Sample records for ford escape phev

  1. AVTA: Ford Escape PHEV Advanced Research Vehicle 2010 Testing...

    Broader source: Energy.gov (indexed) [DOE]

    results of testing done on a plug-in hybrid electric Ford Escape Advanced Research Vehicle, an experimental model not currently for sale. The baseline performance testing...

  2. Ford Plug-In Project: Bringing PHEVs to Market

    Broader source: Energy.gov (indexed) [DOE]

    projects: - analysis of infield results of the Escape PHEVs, - field demonstration of Smart Meter communication, and - creation of a model studying plug-in vehicles as a grid...

  3. AVTA: Quantum Escape PHEV Testing Results

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following reports describe results of testing done on a Quantum Escape PHEV 2010, an experimental model not currently for sale. The baseline performance testing provides a point of comparison for the other test results. Taken together, these reports give an overall view of how this vehicle functions under extensive testing. This research was conducted by Idaho National Laboratory.

  4. Ford Plug-In Project: Bringing PHEVs to Market Demonstration and Validation Project

    SciTech Connect (OSTI)

    None

    2013-12-31T23:59:59.000Z

    This project is in support of our national goal to reduce our dependence on fossil fuels. By supporting efforts that contribute toward the successful mass production of plug-in hybrid electric vehicles, our nation’s transportation-related fuel consumption can be offset with energy from the grid. Over four and a half years ago, when this project was originally initiated, plug-in electric vehicles were not readily available in the mass marketplace. Through the creation of a 21 unit plug-in hybrid vehicle fleet, this program was designed to demonstrate the feasibility of the technology and to help build cross-industry familiarity with the technology and interface of this technology with the grid. Ford Escape PHEV Demonstration Fleet 3 March 26, 2014 Since then, however, plug-in vehicles have become increasingly more commonplace in the market. Ford, itself, now offers an all-electric vehicle and two plug-in hybrid vehicles in North America and has announced a third plug-in vehicle offering for Europe. Lessons learned from this project have helped in these production vehicle launches and are mentioned throughout this report. While the technology of plugging in a vehicle to charge a high voltage battery with energy from the grid is now in production, the ability for vehicle-to-grid or bi-directional energy flow was farther away than originally expected. Several technical, regulatory and potential safety issues prevented progressing the vehicle-to-grid energy flow (V2G) demonstration and, after a review with the DOE, V2G was removed from this demonstration project. Also proving challenging were communications between a plug-in vehicle and the grid or smart meter. While this project successfully demonstrated the vehicle to smart meter interface, cross-industry and regulatory work is still needed to define the vehicle-to-grid communication interface.

  5. Ford Plug-In Project: Bringing PHEVs to Market

    Broader source: Energy.gov (indexed) [DOE]

    Sustainable Mobile Technologies Ford Motor Company May 19, 2009 This presentation does not contain any proprietary, confidential, or otherwise restricted information Project ID:...

  6. AVTA: Ford Escape PHEV Advanced Research Vehicle 2010 Testing Results |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment of Energy 601Department of EnergyTestbedEnergy Eaton

  7. AVTA: 2013 Ford C-Max Energi PHEV Testing Results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment of Energy 601Department of Energy Toyota PriusMax Energi PHEV

  8. AVTA: 2013 Ford Fusion Energi PHEV Testing Results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment of Energy 601Department of Energy Toyota PriusMax EnergiFord

  9. SCAQMD Quantum Escape PHEV Report

    Broader source: Energy.gov (indexed) [DOE]

    Overall gasoline fuel economy (mpg) 34 Overall AC electrical energy consumption (AC Whmi) 64 Overall DC electrical energy consumption (DC Whmi) 31 Total number of trips 831...

  10. SCAQMD Quantum Escape PHEV Report

    Broader source: Energy.gov (indexed) [DOE]

    Overall gasoline fuel economy (mpg) 33 Overall AC electrical energy consumption (AC Whmi) 35 Overall DC electrical energy consumption (DC Whmi) 21 Total number of trips...

  11. SCAQMD Quantum Escape PHEV Report

    Broader source: Energy.gov (indexed) [DOE]

    Overall gasoline fuel economy (mpg) 35 Overall AC electrical energy consumption (AC Whmi) 90 Overall DC electrical energy consumption (DC Whmi) 36 Total number of trips 700...

  12. SCAQMD Quantum Escape PHEV Report

    Broader source: Energy.gov (indexed) [DOE]

    Charge Depleting (CD) mode City Highway Gasoline fuel economy (mpg) 35 39 DC electrical energy consumption (DC Whmi) 71 61 Percent of miles with internal combustion engine off...

  13. SCAQMD Quantum Escape PHEV Report

    Broader source: Energy.gov (indexed) [DOE]

    Charge Depleting (CD) mode City Highway Gasoline fuel economy (mpg) 37 41 DC electrical energy consumption (DC Whmi) 64 58 Percent of miles with internal combustion engine off...

  14. SCAQMD Quantum Escape PHEV Report

    Broader source: Energy.gov (indexed) [DOE]

    Charge Depleting (CD) mode City Highway Gasoline fuel economy (mpg) 37 41 DC electrical energy consumption (DC Whmi) 65 53 Percent of miles with internal combustion engine off...

  15. SCAQMD Quantum Escape PHEV Report

    Broader source: Energy.gov (indexed) [DOE]

    Charge Depleting (CD) mode City Highway Gasoline fuel economy (mpg) 37 39 DC electrical energy consumption (DC Whmi) 75 63 Percent of miles with internal combustion engine off...

  16. SCAQMD Quantum Escape PHEV Report

    Broader source: Energy.gov (indexed) [DOE]

    Charge Depleting (CD) mode City Highway Gasoline fuel economy (mpg) 34 41 DC electrical energy consumption (DC Whmi) 81 55 Percent of miles with internal combustion engine off...

  17. SCAQMD Quantum Escape PHEV Report

    Broader source: Energy.gov (indexed) [DOE]

    period: April 2012 Number of vehicle days driven: 250 All Trips Combined Overall gasoline fuel economy (mpg) 32 Overall AC electrical energy consumption (AC Whmi) 45...

  18. SCAQMD Quantum Escape PHEV Report

    Broader source: Energy.gov (indexed) [DOE]

    Trips Combined Overall gasoline fuel economy (mpg) 33 Overall AC electrical energy consumption (AC Whmi) 46 Overall DC electrical energy consumption (DC Whmi) 25 Total...

  19. SCAQMD Quantum Escape PHEV Report

    Broader source: Energy.gov (indexed) [DOE]

    and Charge Sustaining (CDCS) mode Gasoline fuel economy (mpg) 33 40 DC electrical energy consumption (DC Whmi) 78 52 Percent of miles with internal combustion engine off...

  20. Ford Escape Advanced Research Fleet

    Broader source: Energy.gov (indexed) [DOE]

    period: 2011 Number of vehicle days driven: 3,184 All Trips Combined Overall gasoline fuel economy (mpg) 39 Overall AC electrical energy consumption (AC Whmi) 100...

  1. Ford Escape Advanced Research Fleet

    Broader source: Energy.gov (indexed) [DOE]

    period: 2010 Number of vehicle days driven: 3,778 All Trips Combined Overall gasoline fuel economy (mpg) 38 Overall AC electrical energy consumption (AC Whmi) 100...

  2. Ford Escape Advanced Research Fleet

    Broader source: Energy.gov (indexed) [DOE]

    2012 All Trips Combined Overall gasoline fuel economy (mpg) 39 Overall AC electrical energy consumption (AC Whmi) 106 Overall DC electrical energy consumption (DC Whmi)...

  3. PHEV development test platform Utilization

    Broader source: Energy.gov (indexed) [DOE]

    comparison For PHEV studies: - Open controller approach - Virtual scalable motor and energy storage module - Different PHEV philosophies can be emulated, from mild hybrid...

  4. JCS PHEV System Development

    Broader source: Energy.gov (indexed) [DOE]

    PHEV Contract - P.O. 08-2047 U.S. Department of Energy Merit Review Scott Engstrom Johnson Controls - Saft March 20th, 2009 This presentation does not contain any proprietary,...

  5. Ford Plug-In Project: Bringing PHEVs to Market

    Broader source: Energy.gov (indexed) [DOE]

    document effects Slide 5 of 20 V2GG2V Demonstration - Complete field demonstration of smart meter communication with remaining utility partners Battery Software Improvements -...

  6. Ford Plug-In Project: Bringing PHEVs to Market

    Broader source: Energy.gov (indexed) [DOE]

    Lecture, Schenectady Museum, Schenectady, NY (http:www.schenectadymuseum.orgevents.php?month9&year2009) PHI * DOE Solar Decathlon (National Mall, Washington DC) Slide 18 of...

  7. Ford Plug-In Project: Bringing PHEVs to Market

    Broader source: Energy.gov (indexed) [DOE]

    VS019 Slide 2, March 2012 Overview Timeline * Start: October, 2008 * Finish: December, 2013 * 75% Complete (Vehicle Build - 100%) Partners * Electric Power Research Institute *...

  8. Argonne Facilitation of PHEV Standard Testing Procedure (SAE...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Argonne Facilitation of PHEV Standard Testing Procedure (SAE J1711) Argonne Facilitation of PHEV Standard Testing Procedure (SAE J1711) 2009 DOE Hydrogen Program and Vehicle...

  9. HEV, PHEV, EV Test Standard Development and Validation | Department...

    Broader source: Energy.gov (indexed) [DOE]

    HEV, PHEV, EV Test Standard Development and Validation HEV, PHEV, EV Test Standard Development and Validation 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies...

  10. AVTA: 2012 Chevrolet Volt PHEV Downloadable Dynamometer Database...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Chevrolet Volt PHEV Downloadable Dynamometer Database Reports AVTA: 2012 Chevrolet Volt PHEV Downloadable Dynamometer Database Reports The Vehicle Technologies Office's Advanced...

  11. AVTA: 2012 Toyota Prius PHEV Downloadable Dynamometer Database...

    Energy Savers [EERE]

    Toyota Prius PHEV Downloadable Dynamometer Database Reports AVTA: 2012 Toyota Prius PHEV Downloadable Dynamometer Database Reports The Vehicle Technologies Office's Advanced...

  12. Advanced PHEV Engine Systems and Emissions Control Modeling and...

    Broader source: Energy.gov (indexed) [DOE]

    - Very limited transient engines and emissions models for PHEV simulations - PHEV optimization needs to include advanced engine combustion modes and emissions controls * Partners...

  13. USABC Energy Storage Testing - High Power and PHEV Development...

    Energy Savers [EERE]

    Energy Storage Testing - High Power and PHEV Development USABC Energy Storage Testing - High Power and PHEV Development Presentation from the U.S. DOE Office of Vehicle...

  14. Advanced PHEV Engine Systems and Emissions Control Modeling and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PHEV Engine Systems and Emissions Control Modeling and Analysis Advanced PHEV Engine Systems and Emissions Control Modeling and Analysis 2011 DOE Hydrogen and Fuel Cells Program,...

  15. Advancing Transportation Through Vehicle Electrification - PHEV...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Meeting arravt067vssbazzi2012o.pdf More Documents & Publications Advancing Transportation Through Vehicle Electrification - PHEV Advancing Plug In Hybrid Technology and...

  16. Advancing Transportation Through Vehicle Electrification - PHEV...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Evaluation Meeting, June 7-11, 2010 -- Washington D.C. vssarravt067bazzi2010p.pdf More Documents & Publications Advancing Transportation Through Vehicle Electrification - PHEV...

  17. PHEV Engine and Aftertreatment Model Development

    Broader source: Energy.gov (indexed) [DOE]

    725K * Barriers - PHEV utilization of high efficiency engines is limited by transient engine performance and emissions controls - Data and models available for analyzing transient...

  18. PHEV Engine and Aftertreatment Model Development

    Broader source: Energy.gov (indexed) [DOE]

    team and reduced work scope * Barriers - PHEV fuel efficiency limited by transient engine operation and emissions controls - Very limited transient engines and emissions models...

  19. Advanced Vehicle Testing Activity (AVTA) ? PHEV Evaluations...

    Broader source: Energy.gov (indexed) [DOE]

    1.pdf More Documents & Publications Advanced Vehicle Testing Activity (AVTA) - Vehicle Testing and Demonstration Activities AVTA PHEV Demonstrations and Testing Argonne...

  20. AVTA: 2010 Quantum Escape PHEV Testing Results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment of Energy 601 High26-OPAM63-OPAMGuidanceAVTA

  1. PHEV Market Introduction Workshop Summary Report

    SciTech Connect (OSTI)

    Weber, Adrienne M [ORNL; Sikes, Karen R [ORNL

    2009-03-01T23:59:59.000Z

    The Plug-In Hybrid Electric Vehicle (PHEV) Market Introduction Study Workshop was attended by approximately forty representatives from various stakeholder organizations. The event took place at the Hotel Helix in Washington, D.C. on December 1-2, 2008. The purpose of this workshop was to follow-up last year s PHEV Value Proposition Study, which showed that indeed, a viable and even thriving market for these vehicles can exist by the year 2030. This workshop aimed to identify immediate action items that need to be undertaken to achieve a successful market introduction and ensuing large market share of PHEVs in the U.S. automotive fleet.

  2. Advanced Vehicle Testing Activity (AVTA) ? Non-PHEV Evaluations...

    Energy Savers [EERE]

    Non-PHEV Evaluations and Data Collection Advanced Vehicle Testing Activity (AVTA) Non-PHEV Evaluations and Data Collection Presentation from the U.S. DOE Office of Vehicle...

  3. Performance Analysis of Photovoltaic Cell with Dynamic PHEV Loads

    E-Print Network [OSTI]

    Pota, Himanshu Roy

    Performance Analysis of Photovoltaic Cell with Dynamic PHEV Loads F. R. Islam, H. R. Pota, M. S. Rahman and M. S. Ali Abstract--This paper presents the dynamics of photovoltaic (PV) cell with Plug for charging PHEVs with PV cell where PHEVs load are modelled based on third order battery model. System

  4. Ford | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6Theoretical vsFlintFlux PowerFootprint Ventures JumpWindFord

  5. Advanced Vehicle Benchmarking of HEVs and PHEVs

    Broader source: Energy.gov (indexed) [DOE]

    rd Qtr 2008 - 2010 Honda Insight: 3 rd Qtr 2009 - 2010 Toyota Prius: 4 th Qtr 2009 - 2010 Fusion Hybrid: 4 th Qtr 2009 - 2010 Saturn Vue Hybrid: 4 th Qtr 2009 PHEV Benchmarking -...

  6. Advanced Vehicle Testing Activity (AVTA) ? PHEV Evaluations...

    Broader source: Energy.gov (indexed) [DOE]

    kWh MPG per FWHET Test Cumulative MPG Cumulative AC kWh 15 FY07 EnergyCS Prius - Fuel Costs EnergyCS PHEV Prius UDDS & HWFET Fuel Cost per Mile 0.000 0.005 0.010 0.015...

  7. Ford Escape Advanced Research Fleet Monthly Summary Report -...

    Broader source: Energy.gov (indexed) [DOE]

    Overall gasoline fuel economy (mpg) 38 Overall AC electrical energy consumption (AC Whmi) 88 Overall DC electrical energy consumption (DC Whmi) 62 Total number of trips...

  8. Ford Escape Advanced Research Fleet Monthly Summary Report -...

    Broader source: Energy.gov (indexed) [DOE]

    97 Overall DC electrical energy consumption (DC Whmi) 67 Total number of trips 1,720 Total distance traveled (mi) 19,451 Trips in Charge Depleting (CD) mode Gasoline fuel...

  9. Ford Escape Advanced Research Fleet Monthly Summary Report -...

    Broader source: Energy.gov (indexed) [DOE]

    Overall gasoline fuel economy (mpg) 39 Overall AC electrical energy consumption (AC Whmi) 110 Overall DC electrical energy consumption (DC Whmi) 77 Total number of trips...

  10. Ford Escape Advanced Research Fleet Monthly Summary Report -...

    Broader source: Energy.gov (indexed) [DOE]

    Overall gasoline fuel economy (mpg) 41 Overall AC electrical energy consumption (AC Whmi) 124 Overall DC electrical energy consumption (DC Whmi) 87 Total number of trips...

  11. Ford Escape Advanced Research Fleet Monthly Summary Report -...

    Broader source: Energy.gov (indexed) [DOE]

    41 Overall AC electrical energy consumption (AC Whmi) 118 Overall DC electrical energy consumption (DC Whmi) 84 Total number of trips 1,919 Total distance traveled (mi)...

  12. Ford Escape Advanced Research Fleet Monthly Summary Report -...

    Broader source: Energy.gov (indexed) [DOE]

    00 Overall DC electrical energy consumption (DC Whmi) 72 Total number of trips 1,755 Total distance traveled (mi) 20,687 Trips in Charge Depleting (CD) mode Gasoline fuel...

  13. Advanced Cathode Material Development for PHEV Lithium Ion Batteries...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Advanced Cathode Material Development for PHEV Lithium Ion Batteries High Energy Novel Cathode Alloy Automotive Cell Develop & evaluate...

  14. Advanced Cathode Material Development for PHEV Lithium Ion Batteries...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Advanced Cathode Material Development for PHEV Lithium Ion Batteries Vehicle Technologies Office Merit Review 2014: High Energy Novel...

  15. AVTA: Toyota Prius PHEV 2013 Testing Results

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following reports describe results of testing done on a Toyota Prius PHEV 2013. Baseline and battery testing data collected at Argonne National Laboratory is available in summary and CSV form on the Argonne Downloadable Dynometer Database site (http://www.transportation.anl.gov/D3/2013_toyota_prius_phev.html). The reports for download here are based on research done at Idaho National Laboratory. Taken together, these reports give an overall view of how this vehicle functions under extensive testing.

  16. Ford Plug-In Project: Bringing PHEVs to Market | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecordFederal7.pdfFlash_2010_-24.pdfOverview FlowControlIndian

  17. Ford Plug-In Project: Bringing PHEVs to Market | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecordFederal7.pdfFlash_2010_-24.pdfOverview FlowControlIndian1 DOE Hydrogen

  18. Ford Plug-In Project: Bringing PHEVs to Market | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecordFederal7.pdfFlash_2010_-24.pdfOverview FlowControlIndian1 DOE Hydrogen0

  19. Ford Plug-In Project: Bringing PHEVs to Market | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecordFederal7.pdfFlash_2010_-24.pdfOverview FlowControlIndian1 DOE

  20. AVTA: 2013 Ford C-Max Energi Fleet PHEV Testing Results | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment of Energy 601Department of Energy Toyota Prius

  1. Locating PHEV Exchange Stations in V2G

    E-Print Network [OSTI]

    Pan, Feng; Berscheid, Alan; Izraelevitz, David

    2010-01-01T23:59:59.000Z

    Plug-in hybrid electric vehicles (PHEVs) are an environmentally friendly technology that is expected to rapidly penetrate the transportation system. Renewable energy sources such as wind and solar have received considerable attention as clean power options for future generation expansion. However, these sources are intermittent and increase the uncertainty in the ability to generate power. The deployment of PHEVs in a vehicle-to-grid (V2G) system provide a potential mechanism for reducing the variability of renewable energy sources. For example, PHEV supporting infrastructures like battery exchange stations that provide battery service to PHEV customers could be used as storage devices to stabilize the grid when renewable energy production is fluctuating. In this paper, we study how to best site these stations in terms of how they can support both the transportation system and the power grid. To model this problem we develop a two-stage stochastic program to optimally locate the stations prior to the realizat...

  2. Fracture Conductivity of the Eagle Ford Shale

    E-Print Network [OSTI]

    Guzek, James J

    2014-07-25T23:59:59.000Z

    such as the Eagle Ford Shale. This work investigates the fracture conductivities of seven Eagle Ford Shale samples collected from an outcrop of facies B. Rough fractures were induced in the samples and laboratory experiments that closely followed the API RP-61...

  3. PHEV Energy Storage Performance/Life/Cost Trade-Off Analysis (Presentation)

    SciTech Connect (OSTI)

    Markel, T.; Smith, K.; Pesaran, A.

    2008-05-15T23:59:59.000Z

    Developed linked parametric modeling tools to mathematically evaluate battery designs to satisfy challenging operational requirements for a PHEV.

  4. Impact of PHEV Loads on the Dynamic Performance of Power System

    E-Print Network [OSTI]

    Pota, Himanshu Roy

    additional load to the power systems [5]. According to the Electric Power Research Institute (EPRI), PHEVsImpact of PHEV Loads on the Dynamic Performance of Power System F. R. Islam, H. R. Pota, M. A into the existing grid. This paper analyses the impact of PHEV loads on the dynamic behaviour of a power system

  5. in this issue 1 Lessons from Ford of Mexico

    E-Print Network [OSTI]

    Gabrieli, John

    in this issue 1 Lessons from Ford of Mexico 2 Welcome 3 The SDM Core: System Architecture 4 SDM 12 Calendar SDM partnership is a success story for Ford of Mexico Ford of Mexico started its-changing industry needs. When Ford of Mexico began looking for an advanced degree program to develop high

  6. Internal Short Circuits in Lithium-Ion Cells for PHEVs

    SciTech Connect (OSTI)

    Sriramulu, Suresh; Stringfellow, Richard

    2013-05-25T23:59:59.000Z

    Development of Plug-in Hybrid Electric Vehicles (PHEVs) has recently become a high national priority because of their potential to enable significantly reduced petroleum consumption by the domestic transportation sector in the relatively near term. Lithium-ion (Li-ion) batteries are a critical enabling technology for PHEVs. Among battery technologies with suitable operating characteristics for use in vehicles, Li-ion batteries offer the best combination of energy, power, life and cost. Consequently, worldwide, leading corporations and government agencies are supporting the development of Li-ion batteries for PHEVs, as well as the full spectrum of vehicular applications ranging from mild hybrid to all-electric. In this project, using a combination of well-defined experiments, custom designed cells and simulations, we have improved the understanding of the process by which a Li-ion cell that develops an internal short progresses to thermal runaway. Using a validated model for thermal runaway, we have explored the influence of environmental factors and cell design on the propensity for thermal runaway in full-sized PHEV cells. We have also gained important perspectives about internal short development and progression; specifically that initial internal shorts may be augmented by secondary shorts related to separator melting. Even though the nature of these shorts is very stochastic, we have shown the critical and insufficiently appreciated role of heat transfer in influencing whether a developing internal short results in a thermal runaway. This work should lead to enhanced perspectives on separator design, the role of active materials and especially cathode materials with respect to safety and the design of automotive cooling systems to enhance battery safety in PHEVs.

  7. Optimization of PHEV Power Split Gear Ratio to Minimize Fuel Consumption and Operation Cost.

    E-Print Network [OSTI]

    Li, Yanhe

    2013-01-01T23:59:59.000Z

    ??A Plug-in Hybrid Electric Vehicle (PHEV) is a vehicle powered by a combination of an internal combustion engine and an electric motor with a battery… (more)

  8. AVTA: Chrysler RAM Experimental PHEV Pickup Truck Recovery Act Project Testing Results- Phase 2

    Broader source: Energy.gov [DOE]

    The following reports describe results of testing done on a 2011 Chrysler RAM PHEV, a demonstration vehicle not currently available for sale.

  9. Batteries for Plug-in Hybrid Electric Vehicles (PHEVs): Goals and the State of Technology circa 2008

    E-Print Network [OSTI]

    Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

    2008-01-01T23:59:59.000Z

    automotive applications, several alternative chemistries are being testing for PHEVs, including: lithium nickel, cobalt and aluminum (automotive applications, several alternative chemistries are being testing for PHEVs, including: lithium nickel, cobalt and aluminum (

  10. Betty Ford Institute for Medical Students Scholarship

    E-Print Network [OSTI]

    MacMillan, Andrew

    of addicted patients and the theory and philosophy of treatment at the Betty Ford Center; and attend a Treatment Planning Update meeting to observe the multidisciplinary care process at the Center. Finally to give physicians-in- training understanding and insight into addictive disease and the recovery process

  11. January 08 1 Ford -Chrysler -General Motors

    E-Print Network [OSTI]

    January 08 1 Ford - Chrysler - General Motors DOE Fuel Cell Pre-Solicitation Workshop worthy - and not worthy - of study in the DOE Fuel Cell Subprogram · Categories described within DOE Fuel for Study · PGM cathode catalysts, mass activity > 0.44 A/mgPGM ­ Core/shell ­ Structure-controlled PGM

  12. Josephine Ford Cancer Center Cancer Research Programs

    E-Print Network [OSTI]

    Berdichevsky, Victor

    Josephine Ford Cancer Center Cancer Research Programs presented to WSU SOM PAD January 10, 2012 presented by Sandra A. Rempel, Ph.D. Associate Director of Research, JFCC #12;JFCC Cancer Research Programs Cancer Epidemiology, Prevention and Control Program Members: Gwen Alexander, Andrea Cassidy

  13. CPU Inheritance Scheduling Bryan Ford Sai Susarla

    E-Print Network [OSTI]

    Ford, Bryan

    , providing much greater scheduling flexibil­ ity. Modular, hierarchical control can be provided over systems control the sharing of the machine's CPU resources among threads using a fixed scheduling schemeCPU Inheritance Scheduling Bryan Ford Sai Susarla Department of Computer Science University of Utah

  14. CPU Inheritance Scheduling Bryan Ford Sai Susarla

    E-Print Network [OSTI]

    Ford, Bryan

    , providing much greater scheduling flexibil- ity. Modular, hierarchical control can be provided overCPU Inheritance Scheduling Bryan Ford Sai Susarla Department of Computer Science University of Utah processor scheduling mechanisms in operat- ing systems are fairly rigid, often supportingonly one fixed

  15. Examination of a PHEV Bidirectional Charger System for V2G Reactive Power Compensation

    E-Print Network [OSTI]

    Tolbert, Leon M.

    . Keywords - PHEV; charger; V2G; reactive power; battery I. INTRODUCTION Today, hybrid electric vehicles to power the vehicle for a daily commute. PHEVs provide electricity- only drive option up to a specified which is valuable to the electric power grid. The possibility of using battery-powered vehicles

  16. Reactive Power Operation Analysis of a Single-Phase EV/PHEV Bidirectional Battery Charger

    E-Print Network [OSTI]

    Tolbert, Leon M.

