Powered by Deep Web Technologies
Note: This page contains sample records for the topic "ford escape phev" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Gas Mileage of 2008 Vehicles by Ford  

NLE Websites -- All DOE Office Websites (Extended Search)

8 Ford Vehicles 8 Ford Vehicles EPA MPG MODEL City Comb Hwy 2008 Ford Crown Victoria FFV 8 cyl, 4.6 L, Automatic 4-spd, Regular Gas or E85 Compare 2008 Ford Crown Victoria FFV View MPG Estimates Shared By Vehicle Owners Gas 15 City 18 Combined 23 Highway E85 11 City 13 Combined 16 Highway 2008 Ford Edge AWD 6 cyl, 3.5 L, Automatic 6-spd, Regular Gasoline Compare 2008 Ford Edge AWD View MPG Estimates Shared By Vehicle Owners 15 City 18 Combined 22 Highway 2008 Ford Edge FWD 6 cyl, 3.5 L, Automatic 6-spd, Regular Gasoline Compare 2008 Ford Edge FWD View MPG Estimates Shared By Vehicle Owners 16 City 19 Combined 24 Highway 2008 Ford Escape 4WD 4 cyl, 2.3 L, Automatic 4-spd, Regular Gasoline Compare 2008 Ford Escape 4WD View MPG Estimates Shared By Vehicle Owners 19 City 21 Combined 24

2

Gas Mileage of 2010 Vehicles by Ford  

NLE Websites -- All DOE Office Websites (Extended Search)

0 Ford Vehicles 0 Ford Vehicles EPA MPG MODEL City Comb Hwy 2010 Ford Crown Victoria FFV 8 cyl, 4.6 L, Automatic 4-spd, Regular Gas or E85 Compare 2010 Ford Crown Victoria FFV Gas 16 City 19 Combined 24 Highway E85 12 City 14 Combined 17 Highway 2010 Ford Edge AWD 6 cyl, 3.5 L, Automatic 6-spd, Regular Gasoline Compare 2010 Ford Edge AWD View MPG Estimates Shared By Vehicle Owners 17 City 19 Combined 23 Highway 2010 Ford Edge FWD 6 cyl, 3.5 L, Automatic 6-spd, Regular Gasoline Compare 2010 Ford Edge FWD View MPG Estimates Shared By Vehicle Owners 18 City 20 Combined 25 Highway 2010 Ford Escape 4WD 4 cyl, 2.5 L, Automatic 6-spd, Regular Gasoline Compare 2010 Ford Escape 4WD View MPG Estimates Shared By Vehicle Owners 20 City 22 Combined 26 Highway 2010 Ford Escape 4WD FFV 6 cyl, 3.0 L, Automatic 6-spd, Regular Gas or E85

3

Advanced Batteries for PHEVs  

Science Conference Proceedings (OSTI)

This report describes testing conducted on two different types of batteriesVARTA nickel-metal hydride and SAFT lithium ionused in the Plug-in Hybrid Electric Vehicle (PHEV) Sprinter program. EPRI and DaimlerChrysler developed a PHEV concept for the Sprinter Van to reduce the vehicle's emissions, fuel consumption, and operating costs while maintaining equivalent or superior functionality and performance. The PHEV Sprinter was designed to operate in both a pure electric mode and a charge-sustaining hybrid ...

2009-12-22T23:59:59.000Z

4

Batteries - PHEV Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE has implemented a relatively new program to develop plug-in hybrid electric vehicle (PHEV) technologies, with the goal of achieving the equivalent of a 40-mile...

5

PHEV_Report_#1  

NLE Websites -- All DOE Office Websites (Extended Search)

(GMC) officially launched the Plug'n Go initiative to assess the opportunity that plug-in hybrid electric vehicle (PHEV) technology may represent here in Vermont. CVPS converted...

6

Summary of PHEV Systems Analysis  

Science Conference Proceedings (OSTI)

This report, a technical update, summarizes research on plug-in hybrid electric vehicle (PHEV) impacts on the utility system. The update also provides an analysis of the costs of PHEVs to consumers.

2009-12-18T23:59:59.000Z

7

Microsoft PowerPoint - 120824_US-China_Battery_Workshop_-_Ford_Masias_print.ppt [Compatibility Mode]  

NLE Websites -- All DOE Office Websites (Extended Search)

Ford Confidential Ford Confidential Rechargeable Energy Storage System (RESS) x Safety Research US-China EV & Battery Workshop August 24, 2012 Ford Confidential Page 2 Ford Battery Safety Research System Mechanical Thermal Electrical Battery Safety Hazards System: * RESS Safety * NHTSA Award (2011 - 2013) Mechanical: * Ford-MIT Alliance * Prof. Wierzbicki (2012 - 2014) Thermal: * U. Maryland URP * Prof. Sunderland (2012 - 2015) Electrical: * Ford-UM Alliance * Prof. Chris Mi (2012 - 2014) Research Activity Ford Confidential Page 3 NHTSA RESS Safety Solicitation Timing Solicitation 1/26/11 Proposal 4/21/11 Award Sept 2011 Finish Sept 2013 Scope HEV/PHEV/BEV Li-Ion Battery Purpose Develop Safety Test Methods & Performance Safety Metrics Tasks * Active - Single Failure * Passive - Single Failure + Loss of Control System

8

PHEV Technology Analysis at Argonne  

NLE Websites -- All DOE Office Websites (Extended Search)

estimate the impact of plug-in hybrid electric vehicles estimate the impact of plug-in hybrid electric vehicles (PHEVs) in the U.S., Argonne National Laboratory is analyzing typical travel behavior, new technology penetration patterns, and pathways for vehicle fuels. The analysis will lead to better understanding of: * Potential buyers of PHEVs, * Patterns of charging PHEV battery packs, * Potential for petroleum use reduction, and * Well-to-wheel energy and greenhouse gas emissions implications. Heart of the market concept Combining PHEV simulation results with evaluation of travel behavior from a national survey, Argonne researchers developed the "Heart of the Market" concept. This concept eliminates vehicles that travel less than a PHEV's electric range per day, since a PHEV is not

9

Argonne TTRDC - APRF - Research Activities - Developing PHEV...  

NLE Websites -- All DOE Office Websites (Extended Search)

Developing PHEV Test Methods and Procedures (SAE J1711) Argonne tests a EnergyCS Prius PHEV Conversion The EnergyCS Prius PHEV Conversion is tested on the APRF's dynamometers....

10

North American PHEV Demonstration  

NLE Websites -- All DOE Office Websites (Extended Search)

Fleet Summary Report - Hymotion Escape (Kvaser data logger) Date range of data received: Number of Vehicles: 122008 to 11182008 Reporting period: Number of days when the...

11

Wenatchee PHEV Conversions Workshop - AVTA's PHEV Testing and...  

NLE Websites -- All DOE Office Websites (Extended Search)

Economy Driving Schedule) dynamometer test cycles 7 Hymotion Prius - UDDS Fuel Use * 5 kWh A123Systems (Li) V1 and Prius packs (AC kWh) Hymotion PHEV Prius MPG & kWh - UDDS...

12

Ford Escape Advanced Research Vehicle Report Notes  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Research Vehicle Advanced Research Vehicle Report Notes 1 "Overall AC electrical energy consumption (AC Wh/mi)" is based on AC electricity consumed during charging events which began during the reporting period and distance driven during all trips in the reporting period. 2 "Overall DC electrical energy consumption (DC Wh/mi)" is based on net DC electricity discharged from or charged to the plug-in battery pack and distance driven during all trips in the reporting period. DC Wh/mi may not be comparable to AC Wh/mi if AC electricity charged prior to the reporting period was discharged during driving within the reporting period, or if AC electricity charged during the reporting period was not discharged during driving within the reporting period.

13

Microsoft Word - ford.html  

NLE Websites -- All DOE Office Websites (Extended Search)

Ford Ranger EV VEHICLE SPECIFICATIONS PURPOSE-BUILT VEHICLE Base Vehicle: 1998 Ford Ranger VIN: 1FTCR100XWSA00951 Seatbelt Positions: Three Standard Features: AMFM Stereo Radio...

14

Ford Motor Company  

E-Print Network (OSTI)

All statements, findings, and conclusions in this report are those of the authors and do not necessarily reflect those of the Global Interdependence Center, Ford Motor Company, or the Center for Automotive Research. TABLE OF CONTENTS Acknowledgements......................................................................................................................... iv

Ellen Hughes-cromwick; Joshua Cregger

2013-01-01T23:59:59.000Z

15

Anticipating PHEV Energy Impacts in California  

E-Print Network (OSTI)

contribute to peak electricity demand (depending on a givenadditions to daytime electricity demand from PHEVs. However,Their higher peak electricity demand estimate is due to

Axsen, John; Kurani, Kenneth S.

2009-01-01T23:59:59.000Z

16

Tacomo Power/AVTA PHEV Demand and Energy Cost Demonstration ...  

NLE Websites -- All DOE Office Websites (Extended Search)

facility. This report provides results from charging of several PHEVs at the Tacoma Power facility as a preliminary assessment of how PHEVs will impact the electricity grid....

17

Argonne TTRDC - APRF - Research Activities - Benchmarking PHEVs  

NLE Websites -- All DOE Office Websites (Extended Search)

APRF Research Activities: Benchmarking of Plug-In Hybrid Electric Vehicles (PHEVs) Argonne engineer Mike Duoba Engineer Mike Duoba evaluates a vehicle in Argonne's APRF. Now that plug-in hybrid electric vehicles (PHEVs) are emerging, it is important to test, characterize and benchmark the wide variety of PHEV designs and control strategies. In the APRF, engineers benchmark PHEVs by combining testing and data analysis to characterize the vehicles' efficiency, performance, and emissions. The vehicles are evaluated over many cycles to find control strategies under a variety of operating conditions. Argonne researchers test PHEVs over cold-start and hot-start urban dynamometer driving schedule (UDDS) and highway cycles in both charge-depletion and charge-sustaining operation. Full-charge tests, as

18

PHEV Market Introduction Workshop Summary Report  

DOE Green Energy (OSTI)

The Plug-In Hybrid Electric Vehicle (PHEV) Market Introduction Study Workshop was attended by approximately forty representatives from various stakeholder organizations. The event took place at the Hotel Helix in Washington, D.C. on December 1-2, 2008. The purpose of this workshop was to follow-up last year s PHEV Value Proposition Study, which showed that indeed, a viable and even thriving market for these vehicles can exist by the year 2030. This workshop aimed to identify immediate action items that need to be undertaken to achieve a successful market introduction and ensuing large market share of PHEVs in the U.S. automotive fleet.

Weber, Adrienne M [ORNL; Sikes, Karen R [ORNL

2009-03-01T23:59:59.000Z

19

Gas Mileage of 1987 Vehicles by Ford  

NLE Websites -- All DOE Office Websites (Extended Search)

7 Ford Vehicles 7 Ford Vehicles EPA MPG MODEL City Comb Hwy 1987 Ford Aerostar Van 4 cyl, 2.3 L, Automatic 4-spd, Regular Gasoline Compare 1987 Ford Aerostar Van 18 City 20 Combined 24 Highway 1987 Ford Aerostar Van 4 cyl, 2.3 L, Manual 5-spd, Regular Gasoline Compare 1987 Ford Aerostar Van 23 City 24 Combined 26 Highway 1987 Ford Aerostar Van 6 cyl, 3.0 L, Automatic 4-spd, Regular Gasoline Compare 1987 Ford Aerostar Van 16 City 19 Combined 22 Highway 1987 Ford Aerostar Van 6 cyl, 3.0 L, Manual 5-spd, Regular Gasoline Compare 1987 Ford Aerostar Van 17 City 19 Combined 22 Highway 1987 Ford Aerostar Wagon 4 cyl, 2.3 L, Manual 5-spd, Regular Gasoline Compare 1987 Ford Aerostar Wagon 19 City 21 Combined 24 Highway 1987 Ford Aerostar Wagon 6 cyl, 3.0 L, Automatic 4-spd, Regular Gasoline

20

Gas Mileage of 1989 Vehicles by Ford  

NLE Websites -- All DOE Office Websites (Extended Search)

89 Ford Vehicles 89 Ford Vehicles EPA MPG MODEL City Comb Hwy 1989 Ford Aerostar Van 6 cyl, 3.0 L, Automatic 4-spd, Regular Gasoline Compare 1989 Ford Aerostar Van 15 City 17 Combined 21 Highway 1989 Ford Aerostar Van 6 cyl, 3.0 L, Manual 5-spd, Regular Gasoline Compare 1989 Ford Aerostar Van 16 City 18 Combined 21 Highway 1989 Ford Aerostar Wagon 6 cyl, 3.0 L, Automatic 4-spd, Regular Gasoline Compare 1989 Ford Aerostar Wagon 15 City 17 Combined 20 Highway 1989 Ford Aerostar Wagon 6 cyl, 3.0 L, Manual 5-spd, Regular Gasoline Compare 1989 Ford Aerostar Wagon 15 City 17 Combined 21 Highway 1989 Ford Bronco 4WD 6 cyl, 4.9 L, Automatic 3-spd, Regular Gasoline Compare 1989 Ford Bronco 4WD 12 City 13 Combined 14 Highway 1989 Ford Bronco 4WD 6 cyl, 4.9 L, Manual 4-spd, Regular Gasoline

Note: This page contains sample records for the topic "ford escape phev" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Gas Mileage of 2000 Vehicles by Ford  

NLE Websites -- All DOE Office Websites (Extended Search)

2000 Ford Vehicles 2000 Ford Vehicles EPA MPG MODEL City Comb Hwy 2000 Ford Contour 4 cyl, 2.0 L, Automatic 4-spd, Regular Gasoline Compare 2000 Ford Contour View MPG Estimates Shared By Vehicle Owners 19 City 23 Combined 28 Highway 2000 Ford Contour 4 cyl, 2.0 L, Manual 5-spd, Regular Gasoline Compare 2000 Ford Contour 21 City 25 Combined 31 Highway 2000 Ford Contour 6 cyl, 2.5 L, Automatic 4-spd, Regular Gasoline Compare 2000 Ford Contour 18 City 21 Combined 26 Highway 2000 Ford Contour 6 cyl, 2.5 L, Manual 5-spd, Regular Gasoline Compare 2000 Ford Contour 18 City 21 Combined 27 Highway 2000 Ford Crown Victoria 8 cyl, 4.6 L, Automatic 4-spd, Regular Gasoline Compare 2000 Ford Crown Victoria View MPG Estimates Shared By Vehicle Owners 16 City 18 Combined 23 Highway 2000 Ford Crown Victoria CNG 8 cyl, 4.6 L, Automatic 4-spd, CNG

22

PHEV Impacts on Regional Systems (Poster)  

DOE Green Energy (OSTI)

This poster, submitted for the CU Energy Initiative/NREL Symposium on October 3, 2006 in Boulder, Colorado, looks at the impacts, emissions, and avoided gasoline due to plug-in hybrid electric vehicles (PHEVs).

Parks, K.; Denholm, P.; Markel, T.

2006-10-03T23:59:59.000Z

23

Anticipating PHEV Energy Impacts in California  

E-Print Network (OSTI)

gas emissions from plug-in hybrid vehicles: Implications forMarkel et al. , Plug-in hybrid vehicle analysis, MilestoneU.S. market, plug-in hybrid vehicles (PHEVs) are touted as

Axsen, John; Kurani, Kenneth S.

2009-01-01T23:59:59.000Z

24

Power System Level Impacts of PHEVs  

Science Conference Proceedings (OSTI)

This paper presents investigations into various aspects of how plug-in hybrid electric vehicles (PHEVs) could impact the electric power system. The investigation is focused on impacts on the power system infrastructure and impacts on the primary fuel ...

2009-01-01T23:59:59.000Z

25

Gas Mileage of 1997 Vehicles by Ford  

NLE Websites -- All DOE Office Websites (Extended Search)

7 Ford Vehicles 7 Ford Vehicles EPA MPG MODEL City Comb Hwy 1997 Ford Aerostar Van 6 cyl, 3.0 L, Automatic 4-spd, Regular Gasoline Compare 1997 Ford Aerostar Van 15 City 17 Combined 21 Highway 1997 Ford Aerostar Wagon 6 cyl, 3.0 L, Automatic 4-spd, Regular Gasoline Compare 1997 Ford Aerostar Wagon 15 City 17 Combined 22 Highway 1997 Ford Aerostar Wagon 6 cyl, 4.0 L, Automatic 5-spd, Regular Gasoline Compare 1997 Ford Aerostar Wagon View MPG Estimates Shared By Vehicle Owners 15 City 17 Combined 20 Highway 1997 Ford Aerostar Wagon AWD 6 cyl, 4.0 L, Automatic 5-spd, Regular Gasoline Compare 1997 Ford Aerostar Wagon AWD 13 City 15 Combined 17 Highway 1997 Ford Aspire 4 cyl, 1.3 L, Automatic 3-spd, Regular Gasoline Compare 1997 Ford Aspire View MPG Estimates Shared By Vehicle Owners

26

Gas Mileage of 2001 Vehicles by Ford  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Ford Vehicles 1 Ford Vehicles EPA MPG MODEL City Comb Hwy 2001 Ford Crown Victoria 8 cyl, 4.6 L, Automatic 4-spd, Regular Gasoline Compare 2001 Ford Crown Victoria View MPG Estimates Shared By Vehicle Owners 16 City 18 Combined 23 Highway 2001 Ford Crown Victoria CNG 8 cyl, 4.6 L, Automatic 4-spd, CNG Compare 2001 Ford Crown Victoria CNG 14 City 16 Combined 21 Highway 2001 Ford Crown Victoria Police 8 cyl, 4.6 L, Automatic 4-spd, Regular Gasoline Compare 2001 Ford Crown Victoria Police 14 City 17 Combined 21 Highway 2001 Ford E150 Club Wagon 6 cyl, 4.2 L, Automatic 4-spd, Regular Gasoline Compare 2001 Ford E150 Club Wagon 13 City 14 Combined 18 Highway 2001 Ford E150 Club Wagon 8 cyl, 4.6 L, Automatic 4-spd, Regular Gasoline Compare 2001 Ford E150 Club Wagon 13 City 15 Combined 18

27

Gas Mileage of 2003 Vehicles by Ford  

NLE Websites -- All DOE Office Websites (Extended Search)

3 Ford Vehicles 3 Ford Vehicles EPA MPG MODEL City Comb Hwy 2003 Ford Crown Victoria 8 cyl, 4.6 L, Automatic 4-spd, Regular Gasoline Compare 2003 Ford Crown Victoria View MPG Estimates Shared By Vehicle Owners 16 City 18 Combined 23 Highway 2003 Ford Crown Victoria CNG 8 cyl, 4.6 L, Automatic 4-spd, CNG Compare 2003 Ford Crown Victoria CNG 12 City 14 Combined 17 Highway 2003 Ford Crown Victoria Police 8 cyl, 4.6 L, Automatic 4-spd, Regular Gasoline Compare 2003 Ford Crown Victoria Police View MPG Estimates Shared By Vehicle Owners 14 City 16 Combined 20 Highway 2003 Ford E150 Club Wagon 6 cyl, 4.2 L, Automatic 4-spd, Regular Gasoline Compare 2003 Ford E150 Club Wagon 12 City 14 Combined 16 Highway 2003 Ford E150 Club Wagon 8 cyl, 4.6 L, Automatic 4-spd, Regular Gasoline Compare 2003 Ford E150 Club Wagon 13

28

Gas Mileage of 1995 Vehicles by Ford  

NLE Websites -- All DOE Office Websites (Extended Search)

5 Ford Vehicles 5 Ford Vehicles EPA MPG MODEL City Comb Hwy 1995 Ford Aerostar Van 6 cyl, 3.0 L, Automatic 4-spd, Regular Gasoline Compare 1995 Ford Aerostar Van 16 City 18 Combined 22 Highway 1995 Ford Aerostar Wagon 6 cyl, 3.0 L, Automatic 4-spd, Regular Gasoline Compare 1995 Ford Aerostar Wagon 15 City 18 Combined 22 Highway 1995 Ford Aerostar Wagon 6 cyl, 4.0 L, Automatic 4-spd, Regular Gasoline Compare 1995 Ford Aerostar Wagon View MPG Estimates Shared By Vehicle Owners 15 City 17 Combined 20 Highway 1995 Ford Aerostar Wagon AWD 6 cyl, 4.0 L, Automatic 4-spd, Regular Gasoline Compare 1995 Ford Aerostar Wagon AWD View MPG Estimates Shared By Vehicle Owners 14 City 15 Combined 18 Highway 1995 Ford Aspire 4 cyl, 1.3 L, Automatic 3-spd, Regular Gasoline Compare 1995 Ford Aspire

29

Georgia Institute of Technology | Milwaukee School of Engineering | North Carolina A&T State University | Purdue University University of Illinois, Urbana-Champaign | University of Minnesota | Vanderbilt University  

E-Print Network (OSTI)

, hybrids and hybrids with plug-in conversions ­ Including: Ford Escape, Toyota Prius, and others · Two, 2010NSF CCEFP Site Visit Recharge-IT results Electricity usage: · Escape PHEV: 133.2 Wh/mile; Prius (HEV) vs plug-in (PHEV) ­ Escape and Prius only · PHEV uses both gasoline and electricity ­ Gasoline

Li, Perry Y.

30

Ford Electric Battery Group | Open Energy Information  

Open Energy Info (EERE)

Ford Electric Battery Group Jump to: navigation, search Name Ford Electric Battery Group Place Dearborn, MI Information About Partnership with NREL Partnership with NREL Yes...

31

ford.PDF  

NLE Websites -- All DOE Office Websites (Extended Search)

FORD RANGER EV FORD RANGER EV LEAD ACID BATTERIES MARCH 1998 Urban Range (On Urban Pomona Loop - see other side for map) Range (mi.) Without Aux. Loads With Aux . Lo a ds Pay load ( lb.) Maximum 640 Minimum 140 UR1 UR2 UR3 UR4 58.3 58.7 60.1 72.1 Test UR1 UR2 UR3 UR4 Payload (lb.) 140 140 640 640 AC kWh Recharge 29.11 28.16 28.20 28.23 AC kWh/mi. 0.40 0.47 0.48 0.48 Range (mi.) 72.1 60.1 58.7 58.3 Avg. Ambient Temp. 79° F 61° F 69° F 64° F State of Charge Meter (Urban Range Test) 0 10 20 30 40 50 60 70 80 0 0.5 1 1.5 2 2.5 3 3.5 4 State of Charge (4=F, 0=E) Miles Driven Miles Driven Miles Remaining * * Initial "Miles Remaining" depend on driving economy before recharge Freeway Range (On Freeway Pomona Loop - see other side for map) Range (mi.) Without Aux. Loads With Au x . L o a ds 51.6 57.2 60 66.4

32

Performance Analysis of Photovoltaic Cell with Dynamic PHEV Loads  

E-Print Network (OSTI)

Performance Analysis of Photovoltaic Cell with Dynamic PHEV Loads F. R. Islam, H. R. Pota, M. S. Rahman and M. S. Ali Abstract--This paper presents the dynamics of photovoltaic (PV) cell with Plug for charging PHEVs with PV cell where PHEVs load are modelled based on third order battery model. System

Pota, Himanshu Roy

33

Gas Mileage of 2007 Vehicles by Ford  

NLE Websites -- All DOE Office Websites (Extended Search)

7 Ford Vehicles 7 Ford Vehicles EPA MPG MODEL City Comb Hwy 2007 Ford Crown Victoria 8 cyl, 4.6 L, Automatic 4-spd, Regular Gasoline Compare 2007 Ford Crown Victoria View MPG Estimates Shared By Vehicle Owners 15 City 18 Combined 23 Highway 2007 Ford Crown Victoria 8 cyl, 4.6 L, Automatic 4-spd, Regular Gas or E85 Compare 2007 Ford Crown Victoria View MPG Estimates Shared By Vehicle Owners Gas 15 City 18 Combined 23 Highway E85 11 City 13 Combined 16 Highway 2007 Ford Edge AWD 6 cyl, 3.5 L, Automatic 6-spd, Regular Gasoline Compare 2007 Ford Edge AWD View MPG Estimates Shared By Vehicle Owners 16 City 18 Combined 22 Highway 2007 Ford Edge FWD 6 cyl, 3.5 L, Automatic 6-spd, Regular Gasoline Compare 2007 Ford Edge FWD View MPG Estimates Shared By Vehicle Owners 16 City 19 Combined 23

34

Gas Mileage of 1984 Vehicles by Ford  

NLE Websites -- All DOE Office Websites (Extended Search)

4 Ford Vehicles 4 Ford Vehicles EPA MPG MODEL City Comb Hwy 1984 Ford Bronco 4WD 6 cyl, 4.9 L, Automatic 3-spd, Regular Gasoline Compare 1984 Ford Bronco 4WD 12 City 13 Combined 13 Highway 1984 Ford Bronco 4WD 6 cyl, 4.9 L, Manual 4-spd, Regular Gasoline Compare 1984 Ford Bronco 4WD 14 City 15 Combined 17 Highway 1984 Ford Bronco 4WD 6 cyl, 4.9 L, Manual 4-spd, Regular Gasoline Compare 1984 Ford Bronco 4WD 13 City 14 Combined 15 Highway 1984 Ford Bronco 4WD 8 cyl, 5.0 L, Automatic 3-spd, Regular Gasoline Compare 1984 Ford Bronco 4WD 11 City 11 Combined 12 Highway 1984 Ford Bronco 4WD 8 cyl, 5.0 L, Manual 4-spd, Regular Gasoline Compare 1984 Ford Bronco 4WD 11 City 13 Combined 15 Highway 1984 Ford Bronco 4WD 8 cyl, 5.0 L, Manual 4-spd, Regular Gasoline Compare 1984 Ford Bronco 4WD 11

35

Gas Mileage of 1985 Vehicles by Ford  

NLE Websites -- All DOE Office Websites (Extended Search)

5 Ford Vehicles 5 Ford Vehicles EPA MPG MODEL City Comb Hwy 1985 Ford Bronco 4WD 6 cyl, 4.9 L, Automatic 3-spd, Regular Gasoline Compare 1985 Ford Bronco 4WD 13 City 13 Combined 13 Highway 1985 Ford Bronco 4WD 6 cyl, 4.9 L, Manual 4-spd, Regular Gasoline Compare 1985 Ford Bronco 4WD 15 City 16 Combined 20 Highway 1985 Ford Bronco 4WD 6 cyl, 4.9 L, Manual 4-spd, Regular Gasoline Compare 1985 Ford Bronco 4WD 15 City 16 Combined 17 Highway 1985 Ford Bronco 4WD 8 cyl, 5.0 L, Automatic 4-spd, Regular Gasoline Compare 1985 Ford Bronco 4WD 12 City 13 Combined 16 Highway 1985 Ford Bronco 4WD 8 cyl, 5.0 L, Manual 4-spd, Regular Gasoline Compare 1985 Ford Bronco 4WD 11 City 12 Combined 13 Highway 1985 Ford Bronco 4WD 8 cyl, 5.8 L, Automatic 3-spd, Regular Gasoline Compare 1985 Ford Bronco 4WD

36

A Greener Focus: 2012 Ford Focus Electric  

NLE Websites -- All DOE Office Websites (Extended Search)

Greener Focus: 2012 Ford Focus Electric Greener Focus: 2012 Ford Focus Electric JOHN DAVIS: With its 2012 re-design, the Focus compact has become Ford's core global program. Focus is already generating offspring, including small vans, a high performance hatchback, and this car - the Ford Focus Electric. It's actually one of only several new plug-ins and hybrids due from the blue oval this year. So let's go for a drive in the EV Focus and see if this green approach means greener pastures for Ford. At first glance, the 2012 Ford Focus Electric doesn't look that much different than the compact, front-

37

Gas Mileage of 1993 Vehicles by Ford  

NLE Websites -- All DOE Office Websites (Extended Search)

3 Ford Vehicles 3 Ford Vehicles EPA MPG MODEL City Comb Hwy 1993 Ford Aerostar Van 6 cyl, 3.0 L, Automatic 4-spd, Regular Gasoline Compare 1993 Ford Aerostar Van 16 City 18 Combined 22 Highway 1993 Ford Aerostar Van 6 cyl, 3.0 L, Manual 5-spd, Regular Gasoline Compare 1993 Ford Aerostar Van 17 City 19 Combined 23 Highway 1993 Ford Aerostar Van 6 cyl, 4.0 L, Automatic 4-spd, Regular Gasoline Compare 1993 Ford Aerostar Van View MPG Estimates Shared By Vehicle Owners 15 City 17 Combined 20 Highway 1993 Ford Aerostar Van AWD 6 cyl, 4.0 L, Automatic 4-spd, Regular Gasoline Compare 1993 Ford Aerostar Van AWD 15 City 17 Combined 20 Highway 1993 Ford Aerostar Wagon 6 cyl, 3.0 L, Automatic 4-spd, Regular Gasoline Compare 1993 Ford Aerostar Wagon 15 City 17 Combined 21 Highway 1993 Ford Aerostar Wagon 6 cyl, 3.0 L, Manual 5-spd, Regular Gasoline

38

Gas Mileage of 1991 Vehicles by Ford  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Ford Vehicles 1 Ford Vehicles EPA MPG MODEL City Comb Hwy 1991 Ford Aerostar Van 6 cyl, 3.0 L, Automatic 4-spd, Regular Gasoline Compare 1991 Ford Aerostar Van View MPG Estimates Shared By Vehicle Owners 16 City 18 Combined 21 Highway 1991 Ford Aerostar Van 6 cyl, 3.0 L, Manual 5-spd, Regular Gasoline Compare 1991 Ford Aerostar Van 17 City 19 Combined 22 Highway 1991 Ford Aerostar Van 6 cyl, 4.0 L, Automatic 4-spd, Regular Gasoline Compare 1991 Ford Aerostar Van 15 City 17 Combined 20 Highway 1991 Ford Aerostar Van AWD 6 cyl, 4.0 L, Automatic 4-spd, Regular Gasoline Compare 1991 Ford Aerostar Van AWD 14 City 16 Combined 19 Highway 1991 Ford Aerostar Wagon 6 cyl, 3.0 L, Automatic 4-spd, Regular Gasoline Compare 1991 Ford Aerostar Wagon 15 City 17 Combined 21 Highway 1991 Ford Aerostar Wagon 6 cyl, 3.0 L, Manual 5-spd, Regular Gasoline

39

Gas Mileage of 2009 Vehicles by Ford  

NLE Websites -- All DOE Office Websites (Extended Search)

City Comb Hwy 2009 Ford Crown Victoria FFV 8 cyl, 4.6 L, Automatic 4-spd, Regular Gas or E85 Compare 2009 Ford Crown Victoria FFV View MPG Estimates Shared By Vehicle Owners Gas 16...

40

Gas Mileage of 2006 Vehicles by Ford  

NLE Websites -- All DOE Office Websites (Extended Search)

23 Highway 2006 Ford Crown Victoria 8 cyl, 4.6 L, Automatic 4-spd, Regular Gas or E85 Compare 2006 Ford Crown Victoria View MPG Estimates Shared By Vehicle Owners Gas 15...

Note: This page contains sample records for the topic "ford escape phev" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Gas Mileage of 1999 Vehicles by Ford  

NLE Websites -- All DOE Office Websites (Extended Search)

Shared By Vehicle Owners 15 City 18 Combined 22 Highway 1999 Ford Crown Victoria CNG 8 cyl, 4.6 L, Automatic 4-spd, CNG Compare 1999 Ford Crown Victoria CNG View MPG...

42

Gas Mileage of 2002 Vehicles by Ford  

NLE Websites -- All DOE Office Websites (Extended Search)

Shared By Vehicle Owners 15 City 18 Combined 23 Highway 2002 Ford Crown Victoria CNG 8 cyl, 4.6 L, Automatic 4-spd, CNG Compare 2002 Ford Crown Victoria CNG View MPG...

43

Gas Mileage of 2004 Vehicles by Ford  

NLE Websites -- All DOE Office Websites (Extended Search)

Shared By Vehicle Owners 15 City 18 Combined 23 Highway 2004 Ford Crown Victoria CNG 8 cyl, 4.6 L, Automatic 4-spd, CNG Compare 2004 Ford Crown Victoria CNG View MPG...

44

Gas Mileage of 2005 Vehicles by Ford  

NLE Websites -- All DOE Office Websites (Extended Search)

14 Combined 17 Highway 2005 Ford Explorer FFV 2WD 6 cyl, 4.0 L, Automatic 5-spd, Regular Gas or E85 Compare 2005 Ford Explorer FFV 2WD View MPG Estimates Shared By Vehicle Owners...

45

Plug-in Hybrid Electric Vehicles (PHEVs) Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

Program, Advanced Vehicle Testing Activity (AVTA) Plug-in Hybrid Electric Vehicles (PHEVs) Overview Jim Francfort AVTA Principle Investigator Local Climate Leadership Summit May...

46

PHEV and Other Electric Drive Testing Results and Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Vehicle Testing Activity PHEV and Other Electric Drive Testing Results and Resources Jim Francfort Electric Drive Session Alternative Fuels & Vehicles Las Vegas, Nevada -...

47

Virginia EV Road Show - PHEV Operations and Performance  

NLE Websites -- All DOE Office Websites (Extended Search)

- Virginia EV Road Show - PHEV Operations and Performance Jim Francfort Virginia Clean Cities and Hampton Roads Clean Cities Coalition - Virginia Electric Drive Road Show Poquoson,...

48

Microsoft PowerPoint - EnergyCS Altair Nano Prius PHEVs Fleet...  

NLE Websites -- All DOE Office Websites (Extended Search)

North American PHEV Demonstration North American PHEV Demonstration Fleet Summary Report: EnergyCS Prius (Altairnano pack) Number of Vehicles: 2 (EnergyCS Data Loggers) Reporting...

49

TransForum v8n2 - U.S.-Sweden Joint PHEV Research  

NLE Websites -- All DOE Office Websites (Extended Search)

PHEV Research The Argonne Smart Charge System Looking to jointly develop new plug-in hybrid vehicle (PHEV) technology and accelerate its consumer acceptance and...

50

Microsoft Word - PHEV Charge Demand - Tacomo Power INL_EXT-10...  

NLE Websites -- All DOE Office Websites (Extended Search)

facility. This report provides results from charging of several PHEVs at the Tacoma Power facility as a preliminary assessment of how PHEVs will impact the electricity grid....

51

Gas Mileage of 2014 Vehicles by Ford  

NLE Websites -- All DOE Office Websites (Extended Search)

4 Ford Vehicles 4 Ford Vehicles EPA MPG MODEL City Comb Hwy 2014 Ford E150 Van FFV 8 cyl, 5.4 L, Automatic 4-spd, Regular Gas or E85 Compare 2014 Ford E150 Van FFV Gas 12 City 14 Combined 16 Highway E85 9 City 10 Combined 12 Highway 2014 Ford E150 Van FFV 8 cyl, 4.6 L, Automatic 4-spd, Regular Gas or E85 Compare 2014 Ford E150 Van FFV Gas 13 City 15 Combined 16 Highway E85 10 City 11 Combined 12 Highway 2014 Ford E150 Wagon FFV 8 cyl, 5.4 L, Automatic 4-spd, Regular Gas or E85 Compare 2014 Ford E150 Wagon FFV Gas 12 City 13 Combined 16 Highway E85 9 City 10 Combined 12 Highway 2014 Ford E150 Wagon FFV 8 cyl, 4.6 L, Automatic 4-spd, Regular Gas or E85 Compare 2014 Ford E150 Wagon FFV Gas 13 City 14 Combined 16 Highway E85 9 City 10 Combined 12 Highway 2014 Ford E250 Van FFV 8 cyl, 5.4 L, Automatic 4-spd, Regular Gas or E85

52

Gas Mileage of 2012 Vehicles by Ford  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Ford Vehicles 2 Ford Vehicles EPA MPG MODEL City Comb Hwy 2012 Ford E150 Van FFV 8 cyl, 4.6 L, Automatic 4-spd, Regular Gas or E85 Compare 2012 Ford E150 Van FFV Gas 13 City 15 Combined 17 Highway E85 9 City 10 Combined 12 Highway 2012 Ford E150 Van FFV 8 cyl, 5.4 L, Automatic 4-spd, Regular Gas or E85 Compare 2012 Ford E150 Van FFV Gas 12 City 14 Combined 16 Highway E85 9 City 10 Combined 12 Highway 2012 Ford E150 Wagon FFV 8 cyl, 4.6 L, Automatic 4-spd, Regular Gas or E85 Compare 2012 Ford E150 Wagon FFV Gas 13 City 14 Combined 16 Highway E85 9 City 10 Combined 12 Highway 2012 Ford E150 Wagon FFV 8 cyl, 5.4 L, Automatic 4-spd, Regular Gas or E85 Compare 2012 Ford E150 Wagon FFV Gas 12 City 13 Combined 16 Highway E85 9 City 10 Combined 12 Highway 2012 Ford E250 Van FFV 8 cyl, 4.6 L, Automatic 4-spd, Regular Gas or E85

53

Argonne Has Lead Role in DOE's PHEV Technology Evaluation Effort  

E-Print Network (OSTI)

) · Economic Analysis · Energy & Emissions Lifecycle Analysis (GREET) Developing SAE PHEV Fuel Economy Test aftermarket retrofit battery module based upon its lithium-ion batteries. PHEV Market Potential Analysis of Energy laboratory managed by UChicago Argonne, LLC For more information: Argonne National Laboratory

Kemner, Ken

54

PH&EV Research Center Dr. Tom Turrentine Director  

E-Print Network (OSTI)

Introduction of Toyota Aqua Introduction of 3rd Toyota Prius #12;G eneration 3 HEVs 2014 Early core market: 6, Prius top selling vehicle 4 years : 2 million registered California: 10% 3rd quarter of 2013, Prius best by Model Accord PHEV Fusion PHEV C-MAX Energi Prius Plug-In Volt #12;12 Sept. YTD Top 10 selling PEVs

California at Davis, University of

55

TransForum v9n2 - PHEV Research  

NLE Websites -- All DOE Office Websites (Extended Search)

PHEVs Need Further Research for Acceptable Payback PHEVs Need Further Research for Acceptable Payback Fuel Consumption as a Function of Distance PHEV graph In order to double the fuel displacement obtained with a 4kWh battery, the battery size had to be quadrupled to 16kWh. Aymeric Rousseau and his team at Argonne studied the impact of real-world drive cycles on the fuel efficiency and costs of different plug-in hybrid electric vehicle (PHEV) configurations. They found that while different PHEV configurations all demonstrated great potential for replacing gasoline (with less gasoline consumed as more electricity was used), the benefit of adding a larger battery seemed to decrease with increasing battery pack size. "In general, the larger the battery, the more fuel saved," said Rousseau, principal investigator of the vehicle modeling and simulation

56

Gas Mileage of 2011 Vehicles by Ford  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Ford Vehicles 1 Ford Vehicles EPA MPG MODEL City Comb Hwy 2011 Ford Crown Victoria FFV 8 cyl, 4.6 L, Automatic 4-spd, Regular Gas or E85 Compare 2011 Ford Crown Victoria FFV View MPG Estimates Shared By Vehicle Owners Gas 16 City 19 Combined 24 Highway E85 12 City 14 Combined 17 Highway 2011 Ford E150 Van FFV 8 cyl, 5.4 L, Automatic 4-spd, Regular Gas or E85 Compare 2011 Ford E150 Van FFV Gas 12 City 14 Combined 16 Highway E85 9 City 10 Combined 12 Highway 2011 Ford E150 Van FFV 8 cyl, 4.6 L, Automatic 4-spd, Regular Gas or E85 Compare 2011 Ford E150 Van FFV View MPG Estimates Shared By Vehicle Owners Gas 13 City 15 Combined 17 Highway E85 10 City 11 Combined 12 Highway 2011 Ford E150 Wagon FFV 8 cyl, 5.4 L, Automatic 4-spd, Regular Gas or E85 Compare 2011 Ford E150 Wagon FFV Gas 12

57

Gas Mileage of 2013 Vehicles by Ford  

NLE Websites -- All DOE Office Websites (Extended Search)

3 Ford Vehicles 3 Ford Vehicles EPA MPG MODEL City Comb Hwy 2013 Ford C-MAX Hybrid FWD 4 cyl, 2.0 L, Automatic (variable gear ratios), Regular Gasoline Compare 2013 Ford C-MAX Hybrid FWD View MPG Estimates Shared By Vehicle Owners 45 City 43 Combined 40 Highway 2013 Ford C-Max Energi Plug-in Hybrid 4 cyl, 2.0 L, Automatic (variable gear ratios), Regular Gas and Electricity Compare 2013 Ford C-Max Energi Plug-in Hybrid View MPG Estimates Shared By Vehicle Owners Reg. Gas MPG 44 City 43 Combined 41 Highway Elec+Gas kWhrs/100 miles - 34 Combined - MPGe - 100 Combined - 2013 Ford E150 Van FFV 8 cyl, 4.6 L, Automatic 4-spd, Regular Gas or E85 Compare 2013 Ford E150 Van FFV Gas 13 City 15 Combined 17 Highway E85 9 City 10 Combined 12 Highway 2013 Ford E150 Van FFV 8 cyl, 5.4 L, Automatic 4-spd, Regular Gas or E85

58

U.S.-Sweden Joint PHEV Research  

NLE Websites -- All DOE Office Websites (Extended Search)

to jointly develop new plug-in to jointly develop new plug-in hybrid vehicle (PHEV) technology and accelerate its consumer acceptance and commercialization, the U.S. Department of Energy (DOE) and Sweden signed a Memorandum of Understanding (MOU) in July for a one year, $1 million cost-sharing agreement to be equally funded by DOE and the Swedish Energy Agency. Through contacts developed over many years conducting international technology assessment for the Department of Energy, Argonne National Laboratory initiated the MOU, which was signed by DOE Assistant Secretary Alexander Karsner and Director General of the Swedish Energy Agency Tomas Kåberger, on the Swedish island of Gotland. The ceremony included comments by Swedish Deputy Prime Minister Maud Olofsson and U.S. Ambassador to Sweden Michael

59

Vehicle Technologies Office: Workplace Charging Challenge Partner: Ford  

NLE Websites -- All DOE Office Websites (Extended Search)

Ford Motor Company to someone by E-mail Ford Motor Company to someone by E-mail Share Vehicle Technologies Office: Workplace Charging Challenge Partner: Ford Motor Company on Facebook Tweet about Vehicle Technologies Office: Workplace Charging Challenge Partner: Ford Motor Company on Twitter Bookmark Vehicle Technologies Office: Workplace Charging Challenge Partner: Ford Motor Company on Google Bookmark Vehicle Technologies Office: Workplace Charging Challenge Partner: Ford Motor Company on Delicious Rank Vehicle Technologies Office: Workplace Charging Challenge Partner: Ford Motor Company on Digg Find More places to share Vehicle Technologies Office: Workplace Charging Challenge Partner: Ford Motor Company on AddThis.com... Goals Research & Development Testing and Analysis Workplace Charging

60

STATEMENT OF CONSIDERATIONS REQUEST BY FORD MOTOR COMPANY FOR...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of fuel cell technologies. Given the level of Ford's investment and involvement in hybrid vehicle technologies to include fuel cell technology, it is anticipated that Ford...

