increased level of casting control and quality. The nozzle extension provides a means of containing the molten pool above the rotating substrate to increase the control of molten metal at the edges of the strip and increase the range of coating thicknesses which may be produced. The level of molten metal in the containment means is regulated to be above the level of melt supplying the casting nozzle which produces a condition of planar drag flow with the casting substrate prior to solidification.

  10. Tensile-property characterization of thermally aged cast stainless steels

    SciTech Connect (OSTI)

    Michaud, W.F.; Toben, P.T.; Soppet, W.K.; Chopra, O.K.

    1994-02-01

    The effect of thermal aging on tensile properties of cast stainless steels during service in light water reactors has been evaluated. Tensile data for several experimental and commercial heats of cast stainless steels are presented. Thermal aging increases the tensile strength of these steels. The high-C Mo-bearing CF-8M steels are more susceptible to thermal aging than the Mo-free CF-3 or CF-8 steels. A procedure and correlations are presented for predicting the change in tensile flow and yield stresses and engineering stress-vs.-strain curve of cast stainless steel as a function of time and temperature of service. The tensile properties of aged cast stainless steel are estimated from known material information, i.e., chemical composition and the initial tensile strength of the steel. The correlations described in this report may be used for assessing thermal embrittlement of cast stainless steel components.

  11. Grain Refinement of Permanent Mold Cast Copper Base Alloys

    SciTech Connect (OSTI)

    M.Sadayappan; J.P.Thomson; M.Elboujdaini; G.Ping Gu; M. Sahoo

    2005-04-01

    Grain refinement is a well established process for many cast and wrought alloys. The mechanical properties of various alloys could be enhanced by reducing the grain size. Refinement is also known to improve casting characteristics such as fluidity and hot tearing. Grain refinement of copper-base alloys is not widely used, especially in sand casting process. However, in permanent mold casting of copper alloys it is now common to use grain refinement to counteract the problem of severe hot tearing which also improves the pressure tightness of plumbing components. The mechanism of grain refinement in copper-base alloys is not well understood. The issues to be studied include the effect of minor alloy additions on the microstructure, their interaction with the grain refiner, effect of cooling rate, and loss of grain refinement (fading). In this investigation, efforts were made to explore and understand grain refinement of copper alloys, especially in permanent mold casting conditions.

  12. Solar Cells: Spin-Cast Bulk Heterojunction Solar Cells: A Dynamical...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Cells: Spin-Cast Bulk Heterojunction Solar Cells: A Dynamical Investigation Solar Cells: Spin-Cast Bulk Heterojunction Solar Cells: A Dynamical Investigation Print Wednesday,...

  13. ITP Metal Casting: Corrosion Testing Practices – High Alloy Corrosion Program

    Broader source: Energy.gov [DOE]

    This subtask under ESMARRT Material properties for Casting or Tooling Design Improvement supports the industry objectives of Designings for New Markets and Improved Metal Casting Processes.

  14. The Influence of Casting Conditions on the Microstructure of As-Cast U-10Mo Alloys: Characterization of the Casting Process Baseline

    SciTech Connect (OSTI)

    Nyberg, Eric A.; Joshi, Vineet V.; Lavender, Curt A.; Paxton, Dean M.; Burkes, Douglas

    2013-12-13

    Sections of eight plate castings of uranium alloyed with 10 wt% molybdenum (U-10Mo) were sent from Y-12 to the Pacific Northwest National Laboratory (PNNL) for microstructural characterization. This report summarizes the results from this study.

  15. Cast Stone Formulation At Higher Sodium Concentrations

    SciTech Connect (OSTI)

    Fox, K. M.; Edwards, T. A.; Roberts, K. B.

    2013-10-02

    A low temperature waste form known as Cast Stone is being considered to provide supplemental Low Activity Waste (LAW) immobilization capacity for the Hanford site. Formulation of Cast Stone at high sodium concentrations is of interest since a significant reduction in the necessary volume of Cast Stone and subsequent disposal costs could be achieved if an acceptable waste form can be produced with a high sodium molarity salt solution combined with a high water to premix (or dry blend) ratio. The objectives of this study were to evaluate the factors involved with increasing the sodium concentration in Cast Stone, including production and performance properties and the retention and release of specific components of interest. Three factors were identified for the experimental matrix: the concentration of sodium in the simulated salt solution, the water to premix ratio, and the blast furnace slag portion of the premix. The salt solution simulants used in this study were formulated to represent the overall average waste composition. The cement, blast furnace slag, and fly ash were sourced from a supplier in the Hanford area in order to be representative. The test mixes were prepared in the laboratory and fresh properties were measured. Fresh density increased with increasing sodium molarity and with decreasing water to premix ratio, as expected given the individual densities of these components. Rheology measurements showed that all of the test mixes produced very fluid slurries. The fresh density and rheology data are of potential value in designing a future Cast Stone production facility. Standing water and density gradient testing showed that settling is not of particular concern for the high sodium compositions studied. Heat of hydration measurements may provide some insight into the reactions that occur within the test mixes, which may in turn be related to the properties and performance of the waste form. These measurements showed that increased sodium

  16. Cast Stone Formulation At Higher Sodium Concentrations

    SciTech Connect (OSTI)

    Fox, K. M.; Roberts, K. A.; Edwards, T. B.

    2013-09-17

    A low temperature waste form known as Cast Stone is being considered to provide supplemental Low Activity Waste (LAW) immobilization capacity for the Hanford site. Formulation of Cast Stone at high sodium concentrations is of interest since a significant reduction in the necessary volume of Cast Stone and subsequent disposal costs could be achieved if an acceptable waste form can be produced with a high sodium molarity salt solution combined with a high water to premix (or dry blend) ratio. The objectives of this study were to evaluate the factors involved with increasing the sodium concentration in Cast Stone, including production and performance properties and the retention and release of specific components of interest. Three factors were identified for the experimental matrix: the concentration of sodium in the simulated salt solution, the water to premix ratio, and the blast furnace slag portion of the premix. The salt solution simulants used in this study were formulated to represent the overall average waste composition. The cement, blast furnace slag, and fly ash were sourced from a supplier in the Hanford area in order to be representative. The test mixes were prepared in the laboratory and fresh properties were measured. Fresh density increased with increasing sodium molarity and with decreasing water to premix ratio, as expected given the individual densities of these components. Rheology measurements showed that all of the test mixes produced very fluid slurries. The fresh density and rheology data are of potential value in designing a future Cast Stone production facility. Standing water and density gradient testing showed that settling is not of particular concern for the high sodium compositions studied. Heat of hydration measurements may provide some insight into the reactions that occur within the test mixes, which may in turn be related to the properties and performance of the waste form. These measurements showed that increased sodium

  17. Cast Stone Formulation At Higher Sodium Concentrations

    SciTech Connect (OSTI)

    Fox, K. M.; Roberts, K. A.; Edwards, T. B.

    2014-02-28

    A low temperature waste form known as Cast Stone is being considered to provide supplemental Low Activity Waste (LAW) immobilization capacity for the Hanford site. Formulation of Cast Stone at high sodium concentrations is of interest since a significant reduction in the necessary volume of Cast Stone and subsequent disposal costs could be achieved if an acceptable waste form can be produced with a high sodium molarity salt solution combined with a high water to premix (or dry blend) ratio. The objectives of this study were to evaluate the factors involved with increasing the sodium concentration in Cast Stone, including production and performance properties and the retention and release of specific components of interest. Three factors were identified for the experimental matrix: the concentration of sodium in the simulated salt solution, the water to premix ratio, and the blast furnace slag portion of the premix. The salt solution simulants used in this study were formulated to represent the overall average waste composition. The cement, blast furnace slag, and fly ash were sourced from a supplier in the Hanford area in order to be representative. The test mixes were prepared in the laboratory and fresh properties were measured. Fresh density increased with increasing sodium molarity and with decreasing water to premix ratio, as expected given the individual densities of these components. Rheology measurements showed that all of the test mixes produced very fluid slurries. The fresh density and rheology data are of potential value in designing a future Cast Stone production facility. Standing water and density gradient testing showed that settling is not of particular concern for the high sodium compositions studied. Heat of hydration measurements may provide some insight into the reactions that occur within the test mixes, which may in turn be related to the properties and performance of the waste form. These measurements showed that increased sodium

  18. Methods and apparatuses for manufacturing geometric multicrystalline cast silicon and geometric multicrystalline cast silicon bodies for photovoltaics

    DOE Patents [OSTI]

    Stoddard, Nathan G

    2015-02-10

    Methods and apparatuses are provided for casting silicon for photovoltaic cells and other applications. With such methods and apparatuses, a cast body of geometrically ordered multi-crystalline silicon may be formed that is free or substantially free of radially-distributed impurities and defects and having at least two dimensions that are each at least about 10 cm is provided.

  19. Method of casting silicon into thin sheets

    DOE Patents [OSTI]

    Sanjurjo, Angel; Rowcliffe, David J.; Bartlett, Robert W.

    1982-10-26

    Silicon (Si) is cast into thin shapes within a flat-bottomed graphite crucible by providing a melt of molten Si along with a relatively small amount of a molten salt, preferably NaF. The Si in the resulting melt forms a spherical pool which sinks into and is wetted by the molten salt. Under these conditions the Si will not react with any graphite to form SiC. The melt in the crucible is pressed to the desired thinness with a graphite tool at which point the tool is held until the mass in the crucible has been cooled to temperatures below the Si melting point, at which point the Si shape can be removed.

  20. CENTER FOR ADVANCED SEPARATION TECHNOLOGY (CAST) PROGRAM

    SciTech Connect (OSTI)

    Yoon, Roe-Hoan; Hull, Christopher

    2014-09-30

    The U.S. is the largest producer of mining products in the world. In 2011, U.S. mining operations contributed a total of $232 billion to the nation’s GDP plus $138 billion in labor income. Of this the coal mining industry contributed a total of $97.5 billion to GDP plus $53 billion in labor income. Despite these contributions, the industry has not been well supported with research and development funds as compared to mining industries in other countries. To overcome this problem, the Center for Advanced Separation Technologies (CAST) was established to develop technologies that can be used by the U.S. mining industry to create new products, reduce production costs, and meet environmental regulations.

  1. Technology development for thin strip metal casting, Phase 2: Final technical report. [Melt spinning or planar flow casting

    SciTech Connect (OSTI)

    Williams, R.S.

    1988-03-07

    The Phase II program has been conducted by a team of engineers from Westinghouse Electric Corporation and Armco, Inc., with the objective of providing a suitably sized experimental planar flow casting machine, and using it to perform casting trials to address the above technical uncertainties for cast thicknesses and speeds representative of industrial production, and with sufficient duration to diminish thermal transient effects. A nominally 7 ft. diameter water-cooled copper wheel planar flow casting system has been designed, fabricated and installed in a dedicated 15,000 sq. ft. foundry facility are Armco Inc., Middletown, Ohio. This system is capable of casting 3 in. wide strip and operating at surface speeds up to 25 ft/sec. Additionally, the facility also contains a 16 in. diameter water-cooled wheel with interchangeable casting substrates of different materials. This small wheel facility has been adapted to utilize the melt overflow process for casting of 3 in. wide strip. These casting facilities are supported by a 500 lb. induction melting furnace and necessary liquid steel handling equipment. Adequate techniques have been developed for transportation and filtering of liquid steel without undue temperature loss. Good control of the planar flow casting process was not achieved during this program, however given such control and the adoption of clean steel practices, the inference is that the process will be capable of producing strip which is readily cold-rollable in the as-cast condition. After cold rolling and annealing, such material should have useful mechanical properties. 8 refs., 112 figs., 10 tabs.

  2. Irradiation response of delta ferrite in as-cast and thermally aged cast stainless steel

    SciTech Connect (OSTI)

    Li, Zhangbo; Lo, Wei-Yang; Chen, Yiren; Pakarinen, Janne; Wu, Yaqiao; Allen, Todd; Yang, Yong

    2015-08-08

    To enable the life extension of Light Water Reactors (LWRs) beyond 60 years, it is critical to gain adequate knowledge for making conclusive predictions to assure the integrity of duplex stainless steel reactor components, e.g. primary pressure boundary and reactor vessel internal. Microstructural changes in the ferrite of thermally aged, neutron irradiated only, and neutron irradiated after being thermally aged cast austenitic stainless steels (CASS) were investigated using atom probe tomography. The thermal aging was performed at 400 °C for 10,000 h and the irradiation was conducted in the Halden reactor at ~315 °C to 0.08 dpa (5.6 × 1019 n/cm2 E > 1 MeV). Low dose neutron irradiation at a dose rate of 5 × 10-9 dpa/s was found to induce spinod,al decomposition in the ferrite of as-cast microstructure, and further to enhance the spinodal decomposition in the thermally aged cast alloys. Regarding the G-phase precipitates, the neutron irradiation dramatically increases the precipitate size, and alters the composition of the precipitates with increased, Mn, Ni, Si and Mo and reduced Fe and Cr contents. Lastly, The results have shown that low dose neutron irradiation can further accelerate the degradation of ferrite in a duplex stainless steel at the LWR relevant condition.

  3. Irradiation response of delta ferrite in as-cast and thermally aged cast stainless steel

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Li, Zhangbo; Lo, Wei-Yang; Chen, Yiren; Pakarinen, Janne; Wu, Yaqiao; Allen, Todd; Yang, Yong

    2015-08-08

    To enable the life extension of Light Water Reactors (LWRs) beyond 60 years, it is critical to gain adequate knowledge for making conclusive predictions to assure the integrity of duplex stainless steel reactor components, e.g. primary pressure boundary and reactor vessel internal. Microstructural changes in the ferrite of thermally aged, neutron irradiated only, and neutron irradiated after being thermally aged cast austenitic stainless steels (CASS) were investigated using atom probe tomography. The thermal aging was performed at 400 °C for 10,000 h and the irradiation was conducted in the Halden reactor at ~315 °C to 0.08 dpa (5.6 × 1019more » n/cm2 E > 1 MeV). Low dose neutron irradiation at a dose rate of 5 × 10-9 dpa/s was found to induce spinod,al decomposition in the ferrite of as-cast microstructure, and further to enhance the spinodal decomposition in the thermally aged cast alloys. Regarding the G-phase precipitates, the neutron irradiation dramatically increases the precipitate size, and alters the composition of the precipitates with increased, Mn, Ni, Si and Mo and reduced Fe and Cr contents. Lastly, The results have shown that low dose neutron irradiation can further accelerate the degradation of ferrite in a duplex stainless steel at the LWR relevant condition.« less

  4. Development of a thin steel strip casting process. Final report

    SciTech Connect (OSTI)

    Williams, R.S.

