National Library of Energy BETA

Sample records for ford ranger ev

  1. FORD | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-inPPLfor InnovativeProcessing22,673,list7.pdfFORD FORD FORD FORD FORD FORD

  2. BUTTERFIELD RANGER EDWARDS

    E-Print Network [OSTI]

    Rhode Island, University of

    CHARGING STATION EV EV 1 2 3 4 5 6 7 A B C D E A B C D E 1 2 3 4 5 6 7 #12;KINGSTON CAMPUS MAP BUILDING

  3. Overview of Fords Thermoelectric Programs: Waste Heat Recovery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fords Thermoelectric Programs: Waste Heat Recovery and Climate Control Overview of Fords Thermoelectric Programs: Waste Heat Recovery and Climate Control Overview of progress...

  4. Ford | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdistoWhiskeyFootprint Ventures Jump to: navigation, searchForbesFord

  5. GM-Ford-Chrysler: Allocating Loan Authority

    Broader source: Energy.gov [DOE]

    Statement from GM, Ford, and Chrysler: "Allocating the $25 Billion in Direct Loan Authority to Loan Applicants"

  6. Ford`s 1996 Crown Victoria dedicated natural gas vehicle

    SciTech Connect (OSTI)

    Lapetz, J.; Fulton, B.; LeRoux, M.; Locke, J.; Peters, E.; Roman, L.; Walsh, R. [Ford Motor Co., Dearborn, MI (United States); Beitler, J.; Wolff, W.

    1995-12-31

    Ford Motor Company has introduced a Crown Victoria dedicated natural gas vehicle (NGV) to meet rising demand for vehicles powered by cleaner burning fuels and to reduce dependency on foreign energy imports. The Crown Victoria NGS is a production vehicle maintaining Original Equipment Manufacturer (OEM) quality and warranty while complying with all applicable corporate, federal and state requirements.

  7. BLOGS // AUTOMATON Cornell's Ranger Robot Breaks New Walking Record

    E-Print Network [OSTI]

    Ruina, Andy L.

    DARPA funds Boston Dynamics with tens of millions of dollars a year, we've probably received a total funding of 1 million over many years." Most of Ruina's lab's funding comes from the NSF's Robust consumption. Ruina also wants to see Ranger on an outdoor track with solar cells on top of its head. "Ranger

  8. GM-Ford-Chrysler: IFR Consolidated Application Feature | Department...

    Office of Environmental Management (EM)

    Consolidated Application Feature GM-Ford-Chrysler: IFR Consolidated Application Feature IFR Consolidated Application Feature GM-Ford-Chrysler: IFR Consolidated Application Feature...

  9. GM-Ford-Chrysler: ATV Proposed Product Costs | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ATV Proposed Product Costs GM-Ford-Chrysler: ATV Proposed Product Costs "Proposed Product Cost for Advanced Technology Vehicles" GM-Ford-Chrysler: ATV Proposed Product Costs More...

  10. GM-Ford-Chrysler: Issues Related to Vehicle Eligibility | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Issues Related to Vehicle Eligibility GM-Ford-Chrysler: Issues Related to Vehicle Eligibility GM-Ford-Chrysler: Issues Related to Vehicle Eligibility More Documents & Publications...

  11. GM-Ford-Chrysler: IFR Implementation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Implementation GM-Ford-Chrysler: IFR Implementation "Essential Requirements: Interim Final Rule for Section 136 Implementation" GM-Ford-Chrysler: IFR Implementation More Documents...

  12. in this issue 1 Lessons from Ford of Mexico

    E-Print Network [OSTI]

    Gabrieli, John

    in this issue 1 Lessons from Ford of Mexico 2 Welcome 3 The SDM Core: System Architecture 4 SDM 12 Calendar SDM partnership is a success story for Ford of Mexico Ford of Mexico started its-changing industry needs. When Ford of Mexico began looking for an advanced degree program to develop high

  13. EV Everywhere Battery Workshop: Setting the Stage for the EV...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Setting the Stage for the EV Everywhere Grand Challenge EV Everywhere Battery Workshop: Setting the Stage for the EV Everywhere Grand Challenge Presentation given at the EV...

  14. Ford Debuts Solar Energy Concept Car

    Broader source: Energy.gov [DOE]

    The Ford Motor Company unveiled the C-MAX Solar Energi Concept, a sun-powered vehicle with the potential to deliver what a plug-in hybrid offers without depending on the electric grid for fuel.

  15. Josephine Ford Cancer Center Cancer Research Programs

    E-Print Network [OSTI]

    Finley Jr., Russell L.

    Josephine Ford Cancer Center Cancer Research Programs presented to WSU SOM PAD January 10, 2012 presented by Sandra A. Rempel, Ph.D. Associate Director of Research, JFCC #12;JFCC Cancer Research Programs Cancer Epidemiology, Prevention and Control Program Members: Gwen Alexander, Andrea Cassidy

  16. Click here to print Marathon robot: 'Ranger' sets a world

    E-Print Network [OSTI]

    Ruina, Andy L.

    . Professor Ruina said: 'Our challenge is to lower the energy use while still maintaining balance, 'TheClick here to print Marathon robot: 'Ranger' sets a world record by walking 40.5 miles non a new world record after their robot walked 40.5 miles on a single battery charge without stopping

  17. AVTA: The EV Project

    Broader source: Energy.gov [DOE]

    The EV Project partnered with city, regional and state governments, utilities, and other organizations in 18 cities to deploy about 12,500 public and residential charging stations.  It also...

  18. President Ford Signs the Energy Reorganization Act of 1974 |...

    National Nuclear Security Administration (NNSA)

    Ford Signs the Energy Reorganization Act of 1974 | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing...

  19. AVTA: 2013 Ford C-MAX HEV Testing Results

    Broader source: Energy.gov [DOE]

    VTO's National Laboratories have tested and collected both dynamometer and fleet data for the Ford C-MAX HEV (a hybrid electric vehicle).

  20. Ford`s 1996 Crown Victoria dedicated natural gas vehicle. Final report, January 1991-December 1995

    SciTech Connect (OSTI)

    Dierker, J.B.; Dondlinger, K.A.

    1996-09-01

    Ford Motor Company has introduced a Crown Victoria dedicated natural gas vehicle (NGV) to meet rising demand for vehicles powered by cleaner buring fuels and to reduce dependency on foreign energy imports. The Crown Victoria NGV is a production vehicle that maintains Original Equipment Manufacturer (OEM) quality and warranty while complying with all applicable corporate, federal and state requirements.

  1. Home > Robots > Robot Ranger walks 40.5 miles on solitary battery charge, setting a new world record in the process Robot Ranger walks 40.5 miles on solitary battery charge,

    E-Print Network [OSTI]

    Ruina, Andy L.

    17 Home > Robots > Robot Ranger walks 40.5 miles on solitary battery charge, setting a new world record in the process Robot Ranger walks 40.5 miles on solitary battery charge, setting a new world battery charge without getting any external help or stopping. The Ranger was specially built

  2. The Ford Motor Company Engineering Design Center opened

    E-Print Network [OSTI]

    Espinosa, Horacio D.

    The Ford Motor Company Engineering Design Center opened fall 2005 The atrium in the new Ford Motor of electrical engineering and computer science, won a Department of Energy Early Career Award. Dudley Childress. He also received an IBM Faculty Award. Mark Daskin, professor of industrial engineering

  3. EV Everywhere Grand Challenge - Charging Infrastructure Enabling...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Charging Infrastructure Enabling Flexible EV Design EV Everywhere Grand Challenge - Charging Infrastructure Enabling Flexible EV Design Presentation given at the EV Everywhere...

  4. AVTA: 2010 Ford Fusion HEV Testing Results

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following reports describe results of testing done on a 2010 Ford Fusion hybrid-electric vehicle. Baseline data, which provides a point of comparison for the other test results, was collected at two different research laboratories. Baseline and other data collected at Idaho National Laboratory is in the attached documents. Baseline and battery testing data collected at Argonne National Laboratory is available in summary and CSV form on the Argonne Downloadable Dynometer Database site (http://www.anl.gov/energy-systems/group/downloadable-dynamometer-databas...). Taken together, these reports give an overall view of how this vehicle functions under extensive testing.

  5. EV Everywhere EV Everywhere Grand Challenge - Electric Drive...

    Broader source: Energy.gov (indexed) [DOE]

    Agenda for the EV Everywhere Grand Challenge - Electric Drive Workshop on July 24, 2012 at the Doubletree O'Hare, Chicago, IL agendaed.pdf More Documents & Publications EV...

  6. EV Everywhere and DOE Priorities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    we must claim its promise..." Official White House Photo by Lawrence Jackson Workplace Charging Challenge 5 EV Everywhere Grand Challenge EV Everywhere Goal Enable the U.S. to...

  7. Directions to East Hall: I-94 (Ford Freeway)

    E-Print Network [OSTI]

    Jonides, John

    Directions to East Hall: I-94 (Ford Freeway) From Detroit and the Detroit Metropolitan on your right. I-96 (also called the Jeffries Freeway) From Parts of Detroit, Redford, M-14, Plymouth

  8. EV Everywhere Framing Workshop

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n cEnergy (AZ, CA,EnergystudentThis Tuesday, September7/20/2012 EV

  9. Electron-Muon Ranger: performance in the MICE Muon Beam

    E-Print Network [OSTI]

    D. Adams; A. Alekou; M. Apollonio; R. Asfandiyarov; G. Barber; P. Barclay; A. de Bari; R. Bayes; V. Bayliss; P. Bene; R. Bertoni; V. J. Blackmore; A. Blondel; S. Blot; M. Bogomilov; M. Bonesini; C. N. Booth; D. Bowring; S. Boyd; T. W. Bradshaw; U. Bravar; A. D. Bross; F. Cadoux; M. Capponi; T. Carlisle; G. Cecchet; C. Charnley; F. Chignoli; D. Cline; J. H. Cobb; G. Colling; N. Collomb; L. Coney; P. Cooke; M. Courthold; L. M. Cremaldi; S. Debieux; A. DeMello; A. Dick; A. Dobbs; P. Dornan; F. Drielsma; F. Filthaut; T. Fitzpatrick; P. Franchini; V. Francis; L. Fry; A. Gallagher; R. Gamet; R. Gardener; S. Gourlay; A. Grant; J. S. Graulich; J. Greis; S. Griffiths; P. Hanlet; O. M. Hansen; G. G. Hanson; T. L. Hart; T. Hartnett; T. Hayler; C. Heidt; M. Hills; P. Hodgson; C. Hunt; C. Husi; A. Iaciofano; S. Ishimoto; G. Kafka; D. M. Kaplan; Y. Karadzhov; Y. K. Kim; Y. Kuno; P. Kyberd; J-B Lagrange; J. Langlands; W. Lau; M. Leonova; D. Li; A. Lintern; M. Littlefield; K. Long; T. Luo; C. Macwaters; B. Martlew; J. Martyniak; F. Masciocchi; R. Mazza; S. Middleton; A. Moretti; A. Moss; A. Muir; I. Mullacrane; J. J. Nebrensky; D. Neuffer; A. Nichols; R. Nicholson; L. Nicola; E. Noah Messomo; J. C. Nugent; A. Oates; Y. Onel; D. Orestano; E. Overton; P. Owens; V. Palladino; J. Pasternak; F. Pastore; C. Pidcott; M. Popovic; R. Preece; S. Prestemon; D. Rajaram; S. Ramberger; M. A. Rayner; S. Ricciardi; T. J. Roberts; M. Robinson; C. Rogers; K. Ronald; K. Rothenfusser; P. Rubinov; P. Rucinski; H. Sakamato; D. A. Sanders; R. Sandstrom; E. Santos; T. Savidge; P. J. Smith; P. Snopok; F. J. P. Soler; D. Speirs; T. Stanley; G. Stokes; D. J. Summers; J. Tarrant; I. Taylor; L. Tortora; Y. Torun; R. Tsenov; C. D. Tunnell; M. A. Uchida; G. Vankova-Kirilova; S. Virostek; M. Vretenar; P. Warburton; S. Watson; C. White; C. G. Whyte; A. Wilson; H. Wisting; X. Yang; A. Young; M. Zisman

    2015-11-03

    The Muon Ionization Cooling Experiment (MICE) will perform a detailed study of ionization cooling to evaluate the feasibility of the technique. To carry out this program, MICE requires an efficient particle-identification (PID) system to identify muons. The Electron-Muon Ranger (EMR) is a fully-active tracking-calorimeter that forms part of the PID system and tags muons that traverse the cooling channel without decaying. The detector is capable of identifying electrons with an efficiency of 98.6%, providing a purity for the MICE beam that exceeds 99.8%. The EMR also proved to be a powerful tool for the reconstruction of muon momenta in the range 100-280 MeV/$c$.

  10. Electron-Muon Ranger: performance in the MICE Muon Beam

    E-Print Network [OSTI]

    Adams, D; Apollonio, M; Asfandiyarov, R; Barber, G; Barclay, P; de Bari, A; Bayes, R; Bayliss, V; Bene, P; Bertoni, R; Blackmore, V J; Blondel, A; Blot, S; Bogomilov, M; Bonesini, M; Booth, C N; Bowring, D; Boyd, S; Brashaw, T W; Bravar, U; Bross, A D; Cadoux, F; Capponi, M; Carlisle, T; Cecchet, G; Charnley, C; Chignoli, F; Cline, D; Cobb, J H; Colling, G; Collomb, N; Coney, L; Cooke, P; Courthold, M; Cremaldi, L M; Debieux, S; DeMello, A; Dick, A; Dobbs, A; Dornan, P; Drielsma, F; Filthaut, F; Fitzpatrick, T; Franchini, P; Francis, V; Freemire, B; Fry, L; Gallagher, A; Gamet, R; Gardener, R; Gourlay, S; Grant, A; Graulich, J S; Greis, J; Griffiths, S; Hanlet, P; Hansen, O M; Hanson, G G; Hart, T L; Hartnett, T; Hayler, T; Heidt, C; Hills, M; Hodgson, P; Hunt, C; Husi, C; Iaciofano, A; Ishimoto, S; Kafka, G; Kaplan, D M; Karadzhov, Y; Kim, Y K; Kuno, Y; Kyberd, P; Lagrange, J-B; Langlands, J; Lau, W; Leonova, M; Li, D; Lintern, A; Littlefield, M; Long, K; Luo, T; Macwaters, C; Martlew, B; Martyniak, J; Masciocchi, F; Mazza, R; Middleton, S; Moretti, A; Moss, A; Muir, A; Mullacrane, I; Nebrensky, J J; Neuffer, D; Nichols, A; Nicholson, R; Nicola, L; Messomo, E Noah; Nugent, J C; Oates, A; Onel, Y; Orestano, D; Overton, E; Owens, P; Palladino, V; Pasternak, J; Pastore, F; Pidcott, C; Popovic, M; Preece, R; Prestemon, S; Rajaram, D; Ramberger, S; Rayner, M A; Ricciardi, S; Roberts, T J; Robinson, M; Rogers, C; Ronald, K; Rothenfusser, K; Rubinov, P; Rucinski, P; Sakamato, H; Sanders, D A; Sandstrom, R; Santos, E; Savidge, T; Smith, P J; Snopok, P; Soler, F J P; Speirs, D; Stanley, T; Stokes, G; Summers, D J; Tarrant, J; Taylor, I; Tortora, L; Torun, Y; Tsenov, R; Tunnell, C D; Uchida, M A; Vankova-Kirilova, G; Virostek, S; Vretenar, M; Warburton, P; Watson, S; White, C; Whyte, C G; Wilson, A; Wisting, H; Yang, X; Young, A; Zisman, M

    2015-01-01

    The Muon Ionization Cooling Experiment (MICE) will perform a detailed study of ionization cooling to evaluate the feasibility of the technique. To carry out this program, MICE requires an efficient particle-identification (PID) system to identify muons. The Electron-Muon Ranger (EMR) is a fully-active tracking-calorimeter that forms part of the PID system and tags muons that traverse the cooling channel without decaying. The detector is capable of identifying electrons with an efficiency of 98.6%, providing a purity for the MICE beam that exceeds 99.8%. The EMR also proved to be a powerful tool for the reconstruction of muon momenta in the range 100-280 MeV/$c$.

  11. EV Everywhere Consumer Acceptance and Charging Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Workshop Introduction EV Everywhere Consumer Acceptance and Charging Infrastructure Workshop Introduction Presentation given at the EV Everywhere Grand Challenge: Consumer...

  12. Fords, New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable Urban Transport JumpFlowood,Pevafersa JV Jump to:BioFordFords, New

  13. EV Everywhere: Text Version of Share Your EV Story Video

    Broader source: Energy.gov [DOE]

    This is a text version of the Share Your EV Story video, which features interviews with drivers of electric vehicles who work at the Department of Energy and its national laboratories sharing their experiences.

  14. Production Forecast, Analysis and Simulation of Eagle Ford Shale Oil 

    E-Print Network [OSTI]

    Alotaibi, Basel Z S Z J

    2014-12-02

    is to generate field-wide production forecast of the Eagle Ford Shale (EFS). This study considered oil production of the EFS only. More than 6 thousand oil wells were put online in the EFS basin between 2008 and December 2013. The method started by generating...

  15. MEXICO CITY Adam Miller, Brenna Ford, Kait Sakey

    E-Print Network [OSTI]

    Nagurney, Anna

    MEXICO CITY CONGESTION Adam Miller, Brenna Ford, Kait Sakey #12;Introduction · Mexico City. · Including private operators(which carry about 60% of the traffic) the Mexico City passenger transport system handles about twice the passengers of the New York MTA. #12;IBM Commuter Pain Index #12;#12;Mexico City

  16. EV Everywhere Consumer Acceptance and Charging Infrastructure...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    E Breakout Report EV Everywhere Consumer Acceptance and Charging Infrastructure Workshop: Charging Infrastructure Group E Breakout Report Breakout session presentation for the EV...

  17. Equilibria of EV Charging Benny Lutati1

    E-Print Network [OSTI]

    Yeoh, William

    Equilibria of EV Charging Benny Lutati1 , Vadim Levit1 , Tal Grinshpoun2 , and Amnon Meisels1 1 games · EV charging · V2G · Distributed search 1 Introduction Electric Vehicles (EVs) are an important to be charged daily. When parked during office hours, EVs are expected to charge in a well-balanced pattern

  18. AVTA: 2013 Ford C-Max Energi Fleet PHEV Testing Results

    Broader source: Energy.gov [DOE]

    VTO's National Laboratories have tested and collected both dynamometer and fleet data for the Ford CMAX Energi (a plug-in hybrid electric vehicle).

  19. EV Everywhere and DOE Priorities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based|DepartmentStatementofApril 25,EV Everywhere and DOE Priorities Assistant

  20. Benchmarking EV and HEV Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram:Y-12Power, Inc |Bartlesville EnergyDepartmentonPersistent,EV and HEV

  1. Ford County, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable Urban Transport JumpFlowood,Pevafersa JV Jump to:BioFord County,

  2. Ford County, Kansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable Urban Transport JumpFlowood,Pevafersa JV Jump to:BioFord County,Kansas:

  3. Ford Heights, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable Urban Transport JumpFlowood,Pevafersa JV Jump to:BioFord

  4. About EV Everywhere | Department of Energy

    Energy Savers [EERE]

    of the U.S. Department of Energy (DOE) to increase the adoption and use of plug-in electric vehicles (EVs). EV Everywhere was launched as one of a series of Clean Energy Grand...

  5. Synergy EV | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing CapacityVectren)Model forTechnologies95Symerton, Illinois:EV Jump to:

  6. EV-Everywhere Grand Challenge

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n cEnergy (AZ, CA,EnergystudentThis the AssistantEV Everywhere

  7. EV Everywhere Consumer Acceptance and Charging Infrastructure...

    Broader source: Energy.gov (indexed) [DOE]

    dreportoutcaci.pdf More Documents & Publications EV Everywhere Consumer Acceptance and Charging Infrastructure Workshop: Charging Infrastructure Group E...

  8. CHEVROLET | ELECTRIC | GREEN | SPARK EV | TECHNOLOGY. INNOVATION...

    Open Energy Info (EERE)

    CHEVROLET | ELECTRIC | GREEN | SPARK EV | TECHNOLOGY. INNOVATION & SOLUTIONS | GREENER VEHICLES Home There are currently no posts in this category. Syndicate...

  9. Securing the information infrastructure for EV charging

    E-Print Network [OSTI]

    Poll, Erik

    Securing the information infrastructure for EV charging Fabian van den Broek1 , Erik Poll1 , and B for the information exchanges in the infrastructure for EV charging being tri- alled in the Netherlands, which. Key words: EV charging, congestion management, end-to-end security, smart grids 1 Introduction

  10. AVTA: ARRA EV Project Overview

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The American Recovery and Reinvestment Act supported a number of projects that together made up the largest ever deployment of plug-in electric vehicles and charging infrastructure in the U.S. The following document describes the context of the EV Project, which partnered with city, regional and state governments, utilities, and other organizations in 16 cities to deploy about 14,000 Level 2 PEV chargers and 300 DC fast chargers. It also deployed 5,700 all-electric Nissan Leafs and 2,600 plug-in hybrid electric Chevrolet Volts. This research was conducted by Idaho National Laboratory.

  11. EV Everywhere Grand Challenge - Battery Workshop attendees list...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Publications EV Everywhere Grand Challenge - Electric Drive (Power Electronics and Electric Machines) Workshop EV Everywhere Grand Challenge Overview EV Everywhere Grand...

  12. EV Everywhere Grand Challenge - Electric Drive (Power Electronics...

    Broader source: Energy.gov (indexed) [DOE]

    EV Everywhere EV Everywhere Grand Challenge - Electric Drive (Power Electronics and Electric Machines) Workshop Agenda EV Everywhere Grand Challenge - Battery Workshop...

  13. AVTA: Ford Escape PHEV Advanced Research Vehicle 2010 Testing Results

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following reports describe results of testing done on a plug-in hybrid electric Ford Escape Advanced Research Vehicle, an experimental model not currently for sale. The baseline performance testing provides a point of comparison for the other test results. Taken together, these reports give an overall view of how this vehicle functions under extensive testing. This research was conducted by Idaho National Laboratory.

  14. Fuel-tolerance tests with the Ford PROCO engine

    SciTech Connect (OSTI)

    Choma, M.A.; Havstad, P.H.; Simko, A.O.; Stockhausen, W.F.

    1981-01-01

    A variety of fuel tolerance tests were conducted utilizing Ford's PROCO engine, a direct fuel injection stratified charge engine developed for light duty vehicles. These engine tests were run on the dynamometer and in vehicles. Data indicate an 89 RON octane requirement, relatively low sensitivity to volatility characteristics and good fuel economy, emission control and operability on a certain range of petroleum fuel and alcohol mixes including 100% methanol. Fuels such as JP-4 and Diesel fuel are not at present suitable for this engine. There were no engine modifications tested that might improve the match between the engine and a particular fuel. The 100% methanol test was conducted with a modified fuel injection pump. Durability aspects including compatibility of various fuels with the materials in the fuel system were not addressed.

  15. AVTA: ARRA EV Project Annual Infrastructure Reports

    Broader source: Energy.gov [DOE]

    These reports summarize charging behavior of drivers that participated in the EV Project, which deployed 14,000 Level 2 PEV chargers and 300 fast chargers.

  16. EV Everywhere Consumer Acceptance and Charging Infrastructure...

    Broader source: Energy.gov (indexed) [DOE]

    Backsplash for the EV Everywhere Grand Challenge: Consumer Acceptance and Charging Infrastructure Workshop on July 30, 2012 held at the LAX Marriott, Los Angeles, CA...

  17. EV Everywhere Consumer Acceptance and Charging Infrastructure...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Consumer Acceptance and Public Policy Group C Breakout Report EV Everywhere Consumer Acceptance and Charging Infrastructure Workshop: Consumer Acceptance and Public Policy Group C...

  18. EV Everywhere Consumer Acceptance and Charging Infrastructure...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Consumer Acceptance Group A Breakout Report EV Everywhere Consumer Acceptance and Charging Infrastructure Workshop: Consumer Acceptance Group A Breakout Report Breakout session...

  19. Mythologies of an American everyday landscape : Henry Ford at the Wayside Inn

    E-Print Network [OSTI]

    Wortham, Brooke Danielle

    2006-01-01

    Ford purchased property in 1923 in Sudbury, Massachusetts in order to preserve an historic inn associated with the poet Henry Wadsworth Longfellow. Over the next twenty years, his mission expanded to create an idealized ...

  20. Ford-Dow Partnership Is Linked to Carbon Fiber Research at ORNL...

    Office of Environmental Management (EM)

    Carbon Fiber Research at ORNL May 16, 2013 - 12:00am Addthis EERE provided funding to Dow Chemical, Ford Motor Company, and ORNL to demonstrate a novel polymer fiber material and...

  1. Paleoenvrironmental Controls on Diagenesis of Organich-Rich Shales in the Eagle Ford Group 

    E-Print Network [OSTI]

    Kruse, Kendra

    2014-08-27

    abundance and (2) carbonate cement lowered organic matter content by volumetric dilution. An x-ray analytical microscope was used to map elemental compositions of fresh core samples within the Eagle Ford Group. Resultant maps were used to characterize...

  2. EV Everywhere Batteries Workshop - Next Generation Lithium Ion...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications EV Everywhere Batteries Workshop - Beyond Lithium Ion Breakout Session Report EV Everywhere Batteries Workshop - Materials...

  3. EV Everywhere Batteries Workshop - Materials Processing and Manufactur...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications EV Everywhere Batteries Workshop - Next Generation Lithium Ion Batteries Breakout Session Report EV Everywhere Batteries Workshop - Beyond...

  4. EV Everywhere Batteries Workshop - Next Generation Lithium Ion...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications EV Everywhere Batteries Workshop - Beyond Lithium Ion Breakout Session Report EV Everywhere Batteries Workshop - Materials Processing...

  5. EV Everywhere Charges Up the Workplace | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Volt), 2011 World Car of the Year (Nissan Leaf), 2013 Motor Trend Car of the Year (Tesla Model S) and 2012 Green Car Vision Award Winner (Ford C-MAX Energi). To maintain this...

  6. Model year 2010 Ford Fusion Level-1 testing report.

    SciTech Connect (OSTI)

    Rask, E.; Bocci, D.; Duoba, M.; Lohse-Busch, H.; Energy Systems

    2010-11-23

    As a part of the US Department of Energy's Advanced Vehicle Testing Activity (AVTA), a model year 2010 Ford Fusion was procured by eTec (Phoenix, AZ) and sent to ANL's Advanced Powertrain Research Facility for the purposes of vehicle-level testing in support of the Advanced Vehicle Testing Activity. Data was acquired during testing using non-intrusive sensors, vehicle network information, and facilities equipment (emissions and dynamometer). Standard drive cycles, performance cycles, steady-state cycles, and A/C usage cycles were conducted. Much of this data is openly available for download in ANL's Downloadable Dynamometer Database. The major results are shown in this report. Given the benchmark nature of this assessment, the majority of the testing was done over standard regulatory cycles and sought to obtain a general overview of how the vehicle performs. These cycles include the US FTP cycle (Urban) and Highway Fuel Economy Test cycle as well as the US06, a more aggressive supplemental regulatory cycle. Data collection for this testing was kept at a fairly high level and includes emissions and fuel measurements from an exhaust emissions bench, high-voltage and accessory current/voltage from a DC power analyzer, and CAN bus data such as engine speed, engine load, and electric machine operation. The following sections will seek to explain some of the basic operating characteristics of the MY2010 Fusion and provide insight into unique features of its operation and design.

  7. Case Study: Mobile Photovoltaic System at Bechler Meadows Ranger Station, Yellowstone National Park (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2014-03-01

    The mobile PV/generator hybrid system deployed at Bechler Meadows provides a number of advantages. It reduces on-site air emissions from the generator. Batteries allow the generator to operate only at its rated power, reducing run-time and fuel consumption. Energy provided by the solar array reduces fuel consumption and run-time of the generator. The generator is off for most hours providing peace and quiet at the site. Maintenance trips from Mammoth Hot Springs to the remote site are reduced. The frequency of intrusive fuel deliveries to the pristine site is reduced. And the system gives rangers a chance to interpret Green Park values to the visiting public. As an added bonus, the system provides all these benefits at a lower cost than the basecase of using only a propane-fueled generator, reducing life cycle cost by about 26%.

  8. Case Study: Mobile Photovoltaic System at Bechler Meadows Ranger Station, Yellowstone National Park

    SciTech Connect (OSTI)

    Andy Walker

    2014-03-05

    The mobile PV/generator hybrid system deployed at Bechler Meadows provides a number of advantages. It reduces on-site air emissions from the generator. Batteries allow the generator to operate only at its rated power, reducing run-time and fuel consumption. Energy provided by the solar array reduces fuel consumption and run-time of the generator. The generator is off for most hours providing peace and quiet at the site. Maintenance trips from Mammoth Hot Springs to the remote site are reduced. The frequency of intrusive fuel deliveries to the pristine site is reduced. And the system gives rangers a chance to interpret Green Park values to the visiting public. As an added bonus, the system provides all these benefits at a lower cost than the basecase of using only a propane-fueled generator, reducing life cycle cost by about 26%.

  9. EV Everywhere Batteries Workshop - Beyond Lithium Ion Breakout...

    Broader source: Energy.gov (indexed) [DOE]

    beyondlithiumionb.pdf More Documents & Publications EV Everywhere Batteries Workshop - Next Generation Lithium Ion Batteries Breakout Session Report EV Everywhere Batteries...

  10. EV Everywhere Batteries Workshop - Pack Design and Optimization...

    Broader source: Energy.gov (indexed) [DOE]

    packdesignb.pdf More Documents & Publications EV Everywhere Batteries Workshop - Beyond Lithium Ion Breakout Session Report EV Everywhere Workshop: Power Electronics and Thermal...

  11. EV Everywhere Batteries Workshop - Beyond Lithium Ion Breakout...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Beyond Lithium Ion Breakout Session Report EV Everywhere Batteries Workshop - Beyond Lithium Ion Breakout Session Report Breakout session presentation for the EV Everywhere Grand...

  12. Vehicle Technologies Office Merit Review 2014: EV-Smart Grid...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EV-Smart Grid Research & Interoperability Activities Vehicle Technologies Office Merit Review 2014: EV-Smart Grid Research & Interoperability Activities Presentation given by...

  13. EV Everywhere Grand Challenge: Consumer Acceptance and Charging...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Agenda EV Everywhere Grand Challenge: Consumer Acceptance and Charging Infrastructure Workshop Agenda Agenda for the EV Everywhere Grand Challenge: Consumer Acceptance and Charging...