Note: This page contains sample records for the topic "ford escape phev" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Assessment of Eagle Ford Shale Oil and Gas Resources.  

E-Print Network (OSTI)

??The Eagle Ford play in south Texas is currently one of the hottest plays in the United States. In 2012, the average Eagle Ford rig (more)

Gong, Xinglai

2013-01-01T23:59:59.000Z

62

Plug-In Hybrid Electric Vehicles - PHEV Modeling - Control Strategy  

NLE Websites -- All DOE Office Websites (Extended Search)

Control Strategy Assessment of PHEVs Control Strategy Assessment of PHEVs A generic global optimization algorithm for plug-in hybrid electric vehicle (PHEV) powertrain flows has been developed based on the Bellman optimality principle. Optimization results are used to isolate control patterns, both dependent and independent of the cycle characteristics, in order to develop real-time control strategies in Simulink/Stateflow. These controllers are then implemented in PSAT to validate their performances. Heuristic optimization algorithms (such as DIRECT or genetic algorithms) are then used to tune the parameters of the real-time controller implemented in PSAT. The control strategy development process is described below. PHEV control strategy development process diagram Control Strategy Development Process

63

Electric Vehicles (PHEV and BEV) in the German Electricity System  

NLE Websites -- All DOE Office Websites (Extended Search)

generation) or to use storage devices. Furthermore, it will be discussed whether the load profile of plug-in hybrid vehicles (PHEVs) can be controlled by an indirect energy...

64

Plug-In Hybrid Electric Vehicles - PHEV and HEV Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

Argonne is a major player in the Department of Energy's (DOE's) plug-in hybrid electric vehicle (PHEV) energy storage research and development (R&D) program. DOE has...

65

Locating PHEV Exchange Stations in V2G  

E-Print Network (OSTI)

Plug-in hybrid electric vehicles (PHEVs) are an environmentally friendly technology that is expected to rapidly penetrate the transportation system. Renewable energy sources such as wind and solar have received considerable attention as clean power options for future generation expansion. However, these sources are intermittent and increase the uncertainty in the ability to generate power. The deployment of PHEVs in a vehicle-to-grid (V2G) system provide a potential mechanism for reducing the variability of renewable energy sources. For example, PHEV supporting infrastructures like battery exchange stations that provide battery service to PHEV customers could be used as storage devices to stabilize the grid when renewable energy production is fluctuating. In this paper, we study how to best site these stations in terms of how they can support both the transportation system and the power grid. To model this problem we develop a two-stage stochastic program to optimally locate the stations prior to the realizat...

Pan, Feng; Berscheid, Alan; Izraelevitz, David

2010-01-01T23:59:59.000Z

66

EPRI/IWC - AVTA's PHEV Testing and Demonstration Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

and 100% recharging times * Vehicle specifications 7 Hymotion Prius - UDDS Fuel Use * 5 kWh A123Systems (Li) V1 and Prius packs (AC kWh) Hymotion PHEV Prius MPG & kWh - UDDS...

67

Advanced Vehicle Testing Activity - PHEV Testing Results and...  

NLE Websites -- All DOE Office Websites (Extended Search)

on cycles 7 Baseline Performance Testing Results 8 EnergyCS Prius - UDDS Fuel Use * 9 kWh Valence lithium pack - AC kWh EnergyCS PHEV Prius MPG & kWh - UDDS Testing 180 9 170...

68

Alternative Fuels Data Center: Vermont Laws and Incentives for HEVs / PHEVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

HEVs / PHEVs to someone by E-mail HEVs / PHEVs to someone by E-mail Share Alternative Fuels Data Center: Vermont Laws and Incentives for HEVs / PHEVs on Facebook Tweet about Alternative Fuels Data Center: Vermont Laws and Incentives for HEVs / PHEVs on Twitter Bookmark Alternative Fuels Data Center: Vermont Laws and Incentives for HEVs / PHEVs on Google Bookmark Alternative Fuels Data Center: Vermont Laws and Incentives for HEVs / PHEVs on Delicious Rank Alternative Fuels Data Center: Vermont Laws and Incentives for HEVs / PHEVs on Digg Find More places to share Alternative Fuels Data Center: Vermont Laws and Incentives for HEVs / PHEVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Vermont Laws and Incentives for HEVs / PHEVs The list below contains summaries of all Vermont laws and incentives

69

Alternative Fuels Data Center: Georgia Laws and Incentives for HEVs / PHEVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

HEVs / PHEVs to someone by E-mail HEVs / PHEVs to someone by E-mail Share Alternative Fuels Data Center: Georgia Laws and Incentives for HEVs / PHEVs on Facebook Tweet about Alternative Fuels Data Center: Georgia Laws and Incentives for HEVs / PHEVs on Twitter Bookmark Alternative Fuels Data Center: Georgia Laws and Incentives for HEVs / PHEVs on Google Bookmark Alternative Fuels Data Center: Georgia Laws and Incentives for HEVs / PHEVs on Delicious Rank Alternative Fuels Data Center: Georgia Laws and Incentives for HEVs / PHEVs on Digg Find More places to share Alternative Fuels Data Center: Georgia Laws and Incentives for HEVs / PHEVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Georgia Laws and Incentives for HEVs / PHEVs The list below contains summaries of all Georgia laws and incentives

70

Alternative Fuels Data Center: Indiana Laws and Incentives for HEVs / PHEVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

HEVs / PHEVs to someone by E-mail HEVs / PHEVs to someone by E-mail Share Alternative Fuels Data Center: Indiana Laws and Incentives for HEVs / PHEVs on Facebook Tweet about Alternative Fuels Data Center: Indiana Laws and Incentives for HEVs / PHEVs on Twitter Bookmark Alternative Fuels Data Center: Indiana Laws and Incentives for HEVs / PHEVs on Google Bookmark Alternative Fuels Data Center: Indiana Laws and Incentives for HEVs / PHEVs on Delicious Rank Alternative Fuels Data Center: Indiana Laws and Incentives for HEVs / PHEVs on Digg Find More places to share Alternative Fuels Data Center: Indiana Laws and Incentives for HEVs / PHEVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Indiana Laws and Incentives for HEVs / PHEVs The list below contains summaries of all Indiana laws and incentives

71

Alternative Fuels Data Center: Nevada Laws and Incentives for HEVs / PHEVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

HEVs / PHEVs to someone by E-mail HEVs / PHEVs to someone by E-mail Share Alternative Fuels Data Center: Nevada Laws and Incentives for HEVs / PHEVs on Facebook Tweet about Alternative Fuels Data Center: Nevada Laws and Incentives for HEVs / PHEVs on Twitter Bookmark Alternative Fuels Data Center: Nevada Laws and Incentives for HEVs / PHEVs on Google Bookmark Alternative Fuels Data Center: Nevada Laws and Incentives for HEVs / PHEVs on Delicious Rank Alternative Fuels Data Center: Nevada Laws and Incentives for HEVs / PHEVs on Digg Find More places to share Alternative Fuels Data Center: Nevada Laws and Incentives for HEVs / PHEVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Nevada Laws and Incentives for HEVs / PHEVs The list below contains summaries of all Nevada laws and incentives related

72

Alternative Fuels Data Center: Maine Laws and Incentives for HEVs / PHEVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

HEVs / PHEVs to someone by E-mail HEVs / PHEVs to someone by E-mail Share Alternative Fuels Data Center: Maine Laws and Incentives for HEVs / PHEVs on Facebook Tweet about Alternative Fuels Data Center: Maine Laws and Incentives for HEVs / PHEVs on Twitter Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for HEVs / PHEVs on Google Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for HEVs / PHEVs on Delicious Rank Alternative Fuels Data Center: Maine Laws and Incentives for HEVs / PHEVs on Digg Find More places to share Alternative Fuels Data Center: Maine Laws and Incentives for HEVs / PHEVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Maine Laws and Incentives for HEVs / PHEVs The list below contains summaries of all Maine laws and incentives related

73

Alternative Fuels Data Center: Federal Laws and Incentives for HEVs / PHEVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

HEVs / PHEVs to someone by E-mail HEVs / PHEVs to someone by E-mail Share Alternative Fuels Data Center: Federal Laws and Incentives for HEVs / PHEVs on Facebook Tweet about Alternative Fuels Data Center: Federal Laws and Incentives for HEVs / PHEVs on Twitter Bookmark Alternative Fuels Data Center: Federal Laws and Incentives for HEVs / PHEVs on Google Bookmark Alternative Fuels Data Center: Federal Laws and Incentives for HEVs / PHEVs on Delicious Rank Alternative Fuels Data Center: Federal Laws and Incentives for HEVs / PHEVs on Digg Find More places to share Alternative Fuels Data Center: Federal Laws and Incentives for HEVs / PHEVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Federal Laws and Incentives for HEVs / PHEVs The list below contains summaries of all Federal laws and incentives

74

Alternative Fuels Data Center: Idaho Laws and Incentives for HEVs / PHEVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

HEVs / PHEVs to someone by E-mail HEVs / PHEVs to someone by E-mail Share Alternative Fuels Data Center: Idaho Laws and Incentives for HEVs / PHEVs on Facebook Tweet about Alternative Fuels Data Center: Idaho Laws and Incentives for HEVs / PHEVs on Twitter Bookmark Alternative Fuels Data Center: Idaho Laws and Incentives for HEVs / PHEVs on Google Bookmark Alternative Fuels Data Center: Idaho Laws and Incentives for HEVs / PHEVs on Delicious Rank Alternative Fuels Data Center: Idaho Laws and Incentives for HEVs / PHEVs on Digg Find More places to share Alternative Fuels Data Center: Idaho Laws and Incentives for HEVs / PHEVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idaho Laws and Incentives for HEVs / PHEVs The list below contains summaries of all Idaho laws and incentives related

75

Alternative Fuels Data Center: Utah Laws and Incentives for HEVs / PHEVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

HEVs / PHEVs to someone by E-mail HEVs / PHEVs to someone by E-mail Share Alternative Fuels Data Center: Utah Laws and Incentives for HEVs / PHEVs on Facebook Tweet about Alternative Fuels Data Center: Utah Laws and Incentives for HEVs / PHEVs on Twitter Bookmark Alternative Fuels Data Center: Utah Laws and Incentives for HEVs / PHEVs on Google Bookmark Alternative Fuels Data Center: Utah Laws and Incentives for HEVs / PHEVs on Delicious Rank Alternative Fuels Data Center: Utah Laws and Incentives for HEVs / PHEVs on Digg Find More places to share Alternative Fuels Data Center: Utah Laws and Incentives for HEVs / PHEVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Utah Laws and Incentives for HEVs / PHEVs The list below contains summaries of all Utah laws and incentives related

76

Alternative Fuels Data Center: Oregon Laws and Incentives for HEVs / PHEVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

HEVs / PHEVs to someone by E-mail HEVs / PHEVs to someone by E-mail Share Alternative Fuels Data Center: Oregon Laws and Incentives for HEVs / PHEVs on Facebook Tweet about Alternative Fuels Data Center: Oregon Laws and Incentives for HEVs / PHEVs on Twitter Bookmark Alternative Fuels Data Center: Oregon Laws and Incentives for HEVs / PHEVs on Google Bookmark Alternative Fuels Data Center: Oregon Laws and Incentives for HEVs / PHEVs on Delicious Rank Alternative Fuels Data Center: Oregon Laws and Incentives for HEVs / PHEVs on Digg Find More places to share Alternative Fuels Data Center: Oregon Laws and Incentives for HEVs / PHEVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Oregon Laws and Incentives for HEVs / PHEVs The list below contains summaries of all Oregon laws and incentives related

77

Alternative Fuels Data Center: Alabama Laws and Incentives for HEVs / PHEVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

HEVs / PHEVs to someone by E-mail HEVs / PHEVs to someone by E-mail Share Alternative Fuels Data Center: Alabama Laws and Incentives for HEVs / PHEVs on Facebook Tweet about Alternative Fuels Data Center: Alabama Laws and Incentives for HEVs / PHEVs on Twitter Bookmark Alternative Fuels Data Center: Alabama Laws and Incentives for HEVs / PHEVs on Google Bookmark Alternative Fuels Data Center: Alabama Laws and Incentives for HEVs / PHEVs on Delicious Rank Alternative Fuels Data Center: Alabama Laws and Incentives for HEVs / PHEVs on Digg Find More places to share Alternative Fuels Data Center: Alabama Laws and Incentives for HEVs / PHEVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alabama Laws and Incentives for HEVs / PHEVs The list below contains summaries of all Alabama laws and incentives

78

Alternative Fuels Data Center: Arizona Laws and Incentives for HEVs / PHEVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

HEVs / PHEVs to someone by E-mail HEVs / PHEVs to someone by E-mail Share Alternative Fuels Data Center: Arizona Laws and Incentives for HEVs / PHEVs on Facebook Tweet about Alternative Fuels Data Center: Arizona Laws and Incentives for HEVs / PHEVs on Twitter Bookmark Alternative Fuels Data Center: Arizona Laws and Incentives for HEVs / PHEVs on Google Bookmark Alternative Fuels Data Center: Arizona Laws and Incentives for HEVs / PHEVs on Delicious Rank Alternative Fuels Data Center: Arizona Laws and Incentives for HEVs / PHEVs on Digg Find More places to share Alternative Fuels Data Center: Arizona Laws and Incentives for HEVs / PHEVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Arizona Laws and Incentives for HEVs / PHEVs The list below contains summaries of all Arizona laws and incentives

79

Alternative Fuels Data Center: Florida Laws and Incentives for HEVs / PHEVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

HEVs / PHEVs to someone by E-mail HEVs / PHEVs to someone by E-mail Share Alternative Fuels Data Center: Florida Laws and Incentives for HEVs / PHEVs on Facebook Tweet about Alternative Fuels Data Center: Florida Laws and Incentives for HEVs / PHEVs on Twitter Bookmark Alternative Fuels Data Center: Florida Laws and Incentives for HEVs / PHEVs on Google Bookmark Alternative Fuels Data Center: Florida Laws and Incentives for HEVs / PHEVs on Delicious Rank Alternative Fuels Data Center: Florida Laws and Incentives for HEVs / PHEVs on Digg Find More places to share Alternative Fuels Data Center: Florida Laws and Incentives for HEVs / PHEVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Florida Laws and Incentives for HEVs / PHEVs The list below contains summaries of all Florida laws and incentives

80

Argonne TTRDC - APRF - Research Activities - Through-the-Road Parallel PHEV  

NLE Websites -- All DOE Office Websites (Extended Search)

Through-the-Road (TTR) Parallel PHEV Through-the-Road (TTR) Parallel PHEV ttr on dyno Argonne engineers developed the TTR to be the Lab's own PHEV development platform. As the demand for affordable and efficient PHEVs grows, so does the need to develop cost-effective PHEV technologies and components that are optimized for efficiency and performance. Argonne researchers needed a test platform for evaluating PHEV components, so they created the Through-the-Road (TTR) parallel hybrid electric vehicle. Argonne engineers accomplished this by transforming a Saturn Vue into an in-house PHEV development platform. The TTR allows researchers to run performance tests on a wide variety of PHEV technologies. The TTR is used to test PHEV components and to develop test procedures for competitive evaluation of those technologies. The Argonne-developed control

Note: This page contains sample records for the topic "ford escape phev" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

PHEV Energy Storage Performance/Life/Cost Trade-Off Analysis (Presentation)  

DOE Green Energy (OSTI)

Developed linked parametric modeling tools to mathematically evaluate battery designs to satisfy challenging operational requirements for a PHEV.

Markel, T.; Smith, K.; Pesaran, A.

2008-05-15T23:59:59.000Z

82

Feature - U.S.-Sweden Joint PHEV Research  

NLE Websites -- All DOE Office Websites (Extended Search)

U.S.-Sweden Joint PHEV Research U.S.-Sweden Joint PHEV Research How the Smart Charge System Works How the Smart Charge System Works Looking to jointly develop new plug-in hybrid vehicle (PHEV) technology and accelerate its consumer acceptance and commercialization, the U.S. Department of Energy (DOE) and Sweden signed a Memorandum of Understanding (MOU) in July for a one year, $1 million cost-sharing agreement to be equally funded by DOE and the Swedish Energy Agency. Through contacts developed over many years conducting international technology assessment for the Department of Energy, Argonne National Laboratory initiated the MOU, which was signed by DOE Assistant Secretary Alexander Karsner and Director General of the Swedish Energy Agency Tomas Kåberger, on the Swedish island of Gotland. The ceremony included comments

83

One Million PHEVs by 2015: Challenges for Advanced Battery Technology  

DOE Green Energy (OSTI)

Lithium-ion batteries for hybrid electric vehicles (HEVs) have recently reached commercialization. R&D focus remains on cost reduction and improved abuse tolerance. DOE's battery R&D program has evolved to focus on high-energy plug-in hybrid electric vehicle (PHEV) systems. Li-ion represents the most promising chemistry for PHEVs because of its high energy density, high power capability and potential longer life & lower cost. Lack of domestic battery manufacturing remains a significant challenge. The 2009 Economic Recovery Act provides significant funding to address it. Long term success of PHEV & electric vehicle (EV) Li-ion batteries depends on further cost reduction and performance/life/safety improvements. Multi-physics CAE modeling is key enabler.

Smith, K.

2009-12-02T23:59:59.000Z

84

Copyright 2008 No part of this presentation may be reproduced in any form without prior authorization.  

E-Print Network (OSTI)

demon- stration project for Xcel Energy, convert- ing a Ford Escape Hybrid PHEV vehicle to put power. Utilizing fully automated fast processing, the new technology will be capable of produc- ing one solar cell

Amin, S. Massoud

85

STATEMENT OF CONSIDERATIONS REQUEST BY FORD MOTOR COMPANY (FORD) FOR AN ADVANCE WAIVER OF  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FORD MOTOR COMPANY (FORD) FOR AN ADVANCE WAIVER OF FORD MOTOR COMPANY (FORD) FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN PATENT RIGHTS UNDER PACIFIC NORTHWEST NATIONAL LABORATORY (PNNL) SUBCONTRACT NO. 184884; W(A) 2012-022 FORD has requested a waiver of domestic and foreign patent rights of the United States of America in all subject inventions arising from its work under subcontract number 184884 to the prime contract DE-AC05-76RLO 1830, the contract between DOE and the Battelle Memorial Institute, as the contractor of PNN L. The subcontract is entitled "Synergistically Enhanced Materials and Design Parameters for Reducing the Cost of Hydrogen Storage Tanks." The subcontract is part of an award to PNNL under the Research and Development for Hydrogen Storage Funding Opportunity Announcement (DE-FOA-0000421) sponsored by DOE'

86

Plug-In Hybrid Electric Vehicles - PHEV Modeling - Model Validation  

NLE Websites -- All DOE Office Websites (Extended Search)

Chevy Equinox, Ford Explorer) have been validated within 1% of fuel economy. Hybrid electric vehicles (e.g., Honda Insight, Toyota Prius, Lexus RX400h) have been validated...

87

Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicle (PHEV) Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Plug-In Hybrid Plug-In Hybrid Electric Vehicle (PHEV) Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicle (PHEV) Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicle (PHEV) Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicle (PHEV) Tax Credit on Google Bookmark Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicle (PHEV) Tax Credit on Delicious Rank Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicle (PHEV) Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicle (PHEV) Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

88

Plug-In Hybrid Electric Vehicles - PHEV Modeling - Component Requirement  

NLE Websites -- All DOE Office Websites (Extended Search)

Requirement Definition for PHEVs Requirement Definition for PHEVs One of the main objectives of the U.S. Department of Energy's (DOE's) Plug-in Hybrid Electric Vehicle R&D Plan (2.2Mb pdf) is to "determine component development requirements" through simulation analysis. PSAT has been used to design and evaluate a series of PHEVs to define the requirements of different components, focusing on the energy storage system's power and energy. Several vehicle classes (including midsize car, crossover SUV and midsize SUV) and All Electric Range (AER from 10 to 40 miles) were considered. The preliminary simulations were performed at Argonne using a pre-transmission parallel hybrid configuration with an energy storage system sized to run the Urban Dynanometer Driving Schedule (UDDS) in electric mode. Additional powertrain configurations and sizing algorithm are currently being considered. Trade-off studies are being performed as ways to achieve some level of performance while easing requirements on one area or another. As shown in the figure below, the FreedomCAR Energy Storage Technical Team selected a short term and a long term All Electric Range (AER) goals based on several vehicle simulations.

89

TransForum v8n2 - Drive Cycle Impact on PHEVs  

NLE Websites -- All DOE Office Websites (Extended Search)

studied the impact of drive cycles on the component requirements of plug-in hybrid electric vehicles (PHEVs). Results showed that vehicles designed to satisy the urban...

90

Microsoft PowerPoint - EnergyCS Valence Prius PHEVs Fleet report...  

NLE Websites -- All DOE Office Websites (Extended Search)

Activity North American PHEV Demonstration Fleet Summary Report:- EnergyCS Prius (Valance pack) Number of Vehicles: 5 (EnergyCS Data Logger) Reporting Period: 2008 Summary *...

91

Learning from Consumers: Plug-In Hybrid Electric Vehicle (PHEV) Demonstration and Consumer Education, Outreach, and Market Research Program  

E-Print Network (OSTI)

1) HEV to PHEV Conversions Toyota Priuses were purchased anddisplays based on the stock Toyota Prius Energy Monitor andin the 2007 and 2008 model Toyota Priuses converted to PHEVs

Kurani, Kenneth S; Axsen, Jonn; Caperello, Nicolette; Davies, Jamie; Stillwater, Tai

2009-01-01T23:59:59.000Z

92

Women @ Energy: Kelley Herndon Ford | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Kelley Herndon Ford Kelley Herndon Ford Women @ Energy: Kelley Herndon Ford March 11, 2013 - 10:48am Addthis Kelley Herndon Ford works at Lawrence Livermore National Laboratory. Kelley Herndon Ford works at Lawrence Livermore National Laboratory. Kelley Herndon Ford works at Lawrence Livermore National Laboratory. She is Deputy Project Leader for a cyber security research project in Global Security, Associate Division Leader for Global Security Computing Applications Division, and principal investigator for an LDRD project. Kelley's expertise is in applying machine learning and data mining algorithms to real-world problems, such as cyber security, radiation detection, and entity disambiguation. She received her MS in Computer Science in 2005 and BS in chemistry in 1997 from Stanford University.

93

Impact of Dynamic PHEVs Load on Renewable Sources based Distribution System  

E-Print Network (OSTI)

.Roy@student.adfa.edu.au Abstract--In this paper, charging effect of dynamic Plug in Hybrid Electric Vehicle (PHEV) is presented Plug in Hybrid Electrical Vehicles (PHEVs) can be a strong alternative to the conventional vehicle due to advances in bat- tery and hybrid-electric power technologies, coupled with the financial, energy security

Pota, Himanshu Roy

94

A Multi Agent-Based Framework for Simulating Household PHEV Distribution and Electric Distribution Network Impact  

DOE Green Energy (OSTI)

The variation of household attributes such as income, travel distance, age, household member, and education for different residential areas may generate different market penetration rates for plug-in hybrid electric vehicle (PHEV). Residential areas with higher PHEV ownership could increase peak electric demand locally and require utilities to upgrade the electric distribution infrastructure even though the capacity of the regional power grid is under-utilized. Estimating the future PHEV ownership distribution at the residential household level can help us understand the impact of PHEV fleet on power line congestion, transformer overload and other unforeseen problems at the local residential distribution network level. It can also help utilities manage the timing of recharging demand to maximize load factors and utilization of existing distribution resources. This paper presents a multi agent-based simulation framework for 1) modeling spatial distribution of PHEV ownership at local residential household level, 2) discovering PHEV hot zones where PHEV ownership may quickly increase in the near future, and 3) estimating the impacts of the increasing PHEV ownership on the local electric distribution network with different charging strategies. In this paper, we use Knox County, TN as a case study to show the simulation results of the agent-based model (ABM) framework. However, the framework can be easily applied to other local areas in the US.

Cui, Xiaohui [ORNL; Liu, Cheng [ORNL; Kim, Hoe Kyoung [ORNL; Kao, Shih-Chieh [ORNL; Tuttle, Mark A [ORNL; Bhaduri, Budhendra L [ORNL

2011-01-01T23:59:59.000Z

95

Secondary Use of PHEV and EV Batteries: Opportunities & Challenges (Presentation)  

SciTech Connect

NREL and partners will investigate the reuse of retired lithium ion batteries for plug-in hybrid, hybrid, and electric vehicles in order to reduce vehicle costs and emissions and curb our dependence on foreign oil. A workshop to solicit industry feedback on the process is planned. Analyses will be conducted, and aged batteries will be tested in two or three suitable second-use applications. The project is considering whether retired PHEV/EV batteries have value for other applications; if so, what are the barriers and how can they be overcome?

Neubauer, J.; Pesaran, A.; Howell, D.

2010-05-01T23:59:59.000Z

96

Bi-Directional DC-DC Converter for PHEV Applications  

DOE Green Energy (OSTI)

Plug-In Hybrid Electric Vehicles (PHEV) require high power density energy storage system (ESS) for hybrid operation and high energy density ESS for Electric Vehicle (EV) mode range. However, ESS technologies to maximize power density and energy density simultaneously are not commercially feasible. The use of bi-directional DC-DC converter allows use of multiple energy storage, and the flexible DC-link voltages can enhance the system efficiency and reduce component sizing. This will improve fuel consumption, increase the EV mode range, reduce the total weight, reduce battery initial and life cycle cost, and provide flexibility in system design.

Abas Goodarzi

2011-01-31T23:59:59.000Z

97

Professional Supply, Inc (PSI) & Ford Motor Company Teaming Profile...  

NLE Websites -- All DOE Office Websites (Extended Search)

Professional Supply, Inc (PSI) & Ford Motor Company Teaming Profile Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing...

98

Siemens Building Technologies & Ford Motor Company Teaming Profile...  

NLE Websites -- All DOE Office Websites (Extended Search)

& Ford Motor Company Teaming Profile Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new...

99

Johnson Controls & Ford Motor Company Teaming Profile | ENERGY...  

NLE Websites -- All DOE Office Websites (Extended Search)

Johnson Controls & Ford Motor Company Teaming Profile Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings...

100

STATEMENT OF CONSIDERATIONS Request by Ford Motor Company Research...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

that grant of the waiver should not affect competition because there are severed other vehicle Original Equipment Manufacturers (OEMs) pursuing research in this area. Ford also...

Note: This page contains sample records for the topic "ford escape phev" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

President Ford Signs the Energy Reorganization Act of 1974 |...  

National Nuclear Security Administration (NNSA)

Ford Signs the Energy Reorganization Act of 1974 | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy...

102

Ford F250 Dedicated CNG Pickup  

DOE Green Energy (OSTI)

The U.S. Department of Energy (DOE) is encouraging the use of alternative fuels and alternative fuel vehicles (AFVs). To support this activity, DOE has directed the National Renewable Energy Laboratory (NREL) to conduct projects to evaluate the performance and acceptability of light-duty AFVs. In this study, we tested a pair of 1998 Ford F-250 pickups: one dedicated compressed natural gas (CNG) model and a gasoline model as closely matched as possible. Each vehicle was run through a series of tests to evaluate acceleration, fuel economy, braking, and cold-start capabilities, as well as more subjective performance indicators such as handling, climate control, and noise.

Eudy, L.

1999-06-24T23:59:59.000Z

103

Microsoft PowerPoint - 120824_US-China_Battery_Workshop_-_Ford...  

NLE Websites -- All DOE Office Websites (Extended Search)

Confidential Rechargeable Energy Storage System (RESS) x Safety Research US-China EV & Battery Workshop August 24, 2012 Ford Confidential Page 2 Ford Battery Safety Research System...

104

Who Will More Likely Buy PHEV: A Detailed Market Segmentation Analysis  

DOE Green Energy (OSTI)

Understanding the diverse PHEV purchase behaviors among prospective new car buyers is key for designing efficient and effective policies for promoting new energy vehicle technologies. The ORNL MA3T model developed for the U.S. Department of Energy is described and used to project PHEV purchase probabilities by different consumers. MA3T disaggregates the U.S. household vehicle market into 1458 consumer segments based on region, residential area, driver type, technology attitude, home charging availability and work charging availability and is calibrated to the EIA s Annual Energy Outlook. Simulation results from MA3T are used to identify the more likely PHEV buyers and provide explanations. It is observed that consumers who have home charging, drive more frequently and live in urban area are more likely to buy a PHEV. Early adopters are projected to be more likely PHEV buyers in the early market, but the PHEV purchase probability by the late majority consumer can increase over time when PHEV gradually becomes a familiar product. Copyright Form of EVS25.

Lin, Zhenhong [ORNL; Greene, David L [ORNL

2010-01-01T23:59:59.000Z

105

West Ford Flat Geothermal Facility | Open Energy Information  

Open Energy Info (EERE)

Ford Flat Geothermal Facility Ford Flat Geothermal Facility Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home West Ford Flat Geothermal Facility General Information Name West Ford Flat Geothermal Facility Facility West Ford Flat Sector Geothermal energy Location Information Location Clear Lake, California Coordinates 38.788136285865°, -122.72210240364° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.788136285865,"lon":-122.72210240364,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

106

Argonne TTRDC - D3 (Downloadable Dynamometer Database) - 2012 Ford Focus  

NLE Websites -- All DOE Office Websites (Extended Search)

Fusion V6 Fusion V6 ford fusion front ford fusion back 2012 Ford Fusion V6- front 2012 Ford Fusion V6- rear The 2012 Ford Fusion with 3.0L V6 engine was evaluated to develop a baseline database of conventional (non-hybrid) vehicle technologies with which advanced technologies vehicles could be compared. The vehicles tested during this program either serve as direct comparisons to advanced technology vehicles, or demonstrated unique design attributes which affected parameters such as: Fuel consumption Idle fuel flow requirements Powertrain efficiency Shifting patterns, and required gear ratios Implications from varying driver aggressiveness Key Technology 3.0 liter V6 FFV 6 speed standard transmission Report Summary Report (pdf) Testing Summary (pdf) Data Download all data (zip)

107

THERMALLY DRIVEN ATMOSPHERIC ESCAPE  

Science Conference Proceedings (OSTI)

Accurately determining the escape rate from a planet's atmosphere is critical for determining its evolution. A large amount of Cassini data is now available for Titan's upper atmosphere and a wealth of data is expected within the next decade on escape from Pluto, Mars, and extra-solar planets. Escape can be driven by upward thermal conduction of energy deposited well below the exobase, as well as by nonthermal processes produced by energy deposited in the exobase region. Recent applications of a model for escape driven by upward thermal conduction, called the slow hydrodynamic escape model, have resulted in surprisingly large loss rates for the atmosphere of Titan, Saturn's largest moon. Based on a molecular kinetic simulation of the exobase region, these rates appear to be orders of magnitude too large. Therefore, the slow hydrodynamic model is evaluated here. It is shown that such a model cannot give a reliable description of the atmospheric temperature profile unless it is coupled to a molecular kinetic description of the exobase region. Therefore, the present escape rates for Titan and Pluto must be re-evaluated using the atmospheric model described here.

Johnson, Robert E., E-mail: rej@virginia.ed [Engineering Physics, Thornton Hall B102, University of Virginia, Charlottesville, VA 22902 (United States); Physics Department, New York University, New York, NY 10003 (United States)

2010-06-20T23:59:59.000Z

108

Plug-In Hybrid Electric Vehicles - PHEV Modeling - Component Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Technologies Impact on Fuel Efficiency Technologies Impact on Fuel Efficiency One of the main objectives of the U.S. Department of Energy's (DOE's) Plug-in Hybrid Electric Vehicle (PHEV) R&D Plan (2.2Mb pdf) is to "determine component development requirements" through simulation analysis. Overall fuel efficiency is affected by component technologies from a component sizing and efficiency aspect. To properly define component requirements, several technologies for each of the main components (energy storage, engine and electric machines) are being compared at Argonne using PSAT. Per the R&D plan, several Li-ion battery materials are being modeled to evaluate their impacts on fuel efficiency and vehicle mass. Different Power to Energy ratios are being considered to understand the relative impact of power and energy.

109

PHEVs are More about the grid than the vehicles  

SciTech Connect

Plug-in hybrid electric vehicles (PHEVs) could be used as an effective storage medium to absorb intermittent renewable energy when it is available. Charged vehicles can run on the stored energy when needed. A recent study by the Pacific Northwest National Laboratory concluded that some 73 percent of U.S. light vehicles can be supplied with the existing utility infrastructure in place, provided the charging was restricted to off-peak periods. That would reduce U.S. oil imports by 6.2 million barrels per day, roughly 52 percent of U.S. oil imports. The limiting factors increasingly appear to be on the utility side, for example, making sure that the vehicles are charged during off-peak hours at discounted prices.

NONE

2009-01-15T23:59:59.000Z

110

High Power SiC Modules for HEVs and PHEVs  

DOE Green Energy (OSTI)

With efforts to reduce the cost, size, and thermal management systems for the power electronics drivetrain in hybrid electric vehicles (HEVs) and plug-in hybrid electric vehicles (PHEVs), wide band gap semiconductors including silicon carbide (SiC) have been identified as possibly being a partial solution. Research on SiC power electronics has shown their higher efficiency compared to Si power electronics due to significantly lower conduction and switching losses. This paper focuses on the development of a high power module based on SiC JFETs and Schottky diodes. Characterization of a single device, a module developed using the same device, and finally an inverter built using the modules is presented. When tested at moderate load levels compared to the inverter rating, an efficiency of 98.2% was achieved by the initial prototype.

Chinthavali, Madhu Sudhan [ORNL; Tolbert, Leon M [ORNL; Zhang, Hui [ORNL; Han, Jung H [ORNL; Barlow, Fred D. [University of Idaho; Ozpineci, Burak [ORNL

2010-01-01T23:59:59.000Z

111

Escape & Defense I. Interactions with predators  

E-Print Network (OSTI)

= immunity Crocodile Komodo dragon Anaconda Tortoise #12;3 II. Escaping Predation Optimal escape should

Dever, Jennifer A.

112

Ford Taurus Ethanol-Fueled Sedan  

DOE Green Energy (OSTI)

The U.S. Department of Energy (DOE) is encouraging the use of alternative fuels and alternative fuel vehicles (AFVs). To support this activity, DOE has directed the National Renewable Energy Laboratory (NREL) to conduct projects to evaluate the performance and acceptability of light-duty AFVs. In this study, we tested a pair of 1998 Ford Tauruses: one E85 (85% gasoline/15% ethanol) model (which was tested on both E85 and gasoline) and a gasoline model as closely matched as possible. Each vehicle was run through a series of tests to evaluate acceleration, fuel economy, braking, and cold-start capabilities, as well as more subjective performance indicators such as handling, climate control, and noise.

Eudy, L.

1999-06-24T23:59:59.000Z

113

Oregon E.V. Road Map - Electric Drive Vehicle (PHEVs) Testing...  

NLE Websites -- All DOE Office Websites (Extended Search)

Oregon E.V. Road Map - Electric Drive Vehicle (PHEVs) Testing Activities and Results Jim Francfort E.V. Road Map - Preparing Oregon for the Introduction of Electric Vehicles...

114

Deriving In-Use PHEV Fuel Economy Predictions from Standardized Test Cycle Results: Preprint  

DOE Green Energy (OSTI)

Explores the issue of how to apply an adjustment method to raw plug-in hybrid vehicle dynamometer test results to better estimate PHEVs' in-use fuel and electricity consumption.

Gonder, J.; Brooker, A.; Carlson, R.; Smart, J.

2009-08-01T23:59:59.000Z

115

Demand response control for PHEV charging stations by dynamic price adjustments  

Science Conference Proceedings (OSTI)

Because of their economical operation and low environmental pollution, PHEVs (Plug-in Hybrid Electric Vehicles) are rapidly substituting gasoline vehicles. However, there still exist obstacles to proliferating their use, such as their relatively short ...

Daehyun Ban; George Michailidis; Michael Devetsikiotis

2012-01-01T23:59:59.000Z

116

Austin Energy AltCar Expo - AVTA's PHEV Testing and Demonstration...  