    --More battery powered electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs) will be introduced, charger, electric vehicle, EV, PHEV, reactive power, V2G. I. INTRODUCTION According to the international of the electric grid by supplying ancillary services such as reactive power compensation, voltage regulation

  17. Impact of Dynamic PHEVs Load on Renewable Sources based Distribution System

    E-Print Network [OSTI]

    Pota, Himanshu Roy

    Impact of Dynamic PHEVs Load on Renewable Sources based Distribution System F. R. Islam, H. R. Pota.Roy@student.adfa.edu.au Abstract--In this paper, charging effect of dynamic Plug in Hybrid Electric Vehicle (PHEV) is presented in a renewable energy based electricity distribution system. For planning and designing a distribution system

  18. EVOLUTION OF THE HOUSEHOLD VEHICLE FLEET: ANTICIPATING FLEET COMPOSITION, PHEV ADOPTION AND GHG

    E-Print Network [OSTI]

    Kockelman, Kara M.

    EVOLUTION OF THE HOUSEHOLD VEHICLE FLEET: ANTICIPATING FLEET COMPOSITION, PHEV ADOPTION AND GHG evolution, vehicle ownership, plug-in hybrid electric vehicles (PHEVs), climate change policy, stated preference, opinion survey, microsimulation ABSTRACT In todays world of volatile fuel prices and climate

  19. AVTA: Chrysler Town and Country 2011 Experimental PHEV Testing Results

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following reports describe results of testing done on a Chrysler Town and Country PHEV 2011, an experimental model not currently for sale. The baseline performance testing provides a point of comparison for the other test results. Taken together, these reports give an overall view of how this vehicle functions under extensive testing. This research was conducted by Idaho National Laboratory.

  20. Secondary Use of PHEV and EV Batteries: Opportunities & Challenges (Presentation)

    SciTech Connect (OSTI)

    Neubauer, J.; Pesaran, A.; Howell, D.

    2010-05-01T23:59:59.000Z

    NREL and partners will investigate the reuse of retired lithium ion batteries for plug-in hybrid, hybrid, and electric vehicles in order to reduce vehicle costs and emissions and curb our dependence on foreign oil. A workshop to solicit industry feedback on the process is planned. Analyses will be conducted, and aged batteries will be tested in two or three suitable second-use applications. The project is considering whether retired PHEV/EV batteries have value for other applications; if so, what are the barriers and how can they be overcome?

  1. Bi-Directional DC-DC Converter for PHEV Applications

    SciTech Connect (OSTI)

    Abas Goodarzi

    2011-01-31T23:59:59.000Z

    Plug-In Hybrid Electric Vehicles (PHEV) require high power density energy storage system (ESS) for hybrid operation and high energy density ESS for Electric Vehicle (EV) mode range. However, ESS technologies to maximize power density and energy density simultaneously are not commercially feasible. The use of bi-directional DC-DC converter allows use of multiple energy storage, and the flexible DC-link voltages can enhance the system efficiency and reduce component sizing. This will improve fuel consumption, increase the EV mode range, reduce the total weight, reduce battery initial and life cycle cost, and provide flexibility in system design.

  2. PHEV Engine Control and Energy Management Strategy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartment ofOil's Impact on OurSempriusEnergy PART 708PHEV Engine

  3. AVTA … PHEV Demonstrations and Testing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment of Energy 601 High26-OPAM63-OPAMGuidanceAVTA … PHEV Demonstrations

  4. AVTA: 2012 Toyota Prius PHEV Downloadable Dynamometer Database Reports |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment of Energy 601Department of Energy Toyota Prius PHEV

  5. Real-World PHEV Fuel Economy Prediction | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L dDepartment ofList? |EnergyDepartmentMilestoneFiltersPHEV Fuel

  6. Who Will More Likely Buy PHEV: A Detailed Market Segmentation Analysis

    SciTech Connect (OSTI)

    Lin, Zhenhong [ORNL] [ORNL; Greene, David L [ORNL] [ORNL

    2010-01-01T23:59:59.000Z

    Understanding the diverse PHEV purchase behaviors among prospective new car buyers is key for designing efficient and effective policies for promoting new energy vehicle technologies. The ORNL MA3T model developed for the U.S. Department of Energy is described and used to project PHEV purchase probabilities by different consumers. MA3T disaggregates the U.S. household vehicle market into 1458 consumer segments based on region, residential area, driver type, technology attitude, home charging availability and work charging availability and is calibrated to the EIA s Annual Energy Outlook. Simulation results from MA3T are used to identify the more likely PHEV buyers and provide explanations. It is observed that consumers who have home charging, drive more frequently and live in urban area are more likely to buy a PHEV. Early adopters are projected to be more likely PHEV buyers in the early market, but the PHEV purchase probability by the late majority consumer can increase over time when PHEV gradually becomes a familiar product. Copyright Form of EVS25.

  7. STATEMENT OF CONSIDERATIONS Request by Ford Motor Company Research...

    Broader source: Energy.gov (indexed) [DOE]

    for production implementation in the short term . Ford will : 1) utilize the favorable knock suppression properties of ethanol to build upon and enhance the recent techn ica l...

  8. AVTA: 2013 Ford C-Max Energi Fleet

    Broader source: Energy.gov [DOE]

    VTO's National Laboratories have tested and collected both dynamometer and fleet data for the Ford CMAX Energi (a plug-in hybrid electric vehicle).

  9. Drugs and oil flow through the Eagle Ford Shale.

    E-Print Network [OSTI]

    Marks, Michael Perry

    2014-01-01T23:59:59.000Z

    ??This report is a work of original reporting which investigates the proliferation of drug use and drug trafficking in the Eagle Ford Shale, a region… (more)

  10. STATEMENT OF CONSIDERATIONS Request by Ford Motor Company Research...

    Broader source: Energy.gov (indexed) [DOE]

    this cooperative agreement for the performance of work entitled "Ford Thermoelectric HVAC Project". The goal of the 'cooperative agreement is to investigate the technical and...

  11. President Ford Signs the Energy Reorganization Act of 1974 |...

    National Nuclear Security Administration (NNSA)

    Ford Signs the Energy Reorganization Act of 1974 | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing...

  12. REQUEST BY FORD MOTOR COMPANY, FOR AN ADVANCE WAIVER OF DOMESTIC...

    Broader source: Energy.gov (indexed) [DOE]

    made under the proposed subcontract. Ford is one the world's largest producers of automotive products. Considering its market position, Ford has the capability to...

  13. Ford Motor Company | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecordFederal7.pdfFlash_2010_-24.pdfOverview FlowControlIndian ReservationFord

  14. Evaluation of Ethanol Blends for PHEVs using Simulation andEngine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Engine-in-the-Loop Evaluation of Ethanol Blends for PHEVs using Simulation and Engine-in-the-Loop 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies...

  15. FY12 annual Report: PHEV Engine Control and Energy Management Strategy

    SciTech Connect (OSTI)

    Chambon, Paul H [ORNL

    2012-05-01T23:59:59.000Z

    The objectives are: (1) Investigate novel engine control strategies targeted at rapid engine/catalyst warming for the purpose of mitigating tailpipe emissions from plug-in hybrid electric vehicles (PHEV) exposed to multiple engine cold start events; (2) Optimize integration of engine control strategies with hybrid supervisory control strategies in order to reduce cold start emissions and fuel consumption of PHEVs; and (3) Ensure that development of new vehicle technologies complies with existing emission standards.

  16. Learning from Consumers: Plug-In Hybrid Electric Vehicle (PHEV) Demonstration and Consumer Education, Outreach, and Market Research Program

    E-Print Network [OSTI]

    Kurani, Kenneth S; Axsen, Jonn; Caperello, Nicolette; Davies, Jamie; Stillwater, Tai

    2009-01-01T23:59:59.000Z

    for plug-in hybrid electric vehicles (PHEVs): Goals and thetechnology: California's electric vehicle program. Scienceand Impacts of Hybrid Electric Vehicle Options for a Compact

  17. Narrow escape: how ionizing photons escape from disc galaxies

    E-Print Network [OSTI]

    Roy, Arpita; Sharma, Prateek

    2014-01-01T23:59:59.000Z

    In this paper we calculate the escape fraction ($f_{\\rm esc}$) of ionizing photons from starburst galaxies. Using 2-D axisymmetric hydrodynamic simulations, we study superbubbles created by overlapping supernovae in OB associations. We calculate the escape fraction of ionizing photons from the center of the disk along different angles through the superbubble and the gas disk. After convolving with the luminosity function of OB associations, we show that the ionizing photons escape within a cone of $\\sim 40 ^\\circ$, consistent with observations of nearby galaxies. The evolution of the escape fraction with time shows that it falls initially as cold gas is accumulated in a dense shell. After the shell crosses a few scale heights and fragments, the escape fraction through the polar regions rises again. The angle-averaged escape fraction cannot exceed $\\sim [1- \\cos (1 \\, {\\rm radian})] = 0.5$ from geometrical considerations (using the emission cone opening angle). We calculate the dependence of the time- and angl...

  18. AVTA: Ford Fusion HEV 2010 Testing Results

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following reports describe results of testing done on a 2010 Ford Fusion hybrid-electric vehicle. Baseline data, which provides a point of comparison for the other test results, was collected at two different research laboratories. Baseline and other data collected at Idaho National Laboratory is in the attached documents. Baseline and battery testing data collected at Argonne National Laboratory is available in summary and CSV form on the Argonne Downloadable Dynometer Database site (http://www.transportation.anl.gov/D3/2010_fusion_hybrid.html). Taken together, these reports give an overall view of how this vehicle functions under extensive testing.

  19. HEV Fleet Testing - Summary Fact Sheet for 2010 Ford Fusion

    Broader source: Energy.gov (indexed) [DOE]

    Ford Fusion VIN 3FADP0L32AR194699 Vehicle Specifications Engine: 2.5 L 4-cylinder Electric Motor: 60 kW Battery: NiMH Seatbelt Positions: Five Payload: 850 lbs Features:...

  20. 2010 Ford Fusion VIN 4757 Hybrid Electric Vehicle Battery Test...

    Broader source: Energy.gov (indexed) [DOE]

    1 2010 Ford Fusion VIN 4757 Hybrid Electric Vehicle Battery Test Results Tyler Gray Matthew Shirk January 2013 The Idaho National Laboratory is a U.S. Department of Energy National...

  1. Maintenance Records for 2010 Ford Fusion vin#4757

    Broader source: Energy.gov (indexed) [DOE]

    Ford Fusion VIN 3FADP0L34AR144757 Date Mileage Description Cost 1142010 6,330 Changed oil and filter and inspected brake system 46.83 2112010 12,302 Changed oil and filter...

  2. Assessment of Eagle Ford Shale Oil and Gas Resources

    E-Print Network [OSTI]

    Gong, Xinglai

    2013-07-30T23:59:59.000Z

    , and to assess Eagle Ford shale oil and gas reserves, contingent resources, and prospective resources. I first developed a Bayesian methodology to generate probabilistic decline curves using Markov Chain Monte Carlo (MCMC) that can quantify the reserves...

  3. Effects of V2G Reactive Power Compensation on the Component Selection in an EV or PHEV Bidirectional Charger

    E-Print Network [OSTI]

    Tolbert, Leon M.

    , electric vehicle, EV, PHEV, reactive power, V2G. I. NOMENCLATURE Vde (t) instantaneous dc link voltage, [V electric vehicles throughout this paper. EV power electronics and related control systems are the system vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs) are becoming a part of the electric grid day

  4. Drive Cycle Analysis, Measurement of Emissions and Fuel Consumption of a PHEV School Bus: Preprint

    SciTech Connect (OSTI)

    Barnitt, R.; Gonder, J.

    2011-04-01T23:59:59.000Z

    The National Renewable Energy Laboratory (NREL) collected and analyzed real-world school bus drive cycle data and selected similar standard drive cycles for testing on a chassis dynamometer. NREL tested a first-generation plug-in hybrid electric vehicle (PHEV) school bus equipped with a 6.4L engine and an Enova PHEV drive system comprising a 25-kW/80 kW (continuous/peak) motor and a 370-volt lithium ion battery pack. A Bluebird 7.2L conventional school bus was also tested. Both vehicles were tested over three different drive cycles to capture a range of driving activity. PHEV fuel savings in charge-depleting (CD) mode ranged from slightly more than 30% to a little over 50%. However, the larger fuel savings lasted over a shorter driving distance, as the fully charged PHEV school bus would initially operate in CD mode for some distance, then in a transitional mode, and finally in a charge-sustaining (CS) mode for continued driving. The test results indicate that a PHEV school bus can achieve significant fuel savings during CD operation relative to a conventional bus. In CS mode, the tested bus showed small fuel savings and somewhat higher nitrogen oxide (NOx) emissions than the baseline comparison bus.

  5. Escape from Vela X

    SciTech Connect (OSTI)

    Hinton, J.; /Leicester U.; Funk, S.; /KIPAC, Menlo Park; Parsons, R.D.; /Leeds U.; Ohm, S.; /Leicester U. /Leeds U.

    2012-02-15T23:59:59.000Z

    While the Vela pulsar and its associated nebula are often considered as the archetype of a system powered by a {approx} 10{sup 4} year old isolated neutron star, many features of the spectral energy distribution of this pulsar wind nebula are both puzzling and unusual. Here we develop a model that for the first time relates the main structures in the system, the extended radio nebula (ERN) and the X-ray cocoon through continuous injection of particles with a fixed spectral shape. We argue that diffusive escape of particles from the ERN can explain the steep Fermi-LAT spectrum. In this scenario Vela X should produce a distinct feature in the locally-measured cosmic ray electron spectrum at very high energies. This prediction can be tested in the future using the Cherenkov Telescope Array (CTA). If particles are indeed released early in the evolution of PWNe and can avoid severe adiabatic losses, PWN provide a natural explanation for the rising positron fraction in the local CR spectrum.

  6. Ford-Dow Partnership Is Linked to Carbon Fiber Research at ORNL...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ford-Dow Partnership Is Linked to Carbon Fiber Research at ORNL Ford-Dow Partnership Is Linked to Carbon Fiber Research at ORNL May 16, 2013 - 12:00am Addthis EERE provided funding...

  7. Towards Optimal Energy Store-Carry-and-Deliver for PHEVs via V2G System

    E-Print Network [OSTI]

    Zhuang, Weihua

    technology is incorporated to facilitate the energy delivery by providing electricity pricing and energy energy flow, non- stationary energy demand, battery characteristics, and TOU elec- tricity price. WeTowards Optimal Energy Store-Carry-and-Deliver for PHEVs via V2G System Hao Liang, Bong Jun Choi

  8. Design of a Lithium-ion Battery Pack for PHEV Using a Hybrid Optimization Method

    E-Print Network [OSTI]

    Papalambros, Panos

    Design of a Lithium-ion Battery Pack for PHEV Using a Hybrid Optimization Method Nansi Xue1 Abstract This paper outlines a method for optimizing the design of a lithium-ion battery pack for hy- brid, volume or material cost. Keywords: Lithium-ion, Optimization, Hybrid vehicle, Battery pack design

  9. How much on electric? Looking at PHEV driver's EV driving experience (e VMT) and

    E-Print Network [OSTI]

    California at Davis, University of

    Company logo hereCompany logo here PHEV-conversion travel & charging behavior combined with vehicle energy could change this. Home charging - Plug-in behavior was not changed Workplace charging - Charging as the primary power source ­ The energy use, impacts and range are similar to a hybrid vehicle in this mode

  10. Batteries for Plug-in Hybrid Electric Vehicles (PHEVs): Goals and the State of Technology circa 2008

    E-Print Network [OSTI]

    Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

    2008-01-01T23:59:59.000Z

    a PHEV has both an electric motor and a heat engine—usuallythe vehicle only by an electric motor using electricity fromand forth with the electric motor to maximize efficiency.

  11. Vehicle Technologies Office Merit Review 2014: Advanced High Energy Li-Ion Cell for PHEV and EV Applications

    Broader source: Energy.gov [DOE]

    Presentation given by 3M at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced high energy Li-ion cell for PHEV...

  12. PHEV/EV Li-Ion Battery Second-Use Project, NREL (National Renewable Energy Laboratory) (Poster)

    SciTech Connect (OSTI)

    Newbauer, J.; Pesaran, A.

    2010-05-01T23:59:59.000Z

    Plug-in hybrid electric vehicles (PHEVs) and full electric vehicles (Evs) have great potential to reduce U.S. dependence on foreign oil and emissions. Battery costs need to be reduced by ~50% to make PHEVs cost competitive with conventional vehicles. One option to reduce initial costs is to reuse the battery in a second application following its retirement from automotive service and offer a cost credit for its residual value.

  13. Conservation in an Era of Boom and Bust Andrew Ford

    E-Print Network [OSTI]

    Ford, Andrew

    1 Conservation in an Era of Boom and Bust Andrew Ford Program in Environmental Science and Regional to simulate the impact of major conservation savings in an era of boom and bust. Background on Boom and Bust estate is an industry with a long history of competitive markets and detailed studies. Its history

  14. The Magazine of The gerald r. ford School

    E-Print Network [OSTI]

    Shyy, Wei

    explores inno- vative environmental policies and public opinions about climate change (p. 12). Both faculty research,green student innovation, and more. Find out what else the Ford School is doing in the interest/Section 504 Coordinator, Office of Institutional Equity, 2072 Administrative Services Building, Ann Arbor

  15. MEXICO CITY Adam Miller, Brenna Ford, Kait Sakey

    E-Print Network [OSTI]

    Nagurney, Anna

    MEXICO CITY CONGESTION Adam Miller, Brenna Ford, Kait Sakey #12;Introduction · Mexico City. · Including private operators(which carry about 60% of the traffic) the Mexico City passenger transport system handles about twice the passengers of the New York MTA. #12;IBM Commuter Pain Index #12;#12;Mexico City

  16. INTERNATIONAL POLICY CENTER Gerald R. Ford School of Public Policy

    E-Print Network [OSTI]

    Shyy, Wei

    INTERNATIONAL POLICY CENTER Gerald R. Ford School of Public Policy University of Michigan IPC their internal affairs by elaborate rules and procedures, and have a policy agenda that is consistent over time candidates (suplentes) take over their seats.3 In Argentina, although most members of Congress finish

  17. Optimized Energy Management for Large Organizations Utilizing an On-Site PHEV fleet, Storage Devices and Renewable Electricity Generation

    SciTech Connect (OSTI)

    Dashora, Yogesh [University of Texas, Austin; Barnes, J. Wesley [University of Texas, Austin; Pillai, Rekha S [ORNL; Combs, Todd E [ORNL; Hilliard, Michael R [ORNL

    2012-01-01T23:59:59.000Z

    Abstract This paper focuses on the daily electricity management problem for organizations with a large number of employees working within a relatively small geographic location. The organization manages its electric grid including limited on-site energy generation facilities, energy storage facilities, and plug-in hybrid electric vehicle (PHEV) charging stations installed in the parking lots. A mixed integer linear program (MILP) is modeled and implemented to assist the organization in determining the temporal allocation of available resources that will minimize energy costs. We consider two cost compensation strategies for PHEV owners: (1) cost equivalent battery replacement reimbursement for utilizing vehicle to grid (V2G) services from PHEVs; (2) gasoline equivalent cost for undercharging of PHEV batteries. Our case study, based on the Oak Ridge National Laboratory (ORNL) campus, produced encouraging results and substantiates the importance of controlled PHEV fleet charging as opposed to uncontrolled charging methods. We further established the importance of realizing V2G capabilities provided by PHEVs in terms of significantly reducing energy costs for the organization.

  18. Driving Plug-In Hybrid Electric Vehicles: Reports from U.S. Drivers of HEVs converted to PHEVs, circa 2006-07

    E-Print Network [OSTI]

    Kurani, Kenneth S; Heffner, Reid R.; Turrentine, Tom

    2008-01-01T23:59:59.000Z

    battery chemistry for future HEVs (including PHEVs) is currently Li-ion.its battery pack, but it used lead-acid rather than Li-ion

  19. Advanced Technology Vehicle Lab Benchmarking - Level 1

    Broader source: Energy.gov (indexed) [DOE]

    - 7 speed dual clutch transmissions Jetta TDI (bio-fuels) Ford TADA PHEV Supplier BEV prototype BEV Tesla Hydrogen Fuel cell Hydrogen internal combustion engine ANL PHEV prototype...

  20. NREL's PHEV/EV Li-Ion Battery Secondary-Use Project

    SciTech Connect (OSTI)

    Newbauer, J.; Pesaran, A.

    2010-06-01T23:59:59.000Z

    Accelerated development and market penetration of plug-in hybrid electric vehicles (PHEVs) and electric vehicles (EVs) is restricted at present by the high cost of lithium-ion (Li-ion) batteries. One way to address this problem is to recover a fraction of the Li-ion battery's cost via reuse in other applications after it is retired from service in the vehicle, when the battery may still have sufficient performance to meet the requirements of other energy storage applications.

  1. Dynamometer tests of the Ford Ecostar Electric Vehicle No. 41

    SciTech Connect (OSTI)

    Cole, G.H.; Richardson, R.A.; Yarger, E.J.

    1995-09-01T23:59:59.000Z

    A Ford Ecostar vehicle was tested in the Idaho National Engineering Laboratory (INEL) Hybrid Electric Vehicle (HEV) Laboratory over several standard driving regimes. The test vehicle was delivered to the INEL in February 19, 1995 under the DOE sponsored Modular Electric Vehicle Program. This report presents the results of several dynamometer driving cycle tests and a constant current discharge, and presents observations regarding the vehicle state-of-charge indicator and remaining range indicator.

  2. A Bidirectional High-Power-Quality Grid Interface With a Novel Bidirectional Noninverted Buck Boost Converter for PHEVs

    SciTech Connect (OSTI)

    Onar, Omer C [ORNL

    2012-01-01T23:59:59.000Z

    Plug-in hybrid electric vehicles (PHEVs) will play a vital role in future sustainable transportation systems due to their potential in terms of energy security, decreased environmental impact, improved fuel economy, and better performance. Moreover, new regulations have been established to improve the collective gas mileage, cut greenhouse gas emissions, and reduce dependence on foreign oil. This paper primarily focuses on two major thrust areas of PHEVs. First, it introduces a grid-friendly bidirectional alternating current/direct current ac/dc dc/ac rectifier/inverter for facilitating vehicle-to-grid (V2G) integration of PHEVs. Second, it presents an integrated bidirectional noninverted buck boost converter that interfaces the energy storage device of the PHEV to the dc link in both grid-connected and driving modes. The proposed bidirectional converter has minimal grid-level disruptions in terms of power factor and total harmonic distortion, with less switching noise. The integrated bidirectional dc/dc converter assists the grid interface converter to track the charge/discharge power of the PHEV battery. In addition, while driving, the dc/dc converter provides a regulated dc link voltage to the motor drive and captures the braking energy during regenerative braking.

  3. Photochemical Escape of Oxygen from Early Mars

    E-Print Network [OSTI]

    Zhao, Jinjin

    2015-01-01T23:59:59.000Z

    Photochemical escape is an important process for oxygen escape from present Mars. In this work, a 1-D Monte-Carlo Model is developed to calculate escape rates of energetic oxygen atoms produced from O2+ dissociative recombination reactions (DR) under 1, 3, 10, and 20 times present solar XUV fluxes. We found that although the overall DR rates increase with solar XUV flux almost linearly, oxygen escape rate increases from 1 to 10 times present solar XUV conditions but decreases when increasing solar XUV flux further. Analysis shows that atomic species in the upper thermosphere of early Mars increases more rapidly than O2+ when increasing XUV fluxes. While the latter is the source of energetic O atoms, the former increases the collision probability and thus decreases the escape probability of energetic O. Our results suggest that photochemical escape be a less important escape mechanism than previously thought for the loss of water and/or CO2 from early Mars.

  4. PHEV-EV Charger Technology Assessment with an Emphasis on V2G Operation

    SciTech Connect (OSTI)

    Kisacikoglu, Mithat C [ORNL; Bedir, Abdulkadir [ORNL; Ozpineci, Burak [ORNL; Tolbert, Leon M [ORNL

    2012-03-01T23:59:59.000Z

    More battery powered electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs) will be introduced to the market in 2011 and beyond. Since these vehicles have large batteries that need to be charged from an external power source or directly from the grid, their batteries, charging circuits, charging stations/infrastructures, and grid interconnection issues are garnering more attention. This report summarizes information regarding the batteries used in PHEVs, different types of chargers, charging standards and circuits, and compares different topologies. Furthermore, it includes a list of vehicles that are going to be in the market soon with information on their charging and energy storage equipment. A summary of different standards governing charging circuits and charging stations concludes the report. There are several battery types that are available for PHEVs; however, the most popular ones have nickel metal hydride (NiMH) and lithium-ion (Li-ion) chemistries. The former one is being used in current hybrid electric vehicles (HEVs), but the latter will be used in most of the PHEVs and EVs due to higher energy densities and higher efficiencies. The chargers can be classified based on the circuit topologies (dedicated or integrated), location of the charger (either on or off the vehicle), connection (conductive, inductive/wireless, and mechanical), electrical waveform (direct current (dc) or alternating current (ac)), and the direction of power flow (unidirectional or bidirectional). The first PHEVs typically will have dedicated, on-board, unidirectional chargers that will have conductive connections to the charging stations or wall outlets and will be charged using either dc or ac. In the near future, bidirectional chargers might also be used in these vehicles once the benefits of practical vehicle to grid applications are realized. The terms charger and charging station cause terminology confusion. To prevent misunderstandings, a more descriptive term of electric vehicle supply equipment (EVSE) is used instead of charging station. The charger is the power conversion equipment that connects the battery to the grid or another power source, while EVSE refers to external equipment between the grid or other power source and the vehicle. EVSE might include conductors, connectors, attachment plugs, microprocessors, energy measurement devices, transformers, etc. Presently, there are more than 40 companies that are producing EVSEs. There are several standards and codes regarding conductive and inductive chargers and EVSEs from the Society of Automotive Engineers (SAE), the Underwriter Laboratories (UL), the International Electrotechnical Commission (IEC), and the National Electric Code (NEC). The two main standards from SAE describe the requirements for conductive and inductive coupled chargers and the charging levels. For inductive coupled charging, three levels are specified: Level 1 (120 V and 12 A, single-phase), Level 2 (208 V-240 V and 32 A, single-phase), and Level 3 (208-600 V and 400 A, three-phase) . The standard for the conductive-coupled charger also has similar charging ratings for Levels 1 and 2, but it allows higher current ratings for Level 2 charging up to 80 A. Level 3 charging for this standard is still under development and considers dc charging instead of three-phase ac. More details in these areas and related references can be found in this Oak Ridge National Laboratory (ORNL) report on PHEV-EV charger technology assessment.