  14. EV Everywhere Battery Workshop: Preliminary Target-Setting Framework...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Publications EV Everywhere Electric Drive Workshop: Preliminary Target-Setting Framework EV Everywhere ConsumerCharging Workshop: Target-Setting Framework and Consumer Behavior...

  15. EV Everywhere Workplace Charging Challenge | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plug-in Electric Vehicles & Batteries EV Everywhere Workplace Charging Challenge EV Everywhere Workplace Charging Challenge Join the...

  16. How Can We Enable EV Battery Recycling? | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    How Can We Enable EV Battery Recycling? Title How Can We Enable EV Battery Recycling? Publication Type Presentation Year of Publication 2015 Authors Gaines, LL Abstract...

  17. EV Everywhere Workshop: Electric Motors and Critical Materials...

    Broader source: Energy.gov (indexed) [DOE]

    EV Everywhere Workshop: Power Electronics and Thermal Management Breakout Session Report Electric Motors and Critical Materials EV Everywhere - Charge to Breakout Sessions...

  18. EV Everywhere Workshop: Power Electronics and Thermal Management...

    Broader source: Energy.gov (indexed) [DOE]

    9btractiondrivesystemsed.pdf More Documents & Publications EV Everywhere Batteries Workshop - Beyond Lithium Ion Breakout Session Report EV Everywhere Batteries Workshop - Pack...

  19. EV Everywhere Workshop: Traction Drive Systems Breakout Group...

    Broader source: Energy.gov (indexed) [DOE]

    7amarlinoed.pdf More Documents & Publications EV Everywhere - Charge to Breakout Sessions EV Everywhere Framing Workshop - Report Out & Lessons Learned Traction Drive Systems...

  20. EV Everywhere Grand Challenge - Battery Status and Cost Reduction...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Status and Cost Reduction Prospects EV Everywhere Grand Challenge - Battery Status and Cost Reduction Prospects Presentation given by technology manager David Howell at the EV...

  1. An Intelligent Solar Powered Battery Buffered EV Charging Station with Solar Electricity Forecasting and EV Charging Load Projection Functions

    E-Print Network [OSTI]

    Zhao, Hengbing; Burke, Andrew

    2014-01-01

    PV energy used for EV charging and reducing grid peak power7. Measured PV power and EV charging load Fig. 6. Chargingthe measured PV power and EV charging load. The actual grid

  2. Early View (EV): 1-EV Nice weather for bettongs: using weather events, not climate

    E-Print Network [OSTI]

    Turner, Monica G.

    distribution using temporally matched observations of the species with weather data (includ- ing extremeEarly View (EV): 1-EV Nice weather for bettongs: using weather events, not climate means applications of species distribution models (SDM) are typically static, in that they are based on correlations

  3. Early View (EV): 1-EV Historical climate-change influences modularity and nestedness of

    E-Print Network [OSTI]

    Chittka, Lars

    , and then test these against empirical data. We propose that historical climate-change may have left imprintsEarly View (EV): 1-EV Historical climate-change influences modularity and nestedness of pollination. Wang, and C. Rahbek, Center for Macroecology, Evolution and Climate, Univ. of Copenhagen

  4. How much are Chevrolet Volts in The EV Project driven in EV Mode?

    SciTech Connect (OSTI)

    John Smart

    2013-08-01

    This report summarizes key conclusions from analysis of data collected from Chevrolet Volts participating in The EV Project. Topics include how many miles are driven in EV mode, how far vehicles are driven between charging events, and how much energy is charged from the electric grid per charging event.

  5. Collaborative Research Opportunities with Henry Ford Health System: Bones, Brains, Blood Pressure, and Beyond

    E-Print Network [OSTI]

    Finley Jr., Russell L.

    , and Beyond Professional and Academic Development (PAD) Seminar Series Tuesday, January 10, 2012 ­ 9:00 to 10Collaborative Research Opportunities with Henry Ford Health System: Bones, Brains, Blood Pressure Research at HFHS HFHS Department of Orthopaedic Surgery's Bone and Joint Center HFHS Department of Internal

  6. Properties of Ice Clusters from an Analysis of Freezing Nucleation Ian J. Ford

    E-Print Network [OSTI]

    Ford, Ian

    Properties of Ice Clusters from an Analysis of Freezing Nucleation Ian J. Ford Department, and often freezing nucleation experiments are conducted using finely divided liquids, either as an emulsion5 or an aerosol.6-9 In this way, trace impurities, which might aid the freezing process, are confined

  7. Assessment of the Mexican Eagle Ford Shale Oil and Gas Resources 

    E-Print Network [OSTI]

    Morales Velasco, Carlos Armando

    2013-08-02

    According to the 2011 Energy Information Agency (EIA) global assessment, Mexico ranks 4th in shale gas resources. The Eagle Ford shale is the formation with the greatest expectation in Mexico given the success it has had in the US and its liquids...

  8. Ford Hatchery; Washington Department of Fish and Wildlife Fish Program, Hatcheries Division, Annual Report 2003.

    SciTech Connect (OSTI)

    Lovrak, Jon; Ward, Glen

    2004-01-01

    Bonneville Power Administration's participation with the Washington Department of Fish and Wildlife, Ford Hatchery, provides the opportunity for enhancing the recreational and subsistence kokanee fisheries in Banks Lake. The artificial production and fisheries evaluation is done cooperatively through the Spokane Hatchery, Sherman Creek Hatchery (WDFW), Banks Lake Volunteer Net Pen Project, and the Lake Roosevelt Fisheries Evaluation Program. Ford Hatchery's production, together with the Sherman Creek and the Spokane Tribal Hatchery, will contribute to an annual goal of one million kokanee yearlings for Lake Roosevelt and 1.4 million kokanee fingerlings and fry for Banks Lake. The purpose of this multi-agency program is to restore and enhance kokanee salmon and rainbow trout populations in Lake Roosevelt and Banks Lake due to Grand Coulee Dam impoundments. The Ford Hatchery will produce 9,533 lbs. (572,000) kokanee annually for release as fingerlings into Banks Lake in October. An additional 2,133 lbs. (128,000) kokanee will be transferred to net pens on Banks Lake at Electric City in October. The net pen raised kokanee will be reared through the fall, winter, and early spring to a total of 8,533 lbs and released in May. While the origin of kokanee comes from Lake Whatcom, current objectives will be to increase the use of native (or, indigenous) stocks for propagation in Banks Lake and the Upper Columbia River. Additional stocks planned for future use in Banks Lake include Lake Roosevelt kokanee and Meadow Creek kokanee. The Ford Hatchery continues to produce resident trout (80,584 lb. per year) to promote the sport fisheries in trout fishing lakes in eastern Washington (WDFW Management, Region 1). Operation and maintenance funding for the increased kokanee program was implemented in FY 2001 and scheduled to continue through FY 2010. Funds from BPA allow for an additional employee at the Ford Hatchery to assist in the operations and maintenance associated with kokanee production. Fish food, materials, and other supplies associated with this program are also funded by BPA. Other funds from BPA will also improve water quality and supply at the Ford Hatchery, enabling the increased fall kokanee fingerling program. Monitoring and evaluation of the Ford stocking programs will include existing WDFW creel and lake survey programs to assess resident trout releases in trout managed waters. BPA is also funding a creel survey to assess the harvest of hatchery kokanee in Banks Lake.

  9. About EV Everywhere | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergy Webinar: DemonstrationProgram |to HoldAbout EV Everywhere About

  10. Sedimentary and Diagenetic Controls on Petroleum System Characteristics of the Upper Cretaceous Eagle Ford Group, South Texas 

    E-Print Network [OSTI]

    Hancock, Travis A

    2014-04-29

    the Eagle Ford Group in McMullen County, Texas. Organic content varies significantly between diagenetic facies, with the least organic matter present in coarsely mineralized shales. This result is consistent with the hypothesis that diagenetic carbonate...

  11. Occurrence of Multiple Fluid Phases Across a Basin, in the Same Shale Gas Formation – Eagle Ford Shale Example 

    E-Print Network [OSTI]

    Tian, Yao

    2014-04-29

    .......................................................................... 97 Relative Permeability ........................................................................ 99 Transmissibility Multiplier ............................................................. 101 Pressure/Volume/Temperature (PVT) Data Acquisition.... Data from Drillinginfo (2013). ........................................................................................ 23 Fig. 20—Eagle Ford Shale reservoir pressure of from PVT analysis results. Data from TRC (2013...

  12. Ford Van Dyke: Compressed Air Management Program Leads to Improvements that Reduce Energy Consumption at an Automotive Transmission Plant

    SciTech Connect (OSTI)

    2010-06-25

    Staff at the Ford Van Dyke Transmission Plant in Sterling Heights, Michigan, have increased the efficiency of the plant’s compressed air system to enhance its performance while saving energy and improving production.

  13. Lateral Continuity of the Eagle Ford Group Strata in Lozier Canyon and Antonio Creek, Terrell County, Texas 

    E-Print Network [OSTI]

    Gardner, Rand D

    2013-09-24

    simplistic assumptions about relevant horizontal reservoir heterogeneities can lead to sub-optimal or uneconomical exploitation. High-resolution correlation of individual beds in the Eagle Ford Group over several miles in Lozier Canyon and Antonio Creek...

  14. Depositional environment and hydrodynamic flow in Guadalupian Cherry Canyon sandstone, West Ford and West Geraldine fields, Delaware Basin, Texas 

    E-Print Network [OSTI]

    Linn, Anne Marie

    1985-01-01

    DEPOSITIONAL ENVIRONMENT AND HYDRODYNAMIC FLOW IN GUADALUPIAN CHERRY CANYON SANDSTONE, WEST FORD AND WEST GERALDINE FIELDS, DELAWARE BASIN, TEXAS A Thesis by Anne Marie Linn Submitted to the Graduate College of Texas ARM Univer sity... in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE August 1985 Major Sub)cot: Geology DEPOSITIONAL ENVIRONMENT AND HYDRODYNAMIC FLOW IN GUADALUPIAN CHERRY CANYON SANDSTONE, WEST FORD AND WEST GERALDINE FIELDS, DELAWARE BASIN...

  15. EV Community Readiness projects: New York City and Lower Hudson...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EV Community Readiness projects: New York City and Lower Hudson Valley Clean Communities, Inc. (NY, MA, PA); NYSERDA (ME, NH, VT, MA, RI, CT, NY, NJ, PA, DE, MD, DC) EV Community...

  16. About EV Everywhere | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (BillionProvedTravel TravelChallenges | Department of Energy ASHRAE draftAUDIT4AUDITAbout EV

  17. EV Everywhere: Get Connected! | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And Statistics »Application for RefundEnergyDavidOrdersEC-WebEMHanford Tank |About UsFindEV

  18. EV Everywhere Challenge Kick-Off

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n cEnergy (AZ, CA,EnergystudentThis Tuesday, September 25HVAC, EV

  19. EV Everywhere Grand Challenge - Battery Workshop Agenda

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n cEnergy (AZ, CA,EnergystudentThis Tuesday,Completely new7/25/2012 EV

  20. EV Everywhere Grand Challenge Kick-Off

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n cEnergy (AZ, CA,EnergystudentThis the Assistant Secretary Every EV

  1. ChoosEV | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButte County,Camilla,Thermal GradientChateauChoosEV Jump to: navigation, search

  2. EV Everywhere: Contact Us | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansas Nuclear Profile 2010Mesoscopy and thermodynamics(Revised)EVon the RoadEV

  3. EV Everywhere: Vehicle Charging | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansas Nuclear Profile 2010Mesoscopy andSaving on Fuel and Vehicle Costs »EV

  4. AVTA: ARRA EV Project Overview Reports

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The American Recovery and Reinvestment Act supported a number of projects that together made up the largest ever deployment of plug-in electric vehicles and charging infrastructure in the U.S. The following reports provide summary overviews of the EV Project, which partnered with city, regional and state governments, utilities, and other organizations in 16 cities to deploy about 14,000 Level 2 PEV chargers and 300 DC fast chargers. It also deployed 5,700 all-electric Nissan Leafs and 2,600 plug-in hybrid electric Chevrolet Volts. Background data on how this data was collected is in the EV Project: About the Reports. This research was conducted by Idaho National Laboratory.

  5. Simple cost model for EV traction motors

    SciTech Connect (OSTI)

    Cuenca, R.M.

    1995-02-01

    A simple cost model has been developed that allows the calculation of the OEM cost of electric traction motors of three different types, normalized as a function of power in order to accommodate different power and size. The model includes enough information on the various elements integrated in the motors to allow analysis of individual components and to factor-in the effects of changes in commodities prices. A scalable cost model for each of the main components of an electric vehicle (EV) is a useful tool that can have direct application in computer simulation or in parametric studies. For the cost model to have wide usefulness, it needs to be valid for a range of values of some parameter that determines the magnitude or size of the component. For instance, in the case of batteries, size may be determined by energy capacity, usually expressed in kilowatt-hours (kWh), while in the case of traction motors, size is better determined by rated power, usually expressed in kilowatts (kW). The simplest case is when the cost of the component in question is a direct function of its size; then cost is simply the product of its specific cost ($/unit size) and the number of units (size) in the vehicle in question. Batteries usually fall in this category (cost = energy capacity x $/kWh). But cost is not always linear with size or magnitude; motors (and controllers), for instance, become relatively less expensive as power rating increases. Traction motors, one of the main components for EV powertrains are examined in this paper, and a simplified cost model is developed for the three most popular design variations.

  6. Determining the Depositional Environment of the Lower Eagle Ford Group in Lozier Canyon, Antonio Creek, and Osman Canyon: An Out Crop Study of Bedding Features a Study of Bedding Features at Outcrop Scale or in the Outcrop 

    E-Print Network [OSTI]

    Lyon, Trey Saxon

    2015-05-13

    The Eagle Ford Formation is currently the most economically significant unconventional resource play in the state of Texas. There has been much debate as to the environment of deposition for the lowermost Facies A of the Eagle Ford in outcrop...

  7. Integration of Rooftop Photovoltaic Systems in St. Paul Ford Site's Redevelopment Plans

    SciTech Connect (OSTI)

    Olis, D.; Mosey, G.

    2015-03-01

    The purpose of this analysis is to estimate how much electricity the redeveloped Ford Motor Company assembly plant site in St. Paul, Minnesota, might consume under different development scenarios and how much rooftop photovoltaic (PV) generation might be possible at the site. Because the current development scenarios are high-level, preliminary sketches that describe mixes of residential, retail, commercial, and industrial spaces, electricity consumption and available rooftop area for PV under each scenario can only be grossly estimated. These results are only indicative and should be used for estimating purposes only and to help inform development goals and requirements moving forward.

  8. The Flux OSKit: A Substrate for Kernel and Language Research Bryan Ford Godmar Back Greg Benson Jay Lepreau Albert Lin Olin Shivers

    E-Print Network [OSTI]

    Utah, University of

    The Flux OSKit: A Substrate for Kernel and Language Research Bryan Ford Godmar Back Greg Benson Jay group to implement even a basic useful OS core---e.g., the function­ ality traditionally found are interesting for research purposes. For exam­ Ford, Back, and Lepreau are at the Univ. of Utah (baford

  9. The Flux OSKit: A Substrate for Kernel and Language Research Bryan Ford Godmar Back Greg Benson Jay Lepreau Albert Lin Olin Shivers

    E-Print Network [OSTI]

    Shivers, Olin

    The Flux OSKit: A Substrate for Kernel and Language Research Bryan Ford Godmar Back Greg Benson Jay for a small group to implement even a basic useful OS core---e.g., the functionality traditionally found, memory management suited for physical memory and its Ford, Back, and Lepreau are at the Univ. of Utah

  10. The Flux OSKit: A Substrate for Kernel and Language Research Bryan Ford Godmar Back Greg Benson Jay Lepreau Albert Lin Olin Shivers

    E-Print Network [OSTI]

    Utah, University of

    The Flux OSKit: A Substrate for Kernel and Language Research Bryan Ford Godmar Back Greg Benson Jay is catalyzing research and development in operating systems and program­ ming languages. Ford, Back, and Lepreau to expand and diversify, it is increasingly impractical for a small group to implement even a basic useful

  11. The Flux OSKit: A Substrate for Kernel and Language Research Bryan Ford Godmar Back Greg Benson Jay Lepreau Albert Lin Olin Shivers

    E-Print Network [OSTI]

    Ford, Bryan

    The Flux OSKit: A Substrate for Kernel and Language Research Bryan Ford Godmar Back Greg Benson Jay a basic useful OS core--e.g., the functionality traditionally found in the Unix kernel--entirely from suited for physical memory and its Ford, Back, and Lepreau are at the Univ. of Utah (baford

  12. The Flux OSKiti A Substrate for Kernel and Language Research Bryan Ford Godmar Back Greg Benson Jay Lepreau Albert Lin Olin Shivers

    E-Print Network [OSTI]

    Brown, Angela Demke

    The Flux OSKiti A Substrate for Kernel and Language Research Bryan Ford Godmar Back Greg Benson Jay a basic useful OS core-eg., the functionality traditionally found in the Unix kernel-entirely from scratch for physical memory and its Ford, Back, and Lqreau are at the Univ. of Utah @aford,gback,lepreau- @cs

  13. EV Everywhere Batteries Workshop - Pack Design and Optimization...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pack Design and Optimization Breakout Session Report EV Everywhere Batteries Workshop - Pack Design and Optimization Breakout Session Report Breakout session presentation for the...

  14. EV Everywhere Grand Challenge: Consumer Acceptance and Charging...

    Broader source: Energy.gov (indexed) [DOE]

    Attnedance list for the EV Everywhere Grand Challenge: Consumer Acceptance and Charging Infrastructure Workshop on July 30, 2012 held at the LAX Marriott, Los Angeles, CA...

  15. EV Everywhere Consumer Acceptance Workshop: Breakout Group B...

    Office of Environmental Management (EM)

    Workshop: Breakout Group B Report Out Group B breakout session presentation for the EV Everywhere Grand Challenge: Consumer Acceptance and Charging Infrastructure Workshop on...

  16. EV Everywhere Consumer/Charging Workshop: Target-Setting Framework...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ConsumerCharging Workshop: Target-Setting Framework and Consumer Behavior EV Everywhere ConsumerCharging Workshop: Target-Setting Framework and Consumer Behavior Presentation...

  17. Microsoft PowerPoint - 2 Danielson EV Everywhere Battery presentation...

    Broader source: Energy.gov (indexed) [DOE]

    soft costs. Recognized the importance of understanding grid impacts at high penetration. EV-Everywhere Impacts? Who knows? 7 Non-economic driverspsychological factors of PEV...

  18. Vehicle Technologies Office Merit Review 2014: EV Project: Solar...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the EV project: solar-assisted charging demo....

  19. EV Everywhere Electric Drive Workshop: Preliminary Target-Setting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    given at the EV Everywhere Grand Challenge - Electric Drive (Power Electronics and Electric Machines) Workshop on July 24, 2012 held at the Doubletree O'Hare, Chicago, IL....

  20. EV Everywhere Grand Challenge Introduction for Electric Drive...

    Energy Savers [EERE]

    Danielson at the EV Everywhere Grand Challenge - Electric Drive (Power Electronics and Electric Machines) Workshop on July 24, 2012 held at the Doubletree O'Hare, Chicago, IL....

  1. EV Everywhere EV Everywhere Grand Challenge - Electric Drive (Power Electronics and Electric Machines) Workshop Agenda

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n cEnergy (AZ, CA,EnergystudentThis Tuesday, September7/20/2012 EV

  2. Plain Language Disclosure for Direct Subsidized Loans and Direct Unsubsidized Loans William D. Ford Federal Direct Loan Program

    E-Print Network [OSTI]

    Royer, Dana

    Plain Language Disclosure for Direct Subsidized Loans and Direct Unsubsidized Loans William D. Ford Subsidized Loan and/or Direct Unsubsidized Loan to help cover the costs of your education. This Plain to separate loans made under the MPN depending on whether the loan is subsidized or unsubsidized, when

  3. Availability in Globally Distributed Storage Systems Daniel Ford, Francois Labelle, Florentina I. Popovici, Murray Stokely, Van-Anh Truong

    E-Print Network [OSTI]

    Cortes, Corinna

    Availability in Globally Distributed Storage Systems Daniel Ford, Franc¸ois Labelle, Florentina I studies of individual components of storage systems, such as disk drives, relatively little has been characterize the availability properties of cloud storage systems based on an extensive one year study

  4. 2010 Ford Fusion VIN 4757 Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Gray; Matthew Shirk

    2013-01-01

    The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on-road fleet testing. This report documents battery testing performed for the 2010 Ford Fusion HEV (VIN: 3FADP0L34AR144757). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Program of the U.S. Department of Energy.

  5. Ford Plug-In Project: Bringing PHEVs to Market Demonstration and Validation Project

    SciTech Connect (OSTI)

    2013-12-31

    This project is in support of our national goal to reduce our dependence on fossil fuels. By supporting efforts that contribute toward the successful mass production of plug-in hybrid electric vehicles, our nation’s transportation-related fuel consumption can be offset with energy from the grid. Over four and a half years ago, when this project was originally initiated, plug-in electric vehicles were not readily available in the mass marketplace. Through the creation of a 21 unit plug-in hybrid vehicle fleet, this program was designed to demonstrate the feasibility of the technology and to help build cross-industry familiarity with the technology and interface of this technology with the grid. Ford Escape PHEV Demonstration Fleet 3 March 26, 2014 Since then, however, plug-in vehicles have become increasingly more commonplace in the market. Ford, itself, now offers an all-electric vehicle and two plug-in hybrid vehicles in North America and has announced a third plug-in vehicle offering for Europe. Lessons learned from this project have helped in these production vehicle launches and are mentioned throughout this report. While the technology of plugging in a vehicle to charge a high voltage battery with energy from the grid is now in production, the ability for vehicle-to-grid or bi-directional energy flow was farther away than originally expected. Several technical, regulatory and potential safety issues prevented progressing the vehicle-to-grid energy flow (V2G) demonstration and, after a review with the DOE, V2G was removed from this demonstration project. Also proving challenging were communications between a plug-in vehicle and the grid or smart meter. While this project successfully demonstrated the vehicle to smart meter interface, cross-industry and regulatory work is still needed to define the vehicle-to-grid communication interface.

  6. Off-shelf portion of Harris delta: a reexamination of downdip Woodbine-Eagle Ford

    SciTech Connect (OSTI)

    Porter, M.

    1989-03-01

    This study relates the Eagle Ford-equivalent Harris delta north of the Stuart City shelf edge with the downdip Woodbine-Eagle Ford section south of that shelf edge. Together, they comprised one large deltaic complex that divided into two major lobes at an avulsion site near Anderson County. One lobe prograded southwestward toward Kurten field in Brazos County; the other (now partly eroded) prograded southeastward beside the low-lying Sabine (uplift) landmass into Polk County. The Polk County lobe crossed the Stuart City shelf edge in the Seven Oaks-Hortense field area and continued to prograde southward into deeper and higher energy water. Such an environment caused this off-shelf Harris delta to oversteepen, resulting in frequent slumps and gravity flows that deposited debris-flow and turbidite sands along with predominantly fine-grained prodelta sediments. More familiar deltaic facies (outer fringe) are present in the uppermost section. Numerous structural and stratigraphic maps and cross sections illustrate the progradation of the downdip Harris delta and its features. The progradation was arrested for a time by deeper water at the older and more precipitous Sligo shelf edge. This progradational hiatus is recorded by a relatively strong reflection that separates two seismic sequences. The younger, onlapping sequence appears to represent continued Harris delta sedimentation. Among the interesting features mapped seismically and/or geologically are mounded reflections that represent the largest slumping events, thickness anomalies associated with the carbonate substrate, and erosional( ) channels at the section top. These off-shelf Harris delta deposits appear to interfinger laterally with a genetically different eastern (Tuscaloosa ) sequence in Tyler and Jasper Counties.

  7. Off-shelf portion of Harris delta: Reexamination of downdip Woodbine-Eagle Ford

    SciTech Connect (OSTI)

    Porter, M.H. ); Van Siclen, D.C.; Sheriff, R.E. )

    1989-09-01

    This study related the Eagle Ford equivalent Harris delta north of the Stuart City shelf edge with downdip Woodbine-Eagle Ford section south of that shelf edge. Together, they comprised one large deltaic complex that divided into two major lobes at an avulsion site near Anderson County, Texas. One lobe prograded southwestward toward Kurten field in Brazos County, the other (now partly eroded) prograded southeastward beside the low-lying Sabine (uplift) landmass into Polk County. The Polk County lobe crossed the Stuart City shelf edge in the Seven Oaks-Hortense field area, and continued to prograde southward into deeper and higher energy water. Such an environment caused this off-shelf Harris delta to oversteepen, resulting in frequent slumps and gravity flows that deposited debris-flow and turbidite sands along with predominantly fine-grained prodelta sediments. More familiar deltaic facies (outer fringe) are present in the uppermost section. Numerous structural and stratigraphic maps and cross sections illustrate the progradation of the downdip Harris delta and its features. The progradation was arrested for a time by deeper water at the older and more precipitous Sligo shelf edge. This progradational hiatus is recorded by a relatively strong reflection that separates two seismic sequences. The younger onlapping sequence appears to represent continued Harris delta sedimentation. among the interesting features mapped seismically and/or geologically are: mounded reflections that represent the largest slumping events, thickness anomalies associated with the carbonate substrate, and erosional( ) channels at the section top. These off-shelf Harris delta deposits appear to interfinger laterally with a genetically different eastern (Tuscaloosa ) sequence in Tyler and Jasper Counties.

  8. Secretary Chu to Deliver Keynote on EV Everywhere Grand Challenge...

    Energy Savers [EERE]

    Launched by President Obama in March 2012, EV-Everywhere is the second in a series of Energy Department "Clean Energy Grand Challenges" aimed at addressing the most pressing...

  9. RAT FR MIGRATION e.V. Integration und Illegalitt

    E-Print Network [OSTI]

    Kallenrode, May-Britt

    RAT FÜR MIGRATION e.V. (RfM) Integration und Illegalität in Deutschland herausgegeben von Klaus J >Festung EuropaMigration. Von Klaus J. Bade Resolution des Rates für Migration zum Problem der aufenthaltsrechtlichen Illegalität

  10. EV Everywhere Framing Workshop Report Out & Lessons Learned ...

    Office of Environmental Management (EM)

    Report Out & Lessons Learned Presentation given at the EV Everywhere Grand Challenge: Battery Workshop on July 26, 2012 held at the Doubletree O'Hare, Chicago, IL. 3davisb.pdf...

  11. BuildSense Compressed natural gas (CNG) bi-fuel conversions for two Ford F-series pickup trucks.

    E-Print Network [OSTI]

    BuildSense Compressed natural gas (CNG) bi-fuel conversions for two Ford F-series pickup trucks $141,279 $35,320 $176,599 City of Charlotte Solid Waste Services Compressed natural gas ( CNG) up fits of Cary. Wake $121,779 $40,799 $162,578 Waste Industries Fifty-two CNG up fits on refuse trucks in Raleigh

  12. Fragmentation mechanisms for methane induced by 55 eV, 75 eV, and 100 eV electron impact

    SciTech Connect (OSTI)

    Wei, B.; Zhang, Y.; Wang, X. Lu, D.; Lu, G. C.; Hutton, R.; Zou, Y.; Institute of Modern Physics, Department of Nuclear Science and Technology, Fudan University, Shanghai 200433 ; Zhang, B. H.; Tang, Y. J.

    2014-03-28

    The fragmentation of CH{sub 4}{sup 2+} dications following 55 eV, 75 eV, and 100 eV electron impact double ionization of methane was studied using a cold target recoil-ion momentum spectroscopy. From the measured momentum of each recoil ion, the momentum of the neutral particles has been deduced and the kinetic energy release distribution for the different fragmentation channels has been obtained. The doubly charged molecular ions break up into three or more fragments in one or two-step processes, resulting in different signatures in the data. We observed the fragmentation of CH{sub 4}{sup 2+} dications through different mechanisms according to the momentum of the neutral particles. For example, our result shows that there are three reaction channels to form CH{sub 2}{sup +}, H{sup +}, and H, one synchronous concerted reaction channel and two two-step reaction channels. For even more complicated fragmentation processes of CH{sub 4}{sup 2+} dications, the fragmentation mechanism can still be identified in the present measurements. The slopes of the peak in the ion-ion coincidence spectra were also estimated here, as they are also related to the fragmentation mechanism.

  13. Distributed Uplink Scheduling in EV-DO Rev. A Networks

    E-Print Network [OSTI]

    Guerin, Roch

    Distributed Uplink Scheduling in EV-DO Rev. A Networks Ashwin Sridharan (Sprint Nextel) Ramesh Subbaraman, Roch Guérin (ESE, University of Pennsylvania) #12;5/23/2007 Networking 2007 - Atlanta 2 Overview of Problem · Most modern wireless systems ­ Deliver high performance through tight control of transmissions

  14. Observations from The EV Project in Q4 2013

    SciTech Connect (OSTI)

    John Smart

    2014-02-01

    This is a summary report for The EV Project 4th quarter 2013 reports. It describes electric vehicle driver driving and charging behavior observed in Q4. It is the same report as the previously approved/published Q3 2013 report, only the numbers have been updated. It is for public release and does not have limited distribution.

  15. Online Reservation and Deferral of EV Charging Tasks to Reduce Energy Use Variability

    E-Print Network [OSTI]

    Gupta, Rajesh

    pressing by the need to integrate large EV loads and distributed generation. The added flexibility of EV to reduce inte- gration costs. We show that, in addition, the lookahead provided by requesting EVs to scheduling EV charging, that delays workload to minimize charging cost while meeting latency constraints. We

  16. Advanced Vehicle Testing Activity: Low-Percentage Hydrogen/CNG Blend, Ford F-150 -- Operating Summary

    SciTech Connect (OSTI)

    Karner, D.; Francfort, James Edward

    2003-01-01

    Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy’s Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline engines that were converted to run CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure-hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service’s Alternative Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended hydrogen fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents results of 16,942 miles of testing for one of the blended fuel vehicles, a Ford F-150 pickup truck, operating on up to 30% hydrogen/70% CNG fuel.

  17. Advanced Vehicle Testing Activity: High-Percentage Hydrogen/CNG Blend, Ford F-150 -- Operating Summary

    SciTech Connect (OSTI)

    Don Karner; Francfort, James Edward

    2003-01-01

    Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy’s Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline engines that were converted to run CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure-hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service’s Alternative Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity. The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended hydrogen fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents the results of 4,695 miles of testing for one of the blended fuel vehicles, a Ford F-150 pickup truck, operating on up to 50% hydrogen–50% CNG fuel.