NLE Websites -- All DOE Office Websites (Extended Search)

Economy Driving Schedule) dynamometer test cycles 6 Hymotion Prius - UDDS Fuel Use * 5 kWh A123Systems (Li) V1 and Prius packs (AC kWh) Hymotion PHEV Prius MPG & kWh - UDDS...

117

Plug-in Hybrid Electric Vehicle (PHEV) Prototype Testing and Evaluation -- Data Collection and Analysis  

Science Conference Proceedings (OSTI)

In 2003, EPRI and DaimlerChrysler initiated a collaborative effort to develop and demonstrate a Plug-in Hybrid Electric Vehicle (PHEV) version of DaimlerChrysler's Sprinter commercial van. PHEV Sprinters were subsequently developed and used in limited fleet testing at several locations within the United States. As part of this effort, EPRI took on the responsibility of managing data acquisition and analysis. This report describes the data analysis toolkit EPRI created as part of an ongoing effort to eval...

2008-12-16T23:59:59.000Z

118

FY12 annual Report: PHEV Engine Control and Energy Management Strategy  

DOE Green Energy (OSTI)

The objectives are: (1) Investigate novel engine control strategies targeted at rapid engine/catalyst warming for the purpose of mitigating tailpipe emissions from plug-in hybrid electric vehicles (PHEV) exposed to multiple engine cold start events; (2) Optimize integration of engine control strategies with hybrid supervisory control strategies in order to reduce cold start emissions and fuel consumption of PHEVs; and (3) Ensure that development of new vehicle technologies complies with existing emission standards.

Chambon, Paul H [ORNL

2012-05-01T23:59:59.000Z

119

Plug-In 2010 Template  

Science Conference Proceedings (OSTI)

... InvergerTM) Escape PHEV systems, CARB Certified, FMVSS Prius PHEV systems Core Battery Technologies Staff ...

2011-11-03T23:59:59.000Z

120

Fuel Economy of the 2014 Ford Focus Electric  

NLE Websites -- All DOE Office Websites (Extended Search)

Ford Focus Electric Search for Other Vehicles View the Mobile Version of This Page Automatic (A1) Electricity Compare Side-by-Side All-Electric Vehicle EPA Fuel Economy Miles per...

Note: This page contains sample records for the topic "ford escape phev" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Low Dose Radiation Research Program: John R. Ford  

NLE Websites -- All DOE Office Websites (Extended Search)

2002 Workshop: Biological Response of Individual Cells Following Electron Microbeam Irradiation Braby, L.A. and Ford, J.R., Texas A&M University, College Station TX Publications...

122

Learning from Consumers: Plug-In Hybrid Electric Vehicle (PHEV) Demonstration and Consumer Education, Outreach, and Market Research Program  

E-Print Network (OSTI)

for plug-in hybrid electric vehicles (PHEVs): Goals and thetechnology: California's electric vehicle program. Scienceand Impacts of Hybrid Electric Vehicle Options for a Compact

Kurani, Kenneth S; Axsen, Jonn; Caperello, Nicolette; Davies, Jamie; Stillwater, Tai

2009-01-01T23:59:59.000Z

123

Learning from Consumers: Plug-In Hybrid Electric Vehicle (PHEV) Demonstration and Consumer Education, Outreach, and Market Research Program  

E-Print Network (OSTI)

electricity and actual electricity demand to recharge PHEVs.the Project households, electricity demand to recharge theirAs with weekday electricity demand, most actual weekend

Kurani, Kenneth S; Axsen, Jonn; Caperello, Nicolette; Davies, Jamie; Stillwater, Tai

2009-01-01T23:59:59.000Z

124

Deriving In-Use PHEV Fuel Economy Predictions from Standardized Test Cycle Results  

DOE Green Energy (OSTI)

Plug-in hybrid electric vehicles (PHEVs) have potential to reduce or eliminate the U.S. dependence on foreign oil. Quantifying the amount of petroleum each uses, however, is challenging. To estimate in-use fuel economy for conventional vehicles the Environmental Protection Agency (EPA) conducts chassis dynamometer tests on standard historic drive cycles and then adjusts the resulting raw fuel economy measurements downward. Various publications, such as the forthcoming update to the SAE J1711 recommended practice for PHEV fuel economy testing, address the challenges of applying standard test procedures to PHEVs. This paper explores the issue of how to apply an adjustment method to such raw PHEV dynamometer test results in order to more closely estimate the in-use fuel and electricity consumption characteristics of these vehicles. The paper discusses two possible adjustment methods, and evaluates one method by applying it to dynamometer data and comparing the result to in-use fleet data (on an aftermarket conversion PHEV). The paper will also present the methodologies used to collect the data needed for this comparison.

John Smart; Richard "Barney" Carlson; Jeff Gonder; Aaron Brooker

2009-09-01T23:59:59.000Z

125

PHEV Energy Use Estimation: Validating the Gamma Distribution for Representing the Random Daily Driving Distance  

SciTech Connect

The petroleum and electricity consumptions of plug-in hybrid electric vehicles (PHEVs) are sensitive to the variation of daily vehicle miles traveled (DVMT). Some studies assume DVMT to follow a Gamma distribution, but such a Gamma assumption is yet to be validated. This study finds the Gamma assumption valid in the context of PHEV energy analysis, based on continuous GPS travel data of 382 vehicles, each tracked for at least 183 days. The validity conclusion is based on the found small prediction errors, resulting from the Gamma assumption, in PHEV petroleum use, electricity use, and energy cost. The finding that the Gamma distribution is valid and reliable is important. It paves the way for the Gamma distribution to be assumed for analyzing energy uses of PHEVs in the real world. The Gamma distribution can be easily specified with very few pieces of driver information and is relatively easy for mathematical manipulation. Given the validation in this study, the Gamma distribution can now be used with better confidence in a variety of applications, such as improving vehicle consumer choice models, quantifying range anxiety for battery electric vehicles, investigating roles of charging infrastructure, and constructing online calculators that provide personal estimates of PHEV energy use.

Lin, Zhenhong [ORNL; Dong, Jing [ORNL; Liu, Changzheng [ORNL; Greene, David L [ORNL

2012-01-01T23:59:59.000Z

126

Drive Cycle Analysis, Measurement of Emissions and Fuel Consumption of a PHEV School Bus: Preprint  

DOE Green Energy (OSTI)

The National Renewable Energy Laboratory (NREL) collected and analyzed real-world school bus drive cycle data and selected similar standard drive cycles for testing on a chassis dynamometer. NREL tested a first-generation plug-in hybrid electric vehicle (PHEV) school bus equipped with a 6.4L engine and an Enova PHEV drive system comprising a 25-kW/80 kW (continuous/peak) motor and a 370-volt lithium ion battery pack. A Bluebird 7.2L conventional school bus was also tested. Both vehicles were tested over three different drive cycles to capture a range of driving activity. PHEV fuel savings in charge-depleting (CD) mode ranged from slightly more than 30% to a little over 50%. However, the larger fuel savings lasted over a shorter driving distance, as the fully charged PHEV school bus would initially operate in CD mode for some distance, then in a transitional mode, and finally in a charge-sustaining (CS) mode for continued driving. The test results indicate that a PHEV school bus can achieve significant fuel savings during CD operation relative to a conventional bus. In CS mode, the tested bus showed small fuel savings and somewhat higher nitrogen oxide (NOx) emissions than the baseline comparison bus.

Barnitt, R.; Gonder, J.

2011-04-01T23:59:59.000Z

127

AvAilAble for licensing Higher-performance, more cost-effective batteries for PHEVs and HEVs.  

E-Print Network (OSTI)

AvAilAble for licensing Higher-performance, more cost-effective batteries for PHEVs and HEVs. Benefits Higher-performance, more cost-effective batteries for PHEVs and HEVs. Reduced costs by lowering cost is easier, faster, and more cost-effective. Electrode Materials for Rechargeable Li-ion Batteries

Kemner, Ken

128

Argonne TTRDC - TransForum v10n1 - Taking PHEVs Farther on a Single Battery  

NLE Websites -- All DOE Office Websites (Extended Search)

Charging Ahead: Taking PHEVs Farther on a Single Battery Charge Charging Ahead: Taking PHEVs Farther on a Single Battery Charge Ultracapacitors Ultracapacitors will dramatically boost the power of lithium-ion batteries, enabling plug-in vehicles to travel much further on a single charge. Every six months, we're reminded to change the batteries in our household appliances: smoke alarms, flashlights and radios. But what if you had to change the battery in your plugin hybrid electric vehicle (PHEV) just as often? Fortunately, researchers at Argonne may have found a way to exponentially increase the calendar and cycle lifetimes of lithium-ion batteries. Electric double-layer capacitors- typically referred to as ultracapacitors-have an energy density thousands of times greater than conventional capacitors and a power density hundreds of times greater than

129

Microsoft Word - EVS25_Primary Factors Impact Fuel Consumption of PHEV_FINAL.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

EVS-25 Shenzhen, China, Nov. 5-9, 2010 EVS-25 Shenzhen, China, Nov. 5-9, 2010 The 25th World Battery, Hybrid and Fuel Cell Electric Vehicle Symposium & Exhibition Factors Affecting the Fuel Consumption of Plug-In Hybrid Electric Vehicles Richard 'Barney' Carlson, Matthew G. Shirk, and Benjamin M. Geller Energy Storage and Transportation Systems Department, Idaho National Laboratory 2525 N. Fremont Ave., Idaho Falls, ID 83401, USA E-mail: richard.carlson@inl.gov Abstract- Plug-in hybrid electric vehicles (PHEVs) have proven to significantly reduce petroleum consumption when compared to conventional internal combustion engine vehicles by utilizing onboard electrical energy storage for propulsion. Through extensive testing of PHEVs, analysis has shown that fuel consumption of PHEVs is more

130

Examination of a PHEV Bi-Directional Charger System for V2G Reactive Power Compensation  

SciTech Connect

Plug-in hybrid electric vehicles (PHEVs) potentially have the capability to fulfill the energy storage needs of the electric grid by supplying ancillary services such as reactive power compensation. However, in order to allow bidirectional power transfer, the PHEV battery charger should be designed to manage such capability. While many different battery chargers have been available since the inception of the first electric vehicles (EVs), an on-board, conductive charger with bidirectional power transferring capability have recently drawn attention due to their inherent advantages in charging accessibility, ease of use and efficiency. In this study, a reactive power compensation case study using the inverter dc-link capacitor is given when a PHEV battery is under charging operation. Finally, the impact of providing these services on the batteries is also explained.

Kisacikoglu, Mithat C [ORNL; Ozpineci, Burak [ORNL; Tolbert, Leon M [ORNL

2010-01-01T23:59:59.000Z

131

A Fully Directional Universal Power Electronic Interface for EV, HEV, and PHEV Applications  

SciTech Connect

This study focuses on a universal power electronic interface that can be utilized in any type of the electric vehicles, hybrid electric vehicles, and plug-in hybrid electric vehicles (PHEVs). Basically, the proposed converter interfaces the energy storage device of the vehicle with the motor drive and the external charger, in case of PHEVs. The proposed converter is capable of operating in all directions in buck or boost modes with a noninverted output voltage (positive output voltage with respect to the input) and bidirectional power flow.

Onar, Omer C [ORNL

2012-01-01T23:59:59.000Z

132

Design of a Lithium-ion Battery Pack for PHEV Using a Hybrid Optimization Method  

E-Print Network (OSTI)

Design of a Lithium-ion Battery Pack for PHEV Using a Hybrid Optimization Method Nansi Xue1 Abstract This paper outlines a method for optimizing the design of a lithium-ion battery pack for hy- brid, volume or material cost. Keywords: Lithium-ion, Optimization, Hybrid vehicle, Battery pack design

Papalambros, Panos

133

Design Optimization of PHEV and EREV Powertrain Architectures - Performance and Efficiency  

Science Conference Proceedings (OSTI)

This project investigates design optimization of plug-in hybrid electric vehicle (PHEV) and extended range electric vehicle (EREV) powertrain architectures in terms of performance and efficiency. The motivation behind this initial effort is to develop a comparative method for assessing design choices for a given vehicle class that can be used to test those design choices through sensitivity analysis in later investigations.

2008-12-16T23:59:59.000Z

134

Towards Optimal Energy Store-Carry-and-Deliver for PHEVs via V2G System  

E-Print Network (OSTI)

electric vehicle (PHEV) with a realistic battery model, which is general for both battery electric cars, Weihua Zhuang, and Xuemin (Sherman) Shen Department of Electrical and Computer Engineering, University to enable bidirectional energy delivery between the power grid and plug- in electric vehicles. Communication

Zhuang, Weihua

135

Argonne TTRDC - D3 (Downloadable Dynamometer Database) - 2012 Ford F150  

NLE Websites -- All DOE Office Websites (Extended Search)

Ford F150 Ecoboost Ford F150 Ecoboost ford f150 front ford f150 rear 2012 Ford F150 Ecoboost - front 2012 Ford F150 Ecoboost - rear The 2012 Ford F150 Ecoboost was evaluated to develop a baseline database of conventional (non-hybrid) vehicle technologies with which advanced technologies vehicles could be compared. The vehicles tested during this program either serve as direct comparisons to advanced technology vehicles, or demonstrated unique design attributes which affected parameters such as: Fuel consumption Idle fuel flow requirements Powertrain efficiency Shifting patterns, and required gear ratios Implications from varying driver aggressiveness Key Technology 3.5 liter twin turbocharged V6 with direct injection 6 speed auto Report Summary Report (pdf) Testing Summary (pdf)

136

Plug-In Electric Vehicle Evaluation and Test Data Analysis  

Science Conference Proceedings (OSTI)

The goal of this analysis was to investigate the different impacts that driver behavior and environment can have on fuel economy and battery energy consumption in plug-in hybrid electric vehicles (PHEVs). Specifically, the PHEVs studied were part of the Ford Escape Advanced Research Fleet, which is composed of over 20 vehicles used by utilities and government agencies during a multi-year project. Results of this analysis can be used to educate drivers with more optimal driving practices to maximize ...

2012-12-20T23:59:59.000Z

137

Electricity Demand of PHEVs Operated by Private Households and Commercial Fleets: Effects of Driving and Charging Behavior  

SciTech Connect

Automotive and energy researchers have made considerable efforts to predict the impact of plug-in hybrid vehicle (PHEV) charging on the electrical grid. This work has been done primarily through computer modeling and simulation. The US Department of Energys (DOE) Advanced Vehicle Testing Activity (AVTA), in partnership with the University of California at Daviss Institute for Transportation Stuides, have been collecting data from a diverse fleet of PHEVs. The AVTA is conducted by the Idaho National Laboratory for DOEs Vehicle Technologies Program. This work provides the opportunity to quantify the petroleum displacement potential of early PHEV models, and also observe, rather than simulate, the charging behavior of vehicle users. This paper presents actual charging behavior and the resulting electricity demand from these PHEVs operating in undirected, real-world conditions. Charging patterns are examined for both commercial-use and personal-use vehicles. Underlying reasons for charging behavior in both groups are also presented.

John Smart; Matthew Shirk; Ken Kurani; Casey Quinn; Jamie Davies

2010-11-01T23:59:59.000Z

138

The Early U.S. Market for PHEVs: Anticipating Consumer Awareness, Recharge Potential, Design Priorities and Energy Impacts  

E-Print Network (OSTI)

for plug-in hybrid electric vehicles (PHEVs): Goals and theand Impacts of Hybrid Electric Vehicle Options for a Compactof Plug-In Hybrid Electric Vehicles, Volume 1: Nationwide

Axsen, Jonn; Kurani, Kenneth S

2008-01-01T23:59:59.000Z

139

The Early U.S. Market for PHEVs: Anticipating Consumer Awareness, Recharge Potential, Design Priorities and Energy Impacts  

E-Print Network (OSTI)

gas emissions from plug-in hybrid vehicles: Implications forU.S. market, plug-in hybrid vehicles (PHEVs) are touted asdesign your own plug-in hybrid vehicle. You will determine

Axsen, Jonn; Kurani, Kenneth S

2008-01-01T23:59:59.000Z

140

PHEV/EV Li-Ion Battery Second-Use Project, NREL (National Renewable Energy Laboratory) (Poster)  

SciTech Connect

Plug-in hybrid electric vehicles (PHEVs) and full electric vehicles (Evs) have great potential to reduce U.S. dependence on foreign oil and emissions. Battery costs need to be reduced by ~50% to make PHEVs cost competitive with conventional vehicles. One option to reduce initial costs is to reuse the battery in a second application following its retirement from automotive service and offer a cost credit for its residual value.

Newbauer, J.; Pesaran, A.

2010-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "ford escape phev" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Fords, New Jersey: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Fords, New Jersey: Energy Resources Fords, New Jersey: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.5292715°, -74.3159809° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.5292715,"lon":-74.3159809,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

142

Dynamometer tests of the Ford Ecostar Electric Vehicle No. 41  

DOE Green Energy (OSTI)

A Ford Ecostar vehicle was tested in the Idaho National Engineering Laboratory (INEL) Hybrid Electric Vehicle (HEV) Laboratory over several standard driving regimes. The test vehicle was delivered to the INEL in February 19, 1995 under the DOE sponsored Modular Electric Vehicle Program. This report presents the results of several dynamometer driving cycle tests and a constant current discharge, and presents observations regarding the vehicle state-of-charge indicator and remaining range indicator.

Cole, G.H.; Richardson, R.A.; Yarger, E.J.

1995-09-01T23:59:59.000Z

143

PHEV/EV Li-Ion Battery Second-Use Project (Presentation)  

SciTech Connect

Accelerated development and market penetration of plug-in hybrid electric vehicles (PHEVs) and electric vehicles (Evs) are restricted at present by the high cost of lithium-ion (Li-ion) batteries. One way to address this problem is to recover a fraction of the battery cost via reuse in other applications after the battery is retired from service in the vehicle, if the battery can still meet the performance requirements of other energy storage applications. In several current and emerging applications, the secondary use of PHEV and EV batteries may be beneficial; these applications range from utility peak load reduction to home energy storage appliances. However, neither the full scope of possible opportunities nor the feasibility or profitability of secondary use battery opportunities have been quantified. Therefore, with support from the Energy Storage activity of the U.S. Department of Energy's Vehicle Technologies Program, the National Renewable Energy Laboratory (NREL) is addressing this issue. NREL will bring to bear its expertise and capabilities in energy storage for transportation and in distributed grids, advanced vehicles, utilities, solar energy, wind energy, and grid interfaces as well as its understanding of stakeholder dynamics. This presentation introduces NREL's PHEV/EV Li-ion Battery Secondary-Use project.

Neubauer, J.; Pesaran, A.

2010-04-01T23:59:59.000Z

144

Driving Plug-In Hybrid Electric Vehicles: Reports from U.S. Drivers of HEVs converted to PHEVs, circa 2006-07  

E-Print Network (OSTI)

District (2006) PHEV Prius Test Program by SacramentoMotor Sales (2006) Photo: Toyota Prius Interior, Electronichttp://www.toyota.com/prius/interior.html Accessed 2 April

Kurani, Kenneth S; Heffner, Reid R.; Turrentine, Tom

2008-01-01T23:59:59.000Z

145

Eagle Ford oil and natural gas well starts rose sharply in first ...  

U.S. Energy Information Administration (EIA)

New well starts in the Eagle Ford region in Texas increased 110% from January through March 2012 compared to the same period in 2011, according to reporting and ...

146

DOE News Release - DOE Helps Place Six Electric Ford Ranges at...  

NLE Websites -- All DOE Office Websites (Extended Search)

20, 2001 DOE Helps Place Six Electric Ford Rangers at Three National Parks, the US Fish and Wildlife Service, and Two National Forests DOE's Field Operations Program has...

147

A Bidirectional High-Power-Quality Grid Interface With a Novel Bidirectional Noninverted Buck Boost Converter for PHEVs  

Science Conference Proceedings (OSTI)

Plug-in hybrid electric vehicles (PHEVs) will play a vital role in future sustainable transportation systems due to their potential in terms of energy security, decreased environmental impact, improved fuel economy, and better performance. Moreover, new regulations have been established to improve the collective gas mileage, cut greenhouse gas emissions, and reduce dependence on foreign oil. This paper primarily focuses on two major thrust areas of PHEVs. First, it introduces a grid-friendly bidirectional alternating current/direct current ac/dc dc/ac rectifier/inverter for facilitating vehicle-to-grid (V2G) integration of PHEVs. Second, it presents an integrated bidirectional noninverted buck boost converter that interfaces the energy storage device of the PHEV to the dc link in both grid-connected and driving modes. The proposed bidirectional converter has minimal grid-level disruptions in terms of power factor and total harmonic distortion, with less switching noise. The integrated bidirectional dc/dc converter assists the grid interface converter to track the charge/discharge power of the PHEV battery. In addition, while driving, the dc/dc converter provides a regulated dc link voltage to the motor drive and captures the braking energy during regenerative braking.

Onar, Omer C [ORNL

2012-01-01T23:59:59.000Z

148

PHEV-EV Charger Technology Assessment with an Emphasis on V2G Operation  

DOE Green Energy (OSTI)

More battery powered electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs) will be introduced to the market in 2011 and beyond. Since these vehicles have large batteries that need to be charged from an external power source or directly from the grid, their batteries, charging circuits, charging stations/infrastructures, and grid interconnection issues are garnering more attention. This report summarizes information regarding the batteries used in PHEVs, different types of chargers, charging standards and circuits, and compares different topologies. Furthermore, it includes a list of vehicles that are going to be in the market soon with information on their charging and energy storage equipment. A summary of different standards governing charging circuits and charging stations concludes the report. There are several battery types that are available for PHEVs; however, the most popular ones have nickel metal hydride (NiMH) and lithium-ion (Li-ion) chemistries. The former one is being used in current hybrid electric vehicles (HEVs), but the latter will be used in most of the PHEVs and EVs due to higher energy densities and higher efficiencies. The chargers can be classified based on the circuit topologies (dedicated or integrated), location of the charger (either on or off the vehicle), connection (conductive, inductive/wireless, and mechanical), electrical waveform (direct current (dc) or alternating current (ac)), and the direction of power flow (unidirectional or bidirectional). The first PHEVs typically will have dedicated, on-board, unidirectional chargers that will have conductive connections to the charging stations or wall outlets and will be charged using either dc or ac. In the near future, bidirectional chargers might also be used in these vehicles once the benefits of practical vehicle to grid applications are realized. The terms charger and charging station cause terminology confusion. To prevent misunderstandings, a more descriptive term of electric vehicle supply equipment (EVSE) is used instead of charging station. The charger is the power conversion equipment that connects the battery to the grid or another power source, while EVSE refers to external equipment between the grid or other power source and the vehicle. EVSE might include conductors, connectors, attachment plugs, microprocessors, energy measurement devices, transformers, etc. Presently, there are more than 40 companies that are producing EVSEs. There are several standards and codes regarding conductive and inductive chargers and EVSEs from the Society of Automotive Engineers (SAE), the Underwriter Laboratories (UL), the International Electrotechnical Commission (IEC), and the National Electric Code (NEC). The two main standards from SAE describe the requirements for conductive and inductive coupled chargers and the charging levels. For inductive coupled charging, three levels are specified: Level 1 (120 V and 12 A, single-phase), Level 2 (208 V-240 V and 32 A, single-phase), and Level 3 (208-600 V and 400 A, three-phase) . The standard for the conductive-coupled charger also has similar charging ratings for Levels 1 and 2, but it allows higher current ratings for Level 2 charging up to 80 A. Level 3 charging for this standard is still under development and considers dc charging instead of three-phase ac. More details in these areas and related references can be found in this Oak Ridge National Laboratory (ORNL) report on PHEV-EV charger technology assessment.

Kisacikoglu, Mithat C [ORNL; Bedir, Abdulkadir [ORNL; Ozpineci, Burak [ORNL; Tolbert, Leon M [ORNL

2012-03-01T23:59:59.000Z

149

High Power SiC Modules for HEVs and PHEVs Abstract--With efforts to reduce the cost, size, and thermal  

E-Print Network (OSTI)

and electric machinery (APEEM) activity is to develop technology towards achieving overall electric propulsion of these components. Plug-in hybrid electric vehicle (PHEV) cost targets for the APEEM as established by DOE for PHEVs. Research in eliminating the low temperature loop and using the engine coolant for the APEEM shows

Tolbert, Leon M.

150

STATEMENT OF CONSIDERATIONS Request by Ford Motor Company Research and Advanced Engineerln,g  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Engineerln,g Engineerln,g Laboratory for an Advance Waiver of Domestic and Foreign Invention Rights under DOE Cooperative Agreement No. DE-EE0000020; W(A)-2010-023, CH·1553 The Petitioner, Ford Motor Company Research and Advanced Engineering Laboratory (Ford), was awarded this cooperative agreement for the performance of work entitled "Ford Thermoelectric HVAC Project". The goal of the 'cooperative agreement is to investigate the technical and business feasibility of zonal thermoelectric HVAC hardware and design methodologies that can support advanced climate control activities. Ford and its partners (Visteon) will provide an assessment of the technical and commercial feasibility of using a zonal thermoelectric HVAC for light-duty vehicle applications. This waiver is for inventions of Ford

151

NREL's PHEV/EV Li-Ion Battery Secondary-Use Project  

SciTech Connect

Accelerated development and market penetration of plug-in hybrid electric vehicles (PHEVs) and electric vehicles (EVs) is restricted at present by the high cost of lithium-ion (Li-ion) batteries. One way to address this problem is to recover a fraction of the Li-ion battery's cost via reuse in other applications after it is retired from service in the vehicle, when the battery may still have sufficient performance to meet the requirements of other energy storage applications.

Newbauer, J.; Pesaran, A.

2010-06-01T23:59:59.000Z

152

The Great Gas Hydrate Escape  

NLE Websites -- All DOE Office Websites (Extended Search)

Great Gas Great Gas Hydrate Escape The Great Gas Hydrate Escape Computer simulations revealing how methane and hydrogen pack into gas hydrates could enlighten alternative fuel production and carbon dioxide storage January 25, 2012 | Tags: Carver, Chemistry, Energy Technologies, Hopper, Materials Science PNNL Contact: Mary Beckman , +1 509 375-3688, mary.beckman@pnl.gov NERSC Contact: Linda Vu, +1 510 495 2402, lvu@lbl.gov The methane trapped in frozen water burns easily, creating ice on fire. For some time, researchers have explored flammable ice for low-carbon or alternative fuel or as a place to store carbon dioxide. Now, a computer analysis of the ice and gas compound, known as a gas hydrate, reveals key details of its structure. The results show that hydrates can hold hydrogen

153

Microsoft PowerPoint - Allemon_Ford.PPT  

NLE Websites -- All DOE Office Websites (Extended Search)

Change in Energy Use Change in Energy Use at Ford Motor Company George Andraos, William Allemon 2005 Energy Star Leadership Conference Overview * 40 North American Manufacturing Facilities. * 52 bilBTU load. * Efficiency & Supply Side Management Teams. * Energy coordinators located at each plant. * Onsite support from DTE Energy Partnership. 2005 Energy Star Leadership Conference Measurement mmBTU/Unit Reduction * Goal: 18% reduction by end of 2005 vs. year 2000 baseline. * Monthly performance monitoring and reporting. * Normalized for weather and vehicle production variances. * Automating data collection. * Currently on track to accomplish goal. North American Energy Reduction (mmBTU/Unit) 70 75 80 85 90 95 100 Jan-01 Mar-01 May-01 Jul-01 Sep-01 Nov-01 Jan-02 Mar-02 May-02 Jul-02 Sep-02 Nov-02 Jan-03

154

Chattanooga Eagle Ford Rio Grande Embayment Texas- Louisiana-  

U.S. Energy Information Administration (EIA) Indexed Site

Rio Grande Rio Grande Embayment Texas- Louisiana- Mississippi Salt Basin Uinta Basin Appa lachia n Basin Utica Marcellus Devonian (Ohio) Antrim Barnett Bend New Albany Woodford Barnett- Woodford Lewis Hilliard- Baxter- Mancos Excello- Mulky Fayetteville Floyd- Neal Gammon Cody Haynesville Hermosa Mancos Pierre Conasauga Woodford- Caney Pearsall- Eagle Ford Michigan Basin Ft. Worth Basin Palo Duro Basin Permian Basin Illinois Basin Anadarko Basin Greater Green River Basin Cherokee Platform San Juan Basin Williston Basin Black Warrior Basin A r d m o r e B a s i n Paradox Basin Raton Basin Maverick Sub-Basin Montana Thrust Belt Marfa Basin Valley and Ridge Province Arkoma Basin Forest City Basin Piceance Basin Shale Gas Plays, Lower 48 States 0 200 400 100 300 Miles ± Source: Energy Information Administration based on data from various published studies

155

REQUEST BY FORD MOTOR COMPANY, FOR AN ADVANCE WAIVER OF DOMESTIC...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Statement of Considerations REQUEST BY FORD MOTOR COMPANY, FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN RIGHTS IN SUBJECT INVENTIONS MADE IN THE COURSE OF OR UNDER DEPARTMENT OF...

156

REQUEST BY FORD MOTOR COMPANY FOR AN ADVANCE WAIVER OF DOMESTIC...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FORD MOTOR COMPANY FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN RIGHTS IN SUBJECT INVENTIONS MADE IN THE COURSE OF OR UNDER A SUBCONTRACT UNDER DEPARTMENT OF ENERGY CONTRACT NO....

157

Ford Liquefied Petroleum Gas-Powered F-700 May Set Sales Records  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

he introduction in 1992 of an he introduction in 1992 of an American-made truck with a fully factory-installed/war- ranted liquefied petroleum gas (LPG) engine represents another "Ford first" in the alternative fuel arena. Now the company has introduced an LPG- powered F-700, a medium/heavy- duty truck. According to Tom Steckel, Ford's medium-duty marketing man- ager, Ford's latest sales figures already prove the alternative fuel F-700's popularity. With a little more than 10 months of the model year finished, Ford has produced 1600 units and ordered 600 more, for a total of 2200 units. That's triple the number of LPG units produced and ordered at the same time last year. In addition, the possibility of applying federal and state tax credits is being investigated. Cummins B 5.9G Natural Gas

158

US Energy Secretary Chu Announces Finalized $5.9 Billion Loan for Ford  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Finalized $5.9 Billion Loan for Finalized $5.9 Billion Loan for Ford Motor Company US Energy Secretary Chu Announces Finalized $5.9 Billion Loan for Ford Motor Company September 17, 2009 - 12:00am Addthis Washington, DC - Today, Secretary Steven Chu announced that the Department of Energy has closed on its loan offer of $5.9 billion to Ford Motor Company to transform factories across Illinois, Kentucky, Michigan, Missouri, and Ohio to produce more fuel efficient models. The loan is part of the Department's Advanced Technology Vehicles Manufacturing program, which supports the development of innovative, advanced vehicle technologies to create thousands of clean energy jobs while helping reduce the nation's dangerous dependence on foreign oil. The loan for Ford Motor Company is the first to be finalized since the program was appropriated in the fall of

159

Fuel Economy of the 2013 Ford C-MAX Hybrid FWD  

NLE Websites -- All DOE Office Websites (Extended Search)

Ford C-MAX Hybrid FWD Search for Other Vehicles View the Mobile Version of This Page 4 cyl, 2.0 L Automatic (variable gear ratios) Regular Gasoline Compare Side-by-Side Hybrid EPA...

160

Integrating Depositional Facies and Sequence Stratigraphy in Characterizing Unconventional Reservoirs: Eagle Ford Shale, South Texas.  

E-Print Network (OSTI)

?? The Mid-to-Late Cretaceous Eagle Ford Shale of South Texas is a mixed siliciclastic/carbonate, unconventional resource play with considerable oil and natural gas. Characterization of (more)

Workman, Seth Jordan

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ford escape phev" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Mythologies of an American everyday landscape : Henry Ford at the Wayside Inn  

E-Print Network (OSTI)

Ford purchased property in 1923 in Sudbury, Massachusetts in order to preserve an historic inn associated with the poet Henry Wadsworth Longfellow. Over the next twenty years, his mission expanded to create an idealized ...

Wortham, Brooke Danielle

2006-01-01T23:59:59.000Z

162

Improving Petroleum Displacement Potential of PHEVs Using Enhanced Charging Scenarios: Preprint  

NLE Websites -- All DOE Office Websites (Extended Search)

5730 5730 May 2009 Improving Petroleum Displacement Potential of PHEVs Using Enhanced Charging Scenarios Preprint T. Markel, K. Smith, and A.A. Pesaran Presented at EVS-24 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium Stavanger, Norway May 13-16, 2009 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (ASE), a contractor of the US Government under Contract No. DE-AC36-08-GO28308. Accordingly, the US Government and ASE retain a nonexclusive royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes. This report was prepared as an account of work sponsored by an agency of the United States government.

163

Argonne TTRDC - TransForum v10n1 - Six Myths about PHEVs  

NLE Websites -- All DOE Office Websites (Extended Search)

Six Myths about Plug-in Hybrid Electric Vehicles Six Myths about Plug-in Hybrid Electric Vehicles Forrest Jehlik Forrest Jehlik Plug-in hybrid electric vehicles (PHEVs) hold great promise as the key to weaning America from its dependence on imported oil, which represents nearly two-thirds of all the petroleum burned in the United States today. The U.S. Department of Energy’s Argonne National Laboratory has taken a lead role in developing and testing plug-in hybrid technologies. At the Lab’s Center for Transportation Research (CTR), principal mechanical engineer Forrest Jehlik and his colleagues work to bring these cars to market quickly and cheaply. Here, Jehlik dispels some commonly held myths about plug-in hybrids. Myth #1: A significant number of plug-in hybrids are currently for sale. Although several major auto manufacturers—including General Motors,

164

Ms all de las Emisiones del Escape  

NLE Websites -- All DOE Office Websites (Extended Search)

Ms all de las Emisiones del Escape Emisiones de Gases de Efecto Invernadero para los Vehculos Elctricos e Hbridos Elctricos Enchufables Manejar su vehculo puede dar...

165

Driving Plug-In Hybrid Electric Vehicles: Reports from U.S. Drivers of HEVs converted to PHEVs, circa 2006-07  

E-Print Network (OSTI)

experiences with plug-in hybrid vehicles (PHEVs). At theA.A. (2007) Plug-in Hybrid Vehicles for a SustainableAssessment of Plug-in Hybrid Vehicles on Electric Utilities

Kurani, Kenneth S; Heffner, Reid R.; Turrentine, Tom

2008-01-01T23:59:59.000Z

166

Model year 2010 Ford Fusion Level-1 testing report.  

SciTech Connect

As a part of the US Department of Energy's Advanced Vehicle Testing Activity (AVTA), a model year 2010 Ford Fusion was procured by eTec (Phoenix, AZ) and sent to ANL's Advanced Powertrain Research Facility for the purposes of vehicle-level testing in support of the Advanced Vehicle Testing Activity. Data was acquired during testing using non-intrusive sensors, vehicle network information, and facilities equipment (emissions and dynamometer). Standard drive cycles, performance cycles, steady-state cycles, and A/C usage cycles were conducted. Much of this data is openly available for download in ANL's Downloadable Dynamometer Database. The major results are shown in this report. Given the benchmark nature of this assessment, the majority of the testing was done over standard regulatory cycles and sought to obtain a general overview of how the vehicle performs. These cycles include the US FTP cycle (Urban) and Highway Fuel Economy Test cycle as well as the US06, a more aggressive supplemental regulatory cycle. Data collection for this testing was kept at a fairly high level and includes emissions and fuel measurements from an exhaust emissions bench, high-voltage and accessory current/voltage from a DC power analyzer, and CAN bus data such as engine speed, engine load, and electric machine operation. The following sections will seek to explain some of the basic operating characteristics of the MY2010 Fusion and provide insight into unique features of its operation and design.

Rask, E.; Bocci, D.; Duoba, M.; Lohse-Busch, H.; Energy Systems

2010-11-23T23:59:59.000Z

167

The Effect of Driving Intensity and Incomplete Charging on the Fuel Economy of a Hymotion Prius PHEV  

SciTech Connect

On-road testing was conducted on a Hymotion Prius plug-in hybrid electric vehicle (PHEV) at the Electric Transportation Engineering Corporation in Phoenix, Arizona. The tests were comprised of on-road urban and highway driving during charge-depleting and charge-sustaining operation. Determining real-world effectiveness of PHEVs at reducing petroleum consumption in real world driving was the main focus of the study. Throughout testing, several factors that affect fuel consumption of PHEVs were identified. This report discusses two of these factors: driving intensity (i.e., driving aggressiveness) and battery charging completeness. These two factors are unrelated, yet both significantly impact the vehicles fuel economy. Driving intensity was shown to decrease fuel economy by up to half. Charging completeness, which was affected by human factors and ambient temperature conditions, also showed to have great impact on fuel economy for the Hymotion Prius. These tests were performed for the U.S. Department of Energys Advanced Vehicle Testing Activity. The Advanced Vehicle Testing Activity, part of the U.S. Department of Energys Vehicle Technology Program, is conducted by the Idaho National Laboratory and the Electric Transportation Engineering Corporation.

Richard Barney Carlson

2009-10-01T23:59:59.000Z

168

STATEMENT OF CONSIDERATIONS REQUEST BY FORD MOTOR COMPANY RESEARCH LABORATORY FOR AN  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 10:12 FR IP o E CH 630 252 2779 TO 025862805 P.02O03 1 10:12 FR IP o E CH 630 252 2779 TO 025862805 P.02O03 STATEMENT OF CONSIDERATIONS REQUEST BY FORD MOTOR COMPANY RESEARCH LABORATORY FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN INVENTION RIGHTS UNDER DOE COOPERATIVE AGREEMENT NO. DE-FC26-01NT41103; W(A)-01-016, CH-1064 The Petitioner, Ford Motor Company Research Laboratory, was awarded this cooperative agreement for the performance of work entitled Development of Innovative Emission Control Systems for Advanced Compression-Ignition (CIDI) Transportation Engines. Ford was awarded this cooperative agreement in response to a solicitation received as part of the Department of Energy's Ultra Clean Transportation Fuels Program. The purpose of the cooperative agreement is to demonstrate an exhaust emission control system that provides high efficiency particulate matter (PM) and NOx reduction. The high

169

STATEMENT OF CONSIDERATIONS Request by Ford Motor Company Research and Advanced Engineering  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

No No . DE-FC26-07NT 43276; W(A)-08-002 , CH-1429 The Petitioner, Ford Motor Company Research and Advanced Engineering Laboratory (Ford), was awarded this cooperative agreement for the performance of work entitled "E85 Optim ized Engine Application ." The goal of the cooperative agreement is to develop practical technology which improves vehicle fuel efficiency using E85 and which is feasible for production implementation in the short term . Ford will : 1) utilize the favorable knock suppression properties of ethanol to build upon and enhance the recent techn ica l development of spark ignition turbocharged direct injection gasoline engines; and 2) increase the "fun-to-drive" attribute normally associated with diesel vehicles in Europe

170

EV/PHEV Bidirectional Charger Assessment for V2G Reactive Power Operation  

SciTech Connect

This paper presents a summary of the available single-phase ac-dc topologies used for EV/PHEV, level-1 and -2 on-board charging and for providing reactive power support to the utility grid. It presents the design motives of single-phase on-board chargers in detail and makes a classification of the chargers based on their future vehicle-to-grid usage. The pros and cons of each different ac-dc topology are discussed to shed light on their suitability for reactive power support. This paper also presents and analyzes the differences between charging-only operation and capacitive reactive power operation that results in increased demand from the dc-link capacitor (more charge/discharge cycles and increased second harmonic ripple current). Moreover, battery state of charge is spared from losses during reactive power operation, but converter output power must be limited below its rated power rating to have the same stress on the dc-link capacitor.