    1994-04-01

    This is a comprehensive effort to develop direct strip casting to the point where a pilot scale program for casting carbon steel strip could be initiated. All important aspects of the technology were being investigated, however the program was terminated early due to a change in the business strategy of the primary contractor, Armco Inc. (focus to be directed at specialty steels, not low carbon steel). At termination, the project was on target on all milestones and under budget. Major part was casting of strip at the experiment casting facility. A new caster, capable of producing direct cast strip of up to 12 in. wide in heats of 1000 and 3000 lb, was used. A total of 81 1000-1200 lb heats were cast as well as one test heat of 3000 lb. Most produced strip of from 0.016 to 0.085 in. thick. Process reliability was excellent for short casting times; quality was generally poor from modern hot strip mill standards, but the practices necessary for good surface quality were identified.

  5. Predicting Pattern Tooling and Casting Dimensions for Investment Casting, Phase III

    SciTech Connect (OSTI)

    Sabau, Adrian S

    2008-04-01

    Efforts during Phase III focused mainly on the shell-alloy systems. A high melting point alloy, 17-4PH stainless steel, was considered. The experimental part of the program was conducted at ORNL and commercial foundries, where wax patterns were injected, molds were invested, and alloys were poured. Shell molds made of fused-silica and alumino-silicates were considered. A literature review was conducted on thermophysical and thermomechanical properties alumino-silicates. Material property data, which were not available from material suppliers, was obtained. For all the properties of 17-4PH stainless steel, the experimental data available in the literature did not cover the entire temperature range necessary for process simulation. Thus, some material properties were evaluated using ProCAST, based on CompuTherm database. A comparison between the predicted material property data and measured property data was made. It was found that most material properties were accurately predicted only over several temperature ranges. No experimental data for plastic modulus were found. Thus, several assumptions were made and ProCAST recommendations were followed in order to obtain a complete set of mechanical property data at high temperatures. Thermal expansion measurements for the 17-4PH alloy were conducted during heating and cooling. As a function of temperature, the thermal expansion for both the alloy and shell mold materials showed different evolution on heating and cooling. Numerical simulations were performed using ProCAST for the investment casting of 17-4PH stainless steel parts in fused silica molds using the thermal expansion obtained on heating and another one with thermal expansion obtained on cooling. Since the fused silica shells had the lowest thermal expansion properties in the industry, the dewaxing phase, including the coupling between wax-shell systems, was neglected. The shell mold was considered to be a pure elastic material. The alloy dimensions were

  6. Method to prevent/mitigate steam explosions in casting pits

    DOE Patents [OSTI]

    Taleyarkhan, R.P.

    1996-12-24

    Steam explosions can be prevented or mitigated during a metal casting process by the placement of a perforated flooring system in the casting pit. An upward flow of compressed gas through this perforated flooring system is introduced during the casting process to produce a buffer layer between any spilled molten metal and the cooling water in the reservoir. This buffer layer provides a hydrodynamic layer which acts to prevent or mitigate steam explosions resulting from hot, molten metal being spilled into or onto the cooling water. 3 figs.

  7. Method to prevent/mitigate steam explosions in casting pits

    DOE Patents [OSTI]

    Taleyarkhan, Rusi P.

    1996-01-01

    Steam explosions can be prevented or mitigated during a metal casting process by the placement of a perforated flooring system in the casting pit. An upward flow of compressed gas through this perforated flooring system is introduced during the casting process to produce a buffer layer between any spilled molten metal and the cooling water in the reservoir. This buffer layer provides a hydrodynamic layer which acts to prevent or mitigate steam explosions resulting from hot, molten metal being spilled into or onto the cooling water.

  8. Shrinkage Prediction for the Investment Casting of Stainless Steels

    SciTech Connect (OSTI)

    Sabau, Adrian S [ORNL

    2007-01-01

    In this study, the alloy shrinkage factors were obtained for the investment casting of 17-4PH stainless steel parts. For the investment casting process, unfilled wax and fused silica with a zircon prime coat were used for patterns and shell molds, respectively. Dimensions of the die tooling, wax pattern, and casting were measured using a Coordinate Measurement Machine in order to obtain the actual tooling allowances. The alloy dimensions were obtained from numerical simulation results of solidification, heat transfer, and deformation phenomena. The numerical simulation results for the shrinkage factors were compared with experimental results.

  9. Filler metal alloy for welding cast nickel aluminide alloys

    DOE Patents [OSTI]

    Santella, M.L.; Sikka, V.K.

    1998-03-10

    A filler metal alloy used as a filler for welding cast nickel aluminide alloys contains from about 15 to about 17 wt. % chromium, from about 4 to about 5 wt. % aluminum, equal to or less than about 1.5 wt. % molybdenum, from about 1 to about 4.5 wt. % zirconium, equal to or less than about 0.01 wt. % yttrium, equal to or less than about 0.01 wt. % boron and the balance nickel. The filler metal alloy is made by melting and casting techniques such as are melting the components of the filler metal alloy and cast in copper chill molds. 3 figs.

  10. Hanford's Simulated Low Activity Waste Cast Stone Processing

    SciTech Connect (OSTI)

    Kim, Young

    2013-08-20

    Cast Stone is undergoing evaluation as the supplemental treatment technology for Hanford’s (Washington) high activity waste (HAW) and low activity waste (LAW). This report will only cover the LAW Cast Stone. The programs used for this simulated Cast Stone were gradient density change, compressive strength, and salt waste form phase identification. Gradient density changes show a favorable outcome by showing uniformity even though it was hypothesized differently. Compressive strength exceeded the minimum strength required by Hanford and greater compressive strength increase seen between the uses of different salt solution The salt waste form phase is still an ongoing process as this time and could not be concluded.

  11. Optimization of Squeeze Casting for Aluminum Alloy Parts

    SciTech Connect (OSTI)

    David Schwam; John F. Wallace; Qingming Chang; Yulong Zhu

    2002-07-30

    This study was initiated with the installation of a new production size UBE 350 Ton VSC Squeeze Casting system in the Metal Casting Laboratory at Case Western University. A Lindberg 75k W electrical melting furnace was installed alongside. The challenge of installation and operation of such industrial-size equipment in an academic environment was met successfully. Subsequently, a Sterling oil die heater and a Visi-Track shot monitoring system were added. A significant number of inserts were designed and fabricated over the span of the project, primarily for squeeze casting different configurations of test bars and plates. A spiral ''ribbon insert'' for evaluation of molten metal fluidity was also fabricated. These inserts were used to generate a broad range of processing conditions and determine their effect on the quality of the squeeze cast parts. This investigation has studied the influence of the various casting variables on the quality of indirect squeeze castings primarily of aluminum alloys. The variables studied include gating design, fill time and fill patter, metal pressure and die temperature variations. The quality of the die casting was assessed by an analysis of both their surface condition and internal soundness. The primary metal tested was an aluminum 356 alloy. In addition to determining the effect of these casting variables on casting quality as measured by a flat plate die of various thickness, a number of test bar inserts with different gating designs have been inserted in the squeeze casting machine. The mechanical properties of these test bars produced under different squeeze casting conditions were measured and reported. The investigation of the resulting properties also included an analysis of the microstructure of the squeeze castings and the effect of the various structural constituents on the resulting properties. The main conclusions from this investigation are as follows: The ingate size and shape are very important since it must

  12. ITP Metal Casting: Energy Use in Selected Metalcasting Facilities- 2003

    Broader source: Energy.gov [DOE]

    This report represents an energy benchmark for various metalcasting processes. It describes process flows and energy use by fuel type and processes for selected casting operations. It also provides recommendations for improving energy efficiency in casti

  13. An Energy Savings Model for the Heat Treatment of Castings

    SciTech Connect (OSTI)

    Y. Rong; R. Sisson; J. Morral; H. Brody

    2006-12-31

    An integrated system of software, databases, and design rules have been developed, verified, and to be marketed to enable quantitative prediction and optimization of the heat treatment of aluminum castings to increase quality, increase productivity, reduce heat treatment cycle times and reduce energy consumption. The software predicts the thermal cycle in critical locations of individual components in a furnace, the evolution of microstructure, and the attainment of properties in heat treatable aluminum alloy castings. The model takes into account the prior casting process and the specific composition of the component. The heat treatment simulation modules can be used in conjunction with software packages for simulation of the casting process. The system is built upon a quantitative understanding of the kinetics of microstructure evolution in complex multicomponent alloys, on a quantitative understanding of the interdependence of microstructure and properties, on validated kinetic and thermodynamic databases, and validated quantitative models.

  14. Process and apparatus for casting multiple silicon wafer articles

    DOE Patents [OSTI]

    Nanis, Leonard

    1992-05-05

    Method and apparatus of casting silicon produced by the reaction between SiF.sub.4 and an alkaline earth metal into thin wafer-shaped articles suitable for solar cell fabrication.

  15. Advanced lost foam casting technology. 1995 summary report

    SciTech Connect (OSTI)

    Bates, C.E.; Littleton, H.E.; Askeland, D.; Griffin, J.; Miller, B.A.; Sheldon, D.S.

    1996-05-01

    Previous research made significant advances in understanding the Lost Foam Casting (LFC) Process and clearly identified areas where additional research was needed to improve the process and make it more functional in an industrial environment. The current project focused on five areas listed as follows: Task 1: Precision Pattern Production; Task 2: Pattern Coating Consistency; Task 3: Sand Fill and Compaction Effects; Task 4: Pattern Gating; and Task 5: Mechanical Properties of Castings. This report summarizes the work done under the current contract in all five areas. Twenty-eight (28) companies jointly participate in the project. These companies represent a variety of disciplines, including pattern designers, pattern producers, coating manufacturers, plant design companies, compaction equipment manufacturers, casting producers, and casting buyers. This report summarizes the work done in the past two years and the conclusions drawn from the work.

  16. Gating of Permanent Molds for Aluminum Casting (Technical Report...

    Office of Scientific and Technical Information (OSTI)

    pattern and heat flow behavior in permanent mold castings. Equipment and procedure for real time X-Ray radiography of molten aluminum flow into permanent molds have been developed. ...

  17. Titanium Matrix Composite Tooling Material for Aluminum Die Castings

    Broader source: Energy.gov [DOE]

    In aluminum die-casting, molten aluminum is forced under high pressure into a die cavity. First a "shot" of molten aluminum is ladled into a shot sleeve and the shot of molten aluminum is forced by...

  18. Method of casting articles of a bulk-solidifying amorphous alloy

    DOE Patents [OSTI]

    Lin, Xianghong; Johnson, William L.; Peker, Atakan

    1998-01-01

    A casting charge of a bulk-solidifying amorphous alloy is cast into a mold from a temperature greater than its crystallized melting temperature, and permitted to solidify to form an article. The oxygen content of the casting charge is limited to an operable level, as excessively high oxygen contents produce premature crystallization during the casting operation. During melting, the casting charge is preferably heated to a temperature above a threshold temperature to eliminate heterogeneous crystallization nucleation sites within the casting charge. The casting charge may be cast from above the threshold temperature, or it may be cooled to the casting temperature of more than the crystallized melting point but not more than the threshold temperature, optionally held at this temperature for a period of time, and thereafter cast.

  19. Method of casting articles of a bulk-solidifying amorphous alloy

    DOE Patents [OSTI]

    Lin, X.; Johnson, W.L.; Peker, A.

    1998-08-25

    A casting charge of a bulk-solidifying amorphous alloy is cast into a mold from a temperature greater than its crystallized melting temperature, and permitted to solidify to form an article. The oxygen content of the casting charge is limited to an operable level, as excessively high oxygen contents produce premature crystallization during the casting operation. During melting, the casting charge is preferably heated to a temperature above a threshold temperature to eliminate heterogeneous crystallization nucleation sites within the casting charge. The casting charge may be cast from above the threshold temperature, or it may be cooled to the casting temperature of more than the crystallized melting point but not more than the threshold temperature, optionally held at this temperature for a period of time, and thereafter cast. 8 figs.

  20. Predicting Pattern Tooling and Casting Dimensions for Investment Casting, Phase II

    SciTech Connect (OSTI)

    Nick Cannell; Adrian S. Sabau

    2005-09-30

    The investment casting process allows the production of complex-shape parts and close dimensional tolerances. One of the most important phases in the investment casting process is the design of the pattern die. Pattern dies are used to create wax patterns by injecting wax into dies. The first part of the project involved preparation of reports on the state of the art at that time for all the areas under consideration (die-wax, wax-shell, and shell-alloy). The primary R&D focus during Phase I was on the wax material since the least was known about it. The main R&D accomplishments during this phase were determination of procedures for obtaining the thermal conductivity and viscoelastic properties of an unfilled wax and validating those procedures. Phase II focused on die-wax and shell-alloy systems. A wax material model was developed based on results obtained during the previous R&D phase, and a die-wax model was successfully incorporated into and used in commercial computer programs. Current computer simulation programs have complementary features. A viscoelastic module was available in ABAQUS but unavailable in ProCAST, while the mold-filling module was available in ProCAST but unavailable in ABAQUS. Thus, the numerical simulation results were only in good qualitative agreement with experimental results, the predicted shrinkage factors being approximately 2.5 times larger than those measured. Significant progress was made, and results showed that the testing and modeling of wax material had great potential for industrial applications. Additional R&D focus was placed on one shell-alloy system. The fused-silica shell mold and A356 aluminum alloy were considered. The experimental part of the program was conducted at ORNL and commercial foundries, where wax patterns were injected, molds were invested, and alloys were poured. It was very important to obtain accurate temperature data from actual castings, and significant effort was made to obtain temperature profiles in

  1. Methods for manufacturing monocrystalline or near-monocrystalline cast materials

    DOE Patents [OSTI]

    Stoddard, Nathan G

    2014-04-29

    Methods are provided for casting one or more of a semiconductor, an oxide, and an intermetallic material. With such methods, a cast body of a monocrystalline form of the one or more of a semiconductor, an oxide, and an intermetallic material may be formed that is free of, or substantially free of, radially-distributed impurities and defects and having at least two dimensions that are each at least about 35 cm.

  2. Methods for manufacturing geometric multi-crystalline cast materials

    DOE Patents [OSTI]

    Stoddard, Nathan G

    2013-11-26

    Methods are provided for casting one or more of a semi-conductor, an oxide, and an intermetallic material. With such methods, a cast body of a geometrically ordered multi-crystalline form of the one or more of a semiconductor, an oxide, and an intermetallic material may be formed that is free or substantially free of radially-distributed impurities and defects and having at least two dimensions that are each at least about 10 cm.