  5. AVTA: 2010 Ford Fusion HEV Testing Results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment of Energy 601 High26-OPAM63-OPAMGuidanceAVTA …Ford Fusion HEV

  6. Production patterns in Eagle Ford Shale (Decline Curve Analysis) Muoz Torres, J.1

    E-Print Network [OSTI]

    Texas at Austin, University of

    , the Eagle Ford Shale (EFS) play has had a remarkable development in natural gas and oil production. EFSEG39 Production patterns in Eagle Ford Shale (Decline Curve Analysis) Muñoz Torres, J.1 javier (bcf) of natural gas and 8,049 thousand barrels of oil. Up to 2020, it is expected that natural gas

  7. Water Use in the Eagle Ford Shale: An Economic and Policy Analysis of Water Supply and Demand

    E-Print Network [OSTI]

    Arnett, Benton; Healy, Kevin; Jiang, Zhongnan; LeClere, David; McLaughlin, Leslie; Roberts, Joey; Steadman, Maxwell

    2014-01-01T23:59:59.000Z

    inaccessible shale reserves to produce abundant amounts of oil and gas. The oil and gas proliferation in the Eagle Ford has seen exponential growth, and production is not anticipated to decline until 2025. In addition, a typical HF well in the Eagle Ford... Figures Figure 1: Map of the Eagle Ford Shale Oil, Gas and Condensate Play .......................................................... 4 Figure 2: Production Growth within the Eagle Ford Shale...

  8. PHEV's Park as a Virtual Active Filter for HVDC F. R. Islam, H. R. Pota and A. B. M. Nasiruzzaman

    E-Print Network [OSTI]

    Pota, Himanshu Roy

    PHEV's Park as a Virtual Active Filter for HVDC Networks F. R. Islam, H. R. Pota and A. B. M.Nasiruzzaman@student.adfa.edu.au Abstract--The HVDC converters used for rectifying or in- verting operations absorb reactive power from produces harmonics in both sides of HVDC links. Passive and active filters are used to filter the harmonics

  9. Assessment of the Mexican Eagle Ford Shale Oil and Gas Resources

    E-Print Network [OSTI]

    Morales Velasco, Carlos Armando

    2013-08-02T23:59:59.000Z

    was not quantified. In November 2011, Petr?leos Mexicanos (PEMEX) estimated prospective gas resources in the different plays. For the Upper Cretaceous (which includes the Eagle Ford shale) the estimates were 54-106-171 TCF (P90-P50-P10). For the Eagle Ford... and Agua Nueva shales combined resources were estimated to be 27-87 TCF (P90-P10) (PEMEX 2011). An assessment of the Eagle Ford shale oil and gas resources in the US is being done by the Crisman Institute for Petroleum Research at Texas A&M University...

  10. AVTA: Chrysler RAM Experimental PHEV Pickup Truck Recovery Act project map

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The American Recovery and Reinvestment Act supported a number of projects that together made up the largest ever deployment of plug-in electric vehicles and charging infrastructure in the U.S. The following map describes the distribution of vehicles for a project with the 2011 Chrysler RAM PHEV, a demonstration vehicle not currently available for sale. This research was conducted by Idaho National Laboratory.

  11. AVTA: Chrysler RAM Experimental PHEV Pickup Truck Recovery Act Project Testing Results Phase 1

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The American Recovery and Reinvestment Act supported a number of projects that together made up the largest ever deployment of plug-in electric vehicles and charging infrastructure in the U.S. The following reports describe results of testing done on a 2011 Chrysler RAM PHEV, a demonstration vehicle not currently available for sale. The baseline performance testing provides a point of comparison for the other test results. Taken together, these reports give an overall view of how this vehicle functions under extensive testing. This research was conducted by Idaho National Laboratory.

  12. Hybrid & electric vehicle technology and its market feasibility ; Hybrid and electric vehicle technology and its market feasibility ; HEV technology and its market feasibility ; PHEV technology and its market feasibility ; EV technology and its market feasibility .

    E-Print Network [OSTI]

    Jeon, Sang Yeob

    2010-01-01T23:59:59.000Z

    ??In this thesis, Hybrid Electric Vehicles (HEV), Plug-In Hybrid Electric Vehicle (PHEV) and Electric Vehicle (EV) technology and their sales forecasts are discussed. First, the… (more)

  13. Mythologies of an American everyday landscape : Henry Ford at the Wayside Inn

    E-Print Network [OSTI]

    Wortham, Brooke Danielle

    2006-01-01T23:59:59.000Z

    Ford purchased property in 1923 in Sudbury, Massachusetts in order to preserve an historic inn associated with the poet Henry Wadsworth Longfellow. Over the next twenty years, his mission expanded to create an idealized ...

  14. Water Value and Environmental Implications of Hydraulic Fracturing: Eagle-Ford Shale

    E-Print Network [OSTI]

    Allen, W.; Lacewell, R.; Zinn, M.

    2014-01-01T23:59:59.000Z

    to develop implications based on industry, government and institutional data, and draw conclusions relative to impacts on the environment, realized amount of water, and value of water used for a typical well in the Eagle-Ford development, a water...

  15. Detecting and escaping infinite loops using Bolt

    E-Print Network [OSTI]

    Kling, Michael (Michael W.)

    2012-01-01T23:59:59.000Z

    In this thesis we present Bolt, a novel system for escaping infinite loops. If a user suspects that an executing program is stuck in an infinite loop, the user can use the Bolt user interface, which attaches to the running ...

  16. Escape time statistics for mushroom billiards

    E-Print Network [OSTI]

    T. Miyaguchi

    2006-12-27T23:59:59.000Z

    Chaotic orbits of mushroom billiards display intermittent behaviors. We investigate statistical properties of this system by constructing an infinite partition on the chaotic part of a Poincar\\'e surface which illustrates details of chaotic dynamics. Each piece of the infinite partition has an unique escape time from the half disk region, and from this result it is shown that, for fixed values of the system parameters, the escape time distribution obeys power law $1/t_{\\rm esc}^3$.

  17. Polymer escape from a confining potential

    E-Print Network [OSTI]

    Harri Mökkönen; Timo Ikonen; Tapio Ala-Nissila; Hannes Jónsson

    2015-03-26T23:59:59.000Z

    The rate of escape of polymers from a two-dimensionally confining potential well has been evaluated using self-avoiding as well as ideal chain representations of varying length, up to 80 beads. Long timescale Langevin trajectories were calculated using the path integral hyperdynamics method to evaluate the escape rate. A minimum is found in the rate for self-avoiding polymers of intermediate length while the escape rate decreases monotonically with polymer length for ideal polymers. The increase in the rate for long, self-avoiding polymers is ascribed to crowding in the potential well which reduces the free energy escape barrier. An effective potential curve obtained using the centroid as an independent variable was evaluated by thermodynamic averaging and Kramers rate theory then applied to estimate the escape rate. While the qualitative features are well reproduced by this approach, it significantly overestimates the rate, especially for the longer polymers. The reason for this is illustrated by constructing a two-dimensional effective energy surface using the radius of gyration as well as the centroid as controlled variables. This shows that the description of a transition state dividing surface using only the centroid fails to confine the system to the region corresponding to the free energy barrier and this problem becomes more pronounced the longer the polymer is. A proper definition of a transition state for polymer escape needs to take into account the shape as well as the location of the polymer.

  18. A Hamiltonian system of three degrees of freedom with eight channels of escape: The Great Escape

    E-Print Network [OSTI]

    Euaggelos E. Zotos

    2014-04-15T23:59:59.000Z

    In this work, we try to shed some light to the nature of orbits in a three-dimensional potential of a perturbed harmonic oscillator with eight possible channels of escape, which was chosen as an interesting example of open three-dimensional Hamiltonian systems. In particular, we conduct a thorough numerical investigation distinguishing between regular and chaotic orbits as well as between trapped and escaping orbits, considering unbounded motion for several values of the energy. In an attempt to discriminate safely and with certainty between ordered and chaotic motion, we use the Smaller ALingment Index (SALI) detector, computed by integrating numerically the basic equations of motion as well as the variational equations. Of particular interest, is to locate the basins of escape towards the different escape channels and connect them with the corresponding escape periods of the orbits. We split our study into three different cases depending on the initial value of the $z$ coordinate which was used for launching the test particles. We found, that when the orbits are started very close to the primary $(x,y)$ plane the respective grids exhibit a high degree of fractalization, while on the other hand for orbits with relatively high values of $z_0$ several well-formed basins of escape emerge thus, reducing significantly the fractalization of the grids. It was also observed, that for values of energy very close to the escape energy the escape times of orbits are large, while for energy levels much higher than the escape energy the vast majority of orbits escape extremely fast or even immediately to infinity. We hope our outcomes to be useful for a further understanding of the escape process in open 3D Hamiltonian systems.

  19. Escape to ATP for Mizar Piotr Rudnicki

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Escape to ATP for Mizar Piotr Rudnicki University of Alberta Edmonton, Alberta, Canada piotr ATP service is a new feature in the Mizar proof assistant. The functionality of the service is in many respects analogous to the Sledgehammer subsystem of Isabelle/HOL. The ATP service requires minimal user

  20. FY11 annual Report: PHEV Engine Control and Energy Management Strategy

    SciTech Connect (OSTI)

    Chambon, Paul H [ORNL

    2011-10-01T23:59:59.000Z

    Objectives are to: (1) Investigate novel engine control strategies targeted at rapid engine/catalyst warming for the purpose of mitigating tailpipe emissions from plug-in hybrid electric vehicles (PHEV) exposed to multiple engine cold start events; and (2) Validate and optimize hybrid supervisory control techniques developed during previous and on-going research projects by integrating them into the vehicle level control system and complementing them with the modified engine control strategies in order to further reduce emissions during both cold start and engine re-starts. Approach used are: (1) Perform a literature search of engine control strategies used in conventional powertrains to reduce cold start emissions; (2) Develop an open source engine controller providing full access to engine control strategies in order to implement new engine/catalyst warm-up behaviors; (3) Modify engine cold start control algorithms and characterize impact on cold start behavior; and (4) Develop an experimental Engine-In-the-Loop test stand in order to validate control methodologies and verify transient thermal behavior and emissions of the real engine when combined with a virtual hybrid powertrain. Some major accomplishments are: (1) Commissioned a prototype engine controller on a GM Ecotec 2.4l direct injected gasoline engine on an engine test cell at the University of Tennessee. (2) Obtained from Bosch (with GM's approval) an open calibration engine controller for a GM Ecotec LNF 2.0l Gasoline Turbocharged Direct Injection engine. Bosch will support the bypass of cold start strategies if calibration access proves insufficient. The LNF engine and its open controller were commissioned on an engine test cell at ORNL. (3) Completed a literature search to identify key engine cold start control parameters and characterized their impact on the real engine using the Bosch engine controller to calibrate them. (4) Ported virtual hybrid vehicle model from offline simulation environment to real-time Hardware-In-the-Loop platform.

  1. Andrew Ford 1 Flight Simulator An Interative Model of Power Plant Construction

    E-Print Network [OSTI]

    Ford, Andrew

    Andrew Ford 1 Flight Simulator . An Interative Model of Power Plant Construction Informal Summary to dominate the construction of new power plants. Figure 2 shows the main screen of the flight simulator part for power plant construction. Their goal was to build the cash reserves of GenCo1, a 5 GW generating company

  2. Andrew Ford 1 CEC Report Simulating Patterns of Power Plant Construction

    E-Print Network [OSTI]

    Ford, Andrew

    Andrew Ford 1 CEC Report Simulating Patterns of Power Plant Construction with the CEC Model Summary to simulate permitting and construction. Power plant proposals in California are predominantly gas of power plant construction that could arise from different theories of investor behavior. Background

  3. The Ford-Pfenning Quantum Inequalities(QI) Analysis applied to the Natario Warp Drive Spacetime.

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    The Ford-Pfenning Quantum Inequalities(QI) Analysis applied to the Natario Warp Drive Spacetime. Fernando Loup Residencia de Estudantes Universitas Lisboa Portugal October 15, 2012 Abstract Warp Drives Relativity. There are at the present moment two known solutions: The Alcubierre warp drive discovered in 1994

  4. Key Economic Drivers Impacting Eagle Ford Development from Resource to Reserves

    E-Print Network [OSTI]

    Del Busto Pinzon, Andres Mauricio

    2013-11-25T23:59:59.000Z

    –single-well, 100-well, and Full-well–in each of the proposed production regions of the Eagle Ford shale, with calibrated probabilistic inputs for each region. Single-well results show how it is hard to produce complete distributions of reserves all across the play...

  5. High Power SiC Modules for HEVs and PHEVs Abstract--With efforts to reduce the cost, size, and thermal

    E-Print Network [OSTI]

    Tolbert, Leon M.

    , inverter, efficiency, hybrid electric vehicle, HEV, PHEV. I. INTRODUCTION Development of power electronics system in an under-the-hood high temperature environment. Development of new power devices is a critical aspect for future power electronic applications along with new topologies and control techniques

  6. Escape Rates of the Hénon-Heiles System

    E-Print Network [OSTI]

    H. J. Zhao; M. L. Du

    2007-01-15T23:59:59.000Z

    A particle in the H\\'enon-Heiles potential can escape when its energy is above the threshold value $E_{th}={1/6}$. We report a theoretical study on the the escape rates near threshold. We derived an analytic formula for the escape rate as a function of energy by exploring the property of chaos. We also simulated the escaping process by following the motions of a large number of particles. Two algorithms are employed to solve the equations of motion. One is the Runge-Kutta-Fehlberg method, and another is a recently proposed fourth order symplectic method. Our simulations show the escape of H$\\mathrm{\\acute{e}}$non-Heiles system follows exponential laws. We extracted the escape rates from the time dependence of particle numbers in the H$\\mathrm{\\acute{e}}$non-Heiles potential. The extracted escape rates agree with the analytic result.

  7. BuildSense Compressed natural gas (CNG) bi-fuel conversions for two Ford F-series pickup trucks.

    E-Print Network [OSTI]

    BuildSense Compressed natural gas (CNG) bi-fuel conversions for two Ford F-series pickup trucks $141,279 $35,320 $176,599 City of Charlotte Solid Waste Services Compressed natural gas ( CNG) up fits

  8. Alpaca: Extensible Authorization for Distributed Services Chris Lesniewski-Laas, Bryan Ford, Jacob Strauss, Robert Morris, and M. Frans Kaashoek

    E-Print Network [OSTI]

    Ford, Bryan

    Alpaca: Extensible Authorization for Distributed Services Chris Lesniewski-Laas, Bryan Ford, Jacob or distributed for profit or commercial advantage and that copies bear this notice and the full citation

  9. Occurrence of Multiple Fluid Phases Across a Basin, in the Same Shale Gas Formation – Eagle Ford Shale Example

    E-Print Network [OSTI]

    Tian, Yao

    2014-04-29T23:59:59.000Z

    Shale gas and oil are playing a significant role in US energy independence by reversing declining production trends. Successful exploration and development of the Eagle Ford Shale Play requires reservoir characterization, recognition of fluid...

  10. Additional dynamometer tests of the Ford Ecostar Electric Vehicle No. 41

    SciTech Connect (OSTI)

    Cole, G.H.; Richardson, R.A.; Yarger, E.J.

    1996-06-01T23:59:59.000Z

    A Ford Ecostar vehicle was tested in the Idaho National Engineering Laboratory (INEL) Hybrid Electric Vehicle (HEV) Laboratory over two standard driving regimes, coastdown testing, and typical charge testing. The test vehicle was delivered to the INEL in February 19, 1995 under the DOE sponsored Modular Electric Vehicle Program. This report presents the results of dynamometer driving cycle tests, charge data, and coastdown testing for California Air Resources Board (CARB) under a CRADA with the Department Of Energy (DOE).

  11. Kinetic Modeling of Non-thermal Escape: Planets and Exoplanets

    E-Print Network [OSTI]

    Johnson, Robert E.

    Kinetic Modeling of Non-thermal Escape: Planets and Exoplanets Valery I. Shematovich Institute of Astronomy, Russian Academy of Sciences Modeling Atmospheric Escape Workshop - Spring 2012 University are populated by the atoms and molecules with both thermal and suprathermal kinetic energies (Johnson et al

  12. TRANSONIC HYDRODYNAMIC ESCAPE OF HYDROGEN FROM EXTRASOLAR PLANETARY ATMOSPHERES

    E-Print Network [OSTI]

    De Sterck, Hans

    . The model uses a two-dimensional energy depo- sition calculation instead of the single-layer heating planets is investigated using the model. The importance of hydrogen hydrodynamic escape for the longTRANSONIC HYDRODYNAMIC ESCAPE OF HYDROGEN FROM EXTRASOLAR PLANETARY ATMOSPHERES Feng Tian,1, 2 Owen

  13. WANDERING STARS: AN ORIGIN OF ESCAPED POPULATIONS

    SciTech Connect (OSTI)

    Teyssier, Maureen; Johnston, Kathryn V. [Department of Astronomy, Columbia University, Pupin Physics Laboratory, 550 West 120th Street, New York, NY 10027 (United States); Shara, Michael M. [American Museum of Natural History, 79th Street and Central Park West, New York, NY 10024-5192 (United States)

    2009-12-10T23:59:59.000Z

    We demonstrate that stars beyond the virial radii of galaxies may be generated by the gravitational impulse received by a satellite as it passes through the pericenter of its orbit around its parent. These stars may become energetically unbound (escaped stars), or may travel to further than a few virial radii for longer than a few Gyr, but still remain energetically bound to the system (wandering stars). Larger satellites (10%-100% the mass of the parent), and satellites on more radial orbits are responsible for the majority of this ejected population. Wandering stars could be observable on Mpc scales via classical novae, and on 100 Mpc scales via Type Ia supernova. The existence of such stars would imply a corresponding population of barely bound, old, high-velocity stars orbiting the Milky Way, generated by the same physical mechanism during the Galaxy's formation epoch. Sizes and properties of these combined populations should place some constraints on the orbits and masses of the progenitor objects from which they came, providing insight into the merging histories of galaxies in general and the Milky Way in particular.

  14. Nuclear power reactor education and training at the Ford nuclear reactor

    SciTech Connect (OSTI)

    Burn, R.R.

    1989-01-01T23:59:59.000Z

    Since 1977, staff members of the University of Michigan's Ford nuclear reactor have provided courses and reactor laboratory training programs for reactor operators, engineers, and technicians from seven electric utilities, including Cleveland Electric Illuminating, Consumers Power, Detroit Edison, Indiana and Michigan Electric, Nebraska Public Power, Texas Utilities Generating Company, and Toledo Edison. Reactor laboratories, instrument technician training, and reactor physics courses have been conducted at the university. Courses conducted at plant sites include reactor physics, thermal sciences, materials sciences, and health physics and radiation protection.

  15. International Environmental Agreements: Emissions trade, safety valves and escape clauses

    E-Print Network [OSTI]

    Karp, Larry S.

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 5 Escape clauses versus safety valves 13 6 Review of "standard model" of IEAs 14 6.1 Dynamics The effect of emissions trade on IEA participation 17 7.1 Ex ante heterogenous countries

  16. Behavior of the Escape Rate Function in Hyperbolic Dynamical Systems

    E-Print Network [OSTI]

    Demers, Mark

    2011-01-01T23:59:59.000Z

    For a fixed initial reference measure, we study the dependence of the escape rate on the hole for a smooth or piecewise smooth hyperbolic map. First, we prove the existence and Holder continuity of the escape rate for systems with small holes admitting Young towers. Then we consider general holes for Anosov diffeomorphisms, without size or Markovian restrictions. We prove bounds on the upper and lower escape rates using the notion of pressure on the survivor set and show that a variational principle holds under generic conditions. However, we also show that the escape rate function forms a devil's staircase with jumps along sequences of regular holes and present examples to elucidate some of the difficulties involved in formulating a general theory.

  17. Behavior of the Escape Rate Function in Hyperbolic Dynamical Systems

    E-Print Network [OSTI]

    Demers, Mark

    principle holds under generic conditions. However, we also show that the escape rate function forms a devil's staircase with jumps along sequences of regular holes and present examples to elucidate some

  18. Ford-Pfenning Quantum Inequalities(QI) in the Natario Warp Drive Spacetime using the Planck Length Scale.

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Ford-Pfenning Quantum Inequalities(QI) in the Natario Warp Drive Spacetime using the Planck Length Warp Drives are solutions of the Einstein Field Equations that allows superluminal travel within drive discovered in 1994 and the Natario warp drive discovered in 2001. However as stated by both

  19. Dynamometer tests of the Ford/TDM Ranger electric pickup truck

    SciTech Connect (OSTI)

    Cole, G.H.; Yarger, E.J.

    1997-06-01T23:59:59.000Z

    A Ford Ranger electric vehicle was performance tested in the Idaho National Engineering and Environmental Laboratory (INEEL) Hybrid Electric Vehicle (HEV) Laboratory. The vehicle was converted by TDM, Inc. The test vehicle was delivered to the INEEL and tested for the California Air Resources Board (CARB) under a CRADA with the Department of Energy (DOE). Coastdown tests were performed to determine the vehicle road load versus speed characteristics and the results used to calibrate the chassis dynamometer. Tests included driving the vehicle on the chassis dynamometer using standard driving regimes to determine driving range, acceleration tests to determine full power acceleration times and gradeability at speed, and constant speed driving to determine the vehicle energy consumption at various speeds. Data during battery recharges was also acquired. This report presents the results of these tests. 12 figs., 12 tabs.

  20. 2010 Ford Fusion VIN 4757 Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Gray; Matthew Shirk

    2013-01-01T23:59:59.000Z

    The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on-road fleet testing. This report documents battery testing performed for the 2010 Ford Fusion HEV (VIN: 3FADP0L34AR144757). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Program of the U.S. Department of Energy.

  1. ESTABLISHING SUSTAINABLE US HEV/PHEV MANUFACTURING BASE: STABILIZED LITHIUM METAL POWDER, ENABLING MATERIAL AND REVOLUTIONARY TECHNOLOGY FOR HIGH ENERGY LI-ION BATTERIES

    SciTech Connect (OSTI)

    Yakovleva, Marina

    2012-12-31T23:59:59.000Z

    FMC Lithium Division has successfully completed the project “Establishing Sustainable US PHEV/EV Manufacturing Base: Stabilized Lithium Metal Powder, Enabling Material and Revolutionary Technology for High Energy Li-ion Batteries”. The project included design, acquisition and process development for the production scale units to 1) produce stabilized lithium dispersions in oil medium, 2) to produce dry stabilized lithium metal powders, 3) to evaluate, design and acquire pilot-scale unit for alternative production technology to further decrease the cost, and 4) to demonstrate concepts for integrating SLMP technology into the Li- ion batteries to increase energy density. It is very difficult to satisfy safety, cost and performance requirements for the PHEV and EV applications. As the initial step in SLMP Technology introduction, industry can use commercially available LiMn2O4 or LiFePO4, for example, that are the only proven safer and cheaper lithium providing cathodes available on the market. Unfortunately, these cathodes alone are inferior to the energy density of the conventional LiCoO2 cathode and, even when paired with the advanced anode materials, such as silicon composite material, the resulting cell will still not meet the energy density requirements. We have demonstrated, however, if SLMP Technology is used to compensate for the irreversible capacity in the anode, the efficiency of the cathode utilization will be improved and the cost of the cell, based on the materials, will decrease.

  2. Analysis of the experience and stability project at Ford Motor Company : what does it take to change a culture and rebuild a technical organization?

    E-Print Network [OSTI]

    Chatawanich, Candy Suda, 1972-

    2004-01-01T23:59:59.000Z

    As Ford Motor Company celebrates its 100th anniversary; it finds itself in a crisis due to its lack of technical proficiency. The lack of technical depth within the workforce is the result of a deeply ingrained culture ...

  3. A Right to Escape Poverty? 2008 Dr. Richard B. Splane Lecture

    E-Print Network [OSTI]

    Pulfrey, David L.

    A Right to Escape Poverty? 2008 Dr. Richard B. Splane Lecture on Social Policy Thursday, October 2 Columbia #12;A Right to Escape Poverty? 2008 Dr. Richard B. Splane Lecture 2 Thank you, Graham [Riches to Escape Poverty?" Let me begin by addressing the question-mark in my title. Am I challenging the view

  4. Escape Time of Josephson Junctions for Signal Detection

    E-Print Network [OSTI]

    Addesso, P; Pierro, V

    2014-01-01T23:59:59.000Z

    In this Chapter we investigate with the methods of signal detection the response of a Josephson junction to a perturbation to decide if the perturbation contains a coherent oscillation embedded in the background noise. When a Josephson Junction is irradiated by an external noisy source, it eventually leaves the static state and reaches a steady voltage state. The appearance of a voltage step allows to measure the time spent in the metastable state before the transition to the running state, thus defining an escape time. The distribution of the escape times depends upon the characteristics of the noise and the Josephson junction. Moreover, the properties of the distribution depends on the features of the signal (amplitude, frequency and phase), which can be therefore inferred through the appropriate signal processing methods. Signal detection with JJ is interesting for practical purposes, inasmuch as the superconductive elements can be (in principle) cooled to the absolute zero and therefore can add (in practi...

  5. Big Windy (Great Escape Restaurant Turbine) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarre Biomass FacilityOregon:Great Escape Restaurant Turbine)

  6. North American PHEV Demonstration

    Broader source: Energy.gov (indexed) [DOE]

    7 Overall AC electrical energy consumption (AC Whmi) 112 Overall DC electrical energy consumption (DC Whmi) 72 Total number of trips 973 Total distance traveled (mi) 12,099...

  7. North American PHEV Demonstration

    Broader source: Energy.gov (indexed) [DOE]

    12 Overall DC electrical energy consumption (DC Whmi) 75 Total number of trips 1,394 Total distance traveled (mi) 18,639 Trips in Charge Depleting (CD) mode Gasoline fuel...

  8. PHEV Battery Cost Assessment

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  9. PHEV and Grid Interfacing

    Broader source: Energy.gov (indexed) [DOE]

    Materials and Processes for High Temperature Packaging of Power Electronic Devices G. Muralidharan, A. Kercher, M. L. Santella, R. Battiste Materials Science and Technology...

  10. North American PHEV Demonstration

    Broader source: Energy.gov (indexed) [DOE]

    period: September 2010 Number of vehicle days driven: 324 All Trips Combined Overall gasoline fuel economy (mpg) 38 Overall AC electrical energy consumption (AC Whmi) 88...

  11. North American PHEV Demonstration

    Broader source: Energy.gov (indexed) [DOE]

    period: August 2010 Number of vehicle days driven: 349 All Trips Combined Overall gasoline fuel economy (mpg) 42 Overall AC electrical energy consumption (AC Whmi) 123...