  18. AVTA: ARRA EV Project Chevrolet Volt Data Summary Reports

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The American Recovery and Reinvestment Act supported a number of projects that together made up the largest ever deployment of plug-in electric vehicles and charging infrastructure in the U.S. The following reports provide summary overviews of the 2,600 plug-in hybrid electric Chevrolet Volts deployed through the EV Project. It also deployed about 14,000 Level 2 PEV chargers and 300 DC fast chargers. Background data on how this data was collected is in the EV Project: About the Reports. This research was conducted by Idaho National Laboratory.

  19. AVTA: ARRA EV Project Public Charging Infrastructure Maps

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The American Recovery and Reinvestment Act supported a number of projects that together made up the largest ever deployment of plug-in electric vehicles and charging infrastructure in the U.S. The following maps describe where the EV Project deployed thousands of public chargers. Background data on how this data was collected is in the EV Project: About the Reports. This research was conducted by Idaho National Laboratory.

  20. AVTA: ARRA EV Project Residential Charging Infrastructure Maps

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The American Recovery and Reinvestment Act supported a number of projects that together made up the largest ever deployment of plug-in electric vehicles and charging infrastructure in the U.S. The following maps describe where the EV Project deployed thousands of residential chargers. Background data on how this data was collected is in the EV Project: About the Reports. This research was conducted by Idaho National Laboratory.

  1. AVTA: ARRA EV Project Nissan Leaf Data Summary Reports

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The American Recovery and Reinvestment Act supported a number of projects that together made up the largest ever deployment of plug-in electric vehicles and charging infrastructure in the U.S. The following reports provide summary overviews of the 5,700 all-electric Nissan Leafs deployed through the EV Project. It also deployed about 14,000 Level 2 PEV chargers and 300 DC fast chargers. Background data on how this data was collected is in the EV Project: About the Reports. This research was conducted by Idaho National Laboratory.

  2. AVTA: ARRA EV Project Electric Grid Impact Report

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The American Recovery and Reinvestment Act supported a number of projects that together made up the largest ever deployment of plug-in electric vehicles and charging infrastructure in the U.S. The following report describes lessons learned about the impact on the electrical grid from the EV Project. The EV Project partnered with city, regional and state governments, utilities, and other organizations in 16 cities to deploy about 14,000 Level 2 PEV chargers and 300 DC fast chargers. It also deployed 5,700 all-electric Nissan Leafs and 2,600 plug-in hybrid electric Chevrolet Volts. This research was conducted by Idaho National Laboratory.

  3. AVTA: ARRA EV Project Charging Infrastructure Data Summary Reports

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The American Recovery and Reinvestment Act supported a number of projects that together made up the largest ever deployment of plug-in electric vehicles and charging infrastructure in the U.S. The following reports summarize data collected from the 14,000 Level 2 PEV chargers and 300 DC fast chargers deployed by the EV Project. It also deployed 5,700 all-electric Nissan Leafs and 2,600 plug-in hybrid electric Chevrolet Volts. Background data on how this data was collected is in the EV Project: About the Reports. This research was conducted by Idaho National Laboratory.

  4. EV Everywhere Workplace Charging Challenge | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergy HeadquartersFuel CycleFinalEEREImpactStatementSeptember303ofEV Everywhere Logo

  5. BEV Charging Behavior Observed in The EV Project for 2013

    SciTech Connect (OSTI)

    Brion D. Bennett

    2014-01-01

    This fact sheet will be issued quarterly to report on the number of Nissan Leafs vehicle usage, charging locations, and charging completeness as part of the EV Project. It will be posted on the INL/AVTA and ECOtality websites and will be accessible by the general public. The raw data that is used to create the report is considered proprietary/OUO and NDA protected, but the information in this report is NOT proprietary nor NDA protected.

  6. Observations from The EV Project in Q3 2013

    SciTech Connect (OSTI)

    John Smart

    2013-12-01

    This is a brief report that summarizes results published in numerous other reports. It describes the usage of electric vehicles and charging units in the EV Project over the past 3 months. There is no new data or information provided in this report, only summarizing of information published in other reports (which have all been approved for unlimited distribution publication). This report will be posted to the INL/AVTA website for viewing by the general public.

  7. EV Everywhere Grand Challenge - Charging Infrastructure Enabling Flexible

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based|DepartmentStatementofApril 25, 2014TEMPLATE| DepartmentDepartment ofofEV

  8. EV Everywhere Grand Challenge Kick-Off | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based|DepartmentStatementofApril 25, 2014TEMPLATE|Off EV Everywhere Grand

  9. EV Everywhere Grand Challenge Overview Presentation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based|DepartmentStatementofApril 25, 2014TEMPLATE|Off EV Everywhere

  10. EV Everywhere Grand Challenge Overview | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based|DepartmentStatementofApril 25, 2014TEMPLATE|Off EV

  11. EV Technology Accelerates in Colorado | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based|DepartmentStatementofApril 25,EV Everywhere and DOESales

  12. EV-Everywhere: Making Electric Vehicles More Affordable | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based|DepartmentStatementofApril 25,EV Everywhere and DOESalesEverywhere

  13. Intelligent Vehicle Charging Benefits Assessment Using EV Project Data

    SciTech Connect (OSTI)

    Letendre, Steven; Gowri, Krishnan; Kintner-Meyer, Michael CW; Pratt, Richard M.

    2013-12-01

    PEVs can represent a significant power resource for the grid. An IVCI with bi-direction V2G capabilities would allow PEVs to provide grid support services and thus generate a source of revenue for PEV owners. The fleet of EV Project vehicles represents a power resource between 30 MW and 90 MW, depending on the power rating of the grid connection (5-15 kW). Aggregation of vehicle capacity would allow PEVs to participate in wholesale reserve capacity markets. One of the key insights from EV Project data is the fact that vehicles are connected to an EVSE much longer than is necessary to deliver a full charge. During these hours when the vehicles are not charging, they can be participating in wholesale power markets providing the high-value services of regulation and spinning reserves. The annual gross revenue potential for providing these services using the fleet of EV Project vehicles is several hundred thousands of dollars to several million dollars annually depending on the power rating of the grid interface, the number of hours providing grid services, and the market being served. On a per vehicle basis, providing grid services can generate several thousands of dollars over the life of the vehicle.

  14. EnerG2 Develops New Approach to EV Energy Storage | Department...

    Office of Environmental Management (EM)

    EnerG2 Develops New Approach to EV Energy Storage EnerG2 Develops New Approach to EV Energy Storage November 16, 2010 - 9:50am Addthis EnerG2 manufactures the black powder-like...

  15. EV-Smart Grid Interoperability Centers in Europe and the United...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    EV-Smart Grid Interoperability Centers in Europe and the United States The EV-Smart Grid Interoperability Centers at the U.S. Department of Energy's Argonne National Laboratory and...

  16. Secondary Use of PHEV and EV Batteries: Opportunities & Challenges (Presentation)

    SciTech Connect (OSTI)

    Neubauer, J.; Pesaran, A.; Howell, D.

    2010-05-01

    NREL and partners will investigate the reuse of retired lithium ion batteries for plug-in hybrid, hybrid, and electric vehicles in order to reduce vehicle costs and emissions and curb our dependence on foreign oil. A workshop to solicit industry feedback on the process is planned. Analyses will be conducted, and aged batteries will be tested in two or three suitable second-use applications. The project is considering whether retired PHEV/EV batteries have value for other applications; if so, what are the barriers and how can they be overcome?

  17. Alternative Fuels Data Center: EV Charging Stations Spread Through Philly

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I NLoansAFDC Printable Version ShareE85EV Charging

  18. Panasonic EV Energy Co Ltd PEVE | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPIProtectio Program |View New Pages RecentPalomar VenturesEnergyJit(CTI PFAN)EV

  19. EV Everywhere: Electric Vehicle Stories | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation Current HABFES Science Network Requirements Report of theEnergy ElectricEV

  20. Smart Grid EV Communication Module | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effect Photovoltaics -7541 *Impact NeutronSmallGrid EV Communication Module

  1. EV Everywhre Grand Challenge - Battery Status and Cost Reduction Prospects

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n cEnergy (AZ, CA,EnergystudentThis the AssistantEV Everywhere Grand

  2. EV Everywhere Grand Challenge Overview | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based|DepartmentStatementofApril 25, 2014TEMPLATE|Off EV2_danielson_caci.pdf

  3. Thermal Management of PHEV / EV Charging Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCEDInstallers/ContractorsPhotovoltaicsState ofSavings for Specific Measures 5 U.S. C.of PHEV / EV

  4. Workplace Charging Challenge Partners: EV Connect | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And Statistics » USAJobs SearchAMERICA'SEnergyofThe HartfordUnumXcel EnergyPartners: EV

  5. EV Charging Stations Take Off Across America | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansas Nuclear Profile 2010Mesoscopy and thermodynamics(Revised)EV Charging

  6. EV Everywhere: Charging at Home | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansas Nuclear Profile 2010Mesoscopy and thermodynamics(Revised)EV

  7. EV Everywhere Charges Up the Workplace | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergy Webinar:IAboutReubenPress Releases EM PressENERGY|About Us »EV

  8. Current State-of-the-Art of EV Chargers Dr. Volker Schwarzer,

    E-Print Network [OSTI]

    -Voltages (TOV) in the power grid. With the rising availability of electric vehicle (EV) charging stations analyses the current state-of-the-art EV charger technology with respect to utilized charging technologiesCurrent State-of-the-Art of EV Chargers Dr. Volker Schwarzer, Dr. Reza Ghorbani Department

  9. Real-Time Welfare-Maximizing Regulation Allocation in Dynamic Aggregator-EVs System

    E-Print Network [OSTI]

    Liang, Ben

    to coordinate a large number of EVs to provide regulation service [6]. In addition, frequent charging1 Real-Time Welfare-Maximizing Regulation Allocation in Dynamic Aggregator-EVs System Sun Sun--The concept of vehicle-to-grid (V2G) has gained recent interest as more and more electric vehicles (EVs

  10. Development of the Ford QVM CNG bi-fuel 4.9L F-Series pickup truck

    SciTech Connect (OSTI)

    Lapetz, J.; McCarthy, D.; Greenfield, N. [Ford Motor Co., Dearborn, MI (United States)] [and others

    1996-09-01

    A bi-fuel (Compressed Natural Gas [CNG] and gasoline) pickup truck has been developed using the Ford Alternative Fuel Qualified Vehicle Modifier (QVM) process. The base vehicle`s 4.9L engine has been specially modified for improved durability on gaseous fuels. The base vehicle`s configuration has been designed for conversion to bi-fuel CNG operation. A complete CNG fuel system has been designed and qualified, including fuel tanks, fuel system, and electrical interface. The completed vehicle has been safety and emission certified, demonstrating CARB Low Emission Vehicle (LEV) emissions in MY95. This paper details the design objectives, development process, CNG components, and integration of the two fuel systems.

  11. Driving and Charging Behavior of Nissan Leafs in The EV Project with Access to Workplace Charging

    SciTech Connect (OSTI)

    Don Scoffield; Shawn Salisbury; John Smart

    2014-11-01

    This paper documents findings from analysis of data collected from Nissan Leafs enrolled in The EV Project who parked and charged at workplaces with EV charging equipment. It will be published as a white paper on INL's website, accessible by the general public.

  12. Workplace Charging Behavior of Nissan Leafs in The EV Project at Six Work Sites

    SciTech Connect (OSTI)

    David Rohrbaugh; John Smart

    2014-11-01

    This paper documents findings from analysis of data collected from Nissan Leafs enrolled in The EV Project who parked and charged at six workplaces with EV charging equipment. It will be published as a white paper on INL's website, accessible by the general public.

  13. The origin of 2.7?eV blue luminescence band in zirconium oxide

    SciTech Connect (OSTI)

    Perevalov, T. V. Zhuravlev, K. S.; Gritsenko, V. A.; Gulyaev, D. V.; Aliev, V. S.; Yelisseyev, A. P.

    2014-12-28

    The luminescence spectra of non-stoichiometric zirconium oxide film series with different oxygen vacancies' concentrations show the blue photoluminescence band centered near a 2.7?eV peak. There is a broad band at 5.2?eV in the luminescence excitation spectrum for blue emission. The ab-initio quantum-chemical calculation gives a peak in the optical absorption at 5.1?eV for the oxygen vacancy in cubic ZrO{sub 2}. It was concluded that the 2.7?eV blue luminescence excited near 5.2?eV in a zirconium oxide film is associated with the oxygen vacancy.

  14. Quantifying EV battery end-of-life through analysis of travel needs with vehicle powertrain models

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Saxena, Samveg; Le Floch, Caroline; MacDonald, Jason; Moura, Scott

    2015-05-15

    Electric vehicles enable clean and efficient transportation; however, concerns about range anxiety and battery degradation hinder EV adoption. The common definition for battery end-of-life is when 70-80% of original energy capacity remain;, however, little analysis is available to support this retirement threshold. By applying detailed physics-based models of EVs with data on how drivers use their cars, we show that EV batteries continue to meet daily travel needs of drivers well beyond capacity fade of 80% remaining energy storage capacity. Further, we show that EV batteries with substantial energy capacity fade continue to provide sufficient buffer charge for unexpected tripsmore »with long distances. We show that enabling charging in more locations, even if only with 120 V wall outlets, prolongs useful life of EV batteries. Battery power fade is also examined and we show EVs meet performance requirements even down to 30% remaining power capacity. Our findings show that defining battery retirement at 70-80% remaining capacity is inaccurate. Battery retirement should instead be governed by when batteries no longer satisfy daily travel needs of a driver. Using this alternative retirement metric, we present results on the fraction of EV batteries that may be retired with different levels of energy capacity fade.« less

  15. Advanced Vehicle Testing Activity: High-Percentage Hydrogen/CNG Blend Ford F-150 Operating Summary - January 2003

    SciTech Connect (OSTI)

    Karner, D.; Francfort, J.E.

    2003-01-22

    Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy's Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline engines that were converted to run CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure-hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service's Alternative Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity. The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents the results of 4,695 miles of testing for one of the blended fuel vehicles, a Ford F-150 pickup truck, operating on up to 50% hydrogen-50% CNG fuel.

  16. Advanced Vehicle Testing Activity: Low-Percentage Hydrogen/CNG Blend Ford F-150 Operating Summary - January 2003

    SciTech Connect (OSTI)

    Karner, D.; Francfort, J.E.

    2003-01-22

    Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy's Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline engines that were converted to run CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure-hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service's Alternative Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity. The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended hydrogen fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents results of 16,942 miles of testing for one of the blended fuel vehicles, a Ford F-150 pickup truck, operating on up to 30% hydrogen/70% CNG fuel.

  17. Vehicle Technologies Office Merit Review 2014: EV-Smart Grid Research & Interoperability Activities

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about EV-smart grid...

  18. Vehicle Technologies Office Merit Review 2014: Advanced Climate Systems for EV Extended Range

    Broader source: Energy.gov [DOE]

    Presentation given by Halla Visteon at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced climate systems for EV...

  19. Vehicle Technologies Office Merit Review 2014: EV Project: Solar-Assisted Charging Demo

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the EV project:...

  20. Vehicle Technologies Office Merit Review 2014: EV Project Data & Analytic Results

    Broader source: Energy.gov [DOE]

    Presentation given by Idaho National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about EV project data ...

  1. Vehicle Technologies Office Merit Review 2015: PHEV and EV Battery Performance and Cost Assessment

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about PHEV and EV...

  2. Vehicle Technologies Office Merit Review 2015: Advanced Climate Systems for EV Extended Range (ACSforEVER)

    Broader source: Energy.gov [DOE]

    Presentation given by Halla Visteon at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced climate systems for EV...

  3. Neutrino afterglow from Gamma-Ray Bursts: ~10^{18} eV

    E-Print Network [OSTI]

    Eli Waxman; John Bahcall

    2000-05-06

    We show that a significant fraction of the energy of a gamma-ray burst(GRB) is probably converted to a burst of 10^{17}-10^{19} eV neutrinos and multiple GeV gammas that follow the GRB by > 10 s . If, as previously suggested, GRB's accelerate protons to ~10^{20} eV, then both the neutrinos and the gammas may be detectable.

  4. Relative fluorescent efficiency of sodium salicylate between 90 and 800 eV

    SciTech Connect (OSTI)

    Angel, G.C.; Samson, J.A.R.; Williams, G.

    1986-01-01

    The relative fluorescent quantum efficiency of sodium salicylate was measured between 90 and 800 eV (138 -15 A) by the use of synchrotron radiation. A general increase in efficiency was observed in this spectral range except for abrupt decreases in efficiency at the carbon and oxygen K-edges. Beyond the oxygen K-edge (532 eV) the efficiency increased linearly with the incident photon energy to the limit of the present observations.

  5. Abstract--One of the major problems for the massive applicability of Electric Vehicles (EVs) is the scarce capacity of

    E-Print Network [OSTI]

    Catholic University of Chile (Universidad Católica de Chile)

    overcome in many cases using advanced technologies such as fuel cells and high-capacity batteries the range of leading EVs; fuel cells have an extraordinary potential as EVs energy sources; finally, if a particular situation is considered, in which a small-sized, high- efficiency EV operates at low duty cycles

  6. A Multi-Component Measurement of the Cosmic Ray Composition Between 10^{17} eV and 10^{18} eV

    E-Print Network [OSTI]

    T. Abu-Zayyad; K. Belov; D. J. Bird; J. Boyer; Z. Cao; M. Catanese; G. F. Chen; R. W. Clay; C. E. Covault; J. W. Cronin; H. Y. Dai; B. R. Dawson; J. W. Elbert; B. E. Fick; L. F. Fortson; J. W. Fowler; K. G. Gibbs; M. A. K. Glasmacher; K. D. Green; Y. Ho; A. Huang; C. C. Jui; M. J. Kidd; D. B. Kieda; B. C. Knapp; S. Ko; C. G. Larsen; W. Lee; E. C. Loh; E. J. Mannel; J. Matthews; J. N. Matthews; B. J. Newport; D. F. Nitz; R. A. Ong; K. M. Simpson; J. D. Smith; D. Sinclair; P. Sokolsky; P. Sommers; C. Song; J. K. K. Tang; S. B. Thomas; J. C. van der Velde; L. R. Wiencke; C. R. Wilkinson; S. Yoshida; X. Z. Zhang

    1999-11-09

    The average mass composition of cosmic rays with primary energies between $10^{17}$eV and $10^{18}$eV has been studied using a hybrid detector consisting of the High Resolution Fly's Eye (HiRes) prototype and the MIA muon array. Measurements have been made of the change in the depth of shower maximum, $X_{max}$, and in the change in the muon density at a fixed core location, $\\rho_\\mu(600m)$, as a function of energy. The composition has also been evaluated in terms of the combination of $X_{max}$ and $\\rho_\\mu(600m)$. The results show that the composition is changing from a heavy to lighter mix as the energy increases.

  7. Usage of Electric Vehicle Supply Equipment Along the Corridors between the EV Project Major Cities

    SciTech Connect (OSTI)

    Mindy Kirkpatrick

    2012-05-01

    The report explains how the EVSE are being used along the corridors between the EV Project cities. The EV Project consists of a nationwide collaboration between Idaho National Laboratory (INL), ECOtality North America, Nissan, General Motors, and more than 40 other city, regional and state governments, and electric utilities. The purpose of the EV Project is to demonstrate the deployment and use of approximately 14,000 Level II (208-240V) electric vehicle supply equipment (EVSE) and 300 fast chargers in 16 major cities. This research investigates the usage of all currently installed EV Project commercial EVSE along major interstate corridors. ESRI ArcMap software products are utilized to create geographic EVSE data layers for analysis and visualization of commercial EVSE usage. This research locates the crucial interstate corridors lacking sufficient commercial EVSE and targets locations for future commercial EVSE placement. The results and methods introduced in this research will be used by INL for the duration of the EV Project.

  8. Saving Energy at Ford 

    E-Print Network [OSTI]

    McReynolds, C. J.

    1986-01-01

    effectively to save energy and reduce energy costs in our manufacturing operations. As a result, we are in a position to speak about successful industrial conservation practices that have worked for us over the last decade. Fuel Switching For a time... equipment. Ensure air-drying equipment is effective. Avoid continuously blowing off moisture through open valves -- it is a gross energy-waster, overloads the compressor, reducing effective oil and water removal and causes excessive pressure drop...

  9. FORD | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-inPPLfor InnovativeProcessing22,673,list7.pdf

  10. Electron and positron scattering on rubidium at 200 eV

    SciTech Connect (OSTI)

    Chin, J. H.; Ratnavelu, K. [Institute of Mathematical Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Zhou, Y. [Natural Science Research Center, The Academy of Fundamental and Interdisciplinary Science, Harbin Institute of Technology, Harbin, 150080 (China)

    2014-03-05

    The recent implementation of the coupled-channels-optical method (CCOM) [1,2], in the study of the electron and positron-Rubidium(Rb) scattering at intermediate energies [3,4], shows that the continuum effect remains important as the energy increases, even to 100 eV. Here, we study the effect of the continuum in electron and positron scattering on Rb at an even higher energy namely 200 eV. The total, elastic and inelastic integral and differential cross sections are therefore calculated and compared to the available experimental [5] and theoretical data [6,7].

  11. On search for eV hidden sector photons in Super-Kamiokande and CAST experiments

    E-Print Network [OSTI]

    Sergei Gninenko; Javier Redondo

    2008-04-23

    If light hidden sector photons exist, they could be produced through kinetic mixing with solar photons in the eV energy range. We propose to search for this hypothetical hidden photon flux with the Super-Kamiokande and/or upgraded CAST detectors. The proposed experiments are sensitive to mixing strengths as small as 10^-9 for hidden photon masses in the sub eV region and, in the case of non-observation, would improve limits recently obtained from photon regeneration laser experiments in this mass region.

  12. Ranger: CircumstancesRanger: Circumstances, Events, Legacy, g y

    E-Print Network [OSTI]

    RA 3: Mirror image m/c, missed Moon · RA-4: Main pwr. short at Agena separation · RA 5: Main pwr lost; 10 32 screw overheat· RA-5: Main pwr. lost; 10-32 screw overheat · RA-6: Plasma short circuit

  13. EV-13

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouth DakotaRobbins and700, 1.Reports1 Rev.Metals&-?a/71 2.z=' 1. lg

  14. EV-131

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouth DakotaRobbins and700, 1.Reports1 Rev.Metals&-?a/71 2.z=' 1.

  15. How Do Low-Energy (0.1-2 eV) Electrons Cause DNA-Strand

    E-Print Network [OSTI]

    Simons, Jack

    How Do Low-Energy (0.1-2 eV) Electrons Cause DNA-Strand Breaks? JACK SIMONS* Chemistry Department by which very low-energy (0.1-2 eV) free electrons attach to DNA and cause strong (ca. 4 eV) covalent bonds of electrons in the above energy range to base * orbitals is more likely than attachment elsewhere and (ii

  16. Modeling and Simulation of the EV Charging in a Residential Distribution Power Grid

    E-Print Network [OSTI]

    Al Faruque, Mohammad Abdullah

    by changing the transformers and adding more power plants to provide more energy to the residential grid [5Modeling and Simulation of the EV Charging in a Residential Distribution Power Grid Fereidoun of California, Irvine Irvine, California, USA {fahourai, ibhuang, mohammad.alfaruque} @ uci.edu Abstract

  17. tive emissions from EVs (e.g., power plant NOx) and GPVs (tailpipe and

    E-Print Network [OSTI]

    Denver, University of

    tive emissions from EVs (e.g., power plant NOx) and GPVs (tailpipe and associated NO.,. emissions) and found them comparable. Stricter controls on power plants were as- sumed than are currently in place Analy- sis article on battery-powered vehicles (Sept. 1996, p. 402A) serves as a useful reminder

  18. Microfracturing, damage, and failure of brittle granites and Ze'ev Reches

    E-Print Network [OSTI]

    Ze'ev, Reches

    Microfracturing, damage, and failure of brittle granites Oded Katz1 and Ze'ev Reches Institute; accepted 17 October 2003; published 20 January 2004. [1] The evolution of stress-induced damage the damage intensity in two methods and directly compare model predictions and actual damage. The 14 samples

  19. Reactive Power Operation Analysis of a Single-Phase EV/PHEV Bidirectional Battery Charger

    E-Print Network [OSTI]

    Tolbert, Leon M.

    energy outlook report, the transportation sector is going to increase its share in world's total oil@ornl.gov 2 Power and Energy Systems Group Oak Ridge National Laboratory Oak Ridge, TN 37831 Abstract to the market in 2011 and beyond. PHEVs/EVs potentially have the capability to fulfill the energy storage needs

  20. Dissociative Electron Attachment to Carbon Dioxide via the 8.2 eV Feshbach resonance

    SciTech Connect (OSTI)

    Slaughter, Dan; Adaniya, Hidihito; Rescigno, Tom; Haxton, Dan; Orel, Ann; McCurdy, Bill; Belkacem, Ali

    2011-08-17

    Momentum imaging experiments on dissociative electron attachment (DEA) to CO{sub 2} are combined with the results of ab initio calculations to provide a detailed and consistent picture of the dissociation dynamics through the 8.2 eV resonance, which is the major channel for DEA in CO{sub 2}. The present study resolves several puzzling misconceptions about this system.

  1. Dynamic fracturing: eld and experimental observations Amir Sagy*, Ze'ev Reches, Itzhak Roman

    E-Print Network [OSTI]

    Ze'ev, Reches

    Dynamic fracturing: ®eld and experimental observations Amir Sagy*, Ze'ev Reches, Itzhak Roman three styles of fracturing: planar fractures, known from previous tests; branching fractures and clustering fractures, observed here for the ®rst time in layered composites. Based on fracture morphology, we

  2. ARPA-E: A Fresh Perspective on Next-generation EV

    E-Print Network [OSTI]

    the University of California, Berkeley, where he developed a new class of low-cost photovoltaics based on printedARPA-E: A Fresh Perspective on Next-generation EV Battery Technology The Department of Energy's Advanced Research Projects Agency-Energy (ARPA-E) was created to be the "DARPA for Energy", with a focus

  3. Uranium Oxide as a Highly Reflective Coating from 150-350 eV

    E-Print Network [OSTI]

    Hart, Gus

    1 Uranium Oxide as a Highly Reflective Coating from 150-350 eV Richard L. Sandberg, David D. Allred.byu.edu ABSTRACT We present the measured reflectances (beamline 6.3.2, ALS at LBNL) of naturally oxidized uranium incidence. These show that uranium, as UO2, can fulfill its promise as the highest known single surface

  4. How many electric miles do Nissan Leafs and Chevrolet Volts in The EV Project travel?

    SciTech Connect (OSTI)

    John Smart

    2014-05-01

    This paper presents travel statistics and metrics describing the driving behavior of Nissan Leaf and Chevrolet Volt drivers in the EV Project. It specifically quantifies the distance each group of vehicles drives each month. This paper will be published to INL's external website and will be accessible by the general public.

  5. How to Design Electric Vehicles (EVs) IAP 2015 Non-Credit Course

    E-Print Network [OSTI]

    Herr, Hugh

    How to Design Electric Vehicles (EVs) IAP 2015 Non-Credit Course Instructors Sanjay Sarma Scientist, MIT Media Lab, City Science Initiative Guest Instructors Rick Chamberlain, Chief Technology Consultant, Craig Carlson LLC Course Description: If you are interested in designing and building electric

  6. What kind of charging infrastructure do Nissan Leaf drivers in The EV Project use?

    SciTech Connect (OSTI)

    Shawn Salisbury

    2014-09-01

    This document will describe the charging behavior of Nissan Leaf battery electric vehicles that were enrolled in the EV Project. It will include aggregated data from several thousand vehicles regarding time-of-day, power level, and location of charging and driving events. This document is a white paper that will be published on the INL AVTA website.

  7. What kind of charging infrastructure do Chevrolet Volts Drivers in The EV Project use?

    SciTech Connect (OSTI)

    John Smart

    2013-09-01

    This report summarizes key conclusions from analysis of data collected from Chevrolet Volts participating in The EV Project. Topics include how much Volt drivers charge at level 1 vs. level 2 rates and how much they charge at home vs. away from home.

  8. Asteroid Rangers Problem ID: asteroids

    E-Print Network [OSTI]

    California at Berkeley, University of

    optimal relay system will be unique. Input Each test case starts with a line containing an integer n (2 n else, potentially relayed by one or more bases. The cost of any link is directly proportional so that you always have the cheapest relay system in place. Switching these links takes time

  9. Control Strategies for Electric Vehicle (EV) Charging Using Renewables and Local Storage

    SciTech Connect (OSTI)

    Castello, Charles C; LaClair, Tim J; Maxey, L Curt

    2014-01-01

    The increase of electric vehicle (EV) and plug-in hybrid-electric vehicle (PHEV) adoption creates a need for more EV supply equipment (EVSE) infrastructure (i.e., EV chargers). The impact of EVSE installations could be significant due to limitations in the electric grid and potential demand charges for residential and commercial customers. The use of renewables (e.g., solar) and local storage (e.g., battery bank) can mitigate loads caused by EVSE on the electric grid. This would eliminate costly upgrades needed by utilities and decrease demand charges for consumers. This paper aims to explore control systems that mitigate the impact of EVSE on the electric grid using solar energy and battery banks. Three control systems are investigated and compared in this study. The first control system discharges the battery bank at a constant rate during specific times of the day based on historical data. The second discharges the battery bank based on the number of EVs charging (linear) and the amount of solar energy being generated. The third discharges the battery bank based on a sigmoid function (non-linear) in response to the number of EVs charging, and also takes into consideration the amount of renewables being generated. The first and second control systems recharge the battery bank at night when demand charges are lowest. The third recharges the battery bank at night and during times of the day when there is an excess of solar. Experiments are conducted using data from a private site that has 25 solar-assisted charging stations at Oak Ridge National Laboratory (ORNL) in Oak Ridge, TN and 4 at a public site in Nashville, TN. Results indicate the third control system having better performance, negating up to 71% of EVSE load, compared with the second control system (up to 61%) and the first control system (up to 58%).