  3. Procedure for flaw detection in cast stainless steel

    DOE Patents [OSTI]

    Kupperman, David S.

    1988-01-01

    A method of ultrasonic flaw detection in cast stainless steel components incorporating the steps of determining the nature of the microstructure of the cast stainless steel at the site of the flaw detection measurements by ultrasonic elements independent of the component thickness at the site; choosing from a plurality of flaw detection techniques, one such technique appropriate to the nature of the microstructure as determined and detecting flaws by use of the chosen technique.

  4. Extended Leach Testing of Simulated LAW Cast Stone Monoliths

    SciTech Connect (OSTI)

    Serne, R. Jeffrey; Westsik, Joseph H.; Williams, Benjamin D.; Jung, H. B.; Wang, Guohui

    2015-07-09

    This report describes the results from long-term laboratory leach tests performed at Pacific Northwest National Laboratory (PNNL) for Washington River Protection Solutions (WRPS) to evaluate the release of key constituents from monoliths of Cast Stone prepared with four simulated low-activity waste (LAW) liquid waste streams. Specific objectives of the Cast Stone long-term leach tests described in this report focused on four activities: 1. Extending the leaching times for selected ongoing EPA-1315 tests on monoliths made with LAW simulants beyond the conventional 63-day time period up to 609 days reported herein (with some tests continuing that will be documented later) in an effort to evaluate long-term leaching properties of Cast Stone to support future performance assessment activities. 2. Starting new EPA-1315 leach tests on archived Cast Stone monoliths made with four LAW simulants using two leachants (deionized water [DIW] and simulated Hanford Integrated Disposal Facility (IDF) Site vadose zone pore water [VZP]). 3. Evaluating the impacts of varying the iodide loading (starting iodide concentrations) in one LAW simulant (7.8 M Na Hanford Tank Waste Operations Simulator (HTWOS) Average) by manufacturing new Cast Stone monoliths and repeating the EPA-1315 leach tests using DIW and the VZP leachants. 4. Evaluating the impacts of using a non-pertechnetate form of Tc that is present in some Hanford tanks. In this activity one LAW simulant (7.8 M Na HTWOS Average) was spiked with a Tc(I)-tricarbonyl gluconate species and then solidified into Cast Stone monoliths. Cured monoliths were leached using the EPA-1315 leach protocol with DIW and VZP. The leach results for the Tc-Gluconate Cast Stone monoliths were compared to Cast Stone monoliths pertechnetate.

  5. Determination of Bulk Dimensional Variation in Castings

    SciTech Connect (OSTI)

    Dr. James F. Cuttino Dr. Edward P. Morse

    2005-04-14

    The purpose of this work is to improve the efficiency of green sand foundries so that they may continue to compete as the most cost-effective method of fabrication while meeting tightening constraints on near-net shape manufacturing. In order to achieve this objective, the study is divided into two major components. The first component concentrated on identifying which processes control surface finish on the castings and which provide potential reductions in variations. The second component identified metrological methods that effectively discern between the geometry of bulk material versus surface finish in order to more accurately determine the quality of a part. The research resulted in the determination of an empirical relationship relating pouring parameters to dimensional variation, with an R2 value of greater than 0.79. A significant difference in variations obtained from vertical vs. horizontal molding machines was also noticed. When analyzed separately, however, the resulting empirical relationships for horizontal and vertical machines had reduced R2 values, probably due to the reduced data sets. Significant parameters when considering vertical and horizontal molding machines together included surface roughness, pattern type, iron type, pouring rate, copper content, amount of Western Bentonite, and permeability.

  6. Heat Treatment Procedure Qualification for Steel Castings

    SciTech Connect (OSTI)

    Mariol Charles; Nicholas Deskevich; Vipin Varkey; Robert Voigt; Angela Wollenburg

    2004-04-29

    Heat treatment practices used by steel foundries have been carefully studied as part of comprehensive heat treatment procedure qualification development trials. These studies highlight the relationships between critical heat treatment process control parameters and heat treatment success. Foundry heat treatment trials to develop heat treatment procedure qualifications have shed light on the relationship between heat treatment theory and current practices. Furnace load time-temperature profiles in steel foundries exhibit significant differences depending on heat treatment equipment, furnace loading practice, and furnace maintenance. Time-temperature profiles of furnace control thermocouples can be very different from the time-temperature profiles observed at the center of casting loads in the furnace. Typical austenitization temperatures and holding times used by steel foundries far exceed what is required for transformation to austenite. Quenching and hardenability concepts were also investigated. Heat treatment procedure qualification (HTPQ) schema to demonstrate heat treatment success and to pre-qualify other alloys and section sizes requiring lesser hardenability have been developed. Tempering success is dependent on both tempering time and temperature. As such, furnace temperature uniformity and control of furnace loading during tempering is critical to obtain the desired mechanical properties. The ramp-up time in the furnace prior to the establishment of steady state heat treatment conditions contributes to the extent of heat treatment performed. This influence of ramp-up to temperature during tempering has been quantified.

  7. Cast-to-shape electrokinetic trapping medium

    DOE Patents [OSTI]

    Shepodd, Timothy J.; Franklin, Elizabeth; Prickett, Zane T.; Artau, Alexander

    2004-08-03

    A three-dimensional microporous polymer network material, or monolith, cast-to-shape in a microchannel. The polymer monolith, produced by a phase separation process, is capable of trapping and retaining charged protein species from a mixture of charged and uncharged species under the influence of an applied electric field. The retained charged protein species are released from the porous polymer monolith by a pressure driven flow in the substantial absence of the electric field. The pressure driven flow is independent of direction and thus neither means to reverse fluid flow nor a multi-directional flow field is required, a single flow through the porous polymer monolith can be employed, in contrast to prior art systems. The monolithic polymer material produced by the invention can function as a chromatographic medium. Moreover, by virtue of its ability to retain charged protein species and quantitatively release the retained species the porous polymer monolith can serve as a means for concentrating charged protein species from, for example, a dilute solution.

  8. Cast-to-shape electrokinetic trapping medium

    DOE Patents [OSTI]

    Shepodd, Timothy J.; Franklin, Elizabeth; Prickett, Zane T.; Artau, Alexander

    2006-05-30

    A three-dimensional microporous polymer network material, or monolith, cast-to-shape in a microchannel. The polymer monolith, produced by a phase separation process, is capable of trapping and retaining charged protein species from a mixture of charged and uncharged species under the influence of an applied electric field. The retained charged protein species are released from the porous polymer monolith by a pressure driven flow in the substantial absence of the electric field. The pressure driven flow is independent of direction and thus neither means to reverse fluid flow nor a multi-directional flow field is required, a single flow through the porous polymer monolith can be employed, in contrast to prior art systems. The monolithic polymer material produced by the invention can function as a chromatographic medium. Moreover, by virtue of its ability to retain charged protein species and quantitatively release the retained species the porous polymer monolith can serve as a means for concentrating charged protein species from, for example, a dilute solution.

  9. Letter Report: LAW Simulant Development for Cast Stone Screening Test

    SciTech Connect (OSTI)

    Russell, Renee L.; Westsik, Joseph H.; Swanberg, David J.; Eibling, Russell E.; Cozzi, Alex; Lindberg, Michael J.; Josephson, Gary B.; Rinehart, Donald E.

    2013-03-27

    More than 56 million gallons of radioactive and hazardous waste are stored in 177 underground storage tanks at the U.S. Department of Energy’s (DOE’s) Hanford Site in southeastern Washington State. The Hanford Tank Waste Treatment and Immobilization Plant (WTP) is being constructed to treat the wastes and immobilize them in a glass waste form. The WTP includes a pretreatment facility to separate the wastes into a small volume of high-level waste (HLW) containing most of the radioactivity and a larger volume of low-activity waste (LAW) containing most of the nonradioactive chemicals. The HLW will be converted to glass in the HLW vitrification facility for ultimate disposal at an offsite federal repository. At least a portion (~35%) of the LAW will be converted to glass in the LAW vitrification facility and will be disposed of onsite at the Integrated Disposal Facility (IDF). The pretreatment and HLW vitrification facilities will have the capacity to treat and immobilize the wastes destined for each facility. However, a second facility will be needed for the expected volume of additional LAW requiring immobilization. A cementitious waste form known as Cast Stone is being considered to provide the required additional LAW immobilization capacity. The Cast Stone waste form must be acceptable for disposal in the IDF. The Cast Stone waste form and immobilization process must be tested to demonstrate that the final Cast Stone waste form can comply with waste acceptance criteria for the IDF disposal facility and that the immobilization processes can be controlled to consistently provide an acceptable waste form product. Further, the waste form must be tested to provide the technical basis for understanding the long term performance of the waste form in the IDF disposal environment. These waste form performance data are needed to support risk assessment and performance assessment (PA) analyses of the long-term environmental impact of the waste disposal in the IDF. A

  10. Casting evaluation of U-Zr alloy system fuel slug for SFR prepared by injection casting method

    SciTech Connect (OSTI)

    Song, Hoon; Kim, Jong-Hwan; Kim, Ki-Hwan; Lee, Chan-Bock

    2013-07-01

    Metal fuel slugs of U-Pu-Zr alloys for Sodium-cooled Fast Reactor (SFR) have conventionally been fabricated by a vacuum injection casting method. Recently, management of minor actinides (MA) became an important issue because direct disposal of the long-lived MA can be a long-term burden for a tentative repository up to several hundreds of thousand years. In order to recycle transuranic elements (TRU) retained in spent nuclear fuel, remote fabrication capability in a shielded hot cell should be prepared. Moreover, generation of long-lived radioactive wastes and loss of volatile species should be minimized during the recycled fuel fabrication step. In order to prevent the evaporation of volatile elements such as Am, alternative fabrication methods of metal fuel slugs have been studied applying gravity casting, and improved injection casting in KAERI, including melting under inert atmosphere. And then, metal fuel slugs were examined with casting soundness, density, chemical analysis, particle size distribution and microstructural characteristics. Based on these results there is a high level of confidence that Am losses will also be effectively controlled by application of a modest amount of overpressure. A surrogate fuel slug was generally soundly cast by improved injection casting method, melted fuel material under inert atmosphere.

  11. Secondary Waste Cast Stone Waste Form Qualification Testing Plan

    SciTech Connect (OSTI)

    Westsik, Joseph H.; Serne, R. Jeffrey

    2012-09-26

    The Hanford Tank Waste Treatment and Immobilization Plant (WTP) is being constructed to treat the 56 million gallons of radioactive waste stored in 177 underground tanks at the Hanford Site. The WTP includes a pretreatment facility to separate the wastes into high-level waste (HLW) and low-activity waste (LAW) fractions for vitrification and disposal. The LAW will be converted to glass for final disposal at the Integrated Disposal Facility (IDF). Cast Stone – a cementitious waste form, has been selected for solidification of this secondary waste stream after treatment in the ETF. The secondary-waste Cast Stone waste form must be acceptable for disposal in the IDF. This secondary waste Cast Stone waste form qualification testing plan outlines the testing of the waste form and immobilization process to demonstrate that the Cast Stone waste form can comply with the disposal requirements. Specifications for the secondary-waste Cast Stone waste form have not been established. For this testing plan, Cast Stone specifications are derived from specifications for the immobilized LAW glass in the WTP contract, the waste acceptance criteria for the IDF, and the waste acceptance criteria in the IDF Permit issued by the State of Washington. This testing plan outlines the testing needed to demonstrate that the waste form can comply with these waste form specifications and acceptance criteria. The testing program must also demonstrate that the immobilization process can be controlled to consistently provide an acceptable waste form product. This testing plan also outlines the testing needed to provide the technical basis for understanding the long-term performance of the waste form in the disposal environment. These waste form performance data are needed to support performance assessment analyses of the long-term environmental impact of the secondary-waste Cast Stone waste form in the IDF

  12. Simulation and Experiment on Direct Continuous Casting Process of Lead Frame Copper Alloy

    SciTech Connect (OSTI)

    Huang Guojie; Xie Shuisheng; Cheng Lei [State Key Laboratory for Fabrication and Process of Nonferrous Metals, Beijing General Research Institute for Non-ferrous Metals, 100088 (China)

    2010-06-15

    Direct Continuous Casting (D.C.C) is an important method in casting lead frame copper alloy. In this paper, numerical simulation is adopted to investigate the casting process in order to optimize the D.C.C technical parameters, such as the casting temperature, casting speed and cooling intensity. According to the numerical results, the reasonable parameters are that the casting temperature is between 1413 Kapprox1413 K, the casting speed is between 8 m/happrox10 m/h and the speed of cooling water is between 4.2 m/sapprox4.6 m/s. And the depth of liquid-solid boundary is measured in different casting temperature and casting speed by experiments. The results show the actual measurements have a little deviation with the numerical simulation. The results of numerical simulation provide the significant reference to the actual experiments.

  13. Method of reducing the green density of a slip cast article

    DOE Patents [OSTI]

    Mangels, John A.; Dickie, Ray A.

    1985-01-01

    The method disclosed in this specification is one of reducing the green density of an article cast in a slip casting operation. The article is cast from a casting slip containing silicon metal particles, yttrium containing particles, and a small amount of a fluoride salt which is effective to suppress flocculation of the silicon metal particles by y.sup.+3 ions derived from the yttrium containing particles. The method is characterized by the following step. A small amount of compound which produces a cation which will partly flocculate the particles of silicon metal is added to the casting slip. The small amount of this compound is added so that when the casting slip is slip cast into a casting mold, the partly flocculated particles of silicon will interrupt an otherwise orderly packing of the particles of silicon and particles of yttrium. In this manner, the green density of the slip cast article is reduced and the article may be more easily nitrided.

  14. Rapid prototyping: A paradigm shift in investment casting

    SciTech Connect (OSTI)

    Atwood, C.L.; Maguire, M.C.; Baldwin, M.D.; Pardo, B.T.

    1996-09-01

    The quest for fabricating complex metal parts rapidly and with minimal cost has brought rapid prototyping (RP) processes to the forefront of the investment casting industry. Relatively recent advances in DTM Corporation`s selective laser sintering (SLS) and 3D Systems stereolithography (SL) processes have had a significant impact on the overall quality of patterns produced using these rapid prototyping processes. Sandia National Laboratories uses patterns generated from rapid prototyping processes to reduce the cycle time and cost of fabricating prototype and small lot production parts in support of a program called FASTCAST. The SLS process is used to fabricate patterns from materials such as investment casting wax, polycarbonate, and a new material called TrueForm PM{trademark}. With the timely introduction of each of these materials, the quality of patterns fabricated has improved. The development and implementation of SL QuickCast{trademark} software has enabled this process to produce highly accurate patterns for use in investment casting. This paper focuses on the successes with these new pattern materials and the infrastructure required to cast rapid prototyping patterns successfully. In addition, a brief overview of other applications of rapid prototyping at Sandia will be discussed.