  12. North American PHEV Demonstration

    Broader source: Energy.gov (indexed) [DOE]

    period: June 2010 Number of vehicle days driven: 361 All Trips Combined Overall gasoline fuel economy (mpg) 37 Overall AC electrical energy consumption (AC Whmi) 90...

  13. North American PHEV Demonstration

    Broader source: Energy.gov (indexed) [DOE]

    period: May 2010 Number of vehicle days driven: 371 All Trips Combined Overall gasoline fuel economy (mpg) 40 Overall AC electrical energy consumption (AC Whmi) 93...

  14. North American PHEV Demonstration

    Broader source: Energy.gov (indexed) [DOE]

    period: January 2010 Number of vehicle days driven: 247 All Trips Combined Overall gasoline fuel economy (mpg) 36 Overall AC electrical energy consumption (AC Whmi) 103...

  15. North American PHEV Demonstration

    Broader source: Energy.gov (indexed) [DOE]

    period: July 2010 Number of vehicle days driven: 294 All Trips Combined Overall gasoline fuel economy (mpg) 36 Overall AC electrical energy consumption (AC Whmi) 98...

  16. North American PHEV Demonstration

    Broader source: Energy.gov (indexed) [DOE]

    period: March 2010 Number of vehicle days driven: 336 All Trips Combined Overall gasoline fuel economy (mpg) 40 Overall AC electrical energy consumption (AC Whmi) 136...

  17. PHEV and Grid Interfacing

    Broader source: Energy.gov (indexed) [DOE]

    Power Electronic Devices Annual DOE Peer Review Meeting - 2008 DOE Power Electronics Research Program Washington Fairmont Hotel Washington, DC 30 September 2008 A. A....

  18. Revealing the escape mechanism of three-dimensional orbits in a tidally limited star cluster

    E-Print Network [OSTI]

    Euaggelos E. Zotos

    2014-11-18T23:59:59.000Z

    The aim of this work is to explore the escape process of three-dimensional orbits in a star cluster rotating around its parent galaxy in a circular orbit. The gravitational field of the cluster is represented by a smooth, spherically symmetric Plummer potential, while the tidal approximation was used to model the steady tidal field of the galaxy. We conduct a thorough numerical analysis distinguishing between regular and chaotic orbits as well as between trapped and escaping orbits, considering only unbounded motion for several energy levels. It is of particular interest to locate the escape basins towards the two exit channels and relate them with the corresponding escape times of the orbits. For this purpose, we split our investigation into three cases depending on the initial value of the $z$ coordinate which was used for launching the stars. The most noticeable finding is that the majority of stars initiated very close to the primary $(x,y)$ plane move in chaotic orbits and they remain trapped for vast time intervals, while orbits with relatively high values of $z_0$ on the other hand, form well-defined basins of escape. It was also observed, that for energy levels close to the critical escape energy the escape rates of orbits are large, while for much higher values of energy most of the orbits have low escape periods or they escape immediately to infinity. We hope our outcomes to be useful for a further understanding of the dissolution process and the escape mechanism in open star clusters.

  19. EU-California Environmental Agreements: The Role of Trade in Emissions Permits and Escape Clauses

    E-Print Network [OSTI]

    Karp, Larry; Zhao, Jinhua

    2008-01-01T23:59:59.000Z

    the role of trade in emissions permits and escape clauses. (agreements. Trade in emissions permits has ambiguous and inAlthough trade in emissions permits reduces the aggregate

  20. Fast Escape from Quantum Mazes in Integrated Photonics

    E-Print Network [OSTI]

    Caruso, Filippo; Ciriolo, Anna Gabriella; Sciarrino, Fabio; Osellame, Roberto

    2015-01-01T23:59:59.000Z

    Escaping from a complex maze, by exploring different paths with several decision-making branches in order to reach the exit, has always been a very challenging and fascinating task. Wave field and quantum objects may explore a complex structure in parallel by interference effects, but without necessarily leading to more efficient transport. Here, inspired by recent observations in biological energy transport phenomena, we demonstrate how a quantum walker can efficiently reach the output of a maze by partially suppressing the presence of interference. In particular, we show theoretically an unprecedented improvement in transport efficiency for increasing maze size with respect to purely quantum and classical approaches. In addition, we investigate experimentally these hybrid transport phenomena, by mapping the maze problem in an integrated waveguide array, probed by coherent light, hence successfully testing our theoretical results. These achievements may lead towards future bio-inspired photonics technologies...

  1. Corrosion of 304 Stainless Steel Exposed To Nitric Acid -Chloride Environments D.G. Kolman, D.K. Ford, D.P. Butt, and T.O. Nelson

    E-Print Network [OSTI]

    Corrosion of 304 Stainless Steel Exposed To Nitric Acid - Chloride Environments D.G. Kolman, D.K. Ford, D.P. Butt, and T.O. Nelson Materials Corrosion and Environmental Effects Laboratory Los AlamosCl, and temperature on the general corrosion behavior of 304 stainless steel (SS), electrochemical studies were

  2. Persistent Personal Names for Globally Connected Mobile Devices Bryan Ford, Jacob Strauss, Chris Lesniewski-Laas, Sean Rhea, Frans Kaashoek, Robert Morris

    E-Print Network [OSTI]

    Persistent Personal Names for Globally Connected Mobile Devices Bryan Ford, Jacob Strauss, Chris personal names. Users assign personal names through an ad hoc device introduction process requiring, and mobile personal devices usu- ally have dynamic IP addresses behind firewalls or net- work address

  3. Persistent Personal Names for Globally Connected Mobile Devices Bryan Ford, Jacob Strauss, Chris LesniewskiLaas, Sean Rhea, Frans Kaashoek, Robert Morris

    E-Print Network [OSTI]

    Ford, Bryan

    Persistent Personal Names for Globally Connected Mobile Devices Bryan Ford, Jacob Strauss, Chris personal names. Users assign personal names through an ad hoc device introduction process requiring, and mobile personal devices usu­ ally have dynamic IP addresses behind firewalls or net­ work address

  4. Fractal templates in the escape dynamics of trapped ultracold atoms Kevin A. Mitchell

    E-Print Network [OSTI]

    Steck, Daniel A.

    Fractal templates in the escape dynamics of trapped ultracold atoms Kevin A. Mitchell School nonlinear dynamics, we predict that fractal behavior can be seen in experimental escape data. These data can. This fractal pattern is particularly well resolved below the Bose-Einstein transition temperature--a direct

  5. With Exhaustible Resources, Can A Developing Country Escape From The Poverty Trap?

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    With Exhaustible Resources, Can A Developing Country Escape From The Poverty Trap? Cuong Le Van is convex-concave, so that the economy may be locked into a poverty trap. We show that the extent to which the country will escape from the poverty trap depends, besides the interactions between its technology and its

  6. Escaping Information Poverty through Internet Newsgroups Laura Hasler and Ian Ruthven

    E-Print Network [OSTI]

    Strathclyde, University of

    Escaping Information Poverty through Internet Newsgroups Laura Hasler and Ian Ruthven University to escape situations of information poverty. We consider posts from a variety of newsgroups which indicate for those who feel they have no local support available to them. 1. Introduction Information poverty

  7. Escape of the martian protoatmosphere and initial water inventory

    E-Print Network [OSTI]

    Erkaev, N V; Elkins-Tanton, L; Stökl, A; Odert, P; Marcq, E; Dorfi, E A; Kislyakova, K G; Kulikov, Yu N; Leitzinger, M; Güdel, M

    2013-01-01T23:59:59.000Z

    Latest research in planet formation indicate that Mars formed within a few million years (Myr) and remained a planetary embryo that never grew to a more massive planet. It can also be expected from dynamical models, that most of Mars' building blocks consisted of material that formed in orbital locations just beyond the ice line which could have contained ~0.1-0.2 wt. % of H2O. By using these constraints, we estimate the nebula-captured and catastrophically outgassed volatile contents during the solidification of Mars' magma ocean and apply a hydrodynamic upper atmosphere model for the study of the soft X-ray and extreme ultraviolet (XUV) driven thermal escape of the martian protoatmosphere during the early active epoch of the young Sun. The amount of gas that has been captured from the protoplanetary disk into the planetary atmosphere is calculated by solving the hydrostatic structure equations in the protoplanetary nebula. Depending on nebular properties such as the dust grain depletion factor, planetesimal...

  8. Peeping at chaos: Nondestructive monitoring of chaotic systems by measuring long-time escape rates

    E-Print Network [OSTI]

    L. A. Bunimovich; C. P. Dettmann

    2007-09-17T23:59:59.000Z

    One or more small holes provide non-destructive windows to observe corresponding closed systems, for example by measuring long time escape rates of particles as a function of hole sizes and positions. To leading order the escape rate of chaotic systems is proportional to the hole size and independent of position. Here we give exact formulas for the subsequent terms, as sums of correlation functions; these depend on hole size and position, hence yield information on the closed system dynamics. Conversely, the theory can be readily applied to experimental design, for example to control escape rates.

  9. Overview and Progress of United States Advanced Battery Research...

    Broader source: Energy.gov (indexed) [DOE]

    * Targets Timeline Budget Barriers * Chrysler, Ford, GM, DOE * INL, ANL, SNL, NREL, LBNL, ORNL Partners Overview DOE Goals HEV 2010 PHEV 2015 EV 2020 Cost System 500-800...

  10. Overview and Progress of United States Advanced Battery Consortium...

    Broader source: Energy.gov (indexed) [DOE]

    FY11 - 26.9M Timeline Budget Barriers * Chrysler, Ford, GM, DOE * INL, ANL, SNL, NREL, LBNL, ORNL Partners Overview DOE Goals HEV 2010 PHEV 2015 EV 2020 Cost System 500-800...

  11. Resonant escape over an oscillating barrier in underdamped Josephson tunnel junctions

    E-Print Network [OSTI]

    Han, Siyuan; Yu, Yang

    2003-09-01T23:59:59.000Z

    The escape from a metastable state over an oscillating barrier of an underdamped Josephson tunnel junction has been experimentally investigated with oscillation frequency well separated from the plasma frequency of the ...

  12. Escaping the poverty trap: modeling the interplay between economic growth and the ecology of infectious disease

    E-Print Network [OSTI]

    Goerg, Georg M; Hébert-Dufresne, Laurent; Althouse, Benjamin M

    2013-01-01T23:59:59.000Z

    The dynamics of economies and infectious disease are inexorably linked: economic well-being influences health (sanitation, nutrition, treatment capacity, etc.) and health influences economic well-being (labor productivity lost to sickness and disease). Often societies are locked into ``poverty traps'' of poor health and poor economy. Here, using a simplified coupled disease-economic model with endogenous capital growth we demonstrate the formation of poverty traps, as well as ways to escape them. We suggest two possible mechanisms of escape both motivated by empirical data: one, through an influx of capital (development aid), and another through changing the percentage of GDP spent on healthcare. We find that a large influx of capital is successful in escaping the poverty trap, but increasing health spending alone is not. Our results demonstrate that escape from a poverty trap may be possible, and carry important policy implications in the world-wide distribution of aid and within-country healthcare spending.

  13. ESCAPE BEHAVIOR OF THE HAWAIIAN SPINNER PORPOISE (Stenella cf. S. longirostris)

    E-Print Network [OSTI]

    markedly inhibited escape. Negative effect of a line of floats across an opening at the surface and Kellogg, 1955; Handley, in Hester, Hunter, and Whitney, 196:3; Nishiwakil 19(i7; Pilson and Waller, 1970

  14. The First Billion Years Project: The escape fraction of ionising photons in the epoch of reionisation

    E-Print Network [OSTI]

    Paardekooper, Jan-Pieter; Vecchia, Claudio Dalla

    2015-01-01T23:59:59.000Z

    Proto-galaxies forming in low-mass dark matter haloes are thought to provide the majority of ionising photons needed to reionise the Universe, due to their high escape fractions of ionising photons. We study how the escape fraction in high-redshift galaxies relates to the physical properties of the halo in which the galaxies form by computing escape fractions for 75801 haloes between redshifts 27 and 6 that were extracted from the FiBY project, high-resolution cosmological hydrodynamics simulations of galaxy formation. We find that the main constraint on the escape fraction is the presence of dense gas within 10 pc of the young sources that emit the majority of the ionising photons produced over the lifetime of the stellar population. This results in a strong mass dependence of the escape fraction. The lower potential well in haloes with virial mass below 10^8 solar mass results in lower column densities close to the sources that can be penetrated by the radiation from young, massive stars. In general only a ...

  15. Research results from the Ashland Exploration, Inc., Ford Motor Company 80 (COOP 2) well, Pike County, KY. Topical report, October 1991-November 1992

    SciTech Connect (OSTI)

    Frantz, J.H.; Lancaster, D.E.

    1993-04-01T23:59:59.000Z

    The report summarizes the work performed on the Ashland Exploration, Inc. (AEI) Ford Motor Company 80 (COOP 2) well in Pike County, KY. The COOP 2 was the second well in a three-well research project being conducted by GRI in eastern Kentucky targeting both the Devonian Shales and the Berea Sand; the FMC 80 focused on the Berea. The primary objective of the research was to use and transfer technologies developed in GRI`s Tight Gas Sands and Gas Shales programs to evaluate the Berea in Pike Co., KY.

  16. Quantifying factors determining the rate of CTL escape and reversion during acute and chronic phases of HIV infection

    SciTech Connect (OSTI)

    Ganusov, Vitaly V [Los Alamos National Laboratory; Korber, Bette M [Los Alamos National Laboratory; Perelson, Alan S [Los Alamos National Laboratory

    2009-01-01T23:59:59.000Z

    Human immunodeficiency virus (HIV) often evades cytotoxic T cell (CTL) responses by generating variants that are not recognized by CTLs. However, the importance and quantitative details of CTL escape in humans are poorly understood. In part, this is because most studies looking at escape of HIV from CTL responses are cross-sectional and are limited to early or chronic phases of the infection. We use a novel technique of single genome amplification (SGA) to identify longitudinal changes in the transmitted/founder virus from the establishment of infection to the viral set point at 1 year after the infection. We find that HIV escapes from virus-specific CTL responses as early as 30-50 days since the infection, and the rates of viral escapes during acute phase of the infection are much higher than was estimated in previous studies. However, even though with time virus acquires additional escape mutations, these late mutations accumulate at a slower rate. A poor correlation between the rate of CTL escape in a particular epitope and the magnitude of the epitope-specific CTL response suggests that the lower rate of late escapes is unlikely due to a low efficacy of the HIV-specific CTL responses in the chronic phase of the infection. Instead, our results suggest that late and slow escapes are likely to arise because of high fitness cost to the viral replication associated with such CTL escapes. Targeting epitopes in which virus escapes slowly or does not escape at all by CTL responses may, therefore, be a promising direction for the development of T cell based HIV vaccines.

  17. Chrysler Town & Country PHEV Fleet

    Broader source: Energy.gov (indexed) [DOE]

    33 Overall DC electrical energy consumption (DC Whmi) 26 Overall DC electrical energy captured from regenerative braking (DC Whmi) 27 Total number of trips 6,332 Total distance...

  18. Chrysler Town & Country PHEV Fleet

    Broader source: Energy.gov (indexed) [DOE]

    1 Overall DC electrical energy consumption (DC Whmi) 64 Overall DC electrical energy captured from regenerative braking (DC Whmi) 30 Total number of trips 4,292 Total distance...

  19. Chrysler Town & Country PHEV Fleet

    Broader source: Energy.gov (indexed) [DOE]

    50 Overall DC electrical energy consumption (DC Whmi) 39 Overall DC electrical energy captured from regenerative braking (DC Whmi) 28 Total number of trips 10,624 Total...

  20. Chrysler Town & Country PHEV Fleet

    Broader source: Energy.gov (indexed) [DOE]

    15 Overall DC electrical energy consumption (DC Whmi) 13 Overall DC electrical energy captured from regenerative braking (DC Whmi) 27 Total number of trips 2,405 Total distance...

  1. Chrysler Town & Country PHEV Fleet

    Broader source: Energy.gov (indexed) [DOE]

    8 Overall DC electrical energy consumption (DC Whmi) 70 Overall DC electrical energy captured from regenerative braking (DC Whmi) 28 Total number of trips 1,225 Total distance...

  2. Chrysler Town & Country PHEV Fleet

    Broader source: Energy.gov (indexed) [DOE]

    0 Overall DC electrical energy consumption (DC Whmi) 66 Overall DC electrical energy captured from regenerative braking (DC Whmi) 30 Total number of trips 725 Total distance...

  3. Chrysler Town & Country PHEV Fleet

    Broader source: Energy.gov (indexed) [DOE]

    4 Overall DC electrical energy consumption (DC Whmi) 65 Overall DC electrical energy captured from regenerative braking (DC Whmi) 28 Total number of trips 2,348 Total distance...

  4. Chrysler Town & Country PHEV Fleet

    Broader source: Energy.gov (indexed) [DOE]

    0 Overall DC electrical energy consumption (DC Whmi) 0 Overall DC electrical energy captured from regenerative braking (DC Whmi) 27 Total number of trips 1,579 Total distance...

  5. Chrysler Town & Country PHEV Fleet

    Broader source: Energy.gov (indexed) [DOE]

    9 Overall AC electrical energy consumption (AC Whmi) 79 Overall DC electrical energy consumption (DC Whmi) 63 Overall DC electrical energy captured from regenerative braking...

  6. Advanced HEV/PHEV Concepts

    Broader source: Energy.gov (indexed) [DOE]

    data - Cleansed data freely available for download - Controlled access to detailed spatial data * User application process * Software tools available through secure web...

  7. Chrysler RAM PHEV Report Notes

    Broader source: Energy.gov (indexed) [DOE]

    reporting period. 2 "Overall DC electrical energy consumption (DC Whmi)" is based on net DC electricity discharged from or charged to the plug-in battery pack and distance...

  8. AVTA ? PHEV Demonstrations and Testing

    Broader source: Energy.gov (indexed) [DOE]

    using dedicated drivers and other methods to accumulate miles and cycles - Fleet testing, uses unstructured vehicle utilization - Different testing methods are used to balance...

  9. Overcharge Protection for PHEV Batteries

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  10. Making the clean available: Escaping India's Chulha Trap Kirk R. Smith a,n,1

    E-Print Network [OSTI]

    Viewpoint Making the clean available: Escaping India's Chulha Trap Kirk R. Smith a,n,1 , Ambuj-7360, USA b Department of Humanities and Social Sciences, Indian Institute of Technology Delhi, New Delhi in number exposed for decades. Efforts to make the biomass fuel clean through advanced stoves have made

  11. GAMMA-RAY EMISSION OF ACCELERATED PARTICLES ESCAPING A SUPERNOVA REMNANT IN A MOLECULAR CLOUD

    SciTech Connect (OSTI)

    Ellison, Donald C. [Physics Department, North Carolina State University, Box 8202, Raleigh, NC 27695 (United States); Bykov, Andrei M., E-mail: don_ellison@ncsu.edu, E-mail: byk@astro.ioffe.ru [Ioffe Institute for Physics and Technology, 194021 St. Petersburg (Russian Federation)

    2011-04-20T23:59:59.000Z

    We present a model of gamma-ray emission from core-collapse supernovae (SNe) originating from the explosions of massive young stars. The fast forward shock of the supernova remnant (SNR) can accelerate particles by diffusive shock acceleration (DSA) in a cavern blown by a strong, pre-SN stellar wind. As a fundamental part of nonlinear DSA, some fraction of the accelerated particles escape the shock and interact with a surrounding massive dense shell producing hard photon emission. To calculate this emission, we have developed a new Monte Carlo technique for propagating the cosmic rays (CRs) produced by the forward shock of the SNR, into the dense, external material. This technique is incorporated in a hydrodynamic model of an evolving SNR which includes the nonlinear feedback of CRs on the SNR evolution, the production of escaping CRs along with those that remain trapped within the remnant, and the broadband emission of radiation from trapped and escaping CRs. While our combined CR-hydro-escape model is quite general and applies to both core collapse and thermonuclear SNe, the parameters we choose for our discussion here are more typical of SNRs from very massive stars whose emission spectra differ somewhat from those produced by lower mass progenitors directly interacting with a molecular cloud.

  12. Role of AmiA in the Morphological Transition of Helicobacter pylori and in Immune Escape

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Role of AmiA in the Morphological Transition of Helicobacter pylori and in Immune Escape Catherine´ Paris-Sud, Orsay, France The human gastric pathogen Helicobacter pylori is responsible for peptic ulcers, Werts C, et al. (2006) Role of AmiA in the morphological transition of Helicobacter pylori and in immune

  13. NEUTRON IZATI ON, LEPTON ESCAPE,AND STELLAR HYDRODYNAMICS* W. David Arnett

    E-Print Network [OSTI]

    Boyer, Edmond

    NEUTRON IZATI ON, LEPTON ESCAPE,AND STELLAR HYDRODYNAMICS* W. David Arnett Enrico Fermi Institute University of Chicago 1. The Process of Neutronization.-Aftersili- con burning stellar matter has roughly equal numbers of neutrons and protons. Because neutron-star matter has a large excess of neutrons

  14. Escape configuration lattice near the nematic-isotropic transition: Tilt analogue of blue phases

    E-Print Network [OSTI]

    Buddhapriya Chakrabarti; Yashodhan Hatwalne; N. V. Madhusudana

    2006-04-28T23:59:59.000Z

    We predict the possible existence of a new phase of liquid crystals near the nematic-isotropic ($ NI $) transition. This phase is an achiral, tilt-analogue of the blue phase and is composed of a lattice of {\\em double-tilt}, escape-configuration cylinders. We discuss the structure and the stability of this phase and provide an estimate of the lattice parameter.

  15. Methane escape from gas hydrate systems in marine environment, and methane-driven oceanic eruptions

    E-Print Network [OSTI]

    Zhang, Youxue

    Methane escape from gas hydrate systems in marine environment, and methane-driven oceanic eruptions quantities of CH4 are stored in marine sediment in the form of methane hydrate, bubbles, and dissolved CH4 in pore water. Here I discuss the various pathways for methane to enter the ocean and atmosphere

  16. Dietary mercury exposure causes decreased escape takeoff flight performance and increased molt rate in European starlings

    E-Print Network [OSTI]

    Swaddle, John

    Dietary mercury exposure causes decreased escape takeoff flight performance and increased molt rate 2014 Ã? Springer Science+Business Media New York 2014 Abstract Mercury is a widespread and persistent that forage from primarily terrestrial sources have shown evidence of bioaccumula- tion of mercury, but little

  17. Saving Energy at Ford

    E-Print Network [OSTI]

    McReynolds, C. J.

    -19, 1986 Cogeneration is using energy twice, and was common in the early days, before electricity became widespread, reliable and cheap. Utilities sold exhaust steam for district heating; high pressure super-heated steam from the boiler passed through... the compressor's electrical drive, with various system losses, including oil and water removal. Compressed air is attractive because it is convenient for tools, pneumatic controls and spray paint atomizing. However, compressed air energy losses are a problem...

  18. Transition State Theory Approach to Polymer Escape from a One Dimensional Potential Well

    E-Print Network [OSTI]

    Mökkönen, Harri; Ala-Nissila, Tapio; Jónsson, Hannes

    2015-01-01T23:59:59.000Z

    The rate of escape of an ideal bead-spring polymer in a symmetric double-well potential is calculated using transition state theory (TST) and the results compared with direct dynamical simulations. The minimum energy path of the transitions becomes flat and the dynamics diffusive for long polymers making the Kramers-Langer estimate poor. However, TST with dynamical corrections based on short time trajectories started at the transition state gives rate constant estimates that agree within a factor of two with the molecular dynamics simulations over a wide range of bead coupling constants and polymer lengths. The computational effort required by the TST approach does not depend on the escape rate and is much smaller than that required by molecular dynamics simulations.

  19. Quantum and classical resonant escapes of a strongly driven Josephson junction

    SciTech Connect (OSTI)

    Yu, H. F.; Zhu, X. B.; Peng, Z. H.; Cao, W. H.; Cui, D. J.; Tian, Ye; Chen, G. H.; Zheng, D. N.; Jing, X. N.; Lu, Li; Zhao, S. P.; Han Siyuan [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Department of Physics and Astronomy, University of Kansas, Lawrence, Kansas 66045 (United States)

    2010-04-01T23:59:59.000Z

    The properties of phase escape in a dc superconducting quantum interference device (SQUID) at 25 mK, which is well below quantum-to-classical crossover temperature T{sub cr}, in the presence of strong resonant ac driving have been investigated. The SQUID contains two Nb/Al-AlO{sub x}/Nb tunnel junctions with Josephson inductance much larger than the loop inductance so it can be viewed as a single junction having adjustable critical current. We find that with increasing microwave power W and at certain frequencies nu and nu/2, the single primary peak in the switching current distribution, which is the result of macroscopic quantum tunneling of the phase across the junction, first shifts toward lower bias current I and then a resonant peak develops. These results are explained by quantum resonant phase escape involving single and two photons with microwave-suppressed potential barrier. As W further increases, the primary peak gradually disappears and the resonant peak grows into a single one while shifting further to lower I. At certain W, a second resonant peak appears, which can locate at very low I depending on the value of nu. Analysis based on the classical equation of motion shows that such resonant peak can arise from the resonant escape of the phase particle with extremely large oscillation amplitude resulting from bifurcation of the nonlinear system. Our experimental result and theoretical analysis demonstrate that at T<escape of the phase particle could be dominated by classical process, such as dynamical bifurcation of nonlinear systems under strong ac driving.

  20. Cosmic ray diffusive acceleration at shock waves with finite upstream and downstream escape boundaries

    E-Print Network [OSTI]

    M. Ostrowski; R. Schlickeiser

    1996-04-18T23:59:59.000Z

    In the present paper we discuss the modifications introduced into the first-order Fermi shock acceleration process due to a finite extent of diffusive regions near the shock or due to boundary conditions leading to an increased particle escape upstream and/or downstream the shock. In the considered simple example of the planar shock wave we idealize the escape phenomenon by imposing a particle escape boundary at some distance from the shock. Presence of such a boundary (or boundaries) leads to coupled steepening of the accelerated particle spectrum and decreasing of the acceleration time scale. It allows for a semi-quantitative evaluation and, in some specific cases, also for modelling of the observed steep particle spectra as a result of the first-order Fermi shock acceleration. We also note that the particles close to the upper energy cut-off are younger than the estimate based on the respective acceleration time scale. In Appendix A we present a new time-dependent solution for infinite diffusive regions near the shock allowing for different constant diffusion coefficients upstream and downstream the shock.