  10. Apogee Imaging Systems Alta F42 CCD Camera with Back Illuminated EV2 CCD42-The Apogee Alta F42 CCD Camera has a back-illuminated full frame 4 megapixel EV2 CCD42-40

    E-Print Network [OSTI]

    Kleinfeld, David

    Apogee Imaging Systems Alta F42 CCD Camera with Back Illuminated EV2 CCD42- 40 Sensor The Apogee Alta F42 CCD Camera has a back-illuminated full frame 4 megapixel EV2 CCD42-40 sensor with very high readout speeds. The Alta line continues to support a wide variety of front-illuminated, back

  11. EVS24 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium 1 Stavanger, Norway, May 13-16, 2009

    E-Print Network [OSTI]

    Boyer, Edmond

    EVS24 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium 1 EVS24 Stavanger, Norway, May 13-16, 2009 Site selection for electric cars of a car-sharing service Luminita Ion1 , T. Cucu is the car-sharing implementation. Car- sharing is defined as a self service which allows to each subscriber

  12. NREL's PHEV/EV Li-Ion Battery Secondary-Use Project

    SciTech Connect (OSTI)

    Newbauer, J.; Pesaran, A.

    2010-06-01

    Accelerated development and market penetration of plug-in hybrid electric vehicles (PHEVs) and electric vehicles (EVs) is restricted at present by the high cost of lithium-ion (Li-ion) batteries. One way to address this problem is to recover a fraction of the Li-ion battery's cost via reuse in other applications after it is retired from service in the vehicle, when the battery may still have sufficient performance to meet the requirements of other energy storage applications.

  13. EV Everywhere Grand Challenge Kick-off Parameters and Analysis | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based|DepartmentStatementofApril 25, 2014TEMPLATE|Off EV Everywhere Grandof

  14. EV Everywhere: Electric Drive Systems Bring Power to Plug-in Electric

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based|DepartmentStatementofApril 25,EV Everywhere and DOE Prioritieson the

  15. EV-Everywhere Wants to Hear from All of You! | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based|DepartmentStatementofApril 25,EV Everywhere and DOESalesEverywhere Wants

  16. PHEV/EV Li-Ion Battery Second-Use Project (Presentation)

    SciTech Connect (OSTI)

    Neubauer, J.; Pesaran, A.

    2010-04-01

    Accelerated development and market penetration of plug-in hybrid electric vehicles (PHEVs) and electric vehicles (Evs) are restricted at present by the high cost of lithium-ion (Li-ion) batteries. One way to address this problem is to recover a fraction of the battery cost via reuse in other applications after the battery is retired from service in the vehicle, if the battery can still meet the performance requirements of other energy storage applications. In several current and emerging applications, the secondary use of PHEV and EV batteries may be beneficial; these applications range from utility peak load reduction to home energy storage appliances. However, neither the full scope of possible opportunities nor the feasibility or profitability of secondary use battery opportunities have been quantified. Therefore, with support from the Energy Storage activity of the U.S. Department of Energy's Vehicle Technologies Program, the National Renewable Energy Laboratory (NREL) is addressing this issue. NREL will bring to bear its expertise and capabilities in energy storage for transportation and in distributed grids, advanced vehicles, utilities, solar energy, wind energy, and grid interfaces as well as its understanding of stakeholder dynamics. This presentation introduces NREL's PHEV/EV Li-ion Battery Secondary-Use project.

  17. Ford Cleveland: Inside-Out Analysis Identifies Energy and Cost Savings Opportunities at Metal Casting Plant; Industrial Technologies Program Metal Casting BestPractices Plant-Wide Assessment Case Study

    SciTech Connect (OSTI)

    Not Available

    2003-09-01

    The Ford Cleveland Casting Plant used results from its plant-wide energy efficiency assessment to identify 16 energy- and cost-saving projects. These projects addressed combustion, compressed air, water, steam, motor drive, and lighting systems. When implemented, the projects should save a total of$3.28 million per year. In addition, two long-term projects were identified that together would represent another$9.5 million in cost savings.

  18. U.S. Department of Energy FreedomCAR & Vehicle Technologies Program Advanced Vehicle Testing Activity, Hydrogen/CNG Blended Fuels Performance Testing in a Ford F-150

    SciTech Connect (OSTI)

    James E. Francfort

    2003-11-01

    Federal regulation requires energy companies and government entities to utilize alternative fuels in their vehicle fleets. To meet this need, several automobile manufacturers are producing compressed natural gas (CNG)-fueled vehicles. In addition, several converters are modifying gasoline-fueled vehicles to operate on both gasoline and CNG (Bifuel). Because of the availability of CNG vehicles, many energy company and government fleets have adopted CNG as their principle alternative fuel for transportation. Meanwhile, recent research has shown that blending hydrogen with CNG (HCNG) can reduce emissions from CNG vehicles. However, blending hydrogen with CNG (and performing no other vehicle modifications) reduces engine power output, due to the lower volumetric energy density of hydrogen in relation to CNG. Arizona Public Service (APS) and the U.S. Department of Energy’s Advanced Vehicle Testing Activity (DOE AVTA) identified the need to determine the magnitude of these effects and their impact on the viability of using HCNG in existing CNG vehicles. To quantify the effects of using various blended fuels, a work plan was designed to test the acceleration, range, and exhaust emissions of a Ford F-150 pickup truck operating on 100% CNG and blends of 15 and 30% HCNG. This report presents the results of this testing conducted during May and June 2003 by Electric Transportation Applications (Task 4.10, DOE AVTA Cooperative Agreement DEFC36- 00ID-13859).

  19. Battery Electric Vehicle Driving and Charging Behavior Observed Early in The EV Project

    SciTech Connect (OSTI)

    John Smart; Stephen Schey

    2012-04-01

    As concern about society's dependence on petroleum-based transportation fuels increases, many see plug-in electric vehicles (PEV) as enablers to diversifying transportation energy sources. These vehicles, which include plug-in hybrid electric vehicles (PHEV), range-extended electric vehicles (EREV), and battery electric vehicles (BEV), draw some or all of their power from electricity stored in batteries, which are charged by the electric grid. In order for PEVs to be accepted by the mass market, electric charging infrastructure must also be deployed. Charging infrastructure must be safe, convenient, and financially sustainable. Additionally, electric utilities must be able to manage PEV charging demand on the electric grid. In the Fall of 2009, a large scale PEV infrastructure demonstration was launched to deploy an unprecedented number of PEVs and charging infrastructure. This demonstration, called The EV Project, is led by Electric Transportation Engineering Corporation (eTec) and funded by the U.S. Department of Energy. eTec is partnering with Nissan North America to deploy up to 4,700 Nissan Leaf BEVs and 11,210 charging units in five market areas in Arizona, California, Oregon, Tennessee, and Washington. With the assistance of the Idaho National Laboratory, eTec will collect and analyze data to characterize vehicle consumer driving and charging behavior, evaluate the effectiveness of charging infrastructure, and understand the impact of PEV charging on the electric grid. Trials of various revenue systems for commercial and public charging infrastructure will also be conducted. The ultimate goal of The EV Project is to capture lessons learned to enable the mass deployment of PEVs. This paper is the first in a series of papers documenting the progress and findings of The EV Project. This paper describes key research objectives of The EV Project and establishes the project background, including lessons learned from previous infrastructure deployment and PEV demonstrations. One such previous study was a PHEV demonstration conducted by the U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA), led by the Idaho National Laboratory (INL). AVTA's PHEV demonstration involved over 250 vehicles in the United States, Canada, and Finland. This paper summarizes driving and charging behavior observed in that demonstration, including the distribution of distance driven between charging events, charging frequency, and resulting proportion of operation charge depleting mode. Charging demand relative to time of day and day of the week will also be shown. Conclusions from the PHEV demonstration will be given which highlight the need for expanded analysis in The EV Project. For example, the AVTA PHEV demonstration showed that in the absence of controlled charging by the vehicle owner or electric utility, the majority of vehicles were charged in the evening hours, coincident with typical utility peak demand. Given this baseline, The EV Project will demonstrate the effects of consumer charge control and grid-side charge management on electricity demand. This paper will outline further analyses which will be performed by eTec and INL to documenting driving and charging behavior of vehicles operated in a infrastructure-rich environment.

  20. Enhancing Earned Value (EV) Analysis Using Project Assessment & Reporting System (PARS II)- Road Show Presentation

    Broader source: Energy.gov [DOE]

    This presentation was provided by the DOE Office of Project Management Oversight and Assessments (formerly DOE Office of Acquisition and Project Management) in January 2013. It is about the Enhancing Earned Value (EV) Analysis Using Project Assessment & Reporting System (PARS II). PARS II is the Department’s official “System of Record” for capital asset project performance information. PARS II uses the same data as maintained in our contractors’ project management systems, so everyone from the Federal Project Director’s staff to the Secretary of Energy will have easy access to the same data.

  1. EV Everywhere: 10 Ways Communities Can Pave the Way for PEVs | Department

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansas Nuclear Profile 2010Mesoscopy and thermodynamics(Revised)EV Chargingof

  2. EV Everywhere: America's Plug-In Electric Vehicle Market Charges Forward

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansas Nuclear Profile 2010Mesoscopy and thermodynamics(Revised)EV Chargingof|

  3. EV Everywhere: Saving on Fuel and Vehicle Costs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeVehicleDepartment ofGraphics »DepartmentEERE201EV Everywhere:

  4. Where do Nissan Leaf drivers in The EV Project charge when they have the opportunity to charge at work?

    SciTech Connect (OSTI)

    John Smart; Don Scoffield

    2014-03-01

    This paper invesigates where Nissan Leaf drivers in the EV Project charge when they have the opportunity to charge at work. Do they charge at work, home, or some other location?

  5. Where do Chevrolet Volt drivers in The EV Project charge when they have the opportunity to charge at work?

    SciTech Connect (OSTI)

    John Smart; Don Scoffield

    2014-03-01

    This paper investigates where Chevy Volt drivers in the EV Project charge when they have the opportunity to charge at work. Do they charge at home, work, or some other location.

  6. The origin of 0.78 eV line of the dislocation related luminescence in silicon

    SciTech Connect (OSTI)

    Xiang Luelue; Li Dongsheng; Jin Lu; Yang Deren; Pivac, Branko

    2012-09-15

    In this paper, the 0.78 eV line of the dislocation related luminescence in the electron-irradiated silicon has been investigated. It is found that the 0.78 eV line only exists in float zone silicon samples, and its intensity could be largely enhanced by high temperature and long time annealing while no 0.78 eV line was found in Czochralski silicon. The activation energy of 0.78 eV line in floating-zone silicon is {approx}13 meV, indicating a different nature from that of D1/D2 lines which can be ascribed to specific reconstructed dislocations which could be easily affected by point defects and temperature.

  7. Electron-impact excitation of xenon at incident energies between 15 and 80 eV

    SciTech Connect (OSTI)

    Filipovic-acute-accent, D.; Marinkovic-acute-accent, B.; Pejcev, V.; Vuskovic-acute-accent, a.L.

    1988-01-15

    Normalized, absolute differential cross sections (DCS's) have been measured for the 20 lowest electronic states of xenon. Incident electron energies were 15, 20, 30, and 80 eV and the scattering angles ranged from 5/sup 0/ to 150/sup 0/. The energy resolution was 40 meV. Absolute elastic DCS's have been obtained by normalizing the relative values to the recently published absolute elastic DCS's by Register et al. (J. Phys. B 19, 1685 (1986)). Elastic-to-inelastic intensity ratios, at different incident energies for the 6s((3/2)/sub 1/ state were determined. These ratios were utilized as secondary standards to establish the absolute scale for the other inelastic processes in accordance with intensity ratios of lines in energy-loss spectra. The absolute inelastic DCS's were extrapolated to 0/sup 0/ and 180/sup 0/ and integrated to yield the integral cross sections (ICS's). A comparison of the present DCS's with the only available measurements at 20 eV impact energy shows satisfactory agreement in shape but considerable difference in absolute value.

  8. Dual baseline search for muon antineutrino disappearance at 0.1 eV²

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cheng, G.; Huelsnitz, W.; Aguilar-Arevalo, A. A.; Alcaraz-Aunion, J. L.; Brice, S. J.; Brown, B. C.; Bugel, L.; Catala-Perez, J.; Church, E. D.; Conrad, J. M.; et al

    2012-09-25

    The MiniBooNE and SciBooNE collaborations report the results of a joint search for short baseline disappearance of ?¯? at Fermilab’s Booster Neutrino Beamline. The MiniBooNE Cherenkov detector and the SciBooNE tracking detector observe antineutrinos from the same beam, therefore the combined analysis of their data sets serves to partially constrain some of the flux and cross section uncertainties. Uncertainties in the ?? background were constrained by neutrino flux and cross section measurements performed in both detectors. A likelihood ratio method was used to set a 90% confidence level upper limit on ?¯? disappearance that dramatically improves upon prior limits inmore »the ?m²=0.1–100 eV² region.« less

  9. Integrated Charger with Wireless Charging and Boost Function for PHEV and EV Applications

    SciTech Connect (OSTI)

    Chinthavali, Madhu Sudhan; Onar, Omer C; Campbell, Steven L

    2015-01-01

    Integrated charger topologies that have been researched so far with dc-dc converters and the charging functionality have no isolation in the system. Isolation is an important feature that is required for user interface systems that have grid connections and therefore is a major limitation that needs to be addressed along with the integrated functionality. The topology proposed in this paper is a unique and a first of its kind topology that integrates a wireless charging system and the boost converter for the traction drive system. The new topology is also compared with an on-board charger system from a commercial electric vehicle (EV). The ac-dc efficiency of the proposed system is 85.05% and the specific power and power density of the onboard components is ~455 W/kg and ~302 W/ .

  10. Dual baseline search for muon neutrino disappearance at 0.5 eV2 2 2

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mahn, K B.M.; Nakajima, Y; Aguilar-Arevalo, A A; Alcaraz-Aunion, J L; Anderson, C E; Bazarko, A O; Brice, S J; Brown, B C; Bugel, L; Cao, J; et al

    2011-06-01

    The SciBooNE and MiniBooNE collaborations report the results of a ?? disappearance search in the &Delta'm2 region of 0.5-40 eV2. The neutrino rate as measured by the SciBooNE tracking detectors is used to constrain the rate at the MiniBooNE Cherenkov detector in the first joint analysis of data from both collaborations. Two separate analyses of the combined data samples set 90% confidence level (CL) limits on ?? disappearance in the 0.5-40 eV2 ?m2 region, with an improvement over previous experimental constraints between 10 and 30 eV2

  11. A First Look at the Impact of Electric Vehicle Charging on the Electric Grid in the EV Project

    SciTech Connect (OSTI)

    Stephen L. Schey; John G. Smart; Don R. Scoffield

    2012-05-01

    ECOtality was awarded a grant from the U.S. Department of Energy to lead a large-scale electric vehicle charging infrastructure demonstration, called The EV Project. ECOtality has partnered with Nissan North America, General Motors, the Idaho National Laboratory, and others to deploy and collect data from over 5,000 Nissan LEAFsTM and Chevrolet Volts and over 10,000 charging systems in 18 regions across the United States. This paper summarizes usage of residential charging units in The EV Project, based on data collected through the end of 2011. This information is provided to help analysts assess the impact on the electric grid of early adopter charging of grid-connected electric drive vehicles. A method of data aggregation was developed to summarize charging unit usage by the means of two metrics: charging availability and charging demand. Charging availability is plotted to show the percentage of charging units connected to a vehicle over time. Charging demand is plotted to show charging demand on the electric gird over time. Charging availability for residential charging units is similar in each EV Project region. It is low during the day, steadily increases in evening, and remains high at night. Charging demand, however, varies by region. Two EV Project regions were examined to identify regional differences. In Nashville, where EV Project participants do not have time-of-use electricity rates, demand increases each evening as charging availability increases, starting at about 16:00. Demand peaks in the 20:00 hour on weekdays. In San Francisco, where the majority of EV Project participants have the option of choosing a time-of-use rate plan from their electric utility, demand spikes at 00:00. This coincides with the beginning of the off-peak electricity rate period. Demand peaks at 01:00.

  12. PHEV-EV Charger Technology Assessment with an Emphasis on V2G Operation

    SciTech Connect (OSTI)

    Kisacikoglu, Mithat C; Bedir, Abdulkadir; Ozpineci, Burak; Tolbert, Leon M

    2012-03-01

    More battery powered electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs) will be introduced to the market in 2011 and beyond. Since these vehicles have large batteries that need to be charged from an external power source or directly from the grid, their batteries, charging circuits, charging stations/infrastructures, and grid interconnection issues are garnering more attention. This report summarizes information regarding the batteries used in PHEVs, different types of chargers, charging standards and circuits, and compares different topologies. Furthermore, it includes a list of vehicles that are going to be in the market soon with information on their charging and energy storage equipment. A summary of different standards governing charging circuits and charging stations concludes the report. There are several battery types that are available for PHEVs; however, the most popular ones have nickel metal hydride (NiMH) and lithium-ion (Li-ion) chemistries. The former one is being used in current hybrid electric vehicles (HEVs), but the latter will be used in most of the PHEVs and EVs due to higher energy densities and higher efficiencies. The chargers can be classified based on the circuit topologies (dedicated or integrated), location of the charger (either on or off the vehicle), connection (conductive, inductive/wireless, and mechanical), electrical waveform (direct current (dc) or alternating current (ac)), and the direction of power flow (unidirectional or bidirectional). The first PHEVs typically will have dedicated, on-board, unidirectional chargers that will have conductive connections to the charging stations or wall outlets and will be charged using either dc or ac. In the near future, bidirectional chargers might also be used in these vehicles once the benefits of practical vehicle to grid applications are realized. The terms charger and charging station cause terminology confusion. To prevent misunderstandings, a more descriptive term of electric vehicle supply equipment (EVSE) is used instead of charging station. The charger is the power conversion equipment that connects the battery to the grid or another power source, while EVSE refers to external equipment between the grid or other power source and the vehicle. EVSE might include conductors, connectors, attachment plugs, microprocessors, energy measurement devices, transformers, etc. Presently, there are more than 40 companies that are producing EVSEs. There are several standards and codes regarding conductive and inductive chargers and EVSEs from the Society of Automotive Engineers (SAE), the Underwriter Laboratories (UL), the International Electrotechnical Commission (IEC), and the National Electric Code (NEC). The two main standards from SAE describe the requirements for conductive and inductive coupled chargers and the charging levels. For inductive coupled charging, three levels are specified: Level 1 (120 V and 12 A, single-phase), Level 2 (208 V-240 V and 32 A, single-phase), and Level 3 (208-600 V and 400 A, three-phase) . The standard for the conductive-coupled charger also has similar charging ratings for Levels 1 and 2, but it allows higher current ratings for Level 2 charging up to 80 A. Level 3 charging for this standard is still under development and considers dc charging instead of three-phase ac. More details in these areas and related references can be found in this Oak Ridge National Laboratory (ORNL) report on PHEV-EV charger technology assessment.

  13. 0.7-eV GaInAs Junction for a GaInP/GaAs/GaInAs(1eV)/GaInAs(0.7eV) Four-Junction Solar Cell

    SciTech Connect (OSTI)

    Friedman, D. J.; Geisz, J. F.; Norman, A. G.; Wanlass, M. W.; Kurtz, S. R.

    2006-01-01

    We discuss recent developments in III-V multijunction solar cells, focusing on adding a fourth junction to the Ga{sub 0.5}In{sub 0.5} P/GaAs/Ga{sub 0.75}In{sub 0.25}As inverted three-junction cell. This cell, grown inverted on GaAs so that the lattice-mismatched Ga{sub 0.75}In{sub 0.25}As third junction is the last one grown, has demonstrated 38% efficiency, and 40% is likely in the near future. To achieve still further gains, a lower-bandgap Ga{sub x}In{sub 1-x}As fourth junction could be added to the three-junction structure for a four-junction cell whose efficiency could exceed 45% under concentration. Here, we present the initial development of the Ga{sub x}In{sub 1-x}As fourth junction. Junctions of various bandgaps ranging from 0.88 to 0.73 eV were grown, in order to study the effect of the different amounts of lattice mismatch. At a bandgap of 0.88 eV, junctions were obtained with very encouraging {approx}80% quantum efficiency, 57% fill factor, and 0.36 eV open-circuit voltage. The device performance degrades with decreasing bandgap (i.e., increasing lattice mismatch). We model the four-junction device efficiency vs. fourth junction bandgap to show that an 0.7-eV fourth-junction bandgap, while optimal if it could be achieved in practice, is not necessary; an 0.9-eV bandgap would still permit significant gains in multijunction cell efficiency while being easier to achieve than the lower-bandgap junction.

  14. High Resolution Angle Resolved Photoemission with Tabletop 11eV Laser

    E-Print Network [OSTI]

    He, Yu; Yi, Ming; Yang, Shuolong; Liu, Zhongkai; Lee, James; Chen, Sudi; Rebec, Slavko; Leuenberger, Dominik; Zong, Alfred; Jefferson, Michael; Moore, Robert; Kirchmann, Patrick; Merriam, Andrew; Shen, Zhixun

    2015-01-01

    We developed a table-top vacuum ultraviolet (VUV) laser with $113.778$nm wavelength (10.897eV) and demonstrated its viability as a photon source for high resolution angle-resolved photoemission spectroscopy (ARPES). This sub-nanosecond pulsed VUV laser operates at a repetition rate of 10MHz, provides a flux of 2$\\times$10$^{12}$ photons/second, and enables photoemission with energy and momentum resolutions better than 2meV and 0.012\\AA$^{-1}$, respectively. Space-charge induced energy shifts and spectral broadenings can be reduced below 2meV. The setup reaches electron momenta up to 1.2\\AA$^{-1}$, granting full access to the first Brillouin zone of most materials. Control over the linear polarization, repetition rate, and photon flux of the VUV source facilitates ARPES investigations of a broad range of quantum materials, bridging the application gap between contemporary low energy laser-based ARPES and synchrotron-based ARPES. We describe the principles and operational characteristics of this source, and sho...

  15. Cosmology based on $f(R)$ gravity with ${\\cal O}(1)$ eV sterile neutrino

    E-Print Network [OSTI]

    A. S. Chudaykin; D. S. Gorbunov; A. A. Starobinsky; R. A. Burenin

    2015-05-13

    We address the cosmological role of an additional ${\\cal O}(1)$ eV sterile neutrino in modified gravity models. We confront the present cosmological data with predictions of the FLRW cosmological model based on a variant of $f(R)$ modified gravity proposed by one of the authors previously. This viable cosmological model which deviation from general relativity with a cosmological constant $\\Lambda$ decreases as $R^{-2n}$ for large, but not too large values of the Ricci scalar $R$ provides an alternative explanation of present dark energy and the accelerated expansion of the Universe. Various up-to-date cosmological data sets exploited include Planck CMB anisotropy, CMB lensing potential, BAO, cluster mass function and Hubble constant measurements. We find that the CMB+BAO constraints strongly the sum of neutrino masses from above. This excludes values $\\lambda\\sim 1$ for which distinctive cosmological features of the model are mostly pronounced as compared to the $\\Lambda$CDM model, since then free streaming damping of perturbations due to neutrino rest masses is not sufficient to compensate their extra growth occurring in $f(R)$ gravity. Thus, we obtain $\\lambda>8.2$ ($2\\sigma$) with cluster systematics and $\\lambda>9.4$ ($2\\sigma$) without that. In the latter case we find for the sterile neutrino mass $0.47\\,\\,\\rm{eV}$$\\,<\\,$$m_{\

  16. Production data on 0.55 eV InGaAs thermophotovoltaic cells

    SciTech Connect (OSTI)

    Wojtzuk, S.; Colter, P.; Charache, G.; Campbell, B.

    1996-05-01

    Low bandgap 0.55 eV (2.25 {micro}m cutoff wavelength) indium gallium arsenide (In{sub 0.72}Ga{sub 0.28}As) thermophotovoltaic (TPV) cells use much more of the long wavelength energy emitted from low temperature (< 1,200 C) thermal sources than either Si or GaSb cells. Data are presented on a statistically significant number (2,500) of these TPV cells, indicating the performance obtainable in large numbers of cells. This data should be useful in the design and modeling of TPV system performance. At 1.2 A/cm{sup 2} short-circuit current, an average open-circuit voltage of 283 mV is obtained with a 60% fill factor. The peak external quantum efficiency for uncoated cells is 65% and is over 50% from 1.1 to 2.2 {micro}m. Internal quantum efficiency is over 76% in this range assuming an estimated 34% reflectance loss.

  17. Performance status of 0.55 eV InGaAs thermophotovoltaic cells

    SciTech Connect (OSTI)

    Wojtczuk, S.; Colter, P.; Charache, G.; DePoy, D.

    1998-10-01

    Data on {approximately} 0.55 eV In{sub 0.72}Ga{sub 0.28}As cells with an average open-circuit voltage (Voc) of 298 mV (standard deviation 7 mV) at an average short-circuit current density of 1.16 A/cm{sup 2} (sdev. 0.1 A/cm{sup 2}) and an average fill-factor of 61.6% (sdev. 2.8%) is reported. The absorption coefficient of In{sub 0.72}Ga{sub 0.28}As was measured by a differential transmission technique. The authors use a numerical integration of the absorption data to determine the radiative recombination coefficient for In{sub 0.72}Ga{sub 0.28}As. Using this absorption data and simple one-dimensional analytical formula the above cells are modeled. The models show that the cells may be limited more by Auger recombination rather than Shockley-Read-Hall (SRH) recombination at dislocation centers caused by the 1.3% lattice mismatch of the cell to the host InP wafer.

  18. Collisional-radiative modeling of tungsten at temperatures of 1200–2400 eV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Colgan, James; Fontes, Christopher; Zhang, Honglin; Abdallah, Jr., Joseph

    2015-04-30

    We discuss new collisional-radiative modeling calculations of tungsten at moderate temperatures of 1200 to 2400 eV. Such plasma conditions are relevant to ongoing experimental work at ASDEX Upgrade and are expected to be relevant for ITER. Our calculations are made using the Los Alamos National Laboratory (LANL) collisional-radiative modeling ATOMIC code. These calculations formed part of a submission to the recent NLTE-8 workshop that was held in November 2013. This series of workshops provides a forum for detailed comparison of plasma and spectral quantities from NLTE collisional-radiative modeling codes. We focus on the LANL ATOMIC calculations for tungsten that weremore »submitted to the NLTE-8 workshop and discuss different models that were constructed to predict the tungsten emission. In particular, we discuss comparisons between semi-relativistic configuration-average and fully relativistic configuration-average calculations. We also present semi-relativistic calculations that include fine-structure detail, and discuss the difficult problem of ensuring completeness with respect to the number of configurations included in a CR calculation.« less

  19. EV/PHEV Bidirectional Charger Assessment for V2G Reactive Power Operation

    SciTech Connect (OSTI)

    Kisacikoglu, Mithat C; Ozpineci, Burak; Tolbert, Leon M

    2013-01-01

    This paper presents a summary of the available single-phase ac-dc topologies used for EV/PHEV, level-1 and -2 on-board charging and for providing reactive power support to the utility grid. It presents the design motives of single-phase on-board chargers in detail and makes a classification of the chargers based on their future vehicle-to-grid usage. The pros and cons of each different ac-dc topology are discussed to shed light on their suitability for reactive power support. This paper also presents and analyzes the differences between charging-only operation and capacitive reactive power operation that results in increased demand from the dc-link capacitor (more charge/discharge cycles and increased second harmonic ripple current). Moreover, battery state of charge is spared from losses during reactive power operation, but converter output power must be limited below its rated power rating to have the same stress on the dc-link capacitor.

  20. Electron impact ionization: A new parameterization for 100 eV to 1 MeV electrons

    E-Print Network [OSTI]

    Jackman, Charles H.

    Electron impact ionization: A new parameterization for 100 eV to 1 MeV electrons Xiaohua Fang,1 of the ionization rate in the Earth's atmosphere due to precipitating energetic electrons. Precipitating electrons the atmosphere. In this study, two electron transport models (whose validity has been verified by observations

  1. Electron nuclear dynamics of proton collisions with methane at 30 eV D. Jacquemin,a)

    E-Print Network [OSTI]

    Morales, Jorge Alberto

    Electron nuclear dynamics of proton collisions with methane at 30 eV D. Jacquemin,a) J. A. Morales nuclear dynamics END . The results from this theoretical approach, which does not invoke the Born­Oppenheimer approximation and does not impose any constraints on the nuclear dynamics, are compared to the results from time

  2. Majorana Neutrinos, Neutrino Mass Spectrum and the || ~ 0.001 eV Frontier in Neutrinoless Double Beta Decay

    E-Print Network [OSTI]

    S. Pascoli; S. T. Petcov

    2007-11-30

    If future neutrino oscillation experiments show that the neutrino mass spectrum is with normal ordering, m1 | > 0.01 eV give negative results, the next frontier in the quest for neutrinoless double beta-decay will correspond to || ~ 0.001 eV. Assuming that massive neutrinos are Majorana particles and their exchange is the dominant mechanism generating neutrinoless double beta-decay, we analise the conditions under which ||, in the case of three neutrino mixing and neutrino mass spectrum with normal ordering, would satisfy || > 0.001 eV. We consider the specific cases of i) normal hierarchical neutrino mass spectrum, ii) of relatively small value of the CHOOZ angle theta13 as well as iii) the general case of spectrum with normal ordering, partial hierarchy and a value of theta13 close to the existing upper limit. We study the ranges of the lightest neutrino mass m1 and/or of sin^2 theta13, for which ||> 0.001 eV and discuss the phenomenological implications of such scenarios. We provide also an estimate of || when the three neutrino masses and the neutrino mixing originate from neutrino mass term of Majorana type for the (left-handed) flavour neutrinos and m1 Ue1^2 + m2 U_e2^2 + m3 Ue3^2 =0, but there does not exist a symmetry which forbids the neutrinoless double beta-decay.

  3. Logistics Network Models Instructor: Dr. Ali Akgunduz, Office: EV 4.217, Tel: 514-848-2424 ext 3179

    E-Print Network [OSTI]

    Akgunduz, Ali

    1 INDU 498 Logistics Network Models Instructor: Dr. Ali Akgunduz, Office: EV 4.217, Tel: 514-848-2424 ext 3179 Text Book: 1. Introduction to Logistics Systems Planning and Control, G. Ghiani, G. Laporte networks Ground carriers Logistic issues for companies 2 SUPPLY CHAIN MODELS Demand chains Demand

  4. What Kind of Charging Infrastructure Do Chevrolet Volt Drivers in The EV Project Use and When Do They Use It?

    SciTech Connect (OSTI)

    Shawn Salisbury

    2014-09-01

    This document will present information describing the charging behavior of Chevrolet Volts that were enrolled in the EV Project. It will included aggregated data from more than 1,800 vehicles regarding locations, power levels, and time-of-day of charging events performed by those vehicles. This document will be published to the INL AVTA website.