Kisacikoglu, Mithat C [ORNL; Ozpineci, Burak [ORNL; Tolbert, Leon M [ORNL

2013-01-01T23:59:59.000Z

171

Driving Change in Energy Use at Ford Motor Company | ENERGY STAR Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Driving Change in Energy Use at Ford Motor Company Driving Change in Energy Use at Ford Motor Company Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories

172

Categorical Exclusion Determination Form Proposed Action Title: (0675-1511) Ford Motor Company -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

11) Ford Motor Company - 11) Ford Motor Company - High Precision Tester for Automotive and Stationary Batteries Program or Field Office:Advanced Research Projects Agency - Energy LocationCs) CCity/County/State): Dearborn, MI; Albuquerque, NM; College Station, TX Proposed Action Description: Funding will support efforts to develop a high precision battery tester to measure key battery characteristics during charge/discharge cycles to improve the accuracy and precision of Columbic Efficiency and predicted life expectancy estimates. Proposed work will consist of: (1) development and validation of a low current battery tester that meets established performance objectives and (2) development and validation a high current battery tester that meets established performance objectives.

173

DTE Energy & Ford Motor Company Teaming Profile | ENERGY STAR Buildings &  

NLE Websites -- All DOE Office Websites (Extended Search)

DTE Energy & Ford Motor Company Teaming Profile DTE Energy & Ford Motor Company Teaming Profile Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources

174

Bay Controls & Ford Teaming Profile | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Bay Controls & Ford Teaming Profile Bay Controls & Ford Teaming Profile Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories

175

REQUEST BY FORD MOTOR COMPANY FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN RIGHTS IN SUBJECT INVENTIONS  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FORD MOTOR COMPANY FOR AN ADVANCE WAIVER FORD MOTOR COMPANY FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN RIGHTS IN SUBJECT INVENTIONS MADE IN THE COURSE OF OR UNDER A SUBCONTRACT UNDER DEPARTMENT OF ENERGY CONTRACT NO. DE-FC05-970R22605 WITH CATERPILLAR INC.; DOE WAIVER DOCKET W(A)-97-038 [ORO-672] Ford Motor Company (Ford) has made a timely request for an advance waiver to worldwide rights in Subject Inventions made in the course of or under a subcontract under Department of Energy (DOE) Contract No. DE-FC05-970R22605. This prime contract is with Caterpillar Inc. and Ford is a subcontractor under this agreement. The main program goal is to support the cooperative development of technologies for high efficiency, very low emission diesel engines for light duty trucks (including pickups and sport utility vehicles). The work is sponsored by the Office of Transportation

176

Andrew Ford 1 CEC Report Simulating Patterns of Power Plant Construction  

E-Print Network (OSTI)

Report to the California Energy Commission by Andrew Ford November 14, 2000 This report describes a model developed for the California Energy Commission (CEC). The model has been used to explore the patterns the proposal and award the permit in 12 months. At this point, the approved proposal enters a "site bank

Ford, Andrew

177

Application of the LighthillFord Theory of Spontaneous Imbalance to Clear-Air Turbulence Forecasting  

Science Conference Proceedings (OSTI)

A new method of clear-air turbulence (CAT) forecasting based on the LighthillFord theory of spontaneous imbalance and emission of inertiagravity waves has been derived and applied on episodic and seasonal time scales. A scale analysis of this ...

John A. Knox; Donald W. McCann; Paul D. Williams

2008-10-01T23:59:59.000Z

178

FY11 annual Report: PHEV Engine Control and Energy Management Strategy  

DOE Green Energy (OSTI)

Objectives are to: (1) Investigate novel engine control strategies targeted at rapid engine/catalyst warming for the purpose of mitigating tailpipe emissions from plug-in hybrid electric vehicles (PHEV) exposed to multiple engine cold start events; and (2) Validate and optimize hybrid supervisory control techniques developed during previous and on-going research projects by integrating them into the vehicle level control system and complementing them with the modified engine control strategies in order to further reduce emissions during both cold start and engine re-starts. Approach used are: (1) Perform a literature search of engine control strategies used in conventional powertrains to reduce cold start emissions; (2) Develop an open source engine controller providing full access to engine control strategies in order to implement new engine/catalyst warm-up behaviors; (3) Modify engine cold start control algorithms and characterize impact on cold start behavior; and (4) Develop an experimental Engine-In-the-Loop test stand in order to validate control methodologies and verify transient thermal behavior and emissions of the real engine when combined with a virtual hybrid powertrain. Some major accomplishments are: (1) Commissioned a prototype engine controller on a GM Ecotec 2.4l direct injected gasoline engine on an engine test cell at the University of Tennessee. (2) Obtained from Bosch (with GM's approval) an open calibration engine controller for a GM Ecotec LNF 2.0l Gasoline Turbocharged Direct Injection engine. Bosch will support the bypass of cold start strategies if calibration access proves insufficient. The LNF engine and its open controller were commissioned on an engine test cell at ORNL. (3) Completed a literature search to identify key engine cold start control parameters and characterized their impact on the real engine using the Bosch engine controller to calibrate them. (4) Ported virtual hybrid vehicle model from offline simulation environment to real-time Hardware-In-the-Loop platform.

Chambon, Paul H [ORNL

2011-10-01T23:59:59.000Z

179

Ford Hatchery; Washington Department of Fish and Wildlife Fish Program, Hatcheries Division, Annual Report 2003.  

DOE Green Energy (OSTI)

Bonneville Power Administration's participation with the Washington Department of Fish and Wildlife, Ford Hatchery, provides the opportunity for enhancing the recreational and subsistence kokanee fisheries in Banks Lake. The artificial production and fisheries evaluation is done cooperatively through the Spokane Hatchery, Sherman Creek Hatchery (WDFW), Banks Lake Volunteer Net Pen Project, and the Lake Roosevelt Fisheries Evaluation Program. Ford Hatchery's production, together with the Sherman Creek and the Spokane Tribal Hatchery, will contribute to an annual goal of one million kokanee yearlings for Lake Roosevelt and 1.4 million kokanee fingerlings and fry for Banks Lake. The purpose of this multi-agency program is to restore and enhance kokanee salmon and rainbow trout populations in Lake Roosevelt and Banks Lake due to Grand Coulee Dam impoundments. The Ford Hatchery will produce 9,533 lbs. (572,000) kokanee annually for release as fingerlings into Banks Lake in October. An additional 2,133 lbs. (128,000) kokanee will be transferred to net pens on Banks Lake at Electric City in October. The net pen raised kokanee will be reared through the fall, winter, and early spring to a total of 8,533 lbs and released in May. While the origin of kokanee comes from Lake Whatcom, current objectives will be to increase the use of native (or, indigenous) stocks for propagation in Banks Lake and the Upper Columbia River. Additional stocks planned for future use in Banks Lake include Lake Roosevelt kokanee and Meadow Creek kokanee. The Ford Hatchery continues to produce resident trout (80,584 lb. per year) to promote the sport fisheries in trout fishing lakes in eastern Washington (WDFW Management, Region 1). Operation and maintenance funding for the increased kokanee program was implemented in FY 2001 and scheduled to continue through FY 2010. Funds from BPA allow for an additional employee at the Ford Hatchery to assist in the operations and maintenance associated with kokanee production. Fish food, materials, and other supplies associated with this program are also funded by BPA. Other funds from BPA will also improve water quality and supply at the Ford Hatchery, enabling the increased fall kokanee fingerling program. Monitoring and evaluation of the Ford stocking programs will include existing WDFW creel and lake survey programs to assess resident trout releases in trout managed waters. BPA is also funding a creel survey to assess the harvest of hatchery kokanee in Banks Lake.

Lovrak, Jon; Ward, Glen

2004-01-01T23:59:59.000Z

180

Lyman Continuum Escape from Inhomogeneous ISM  

E-Print Network (OSTI)

We have studied the effects of gas density inhomogeneities on the escape of ionising Lyman continuum (Lyc) photons from Milky Way-type galaxies via 3D numerical simulations using the Monte Carlo radiative transfer code CRASH (Ciardi et al. 2001). To this aim a comparison between a smooth Gaussian distribution (GDD) and an inhomogeneous, fractal one (FDD) has been made with realistic assumptions for the ionising stellar sources based on available data in the solar neighborhood. In both cases the escape fraction f_esc increases with ionisation rate N_gamma (although for the FDD with a flatter slope) and they become equal at N_gamma = 2*10^50 s^-1 where f_esc = 0.11. FDD allows escape fractions of the same order also at lower N_gamma, when Lyc photon escape is sharply suppressed by GDD. Values of the escape fraction as high as 0.6 can be reached (GDD) for N_gamma ~ 9*10^50 s^-1, corresponding to a star formation rate (SFR) of roughly 2 M_o yr^-1; at this ionising luminosity the FDD is less transparent (f_esc ~ 0.28). If high redshift galaxies have gas column densities similar to local ones, are characterized by such high SFRs and by a predominantly smooth (i.e.turbulence free) interstellar medium, our results suggest that they should considerably contribute to - and possibly dominate - the cosmic UV background.

B. Ciardi; S. Bianchi; A. Ferrara

2001-11-28T23:59:59.000Z

Note: This page contains sample records for the topic "ford escape phev" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Lyman Continuum Escape from Inhomogeneous ISM  

E-Print Network (OSTI)

We have studied the effects of gas density inhomogeneities on the escape of ionising Lyman continuum (Lyc) photons from Milky Way-type galaxies via 3D numerical simulations using the Monte Carlo radiative transfer code CRASH (Ciardi et al. 2001). To this aim a comparison between a smooth Gaussian distribution (GDD) and an inhomogeneous, fractal one (FDD) has been made with realistic assumptions for the ionising stellar sources based on available data in the solar neighborhood. In both cases the escape fraction f_esc increases with ionisation rate N_gamma (although for the FDD with a flatter slope) and they become equal at N_gamma = 2*10^50 s^-1 where f_esc = 0.11. FDD allows escape fractions of the same order also at lower N_gamma, when Lyc photon escape is sharply suppressed by GDD. Values of the escape fraction as high as 0.6 can be reached (GDD) for N_gamma ~ 9*10^50 s^-1, corresponding to a star formation rate (SFR) of roughly 2 M_o yr^-1; at this ionising luminosity the FDD is less transparent (f_esc ~ 0...

Ciardi, B; Ferrara, A

2002-01-01T23:59:59.000Z

182

Geologic and Engineering Characterization of East Ford Field, Reeves County, Texas  

SciTech Connect

The objective of this Class III project is to demonstrate that detailed reservoir characterization of slope and basin clastic reservoirs in sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico is a cost-effective way to recover a higher percentage of the original oil in place through geologically based field development. The project focused on reservoir characterization of the East Ford unit, a representative Delaware Mountain Group field that produces from the upper Bell Canyon Formation (Ramsey Sandstone). The field, discovered in 1960, is operated by Oral Petco, Inc., as the East Ford unit: it contained an estimated 18.4 million barrels (MMbbl) of original oil in place.

Dutton, Shirley P.; Flanders, William A.; Guzman, Jose I.; Zirczy, Helena

1999-08-16T23:59:59.000Z

183

Additional dynamometer tests of the Ford Ecostar Electric Vehicle No. 41  

DOE Green Energy (OSTI)

A Ford Ecostar vehicle was tested in the Idaho National Engineering Laboratory (INEL) Hybrid Electric Vehicle (HEV) Laboratory over two standard driving regimes, coastdown testing, and typical charge testing. The test vehicle was delivered to the INEL in February 19, 1995 under the DOE sponsored Modular Electric Vehicle Program. This report presents the results of dynamometer driving cycle tests, charge data, and coastdown testing for California Air Resources Board (CARB) under a CRADA with the Department Of Energy (DOE).

Cole, G.H.; Richardson, R.A.; Yarger, E.J.

1996-06-01T23:59:59.000Z

184

STATEMENT OF CONSIDERATIONS REQUEST BY FORD MOTOR COMPANY FOR AN ADVANCE WAIVER  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NO.O 15 '93 9:13 FRC DOE-IPLD-CHICAGO TO GCP-HQ PAGE.003 NO.O 15 '93 9:13 FRC DOE-IPLD-CHICAGO TO GCP-HQ PAGE.003 w 9 STATEMENT OF CONSIDERATIONS REQUEST BY FORD MOTOR COMPANY FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN RIGHTS UNDER AN NREL SUB- CONTRACT NO: ZCB-3-13032-02, W(A)-93-032, CH-0790 AND FOR LARGE BUSINESS LOWER TIER SUB-CONTRACTS THEREUNDER Ford, a large business has petitioned for an Advance Waiver of Patent Rights under the above-identified National Renewable Energy Laboratory (NREL) subcontract and under lower tier subcontracts entered into thereunder with parties who do not qualify for treatment under Public Law 96-517. NREL is operated by Midwest Research Institute (MRI) under the prime contract number DE-AC02-83CH10093. As set out in the attached waiver petition and addendum letter, Ford has

185

Investigation of Path Dependence in Commercial Li-ion Cells Chosen for PHEV Duty Cycle Protocols (paper)  

Science Conference Proceedings (OSTI)

Path dependence is emerging as a premier issue of how electrochemical cells age in conditions that are diverse and variable in the time domain. For example, lithium-ion cells in a vehicle configuration will experience a variable combination of usage and rest periods over a range of temperature and state of charge (SOC). This is complicated by the fact that some aging can actually become worse (or better) when a lithium-ion cell is idle for extended periods under calendar-life (calL) aging, as opposed to cycle-life (cycL) conditions where the cell is used within a predictable schedule. The purpose of this study is to bridge the gap between highly idealized and controlled laboratory test conditions and actual field conditions regarding PHEV applications, so that field-type aging mechanisms can be mimicked and quantified in a repeatable laboratory setting. The main parameters are the magnitude and frequency of the thermal cycling, looking at isothermal, mild, and severe scenarios. To date, little is known about Li-ion aging effects caused by thermal cycling superimposed onto electrochemical cycling, and related path dependence. This scenario is representative of what Li-ion batteries will experience in vehicle service, where upon the typical start of a HEV/PHEV, the batteries will be cool or cold, will gradually warm up to normal temperature and operate there for a time, then will cool down after the vehicle is turned off. Such thermal cycling will occur thousands of times during the projected life of a HEV/PHEV battery pack. We propose to quantify the effects of thermal cycling on Li-ion batteries using a representative chemistry that is commercially available. The secondary Li-ion cells used in this study are of the 18650 configuration, have a nominal capacity rating of 1.9 Ah, and consist of a {LiMn2O4 + LiMn(1/3)Ni(1/3)Co(1/3)O2} cathode and a graphite anode. Electrochemical cycling is based on PHEV-relevant cycle-life protocols that are a combination of charge depleting (CD) and charge sustaining (CS) modes discussed in the Battery Test Manual for Plug-in Hybrid Electric Vehicles (INL, March 2008, rev0). A realistic duty cycle will involve both CD and CS modes, the proportion of each defined by the severity of the power demands. We assume that the cells will start each cycling day at 90% SOC, and that they will not be allowed to go below 35% SOC, with operation around 70% SOC being a nominal condition. The 35, 70, and 90% SOC conditions are also being used to define critical aspects of the related reference performance test (RPT) for this investigation. There are three primary components to the RPT, all assessed at room temperature: (A) static and residual capacity (SRC) over a matrix of current, (B) kinetics and pulse performance testing (PPT) over current for SOCs of interest, and (C) EIS for SOCs of interest. The RPT is performed on all cells every 30 day test interval, as well as a pulse-per-day to provide a quick diagnostic snapshot. Where feasible, we utilize various elements of Diagnostic Testing (DT) to characterize performance of the cells and to gain mechanistic-level knowledge regarding both performance features and limitations. We will present the rationale behind the experimental design, early data, and discuss the fundamental tools used to elucidate performance degradation mechanisms.

Kevin L. Gering

2011-04-01T23:59:59.000Z

186

Escape Rates of the Hnon-Heiles System  

E-Print Network (OSTI)

A particle in the H\\'enon-Heiles potential can escape when its energy is above the threshold value $E_{th}={1/6}$. We report a theoretical study on the the escape rates near threshold. We derived an analytic formula for the escape rate as a function of energy by exploring the property of chaos. We also simulated the escaping process by following the motions of a large number of particles. Two algorithms are employed to solve the equations of motion. One is the Runge-Kutta-Fehlberg method, and another is a recently proposed fourth order symplectic method. Our simulations show the escape of H$\\mathrm{\\acute{e}}$non-Heiles system follows exponential laws. We extracted the escape rates from the time dependence of particle numbers in the H$\\mathrm{\\acute{e}}$non-Heiles potential. The extracted escape rates agree with the analytic result.

H. J. Zhao; M. L. Du

2007-01-15T23:59:59.000Z

187

Use of silicide fuel in the Ford Nuclear Reactor - to lengthen fuel element lifetimes  

SciTech Connect

Based on economic considerations, it has been proposed to increase the lifetime of LEU fuel elements in the Ford Nuclear Reactor by raising the {sup 235}U plate loading from 9.3 grams in aluminide (UAl{sub x}) fuel to 12.5 grams in silicide (U{sub 3}Si{sub 2}) fuel. For a representative core configuration, preliminary neutronic depletion and steady state thermal hydraulic calculations have been performed to investigate core characteristics during the transition from an all-aluminide to an all-silicide core. This paper discusses motivations for this fuel element upgrade, results from the calculations, and conclusions.

Bretscher, M.M.; Snelgrove, J.L. [Argonne National Lab., IL (United States); Burn, R.R.; Lee, J.C. [Univ. of Michigan, Ann Arbor, MI (United States). Phoenix Memorial Lab.

1995-12-31T23:59:59.000Z

188

Ford Motor's Feaheny urges action on alternative fuels  

SciTech Connect

The privately operated automobile and truck are seen as the dominant transportation system for people and for goods, now and in the future. Alternative forms of fuel are discussed: propane or LPG, alcohol-methanol and/or ethanol, electric vehicles, hydrogen, and natural gas. It is concluded that alternate fuel development should proceed now; that LPG or propane at Ford is feasible now; that methanol, made from natural gas or coal gas is probably the long term answer; and that compressed natural gas should be developed.

1983-02-01T23:59:59.000Z

189

Determining PHEV Performance Potential User and Environmental Influences on A123 Systems Hymotion Plug-In Conversion Module for the Toyota Prius  

DOE Green Energy (OSTI)

A123Systemss HymotionTM L5 Plug-in Conversion Module (PCM) is a supplemental battery system that converts the Toyota Prius hybrid electric vehicle (HEV) into a plug-in hybrid electric vehicle (PHEV). The Hymotion system uses a lithium ion battery pack with 4.5 kWh of useable energy capacity and recharges by plugging into a standard 110/120V outlet. The system is designed to more than double the Prius fuel efficiency for 30-50km of charge depleting range. This paper will cover efforts by A123 Systems and the Idaho National Laboratory in studying the on-road performance of this PHEV fleet. The performance potentials of various fleets will be compared in order to determine the major influences on overall performance.

John G. Smart; Huang Iu

2009-05-01T23:59:59.000Z

190

REQUEST BY FORD MOTOR COMPANY, FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN RIGHTS IN SUBJECT INVENTIONS MADE IN THE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Statement of Considerations Statement of Considerations REQUEST BY FORD MOTOR COMPANY, FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN RIGHTS IN SUBJECT INVENTIONS MADE IN THE COURSE OF OR UNDER DEPARTMENT OF ENERGY CONTRACT NO. DE- AC05-960R22464; SOLICITATION NO. 6500001187; DOE WAIVER DOCKET W(A)-99-015 [ORO-746] Ford Motor Company (Ford) has made a timely request for an advance waiver to worldwide rights in Subject Inventions made in the course of or under Department of Energy (DOE) Contract No. DE-AC05-960R22464, Solicitation No. 6500001187 (proposed subcontract with Lockheed Martin Energy Research Corporation). The overall scope of work calls for a paper study focusing on determining the feasibility of obtaining an affordable 40% mass reduction compared to the current steel Explorer SUV frame using

191

Ford/BASF SE/UM Activities in Support of the Hydrogen Storage Engineering Center of Excellence - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

51 51 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Michael Veenstra (Primary Contact, Ford), Andrea Sudik (Ford), Donald Siegel (UM), Justin Purewal (UM), Chunchuan Xu (UM), Yang Ming (UM), Manuela Gaab (BASF SE), Stefan Maurer (BASF SE), Ulrich Müller (BASF SE), Jun Yang (Ford) Ford Motor Company 2101 Village Road Dearborn, MI 48121 Phone: (313) 322-3148 Email: mveenstr@ford.com DOE Managers HQ: Ned Stetson Phone: (202) 586-9995 Email: Ned.Stetson@ee.doe.gov GO: Jesse Adams Phone: (720) 356-1421 Email: Jesse.Adams@go.doe.gov Contract Number: DE-FC36-GO19002 Subcontractors: * University of Michigan, Ann Arbor, MI * BASF SE, Ludwigshafen, Germany Project Start Date: February 1, 2009

192

Assessment of the Mexican Eagle Ford Shale Oil and Gas Resources  

E-Print Network (OSTI)

According to the 2011 Energy Information Agency (EIA) global assessment, Mexico ranks 4th in shale gas resources. The Eagle Ford shale is the formation with the greatest expectation in Mexico given the success it has had in the US and its liquids-rich zone. Accurate estimation of the resource size and future production, as well as the uncertainties associated with them, is critical for the decision-making process of developing shale oil and gas resources. The complexity of the shale reservoirs and high variability in its properties generate large uncertainties in the long-term production and recovery factors of these plays. Another source of uncertainty is the limited production history. Given all these uncertainties, a probabilistic decline-curve analysis approach was chosen for this study, given that it is relatively simple, it enables performing a play-wide assessment with available production data and, more importantly, it quantifies the uncertainty in the resource size. Analog areas in the US Eagle Ford shale were defined based on available geologic information in both the US and Mexico. The Duong model coupled with a Markov Chain Monte Carlo (MCMC) methodology was used to analyze and forecast production of wells located in the previously defined analog sectors in the US Eagle Ford shale. By combining the results of individual-well analyses, a type curve and estimated ultimate recovery (EUR) distribution for each of the defined analog sectors was obtained. These distributions were combined with well-spacing assumptions and sector areas to generate the prospective-resources estimates. Similar probabilistic decline-curve-analysis methodology was used to estimate the reserves and contingent resources of existing wells. As of March 2013, the total prospective resources (P90-P50-P10) for the Eagle Ford shale in Mexico (MX-EFS) are estimated to be 527-1,139-7,268 MMSTB of oil and 17- 37-217 TSCF of gas. To my knowledge, this is the first oil estimate published for this formation in Mexico. The most attractive sectors based on total estimated resources as well as individual-well type curves are located in the southeast of the Burgos Basin and east-west of the Sabinas basin. Because there has been very little development to date, estimates for reserves and contingent resources are much lower than those for prospective resources. Estimated reserves associated with existing wells and corresponding offset well locations are 18,375-34,722-59,667 MMSCF for gas and zero for oil. Estimated contingent resources are 14-64-228 MSTB of oil and 8,526-13,327- 25,983MMSCF of gas. The results of this work should provide a more reliable assessment of the size and uncertainties of the resources in the Mexican Eagle Ford shale than previous estimates obtained with less objective methodologies.

Morales Velasco, Carlos Armando

2013-08-01T23:59:59.000Z

193

Big Windy (Great Escape Restaurant Turbine) | Open Energy Information  

Open Energy Info (EERE)

Big Windy (Great Escape Restaurant Turbine) Big Windy (Great Escape Restaurant Turbine) Jump to: navigation, search Name Big Windy (Great Escape Restaurant Turbine) Facility Big Windy (Great Escape Restaurant Turbine) Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Great Escape Restaurant Location Schiller Park IL Coordinates 41.95547°, -87.865193° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.95547,"lon":-87.865193,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

194

Hybrid fluid/kinetic modeling of Pluto's escaping atmosphere  

E-Print Network (OSTI)

Predicting the rate of escape and thermal structure of Pluto's upper atmosphere in preparation for the New Horizons Spacecraft encounter in 2015 is important for planning and interpreting the expected measurements. Having a moderate Jeans parameter Pluto's atmosphere does not fit the classic definition of Jeans escape for light species escaping from the terrestrial planets, nor does it fit the hydrodynamic outflow from comets and certain exoplanets. It has been proposed for some time that Pluto lies in the region of slow-hydrodynamic escape. Using a hybrid fluid/molecular-kinetic model, we previously demonstrated the typical implementation of this model fails to correctly describe the appropriate temperature structure for the upper atmosphere for solar minimum conditions. Here we used a time-dependent solver to allow us to extend those simulations to higher heating rates and we examined fluid models in which Jeans-like escape expressions are used for the upper boundary conditions. We compare these to our hybr...

Erwin, Justin T; Johnson, Robert E

2012-01-01T23:59:59.000Z

195

Measurements of the HEU and LEU in-core spectra at the Ford Nuclear Reactor  

SciTech Connect

The Ford Nuclear Reactor (FNR) at the University of Michigan has been serving as the test site for a low-enriched uranium (LEU) fuel whole-core demonstration. As part of the experimental program, the differential neutron spectrum has been measured in a high-enriched uranium (HEU) core and an LEU core. The HEU and LEU spectra were determined by unfolding the measured activities of foils that were irradiated in the reactor. When the HEU and LEU spectra are compared from 1 MeV to 10 MeV, significant differences between the two spectra are apparent below 10 eV. These are probably caused by the additional /sup 238/U resonance absorption in the LEU fuel. No measurable difference occurs in the shape of the spectra above 1 MeV. 7 refs., 6 figs., 2 tabs.

Wehe, D.K.; King, J.S.; Lee, J.C.; Martin, W.R.

1984-01-01T23:59:59.000Z

196

FTP Emissions Test Results from Flexible-Fuel Methanol Dodge Spirits and Ford Econoline Vans  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

FTP Emissions Test Results from Flexible-Fuel FTP Emissions Test Results from Flexible-Fuel Methanol Dodge Spirits and Ford Econoline Vans Kenneth J. Kelly, Brent K. Bailey, and Timothy C. Coburn National Renewable Energy Laboratory Wendy Clark Automotive Testing Laboratories, Inc. Leslie Eudy ManTech Environmental Technology, Inc. Peter Lissiuk Environmental Research and Development Corp. Presented at Society for Automotive Engineers International Spring Fuels and Lubricants Meeting Dearborn, MI May 6-8, 1996 The work described here was wholly funded by the U.S. Department of Energy, a U.S. government agency. As such, this information is in the public domain, may be copied and otherwise accessed freely, and is not subject to copyright laws. These papers were previously published in hard copy form by the Society of Automotive Engineers, Inc.

197

2010 Ford Fusion VIN 4757 Hybrid Electric Vehicle Battery Test Results  

SciTech Connect

The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on-road fleet testing. This report documents battery testing performed for the 2010 Ford Fusion HEV (VIN: 3FADP0L34AR144757). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Program of the U.S. Department of Energy.

Tyler Gray; Matthew Shirk

2013-01-01T23:59:59.000Z

198

Volatility Effects on the Escape Time in Financial Market Models  

E-Print Network (OSTI)

We shortly review the statistical properties of the escape times, or hitting times, for stock price returns by using different models which describe the stock market evolution. We compare the probability function (PF) of these escape times with that obtained from real market data. Afterwards we analyze in detail the effect both of noise and different initial conditions on the escape time in a market model with stochastic volatility and a cubic nonlinearity. For this model we compare the PF of the stock price returns, the PF of the volatility and the return correlation with the same statistical characteristics obtained from real market data.

Spagnolo, Bernardo

2008-01-01T23:59:59.000Z

199

Effects of photon escape on diagnostic diagrams for HII regions  

E-Print Network (OSTI)

In this article we first outline the mounting evidence that a significant fraction of the ionizing photons emitted by OB stars within HII regions escape from their immediate surroundings and explain how an HII region structure containing high density contrast in homogeneities facilitates this escape. Next we describe sets of models containing inhomogeneities which are used to predict tracks in the commonly used diagnostic diagrams (based on ratios of emission lines) whose only independent variable is the photon escape fraction, xi. We show that the tracks produced by the models in two of the most cited of these diagrams conform well to the distribution of observed data points, with the models containing optically thick inhomogeneities ("CLUMPY" models) yielding somewhat better agreement than those with optically thin inhomogeneities ("FF" models). We show how variations in the ionization parameter U, derived from emission line ratios, could be due to photon escape. Using a rather wide range of assumptions abo...

Giammanco, C; Cedres, B

2005-01-01T23:59:59.000Z

200

Behavior of the Escape Rate Function in Hyperbolic Dynamical Systems  

E-Print Network (OSTI)

For a fixed initial reference measure, we study the dependence of the escape rate on the hole for a smooth or piecewise smooth hyperbolic map. First, we prove the existence and Holder continuity of the escape rate for systems with small holes admitting Young towers. Then we consider general holes for Anosov diffeomorphisms, without size or Markovian restrictions. We prove bounds on the upper and lower escape rates using the notion of pressure on the survivor set and show that a variational principle holds under generic conditions. However, we also show that the escape rate function forms a devil's staircase with jumps along sequences of regular holes and present examples to elucidate some of the difficulties involved in formulating a general theory.

Mark Demers; Paul Wright

2011-12-20T23:59:59.000Z

Note: This page contains sample records for the topic "ford escape phev" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Integration and system tests of the Ford/General Electric ac electric drive system  

SciTech Connect

An advanced alternating current electric drive system is being developed by the General Electric Company for Ford Motor Company's ''Advanced Electric Vehicle Powertrain Effort,'' which is a major element of DOE's Single Shaft Electric Propulsion System Program. The integrated transaxle consists of an oil-cooled 50 hp ac induction motor mounted within a 2-speed transaxle. Direct current from the nominal 204 V battery pack is converted to variable frequency, variable voltage 3-phase ac current by a liquid-cooled transistor inverter. A custom-designed inverter motor controller, containing two 8751 microcomputers plus analog and digital circuitry, translates torque commands from the controller to the inverter transistor base drivers that turn on/off power Darlington transistors at appropriate times. After a review of the electric drive system ratings, details of the transistor inverter are presented. Control strategy and controller design are summarized. Electric drive integration and system test results are given.

King, R.D.; Park, J.N.

1985-01-01T23:59:59.000Z

202

Project Title: Compare Costs and Benefits of HESA B2G and V2G The PH&EV Research Center is funded through the California Energy Commission's Public  

E-Print Network (OSTI)

Project Title: Compare Costs and Benefits of HESA B2G and V2G Systems The PH&EV Research Center AGC-Automatic Generation Control BEV-Battery Electric Vehicle B2G-Battery-to-Grid CAISO Operator V2G-Vehicle-to-Grid ZEV-Zero Emissions Vehicle #12;Table of Contents Project Title: Compare Costs

California at Davis, University of

203

The U.S. Department of Energy's (DOE's) FreedomCAR and Vehicle Technologies (FCVT) Program is actively evaluating plug-in hybrid electric vehicle (PHEV) technology and researching the most critical technical barriers to  

E-Print Network (OSTI)

for use in hybrid vehicles as well as electric-only vehicles · Hardware-in-the-loop evaluation of advanced is actively evaluating plug-in hybrid electric vehicle (PHEV) technology and researching the most critical and capacitor scaling, thermal management, capacity, and power fade · Using hybrid electric vehicles in fleets

Kemner, Ken

204

PHEV and Grid Interfacing  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Accelerated Testing and Modeling of Accelerated Testing and Modeling of Utility-Scale Power Electronic Devices Annual DOE Peer Review Meeting - 2008 DOE Power Electronics Research Program Washington Fairmont Hotel Washington, DC 30 September 2008 A. A. Wereszczak* and B. Ozpineci** * Materials Science and Technology Division ** Energy and Transportation Science Division Oak Ridge National Laboratory (ORNL) Oak Ridge, TN, 37831 Research sponsored by the Electric Delivery Technologies Program, DOE Office of Electricity Delivery and Energy Reliability, under contract DE-AC05-00OR22725 with UT-Battelle, LLC. Funded by the Power Electronics Program of the U.S. Department Of Energy (DOE/PE) through Oak Ridge National Laboratories 2 Managed by UT-Battelle for the U.S. Department of Energy System Reliability

205

PHEV and Grid Interfacing  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Materials and Processes for High Materials and Processes for High Temperature Packaging of Power Electronic Devices G. Muralidharan, A. Kercher, M. L. Santella, R. Battiste Materials Science and Technology Division Oak Ridge National Laboratory, Oak Ridge, TN L. Seiber, and Burak Ozpineci Engineering Science and Technology Division Oak Ridge National Laboratory Sept. 30, 2008 Energy Storage and Power Electronics Peer Review 2 Managed by UT-Battelle for the U.S. Department of Energy Power Electronics research needs are necessary at many levels System Reliability Next Generation Equipment Power Electronic Module Development Applied Materials Research This project addresses these two levels 3 Managed by UT-Battelle for the U.S. Department of Energy Purpose of Work  Realization of the future electric grid depends on the availability of

206

PHEV and Grid Interfacing  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

i or V) i or V Time Constant Amplitude & Dwell i or V Time Constant Dwell & Constant Rate of Amplitude Increase i or V Time Constant Amplitude & Constant Rate of Dwell...

207

PHEV and Grid Interfacing  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

changes that degrade properties of solder joints (die attach materials) and wire bonds - Decrease lifetime and reliability Reliability of high temperature packages...

208

Effects of photon escape on diagnostic diagrams for HII regions  

E-Print Network (OSTI)

In this article we first outline the mounting evidence that a significant fraction of the ionizing photons emitted by OB stars within HII regions escape from their immediate surroundings and explain how an HII region structure containing high density contrast in homogeneities facilitates this escape. Next we describe sets of models containing inhomogeneities which are used to predict tracks in the commonly used diagnostic diagrams (based on ratios of emission lines) whose only independent variable is the photon escape fraction, xi. We show that the tracks produced by the models in two of the most cited of these diagrams conform well to the distribution of observed data points, with the models containing optically thick inhomogeneities ("CLUMPY" models) yielding somewhat better agreement than those with optically thin inhomogeneities ("FF" models). We show how variations in the ionization parameter U, derived from emission line ratios, could be due to photon escape. Using a rather wide range of assumptions about the filling factor of dense clumps we find, for a selected set of regions observed in M51 photon escape fraction ranging between 30% and 50%. We show, using oxygen as the test element, that models with different assumptions about the gas inhomogeneity will give variations in the abundance values derived from diagnostic diagrams, but do not claim here to have a fully developed set of diagnostic tools to improve abundance determinations made in this way. We finally propose a combination of line ratios with the absolute Halpha luminosity of a given HII region, which allows us to determine the photon escape fraction, and hence resolve the degeneracy between U and xi.

C. Giammanco; J. E. Beckman; B. Cedres

2005-04-11T23:59:59.000Z

209

Advanced Vehicle Testing Activity: Low-Percentage Hydrogen/CNG Blend, Ford F-150 -- Operating Summary  

DOE Green Energy (OSTI)

Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energys Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline engines that were converted to run CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure-hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Services Alternative Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended hydrogen fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents results of 16,942 miles of testing for one of the blended fuel vehicles, a Ford F-150 pickup truck, operating on up to 30% hydrogen/70% CNG fuel.

Karner, D.; Francfort, James Edward

2003-01-01T23:59:59.000Z

210

Advanced Vehicle Testing Activity: High-Percentage Hydrogen/CNG Blend, Ford F-150 -- Operating Summary  

DOE Green Energy (OSTI)

Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energys Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline engines that were converted to run CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure-hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Services Alternative Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity. The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended hydrogen fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents the results of 4,695 miles of testing for one of the blended fuel vehicles, a Ford F-150 pickup truck, operating on up to 50% hydrogen50% CNG fuel.

Don Karner; Francfort, James Edward

2003-01-01T23:59:59.000Z

211

Calendar and PHEV Cycle Life Aging of High-Energy, Lithium-Ion Cells Containing Blended Spinel and Layered-Oxide Cathodes  

DOE Green Energy (OSTI)

One hundred seven commercially available, off-the-shelf, 1.2-Ah cells were tested for calendar life and CS cycle- and CD cycle-life using the new USABC PHEV Battery Test Manual. Here, the effects of temperature on calendar life, on CS cycle life, and on CD cycle life; the effects of SOC on calendar life and on CS cycle life; and the effects of rest time on CD cycle life were investigated. The results indicated that the test procedures caused performance decline in the cells in an expected manner, calendar < CS cycling < CD cycling. In some cases, the kinetic law changed with test type, from linear-with-time to about t2. Additionally, temperature was found to stress the cells more than SOC, causing increased changes in performance with increasing temperature.

Jeffrey R. Belt; I. Bloom

2011-12-01T23:59:59.000Z

212

Calendar and PHEV Cycle Life Aging of High-Energy, Lithium-Ion Cells Containing Blended Spinel and Layered Oxide Cathodes  

DOE Green Energy (OSTI)

One hundred seven commercially available, off-the-shelf, 1.2-Ah cells were tested for calendar life and CS cycle- and CD cycle-life using the new USABC PHEV Battery Test Manual. Here, the effects of temperature on calendar life, on CS cycle life, and on CD cycle life; the effects of SOC on calendar life and on CS cycle life; and the effects of rest time on CD cycle life were investigated. The results indicated that the test procedures caused performance decline in the cells in an expected manner, calendar < CS cycling < CD cycling. In some cases, the kinetic law changed with test type, from linear-with-time to about t2. Additionally, temperature was found to stress the cells more than SOC, causing increased changes in performance with increasing temperature.

J. Belt

2011-12-01T23:59:59.000Z

213

Escape rates for rotor walks in Z d  

E-Print Network (OSTI)

Rotor walk is a deterministic analogue of random walk. We study its recurrence and transience properties on Z d for the initial configuration of all rotors aligned. If n particles in turn perform rotor walks starting from the origin, we show that the number that escape (i.e., never return to the origin) is of order n in dimensions d ? 3, and of order n / log n in dimension 2. 1

Laura Florescu; Shirshendu Ganguly; Lionel Levine; Yuval Peres

2013-01-01T23:59:59.000Z

214

Can Consumers Escape the Market? Emancipatory Illuminations from Burning Man  

E-Print Network (OSTI)

This ethnography explores the emancipatory dynamics of the Burning Man project, a one-week-long antimarket event. Practices used at Burning Man to distance consumers from the market include discourses supporting communality and disparaging market logics, alternative exchange practices, and positioning consumption as self-expressive art. Findings reveal several communal practices that distance consumption from broader rhetorics of efficiency and rationality. Although Burning Mans participants materially support the market, they successfully construct a temporary hypercommunity from which to practice divergent social logics. Escape from the market, if possible at all, must be conceived of as similarly temporary and local.

Robert V. Kozinets

2002-01-01T23:59:59.000Z

215

U-227: bind-dyndb-ldap DN Escaping Flaw Lets Remote Users Deny...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

function (srcldapconvert.c) when escaping DN values for the LDAP query. This can be exploited to hang the named process and render the service unusable....