  1. The RAVE survey: the Galactic escape speed and the mass of the Milky Way

    E-Print Network [OSTI]

    Piffl, Til; Binney, James; Steinmetz, Matthias; Scholz, Ralf-Dieter; Williams, Mary E K; de Jong, Roelof S; Kordopatis, Georges; Matijevic, Gal; Bienayme, Olivier; Bland-Hawthorn, Joss; Boeche, Corrado; Freeman, Ken; Gibson, Brad; Gilmore, Gerald; Grebel, Eva K; Helmi, Amina; Munari, Ulisse; Navarro, Julio F; Parker, Quentin; Reid, Warren A; Seabroke, George; Watson, Fred; Wyse, Rosemary F G; Zwitter, Tomaz

    2013-01-01T23:59:59.000Z

    We construct new estimates on the Galactic escape speed at various Galactocentric radii using the latest data release of the Radial Velocity Experiment (RAVE DR4). Compared to previous studies we have a database larger by a factor of 10 as well as reliable distance estimates for almost all stars. Our analysis is based on the statistical analysis of a rigorously selected sample of 90 high-velocity halo stars from RAVE and a previously published data set. We calibrate and extensively test our method using a suite of cosmological simulations of the formation of Milky Way-sized galaxies. Our best estimate of the local Galactic escape speed, which we define as the minimum speed required to reach three virial radii R340, is 537 +59 -43 km/s (90% confidence) with an additional 5% systematic uncertainty, where R340 is the Galactocentric radius encompassing a mean overdensity of 340 times the critical density for closure in the Universe. From the escape speed we further derive estimates of the mass of the Galaxy using...

  2. Research results from the Ashland Exploration, Inc. Ford Motor Company 78 (ed) well, Pike County, Kentucky. Topical report, April 1992-December 1993

    SciTech Connect (OSTI)

    Hopkins, C.W.; Frantz, J.H.; Lancaster, D.E.

    1995-06-01T23:59:59.000Z

    This report summarizes the work performed on the Ashland Exploration, Inc. Ford Motor Company 78 (Experimental Development (ED)) Well, in Pike County, KY. The ED well was the third well drilled in a research project conducted by GRI in eastern Kentucky targeting both the Devonian Shales and Berea Sandstone. Both the Shales and Berea were completed and tested in the ED well. The primary objective of the ED well was to apply what was learned from studying the Shalers in COOP 1 (first well drilled) and the Berea in COOP 2 (second well drilled) to both the Shales and the Berea in the ED well. Additionally, the ED well was used to evaluate the impact of different stimulation treatments on Shales production. Research in the ED well brings to a close GRI`s extensive field-based research program in the Appalachian Basin over the last ten years.

  3. Galactic porosity and a star formation threshold for the escape of ionising radiation from galaxies

    E-Print Network [OSTI]

    C. J. Clarke; M. S. Oey

    2002-08-23T23:59:59.000Z

    The spatial distribution of star formation within galaxies strongly affects the resulting feedback processes. Previous work has considered the case of a single, concentrated nuclear starburst, and also that of distributed single supernovae (SNe). Here, we consider ISM structuring by SNe originating in spatially distributed clusters having a cluster membership spectrum given by the observed HII region luminosity function. We show that in this case, the volume of HI cleared per SN is considerably greater than in either of the two cases considered hitherto. We derive a simple relationship between the ``porosity'' of the ISM and the star formation rate (SFR), and deduce a critical SFR_crit, at which the ISM porosity is unity. This critical value describes the case in which the SN mechanical energy output over a timescale t_e is comparable with the ISM ``thermal'' energy contained in random motions; t_e is the duration of SN mechanical input per superbubble. This condition also defines a critical gas consumption timescale t_exh, which for a Salpeter IMF and random velocities of \\simeq 10 km s-1 is roughly 10e10 years. We draw a link between porosity and the escape of ionising radiation from galaxies, arguing that high escape fractions are expected if SFR >~ SFR_crit. The Lyman Break Galaxies, which are presumably subject to infall on a timescale < t_exh, meet this criterion, as is consistent with the significant leakage of ionising photons inferred in these systems. We suggest the utility of this simple parameterisation of escape fraction in terms of SFR for semi-empirical models of galaxy formation and evolution and for modeling mechanical and chemical feedback effects.

  4. Escape model for Galactic cosmic rays and an early extragalactic transition

    E-Print Network [OSTI]

    Giacinti, G; Semikoz, D V

    2015-01-01T23:59:59.000Z

    We show that the cosmic ray (CR) knee can be entirely explained by energy-dependent CR leakage from the Milky Way, with an excellent fit to all existing data. We test this hypothesis calculating the trajectories of individual CRs in the Galactic magnetic field. We find that the CR escape time $\\tau_{\\rm esc}(E)$ exhibits a knee-like structure around $E/Z={\\rm few}\\times 10^{15}$ eV for small coherence lengths and strengths of the turbulent magnetic field. The resulting intensities for different groups of nuclei are consistent with the ones determined by KASCADE and KASCADE-Grande, using simple power-laws as injection spectra. The transition from Galactic to extragalactic CRs is terminated at $\\approx 2\\times 10^{18}$ eV, while extragalactic CRs contribute sizeable to the subdominant proton flux already for $\\gtrsim 2\\times 10^{16}$ eV. The natural source of extragalactic CRs in the intermediate energy region up to the ankle are in this model normal and starburst galaxies. The escape model provides a good fit ...

  5. Escape, Accretion or Star Formation? The Competing Depleters of Gas in Markarian 231

    E-Print Network [OSTI]

    Alatalo, Katherine

    2015-01-01T23:59:59.000Z

    We report on high resolution CO(1-0), CS(2-1) and 3mm continuum Combined Array for Research in Millimeter Astronomy (CARMA) observations of the molecular outflow host and nearest quasar Markarian 231. We use the CS(2-1) measurements to derive a dense gas mass within Mrk 231 of $1.8\\pm0.3\\times10^{10}$ $M_\\odot$, quite consistent with previous measurements. The CS(2-1) data also seem to indicate that the molecular disk of Mrk 231 is forming stars at normal efficiency. The high resolution CARMA observations were able to resolve the CO(1-0) outflow into two distinct lobes, allowing for a size estimate to be made and further constraining the molecular outflow dynamical time, further constraining the molecular gas escape rate. We find that 15% of the molecular gas within the Mrk 231 outflow actually exceeds the escape velocity in the central kiloparsec. Assuming that molecular gas is not constantly being accelerated, we find the depletion timescale of molecular gas in Mrk 231 to be 49 Myr, rather than 32 Myr, more...

  6. A Deep HST Search for Escaping Lyman Continuum Flux at z~1.3: Evidence for an Evolving Ionizing Emissivity

    E-Print Network [OSTI]

    Siana, Brian; Ferguson, Henry C; Brown, Thomas M; Giavalisco, Mauro; Dickinson, Mark; Chary, Ranga-Ram; de Mello, Duilia F; Conselice, Christopher J; Bridge, Carrie R; Gardner, Jonathan P; Colbert, James W; Scarlata, Claudia

    2010-01-01T23:59:59.000Z

    We have obtained deep Hubble Space Telescope far-UV images of 15 starburst galaxies at z~1.3 in the GOODS fields to search for escaping Lyman continuum photons. These are the deepest far-UV images m_{AB}=28.7, 3\\sigma, 1" diameter) over this large an area (4.83 arcmin^2) and provide the best escape fraction constraints for any galaxy at any redshift. We do not detect any individual galaxies, with 3\\sigma limits to the Lyman Continuum (~700 \\AA) flux 50--149 times fainter (in f_nu) than the rest-frame UV (1500 \\AA) continuum fluxes. Correcting for the mean IGM attenuation (factor ~2), as well as an intrinsic stellar Lyman Break (~3), these limits translate to relative escape fraction limits of f_{esc,rel}4 and reionization of the intergalactic medium at z>6. [Abridged

  7. MOLECULAR-KINETIC SIMULATIONS OF ESCAPE FROM THE EX-PLANET AND EXOPLANETS: CRITERION FOR TRANSONIC FLOW

    SciTech Connect (OSTI)

    Johnson, Robert E.; Volkov, Alexey N.; Erwin, Justin T. [Engineering Physics, University of Virginia, Charlottesville, VA 22904-4745 (United States)

    2013-05-01T23:59:59.000Z

    The equations of gas dynamics are extensively used to describe atmospheric loss from solar system bodies and exoplanets even though the boundary conditions at infinity are not uniquely defined. Using molecular-kinetic simulations that correctly treat the transition from the continuum to the rarefied region, we confirm that the energy-limited escape approximation is valid when adiabatic expansion is the dominant cooling process. However, this does not imply that the outflow goes sonic. Rather large escape rates and concomitant adiabatic cooling can produce atmospheres with subsonic flow that are highly extended. Since this affects the heating rate of the upper atmosphere and the interaction with external fields and plasmas, we give a criterion for estimating when the outflow goes transonic in the continuum region. This is applied to early terrestrial atmospheres, exoplanet atmospheres, and the atmosphere of the ex-planet, Pluto, all of which have large escape rates.

  8. U.S. Department of Energy FreedomCAR & Vehicle Technologies Program Advanced Vehicle Testing Activity, Hydrogen/CNG Blended Fuels Performance Testing in a Ford F-150

    SciTech Connect (OSTI)

    James E. Francfort

    2003-11-01T23:59:59.000Z

    Federal regulation requires energy companies and government entities to utilize alternative fuels in their vehicle fleets. To meet this need, several automobile manufacturers are producing compressed natural gas (CNG)-fueled vehicles. In addition, several converters are modifying gasoline-fueled vehicles to operate on both gasoline and CNG (Bifuel). Because of the availability of CNG vehicles, many energy company and government fleets have adopted CNG as their principle alternative fuel for transportation. Meanwhile, recent research has shown that blending hydrogen with CNG (HCNG) can reduce emissions from CNG vehicles. However, blending hydrogen with CNG (and performing no other vehicle modifications) reduces engine power output, due to the lower volumetric energy density of hydrogen in relation to CNG. Arizona Public Service (APS) and the U.S. Department of Energy’s Advanced Vehicle Testing Activity (DOE AVTA) identified the need to determine the magnitude of these effects and their impact on the viability of using HCNG in existing CNG vehicles. To quantify the effects of using various blended fuels, a work plan was designed to test the acceleration, range, and exhaust emissions of a Ford F-150 pickup truck operating on 100% CNG and blends of 15 and 30% HCNG. This report presents the results of this testing conducted during May and June 2003 by Electric Transportation Applications (Task 4.10, DOE AVTA Cooperative Agreement DEFC36- 00ID-13859).

  9. Geometric capture and escape of a microswimmer colliding with an obstacle

    E-Print Network [OSTI]

    Spagnolie, Saverio E; Bartolo, Denis; Lauga, Eric

    2014-01-01T23:59:59.000Z

    Motivated by recent experiments, we consider the hydrodynamic capture of a microswimmer near a stationary spherical obstacle. Simulations of model equations show that a swimmer approaching a small spherical colloid is simply scattered. In contrast, when the colloid is larger than a critical size it acts as a passive trap: the swimmer is hydrodynamically captured along closed trajectories and endlessly orbits around the colloidal sphere. In order to gain physical insight into this hydrodynamic scattering problem, we address it analytically. We provide expressions for the critical trapping radius, the depth of the "basin of attraction," and the scattering angle, which show excellent agreement with our numerical findings. We also demonstrate and rationalize the strong impact of swimming-flow symmetries on the trapping efficiency. Finally, we give the swimmer an opportunity to escape the colloidal traps by considering the effects of Brownian, or active, diffusion. We show that in some cases the trapping time is g...

  10. A MODEL FOR THE ESCAPE OF SOLAR-FLARE-ACCELERATED PARTICLES

    SciTech Connect (OSTI)

    Masson, S.; Antiochos, S. K. [Space Weather Laboratory, NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771 (United States); DeVore, C. R., E-mail: sophie.masson@nasa.gov [Laboratory for Computational Physics and Fluid Dynamics, Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC 20375 (United States)

    2013-07-10T23:59:59.000Z

    We address the problem of how particles are accelerated by solar flares can escape into the heliosphere on timescales of an hour or less. Impulsive solar energetic particle (SEP) bursts are generally observed in association with so-called eruptive flares consisting of a coronal mass ejection (CME) and a flare. These fast SEPs are believed to be accelerated directly by the flare, rather than by the CME shock. However, the precise mechanism by which the particles are accelerated remains controversial. Regardless of the origin of the acceleration, the particles should remain trapped in the closed magnetic fields of the coronal flare loops and the ejected flux rope, given the magnetic geometry of the standard eruptive-flare model. In this case, the particles would reach the Earth only after a delay of many hours to a few days (coincident with the bulk ejecta arriving at Earth). We propose that the external magnetic reconnection intrinsic to the breakout model for CME initiation can naturally account for the prompt escape of flare-accelerated energetic particles onto open interplanetary magnetic flux tubes. We present detailed 2.5-dimensional magnetohydrodynamic simulations of a breakout CME/flare event with a background isothermal solar wind. Our calculations demonstrate that if the event occurs sufficiently near a coronal-hole boundary, interchange reconnection between open and closed fields can occur. This process allows particles from deep inside the ejected flux rope to access solar wind field lines soon after eruption. We compare these results to standard observations of impulsive SEPs and discuss the implications of the model on further observations and calculations.

  11. NONTHERMAL RADIATION FROM SUPERNOVA REMNANTS: EFFECTS OF MAGNETIC FIELD AMPLIFICATION AND PARTICLE ESCAPE

    SciTech Connect (OSTI)

    Kang, Hyesung [Department of Earth Sciences, Pusan National University, Pusan 609-735 (Korea, Republic of); Jones, T. W. [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States); Edmon, Paul P., E-mail: kang@uju.es.pusan.ac.kr, E-mail: twj@msi.umn.edu, E-mail: pedmon@cfa.harvard.edu [Research Computing, Harvard University, Cambridge, MA 02138 (United States)

    2013-11-01T23:59:59.000Z

    We explore nonlinear effects of wave-particle interactions on the diffusive shock acceleration (DSA) process in Type Ia-like supernova remnant (SNR) blast waves by implementing phenomenological models for magnetic field amplification (MFA), Alfvénic drift, and particle escape in time-dependent numerical simulations of nonlinear DSA. For typical SNR parameters, the cosmic-ray (CR) protons can be accelerated to PeV energies only if the region of amplified field ahead of the shock is extensive enough to contain the diffusion lengths of the particles of interest. Even with the help of Alfvénic drift, it remains somewhat challenging to construct a nonlinear DSA model for SNRs in which of the order of 10% of the supernova explosion energy is converted into CR energy and the magnetic field is amplified by a factor of 10 or so in the shock precursor, while, at the same time, the energy spectrum of PeV protons is steeper than E {sup –2}. To explore the influence of these physical effects on observed SNR emission, we also compute the resulting radio-to-gamma-ray spectra. Nonthermal emission spectra, especially in X-ray and gamma-ray bands, depend on the time-dependent evolution of the CR injection process, MFA, and particle escape, as well as the shock dynamic evolution. This result comes from the fact that the high-energy end of the CR spectrum is composed of particles that are injected in the very early stages of the blast wave evolution. Thus, it is crucial to better understand the plasma wave-particle interactions associated with collisionless shocks in detailed modeling of nonthermal radiation from SNRs.

  12. UHECR ESCAPE MECHANISMS FOR PROTONS AND NEUTRONS FROM GAMMA-RAY BURSTS, AND THE COSMIC-RAY-NEUTRINO CONNECTION

    SciTech Connect (OSTI)

    Baerwald, Philipp; Bustamante, Mauricio; Winter, Walter, E-mail: philipp.baerwald@physik.uni-wuerzburg.de, E-mail: mauricio.bustamante@physik.uni-wuerzburg.de, E-mail: winter@physik.uni-wuerzburg.de [Institut fuer Theoretische Physik und Astrophysik, Universitaet Wuerzburg, D-97074 Wuerzburg (Germany)

    2013-05-10T23:59:59.000Z

    The paradigm that gamma-ray burst fireballs are the sources of the ultra-high energy cosmic rays (UHECRs) is being probed by neutrino observations. Very stringent bounds can be obtained from the cosmic-ray (proton)-neutrino connection, assuming that the UHECRs escape as neutrons. In this study, we identify three different regimes as a function of the fireball parameters: the standard ''one neutrino per cosmic ray'' case, the optically thick (to neutron escape) case, and the case where leakage of protons from the boundaries of the shells (direct escape) dominates. In the optically thick regime, the photomeson production is very efficient, and more neutrinos will be emitted per cosmic ray than in the standard case, whereas in the direct escape-dominated regime, more cosmic rays than neutrinos will be emitted. We demonstrate that, for efficient proton acceleration, which is required to describe the observed UHECR spectrum, the standard case only applies to a very narrow region of the fireball parameter space. We illustrate with several observed examples that conclusions on the cosmic-ray-neutrino connection will depend on the actual burst parameters. We also show that the definition of the pion production efficiency currently used by the IceCube collaboration underestimates the neutrino production in the optically thick case. Finally, we point out that the direct escape component leads to a spectral break in the cosmic-ray spectrum emitted from a single source. The resulting ''two-component model'' can be used to even more strongly pronounce the spectral features of the observed UHECR spectrum than the dip model.

  13. The Variable Structure Systems and Cognition

    E-Print Network [OSTI]

    Haykin, Simon

    Intent ActionApprox. Plan Application New Goal Measured Results Experience Model Refinement Correction Ford Escape Hybrid Regeneration #12;Fuel Economy Hybrid Monthly Fuel Economy Miles Driven Friction

  14. THE EFFECTS OF WAVE ESCAPE ON FAST MAGNETOSONIC WAVE TURBULENCE IN SOLAR FLARES

    SciTech Connect (OSTI)

    Pongkitiwanichakul, Peera; Chandran, Benjamin D. G. [Space Science Center and Department of Physics, University of New Hampshire, Durham, NH 03824 (United States); Karpen, Judith T. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); DeVore, C. Richard, E-mail: pbu3@unh.edu, E-mail: benjamin.chandran@unh.edu, E-mail: judy.karpen@nasa.gov, E-mail: devore@nrl.navy.mil [Naval Research Laboratory, Washington, DC 20375 (United States)

    2012-09-20T23:59:59.000Z

    One of the leading models for electron acceleration in solar flares is stochastic acceleration by weakly turbulent fast magnetosonic waves ({sup f}ast waves{sup )}. In this model, large-scale flows triggered by magnetic reconnection excite large-wavelength fast waves, and fast-wave energy then cascades from large wavelengths to small wavelengths. Electron acceleration by large-wavelength fast waves is weak, and so the model relies on the small-wavelength waves produced by the turbulent cascade. In order for the model to work, the energy cascade time for large-wavelength fast waves must be shorter than the time required for the waves to propagate out of the solar-flare acceleration region. To investigate the effects of wave escape, we solve the wave kinetic equation for fast waves in weak turbulence theory, supplemented with a homogeneous wave-loss term. We find that the amplitude of large-wavelength fast waves must exceed a minimum threshold in order for a significant fraction of the wave energy to cascade to small wavelengths before the waves leave the acceleration region. We evaluate this threshold as a function of the dominant wavelength of the fast waves that are initially excited by reconnection outflows.

  15. X-RAY ESCAPE PEAK VARIATIONS IN DIODES MADE FROM DOUBLY TRAVELLING SOLVENT GROWN p-TYPE CdTe

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    293 X-RAY ESCAPE PEAK VARIATIONS IN DIODES MADE FROM DOUBLY TRAVELLING SOLVENT GROWN p-TYPE CdTe H On a étudié la variation de l'intensité du pic d'échappement d'un compteur CdTe en fonction de la tension de height on the applied diode voltage was measured at diodes made from doubly travelling solvent grown CdTe

  16. A transmission/escape probabilities model for neutral particle transport in the outer regions of a diverted tokamak

    SciTech Connect (OSTI)

    Stacey, W.M.

    1992-12-01T23:59:59.000Z

    A new computational model for neutral particle transport in the outer regions of a diverted tokamak plasma chamber is presented. The model is based on the calculation of transmission and escape probabilities using first-flight integral transport theory and the balancing of fluxes across the surfaces bounding the various regions. The geometrical complexity of the problem is included in precomputed probabilities which depend only on the mean free path of the region.

  17. Overview of Fords Thermoelectric Programs: Waste Heat Recovery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    gasoline-engine exhaust, TE HVAC system in hybrid sedan, and establishing targets for cost, power density, packaging, durability, and systems integration maranville.pdf More...

  18. Overview of Fords Thermoelectric Programs: Waste Heat Recovery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Overview of progress in TE waste heat recovery from sedan gasoline-engine exhaust, TE HVAC system in hybrid sedan, and establishing targets for cost, power density, packaging,...

  19. Review of the SIMMER-II analyses of liquid-metal-cooled fast breeder reactor core-disruptive accident fuel escape

    SciTech Connect (OSTI)

    DeVault, G.P.; Bell, C.R.

    1985-01-01T23:59:59.000Z

    Early fuel removal from the active core of a liquid-metal-cooled fast breeder reactor undergoing a core-disruptive accident may reduce the potential for large energetics resulting from recriticalities. This paper presents a review of analyses with the SIMMER-II computer program of the effectiveness of possible fuel escape paths. Where possible, how SIMMER-II compares with or is validated against experiments that simulated the escape paths also is discussed.

  20. Advancing Transportation Through Vehicle Electrification - PHEV...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation arravt067vssbazzi2011o.pdf More Documents & Publications...

  1. PHEV Engine Control and Energy Management Strategy

    Broader source: Energy.gov (indexed) [DOE]

    (RealTime Software and Hardware prototype control strategies development tools) - Matlab and Simulink (modeling environment) - Autonomie (vehicle and powertrain models) *...

  2. Chrysler RAM PHEV Fleet Results Report

    Broader source: Energy.gov (indexed) [DOE]

    45 Overall DC electrical energy consumption (DC Whmi) 29 Overall DC electrical energy captured from regenerative braking (DC Whmi) 39 Total number of trips 10,847 Total...

  3. Chrysler RAM PHEV Fleet Results Report

    Broader source: Energy.gov (indexed) [DOE]

    3 Overall DC electrical energy consumption (DC Whmi) 4 Overall DC electrical energy captured from regenerative braking (DC Whmi) 43 Total number of trips 5,888 Total distance...

  4. Chrysler RAM PHEV Fleet Results Report

    Broader source: Energy.gov (indexed) [DOE]

    148 Overall DC electrical energy consumption (DC Whmi) 87 Overall DC electrical energy captured from regenerative braking (DC Whmi) 46 Total number of trips 6,223 Total...

  5. Chrysler RAM PHEV Fleet Results Report

    Broader source: Energy.gov (indexed) [DOE]

    52 Overall DC electrical energy consumption (DC Whmi) 29 Overall DC electrical energy captured from regenerative braking (DC Whmi) 39 Total number of trips 22,071 Total...

  6. Chrysler RAM PHEV Fleet Test Reports

    Broader source: Energy.gov (indexed) [DOE]

    33 Overall DC electrical energy consumption (DC Whmi) 74 Overall DC electrical energy captured from regenerative braking (DC Whmi) 33 Total number of trips 5,273 Total distance...

  7. Chrysler RAM PHEV Fleet Results Report

    Broader source: Energy.gov (indexed) [DOE]

    0 Overall DC electrical energy consumption (DC Whmi) 61 Overall DC electrical energy captured from regenerative braking (DC Whmi) 43 Total number of trips 111,773 Total...

  8. Chrysler RAM PHEV Fleet Results Report

    Broader source: Energy.gov (indexed) [DOE]

    20 Overall AC electrical energy consumption (AC Whmi) 93 Overall DC electrical energy consumption (DC Whmi) 71 Overall DC electrical energy captured from regenerative braking...

  9. Chrysler RAM PHEV Fleet Results Report

    Broader source: Energy.gov (indexed) [DOE]

    4 Overall DC electrical energy consumption (DC Whmi) 72 Overall DC electrical energy captured from regenerative braking (DC Whmi) 44 Total number of trips 36,749 Total distance...

  10. Real-World PHEV Fuel Economy Prediction

    Broader source: Energy.gov (indexed) [DOE]

    data - Cleansed data freely available for download - Controlled access to detailed spatial data * User application process * Software tools available through secure web...

  11. High Energy Lithium Batteries for PHEV Applications

    Broader source: Energy.gov (indexed) [DOE]

    cycling * Cycle and Calendar life Partners * Lawrence Berkeley National Laboratory (LBNL) * General Motors (GM) * Oak Ridge National Laboratory (ORNL) Project Lead - Envia...

  12. HEV, PHEV, BEV Test Standard Validation

    Broader source: Energy.gov (indexed) [DOE]

    BEV Test Standard Validation 2011 DOE Hydrogen Program and Vehicle Technologies Annual Merit Review May 10, 2011 Michael Duoba Argonne National Laboratory Sponsored by Lee Slezak...

  13. A High-Performance PHEV Battery Pack

    Broader source: Energy.gov (indexed) [DOE]

    piece cost by enabling lower cost automation, shipping, etc. Lower investment (tooling) by commonizing repeating parts Thermal Management Pack Thermal Challenges ...

  14. Chrysler RAM PHEV Fleet Results Report

    Broader source: Energy.gov (indexed) [DOE]

    number of charging events 2,590 Number of charging events at Level 1 | Level 2 588 | 1990 Total charging energy consumed (AC kWh) 17,571 Charging energy consumed at Level 1 |...

  15. A High-Performance PHEV Battery Pack

    Broader source: Energy.gov (indexed) [DOE]

    LCD Glass OLED Materials Color Filter Lithium-Ion Batteries for - Mobile Phone, Laptop, Power Tool - Hybrid & Electric Vehicles - ESS Energy Solution(10%) Petro-...

  16. JCS PHEV System Development-USABC

    Broader source: Energy.gov (indexed) [DOE]

    2 DOE Vehicle Technologies U.S. Department of Energy Merit Review Avie Judes Johnson Controls, Inc. May 16, 2012 1 This presentation does not contain any proprietary, confidential...

  17. JCS PHEV System Development-USABC

    Broader source: Energy.gov (indexed) [DOE]

    1 DOE Vehicle Technologies U.S. Department of Energy Merit Review Scott Engstrom Johnson Controls - Saft May 10, 2011 This presentation does not contain any proprietary,...

  18. JCS PHEV System Development-USABC

    Broader source: Energy.gov (indexed) [DOE]

    0 DOE Vehicle Technologies U.S. Department of Energy Merit Review Scott Engstrom Johnson Controls - Saft April 9, 2010 This presentation does not contain any proprietary,...

  19. Fabricate PHEV Cells for Testing & Diagnostics

    Broader source: Energy.gov (indexed) [DOE]

    Vehicle Technologies Program 2 Overview Sandia and Oak Ridge National Labs Johnson Controls and Saft Media Tech A-Pro EnerDel Howard Battery Consulting...