  15. Twin-belt continuous caster with containment and cooling of the exiting cast product for enabling high-speed casting of molten-center product

    DOE Patents [OSTI]

    Dykes, Charles D.; Daniel, Sabah S.; Wood, J. F. Barry

    1990-02-20

    In continuously casting molten metal into cast product by a twin-belt machine, it is desirable to achieve dramatic increases in speed (linear feet per minute) at which cast product exits the machine, particularly in installations where steel cast product is intended to feed a downstream regular rolling mill (as distinct from a planetary mill) operating in tandem with the twin-belt caster. Such high-speed casting produces product with a relatively thin shell and molten interior, and the shell tends to bulge outwardly due to metallostatic head pressure of the molten center. A number of cooperative features enable high-speed, twin-belt casting: (1) Each casting belt is slidably supported adjacent to the caster exit pulley for bulge control and enhanced cooling of cast product. (2) Lateral skew steering of each belt provides an effective increase in moving mold length plus a continuity of heat transfer not obtained with prior art belt steering apparatus. (3) The exiting slab is contained and supported downstream from the casting machine to prevent bulging of the shell of the cast product, and (4) spray cooling is incorporated in the exit containment apparatus for secondary cooling of cast product.

  16. Effect of flask vibration time on casting integrity, Surface Penetration and Coating Inclusion in lost foam casting of Al-Si Alloy

    SciTech Connect (OSTI)

    Karimian, Majid [Dept. of Materials Engineering, Dept. of Mechanical Engineering, Khomeinishahr branch, Islamic Azad University-(Khomeinishahr- Isfahan) (Iran, Islamic Republic of); Idris, M. H. [Dept. of Manufacturing and Industrial Engineering, Faculty of Mechanical Engineering, University Technology Malaysia, Johor Bauru (Malaysia); Ourdjini, A.; Muthu, Kali [Dept. of Materials Engineering, Khomeinishahr branch, Islamic Azad University-(Khomeinishahr- Isfahan) (Iran, Islamic Republic of)

    2011-01-17

    The paper presents the result of an experimental investigation conducted on medium aluminum silicon alloy casting- LM6, using no-vacuum assisted lost foam casting process. The study is directed for establishing the relationship between the flask vibrations times developed for molded sample on the casting integrity, surface penetration and coating inclusion defects of the casting. Four different flask vibration times namely 180, 120, 90 and 60 sec. were investigated. The casting integrity was investigated in terms of fulfilling in all portions and edges. The surface penetration was measured using optical microscope whilst image analyzer was used to quantify the percentage of coating inclusion in the casting. The results show that vibration time has significant influence on the fulfilling as well as the internal integrity of the lost foam casting. It was found that the lower vibration time produced comparatively sound casing.

  17. Method and apparatus for casting conductive and semiconductive materials

    DOE Patents [OSTI]

    Ciszek, Theodore F.

    1986-01-01

    A method and apparatus is disclosed for casting conductive and semiconduce materials. The apparatus includes a plurality of conductive members arranged to define a container-like area having a desired cross-sectional shape. A portion or all of the conductive or semiconductive material which is to be cast is introduced into the container-like area. A means is provided for inducing the flow of an electrical current in each of the conductive members, which currents act collectively to induce a current flow in the material. The induced current flow through the conductive members is in a direction substantially opposite to the induced current flow in the material so that the material is repelled from the conductive members during the casting process.

  18. Advanced Lost Foam Casting technology: 1997 summary report

    SciTech Connect (OSTI)

    1997-12-31

    Previous research made significant advances in understanding the Lost Foam Casting (LFC) Process and clearly identified areas where additional research was needed to improve the process and make it more functional in an industrial environment. The current project focused on eight tasks listed as follows: Task 1--pyrolysis defects and sand distortion; Task 2--bronze casting technology; Task 3--steel casting technology; Task 4--sand filling and compaction; Task 5--coating technology; Task 6--precision pattern production; Task 7--computational modeling; and Task 8--project management and technology transfer. This report summarizes the work done under the current contract in all eight tasks in the period of October 1, 1995 through December 31, 1997.

  19. CASTING DEFECT MODELING IN AN INTEGRATED COMPUTATIONAL MATERIALS ENGINEERING APPROACH

    SciTech Connect (OSTI)

    Sabau, Adrian S

    2015-01-01

    To accelerate the introduction of new cast alloys, the simultaneous modeling and simulation of multiphysical phenomena needs to be considered in the design and optimization of mechanical properties of cast components. The required models related to casting defects, such as microporosity and hot tears, are reviewed. Three aluminum alloys are considered A356, 356 and 319. The data on calculated solidification shrinkage is presented and its effects on microporosity levels discussed. Examples are given for predicting microporosity defects and microstructure distribution for a plate casting. Models to predict fatigue life and yield stress are briefly highlighted here for the sake of completion and to illustrate how the length scales of the microstructure features as well as porosity defects are taken into account for modeling the mechanical properties. Thus, the data on casting defects, including microstructure features, is crucial for evaluating the final performance-related properties of the component. ACKNOWLEDGEMENTS This work was performed under a Cooperative Research and Development Agreement (CRADA) with the Nemak Inc., and Chrysler Co. for the project "High Performance Cast Aluminum Alloys for Next Generation Passenger Vehicle Engines. The author would also like to thank Amit Shyam for reviewing the paper and Andres Rodriguez of Nemak Inc. Research sponsored by the U. S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Office, as part of the Propulsion Materials Program under contract DE-AC05-00OR22725 with UT-Battelle, LLC. Part of this research was conducted through the Oak Ridge National Laboratory's High Temperature Materials Laboratory User Program, which is sponsored by the U. S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program.

  20. Tape-cast sensors and method of making

    DOE Patents [OSTI]

    Mukundan, Rangachary; Brosha, Eric L.; Garzon, Fernando H.

    2009-08-18

    A method of making electrochemical sensors in which an electrolyte material is cast into a tape. Prefabricated electrodes are then partially embedded between two wet layers of the electrolyte tape to form a green sensor, and the green sensor is then heated to sinter the electrolyte tape around the electrodes. The resulting sensors can be used in applications such as, but not limited to, combustion control, environmental monitoring, and explosive detection. A electrochemical sensor formed by the tape-casting method is also disclosed.

  1. A Vision for the U.S. Metal Casting Industry - 2002 and Beyond

    SciTech Connect (OSTI)

    None

    2002-05-01

    Chief executive officers and presidents from the foundry, die casting, and foundry supply industries developed the A Vision for the U.S. Metal Casting Industry - 2002 and Beyond document.

  2. Formability of Direct Cast Mg Sheet and Friction Stir and Ultrasonic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Formability of Direct Cast Mg Sheet and Friction Stir and Ultrasonic Joining of Magnesium to Steel Formability of Direct Cast Mg Sheet and Friction Stir and Ultrasonic Joining of...

  3. Cast Alloys for Advanced Ultra Supercritical Steam Turbines

    SciTech Connect (OSTI)

    G. R. Holcomb, P. Wang, P. D. Jablonski, and J. A. Hawk,

    2010-05-01

    The proposed steam inlet temperature in the Advanced Ultra Supercritical (A-USC) steam turbine is high enough (760 °C) that traditional turbine casing and valve body materials such as ferritic/martensitic steels will not suffice due to temperature limitations of this class of materials. Cast versions of several traditionally wrought Ni-based superalloys were evaluated for use as casing or valve components for the next generation of industrial steam turbines. The full size castings are substantial: 2-5,000 kg each half and on the order of 100 cm thick. Experimental castings were quite a bit smaller, but section size was retained and cooling rate controlled to produce equivalent microstructures. A multi-step homogenization heat treatment was developed to better deploy the alloy constituents. The most successful of these cast alloys in terms of creep strength (Haynes 263, Haynes 282, and Nimonic 105) were subsequently evaluated by characterizing their microstructure as well as their steam oxidation resistance (at 760 and 800 °C).

  4. Secondary Waste Simulant Development for Cast Stone Formulation Testing

    SciTech Connect (OSTI)

    Russell, Renee L.; Westsik, Joseph H.; Rinehart, Donald E.; Swanberg, David J.; Mahoney, J.

    2015-04-01

    Washington River Protection Solutions, LLC (WRPS) funded Pacific Northwest National Laboratory (PNNL) to conduct a waste form testing program to implement aspects of the Secondary Liquid Waste Treatment Cast Stone Technology Development Plan (Ashley 2012) and the Hanford Site Secondary Waste Roadmap (PNNL 2009) related to the development and qualification of Cast Stone as a potential waste form for the solidification of aqueous wastes from the Hanford Site after the aqueous wastes are treated at the Effluent Treatment Facility (ETF). The current baseline is that the resultant Cast Stone (or grout) solid waste forms would be disposed at the Integrated Disposal Facility (IDF). Data and results of this testing program will be used in the upcoming performance assessment of the IDF and in the design and operation of a solidification treatment unit planned to be added to the ETF. The purpose of the work described in this report is to 1) develop simulants for the waste streams that are currently being fed and future WTP secondary waste streams also to be fed into the ETF and 2) prepare simulants to use for preparation of grout or Cast Stone solid waste forms for testing.

  5. Numerical Simulation of Horizontal Continuous Casting Process of C194 Copper Alloy

    SciTech Connect (OSTI)

    Huang Guojie; Xie Shuisheng; Cheng Lei; Cheng Zhenkang [State Key Laboratory for Fabrication and Processing of Nonferrous Metals, Beijing General Research Institute for Non-ferrous Metals, China, 100088 (China)

    2007-05-17

    Horizontal Continuous Casting (H.C.C) is an important method to cast C194 copper ingot. In this paper, numerical simulation is adopted to investigate the casting process in order to optimize the H.C.C technical parameters, such as the casting temperature, casting speed and cooling intensity. According to the numerical results, the reasonable parameters are that the casting temperature is between 1383K{approx}1463K, the casting speed is between 7.2m/h{approx}10.8m/h and the speed of cooling water is between 3.6m/s{approx}4.6m/s. The results of numerical simulation provide the significant reference to the subsequent experiments.

  6. Development of Thin Section Zinc Die Casting Technology

    SciTech Connect (OSTI)

    Goodwin, Frank

    2013-10-31

    A new high fluidity zinc high pressure die casting alloy, termed the HF alloy, was developed during laboratory trials and proven in industrial production. The HF alloy permits castings to be achieved with section thicknesses of 0.3 mm or less. Technology transfer activities were conducted to develop usage of the HF high fluidity alloy. These included production of a brochure and a one-hour webinar on the HF alloy. The brochure was then sent to 1,184 product designers in the Interzinc database. There was excellent reception to this mailing, and from this initial contact 5 technology transfer seminars were conducted for 81 participants from 30 companies across a wide range of business sectors. Many of the successful applications to date involve high quality surface finishes. Design and manufacturing assistance was given for development of selected applications.

  7. Characterization of Spray Lubricants for the Die Casting Process

    SciTech Connect (OSTI)

    Sabau, Adrian S

    2008-01-01

    During the die casting process, lubricants are sprayed in order to cool the dies and facilitate the ejection of the casting. The cooling effects of the die lubricant were investigated using Thermogravimetric analysis (TGA), heat flux sensors (HFS), and infrared imaging. The evolution of the heat flux and pictures taken using a high speed infrared camera revealed that lubricant application was a transient process. The short time response of the HFS allows the monitoring and data acquisition of the surface temperature and heat flux without additional data processing. A similar set of experiments was performed with deionized water in order to assess the lubricant effect. The high heat flux obtained at 300 C was attributed to the wetting and absorbant properties of the lubricant. Pictures of the spray cone and lubricant flow on the die were also used to explain the heat flux evolution.

  8. LandCast 2050 High-Resolution Population Projection

    Energy Science and Technology Software Center (OSTI)

    2014-01-01

    The LandCast 2050 data set is an empirically-informed spatial distribution of projected population of the contiguous U.S. for 2050 compiled on a 30" x 30" latitude/longitude grid. Population projections of county level numbers were developed using a modified version of the U.S. Census's projection methodology - with the U.S. Census's official projection as the benchmark. Projected census counts were apportioned to each grid cell based on locally adaptive likelihood coefficients, which are based on landmore » cover, slope, road proximity, distances to larger cities, a moving average of current population, and other data sets. The LandCast data set was developed as part of Oak Ridge National Laboratory (ORNL) Global Population Project for estimating ambient populations at risk.« less

  9. LandCast 2030 High-Resolution Population Projection

    Energy Science and Technology Software Center (OSTI)

    2014-01-01

    The LandCast 2030 data set is an empirically-informed spatial distribution of projected population of the contiguous U.S. for 2030 compiled on a 30" x 30" latitute/longitude grid. Population projections of county level numbers were developed using a modified version of the U.S. Census's projection methodology - with the U.S. Census's official projection as the benchmark. Projected census counts were apportioned to each grid cell based on locally adaptive likelihood coefficients, which are based on landmore » cover, slope, road proximity, distances to larger cities, a moving average of current population, and other data sets. The LandCast 2030 data set was developed as part of Oak Ridge National Laboratory (ORNL) Global Population Project for estimating ambient populations at risk.« less

  10. LandCast 2030 High-Resolution Population Projection

    SciTech Connect (OSTI)

    2014-01-01

    The LandCast 2030 data set is an empirically-informed spatial distribution of projected population of the contiguous U.S. for 2030 compiled on a 30" x 30" latitute/longitude grid. Population projections of county level numbers were developed using a modified version of the U.S. Census's projection methodology - with the U.S. Census's official projection as the benchmark. Projected census counts were apportioned to each grid cell based on locally adaptive likelihood coefficients, which are based on land cover, slope, road proximity, distances to larger cities, a moving average of current population, and other data sets. The LandCast 2030 data set was developed as part of Oak Ridge National Laboratory (ORNL) Global Population Project for estimating ambient populations at risk.