216

STATEMENT OF CONSIDERATIONS REQUEST BY FORD MOTOR COMPANY FOR AN ADVANCE WAIVER OF IOMES'I'I AND FORKIGN PAT'INT KIGHITS  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NOV. -21' 94(MON) 14:27 DOE-IP IICAGO TEL1 708 2 779 P, 002 NOV. -21' 94(MON) 14:27 DOE-IP IICAGO TEL1 708 2 779 P, 002 STATEMENT OF CONSIDERATIONS REQUEST BY FORD MOTOR COMPANY FOR AN ADVANCE WAIVER OF IOMES'I'I AND FORKIGN PAT'INT KIGHITS UNDER DOE CONTRACT NO: DE-AC02-94CE50389; W(A)-94-027; CH-842 AND FOR LARGE BUSINESS LOWER TIER SUBCONTRACTS THEREUNDER The Ford Motor Company has petitioned ihe DOE for an advance waiver of paltent lights, both domestic and foreign, for all subject inventions arising under the above identified contract and under all lower tier subcontracts entered into thereunder with parties other than domestic small businesses, nonprofit organizations and universities, and National Laboratories. The purpose of the agreement is to conduct research and development to advance proton-cxchange-

217

UN Economic and Social Commission for Asia and the Pacific (ESCAP) | Open  

Open Energy Info (EERE)

Pacific (ESCAP) Pacific (ESCAP) Jump to: navigation, search Logo: UN Economic and Social Commission for Asia and the Pacific (ESCAP) Name UN Economic and Social Commission for Asia and the Pacific (ESCAP) Address Rajadamnern Nok Avenue Place Bangkok, Thailand References http://www.unescap.org/ No information has been entered for this organization. Add Organization Overview "The United Nations Economic and Social Commission for Asia and the Pacific (ESCAP) is the regional development arm of the United Nations for the Asia-Pacific region. Made up of 62 member States, with a geographical scope that stretches from Turkey in the west to the Pacific island nation of Kiribati in the east, and from the Russian Federation in the north to New Zealand in the south, the region is home to 4.1 billion people, or two

218

Advanced Vehicle Testing Activity: Low-Percentage Hydrogen/CNG Blend Ford F-150 Operating Summary - January 2003  

Science Conference Proceedings (OSTI)

Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy's Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline engines that were converted to run CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure-hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service's Alternative Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity. The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended hydrogen fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents results of 16,942 miles of testing for one of the blended fuel vehicles, a Ford F-150 pickup truck, operating on up to 30% hydrogen/70% CNG fuel.

Karner, D.; Francfort, J.E.

2003-01-22T23:59:59.000Z

219

Advanced Vehicle Testing Activity: High-Percentage Hydrogen/CNG Blend Ford F-150 Operating Summary - January 2003  

Science Conference Proceedings (OSTI)

Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy's Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline engines that were converted to run CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure-hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service's Alternative Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity. The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents the results of 4,695 miles of testing for one of the blended fuel vehicles, a Ford F-150 pickup truck, operating on up to 50% hydrogen-50% CNG fuel.

Karner, D.; Francfort, J.E.

2003-01-22T23:59:59.000Z

220

Extensive escape rate in lattices of weakly coupled expanding maps with holes  

E-Print Network (OSTI)

This paper discusses possible approaches to the escape rate in infinite lattices of weakly coupled maps with uniformly expanding repeller. It is proved that computed-via-volume rates of spatially periodic approximations grow linearly with the period size, suggesting normalized escape rate as the appropriate notion for the infinite system. The proof relies on symbolic dynamics and is based on the control of cumulative effects of perturbations within cylinder sets. A piecewise affine diffusive example is presented that exhibits monotonic decay of the escape rate with coupling intensity.

Jean-Baptiste Bardet; Bastien Fernandez

2010-06-29T23:59:59.000Z

Note: This page contains sample records for the topic "ford escape phev" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Extensive escape rate in lattices of weakly coupled expanding maps with holes  

E-Print Network (OSTI)

This paper discusses possible approaches to the escape rate in infinite lattices of weakly coupled maps with uniformly expanding repeller. It is proved that computed-via-volume rates of spatially periodic approximations grow linearly with the period size, suggesting normalized escape rate as the appropriate notion for the infinite system. The proof relies on symbolic dynamics and is based on the control of cumulative effects of perturbations within cylinder sets. A piecewise affine diffusive example is presented that exhibits monotonic decay of the escape rate with coupling intensity.

Bardet, Jean-Baptiste

2010-01-01T23:59:59.000Z

222

Peeping at chaos: Nondestructive monitoring of chaotic systems by measuring long-time escape rates  

E-Print Network (OSTI)

One or more small holes provide non-destructive windows to observe corresponding closed systems, for example by measuring long time escape rates of particles as a function of hole sizes and positions. To leading order the escape rate of chaotic systems is proportional to the hole size and independent of position. Here we give exact formulas for the subsequent terms, as sums of correlation functions; these depend on hole size and position, hence yield information on the closed system dynamics. Conversely, the theory can be readily applied to experimental design, for example to control escape rates.

L. A. Bunimovich; C. P. Dettmann

2006-10-06T23:59:59.000Z

223

Henry Ford Health System  

Science Conference Proceedings (OSTI)

... Serving Southeast Michigan with More than Health Care. The HFHS workforce supports southeast Michigan with annually ...

2011-12-06T23:59:59.000Z

224

Fall 2008 www.engr.colostate.edu/me Volume 11, Number 1 Tom Bradley Joins the ME Faculty  

E-Print Network (OSTI)

has become the latest member of Colorado State's mechanical engineering faculty. Bradley comes to us conversion to a plug-in hybrid electric vehicle (PHEV) for the 2001 SAE National Future Truck Competition for the Electric Power Research Institute (EPRI) dealing with PHEVs and he helped Ford with simulation, control

225

Composting with My Wiggly Friends - or, The Great Escape That Never  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Composting with My Wiggly Friends - or, The Great Escape That Never Composting with My Wiggly Friends - or, The Great Escape That Never Happened Composting with My Wiggly Friends - or, The Great Escape That Never Happened April 6, 2010 - 7:30am Addthis John Lippert It's hard for many of us of the "me" generation to think about being careful and conserving energy, even when it directly affects our pocketbooks. We leave the lights and television on when there's no one in the room, despite the fact that this specific action-or lack of action-increases our electricity consumption, raising our next electric bill. How much harder is it for us to take steps that may benefit our community, or society, but that are harder to discern how they affect us economically? My wife, Jane, and I have been composting for more than a dozen years.

226

Trapped and escaping orbits in an axially symmetric galactic-type potential  

E-Print Network (OSTI)

In the present article, we investigate the behavior of orbits in a time independent axially symmetric galactic type potential. This dynamical model can be considered to describe the motion in the central parts of a galaxy, for values of energies larger than the energy of escape. We use the classical method of the surface of section, in order to visualize and interpret the structure of the phase space of the dynamical system. Moreover, the Lyapunov Characteristic Exponent (LCE), is used in order to make an estimation of the degree of the chaoticity of the orbits in our galactic model. Our numerical calculations suggest that in this galactic type potential, there are two kinds of orbits: (i) escaping orbits and (ii) trapped orbits which do not escape at all. Furthermore, a large number of orbits of the dynamical system, display chaotic motion. Among the chaotic orbits, there are orbits that escape fast and also orbits that remain trapped for vast time intervals. When the value of the test particle's energy exceeds slightly the energy of escape, the amount of the trapped regular orbits increases, as the the value of the angular momentum increases. Therefore, the extent of the chaotic regions observed in the phase plane decreases as the value of the energy increases. Moreover, we calculate the average value of the escape period of the chaotic orbits and we try to correlate it with the value of the energy and also with the maximum value of the z component of the orbits. In addition, we find that the value of the LCE corresponding to each chaotic region, for different values of the energy, increases exponentially as the value of the energy increases. Some theoretical arguments in order to support the numerically obtained outcomes are presented.

Euaggelos E. Zotos

2012-06-12T23:59:59.000Z

227

Trapped and escaping orbits in an axially symmetric galactic-type potential  

E-Print Network (OSTI)

In the present article, we investigate the behavior of orbits in a time independent axially symmetric galactic type potential. This dynamical model can be considered to describe the motion in the central parts of a galaxy, for values of energies larger than the energy of escape. We use the classical method of the surface of section, in order to visualize and interpret the structure of the phase space of the dynamical system. Moreover, the Lyapunov Characteristic Exponent (LCE), is used in order to make an estimation of the degree of the chaoticity of the orbits in our galactic model. Our numerical calculations suggest that in this galactic type potential, there are two kinds of orbits: (i) escaping orbits and (ii) trapped orbits which do not escape at all. Furthermore, a large number of orbits of the dynamical system, display chaotic motion. Among the chaotic orbits, there are orbits that escape fast and also orbits that remain trapped for vast time intervals. When the value of the test particle's energy exce...

Zotos, Euaggelos E

2012-01-01T23:59:59.000Z

228

THE HYADES CLUSTER: IDENTIFICATION OF A PLANETARY SYSTEM AND ESCAPING WHITE DWARFS  

Science Conference Proceedings (OSTI)

Recently, some hot DA-type white dwarfs have been proposed to plausibly be escaping members of the Hyades. We used hydrogen Balmer lines to measure the radial velocities of seven such stars and confirm that three, and perhaps two others, are/were indeed cluster members and one is not. The other candidate Hyad is strongly magnetic and its membership status remains uncertain. The photospheres of at least one quarter of field white dwarf stars are ''polluted'' by elements heavier than helium that have been accreted. These stars are orbited by extended planetary systems that contain both debris belts and major planets. We surveyed the seven classical single Hyades white dwarfs and the newly identified (escaping) Hyades white dwarfs and found calcium in the photosphere of LP 475-242 of type DBA (now DBAZ), thus implying the presence of an orbiting planetary system. The spectrum of white dwarf GD 31, which may be, but probably is not, an escaping member of the Hyades, displays calcium absorption lines; these originate either from the interstellar medium or, less likely, from a gaseous circumstellar disk. If GD 31 was once a Hyades member, then it would be the first identified white dwarf Hyad with a cooling age >340 Myr.

Zuckerman, B.; Xu, S.; Klein, B.; Jura, M., E-mail: ben@astro.ucla.edu, E-mail: sxu@astro.ucla.edu, E-mail: kleinb@astro.ucla.edu, E-mail: jura@astro.ucla.edu [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States)

2013-06-20T23:59:59.000Z

229

U.S. Department of Energy FreedomCAR & Vehicle Technologies Program Advanced Vehicle Testing Activity, Hydrogen/CNG Blended Fuels Performance Testing in a Ford F-150  

Science Conference Proceedings (OSTI)

Federal regulation requires energy companies and government entities to utilize alternative fuels in their vehicle fleets. To meet this need, several automobile manufacturers are producing compressed natural gas (CNG)-fueled vehicles. In addition, several converters are modifying gasoline-fueled vehicles to operate on both gasoline and CNG (Bifuel). Because of the availability of CNG vehicles, many energy company and government fleets have adopted CNG as their principle alternative fuel for transportation. Meanwhile, recent research has shown that blending hydrogen with CNG (HCNG) can reduce emissions from CNG vehicles. However, blending hydrogen with CNG (and performing no other vehicle modifications) reduces engine power output, due to the lower volumetric energy density of hydrogen in relation to CNG. Arizona Public Service (APS) and the U.S. Department of Energys Advanced Vehicle Testing Activity (DOE AVTA) identified the need to determine the magnitude of these effects and their impact on the viability of using HCNG in existing CNG vehicles. To quantify the effects of using various blended fuels, a work plan was designed to test the acceleration, range, and exhaust emissions of a Ford F-150 pickup truck operating on 100% CNG and blends of 15 and 30% HCNG. This report presents the results of this testing conducted during May and June 2003 by Electric Transportation Applications (Task 4.10, DOE AVTA Cooperative Agreement DEFC36- 00ID-13859).

James E. Francfort

2003-11-01T23:59:59.000Z

230

Pitch angle resolved measurements of escaping charged fusion products in TFTR  

SciTech Connect

Measurements of the flux of charged fusion products escaping from the TFTR plasma have been made with a new type of detector which can resolve the particle flux vs. pitch angle, energy, and time. The design of this detector is described, and results from the 1987 TFTR run are presented. These results are roughly consistent with predictions from a simple first-orbit particle loss model with respect to the pitch angle, energy, time, and plasma current dependence of the signals. 11 refs., 9 figs.

Zweben, S.J.

1989-01-01T23:59:59.000Z

231

An Inventory of Catch and Escapement Data for Columbia River Salmon and Steelhead, 1987 Final Report.  

DOE Green Energy (OSTI)

The work described in this report was part of a larger project conducted by Argonne National Laboratory (ANL) for the Bonneville Power Administration (BPA) to determine appropriate methods for assessing the cumulative effects of hydroelectric development in the Columbia River Basin. One portion of that project was to develop an inventory of catch and escapement data for Columbia River salmon and steelhead and to determine if enough relevant data are available for spawner-recruit analysis. This inventory was to include not the actual data but, rather, only the source, nature, and the extent of data needed to conduct a spawner-recruit analysis. Spawner-recruit analysis is one of several methodologies with possible utility for assessing the cumulative effects of hydroelectric development in the Columbia River Basin. The information presented in this report is not a complete inventory of catch and escapement data for Columbia River salmonids. Some information was omitted, either because of delays in responses by agencies to information requests, or because certain data sources, not widely known to exist, could not be located. 77 refs., 73 tabs.

Martin, Douglas J.; Stull, Elizabeth Ann

1987-03-01T23:59:59.000Z

232

Thermally driven escape from Pluto's atmosphere: A combined fluid/kinetic model  

E-Print Network (OSTI)

A combined fluid/kinetic model is developed to calculate thermally driven escape of N2 from Pluto's atmosphere for two solar heating conditions: no heating above 1450 km and solar minimum heating conditions. In the combined model, one-dimensional fluid equations are applied for the dense part of the atmosphere, while the exobase region is described by a kinetic model and calculated by the direct simulation Monte Carlo method. Fluid and kinetic parts of the model are iteratively solved in order to maintain constant total mass and energy fluxes through the simulation region. Although the atmosphere was found to be highly extended, with an exobase altitude at ~6000 km at solar minimum, the outflow remained subsonic and the escape rate was within a factor of two of the Jeans rate for the exobase temperatures determined. This picture is drastically different from recent predictions obtained solely using a fluid model which, in itself, requires assumptions about atmospheric density, flow velocity and energy flux ca...

Tucker, O J; Deighan, J I; Volkov, A N; Johnson, R E

2011-01-01T23:59:59.000Z

233

A MODEL FOR THE ESCAPE OF SOLAR-FLARE-ACCELERATED PARTICLES  

Science Conference Proceedings (OSTI)

We address the problem of how particles are accelerated by solar flares can escape into the heliosphere on timescales of an hour or less. Impulsive solar energetic particle (SEP) bursts are generally observed in association with so-called eruptive flares consisting of a coronal mass ejection (CME) and a flare. These fast SEPs are believed to be accelerated directly by the flare, rather than by the CME shock. However, the precise mechanism by which the particles are accelerated remains controversial. Regardless of the origin of the acceleration, the particles should remain trapped in the closed magnetic fields of the coronal flare loops and the ejected flux rope, given the magnetic geometry of the standard eruptive-flare model. In this case, the particles would reach the Earth only after a delay of many hours to a few days (coincident with the bulk ejecta arriving at Earth). We propose that the external magnetic reconnection intrinsic to the breakout model for CME initiation can naturally account for the prompt escape of flare-accelerated energetic particles onto open interplanetary magnetic flux tubes. We present detailed 2.5-dimensional magnetohydrodynamic simulations of a breakout CME/flare event with a background isothermal solar wind. Our calculations demonstrate that if the event occurs sufficiently near a coronal-hole boundary, interchange reconnection between open and closed fields can occur. This process allows particles from deep inside the ejected flux rope to access solar wind field lines soon after eruption. We compare these results to standard observations of impulsive SEPs and discuss the implications of the model on further observations and calculations.

Masson, S.; Antiochos, S. K. [Space Weather Laboratory, NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771 (United States); DeVore, C. R., E-mail: sophie.masson@nasa.gov [Laboratory for Computational Physics and Fluid Dynamics, Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC 20375 (United States)

2013-07-10T23:59:59.000Z

234

untitled  

NLE Websites -- All DOE Office Websites (Extended Search)

Hybrid Electric Vehicle Accelerated Testing - July 2008 One front-wheel drive and one 4-wheel drive Ford Escape hybrid electric vehicles (HEV) entered Accelerated testing during...

235

Microsoft Word - ford99.html  

NLE Websites -- All DOE Office Websites (Extended Search)

FM Stereo Radio Tilt Steering Wheel Cabin Heat Dual Air Bags Power Steering (electro-hydraulic) Power Brakes Four Wheel Disc Brakes Four Wheel Anti-Lock Brakes Regenerative...

236

1998 Ford Ranger Performance Characterization  

NLE Websites -- All DOE Office Websites (Extended Search)

system impacts. The following facts support this purpose: * As a fleet operator and an electric utility, SCE uses EVs to conduct its business. * SCE must evaluate EVs,...

237

Chrysler RAM PHEV Fleet Results Report  

NLE Websites -- All DOE Office Websites (Extended Search)

istance (mi) 4 45 Trips in Charge Depleting (CD) mode City Highway Gasoline fuel economy (mpg) DC electrical energy consumption (DC Whmi) Percent of miles with internal combustion...

238

Anticipating PHEV Energy Impacts in California  

E-Print Network (OSTI)

Plug-in hybrid electric vehicles: How does one determinerd International Electric Vehicle Symposium and Exposition (of Plug-In Hybrid Electric Vehicles, Volume 1: Nationwide

Axsen, John; Kurani, Kenneth S.

2009-01-01T23:59:59.000Z

239

Anticipating PHEV Energy Impacts in California  

E-Print Network (OSTI)

Vyas et al. , Plug-in hybrid electric vehicles: How does oneof Plug-In Hybrid Electric Vehicles, Volume 1: Nationwideuse of plug-in hybrid electric vehicles, Transportation

Axsen, John; Kurani, Kenneth S.

2009-01-01T23:59:59.000Z

240

Hymotion Prius Conversion PHEV Demonstration Summary Report ...  

NLE Websites -- All DOE Office Websites (Extended Search)

rights. References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or otherwise, does not necessarily constitute or...

Note: This page contains sample records for the topic "ford escape phev" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

UHECR ESCAPE MECHANISMS FOR PROTONS AND NEUTRONS FROM GAMMA-RAY BURSTS, AND THE COSMIC-RAY-NEUTRINO CONNECTION  

SciTech Connect

The paradigm that gamma-ray burst fireballs are the sources of the ultra-high energy cosmic rays (UHECRs) is being probed by neutrino observations. Very stringent bounds can be obtained from the cosmic-ray (proton)-neutrino connection, assuming that the UHECRs escape as neutrons. In this study, we identify three different regimes as a function of the fireball parameters: the standard ''one neutrino per cosmic ray'' case, the optically thick (to neutron escape) case, and the case where leakage of protons from the boundaries of the shells (direct escape) dominates. In the optically thick regime, the photomeson production is very efficient, and more neutrinos will be emitted per cosmic ray than in the standard case, whereas in the direct escape-dominated regime, more cosmic rays than neutrinos will be emitted. We demonstrate that, for efficient proton acceleration, which is required to describe the observed UHECR spectrum, the standard case only applies to a very narrow region of the fireball parameter space. We illustrate with several observed examples that conclusions on the cosmic-ray-neutrino connection will depend on the actual burst parameters. We also show that the definition of the pion production efficiency currently used by the IceCube collaboration underestimates the neutrino production in the optically thick case. Finally, we point out that the direct escape component leads to a spectral break in the cosmic-ray spectrum emitted from a single source. The resulting ''two-component model'' can be used to even more strongly pronounce the spectral features of the observed UHECR spectrum than the dip model.

Baerwald, Philipp; Bustamante, Mauricio; Winter, Walter, E-mail: philipp.baerwald@physik.uni-wuerzburg.de, E-mail: mauricio.bustamante@physik.uni-wuerzburg.de, E-mail: winter@physik.uni-wuerzburg.de [Institut fuer Theoretische Physik und Astrophysik, Universitaet Wuerzburg, D-97074 Wuerzburg (Germany)

2013-05-10T23:59:59.000Z

242

Final Report of a CRADA Between Pacific Northwest National Laboratory and the Ford Motor Company (CRADA No. PNNL/265): Deactivation Mechanisms of Base Metal/Zeolite Urea Selective Catalytic Reduction Materials, and Development of Zeolite-Based Hydrocarbon Adsorber Materials  

SciTech Connect

Reducing NOx emissions and particulate matter (PM) are primary concerns for diesel vehicles required to meet current LEV II and future LEV III emission standards which require 90+% NOx conversion. Currently, urea SCR as the NOx reductant and a Catalyzed Diesel Particulate Filter (CDPF) are being used for emission control system components by Ford Motor Company for 2010 and beyond diesel vehicles. Because the use of this technology for vehicle applications is new, the relative lack of experience makes it especially challenging to satisfy durability requirements. Of particular concern is being able to realistically simulate actual field aging of the catalyst systems under laboratory conditions. This is necessary both as a rapid assessment tool for verifying improved performance and certifiability of new catalyst formulations, and to develop a good understanding of deactivation mechanisms that can be used to develop improved catalyst materials. In addition to NOx and PM, the hydrocarbon (HC) emission standards are expected to become much more stringent during the next few years. Meanwhile, the engine-out HC emissions are expected to increase and/or be more difficult to remove. Since HC can be removed only when the catalyst becomes warm enough for its oxidation, three-way catalyst (TWC) and diesel oxidation catalyst (DOC) formulations often contain proprietary zeolite materials to hold the HC produced during the cold start period until the catalyst reaches its operating temperature (e.g., >200C). Unfortunately, much of trapped HC tends to be released before the catalyst reaches the operating temperature. Among materials effective for trapping HC during the catalyst warm-up period, siliceous zeolites are commonly used because of their high surface area and high stability under typical operating conditions. However, there has been little research on the physical properties of these materials related to the adsorption and release of various hydrocarbon species found in the engine exhaust. For these reasons, automakers and engine manufacturers have difficulty improving their catalytic converters for meeting the stringent HC emission standards. In this collaborative program, scientists and engineers in the Institute for Integrated Catalysis at Pacific Northwest National Laboratory and at Ford Motor Company have investigated laboratory- and engine-aged SCR catalysts, containing mainly base metal zeolites. These studies are leading to a better understanding of various aging factors that impact the long-term performance of SCR catalysts and improve the correlation between laboratory and engine aging, saving experimental time and cost. We have also studied materials effective for the temporary storage of HC species during the cold-start period. In particular, we have examined the adsorption and desorption of various HC species produced during the combustion with different fuels (e.g., gasoline, E85, diesel) over potential HC adsorber materials, and measured the kinetic parameters to update Fords HC adsorption model. Since this CRADA has now been completed, in this final report we will provide brief summaries of most of the work carried out on this CRADA over the last several years.

Gao, Feng; Kwak, Ja Hun; Lee, Jong H.; Tran, Diana N.; Peden, Charles HF; Howden, Ken; Cheng, Yisun; Lupescu, Jason; Cavattaio, Giovanni; Lambert, Christine; McCabe, Robert W.

2013-02-14T23:59:59.000Z

243

THE EFFECTS OF WAVE ESCAPE ON FAST MAGNETOSONIC WAVE TURBULENCE IN SOLAR FLARES  

Science Conference Proceedings (OSTI)

One of the leading models for electron acceleration in solar flares is stochastic acceleration by weakly turbulent fast magnetosonic waves ({sup f}ast waves{sup )}. In this model, large-scale flows triggered by magnetic reconnection excite large-wavelength fast waves, and fast-wave energy then cascades from large wavelengths to small wavelengths. Electron acceleration by large-wavelength fast waves is weak, and so the model relies on the small-wavelength waves produced by the turbulent cascade. In order for the model to work, the energy cascade time for large-wavelength fast waves must be shorter than the time required for the waves to propagate out of the solar-flare acceleration region. To investigate the effects of wave escape, we solve the wave kinetic equation for fast waves in weak turbulence theory, supplemented with a homogeneous wave-loss term. We find that the amplitude of large-wavelength fast waves must exceed a minimum threshold in order for a significant fraction of the wave energy to cascade to small wavelengths before the waves leave the acceleration region. We evaluate this threshold as a function of the dominant wavelength of the fast waves that are initially excited by reconnection outflows.

Pongkitiwanichakul, Peera; Chandran, Benjamin D. G. [Space Science Center and Department of Physics, University of New Hampshire, Durham, NH 03824 (United States); Karpen, Judith T. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); DeVore, C. Richard, E-mail: pbu3@unh.edu, E-mail: benjamin.chandran@unh.edu, E-mail: judy.karpen@nasa.gov, E-mail: devore@nrl.navy.mil [Naval Research Laboratory, Washington, DC 20375 (United States)

2012-09-20T23:59:59.000Z

244

Quadruple Adaptive Observer of the Core Temperature in Cylindrical Li-ion Batteries and their Health Monitoring  

E-Print Network (OSTI)

for hybrid electric vehicles (HEV), plug-in hybrid electric vehicles (PHEV) and battery electric vehicles@umich.edu, siegeljb@umich.edu and annastef@umich.edu Y. Li and R. D. Anderson are with the Vehicle and Battery Controls De- partment, Research and Advanced Engineering, Ford Motor Company, Dear- born, MI 48121, USA. E

Stefanopoulou, Anna

245

IEEE TRANSACTIONS ON CONTROL SYSTEM TECHNOLOGY 1 Online Parameterization of Lumped Thermal  

E-Print Network (OSTI)

considered as an energy storage device for hybrid electric vehicles (HEV), plug-in hybrid electric vehicles (PHEV) and battery electric vehicles (BEV). Thermal management is a critical issue for onboard lithium are with the Vehicle and Battery Controls Depart- ment, Research and Advanced Engineering, Ford Motor Company, Dearborn

Stefanopoulou, Anna

246

Planar LIF observation of unburned fuel escaping the upper ring-land crevice in an SI engine  

DOE Green Energy (OSTI)

PLIF has been used to observe the in-cylinder transport of unburned fuel that, while trapped in the ring-land and ring-groove crevices, survives combustion in the propagating flame. Away from the top-ring gap, we detect a wall-jet comprised of unburned charge exiting the top ring-land crevice opening. At the location of the top-ring gap, we observed unburned fuel lying in the cool boundary layer along the cylinder wall during the later stages of the expansion stroke. This layer is scraped into the roll-up vortex during the exhaust stroke. These data lead us to conclude that away from the end gap, unburned, high pressure charge, trapped between the two compression rings escapes as a wall jet after ring-reversal near the bottom center. Conversely, at the ring gap, when the cylinder pressure drops below the pressure between the compression rings, the trapped charge escapes through the gap and forms a thin layer on the cylinder wall.

Green, R.M.; Cloutman, L.D.

1997-01-01T23:59:59.000Z

247

Stepwise DNA Methylation Changes Are Linked to Escape from Defined Proliferation Barriers and Mammary Epithelial Cell Immortalization  

SciTech Connect

The timing and progression of DNA methylation changes during carcinogenesis are not completely understood. To develop a timeline of aberrant DNA methylation events during malignant transformation, we analyzed genome-wide DNA methylation patterns in an isogenic human mammary epithelial cell (HMEC) culture model of transformation. To acquire immortality and malignancy, the cultured finite lifespan HMEC must overcome two distinct proliferation barriers. The first barrier, stasis, is mediated by the retinoblastoma protein and can be overcome by loss of p16(INK4A) expression. HMEC that escape stasis and continue to proliferate become genomically unstable before encountering a second more stringent proliferation barrier, telomere dysfunction due to telomere attrition. Rare cells that acquire telomerase expression may escape this barrier, become immortal, and develop further malignant properties. Our analysis of HMEC transitioning from finite lifespan to malignantly transformed showed that aberrant DNA methylation changes occur in a stepwise fashion early in the transformation process. The first aberrant DNA methylation step coincides with overcoming stasis, and results in few to hundreds of changes, depending on how stasis was overcome. A second step coincides with immortalization and results in hundreds of additional DNA methylation changes regardless of the immortalization pathway. A majority of these DNA methylation changes are also found in malignant breast cancer cells. These results show that large-scale epigenetic remodeling occurs in the earliest steps of mammary carcinogenesis, temporally links DNA methylation changes and overcoming cellular proliferation barriers, and provides a bank of potential epigenetic biomarkers that mayprove useful in breast cancer risk assessment.

Novak, Petr; Jensen, Taylor J.; Garbe, James C.; Stampfer, Martha R.; Futscher, Bernard W.

2009-04-20T23:59:59.000Z

248

Use of Dual Frequency Identification Sonar to Determine Adult Chinook Salmon (Oncorhynchus tshawytscha) Escapement in the Secesh River, Idaho ; Annual Report, January 2008 December 2008.  

DOE Green Energy (OSTI)

Chinook salmon in the Snake River basin were listed as threatened under the Endangered Species Act in 1992 (NMFS 1992). The Secesh River represents the only stream in the Snake River basin where natural origin (wild) salmon escapement monitoring occurs at the population level, absent a supplementation program. As such the Secesh River has been identified as a long term salmon escapement and productivity monitoring site by the Nez Perce Tribe Department of Fisheries Resources Management. Salmon managers will use this data for effective population management and evaluation of the effect of conservation actions on a natural origin salmon population. The Secesh River also acts as a reference stream for supplementation program comparison. Dual frequency identification sonar (DIDSON) was used to determine adult spring and summer Chinook salmon escapement in the Secesh River in 2008. DIDSON technology was selected because it provided a non-invasive method for escapement monitoring that avoided listed species trapping and handling incidental mortality, and fish impedance related concerns. The DIDSON monitoring site was operated continuously from June 13 to September 14. The first salmon passage was observed on July 3. DIDSON site total estimated salmon escapement, natural and hatchery fish, was 888 fish {+-} 65 fish (95% confidence interval). Coefficient of variation associated with the escapement estimate was 3.7%. The DIDSON unit was operational 98.1% of the salmon migration period. Adult salmon migration timing in the Secesh River occurred over 74 days from July 3 to September 14, with 5,262 total fish passages observed. The spawning migration had 10%, median, and 90% passage dates of July 8, July 16, and August 12, respectively. The maximum number of net upstream migrating salmon was above the DIDSON monitoring site on August 27. Validation monitoring of DIDSON target counts with underwater optical cameras occurred for species identification. A total of 860 optical camera identified salmon passage observations were identical to DIDSON target counts. However, optical cameras identified eight jack salmon (3 upstream, 5 downstream) less than 55 cm in length that DIDSON did not count as salmon because of the length criteria employed ({ge} 55 cm). Precision of the DIDSON technology was evaluated by comparing estimated net upstream salmon escapement and associated 95% confidence intervals between two DIDSON sonar units operated over a five day period. The DIDSON 1 salmon escapement was 145.7 fish ({+-} 2.3), and the DIDSON 2 escapement estimate was 150.5 fish ({+-} 5). The overlap in the 95% confidence intervals suggested that the two escapement estimates were not significantly different from each other. Known length salmon carcass trials were conducted in 2008 to examine the accuracy of manually measured lengths, obtained using DIDSON software, on high frequency files at a 5 m window length. Linear regression demonstrated a highly significant relationship between known lengths and manually measured salmon carcass lengths (p < 0.0001). A positive bias in manual length measurement of 6.8% to 8% existed among the two observers in the analysis. Total Secesh River salmon escapement (natural origin and hatchery) in 2008 was 912 fish. Natural origin salmon escapement in the entire Secesh River drainage was 847 fish. The estimated natural origin spawner abundance was 836 fish. Salmon spawner abundance in 2008 increased by three fold compared to 2007 abundance levels. The 10 year geometric mean natural origin spawner abundance was 538 salmon and was below the recommended viable population threshold level established by the ICTRT (2007). One additional Snake River basin salmon population was assessed for comparison of natural origin salmon spawner abundance. The Johnson Creek/EFSF Salmon River population had a 10 year geometric mean natural origin spawner abundance of 254 salmon. Salmon spawner abundance levels in both streams were below viable population thresholds. DIDSON technology has been used in the Secesh River to determine salmo

Kucera, Paul A. [Nez Perce Tribe Department of Fisheries Resources Management

2009-06-26T23:59:59.000Z

249

1998 Ford Ranger EV Performance Characterization Summary  

NLE Websites -- All DOE Office Websites (Extended Search)

Test) 0 10 20 30 40 50 60 70 80 0 0.5 1 1.5 2 2.5 3 3.5 4 State of Charge (4F, 0E) Miles Driven Miles Driven Miles Remaining * * Initial "Miles Remaining" depend on driving...

250

Design of a minimalist autonomous robotic vehicle  

E-Print Network (OSTI)

The purpose of this thesis is to investigate design alternatives for the creation of a minimalist autonomous robotic vehicle, based on the Ford Escape. The work builds on prior work performed by the MIT DARPA Urban Challenge ...

Spadafora, Mark (Mark A.)

2008-01-01T23:59:59.000Z

251

Vehicle Technologies Office: Fact #770: March 11, 2013 Changes...  

NLE Websites -- All DOE Office Websites (Extended Search)

and CR-V were not even on the top ten list for the first time in many years, and the Toyota Corolla and Honda Accord were near the bottom of the list. The Ford Escape and the...

252

Plug-In Hybrid Electric Vehicles - PHEV Modeling - Powertrain Configuration  

NLE Websites -- All DOE Office Websites (Extended Search)

Impact of Powertrain Configuration on Fuel Efficiency To evaluate the fuel efficiency potential of plug-in hybrid electric vehicles, it is necessary to compare the advantages and drawbacks of several powertrain configurations, ranging from power split to parallel and series. PSAT offers the unique ability to simulate and compare hundreds of powertrain configurations. The goal of the effort is to define the most promising configurations depending on the particular usage. Component sizes, fuel efficiency and cost will be used to make appropriate decisions. The configurations currently being considered include, but are not limited to: Pre-transmission parallel HEV Post-transmission parallel HEV Power split HEV (including THS II and GM 2 Mode) Series The figure below shows an example comparison of three powertrain configurations (parallel, series and power split).

253

Plug-In 2009: PHEV Testing and Demonstration Activities Conducted...  

NLE Websites -- All DOE Office Websites (Extended Search)

ICE (internal combustion engine) vehicles - 7 models, 400,000 test miles * Full-size battery electric vehicles (BEVs) - 40 BEV models, 5+ million test miles * Urban electric...

254

Locating PHEV exchange stations in V2G  

SciTech Connect

Plug-in hybrid electric vehicle (PREV) is an environment friendly modem transportation method and has been rapidly penetrate the transportation system. Renewable energy is another contributor to clean power but the associated intermittence increases the uncertainty in power generation. As a foreseen benefit of a vchicle-to-grid (V2G) system, PREV supporting infrastructures like battery exchange stations can provide battery service to PREV customers as well as being plugged into a power grid as energy sources and stabilizer. The locations of exchange stations are important for these two objectives under constraints from both ,transportation system and power grid. To model this location problem and to understand and analyze the benefit of a V2G system, we develop a two-stage stochastic program to optimally locate the stations prior to the realizations of battery demands, loads, and generation capacity of renewable power sources. Based on this model, we use two data sets to construct the V2G systems and test the benefit and the performance of these systems.

Pan, Feng [Los Alamos National Laboratory; Bent, Russell [Los Alamos National Laboratory; Berscheid, Alan [Los Alamos National Laboratory; Izraelevitz, David [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

255

Effects of different PHEV control strategies on vehicle performance  

Science Conference Proceedings (OSTI)

Foreign oil dependence, increased cost of fuel, pollution, global warming are buzz words of today's era. Automobiles have a large impact on increasing energy demand, pollution and related issues. As a consequence, many efforts are being concentrated ...

P. Tulpule; V. Marano; G. Rizzoni

2009-06-01T23:59:59.000Z

256

Monthly Summary Results for the Chrysler RAM PHEV Fleet  

NLE Websites -- All DOE Office Websites (Extended Search)

istance (mi) 6 40 Trips in Charge Depleting (CD) mode City Highway Gasoline fuel economy (mpg) 21 25 DC electrical energy consumption (DC Whmi) 227 168 Percent of miles with...

257

Monthly Summary Results for the Chrysler RAM PHEV Fleet  

NLE Websites -- All DOE Office Websites (Extended Search)

Reporting period: May 2012 Number of vehicle days driven: 1839 All Trips Combined Overall gasoline fuel economy (mpg) 21 Overall AC electrical energy consumption (AC Whmi) 93...

258

Monthly Summary Results for the Chrysler RAM PHEV Fleet  

NLE Websites -- All DOE Office Websites (Extended Search)

90% 3 20 172 1% 2.4 100% 32 Trips in Charge Depleting and Charge Sustaining (CDCS) mode Gasoline fuel economy (mpg) DC electrical energy consumption (DC Whmi) Percent of miles...

259

Monthly Summary Results for the Chrysler RAM PHEV Fleet  

NLE Websites -- All DOE Office Websites (Extended Search)

VEHICLE TECHNOLOGIES PROGRAM Trips in Charge Depleting (CD) mode City Highway Gasoline fuel economy (mpg) DC electrical energy consumption (DC Whmi) Percent of miles...

260

Monthly Summary Results for the Chrysler RAM PHEV Fleet  

NLE Websites -- All DOE Office Websites (Extended Search)

(mpg) 19 Overall AC electrical energy consumption (AC Whmi) 181 Overall DC electrical energy consumption (DC Whmi) 104 Overall DC electrical energy captured from...

Note: This page contains sample records for the topic "ford escape phev" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Monthly Summary Results for the Chrysler RAM PHEV Fleet  

NLE Websites -- All DOE Office Websites (Extended Search)

DC electrical energy consumption (DC Whmi) Percent of miles with internal combustion engine off Average trip Agressiveness Percent of miles with air conditioning selected Average...

262

Monthly Summary Results for the Chrysler RAM PHEV Fleet  

NLE Websites -- All DOE Office Websites (Extended Search)

(mpg) 19 Overall AC electrical energy consumption (AC Whmi) 104 Overall DC electrical energy consumption (DC Whmi) 70 Overall DC electrical energy captured from regenerative...

263

Monthly Summary Results for the Chrysler RAM PHEV Fleet  

NLE Websites -- All DOE Office Websites (Extended Search)

(mpg) 20 Overall AC electrical energy consumption (AC Whmi) 94 Overall DC electrical energy consumption (DC Whmi) 72 Overall DC electrical energy captured from regenerative...

264

Monthly Summary Results for the Chrysler RAM PHEV Fleet  

NLE Websites -- All DOE Office Websites (Extended Search)

(mpg) 19 Overall AC electrical energy consumption (AC Whmi) 85 Overall DC electrical energy consumption (DC Whmi) 54 Overall DC electrical energy captured from regenerative...

265

PHEV Parcel Delivery Truck Model - Development and Preliminary Results (Presentation)  

DOE Green Energy (OSTI)

Describes results of a study to determine the impact of drive cycles on the energy- and cost-effectiveness of plug-in hybrid electric delivery vans.

Barnitt, R

2009-10-28T23:59:59.000Z

266

PHEV Energy Storage and Drive Cycle Impacts (Presentation)  

DOE Green Energy (OSTI)

Plug-in Hybrid vehicles energy storage and drive cycle impacts, presented at the 7th Advanced Automotive Battery Conference.

Markel, T.; Pesaran, A.

2007-05-17T23:59:59.000Z

267

Plug-In Hybrid Electric Vehicles - PHEV Modeling  

NLE Websites -- All DOE Office Websites (Extended Search)

configurations for advanced vehicles. Thus, developing fuel cells and hybrid electric vehicles (HEVs) requires accurate, flexible simulation tools. Argonne undertook a...

268

Choices and Requirements of Batteries for EVs, HEVs, PHEVs (Presentation)  

DOE Green Energy (OSTI)

This presentation describes the choices available and requirements for batteries for electric vehicles, hybrid electric vehicles, plug-in hybrid electric vehicles.

Pesaran, A. A.