  20. JCS PHEV System Development-USABC

    Broader source: Energy.gov (indexed) [DOE]

    3 DOE Vehicle Technologies U.S. Department of Energy Merit Review Avie Judes Johnson Controls, Inc. May 13, 2013 1 This presentation does not contain any proprietary, confidential...

  1. Fabricate PHEV Cells for Testing & Diagnostics

    Broader source: Energy.gov (indexed) [DOE]

    restricted information. Project ID: ES030 Vehicle Technologies Program 2 Overview Johnson Controls-Saft Leyden Energy (Mobius Power) Media Tech A-Pro EnerDel...

  2. Fabricate PHEV Cells for Testing & Diagnostics

    Broader source: Energy.gov (indexed) [DOE]

    Identify vendors to make electrodes and pouch18650 cells for ABR Jan., 2009 Finalize order of pouch18650 cells with vendors April, 2009 Distribute vendor cells to ABR for...

  3. PHEV Engine Cold Start Emissions Management

    Broader source: Energy.gov (indexed) [DOE]

    Cold Start Emissions Management Paul Chambon, Dr. David Smith Oak Ridge National Laboratory Dr. David Irick, Dean Deter The University of Tennessee Poster Location P-05 2 Managed...

  4. PHEV Battery Cost Assessment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F SSales LLCDieselEnergyHistory andPEMFC R&D at the DOE7-A2

  5. PHEV Battery Cost Assessment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F SSales LLCDieselEnergyHistory andPEMFC R&D at the DOE7-A21

  6. PHEV Battery Cost Assessment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F SSales LLCDieselEnergyHistory andPEMFC R&D at the

  7. PHEV Battery Cost Assessment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F SSales LLCDieselEnergyHistory andPEMFC R&D at the09 DOE

  8. PHEV Control Strategy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F SSales LLCDieselEnergyHistory andPEMFC R&D at

  9. PHEV Development Platform | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F SSales LLCDieselEnergyHistory andPEMFC R&D atDevelopment

  10. PHEV Engine Control and Energy Management Strategy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F SSales LLCDieselEnergyHistory andPEMFC R&DPaul H. Chambon

  11. PHEVs Component Requirements | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F SSales LLCDieselEnergyHistory andPEMFC

  12. Advancing Transportation Through Vehicle Electrification - PHEV |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment of EnergyAdministrative2|Department of EnergyMini-VanDepartment

  13. Advancing Transportation Through Vehicle Electrification - PHEV |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment of EnergyAdministrative2|Department of

  14. Advancing Transportation Through Vehicle Electrification - PHEV |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment of EnergyAdministrative2|Department ofDepartment of Energy 0

  15. JCS PHEV System Development | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10 DOE VehicleStationaryLaboratory,Iowa9: WhatA P OLMay

  16. PHEV Engine Control and Energy Management Strategy

    Broader source: Energy.gov (indexed) [DOE]

    any proprietary, confidential, or otherwise restricted information VSS013 2011 U.S. DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation...

  17. A High-Performance PHEV Battery Pack

    Broader source: Energy.gov (indexed) [DOE]

    cooling system we have developed in our previous program with respect to mass, volume, cost and power demand. Deliver cells and battery packs to USABC for testing. Tasks OEM...

  18. Advancing Transportation Through Vehicle Electrification- PHEV

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  19. Final Report of a CRADA Between Pacific Northwest National Laboratory and the Ford Motor Company (CRADA No. PNNL/265): “Deactivation Mechanisms of Base Metal/Zeolite Urea Selective Catalytic Reduction Materials, and Development of Zeolite-Based Hydrocarbon Adsorber Materials”

    SciTech Connect (OSTI)

    Gao, Feng; Kwak, Ja Hun; Lee, Jong H.; Tran, Diana N.; Peden, Charles HF; Howden, Ken; Cheng, Yisun; Lupescu, Jason; Cavattaio, Giovanni; Lambert, Christine; McCabe, Robert W.

    2013-02-14T23:59:59.000Z

    Reducing NOx emissions and particulate matter (PM) are primary concerns for diesel vehicles required to meet current LEV II and future LEV III emission standards which require 90+% NOx conversion. Currently, urea SCR as the NOx reductant and a Catalyzed Diesel Particulate Filter (CDPF) are being used for emission control system components by Ford Motor Company for 2010 and beyond diesel vehicles. Because the use of this technology for vehicle applications is new, the relative lack of experience makes it especially challenging to satisfy durability requirements. Of particular concern is being able to realistically simulate actual field aging of the catalyst systems under laboratory conditions. This is necessary both as a rapid assessment tool for verifying improved performance and certifiability of new catalyst formulations, and to develop a good understanding of deactivation mechanisms that can be used to develop improved catalyst materials. In addition to NOx and PM, the hydrocarbon (HC) emission standards are expected to become much more stringent during the next few years. Meanwhile, the engine-out HC emissions are expected to increase and/or be more difficult to remove. Since HC can be removed only when the catalyst becomes warm enough for its oxidation, three-way catalyst (TWC) and diesel oxidation catalyst (DOC) formulations often contain proprietary zeolite materials to hold the HC produced during the cold start period until the catalyst reaches its operating temperature (e.g., >200°C). Unfortunately, much of trapped HC tends to be released before the catalyst reaches the operating temperature. Among materials effective for trapping HC during the catalyst warm-up period, siliceous zeolites are commonly used because of their high surface area and high stability under typical operating conditions. However, there has been little research on the physical properties of these materials related to the adsorption and release of various hydrocarbon species found in the engine exhaust. For these reasons, automakers and engine manufacturers have difficulty improving their catalytic converters for meeting the stringent HC emission standards. In this collaborative program, scientists and engineers in the Institute for Integrated Catalysis at Pacific Northwest National Laboratory and at Ford Motor Company have investigated laboratory- and engine-aged SCR catalysts, containing mainly base metal zeolites. These studies are leading to a better understanding of various aging factors that impact the long-term performance of SCR catalysts and improve the correlation between laboratory and engine aging, saving experimental time and cost. We have also studied materials effective for the temporary storage of HC species during the cold-start period. In particular, we have examined the adsorption and desorption of various HC species produced during the combustion with different fuels (e.g., gasoline, E85, diesel) over potential HC adsorber materials, and measured the kinetic parameters to update Ford’s HC adsorption model. Since this CRADA has now been completed, in this final report we will provide brief summaries of most of the work carried out on this CRADA over the last several years.

  20. Off-Cycle Benchmarking of PHEVs; Wide Range of Temperatures...

    Broader source: Energy.gov (indexed) [DOE]

    to cost and upkeep Standard drive cycles are less aggressive than typical real world drivers HEV fuel economy is more sensitive to aggressive driving (expected similar...

  1. Benchmarking of Advanced HEVs and PHEVs over a Wide Range...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Office of Vehicle Technologies "Mega" Merit Review 2008 on February 25, 2008 in Bethesda, Maryland. merit08carlson.pdf More Documents & Publications Off-Cycle Benchmarking...

  2. Kinetic Monte Carlo simulation of escaping core plasma particles to the scrape-off layer for accurate response of plasma-facing components

    E-Print Network [OSTI]

    Harilal, S. S.

    Environment, School of Nuclear Engineering, Purdue University, West Lafayette 47907, USA E-mail: vsizyuk and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 53 (2013) 073023 (8pp) doi:10 Heterogeneous Target Systems (HEIGHTS) package to accurately predict the impact of the escaped particles

  3. Phase transition between quantum and classical regimes for the escape rate of dimeric molecular nanomagnets in a staggered magnetic field

    E-Print Network [OSTI]

    Solomon Akaraka Owerre; M. B Paranjape

    2014-07-02T23:59:59.000Z

    We study the phase transition of the escape rate of exchange-coupled dimer of single-molecule magnets which are coupled either ferromagnetic ally or antiferromagnetically in a staggered magnetic field and an easy $z$-axis anisotropy. The Hamiltonian for this system has been used to study molecular dimer nanomagnets [Mn$_4$]$_2$. We generalize the method of mapping a single-molecule magnetic spin problem onto a quantum-mechanical particle to dimeric molecular nanomagnets. The problem is mapped to a single particle quantum-mechanical Hamiltonian in terms of the relative coordinate and a coordinate dependent reduced mass. It is shown that the presence of the external staggered magnetic field creates a phase boundary separating the first- from the second-order transition. With the set of parameters used by R. Tiron, $\\textit{et al}$, \\prl {\\bf 91}, 227203 (2003), and S. Hill, $\\textit{et al}$ science {\\bf 302}, 1015 (2003) to fit experimental data for [Mn$_{4}$]$_2$ dimer we find that the critical temperature at the phase boundary is $T^{(c)}_0 =0.29K$. Therefore, thermally activated transitions should occur for temperatures greater than $T^{(c)}_0$.

  4. XUV exposed non-hydrostatic hydrogen-rich upper atmospheres of terrestrial planets. Part I: Atmospheric expansion and thermal escape

    E-Print Network [OSTI]

    Erkaev, N V; Odert, P; Kulikov, Yu N; Kislyakova, K G; Khodachenko, M L; Güdel, M; Hanslmeier, A; Biernat, H

    2012-01-01T23:59:59.000Z

    The recently discovered low-density "super-Earths" Kepler-11b, Kepler-11f, Kepler-11d, Kepler-11e, and planets such as GJ 1214b represent most likely planets which are surrounded by dense H/He envelopes or contain deep H2O oceans also surrounded by dense hydrogen envelopes. Although these "super-Earths" are orbiting relatively close to their host stars, they have not lost their captured nebula-based hydrogen-rich or degassed steam protoatmospheres. Thus it is interesting to estimate the maximum possible amount of atmospheric hydrogen loss from a terrestrial planet orbiting within the habitable zone of a Sun-like G-type host star. For studying the thermosphere structure and escape we apply a 1-D hydrodynamic upper atmosphere model which solves the equations of mass, momentum and energy conservation for a planet with the mass and size of the Earth and for a "super-Earth" with a size of 2 R_Earth and a mass of 10 M_Earth. We calculate heating rates by the stellar soft X-rays and EUV radiation and expansion of th...

  5. Strain-rate and temperature dependence of yield stress of amorphous solids via self-learning metabasin escape algorithm

    E-Print Network [OSTI]

    Penghui Cao; Xi Lin; Harold S. Park

    2014-05-12T23:59:59.000Z

    A general self-learning metabasin escape (SLME) algorithm~\\citep{caoPRE2012} is coupled in this work with continuous shear deformations to probe the yield stress as a function of strain rate and temperature for a binary Lennard-Jones (LJ) amorphous solid. The approach is shown to match the results of classical molecular dynamics (MD) at high strain rates where the MD results are valid, but, importantly, is able to access experimental strain rates that are about ten orders of magnitude slower than MD. In doing so, we find in agreement with previous experimental studies that a substantial decrease in yield stress is observed with decreasing strain rate. At room temperature and laboratory strain rates, the activation volume associated with yield is found to contain about 10 LJ particles, while the yield stress is as sensitive to a $1.5\\%T_{\\rm g}$ increase in temperature as it is to a one order of magnitude decrease in strain rate. Moreover, our SLME results suggest the SLME and extrapolated results from MD simulations follow distinctly different energetic pathways during the applied shear deformation at low temperatures and experimental strain rates, which implies that extrapolation of the governing deformation mechanisms from MD strain rates to experimental may not be valid.

  6. Peering through the holes: the far UV color of star-forming galaxies at z~3-4 and the escaping fraction of ionizing radiation

    E-Print Network [OSTI]

    Vanzella, E; Castellano, M; Grazian, A; Inoue, A K; Schaerer, D; Guaita, L; Zamorani, G; Giavalisco, M; Siana, B; Pentericci, L; Giallongo, E; Fontana, A; Vignali, C

    2015-01-01T23:59:59.000Z

    We aim to investigate the effect of the escaping ionizing radiation on the color selection of high redshift galaxies and identify candidate Lyman continuum (LyC) emitters. The intergalactic medium prescription of Inoue et al.(2014) and galaxy synthesis models of Bruzual&Charlot (2003) have been used to properly treat the ultraviolet stellar emission, the stochasticity of the intergalactic transmission and mean free path in the ionizing regime. Color tracks are computed by turning on/off the escape fraction of ionizing radiation. At variance with recent studies, a careful treatment of IGM transmission leads to no significant effects on the high-redshift broad-band color selection. The decreasing mean free path of ionizing photons with increasing redshift further diminishes the contribution of the LyC to broad-band colors. We also demonstrate that prominent LyC sources can be selected under suitable conditions by calculating the probability of a null escaping ionizing radiation. The method is applied to a s...

  7. Respirator studies for the Nuclear Regulatory Commission. Evaluation and performance of escape-type self-contained breathing apparatus. Progress report, October 1, 1978-September 30, 1979

    SciTech Connect (OSTI)

    Hack, A.; Trujillo, A.; Carter, K.; Bradley, O.D.

    1980-07-01T23:59:59.000Z

    The performance of escape type breathing apparatus was evaluated for weight, comfort, ease of use, and protection factor (calculated from facepiece leakage). All of the devices tested provided a self-contained air supply of 5- to 15-min duration. Five of them have the provision to connect an air line but allow the use of the self-contained supply for safe egress. The air supply was stored in cylinders, tubing, or disposable containers. Respiratory inlet coverings were half masks, full facepieces, hoods, and mouthpieces. An estimate is given for the ease of quick donning. Recommendations for conditions of use of the equipment are given. 8 refs., 10 figs., 3 tabs.

  8. Design of a minimalist autonomous robotic vehicle

    E-Print Network [OSTI]

    Spadafora, Mark (Mark A.)

    2008-01-01T23:59:59.000Z

    The purpose of this thesis is to investigate design alternatives for the creation of a minimalist autonomous robotic vehicle, based on the Ford Escape. The work builds on prior work performed by the MIT DARPA Urban Challenge ...

  9. The Great Observatories Origins Deep Survey: Constraints on the Lyman Continuum Escape Fraction Distribution of Lyman--Break Galaxies at 3.4

    E-Print Network [OSTI]

    Vanzella, E; Inoue, A; Nonino, M; Fontanot, F; Cristiani, S; Grazian, A; Dickinson, M; Stern, D; Tozzi, P; Giallongo, E; Ferguson, H; Spinrad, H; Boutsia, K; Fontana, A; Rosati, P

    2010-01-01T23:59:59.000Z

    We use ultra-deep ultraviolet VLT/VIMOS intermediate-band and VLT/FORS1 narrow-band imaging in the GOODS Southern field to derive limits on the distribution of the escape fraction (f_esc) of ionizing radiation for L >~ L*(z=3) Lyman Break Galaxies (LBGs) at redshift 3.4--4.5. Only one LBG, at redshift z=3.795, is detected in its Lyman continuum (LyC; S/N~5.5), the highest redshift galaxy currently known with a direct detection. Its ultraviolet morphology is quite compact (R_eff=0.8, kpc physical). Three out of seven AGN are also detected in their LyC, including one at redshift z=3.951 and z850 = 26.1. From stacked data (LBGs) we set an upper limit to the average f_esc in the range 5%--20%, depending on the how the data are selected (e.g., by magnitude and/or redshift). We undertake extensive Monte Carlo simulations that take into account intergalactic attenuation, stellar population synthesis models, dust extinction and photometric noise in order to explore the moments of the distribution of the escaping radi...

  10. Water for Energy in the Eagle Ford

    E-Print Network [OSTI]

    Finch, C.

    2013-01-01T23:59:59.000Z

    Water and Hydraulic Fracturing 12/18/2013 CATEE Conference San Antonio, TX Dr. Calvin Finch Texas A&M Water Conservation and Technology Center ESL-KT-13-12-44 CATEE 2013: Clean Air Through Energy Efficiency Conference, San Antonio, Texas Dec. 16...-18 ESL-KT-13-12-44 CATEE 2013: Clean Air Through Energy Efficiency Conference, San Antonio, Texas Dec. 16-18 ESL-KT-13-12-44 CATEE 2013: Clean Air Through Energy Efficiency Conference, San Antonio, Texas Dec. 16-18 Water Components ?Water for Drilling...

  11. Ads by Goooooogle 2007 Ford Official Site

    E-Print Network [OSTI]

    Gosselin, Frédéric

    Research Facilities Design www.rfd.com A UNH pigeon contemplates the shape of an object on a video monitor in honeybees has led to the development of flying robots and unmanned helicopters," the researchers say. So

  12. Ford Electric Battery Group | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6Theoretical vsFlintFlux PowerFootprint Ventures JumpWind

  13. Escapement and Productivity of Spring Chinook Salmon and Summer Steelhead in the John Day River Basin, 2005-2006 Annual Technical Report.

    SciTech Connect (OSTI)

    Schultz, Terra Lang; Wilson, Wayne H.; Ruzycki, James R. [Oregon Department of Fish and Wildlife

    2009-04-10T23:59:59.000Z

    The objectives are: (1) Estimate number and distribution of spring Chinook salmon Oncorhynchus tshawytscha redds and spawners in the John Day River subbasin; and (2) Estimate smolt-to-adult survival rates (SAR) and out-migrant abundance for spring Chinook and summer steelhead O. mykiss and life history characteristics of summer steelhead. The John Day River subbasin supports one of the last remaining intact wild populations of spring Chinook salmon and summer steelhead in the Columbia River Basin. These populations, however, remain depressed relative to historic levels. Between the completion of the life history and natural escapement study in 1984 and the start of this project in 1998, spring Chinook spawning surveys did not provide adequate information to assess age structure, progeny-to-parent production values, smolt-to-adult survival (SAR), or natural spawning escapement. Further, only very limited information is available for steelhead life history, escapement, and productivity measures in the John Day subbasin. Numerous habitat protection and rehabilitation projects to improve salmonid freshwater production and survival have also been implemented in the basin and are in need of effectiveness monitoring. While our monitoring efforts outlined here will not specifically measure the effectiveness of any particular project, they will provide much needed background information for developing context for project-specific effectiveness monitoring efforts. To meet the data needs as index stocks, to assess the long-term effectiveness of habitat projects, and to differentiate freshwater and ocean survival, sufficient annual estimates of spawner escapement, age structure, SAR, egg-to-smolt survival, smolt-per-redd ratio, and freshwater habitat use are essential. We have begun to meet this need through spawning ground surveys initiated for spring Chinook salmon in 1998 and smolt PIT-tagging efforts initiated in 1999. Additional sampling and analyses to meet these goals include an estimate of smolt abundance and SAR rates, and an updated measure of the freshwater distribution of critical life stages. Because Columbia Basin managers have identified the John Day subbasin spring Chinook population as an index population for assessing the effects of alternative future management actions on salmon stocks in the Columbia Basin (Schaller et al. 1999) we continue our ongoing studies. This project is high priority based on the high level of emphasis the NWPPC Fish and Wildlife Program, Subbasin Summaries, NMFS, and the Oregon Plan for Salmon and Watersheds have placed on monitoring and evaluation to provide the real-time data to guide restoration and adaptive management in the region. By implementing the proposed program we have been able to address many of the goals for population status monitoring, such as defining areas currently used by spring Chinook for holding and spawning habitats and determining range expansion or contraction of summer rearing and spawning populations. The BiOp describes these goals as defining population growth rates (adult monitoring), detecting changes in those growth rates or relative abundance in a reasonable time (adult/juvenile monitoring), estimating juvenile abundance and survival rates (juvenile/smolt monitoring), and identifying stage-specific survival (adult-to-smolt, smolt-to-adult).

  14. U.S. Based HEV and PHEV Transaxle Program

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  15. PHEV Advanced Series Genset Development/Demonstration Activity

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  16. Advanced Vehicle Testing Activity (AVTA) ? Non-PHEV Evaluations...

    Broader source: Energy.gov (indexed) [DOE]

    simulation and analysis technical team every other month * Testing results and life-cycle costs are used by vehicle modelers * Partnering with private sector testers provides...

  17. Monthly Summary Results for the Chrysler RAM PHEV Fleet

    Broader source: Energy.gov (indexed) [DOE]

    Overall gasoline fuel economy (mpg) 19 Overall AC electrical energy consumption (AC Whmi) 85 Overall DC electrical energy consumption (DC Whmi) 54 Overall DC electrical...

  18. Monthly Summary Results for the Chrysler RAM PHEV Fleet

    Broader source: Energy.gov (indexed) [DOE]

    1 Overall DC electrical energy consumption (DC Whmi) 65 Overall DC electrical energy captured from regenerative braking (DC Whmi) 45 Total number of trips 10,555 Total distance...

  19. Monthly Summary Results for the Chrysler RAM PHEV Fleet

    Broader source: Energy.gov (indexed) [DOE]

    87 Overall DC electrical energy consumption (DC Whmi) 54 Overall DC electrical energy captured from regenerative braking (DC Whmi) 47 Total number of trips 6,560 Total distance...

  20. Monthly Summary Results for the Chrysler RAM PHEV Fleet

    Broader source: Energy.gov (indexed) [DOE]

    3 Overall DC electrical energy consumption (DC Whmi) 71 Overall DC electrical energy captured from regenerative braking (DC Whmi) 43 Total number of trips 13,167 Total distance...

  1. Monthly Summary Results for the Chrysler RAM PHEV Fleet

    Broader source: Energy.gov (indexed) [DOE]

    Overall gasoline fuel economy (mpg) 19 Overall AC electrical energy consumption (AC Whmi) 181 Overall DC electrical energy consumption (DC Whmi) 104 Overall DC electrical...

  2. Monthly Summary Results for the Chrysler RAM PHEV Fleet

    Broader source: Energy.gov (indexed) [DOE]

    5 Overall AC electrical energy consumption (AC Whmi) 111 Overall DC electrical energy consumption (DC Whmi) 71 Overall DC electrical energy captured from regenerative braking...

  3. Monthly Summary Results for the Chrysler RAM PHEV Fleet

    Broader source: Energy.gov (indexed) [DOE]

    Overall gasoline fuel economy (mpg) 21 Overall AC electrical energy consumption (AC Whmi) 93 Overall DC electrical energy consumption (DC Whmi) 71 Overall DC electrical...

  4. Monthly Summary Results for the Chrysler RAM PHEV Fleet

    Broader source: Energy.gov (indexed) [DOE]

    18 Overall DC electrical energy consumption (DC Whmi) 74 Overall DC electrical energy captured from regenerative braking (DC Whmi) 45 Total number of trips 11,462 Total...

  5. Monthly Summary Results for the Chrysler RAM PHEV Fleet

    Broader source: Energy.gov (indexed) [DOE]

    190 Overall DC electrical energy consumption (DC Whmi) 111 Overall DC electrical energy captured from regenerative braking (DC Whmi) 50 Total number of trips 2,055 Total...

  6. Monthly Summary Results for the Chrysler RAM PHEV Fleet

    Broader source: Energy.gov (indexed) [DOE]

    Overall gasoline fuel economy (mpg) 20 Overall AC electrical energy consumption (AC Whmi) 94 Overall DC electrical energy consumption (DC Whmi) 72 Overall DC electrical...

  7. Monthly Summary Results for the Chrysler RAM PHEV Fleet

    Broader source: Energy.gov (indexed) [DOE]

    Overall gasoline fuel economy (mpg) 19 Overall AC electrical energy consumption (AC Whmi) 104 Overall DC electrical energy consumption (DC Whmi) 70 Overall DC electrical...

  8. PHEV Parcel Delivery Truck Model - Development and Preliminary Results (Presentation)

    SciTech Connect (OSTI)

    Barnitt, R

    2009-10-28T23:59:59.000Z

    Describes results of a study to determine the impact of drive cycles on the energy- and cost-effectiveness of plug-in hybrid electric delivery vans.

  9. Integration Technology for PHEV-Grid-Connectivity, with Support...

    Broader source: Energy.gov (indexed) [DOE]

    of usage cycles, impulse, peaktransient, steady state. * Benchmark representative sample motors use to create draft usage cycle definitions. * Benchmark impact on rating as a...

  10. Optimal Energy Management of a PHEV Using Trip Information

    Broader source: Energy.gov (indexed) [DOE]

    NAVTEQ (Map data) Argonne's Transportation Research and Analysis Computing Center (TRACC) (traffic modeling) 2 2012 DOE VT Merit Review - VSS068 - Optimal Energy...

  11. Argonne Facilitation of PHEV Standard Testing Procedure (SAE...

    Broader source: Energy.gov (indexed) [DOE]

    Michael Duoba Danny Bocci Ted Bohn Richard Carlson Forrest Jehlik Henning Lohse-Busch Argonne National Laboratory This presentation does not contain any proprietary, confidential,...

  12. HEV, PHEV, EV Test Standard Development and Validation

    Broader source: Energy.gov (indexed) [DOE]

    EV Test Standard Development and Validation 2013 DOE Hydrogen Program and Vehicle Technologies Annual Merit Review May 13-17, 2013 Michael Duoba, Henning Lohse-Busch, Kevin...

  13. High Energy Materials for PHEVs: Cathodes (New Project)

    Broader source: Energy.gov (indexed) [DOE]

    new cathode materials and to use surplus lithium in precursor structures to load thin film metal- or metal-alloy anode substrates. Collaborators Co-investigators: Sun-Ho...

  14. Evaluation of Ethanol Blends for PHEVs using Simulation and Engine...

    Broader source: Energy.gov (indexed) [DOE]

    Use modeling, simulation and component-in-the-loop techniques to provide system optimization for advanced powertrain components Use of alternative fuels to decrease U.S....

  15. PH&EV Research Center Dr. Tom Turrentine Director

    E-Print Network [OSTI]

    California at Davis, University of

    Households Had & Keep an HEV Had Hybrid Have Hybrid Had natural gas veh #12;27% bought 1 car = 65% of new car full? · Stated annual USA PEV sales goals of car makers ­ Volt 2012 goals 45,000 - actual 2012 sales 23's Executive Order 2013 #12;HEVs are nearly 10% of cars (not counting trucks) in California (Based on Polk

  16. Tradeoff between Fuel Consumption and Emissions for PHEV's

    Broader source: Energy.gov (indexed) [DOE]

    and Vehicle Technologies Annual Merit Review June 08, 2010 Neeraj Shidore, David Smith* Argonne National Laboratory, *Oak Ridge National Laboratory Sponsored by Lee Slezak...

  17. Novel electrolytes and electrolyte additives for PHEV applications

    Broader source: Energy.gov (indexed) [DOE]

    diagnostics. Some of these electrolytes contained the following: - Solvents: EC, PC, EMC, etc. - Salts: LiPF 6 , LiBF 4 , LiB(C 2 O 4 ) 2 , LiF 2 BC 2 O 4 , etc. - Additives:...