  11. Brooklyn Union develops tool for replacing steel, cast iron mains

    SciTech Connect (OSTI)

    Marazzo, J.J. )

    1994-12-01

    Over the last 10 years, Brooklyn Union Gas Co. has undergone significant changes in the methods it has used to install gas service and gas main systems. Recently, Brooklyn Union engineers developed a user friendly method of replacing steel and cast iron gas mains and service lines with same size or larger polyethylene pipe without using conventional trench excavation. The system, known as the ''Bullet'' pipe replacement system, involves splitting steel and cast iron pipe using a series of rolling cutter wheels. After consecutive cutting wheels completely penetrate both pipe and fittings, both pipe and soil are spread with an expander and new polyethylene pipe is inserted. The ''Bullet'' pipe splitting system for 1[1/4] in. (32 mm) through 6 in. (150 mm) diameter has been developed.

  12. Modeling the Mechanical Performance of Die Casting Dies

    SciTech Connect (OSTI)

    R. Allen Miller

    2004-02-27

    The following report covers work performed at Ohio State on modeling the mechanical performance of dies. The focus of the project was development and particularly verification of finite element techniques used to model and predict displacements and stresses in die casting dies. The work entails a major case study performed with and industrial partner on a production die and laboratory experiments performed at Ohio State.

  13. Scalable Ray-Casted Volume Rendering | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scalable Ray-Casted Volume Rendering September 9, 2016 10:30AM to 11:30AM Presenter Roba Binyahib, University of Oregon Location Building 240, Room 4301 Type Seminar Series MCS Seminar Abstract: Computational power has been increasing tremendously in recent years, resulting in an increase in data size and complexity. Volume rendering is an important method for visualizing such data, as it provides insight over the entire data set. However, traditional volume rendering techniques are not

  14. Process to Continuously Melt, Refine and Cast High Quality Steel

    SciTech Connect (OSTI)

    2005-09-01

    The purpose of this project is to conduct research and development targeted at designing a revolutionary steelmaking process. This process will deliver high quality steel from scrap to the casting mold in one continuous process and will be safer, more productive, and less capital intensive to build and operate than conventional steelmaking. The new process will produce higher quality steel faster than traditional batch processes while consuming less energy and other resources.

  15. STEM-ing the Tide

    Broader source: Energy.gov [DOE]

    The MacArthur Foundation rolled out its latest class of “geniuses” – 23 Americans who stand out because of their creativity and enterprise.

  16. Commercialization effort in support of electroslag-casting technology

    SciTech Connect (OSTI)

    Sikka, V.K.

    1993-06-01

    This report summarizes the results of an effort to revive interest in the electroslag casting (ESC) of components in the United States. The ESC process is an extension of a well established electroslag-remelting (ESR) process. Both processes use the electrode of a material that is continuously melted and cast in a water-cooled copper mold. For simple shapes, the mold can be movable, allowing the continuous casting of long lengths. In an effort to revive US industries` interest in ESC, the following approaches were taken: (1) US industries with prior experience in ESC or currently operating an ESR unit were contacted, followed up with telephone conversation, and/or sent copies of prior published reports on the topic, and, in some cases, personal visits were made; (2) with two companies, a potential interest in ESC was worked out by initially conducting ESR; and (3) to further strengthen the industrial interest, the newly developed iron-aluminide alloy, FA-129, was chosen as the material of choice for this study. The two industrial companies that worked with ORNL were Special Metals Corporation (New Hartford, New York) and Precision Rolled Products, Inc. (PRP) [Florham Park, New Jersey]. Even with its advantages, a survey of the industry indicated that ESC technology has a very limited chance of advancement in the United States. However, the processing of rounds and slabs by the ESR process is a well established commercial technology and will continue to expand. 16 figs, 3 tabs, 12 refs.

  17. In-situ conditioning of a strip casting roll

    DOE Patents [OSTI]

    Williams, R.S.; Campbell, S.L.

    1997-07-29

    A strip caster (10) for producing a continuous strip (24) has a tundish (12) for containing a melt (14) and a pair of horizontally disposed water cooled casting rolls (22). The casting rolls are juxtaposed relative to one another for forming a pouring basin (18) for receiving the melt through a teeming tube (16) thereby establishing a meniscus (20) between the rolls for forming a strip (24). The melt is protected from the outside air by a non-oxidizing gas passed through a supply line (28) to a sealing chamber (26). Devices (29) for conditioning the outer peripheral chill surfaces of the casting rolls includes grit blasting nozzles (30A, 30B, 30C, 30D), a collection trough (32) for gathering the grit, a line (34) for recycling the grit to a bag house (36), a feeder (38) and a pressurized distributor (40) for delivering the grit to the nozzles. The conditioning nozzles remove dirt, metal oxides and surface imperfections providing a clean surface readily wetted by the melt.

  18. In-situ conditioning of a strip casting roll

    DOE Patents [OSTI]

    Williams, Robert S.; Campbell, Steven L.

    1997-01-01

    A strip caster (10) for producing a continuous strip (24) has a tundish (12) for containing a melt (14) and a pair of horizontally disposed water cooled casting rolls (22). The casting rolls are juxtaposed relative to one another for forming a pouring basin (18) for receiving the melt through a teeming tube (16) thereby establishing a meniscus (20) between the rolls for forming a strip (24). The melt is protected from the outside air by a non-oxidizing gas passed through a supply line (28) to a sealing chamber (26). Devices (29) for conditioning the outer peripheral chill surfaces of the casting rolls includes grit blasting nozzles (30A, 30B, 30C, 30D), a collection trough (32) for gathering the grit, a line (34) for recycling the grit to a bag house (36), a feeder (38) and a pressurized distributor (40) for delivering the grit to the nozzles. The conditioning nozzles remove dirt, metal oxides and surface imperfections providing a clean surface readily wetted by the melt.

  19. Tape casting and partial melting of Bi-2212 thick films

    SciTech Connect (OSTI)

    Buhl, D.; Lang, T.; Heeb, B.

    1994-12-31

    To produce Bi-2212 thick films with high critical current densities tape casting and partial melting is a promising fabrication method. Bi-2212 powder and organic additives were mixed into a slurry and tape casted onto glass by the doctor blade tape casting process. The films were cut from the green tape and partially molten on Ag foils during heat treatment. We obtained almost single-phase and well-textured films over the whole thickness of 20 {mu}m. The orientation of the (a,b)-plane of the grains were parallel to the substrate with a misalignment of less than 6{degrees}. At 77K/OT a critical current density of 15`000 A/cm{sup 2} was reached in films of the dimension 1cm x 2cm x 20{mu}m (1{mu}V/cm criterion, resistively measured). At 4K/OT the highest value was 350`000 A/cm{sup 2} (1nV/cm criterion, magnetically measured).

  20. Method of fabricating a prestressed cast iron vessel

    DOE Patents [OSTI]

    Lampe, Robert F.

    1982-01-01

    A method of fabricating a prestressed cast iron vessel wherein double wall cast iron body segments each have an arcuate inner wall and a spaced apart substantially parallel outer wall with a plurality of radially extending webs interconnecting the inner wall and the outer wall, the bottom surface and the two exposed radial side surfaces of each body segment are machined and eight body segments are formed into a ring. The top surfaces and outer surfaces of the outer walls are machined and keyways are provided across the juncture of adjacent end walls of the body segments. A liner segment complementary in shape to a selected inner wall of one of the body segments is mounted to each of the body segments and again formed into a ring. The liner segments of each ring are welded to form unitary liner rings and thereafter the cast iron body segments are prestressed to complete the ring assembly. Ring assemblies are stacked to form the vessel and adjacent unitary liner rings are welded. A top head covers the top ring assembly to close the vessel and axially extending tendons retain the top and bottom heads in place under pressure.

  1. Data Package for Secondary Waste Form Down-Selection—Cast Stone

    SciTech Connect (OSTI)

    Serne, R. Jeffrey; Westsik, Joseph H.

    2011-09-05

    Available literature on Cast Stone and Saltstone was reviewed with an emphasis on determining how Cast Stone and related grout waste forms performed in relationship to various criteria that will be used to decide whether a specific type of waste form meets acceptance criteria for disposal in the Integrated Disposal Facility (IDF) at Hanford. After the critical review of the Cast Stone/Saltstone literature, we conclude that Cast Stone is a good candidate waste form for further consideration. Cast stone meets the target IDF acceptance criteria for compressive strength, no free liquids, TCLP leachate are below the UTS permissible concentrations and leach rates for Na and Tc-99 are suiteably low. The cost of starting ingredients and equipment necessary to generate Cast Stone waste forms with secondary waste streams are low and the Cast Stone dry blend formulation can be tailored to accommodate variations in liquid waste stream compositions. The database for Cast Stone short-term performance is quite extensive compared to the other three candidate waste solidification processes. The solidification of liquid wastes in Cast Stone is a mature process in comparison to the other three candidates. Successful production of Cast Stone or Saltstone has been demonstrated from lab-scale monoliths with volumes of cm3 through m3 sized blocks to 210-liter sized drums all the way to the large pours into vaults at Savannah River. To date over 9 million gallons of low activity liquid waste has been solidified and disposed in concrete vaults at Savannah River.

  2. In Situ Casting and Imaging of the Rat Airway Tree for Accurate 3D Reconstruction

    SciTech Connect (OSTI)

    Jacob, Rick E.; Colby, Sean M.; Kabilan, Senthil; Einstein, Daniel R.; Carson, James P.

    2013-08-01

    The use of anatomically accurate, animal-specific airway geometries is important for understanding and modeling the physiology of the respiratory system. One approach for acquiring detailed airway architecture is to create a bronchial cast of the conducting airways. However, typical casting procedures either do not faithfully preserve the in vivo branching angles, or produce rigid casts that when removed for imaging are fragile and thus easily damaged. We address these problems by creating an in situ bronchial cast of the conducting airways in rats that can be subsequently imaged in situ using 3D micro-CT imaging. We also demonstrate that deformations in airway branch angles resulting from the casting procedure are small, and that these angle deformations can be reversed through an interactive adjustment of the segmented cast geometry. Animal work was approved by the Institutional Animal Care and Use Committee of Pacific Northwest National Laboratory.

  3. Clean ferrous casting technology research. Final technical report, September 29, 1993--December 31, 1995

    SciTech Connect (OSTI)

    Bates, C.E.; Griffin, J.; Giese, S.R.; Lane, A.M.

    1996-01-31

    This is the final report covering work performed on research into methods of attaining clean ferrous castings. In this program methods were developed to minimize the formation of inclusions in steel castings by using a variety of techniques which decreased the tendency for inclusions to form during melting, casting and solidification. In a second project, a reaction chamber was built to remove inclusions from molten steel using electromagnetic force. Finally, a thorough investigation of the causes of sand penetration defects in iron castings was completed, and a program developed which predicts the probability of penetration formation and indicates methods for avoiding it.

  4. Materials for Advanced Ultrasupercritical Steam Turbines Task 4: Cast Superalloy Development

    SciTech Connect (OSTI)

    Thangirala, Mani

    2015-09-30

    The Steam Turbine critical stationary structural components are high integrity Large Shell and Valve Casing heavy section Castings, containing high temperature steam under high pressures. Hence to support the development of advanced materials technology for use in an AUSC steam turbine capable of operating with steam conditions of 760°C (1400°F) and 35 Mpa (5000 psia), Casting alloy selection and evaluation of mechanical, metallurgical properties and castability with robust manufacturing methods are mandated. Alloy down select from Phase 1 based on producability criteria and creep rupture properties tested by NETL-Albany and ORNL directed the consortium to investigate cast properties of Haynes 282 and Haynes 263. The goals of Task 4 in Phase 2 are to understand a broader range of mechanical properties, the impact of manufacturing variables on those properties. Scale up the size of heats to production levels to facilitate the understanding of the impact of heat and component weight, on metallurgical and mechanical behavior. GE Power & Water Materials and Processes Engineering for the Phase 2, Task 4.0 Castings work, systematically designed and executed casting material property evaluation, multiple test programs. Starting from 15 lbs. cylinder castings to world’s first 17,000 lbs. poured weight, heavy section large steam turbine partial valve Haynes 282 super alloy casting. This has demonstrated scalability of the material for steam Turbine applications. Activities under Task 4.0, Investigated and characterized various mechanical properties of Cast Haynes 282 and Cast Nimonic 263. The development stages involved were: 1) Small Cast Evaluation: 4 inch diam. Haynes 282 and Nimonic 263 Cylinders. This provided effects of liquidus super heat range and first baseline mechanical data on cast versions of conventional vacuum re-melted and forged Ni based super alloys. 2) Step block castings of 300 lbs. and 600 lbs. Haynes 282 from 2 foundry heats were evaluated which

  5. Low-Cost Magnesium Sheet Production using the Twin Roll Casting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Magnesium Sheet Production using the Twin Roll Casting Process and Asymmetric Rolling Materials Characterization Capabilities at the High Temperature Materials Laboratory:...

  6. Low-Cost Magnesium Sheet Production using the Twin Roll Casting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Low-Cost Magnesium Sheet Production using the Twin Roll Casting Process and Asymmetric Rolling Materials Characterization Capabilities at the High ...

  7. Software Analytical Instrument for Assessment of the Process of Casting Slabs

    SciTech Connect (OSTI)

    Franek, Zdenek [Silesian University in Opava, The School of Business Administration in Karvina, Univerzitni nam. 1934, Karvina (Czech Republic); Kavicka, Frantisek; Stetina, Josef [Brno University of Technology (Czech Republic); Masarik, Milos [EVRAZ Vitkovice Steel, a.s. (Czech Republic)

    2010-06-15

    The paper describes the original proposal of ways of solution and function of the program equipment for assessment of the process of casting slabs. The program system LITIOS was developed and implemented in EVRAZ Vitkovice Steel Ostrava on the equipment of continuous casting of steel (further only ECC). This program system works on the data warehouse of technological parameters of casting and quality parameters of slabs. It enables an ECC technologist to analyze the course of casting melt and with using statistics methods to set the influence of single technological parameters on the duality of final slabs. The system also enables long term monitoring and optimization of the production.

  8. Energy and Environmental Profile of the U.S. Metal Casting Industry

    SciTech Connect (OSTI)

    Margolis, Nancy; Jamison, Keith; Dove, Louise

    1999-09-01

    This detailed report benchmarks the energy and environmental characteristics of the key technologies used in the major processes of the metal casting industry.

  9. ITP Metal Casting: Theoretical/Best Practice Energy Use in Metalcastin...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    TheoreticalBest Practice Energy Use in Metalcasting Operations ITP Metal Casting: TheoreticalBest Practice Energy Use in Metalcasting Operations doebestpractice052804.pdf (1.64 ...