2011-04-01T23:59:59.000Z

269

Impact of Sungate EP on PHEV Performance: Results of a Simulated Solar Reflective Glass PHEV Dynamometer Test  

DOE Green Energy (OSTI)

Composite fuel economy of a plug-in hybrid electric test vehicle increased 8% to 41.6 mpg because of the reduction in thermal loads from Sungate EP glazings installed in the windshield and backlite.

Rugh, J.

2009-06-01T23:59:59.000Z

270

THE RELATION BETWEEN POST-SHOCK TEMPERATURE, COSMIC-RAY PRESSURE, AND COSMIC-RAY ESCAPE FOR NON-RELATIVISTIC SHOCKS  

Science Conference Proceedings (OSTI)

Supernova remnants (SNRs) are thought to be the dominant source of Galactic cosmic rays. This requires that at least 5% of the available energy is transferred to cosmic rays, implying a high cosmic-ray pressure downstream of SNR shocks. Recently, it has been shown that the downstream temperature in some remnants is low compared to the measured shock velocities, implying that additional pressure supported by accelerated particles is present. Here we use a two-fluid thermodynamic approach to derive the relation between post-shock fractional cosmic-ray pressure and post-shock temperature, assuming no additional heating beyond adiabatic heating in the shock precursor and with all non-adiabatic heating occurring at the subshock. The derived relations show that a high fractional cosmic-ray pressure is only possible if a substantial fraction of the incoming energy flux escapes from the system. Recently, a shock velocity and a downstream proton temperature were measured for a shock in the SNR RCW 86. We apply the two-fluid solutions to these measurements and find that the downstream fractional cosmic-ray pressure is at least 50% with a cosmic-ray energy flux escape of at least 20%. In general, in order to have 5% of the supernova energy to go into accelerating cosmic rays, on average the post-shock cosmic-ray pressure needs to be 30% for an effective cosmic-ray adiabatic index of {gamma}{sub cr} = 4/3.

Vink, Jacco; Helder, Eveline A.; Schure, K. M. [Astronomical Institute, Utrecht University, P.O. Box 80000, 3508 TA Utrecht (Netherlands); Yamazaki, Ryo, E-mail: j.vink@astro-uu.n [Department of Physics and Mathematics, Aoyama Gakuin University, 5-10-1 Fuchinobe, Sagamihara, Kanagawa 252-5258 (Japan)

2010-10-20T23:59:59.000Z

271

1 BWeb for Modeling the Environment Limnology, March 2012 Ver 5 Andrew Ford Andrew Ford  

E-Print Network (OSTI)

. The simulations show growth in biomass in the lake, and the pattern of growth looks somewhat like the S-shaped growth described in Chapter 7 of the book. Perhaps the dynamics of biomass growth is governed by feedback? If so, label the loop as (+) or (-). biomass P biomass P death detritus P detritus P decay nutrient P

Ford, Andrew

272

Escapement and Productivity of Spring Chinook Salmon and Summer Steelhead in the John Day River Basin, 2005-2006 Annual Technical Report.  

DOE Green Energy (OSTI)

The objectives are: (1) Estimate number and distribution of spring Chinook salmon Oncorhynchus tshawytscha redds and spawners in the John Day River subbasin; and (2) Estimate smolt-to-adult survival rates (SAR) and out-migrant abundance for spring Chinook and summer steelhead O. mykiss and life history characteristics of summer steelhead. The John Day River subbasin supports one of the last remaining intact wild populations of spring Chinook salmon and summer steelhead in the Columbia River Basin. These populations, however, remain depressed relative to historic levels. Between the completion of the life history and natural escapement study in 1984 and the start of this project in 1998, spring Chinook spawning surveys did not provide adequate information to assess age structure, progeny-to-parent production values, smolt-to-adult survival (SAR), or natural spawning escapement. Further, only very limited information is available for steelhead life history, escapement, and productivity measures in the John Day subbasin. Numerous habitat protection and rehabilitation projects to improve salmonid freshwater production and survival have also been implemented in the basin and are in need of effectiveness monitoring. While our monitoring efforts outlined here will not specifically measure the effectiveness of any particular project, they will provide much needed background information for developing context for project-specific effectiveness monitoring efforts. To meet the data needs as index stocks, to assess the long-term effectiveness of habitat projects, and to differentiate freshwater and ocean survival, sufficient annual estimates of spawner escapement, age structure, SAR, egg-to-smolt survival, smolt-per-redd ratio, and freshwater habitat use are essential. We have begun to meet this need through spawning ground surveys initiated for spring Chinook salmon in 1998 and smolt PIT-tagging efforts initiated in 1999. Additional sampling and analyses to meet these goals include an estimate of smolt abundance and SAR rates, and an updated measure of the freshwater distribution of critical life stages. Because Columbia Basin managers have identified the John Day subbasin spring Chinook population as an index population for assessing the effects of alternative future management actions on salmon stocks in the Columbia Basin (Schaller et al. 1999) we continue our ongoing studies. This project is high priority based on the high level of emphasis the NWPPC Fish and Wildlife Program, Subbasin Summaries, NMFS, and the Oregon Plan for Salmon and Watersheds have placed on monitoring and evaluation to provide the real-time data to guide restoration and adaptive management in the region. By implementing the proposed program we have been able to address many of the goals for population status monitoring, such as defining areas currently used by spring Chinook for holding and spawning habitats and determining range expansion or contraction of summer rearing and spawning populations. The BiOp describes these goals as defining population growth rates (adult monitoring), detecting changes in those growth rates or relative abundance in a reasonable time (adult/juvenile monitoring), estimating juvenile abundance and survival rates (juvenile/smolt monitoring), and identifying stage-specific survival (adult-to-smolt, smolt-to-adult).

Schultz, Terra Lang; Wilson, Wayne H.; Ruzycki, James R. [Oregon Department of Fish and Wildlife

2009-04-10T23:59:59.000Z

273

Chinook Salmon Adult Abundance Monitoring; Hydroacoustic Assessment of Chinook Salmon Escapement to the Secesh River, Idaho, 2002-2004 Final Report.  

DOE Green Energy (OSTI)

Accurate determination of adult salmon spawner abundance is key to the assessment of recovery actions for wild Snake River spring/summer Chinook salmon (Onchorynchus tshawytscha), a species listed as 'threatened' under the Endangered Species Act (ESA). As part of the Bonneville Power Administration Fish and Wildlife Program, the Nez Perce Tribe operates an experimental project in the South Fork of the Salmon River subbasin. The project has involved noninvasive monitoring of Chinook salmon escapement on the Secesh River between 1997 and 2000 and on Lake Creek since 1998. The overall goal of this project is to accurately estimate adult Chinook salmon spawning escapement numbers to the Secesh River and Lake Creek. Using time-lapse underwater video technology in conjunction with their fish counting stations, Nez Perce researchers have successfully collected information on adult Chinook salmon spawner abundance, run timing, and fish-per-redd numbers on Lake Creek since 1998. However, the larger stream environment in the Secesh River prevented successful implementation of the underwater video technique to enumerate adult Chinook salmon abundance. High stream discharge and debris loads in the Secesh caused failure of the temporary fish counting station, preventing coverage of the early migrating portion of the spawning run. Accurate adult abundance information could not be obtained on the Secesh with the underwater video method. Consequently, the Nez Perce Tribe now is evaluating advanced technologies and methodologies for measuring adult Chinook salmon abundance in the Secesh River. In 2003, the use of an acoustic camera for assessing spawner escapement was examined. Pacific Northwest National Laboratory, in a collaborative arrangement with the Nez Perce Tribe, provided the technical expertise to implement the acoustic camera component of the counting station on the Secesh River. This report documents the first year of a proposed three-year study to determine the efficacy of using an acoustic camera to count adult migrant Chinook salmon as they make their way to the spawning grounds on the Secesh River and Lake Creek. A phased approach to applying the acoustic camera was proposed, starting with testing and evaluation in spring 2003, followed by a full implementation in 2004 and 2005. The goal of this effort is to better assess the early run components when water clarity and night visibility preclude the use of optical techniques. A single acoustic camera was used to test the technology for enumerating adult salmon passage at the Secesh River. The acoustic camera was deployed on the Secesh at a site engineered with an artificial substrate to control the river bottom morphometry and the passage channel. The primary goal of the analysis for this first year of deployment was to validate counts of migrant salmon. The validation plan involved covering the area with optical video cameras so that both optical and acoustic camera images of the same viewing region could be acquired simultaneously. A secondary test was contrived after the fish passage was complete using a controlled setting at the Pacific Northwest National Laboratory in Richland, Washington, in which we tested the detectability as a function of turbidity levels. Optical and acoustic camera multiplexed video recordings of adult Chinook salmon were made at the Secesh River fish counting station from August 20 through August 29, 2003. The acoustic camera performed as well as or better than the optical camera at detecting adult Chinook salmon over the 10-day test period. However, the acoustic camera was not perfect; the data reflected adult Chinook salmon detections made by the optical camera that were missed by the acoustic camera. The conditions for counting using the optical camera were near ideal, with shallow clear water and good light penetration. The relative performance of the acoustic camera is expected to be even better than the optical camera in early spring when water clarity and light penetration are limited. Results of the laboratory tests at the Pacific North

Johnson, R.; McKinstry, C.; Mueller, R.

2004-01-01T23:59:59.000Z

274

The relation between post-shock temperature, cosmic-ray pressure and cosmic-ray escape for non-relativistic shocks  

E-Print Network (OSTI)

Supernova remnants are thought to be the dominant source of Galactic cosmic rays. This requires that at least 5% of the available energy is transferred to cosmic rays, implying a high cosmic-ray pressure downstream of supernova remnant shocks. Recently, it has been shown that the downstream temperature in some remnants is low compared to the measured shock velocities, implying that additional pressure support by accelerated particles is present. Here we use a two-fluid thermodynamic approach to derive the relation between post-shock fractional cosmic-ray pressure and post-shock temperature, assuming no additional heating beyond adiabatic heating in the shock precursor and with all non-adiabatic heating occurring at the subshock. The derived relations show that a high fractional cosmic-ray pressure is only possible, if a substantial fraction of the incoming energy flux escapes from the system. Recently a shock velocity and a downstream proton temperature was measured for a shock in the supernova remnant RCW 86...

Vink, Jacco; Helder, E A; Schure, K M

2010-01-01T23:59:59.000Z

275

Escape the tyranny of TCP  

E-Print Network (OSTI)

The Transmission Control Protocol (TCP) is ubiquitous, sophisticated, and effective. It also prevents the innovation needed to improve delivery of Internet services to the wireless tactical edge of DOD operations. We argue ...

Chan, Vincent W. S.

276

Factors Affecting the Fuel Consumption of Plug-In Hybrid Electric Vehicles  

DOE Green Energy (OSTI)

Primary Factors that Impact the Fuel Consumption of Plug-In Hybrid Electric Vehicles RICHARD BARNEY CARLSON, MATTHEW G. SHIRK Idaho National Laboratory 2525 N. Fremont Ave., Idaho Falls, ID 83415, USA richard.carlson@inl.gov Abstract Plug-in Hybrid Electric Vehicles (PHEV) have proven to significantly reduce petroleum consumption as compared to conventional internal combustion engine vehicles (ICE) by utilizing electrical energy for propulsion. Through extensive testing of PHEVs, analysis has shown that the fuel consumption of PHEVs is more significantly affected than conventional vehicles by either the drivers input or by the environmental inputs around the vehicle. Six primary factors have been identified that significantly affect the fuel consumption of PHEVs. In this paper, these primary factors are analyzed from on-road driving and charging data from over 200 PHEVs throughout North America that include Hymotion Prius conversions and Hybrids Plus Escape conversions. The Idaho National Laboratory (INL) tests plug-in hybrid electric (PHEV) vehicles as part of its conduct of DOEs Advanced Vehicle Testing Activity (AVTA). In collaboration with its 75 testing partners located in 23 states and Canada, INL has collected data on 191 PHEVs, comprised of 12 different PHEV models (by battery manufacturer). With more than 1 million PHEV test miles accumulated to date, the PHEVs are fleet, track, and dynamometer tested. Six Primary Factors The six primary factors that significantly impact PHEV fuel consumption are listed below. Some of the factors are unique to plug-in vehicles while others are common for all types of vehicles. 1. Usable Electrical Energy is dictated by battery capacity, rate of depletion as well as when the vehicle was last plugged-in. With less electrical energy available the powertrain must use more petroleum to generate the required power output. 2. Driver Aggressiveness impacts the fuel consumption of nearly all vehicles but this impact is greater for high efficiency powertrains. 3. Accessory Utilization like air conditioner systems or defroster systems can use a significant amount of additional energy that is not contributing to the propulsion of the vehicle. 4. Route Type such as city, highway or mountainous driving can affect the fuel consumption since it can involve stop and go driving or ascending a step grade. 5. Cold Start / Key On includes control strategies to improve cold start emissions as well as control routines to quickly supply cabin heat. These control strategies are necessary for consumer acceptance even though fuel consumption is negatively impacted. 6. Ambient Temperature can reduce the efficiency of many powertrain components by significantly increasing fluid viscosity. For vehicles that utilize battery energy storage systems, the temperature of the battery system can greatly affect the power output capability therefore reducing its system effectiveness. The analysis of the six primary factors that impact fuel economy of PHEVs helped to identify areas of potential further development as well as may assist in informing drivers of these effects in an effort to modify driving behavior to reduce petroleum consumption.

Richard "Barney" Carlson; Matthew G. Shirk; Benjamin M. Geller

2001-11-01T23:59:59.000Z

277

Multi-functional Bio-synthetic Hybrid Nanostructures for Enhanced Cellular Uptake, Endosomal Escape and Targeted Delivery Toward Diagnostics and Therapeutics  

E-Print Network (OSTI)

Applications of nanotechnology in medicine, also known as nanomedicine, is a rapidly growing field as it holds great potential in the development of novel therapeutics toward treatment of various diseases. Shell crosslinked knedel-like nanoparticles (SCKs) that are self assembled from amphiphilic block copolymers into polymeric micelles followed by crosslinking selectively throughout the shell domain have been investigated as theranostic agents for the delivery of nucleic acids and incorporation of imaging probes. The main focus of this dissertation is to design and develop unique multifunctional bio-synthetic hybrid nanoparticles that can carry agents for radiolabeling, moieties for inducing stealth properties to minimize protein adsorption in vivo, ligands for site-specific targeting, therapeutic payloads, and are optimized for efficient delivery of cargoes intracellularly and to the target sites toward constructing novel nanoscopic objects for therapy and diagnosis. Alteration of polymeric building blocks of the nanoparticles provides opportunities for precise control over the sizes, shapes, compositions, structures and properties of the nanoparticles. To ensure ideal performance of nanoparticles as theranostic agents, it is critical to ensure high intracellular bioavailability of the therapeutic payload conjugated to nanoparticles. Special efforts were made by employing well-defined multi-step polymerization and polymer modification reactions that involved conjugation of peptide nucleic acids (PNAs) to chain terminus of poly(ethylene glycol) (PEG) chain grafts such that they were presented at the outermost surface of SCKs. Additionally, chemical modification reactions were performed on the polymer backbone to integrate positive charges onto the shell of the nanoparticles to afford cationic SCKs (cSCKs) for facilitating cellular entry and electrostatic interactions with negatively charged nucleic acids. Covalent conjugation of F3, a tumor homing peptide, post-assembly of the nanoparticles enhanced cellular uptake and knockdown of nucleolin (a shuttling protein overexpressed at the sites of angiogenesis) and thus inhibiting tumor cell growth. Furthermore, these polymer precursors of the cSCKs were modified with partial to full incorporation of histamines to facilitate their endosomal escape for efficient delivery into the cytosol. The cSCKs were further templated onto high aspect ratio anionic cylinders to form hierarchically-assembled nanostructures that bring together individual components with unique functions, such as one carrying a therapeutic payload and the other with sites for radiolabeling. These higher order nanoobjects enhance circulation in vivo, have capabilities to package nucleic acids electrostatically and contain sites for radiolabeling, providing an overall advantage over the individual components, which could each facilitate only one or the other of the combined functions. Hierarchically-assembled nanostructures were investigated for their cellular uptake, transfection behavior and radiolabeling efficiency, as the next generation of theranostic agents.

Shrestha, Ritu 1984-

2012-12-01T23:59:59.000Z

278

STATEMENT OF CONSIDERATIONS REQUEST BY FORD MOTOR COMPANY RESEARCH...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

contractor, (emission control technology developer and CIDI engine manufacturer), ExxonMobil (fuel and catalyst technology developer), and FEV Engine Technology (outside...

279

2011 Henry Ford Health System Award Application Summary  

Science Conference Proceedings (OSTI)

... talent development, and recognition creates unique energy and a ... example, an Sg2 tool summarizes historical trends and forecasts market shifts for ...

2012-04-12T23:59:59.000Z

280

Fuel Economy of the 2013 Ford Focus Electric  

NLE Websites -- All DOE Office Websites (Extended Search)

the Mobile Version of This Page Automatic (A1) Electricity Compare Side-by-Side EV EPA Fuel Economy Miles per Gallon Personalize Electricity* 105 Combined 110 City 99 Highway...

Note: This page contains sample records for the topic "ford escape phev" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Fuel Economy of the 2013 Ford Transit Connect Wagon FWD  

NLE Websites -- All DOE Office Websites (Extended Search)

of This Page 4 cyl, 2.0 L Automatic 4-spd Regular Gasoline Compare Side-by-Side EPA Fuel Economy Miles per Gallon Personalize Regular Gasoline 24 Combined 22 City 27 Highway...

282

Fuel Economy of the 2013 Ford E350 Wagon  

NLE Websites -- All DOE Office Websites (Extended Search)

of This Page 10 cyl, 6.8 L Automatic 5-spd Regular Gasoline Compare Side-by-Side EPA Fuel Economy Miles per Gallon Personalize Regular Gasoline 11 Combined 10 City 13 Highway...

283

Fuel Economy of the 2013 Ford E350 Van  

NLE Websites -- All DOE Office Websites (Extended Search)

of This Page 10 cyl, 6.8 L Automatic 5-spd Regular Gasoline Compare Side-by-Side EPA Fuel Economy Miles per Gallon Personalize Regular Gasoline 12 Combined 10 City 14 Highway...

284

2012 Ford Fusion V6 Test Cell Location  

NLE Websites -- All DOE Office Websites (Extended Search)

Fusion V6 Fusion V6 Test Cell Location 2WD Vehicle Setup Information Downloadable Dynamometer Database (D 3 )- Test Summary Sheet Vehicle Architecture Conventional Vehicle Dynamometer Input Document Date 8/7/2013 Advanced Powertrain Research Facility Test weight [lb] Target A [lb] 3744 33.84 Target B [lb/mph] Target C [lb/mph^2] -0.2066 0.02372 3.0-liter V6 FFV -6 spd standard transmission Revision Number 3 Notes: Test Fuel Information 3.0-liter V6 FFV -6 spd standard transmission Fuel type Tier II EEE HF437 3.0-liter V6 FFV -6 spd standard transmission Fuel density [g/ml] Fuel Net HV [BTU/lbm] 0.743 18344 T e s t I D [ # ] C y c l e C o l d s t a r t ( C S t ) H o t s t a r t [ H S t ] D a t e T e s t C e l l T e m p [ C ] T e s t C e l l R H [ % ] T e s t C e l l B a r o [ i n / H g ] V e h i c l e c o o l i n g f a n s p e e d : S p e e d M a t c h [ S M ] o r c o n s t a n t s p e e d [ C S ] S o l a r L a m

285

Ford County, Illinois: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

4988592°, -88.2071598° 4988592°, -88.2071598° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.4988592,"lon":-88.2071598,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

286

Ford County, Kansas: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

0069°, -99.8124935° 0069°, -99.8124935° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.6540069,"lon":-99.8124935,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

287

Ford City, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

119.4562299° 119.4562299° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.1544112,"lon":-119.4562299,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

288

Ford Heights, Illinois: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

506424°, -87.5917092° 506424°, -87.5917092° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.506424,"lon":-87.5917092,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

289

WhyFord Escort's success was easy to forecast.  

E-Print Network (OSTI)

were heated to 57.5°C for 10 min in a PTC200 thermocycler (MJ Re- search), rapidly cooled to 4°C and conformational studies of [Orn-10, Nle-13]-S-peptide. J Am Chem Soc 91:492­496. Ruettinger RT, Wen LP, Fulco AJ

Queitsch, Christine

290

Notices TABLE C-WILLIAM D. FORD FEDERAL DIRECT LOAN  

U.S. Energy Information Administration (EIA) Indexed Site

legislation. Data are used directly in EIA web reports concerning U.S. crude oil, natural gas, and natural gas liquids reserves, and are incorporated into other reports, including...

291

DTE Energy & Ford Motor Company Teaming Profile | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

manufacturing resources K-12 school resources Multifamily housing resources Restaurant resources Retail resources Senior care resources Small business resources State and...

292

The Benham Companies & Ford Motor Company Teaming Profile | ENERGY...  

NLE Websites -- All DOE Office Websites (Extended Search)

manufacturing resources K-12 school resources Multifamily housing resources Restaurant resources Retail resources Senior care resources Small business resources State and...

293

26 ford 4-p car data sheet.indd  

NLE Websites -- All DOE Office Websites (Extended Search)

92 lb Delivered Curb Weight: 1431 lb Distribution FR: 4654% GVWR: 2300 lb GAWR FR: 8401530 lb Payload: 899 lb 3 Performance Goal: 400 lb DIMENSIONS Wheelbase: 77.9 inches Track...

294

25 ford 2-p car sheet data.indd  

NLE Websites -- All DOE Office Websites (Extended Search)

48 lb Delivered Curb Weight: 1355 lb Distribution FR: 4456% GVWR: 1900 lb GAWR FR: 7501230 lb Payload: 551 lb 3 Performance Goal: 400 lb DIMENSIONS Wheelbase: 67.9 inches Track...

295

2011 Henry Ford Health System Award Application Summary  

Science Conference Proceedings (OSTI)

... Standardized, or core, quality performance measures reported by The ... nuum of Care Health care coal t ons (eg ... in- clude a full status report by pillar ...

2012-04-12T23:59:59.000Z

296

President Ford Signs the Energy Reorganization Act of 1974 |...  

NLE Websites -- All DOE Office Websites (Extended Search)

Y-12 Earn 11 R&D 100 Awards Jul 2, 2013 US, International Partners Remove Last Remaining HEU from Vietnam, Set Nuclear Security Milestone View All > Timeline Curious about NNSA...

297

STATEMENT OF CONSIDERATIONS REQUEST BY FORD MOTOR COMPANY FOR...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

employees and of its lower tier subcontractors. The subcontract is to developdemonstrate hybrid vehicle technology and to build hybrid vehicles to demonstrate various operational...

298

Trends in Eagle Ford drilling highlight the search for oil ...  

U.S. Energy Information Administration (EIA)

Crude oil, gasoline, heating oil, diesel, propane, ... In major shale plays, drilling activity depends largely on the resource mix and relative fuel ...

299

DOE - Office of Legacy Management -- Dawn Ford Site - 038  

NLE Websites -- All DOE Office Websites (Extended Search)

when the Uranium Mill Tailings Radiation Control Act was passed in 1978. The majority milling at these sites was for private sale, but a portion was sold to the U. S. Government....

300

Fuel Economy of the 2013 Ford E150 Wagon FFV  

NLE Websites -- All DOE Office Websites (Extended Search)

Version of This Page Compare Side-by-Side 8 cyl, 4.6 L Automatic 4-spd Regular Gas or E85 FFV EPA Fuel Economy Miles per Gallon Personalize Regular Gas 14 Combined 13 City 16...

Note: This page contains sample records for the topic "ford escape phev" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Supply Chain Greenhouse Gas Management Strategy for Ford Motor Company.  

E-Print Network (OSTI)

??The processing of raw materials and the manufacturing of components for the automotive supply chain results in significant life cycle energy consumption and greenhouse gas (more)

Bosch, Christina

2011-01-01T23:59:59.000Z

302

Ford F-250 Fact Sheet: Bi-fuel propane pickup  

DOE Green Energy (OSTI)

The U.S. Department of Energy (DOE) is promoting the use of alternative fuels and alternative fuel vehicles (AFVs). To support this activity, DOE has directed the National Renewable Energy Laboratory (NREL) to conduct projects to evaluate the performance and acceptability of light-duty AFVs. A 1999 F-250 bi-fuel propane pickup was run through a series of tests while operating on LPB and gasoline. The tests are explained briefly in this fact sheet.

Eudy, L.

1999-12-27T23:59:59.000Z

303

2012 Ford Fusion V6 Test Cell Location  

NLE Websites -- All DOE Office Websites (Extended Search)

Fusion V6 Test Cell Location 2WD Vehicle Setup Information Downloadable Dynamometer Database (D 3 )- Test Summary Sheet Vehicle Architecture Conventional Vehicle Dynamometer Input...

304

New England Energy Management, Inc. & Ford Motor Company Teaming...  

NLE Websites -- All DOE Office Websites (Extended Search)

my money go? Set and Save with ENERGY STAR Product Finder Rebate Finder Store Locator Energy Savings At Home Energy Savings At Home Improving your home's energy efficiency with...

305

Andrew Ford BWeb for Modeling the Environment 1 Resource Economics  

E-Print Network (OSTI)

. System dynamics was used by Roger Naill to simulate the life cycle in natural gas exploration. He. But many experts spoke of an "oil and gas crisis." They feared that the United States was running low on both oil and gas reserves. In the well-known "Harvard Energy Study," Stobaugh and Yergin (1979

Ford, Andrew

306

Microsoft Word - TeamingProfile_NEEM-Ford.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

as reduced maintenance costs - accrue 100% to the facility. * Energy Savings Annual electric savings of 1.5 million, 20k mWh, resulting in a 70% reduction in lighting energy. *...

307

Understanding the Grid Impacts of Plug-In Electric Vehicles (PEV): Phase 1 Study -- Distribution Impact Case Studies  

Science Conference Proceedings (OSTI)

A new era of plug-in electric vehicles (PEVs) has begun. Nissan and General Motors launched production PEVs in December 2010, and in 2011 and 2012, Ford, Mitsubishi, Toyota, Honda, Chrysler, Tesla, and others have introduced such vehicles to the US market which can create peak loads of up to 19.2 kW. In addition, with the rapidly approaching commercialization of plug-in hybrid (PHEVs) and battery electric vehicles (BEVs) utilities need to ensure that they can support customers use of such ...

2012-12-31T23:59:59.000Z

308

Modeling the Impacts of Electricity Tarrifs on PHEV Charging, Costs, and Emissions  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

R&M Project 2A: R&M Project 2A: Evaluating the Effects of Managing Controllable Demand and Distributed Energy Resources Locally on System Performance and Costs Tim Mount, Eilyan Bitar and Ray Zimmerman Cornell University Alberto Lamadrid Lehigh University CERTS Review, Cornell, August 6 th - 7 th , 2013 An NSF I/UCRC PART I: Storage (Mount) PART II: Ramping* (Lamadrid) PART III: Robust Optimization* (Bitar) *(Note: This is a new part of the project that began on 3/30/13) 2 OUTLINE OF THE PRESENTATION An NSF I/UCRC PART I: Storage Wooyoung Jeon Hao Lu Jung Youn Mo 3 An NSF I/UCRC Context of the Research: An Integrated Multi-Scale Framework 4 SuperOPF  Costs PEV charger capacities  Commuting Patterns  Nodal Capabilities

309

PHEV Battery Trade-Off Study and Standby Thermal Control (Presentation)  

DOE Green Energy (OSTI)

Describes NREL's R&D to optimize the design of batteries for plug-in hybrid electric vehicles to meet established requirements at minimum cost.

Smith, K.; Markel, T.; Pesaran, A.

2009-03-01T23:59:59.000Z

310

Microsoft PowerPoint - JF_RWC Motreal PHEV_2009 Sept.ppt [Compatibilit...  

NLE Websites -- All DOE Office Websites (Extended Search)

g - Provide benchmark data to technology modelers, research and development programs, vehicle manufacturers (via VSATT) and target and goal setters manufacturers (via VSATT),...

311

A rule-based energy management strategy for plug-in hybrid electric vehicle (PHEV)  

Science Conference Proceedings (OSTI)

Hybrid Electric Vehicles (HEV) combine the power from an electric motor with that from an internal combustion engine to propel the vehicle. The HEV electric motor is typically powered by a battery pack through power electronics. The HEV battery is recharged ...

Harpreetsingh Banvait; Sohel Anwar; Yaobin Chen

2009-06-01T23:59:59.000Z

312

Improving Petroleum Displacement Potential of PHEVs Using Enhanced Charging Scenarios: Preprint  

DOE Green Energy (OSTI)

Describes NREL's R&D on the petroleum displacement potential of plug-in hybrid vehicles; vehicles charged during the day would save about 5% more fuel than those charged at night.

Markel, T.; Smith, K.; Pesaran, A. A.

2009-05-01T23:59:59.000Z

313

MD PHEV/EV ARRA Project Data Collection and Reporting (Presentation)  

DOE Green Energy (OSTI)

This presentation describes a National Renewable Energy Laboratory project to collect and analyze commercial fleet deployment data from medium-duty plug-in hybrid electric and all-electric vehicles that were deployed using funds from the American Recovery and Reinvestment Act. This work supports the Department of Energy's Vehicle Technologies Program and its Advanced Vehicle Testing Activity.

Walkowicz, K.; Ramroth, L.; Duran, A.; Rosen, B.

2012-01-01T23:59:59.000Z

314

Microsoft Word - PHEV Infrastructure Report INL-EXT-08-15058...  

NLE Websites -- All DOE Office Websites (Extended Search)

of Energy Vehicle Technologies Program - Advanced Vehicle Testing Activity Plug-in Hybrid Electric Vehicle Charging Infrastructure Review Final Report Battelle Energy...

315

PHEV Utility Factors (UFs) Derived from Households' Vehicle Usage Patterns Jamie Davies, Ken Kurani  

E-Print Network (OSTI)

to calculate electrical consumption, emissions, fuel costs, and battery lifetime and degradation. Of particular of Battery Electric Vehicles (BEVs) while allowing consumers to make use of the familiar gasoline refueling, each household starts the day with a fully charged battery and does not recharge throughout the day

California at Davis, University of

316

TransForum v9n1 - Temperature Effects on PHEVs  

NLE Websites -- All DOE Office Websites (Extended Search)

Real-World Temperature Effects on Plug-in Hybrid Electric Vehicles Soak cycles Engine surface temperature collected during a soak time sensitivity study using Argonne's Modular...

317

PHEV Battery Trade-Off Study and Standby Thermal Control (Presentation)  

SciTech Connect

Describes NREL's R&D to optimize the design of batteries for plug-in hybrid electric vehicles to meet established requirements at minimum cost.

Smith, K.; Markel, T.; Pesaran, A.

2009-03-01T23:59:59.000Z

318

PowerUp! Summit - AVTA North America and Washington State PHEV...  

NLE Websites -- All DOE Office Websites (Extended Search)

and Battery Development - Energy Critical Infrastructure Protection Nuclear Geothermal Hydropower 2 AVTA Background and Goals * The Advanced Vehicle Testing Activity (AVTA) is...

319

Batteries for Plug-in Hybrid Electric Vehicles (PHEVs): Goals and the State of Technology circa 2008  

E-Print Network (OSTI)

Targeted battery costs are $200-$300 per kWh. We note thatbattery cost is commonly measured in dollars per total kWh (

Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

2008-01-01T23:59:59.000Z

320

Batteries for Plug-in Hybrid Electric Vehicles (PHEVs): Goals and the State of Technology circa 2008  

E-Print Network (OSTI)

cost. Third, lithium-ion (Li-Ion) battery designs are betterclass of advanced battery using lithium-ion chemistry. LMS Li-Ion battery technologies as follows: LCO: Lithium cobalt

Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ford escape phev" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Batteries for Plug-in Hybrid Electric Vehicles (PHEVs): Goals and the State of Technology circa 2008  

E-Print Network (OSTI)

and from regenerative braking, and passes energy to theor from regenerative braking and uses the energy in the

Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

2008-01-01T23:59:59.000Z

322

Impact of the 3Cs of Batteries on PHEV Value Proposition: Cost, Calendar Life, and Cycle Life (Presentation)  

DOE Green Energy (OSTI)

Battery cost, calendar life, and cycle life are three important challenges for those commercializing plug-in hybrid electric vehicles; battery life is sensitive to temperature and solar loading.

Pesaran, A.; Smith, K.; Markel, T.

2009-06-01T23:59:59.000Z

323

Learning from Consumers: Plug-In Hybrid Electric Vehicle (PHEV) Demonstration and Consumer Education, Outreach, and Market Research Program  

E-Print Network (OSTI)

and turtles displaying regenerative energy both perverselythe type of energy (Gas, Electric, Electric Regenerative) by

Kurani, Kenneth S; Axsen, Jonn; Caperello, Nicolette; Davies, Jamie; Stillwater, Tai

2009-01-01T23:59:59.000Z

324

Abstract--Plug-in Hybrid Electric Vehicles (PHEV) represent a promising pathway to reduce greenhouse gas emissions  

E-Print Network (OSTI)

. EPA (2007d) eGrid2006 Version 2.1, Year 2004 Summary Tables. U.S. Environmental Protection Agency. Accessed from http://www.epa.gov/cleanenergy/energy- resources/egrid/index.html on July 29, 2008. EPA (2008

Hines, Paul

325

Learning from Consumers: Plug-In Hybrid Electric Vehicle (PHEV) Demonstration and Consumer Education, Outreach, and Market Research Program  

E-Print Network (OSTI)

dependency of the U.S. on foreign oil Figure 8: Comparingnations dependence on foreign oil, requires urgent action.impacts and dependence on foreign oil, as well as sending a

Kurani, Kenneth S; Axsen, Jonn; Caperello, Nicolette; Davies, Jamie; Stillwater, Tai

2009-01-01T23:59:59.000Z

326

Learning from Consumers: Plug-In Hybrid Electric Vehicle (PHEV) Demonstration and Consumer Education, Outreach, and Market Research Program  

E-Print Network (OSTI)

production of further hybrid cars. Similarly, Larry Rhodesbuying Priuses as commute carshybrids were fairly popularhybrid vehicles are being made available to (predominately new-car

Kurani, Kenneth S; Axsen, Jonn; Caperello, Nicolette; Davies, Jamie; Stillwater, Tai

2009-01-01T23:59:59.000Z

327

Batteries for Plug-in Hybrid Electric Vehicles (PHEVs): Goals and the State of Technology circa 2008  

E-Print Network (OSTI)

rd International Electric Vehicle Symposium and Exposition (Electric and Hybrid Electric Vehicle Applications, Sandiaand Impacts of Hybrid Electric Vehicle Options EPRI, Palo

Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

2008-01-01T23:59:59.000Z

328

Using GPS Travel Data to Assess the Real World Driving Energy Use of Plug-In Hybrid Electric Vehicles (PHEVs)  

DOE Green Energy (OSTI)

Highlights opportunities using GPS travel survey techniques and systems simulation tools for plug-in hybrid vehicle design improvements, which maximize the benefits of energy efficiency technologies.

Gonder, J.; Markel, T.; Simpson, A.; Thornton, M.

2007-05-01T23:59:59.000Z

329

Batteries for Plug-in Hybrid Electric Vehicles (PHEVs): Goals and the State of Technology circa 2008  

E-Print Network (OSTI)

detour? Presentation at SAE 2008 Hybrid Vehicle Technologiesdrive vehicles, including plug-in hybrid vehicles. -vi-including plug-in hybrid vehicles. 7.0 References Anderman,

Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

2008-01-01T23:59:59.000Z

330

Learning from Consumers: Plug-In Hybrid Electric Vehicle (PHEV) Demonstration and Consumer Education, Outreach, and Market Research Program  

E-Print Network (OSTI)

T. et al. (2006), Plug-in hybrid vehicle analysis, Milestonein conversions of hybrid vehicles are being made availablein Table 3: household hybrid vehicle ownership, respondents

Kurani, Kenneth S; Axsen, Jonn; Caperello, Nicolette; Davies, Jamie; Stillwater, Tai

2009-01-01T23:59:59.000Z

331

Batteries for Plug-in Hybrid Electric Vehicles (PHEVs): Goals and the State of Technology circa 2008  

E-Print Network (OSTI)

5, Shirouzu, N. (2007). Toyota Puts Off New Type of Batteryof one battery, e.g. Toyotas concerns about safety with itssuccess, typified by the Toyota Prius. Currently, interest

Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

2008-01-01T23:59:59.000Z

332

The Early U.S. Market for PHEVs: Anticipating Consumer Awareness, Recharge Potential, Design Priorities and Energy Impacts  

E-Print Network (OSTI)

HEVs), typified by the Toyota Prius, continue to achieverelatively low CD range (the Prius Plug-in) and one designeddesigns, e.g. Toyotas Plug-in Prius with less than 10 miles

Axsen, Jonn; Kurani, Kenneth S

2008-01-01T23:59:59.000Z

333

Batteries for Plug-in Hybrid Electric Vehicles (PHEVs): Goals and the State of Technology circa 2008  

E-Print Network (OSTI)

New Type of Battery for Next Prius, The Wall Street Journal,typified by the Toyota Prius. Currently, interest has turneda plug-in version of the Prius, General Motors is working

Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

2008-01-01T23:59:59.000Z

334

Learning from Consumers: Plug-In Hybrid Electric Vehicle (PHEV) Demonstration and Consumer Education, Outreach, and Market Research Program  

E-Print Network (OSTI)

based on the stock Toyota Prius Energy Monitor and Fuelof the Project. Another Prius (purchased with funding fromused than in a conventional Prius and it is easier, though

Kurani, Kenneth S; Axsen, Jonn; Caperello, Nicolette; Davies, Jamie; Stillwater, Tai

2009-01-01T23:59:59.000Z

335

Batteries for Plug-in Hybrid Electric Vehicles (PHEVs): Goals and the State of Technology circa 2008  

E-Print Network (OSTI)

of acceptability. Targeted battery costs are $200-$300 persafety will increase battery cost. Table E-1: Comparing PHEVthis report. 3.5 Costs Battery cost is thought to be one of

Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

2008-01-01T23:59:59.000Z

336

Learning from Consumers: Plug-In Hybrid Electric Vehicle (PHEV) Demonstration and Consumer Education, Outreach, and Market Research Program  

E-Print Network (OSTI)

contractor who pays the electricity bill] doesnt even equalhow much their higher electricity bill was due to their ACshe would be checking her electricity bill to make sure. [It

Kurani, Kenneth S; Axsen, Jonn; Caperello, Nicolette; Davies, Jamie; Stillwater, Tai

2009-01-01T23:59:59.000Z

337

Batteries for Plug-in Hybrid Electric Vehicles (PHEVs): Goals and the State of Technology circa 2008  

E-Print Network (OSTI)

in a battery to the batterys maximum capacity. Total Energyversion of the battery, with total energy capacity of (0.057Mass Battery Goals kW Peak Power kWh Energy Capacity years

Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

2008-01-01T23:59:59.000Z

338

Batteries for Plug-in Hybrid Electric Vehicles (PHEVs): Goals and the State of Technology circa 2008  

E-Print Network (OSTI)

of advanced batteries for plug-in hybrid electric vehicle (Advanced Lithium-Ion Batteries for Plug- in Hybrid-Electric Vehicles,

Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

2008-01-01T23:59:59.000Z

339

Batteries for Plug-in Hybrid Electric Vehicles (PHEVs): Goals and the State of Technology circa 2008  

E-Print Network (OSTI)

vehicles was the Hybrid and Electric Vehicle Act of 1976.for Electric and Hybrid Electric Vehicle Applications,and Impacts of Hybrid Electric Vehicle Options EPRI, Palo

Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

2008-01-01T23:59:59.000Z

340

Learning from Consumers: Plug-In Hybrid Electric Vehicle (PHEV) Demonstration and Consumer Education, Outreach, and Market Research Program  

E-Print Network (OSTI)

Vehicles: What Hybrid Electric Vehicles (HEVs) Mean and Whys early market for hybrid electric vehicles. TransportationDriving Plug-In Hybrid Electric Vehicles: Reports from U.S.