  18. Integration Technology for PHEV-Grid-Connectivity, with Support...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    D.C. vss025bohn2010o.pdf More Documents & Publications Grid Interaction Tech Team Codes and Standards to Support Vehicle Electrification Codes and Standards Support Vehicle...

  19. Geographic Information System for Visualization of PHEV Fleet Data |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject: Guidance for naturalGeneral Service LEDDepartment of

  20. High Energy Materials for PHEVs: Cathodes (New Project) | Department of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.ProgramJulietip sheetK-4In 2013 many| Department of4 Energy Solutions

  1. AVTA: Chrysler RAM PHEV Pickups | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' ResearchThe Office of FossilMembershipoftheManagement ofDepartment ofTestbedChrysler

  2. Overcharge Protection for PHEV Batteries | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F SSales LLCDiesel Enginesthe U.S.SolarMarket-BasedDepartmentMOX2

  3. Overcharge Protection for PHEV Batteries | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F SSales LLCDiesel Enginesthe U.S.SolarMarket-BasedDepartmentMOX21

  4. PHEV Control Strategy Assessment Through Optimization | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F SSales LLCDieselEnergyHistory andPEMFC R&D at the09

  5. PHEV Engine Cold Start Emissions Management | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F SSales LLCDieselEnergyHistory andPEMFC R&D

  6. PHEV Engine Control and Energy Management Strategy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F SSales LLCDieselEnergyHistory andPEMFC R&DPaul H. Chambon1

  7. PHEV Engine Control and Energy Management Strategy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F SSales LLCDieselEnergyHistory andPEMFC R&DPaul H.

  8. PHEV Engine and Aftertreatment Model Development | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F SSales LLCDieselEnergyHistory andPEMFC R&DPaul H.10 DOE

  9. PHEV Engine and Aftertreatment Model Development | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F SSales LLCDieselEnergyHistory andPEMFC R&DPaul H.10 DOE09

  10. PHEV and LEESS Battery Cost Assessment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F SSales LLCDieselEnergyHistory andPEMFC R&DPaul H.10

  11. PHEV development test platform Utilization | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F SSales LLCDieselEnergyHistory andPEMFC R&DPaul

  12. PHEVs Component Requirements and Efficiencies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F SSales LLCDieselEnergyHistory andPEMFC R&DPaulRequirements

  13. Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F SSalesOE0000652GrowE-mail onThe2

  14. Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F SSalesOE0000652GrowE-mail onThe2Activity | Department of

  15. Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F SSalesOE0000652GrowE-mail onThe2Activity | Department ofActivity |

  16. Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F SSalesOE0000652GrowE-mail onThe2Activity | Department ofActivity

  17. AVTA: PHEV Demand and Energy Cost Demonstration Report | Department of

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustionImprovement3 Beryllium-Associated6-05.pdfATTENDEEES: Ashley

  18. Advanced Vehicle Testing Activity (AVTA) … PHEV Evaluations and Data

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustionImprovement3-- ------------------------------ChapterJuly 20142 U.S.AdvancedThermal|Collection |

  19. Thermal Management of PHEV / EV Charging Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyThe EnergyDepartment of Energy TheAged by Lean/RichStudiesof

  20. Tradeoff between Fuel Consumption and Emissions for PHEV's | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyThe EnergyDepartment7 th ,Top ValueEnergy between Fuel

  1. Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting vss018cesiel2012...

  2. Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation vss018cesiel2011...

  3. Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    09 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. vss02sell...

  4. Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. vss018cesiel2010...

  5. Choices and Requirements of Batteries for EVs, HEVs, PHEVs (Presentation)

    SciTech Connect (OSTI)

    Pesaran, A. A.

    2011-04-01T23:59:59.000Z

    This presentation describes the choices available and requirements for batteries for electric vehicles, hybrid electric vehicles, plug-in hybrid electric vehicles.

  6. Fabricate PHEV Cells for Testing & Diagnostics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCofConstructionofFY 2011 Report toAnnuAl Progress rePort2 DOE

  7. Fabricate PHEV Cells for Testing & Diagnostics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCofConstructionofFY 2011 Report toAnnuAl Progress rePort2 DOE1 DOE

  8. Fabricate PHEV Cells for Testing & Diagnostics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCofConstructionofFY 2011 Report toAnnuAl Progress rePort2 DOE1

  9. Standards for PHEV/EV Communications Protocol | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage » SearchEnergyDepartmentScopingOverview * AnalyzerNanoAgency (IEA-AMT) Annex

  10. Structural investigations of layered oxide materials for PHEV applications

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of Energy Strain Rate Characterization| Department of Energy

  11. Design of PHEVs and Electrolyte Properties | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office of Audit Services AuditTransatlantic Relations & the196-2011WasteDesign ofDesign

  12. A High-Performance PHEV Battery Pack | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment(October-DecemberBased onIn-Cylinder Laser DiagnosticsDOEA2 DOE

  13. A High-Performance PHEV Battery Pack | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment(October-DecemberBased onIn-Cylinder Laser DiagnosticsDOEA2 DOE0 DOE

  14. A High-Performance PHEV Battery Pack | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment(October-DecemberBased onIn-Cylinder Laser DiagnosticsDOEA2 DOE0

  15. AVTA: 2011 Chrysler Town and Country Experimental PHEV Testing Results |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment of Energy 601 High26-OPAM63-OPAMGuidanceAVTASmart

  16. AVTA: 2012 Chevrolet Volt PHEV Downloadable Dynamometer Database Reports |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment of Energy 601 High26-OPAM63-OPAMGuidanceAVTASmartHondaCNG

  17. AVTA: 2013 Toyota Prius PHEV Testing Results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment of Energy 601Department of Energy Toyota

  18. Active Combination of Ultracapacitors and Batteries for PHEV ESS |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment of Energy 601DepartmentContract.4 (February 2038

  19. Advanced Cathode Material Development for PHEV Lithium Ion Batteries |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment of EnergyAdministrative RecordsBiofuels CostEnergy

  20. Advanced Cathode Material Development for PHEV Lithium Ion Batteries |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment of EnergyAdministrative RecordsBiofuels CostEnergyDepartment of

  1. Advanced HEV/PHEV Concepts | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment of EnergyAdministrative2 DOE HydrogenRecord

  2. Advanced PHEV Engine Systems and Emissions Control Modeling and Analysis |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment of EnergyAdministrative2 DOE2011Department of EnergyDepartment

  3. Evaluation of Ethanol Blends for PHEVs using Simulation and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCof EnergyHouse EnvironmentalEstimatinginEngine-in-the-Loop |

  4. JCS PHEV System Development-USABC | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.ProgramJulietipDepartmentJuneWhen I think of wind5, 2013 V-127: Samba

  5. HEV, PHEV, BEV Test Standard Validation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject:Ground SourceHBLED Hot TestingEPA2010 | Department- -HEV,

  6. USABC Energy Storage Testing - High Power and PHEV Development | Department

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of EnergyofProject is on Track| Department ofofUS-China cleanof Energy Energy

  7. Impact of Driving Behavior on PHEV Fuel Consumption for Different

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe U.S. Department-2023 Idaho4 AUDITof EnergyFuelClean

  8. JCS PHEV System Development-USABC | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10 DOE VehicleStationaryLaboratory,Iowa9: WhatA P

  9. JCS PHEV System Development-USABC | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10 DOE VehicleStationaryLaboratory,Iowa9: WhatA P0 DOE Vehicle

  10. JCS PHEV System Development-USABC | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10 DOE VehicleStationaryLaboratory,Iowa9: WhatA P0 DOE Vehicle1

  11. Autonomous Intelligent Plug-In Hybrid Electric Vehicles (PHEVs) |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd: Scope ChangeL-01-06 AuditAugust 5,ReDevelopments |1Department

  12. Argonne Facilitation of PHEV Standard Testing Procedure (SAE J1711) |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd: Scope Change #1 |MarketingVI,Program

  13. Novel electrolytes and electrolyte additives for PHEV applications |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F S iPartnershipEnergy| Department of EnergyDepartment of

  14. USABC HEV and PHEV Programs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyTheTwo New Energyof Energy8,NovemberUS Tier1 DOEof

  15. USABC HEV and PHEV Programs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyTheTwo New Energyof Energy8,NovemberUS Tier1 DOEof0 DOE

  16. USABC LEESS and PHEV Programs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyTheTwo New Energyof Energy8,NovemberUS Tier1 DOEof0 DOELEESS

  17. USABC PHEV Battery Development Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyTheTwo New Energyof Energy8,NovemberUS Tier1 DOEof0

  18. Structural investigations of layered oxide materials for PHEV...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diagnostic Studies Characterization of New Cathode Materials using Synchrotron-based X-ray Techniques Vehicle Technologies Office Merit Review 2014: Advanced in situ Diagnostic...

  19. Impact of Sungate EP on PHEV Performance: Results of a Simulated Solar Reflective Glass PHEV Dynamometer Test

    SciTech Connect (OSTI)

    Rugh, J.

    2009-06-01T23:59:59.000Z

    Composite fuel economy of a plug-in hybrid electric test vehicle increased 8% to 41.6 mpg because of the reduction in thermal loads from Sungate EP glazings installed in the windshield and backlite.

  20. Chinook Salmon Adult Abundance Monitoring; Hydroacoustic Assessment of Chinook Salmon Escapement to the Secesh River, Idaho, 2002-2004 Final Report.

    SciTech Connect (OSTI)

    Johnson, R.; McKinstry, C.; Mueller, R.

    2004-01-01T23:59:59.000Z

    Accurate determination of adult salmon spawner abundance is key to the assessment of recovery actions for wild Snake River spring/summer Chinook salmon (Onchorynchus tshawytscha), a species listed as 'threatened' under the Endangered Species Act (ESA). As part of the Bonneville Power Administration Fish and Wildlife Program, the Nez Perce Tribe operates an experimental project in the South Fork of the Salmon River subbasin. The project has involved noninvasive monitoring of Chinook salmon escapement on the Secesh River between 1997 and 2000 and on Lake Creek since 1998. The overall goal of this project is to accurately estimate adult Chinook salmon spawning escapement numbers to the Secesh River and Lake Creek. Using time-lapse underwater video technology in conjunction with their fish counting stations, Nez Perce researchers have successfully collected information on adult Chinook salmon spawner abundance, run timing, and fish-per-redd numbers on Lake Creek since 1998. However, the larger stream environment in the Secesh River prevented successful implementation of the underwater video technique to enumerate adult Chinook salmon abundance. High stream discharge and debris loads in the Secesh caused failure of the temporary fish counting station, preventing coverage of the early migrating portion of the spawning run. Accurate adult abundance information could not be obtained on the Secesh with the underwater video method. Consequently, the Nez Perce Tribe now is evaluating advanced technologies and methodologies for measuring adult Chinook salmon abundance in the Secesh River. In 2003, the use of an acoustic camera for assessing spawner escapement was examined. Pacific Northwest National Laboratory, in a collaborative arrangement with the Nez Perce Tribe, provided the technical expertise to implement the acoustic camera component of the counting station on the Secesh River. This report documents the first year of a proposed three-year study to determine the efficacy of using an acoustic camera to count adult migrant Chinook salmon as they make their way to the spawning grounds on the Secesh River and Lake Creek. A phased approach to applying the acoustic camera was proposed, starting with testing and evaluation in spring 2003, followed by a full implementation in 2004 and 2005. The goal of this effort is to better assess the early run components when water clarity and night visibility preclude the use of optical techniques. A single acoustic camera was used to test the technology for enumerating adult salmon passage at the Secesh River. The acoustic camera was deployed on the Secesh at a site engineered with an artificial substrate to control the river bottom morphometry and the passage channel. The primary goal of the analysis for this first year of deployment was to validate counts of migrant salmon. The validation plan involved covering the area with optical video cameras so that both optical and acoustic camera images of the same viewing region could be acquired simultaneously. A secondary test was contrived after the fish passage was complete using a controlled setting at the Pacific Northwest National Laboratory in Richland, Washington, in which we tested the detectability as a function of turbidity levels. Optical and acoustic camera multiplexed video recordings of adult Chinook salmon were made at the Secesh River fish counting station from August 20 through August 29, 2003. The acoustic camera performed as well as or better than the optical camera at detecting adult Chinook salmon over the 10-day test period. However, the acoustic camera was not perfect; the data reflected adult Chinook salmon detections made by the optical camera that were missed by the acoustic camera. The conditions for counting using the optical camera were near ideal, with shallow clear water and good light penetration. The relative performance of the acoustic camera is expected to be even better than the optical camera in early spring when water clarity and light penetration are limited. Results of the laboratory tests at the Pacific North

  1. Overview of Fords Thermoelectric Programs: Waste Heat Recovery and Climate Control

    Broader source: Energy.gov [DOE]

    Overview of progress in TE waste heat recovery from sedan gasoline-engine exhaust, TE HVAC system in hybrid sedan, and establishing targets for cost, power density, packaging, durability, and systems integration

  2. 1 BWeb for Modeling the Environment Limnology, March 2012 Ver 5 Andrew Ford Andrew Ford

    E-Print Network [OSTI]

    Ford, Andrew

    in phosphorous portion? Figure 1 shows a word and arrow diagram for the phosphorous portion of the nutrient and phosphorous portions of the nutrient cycling in Figure 1 of the limnology document. Do you see any feedback

  3. Suppression of thermal carrier escape and efficient photo-carrier generation by two-step photon absorption in InAs quantum dot intermediate-band solar cells using a dot-in-well structure

    SciTech Connect (OSTI)

    Asahi, S.; Teranishi, H.; Kasamatsu, N.; Kada, T.; Kaizu, T.; Kita, T. [Department of Electrical and Electronic Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501 (Japan)

    2014-08-14T23:59:59.000Z

    We investigated the effects of an increase in the barrier height on the enhancement of the efficiency of two-step photo-excitation in InAs quantum dot (QD) solar cells with a dot-in-well structure. Thermal carrier escape of electrons pumped in QD states was drastically reduced by sandwiching InAs/GaAs QDs with a high potential barrier of Al{sub 0.3}Ga{sub 0.7}As. The thermal activation energy increased with the introduction of the barrier. The high potential barrier caused suppression of thermal carrier escape and helped realize a high electron density in the QD states. We observed efficient two-step photon absorption as a result of the high occupancy of the QD states at room temperature.

  4. Acceleration and Deceleration in Curvature Induced Phantom Model of the Late and Future Universe, Cosmic Collapse as Well as its Quantum Escape

    E-Print Network [OSTI]

    S. K. Srivastava

    2008-02-07T23:59:59.000Z

    Here, cosmology of the late and future universe is obtained from $f(R)$-gravity with non-linear curvature terms $R^2$ and $R^3$ ($R$ being the Ricci scalar curvature). It is different from $f(R)$-dark enrgy models, where non-linear curvature terms are taken as gravitational alternative of dark energy. In the present model, neither linear nor no-linear curvature terms are taken as dark energy. Rather, dark energy terms are induced by curvature terms in the Friedmann equation derived from $f(R)$-gravitational equations. It has advantage over $f(R)$- dark energy models in the sense that the present model satisfies WMAP results and expands as $\\sim t^{2/3}$ during matter-dominance. So, it does not have problems due to which $f(R)$-dark energy models are criticized. Curvature-induced dark energy, obtained here, mimics phantom. Different phases of this model, including acceleration and deceleration during phantom phase, are investigated here.It is found that expansion of the universe will stop at the age $(3.87 t_0 + 694.4 {\\rm kyr})$ ($t_0$ being the present age of the universe) and after this epoch, it will contract and collapse by the time $(336.87 t_0 + 694.4 {\\rm kyr})$. Further,it is shown that universe will escape predicted collapse (obtained using classical mechanics) on making quantum gravity corrections relevant near collapse time due to extremely high energy density and large curvature analogous to the state of very early universe. Interestingly, cosmological constant is also induced here, which is very small in classical domain, but very high in quantum domain.

  5. The Great Gas Hydrate Escape

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatus TomAboutManusScience andFebruaryTheFarrel W.Great Gas Hydrate

  6. Cecilia E. Ford January 2010 Professor of English and Sociology

    E-Print Network [OSTI]

    Sheridan, Jennifer

    ,400,000. 2009-10 University of Wisconsin-Madison, Graduate School funding for research on the integration for Distinguished Teaching, University of Wisconsin 2004 University of Wisconsin-Madison, Graduate School funding Services, University of Wisconsin-Madison. 2001 University of Wisconsin-Madison, Graduate School funding

  7. HEV Fleet Testing - 2010 Ford Fusion vin#4757

    Broader source: Energy.gov (indexed) [DOE]

    757 Fleet Testing Results To Date Operating Statistics Distance Driven: 145,595 Average Trip Distance: 11.3 mi Stop Time with Engine Idling: 11% Trip Type CityHighway:...

  8. HEV Fleet Testing - 2010 Ford Fusion VIN:4699 - Fleet Testing...

    Broader source: Energy.gov (indexed) [DOE]

    699 Fleet Testing Results To Date Operating Statistics Distance Driven: 73,490 Average Trip Distance: 10.8 mi Stop Time with Engine Idling: 13% Trip Type CityHighway: 86%...

  9. STATEMENT OF CONSIDERATIONS Request by Ford Motor Company Research...

    Broader source: Energy.gov (indexed) [DOE]

    agreement will be modified to add the Patent Rights-Waiver clause in conformance with 10 CFR 784.12. This waiver clause will also include a paragraph entitled U.S. Competitiveness,...

  10. 2010 Ford Fusion-4699 Hybrid BOT Battery Test Results

    Broader source: Energy.gov (indexed) [DOE]

    of Motors 1 : 1 Motor Power Rating 2 : 60 kW VIN : 3FADP0L32AR194699 Static Capacity Test Measured Average Capacity: 5.29 Ah Measured Average Energy Capacity: 1,370 Wh Vehicle...

  11. STATEMENT OF CONSIDERATIONS REQUEST BY FORD MOTOR COMPANY FOR...

    Broader source: Energy.gov (indexed) [DOE]

    is to conduct research and development to advance proton-cxchange- membrane (PEM) fuel cell propulsion systems for transportation applications. The objective of this...

  12. Andrew Ford BWeb for Modeling the Environment 1 January, 2012

    E-Print Network [OSTI]

    Ford, Andrew

    to explain the cyclical pattern of the human and pig populations. Each model will build from the previous model, allowing you to develop a model of the sustainability of the Tsembaga system. Their key physical to study the sustainability of the Tsembaga population with and without warfare. They concluded

  13. Andrew Ford BWeb for Modeling the Environment 1 Resource Economics

    E-Print Network [OSTI]

    Ford, Andrew

    on both oil and gas reserves. In the well-known "Harvard Energy Study," Stobaugh and Yergin (1979 published his results in 1973, the year in which the Arab oil embargo made the industrialized world aware of the "energy crisis." To some, the energy crisis was an "oil crisis" -- we were too dependent on imported oil

  14. WhyFord Escort's success was easy to forecast.

    E-Print Network [OSTI]

    Kaminsky, Werner

    the weather doesn't. Quality isJob 1. This isn't just a phra~e. It's a commitment to total quality, which

  15. Updates to the EIA Eagle Ford Play Maps

    U.S. Energy Information Administration (EIA) Indexed Site

    Houston, Texas, USA, April 10-13, 2011. Hentz, T.F., and Ambrose, W.A., and D.C. Smith, in press, Eaglebine play of the southwestern East Texas Basin: Stratigraphic and...

  16. STATEMENT OF CONSIDERATIONS REQUEST BY FORD MOTOR COMPANY RESEARCH...

    Broader source: Energy.gov (indexed) [DOE]

    the waived invention is suspended until approved in writing by the DOE. WAIVER ACTION - ABSTRACT W(A)-01-016 (CH-1064) REQUESTOR CONTRACT SCOPE OF WORK RATIONALE FOR DECISION...

  17. WithcoteWistow Skef'tonSomerbyStap'ford

    E-Print Network [OSTI]

    Jensen, Max

    Rocklands House OldCourt The Coppice Spinneys Howard House Ashcroft House John Foster Facilities Building

  18. Ford Debuts Solar Energy Concept Car | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecordFederal7.pdfFlash_2010_-24.pdfOverview FlowControlIndian Reservation

  19. Updates to the EIA Eagle Ford Play Maps

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500II Field Emission SEM with EDAXUpdated Capital

  20. GM-Ford-Chrysler: Allocating Loan Authority | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG | Department of Energy Freeport LNGEnergyGLB-1003.PDF&#0;ATV

  1. GM-Ford-Chrysler: IFR Consolidated Application Feature | Department of

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG | Department of Energy Freeport LNGEnergyGLB-1003.PDF&#0;ATVEnergy

  2. GM-Ford-Chrysler: IFR Implementation | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG | Department of Energy Freeport

  3. Women @ Energy: Kelley Herndon Ford | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of Energyof Energy This webinar isChilocco WindAriaDawn

  4. Workplace Charging Challenge Partner: Ford Motor Company | Department of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of Energyof EnergyEnergy CiscoDIRECTV DIRECTVEliEnergy

  5. Chattanooga Eagle Ford Rio Grande Embayment Texas- Louisiana-

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import96 4.87 1967-2010 ImportsCubic Feet) Oil Changes

  6. President Ford Signs the Energy Reorganization Act of 1974 | National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for medical point07.06NucleonPreservation ofSecurityNuclear

  7. STATEMENT OF CONSIDERATIONS REQUEST BY FORD MOTOR COMPANY FOR...

    Broader source: Energy.gov (indexed) [DOE]

    employees and of its lower tier subcontractors. The subcontract is to developdemonstrate hybrid vehicle technology and to build hybrid vehicles to demonstrate various operational...

  8. DOE - Office of Legacy Management -- Dawn Ford Site - 038

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou are here Home »HillNY 28 CornellCraneDiv -

  9. West Ford Flat Geothermal Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place: SaltTroyer & AssociatesWest Central School Corp

  10. J. Chris Ford, Ph.D. | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.ProgramJulietipDepartmentJuneWhen I think of wind technology,UsingJohnA N U

  11. Ford County, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublicIDAPowerPlantSitingConstruction.pdfNotify98.pdf JumpFlix SolarBlackFluvanna County,Sales

  12. Ford County, Kansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublicIDAPowerPlantSitingConstruction.pdfNotify98.pdf JumpFlix SolarBlackFluvanna County,SalesCounty is a county in

  13. Ford Heights, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublicIDAPowerPlantSitingConstruction.pdfNotify98.pdf JumpFlix SolarBlackFluvanna County,SalesCounty is a county

  14. Fords, New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublicIDAPowerPlantSitingConstruction.pdfNotify98.pdf JumpFlix SolarBlackFluvanna County,SalesCounty is a

  15. Andrew Ford BWeb for Modeling the Environment, Limnology, May 2011, Ver. 5.0 1 Andrew Ford

    E-Print Network [OSTI]

    Ford, Andrew

    Biomass P Detritus P Biomass C Detritus C Biomass N Detritus N bio N growth biomass N death biomass P death bio P growth detritus P decay detritus N decay biomass C death biomass net C growth detritus C decay N inf low P inf low N:C N:C P:C N:C bio death rate biomass monthly net growth rate detritus decay

  16. Andrew Ford BWeb for Modeling the Environment--Limnology, May 2011 Ver. 5.0 1 Andrew Ford

    E-Print Network [OSTI]

    Ford, Andrew

    , 2011 BWeb ver 5.0 Limnology: Accelerated Eutrophication in a Lake with Nitrogen and Phosphorous Limitations Accelerated eutrophication of lakes is usually associated with excessive inflows of nutrients simulation modeling can aid our understanding of the dynamics of accelerated eutrophication, and it can help

  17. LowCostGHG ReductionCARB 3/03 Low-Cost and Near-Term Greenhouse Gas Emission Reduction

    E-Print Network [OSTI]

    Edwards, Paul N.

    manufacturers to focus on high fuel-economy cars. And Toyota Prius and Honda Civic Hybrid are wonderful, or oil resources. Nor would the anticipated 40 mpg Ford Escape hybrid in the "small SUV" class Cycle (UDC) for representative cars and light trucks.1 The horizontal axis shows measured emissions

  18. Detecting and escaping infinite loops with jolt

    E-Print Network [OSTI]

    Carbin, Michael James

    Infinite loops can make applications unresponsive. Potential problems include lost work or output, denied access to application functionality, and a lack of responses to urgent events. We present Jolt, a novel system for ...

  19. Gravitational lensing by spinning and escaping lenses

    E-Print Network [OSTI]

    M. Sereno

    2003-05-12T23:59:59.000Z

    The effect of currents of mass on bending of light rays is considered in the weak field regime. Following Fermat's principle and the standard theory of gravitational lensing, we derive the gravitomagnetic correction to time delay function and deflection angle caused by a geometrically-thin lens. The cases of both rotating and shifting deflectors are discussed.

  20. Looking to jointly develop new plug-in hybrid vehicle (PHEV) technology and

    E-Print Network [OSTI]

    Kemner, Ken

    vehicle location and charge status to the utility operator, who transmits energy mix, real-time pricing acceptance and commercialization, the U.S. Department of Energy (DOE) and Sweden signed a Memorandum and the Swedish Energy Agency. Through contacts developed over many years conducting international technology

  1. Advanced Electrolyte Additives for PHEV/EV Lithium-ion Battery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Advanced Electrolyte Additives for PHEVEV Lithium-ion Battery Development of Advanced Electrolytes and Electrolyte Additives...

  2. MD PHEV/EV ARRA Project Data Collection and Reporting (Presentation)

    SciTech Connect (OSTI)

    Walkowicz, K.; Ramroth, L.; Duran, A.; Rosen, B.

    2012-01-01T23:59:59.000Z

    This presentation describes a National Renewable Energy Laboratory project to collect and analyze commercial fleet deployment data from medium-duty plug-in hybrid electric and all-electric vehicles that were deployed using funds from the American Recovery and Reinvestment Act. This work supports the Department of Energy's Vehicle Technologies Program and its Advanced Vehicle Testing Activity.

  3. Vehicle Technologies Office Merit Review 2014: High Energy High Power Battery Exceeding PHEV-40 Requirements

    Broader source: Energy.gov [DOE]

    Presentation given by [company name] at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high energy high power battery...

  4. Vehicle Technologies Office Merit Review 2014: High Energy Lithium Batteries for PHEV Applications

    Broader source: Energy.gov [DOE]

    Presentation given by [company name] at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high energy lithium batteries...