  5. Q & A with Chandra Ford

    E-Print Network [OSTI]

    UCLA Center for the Study of Women

    2013-01-01

    the multiple roles that racism plays in affecting healthinstitutional and structural racism? To answer thesean understanding of the types of racism prevalent in today’s

  6. Mike Ford | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (BillionProvedTravelInformation Resources»Jim1 ENVIRONMENTAL MANAGEMENTJuly 9,0August 7, 2008Mike

  7. Imaging the heliosphere using neutral atoms from solar wind energy down to 15 eV

    SciTech Connect (OSTI)

    Galli, A.; Wurz, P.; Fuselier, S. A.; McComas, D. J.; Bzowski, M.; Sokó?, J. M.; Kubiak, M. A.; Möbius, E.

    2014-11-20

    We study the spatial and temporal distribution of hydrogen energetic neutral atoms (ENAs) from the heliosheath observed with the IBEX-Lo sensor of the Interstellar Boundary EXplorer (IBEX) from solar wind energies down to the lowest available energy (15 eV). All available IBEX-Lo data from 2009 January until 2013 June were included. The sky regions imaged when the spacecraft was outside of Earth's magnetosphere and when the Earth was moving toward the direction of observation offer a sufficient signal-to-noise ratio even at very low energies. We find that the ENA ribbon—a 20° wide region of high ENA intensities—is most prominent at solar wind energies whereas it fades at lower energies. The maximum emission in the ribbon is located near the poles for 2 keV and closer to the ecliptic plane for energies below 1 keV. This shift is an evidence that the ENA ribbon originates from the solar wind. Below 0.1 keV, the ribbon can no longer be identified against the globally distributed ENA signal. The ENA measurements in the downwind direction are affected by magnetospheric contamination below 0.5 keV, but a region of very low ENA intensities can be identified from 0.1 keV to 2 keV. The energy spectra of heliospheric ENAs follow a uniform power law down to 0.1 keV. Below this energy, they seem to become flatter, which is consistent with predictions. Due to the subtraction of local background, the ENA intensities measured with IBEX agree with the upper limit derived from Ly? observations.

  8. Molecular dynamics simulations of low-energy ,,25200 eV... argon ion interactions with silicon surfaces: Sputter yields and product

    E-Print Network [OSTI]

    Economou, Demetre J.

    Molecular dynamics simulations of low-energy ,,25­200 eV... argon ion interactions with silicon surfaces: Sputter yields and product formation pathways Nawoyuki A. Kubota and Demetre J. Economoua) Plasma energy ( 200 eV ion interactions with surfaces. In particular, atomic layer etching requires etching

  9. Espacios Vectoriales Ev. En todo el curso K es un cuerpo. Podeis pensar que K = Q, K = R o K = C.

    E-Print Network [OSTI]

    Ramírez-Ros, Rafael

    . Un conjunto no vacio E es un K-espacio vectorial (o abreviadamente, un K-ev) cuando existan dos una cl de v1 y v2, pero u no. Un subconjunto no vacio F de un K-ev E es un subespacio vectorial (o

  10. On evolution of Primary Cosmic Ray mass composition in the energy region $10^{14}-10^{16}$ eV

    E-Print Network [OSTI]

    Yu. F. Novoseltsev; G. M. Vereshkov

    2013-11-16

    A new method of determining Primary Cosmic Ray mass composition is proposed. The method is based on quasi-localization of the integral equation for the Extensive Air Showers spectrum versus the total number of high energy muons ($E_\\mu \\geqslant 235$ GeV) and an expansion of the experimentally measured spectrum in spectra of five group of primary nuclei. The cosmic ray mass composition is established in the energy region $10^{14}-10^{16}$ eV. In the region $10^{15}-10^{16}$ eV our analysis points to a lightening of the mass composition from $p+\\alpha \\simeq 0.54,\\ \\langle \\ln A \\rangle \\simeq 1.97$ to $p+\\alpha \\simeq 0.69,\\ \\langle \\ln A \\rangle\\simeq 1.56$.

  11. Final Report of a CRADA Between Pacific Northwest National Laboratory and the Ford Motor Company (CRADA No. PNNL/265): “Deactivation Mechanisms of Base Metal/Zeolite Urea Selective Catalytic Reduction Materials, and Development of Zeolite-Based Hydrocarbon Adsorber Materials”

    SciTech Connect (OSTI)

    Gao, Feng; Kwak, Ja Hun; Lee, Jong H.; Tran, Diana N.; Peden, Charles HF; Howden, Ken; Cheng, Yisun; Lupescu, Jason; Cavattaio, Giovanni; Lambert, Christine; McCabe, Robert W.

    2013-02-14

    Reducing NOx emissions and particulate matter (PM) are primary concerns for diesel vehicles required to meet current LEV II and future LEV III emission standards which require 90+% NOx conversion. Currently, urea SCR as the NOx reductant and a Catalyzed Diesel Particulate Filter (CDPF) are being used for emission control system components by Ford Motor Company for 2010 and beyond diesel vehicles. Because the use of this technology for vehicle applications is new, the relative lack of experience makes it especially challenging to satisfy durability requirements. Of particular concern is being able to realistically simulate actual field aging of the catalyst systems under laboratory conditions. This is necessary both as a rapid assessment tool for verifying improved performance and certifiability of new catalyst formulations, and to develop a good understanding of deactivation mechanisms that can be used to develop improved catalyst materials. In addition to NOx and PM, the hydrocarbon (HC) emission standards are expected to become much more stringent during the next few years. Meanwhile, the engine-out HC emissions are expected to increase and/or be more difficult to remove. Since HC can be removed only when the catalyst becomes warm enough for its oxidation, three-way catalyst (TWC) and diesel oxidation catalyst (DOC) formulations often contain proprietary zeolite materials to hold the HC produced during the cold start period until the catalyst reaches its operating temperature (e.g., >200°C). Unfortunately, much of trapped HC tends to be released before the catalyst reaches the operating temperature. Among materials effective for trapping HC during the catalyst warm-up period, siliceous zeolites are commonly used because of their high surface area and high stability under typical operating conditions. However, there has been little research on the physical properties of these materials related to the adsorption and release of various hydrocarbon species found in the engine exhaust. For these reasons, automakers and engine manufacturers have difficulty improving their catalytic converters for meeting the stringent HC emission standards. In this collaborative program, scientists and engineers in the Institute for Integrated Catalysis at Pacific Northwest National Laboratory and at Ford Motor Company have investigated laboratory- and engine-aged SCR catalysts, containing mainly base metal zeolites. These studies are leading to a better understanding of various aging factors that impact the long-term performance of SCR catalysts and improve the correlation between laboratory and engine aging, saving experimental time and cost. We have also studied materials effective for the temporary storage of HC species during the cold-start period. In particular, we have examined the adsorption and desorption of various HC species produced during the combustion with different fuels (e.g., gasoline, E85, diesel) over potential HC adsorber materials, and measured the kinetic parameters to update Ford’s HC adsorption model. Since this CRADA has now been completed, in this final report we will provide brief summaries of most of the work carried out on this CRADA over the last several years.

  12. EV Charging Through Wireless Power Transfer: Analysis of Efficiency Optimization and Technology Trends

    SciTech Connect (OSTI)

    Miller, John M; Rakouth, Heri; Suh, In-Soo

    2012-01-01

    This paper is aimed at reviewing the technology trends for wireless power transfer (WPT) for electric vehicles (EV). It also analyzes the factors affecting its efficiency and describes the techniques currently used for its optimization. The review of the technology trends encompasses both stationary and moving vehicle charging systems. The study of the stationary vehicle charging technology is based on current implementations and on-going developments at WiTricity and Oak Ridge National Lab (ORNL). The moving vehicle charging technology is primarily described through the results achieved by the Korean Advanced Institute of Technology (KAIST) along with on-going efforts at Stanford University. The factors affecting the efficiency are determined through the analysis of the equivalent circuit of magnetic resonant coupling. The air gap between both transmitting and receiving coils along with the magnetic field distribution and the relative impedance mismatch between the related circuits are the primary factors affecting the WPT efficiency. Currently the industry is looking at an air gap of 25 cm or below. To control the magnetic field distribution, Kaist has recently developed the Shaped Magnetic Field In Resonance (SMFIR) technology that uses conveniently shaped ferrite material to provide low reluctance path. The efficiency can be further increased by means of impedance matching. As a result, Delphi's implementation of the WiTricity's technology exhibits a WPT efficiency above 90% for stationary charging while KAIST has demonstrated a maximum efficiency of 83% for moving vehicle with its On Line Vehicle (OLEV) project. This study is restricted to near-field applications (short and mid-range) and does not address long-range technology such as microwave power transfer that has low efficiency as it is based on radiating electromagnetic waves. This paper exemplifies Delphi's work in powertrain electrification as part of its innovation for the real world program geared toward a safer, greener and more connected driving. Moreover, it draws from and adds to Dr. Andrew Brown Jr.'s SAE books 'Active Safety and the Mobility Industry', 'Connectivity and Mobility Industry', and 'Green Technologies and the Mobility Industry'. Magnetic resonant coupling is the foundation of modern wireless power transfer. Its efficiency can be controlled through impedance matching and magnetic field shaping. Current implementations use one or both of these control methods and enable both stationary and mobile charging with typical efficiency within the 80% and 90% range for an air gap up to 25 cm.

  13. PHEV/EV Li-Ion Battery Second-Use Project, NREL (National Renewable Energy Laboratory) (Poster)

    SciTech Connect (OSTI)

    Newbauer, J.; Pesaran, A.

    2010-05-01

    Plug-in hybrid electric vehicles (PHEVs) and full electric vehicles (Evs) have great potential to reduce U.S. dependence on foreign oil and emissions. Battery costs need to be reduced by ~50% to make PHEVs cost competitive with conventional vehicles. One option to reduce initial costs is to reuse the battery in a second application following its retirement from automotive service and offer a cost credit for its residual value.

  14. Photoluminescence study of the 1.047 eV emission in GaN K. Pressela)

    E-Print Network [OSTI]

    Nabben, Reinhard

    GaN/ AlGaN blue green light emitting diode, which has a much higher quantum efficiency than the SiC blue light emitting diode, became possible.2 Presently the wide bandgap semi- conductor GaN is intensively. Especially the 1.19 eV is very intense. Thus one can think of developing a light emitting diode in the near

  15. How to deal with PCR composition problem at $E_0 \\gtrsim 10^{17}$ eV

    E-Print Network [OSTI]

    Galkin, V I; Bakhromzod, R; Mukumov, A

    2015-01-01

    Basic ideas of muon tracker technique for the solution of primary cosmic ray (PCR) composition problem in the energy range $10^{17}-10^{18}$ eV are presented. The approach uses MC simulation data made with CORSIKA6.990 for "Pamir-XXI" site conditions. Similar technology can certainly be developed for other observation levels and interaction models. One can probably extend it to much higher primary energies.

  16. Demonstration of Alternative Fuel, Light and Heavy Duty Vehicles in State and Municipal Vehicle Fleets

    SciTech Connect (OSTI)

    Kennedy, John H.; Polubiatko, Peter; Tucchio, Michael A.

    2002-02-06

    This project involved the purchase of two Compressed Natural Gas School Buses and two electric Ford Rangers to demonstrate their viability in a municipal setting. Operational and maintenance data were collected for analysis. In addition, an educational component was undertaken with middle school children. The children observed and calculated how electric vehicles could minimize pollutants through comparison to conventionally powered vehicles.

  17. Stibine/arsine monitoring during EV operation: summary report on preliminary tests at ANL and at LILCO

    SciTech Connect (OSTI)

    Loutfy, R.O.; Graczyk, D.G.; Varma, R.; Hayes, E.R.; Williams, F.L.; Yao, N.P.

    1981-02-01

    A series of tests was performed to monitor the evolution and dispersal of stibine and arsine from the lead-acid propulsion batteries in three different Electra-Van Model 600 vehicles operated by Argonne National Laboratory (ANL) and by the Long Island Lighting Company (LILCO). Ambient air was sampled at several locations inside the vehicles and in the garages where testing was done during charge, equalization charge, and on-the-road discharge operations. In addition, direct sampling of cell off-gases was performed with the ANL van. Interpretation of the individual test results was carried out in the context of vehicle characteristics, sampling protocol, and operating conditions. The test results demonstrated that under the test conditions only small concentrations of stibine and arsine accumulated in occupiable work areas. Measured concentrations in the vehicles and in the garages never exceeded 25% of the Threshold Limit Value-Time Weighted Average (TLV-TWA) standards. A threshold voltage for hydride production, at about 2.45 V per cell, was reflected in the results of the experiments performed during charging of the batteries. Hydride evolution rates were lower during equalization charge than during the overcharge portion of a charge cycle when the on-board charger was used in a normal operating mode. A delayed release of the metal hydrides from the battery cells was observed during on-the-road operation of the vehicles. The implications of these observations for electric vehicle (EV) operation are discussed. An engineering analysis of the generation and dispersal of the metal hydrides is presented, and equations are derived for estimating minimum ventilation requirements for the EV battery compartment and for garages housing EV operations. Recommendations are made regarding safe handling procedures for battery off-gases, procedures for conducting stibine/arsine monitoring tests and future work.

  18. A Measurement of the Flux of Cosmic Ray Iron at 5 x 10^13 eV

    E-Print Network [OSTI]

    J. Clem; W. Droege; P. A. Evenson; H. Fischer; G. Green; D. Huber; H. Kunow; D. Seckel

    2001-03-23

    We present results from the initial flight of our Balloon Air CHerenkov (BACH) payload. BACH detects air Cherenkov radiation from cosmic ray nuclei as coincident flashes in two optical modules. The flight (dubbed PDQ BACH) took place on April 22, 1998 from Ft. Sumner, New Mexico. During an exposure of 2.75 hours, with a typical threshold energy for iron nuclei of 2.2$\\times10^{13}$ eV, we observed several events cleanly identifiable as iron group nuclei. Analysis of the data yields a new flux measurement that is fully consistent with that reported by other investigations.

  19. Experimental search for solar hidden photons in the eV energy range using kinetic mixing with photons

    E-Print Network [OSTI]

    T. Mizumoto; R. Ohta; T. Horie; J. Suzuki; Y. Inoue; M. Minowa

    2013-06-18

    We have searched for solar hidden photons in the eV energy range using a dedicated hidden photon detector. The detector consisted of a parabolic mirror with a diameter of 500mm and a focal length of 1007mm installed in a vacuum chamber, and a photomultiplier tube at its focal point. The detector was attached to the Tokyo axion helioscope, Sumico which has a mechanism to track the sun. From the result of the measurement, we found no evidence for the existence of hidden photons and set a limit on the photon-hidden photon mixing parameter \\chi depending on the hidden photon mass m_{\\gamma '}.

  20. Mitsubishi iMiEV: An Electric Mini-Car in NREL's Advanced Technology Vehicle Fleet (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    This fact sheet highlights the Mitsubishi iMiEV, an electric mini-car in the advanced technology vehicle fleet at the National Renewable Energy Laboratory (NREL). In support of the U.S. Department of Energy's fast-charging research efforts, NREL engineers are conducting charge and discharge performance testing on the vehicle. NREL's advanced technology vehicle fleet features promising technologies to increase efficiency and reduce emissions without sacrificing safety or comfort. The fleet serves as a technology showcase, helping visitors learn about innovative vehicles that are available today or are in development. Vehicles in the fleet are representative of current, advanced, prototype, and emerging technologies.

  1. A Prototype PCI-based Data Acquisition System for Cosmic Ray Detection Below 10^18 eV

    E-Print Network [OSTI]

    Ben-Zvi, S Y; Bán, J; Sippach, W

    2006-01-01

    A prototype flash analog-to-digital readout system for cosmic ray detection at energies below 10^18 eV has been designed and tested at Columbia University Nevis Laboratories. The electronics consist of an FADC module that digitizes 16 photomultipliers at 40 MHz with 14-bit dynamic range. The module is read out to a PC (running Linux) through a PCI interface. Taking advantage of the large bandwidth provided by the PCI bus, we have implemented a software-based data acquisition system. This note describes the software and electronics, as well as preliminary tests carried out using a prototype FADC module.

  2. A Prototype PCI-based Data Acquisition System for Cosmic Ray Detection Below 10^18 eV

    E-Print Network [OSTI]

    S. BenZvi; S. Westerhoff; J. Ban; W. Sippach

    2006-03-28

    A prototype flash analog-to-digital readout system for cosmic ray detection at energies below 10^18 eV has been designed and tested at Columbia University Nevis Laboratories. The electronics consist of an FADC module that digitizes 16 photomultipliers at 40 MHz with 14-bit dynamic range. The module is read out to a PC (running Linux) through a PCI interface. Taking advantage of the large bandwidth provided by the PCI bus, we have implemented a software-based data acquisition system. This note describes the software and electronics, as well as preliminary tests carried out using a prototype FADC module.

  3. Experimental search for solar hidden photons in the eV energy range using kinetic mixing with photons

    SciTech Connect (OSTI)

    Mizumoto, T. [Department of Physics, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502 (Japan); Ohta, R.; Horie, T.; Suzuki, J.; Minowa, M. [Department of Physics, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Inoue, Y., E-mail: mizumoto@cr.scphys.kyoto-u.ac.jp, E-mail: comic@icepp.s.u-tokyo.ac.jp, E-mail: horiemon@icepp.s.u-tokyo.ac.jp, E-mail: jsuzuki@icepp.s.u-tokyo.ac.jp, E-mail: berota@icepp.s.u-tokyo.ac.jp, E-mail: minowa@phys.s.u-tokyo.ac.jp [International Center for Elementary Particle Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2013-07-01

    We have searched for solar hidden photons in the eV energy range using a dedicated hidden photon detector. The detector consisted of a parabolic mirror with a diameter of 500 mm and a focal length of 1007 mm installed in a vacuum chamber, and a photomultiplier tube at its focal point. The detector was attached to the Tokyo axion helioscope, Sumico which has a mechanism to track the sun. From the result of the measurement, we found no evidence for the existence of hidden photons and set a limit on the photon-hidden photon mixing parameter ? depending on the hidden photon mass m{sub ?'}.

  4. A First Preliminary Look: Are Corridor Charging Stations Used to Extend the Range of Electric Vehicles in The EV Project?

    SciTech Connect (OSTI)

    John Smart

    2013-01-01

    A preliminary analysis of data from The EV Project was performed to begin answering the question: are corridor charging stations used to extend the range of electric vehicles? Data analyzed were collected from Blink brand electric vehicle supply equipment (EVSE) units based in California, Washington, and Oregon. Analysis was performed on data logged between October 1, 2012 and January 1, 2013. It should be noted that as additional AC Level 2 EVSE and DC fast chargers are deployed, and as drivers become more familiar with the use of public charging infrastructure, future analysis may have dissimilar conclusions.

  5. How to use Electric Vehicle (EV) Charging Stations at Mason Charging stations are located in the visitor section of the Mason Pond, Shenandoah, and Rappahannock

    E-Print Network [OSTI]

    these instructions to be able to use the charging stations here on campus. 1) You must register with ChargePoint. https://www.chargepoint.com/ 2) EVs must be registered under your account and you must have a valid

  6. Temperature dependence of mean number of of e-h pairs per eV of x-ray energy deposit

    E-Print Network [OSTI]

    values very close to this, for example 1.12 eV (commonly) and 1.107 eV (Handbook of Chemistry and Physics Paper Material a Plotted? w (130 K) w (170 K) Comments Klein 68 [5] Many 14/5 Yes 0.099 0.081 Theory.87, Ryan (73) a = 2.77, Ryan (73) EG&G catalog Figure 1. w(T) for selected values of a. A list of values

  7. Change of primary cosmic radiation nuclear composition in the energy range 10^{15} - 10^{17} eV

    E-Print Network [OSTI]

    T. T. Barnaveli; T. T. Barnaveli; A. P. Chubenko; N. A. Eristavi; I. V. Khaldeeva; N. M. Nesterova; Yu. G. Verbetsky

    2002-08-14

    The dependence E_h (N_e) of Extensive Air Shower (EAS) hadronic component energy flux on the number N_e of particles in EAS is investigated in the primary energy range of the order of 10^{15} - 10^{17} eV. The work was aimed at checking the existence of irregularities of E_h (N_e)/N_e behavior at these energies in several independent experiments. The investigation is carried out using large statistical material obtained at different configurations of experimental apparatus and under different triggering conditions. The existence of irregularities of E_h (N_e)/N_e behavior in the region Ne > 2*10^6 is confirmed. These irregularities have the character of sharp deeps and are located near the same values of N_e regardless of the experimental material and selection conditions used. So, at recent stage of research the existence of these irregularities of E_h (N_e)/N_e behavior in the range of N_e > 2*10^6 may be regarded as reliably established. This fact supports our earlier conclusion on the existence of primary cosmic radiation (PCR) nuclei spectra cutoff effect in the primary energy region 10^{15} - 10^{17} eV.

  8. Cosmic rays: the spectrum and chemical composition from $10^{10}$ to $10^{20}$ eV

    E-Print Network [OSTI]

    Peixoto, C J Todero; Biermann, Peter L

    2015-01-01

    The production of energetic particles in the universe remains one of the great mysteries of modern science. The mechanisms of acceleration in astrophysical sources and the details about the propagation through the galactic and extragalactic media are still to be defined. In recent years, the cosmic ray flux has been measured with high precision in the energy range from \\energy{10} to \\energyEV{20.5} by several experiments using different techniques. In some energy ranges, it has been possible to determine the flux of individual elements (hydrogen to iron nuclei). This paper explores an astrophysical scenario in which only our Galaxy and the radio galaxy Cen A produce all particles measured on Earth in the energy range from \\energy{10} to \\energyEV{20.5}. Data from AMS-02, CREAM, KASCADE, KASCADE-Grande and the Pierre Auger Observatories are considered. The model developed here is able to describe the total and individual particle flux of all experiments considered. It is shown that the theory used here is abl...

  9. Compact focusing spectrometer: Visible (1 eV) to hard x-rays (200 keV)

    SciTech Connect (OSTI)

    Baronova, E. O.; Stepanenko, A. M.; Pereira, N. R.

    2014-11-15

    A low-cost spectrometer that covers a wide range of photon energies can be useful to teach spectroscopy, and for simple, rapid measurements of the photon spectrum produced by small plasma devices. The spectrometer here achieves its wide range, nominally from 1 eV to 200 keV, with a series of spherically and cylindrically bent gratings or crystals that all have the same shape and the same radius of curvature; they are complemented by matching apertures and diagnostics on the Rowland circle that serves as the circular part of the spectrometer's vacuum vessel. Spectral lines are easily identified with software that finds their positions from the dispersion of each diffractive element and the known energies of the lines.

  10. Neutron resonance spectroscopy of {sup 106}Pd and {sup 108}Pd from 20 to 2000 eV

    SciTech Connect (OSTI)

    Crawford, B.E.; Roberson, N.R. [Duke University, Durham, North Carolina 27708 and Triangle Universities Nuclear Laboratory, Durham, North Carolina 27708-0308 (United States)] [Duke University, Durham, North Carolina 27708 and Triangle Universities Nuclear Laboratory, Durham, North Carolina 27708-0308 (United States); Bowman, J.D.; Knudson, J.N.; Penttilae, S.I.; Seestrom, S.J.; Yuan, V.W. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)] [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Delheij, P.P. [TRIUMF, Vancouver, British Columbia, V6T 2A3 (CANADA)] [TRIUMF, Vancouver, British Columbia, V6T 2A3 (CANADA); Haseyama, T.; Masaike, A.; Matsuda, Y. [Physics Department, Kyoto University, Kyoto 606-01 (Japan)] [Physics Department, Kyoto University, Kyoto 606-01 (Japan); Lowie, L.Y.; Mitchell, G.E.; Stephenson, S.L. [North Carolina State University, Raleigh, North Carolina 27695-8202 and Triangle Universities Nuclear Laboratory, Durham, North Carolina 27708-0308 (United States)] [North Carolina State University, Raleigh, North Carolina 27695-8202 and Triangle Universities Nuclear Laboratory, Durham, North Carolina 27708-0308 (United States); Postma, H. [University of Technology, Delft, 2600 GA (The Netherlands)] [University of Technology, Delft, 2600 GA (The Netherlands); Sharapov, E.I. [Joint Institute for Nuclear Research, 141980 Dubna (Russia)] [Joint Institute for Nuclear Research, 141980 Dubna (Russia)

    1998-08-01

    Parity nonconserving asymmetries have been measured in p-wave resonances of {sup 106}Pd and {sup 108}Pd. The data analysis requires knowledge of the neutron resonance parameters. Transmission and capture {gamma}-ray yields were measured for E{sub n}=20{endash}2000 eV with the time-of-flight method at the Los Alamos Neutron Science Center (LANSCE). A total of 28 resonances in {sup 106}Pd and 32 resonances in {sup 108}Pd were studied. The resonance parameters for {sup 106}Pd are new for all except one resonance. In {sup 108}Pd six new resonances were observed and the precision improved for many of the resonance parameters. A Bayesian analysis was used to assign orbital angular momentum for the resonances studied. {copyright} {ital 1998} {ital The American Physical Society}

  11. Dual baseline search for muon antineutrino disappearance at 0.1 eV²eV²

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cheng, G.; Huelsnitz, W.; Aguilar-Arevalo, A. A.; Alcaraz-Aunion, J. L.; Brice, S. J.; Brown, B. C.; Bugel, L.; Catala-Perez, J.; Church, E. D.; Conrad, J. M.; Dharmapalan, R.; Djurcic, Z.; Dore, U.; Finley, D. A.; Ford, R.; Franke, A. J.; Garcia, F. G.; Garvey, G. T.; Giganti, C.; Gomez-Cadenas, J. J.; Grange, J.; Guzowski, P.; Hanson, A.; Hayato, Y.; Hiraide, K.; Ignarra, C.; Imlay, R.; Johnson, R. A.; Jones, B. J. P.; Jover-Manas, G.; Karagiorgi, G.; Katori, T.; Kobayashi, Y. K.; Kobilarcik, T.; Kubo, H.; Kurimoto, Y.; Louis, W. C.; Loverre, P. F.; Ludovici, L.; Mahn, K. B. M.; Mariani, C.; Marsh, W.; Masuike, S.; Matsuoka, K.; McGary, V. T.; Metcalf, W.; Mills, G. B.; Mirabal, J.; Mitsuka, G.; Miyachi, Y.; Mizugashira, S.; Moore, C. D.; Mousseau, J.; Nakajima, Y.; Nakaya, T.; Napora, R.; Nienaber, P.; Orme, D.; Osmanov, B.; Otani, M.; Pavlovic, Z.; Perevalov, D.; Polly, C. C.; Ray, H.; Roe, B. P.; Russell, A. D.; Sanchez, F.; Shaevitz, M. H.; Shibata, T.-A.; Sorel, M.; Spitz, J.; Stancu, I.; Stefanski, R. J.; Takei, H.; Tanaka, H.-K.; Tanaka, M.; Tayloe, R.; Taylor, I. J.; Tesarek, R. J.; Uchida, Y.; Van de Water, R. G.; Walding, J. J.; Wascko, M. O.; White, D. H.; White, H. B.; Wickremasinghe, D. A.; Yokoyama, M.; Zeller, G. P.; Zimmerman, E. D.

    2012-09-01

    The MiniBooNE and SciBooNE collaborations report the results of a joint search for short baseline disappearance of ?¯? at Fermilab’s Booster Neutrino Beamline. The MiniBooNE Cherenkov detector and the SciBooNE tracking detector observe antineutrinos from the same beam, therefore the combined analysis of their data sets serves to partially constrain some of the flux and cross section uncertainties. Uncertainties in the ?? background were constrained by neutrino flux and cross section measurements performed in both detectors. A likelihood ratio method was used to set a 90% confidence level upper limit on ?¯? disappearance that dramatically improves upon prior limits in the ?m²=0.1–100 eV² region.

  12. LARGE-SCALE DISTRIBUTION OF ARRIVAL DIRECTIONS OF COSMIC RAYS DETECTED ABOVE 10{sup 18} eV AT THE PIERRE AUGER OBSERVATORY

    SciTech Connect (OSTI)

    Abreu, P.; Andringa, S.; Aglietta, M.; Ahlers, M.; Ahn, E. J.; Albuquerque, I. F. M.; Allard, D.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muniz, J.; Alves Batista, R.; Ambrosio, M.; Aramo, C.; Aminaei, A.; Anchordoqui, L.; Antici'c, T.; Arganda, E.; Collaboration: Pierre Auger Collaboration; and others

    2012-12-15

    A thorough search for large-scale anisotropies in the distribution of arrival directions of cosmic rays detected above 10{sup 18} eV at the Pierre Auger Observatory is presented. This search is performed as a function of both declination and right ascension in several energy ranges above 10{sup 18} eV, and reported in terms of dipolar and quadrupolar coefficients. Within the systematic uncertainties, no significant deviation from isotropy is revealed. Assuming that any cosmic-ray anisotropy is dominated by dipole and quadrupole moments in this energy range, upper limits on their amplitudes are derived. These upper limits allow us to test the origin of cosmic rays above 10{sup 18} eV from stationary Galactic sources densely distributed in the Galactic disk and predominantly emitting light particles in all directions.

  13. Measurement of the Cosmic Ray Energy Spectrum and Composition from 10^{17} to 10^{18.3} eV Using a Hybrid Fluorescence Technique

    E-Print Network [OSTI]

    T. Abu-Zayyad; K. Belov; D. J. Bird; J. Boyer; Z. Cao; M. Catanese; G. F. Chen; R. W. Clay; C. E. Covault; H. Y. Dai; B. R. Dawson; J. W. Elbert; B. E. Fick; L. F. Fortson; J. W. Fowler; K. G. Gibbs; M. A. K. Glasmacher; K. D. Green; Y. Ho; A. Huang; C. C. Jui; M. J. Kidd; D. B. Kieda; B. C. Knapp; S. Ko; C. G. Larsen; W. Lee; E. C. Loh; E. J. Mannel; J. Matthews; J. N. Matthews; B. J. Newport; D. F. Nitz; R. A. Ong; K. M. Simpson; J. D. Smith; D. Sinclair; P. Sokolsky; P. Sommers; C. Song; J. K. K. Tang; S. B. Thomas; J. .van der Velde; L. R. Wiencke; C. R. Wilkinson; S. Yoshida; X. Z. Zhang

    2000-10-31

    We study the spectrum and average mass composition of cosmic rays with primary energies between 10^{17} eV and 10^{18} eV using a hybrid detector consisting of the High Resolution Fly's Eye (HiRes) prototype and the MIA muon array. Measurements have been made of the change in the depth of shower maximum as a function of energy. A complete Monte Carlo simulation of the detector response and comparisons with shower simulations leads to the conclusion that the cosmic ray intensity is changing f rom a heavier to a lighter composition in this energy range. The spectrum is consistent with earlier Fly's Eye measurements and supports the previously found steepening near 4 \\times 10^{17} eV .