Kurani, Kenneth S; Axsen, Jonn; Caperello, Nicolette; Davies, Jamie; Stillwater, Tai

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ford escape phev" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

?Just-in-Time? Battery Charge Depletion Control for PHEVs and E-REVs for Maximum Battery Life  

SciTech Connect

Conventional methods of vehicle operation for Plug-in Hybrid Vehicles first discharge the battery to a minimum State of Charge (SOC) before switching to charge sustaining operation. This is very demanding on the battery, maximizing the number of trips ending with a depleted battery and maximizing the distance driven on a depleted battery over the vehicle s life. Several methods have been proposed to reduce the number of trips ending with a deeply discharged battery and also eliminate the need for extended driving on a depleted battery. An optimum SOC can be maintained for long battery life before discharging the battery so that the vehicle reaches an electric plug-in destination just as the battery reaches the minimum operating SOC. These Just-in-Time methods provide maximum effective battery life while getting virtually the same electricity from the grid.

DeVault, Robert C [ORNL

2009-01-01T23:59:59.000Z

342

Federal Tax Credits for Plug-in Hybrids Purchased in or after 2010  

NLE Websites -- All DOE Office Websites (Extended Search)

Federal Tax Credits for Plug-in Hybrids Federal Tax Credits for Plug-in Hybrids Photo of cash and keys Federal Tax Credit Up To $7,500! Plug-in hybrid-electric vehicles (PHEVs) purchased in or after 2010 may be eligible for a federal income tax credit of up to $7,500. The credit amount will vary based on the capacity of the battery used to fuel the vehicle. Small neighborhood electric vehicles do not qualify for this credit, but they may qualify for another credit. Vehicle Make & Model Full Credit Phase Out No Credit 50% 25% BMW Jan. 1, 2010, to Present TBD TBD TBD 2014 BMW i3 Sedan w/ Range Extender 2014 i3 Sedan w/ Range Extender $7,500 -- -- -- Fisker Jan. 1, 2010, to Present TBD TBD TBD Fisker Karma 2012 Fisker Karma Sedan $7,500 -- -- -- Ford Motor Co. Jan. 1, 2010, to Present TBD TBD TBD

343

Fuel Economy of the 2013 Ford F150 Pickup 4WD  

NLE Websites -- All DOE Office Websites (Extended Search)

View the Mobile Version of This Page 8 cyl, 6.2 L Automatic (S6) Regular Gasoline Compare Side-by-Side EPA Fuel Economy Miles per Gallon Personalize Regular Gasoline 13 Combined 12...

344

Fuel Economy of the 2013 Ford F150 Raptor Pickup 4WD  

NLE Websites -- All DOE Office Websites (Extended Search)

View the Mobile Version of This Page 8 cyl, 6.2 L Automatic (S6) Regular Gasoline Compare Side-by-Side EPA Fuel Economy Miles per Gallon Personalize Regular Gasoline 13 Combined 11...

345

WA_1994_027_FORD_MOTOR_COMPANY_Waiver_of_Domestic_and_Foreig...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4027FORDMOTORCOMPANYWaiverofDomesticandForeig.pdf WA1994027FORDMOTORCOMPANYWaiverofDomesticandForeig.pdf WA1994027FORDMOTORCOMPANYWaiverofDomesticandFo...

346

WA_99_015_FORD_MOTOR_COMPANY_Waiver_of_Domestic_and_Foreign_...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

99015FORDMOTORCOMPANYWaiverofDomesticandForeign.pdf WA99015FORDMOTORCOMPANYWaiverofDomesticandForeign.pdf WA99015FORDMOTORCOMPANYWaiverofDomesticandF...

347

WA_1993_032_FORD_MOTOR_COMPANY_Waiver_of_Domestic_and_Foreig...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

32FORDMOTORCOMPANYWaiverofDomesticandForeig.pdf WA1993032FORDMOTORCOMPANYWaiverofDomesticandForeig.pdf WA1993032FORDMOTORCOMPANYWaiverofDomesticandForei...

348

WA_97_038_FORD_MOTOR_COMPANY_Waiver_of_Domestic_and_Foreign_...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

WA97038FORDMOTORCOMPANYWaiverofDomesticandForeign.pdf WA97038FORDMOTORCOMPANYWaiverofDomesticandForeign.pdf WA97038FORDMOTORCOMPANYWaiverofDomestican...

349

WA_01-016_FORD_MOTOR_CO_Waive_of_Domestic_and_Foreign_Invent...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1-016FORDMOTORCOWaiveofDomesticandForeignInvent.pdf WA01-016FORDMOTORCOWaiveofDomesticandForeignInvent.pdf WA01-016FORDMOTORCOWaiveofDomesticandForeign...

350

Chattanooga Eagle Ford Western Gulf TX-LA-MS Salt Basin Uinta Basin  

U.S. Energy Information Administration (EIA) Indexed Site

Western Western Gulf TX-LA-MS Salt Basin Uinta Basin Devonian (Ohio) Marcellus Utica Bakken*** Avalon- Bone Spring San Joaquin Basin Monterey Santa Maria, Ventura, Los Angeles Basins Monterey- Temblor Pearsall Tuscaloosa Big Horn Basin Denver Basin Powder River Basin Park Basin Niobrara* Mowry Niobrara* Heath** Manning Canyon Appalachian Basin Antrim Barnett Bend New Albany Woodford Barnett- Woodford Lewis Hilliard- Baxter- Mancos Excello- Mulky Fayetteville Floyd- Neal Gammon Cody Haynesville- Bossier Hermosa Mancos Pierre Conasauga Michigan Basin Ft. Worth Basin Palo Duro Basin Permian Basin Illinois Basin Anadarko Basin Greater Green River Basin Cherokee Platform San Juan Basin Williston Basin Black Warrior Basin A r d m o r e B a s i n Paradox Basin Raton Basin Montana Thrust Belt Marfa Basin Valley & Ridge Province Arkoma Basin Forest

351

"INDEPENDENT CONFIRMATORY SURVEY SUMMARY AND RESULTS FOR THE FORD NUCLEAR REACTOR, REVISION 1, ANN ARBOR, MICHIGAN  

SciTech Connect

At the NRC?s request, ORAU conducted confirmatory surveys of the FNR during the period of December 4 through 6, 2012. The survey activities included visual inspections and measurement and sampling activities. Confirmatory activities also included the review and assessment of UM?s project documentation and methodologies. Surface scans identified elevated activity in two areas. The first area was on a wall outside of Room 3103 and the second area was in the southwest section on the first floor. The first area was remediated to background levels. However, the second area was due to gamma shine from a neighboring source storage area. A retrospective analysis of UM?s FSS data shows that for the SUs investigated by the ORAU survey team, UM met the survey requirements set forth in the FSSP. The total mean surface activity values were directly compared with the mean total surface activity reported by UM. Mean surface activity values determined by UM were within two standard deviations of the mean determined by ORAU. Additionally, all surface activity values were less than the corresponding gross beta DCGL{sub W}. Laboratory analysis of the soil showed that COC concentrations were less than the respective DCGL{sub W} values. For the inter-lab comparison, the DER was above 3 for only one sample. However, since the sum of fractions for each of the soil samples was below 1, thus none of the samples would fail to meet release guidelines. Based on the findings of the side-by-side direct measurements, and after discussion with the NRC and ORAU, UM decided to use a more appropriate source efficiency in their direct measurement calculations and changed their source efficiency from 0.37 to 0.25.

ALTIC, NICK A

2013-08-01T23:59:59.000Z

352

INDEPENDENT CONFIRMATORY SURVEY SUMMARY AND RESULTS FOR THE FORD NUCLEAR REACTOR, ANN ARBOR, MICHIGAN  

SciTech Connect

At the NRC?s request, ORAU conducted confirmatory surveys of the FNR during the period of December 4 through 6, 2012. The survey activities included visual inspections and measurement and sampling activities. Confirmatory activities also included the review and assessment of UM?s project documentation and methodologies. Surface scans identified elevated activity in two areas. The first area was on a wall outside of Room 3103 and the second area was in the southwest section on the first floor. The first area was remediated to background levels. However, the second area was due to gamma shine from a neighboring source storage area. A retrospective analysis of UM?s FSS data shows that for the SUs investigated by the ORAU survey team, UM met the survey requirements set forth in the FSSP. The total mean surface activity values were directly compared with the mean total surface activity reported by UM. Mean surface activity values determined by UM were within two standard deviations of the mean determined by ORAU. Additionally, all surface activity values were less than the corresponding gross beta DCGLW. Laboratory analysis of the soil showed that COC concentrations were less than the respective DCGLW values. For the inter-lab comparison, the DER was above 3 for only one sample. However, since the sum of fractions for each of the soil samples was below 1, thus none of the samples would fail to meet release guidelines. Based on the findings of the side-by-side direct measurements, and after discussion with the NRC and ORAU, UM decided to use a more appropriate source efficiency in their direct measurement calculations and changed their source efficiency from 0.37 to 0.25.

ALTIC, NICK A

2013-07-25T23:59:59.000Z

353

Hydrogen/CNG Blended Fuels Performance Testing in a Ford F-150  

NLE Websites -- All DOE Office Websites (Extended Search)

Attachment 1 Procedure ETA-YTP001 Revision 0 Attachment 1 - Hydrogen ICE Vehicle Acceleration Test Procedure ETA-YTP001 Revision 0 Effective May 15, 2003 Implementation of SAE...

354

Interdependent pricing and markup behavior : an empirical analysis of GM, Ford and Chrysler  

E-Print Network (OSTI)

In this paper we show how to adapt the traditional contingent claims valuation techniques to correctly value the firm and its liabilities in the presence of agency costs. This enables us to measure the significance of the ...

Berndt, Ernst R.

1990-01-01T23:59:59.000Z

355

Production patterns in Eagle Ford Shale (Decline Curve Analysis) Muoz Torres, J.1  

E-Print Network (OSTI)

that there were vast natural gas resources in unconventional reservoirs like coal seams, tight sand and shales in the United States and elsewhere. That's the positive surprise. On the negative side, the severity of the oil spill in the Gulf of Mexico could well turn the global public against oil and natural gas exploration

Texas at Austin, University of

356

Rethinking the industrial landscape : the future of the Ford Rouge complex  

E-Print Network (OSTI)

The growth and decline of manufacturing industries in the past century and the industrial landscape that this activity has produced has had profound physical, environmental, social and economic impact on the communities ...

Bodurow Rea, Constance Corinne

1991-01-01T23:59:59.000Z

357

Microsoft PowerPoint - Ford32V_HydrogenICEFactSheet.ppt  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Vehicle Testing Activity Operating Statistics: Date Range: 305-208 Total miles driven: 6003 Total Fuel Consumed (GGE H 2 ): 489 Cumulative MPGGE 2 : 12.3 Engine:...

358

Microsoft PowerPoint - Ford16V_HydrogenICEFactSheet.ppt  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Vehicle Testing Activity Operating Statistics: Date Range: 92004-72009 Total miles driven: 13,095 Total Fuel Consumed (GGE H 2 ): 1006 Cumulative MPGGE 2,3 : 13.0...

359

Fuel Economy of the 2014 Ford Fusion Energi Plug-in Hybrid  

NLE Websites -- All DOE Office Websites (Extended Search)

Page Compare Side-by-Side 4 cyl, 2.0 L Automatic (variable gear ratios) Regular Gas and Electricity EPA Fuel Economy Miles per Gallon Personalize Regular Gas 43 Combined 44 City...

360

Economic Assessment of Electric-Drive Vehicle Operation in California and the United States  

E-Print Network (OSTI)

The study found that battery costs below about $500US perfurther found that if PHEV battery costs could reach $200USsolution due to higher battery costs for PHEV-40 and PHEV-50

Lidicker, Jeffrey R.; Lipman, Timothy E.; Shaheen, Susan A.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ford escape phev" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Incorporation of plug in hybrid electric vehicle in the reactive power market  

Science Conference Proceedings (OSTI)

This paper incorporates plug in hybrid electric vehicle(PHEV) in the reactive power market. The PHEV capability curve is first extracted considering the operation limit of PHEV. In order to offer price in the reactive power market

H. Feshki Farahani; H. A. Shayanfar; M. S. Ghazizadeh

2012-01-01T23:59:59.000Z

362

Self-Learning Controller for Plug-in Hybrid Vehicles Learns ...  

electric vehicles (PHEVs). This device improves PHEV performance and fuel efficiency by maintaining as high a state of battery charge as possible, given the ...

363

An Activity-Based Assessment of the Potential Impacts of Plug-In Hybrid Electric Vehicles on Energy and Emissions Using One-Day Travel Data  

E-Print Network (OSTI)

market, plug-in hybrid vehicles (PHEVs) are now consideredof Current Knowledge of Hybrid Vehicle Characteristics andalso called PHEV (Plug-in Hybrid Vehicle) because they are

Recker, W. W.; Kang, J. E.

2010-01-01T23:59:59.000Z

364

EERE's FreedomCAR and Vehicle Technologies PowerPoint Presentation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Slezak Lee Slezak US Department of Energy US Department of Energy PHEV Stakeholders Meeting PHEV Stakeholders Meeting June 13, 2007 June 13, 2007 Topics Topics * Background *...

365

NETL F 451.1/1-1, Categorical Exclusion Designation Form  

NLE Websites -- All DOE Office Websites (Extended Search)

for PHEV Applications Develop technology and demonstrate a lithium ion battery with energy density while maintaining other performance requisites of PHEVs, including usable...

366

DOE Announces up to $29.3 Million in Projects for Research, Developmen...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

manufacturing processes to increase performance and decrease cost of plug-in hybrid electric vehicles (PHEV) batteries. PHEVs are hybrid vehicles that can be driven in...

367

Improved layered mixed transition metal oxides for Li-ion batteries  

E-Print Network (OSTI)

vehicles (EV), plug-in hybrid electric vehicles (PHEVs),or hybrid electric vehicles (HEVs). To reduce materialsapplications (plug-in hybrid electric vehicles (PHEVs) and

Doeff, Marca M.

2010-01-01T23:59:59.000Z

368

Changes related to "Big Windy (Great Escape Restaurant Turbine...  

Open Energy Info (EERE)

Policies International Clean Energy Analysis Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind View New Pages Recent Changes All...

369

Pages that link to "Big Windy (Great Escape Restaurant Turbine...  

Open Energy Info (EERE)

Policies International Clean Energy Analysis Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View source History...

370

Quantum toy-model escape to Jordan-block horizon  

E-Print Network (OSTI)

An an exactly solvable quantum model is found to sample the evolution towards the sudden and complete loss of observability. For the purpose we choose an N-level system. While the time runs from 0 to 1, the process (leading to the collapse) is controlled by a toy-model Hamiltonian H and by a unitary-evolution guaranteeing minimally anisotropic (i.e., unique) Hilbert-space metric. The process of the degeneracy of the real N-plet of energy levels is studied without the usual assumption of adiabaticity. The initial Hamiltonian is diagonal, the initial metric is chosen as identity. Once the system reaches the observability horizon, the metric becomes singular (of rank one) while the end-point Hamiltonian acquires the canonical Jordan-block form (i.e., it loses its diagonalizability). An optimal measure of the distance from the final catastrophe is finally found in a universal, exact formula for the spectrum of the metric.

Miloslav Znojil

2012-12-04T23:59:59.000Z

371

Bsqueda Avanzada  

NLE Websites -- All DOE Office Websites (Extended Search)

de Carga 1. 2014 Ford Fusion Energi Plug-in Hybrid 2. 2014 Ford Focus Electric 3. 2014 Toyota Prius 4. 2014 Honda Accord 5. 2013 Ford C-MAX Hybrid FWD 1. 2014 Ford Fusion Energi...

372

Elephantiasis Nostras Verrucosa on the buttocks and sacrum of two immobile men  

E-Print Network (OSTI)

Henry Ford Health System, Detroit, Michigan 2. University ofHenry Ford Health System, Detroit, Michigan Abstract Though

Setyadi, Hedy G; Iacco, Megan R; Shwayder, Tor A; Ormsby, Adrian

2011-01-01T23:59:59.000Z

373

Energy Efficiency Improvement and Cost Saving Opportunities for the Vehicle Assembly Industry: An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network (OSTI)

a significant source of wasted energy. A typical plant thatalong with its (wasted) heat energy (Ford, 2002). Ford plans

Galitsky, Christina

2008-01-01T23:59:59.000Z

374

Ching-Shin Norman Shiau Postdoctoral Research Fellow  

E-Print Network (OSTI)

) to PHEVs with equivalent size and performance (similar to a Toyota Prius) under urban driving conditions

Michalek, Jeremy J.

375

11/21/2006 12:17 PMITER fusion reactor gets final approval (November 2006) -News -PhysicsWeb Page 1 of 2file:///Users/dmeade/Desktop/phys%20web.webarchive  

E-Print Network (OSTI)

.cosmictime.net Ford Fusion J.D. Power study finds Ford Fusion "Most Appealing Midsize Car." Ford.cosmictime.net Ford Fusion J.D. Power study finds Ford Fusion "Most Appealing Midsize Car." Ford power from fusion. However, it will not produce any electricity. The plasma volume will be about 840

376

Ford/ERDA continuously variable transmission. Phase I. Transmission design. Progress report No. 9, January 1--March 31, 1976  

DOE Green Energy (OSTI)

Progress is reported for a research program to analyze and design a Forster traction drive infinitely variable transmission for improving passenger car fuel economy. Many disc configurations were analyzed using a finite element analysis computer program, and performance and fuel economy estimates were made from a simulation model. An initial transmission layout design was completed, and test rig components were inspected and assembled. (PMA)

Stockton, T.R.

1976-01-01T23:59:59.000Z

377

Measuring the leanness of manufacturing systems-A case study of Ford Motor Company and General Motors  

Science Conference Proceedings (OSTI)

In spite of the vast research published on lean manufacturing systems in several disciplines in the last decade, the concept remains underdeveloped for two reasons. First, it lacks a generally accepted definition. Different authors define lean in terms ... Keywords: Benchmarking, Fuzzy-logic leanness, L62, Lean, Leanness, M41, Systematic measures

M. E. Bayou; A. de Korvin

2008-12-01T23:59:59.000Z

378

Research on Populations of Tribolium confusum and its Bearing on Ecological Theory: A Author(s): John Ford  

E-Print Network (OSTI)

wheat genotypes and flour samples according to Zn concentration. DTZ is a Zn-chelating agent (Mc of red color due to DTZ staining in whole bread wheat flour (Triticum aestivum, cv. BDME-10). The seeds 16 23 34 55 (10 mm) Fig. 7. DTZ staining of whole grain flour of different wheat genotypes. Flour

Cochran-Stafira, D. Liane

379

Performance testing of the Ford/GE Second Generation Single-Shaft Electric Propulsion (ETX-II) System  

Science Conference Proceedings (OSTI)

System-level-operational testing of the ETX-II test-bed electric vehicle is described and the results discussed. Because the traction battery is a major factor in the performance of an electric vehicle, previously reported work on the sodium-sulfur battery designed for use with the ETX-II is reviewed in detail. Chassis dynamometer performance of the test-bed vehicle met or exceeded design goals and compared reasonably well with SIMPLEV computer modeling results. Areas are identified wherein further work is needed to establish a firmer basis for comparison of the simulation and the observed results.

MacDowall, R.D.; Burke, A.F.

1993-06-01T23:59:59.000Z

380

Ford/DOE sodium-sulfur battery electric vehicle development and demonstration. Phase I-1. Final report  

DOE Green Energy (OSTI)

The results of Phase I-A analyses and design studies are presented. The objective of the Phase I-A effort was to evaluate the sodium-sulfur battery, in an existing conventional production automobile, as a potential power source for an electric vehicle. The Phase I-A work was divided into five (5) major sub-tasks as follows: vehicle specification sub-task; NaS battery packaging study sub-task; vehicle packaging layout sub-task; electrical system study sub-task; and system study sub-tasks covering performance and economy projections, powertrain and vehicle safety issues and thermal studies. The major results of the sodium-sulfur battery powered electric vehicle study program are: the Fiesta was chosen to be the production vehicle which would be modified into a 2-passenger, electric test bed vehicle powered by a NaS battery; the vehicle mission was defined to be a 2-passenger urban/suburban commuter vehicle capable of at least 100 miles range over the CVS driving cycle and a wide open throttle capability of 0 to 50 mph in 14 seconds, or less; powertrain component specifications were defined; powertrain control strategy has been selected; and a suitable test bed vehicle package scheme has been developed.

Not Available

1979-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ford escape phev" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Absorptive Capacity and Interpretation Systems Impact when Going Green: an Empirical Study of Ford, Volvo Cars  

E-Print Network (OSTI)

Whether or not it pays to be green or under what circumstances is an important ongoing debate among economic researchers. However, this question, with its rather instrumental rationality, may underestimate another key issue: the ability of companies to create value that can be captured from customers. This paper reports on three companies in the automotive industry developing and launching cars with improved eco-environmental performance and less petrol consumption. The study reveals that, despite being captured in the same technological paradigm, the individual companys mode of environmental interpretation and its aspiration to exploit new technology may be two important explanatory factors in its ability to go green profitably. The study indicates that an enacting mode of environmental interpretation may be superior to a discovering mode, and suggests that for companies having a discovering mode there may be a need to complement existing engineering practice with insights into consumer psychology, and bundling of common good versus private good product attributes. The research upon which this paper is based was conducted using an

Bus Strat Env; Toyota

2005-01-01T23:59:59.000Z

382

Ford/ERDA sodium--sulfur battery development, Phase II. Progress report No. 22, July 1--July 31, 1977  

DOE Green Energy (OSTI)

Specific results in the areas of container and seal development, development of ceramic electrolyte and seal technology, and cell fabrication and testing are reported. Mo foil withstood corrosion by polysulfides at 400/sup 0/C well. Thermal expansion and elasticity coefficients were determined for ..beta..''-alumina. Capacity yields and life characteristics are tabulated. 1 figure, 6 tables. (RWR)

Topouzian, A.

1977-08-01T23:59:59.000Z

383

Driving Plug-In Hybrid Electric Vehicles: Reports from U.S. Drivers of HEVs converted to PHEVs, circa 2006-07  

E-Print Network (OSTI)

for Flex-Fuel Vehicles Including E85, Plug-in Hybrids Peakfor-flex-fuel-vehicles-including-e85-plug-in- hybrids-peak-

Kurani, Kenneth S; Heffner, Reid R.; Turrentine, Tom

2008-01-01T23:59:59.000Z

384

Driving Plug-In Hybrid Electric Vehicles: Reports from U.S. Drivers of HEVs converted to PHEVs, circa 2006-07  

E-Print Network (OSTI)

42] Hakim, D. (2005) Hybrid-Car Tinkerers Scoff at No-Plug-J. (1969) and a Commuter Car with Hybrid Drive. PopularCars Initiative (2007) Photo: Technical Photos of Plug-In Hybrids and

Kurani, Kenneth S; Heffner, Reid R.; Turrentine, Tom

2008-01-01T23:59:59.000Z

385

Driving Plug-In Hybrid Electric Vehicles: Reports from U.S. Drivers of HEVs converted to PHEVs, circa 2006-07  

E-Print Network (OSTI)

Assessment for Battery Electric Vehicles, PowerAssist Hybrid Electric Vehicles, and Plug-in Hybrid Electric Vehicles. EPRI: Palo Alto, CA.

Kurani, Kenneth S; Heffner, Reid R.; Turrentine, Tom

2008-01-01T23:59:59.000Z

386

Driving Plug-In Hybrid Electric Vehicles: Reports from U.S. Drivers of HEVs converted to PHEVs, circa 2006-07  

E-Print Network (OSTI)

news.cfm? newsid=8142 [30] Toyota Motor Sales (2006) Photo: Toyota Prius Interior, Electronic MultifunctionYork: 2 Apr. p. C 1 [43] Toyota Motor Corporation (2007)

Kurani, Kenneth S; Heffner, Reid R.; Turrentine, Tom

2008-01-01T23:59:59.000Z

387

Driving Plug-In Hybrid Electric Vehicles: Reports from U.S. Drivers of HEVs converted to PHEVs, circa 2006-07  

E-Print Network (OSTI)

Early Market for Hybrid Electric Vehicles. TransportationVehicles: What Hybrid Electric Vehicles (HEVs) Mean and WhyPower Assist Hybrid Electric Vehicles, and Plug-in Hybrid

Kurani, Kenneth S; Heffner, Reid R.; Turrentine, Tom

2008-01-01T23:59:59.000Z

388

Alternative Fuels Data Center: North Carolina Laws and Incentives for HEVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

HEVs / PHEVs to someone by E-mail HEVs / PHEVs to someone by E-mail Share Alternative Fuels Data Center: North Carolina Laws and Incentives for HEVs / PHEVs on Facebook Tweet about Alternative Fuels Data Center: North Carolina Laws and Incentives for HEVs / PHEVs on Twitter Bookmark Alternative Fuels Data Center: North Carolina Laws and Incentives for HEVs / PHEVs on Google Bookmark Alternative Fuels Data Center: North Carolina Laws and Incentives for HEVs / PHEVs on Delicious Rank Alternative Fuels Data Center: North Carolina Laws and Incentives for HEVs / PHEVs on Digg Find More places to share Alternative Fuels Data Center: North Carolina Laws and Incentives for HEVs / PHEVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type North Carolina Laws and Incentives for HEVs / PHEVs

389

Alternative Fuels Data Center: Washington Laws and Incentives for HEVs /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

HEVs / PHEVs to someone by E-mail HEVs / PHEVs to someone by E-mail Share Alternative Fuels Data Center: Washington Laws and Incentives for HEVs / PHEVs on Facebook Tweet about Alternative Fuels Data Center: Washington Laws and Incentives for HEVs / PHEVs on Twitter Bookmark Alternative Fuels Data Center: Washington Laws and Incentives for HEVs / PHEVs on Google Bookmark Alternative Fuels Data Center: Washington Laws and Incentives for HEVs / PHEVs on Delicious Rank Alternative Fuels Data Center: Washington Laws and Incentives for HEVs / PHEVs on Digg Find More places to share Alternative Fuels Data Center: Washington Laws and Incentives for HEVs / PHEVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Washington Laws and Incentives for HEVs / PHEVs

390

Alternative Fuels Data Center: Michigan Laws and Incentives for HEVs /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

HEVs / PHEVs to someone by E-mail HEVs / PHEVs to someone by E-mail Share Alternative Fuels Data Center: Michigan Laws and Incentives for HEVs / PHEVs on Facebook Tweet about Alternative Fuels Data Center: Michigan Laws and Incentives for HEVs / PHEVs on Twitter Bookmark Alternative Fuels Data Center: Michigan Laws and Incentives for HEVs / PHEVs on Google Bookmark Alternative Fuels Data Center: Michigan Laws and Incentives for HEVs / PHEVs on Delicious Rank Alternative Fuels Data Center: Michigan Laws and Incentives for HEVs / PHEVs on Digg Find More places to share Alternative Fuels Data Center: Michigan Laws and Incentives for HEVs / PHEVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Michigan Laws and Incentives for HEVs / PHEVs

391

Alternative Fuels Data Center: Mississippi Laws and Incentives for HEVs /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

HEVs / PHEVs to someone by E-mail HEVs / PHEVs to someone by E-mail Share Alternative Fuels Data Center: Mississippi Laws and Incentives for HEVs / PHEVs on Facebook Tweet about Alternative Fuels Data Center: Mississippi Laws and Incentives for HEVs / PHEVs on Twitter Bookmark Alternative Fuels Data Center: Mississippi Laws and Incentives for HEVs / PHEVs on Google Bookmark Alternative Fuels Data Center: Mississippi Laws and Incentives for HEVs / PHEVs on Delicious Rank Alternative Fuels Data Center: Mississippi Laws and Incentives for HEVs / PHEVs on Digg Find More places to share Alternative Fuels Data Center: Mississippi Laws and Incentives for HEVs / PHEVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Mississippi Laws and Incentives for HEVs / PHEVs

392

Alternative Fuels Data Center: Colorado Laws and Incentives for HEVs /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

HEVs / PHEVs to someone by E-mail HEVs / PHEVs to someone by E-mail Share Alternative Fuels Data Center: Colorado Laws and Incentives for HEVs / PHEVs on Facebook Tweet about Alternative Fuels Data Center: Colorado Laws and Incentives for HEVs / PHEVs on Twitter Bookmark Alternative Fuels Data Center: Colorado Laws and Incentives for HEVs / PHEVs on Google Bookmark Alternative Fuels Data Center: Colorado Laws and Incentives for HEVs / PHEVs on Delicious Rank Alternative Fuels Data Center: Colorado Laws and Incentives for HEVs / PHEVs on Digg Find More places to share Alternative Fuels Data Center: Colorado Laws and Incentives for HEVs / PHEVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Colorado Laws and Incentives for HEVs / PHEVs

393

Alternative Fuels Data Center: Minnesota Laws and Incentives for HEVs /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

HEVs / PHEVs to someone by E-mail HEVs / PHEVs to someone by E-mail Share Alternative Fuels Data Center: Minnesota Laws and Incentives for HEVs / PHEVs on Facebook Tweet about Alternative Fuels Data Center: Minnesota Laws and Incentives for HEVs / PHEVs on Twitter Bookmark Alternative Fuels Data Center: Minnesota Laws and Incentives for HEVs / PHEVs on Google Bookmark Alternative Fuels Data Center: Minnesota Laws and Incentives for HEVs / PHEVs on Delicious Rank Alternative Fuels Data Center: Minnesota Laws and Incentives for HEVs / PHEVs on Digg Find More places to share Alternative Fuels Data Center: Minnesota Laws and Incentives for HEVs / PHEVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Minnesota Laws and Incentives for HEVs / PHEVs

394

Alternative Fuels Data Center: Louisiana Laws and Incentives for HEVs /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

HEVs / PHEVs to someone by E-mail HEVs / PHEVs to someone by E-mail Share Alternative Fuels Data Center: Louisiana Laws and Incentives for HEVs / PHEVs on Facebook Tweet about Alternative Fuels Data Center: Louisiana Laws and Incentives for HEVs / PHEVs on Twitter Bookmark Alternative Fuels Data Center: Louisiana Laws and Incentives for HEVs / PHEVs on Google Bookmark Alternative Fuels Data Center: Louisiana Laws and Incentives for HEVs / PHEVs on Delicious Rank Alternative Fuels Data Center: Louisiana Laws and Incentives for HEVs / PHEVs on Digg Find More places to share Alternative Fuels Data Center: Louisiana Laws and Incentives for HEVs / PHEVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Louisiana Laws and Incentives for HEVs / PHEVs

395

Alternative Fuels Data Center: California Laws and Incentives for HEVs /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

HEVs / PHEVs to someone by E-mail HEVs / PHEVs to someone by E-mail Share Alternative Fuels Data Center: California Laws and Incentives for HEVs / PHEVs on Facebook Tweet about Alternative Fuels Data Center: California Laws and Incentives for HEVs / PHEVs on Twitter Bookmark Alternative Fuels Data Center: California Laws and Incentives for HEVs / PHEVs on Google Bookmark Alternative Fuels Data Center: California Laws and Incentives for HEVs / PHEVs on Delicious Rank Alternative Fuels Data Center: California Laws and Incentives for HEVs / PHEVs on Digg Find More places to share Alternative Fuels Data Center: California Laws and Incentives for HEVs / PHEVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type California Laws and Incentives for HEVs / PHEVs

396

Alternative Fuels Data Center: New York Laws and Incentives for HEVs /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

HEVs / PHEVs to someone by E-mail HEVs / PHEVs to someone by E-mail Share Alternative Fuels Data Center: New York Laws and Incentives for HEVs / PHEVs on Facebook Tweet about Alternative Fuels Data Center: New York Laws and Incentives for HEVs / PHEVs on Twitter Bookmark Alternative Fuels Data Center: New York Laws and Incentives for HEVs / PHEVs on Google Bookmark Alternative Fuels Data Center: New York Laws and Incentives for HEVs / PHEVs on Delicious Rank Alternative Fuels Data Center: New York Laws and Incentives for HEVs / PHEVs on Digg Find More places to share Alternative Fuels Data Center: New York Laws and Incentives for HEVs / PHEVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type New York Laws and Incentives for HEVs / PHEVs

397

Alternative Fuels Data Center: Illinois Laws and Incentives for HEVs /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

HEVs / PHEVs to someone by E-mail HEVs / PHEVs to someone by E-mail Share Alternative Fuels Data Center: Illinois Laws and Incentives for HEVs / PHEVs on Facebook Tweet about Alternative Fuels Data Center: Illinois Laws and Incentives for HEVs / PHEVs on Twitter Bookmark Alternative Fuels Data Center: Illinois Laws and Incentives for HEVs / PHEVs on Google Bookmark Alternative Fuels Data Center: Illinois Laws and Incentives for HEVs / PHEVs on Delicious Rank Alternative Fuels Data Center: Illinois Laws and Incentives for HEVs / PHEVs on Digg Find More places to share Alternative Fuels Data Center: Illinois Laws and Incentives for HEVs / PHEVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Illinois Laws and Incentives for HEVs / PHEVs

398

Alternative Fuels Data Center: South Carolina Laws and Incentives for HEVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

HEVs / PHEVs to someone by E-mail HEVs / PHEVs to someone by E-mail Share Alternative Fuels Data Center: South Carolina Laws and Incentives for HEVs / PHEVs on Facebook Tweet about Alternative Fuels Data Center: South Carolina Laws and Incentives for HEVs / PHEVs on Twitter Bookmark Alternative Fuels Data Center: South Carolina Laws and Incentives for HEVs / PHEVs on Google Bookmark Alternative Fuels Data Center: South Carolina Laws and Incentives for HEVs / PHEVs on Delicious Rank Alternative Fuels Data Center: South Carolina Laws and Incentives for HEVs / PHEVs on Digg Find More places to share Alternative Fuels Data Center: South Carolina Laws and Incentives for HEVs / PHEVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type South Carolina Laws and Incentives for HEVs / PHEVs

399

Alternative Fuels Data Center: Maryland Laws and Incentives for HEVs /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

HEVs / PHEVs to someone by E-mail HEVs / PHEVs to someone by E-mail Share Alternative Fuels Data Center: Maryland Laws and Incentives for HEVs / PHEVs on Facebook Tweet about Alternative Fuels Data Center: Maryland Laws and Incentives for HEVs / PHEVs on Twitter Bookmark Alternative Fuels Data Center: Maryland Laws and Incentives for HEVs / PHEVs on Google Bookmark Alternative Fuels Data Center: Maryland Laws and Incentives for HEVs / PHEVs on Delicious Rank Alternative Fuels Data Center: Maryland Laws and Incentives for HEVs / PHEVs on Digg Find More places to share Alternative Fuels Data Center: Maryland Laws and Incentives for HEVs / PHEVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Maryland Laws and Incentives for HEVs / PHEVs

400

Alternative Fuels Data Center: Pennsylvania Laws and Incentives for HEVs /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

HEVs / PHEVs to someone by E-mail HEVs / PHEVs to someone by E-mail Share Alternative Fuels Data Center: Pennsylvania Laws and Incentives for HEVs / PHEVs on Facebook Tweet about Alternative Fuels Data Center: Pennsylvania Laws and Incentives for HEVs / PHEVs on Twitter Bookmark Alternative Fuels Data Center: Pennsylvania Laws and Incentives for HEVs / PHEVs on Google Bookmark Alternative Fuels Data Center: Pennsylvania Laws and Incentives for HEVs / PHEVs on Delicious Rank Alternative Fuels Data Center: Pennsylvania Laws and Incentives for HEVs / PHEVs on Digg Find More places to share Alternative Fuels Data Center: Pennsylvania Laws and Incentives for HEVs / PHEVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Pennsylvania Laws and Incentives for HEVs / PHEVs

Note: This page contains sample records for the topic "ford escape phev" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Alternative Fuels Data Center: Wisconsin Laws and Incentives for HEVs /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

HEVs / PHEVs to someone by E-mail HEVs / PHEVs to someone by E-mail Share Alternative Fuels Data Center: Wisconsin Laws and Incentives for HEVs / PHEVs on Facebook Tweet about Alternative Fuels Data Center: Wisconsin Laws and Incentives for HEVs / PHEVs on Twitter Bookmark Alternative Fuels Data Center: Wisconsin Laws and Incentives for HEVs / PHEVs on Google Bookmark Alternative Fuels Data Center: Wisconsin Laws and Incentives for HEVs / PHEVs on Delicious Rank Alternative Fuels Data Center: Wisconsin Laws and Incentives for HEVs / PHEVs on Digg Find More places to share Alternative Fuels Data Center: Wisconsin Laws and Incentives for HEVs / PHEVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Wisconsin Laws and Incentives for HEVs / PHEVs

402

Alternative Fuels Data Center: New Jersey Laws and Incentives for HEVs /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

HEVs / PHEVs to someone by E-mail HEVs / PHEVs to someone by E-mail Share Alternative Fuels Data Center: New Jersey Laws and Incentives for HEVs / PHEVs on Facebook Tweet about Alternative Fuels Data Center: New Jersey Laws and Incentives for HEVs / PHEVs on Twitter Bookmark Alternative Fuels Data Center: New Jersey Laws and Incentives for HEVs / PHEVs on Google Bookmark Alternative Fuels Data Center: New Jersey Laws and Incentives for HEVs / PHEVs on Delicious Rank Alternative Fuels Data Center: New Jersey Laws and Incentives for HEVs / PHEVs on Digg Find More places to share Alternative Fuels Data Center: New Jersey Laws and Incentives for HEVs / PHEVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type New Jersey Laws and Incentives for HEVs / PHEVs

403

Alternative Fuels Data Center: Connecticut Laws and Incentives for HEVs /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

HEVs / PHEVs to someone by E-mail HEVs / PHEVs to someone by E-mail Share Alternative Fuels Data Center: Connecticut Laws and Incentives for HEVs / PHEVs on Facebook Tweet about Alternative Fuels Data Center: Connecticut Laws and Incentives for HEVs / PHEVs on Twitter Bookmark Alternative Fuels Data Center: Connecticut Laws and Incentives for HEVs / PHEVs on Google Bookmark Alternative Fuels Data Center: Connecticut Laws and Incentives for HEVs / PHEVs on Delicious Rank Alternative Fuels Data Center: Connecticut Laws and Incentives for HEVs / PHEVs on Digg Find More places to share Alternative Fuels Data Center: Connecticut Laws and Incentives for HEVs / PHEVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Connecticut Laws and Incentives for HEVs / PHEVs

404

Alternative Fuels Data Center: West Virginia Laws and Incentives for HEVs /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

HEVs / PHEVs to someone by E-mail HEVs / PHEVs to someone by E-mail Share Alternative Fuels Data Center: West Virginia Laws and Incentives for HEVs / PHEVs on Facebook Tweet about Alternative Fuels Data Center: West Virginia Laws and Incentives for HEVs / PHEVs on Twitter Bookmark Alternative Fuels Data Center: West Virginia Laws and Incentives for HEVs / PHEVs on Google Bookmark Alternative Fuels Data Center: West Virginia Laws and Incentives for HEVs / PHEVs on Delicious Rank Alternative Fuels Data Center: West Virginia Laws and Incentives for HEVs / PHEVs on Digg Find More places to share Alternative Fuels Data Center: West Virginia Laws and Incentives for HEVs / PHEVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type West Virginia Laws and Incentives for HEVs / PHEVs

405

Alternative Fuels Data Center: Oklahoma Laws and Incentives for HEVs /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

HEVs / PHEVs to someone by E-mail HEVs / PHEVs to someone by E-mail Share Alternative Fuels Data Center: Oklahoma Laws and Incentives for HEVs / PHEVs on Facebook Tweet about Alternative Fuels Data Center: Oklahoma Laws and Incentives for HEVs / PHEVs on Twitter Bookmark Alternative Fuels Data Center: Oklahoma Laws and Incentives for HEVs / PHEVs on Google Bookmark Alternative Fuels Data Center: Oklahoma Laws and Incentives for HEVs / PHEVs on Delicious Rank Alternative Fuels Data Center: Oklahoma Laws and Incentives for HEVs / PHEVs on Digg Find More places to share Alternative Fuels Data Center: Oklahoma Laws and Incentives for HEVs / PHEVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Oklahoma Laws and Incentives for HEVs / PHEVs

406

Alternative Fuels Data Center: New Mexico Laws and Incentives for HEVs /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

HEVs / PHEVs to someone by E-mail HEVs / PHEVs to someone by E-mail Share Alternative Fuels Data Center: New Mexico Laws and Incentives for HEVs / PHEVs on Facebook Tweet about Alternative Fuels Data Center: New Mexico Laws and Incentives for HEVs / PHEVs on Twitter Bookmark Alternative Fuels Data Center: New Mexico Laws and Incentives for HEVs / PHEVs on Google Bookmark Alternative Fuels Data Center: New Mexico Laws and Incentives for HEVs / PHEVs on Delicious Rank Alternative Fuels Data Center: New Mexico Laws and Incentives for HEVs / PHEVs on Digg Find More places to share Alternative Fuels Data Center: New Mexico Laws and Incentives for HEVs / PHEVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type New Mexico Laws and Incentives for HEVs / PHEVs

407

Alternative Fuels Data Center: Virginia Laws and Incentives for HEVs /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

HEVs / PHEVs to someone by E-mail HEVs / PHEVs to someone by E-mail Share Alternative Fuels Data Center: Virginia Laws and Incentives for HEVs / PHEVs on Facebook Tweet about Alternative Fuels Data Center: Virginia Laws and Incentives for HEVs / PHEVs on Twitter Bookmark Alternative Fuels Data Center: Virginia Laws and Incentives for HEVs / PHEVs on Google Bookmark Alternative Fuels Data Center: Virginia Laws and Incentives for HEVs / PHEVs on Delicious Rank Alternative Fuels Data Center: Virginia Laws and Incentives for HEVs / PHEVs on Digg Find More places to share Alternative Fuels Data Center: Virginia Laws and Incentives for HEVs / PHEVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Virginia Laws and Incentives for HEVs / PHEVs

408

HEV Fleet Testing Advanced Vehicle Testing Activity  

NLE Websites -- All DOE Office Websites (Extended Search)

5 Ford Escape 2WD 5 Ford Escape 2WD VIN # 1FMYU95H75KC45881 Date Mileage Description Cost 5/25/2005 6,707 Changed oil (5W20 synthetic) and purchased oil for three oil changes $105.47 7/15/2005 17,236 15K service $438.65 8/17/2005 22,221 Changed oil and rotated tires $27.44 9/26/2005 27,425 Changed oil and rotated tires $28.20 11/8/2005 32,703 30K service $211.63 11/25/2005 33,560 Repaired tire $20.00 1/12/2006 42,632 45K service (included: tire balancing, replacing fuel filter and replacing cabin filter) $274.16 3/8/2006 52,141 Changed oil and rotated tires $31.56 4/19/2006 59,883 60K service $317.80 4/19/2006 59,883 HV traction battery connection failed $262.50 5/17/2006 64,641 Changed oil and rotated tires $34.73 6/5/2006 66,059 Recall for absorbing materials being insufficient above forward corner of the interior headliner no charge

409

Correlating Dynamometer Testing to In-Use Fleet Results of Plug-In Hybrid Electric Vehicles  

DOE Green Energy (OSTI)

Standard dynamometer test procedures are currently being developed to determine fuel and electrical energy consumption of plug-in hybrid vehicles (PHEV). To define a repeatable test procedure, assumptions were made about how PHEVs will be driven and charged. This study evaluates these assumptions by comparing results of PHEV dynamometer testing following proposed procedures to actual performance of PHEVs operating in the US Department of Energys (DOE) North American PHEV Demonstration fleet. Results show PHEVs in the fleet exhibit a wide range of energy consumption, which is not demonstrated in dynamometer testing. Sources of variation in performance are identified and examined.