  10. Cast Metals Coalition Technology Transfer and Program Management Final Report

    SciTech Connect (OSTI)

    Gwyn, Mike

    2009-03-31

    The Cast Metals Coalition (CMC) partnership program was funded to ensure that the results of the Department of Energy's (DOE) metalcasting research and development (R&D) projects are successfully deployed into industry. Specifically, the CMC program coordinated the transfer and deployment of energy saving technologies and process improvements developed under separately funded DOE programs and projects into industry. The transition of these technologies and process improvements is a critical step in the path to realizing actual energy savings. At full deployment, DOE funded metalcasting R&D results are projected to save 55% of the energy used by the industry in 1998. This closely aligns with DOE's current goal of driving a 25% reduction in industrial energy intensity by 2017. In addition to benefiting DOE, these energy savings provide metalcasters with a significant economic advantage. Deployment of already completed R&D project results and those still underway is estimated to return over 500% of the original DOE and industry investment. Energy savings estimates through December 2008 from the Energy-Saving Melting and Revert Reduction Technology (E-SMARRT) portfolio of projects alone are 12 x 1012 BTUs, with a projection of over 50 x 1012 BTUs ten years after program completion. These energy savings and process improvements have been made possible through the unique collaborative structure of the CMC partnership. The CMC team consists of DOE's Office of Industrial Technology, the three leading metalcasting technical societies in the U.S: the American Foundry Society; the North American Die Casting Association; and the Steel Founders Society of America; and the Advanced Technology Institute (ATI), a recognized leader in distributed technology management. CMC provides collaborative leadership to a complex industry composed of approximately 2,100 companies, 80% of which employ less than 100 people, and only 4% of which employ more than 250 people. Without collaboration

  11. CASTING SLIPS FOR FABRICATION OF REFRACTORY METAL WARE

    DOE Patents [OSTI]

    Stoddard, S.D.; Nuckolls, D.E.; Cowan, R.E.

    1962-09-01

    A composition is given for slip casting tungsten metal. The composition consists essentially of tungsten metal with an average particle size of 0.9 micron, an organic vehicle such as methyl chloroform, o-xylene, n-butyl acetate, isobutyl acetate, and 1, 1, 2, 2-tetrachlorethane, and a suspending agent such as ethyl cellulose, with the approximate ratio of said vehicle to the tungsten metal being 12 cc of a solution containing from 5 to about 20 grams of said ethyl cellulose in 400 cc of said organic vehicle per 100 grams of metal. (AEC)

  12. Cast-stone sectors for lining bends in pipework

    SciTech Connect (OSTI)

    Chechulin, V.A.; Novikov, A.I.; Karpov, V.M.; Sotnik, A.A.; Sedyshev, B.L.

    1987-03-01

    The authors disclose an efficient method for lining the bends of pipelines used to deliver coal dust to the burners of coal-fired power plants or to transport coal slurries in mining and preparation enterprises. The method consists of melting a wear-resistant silicate compound and casting it in the form of rings whose increased width on the outboard side accounts for the angle of the bend when the rings are installed consecutively inside the pipe. Enhanced service life estimations and cost benefit analyses are given for pipe bends thus lined in both of the above applications.

  13. Milling of Sand Blocks to Make Casting Moulds

    SciTech Connect (OSTI)

    Lopez de Lacalle, L. N.; Rodriguez, A.; Lamikiz, A.; Penafiel, F. J. [Department of Mechanical Engineering, University of the Basque Country, ETSII, c/Alameda de Urquijo s/n, 48013 Bilbao (Spain)

    2011-01-17

    In this paper a full procedure to make moulds in sand for direct casting of metallic parts is presented. The technology aims at unique pieces or art pieces, where only one prototype or components is required, but lead times are much reduced. The key of the procedure is to achieve enough tool life when milling with carbide tools, avoiding the risk of sand destruction or damage.The use of inverse techniques is a common input due to the industrial sectors where the direct milling is interesting. Two examples of moulds are presented, evaluating times and costs. A special study of tool wear is also presented.

  14. Magnetic Resonance Imaging of Gel-cast Ceramic Composites

    DOE R&D Accomplishments [OSTI]

    Dieckman, S. L.; Balss, K. M.; Waterfield, L. G.; Jendrzejczyk, J. A.; Raptis, A. C.

    1997-01-16

    Magnetic resonance imaging (MRI) techniques are being employed to aid in the development of advanced near-net-shape gel-cast ceramic composites. MRI is a unique nondestructive evaluation tool that provides information on both the chemical and physical properties of materials. In this effort, MRI imaging was performed to monitor the drying of porous green-state alumina - methacrylamide-N.N`-methylene bisacrylamide (MAM-MBAM) polymerized composite specimens. Studies were performed on several specimens as a function of humidity and time. The mass and shrinkage of the specimens were also monitored and correlated with the water content.

  15. Filler metal alloy for welding cast nickel aluminide alloys

    DOE Patents [OSTI]

    Santella, Michael L.; Sikka, Vinod K.

    1998-01-01

    A filler metal alloy used as a filler for welding east nickel aluminide alloys contains from about 15 to about 17 wt. % chromium, from about 4 to about 5 wt. % aluminum, equal to or less than about 1.5 wt. % molybdenum, from about 1 to about 4.5 wt. % zirconium, equal to or less than about 0.01 wt. % yttrium, equal to or less than about 0.01 wt. % boron and the balance nickel. The filler metal alloy is made by melting and casting techniques such as are melting the components of the filler metal alloy and east in copper chill molds.

  16. Final Report, Volume 1, Metallurgical Evaluation of Cast Duplex Stainless Steels and their Weldments

    SciTech Connect (OSTI)

    Wen, Songqing; Lundin, Carl, W.; Batten, Greg, W.

    2005-09-30

    Duplex stainless steels (DSS) are being specified for chloride containing environments due to their enhanced pitting and stress corrosion cracking resistance. They exhibit improved corrosion performance over the austenitic stainless steels. Duplex stainless steels also offer improved strength properties and are available in various wrought and cast forms. Selected grades of duplex stainless steel castings and their welds, in comparison with their wrought counterparts, were evaluated, regarding corrosion performance and mechanical properties and weldability. Multiple heats of cast duplex stainless steel were evaluated in the as-cast, solution annealed (SA) static cast and SA centrifugal cast conditions, while their wrought counterparts were characterized in the SA condition and in the form of as-rolled plate. Welding, including extensive assessment of autogenous welds and a preliminary study of composite welds (shielded metal arc weld (SMAW)), was performed. The evaluations included critical pitting temperature (CPT) testing, intergranular corrosion (IGC) testing, ASTM A923 (Methods A, B and C), Charpy impact testing, weldability testing (ASTM A494), ferrite measurement and microstructural evaluations. In the study, the corrosion performances of DSS castings were characterized and assessed, including the wrought counterparts for comparison. The evaluation filled the pore of lack of data for cast duplex stainless steels compared to wrought materials. A database of the pitting corrosion and IGC behavior of cast and wrought materials was generated for a greater depth of understanding for the behavior of cast duplex stainless steel. In addition, improved evaluation methods for DSS castings were developed according to ASTM A923, A262, G48 and A494. The study revealed that when properly heat treated according to the specification, (1) DSS castings have equal or better pitting and intergranular corrosion resistance than their wrought counterparts; (2) Welding reduces the

  17. Final Report, Volume 1, Metallurgical Evaluation of Cast Duplex Stainless Steels and their Weldments

    SciTech Connect (OSTI)

    Wen, Songqing; Lundin, Carl, W.; Batten, Greg, W.

    2005-09-30

    Duplex stainless steels (DSS) are being specified for chloride containing environments due to their enhanced pitting and stress corrosion cracking resistance. They exhibit improved corrosion performance over the austenitic stainless steels. Duplex stainless steels also offer improved strength properties and are available in various wrought and cast forms. Selected grades of duplex stainless steel castings and their welds, in comparison with their wrought counterparts, were evaluated, regarding corrosion performance and mechanical properties and weldability. Multiple heats of cast duplex stainless steel were evaluated in the as-cast, solution annealed (SA) static cast and SA centrifugal cast conditions, while their wrought counterparts were characterized in the SA condition and in the form of as-rolled plate. Welding, including extensive assessment of autogenous welds and a preliminary study of composite welds (shielded metal arc weld (SMAW)), was performed. The evaluations included critical pitting temperature (CPT) testing, intergranular corrosion (IGC) testing, ASTM A923 (Methods A, B and C), Charpy impact testing, weldability testing (ASTM A494), ferrite measurement and microstructural evaluations. In the study, the corrosion performances of DSS castings were characterized and assessed, including the wrought counterparts for comparison. The evaluation filled the pore of lack of data for cast duplex stainless steels compared to wrought materials. A database of the pitting corrosion and IGC behavior of cast and wrought materials was generated for a greater depth of understanding for the behavior of cast duplex stainless steel. In addition, improved evaluation methods for DSS castings were developed according to ASTM A923, A262, G48 and A494. The study revealed that when properly heat treated according to the specification, (1) DSS castings have equal or better pitting and intergranular corrosion resistance than their wrought counterparts; (2) Welding reduces the

  18. Modeling and Analysis of The Pressure Die Casting Using Response Surface Methodology

    SciTech Connect (OSTI)

    Kittur, Jayant K.; Herwadkar, T. V. [KLS Gogte Institute of Technology, Belgaum -590 008, Karnataka (India); Parappagoudar, M. B. [Chhatrapati Shivaji Institute of Technology, Durg (C.G)-491001 (India)

    2010-10-26

    Pressure die casting is successfully used in the manufacture of Aluminum alloys components for automobile and many other industries. Die casting is a process involving many process parameters having complex relationship with the quality of the cast product. Though various process parameters have influence on the quality of die cast component, major influence is seen by the die casting machine parameters and their proper settings. In the present work, non-linear regression models have been developed for making predictions and analyzing the effect of die casting machine parameters on the performance characteristics of die casting process. Design of Experiments (DOE) with Response Surface Methodology (RSM) has been used to analyze the effect of effect of input parameters and their interaction on the response and further used to develop nonlinear input-output relationships. Die casting machine parameters, namely, fast shot velocity, slow shot to fast shot change over point, intensification pressure and holding time have been considered as the input variables. The quality characteristics of the cast product were determined by porosity, hardness and surface rough roughness (output/responses). Design of experiments has been used to plan the experiments and analyze the impact of variables on the quality of casting. On the other-hand Response Surface Methodology (Central Composite Design) is utilized to develop non-linear input-output relationships (regression models). The developed regression models have been tested for their statistical adequacy through ANOVA test. The practical usefulness of these models has been tested with some test cases. These models can be used to make the predictions about different quality characteristics, for the known set of die casting machine parameters, without conducting the experiments.

  19. Energy Saving Melting and Revert Reduction Technology (Energy-SMARRT): Light Metals Permanent Mold Casting

    SciTech Connect (OSTI)

    Fasoyinu, Yemi

    2014-03-31

    Current vehicles use mostly ferrous components for structural applications. It is possible to reduce the weight of the vehicle by substituting these parts with those made from light metals such as aluminum and magnesium. Many alloys and manufacturing processes can be used to produce these light metal components and casting is known to be most economical. One of the high integrity casting processes is permanent mold casting which is the focus of this research report. Many aluminum alloy castings used in automotive applications are produced by the sand casting process. Also, aluminum-silicon (Al-Si) alloys are the most widely used alloy systems for automotive applications. It is possible that by using high strength aluminum alloys based on an aluminum-copper (Al-Cu) system and permanent mold casting, the performance of these components can be enhanced significantly. This will also help to further reduce the weight. However, many technological obstacles need to be overcome before using these alloys in automotive applications in an economical way. There is very limited information in the open literature on gravity and low-pressure permanent mold casting of high strength aluminum alloys. This report summarizes the results and issues encountered during the casting trials of high strength aluminum alloy 206.0 (Al-Cu alloy) and moderate strength alloy 535.0 (Al-Mg alloy). Five engineering components were cast by gravity tilt-pour or low pressure permanent mold casting processes at CanmetMATERIALS (CMAT) and two production foundries. The results of the casting trials show that high integrity engineering components can be produced successfully from both alloys if specific processing parameters are used. It was shown that a combination of melt processing and mold temperature is necessary for the elimination of hot tears in both alloys.

  20. Energy Saving Melting and Revert Reduction (E-SMARRT): Precision Casting of Steel

    SciTech Connect (OSTI)

    Dr. Von L. Richards

    2011-09-30

    This project addresses improvements in metal casting processes by reducing scrap and reducing the cost of production, due to scrap reduction from investment casting and yield improvement offered by lost foam casting as compared to no-bake or green sand molding. The objectives for the investment casting portion of the subtask are to improve knowledge of fracture toughness of mold shells and the sources of strength limiting flaws and to understand the effects of wax reclamation procedures on wax properties. Applying 'clean steel' approaches to pouring technology and cleanliness in investment casting of steel are anticipated to improve incoming materials inspection procedures as they affect the microstructure and toughness of the shell. This project focused on two areas of study in the production of steel castings to reduce scrap and save energy: (1) Reducing the amount of shell cracking in investment cast steel production; (2) Investigate the potential of lost foam steel casting The basic findings regarding investment casting shell cracking were: (1) In the case of post pouring cracking, this could be related to phase changes in silica upon cooling and could be delayed by pouring arrangement strategies that maintained the shell surface at temperature for longer time. Employing this delay resulted in less adherent oxidation of castings since the casting was cooler at the time o fair exposure. (2) A model for heat transfer through water saturated shell materials under steam pressure was developed. (3) Initial modeling result of autoclave de-waxing indicated the higher pressure and temperature in the autoclave would impose a steeper temperature gradient on the wax pattern, causing some melt flow prior to bulk expansion and decreasing the stress on the green shell. Basic findings regarding lost foam casting of steel at atmospheric pressure: (1) EPS foam generally decomposes by the collapse mode in steel casting. (2) There is an accumulation of carbon pick-up at the end

  1. Understanding the Relationship Between Filling Pattern and Part Quality in Die Casting

    SciTech Connect (OSTI)

    Jerald Brevick; R. Allen Miller

    2004-03-15

    The overall objective of this research project was to investigate phenomena involved in the filling of die cavities with molten alloy in the cold chamber die-casting process. It has long been recognized that the filling pattern of molten metal entering a die cavity influences the quality of die-cast parts. Filling pattern may be described as the progression of molten metal filling the die cavity geometry as a function of time. The location, size and geometric configuration of points of metal entry (gates), as well as the geometry of the casting cavity itself, have great influence on filling patterns. Knowledge of the anticipated filling patterns in die-castings is important for designers. Locating gates to avoid undesirable flow patterns that may entrap air in the casting is critical to casting quality - as locating vents to allow air to escape from the cavity (last places to fill). Casting quality attributes that are commonly flow related are non-fills, poor surface finish, internal porosity due to trapped air, cold shuts, cold laps, flow lines, casting skin delamination (flaking), and blistering during thermal treatment.