  5. Improving Petroleum Displacement Potential of PHEVs Using Enhanced Charging Scenarios: Preprint

    SciTech Connect (OSTI)

    Markel, T.; Smith, K.; Pesaran, A. A.

    2009-05-01T23:59:59.000Z

    Describes NREL's R&D on the petroleum displacement potential of plug-in hybrid vehicles; vehicles charged during the day would save about 5% more fuel than those charged at night.

  6. PHEV America U.S. Department of Energy Advanced Vehicle Testing...

    Broader source: Energy.gov (indexed) [DOE]

    shall be designed and constructed such that there is complete containment of the flywheel energy storage system during all modes of operation. Additionally, flywheels and their...

  7. Vehicle Technologies Office Merit Review 2014: Advancing Transportation through Vehicle Electrification – Ram 1500 PHEV

    Broader source: Energy.gov [DOE]

    Presentation given by Chrysler LLC at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advancing transportation through...

  8. Advanced Electrolyte Additives for PHEV/EV Lithium-ion Battery

    Broader source: Energy.gov (indexed) [DOE]

    performance (cell improver): For conventional electrolyte (for example 1.2M LiPF 6 ECEMC), the SEI additive is the performance improver. 2-1. Artificial SEI forms prior the...

  9. Advanced Electrolyte Additives for PHEV/EV Lithium-ion Battery

    Broader source: Energy.gov (indexed) [DOE]

    Li-ion Cell Performance: For conventional electrolyte (for example 1.2M LiPF 6 ECEMC 37), the SEI additive is the performance improver. Artificial SEI forms prior the...

  10. High Energy, Long Cycle Life Lithium-ion Batteries for PHEV Applicatio...

    Broader source: Energy.gov (indexed) [DOE]

    High tap density 0.8 gcm 3 1500 mAhg 7 III. Dual Conductive Network-Enabled GrapheneSi-C Composite graphene silicon carbon Micro-sized Conductive network among...

  11. Drive Cycle Analysis, Measurement of Emissions and Fuel Consumption of a PHEV School Bus: Preprint

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phasesDataTranslocationDiurnalCommittee Draft Advice9DrillingDrive Cycle

  12. Optimal Energy Management of a PHEV Using Trip Information | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F SSales LLCDiesel Enginesthe U.S. -- An Overview

  13. Advanced Vehicle Testing Activity (AVTA) … Non-PHEV Evaluations and Data

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustionImprovement3-- ------------------------------ChapterJuly 20142 U.S.AdvancedThermal|

  14. Analysis of maximizing the Synergy between PHEVs/EVs and PV | Department of

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South42.2 (April 2012) 1 DocumentationAnalysis of CrossoverEnergy Analysis

  15. Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration Activity

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  16. Advanced Electrolyte Additives for PHEV/EV Lithium-ion Battery | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment of EnergyAdministrative2 DOE Hydrogen and Fueland Outreachof

  17. Advanced Electrolyte Additives for PHEV/EV Lithium-ion Battery | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment of EnergyAdministrative2 DOE Hydrogen and Fueland Outreachofof

  18. Review of A123s HEV and PHEV USABC Programs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l LPROJECTS IN RENEWABLEOperated inFebruary 26, 2009 Independent

  19. Integration Technology for PHEV-Grid-Connectivity, with Support for SAE

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe U.S.IndianaofPilot ProjectDepartmentof the U.S.Electrical

  20. U.S. Based HEV and PHEV Transaxle Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyTheTwo New Energy American Indian Policy The DepartmentNO.2 DOE

  1. U.S. Based HEV and PHEV Transaxle Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyTheTwo New Energy American Indian Policy The DepartmentNO.2 DOE1

  2. U.S. Based HEV and PHEV Transaxle Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyTheTwo New Energy American Indian Policy The DepartmentNO.2 DOE10

  3. Vehicle Technologies Office Merit Review 2013: A High-Performance PHEV Battery Pack

    Broader source: Energy.gov [DOE]

    Presentation given by LG Chem at 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting about a high-performance battery pack the company is researching for plug-in electric vehicles.

  4. PHEV Battery Trade-Off Study and Standby Thermal Control (Presentation)

    SciTech Connect (OSTI)

    Smith, K.; Markel, T.; Pesaran, A.

    2009-03-01T23:59:59.000Z

    Describes NREL's R&D to optimize the design of batteries for plug-in hybrid electric vehicles to meet established requirements at minimum cost.

  5. U.S. Department of Energy Vehicle Technologies Program: Battery Test Manual For Plug-In Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    Jon P. Christophersen

    2014-09-01T23:59:59.000Z

    This battery test procedure manual was prepared for the United States Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office. It is based on technical targets for commercial viability established for energy storage development projects aimed at meeting system level DOE goals for Plug-in Hybrid Electric Vehicles (PHEV). The specific procedures defined in this manual support the performance and life characterization of advanced battery devices under development for PHEV’s. However, it does share some methods described in the previously published battery test manual for power-assist hybrid electric vehicles. Due to the complexity of some of the procedures and supporting analysis, future revisions including some modifications and clarifications of these procedures are expected. As in previous battery and capacitor test manuals, this version of the manual defines testing methods for full-size battery systems, along with provisions for scaling these tests for modules, cells or other subscale level devices. The DOE-United States Advanced Battery Consortium (USABC), Technical Advisory Committee (TAC) supported the development of the manual. Technical Team points of contact responsible for its development and revision are Renata M. Arsenault of Ford Motor Company and Jon P. Christophersen of the Idaho National Laboratory. The development of this manual was funded by the Unites States Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Office. Technical direction from DOE was provided by David Howell, Energy Storage R&D Manager and Hybrid Electric Systems Team Leader. Comments and questions regarding the manual should be directed to Jon P. Christophersen at the Idaho National Laboratory (jon.christophersen@inl.gov).

  6. Power Conditioning for Plug-In Hybrid Electric Vehicles

    E-Print Network [OSTI]

    Farhangi, Babak

    2014-07-25T23:59:59.000Z

    Plugin Hybrid Electric Vehicles (PHEVs) propel from the electric energy stored in the batteries and gasoline stored in the fuel tank. PHEVs and Electric Vehicles (EVs) connect to external sources to charge the batteries. Moreover, PHEVs can supply...

  7. A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis

    E-Print Network [OSTI]

    Farrell, Alexander; Sperling, Daniel

    2007-01-01T23:59:59.000Z

    D PHEV FFV HEV FCV EV Figure 5-20: New LDV sales per year inFCV EV SI PHEV D PHEV FFV HEV Figure 5-25: New LDVs sales

  8. Vehicle Technologies Office Merit Review 2014: High Energy Lithium...

    Broader source: Energy.gov (indexed) [DOE]

    High Energy Lithium Batteries for PHEV Applications Vehicle Technologies Office Merit Review 2014: High Energy Lithium Batteries for PHEV Applications Presentation given by...

  9. Annex A Metrics for the Smart Grid System Report

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tax incentives, regulations and technical standards favor PHEVs. Supply Constrained - Infusion of PHEVs in marketplace constrained by automotive and battery manufacturers' ability...

  10. An Activity-Based Assessment of the Potential Impacts of Plug-In Hybrid Electric Vehicles on Energy and Emissions Using One-Day Travel Data

    E-Print Network [OSTI]

    Recker, W. W.; Kang, J. E.

    2010-01-01T23:59:59.000Z

    market, plug-in hybrid vehicles (PHEVs) are now consideredof Current Knowledge of Hybrid Vehicle Characteristics andalso called PHEV (Plug-in Hybrid Vehicle) because they are

  11. Using GPS Travel Data to Assess the Real World Driving Energy Use of Plug-In Hybrid Electric Vehicles (PHEVs)

    SciTech Connect (OSTI)

    Gonder, J.; Markel, T.; Simpson, A.; Thornton, M.

    2007-05-01T23:59:59.000Z

    Highlights opportunities using GPS travel survey techniques and systems simulation tools for plug-in hybrid vehicle design improvements, which maximize the benefits of energy efficiency technologies.

  12. Learning from Consumers: Plug-In Hybrid Electric Vehicle (PHEV) Demonstration and Consumer Education, Outreach, and Market Research Program

    E-Print Network [OSTI]

    Kurani, Kenneth S; Axsen, Jonn; Caperello, Nicolette; Davies, Jamie; Stillwater, Tai

    2009-01-01T23:59:59.000Z

    battery and electric motor to increase the efficiency of thebattery and electric motor to increase the efficiency of theand electric motor are used to improve the efficiency of the

  13. Batteries for Plug-in Hybrid Electric Vehicles (PHEVs): Goals and the State of Technology circa 2008

    E-Print Network [OSTI]

    Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

    2008-01-01T23:59:59.000Z

    with the electric motor to maximize efficiency. 3 “Pure” EVsbattery and electric motor to increase the efficiency of thebattery and electric motor to increase the efficiency of the

  14. Learning from Consumers: Plug-In Hybrid Electric Vehicle (PHEV) Demonstration and Consumer Education, Outreach, and Market Research Program

    E-Print Network [OSTI]

    Kurani, Kenneth S; Axsen, Jonn; Caperello, Nicolette; Davies, Jamie; Stillwater, Tai

    2009-01-01T23:59:59.000Z

    times between trips to gasoline stations. For some people,the reduction in trips to gasoline stations was more than asome people identify gasoline stations as dangerous or dirty

  15. Impact of the 3Cs of Batteries on PHEV Value Proposition: Cost, Calendar Life, and Cycle Life (Presentation)

    SciTech Connect (OSTI)

    Pesaran, A.; Smith, K.; Markel, T.

    2009-06-01T23:59:59.000Z

    Battery cost, calendar life, and cycle life are three important challenges for those commercializing plug-in hybrid electric vehicles; battery life is sensitive to temperature and solar loading.

  16. Batteries for Plug-in Hybrid Electric Vehicles (PHEVs): Goals and the State of Technology circa 2008

    E-Print Network [OSTI]

    Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

    2008-01-01T23:59:59.000Z

    chemistries. In summary, electric-drive interest groups,the present and future of electric-drive vehicles, including24 -vii- 1.0 Introduction Electric-drive continues to pique

  17. Batteries for Plug-in Hybrid Electric Vehicles (PHEVs): Goals and the State of Technology circa 2008

    E-Print Network [OSTI]

    Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

    2008-01-01T23:59:59.000Z

    rd International Electric Vehicle Symposium and Exposition (Electric and Hybrid Electric Vehicle Applications, Sandiaand Impacts of Hybrid Electric Vehicle Options EPRI, Palo

  18. The Early U.S. Market for PHEVs: Anticipating Consumer Awareness, Recharge Potential, Design Priorities and Energy Impacts

    E-Print Network [OSTI]

    Axsen, Jonn; Kurani, Kenneth S

    2008-01-01T23:59:59.000Z

    Awareness, Recharge Potential, Design Priorities and Energyawareness, recharge potential, design interests, and energyawareness, recharge potential, design priorities, and energy

  19. Learning from Consumers: Plug-In Hybrid Electric Vehicle (PHEV) Demonstration and Consumer Education, Outreach, and Market Research Program

    E-Print Network [OSTI]

    Kurani, Kenneth S; Axsen, Jonn; Caperello, Nicolette; Davies, Jamie; Stillwater, Tai

    2009-01-01T23:59:59.000Z

    production of further hybrid cars. ” Similarly, Larry Rhodesbuying Priuses as commute cars—hybrids were “fairly popularhybrid vehicles are being made available to (predominately new-car

  20. Batteries for Plug-in Hybrid Electric Vehicles (PHEVs): Goals and the State of Technology circa 2008

    E-Print Network [OSTI]

    Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

    2008-01-01T23:59:59.000Z

    by researchers from MIT and EPRI. The three sets of goalsPower Research Institute – EPRI (2007). The Power to ReducePaper, Prepared for the EPRI 2007 Summer Seminar Attendees,

  1. Batteries for Plug-in Hybrid Electric Vehicles (PHEVs): Goals and the State of Technology circa 2008

    E-Print Network [OSTI]

    Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

    2008-01-01T23:59:59.000Z

    safety and cost. Third, Li-Ion battery designs are betterattributes of one type of Li-Ion battery cannot necessarilycapabilities. In any case, Li-Ion battery technologies hold

  2. Learning from Consumers: Plug-In Hybrid Electric Vehicle (PHEV) Demonstration and Consumer Education, Outreach, and Market Research Program

    E-Print Network [OSTI]

    Kurani, Kenneth S; Axsen, Jonn; Caperello, Nicolette; Davies, Jamie; Stillwater, Tai

    2009-01-01T23:59:59.000Z

    T. et al. (2006), Plug-in hybrid vehicle analysis, Milestonein conversions of hybrid vehicles are being made availablein Table 3: household hybrid vehicle ownership, respondents’

  3. Batteries for Plug-in Hybrid Electric Vehicles (PHEVs): Goals and the State of Technology circa 2008

    E-Print Network [OSTI]

    Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

    2008-01-01T23:59:59.000Z

    detour? Presentation at SAE 2008 Hybrid Vehicle Technologiesdrive vehicles, including plug-in hybrid vehicles. -vi-including plug-in hybrid vehicles. 7.0 References Anderman,

  4. Batteries for Plug-in Hybrid Electric Vehicles (PHEVs): Goals and the State of Technology circa 2008

    E-Print Network [OSTI]

    Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

    2008-01-01T23:59:59.000Z

    engine—usually an internal combustion engine (ICE). 2 Thisengine (e.g. an internal combustion engine), but uses anconditions. ICE – Internal Combustion Engine: An engine that

  5. "INDEPENDENT CONFIRMATORY SURVEY SUMMARY AND RESULTS FOR THE FORD NUCLEAR REACTOR, REVISION 1, ANN ARBOR, MICHIGAN

    SciTech Connect (OSTI)

    ALTIC, NICK A

    2013-08-01T23:59:59.000Z

    At the NRC?s request, ORAU conducted confirmatory surveys of the FNR during the period of December 4 through 6, 2012. The survey activities included visual inspections and measurement and sampling activities. Confirmatory activities also included the review and assessment of UM?s project documentation and methodologies. Surface scans identified elevated activity in two areas. The first area was on a wall outside of Room 3103 and the second area was in the southwest section on the first floor. The first area was remediated to background levels. However, the second area was due to gamma shine from a neighboring source storage area. A retrospective analysis of UM?s FSS data shows that for the SUs investigated by the ORAU survey team, UM met the survey requirements set forth in the FSSP. The total mean surface activity values were directly compared with the mean total surface activity reported by UM. Mean surface activity values determined by UM were within two standard deviations of the mean determined by ORAU. Additionally, all surface activity values were less than the corresponding gross beta DCGL{sub W}. Laboratory analysis of the soil showed that COC concentrations were less than the respective DCGL{sub W} values. For the inter-lab comparison, the DER was above 3 for only one sample. However, since the sum of fractions for each of the soil samples was below 1, thus none of the samples would fail to meet release guidelines. Based on the findings of the side-by-side direct measurements, and after discussion with the NRC and ORAU, UM decided to use a more appropriate source efficiency in their direct measurement calculations and changed their source efficiency from 0.37 to 0.25.

  6. WA_1994_027_FORD_MOTOR_COMPANY_Waiver_of_Domestic_and_Foreig...

    Broader source: Energy.gov (indexed) [DOE]

    2FORDMOTORCOMPANYWaiverofDomesticandForeig.pdf WA97038FORDMOTORCOMPANYWaiverofDomesticandForeign.pdf WA99012AIRPRODUCTSWaiverofPatentRightsUnderANNVO...

  7. REQUEST BY FORD MOTOR COMPANY FOR AN ADVANCE WAIVER OF DOMESTIC...

    Broader source: Energy.gov (indexed) [DOE]

    such Contractor or assignee by DOE, under fair and reasonable terms. Such reasonable royalty bearing terms shall include a royalty paid to the patent owner. (c) In the event that...

  8. HEV Fleet Testing - Summary Fact Sheet 2010 Ford Fusion vin#4757

    Broader source: Energy.gov (indexed) [DOE]

    www.eere.energy.govinformationcenter Vehicle Specifications Engine: 2.5 L 4-cylinder Electric Motor: 60 kW Battery: NiMH Seatbelt Positions: Five Payload: 850 lbs Features:...

  9. WA_99_015_FORD_MOTOR_COMPANY_Waiver_of_Domestic_and_Foreign_...

    Broader source: Energy.gov (indexed) [DOE]

    COMPANYWaiverofDomesticandForeign.pdf More Documents & Publications WA97038FORDMOTORCOMPANYWaiverofDomesticandForeign.pdf WA98008GENERALELECTRICCOMPANYWaive...

  10. Andrew Ford BWeb for Modeling the Environment 1 Extra Exercises for Chapter 14. Software: Further Progress

    E-Print Network [OSTI]

    Ford, Andrew

    , take note of the namefor the stock "New Over Wintering Eggs." This is to remind us that we need, maturation period = 5 months, and adult period = 1 month. Set the initial value of all stocks to zero. Now

  11. Gerald R. Ford School of Public Policy, University Of Michigan National Poverty Center Working Paper Series

    E-Print Network [OSTI]

    Shyy, Wei

    of Agriculture, Food and Nutrition Service 1999, p. 7)." To be this critical component, the Food Stamp Program Paper Series #04-14 November 2004 Narrowing the Food Insecurity Gap Between Food Stamp Participants Service Laura Tiehen U.S. Department of Agriculture Economic Research Service This paper is available

  12. Rethinking the industrial landscape : the future of the Ford Rouge complex

    E-Print Network [OSTI]

    Bodurow Rea, Constance Corinne

    1991-01-01T23:59:59.000Z

    The growth and decline of manufacturing industries in the past century and the industrial landscape that this activity has produced has had profound physical, environmental, social and economic impact on the communities ...

  13. Andrew Ford, Nov 2012 BWeb for Modeling the Environment 1 Physiology Exercises

    E-Print Network [OSTI]

    Ford, Andrew

    glucose infusion. The model includes state variables for plasma insulin, for insulin in the interstitial

  14. Rev 7/26/2010 David Ford UNIX for Chem 205

    E-Print Network [OSTI]

    Heller, Eric

    don't need modifiers. · Let's take the file removal utility (rm2 1 A1 H 1 B3 2 A2 3 D1 H 3 B4 2 A3 1 D2 Cl 1 B5 2 A4 3 D3 [and many more lines] Gauss it line by line. · The first line gives the name of the checkpoint file

  15. Overview of the Advanced Camera for Surveys On-orbit Performance Holland Ford*a

    E-Print Network [OSTI]

    Johns Hopkins University, Department of Physics and Astonomy, Advanced Camera for Surveys Team

    telemetry at the Goddard Space Flight Center that showed that the thermo-electric coolers in the ACS CCD

  16. Maybe The people who designed your car didn't work for GM, Ford

    E-Print Network [OSTI]

    Young, R. Michael

    harvesting, energy storage, nanodevices and sensors to create innovative battery-free, body Advanced Institute of Science and Tokyo Institute of Technology. New advances in energy harvesting and storage include developments in thermoelectrics, using heat from the body to develop power. Researchers

  17. Ford-Dow Partnership Is Linked to Carbon Fiber Research at ORNL |

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAX POLICIES7.pdf Flash2010-57.pdf

  18. Road to Fuel Savings: Ford, Magna Partnership Help Vehicles Shed the Pounds

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehicles »ExchangeDepartmentResolve to Save Energy This Year| Department of

  19. GM-Ford-Chrysler: ATV Proposed Product Costs | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG | Department of Energy Freeport LNGEnergyGLB-1003.PDF&#0;ATV Proposed

  20. GM-Ford-Chrysler: Issues Related to Vehicle Eligibility | Department of

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG | Department of Energy FreeportEnergy Issues Related to Vehicle

  1. Overview of Fords Thermoelectric Programs: Waste Heat Recovery and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F SSales LLCDiesel Enginesthewith2009 DOETransmissionClimate Control

  2. Applying Decline Curve Analysis in the Liquid-rich Shales: Eagle Ford Shale Study

    E-Print Network [OSTI]

    Indras, Purvi

    2014-01-09T23:59:59.000Z

    . In addition, use of diagnostic plots (like log-log rate-time and log-log rate-material balance time plots) improves confidence in flow regime identification and production forecasting. In some LRS’s, BDF is observed within 12 months. In any case...

  3. INDEPENDENT CONFIRMATORY SURVEY SUMMARY AND RESULTS FOR THE FORD NUCLEAR REACTOR, ANN ARBOR, MICHIGAN

    SciTech Connect (OSTI)

    ALTIC, NICK A

    2013-07-25T23:59:59.000Z

    At the NRC?s request, ORAU conducted confirmatory surveys of the FNR during the period of December 4 through 6, 2012. The survey activities included visual inspections and measurement and sampling activities. Confirmatory activities also included the review and assessment of UM?s project documentation and methodologies. Surface scans identified elevated activity in two areas. The first area was on a wall outside of Room 3103 and the second area was in the southwest section on the first floor. The first area was remediated to background levels. However, the second area was due to gamma shine from a neighboring source storage area. A retrospective analysis of UM?s FSS data shows that for the SUs investigated by the ORAU survey team, UM met the survey requirements set forth in the FSSP. The total mean surface activity values were directly compared with the mean total surface activity reported by UM. Mean surface activity values determined by UM were within two standard deviations of the mean determined by ORAU. Additionally, all surface activity values were less than the corresponding gross beta DCGLW. Laboratory analysis of the soil showed that COC concentrations were less than the respective DCGLW values. For the inter-lab comparison, the DER was above 3 for only one sample. However, since the sum of fractions for each of the soil samples was below 1, thus none of the samples would fail to meet release guidelines. Based on the findings of the side-by-side direct measurements, and after discussion with the NRC and ORAU, UM decided to use a more appropriate source efficiency in their direct measurement calculations and changed their source efficiency from 0.37 to 0.25.

  4. FTP Emissions Test Results from Flexible-Fuel Methanol Dodge Spirits and Ford Econoline Vans

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicy andExsolutionFES Committees of9,of

  5. Development of the 2011MY Ford Super Duty Catalyst System | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct, Parent CompanyaUSAMP AMDHeavy3 4.5.4 Development

  6. Ford Liquefied Petroleum Gas-Powered F-700 May Set Sales Records

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibilityFieldMinds" |beamtheFor yourFor

  7. AVTA: 2013 Ford C-MAX HEV Testing Results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment of Energy 601Department of Energy Toyota Prius PHEVofMalibuMAX

  8. AVTA: 2013 Ford Focus All-Electric Vehicle Testing Reports | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment of Energy 601Department of Energy Toyota PriusMax Energi

  9. Integration of Rooftop Photovoltaic Systems in St. Paul Ford Sites Redevelopment Plans

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFunInfrared Land SurfaceVirus-Infected MacaquesIntegration of Rooftop

  10. Microsoft PowerPoint - TAB B 02-12-08 Article VI Briefing Interagency Ford Comments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces andMapping Richland OperationsU.S.OnlineTank09 Little27,Earl28 MarchStates

  11. US Energy Secretary Chu Announces Finalized $5.9 Billion Loan for Ford

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' Research Petroleum ReserveDepartment of Energy AtNoticeMotor Company | Department

  12. Job Posting -Gerald R. Ford School of Public Policy Education Policy Postdoctoral Research Fellow

    E-Print Network [OSTI]

    Shyy, Wei

    of the University to bear in addressing public policy issues. The Education Policy Postdoctoral Research Fellowship such as Brian Jacob, Susan Dynarksi, and Kevin Stange to conduct research, research administration, and outreach

  13. Abstract--This paper examines the impact of battery sizing on the performance and efficiency of power management

    E-Print Network [OSTI]

    Krstic, Miroslav

    paper examines plug-in hybrid electric vehicles (PHEVs), which typically utilize onboard battery storage

  14. Active Brownian Particles Escaping a Channel in Single File

    E-Print Network [OSTI]

    Emanuele Locatelli; Fulvio Baldovin; Enzo Orlandini; Matteo Pierno

    2014-11-27T23:59:59.000Z

    Active particles may happen to be confined in channels so narrow that they cannot overtake each other (Single File conditions). This interesting situation reveals nontrivial physical features as a consequence of the strong inter-particle correlations developed in collective rearrangements. We consider a minimal model for active Brownian particles with the aim of studying the modifications introduced by activity with respect to the classical (passive) Single File picture. Depending on whether their motion is dominated by translational or rotational diffusion, we find that active Brownian particles in Single File may arrange into clusters which are continuously merging and splitting ({\\it active clusters}) or merely reproduce passive-motion paradigms, respectively. We show that activity convey to self-propelled particles a strategic advantage for trespassing narrow channels against external biases (e.g., the gravitational field).

  15. Escaping Lochner's Shadow: Toward a Coherent Jurisprudence of Economic Rights

    E-Print Network [OSTI]

    Levy, Richard E.

    1995-01-01T23:59:59.000Z

    This article argues that it is time to rethink the jurisprudence of “economic rights.” For nearly twenty years, the United States Supreme Court has revisited economic rights doctrines that had lain dormant since the end ...

  16. Preliminary findings from the evaluation of Project ESCAPE 25-Alive

    E-Print Network [OSTI]

    Ledingham, Christopher Michael

    2009-05-15T23:59:59.000Z

    correlation that was found was between the teacher adoption scores and the class observation scores obtained during the second observation. While there were almost no significant correlations in this study, the study had merit. Over time the observed health...

  17. Morphology and Escape Performance of Tiger Salamander Larvae (Ambystoma tigrinum

    E-Print Network [OSTI]

    Fitzpatrick, Benjamin M.

    ) BENJAMIN M. FITZPATRICKn , MICHAEL F. BENARD, and JAMES A. FORDYCE Center for Population Biology for understanding microevolutionary dynamics (Wainwright and Reilly, '94). Some variation may be due to phenotypic- 0076436 (to P.C. Wainwright), EPA R828896 (to H.B. Shaffer, S.R. Voss, W.D. Koenig, B.M. Fitzpatrick). n

  18. Composting with My Wiggly Friends - or, The Great Escape That...

    Broader source: Energy.gov (indexed) [DOE]

    book on vermiculture, the raising of worms. I built my own worm bin out of an ordinary plastic storage bin, drilling holes into it to let in air. I laboriously made bedding by...

  19. International Environmental Agreements: Emissions trade, safety valves and escape clauses

    E-Print Network [OSTI]

    Karp, Larry; Zhao, Jinhua

    2012-01-01T23:59:59.000Z

    model” of IEA formation (Barrett 2003). This review isIEA. In order to explain this difference, we take a detour, in Section 6, to review

  20. The narrow escape problem for diffusion in cellular microdomains

    E-Print Network [OSTI]

    Singer, Amit

    phenomenol- ogy. This circumstance calls for physical and mathematical modeling to separate the interfering