  14. Mass composition of cosmic rays with energy above 10**17 eV according to surface detectors of the Yakutsk EAS array

    E-Print Network [OSTI]

    Glushkov, A V

    2014-01-01

    We discuss the lateral distribution of charged particles in extensive air showers with energy above $10^{17}$ eV measured by surface scintillation detectors of Yakutsk EAS array. The analysis covers the data obtained during the period from 1977 to 2013. Experimental values are compared to theoretical predictions obtained with the use of CORSIKA code within frameworks of different hadron interaction models. The best agreement between theory and experiment is observed for QGSJet01 and QGSJet-II-04 models. A change in the cosmic ray mass composition towards proton is observed in the energy range $(1-20) \\times 10^{17}$ eV.

  15. Browell-EV

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L OBransen Plasma Asher An O2Brookhaven Site Office EA /LASE

  16. EV Everywhere Grand Challenge

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n cEnergy (AZ, CA,EnergystudentThis Tuesday,Completely new drive-train

  17. EV Everywhere Grand Challenge

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n cEnergy (AZ, CA,EnergystudentThis Tuesday,Completely new

  18. EV Everywhere Workshop

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n cEnergy (AZ, CA,EnergystudentThis the Assistant David Sandalow Under

  19. EVS-25 Shenzhen, China, Nov. 5-9, 2010 The 25th World Battery, Hybrid and Fuel Cell Electric Vehicle Symposium & Exhibition

    E-Print Network [OSTI]

    © EVS-25 Shenzhen, China, Nov. 5-9, 2010 The 25th World Battery, Hybrid and Fuel Cell Electric Vehicle Symposium & Exhibition Impact Assessment of Plug-in Hybrid Vehicles on the U.S. Power Grid Michael significant amounts of the daily driving energy for the US light duty vehicle (cars, pickups, SUVs, and vans

  20. Abstract--In this work is proposed the design of a system to create and handle Electric Vehicles (EV) charging procedures,

    E-Print Network [OSTI]

    da Silva, Alberto Rodrigues

    Abstract--In this work is proposed the design of a system to create and handle Electric Vehicles network limitation and absence of smart meter devices, Electric Vehicles charging should be performed application to assist the EV driver on these processes. This proposed Smart Electric Vehicle Charging System

  1. Scattering of 64 eV to 3 keV Neutrons from Polyethylene and Graphite and the Coherence Length Problem

    E-Print Network [OSTI]

    Danon, Yaron

    Scattering of 64 eV to 3 keV Neutrons from Polyethylene and Graphite and the Coherence Length 12180, USA (Received 31 August 2005; published 8 February 2006) We measured the neutron scattering by the neutron coherence length. The scattered intensity ratios were found to conform to conventional

  2. CONSTRAINTS ON THE ORIGIN OF COSMIC RAYS ABOVE 10{sup 18} eV FROM LARGE-SCALE ANISOTROPY SEARCHES IN DATA OF THE PIERRE AUGER OBSERVATORY

    SciTech Connect (OSTI)

    Abreu, P.; Andringa, S.; Aglietta, M.; Ahlers, M.; Ahn, E. J.; Albuquerque, I. F. M.; Allard, D.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Castillo, J. Alvarez; Alvarez-Muniz, J.; Alves Batista, R.; Ambrosio, M.; Aramo, C.; Aminaei, A.; Anchordoqui, L.; Antici'c, T.; Arganda, E.; Collaboration: Pierre Auger Collaboration; and others

    2013-01-01

    A thorough search for large-scale anisotropies in the distribution of arrival directions of cosmic rays detected above 10{sup 18} eV at the Pierre Auger Observatory is reported. For the first time, these large-scale anisotropy searches are performed as a function of both the right ascension and the declination and expressed in terms of dipole and quadrupole moments. Within the systematic uncertainties, no significant deviation from isotropy is revealed. Upper limits on dipole and quadrupole amplitudes are derived under the hypothesis that any cosmic ray anisotropy is dominated by such moments in this energy range. These upper limits provide constraints on the production of cosmic rays above 10{sup 18} eV, since they allow us to challenge an origin from stationary galactic sources densely distributed in the galactic disk and emitting predominantly light particles in all directions.

  3. A shape of charged particle lateral distribution in individual EAS events with energy above 10^19 eV arriving from different celestial regions

    E-Print Network [OSTI]

    A. V. Sabourov; M. I. Pravdin; S. P. Knurenko

    2007-11-15

    A shape of lateral distribution for charged particles in events with energy above 10^19eV is considered. Two methods were used for individual LDF parametrization. In the first approach, the index of power was determined for generalized Greisen-Linsley approximation. In second, mean square radius of the shower was determined for approximation proposed by Lagutin et al. Comparison of resulted parameters is presented for individual events arrived from different celestial regions -- Galactic planes and the region with increased flux of particles with E(0)>=10^19eV (according to Yakutsk array): 1.7h-3.7h right ascension; 45-60 degrees declination.

  4. Quantum reactive scattering of O({sup 3}P)+H{sub 2} at collision energies up to 4.4 eV

    SciTech Connect (OSTI)

    Gacesa, Marko; Kharchenko, Vasili

    2014-10-28

    We report the results of quantum scattering calculations for the O({sup 3}P)+H{sub 2} reaction for a range of collision energies from 0.4 to 4.4 eV, important for astrophysical and atmospheric processes. The total and state-to-state reactive cross sections are calculated using a fully quantum time-independent coupled-channel approach on recent potential energy surfaces of {sup 3}A{sup ?} and {sup 3}A{sup ?} symmetry. A larger basis set than in the previous studies was used to ensure single-surface convergence at higher energies. Our results agree well with the published data at lower energies and indicate the breakdown of reduced dimensionality approach at collision energies higher than 1.5 eV. Differential cross sections and momentum transfer cross sections are also reported.

  5. Electron capture from H2 to highly charged Th and Xe ions trapped at center-of-mass energies near 6 eV

    E-Print Network [OSTI]

    Electron capture from H2 to highly charged Th and Xe ions trapped at center-of-mass energies near 6 eV G. Weinberg,1,* B. R. Beck,2 J. Steiger,2 D. A. Church,1 J. McDonald,2 and D. Schneider2 1 Laboratory, P.O. Box 808, Livermore, California 94550 Received 19 May 1997 Ions with charge states as high

  6. Measurement of the cosmic ray spectrum above $4{\\times}10^{18}$ eV using inclined events detected with the Pierre Auger Observatory

    E-Print Network [OSTI]

    The Pierre Auger Collaboration; Alexander Aab; Pedro Abreu; Marco Aglietta; Eun-Joo Ahn; Imen Al Samarai; Ivone Albuquerque; Ingomar Allekotte; Patrick Allison; Alejandro Almela; Jesus Alvarez Castillo; Jaime Alvarez-Muñiz; Rafael Alves Batista; Michelangelo Ambrosio; Amin Aminaei; Luis Anchordoqui; Sofia Andringa; Carla Aramo; Victor Manuel Aranda; Fernando Arqueros; Nicusor Arsene; Hernán Gonzalo Asorey; Pedro Assis; Julien Aublin; Maximo Ave; Michel Avenier; Gualberto Avila; Nafiun Awal; Alina Mihaela Badescu; Kerri B Barber; Julia Bäuml; Colin Baus; Jim Beatty; Karl Heinz Becker; Jose A Bellido; Corinne Berat; Mario Edoardo Bertaina; Xavier Bertou; Peter Biermann; Pierre Billoir; Simon G Blaess; Alberto Blanco; Miguel Blanco; Carla Bleve; Hans Blümer; Martina Bohá?ová; Denise Boncioli; Carla Bonifazi; Nataliia Borodai; Jeffrey Brack; Iliana Brancus; Ariel Bridgeman; Pedro Brogueira; William C Brown; Peter Buchholz; Antonio Bueno; Stijn Buitink; Mario Buscemi; Karen S Caballero-Mora; Barbara Caccianiga; Lorenzo Caccianiga; Marina Candusso; Laurentiu Caramete; Rossella Caruso; Antonella Castellina; Gabriella Cataldi; Lorenzo Cazon; Rosanna Cester; Alan G Chavez; Andrea Chiavassa; Jose Augusto Chinellato; Jiri Chudoba; Marco Cilmo; Roger W Clay; Giuseppe Cocciolo; Roberta Colalillo; Alan Coleman; Laura Collica; Maria Rita Coluccia; Ruben Conceição; Fernando Contreras; Mathew J Cooper; Alain Cordier; Stephane Coutu; Corbin Covault; James Cronin; Richard Dallier; Bruno Daniel; Sergio Dasso; Kai Daumiller; Bruce R Dawson; Rogerio M de Almeida; Sijbrand J de Jong; Giuseppe De Mauro; Joao de Mello Neto; Ivan De Mitri; Jaime de Oliveira; Vitor de Souza; Luis del Peral; Olivier Deligny; Hans Dembinski; Niraj Dhital; Claudio Di Giulio; Armando Di Matteo; Johana Chirinos Diaz; Mary Lucia Díaz Castro; Francisco Diogo; Carola Dobrigkeit; Wendy Docters; Juan Carlos D'Olivo; Alexei Dorofeev; Qader Dorosti Hasankiadeh; Maria Teresa Dova; Jan Ebr; Ralph Engel; Martin Erdmann; Mona Erfani; Carlos O Escobar; Joao Espadanal; Alberto Etchegoyen; Heino Falcke; Ke Fang; Glennys Farrar; Anderson Fauth; Norberto Fazzini; Andrew P Ferguson; Mateus Fernandes; Brian Fick; Juan Manuel Figueira; Alberto Filevich; Andrej Filip?i?; Brendan Fox; Octavian Fratu; Martín Miguel Freire; Benjamin Fuchs; Toshihiro Fujii; Beatriz García; Diego Garcia-Pinto; Florian Gate; Hartmut Gemmeke; Alexandru Gherghel-Lascu; Piera Luisa Ghia; Ugo Giaccari; Marco Giammarchi; Maria Giller; Dariusz G?as; Christian Glaser; Henry Glass; Geraldina Golup; Mariano Gómez Berisso; Primo F Gómez Vitale; Nicolás González; Ben Gookin; Jacob Gordon; Alessio Gorgi; Peter Gorham; Philippe Gouffon; Nathan Griffith; Aurelio Grillo; Trent D Grubb; Fausto Guarino; Germano Guedes; Matías Rolf Hampel; Patricia Hansen; Diego Harari; Thomas A Harrison; Sebastian Hartmann; John Harton; Andreas Haungs; Thomas Hebbeker; Dieter Heck; Philipp Heimann; Alexander E Herve; Gary C Hill; Carlos Hojvat; Nicholas Hollon; Ewa Holt; Piotr Homola; Jörg Hörandel; Pavel Horvath; Miroslav Hrabovský; Daniel Huber; Tim Huege; Antonio Insolia; Paula Gina Isar; Ingolf Jandt; Stefan Jansen; Cecilia Jarne; Jeffrey A Johnsen; Mariela Josebachuili; Alex Kääpä; Olga Kambeitz; Karl Heinz Kampert; Peter Kasper; Igor Katkov; Balazs Kégl; Bianca Keilhauer; Azadeh Keivani; Ernesto Kemp; Roger Kieckhafer; Hans Klages; Matthias Kleifges; Jonny Kleinfeller; Raphael Krause; Nicole Krohm; Oliver Krömer; Daniel Kuempel; Norbert Kunka; Danielle LaHurd; Luca Latronico; Robert Lauer; Markus Lauscher; Pascal Lautridou; Sandra Le Coz; Didier Lebrun; Paul Lebrun; Marcelo Augusto Leigui de Oliveira; Antoine Letessier-Selvon; Isabelle Lhenry-Yvon; Katrin Link; Luis Lopes; Rebeca López; Aida López Casado; Karim Louedec; Lu Lu; Agustin Lucero; Max Malacari; Simone Maldera; Manuela Mallamaci; Jennifer Maller; Dusan Mandat; Paul Mantsch; Analisa Mariazzi; Vincent Marin; Ioana Mari?; Giovanni Marsella; Daniele Martello; Lilian Martin; Humberto Martinez; Oscar Martínez Bravo; Diane Martraire; Jimmy Masías Meza; Hermann-Josef Mathes; Sebastian Mathys; James Matthews; John Matthews; Giorgio Matthiae; Detlef Maurel; Daniela Maurizio; Eric Mayotte; Peter Mazur; Carlos Medina; Gustavo Medina-Tanco; Rebecca Meissner; Victor Mello; Diego Melo; Alexander Menshikov; Stefano Messina; Rishi Meyhandan; Maria Isabel Micheletti; Lukas Middendorf; Ignacio A Minaya; Lino Miramonti; Bogdan Mitrica; Laura Molina-Bueno; Silvia Mollerach; François Montanet; Carlo Morello; Miguel Mostafá; Celio A Moura; Marcio Aparecido Muller; Gero Müller; Sarah Müller

    2015-03-26

    A measurement of the cosmic-ray spectrum for energies exceeding $4{\\times}10^{18}$ eV is presented, which is based on the analysis of showers with zenith angles greater than $60^{\\circ}$ detected with the Pierre Auger Observatory between 1 January 2004 and 31 December 2013. The measured spectrum confirms a flux suppression at the highest energies. Above $5.3{\\times}10^{18}$ eV, the "ankle", the flux can be described by a power law $E^{-\\gamma}$ with index $\\gamma=2.70 \\pm 0.02 \\,\\text{(stat)} \\pm 0.1\\,\\text{(sys)}$ followed by a smooth suppression region. For the energy ($E_\\text{s}$) at which the spectral flux has fallen to one-half of its extrapolated value in the absence of suppression, we find $E_\\text{s}=(5.12\\pm0.25\\,\\text{(stat)}^{+1.0}_{-1.2}\\,\\text{(sys)}){\\times}10^{19}$ eV.

  7. Lois Ford La Bauve Endowed Scholarship

    E-Print Network [OSTI]

    Texas at Austin, University of

    at the Texas State Library. During her tenure with the library system, Ms. La Bauve founded the Texas Talking classification, but must be UT students at the time of application (spring semester) and at the time: Phone: Classification: Major: GPA: Attach answers to the following questions. 1. In 300-500 words

  8. Water for Energy in the Eagle Ford 

    E-Print Network [OSTI]

    Finch, C.

    2013-01-01

    stream_source_info ESL-KT-13-12-44.pdf.txt stream_content_type text/plain stream_size 3680 Content-Encoding UTF-8 stream_name ESL-KT-13-12-44.pdf.txt Content-Type text/plain; charset=UTF-8 Water and Hydraulic Fracturing... 12/18/2013 CATEE Conference San Antonio, TX Dr. Calvin Finch Texas A&M Water Conservation and Technology Center ESL-KT-13-12-44 CATEE 2013: Clean Air Through Energy Efficiency Conference, San Antonio, Texas Dec. 16-18 ESL-KT-13-12-44 CATEE 2013: Clean...

  9. Ads by Goooooogle 2007 Ford Official Site

    E-Print Network [OSTI]

    Gosselin, Frédéric

    . For most people, it would take them a bit longer to recognize the image as a battery," Gibson says and color. For example, a person could easily identify a AA battery from the side profile. But, let's say the person could see the same battery only from the bottom with the negative terminal. From this perspective

  10. Fracture Conductivity of the Eagle Ford Shale 

    E-Print Network [OSTI]

    Guzek, James J

    2014-07-25

    Hydraulic fracturing is a well completions technique that induces a network of flow channels in a reservoir. These channels are characterized by fracture conductivity, a measure of how easily a liquid or gas flows through the fracture. Fracture...

  11. Overview: IP routing o Bellman-Ford

    E-Print Network [OSTI]

    Biagioni, Edoardo S.

    if M 0new entries to all my, adding cost of reaching that router to see if route is better than what we have to each of the neighbor's metrics 2. for each entry (D, P', M') in the updated neighbor

  12. Ford Electric Battery Group | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdistoWhiskeyFootprint Ventures Jump to: navigation, searchForbes

  13. 0.7-eV GaInAs Junction for a GaInP/GaAs/GaInAs(1-eV)/GaInAs(0.7-eV) Four-Junction Solar Cell: Preprint

    SciTech Connect (OSTI)

    Friedman, D. J.; Geisz, J. F.; Norman, A. G.; Wanlass, M. W.; Kurtz, S. R.

    2006-05-01

    We discuss recent developments in III-V multijunction solar cells, focusing on adding a fourth junction to the Ga0.5In0.5P/GaAs/Ga0.75In0.25As inverted three-junction cell. This cell, grown inverted on GaAs so that the lattice-mismatched Ga0.75In0.25As third junction is the last one grown, has demonstrated 38% efficiency, and 40% is likely in the near future. To achieve still further gains, a lower-bandgap GaxIn1-xAs fourth junction could be added to the three-junction structure for a four-junction cell whose efficiency could exceed 45% under concentration. Here, we present the initial development of the GaxIn1-xAs fourth junction. Junctions of various bandgaps ranging from 0.88 to 0.73 eV were grown, in order to study the effect of the different amounts of lattice mismatch. At a bandgap of 0.88 eV, junctions were obtained with very encouraging {approx}80% quantum efficiency, 57% fill factor, and 0.36 eV open-circuit voltage. The device performance degrades with decreasing bandgap (i.e., increasing lattice mismatch). We model the four-junction device efficiency vs. fourth junction bandgap to show that an 0.7-eV fourth-junction bandgap, while optimal if it could be achieved in practice, is not necessary; an 0.9-eV bandgap would still permit significant gains in multijunction cell efficiency while being easier to achieve than the lower-bandgap junction.

  14. InGaAsN Solar Cells with 1.0eV Bandgap, Lattice Matched to GaAs

    SciTech Connect (OSTI)

    Allerman, A.A.; Banas, J.J.; Gee, J.M.; Hammons, B.E.; Jones, E.D.; Kurtz, S.R.

    1998-11-24

    The design, growth by metal-organic chemical vapor deposition, and processing of an In{sub 0.07}Ga{sub 0.93}As{sub 0.98}N{sub 0.02} solar Al, with 1.0 ev bandgap, lattice matched to GaAs is described. The hole diffusion length in annealed, n-type InGaAsN is 0.6-0.8 pm, and solar cell internal quantum efficiencies > 70% arc obwined. Optical studies indicate that defects or impurities, from InGAsN doping and nitrogen incorporation, limit solar cell performance.

  15. State-resolved differential and integral cross sections for the reaction HD2\\HD,,v 3,j 07...D at 1.64 eV collision energy

    E-Print Network [OSTI]

    at 1.64 eV collision energy Brian D. Bean,a) James D. Ayers, Fe´lix Ferna´ndez-Alonso,b) and Richard N D2 HD(v 3,j 0­7) D at 1.64 0.05 eV collision energy. Although the integral cross sections do measurements of the hydro- gen exchange reaction are crucial to the understanding of this ``simplest'' of all

  16. Solution of the Skyrme HF+BCS equation on a 3D mesh. II. A new version of the Ev8 code

    E-Print Network [OSTI]

    W. Ryssens; V. Hellemans; M. Bender; P. -H. Heenen

    2014-10-03

    We describe a new version of the EV8 code that solves the nuclear Skyrme-Hartree-Fock+BCS problem using a 3-dimensional cartesian mesh. Several new features have been implemented with respect to the earlier version published in 2005. In particular, the numerical accuracy has been improved for a given mesh size by (i) implementing a new solver to determine the Coulomb potential for protons (ii) implementing a more precise method to calculate the derivatives on a mesh that had already been implemented earlier in our beyond-mean-field codes. The code has been made very flexible to enable the use of a large variety of Skyrme energy density functionals that have been introduced in the last years. Finally, the treatment of the constraints that can be introduced in the mean-field equations has been improved. The code Ev8 is today the tool of choice to study the variation of the energy of a nucleus from its ground state to very elongated or triaxial deformations with a well-controlled accuracy.

  17. Limits on Low-Mass WIMP Dark Matter with an Ultra-Low-Energy Germanium Detector at 220 eV Threshold

    E-Print Network [OSTI]

    Shin-Ted Lin; H. T. Wong; for the TEXONO Collaboration

    2008-10-20

    An energy threshold of (220$\\pm$10) eV was achieved at an efficiency of 50% with a four-channel ultra-low-energy germanium detector each with an active mass of 5 g\\cite{wimppaper}. This provides a unique probe to WIMP dark matter with mass below 10 GeV. With low background data taken at the Kuo-Sheng Laboratory, constraints on WIMPs in the galactic halo were derived. Both spin-independent WIMP-nucleon and spin-dependent WIMP-neutron bounds improve over previous results for WIMP mass between 3$-$6 GeV. These results, together with those on spin-dependent couplings, will be presented. Sensitivities for full-scale experiments were projected. This detector technique makes the unexplored sub-keV energy window accessible for new neutrino and dark matter experiments.

  18. R-matrix analysis of the {sup 240}Pu neutron cross sections in the thermal to 5700 eV energy range

    SciTech Connect (OSTI)

    Derrien, H.; Bouland, O.; Larson, N.M.; Leal, L.C.

    1997-08-01

    Resonance analysis of high resolution neutron transmission data and of fission cross sections were performed in the neutron energy range from the thermal regions to 5,700 eV by using the Reich-Moore Bayesian code SAMMY. The experimental data base is described and the method of analysis is given. The experimental data were carefully examined in order to identify more resonances than those found in the current evaluated data files. The statistical properties of the resonance parameters are given. A new set of the average values of the parameters is proposed, which could be used for calculation of the average cross sections in the unresolved resonance region. The resonance parameters are available IN ENDF-6 format at the national or international data centers.

  19. Measurement of high-energy (10–60 keV) x-ray spectral line widths with eV accuracy

    SciTech Connect (OSTI)

    Seely, J. F., E-mail: seelyjf@gmail.com; Feldman, U. [Artep Inc., 2922 Excelsior Springs Court, Ellicott City, Maryland 21042 (United States); Glover, J. L.; Hudson, L. T.; Ralchenko, Y.; Henins, Albert [National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Pereira, N. [Ecopulse Inc., P. O. Box 528, Springfield, Virginia 22152 (United States); Di Stefano, C. A.; Kuranz, C. C.; Drake, R. P. [University of Michigan, Ann Arbor, Michigan 48109 (United States); Chen, Hui; Williams, G. J.; Park, J. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States)

    2014-11-15

    A high resolution crystal spectrometer utilizing a crystal in transmission geometry has been developed and experimentally optimized to measure the widths of emission lines in the 10–60 keV energy range with eV accuracy. The spectrometer achieves high spectral resolution by utilizing crystal planes with small lattice spacings (down to 2d = 0.099 nm), a large crystal bending radius and Rowland circle diameter (965 mm), and an image plate detector with high spatial resolution (60 ?m in the case of the Fuji TR image plate). High resolution W L-shell and K-shell laboratory test spectra in the 10–60 keV range and Ho K-shell spectra near 47 keV recorded at the LLNL Titan laser facility are presented. The Ho K-shell spectra are the highest resolution hard x-ray spectra recorded from a solid target irradiated by a high-intensity laser.

  20. The Energy Spectrum of Cosmic Rays above 10$^{17.2}$ eV Measured by the Fluorescence Detectors of the Telescope Array Experiment in Seven Years

    E-Print Network [OSTI]

    ,

    2015-01-01

    The Telescope Array (TA) experiment is the largest detector to observe ultra-high-energy cosmic rays in the northern hemisphere. The fluorescence detectors at southern two stations of TA are newly constructed and have now completed seven years of steady operation. One advantage of monocular analysis of the fluorescence detectors is a lower energy threshold for cosmic rays than that of other techniques like stereoscopic observations or coincidences with the surface detector array, allowing the measurement of an energy spectrum covering three orders of magnitude in energy. Analyzing data collected during those seven years, we report the energy spectrum of cosmic rays covering a broad range of energies above 10$^{17.2}$ eV measured by the fluorescence detectors and a comparison with previously published results.

  1. Trends in Workplace Charging

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Donofrio Ford Motor Company Trends in Workplace Charging Est EV NA NA approx 21 70-100 Miles: What Types of Chargers are Being Used? Considerations for Campus Installations *...

  2. Fact #812: January 13, 2014 The Number of Models Achieving 40...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wagon Fiat 500e 116 Minicompact Mitsubishi i-MiEV 112 Subcompact Ford Focus 105 Compact Tesla Model S (40 kW-hr battery pack 94 Large Tesla Model S (60 kW-hr battery pack) 95...

  3. Low-energy crossed-beam study of the proton-transfer reaction HCO/sup +/ + H/sub 2/O. -->. H/sub 3/O/sup +/ + CO. [75 eV electron beams

    SciTech Connect (OSTI)

    Moryl, J.E.; Farrar, J.M.

    1982-05-27

    We present a crossed-beam study of the title reaction over the relative energy range 0.64 to 4.04 eV. The reactively scattered H/sub 3/O/sup +/ products are formed exclusively in a very narrow angular range in the backward direction relative to the incoming HCO/sup +/ projectile. The product translational energy distributions indicate that the fraction of the total available energy appearing in product translation increases from 45% at a collision energy 0.64 eV to 73% at 4.04 eV. We argue that deviations from predictions of the spectator stripping model can be correlated with the HCO/sup +/ reagent state preparation, an argument consistent with our observations on the related H/sub 2//sup +/ + H/sub 2/O system (J. Phys. Chem., 85, 1515 (1981)).

  4. Case Study: Mobile Photovoltaic System at Bechler Meadows Ranger...

    Broader source: Energy.gov (indexed) [DOE]

    remote outpost is not served by the electric utility grid and previously relied on a propane generator as the only source of power. 60516.pdf More Documents & Publications...

  5. Case Study: Mobile Photovoltaic System at Bechler Meadows Ranger Station,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels| Departmentof5.4.407.Cascade reactionsUsing anCase Study:

  6. Case Study: Mobile Photovoltaic System at Bechler Meadows Ranger Station,

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a lCarib Energy (USA)civilEnergy Watertime |Yellowstone National

  7. EV Everywhere Grand Challenge - Charging Infrastructure Enabling Flexible EV Design

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n cEnergy (AZ, CA,EnergystudentThis Tuesday,CompletelyCharging

  8. EV Everywhere EV Everywhere Grand Challenge - Electric Drive (Power

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based|DepartmentStatementofApril 25, 2014TEMPLATE

  9. Acceptances for space-based and ground-based fluorescence detectors, and inference of the neutrino-nucleon cross-section above 10{sup 19} eV

    SciTech Connect (OSTI)

    Palomares-Ruiz, Sergio; Irimia, Andrei; Weiler, Thomas J. [Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235-1807 (United States)

    2006-04-15

    Detection of ultrahigh energy neutrinos will be useful for unraveling the dynamics of the most violent sources in the cosmos and for revealing the neutrino cross-section at extreme energy. If there exists a Greisen-Zatsepin-Kuz'min (GZK) suppression of cosmic-ray events above E{sub GZK}{approx}5x10{sup 19} eV, as predicted by theory, then the only messengers of energies beyond E{sub GZK} are neutrinos. Cosmic neutrino fluxes can initiate air-showers through interaction in the atmosphere, or in the Earth. Neutrino trajectories will be downgoing to nearly horizontal in the former case, and 'Earth-skimming' in the latter case. Thus it is important to know the acceptances (event rate/flux) of proposed air-shower experiments for detecting both types of neutrino-initiated events. We calculate these acceptances for fluorescence detectors, both space-based as with the EUSO and OWL proposals, and ground-based, as with Auger, HiRes and Telescope Array. The neutrino cross-section {sigma}{sub {nu}}{sub N}{sup CC} is unknown at energies above 5.2x10{sup 13} eV. Although the popular QCD extrapolation of lower-energy physics offers the cross-section value of 0.54x10{sup -31}(E{sub {nu}}/10{sup 20} eV){sup 0.36} cm{sup 2}, new physics could raise or lower this value. Therefore, we present the acceptances of horizontal (HAS) and upgoing (UAS) air-showers as a function of {sigma}{sub {nu}}{sub N}{sup CC} over the range 10{sup -34} to 10{sup -30} cm{sup 2}. The dependences of acceptances on neutrino energy, shower-threshold energy, shower length, and shower column density are also studied. We introduce a cloud layer, and study its effect on rates as viewed from space and from the ground. For UAS, we present acceptances for events over land (rock), and over the ocean (water). Acceptances over water are larger by about an order of magnitude, thus favoring space-based detectors. We revisit the idea of Kusenko and Weiler [Phys. Rev. Lett. 88, 161101 (2002)] to infer {sigma}{sub {nu}}{sub N}{sup CC} at E{sub {nu}} > or approx. 10{sup 20} from the ratio of HAS-to-UAS events, and obtain favorable results. Included in our UAS calculations are realistic energy-losses for taus, and Earth-curvature effects. Most of our calculation is analytic, allowing insight into the various subprocesses that collectively turn an incident neutrino into an observable shower.

  10. Robust optimization based EV charging

    E-Print Network [OSTI]

    2015-03-04

    with (Demand Response) DR programs. 3) Other uncertainties can be considered in the model to get closer to the reality. These uncertainties may be related to.

  11. Maximizing EV January 21, 2015

    E-Print Network [OSTI]

    California at Davis, University of

    charges How to evaluate $/ton instead of $/kwh? 7 #12;References E3. California Transportation Electrification Assessment - Phase 2: Grid Impacts. For the California Electric Transportation Coalition. October 2014. http://goo.gl/sAnamk "Investigating a Higher Renewables Portfolio Standard in California", Energy

  12. Nissan EV Workplace Charging Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Jean Gough Southeast: Cornelius Willingham 18 Level 2 chargers under solar canopy 1 DC Fast Charger, and 2 Level 2 in visitor parking 5 Level 2 chargers in parking garage 2...