  2. Clean ferrous casting technology research. Annual report, September 29, 1994--September 28, 1995

    SciTech Connect (OSTI)

    Griffin, J.; Bates, C.E.; Piwonka, T.S.

    1995-10-31

    This annual report covers work performed in the second year of research on Clean Ferrous Casting Technology Research. Significant progress was made in establishing pouring practices which avoid re-oxidation of steel during pouring; application of revised pouring practices have led to reduced inclusion levels in commercially poured steel castings.

  3. A review and update of advancements in clean cast steel technology

    SciTech Connect (OSTI)

    Blair, M.; Monroe, R.W.; Griffin, J.A.

    1999-07-01

    The Steel Founders' Society of America Quality Assurance Task Force identified oxide macroinclusions as a universal problem experienced by users of steel castings. SFSA along with the Department of Commerce and the Department of Energy have sponsored research directed at reducing the occurrence of macroinclusions in steel castings. The Clean Cast Steel Technology program has investigated melting practice, pouring practice, gating practice, ladle treatment, and special devices such as filtration and analog simulation of mold pouring and filling. In-plant trials have demonstrated a dramatic improvement in casting quality with submerged pouring of steel castings. Research is currently underway in optimizing foundry melting practice to reduce macroinclusions. A 30--50% reduction in macroinclusion occurrence has been observed in production castings at the foundries participating in the trials. Analog simulation and in-plant trials of pouring practices have demonstrated that poor gating practice can increase air entrainment and oxide inclusions. Ladle treatments such as calcium wire injection has been demonstrated in plant trials to significantly reduce oxide defects in steel castings. Experiments have been conducted at participating foundries to examine the benefits of filtration on casting quality. Filtration has been shown to reduce rework and scrap by 70% in some cases.

  4. CAST STONE TECHNOLOGY FOR THE TREATMENT AND IMMOBILIZATION OF LOW-ACTIVITY WASTE

    SciTech Connect (OSTI)

    MINWALL HJ

    2011-04-08

    Cast stone technology is being evaluated for potential application in the treatment and immobilization of Hanford low-activity waste. The purpose of this document is to provide background information on cast stone technology. The information provided in the report is mainly based on a pre-conceptual design completed in 2003.

  5. Characterization of fold defects in AZ91D and AE42 magnesium alloy permanent mold castings

    SciTech Connect (OSTI)

    Bichler, L. [Centre for Near-net-shape Processing of Materials, Ryerson University, 101 Gerrard St. E., Toronto, M5B 2K3 (Canada); Ravindran, C., E-mail: rravindr@ryerson.ca [Centre for Near-net-shape Processing of Materials, Ryerson University, 101 Gerrard St. E., Toronto, M5B 2K3 (Canada)

    2010-03-15

    Casting premium-quality magnesium alloy components for aerospace and automotive applications poses unique challenges. Magnesium alloys are known to freeze rapidly prior to filling a casting cavity, resulting in misruns and cold shuts. In addition, melt oxidation, solute segregation and turbulent metal flow during casting contribute to the formation of fold defects. In this research, formation of fold defects in AZ91D and AE42 magnesium alloys cast via the permanent mold casting process was investigated. Computer simulations of the casting process predicted the development of a turbulent metal flow in a critical casting region with abrupt geometrical transitions. SEM and light optical microscopy examinations revealed the presence of folds in this region for both alloys. However, each alloy exhibited a unique mechanism responsible for fold formation. In the AZ91D alloy, melt oxidation and velocity gradients in the critical casting region prevented fusion of merging metal front streams. In the AE42 alloy, limited solubility of rare-earth intermetallic compounds in the {alpha}-Mg phase resulted in segregation of Al{sub 2}RE particles at the leading edge of a metal front and created microstructural inhomogeneity across the fold.

  6. Development of a new casting method to fabricate UZr alloy containing minor actinides

    SciTech Connect (OSTI)

    Jong Hwan Kim; Hoon Song; Hyung Tae Kim; Ki Hwan Kim; Chan Bock Lee; R. S. Fielding

    2014-01-01

    Metal fuel slugs of UZr alloys for a sodium-cooled fast reactor (SFR) have conventionally been fabricated using an injection casting method. However, casting alloys containing volatile radioactive constituents, such as Am, are problematic in a conventional injection casting method. As an alternative fabrication method, low pressure gravity casting has been developed. Casting soundness, microstructural characteristics, alloying composition, density, and fuel losses were evaluated for the following as-cast fuel slugs: U10 wt% Zr, U10 wt% Zr5 wt% RE, and U10 wt% Zr5 wt% RE5 wt% Mn. The U and Zr contents were uniform throughout the matrix, and impurities such as oxyen, carbon, and nitrogen satisfied the specification of total impurities less than 2,000 ppm. The appearance of the fuel slugs was generally sound, and the internal integrity was shown to be satisfactory based on gamma-ray radiography. In a volatile surrogate casting test, the UZrREMn fuel slug showed that nearly all of the manganese was retained when casting was done under an inert atmosphere.

  7. National Metal Casting Research Institute final report. Development of an automated ultrasonic inspection cell for detecting subsurface discontinuities in cast gray iron. Volume 3

    SciTech Connect (OSTI)

    Burningham, J.S.

    1995-08-01

    This inspection cell consisted of an ultrasonic flaw detector, transducer, robot, immersion tank, computer, and software. Normal beam pulse-echo ultrasonic nondestructive testing, using the developed automated cell, was performed on 17 bosses on each rough casting. Ultrasonic transducer selection, initial inspection criteria, and ultrasonic flow detector (UFD) setup parameters were developed for the gray iron castings used in this study. The software were developed for control of the robot and UFD in real time. The software performed two main tasks: emulating the manual operation of the UFD, and evaluating the ultrasonic signatures for detecting subsurface discontinuities. A random lot of 105 castings were tested; the 100 castings that passed were returned to the manufacturer for machining into finished parts and then inspection. The other 5 castings had one boss each with ultrasonic signatures consistent with subsurface discontinuities. The cell was successful in quantifying the ultrasonic echo signatures for the existence of signature characteristics consistent with Go/NoGo criteria developed from simulated defects. Manual inspection showed that no defects in the areas inspected by the automated cell avoided detection in the 100 castings machined into finished parts. Of the 5 bosses found to have subsurface discontinuities, two were verified by manual inspection. The cell correctly classified 1782 of the 1785 bosses (99.832%) inspected.

  8. Engineering scale demonstration of a prospective Cast Stone process

    SciTech Connect (OSTI)

    Cozzi, A.; Fowley, M.; Hansen, E.; Fox, K.; Miller, D.; Williams, M.

    2014-09-30

    This report documents an engineering-scale demonstration with non-radioactive simulants that was performed at SRNL using the Scaled Continuous Processing Facility (SCPF) to fill an 8.5 ft container with simulated Cast Stone grout. The Cast Stone formulation was chosen from the previous screening tests. Legacy salt solution from previous Hanford salt waste testing was adjusted to correspond to the average composition generated from the Hanford Tank Waste Operation Simulator (HTWOS). The dry blend materials, ordinary portland cement (OPC), Class F fly ash, and ground granulated blast furnace slag (GGBFS or BFS), were obtained from Lafarge North America in Pasco, WA. Over three days, the SCPF was used to fill a 1600 gallon container, staged outside the facility, with simulated Cast Stone grout. The container, staged outside the building approximately 60 ft from the SCPF, was instrumented with x-, y-, and z-axis thermocouples to monitor curing temperature. The container was also fitted with two formed core sampling vials. For the operation, the targeted grout production rate was 1.5 gpm. This required a salt solution flow rate of approximately 1 gpm and a premix feed rate of approximately 580 lb/h. During the final day of operation, the dry feed rate was increased to evaluate the ability of the system to handle increased throughput. Although non-steady state operational periods created free surface liquids, no bleed water was observed either before or after operations. The final surface slope at a fill height of 39.5 inches was 1-1.5 inches across the 8.5 foot diameter container, highest at the final fill point and lowest diametrically opposed to the fill point. During processing, grout was collected in cylindrical containers from both the mixer discharge and the discharge into the container. These samples were stored in a humid environment either in a closed box proximal to the container or inside the laboratory. Additional samples collected at these sampling points

  9. ''Heat Transfer at the Mold-Metal Interface in Permanent Mold Casting of Aluminum Alloys'' Final Project Report

    SciTech Connect (OSTI)

    Professor R. D. Pehlke, Principal Investigator, Dr. John M. Cookson, Dr. Shouwei Hao, Dr. Prasad Krishna, Kevin T. Bilkey

    2001-12-14

    This project on heat transfer coefficients in metal permanent mold casting has been conducted in three areas. They are the theoretical study at the University of Michigan, the experimental investigation of squeeze casting at CMI-Tech Center (Now Hayes-Lemmerz Technical Center) and the experimental investigation of low pressure permanent mold casting at Amcast Automotive.

  10. CAST constraints on the axion-electron coupling

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    None, None

    2013-05-09

    In non-hadronic axion models, which have a tree-level axion-electron interaction, the Sun produces a strong axion flux by bremsstrahlung, Compton scattering, and axio- recombination, the “BCA processes.” Based on a new calculation of this flux, including for the first time axio-recombination, we derive limits on the axion-electron Yukawa coupling gae and axion-photon interaction strength gaγ using the CAST phase-I data (vacuum phase). For ma ≲ 10 meV/c2 we find gaγ gae < 8.1 × 10–23 GeV–1 at 95% CL. We stress that a next-generation axion helioscope such as the proposed IAXO could push this sensitivity into a range beyond stellarmore » energy-loss limits and test the hypothesis that white-dwarf cooling is dominated by axion emission.« less

  11. The CERN Axion Solar Telescope (CAST): Status and Prospects

    SciTech Connect (OSTI)

    Irastorza, I. G.; Andriamonje, S; Arik, E; Autiero, D; Avignone, F T.; Barth, K; Brauninger, H; Brodzinski, Ronald L. ); Carmona, J. M.; Cebrian, S; Cetin, S; Collar, J I.; Creswick, R; De Oliveira, R; Delbart, A; Di Lella, L; Eleftheriadis, Ch; Fanourakis, G; Farach, H A.; Fischer, H; Formenti, F; Geralis, Th.; Giomataris, I; Gninenko, S. N.; Goloubev, N; Hartman, R; Hasinoff, M; Hoffmann, D; Jacoby, J; Kang, D; Konigsmann, K; Kotthaus, R; Krcmar, M; Kuster, M; Lakic, B; Liolios, A; Ljubicic, A; Lutz, G; Luzon, G; Miley, Harr

    2003-02-10

    The CAST experiment is being mounted at CERN. It will make use of a decommissioned LHC test magnet to look for solar axions through its conversion into Photons inside the magnetic field. The magnet has a field of 9.6 Tesla and length of 10 m and is installed in a platform which allows to move it+ or - 8 degrees vertically and+ or - 10 to the 11th power horizontally. According to these numbers we expect a sensitivity in axion-photon coupling gaT"~ ,~< 5 10 -11 GeV -1 for ma~< 0.02 eV, and with a gas filled tube ga~~< 10 -l GeV -a for ma~< 1 eV.

  12. Thermal casting process for the preparation of membranes

    DOE Patents [OSTI]

    Caneba, G.T.M.; Soong, D.S.

    1985-07-10

    Disclosed is a method for providing anisotropic polymer membrane from a binary polymer/solvent solution using a thermal inversion process. A homogeneous binary solution is cast onto a support and cooled in such a way as to provide a differential in cooling rate across the thickness of the resulting membrane sheet. Isotropic or anisotropic structures of selected porosities can be produced, depending on the initial concentration of polymer in the selected solvent and on the extent of the differential in cooling rate. This differential results in a corresponding gradation in pore size. The method may be modified to provide a working skin by applying a rapid, high-temperature pulse to redissolve a predetermined thickness of the membrane at one of its faces and then freezing the entire structure.

  13. Electromagnetic augmentation for casting of thin metal sheets

    DOE Patents [OSTI]

    Hull, J.R.

    1987-10-28

    Thin metal sheets are cast by magnetically levitating molten metal deposited in a model within a ferromagnetic yoke and between AC conducting coils and linearly displacing the magnetically levitated liquid metal while it is being cooled by the water-cooled walls of the mold to form a solid metal sheet. A conducting shield is electrically coupled to the molten metal sheet to provide a return path for eddy currents induced in the metal sheet by the current in the AC conducting coils. In another embodiment, a DC conducting coil is coupled to the metal sheet for providing a direct current therein which interacts with the magnetic field to levitate the moving metal sheet. Levitation of the metal sheet in both molten and solid forms reduces its contact pressure with the mold walls while maintaining sufficient engagement therebetween to permit efficient conductive cooling by the mold through which a coolant fluid may be circulated. 8 figs.

  14. Aqueous slip casting of stabilized AlN powders

    SciTech Connect (OSTI)

    Groat, E.A.; Mroz, T.J. )

    1994-11-01

    Because of the interest in aluminum nitride (AlN) for various refractory and structural applications, methods are required to cost-effectively process a water-sensitive material into the required shapes. The existence of water-resistant AlN powders has allowed the consideration of aqueous processing of a material that previously required solvent-based formulation. The composition and procedures developed for aqueous slip-casting water-resistant AlN powders provide a manufacturing route for the fabrication of large and complex geometries. Technology to create aqueous dispersions of these powders also potentially enables other manufacturing processes, such as extrusion and spray drying, to utilize the cost advantages of aqueous processing.

  15. Design and operational characteristics of a cast steel mass spectrometer

    SciTech Connect (OSTI)

    Blantocas, Gene Q.; Ramos, Henry J.; Wada, Motoi

    2004-09-01

    A cast steel magnetic sector mass analyzer is developed for studies of hydrogen and helium ion beams generated by a gas discharge compact ion source. The optimum induced magnetic flux density of 3500 G made it possible to scan the whole spectrum of hydrogen and helium ion species. Analysis of beam characteristics shows that the mass spectrometer sensitivity, and resolving power are approximately inversely proportional. The resolution is enhanced at higher pressures and lower current discharges. In contrast, the instrument sensitivity increased at higher current discharges and decreased at higher pressures. Calculations of the ultimate resolving power with reference to analyzer dimensions yield a numerical value of 30. System anomaly in the form of spherical aberrations was also analyzed using the paraxial beam envelope equation. Beam divergence is most significant at high discharge conditions where angular spread reaches an upper limit of 8.6 deg.