John G. Smart; Sera White; Michael Duoba

2009-05-01T23:59:59.000Z

410

65 $OSHUW . %URZQ % :RROI 05/21/97 09:50 1  

E-Print Network (OSTI)

products, specifically Ford, Toyota, or Porsche cars1 . We could set a flag in the application to specifyApplication>>createEngine "Without Builder" manufacturer == #Ford ifTrue: [^FordEngine new]. manufacturer == #Toyota ifTrue: [^Toyota on the application's behalf. The application can use a Ford Builder to put Fords together, a Toyota Builder

Ducasse, Stéphane

411

Plug-In Hybrid Electric Vehicles - Prototypes  

NLE Websites -- All DOE Office Websites (Extended Search)

Prototypes Prototypes A PHEV prototype being prepared for testing. A plug-in electric vehicle (PHEV) prototype is prepared for testing at Argonne National Laboratory. What is a PHEV? A plug-in hybrid electric vehicle, or PHEV, is similar to today's hybrid electric vehicles on the market today, but with a larger battery that is charged both by the vehicle's gasoline engine and from plugging into a standard 110 V electrical outlet for a few hours each day. PHEVs and HEVs both use battery-powered motors and gasoline-powered engines for high fuel efficiency, but PHEVs can further reduce fuel usage by employing electrical energy captured through daily charging. Prototype as Rolling Test Bed As part of Argonne's multifaceted PHEV research program, Argonne researchers have constructed a PHEV prototype that serves as a rolling test

412

Economic Assessment of Electric-Drive Vehicle Operation in California and the United States  

E-Print Network (OSTI)

sense but lower costs per kilowatt-hour (kWh) when expressedthat battery costs below about $500US per kWh can lead toif PHEV battery costs could reach $200US per kWh, then PHEVs

Lidicker, Jeffrey R.; Lipman, Timothy E.; Shaheen, Susan A.

2010-01-01T23:59:59.000Z

413

Alternative Fuels Data Center: Dist. of Columbia Laws and Incentives for  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

HEVs / PHEVs to someone by E-mail HEVs / PHEVs to someone by E-mail Share Alternative Fuels Data Center: Dist. of Columbia Laws and Incentives for HEVs / PHEVs on Facebook Tweet about Alternative Fuels Data Center: Dist. of Columbia Laws and Incentives for HEVs / PHEVs on Twitter Bookmark Alternative Fuels Data Center: Dist. of Columbia Laws and Incentives for HEVs / PHEVs on Google Bookmark Alternative Fuels Data Center: Dist. of Columbia Laws and Incentives for HEVs / PHEVs on Delicious Rank Alternative Fuels Data Center: Dist. of Columbia Laws and Incentives for HEVs / PHEVs on Digg Find More places to share Alternative Fuels Data Center: Dist. of Columbia Laws and Incentives for HEVs / PHEVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

414

6_22_10_PI_Final_Testimony_Sandalow.pdf  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Act funds, U.S. manufacturers are building the capacity to produce 50,000 Plug-in Hybrid Electric Vehicle (PHEV) batteries annually by the end of 2011 and 500,000 PHEV...

415

Building a business case for corporate fleets to adopt vehicle-to-grid technology (V2G) and participate in the regulation service market  

E-Print Network (OSTI)

Electric (EV) and Plug-in Hybrid Electric vehicles (PHEV) continue to gain attention and market share, not only as options for consumers but also for corporate fleets. EVs and PHEVs can contribute to lower operating costs ...

De los Ros Vergara, Andrs

2011-01-01T23:59:59.000Z

416

Performance, Charging, and Second-use Considerations for Lithium Batteries for Plug-in Electric Vehicles  

E-Print Network (OSTI)

chemistries Simulations of Prius plug-in hybrids have beenSimulation results for Prius PHEVs using various lithium-ionSimulation results for Prius PHEVs using various lithium-ion

Burke, Andrew

2009-01-01T23:59:59.000Z

417

he electrification of passenger vehicles has the potential to address three of the most critical  

E-Print Network (OSTI)

exist for helping to achieve these goals. Hybrid electric vehicles (HEVs), such as the Toyota Prius. Larger PHEV batteries enable longer electric travel between charges. The PHEV version of the Prius has

McGaughey, Alan

418

Vehicle Technologies Office: Fact #798: September 23, 2013Plug...  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehicle Driving Range For the 2013 model year (MY) there are four plug-in hybrid electric vehicles (PHEVs) available to consumers. PHEVs offer a limited amount of all-electric...

419

Fault-Delayed Voltage Recovery Control with Plug-In Hybrid Electric Vehicles  

Science Conference Proceedings (OSTI)

This paper presents an investigation into the impact that plug-in hybrid electric vehicles (PHEVs) could have to mitigate the effects of fault-delayed voltage recovery. The energy storage and conversion system in PHEVs, given potentially high levels ...

Curtis Roe; Yousef M. Al-Abdullah; Dhwanil Desai; George K. Stefopoulos; George J. Cokkinides; A. P. Meliopoulos

2010-01-01T23:59:59.000Z

420

Nonlinear and linear models for losses of plug in hybrid electric vehicle: A computation approach  

Science Conference Proceedings (OSTI)

This paper presents nonlinear and linear models for the losses of Plug in Hybrid Electric Vehicle (PHEV). An accurate model to calculate the PHEV losses for just one vehicle is not remarkable. However

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ford escape phev" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

untitled  

NLE Websites -- All DOE Office Websites (Extended Search)

starts PHEV Baseline Performance Testing 6 Baseline Performance Testing Results 7 * 9 kWh Valence (Li) pack only (AC kWh) EnergyCS PHEV Prius MPG & kWh - UDDS Testing 0 10 20 30...

422

Vehculos Elctricos  

NLE Websites -- All DOE Office Websites (Extended Search)

Tesla Model S Tesla Model S Sitio de Tesla Motors vdeo del Ford Focus EV Ford Focus Electric Sitio de Ford Focus vdeo del Nissan LEAF Nissan LEAF Sitio de Nissan Leaf...

423

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ford Motor Co. - E-Series Cargo VanWagon Application: Van Fuel Types: CNG, Propane Power Source(s): Ford Motor Co. - 6.8L V-10 Ford Motor Co. - 5.4L V-8 Additional Description:...

424

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

StarTrans - Senator Ford Motor Co. - E-Series Cutaway and Stripped Chassis Ford Motor Co. - E-Series Cargo VanWagon Ford Motor Co. - 5.4L V-8 Fuel Types: CNG, Propane, Ethanol...

425

Advanced Vehicle Testing Activity: Hydrogen Internal Combustion...  

NLE Websites -- All DOE Office Websites (Extended Search)

F-150 16V Hydrogen ICE Conversion - Testing Results (PDF 110 KB) 2003 Ford F-150 Pickup Truck Ford F-150 HydrogenCNG Blended Fuels Performance Testing in a Ford F-150 (up to 30%...

426

Anticipating plug-in hybrid vehicle energy impacts in California: Constructing consumer-informed recharge profiles  

E-Print Network (OSTI)

energy impacts that can be anticipated with signi?cant PHEV market penetration if we add information

Axsen, Jonn; Kurani, Kenneth S

2010-01-01T23:59:59.000Z

427

In Situ Hydrothermal Synthesis of LiFePO Studied by ...  

portation, such as plug-in hybrid electric vehicles (PHEVs) and all electric vehicles (EVs), along with renewable (often inter-

428

Saving Fuel, Reducing Emissions  

E-Print Network (OSTI)

replacing conventional cars with hybrids is the least costlyhybrid or PHEV SUVs than to replace conventional compact cars.

Kammen, Daniel M.; Arons, Samuel M.; Lemoine, Derek M.; Hummel, Holmes

2009-01-01T23:59:59.000Z

429

Technical Report Documentation Page 1. Report No.  

E-Print Network (OSTI)

will save the household $535 per year in operating costs. Similarly, the Toyota Prius PHEV, when compared

430

Electricity Grid: Impacts of Plug-In Electric Vehicle Charging  

E-Print Network (OSTI)

hybrid electric vehicles (PHEVs) and battery electric vehicles (BEVs), are among the most promising of the advanced vehicle

Yang, Christopher; McCarthy, Ryan

2009-01-01T23:59:59.000Z

431

Description of a Basic Vehicle Control Strategy for a Plug-In Hybrid Vehicle  

Science Conference Proceedings (OSTI)

This report describes development of a basic powertrain control strategy for a plug-in hybrid electric vehicle (PHEV).

2007-03-28T23:59:59.000Z

432

http://steps.ucdavis.edu 80in50 PATH Analysis: Getting to 80% Reduction in Transport80in50 PATH Analysis: Getting to 80% Reduction in Transport--  

E-Print Network (OSTI)

Diesel ICE (HEV in 2050) 3% 0% 31 80 Gasoline PHEV 0% 0% N/A 85 Biofuel PHEV 0% 10% N/A 85 Diesel PHEV 0 60% Nuclear 30% 6 N/A Renewables (wind, solar, other) 30% - N/A Biomass 1% 52 N/A Coal, IGCC, w

California at Davis, University of

433

An agent-based model to study market penetration of plug-in hybrid electric vehicles  

E-Print Network (OSTI)

of fuel costs, to agent willingness to adopt the PHEV technology, to PHEV purchase price and rebates, to PHEV battery range, and to heuristic values related to gasoline usage. Our simulations indicate of expected lifetime fuel costs associated with different vehicles (e.g., on vehicle stickers

Vermont, University of

434

UCDavis University of California What consumers teach us  

E-Print Network (OSTI)

UCDavis University of California What consumers teach us about PHEVs, electric-drive and fuel of new car-buyers' knowledge and priorities regarding PHEVs ­ Third stage is placing 12 converted PHEVs, integrated feedback on electricity and gasoline use, emissions etc. ­ Fifth, another large sample survey

California at Davis, University of

435

Optimal Charging of Plug-in Hybrid Electric Vehicles in Smart Grids Somayeh Sojoudi Steven H. Low  

E-Print Network (OSTI)

1 Optimal Charging of Plug-in Hybrid Electric Vehicles in Smart Grids Somayeh Sojoudi Steven H. Low Abstract-- Plug-in hybrid electric vehicles (PHEVs) play an important role in making a greener future-in hybrid electric vehicles (PHEVs) are becoming more popular as we move toward a greener future. PHEVs

Low, Steven H.

436

An Energy Evolution: Alternative Fueled Vehicle  

E-Print Network (OSTI)

Hydrogen #12;5 What is best for society? · Hybrid electric vehicles? (HEVs) · Plug-in hybrids? (PHEVs) Gasoline HEVs Fuel Cell Hybrid Electric Vehicle (FCEV) Gasoline PHEVs Ethanol PHEVs #12;11 Fuel Cell) · Biofuels? · Fuel cell electric vehicles? (FCEVs) · Battery Electric Vehicles (BEVs) ... .or all

437

An Optimal Fuzzy Logic Power Sharing Strategy for Parallel Hybrid Electric Vehicles  

E-Print Network (OSTI)

An Optimal Fuzzy Logic Power Sharing Strategy for Parallel Hybrid Electric Vehicles F. Khoucha1 presents a fuzzy logic controller for a Parallel Hybrid Electric Vehicle (PHEV). The PHEV required driving economy, and emissions. Index Terms--Parallel Hybrid Electric Vehicle (PHEV), Internal Combustion Engine

Paris-Sud XI, Université de

438

Recipient: 2001 Robert Lansing Hardy Award  

Science Conference Proceedings (OSTI)

Biography: Michael J. Vinarcik is a quality reliability engineer for North American Truck Quality, Ford Motor Company, and is nearing completion of the Ford...

439

Cardiac Complications in Acute Ischemic Stroke  

E-Print Network (OSTI)

and Surgical Critical Care, Detroit, Michigan Henry Fordof Emergency Medicine, Detroit, Michigan Henry FordDepartment of Neurology, Detroit, Michigan Henry Ford

2011-01-01T23:59:59.000Z

440

Advanced Vehicle Testing Activity - Urban Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

are designed to carry two or four passengers. Click here for more information About Urban Electric Vehicles (PDF 128KB) Vehicle Testing Reports Ford THINK City Ford Thnk...

Note: This page contains sample records for the topic "ford escape phev" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Browse by Discipline -- E-print Network Subject Pathways: Environmenta...  

Office of Scientific and Technical Information (OSTI)

Ford, Andrew (Andrew Ford) - School of Earth and Environmental Sciences, Washington State University Fowlie, Meredith (Meredith Fowlie) - Department of Agricultural and Resource...

442

Honda Insight Fleet and Accelerated Reliability Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

Ford Fusion Hybrid Electric Vehicle Accelerated Testing - May 2012 Two model year 2010 Ford Fusion hybrid electric vehicles (HEVs) entered Accelerated testing during August 2009 in...

443

The California Zero-Emission Vehicle Mandate: A Study of the Policy Process, 1990-2004  

E-Print Network (OSTI)

Ford Honda LADPW MA DEP Toyota Pro Tech Forcing Avestorrules. They were GM, Ford, Toyota, Honda, Chrysler, Nissan,Nissan Senator Rosenthal Toyota Volkswagen Cluster Pro ZEV

Collantes, Gustavo O

2006-01-01T23:59:59.000Z

444

Toward Effective Transportation Policy  

E-Print Network (OSTI)

General Motors, Ford, and Toyota are each investing hundredsgasoline hybrids by Toyota and Honda, fuel cells by Ballardfor instance, that Ford, Toyota, Nissan, Honda, and others

Sperling, Daniel

2004-01-01T23:59:59.000Z

445

Michigan's 15th congressional district: Energy Resources | Open...  

Open Energy Info (EERE)

EaglePicher Horizon Batteries LLC Energy Options Solutions Ford Ford Electric Battery Group Integrated Sensing Systems Inc ISSYS Masco Masco Home ServicesWellHome...

446

Information Extraction Task  

Science Conference Proceedings (OSTI)

... COREF MIN="Ford Motor Co." ...Ford Motor Co. ... COREF ID="0" MIN="E two">engine E ... General Motors announced {their third quarter profit of ...

447

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ford Motor Co. - Transit Connect Ford Motor Co. - 2.0L I-4 Fuel Types: CNG, Propane Displacement: 2.0 liters...

448

Plug-In Hybrid Electric Vehicle Penetration Scenarios  

DOE Green Energy (OSTI)

This report examines the economic drivers, technology constraints, and market potential for plug-in hybrid electric vehicles (PHEVs) in the U.S. A PHEV is a hybrid vehicle with batteries that can be recharged by connecting to the grid and an internal combustion engine that can be activated when batteries need recharging. The report presents and examines a series of PHEV market penetration scenarios. Based on input received from technical experts and industry representative contacted for this report and data obtained through a literature review, annual market penetration rates for PHEVs are presented from 2013 through 2045 for three scenarios. Each scenario is examined and implications for PHEV development are explored.

Balducci, Patrick J.

2008-04-03T23:59:59.000Z

449

THE SNO COLLABORATION M. G. Boulay, M. Chen, F. A. Duncan, E. D. Earle, H. C. Evans, G. T. Ewan, R. J. Ford, A. L. Hallin,  

E-Print Network (OSTI)

.S.Neubauer, F. M. Newcomer, V. Rusu, R. Van Berg, R. G. Van de Water, P. Wittich. University of Pennsylvania. University of Oxford, Oxford OX1 3NP, United Kingdom. J. Boger, R. L Hahn, J.K. Rowley, M. Yeh Brookhaven Support structure for 9500 PMTs, concentrators Urylon liner Vectran support ropes 1700 tonnes light water

450

U.S. Department of Energy Vehicle Technologies Program -- Advanced Vehicle Testing Activity -- Plug-in Hybrid Electric Vehicle Charging Infrastructure Review  

DOE Green Energy (OSTI)

Plug-in hybrid electric vehicles (PHEVs) are under evaluation by various stake holders to better understand their capability and potential benefits. PHEVs could allow users to significantly improve fuel economy over a standard HEV and in some cases, depending on daily driving requirements and vehicle design, have the ability to eliminate fuel consumption entirely for daily vehicle trips. The cost associated with providing charge infrastructure for PHEVs, along with the additional costs for the on-board power electronics and added battery requirements associated with PHEV technology will be a key factor in the success of PHEVs. This report analyzes the infrastructure requirements for PHEVs in single family residential, multi-family residential and commercial situations. Costs associated with this infrastructure are tabulated, providing an estimate of the infrastructure costs associated with PHEV deployment.

Kevin Morrow; Donald Darner; James Francfort

2008-11-01T23:59:59.000Z

451

Escaping the frozen lake: individual and social idealism manifest as forms of religion and religiosity  

E-Print Network (OSTI)

The role, basis for, and function of idealism in religion and religiosity are examined as both an individual and social phenomenon. Religion is divided into two manifestations of idealism that are described as conventional religion and unconventional religion. William James' frozen lake, used as a metaphor for religious personality types, is expanded to include a range of fear and depression based emotional forces that prompt various forms of idealism. Karl Marx's concept of utopia, Max Weber's protestant ethic, Emile Durkheim's anomie and totemic worship and Georg Simmel's social forms are described and compared as idealist manifestations. Robert Bellah's American civil religion is extrapolated to an institutional form of civil religion in Texas A&M University's Corps of Cadets as an organization utilizing totemic and philosophical ideals, collective representations, collective effervescence, civil ceremonies and intolerance as elements of the social solidarity. A personal, qualitative account of the indoctrination into this unconventionally religious organization, including quotations from members, is compared to the paradigms of religion as theorized by Bellah and Durkheim in order to display the use of idealism in the institutional setting. Theoretical perspectives of consumerism as described by George Ritzer and Campbell, as well as Thorstein Veblen's account of devotion are shown to have idealistic representations on both an individual and social level. This dissertation takes the reader from a concept of a non-supernatural existence to the use of idealism in various forms in order to assuage the awareness of painful aspects of reality. A method for a positive, naturalistic approach to the frozen lake is offered.

Stanford, Frank S.

2003-12-01T23:59:59.000Z

452

Escaping the quicksand and getting back on the trail of team projects  

Science Conference Proceedings (OSTI)

Working in a team environment can be either an efficient and productive means of completing projects or a nightmare where the project never seems to end. Most of us have been a part of projects where we felt that "if we were able to do this by ourselves, ... Keywords: milestones, project management, project teams, seven-step process, teamwork

Steven K. Brawn; Kelly Caye; R. Mark Koan

2003-09-01T23:59:59.000Z

453

The Great Escape? A Quantitative Evaluation of the Fed's Non-Standard Policies  

E-Print Network (OSTI)

, Release H.4.1 Other Treasury Securities Currency Swaps Primary Credit TAF Repos PDCF and Other Broker Auction Facility (TAF) or the Primary Dealer Credit Facility (PDCF). In broad terms, the operation

454

The sources of sodium escaping from Io revealed by spectral high definition imaging  

E-Print Network (OSTI)

, Mercury) observed in white light (that is, over a broad spectral band), a single `best image' can be found in a data set can be found and added together. HDI creates such a composite image by selecting and adding in white light, the finest image of its surface ever obtained from a ground-based telescope was obtained

455

Modeling Soybean Rust Spore Escape from Infected Canopies: Model Description and Preliminary Results  

Science Conference Proceedings (OSTI)

Asian soybean rust, caused by Phakopsora pachyrhizi, an airborne fungal pathogen, is an annual threat to U.S. soybean production. The disease is spread during the growing season by fungal spores that are transported from warm southern locations ...

David Andrade; Zaitao Pan; William Dannevik; Jeremy Zidek

2009-04-01T23:59:59.000Z

456

 

NLE Websites -- All DOE Office Websites (Extended Search)

DOE Officials Visit Argonne's Transportation Facilities DOE Officials Visit Argonne's Transportation Facilities Energy Secretary Bodman discusses transportation research at Argonne National Laboratory Energy Secretary Samuel L. Bodman (right) tours the Advanced Powertrain Research Facility with Larry Johnson, director of Argonne's Transportation R&D Center. Johnson describes MATT HIL, Argonne's Mobile Automotive Technology Testbed Hardware-in-the-Loop. Secretary of Energy Bodman Visits Argonne's Advanced Powertrain Test Facility Secretary Bodman rides with mechanical engineer Mike Duoba in a Ford Hybrid Escape on the four-wheel drive dynamometer in thes Advanced Powertrain Research Facility. Argonne Engineer Explains Diesel Combustion Research to Secretary of Energy Bodman Engineer Steve Ciatti (left) shows Secretary Bodman a visioscope he uses to see inside an engine operating at its full range of speeds and loads. A clearer understanding of engine combustion leads to improved efficiency and reduced emissions.

457

AHSS Workshop  

Science Conference Proceedings (OSTI)

... Umesh Gandhi - Toyota Motor Manufacturing. Delayed Fracture/Hydrogen Embrittlement. Don Jordan - Ford Motor Company. Plasticity. ...

2013-03-13T23:59:59.000Z

458

Arthur Heights Baldwin City  

E-Print Network (OSTI)

Fleming Flinn Floyd Forbes Ford City Forest City Fortescue Fountain Grove Galesburg Gallatin Galt Garden

Peterson, Blake R.

459

Plug-in Hybrid Electric Vehicle Fuel Use Reporting Methods and Results  

DOE Green Energy (OSTI)

The Plug-in Hybrid Electric Vehicle (PHEV) Fuel Use Reporting Methods and Results report provides real world test results from PHEV operations and testing in 20 United States and Canada. Examples are given that demonstrate the significant variations operational parameters can have on PHEV petroleum use. In addition to other influences, PHEV mpg results are significantly impacted by driver aggressiveness, cold temperatures, and whether or not the vehicle operator has charged the PHEV battery pack. The U.S. Department of Energys (DOEs) Advanced Vehicle Testing Activity (AVTA) has been testing plug-in hybrid electric vehicles (PHEVs) for several years. The AVTA http://avt.inl.gov/), which is part of DOEs Vehicle Technology Program, also tests other advanced technology vehicles, with 12 million miles of total test vehicle and data collection experience. The Idaho National Laboratory is responsible for conducting the light-duty vehicle testing of PHEVs. Electric Transportation Engineering Corporation also supports the AVTA by conducting PHEV and other types of testing. To date, 12 different PHEV models have been tested, with more than 600,000 miles of PHEV operations data collected.

James E. Francfort

2009-07-01T23:59:59.000Z

460

Plug-In Hybrid Electric Vehicle Environmental Analysis--Electric Sector Modeling of CO2 Emissions  

Science Conference Proceedings (OSTI)

This Electric Power Research Institute has initiated a comprehensive collaborative study to quantify the environmental impacts of electric transportation, specifically with respect to plug-in hybrid electric vehicles (PHEVs). This technical update describes the adaptation of the EPRI electric sector model for the analysis of CO2 emissions from the charging on PHEVs on the electrical grid. A "PHEV Base Case" was developed using baseline assumptions from the "EPRI Base Case," a nominal set of key assumptio...

2006-11-29T23:59:59.000Z

Note: This page contains sample records for the topic "ford escape phev" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

U.S. Hybrid and Lithium Technology Corporation GAIA Battery: Initial System Characterization for the Plug-In Hybrid Electric Vehicle Yard Tractor  

Science Conference Proceedings (OSTI)

Diesel-powered tractors, called yard tractors, are used to shuttle cargo trailers from point to point within the confines of a port facility, terminal, or yard. A plug-in hybrid electric vehicle (PHEV) yard tractor design was proposed as a way to reduce operation emissions and diesel fuel use. The Electric Power Research Institute (EPRI) has designed and constructed a first-of-a-kind PHEV yard tractor. Southern California Edison's (SCE's) Electric Vehicle Technical Center performed PHEV yard tractor bat...

2012-03-01T23:59:59.000Z

462

TELKOMNIKA, Vol.10, No.8, December 2012, pp. 1701~1708 e-ISSN: 2087-278X  

E-Print Network (OSTI)

and integrated in a real-life power system. Hybrid-electric power technologies and advances in battery make PHEVs, as they are quite expensive, they are not widely used. In this paper, the potential of a plug-in hybrid electric vehicle (PHEV) in a vehicle-to-grid (V2G) mode of operation using a PHEV charging station to provide a low

Pota, Himanshu Roy

463

David Dallinger  

NLE Websites -- All DOE Office Websites (Extended Search)

modeling. This Speaker's Seminars Grid Integration of Intermittent Renewables Using Price Responsive Plug- in Electric Vehicles Electric Vehicles (PHEV and BEV) in the German...

464

Argonne TTRDC - Transportation Publications - TransForum  

NLE Websites -- All DOE Office Websites (Extended Search)

MB pdf) Contents China's Minister of Science and Technology Visits Argonne Testing the Tesla Six Myths about Plug-in Hybrid Electric Vehicles Charging Ahead: Taking PHEVs Farther...

465

Assessment of Technologies for Compliance with the Low Carbon Fuel Standard  

E-Print Network (OSTI)

in 2020, with the rest being E85 flex-fuel vehicles (5.8%),HEVs, hybrid flex-fuel E85 vehicles, and PHEVs, will be

Yeh, Sonia; Lutsey, Nicholas P.; Parker, Nathan C.

2009-01-01T23:59:59.000Z

466

NETL F 451.1/1-1, Categorical Exclusion Designation Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Motors LLC OEPMPVTD FY14-15 100113 - 093015 Bruce Mixer Warren, MI High Energy Lithium Batteries for PHEV Applications Develop technology and demonstrate a lithium ion...

467

CX-010978: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exclusion Determination CX-010978: Categorical Exclusion Determination High Energy Lithium Batteries for Plug-in Hybrid Electric Vehicle (PHEV) Applications CX(s) Applied: B3.6...

468

NETL F 451.1/1-1, Categorical Exclusion Designation Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

OEPMPVTD FY14-15 100113 - 093015 Bruce Mixer Newark, CA High Energy Lithium Batteries for PHEV Applications Develop technology and demonstrate a lithium ion battery with...

469

NETL F 451.1-1/1 Categorical Exclusion (CX) Designation Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2010 Adrienne Riggi 3 years Cambridge, Middlesex, MA Internal Short Circuits in Lithium-ion Cells for PHEV Develop model that quantitatively characterizes the threshold...

470

CX-010979: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exclusion Determination CX-010979: Categorical Exclusion Determination High Energy Lithium Batteries for Plug-in Hybrid Electric Vehicle (PHEV) Applications CX(s) Applied: B3.6...

471

The Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

hybrid operation. Preliminary demonstration tests reveal PHEVs use about as much electricity in a year of standard driving as a three-per- son household's water heater...

472

MonthlyReportAll  

NLE Websites -- All DOE Office Websites (Extended Search)

PHEV Demonstration Vehicle Technologies Program "Distance traveled with plug-in battery pack turned off by the vehicle operator" is a subset of distance traveled in...

473

untitled  

NLE Websites -- All DOE Office Websites (Extended Search)

test miles 4 PHEV Advantages * Reduced petroleum consumption and emissions * Recover energy during regenerative braking * Use existing gas station infrastructure * Minimal...

474

Technology Improvement Pathways to Cost-Effective Vehicle Electrification: Preprint  

DOE Green Energy (OSTI)

This paper evaluates several approaches aimed at making plug-in electric vehicles (EV) and plug-in hybrid electric vehicles (PHEVs) cost-effective.

Brooker, A.; Thornton, M.; Rugh, J.

2010-02-01T23:59:59.000Z

475

untitled  

NLE Websites -- All DOE Office Websites (Extended Search)

Workshop - AVTA's PHEV Testing and Demonstration Activities Jim Francfort BC Hydro and Powertech Labs Vancouver, British Columbia. October 2008 This presentation does...

476

Applying the Battery Ownership Model in Pursuit of Optimal Battery Use Strategies (Presentation)  

DOE Green Energy (OSTI)

This Annual Merit Review presentation describes the application of the Battery Ownership Model for strategies for optimal battery use in electric drive vehicles (PEVs, PHEVs, and BEVs).

Neubauer, J.; Ahmad, P.; Brooker, A.; Wood, E.; Smith, K.; Johnson, C.; Mendelsohn, M.

2012-05-01T23:59:59.000Z

477

The Efficacy of Electric Vehicle Time-of-Use Rates in Guiding Plug-in Hybrid Electric Vehicle Charging Behavior  

Science Conference Proceedings (OSTI)

This paper presents a series of analyses that seek to enhance understanding of the extent to which time-of-use (TOU) rates can economically incentivize off-peak charging of plug-in hybrid electric vehicles (PHEV). The total cost of fueling a PHEV under modeled and real-world TOU rates is compared to the total cost of fueling a PHEV under constant rates. Time-resolved vehicle energy consumption and fueling costs for a variety of PHEV designs are derived from travel survey data and charging behavior models...

2011-12-20T23:59:59.000Z

478

Redox Shuttle Electrolyte Additive Could Help Make Batteries Safer ...  

Argonne National Laboratory has developed a way to make commercially viable lithium-ion (Li-ion) batteries for plug-in hybrid electric vehicles (PHEVs) and electric ...

479

ACCESS Magazine Spring 2009  

E-Print Network (OSTI)

an increased share of hybrids, if car size and weight remainreplacing conventional cars with hybrids is the least costlyhybrid or PHEV SUVs than to replace conventional compact cars.

2009-01-01T23:59:59.000Z

480

Environmental Impacts of Plug-in Hybrid Electric Vehicles.  

E-Print Network (OSTI)

??The environmental and electric utility system impacts from plug?in hybrid electric vehicle (PHEV) infiltration in Michigan were examined from years 2010 to 2030 as part (more)

Camere, Aaron; Schafer, Allison; de Monasterio, Caroline

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ford escape phev" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Hbridos Enchufables  

NLE Websites -- All DOE Office Websites (Extended Search)

Hbridos Enchufables Chevrolet Volt Vehculos Elctricos Enchufables (PHEVs) son hbridos con bateras de gran capacidad que pueden ser recargables conectndose a una caja de...

482

untitled  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Vehicle Testing Activity PHEV and Other Electric Drive Testing Results and Resources Jim Francfort Electric Drive Session Alternative Fuels & Vehicles Las Vegas, Nevada -...

483

An Activity-Based Assessment of the Potential Impacts of Plug-In Hybrid Electric Vehicles on Energy and Emissions Using One-Day Travel Data  

E-Print Network (OSTI)

4.9). However, the maximum demand increase is produced byelectricity demand increases, especially for maximum loadsand maximum bounds. PHEV 20 cases have a peak demand of

Recker, W. W.; Kang, J. E.

2010-01-01T23:59:59.000Z

484

Alternative Fuels Data Center: Rhode Island Laws and Incentives...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

related to HEVs PHEVs. Laws and Regulations Alternative Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Acquisition Requirements To reduce fuel consumption and...

485

DOE to Provide up to $14 Million to Develop Advanced Batteries...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

solicitation by the United States Advanced Battery Consortium (USABC), for plug-in hybrid electric vehicle (PHEV) battery development. This research aims to find solutions...

486

DOE to Provide Nearly $20 Million to Further Development of Advanced...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Kevin M. Kolevar today announced DOE will invest nearly 20 million in plug-in hybrid vehicle (PHEV) research. Five projects have been selected for negotiation of awards...

487

Microsoft PowerPoint - SAE Hybrid 2013_Fleet and Infra Results...  

NLE Websites -- All DOE Office Websites (Extended Search)

loggers and cellular communications data transfer * Objective is to demonstrate plug-in hybrid electric vehicle (PHEV) pickup trucks in diverse fleets to understand customer...

488

CX-003293: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

- using A123 Systems proprietary Nanophosphate? cathodes and commercial Plug-in Hybrid Electric Vehicle (PHEV) cell formats. DOCUMENT(S) AVAILABLE FOR DOWNLOAD...

489

Microsoft Word - EVS24 rev3.docx  

NLE Websites -- All DOE Office Websites (Extended Search)

Conversion Module (PCM) is a supplemental battery system that converts the Toyota Prius hybrid electric vehicle (HEV) into a plug-in hybrid electric vehicle (PHEV). The Hymotion...

490

Advanced Vehicle Testing Activity - Plug-in Hybrid ElectricVehicles...  

NLE Websites -- All DOE Office Websites (Extended Search)

INL and testing partner Electric Transportation Engineering Corporation conduct Plug-in Hybrid Electric Vehicle (PHEV) and Extended Range Electric Vehicle (EREV) testing as part...

491

Optimization of a plug-in hybrid electric vehicle .  

E-Print Network (OSTI)

??A plug-in hybrid electric vehicle (PHEV) is a vehicle powered by a combination of an internal combustion engine and an electric motor with a battery (more)

Golbuff, Sam

2006-01-01T23:59:59.000Z

492

The Challenge of Achieving Californias Low Carbon Fuel Standard  

U.S. Energy Information Administration (EIA)

vehicles (BEVs), fuel cell vehicles (FCVs), plug-in hybrid electric vehicles (PHEVs), and the consumption of significant quantities of low-CI ethanol.[2

493

Simulations of Plug-in Hybrid Vehicles Using Advanced Lithium Batteries and Ultracapacitors on Various Driving Cycles  

E-Print Network (OSTI)

and Batteries for Hybrid Vehicle Applications, 23 rdSimulations of Plug-in Hybrid Vehicles using Advancedultracapacitors in plug-in hybrid vehicles (PHEVs) with high

Burke, Andy; Zhao, Hengbing

2010-01-01T23:59:59.000Z

494

CX-003554: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Energy, National Energy Technology Laboratory Create a petroleum-free plug-in hybrid electric vehicle (PHEV) technology capable of driving 200 miles without charging...

495

untitled  

NLE Websites -- All DOE Office Websites (Extended Search)

* Comparison of Internal combustion engine (ICE), hybrid electric (HEV), plug-in hybrid electric (PHEV), and battery electric (BEV) vehicle technologies electric (BEV)...

496

EIAs AEO2012 includes analysis of breakthroughs in vehicle ...  

U.S. Energy Information Administration (EIA)

Plug-in hybrid electric (PHEV): Vehicles with larger batteries to provide power to drive the vehicle for some distance in charge-depleting mode ...

497

An Overview of Automotive Home and Neighborhood Refueling  

E-Print Network (OSTI)

Battery, Hybrid and Fuel Cell Electric Vehicle Symposiumvehicles, and plug-in hybrid vehicles demonstrate itsSymposium plug-in hybrid vehicles (PHEV), and hydrogen fuel

Li, Xuping; Ogden, Joan M.; Kurani, Kenneth S.

2009-01-01T23:59:59.000Z

498

untitled  

NLE Websites -- All DOE Office Websites (Extended Search)

* Comparison of Internal combustion engine (ICE), hybrid electric (HEV), plug-in hybrid electric (PHEV), and battery electric (BEV) vehicle technologies * Grid connected...

499

No Slide Title  

NLE Websites -- All DOE Office Websites (Extended Search)

track distance, average & maximum speeds AVTA PHEVs Currently Being Tested * EnergyCS Prius - 9 kWh Valence lithium pack - Completed baseline performance testing - Completed...

500

MonthlyReportAll  

NLE Websites -- All DOE Office Websites (Extended Search)

driven: 344 112010 to 12312010 Number of vehicles: Fleet Summary Report - Hymotion Prius (Kvaser data logger) Date range of data received: North American PHEV Demonstration...