  13. Nissan EV Workplace Charging Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy Bills and Reduce Carbon PollutionZealandNexus EnergyHomesNick

  14. Benchmarking EV and HEV Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels Researchof Energy andandBeforeof Energy Beforeoffor the US

  15. EV Everywhere Grand Challenge Blueprint

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergy Webinar:IAboutReubenPress Releases EM PressENERGY|About Us »EVA

  16. Primary cosmic ray chemical composition in the energy region around 10**16 eV investigated by means of gamma-hadron families

    E-Print Network [OSTI]

    Maia Kalmakhelidze; Nina Roinishvili; Manana Svanidze

    2001-06-29

    Primary Cosmic Ray Chemical Composition is investigated in energy region close to 10**16 eV. Studies are based on comparisons of gamma-hadron families observed by Pamir and Pamir-Chacaltaya Collaboration, with families generated by means of quasi-scaling model MC0. It is shown, that all characteristics of observed families, including their intensity, are in a very good agreement with simulated event properties at the normal chemical composition and are in disagreement at heavy dominant compositions. Code CORSICA with VENUS and DPM models also contradicts with experimental data of families. One- and multi-dimensional methods of recognition of Fe-like families is worked up and approved. They are based on family characteristics sensitive to atomic number of induced nuclei and are not correlated between each others. It is shown that the fraction of Fe-like families is consistent with the normal chemical composition and strongly contradicts to heavy dominant ones. The success of MC0 model, in description of families properties, is due to large inelasticity coefficient of soft interactions at superhigh energies.

  17. Inhomogeneous broadening and peak shift of the 7.6 eV optical absorption band of oxygen vacancies in SiO{sub 2}

    SciTech Connect (OSTI)

    Kajihara, Koichi, E-mail: kkaji@tmu.ac.jp [Department of Applied Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji 192-0397 (Japan); Skuja, Linards [Institute of Solid State Physics, University of Latvia, Kengaraga iela 8, LV1063 Riga (Latvia); Hosono, Hideo [Materials and Structures Laboratory and Frontier Research Center, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503 (Japan)

    2014-10-21

    The peak parameters of radiation-induced 7.6 eV optical absorption band of oxygen vacancies (Si-Si bonds) were examined for high-purity synthetic ?-quartz and amorphous SiO{sub 2} (a?SiO{sub 2}) exposed to {sup 60}Co ?-rays. The peak shape is asymmetric with the steeper edge at the lower energy side both in ?-quartz and a?SiO{sub 2}, and the peak energy is larger for ?-quartz than that for a?SiO{sub 2}. The full width at half maximum for a?SiO{sub 2} is larger by ?40-60% than that for ?-quartz, and it increases with an increase in the disorder of the a?SiO{sub 2} network, which is enhanced by raising the temperature of preannealing before irradiation, i.e., fictive temperature. These data are interpreted from the viewpoint of the site-to-site distribution of the Si-Si bond length in a?SiO{sub 2}.

  18. The primary cosmic ray composition between 10**15 and 10**16 eV from Extensive Air Showers electromagnetic and TeV muon data

    E-Print Network [OSTI]

    Aglietta, M; Antonioli, P; Arneodo, F; Bergamasco, L; Bertaina, M; Castagnoli, C; Castellina, A; Chiavassa, A; Cini, G; D'Ettorre-Piazzoli, B; Di Sciascio, G; Fulgione, W; Galeotti, P; Ghia, P L; Iacovacci, M; Mannocchi, G; Morello, C; Navarra, G; Saavedra, O; Stamerra, A; Trinchero, G C; Valchierotti, S; Vallania, P; Vernetto, S; Vigorito, C; Ambrosio, M; Antolini, R; Baldini, A; Barbarino, G C; Barish, B C; Battistoni, G; Bellotti, R; Bemporad, C; Bernardini, P; Bilokon, H; Bloise, C; Bower, C; Brigida, M; Cafagna, F; Campana, D; Carboni, M; Cecchini, S; Cei, F; Choudhary, B C; Coutu, S; De Cataldo, G; Dekhissi, H; De Marzo, C; De Mitri, I; De Vincenzi, M; Di Credico, A; Forti, C; Fusco, P; Giacomelli, G; Giannini, G; Giglietto, N; Giorgini, M; Grassi, M; Grillo, A; Gustavino, C; Habig, A; Hanson, K; Heinz, R; Iarocci, E; Katsavounidis, E; Katsavounidis, I; Kearns, E; Kim, H; Kyriazopoulou, S; Lamanna, E; Lane, C; Levin, D S; Lipari, P; Longo, M J; Loparco, F; Maaroufi, F; Mancarella, G; Mandrioli, G; Margiotta, A; Marini, A; Martello, D; Marzari-Chiesa, A; Mazziotta, M N; Michael, D G; Monacelli, P; Montaruli, T; Monteno, M; Mufson, S L; Musser, J; Nicolò, D; Nolty, R; Orth, C; Osteria, G; Palamara, O; Patera, V; Patrizii, L; Pazzi, R; Peck, C W; Perrone, L; Petrera, S; Popa, V; Rainó, A; Reynoldson, J; Ronga, F; Satriano, C; Scapparone, E; Scholberg, K; Sciubba, A; Sioli, M; Sitta, M; Spinelli, P; Spinetti, M; Spurio, M; Steinberg, R; Stone, J L; Sulak, L R; Surdo, A; Tarle, G; Togo, V; Vakili, M; Walter, C W; Webb, R

    2004-01-01

    The cosmic ray primary composition in the energy range between 10**15 and 10**16 eV, i.e., around the "knee" of the primary spectrum, has been studied through the combined measurements of the EAS-TOP air shower array (2005 m a.s.l., 10**5 m**2 collecting area) and the MACRO underground detector (963 m a.s.l., 3100 m w.e. of minimum rock overburden, 920 m**2 effective area) at the National Gran Sasso Laboratories. The used observables are the air shower size (Ne) measured by EAS-TOP and the muon number (Nmu) recorded by MACRO. The two detectors are separated on average by 1200 m of rock, and located at a respective zenith angle of about 30 degrees. The energy threshold at the surface for muons reaching the MACRO depth is approximately 1.3 TeV. Such muons are produced in the early stages of the shower development and in a kinematic region quite different from the one relevant for the usual Nmu-Ne studies. The measurement leads to a primary composition becoming heavier at the knee of the primary spectrum, the kn...

  19. DYNAMICS OF THE REACTION OF N{sup +} WITH H{sub 2}. V. REACTIVE AND NON-REACTIVE SCATTERING OF N{sup +}({sup 3}p) AT RELATIVE ENERGIES BELOW 3.6 eV.

    SciTech Connect (OSTI)

    Hansen, Steven G.; Farrar, James M.; Mahan, Bruce H.

    1980-05-01

    We have measured product velocity vector distributions for the processes N{sup +}({sup 3}P)(H{sub 2},H)NH{sup +} and N{sup +}({sup 3}P)(H{sub 2},H{sub 2})N+ in the initial relative energy ranges of 0.98~3.60 eV and 0.66~ 2.50 eV respectively using the crossed beam technique. At energies below about 1.9 eV the predominance of a long-lived NH{sub 2}{sup +} complex is inferred from isotropic reactive scattering and a backscattered peak in the non-reactive distributions. Above 1.9 eV there is still a substantial interaction between all three atoms. The dynamics are adequately explained by a mechanism which involves accessing the deep {sup 3}B{sub 1} potential well through an avoided crossing with the {sup 3}A{sub 2} surface when the ·symmetry is relaxed from C{sub 2v} to C{sub s}. The reaction of electronically excited metastable ions, probably N{sup +}({sup 1}D), is seen as a forward peak in the reactive distributions.

  20. APS -50th Annual Meeting of the Division of Plasma Physics -Ev... http://meetings.aps.org/Meeting/DPP08/Event/88303 1 of 1 10/2/09 11:12 PM

    E-Print Network [OSTI]

    Ng, Chung-Sang

    APS - 50th Annual Meeting of the Division of Plasma Physics - Ev... http://meetings.aps.org/Meeting/DPP08/Event/88303 1 of 1 10/2/09 11:12 PM 50th Annual Meeting of the Division of Plasma Physics Monday: http://meetings.aps.org/link/BAPS.2008.DPP.GP6.66 #12;

  1. Distribution of Rovibrational Product States for the "Prompt" Reaction H + D2(W ) 0, j ) 0-4) f HD(W ) 1,2, j) + D near 1.6 eV Collision Energy

    E-Print Network [OSTI]

    Zare, Richard N.

    Distribution of Rovibrational Product States for the "Prompt" Reaction H + D2(W ) 0, j ) 0-4) f HD(W ) 1,2, j) + D near 1.6 eV Collision Energy Brian D. Bean, Fe´lix Ferna´ndez-Alonso, and Richard N pulse that initiates the reaction also detects the HD(V, j) product in a state-specific manner via 2 + 1

  2. APS -50th Annual Meeting of the Division of Plasma Physics -Ev... http://meetings.aps.org/Meeting/DPP08/Event/89156 1 of 1 10/2/09 11:01 PM

    E-Print Network [OSTI]

    Ng, Chung-Sang

    APS - 50th Annual Meeting of the Division of Plasma Physics - Ev... http://meetings.aps.org/Meeting/DPP08/Event/89156 1 of 1 10/2/09 11:01 PM 50th Annual Meeting of the Division of Plasma Physics Monday Physics, and Fuelling 2:00 PM­2:00 PM, Thursday, November 20, 2008 - Marsalis A/B, 2:00pm - 5:00pm

  3. APS -50th Annual Meeting of the Division of Plasma Physics -Ev... http://meetings.aps.org/Meeting/DPP08/Event/89155 1 of 1 10/2/09 10:56 PM

    E-Print Network [OSTI]

    Ng, Chung-Sang

    APS - 50th Annual Meeting of the Division of Plasma Physics - Ev... http://meetings.aps.org/Meeting/DPP08/Event/89155 1 of 1 10/2/09 10:56 PM 50th Annual Meeting of the Division of Plasma Physics Monday Physics, and Fuelling 2:00 PM­2:00 PM, Thursday, November 20, 2008 - Marsalis A/B, 2:00pm - 5:00pm

  4. Tables and graphs of electron-interaction cross sections from 10 eV to 100 GeV derived from the LLNL Evaluated Electron Data Library (EEDL), Z = 1--100

    SciTech Connect (OSTI)

    Perkins, S.T.; Cullen, D.E. ); Seltzer, S.M. , Gaithersburg, MD . Center for Radiation Research)

    1991-11-12

    Energy-dependent evaluated electron interaction cross sections and related parameters are presented for elements H through Fm (Z = 1 to 100). Data are given over the energy range from 10 eV to 100 GeV. Cross sections and average energy deposits are presented in tabulated and graphic form. In addition, ionization cross sections and average energy deposits for each shell are presented in graphic form. This information is derived from the Livermore Evaluated Electron Data Library (EEDL) as of July, 1991.

  5. Searches for large-scale anisotropy in the arrival directions of cosmic rays detected above energy of 10{sup 19} eV at the Pierre Auger observatory and the telescope array

    SciTech Connect (OSTI)

    Aab, A.; Abreu, P.; Andringa, S.; Aglietta, M.; Ahn, E. J.; Al Samarai, I.; Albuquerque, I. F. M.; Allekotte, I.; Asorey, H.; Allen, J.; Allison, P.; Almela, A.; Castillo, J. Alvarez; Alvarez-Muñiz, J.; Batista, R. Alves; Ambrosio, M.; Aramo, C.; Aminaei, A.; Anchordoqui, L.; Arqueros, F.; Collaboration: Pierre Auger Collaboration; Telescope Array Collaboration; and others

    2014-10-20

    Spherical harmonic moments are well-suited for capturing anisotropy at any scale in the flux of cosmic rays. An unambiguous measurement of the full set of spherical harmonic coefficients requires full-sky coverage. This can be achieved by combining data from observatories located in both the northern and southern hemispheres. To this end, a joint analysis using data recorded at the Telescope Array and the Pierre Auger Observatory above 10{sup 19} eV is presented in this work. The resulting multipolar expansion of the flux of cosmic rays allows us to perform a series of anisotropy searches, and in particular to report on the angular power spectrum of cosmic rays above 10{sup 19} eV. No significant deviation from isotropic expectations is found throughout the analyses performed. Upper limits on the amplitudes of the dipole and quadrupole moments are derived as a function of the direction in the sky, varying between 7% and 13% for the dipole and between 7% and 10% for a symmetric quadrupole.

  6. Change of Primary Cosmic Radiation Nuclear Conposition in the Energy Range $10^{15} - 10^{17}$ eV as a Result of the Interaction with the Interstellar Cold Background of Light Particles

    E-Print Network [OSTI]

    T. T. Barnaveli; T. T. Barnaveli Jr; N. A. Eristavi; I. V. Khaldeeva

    2003-10-19

    In this paper the updated arguments in favor of a simple model, explaining from the united positions all peculiarities of the Extensive Air Shower (EAS) hadron E_h(E_0) (and muon E_mu(E_0)) component energy fluxes dependence on the primary particle energy E_0 in the primary energy region 10^{15} - 10^{17} eV are represented. These peculiarities have shapes of consequent distinct deeps of a widths dE_h/E_h of the order of 0.2 and of relative amplitudes dL/L of the order of {0.1 - 1.0}, and are difficult to be explained via known astrophysical mechanisms of particle generation and acceleration. In the basis of the model lies the destruction of the Primary Cosmic Radiation (PCR) nuclei on some monochromatic background of interstellar space, consisting of the light particles of the mass in the area of 36 eV (maybe the component of a dark matter). The destruction thresholds of PCR different nuclear components correspond to the peculiarities of E_h(E_0). In this work the results of the recent treatment of large statistical material are analyzed. The experimental results are in good agreement with the Monte-Carlo calculations carried out in the frames of the proposed model.

  7. Development of ultralow energy (1–10 eV) ion scattering spectrometry coupled with reflection absorption infrared spectroscopy and temperature programmed desorption for the investigation of molecular solids

    SciTech Connect (OSTI)

    Bag, Soumabha; Bhuin, Radha Gobinda; Methikkalam, Rabin Rajan J.; Pradeep, T., E-mail: pradeep@iitm.ac.in [DST Unit of Nanoscience (DST UNS), Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036 (India); Kephart, Luke; Walker, Jeff; Kuchta, Kevin; Martin, Dave; Wei, Jian [Extrel CMS, LLC, 575 Epsilon Drive, Pittsburgh, Pennsylvania 15238 (United States)] [Extrel CMS, LLC, 575 Epsilon Drive, Pittsburgh, Pennsylvania 15238 (United States)

    2014-01-15

    Extremely surface specific information, limited to the first atomic layer of molecular surfaces, is essential to understand the chemistry and physics in upper atmospheric and interstellar environments. Ultra low energy ion scattering in the 1–10 eV window with mass selected ions can reveal extremely surface specific information which when coupled with reflection absorption infrared (RAIR) and temperature programmed desorption (TPD) spectroscopies, diverse chemical and physical properties of molecular species at surfaces could be derived. These experiments have to be performed at cryogenic temperatures and at ultra high vacuum conditions without the possibility of collisions of neutrals and background deposition in view of the poor ion intensities and consequent need for longer exposure times. Here we combine a highly optimized low energy ion optical system designed for such studies coupled with RAIR and TPD and its initial characterization. Despite the ultralow collision energies and long ion path lengths employed, the ion intensities at 1 eV have been significant to collect a scattered ion spectrum of 1000 counts/s for mass selected CH{sub 2}{sup +}.

  8. Searches for Large-Scale Anisotropy in the Arrival Directions of Cosmic Rays Detected above Energy of $10^{19}$ eV at the Pierre Auger Observatory and the Telescope Array

    SciTech Connect (OSTI)

    Aab, Alexander; et al,

    2014-10-07

    Spherical harmonic moments are well-suited for capturing anisotropy at any scale in the flux of cosmic rays. An unambiguous measurement of the full set of spherical harmonic coefficients requires full-sky coverage. This can be achieved by combining data from observatories located in both the northern and southern hemispheres. To this end, a joint analysis using data recorded at the Telescope Array and the Pierre Auger Observatory above 1019 eV is presented in this work. The resulting multipolar expansion of the flux of cosmic rays allows us to perform a series of anisotropy searches, and in particular to report on the angular power spectrum of cosmic rays above 1019 eV. No significant deviation from isotropic expectations is found throughout the analyses performed. Upper limits on the amplitudes of the dipole and quadrupole moments are derived as a function of the direction in the sky, varying between 7% and 13% for the dipole and between 7% and 10% for a symmetric quadrupole.

  9. Assessment of Eagle Ford Shale Oil and Gas Resources 

    E-Print Network [OSTI]

    Gong, Xinglai

    2013-07-30

    ...................................................................................... ... 56 3.2.2. Geological Data ...................................................................................... ... 58 3.2.3. PVT Data ................................................................................................ ... 60 3... ................................................................. 73 Fig. 3.20? Type logs for production regions 1 (a) to 8 (h) ......................................... 75 Fig. 3.21? Comparison between EOS generated PVT curves and lab measurements from a full PVT report in PR4 (green: oil properties, red: gas...

  10. MEXICO CITY Adam Miller, Brenna Ford, Kait Sakey

    E-Print Network [OSTI]

    Nagurney, Anna

    · Congestion tax · Mileage tax · Intelligent Central System for tolling #12;Increasing Popularity of Public on the road, freeing up road space #12;Multimodal Fare Card Ticketing · One card for every mode of public used destinations and times #12;Mileage Tax · Already implemented in Oregon · Looked at providing every

  11. Andrew Ford BWeb for Modeling the Environment 1 Resource Economics

    E-Print Network [OSTI]

    Ford, Andrew

    on Natural Gas in the United States Natural gas is a surprisingly important source of energy in the United as a potentially important fuel for clean vehicles (see chapter 16 on feebates),and it has already emerged cycle of a non- renewable resource. Natural gas may be the most important source of energy in the United

  12. AVTA: 2013 Ford C-Max Energi PHEV Testing Results

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road....

  13. Conservation in an Era of Boom and Bust Andrew Ford

    E-Print Network [OSTI]

    Ford, Andrew

    high capacity utilization. #12;2 But real estate and electricity are entirely different in age. Real of frequent changes in market rules and organization. The privatization of the electric system in the United with restructured electricity markets, but we do have a huge accumulation of power plant proposals, the early sign

  14. San Francisco Bay, New Bed-ford Harbor, Massachusetts,

    E-Print Network [OSTI]

    -to-day func- tioning, and ultimate survival. PCBs share characteristics with tetrachlorodibenzo-p-dioxin (TCDD) or simply "dioxin," possibly the most poisonous human-made chemical in the world. Concentrations of PCBs to manage the extraordinarily high levels of dioxin-like compounds in this small estuary. Dr. Diane Nacci

  15. AVTA: 2013 Ford Focus All-Electric Vehicle Testing Reports

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. ...

  16. Development of the 2011MY Ford Super Duty Catalyst System

    Broader source: Energy.gov [DOE]

    Efforts leading to medium-duty truck aftertreatment system development, issues addressed, including catalyst layout to maximize NOx conversion and balance of precious metals for oxidation function during cold-start and filter regeneration

  17. AVTA: 2013 Ford Fusion Energi PHEV Testing Results

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. ...

  18. DOE - Office of Legacy Management -- Dawn Ford Site - 038

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouth Dakota Edgemont, SouthLaboratoryDiv - NY 40 Curtiss-WrightDawn

  19. Women @ Energy: Kelley Herndon Ford | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-Sessions |discussed how saving energy couldAugustEsther E. BowenKavita Ravi

  20. Chattanooga Eagle Ford Rio Grande Embayment Texas- Louisiana-

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4Cubic Feet) Gas Wells (Million CubicChanges

  1. Ford Motor Co Sustainable Technologies and Hybrid Programme | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA Jump to:ofEnia SpAFlex Fuels Energy JumpVyncke Jump to:

  2. West Ford Flat Geothermal Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThinWarsaw, Poland:EnergyWe EnergyInformation AfricanSchool

  3. President Ford Signs the Energy Reorganization Act of 1974 | National

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal of HonorPosterNational Nuclear Security

  4. J. Chris Ford, Ph.D. | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nA Guidephysics_today_article.pdf More DocumentsEnergy

  5. LPO5-002-Proj-Poster-ATVM-Ford

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICE INDUSTRIALU.S. DepartmentJeanKeyLANLLG: Order4 LMReleasesTradeVesselteam

  6. Workplace Charging Challenge Partner: Ford Motor Company | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And Statistics » USAJobs SearchAMERICA'SEnergy SafelyEnergy

  7. Updates to the EIA Eagle Ford Play Maps

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal Consumers inYear JanSales

  8. Precise validation of neutron cross section data bases using a lead slowing down spectrometer and simulation from 0.1 eV to 40 keV. Methodology and data on thin and thick targets and data bases adjustement

    E-Print Network [OSTI]

    L. Perrot; A. Billebaud; R. Brissot; A. Giorni; D. Heuer; J. -M. Loiseaux; O. Meplan; J. -B. Viano

    2002-01-09

    Research on accelerator driven systems (ADS), related new fuels and their ability for nuclear waste incineration has led to a revival of interest in nuclear cross sections of many nuclides over a large energy range. Discrepancies observed between nuclear data bases require new measurements in several cases. A complete measurement of such cross sections including resonance resolution consists of an extensive beam time experiment associated to a long process of analysis ans validation. With a slowing down spectrometer associated to a pulsed neutron source, it is possible to determine good cross section profile in an energy range from 0.1 eV to 40 keV. These measurements performed at ISN (Grenoble) with neutron source GENEPI requires only small quantities of matter (as small as 0.1 g) and about one day of beam per target.

  9. May 29, 2012 11:46 WSPC -Proceedings Trim Size: 9in x 6in 160CornellRanger DESIGN AND CONTROL OF RANGER: AN

    E-Print Network [OSTI]

    Ruina, Andy L.

    -efficient like passive dy- namic walkers5 but fall down frequently, or like PETMAN,1 BigDog,6 and ASIMO8 are more as point H, house all of the motors and gearing, various pulleys for the ankle cable drives, and most

  10. EV - Smart Grid Research & Interoperability Activities

    Broader source: Energy.gov (indexed) [DOE]

    Ethernet Modbus port Protocol AdaptersTranslators Sensor Input Other Comm. Physical Interfaces OpenADR 2 SEP2 IEC 61850 Message Protocols Application Agents * V1G * V2G * DR * DER...

  11. DOE/EV-0005/13

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouth DakotaRobbins and Myers CoMadison - 1325.8. (8-89)3 \L.O3-I

  12. DOE/EV-0005/17

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouth DakotaRobbins and Myers CoMadison - 1325.8. (8-89)3 \L.O3-I67 1 1

  13. DOE/EV-0005/18

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouth DakotaRobbins and Myers CoMadison - 1325.8. (8-89)3 \L.O3-I67 1 18

  14. DOE/EV-0005/27

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouth DakotaRobbins and Myers CoMadison - 1325.8. (8-89)3 \L.O3-I67 117

  15. DOE/EV-0005/8

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouth DakotaRobbins and Myers CoMadison - 1325.8. (8-89)3 \L.O3-I67

  16. EV Solar Products | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, AlabamaETEC GmbH Jump to: navigation, search Name: ETEC GmbHUnited Kingdom) Jump

  17. Microsoft Word - makienko-ev.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on77 PAGE OFDetection ofOctober10 Years of AERI DataNextTypesARMthe

  18. EV Everywhere: 2012 Workshops | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-inPPL EnergyPlus,Department of EnergySession Report |

  19. EV Everywhere - Charge to Breakout Sessions

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n cEnergy (AZ, CA,EnergystudentThis Tuesday, September 25HVAC, WH

  20. EV Everywhere Grand Challenge Road to Success

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n cEnergy (AZ, CA,EnergystudentThis the Assistant Secretary Every

  1. Global EV Outlook | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View New Pages RecentPlant <SilverChange AssociatesOutlook Jump to:

  2. Hawaii Gets 'EV Ready' | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,ExecutiveFinancing ProgramsDepartment of¡ ¢ £ ¤ ¤ ¥ ¦EnergyA 1Gets

  3. EV Everywhere: Workplace Charging | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansas Nuclear Profile 2010Mesoscopy andSaving on Fuel and Vehicle Costs

  4. EV Everywhere: Get Connected! | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeVehicleDepartment ofGraphics »DepartmentEERE201

  5. Investigating Sustainable Technologies for the Humidification System at the Earth Rangers Centre

    E-Print Network [OSTI]

    Sun, Yu

    % efficiency Biogas ·Waste management technique for cleaner fuel than natural gas ·Bio-En Power Inc include utilizing solar thermal, biogas, fuel cells, electricity · Passive improvements defined

  6. Sustainable Housing for Park Rangers in Big Bend National Park, Texas 

    E-Print Network [OSTI]

    Garrison, M.; Griswold, S.

    1996-01-01

    by the National Park Service, design teams in the joint project have developed permanent sustainable housing responsive to the hot-arid desert climate....

  7. MHK ISDB/Instruments/TRDI Workhorse Long Ranger ADCP | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas:Montezuma,Information MHK ISDB/Instruments/Nortek

  8. Factors Affecting EV Adoption: A Literature Review and EV Forecast for

    E-Print Network [OSTI]

    -mail: makena.coffman@hawaii.edu Submitted to: Dr. David Block Florida Solar Energy Center University of Central are also a potentially important technology to help reduce greenhouse gas (GHG) emissions, local air are also reviewed, including subsidies and other incentives, supporting infrastructure build-up and raising

  9. EV Everywhere Battery Workshop: Setting the Stage for the EV Everywhere

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based|DepartmentStatementofApril 25, 2014TEMPLATE |Department of EnergyGrand

  10. EV Everywhere: Text Version of Share Your EV Story Video | Department of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansas Nuclear Profile 2010Mesoscopy andSaving on Fuel and Vehicle Costs »

  11. Modular Electric Vehicle Program (MEVP). Final technical report

    SciTech Connect (OSTI)

    1994-03-01

    The Modular Electric Vehicle Program (MEVP) was an EV propulsion system development program in which the technical effort was contracted by DOE to Ford Motor Company. The General Electric Company was a major subcontractor to Ford for the development of the electric subsystem. Sundstrand Power Systems was also a subcontractor to Ford, providing a modified gas turbine engine APU for emissions and performance testing as well as a preliminary design and producibility study for a Gas Turbine-APU for potential use in hybrid/electric vehicles. The four-year research and development effort was cost-shared between Ford, General Electric, Sundstrand Power Systems and DOE. The contract was awarded in response to Ford`s unsolicited proposal. The program objective was to bring electric vehicle propulsion system technology closer to commercialization by developing subsystem components which can be produced from a common design and accommodate a wide range of vehicles; i.e., modularize the components. This concept would enable industry to introduce electric vehicles into the marketplace sooner than would be accomplished via traditional designs in that the economies of mass production could be realized across a spectrum of product offerings. This would eliminate the need to dedicate the design and capital investment to a limited volume product offering which would increase consumer cost and/or lengthen the time required to realize a return on the investment.

  12. Production patterns in Eagle Ford Shale (Decline Curve Analysis) Muoz Torres, J.1

    E-Print Network [OSTI]

    Texas at Austin, University of

    of the reservoir, the adequate use of technology and production processes (hydraulic fracturing and horizontal to give an insight into the important aspects of EFS formation: EFS reservoir characterization and point and Buda Lime. EFS is distinguished for having total organic carbon components 4%, calcite, clay quartz

  13. Andrew Ford BWeb for Modeling the Environment 1 Jan 29, 2015

    E-Print Network [OSTI]

    Ford, Andrew

    without qualitative differentiation across a market. Examples include: metals such as aluminum, copper successful in obtaining improved price stability and a better balancing of supply and demand. Meadows (1970

  14. Seeking Anonymity in an Internet Panopticon Joan Feigenbaum and Bryan Ford

    E-Print Network [OSTI]

    Ford, Bryan

    is chal- lenging, however. The state of the art in deployed tools, such as Tor [1], uses onion routing (OR in principle de-anonymize many Tor users in a matter of days [14]. Through intersection attacks, an adversary work analyzes onion routing [10], but relies on idealized formal models making assumptions

  15. Rethinking the industrial landscape : the future of the Ford Rouge complex

    E-Print Network [OSTI]

    Bodurow Rea, Constance Corinne

    1991-01-01

    The growth and decline of manufacturing industries in the past century and the industrial landscape that this activity has produced has had profound physical, environmental, social and economic impact on the communities ...

  16. "INDEPENDENT CONFIRMATORY SURVEY SUMMARY AND RESULTS FOR THE FORD NUCLEAR REACTOR, REVISION 1, ANN ARBOR, MICHIGAN

    SciTech Connect (OSTI)

    ALTIC, NICK A

    2013-08-01

    At the NRC?s request, ORAU conducted confirmatory surveys of the FNR during the period of December 4 through 6, 2012. The survey activities included visual inspections and measurement and sampling activities. Confirmatory activities also included the review and assessment of UM?s project documentation and methodologies. Surface scans identified elevated activity in two areas. The first area was on a wall outside of Room 3103 and the second area was in the southwest section on the first floor. The first area was remediated to background levels. However, the second area was due to gamma shine from a neighboring source storage area. A retrospective analysis of UM?s FSS data shows that for the SUs investigated by the ORAU survey team, UM met the survey requirements set forth in the FSSP. The total mean surface activity values were directly compared with the mean total surface activity reported by UM. Mean surface activity values determined by UM were within two standard deviations of the mean determined by ORAU. Additionally, all surface activity values were less than the corresponding gross beta DCGL{sub W}. Laboratory analysis of the soil showed that COC concentrations were less than the respective DCGL{sub W} values. For the inter-lab comparison, the DER was above 3 for only one sample. However, since the sum of fractions for each of the soil samples was below 1, thus none of the samples would fail to meet release guidelines. Based on the findings of the side-by-side direct measurements, and after discussion with the NRC and ORAU, UM decided to use a more appropriate source efficiency in their direct measurement calculations and changed their source efficiency from 0.37 to 0.25.

  17. INDEPENDENT CONFIRMATORY SURVEY SUMMARY AND RESULTS FOR THE FORD NUCLEAR REACTOR, ANN ARBOR, MICHIGAN

    SciTech Connect (OSTI)

    ALTIC, NICK A

    2013-07-25

    At the NRC?s request, ORAU conducted confirmatory surveys of the FNR during the period of December 4 through 6, 2012. The survey activities included visual inspections and measurement and sampling activities. Confirmatory activities also included the review and assessment of UM?s project documentation and methodologies. Surface scans identified elevated activity in two areas. The first area was on a wall outside of Room 3103 and the second area was in the southwest section on the first floor. The first area was remediated to background levels. However, the second area was due to gamma shine from a neighboring source storage area. A retrospective analysis of UM?s FSS data shows that for the SUs investigated by the ORAU survey team, UM met the survey requirements set forth in the FSSP. The total mean surface activity values were directly compared with the mean total surface activity reported by UM. Mean surface activity values determined by UM were within two standard deviations of the mean determined by ORAU. Additionally, all surface activity values were less than the corresponding gross beta DCGLW. Laboratory analysis of the soil showed that COC concentrations were less than the respective DCGLW values. For the inter-lab comparison, the DER was above 3 for only one sample. However, since the sum of fractions for each of the soil samples was below 1, thus none of the samples would fail to meet release guidelines. Based on the findings of the side-by-side direct measurements, and after discussion with the NRC and ORAU, UM decided to use a more appropriate source efficiency in their direct measurement calculations and changed their source efficiency from 0.37 to 0.25.