  16. Metallic Reinforcement of Direct Squeeze Die Casting Aluminum Alloys for Improved Strength and Fracture Resistance

    SciTech Connect (OSTI)

    D. Schwam: J.F. Wallace: Y. Zhu: J.W. Ki

    2004-10-01

    The utilization of aluminum die casting as enclosures where internal equipment is rotating inside of the casting and could fracture requires a strong housing to restrain the fractured parts. A typical example would be a supercharger. In case of a failure, unless adequately contained, fractured parts could injure people operating the equipment. A number of potential reinforcement materials were investigated. The initial work was conducted in sand molds to create experimental conditions that promote prolonged contact of the reinforcing material with molten aluminum. Bonding of Aluminum bronze, Cast iron, and Ni-resist inserts with various electroplated coatings and surface treatments were analyzed. Also toughening of A354 aluminum cast alloy by steel and stainless steel wire mesh with various conditions was analyzed. A practical approach to reinforcement of die cast aluminum components is to use a reinforcing steel preform. Such performs can be fabricated from steel wire mesh or perforated metal sheet by stamping or deep drawing. A hemispherical, dome shaped casting was selected in this investigation. A deep drawing die was used to fabricate the reinforcing performs. The tendency of aluminum cast enclosures to fracture could be significantly reduced by installing a wire mesh of austenitic stainless steel or a punched austenitic stainless steel sheet within the casting. The use of reinforcements made of austenitic stainless steel wire mesh or punched austenitic stainless steel sheet provided marked improvement in reducing the fragmentation of the casting. The best strengthening was obtained with austenitic stainless steel wire and with a punched stainless steel sheet without annealing this material. Somewhat lower results were obtained with the annealed punched stainless steel sheet. When the annealed 1020 steel wire mesh was used, the results were only slightly improved because of the lower mechanical properties of this unalloyed steel. The lowest results were

  17. Ferrite Measurement in Austenitic and Duplex Stainless Steel Castings - Final Report

    SciTech Connect (OSTI)

    Lundin, C.D.; Zhou, G.; Ruprecht, W.

    1999-08-01

    The ability to determine ferrite rapidly, accurately and directly on a finished casting, in the solution annealed condition, can enhance the acceptance, save on manufacturing costs and ultimately improve service performance of duplex stainless steel cast products. If the suitability of a non-destructive ferrite determination methodology can be demonstrated for standard industrial measurement instruments, the production of cast secondary standards for calibration of these instruments is a necessity. With these concepts in mind, a series of experiments were carried out to demonstrate, in a non-destructive manner, the proper methodology for determining ferrite content. The literature was reviewed, with regard to measurement techniques and vagaries, an industrial ferrite measurement round-robin was conducted, the effects of casting surface finish, preparation of the casting surface for accurate measurement and the evaluation of suitable means for the production of cast secondary standards for calibration were systematically investigated. The data obtained from this research program provide recommendations to ensure accurate, repeatable, and reproducible ferrite measurement and qualifies the Feritscope for field use on production castings.

  18. Clean Ferrous Casting Technology Research. Annual report, September 29, 1993--September 28, 1994

    SciTech Connect (OSTI)

    Stefanescu, D.M.; Lane, A.M.; Giese, S.R.; Pattabhi, R.; El-Kaddah, N.H.; Griffin, J.; Bates, C.E.; Piwonka, T.S.

    1994-10-01

    This annual report covers work performed in the first year of research on Clean Ferrous Casting Technology Research. During this year the causes of penetration of cast iron in sand molds were defined and a program which predicts the occurrence of penetration was written and verified in commercial foundries. Calculations were made to size a reaction chamber to remove inclusions from liquid steel using electromagnetic force and the chamber was built. Finally, significant progress was made in establishing pouring practices which avoid re-oxidation of steel during pouring application of revised pouring practices have led to reduced inclusion levels in commercially poured steel castings.

  19. ARM - Field Campaign - Co-ordinated Airborne Studies in the Tropics - CAST

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsCo-ordinated Airborne Studies in the Tropics - CAST Campaign Links Field Campaign Report ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Co-ordinated Airborne Studies in the Tropics - CAST 2014.01.01 - 2014.02.28 Lead Scientist : Geraint Vaughan For data sets, see below. Abstract CAST (Co-ordinated Airborne Studies in the Tropics) was a research project funded by the UK's Natural Environment

  20. Anisotropic constitutive model and FE simulation of the sintering process of slip cast traditional porcelain

    SciTech Connect (OSTI)

    Sarbandi, B.; Besson, J.; Boussuge, M.; Ryckelynck, D. [Centre des Materiaux / Mines ParisTech / CNRS UMR 7633 / BP 87, 91003 Evry (France)

    2010-06-15

    Slip cast ceramic components undergo both sintering shrinkage and creep deformation caused by gravity during the firing cycle. In addition sintering may be anisotropic due to the development of preferential directions during slip casting. Both phenomena induce complex deformations of parts which make the design of casting molds difficult. To help solving this problem, anisotropic constitutive equations are proposed to represent the behavior of the ceramic compacts during sintering. The model parameters are identified using tests allowing to characterize both sintering and creep. The model was implemented in a finite element software and used to simulate the deformation of a traditional ceramic object during sintering.

  1. Understanding how processing additives tune nanoscale morphology of high efficiency organic photovoltaic blends: From casting solution to spun-cast thin film

    SciTech Connect (OSTI)

    Shao, Ming [ORNL; Keum, Jong Kahk [ORNL; Kumar, Rajeev [ORNL; Chen, Jihua [ORNL; Browning, Jim [ORNL; Chen, Wei [Argonne National Laboratory (ANL); Jianhui, Hou [Chinese Academy of Sciences (CAS), Institute of Chemistry; Do, Changwoo [ORNL; Littrell, Ken [ORNL; Sanjib, Das [University of Tennessee, Knoxville (UTK); Rondinone, Adam Justin [ORNL; Geohegan, David B [ORNL; Sumpter, Bobby G [ORNL; Xiao, Kai [ORNL

    2014-01-01

    Adding a small amount of a processing additive to the casting solution of organic blends has been demonstrated to be an effective method for achieving improved power conversion efficiency (PCE) in organic photovoltaics (OPVs). However, an understanding of the nano-structural evolution occurring in the transformation from casting solution to thin photoactive films is still lacking. In this report, we investigate the effects of the processing additive diiodooctane (DIO) on the morphology of OPV blend of PBDTTT-C-T and fullerene derivative, PC71BM in a casting solution and in spun-cast thin films by using neutron/x-ray scattering, neutron reflectometry and other characterization techniques. The results reveal that DIO has no effect on the solution structures of PBDTTT-C-T and PC71BM. In the spun-cast films, however, DIO is found to promote significantly the molecular ordering of PBDTTT-C-T and PC71BM, and phase segregation, resulting in the improved PCE. Thermodynamic analysis based on Flory-Huggins theory provides a rationale for the effects of DIO on different characteristics of phase segregation as a solvent and due to evaporationg during the film formation. Such information may enable improved rational design of ternary blends to more consistently achieve improved PCE for OPVs.

  2. Interfacial shear strength of cast and directionally solidified NiAl-sapphire fiber composites

    SciTech Connect (OSTI)

    Tewari, S.N.; Asthana, R. . Chemical Engineering Dept.); Noebe, R.D. . Intermetallics Branch)

    1993-09-01

    The feasibility of fabricating intermetallic NiAl-sapphire fiber composites by casting and zone directional solidification has been examined. The fiber-matrix interfacial shear strengths measured using a fiber push-out technique in both cast and directionally solidified composites are greater than the strengths reported for composites fabricated by powder cloth process using organic binders. Microscopic examination of fibers extracted from cast, directionally solidified (DS), and thermally cycled composites, and the high values of interfacial shear strengths suggest that the fiber-matrix interface does not degrade due to casting and directional solidification. Sapphire fibers do not pin grain boundaries during directional solidification, suggesting that this technique can be used to fabricate sapphire fiber reinforced NiAl composites with single crystal matrices.

  3. Casting Annotation as an Optimization Problem (2010 JGI/ANL HPC Workshop)

    ScienceCinema (OSTI)

    Overbeek, Ross

    2011-06-08

    Ross Overbeek of the Fellowship for Interpretation of Genomes gives a presentation on "Casting Annotation as an Optimization Problem" at the JGI/Argonne HPC Workshop on January 25, 2010.

  4. Computational modeling of structure of metal matrix composite in centrifugal casting process

    SciTech Connect (OSTI)

    Zagorski, Roman [Department of Electrotechnology, Faculty of Materials Science and Metallurgy, Silesian University of Technology, ul. Krasinskiego 8, 40-019, Katowice (Poland)

    2007-04-07

    The structure of alumina matrix composite reinforced with crystalline particles obtained during centrifugal casting process are studied. Several parameters of cast process like pouring temperature, temperature, rotating speed and size of casting mould which influent on structure of composite are examined. Segregation of crystalline particles depended on other factors such as: the gradient of density of the liquid matrix and reinforcement, thermal processes connected with solidifying of the cast, processes leading to changes in physical and structural properties of liquid composite are also investigated. All simulation are carried out by CFD program Fluent. Numerical simulations are performed using the FLUENT two-phase free surface (air and matrix) unsteady flow model (volume of fluid model - VOF) and discrete phase model (DPM)

  5. Casting a Wider Net: Distributed Resources for Metagenomics (2010 JGI/ANL HPC Workshop)

    ScienceCinema (OSTI)

    Meyer, Folker [ANL

    2011-06-08

    Folker Meyer from Argonne National Lab gives a presentation on "Casting a Wider Net: Distributed Resources for Metagenomics" at the JGI/Argonne HPC Workshop on January 26, 2010.

  6. Casting Annotation as an Optimization Problem (2010 JGI/ANL HPC Workshop)

    SciTech Connect (OSTI)

    Overbeek, Ross

    2010-01-25

    Ross Overbeek of the Fellowship for Interpretation of Genomes gives a presentation on "Casting Annotation as an Optimization Problem" at the JGI/Argonne HPC Workshop on January 25, 2010.

  7. Casting a Wider Net: Distributed Resources for Metagenomics (2010 JGI/ANL HPC Workshop)

    SciTech Connect (OSTI)

    Meyer, Folker [ANL] [ANL

    2010-01-26

    Folker Meyer from Argonne National Lab gives a presentation on "Casting a Wider Net: Distributed Resources for Metagenomics" at the JGI/Argonne HPC Workshop on January 26, 2010.

  8. Energy Saving Melting and Revert Reduction Technology (Energy-SMARRT): Clean Steel Casting Production

    SciTech Connect (OSTI)

    Kuyucak, Selcuk; Li, Delin

    2013-12-31

    Inclusions in steel castings can cause rework, scrap, poor machining, and reduced casting performance, which can obviously result in excess energy consumption. Significant progress in understanding inclusion source, formation and control has been made. Inclusions can be defined as non-metallic materials such as refractory, sand, slag, or coatings, embedded in a metallic matrix. This research project has focused on the mold filling aspects to examine the effects of pouring methods and gating designs on the steel casting cleanliness through water modeling, computer modeling, and melting/casting experiments. Early in the research project, comprehensive studies of bottom-pouring water modeling and low-alloy steel casting experiments were completed. The extent of air entrainment in bottom-poured large castings was demonstrated by water modeling. Current gating systems are designed to prevent air aspiration. However, air entrainment is equally harmful and no prevention measures are in current practice. In this study, new basin designs included a basin dam, submerged nozzle, and nozzle extension. The entrained air and inclusions from the gating system were significantly reduced using the new basin method. Near the end of the project, there has been close collaboration with Wescast Industries Inc., a company manufacturing automotive exhaust components. Both computer modeling using Magma software and melting/casting experiments on thin wall turbo-housing stainless steel castings were completed in this short period of time. Six gating designs were created, including the current gating on the pattern, non-pressurized, partially pressurized, naturally pressurized, naturally pressurized without filter, and radial choke gating without filter, for Magma modeling. The melt filling velocity and temperature were determined from the modeling. Based on the simulation results, three gating designs were chosen for further melting and casting experiments on the same casting pattern using

  9. Morphological characterization of β phase in poly-(vinylidenefluoride) film prepared by spin cast method

    SciTech Connect (OSTI)

    Mehtani, Hitesh Kumar Kumar, Rishi Raina, K. K.

    2014-04-24

    Poly-(Vinylidene fluoride) PVDF film was prepared by spin casting method to control the pore size of the matrix. The morphological spherulitic structure was confirmed Scanning Electron Microscopy (SEM) after gold sputtering and the presence of β phase was ensured in spin cast PVDF film by the FTIR spectroscopy. The β phase is very important in the application because it improve the properties like piezoelectricity by modifying PVDF crystallinity.

  10. Thermal Aging Phenomena in Cast Duplex Stainless Steels

    SciTech Connect (OSTI)

    Byun, T. S.; Yang, Y.; Overman, N. R.; Busby, J. T.

    2015-11-12

    We used cast stainless steels (CASSs)for the large components of light water reactor (LWR) power plants such as primary coolant piping and pump casing. The thermal embrittlement of CASS components is one of the most serious concerns related to the extended-term operation of nuclear power plants. Many past researches have concluded that the formation of Cr-rich alpha-phase by Spinodal decomposition of delta-ferrite phase is the primary mechanism for the thermal embrittlement. Cracking mechanism in the thermally-embrittled duplex stainless steels consists of the formation of cleavage at ferrite and its propagation via separation of ferrite-austenite interphase. This article intends to provide an introductory overview on the thermal aging phenomena in LWR-relevant conditions. Firstly, the thermal aging effect on toughness is discussed in terms of the cause of embrittlement and influential parameters. Moreover, an approximate analysis of thermal reaction using Arrhenius equation was carried out to scope the aging temperatures for the accelerated aging experiments to simulate the 60 and 80 years of services. Further, an equilibrium precipitation calculation was performed for model CASS alloys using the CALPHAD program, and the results are used to describe the precipitation behaviors in duplex stainless steels. Our results are also to be used to guide an on-going research aiming to provide knowledge-based conclusive prediction for the integrity of the CASS components of LWR power plants during the service life extended up to and beyond 60 years.