  18. Andrew Ford, Nov 2012 BWeb for Modeling the Environment 1 Physiology Exercises

    E-Print Network [OSTI]

    Ford, Andrew

    glucose infusion. The model includes state variables for plasma insulin, for insulin in the interstitial

  19. 2015-2016 Application for the William D. Ford Federal Direct Parent Loan (PLUS)

    E-Print Network [OSTI]

    Salvaggio, Carl

    . The budget worksheet on the back of the Award Letter is helpful in calculating the maximum PLUS Loan amount-Citizens: please provide Alien Registration #:_________________________________ 8. Parent's Driver's License #:_________________ _____________________________________ (State Issued) (License Number) #12;Check one option that you wish to pursue in the event that the PLUS

  20. The Effect of Rock Properties on Hydraulic Fracture Conductivity in the Eagle Ford and Fayetteville Shales 

    E-Print Network [OSTI]

    Jansen, Timothy A

    2014-09-05

    Hydraulic fracture treatments are used in low permeability shale reservoirs in order to provide highly conductive pathways from the reservoir to the wellbore. The success of these treatments is highly reliant on the created fracture conductivity...

  1. Water Value and Environmental Implications of Hydraulic Fracturing: Eagle-Ford Shale 

    E-Print Network [OSTI]

    Allen, W.; Lacewell, R.; Zinn, M.

    2014-01-01

    Shale gas has emerged as one of the leading energy developments in the United States. Production has risen from roughly 0.9 trillion cubic feet (TCF) in 2006 to 4.8 TCF in 2010. Shale gas now encompasses 23% of U.S. natural ...

  2. Applying Decline Curve Analysis in the Liquid-rich Shales: Eagle Ford Shale Study 

    E-Print Network [OSTI]

    Indras, Purvi

    2014-01-09

    ............................................................................. 67 Fig. 44—Hindcast and forecast for oil well API# 31916; Duong and Duong/Arps give an optimistic forecast, while Arps Hyperbolic and SEPD give a conservative fit forecast for 30 year EUR...). ...................................................................................... 80 Fig. 54—Fetkovich type curve for EF-8; b=0 gives a good fit to the data (EF-8) .............. 81 Fig. 55—Specialized plot for EF-8 to estimate the SEPD parameters n and ? ................... 82 Fig. 56—30 year EUR from YM-SEPD model: initial...

  3. A Production Characterization of the Eagle Ford Shale, Texas - A Bayesian Analysis Approach 

    E-Print Network [OSTI]

    Moridis, Nefeli G

    2015-01-29

    Equivalent per Day (BOE/d) Di = Initial decline (1/day) D? = Decline parameter for the Power-Law Exponential DCA model (1/day) Dlim = Limit below which D cannot decline (1/day) EUR = Estimated Ultimate Recovery (BOE) K = EUR parameter for the Logistic...

  4. Why Good Projects Go Bad: Managing Development Projects near Tipping Points Tim Taylor and David Ford

    E-Print Network [OSTI]

    Ford, David N.

    Why Good Projects Go Bad: Managing Development Projects near Tipping Points Tim Taylor and David: The evolution of three projects near the project tipping point. The initial scope was 100 work packages. Degrading project: FRW = 0.8 RES = 3 Improving project: FRW = 0.1 RES = 0.25 Stagnate project: FRW = 0.5 RES

  5. Andrew Ford BWeb for Modeling the Environment 1 Extra Exercises for Chapter 15.

    E-Print Network [OSTI]

    Ford, Andrew

    collection of exercises on the salmon model. The first two exercises listed below deal with the challenges the earth portion of the four dams on the Lower Snake. The dams would be "breached" to allow a faster of dams on the river, 2) total hatchery releases, 3) an index of ocean conditions, and 4) a measure

  6. Grant Title: FORD FOUNDATION GRANTS Funding Opportunity Number: N/A

    E-Print Network [OSTI]

    Farritor, Shane

    with practitioners, researchers, policy makers, current and potential grantees, and others to identify areas where the foundation's resources are needed most. The teams then pinpoint specific approaches grantees might undertake

  7. Andrew Ford 1 CEC Report Simulating Patterns of Power Plant Construction

    E-Print Network [OSTI]

    Ford, Andrew

    grows at 2%/yr, and the price of natural gas remains constant in the base case simulation. Electricity. Other controls on the inputs screen allow the user to set the growth in demand and the price of natural gas. The base case begins with a peak demand of 46 GW and gas priced at 2.50 $/million BTU. Demand

  8. Key Economic Drivers Impacting Eagle Ford Development from Resource to Reserves 

    E-Print Network [OSTI]

    Del Busto Pinzon, Andres Mauricio

    2013-11-25

    &D Finding and development GOR Gas/oil ratio IHS Inverted hockey stick HP/HT High-pressure and high-temperature vii LOM Level of maturity Mcfe Thousand cubic feet equivalent MCMC Markov Chain Monte Carlo MLIS Mixed-Layer Illite... for the former is 10% quartz, 40 to 80% calcite, and 20 to 30% Mixed-Layer Illite/Smectite (MLIS); and for the latter 20 average values of 30% quartz, 40 to 70 % calcite, and 20 to 30 % MLIS where found (Centurion 2011). Figure 7—Mineralogy analysis...

  9. Interdependent pricing and markup behavior : an empirical analysis of GM, Ford and Chrysler

    E-Print Network [OSTI]

    Berndt, Ernst R.

    1990-01-01

    In this paper we show how to adapt the traditional contingent claims valuation techniques to correctly value the firm and its liabilities in the presence of agency costs. This enables us to measure the significance of the ...

  10. Argonne working with Ford and FCA US to study dual-fuel vehicles | Argonne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D SFederal8823

  11. Overview of Fords Thermoelectric Programs: Waste Heat Recovery and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy Bills andOrder 422.1, CONDUCT OFER-B-00-020 DOE Hydrogen SaraRating

  12. Microsoft PowerPoint - TAB B 02-12-08 Article VI Briefing Interagency Ford Comments

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal of Honor recipients honored at Y-12 |San Jose-SanRUS Locality 1

  13. US Energy Secretary Chu Announces Finalized $5.9 Billion Loan for Ford

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyThe U.S.Laclede GasEfficiency|Feed| DepartmentOFAdvanced Vehicle TechnologyMotor

  14. Ford Plug-In Project: Bringing PHEVs to Market | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015ExecutiveFluorescent Lamp BallastsActivities, OAS-M-06-09 |Superior2 DOE

  15. Ford Plug-In Project: Bringing PHEVs to Market | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015ExecutiveFluorescent Lamp BallastsActivities, OAS-M-06-09 |Superior2 DOE1

  16. Ford Plug-In Project: Bringing PHEVs to Market | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015ExecutiveFluorescent Lamp BallastsActivities, OAS-M-06-09 |Superior2

  17. Ford Plug-In Project: Bringing PHEVs to Market | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015ExecutiveFluorescent Lamp BallastsActivities, OAS-M-06-09 |Superior209

  18. Road to Fuel Savings: Ford, Magna Partnership Help Vehicles Shed the Pounds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II) byMultiday ProductionDesigningResourcesfeed-imageHanford Advisory|

  19. Ford-Dow Partnership Is Linked to Carbon Fiber Research at ORNL |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof Energy Services » ProgramPolicySenateFlyer, Title VI

  20. FTP Emissions Test Results from Flexible-Fuel Methanol Dodge Spirits and Ford Econoline Vans

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageBlender PumpVehiclesThe Heat Is and infrastructure

  1. Ford Liquefied Petroleum Gas-Powered F-700 May Set Sales Records

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageBlender PumpVehiclesThe Heat Is andFederal Testhe

  2. Vehicle Technologies Office: AVTA- All-Electric Vehicle (Car) Performance Data

    Broader source: Energy.gov [DOE]

    The Advanced Vehicle Testing Activity (AVTA) uses standard procedures and test specifications to test and collect data from vehicles on dynamometers, closed test tracks, and on-the-road. Downloadable performance and testing data on the all-electric versions of the following vehicles is available: 2014 Smart Electric Drive Coupe, 2013 Ford Focus, 2013 Nissan Leaf, 2012 Mitsubishi i-MiEV, 2012 Nissan Leaf, 2011 Nissan Leaf, 2010 USPS eLLV Conversions, and 2009 BMW Mini-E.

  3. DOE/KEURP Site Operator Program year 5 first quarter report, July 1-- September 30, 1995

    SciTech Connect (OSTI)

    1995-12-01

    Kansas State University, with funding support from federal, state, public, and private companies, is participating in the Department of Energy` s Electric Vehicle Site Operator Program. Through participation in this program, Kansas State is displaying, testing, and evaluating electric or hybrid vehicle technology. This participation will provide organizations the opportunity to examine the latest EHV prototypes under actual operating conditions. KSU now has two electric cars. Both are electric conversion vehicles from Soleq Corporation out of Chicago. KSU in conjunction with KEURP also initiated procurement for the purchase of four (4) Chevy S-10 pickup trucks. Since the supplier, GE-Spartan, canceled its effort concerning the production of vehicles other appropriate sources were sought. Today, K-State and the Kansas Utilities are working with Troy Design and Manufacturing (TDM), Redford, Michigan. TDM is working with Ford Motor Company and expects to become the first certified electric vehicle Quality Vehicle Modifier (QVM). Kansas State has entered into an agreement to assist TDM in supporting the infrastructure and technical manual development for these vehicles. The Soleq EVcorts have not been signed to illustrate to the public that it is an electric vehicle. Magnetic signs have been made for special functions to ensure sponsor support is recognized and acknowledged. As soon as TDM`s Ford Ranger electric vehicles are delivered they will be used throughout the state by utility companies that are participating with K-State`s Site Operator Program.

  4. HEV, PHEV, EV Test Standard Development and Validation

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  5. Aggregated Purchasing and Workplace Charging Can Drive EV Market...

    Energy Savers [EERE]

    House to announce several new developments in advancing the use of electric vehicles. Standing before PG&E's new plug-in electric bucket truck, Secretary Moniz announced the Energy...

  6. Innovative Cell Materials and Designs for 300 Mile Range EVs

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to 7001000mAhg and improve cycle life (Achievements shown in this review) - Optimization of cathode composition (Achievements shown in this review) - Scale-up SiNANOde...

  7. Innovative Cell Materials and Designs for 300 Mile Range EVs

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Specific Capacity Improvement: Increase to 7001600mAhg and improve cycle life - Optimization of cathode composition - Scale-up SiNANOde manufacturing process Overall Project...

  8. EV Everywhere: America's Plug-In Electric Vehicle Market Charges...

    Energy Savers [EERE]

    the world's total and our transportation system producing a third of the country's carbon pollution, improving plug-in electric vehicle technology and increasing the number of...

  9. PH&EV Research Center Dr. Tom Turrentine Director

    E-Print Network [OSTI]

    California at Davis, University of

    Households Had & Keep an HEV Had Hybrid Have Hybrid Had natural gas veh #12;27% bought 1 car = 65% of new car full? · Stated annual USA PEV sales goals of car makers ­ Volt 2012 goals 45,000 - actual 2012 sales 23's Executive Order 2013 #12;HEVs are nearly 10% of cars (not counting trucks) in California (Based on Polk

  10. EV Everywhere: Innovative Battery Research Powering Up Plug-In...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Grand Challenge seeks to make the U.S. the first nation in the world to produce plug-in electric vehicles that are as affordable and convenient for the average American...

  11. How Can We Enable EV Battery Recycling? | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Florida, March 9-12, 2015. URL https:anl.box.comsk0v7g1kd6otk24ibjrvi7d9o01z8rsjr Related Projects Lithium-Ion Battery Recycling and Life Cycle Analysis Google Scholar...

  12. NO. ~EV. NO. Failure Modes and Effects Analysis -LRRR

    E-Print Network [OSTI]

    Rathbun, Julie A.

    of the Failure Modes and Effects Analysis (FMEA) is to discover critical failure areas in the LRRR experiment for the critical failure areas. A TM 868 contains the results of a final FMEA for the LRRR experiment. 2. 0 SUMMARY Since an LRRR was successfully deployed on the moon as a part of the Apollo 11 mission, this FMEA

  13. Control Strategies for Electric Vehicle (EV) Charging Using Renewables...

    Office of Scientific and Technical Information (OSTI)

    demand charges for residential and commercial customers. The use of renewables (e.g., solar) and local storage (e.g., battery bank) can mitigate loads caused by EVSE on the...

  14. EV Everywhere: NASCAR and Sprint Race Forward with Workplace...

    Office of Environmental Management (EM)

    February 6, 2014 - 3:44am Addthis Assistant Secretary for Energy Efficiency and Renewable Energy David Danielson (from left); Mike Lynch, NASCAR Vice President of Green Innovation;...

  15. Detector for measuring the ?+ ? e+v branching fraction

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aguilar-Arevalo, A. A.; Aoki, M.; Blecher, M.; Bruch, D. vom; Bryman, D.; Comfort, J.; Cuen-Rochin, S.; Doria, L.; Gumplinger, P.; Hussein, A.; et al

    2015-04-13

    The PIENU experiment at TRIUMF is aimed at a measurement of the branching ratio Re/u = ?((?+ ? e+ve) + (?+ ? e+ve?))/?((?+ ? ?+v?) + (?+ ? ?+v??)) with precision more »This paper provides a description of the PIENU experimental apparatus and its performance in pursuit of Re/u« less

  16. Choices and Requirements of Batteries for EVs, HEVs, PHEVs (Presentation)

    SciTech Connect (OSTI)

    Pesaran, A. A.

    2011-04-01

    This presentation describes the choices available and requirements for batteries for electric vehicles, hybrid electric vehicles, plug-in hybrid electric vehicles.

  17. Microsoft Word - EXEC-2015-004395_EV Everywhere Federal Register...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Register publication controls. This document is being made available through the Internet solely as a means to facilitate the public's access to this document. 2 6450-01-P...

  18. EV Everywhere Seeks Your Designs | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Employee vehicles plugged into workplace chargers available at Oak Ridge National Laboratory. | Photo courtesy of Oak Ridge National Laboratory. Employee vehicles plugged into...

  19. 13418/09 EV/lv 1 THE EUROPEAN UNION

    E-Print Network [OSTI]

    of the ITER machine will be assembled and tested together before the progressive installation of in-vessel working together to develop a realistic schedule with well founded estimates of the resources needed

  20. EV Community Readiness projects: SCAQMD (CA); University of Hawaii

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  1. Commercial Electric Vehicle (EV) Development and Manufacturing Program

    SciTech Connect (OSTI)

    Leeve, Dion

    2014-06-30

    Navistar with the Department of Energy’s assistance undertook this effort to achieve the project objectives as listed in the next section. A wholly owned subsidiary of Navistar, Workhorse Sales Corporation was the original grant awardee and upon their discontinuation as a standalone business entity, Navistar assumed the role of principal investigator. The intent of the effort, as part of the American Recovery and Reinvestment Act (ARRA) was to produce zero emission vehicles that could meet the needs of the marketplace while reducing carbon emissions to zero. This effort was predicated upon the assumption that concurrent development activities in the lithium ion battery industry investigations would significantly increase their production volumes thus leading to substantial reductions in their manufacturing costs. As a result of this development effort much was learned about the overall system compatibility between the electric motor, battery pack, and charging capabilities. The original system was significantly revised and improved during the execution of this development effort. The overall approach that was chosen was to utilize a British zero emissions, class 2 truck that had been developed for their market, homologate it and modify it to meet the product requirements as specified in the grant details. All of these specific goals were achieved. During the course of marketing and selling the product valuable information was obtained as relates to customer expectations, price points, and product performance expectations, specifically those customer expectations about range requirements in urban delivery situations. While the grant requirements specified a range of 100 miles on a single charge, actual customer usage logs indicate a range of 40 miles or less is typical for their applications. The price point, primarily due to battery pack costs, was significantly higher than the mass market could bear. From Navistar’s and the overall industry’s perspective, valuable insights and lessons into this all-electric vehicle propulsion were gained during the performance of this effort and can be revisited when battery chemistry and technology advance to the point of more suitable economic viability. Additionally, another goal of the ARRA act and this specific grant was to manufacture the product in the, at that time, economically depressed Northwest Indiana area. Navistar chose a location in Wakarusa, Indiana which fulfilled this requirement. Navistar was and continues to be committed to alternative fuel and propulsion options as an industry leader in the medium and heavy duty truck industry.

  2. EV Everywhere: Charging on the Road | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Options Include only stations offering mid-level blends Electric Options Charger types Level 1 Level 2 DC Fast Legacy chargers Connectors and outlets NEMA 14-50 (Level 1) NEMA...

  3. EV Explorer: Giving Employers and Employees Better Information...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    need charging to get home charged anyway 0 2000 4000 6000 8000 10000 12000 Kilowatts Level 1 Work. 30,000 PHEV 40 1.2kW Free Charging 1.2kW Equal to Home Price 1.2kW Double Home...

  4. EV drivetrain inverter with V/HZ optimization

    DOE Patents [OSTI]

    Gritter, David J. (Southfield, MI); O'Neil, Walter K. (Birmingham, MI)

    1986-01-01

    An inverter (34) which provides power to an A.C. machine (28) is controlled by a circuit (36) employing PWM control strategy whereby A.C. power is supplied to the machine at a preselectable frequency and preselectable voltage. This is accomplished by the technique of waveform notching in which the shapes of the notches are varied to determine the average energy content of the overall waveform. Through this arrangement, the operational efficiency of the A.C. machine is optimized. The control circuit includes a micro-computer which calculates optimized machine control data signals from various parametric inputs and during steady state load conditions, seeks a best V/HZ ratio to minimize battery current drawn (system losses) from a D.C. power source (32). In the preferred embodiment, the present invention is incorporated within an electric vehicle (10) employing a 144 VDC battery pack and a three-phase induction motor (18).

  5. Parking Lot Solar PV with EV Charger Grant Program

    Broader source: Energy.gov [DOE]

    The program is open to two categories of applicants- Area of Interest I (AOI I) and Area of Interest II (AOI II). AOI I include Business, Non-Profits, and Local Governments while AOI II include S...

  6. Vehicle Technologies Office Merit Review 2014: Benchmarking EV...

    Energy Savers [EERE]

    Technologies Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation...

  7. Alternative Fuels Data Center: Rolling Down the Arizona EV Highway

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA IMarylandOrleansRental CarsRolling Down the

  8. Alternative Fuels Data Center: San Diego Leads in Promoting EVs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA IMarylandOrleansRental CarsRollingGasSan

  9. Alternative Fuels Data Center: Seattle Rideshare Fleet Adds EVs, Enjoys

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA IMarylandOrleansRentalSanta Fe MetroSuccess

  10. DOE/EV-0005/21 ORNL-5714

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouth DakotaRobbins and Myers CoMadison - 1325.8. (8-89)3 \L.O3-I67 11

  11. DOE/EV-0005/31 ORNL-5799

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouth DakotaRobbins and Myers CoMadison - 1325.8. (8-89)3 \L.O3-I67 1171

  12. EV-141 Englehard Industries. Makepeace Dlvlslon E. Jacewsky. CORO

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouth DakotaRobbins and Myers CoMadison -T: Designation$ EGcG41

  13. DOE/EV-0005/4 UC-70

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouth DakotaRobbins and700, 1.Reports1 Rev. 0 EnvironmentalI . )) ;i '

  14. EXHIBIT IV DOE/EV-0003/29 ORNL-5734

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouth DakotaRobbins and700, 1.Reports1 Rev.Metals&-?a/71 2.z=' 1. v

  15. Hunan Copower EV Battery Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy Resources JumpNewTexas: Energy ResourcesHummelstown,

  16. EV Network integration (Smart Grid Project) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, AlabamaETEC GmbH Jump to: navigation, search Name: ETEC GmbHUnited Kingdom) Jump to:

  17. Alternative Fuels Data Center: Rhode Island EV Initiative Adds Chargers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News Publications TraditionalWith PropaneNatural GasFuels andBasicsRefuse

  18. EV Everywhere: Electric Vehicle Basics | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation Current HABFES Science Network Requirements Report of the FusionPlug-inBasics

  19. EV Everywhere: Electric Vehicle Benefits | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation Current HABFES Science Network Requirements Report of the

  20. EV Everywhere: Electric Vehicle Maintenance and Safety | Department of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation Current HABFES Science Network Requirements Report of theEnergy Electric

  1. EV Everywhere: Find Electric Vehicle Models | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation Current HABFES Science Network Requirements Report of theEnergy

  2. EV-Smart Grid Interoperability Center | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation Current HABFES Science Network Requirements Report of theEnergyEVYou

  3. SEP Success Story: Hawaii Gets 'EV Ready' | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo. 195 -Rob Roberts About UsWYOMINGORDER 3643FEBMichigan|

  4. EV Network integration (Smart Grid Project) (Ireland) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA Jump to:of the NationalDynetek EuropeEPG FuelInformation

  5. EnEV AIR GmbH | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA Jump to:of theClimateElgin, Illinois:JVEmpirefounders Jump

  6. CHEVROLET | ELECTRIC | GREEN | SPARK EV | TECHNOLOGY. INNOVATION &

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLC JumpBiossenceBrunswick, Maine:IAEAT JumpCEE

  7. Monthly EV Sales Shatter Records | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICESpecialAPPENDIX F Wetlandsof EnergyGapDepartment of Energy

  8. Standards for PHEV/EV Communications Protocol | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo.Hydrogen4EnergySolidof2Standard Method of

  9. Announcing $4 Million For Wireless EV Charging | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels Research at 1 Table ofDepartment ofBatteries |Announcing $4 Million

  10. Vehicle Technologies Office Merit Review 2015: Benchmarking EV and HEV

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing ToolInternationalReport FY 2009,BiofuelsLetEnergy Vehicle

  11. EV Everywhere Battery Workshop: Preliminary Target-Setting Framework

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n cEnergy (AZ, CA,EnergystudentThis Tuesday, September 25HVAC,

  12. EV Everywhere Consumer Acceptance and Charging Infrastructure Workshop -

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n cEnergy (AZ, CA,EnergystudentThis Tuesday, September 25HVAC,

  13. EV Everywhere Electric Drive Workshop: Preliminary Target-Setting Framework

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n cEnergy (AZ, CA,EnergystudentThis Tuesday, September7/20/2012

  14. EV Everywhere Framing Workshop - Report Out & Lessons Learned

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n cEnergy (AZ, CA,EnergystudentThis Tuesday, September7/20/2012

  15. EV Everywhere Framing Workshop Report Out & Lessons Learned

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n cEnergy (AZ, CA,EnergystudentThis Tuesday,

  16. EV Everywhere Grand Challenge - Battery Workshop attendees list

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n cEnergy (AZ, CA,EnergystudentThis Tuesday,Completely new7/25/2012

  17. EV Everywhere Grand Challenge - Charge to the Breakout Groups

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n cEnergy (AZ, CA,EnergystudentThis Tuesday,Completely

  18. EV Everywhere Grand Challenge - Electric Motors and Critical Materials Breakout

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n cEnergy (AZ, CA,EnergystudentThis

  19. EV Everywhere Logo Contest Federal Register Notice | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n cEnergy (AZ, CA,EnergystudentThis the Assistant

  20. EV Everywhere … Consumer Acceptance and Charging Infrastructure Workshop

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n cEnergy (AZ, CA,EnergystudentThis the Assistant David Sandalow

  1. Cobasys and Panasonic EV Energy cooperation agreement | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePower Ventures Jump to: navigation, searchClover HillCobalt Biofuels Jump

  2. Driving Progress Through the EV Everywhere Utility Partnership | Department

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i Framing DocumentUnits at Eight-<DominionAVOLUMEULPof Energy

  3. Control Strategies for Electric Vehicle (EV) Charging Using Renewables and

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfate Reducing BacteriaConnect Collider Tests ofOExperimentsMeasurementsLocal Storage (Conference)

  4. OpenEI Community - CHEVROLET | ELECTRIC | GREEN | SPARK EV | TECHNOLOGY.

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII Jump to:InformationInformationOorja Protonics JumpHome AllAPIBig Cleanen

  5. Innovative Cell Materials and Designs for 300 Mile Range EVs

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICE INDUSTRIAL TECHNICAL ASSISTANCE SupportsDepartmentInnovation for

  6. Dynamometer Testing of USPS EV Conversions | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based| Department8,Department of2 FederalEnergyDuctsDurable Low1Dynamometer

  7. EV Everywhere - Charge to Breakout Sessions | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based|DepartmentStatementofApril 25, 2014TEMPLATE | Tuesday, SeptemberClean-

  8. EV Everywhere Batteries Workshop - Beyond Lithium Ion Breakout Session

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based|DepartmentStatementofApril 25, 2014TEMPLATE | Tuesday,

  9. EV Everywhere Batteries Workshop - Materials Processing and Manufacturing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based|DepartmentStatementofApril 25, 2014TEMPLATE | Tuesday,Breakout Session

  10. EV Everywhere Batteries Workshop - Next Generation Lithium Ion Batteries

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based|DepartmentStatementofApril 25, 2014TEMPLATE | Tuesday,Breakout

  11. EV Everywhere Batteries Workshop - Pack Design and Optimization Breakout

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based|DepartmentStatementofApril 25, 2014TEMPLATE | Tuesday,BreakoutSession

  12. EV Everywhere Battery Workshop Introduction | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based|DepartmentStatementofApril 25, 2014TEMPLATE |

  13. EV Everywhere Battery Workshop: Preliminary Target-Setting Framework |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based|DepartmentStatementofApril 25, 2014TEMPLATE |Department of Energy

  14. EV Everywhere Consumer Acceptance Workshop: Breakout Group B Report Out |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based|DepartmentStatementofApril 25, 2014TEMPLATE |Department of

  15. EV Everywhere Consumer Acceptance and Charging Infrastructure Workshop

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based|DepartmentStatementofApril 25, 2014TEMPLATE |Department ofIntroduction |

  16. EV Everywhere Consumer Acceptance and Charging Infrastructure Workshop:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based|DepartmentStatementofApril 25, 2014TEMPLATE |Department ofIntroduction

  17. EV Everywhere Consumer Acceptance and Charging Infrastructure Workshop:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based|DepartmentStatementofApril 25, 2014TEMPLATE |Department

  18. EV Everywhere Consumer Acceptance and Charging Infrastructure Workshop:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based|DepartmentStatementofApril 25, 2014TEMPLATE |DepartmentConsumer Acceptance

  19. EV Everywhere Consumer Acceptance and Charging Infrastructure Workshop:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based|DepartmentStatementofApril 25, 2014TEMPLATE |DepartmentConsumer

  20. EV Everywhere Electric Drive Workshop: Preliminary Target-Setting Framework

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based|DepartmentStatementofApril 25, 2014TEMPLATE| Department of Energy

  1. EV Everywhere Framing Workshop - Report Out & Lessons Learned | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based|DepartmentStatementofApril 25, 2014TEMPLATE| Department of Energyof

  2. EV Everywhere Framing Workshop Overview | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based|DepartmentStatementofApril 25, 2014TEMPLATE| Department of

  3. EV Everywhere Grand Challenge - Battery Status and Cost Reduction Prospects

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based|DepartmentStatementofApril 25, 2014TEMPLATE| Department ofEnergy|

  4. EV Everywhere Grand Challenge - Battery Workshop Agenda | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based|DepartmentStatementofApril 25, 2014TEMPLATE| Department

  5. EV Everywhere Grand Challenge - Battery Workshop attendees list |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based|DepartmentStatementofApril 25, 2014TEMPLATE| DepartmentDepartment of

  6. EV Everywhere Grand Challenge - Charge to the Breakout Groups | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based|DepartmentStatementofApril 25, 2014TEMPLATE| DepartmentDepartment ofof

  7. EV Everywhere Grand Challenge - Electric Drive (Power Electronics and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based|DepartmentStatementofApril 25, 2014TEMPLATE| DepartmentDepartment

  8. EV Everywhere Grand Challenge Introduction for Electric Drive Workshop |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based|DepartmentStatementofApril 25, 2014TEMPLATE|

  9. EV Everywhere Grand Challenge Road to Success | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based|DepartmentStatementofApril 25, 2014TEMPLATE|Off

  10. EV Everywhere Grand Challenge: Consumer Acceptance and Charging

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based|DepartmentStatementofApril 25, 2014TEMPLATE|OffInfrastructure Workshop

  11. EV Everywhere Grand Challenge: Consumer Acceptance and Charging

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based|DepartmentStatementofApril 25, 2014TEMPLATE|OffInfrastructure

  12. EV Everywhere Workshop: Electric Motors and Critical Materials Breakout

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based|DepartmentStatementofApril 25, 2014TEMPLATE|OffInfrastructureGroup Report

  13. EV Everywhere Workshop: Power Electronics and Thermal Management Breakout

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based|DepartmentStatementofApril 25, 2014TEMPLATE|OffInfrastructureGroup

  14. EV Everywhere Workshop: Traction Drive Systems Breakout Group Report |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based|DepartmentStatementofApril 25,

  15. USABC Development of Advanced High-Performance Batteries for EV

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCEDInstallers/ContractorsPhotovoltaicsStateofEnergyof EnergyEnergyUS-IndiaJapan1

  16. Vehicle Technologies Office: EV Everywhere Grand Challenge | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And Statistics » USAJobs Search USAJobsAdvanced EngineFebruary 12,Modeling, Testing, Data

  17. EV Everywhere Workplace Charging Challenge: Benefits of Joining |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann JacksonDepartment ofOffice ofof EnergyPlants" Now AvailableSTAR® <aDepartment

  18. Announcing $4 Million For Wireless EV Charging | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann JacksonDepartment of EnergyResearchers atDay 12:wasProjects |SolarH. Sayles,- DeputyThe

  19. EV Everywhere: Charging on the Road | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansas Nuclear Profile 2010Mesoscopy and thermodynamics(Revised)EVon the Road

  20. EV Everywhere: Maximizing All-Electric Range | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansas Nuclear Profile 2010Mesoscopy and thermodynamics(Revised)EVon